These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Intrinsic Anaerobic Bioremediation of Hydrocarbons in Contaminated Subsurface Plumes and Marine Sediments  

Microsoft Academic Search

In recent years, several classes of petroleum hydrocarbons contaminating subsurface and marine environments have been found susceptible to anaerobic biodegradation using novel mechanisms entirely distinct from aerobic metabolic pathways. For example, the anaerobic decay of toluene can be initiated by the addition of the aryl methyl group to the double bond of fumarate, resulting in a benzylsuccinic acid metabolite. Our

M. A. Nanny; J. M. Suflita; I. Davidova; K. Kropp; M. Caldwell; R. Philp; L. Gieg; L. A. Rios-Hernandez

2001-01-01

2

Using Geophysical Signatures to Investigate Temporal Changes Due to Source Reduction in the Subsurface Contaminated with Hydrocarbons  

EPA Science Inventory

We investigated the geophysical response to subsurface hydrocarbon contamination source removal. Source removal by natural attenuation or by engineered bioremediation is expected to change the biological, chemical, and physical environment associated with the contaminated matrix....

3

Intrinsic Anaerobic Bioremediation of Hydrocarbons in Contaminated Subsurface Plumes and Marine Sediments  

NASA Astrophysics Data System (ADS)

In recent years, several classes of petroleum hydrocarbons contaminating subsurface and marine environments have been found susceptible to anaerobic biodegradation using novel mechanisms entirely distinct from aerobic metabolic pathways. For example, the anaerobic decay of toluene can be initiated by the addition of the aryl methyl group to the double bond of fumarate, resulting in a benzylsuccinic acid metabolite. Our work has shown that an analogous mechanism also occurs with ethylbenzene and the xylene isomers, yielding 3-phenyl-1,2-butane dicarboxylic acid and methylbenzylsuccinic acid, respectively. Moreover, these metabolites have been detected in contaminated environments. Most recently, we have identified metabolites resulting from the initial attack of H26- or D26-n-dodecane during degradation by a sulfate-reducing bacterial culture. Using GC-MS, these metabolites were identified as fatty acids that result from C-H or C-D addition across the double bond of fumarate to give dodecylsuccinic acids in which all 26 protons or deuteriums of the parent alkane were retained. Further, when this enrichment culture was challenged with hexane or decane, hexylsuccinic acid or decylsuccinic acid were identified as resulting metabolites. Similarly, the study of an ethylcyclopentane-degrading sulfate-reducing enrichment produced a metabolite, which is consistent with the addition of fumarate to the parent substrate. These novel anaerobic addition products are characterized by similar, distinctive mass spectral (MS) features (ions specific to the succinic acid portion of the molecule) that can potentially be used to probe contaminated environments for evidence of intrinsic remediation of hydrocarbons. Indeed, analyses of water extracts from two gas condensate-contaminated sites resulted in the tentative detection of alkyl- and cycloalkylsuccinic acids ranging from C3 to C9, including ethylcyclopentyl-succinic acid. In water extracts collected from an area underlying a petroleum production plant, MS profiles consistent with the addition products of methylcycloalkenes were observed. This work helps attests to: 1) the extrapolatability of laboratory results to the field, 2) the unifying metabolic features for the anaerobic destruction of diverse types of hydrocarbons, and 3) how this information can be used to assess the intrinsic bioremediation processes in petroleum-contaminated environments.

Nanny, M. A.; Nanny, M. A.; Suflita, J. M.; Suflita, J. M.; Davidova, I.; Kropp, K.; Caldwell, M.; Philp, R.; Gieg, L.; Rios-Hernandez, L. A.

2001-05-01

4

Cosolvency effect in subsurface systems contaminated with petroleum hydrocarbons and ethanol.  

PubMed

In Brazil, most gas stations and terminals store tanks containing hydrated ethanol, gasohol and diesel. In case of spills, it is possible that a high aqueous ethanol concentration can facilitate the transfer of hydrocarbons into the aqueous phase, enhancing contaminant concentrations in groundwater, a process called cosolvency. This study investigates the cosolvency effect of ethanol on the aqueous solubility of mono- and polycyclic aromatic hydrocarbons, and presents a simple log-linear model to predict this effect under equilibrium conditions. Cosolvency experiments were carried out in batch reactors under equilibrium conditions for pure mono- and polycyclic aromatic hydrocarbons, gasohol and diesel. A linear relationship between cosolvency power and Kow was determined, which allows predictions of the increase of aromatic hydrocarbon solubility due to the presence of ethanol. Results indicate that cosolvency would be significant only for high aqueous ethanol concentrations (higher than 10%). Under these conditions, cosolvency may be critical only in cases of large gasohol spills or in simultaneous releases of neat ethanol and other fuels. In this way, the hydrophobic and toxic polycyclic aromatic hydrocarbons (PAHs), that are usually present in minor aqueous concentrations in fuel spills without ethanol, may be dissolved in larger amounts in groundwater. PMID:15016521

Corseuil, Henry X; Kaipper, Beatriz I A; Fernandes, Marilda

2004-03-01

5

Use of dissolved and vapor-phase gases to investigate methanogenic degradation of petroleum hydrocarbon contamination in the subsurface  

USGS Publications Warehouse

[1] At many sites contaminated with petroleum hydrocarbons, methanogenesis is a significant degradation pathway. Techniques to estimate CH4 production, consumption, and transport processes are needed to understand the geochemical system, provide a complete carbon mass balance, and quantify the hydrocarbon degradation rate. Dissolved and vapor-phase gas data collected at a petroleum hydrocarbon contaminated site near Bemidji, Minnesota, demonstrate that naturally occurring nonreactive or relatively inert gases such as Ar and N2 can be effectively used to better understand and quantify physical and chemical processes related to methanogenic activity in the subsurface. In the vadose zone, regions of Ar and N2 depletion and enrichment are indicative of methanogenic and methanotrophic zones, and concentration gradients between the regions suggest that reaction-induced advection can be an important gas transport process. In the saturated zone, dissolved Ar and N2 concentrations are used to quantify degassing driven by methanogenesis and also suggest that attenuation of methane along the flow path, into the downgradient aquifer, is largely controlled by physical processes. Slight but discernable preferential depletion of N2 over Ar, in both the saturated and unsaturated zones near the free-phase oil, suggests reactivity of N2 and is consistent with other evidence indicating that nitrogen fixation by microbial activity is taking place at this site. Copyright 2005 by the American Geophysical Union.

Amos, R.T.; Mayer, K.U.; Bekins, B.A.; Delin, G.N.; Williams, R.L.

2005-01-01

6

Modeling Subsurface Transport of Petroleum Hydrocarbons  

NSDL National Science Digital Library

This U.S. EPA website contains information on the modeling of subsurface transport of petroleum hydrocarbons and other contaminants. There are a few course modules on the fate and transport of contaminants. There are also OnSite on-line calculators for site-specific assessment calculations.

7

Delineation of subsurface hydrocarbon contamination at a former hydrogenation plant using spectral induced polarization imaging  

NASA Astrophysics Data System (ADS)

In the framework of the EU FP7 project ModelPROBE, broadband spectral induced polarization (SIP) measurements were conducted at a former hydrogenation plant in Zeitz for the characterization of a hydrocarbon contaminant plume. In the source area total concentrations of BTEX contaminants partly exceed 1.5 g/l. Previous studies at the laboratory scale have demonstrated the sensitivity of SIP measurements to different concentrations of organic minerals; however, only few studies have been conducted at the field scale. The aim of this study was to investigate the potential of SIP imaging to delineate areas with different BTEX concentrations. SIP measurements were performed in the frequency range from 60 mHz to 1 kHz along a 120 m profile across the area of the former hydrogenation plant. At a later stage, a trench was excavated along the location of the profile in order to remove pipes, foundations and different sources of anthropogenic noise associated with the hydrogenation plant. Thereafter, SIP measurements were repeated inside the trench to study the effect of anthropogenic noise on the SIP images. Computed images for the data collected before and after the excavation of the trench show similar results validating the proposed approach even in the presence of anthropogenic noise. SIP images, for frequencies below 100 Hz, exhibit two main anomalies: low phase shift values (~ 5 mrad) for locations with free phase product (BTEX concentrations > 1.7 g/l); whereas relatively high polarization values (> 10 mrad) were observed for lower BTEX concentrations (1 - 1.7 g/l). Moreover, the spectral response of the areas where free phase product was detected reveals a flattened spectrum; while the areas with lower concentrations exhibit a typical Cole-Cole response. Based on these results, SIP imaging appears to be a suitable tool to delineate source-zones at highly contaminated sites.

Flores Orozco, A.; Kemna, A.; Oberdoerster, C.; Zschornack, L.; Leven, C.; Dietrich, P.; Weiss, H.

2011-12-01

8

Subsurface Contamination Control  

SciTech Connect

There are two objectives of this report, ''Subsurface Contamination Control''. The first is to provide a technical basis for recommending limiting radioactive contamination levels (LRCL) on the external surfaces of waste packages (WP) for acceptance into the subsurface repository. The second is to provide an evaluation of the magnitude of potential releases from a defective WP and the detectability of the released contents. The technical basis for deriving LRCL has been established in ''Retrieval Equipment and Strategy for Wp on Pallet'' (CRWMS M and O 2000g, 6.3.1). This report updates the derivation by incorporating the latest design information of the subsurface repository for site recommendation. The derived LRCL on the external surface of WPs, therefore, supercede that described in CRWMS M and O 2000g. The derived LRCL represent the average concentrations of contamination on the external surfaces of each WP that must not be exceeded before the WP is to be transported to the subsurface facility for emplacement. The evaluation of potential releases is necessary to control the potential contamination of the subsurface repository and to detect prematurely failed WPs. The detection of failed WPs is required in order to provide reasonable assurance that the integrity of each WP is intact prior to MGR closure. An emplaced WP may become breached due to manufacturing defects or improper weld combined with failure to detect the defect, by corrosion, or by mechanical penetration due to accidents or rockfall conditions. The breached WP may release its gaseous and volatile radionuclide content to the subsurface environment and result in contaminating the subsurface facility. The scope of this analysis is limited to radioactive contaminants resulting from breached WPs during the preclosure period of the subsurface repository. This report: (1) documents a method for deriving LRCL on the external surfaces of WP for acceptance into the subsurface repository; (2) provides a table of derived LRCL for nuclides of radiological importance; (3) Provides an as low as is reasonably achievable (ALARA) evaluation of the derived LRCL by comparing potential onsite and offsite doses to documented ALARA requirements; (4) Provides a method for estimating potential releases from a defective WP; (5) Provides an evaluation of potential radioactive releases from a defective WP that may become airborne and result in contamination of the subsurface facility; and (6) Provides a preliminary analysis of the detectability of a potential WP leak to support the design of an airborne release monitoring system.

Y. Yuan

2001-12-12

9

Subsurface Contamination Control  

SciTech Connect

There are two objectives of this report, ''Subsurface Contamination Control''. The first is to provide a technical basis for recommending limiting radioactive contamination levels (LRCL) on the external surfaces of waste packages (WP) for acceptance into the subsurface repository. The second is to provide an evaluation of the magnitude of potential releases from a defective WP and the detectability of the released contents. The technical basis for deriving LRCL has been established in ''Retrieval Equipment and Strategy for Wp on Pallet'' (CRWMS M and O 2000g, 6.3.1). This report updates the derivation by incorporating the latest design information of the subsurface repository for site recommendation. The derived LRCL on the external surface of WPs, therefore, supercede that described in CRWMS M and O 2000g. The derived LRCL represent the average concentrations of contamination on the external surfaces of each WP that must not be exceeded before the WP is to be transported to the subsurface facility for emplacement. The evaluation of potential releases is necessary to control the potential contamination of the subsurface repository and to detect prematurely failed WPs. The detection of failed WPs is required in order to provide reasonable assurance that the integrity of each WP is intact prior to MGR closure. An emplaced WP may become breached due to manufacturing defects or improper weld combined with failure to detect the defect, by corrosion, or by mechanical penetration due to accidents or rockfall conditions. The breached WP may release its gaseous and volatile radionuclide content to the subsurface environment and result in contaminating the subsurface facility. The scope of this analysis is limited to radioactive contaminants resulting from breached WPs during the preclosure period of the subsurface repository. This report: (1) documents a method for deriving LRCL on the external surfaces of WP for acceptance into the subsurface repository; (2) provides a table of derived LRCL for nuclides of radiological importance; (3) Provides an as low as is reasonably achievable (ALARA) evaluation of the derived LRCL by comparing potential onsite and offsite doses to documented ALARA requirements; (4) Provides a method for estimating potential releases from a defective WP; (5) Provides an evaluation of potential radioactive releases from a defective WP that may become airborne and result in contamination of the subsurface facility; and (6) Provides a preliminary analysis of the detectability of a potential WP leak to support the design of an airborne release monitoring system.

Y. Yuan

2001-11-16

10

Subsurface contaminants focus area  

SciTech Connect

The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.

NONE

1996-08-01

11

DELINEATION OF SUBSURFACE HYDROCARBON CONTAMINANT DISTRIBUTION USING A DIRECT PUSH RESISTIVITY METHOD  

EPA Science Inventory

A direct push resistivity method was evaluated as a complementary screening tool to provide rapid in-situ contaminant detection to aid in better defining locations for drilling, sampling, and monitoring well installation at hazardous waste sites. Nine continuous direct push resi...

12

Delineation of subsurface hydrocarbon contamination at a former hydrogenation plant using spectral induced polarization imaging  

NASA Astrophysics Data System (ADS)

Broadband spectral induced polarization (SIP) measurements were conducted at a former hydrogenation plant in Zeitz (NE Germany) to investigate the potential of SIP imaging to delineate areas with different BTEX (benzene, toluene, ethylbenzene, and xylene) concentrations. Conductivity images reveal a poor correlation with the distribution of contaminants; whereas phase images exhibit two main anomalies: low phase shift values (< 5 mrad) for locations with high BTEX concentrations, including the occurrence of free-phase product (BTEX concentrations > 1.7 g/l), and higher phase values for lower BTEX concentrations. Moreover, the spectral response of the areas with high BTEX concentration and free-phase products reveals a flattened spectrum in the low frequencies (< 40 Hz), while areas with lower BTEX concentrations exhibit a response characterized by a frequency peak. The SIP response was modelled using a Debye decomposition to compute images of the median relaxation-time. Consistent with laboratory studies, we observed an increase in the relaxation-time associated with an increase in BTEX concentrations. Measurements were also collected in the time domain (TDIP), revealing imaging results consistent with those obtained for frequency domain (SIP) measurements. Results presented here demonstrate the potential of the SIP imaging method to discriminate source and plume of dissolved contaminants at BTEX contaminated sites.

Flores Orozco, Adrián; Kemna, Andreas; Oberdörster, Christoph; Zschornack, Ludwig; Leven, Carsten; Dietrich, Peter; Weiss, Holger

2012-08-01

13

Containment of subsurface contaminants  

DOEpatents

A barrier for reducing the spread of a plume of subsurface contaminants. The apparatus includes a well system for injecting a fluid, such as air, just outside and below the periphery of the plume. The fluid is injected at a pressure sufficient to lower the hydraulic conductivity of the soil from the point of injection to the surface thus establishing a curtain-like barrier to groundwater movement. The barrier is established upgradient of the plume to divert groundwater away, or preferably completely around the plume to reduce the flow of groundwater into or out of the plume. The barrier enables the remediation of the confined contamination and then, when the injection of the fluid is halted, the barrier quickly dissipates.

Corey, John C. (Aiken, SC)

1994-01-01

14

Containment of subsurface contaminants  

DOEpatents

A barrier is disclosed for reducing the spread of a plume of subsurface contaminants. The apparatus includes a well system for injecting a fluid, such as air, just outside and below the periphery of the plume. The fluid is injected at a pressure sufficient to lower the hydraulic conductivity of the soil from the point of injection to the surface thus establishing a curtain-like barrier to groundwater movement. The barrier is established upgradient of the plume to divert groundwater away, or preferably completely around the plume to reduce the flow of groundwater into or out of the plume. The barrier enables the remediation of the confined contamination and then, when the injection of the fluid is halted, the barrier quickly dissipates. 5 figs.

Corey, J.C.

1994-09-06

15

In situ sensing of subsurface contamination--part I: near-infrared spectral characterization of alkanes, aromatics, and chlorinated hydrocarbons.  

PubMed

There is an imperative need for a chemical sensor capable of remote, in situ, long-term monitoring of chemical species at sites containing toxic chemical spills, specifically at chemical waste dumps, landfills, and locations with underground storage tanks. In the current research, a series of experiments were conducted measuring the near-infrared optical absorption of alkanes, aromatics, and chlorinated hydrocarbons. A spectral library was then developed to characterize the optical spectra of liquid hydrocarbons. Near-infrared analysis was chosen due to compatibility with optical fibers. The goal was to differentiate between classes of hydrocarbons and to also discriminate between compounds within a class of similar molecular structures. It was observed that unique absorption spectra can be obtained for each hydrocarbon, and this uniqueness can be used to discriminate between hydrocarbons from different families. Statistical analyses, namely, principal component analysis (PCA) and correlation coefficient (Spearman and Pearson methods), were attempted to match absorption spectra from an unknown hydrocarbon with the database with limited success. An algorithm was subsequently written to identify the characteristic peaks of each hydrocarbon that could be used to match data from an unknown chemical species with the database. PMID:24445930

Klavarioti, Maria; Kostarelos, Konstantinos; Pourjabbar, Anahita; Ghandehari, Masoud

2014-05-01

16

Subsurface fate of spilled petroleum hydrocarbons in continuous permafrost  

USGS Publications Warehouse

Accidental releases of approximately 2000 m3 of fuel have resulted in subsurface contamination adjacent to Imikpuk Lake, a drinking-water source near Barrow, AK. This paper presents a conceptual model of the distribution and transport of subsurface free-phase hydrocarbons at this site. The mean annual temperature in Barrow is -13 ??C, and average monthly temperatures exceed 0 ??C only during the months of June, July, and August. As a result, the region is underlain by areally continuous permafrost that extends to depths of up to 300 m and constrains subsurface hydrologic processes to a shallow zone that temporarily thaws each summer. During the 1993 and 1994 thaw seasons, the measured depth of thaw varied across the site from approximately 0.5 to 2 m. However, exploratory borings in 1995 showed that free-phase hydrocarbons were present at depths greater than 3 m, indicating that permafrost at this site is not a barrier to the vertical migration of nonaqueous-phase liquids. In 1996, a subsurface containment barrier was installed to prevent lateral movement of contaminated water to Imikpuk Lake, and a recovery trench was excavated upgradient of the barrier to facilitate removal of free-phase hydrocarbons. Free-phase hydrocarbons were recovered from the trench during 1996, 1997, and 1998. Recovery rates diminished over this time, and in 1999, no further product was recovered and the recovery operation was halted. Subsequent exploratory borings in 2001 and 2002 have revealed that some product remains in the subsurface. Data indicate that this remaining product exists in small discrete pockets or very thin layers of hydrocarbon floating on brine. These small reservoirs appear to be isolated from one another by relatively impermeable permafrost. Published by Elsevier B.V.

McCarthy, K.; Walker, L.; Vigoren, L.

2004-01-01

17

Emulsification of hydrocarbons by subsurface bacteria  

USGS Publications Warehouse

Biosurfactants have potential for use in enhancement of in situ biorestoration by increasing the bioavailability of contaminants. Microorganisms isolated from biostimulated, contaminated and uncontaminated zones at the site of an aviation fuel spill and hydrocarbon-degrading microorganisms isolated from sites contaminated with unleaded gasoline were examined for their abilities to emulsify petroleum hydrocarbons. Emulsifying ability was quantified by a method involving agitation and visual inspection. Biostimulated-zone microbes and hydrocarbon-degrading microorganisms were the best emulsifiers as compared to contaminated and uncontaminated zone microbes. Biostimulation (nutrient and oxygen addition) may have been the dominant factor which selected for and encouraged growth of emulsifiers; exposure to hydrocarbon was also important. Biostimulated microorganisms were better emulsifiers of aviation fuel (the contaminant hydrocarbon) than of heavier hydrocarbon to which they were not previously exposed. By measuring surface tension changes of culture broths, 11 out of 41 emulsifiers tested were identified as possible biosurfactant producers and two isolates produced large surface tension reductions indicating the high probability of biosurfactant production.Biosurfactants have potential for use in enhancement of in situ biorestoration by increasing the bioavailability of contaminants. Microorganisms isolated from biostimulated, contaminated and uncontaminated zones at the site of an aviation fuel spill and hydrocarbon-degrading microorganisms isolated from sites contaminated with unleaded gasoline were examined for their abilities to emulsify petroleum hydrocarbons. Emulsifying ability was quantified by a method involving agitation and visual inspection. Biostimulated-zone microbes and hydrocarbon-degrading microorganisms were the best emulsifiers as compared to contaminated and uncontaminated zone microbes. Biostimulation (nutrient and oxygen addition) may have been the dominant factor which selected for and encouraged growth of emulsifiers; exposure to hydrocarbon was also important. Biostimulated microorganisms were better emulsifiers of aviation fuel (the contaminant hydrocarbon) than of heavier hydrocarbon to which they were not previously exposed. By measuring surface tension changes of culture broths, 11 out of 41 emulsifiers tested were identified as possible biosurfactant producers and two isolates produced large surface tension reductions, indicating a high probability of biosurfactant production.

Francy, D.S.; Thomas, J.M.; Raymond, R.L.; Ward, C.H.

1991-01-01

18

OPPORTUNITIES FOR BIORECLAMATION OF AQUIFERS CONTAMINATED WITH PETROLEUM HYDROCARBONS  

EPA Science Inventory

Petroleum-derived hydrocarbons are an important class of ground water contaminants. Spills of hydrocarbons often produce regions in the subsurface that retain the spilled material trapped as an oily phase. When ground water infiltrates the oily material, the more water-soluble hy...

19

Subsurface Contaminants Focus Area annual report 1997  

SciTech Connect

In support of its vision for technological excellence, the Subsurface Contaminants Focus Area (SCFA) has identified three strategic goals. The three goals of the SCFA are: Contain and/or stabilize contamination sources that pose an imminent threat to surface and ground waters; Delineate DNAPL contamination in the subsurface and remediate DNAPL-contaminated soils and ground water; and Remove a full range of metal and radionuclide contamination in soils and ground water. To meet the challenges of remediating subsurface contaminants in soils and ground water, SCFA funded more than 40 technologies in fiscal year 1997. These technologies are grouped according to the following product lines: Dense Nonaqueous-Phase Liquids; Metals and Radionuclides; Source Term Containment; and Source Term Remediation. This report briefly describes the SCFA 1997 technologies and showcases a few key technologies in each product line.

NONE

1997-12-31

20

Apparatus for passive removal of subsurface contaminants  

DOEpatents

An apparatus is provided which passively removes contaminated gases from a subsurface. The apparatus includes a riser pipe extending into a subsurface which has an exterior end in fluid communication with a valve. When well pressure is greater than atmospheric pressure, the valve opens to release contaminants into the atmosphere, and when well pressure is less than atmospheric pressure, the valve closes to prevent flow of air into the well. The valve assembly of the invention comprises a lightweight ball which is lifted from its valve seat with a slight pressure drop between the well and the atmosphere. 7 figs.

Pemberton, B.E.; May, C.P.; Rossabi, J.

1997-06-24

21

Potential for Aerobic and Anaerobic Biodegradation of Petroleum Hydrocarbons in Boreal Subsurface  

Microsoft Academic Search

We studied the role of aerobic and anaerobic petroleum hydrocarbon degradation ata boreal, light-weight fuel and lubrication oil contaminated site undergoing naturalattenuation. At the site, anoxic conditions prevailed with high concentrations ofCH4 (up to 25% v\\/v) and CO2 (up to 18% v\\/v) in the soil gas throughout the year. Subsurface samples were obtained mainly from the anoxic parts of the

Jani M. Salminen; Pirjo M. Tuomi; Anna-Mari Suortti; Kirsten S. Jørgensen

2004-01-01

22

Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs.  

PubMed

Biodegradation of crude oil in subsurface petroleum reservoirs is an important alteration process with major economic consequences. Aerobic degradation of petroleum hydrocarbons at the surface is well documented and it has long been thought that the flow of oxygen- and nutrient-bearing meteoric waters into reservoirs was necessary for in-reservoir petroleum biodegradation. The occurrence of biodegraded oils in reservoirs where aerobic conditions are unlikely, together with the identification of several anaerobic microorganisms in oil fields and the discovery of anaerobic hydrocarbon biodegradation mechanisms, suggests that anaerobic degradation processes could also be responsible. The extent of anaerobic hydrocarbon degradation processes in the world's deep petroleum reservoirs, however, remains strongly contested. Moreover, no organism has yet been isolated that has been shown to degrade hydrocarbons under the conditions found in deep petroleum reservoirs. Here we report the isolation of metabolites indicative of anaerobic hydrocarbon degradation from a large fraction of 77 degraded oil samples from both marine and lacustrine sources from around the world, including the volumetrically important Canadian tar sands. Our results therefore suggest that anaerobic hydrocarbon degradation is a common process in biodegraded subsurface oil reservoirs. PMID:15372028

Aitken, Carolyn M; Jones, D M; Larter, S R

2004-09-16

23

Chemical contaminants on DOE lands and selection of contaminant mixtures for subsurface science research  

SciTech Connect

This report identifies individual contaminants and contaminant mixtures that have been measured in the ground at 91 waste sites at 18 US Department of Energy (DOE) facilities within the weapons complex. The inventory of chemicals and mixtures was used to identify generic chemical mixtures to be used by DOE's Subsurface Science Program in basic research on the subsurface geochemical and microbiological behavior of mixed contaminants (DOE 1990a and b). The generic mixtures contain specific radionuclides, metals, organic ligands, organic solvents, fuel hydrocarbons, and polychlorinated biphenyls (PCBs) in various binary and ternary combinations. The mixtures are representative of in-ground contaminant associations at DOE facilities that are likely to exhibit complex geochemical behavior as a result of intercontaminant reactions and/or microbiologic activity stimulated by organic substances. Use of the generic mixtures will focus research on important mixed contaminants that are likely to be long-term problems at DOE sites and that will require cleanup or remediation. The report provides information on the frequency of associations among different chemicals and compound classes at DOE waste sites that require remediation.

Riley, R.G.; Zachara, J.M. (Pacific Northwest Lab., Richland, WA (United States))

1992-04-01

24

Chemical contaminants on DOE lands and selection of contaminant mixtures for subsurface science research  

SciTech Connect

This report identifies individual contaminants and contaminant mixtures that have been measured in the ground at 91 waste sites at 18 US Department of Energy (DOE) facilities within the weapons complex. The inventory of chemicals and mixtures was used to identify generic chemical mixtures to be used by DOE`s Subsurface Science Program in basic research on the subsurface geochemical and microbiological behavior of mixed contaminants (DOE 1990a and b). The generic mixtures contain specific radionuclides, metals, organic ligands, organic solvents, fuel hydrocarbons, and polychlorinated biphenyls (PCBs) in various binary and ternary combinations. The mixtures are representative of in-ground contaminant associations at DOE facilities that are likely to exhibit complex geochemical behavior as a result of intercontaminant reactions and/or microbiologic activity stimulated by organic substances. Use of the generic mixtures will focus research on important mixed contaminants that are likely to be long-term problems at DOE sites and that will require cleanup or remediation. The report provides information on the frequency of associations among different chemicals and compound classes at DOE waste sites that require remediation.

Riley, R.G.; Zachara, J.M. [Pacific Northwest Lab., Richland, WA (United States)

1992-04-01

25

Plant-enhanced subsurface bioremediation of nonvolatile hydrocarbons  

SciTech Connect

In recent years, phytoremediation, i.e., the use of plants to clean up soils contaminated with organics, has become a promising new area of research, particularly for in-situ cleanup of large volumes of slightly contaminated soils. A model that can be used as a predictive tool in phytoremediation operations was developed to simulate the transport and fate of a residual hydrocarbon contaminant interacting with plant roots in a partially saturated soil. Time-specific distribution of root quantity through soil, as well as root uptake of soil water and hydrocarbon, was incorporated into the model. In addition, the microbial activity in the soil rhizosphere was modeled with a biofilm theory. A sandy loam, which is dominate in soils of agricultural importance, was selected for simulations. Cotton, which has well-documented plant properties, was used as the model plant. Model parameters involving root growth and root distribution were obtained from the actual field data reported in the literature and ranges of reported literature values were used to obtain a realistic simulation of a phytoremediation operation. Following the verification of the root growth model with published experimental data, it has been demonstrated that plant characteristics such as the root radius are more dominant than contaminant properties in the overall rate of phytoremediation operation. The simulation results showed enhanced biodegradation of a hydrocarbon contaminant mostly because of increased biofilm metabolism of organic contaminants in a growing root system of cotton. Simulations also show that a high mean daily root-water uptake rate increases the contaminant retardation factors because of the resulting low water content. The ability to simulate the fate of a hydrocarbon contaminant is essential in designing technically efficient and cost-effective, plant-aided remedial strategies and in evaluating the effectiveness of a proposed phytoremediation scheme.

Chang, Y.Y. [Korea Inst. of Science and Technology Environmental Center, Seoul (Korea, Republic of); Corapcioglu, M.Y. [Texas A and M Univ., College Station, TX (United States). Dept. of Civil Engineering

1998-02-01

26

Bioremediation of Petroleum Hydrocarbon Contaminated Sites  

SciTech Connect

Bioremediation has been widely applied in the restoration of petroleum hydrocarbon-contaminated. Parameters that may affect the rate and efficiency of biodegradation include temperature, moisture, salinity, nutrient availability, microbial species, and type and concentration of contaminants. Other factors can also affect the success of the bioremediation treatment of contaminants, such as climatic conditions, soil type, soil permeability, contaminant distribution and concentration, and drainage. Western Research Institute in conjunction with TechLink Environmental, Inc. and the U.S. Department of Energy conducted laboratory studies to evaluate major parameters that contribute to the bioremediation of petroleum-contaminated drill cuttings using land farming and to develop a biotreatment cell to expedite biodegradation of hydrocarbons. Physical characteristics such as soil texture, hydraulic conductivity, and water retention were determined for the petroleum hydrocarbon contaminated soil. Soil texture was determined to be loamy sand to sand, and high hydraulic conductivity and low water retention was observed. Temperature appeared to have the greatest influence on biodegradation rates where high temperatures (>50 C) favored biodegradation. High nitrogen content in the form of ammonium enhanced biodegradation as well did the presence of water near field water holding capacity. Urea was not a good source of nitrogen and has detrimental effects for bioremediation for this site soil. Artificial sea water had little effect on biodegradation rates, but biodegradation rates decreased after increasing the concentrations of salts. Biotreatment cell (biocell) tests demonstrated hydrocarbon biodegradation can be enhanced substantially when utilizing a leachate recirculation design where a 72% reduction of hydrocarbon concentration was observed with a 72-h period at a treatment temperature of 50 C. Overall, this study demonstrates the investigation of the effects of environmental parameters on bioremediation is important in designing a bioremediation system to reduce petroleum hydrocarbon concentrations in impacted soils.

Paul Fallgren

2009-03-30

27

Phytoremediation of hydrocarbon-contaminated soils: principles and applications  

E-print Network

Phytoremediation of hydrocarbon-contaminated soils: principles and applications R. Kamath, J. A of relatively inexpensive remediation schemes, such as phytoremediation. Research and application of phytoremediation for treatment of petroleum hydrocarbon contamination over the past fifteen years has provided much

Alvarez, Pedro J.

28

Fingerprinting of Hydrocarbon Fuel Contaminants: Literature Review  

Microsoft Academic Search

Fingerprinting of hydrocarbons was developed in the petroleum industry to develop an understanding of source rock and crude oil relationships. From this beginning, the use of fingerprinting has been transferred to the study of environmental pollution. Environmental fingerprinting is used in the assessment of fuel pollutants to characterize the type of the fuel contaminants, determine their source, and understand their

Hossein Alimi; Thomas Ertel; Bettina Schug

2003-01-01

29

Investigating hydrocarbon contamination using ground penetrating radar  

SciTech Connect

The increasing costs of remediating contaminated sites has stimulated research for cost reducing techniques in soil investigation and clean-up techniques. Under the traditional approach soil borings and groundwater wells are used to investigate contaminated soil. These are useful tools to determine the amount and characteristics of the contamination, but they are inefficient and costly in providing information on the location and extent of contamination as they only give information on one point. This often leads to uncertainty in estimating clean-up costs or, even worse, to unsuccessful clean-ups. MAP Environmental Research has developed a technology using Ground Penetrating Radar (GPR) in combination with in-house developed software to locate and define the extent of hydrocarbon contamination. With this technology, the quality of site investigation is increased while costs are reduced. Since 1994 MAP has been improving its technology and has applied it to over 100 projects, which all have been checked afterwards by conventional drilling. This paper gives some general characteristics of the method and presents a case study. The emphasis of this paper lies on the practical application of GPR to hydrocarbon contamination detection.

Roest, P.B. van der; Brasser, D.J.S.; Wagebaert, A.P.J.; Stam, P.H. [MAP Environmental Research BV, Arnhem (Netherlands)

1996-12-31

30

IMPACT OF REDOX DISEQUILIBRIA ON CONTAMINANT TRANSPORT AND REMEDIATION IN SUBSURFACE SYSTEMS  

EPA Science Inventory

Partitioning to mineral surfaces exerts significant control on inorganic contaminant transport in subsurface systems. Remedial technologies for in-situ treatment of subsurface contamination are frequently designed to optimize the efficiency of contaminant partitioning to solid s...

31

``Phytomonitoring'': A Screening Tool For Detection Of Subsurface VOC Contamination  

NASA Astrophysics Data System (ADS)

In highly urbanized areas, characterizing the distribution of subsurface contamination is complicated by the dense urban underground and surface infrastructure. Drilling and monitoring in such settings requires extensive and complex coordination, and, for widespread problems extending over many square kilometers, high monetary outlays. When we encountered extensive groundwater contamination of the Central Coastal Plain aquifer of Israel underlying the Tel Aviv metropolis by volatile organic contaminants (VOCs), such problems rapidly became insurmountable. In this 200 km2 region, the average thickness of the vadose zone is about 30 m, and of the underlying freshwater saturated aquifer, about 130 m. As the ground surface is mainly impermeable due to urban development, volatile VOC vapors may build up to high levels in the vadose zone, and travel throughout long distances. As such, we were highly motivated to find an alternative, non-invasive, inexpensive means of scanning the vadose zone for VOCs, which would provide the basis for more traditional surveys at the predetermined sites. Specifically, we asked ourselves if it would be possible to exploit the VOC uptake ability of trees and shrubs for detecting subsurface vadose zone contamination below an urban environment. Preliminary laboratory tests showed that trees take up VOCs from unsaturated sediments. Further, VOCs were found in trees sampled at a former industrial site where the subsurface is heavily contaminated with chlorinated solvents (i.e., trichloroethene TCE; tetrachloroethene PCE), at the heart of our study area. As such, trees at numerous sites in the Tel Aviv area were sampled and analyzed for VOC content in tree trunk cores. Compounds detected in the tree cores include benzene, toluene, ethylbenzene, xylenes, TCE, PCE, and 1,1,1-trichloroethane. A good correlation between subsurface contamination and positive detection of contaminant VOCs in tree cores was found. The results support the idea that phytomonitoring can be implemented for preliminary screening of potentially contaminated sites in extensive urban areas where monitoring the unsaturated zone can prove problematic, time-consuming and expensive.

Graber, E. R.; Ronen, D.; Laor, Y.; Tandlich, R.; Atzmon, N.

2004-12-01

32

Sustainable treatment of hydrocarbon-contaminated industrial land   

E-print Network

Land contamination by petroleum hydrocarbons is a widespread and global environmental pollution issue from recovery and refining of crude oil and the ubiquitous use of hydrocarbons in industrial processes and applications. ...

Cunningham, Colin John

2012-06-25

33

IN SITU BIOREMEDIATION OF CONTAMINATED UNSATURATED SUBSURFACE SOILS  

EPA Science Inventory

An emerging technology for the remediation of unsaturated subsurface soils involves the use of microorganisms to degrade contaminants which are present in such soils. nderstanding the processes which drive in situ bioremediation, as well as the effectiveness and efficiency of the...

34

Modeling subsurface contaminant reactions and transport at the watershed scale  

Microsoft Academic Search

The objectives of this research are: (1) to numerically examine the multiscale effects of physical and chemical mass transfer processes on watershed scale, variably saturated subsurface contaminant transport, and (2) to conduct numerical simulations on watershed scale reactive solute transport and evaluate their implications to uncertainty characterization and cost benefit analysis. Concurrent physical and chemical nonequilibrium caused by inter aggregate

J. P. Gwo; P. M. Jardine; G. V. Wilson

1997-01-01

35

A BIOVENTING APPROACH TO REMEDIATE A GASONLINE CONTAMINATED SUBSURFACE  

EPA Science Inventory

Bioventing is a subsurface process using an air stream to enhance biodegradation of oily contaminants. wo pilot-scale bioventing systems were installed at a field site. rocess operations began in October 1990. he field site is located at an air station. pill in 1969 of about 100,...

36

ENGINEERING ISSUE: IN SITU BIOREMEDIATION OF CONTAMINATED UNSATURATED SUBSURFACE SOILS  

EPA Science Inventory

An emerging technology for the remediation of unsaturated subsurface soils involves the use of microorganisms to degrade contaminants which are present in such soils. Understanding the processes which drive in situ bioremediation, as well as the effectiveness and efficiency of th...

37

The Stimulation of Hydrocarbon Reservoirs with Subsurface Nuclear Explosions  

SciTech Connect

Between 1965 and 1979 there were five documented and one or more inferred attempts to stimulate the production from hydrocarbon reservoirs by detonating nuclear devices in reservoir strata. Of the five documented tests, three were carried out by the US in low-permeability, natural-gas bearing, sandstone-shale formations, and two were done in the USSR within oil-bearing carbonates. The objectives of the US stimulation efforts were to increase porosity and permeability in a reservoir around a specific well by creating a chimney of rock rubble with fractures extending beyond it, and to connect superimposed reservoir layers. In the USSR, the intent was to extensively fracture an existing reservoir in the more general vicinity of producing wells, again increasing overall permeability and porosity. In both countries, the ultimate goals were to increase production rates and ultimate recovery from the reservoirs. Subsurface explosive devices ranging from 2.3 to about 100 kilotons were used at depths ranging from 1208 m (3963 ft) to 2568 m (8427 ft). Post-shot problems were encountered, including smaller-than-calculated fracture zones, formation damage, radioactivity of the product, and dilution of the BTU value of tie natural gas with inflammable gases created by the explosion. Reports also suggest that production-enhancement factors from these tests fell short of expectations. Ultimately, the enhanced-production benefits of the tests were insufficient to support continuation of the pro-grams within increasingly adversarial political, economic, and social climates, and attempts to stimulate hydrocarbon reservoirs with nuclear devices have been terminated in both countries.

LORENZ,JOHN C.

2000-12-08

38

INVESTIGATING THE GEOELECTRICAL RESPONSE OF HYDROCARBON CONTAMINATION UNDERGOING BIODEGRADATION  

EPA Science Inventory

A newly proposed geoelectrical model for hydrocarbon contaminated sites predicts high conductivities coincident with t he Contaminated zone a s opposed t o t he traditionally accepted low conductivity. The model attributes the high conductivities to mineral weathering resulti...

39

Protozoa in subsurface sediments from sites contaminated with aviation gasoline or jet fuel  

SciTech Connect

Fuel hydrocarbons are known to be readily biodegraded and protozoa may be associated with this process. The objective of this study is to determine whether protozoa are numerous enough in the contaminated areas of the subsurface to play a significant role in the microbial community. The results indicate that protozoa can become very numerous in the subsurface at fuel-contaminated sites with the greatest abundance of protozoa in the unsaturated zone, where fuel vapors mixed with atmospheric oxygen, and slightly beneath the floating fuel on the water table. In contrast, bacteria seemed to adapt to local conditions and showed less change in numbers in different parts of the profile than protozoa. Bioremediation of subsurface sediments is dependent on a sufficient hydraulic conductivity to permit pumping nutrients through the affected area. Bacteria have been known to cause large reductions in hydraulic conductivity. At the study area this reduction was not noted in spite of large concentrations of bacteria. The authors conclude that this may indicate a role for protozoa in maintaining hydraulic conductivity during biotreatment of readily degraded organic contaminants.

Sinclair, J.L.; Kampbell, D.H.; Cook, M.L.; Wilson, J.T. (Robert S. Kerr Environmental Research Lab., Ada, OK (United States))

1993-02-01

40

Armored Enzyme Nanoparticles for Remediation of Subsurface Contaminants  

SciTech Connect

The remediation of subsurface contaminants is a critical problem for the Department of Energy, other government agencies, and our nation. Severe contamination of soil and groundwater exists at several DOE sites due to various methods of intentional and unintentional release. Given the difficulties involved in conventional removal or separation processes, it is vital to develop methods to transform contaminants and contaminated earth/water to reduce risks to human health and the environment. Transformation of the contaminants themselves may involve conversion to other immobile species that do not migrate into well water or surface waters, as is proposed for metals and radionuclides; or degradation to harmless molecules, as is desired for organic contaminants. Transformation of contaminated earth (as opposed to the contaminants themselves) may entail reductions in volume or release of bound contaminants for remediation. Research at Rensselaer focused on the development of haloalkane dehalogenase as a critical enzyme in the dehalogenation of contaminated materials (ultimately trichloroethylene and related pollutants). A combination of bioinformatic investigation and experimental work was performed. The bioinformatics was focused on identifying a range of dehalogenase enzymes that could be obtained from the known proteomes of major microorganisms. This work identified several candidate enzymes that could be obtained through relatively straightforward gene cloning and expression approaches. The experimental work focused on the isolation of haloalkane dehalogenase from a Xanthobacter species followed by incorporating the enzyme into silicates to form biocatalytic silicates. These are the precursors of SENs. At the conclusion of the study, dehalogenase was incorporated into SENs, although the loading was low. This work supported a single Ph.D. student (Ms. Philippa Reeder) for two years. The project ended prior to her being able to perform substantive bioinformatics efforts that would identify more promising dehalogenase enzymes. The SEN synthesis, however, was demonstrated to be partially successful with dehalogenases. Further work would provide optimized dehalogenases in SENs for use in pollution remission.

Jonathan S. Dordick; Jay Grate; Jungbae Kim

2007-02-19

41

Subsurface Flow and Contaminant Transport Documentation and User's Guide  

SciTech Connect

This report documents a finite element code designed to model subsurface flow and contaminant transport, named FACT. FACT is a transient three-dimensional, finite element code designed to simulate isothermal groundwater flow, moisture movement, and solute transport in variably saturated and fully saturated subsurface porous media. The code is designed specifically to handle complex multi-layer and/or heterogeneous aquifer systems in an efficient manner and accommodates a wide range of boundary conditions. Additionally, 1-D and 2-D (in Cartesian coordinates) problems are handled in FACT by simply limiting the number of elements in a particular direction(s) to one. The governing equations in FACT are formulated only in Cartesian coordinates.

Aleman, S.E.

1999-07-28

42

GEOPHYSICAL DETECTION OF HYDROCARBON AND ORGANIC CHEMICAL CONTAMINATION  

Microsoft Academic Search

Unambiguous detection of hydrocarbon and organic contamination is the most difficult task for noninvasive geophysical methods at hazardous waste sites. The difficulty is two-fold: 1) the low level of geophysical contrast that these contaminants provide against the background soil and rock, and 2) the low level of contaminant concentration considered to be of regulatory concern. Yet, electrical and electromagnetic methods

Gary R. Olhoeft

43

Polycyclic aromatic hydrocarbons in fuel-oil contaminated soils, Antarctica  

Microsoft Academic Search

Where fuel oil spills have occurred on Antarctic soils polycyclic aromatic hydrocarbons (PAH) may accumulate. Surface and subsurface soil samples were collected from fuel spill sites up to 30 years old, and from nearby control sites, and analysed for the 16 PAHs on the USEPA priority pollutants list, as well as for two methyl substituted naphthalenes, 1-methylnaphthalene and 2-methylnaphthalene. PAH

Jackie Aislabie; Megan Balks; Norma Astori; Gavin Stevenson; Robert Symons

1999-01-01

44

FIELD TRAPPING OF SUBSURFACE VAPOR PHASE PETROLEUM HYDROCARBONS  

EPA Science Inventory

Soil gas samples from intact soil cores were collected on adsorbents at a field site, then thermally desorbed and analyzed by laboratory gas chromatography (GC). ertical concentration profiles of predominant vapor phase petroleum hydrocarbons under ambient conditions were obtaine...

45

Microbial Degradation of Petroleum Hydrocarbon Contaminants: An Overview  

PubMed Central

One of the major environmental problems today is hydrocarbon contamination resulting from the activities related to the petrochemical industry. Accidental releases of petroleum products are of particular concern in the environment. Hydrocarbon components have been known to belong to the family of carcinogens and neurotoxic organic pollutants. Currently accepted disposal methods of incineration or burial insecure landfills can become prohibitively expensive when amounts of contaminants are large. Mechanical and chemical methods generally used to remove hydrocarbons from contaminated sites have limited effectiveness and can be expensive. Bioremediation is the promising technology for the treatment of these contaminated sites since it is cost-effective and will lead to complete mineralization. Bioremediation functions basically on biodegradation, which may refer to complete mineralization of organic contaminants into carbon dioxide, water, inorganic compounds, and cell protein or transformation of complex organic contaminants to other simpler organic compounds by biological agents like microorganisms. Many indigenous microorganisms in water and soil are capable of degrading hydrocarbon contaminants. This paper presents an updated overview of petroleum hydrocarbon degradation by microorganisms under different ecosystems. PMID:21350672

Das, Nilanjana; Chandran, Preethy

2011-01-01

46

Mathematical Modeling of Carbon Dioxide Injection in the Subsurface for Improved Hydrocarbon Recovery and Sequestration  

E-print Network

Mathematical Modeling of Carbon Dioxide Injection in the Subsurface for Improved Hydrocarbon. Combustion of fossil fuels contributes to rising atmospheric carbon dioxide (CO2) levels that have been demand from 1980 to 2035 in units of megatonnes of oil equivalent (Mtoe) [1]. 1 #12;Carbon Dioxide

Firoozabadi, Abbas

47

Formation dynamics of subsurface hydrocarbon intrusions following the Deepwater Horizon blowout  

Microsoft Academic Search

Hydrocarbons released following the Deepwater Horizon (DH) blowout were found in deep, subsurface horizontal intrusions, yet there has been little discussion about how these intrusions formed. We have combined measured (or estimated) observations from the DH release with empirical relationships developed from previous lab experiments to identify the mechanisms responsible for intrusion formation and to characterize the DH plume. Results

Scott A. Socolofsky; E. Eric Adams; Christopher R. Sherwood

2011-01-01

48

Characterization of subsurface polycyclic aromatic hydrocarbons at the Deepwater Horizon site  

Microsoft Academic Search

Here, we report the initial observations of distributions of polycyclic aromatic hydrocarbons (PAH) in subsurface waters near the Deepwater Horizon oil well site (also referred to as the Macondo, Mississippi Canyon Block 252 or MC252 well). Profiles of in situ fluorescence and beam attenuation conducted during 9-16 May 2010 were characterized by distinct peaks at depths greater than 1000 m,

Arne-R. Diercks; Raymond C. Highsmith; Vernon L. Asper; DongJoo Joung; Zhengzhen Zhou; Laodong Guo; Alan M. Shiller; Samantha B. Joye; Andreas P. Teske; Norman Guinasso; Terry L. Wade; Steven E. Lohrenz

2010-01-01

49

Polycyclic aromatic hydrocarbon and petroleum hydrocarbon contamination in sediment from the Newark Bay estuary, New Jersey  

Microsoft Academic Search

The presence of numerous industrial and municipal sources such as former creosote wood preserving facilities, petroleum storage and refinery facilities, paint and chemical manufacturers, combined sewer overflows, and sewage treatment facilities along the shores of Newark Bay, New Jersey and its major tributaries suggests the potential for widespread contamination by polycyclic aromatic hydrocarbons (PAHs) and petroleum hydrocarbons. In this study,

S. L. Huntley; N. L. Bonnevie; R. J. Wenning

1995-01-01

50

DEVELOPMENT OF A DATA EVALUATION/DECISION SUPPORT SYSTEM FOR REMEDIATION OF SUBSURFACE CONTAMINATION  

EPA Science Inventory

Subsurface contamination frequently originates from spatially distributed sources of multi-component nonaqueous phase liquids (NAPLs). Such chemicals are typically persistent sources of ground-water contamination that are difficult to characterize. This work addresses the feasi...

51

Rhizoremediation of hydrocarbon contaminated soil using Australian native grasses.  

PubMed

Rhizoremediation involves the breakdown of contaminants in soil resulting from microbial activity that is enhanced in the plant root zone. The objective of this study was to assess Australian native grasses for their ability to stimulate removal of aliphatic hydrocarbons from a mine site soil. Time-course pot experiments were conducted in a greenhouse with three grass species (Cymbopogon ambiguus, Brachiaria decumbens, and Microlaena stipoides) in a mine site soil experimentally contaminated with a 60:40 diesel:oil mixture at 1% (w/w) concentration. Plants were cultivated for 100days with periodic evaluation of changes in soil total petroleum hydrocarbon (TPH) concentration, soil lipase activity, and abundance of hydrocarbon-degrading microorganisms. Results were compared to unplanted control treatments. Significantly lower endpoint TPH concentrations were recorded in planted soil compared to unplanted soil (p=0.01). Final TPH concentrations and rates of TPH removal varied between grass species, with total TPH removal of between 50% and 88% achieved in planted treatments. The presence of grasses significantly increased the abundance of hydrocarbon-degrading microorganisms and soil lipase activity relative to unplanted soil (p<0.05). Residual TPH concentration was found to be closely (negatively) correlated with abundance of hydrocarbon-degrading microorganisms and to a lesser extent with soil lipase activity. Australian native grass species were identified that effectively enhance the remediation of diesel/oil contaminated soil, without any requirement for nutrient supplementation. Results may have extensive application to the nationwide problems associated with hydrocarbon contaminated sites. PMID:20569970

Gaskin, Sharyn E; Bentham, Richard H

2010-08-01

52

Fate and transport of petroleum hydrocarbons in the subsurface near Cass Lake, Minnesota  

USGS Publications Warehouse

The U.S. Geological Survey (USGS) investigated the natural attenuation of subsurface petroleum hydrocarbons leaked over an unknown number of years from an oil pipeline under the Enbridge Energy Limited Partnership South Cass Lake Pumping Station, in Cass Lake, Minnesota. Three weeks of field work conducted between May 2007 and July 2008 delineated a dissolved plume of aromatic hydrocarbons and characterized the biodegradation processes of the petroleum. Field activities included installing monitoring wells, collecting sediment cores, sampling water from wells, and measuring water-table elevations. Geochemical measurements included concentrations of constituents in both spilled and pipeline oil, dissolved alkylbenzenes and redox constituents, sediment bioavailable iron, and aquifer microbial populations. Groundwater in this area flows east-southeast at approximately 26 meters per year. Results from the oil analyses indicate a high degree of biodegradation, characterized by nearly complete absence of n-alkanes. Cass Lake oil samples were more degraded than two oil samples collected in 2008 from the similarly contaminated USGS Bemidji, Minnesota, research site 40 kilometers away. Based on 19 ratios developed for comparing oil sources, the conclusion is that the oils at the two sites appear to be from the same hydrocarbon source. In the Cass Lake groundwater plume, benzene concentrations decrease by three orders of magnitude within 150 meters (m) downgradient from the oil body floating on the water table (between well MW-10 and USGS-4 well nest). The depths of the highest benzene concentrations increase with distance downgradient from the oil, a condition typical of plumes in shallow, unconfined aquifers. Background groundwater, which is nearly saturated with oxygen, becomes almost entirely anaerobic in the plume. As at the Bemidji site, the most important biodegradation processes are anaerobic and dominated by iron reduction. The similarity between the Cass Lake and Bemidji benzene degradation rates, redox conditions, and aquifer material all support a hypothesis that the Cass Lake plume, like the Bemidji plume, is decades old. As concentrations of alkylbenzenes in the oil decrease over time, the benzene concentrations in the groundwater plume will also decrease and the plume is expected to shrink. The Fox Creek wetland, about 250 m south of the Cass Lake site, is the nearest receptor to the south.

Drennan, Dina M.; Bekins, Barbara A.; Warren, Ean; Cozzarelli, Isabelle M.; Baedecker, Mary Jo; Herkelrath, William N.; Delin, Geoffrey N.; Rosenbauer, Robert J.; Campbell, Pamela L.

2010-01-01

53

Formation dynamics of subsurface hydrocarbon intrusions following the Deepwater Horizon blowout  

USGS Publications Warehouse

Hydrocarbons released following the Deepwater Horizon (DH) blowout were found in deep, subsurface horizontal intrusions, yet there has been little discussion about how these intrusions formed. We have combined measured (or estimated) observations from the DH release with empirical relationships developed from previous lab experiments to identify the mechanisms responsible for intrusion formation and to characterize the DH plume. Results indicate that the intrusions originate from a stratification-dominated multiphase plume characterized by multiple subsurface intrusions containing dissolved gas and oil along with small droplets of liquid oil. Unlike earlier lab measurements, where the potential density in ambient water decreased linearly with elevation, at the DH site it varied quadratically. We have modified our method for estimating intrusion elevation under these conditions and the resulting estimates agree with observations that the majority of the hydrocarbons were found between 800 and 1200 m.

Socolofsky, Scott A.; Adams, E. Eric; Sherwood, Christopher R.

2011-01-01

54

Formation dynamics of subsurface hydrocarbon intrusions following the Deepwater Horizon blowout  

USGS Publications Warehouse

Hydrocarbons released following the Deepwater Horizon (DH) blowout were found in deep, subsurface horizontal intrusions, yet there has been little discussion about how these intrusions formed. We have combined measured (or estimated) observations from the DH release with empirical relationships developed from previous lab experiments to identify the mechanisms responsible for intrusion formation and to characterize the DH plume. Results indicate that the intrusions originate from a stratification-dominated multiphase plume characterized by multiple subsurface intrusions containing dissolved gas and oil along with small droplets of liquid oil. Unlike earlier lab measurements, where the potential density in ambient water decreased linearly with elevation, at the DH site it varied quadratically. We have modified our method for estimating intrusion elevation under these conditions and the resulting estimates agree with observations that the majority of the hydrocarbons were found between 800 and 1200 m. Copyright ?? 2011 by the American Geophysical Union.

Socolofsky, S.A.; Adams, E.E.; Sherwood, C.R.

2011-01-01

55

Phytoremediation of Soils Contaminated by Chlorinnated Hydrocarbons  

Microsoft Academic Search

In recent years, the possible use of deep rooted plants for phytoremediation of soil contaminants has been offered as a potential alternative for waste management, particularly for in situ remediation of large volumes of contaminated soils. Major objectives of this study are to evaluate the effectiveness of a warm season grass (Eastern Gamagrass) and a cool season prairie grass (Annual

C. Cho; K. Sung; M. Corapcioglu

2001-01-01

56

Bacterial and archaeal communities in long-term contaminated surface and subsurface soil evaluated through coextracted RNA and DNA.  

PubMed

Soil RNA and DNA were coextracted along a contamination gradient at a landfarming field with aged crude oil contamination to investigate pollution-dependent differences in 16S rRNA and rRNA gene pools. Microbial biomass correlated with nucleic acid yields as well as bacterial community change, indicating that the same factors controlled community size and structure. In surface soil, bacterial community evenness, estimated through length heterogeneity PCR (LH-PCR) fingerprinting, appeared higher for RNA-based than for DNA-based communities. The RNA-based community profiles resembled the DNA-based communities of soil with a lower contamination level. Cloning-based identification of bacterial hydrocarbon-degrading taxa in the RNA pool, representing the viable community with high protein synthesis potential, indicated that decontamination processes still continue. Analyses of archaea revealed that only Thaumarchaeota were present in the aerobic samples, whereas more diverse communities were found in the compacted subsurface soil with more crude oil. For subsurface bacteria, hydrocarbon concentration explained neither the community structure nor the difference between RNA-based and DNA-based communities. However, rRNA of bacterial taxa associated with syntrophic and sulphate-reducing alkane degradation was detected. Although the same prokaryotic taxa were identified in DNA and RNA, comparison of the two nucleic acid pools can aid in the assessment of past and future restoration success. PMID:24986450

Mikkonen, Anu; Santalahti, Minna; Lappi, Kaisa; Pulkkinen, Anni-Mari; Montonen, Leone; Suominen, Leena

2014-10-01

57

Reactive Membrane Barriers for Containment of Subsurface Contamination  

SciTech Connect

The overall goal of this project was to develop reactive membrane barriers--a new and flexible technique to contain and stabilize subsurface contaminants. Polymer membranes will leak once a contaminant is able to diffuse through the membrane. By incorporating a reactive material in the polymer, however, the contaminant is degraded or immobilized within the membrane. These processes increase the time for contaminants to breakthrough the barrier (i.e. the lag time) and can dramatically extend barrier lifetimes. In this work, reactive barrier membranes containing zero-valent iron (Fe{sup 0}) or crystalline silicotitanate (CST) were developed to prevent the migration of chlorinated solvents and cesium-137, respectively. These studies were complemented by the development of models quantifying the leakage/kill time of reactive membranes and describing the behavior of products produced via the reactions within the membranes. First, poly(vinyl alcohol) (PVA) membranes containing Fe{sup 0} and CST were prepared and tested. Although PVA is not useful in practical applications, it allows experiments to be performed rapidly and the results to be compared to theory. For copper ions (Cu{sup 2+}) and carbon tetrachloride, the barrier was effective, increasing the time to breakthrough over 300 times. Even better performance was expected, and the percentage of the iron used in the reaction with the contaminants was determined. For cesium, the CST laden membranes increased lag times more than 30 times, and performed better than theoretical predictions. A modified theory was developed for ion exchangers in reactive membranes to explain this result. With the PVA membranes, the effect of a groundwater matrix on barrier performance was tested. Using Hanford groundwater, the performance of Fe{sup 0} barriers decreased compared to solutions containing a pH buffer and high levels of chloride (both of which promote iron reactivity). For the CST bearing membrane, performance improved by a factor of three when groundwater was used in place of deionized water. The performance of high density polyethylene (HDPE) membranes containing Fe{sup 0} was then evaluating using carbon tetrachloride as the target contaminant. Only with a hydrophilic additive (glycerol), was the iron able to extend lag times. Lag times were increased by a factor of 15, but only 2-3% of the iron was used, likely due to formation of oxide precipitates on the iron surface, which slowed the reaction. With thicker membranes and lower carbon tetrachloride concentrations, it is expected that performance will improve. Previous models for reactive membranes were also extended. The lag time is a measurement of when the barrier is breached, but contaminants do slowly leak through prior to the lag time. Thus, two parameters, the leakage and the kill time, were developed to determine when a certain amount of pollutant has escaped (the kill time) or when a given exposure (concentration x time) occurs (the leakage). Finally, a model was developed to explain the behavior of mobile reaction products in reactive barrier membranes. Although the goal of the technology is to avoid such products, it is important to be able to predict how these products will behave. Interestingly, calculations show that for any mobile reaction products, one half of the mass will diffuse into the containment area and one half will escape, assuming that the volumes of the containment area and the surrounding environment are much larger than the barrier membrane. These parameters/models will aid in the effective design of barrier membranes.

William A. Arnold; Edward L. Cussler

2007-02-26

58

Subsurface contamination focus area technical requirements. Volume II  

SciTech Connect

This is our vision, a vision that replaces the ad hoc or {open_quotes}delphi{close_quotes} method which is to get a group of {open_quotes}experts{close_quotes} together and make decisions based upon opinion. To fulfill our vision for the Subsurface Contaminants Focus Area (SCFA), it is necessary to generate technical requirements or performance measures which are quantitative or measurable. Decisions can be supported if they are based upon requirements or performance measures which can be traced to the origin (documented) and are verifiable, i.e., prove that requirements are satisfied by inspection (show me), demonstration, analysis, monitoring, or test. The data from which these requirements are derived must also reflect the characteristics of individual landfills or plumes so that technologies that meet these requirements will necessarily work at specific sites. Other subjective factors, such as stakeholder concerns, do influence decisions. Using the requirements as a basic approach, the SCFA can depend upon objective criteria to help influence the areas of subjectivity, like the stakeholders. In the past, traceable requirements were not generated, probably because it seemed too difficult to do so. There are risks that the requirements approach will not be accepted because it is new and represents a departure from the historical paradigm.

Nickelson, D.; Nonte, J.; Richardson, J.

1996-10-01

59

Sensor detects hydrocarbon oil contaminants in fluid lines  

NASA Technical Reports Server (NTRS)

Sensor with ultraviolet light monitors and detects hydrocarbon oil contaminants present in fluid lines. The light causes the oil particles to fluoresce. This light emitted by the oil particle is detected by a photocell which is relatively insensitive to ultraviolet radiation.

Roth, B.

1966-01-01

60

Subsurface Contaminants Focus Area (SCFA) Lead Laboratory Providing Technical Assistance to the DOE Weapons Complex in Subsurface Contamination  

SciTech Connect

The Subsurface Contaminants Focus Area (SCFA), a DOE-HQ EM-50 organization, is hosted and managed at the Savannah River Site in Aiken, South Carolina. SCFA is an integrated program chartered to find technology and scientific solutions to address DOE subsurface environmental restoration problems throughout the DOE Weapons Complex. Since its inception in 1989, the SCFA program has resulted in a total of 269 deployments of 83 innovative technologies. Until recently, the primary thrust of the program has been to develop, demonstrate, and deploy those remediation technology alternatives that are solutions to technology needs identified by the DOE Sites. Over the last several years, the DOE Sites began to express a need not only for innovative technologies, but also for technical assistance. In response to this need, DOE-HQ EM-50, in collaboration with and in support of a Strategic Lab Council recommendation directed each of its Focus Areas to implement a Lead Laboratory Concept to enhance their technical capabilities. Because each Focus Area is unique as defined by the contrast in either the type of contaminants involved or the environments in which they are found, the Focus Areas were given latitude in how they set up and implemented the Lead Lab Concept. The configuration of choice for the SCFA was a Lead-Partner Lab arrangement. Savannah River Technology Center (SRTC) teamed with the SCFA as the Focus Area's Lead Laboratory. SRTC then partnered with the DOE National Laboratories to create a virtual consulting function within DOE. The National Laboratories were established to help solve the Nation's most difficult problems, drawing from a resource pool of the most talented and gifted scientists and engineers. Following that logic, SRTC, through the Lead-Partner Lab arrangement, has that same resource base to draw from to provide assistance to any SCFA DOE customer throughout the Complex. This paper briefly describes how this particular arrangement is organized and provides case histories that illustrate its strengths in solving problems and offering solutions. The program is designed to minimize red tape, maximize value, and to rapidly and cost effectively disseminate solutions to common problems facing the DOE.

Wright, J. A. Jr.; Corey, J. C.

2002-02-27

61

Hydrous pyrolysis/oxidation process for in situ destruction of chlorinated hydrocarbon and fuel hydrocarbon contaminants in water and soil  

DOEpatents

In situ hydrous pyrolysis/oxidation process is useful for in situ degradation of hydrocarbon water and soil contaminants. Fuel hydrocarbons, chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, petroleum distillates and other organic contaminants present in the soil and water are degraded by the process involving hydrous pyrolysis/oxidation into non-toxic products of the degradation. The process uses heat which is distributed through soils and water, optionally combined with oxygen and/or hydrocarbon degradation catalysts, and is particularly useful for remediation of solvent, fuel or other industrially contaminated sites.

Knauss, Kevin G. (Livermore, CA); Copenhaver, Sally C. (Livermore, CA); Aines, Roger D. (Livermore, CA)

2000-01-01

62

Apparatus for removing hydrocarbon contaminants from solid materials  

DOEpatents

A system for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste).

Bala, Gregory A. (Idaho Falls, ID); Thomas, Charles P. (Idaho Falls, ID)

1996-01-01

63

Apparatus for removing hydrocarbon contaminants from solid materials  

DOEpatents

A system is described for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste). 4 figs.

Bala, G.A.; Thomas, C.P.

1996-02-13

64

Method for removing hydrocarbon contaminants from solid materials  

DOEpatents

A system is described for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste). 4 figs.

Bala, G.A.; Thomas, C.P.

1995-10-03

65

Method for removing hydrocarbon contaminants from solid materials  

DOEpatents

A system for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste).

Bala, Gregory A. (Idaho Falls, ID); Thomas, Charles P. (Idaho Falls, ID)

1995-01-01

66

FACT (Version 2.0) - Subsurface Flow and Contaminant Transport Documentation and User's Guide  

SciTech Connect

This report documents a finite element code designed to model subsurface flow and contaminant transport, named FACT. FACT is a transient three-dimensional, finite element code designed to simulate isothermal groundwater flow, moisture movement, and solute transport in variably saturated and fully saturated subsurface porous media.

Aleman, S.E.

2000-05-05

67

GEOCHEMISTRY OF SUBSURFACE REACTIVE BARRIERS FOR REMEDIATION OF CONTAMINATED GROUND WATER  

EPA Science Inventory

Reactive barriers that couple subsurface fluid flow with a passive chemical treatment zone are emerging, cost effective approaches for in-situ remediation of contaminated groundwater. Factors such as the build-up of surface precipitates, bio-fouling, and changes in subsurface tr...

68

Chemical fingerprinting of hydrocarbon-contamination in soil.  

PubMed

Chemical fingerprinting analyses of 29 hydrocarbon-contaminated soils were performed to assess the soil quality and determine the main contaminant sources. The results were compared to an assessment based on concentrations of the 16 priority polycyclic aromatic hydrocarbons pointed out by the U.S. Environmental Protection Agency (EPAPAH16) and total petroleum hydrocarbon (TPH). The chemical fingerprinting strategy proposed in this study included four tiers: (i) qualitative analysis of GC-FID chromatograms, (ii) comparison of the chemical composition of both un-substituted and alkyl-substituted polycyclic aromatic compounds (PACs), (iii) diagnostic ratios of selected PACs, and (iv) multivariate data analysis of sum-normalized PAC concentrations. The assessment criteria included quantitative analysis of 19 PACs and C1-C4 alkyl-substituted homologues of naphthalene, fluorene, dibenzothiophene, phenanthrene, pyrene, and chrysene; and 13 oxygenated polycyclic aromatic compounds (O-PACs). The chemical composition of un-substituted and alkyl-substituted PACs and visual interpretation of GC-FID chromatograms were in combination successful in differentiating pyrogenic and petrogenic hydrocarbon sources and in assessing weathering trends of hydrocarbon contamination in the soils. Multivariate data analysis of sum-normalized concentrations could as a stand-alone tool distinguish between hydrocarbon sources of petrogenic and pyrogenic origin, differentiate within petrogenic sources, and detect weathering trends. Diagnostic ratios of PACs were not successful for source identification of the heavily weathered hydrocarbon sources in the soils. The fingerprinting of contaminated soils revealed an underestimation of PACs in petrogenic contaminated soils when the assessment was based solely on EPAPAH16. As alkyl-substituted PACs are dominant in petrogenic sources, the evaluation of the total load of PACs based on EPAPAH16 was not representative. Likewise, the O-PACs are not represented in soil quality assessments based on EPAPAH16 and TPH. The ?O-PACs ranged between contaminated soils contained considerable amount of O-PACs corresponding to between 6 and 18% of the ?EPAPAH16. PMID:25625139

Boll, Esther S; Nejrup, Jens; Jensen, Julie K; Christensen, Jan H

2015-03-11

69

Biogeochemical Stability of Contaminants in the Subsurface Following In Situ Treatment  

EPA Science Inventory

In recent years, innovative treatment technologies have emerged to meet groundwater cleanup goals. In many cases these methods take advantage of the redox behavior of contaminant species. For example, remedial technologies that strategically manipulate subsurface redox conditio...

70

PREDICTING SUBSURFACE CONTAMINANT TRANSPORT AND TRANSFORMATION: CONSIDERATIONS FOR MODEL SELECTION AND FIELD VALIDATION  

EPA Science Inventory

Predicting subsurface contaminant transport and transformation requires mathematical models based on a variety of physical, chemical, and biological processes. The mathematical model is an attempt to quantitatively describe observed processes in order to permit systematic forecas...

71

New barrier fluids for subsurface containment of contaminants  

SciTech Connect

In some situations, containment of contaminants in the subsurface may be preferable to removal or treatment in situ. In these cases, it maybe possible to form barriers by injecting fluids (grouts) that set in place and reduce the formation permeability. This paper reports laboratory work to develop two types of fluids for this application: colloidal silica (CS) and polysiloxane (PSX). Falling-head permeameter tests of grouted Hanford sand, lasting 50 days, showed hydraulic conductivities of order 10{sup -7} cm/sec for these two materials. Low initial viscosity of the grout is necessary to permit injection without causing fracturing or surface uplift. Experiments with crosslinked polysiloxanes showed that they could be diluted to achieve adequately low viscosity without losing their ability to cure. Control of the gel time is important for grout emplacement. Gel time of CS grouts increased with increasing pH (above 6.5) and with decreasing ionic strength. Salt solutions were added to the colloid-to increase the ionic strength and control gel time. When injected into Hanford sand, the CS grout gelled much more quickly than the same formula without sand. This effect results from salinity that is present in pore water and from multi-valent ions that are desorbed from clays and ion-exchanged for mono-valent ions in the grout. Ion-exchange experiments showed that most of the multi-valent ions could be removed-by flushing the sand with 15 PV of 4% NaCl and sand treated in this manner did not accelerate the gelling of the grout. When grout is injected into unsaturated soil it slumps, leaving the soil only partially saturated and achieving less permeability reduction upon gelling. Multiple injections of CS grout in 1-D sand columns demonstrated that by accumulating the residual gelled grout saturations from several injections, low permeability can be achieved.

Moridis, G.J.; Persoff, P.; Holman, H.Y.; Muller, S.J.; Pruess, K.; Radke, C.J.

1993-10-01

72

Microbially Induced Calcite Precipitation for Subsurface Immobilization of Contaminants  

NASA Astrophysics Data System (ADS)

Subsurface radionuclide and metal contaminants throughout the U.S. Department of Energy (DOE) complex pose one of the greatest challenges for long-term stewardship. One promising stabilization mechanism for divalent trace ions, such as the short-lived radionuclide 90Sr, is co-precipitation in calcite. We have found that calcite precipitation and co-precipitation of Sr can be accelerated by the activity of urea hydrolyzing microorganisms, that higher calcite precipitation rates can result in increased Sr partitioning, and that nutrient additions can stimulate ureolytic activity. To extend our understanding of microbially induced calcite precipitation (MICP) in an aquifer setting a continuous recirculation field experiment evaluating MICP was conducted at the Integrated Field Research Challenge (IFRC) site located at Rifle, CO. In this experiment, groundwater extracted from an onsite well was amended with urea (total mass of 42.5 kg) and molasses (a carbon and electron donor) and re-injected into a well approximately 4 meters up-gradient for a period of 12 days followed by 10 months of groundwater sampling and monitoring. Crosshole radar and electrical tomographic data were collected prior, during, and after the MICP treatment. The urea and molasses treatment resulted in an enhanced population of sediment associated urea hydrolyzing organisms as evidenced by increases in the number of ureC gene copies, increases in 14C urea hydrolysis rates, and long-term observations of ammonium (a urea hydrolysis product) in the injection, extraction and down gradient monitoring wells. Permeability changes and increases in the calcite saturation indexes in the well field suggest that mineral precipitation has occurred; ongoing analysis of field samples seeks to confirm this. Changes in dielectric constant and electrical conductivity were used to interpret the spatiotemporal distribution of the injectate and subsequent calcite precipitation. Modeling activities are underway to define field-scale urea hydrolysis rates.

Smith, R. W.; Fujita, Y.; Ginn, T. R.; Hubbard, S. S.; Dafflon, B.; Delwiche, M.; Gebrehiwet, T.; Henriksen, J. R.; Peterson, J.; Taylor, J. L.

2011-12-01

73

Influence of dissimilatory metal reduction on fate of organic and metal contaminants in the subsurface  

NASA Astrophysics Data System (ADS)

Dissimilatory Fe(III)-reducing microorganisms have the ability to destroy organic contaminants under anaerobic conditions by oxidizing them to carbon dioxide. Some Fe(III)-reducing microorganisms can also reductively dechlorinate chlorinated contaminants. Fe(III)-reducing microorganisms can reduce a variety of contaminant metals and convert them from soluble forms to forms that are likely to be immobilized in the subsurface. Studies in petroleum-contaminated aquifers have demonstrated that Fe(III)-reducing microorganisms can be effective agents in removing aromatic hydrocarbons from groundwater under anaerobic conditions. Laboratory studies have demonstrated the potential for Fe(III)-reducing microorganisms to remove uranium from contaminated groundwaters. The activity of Fe(III)-reducing microorganisms can be stimulated in several ways to enhance organic contaminant oxidation and metal reduction. Molecular analyses in both field and laboratory studies have demonstrated that microorganisms of the genus Geobacter become dominant members of the microbial community when Fe(III)-reducing conditions develop as the result of organic contamination, or when Fe(III) reduction is artificially stimulated. These results suggest that further understanding of the ecophysiology of Geobacter species would aid in better prediction of the natural attenuation of organic contaminants under anaerobic conditions and in the design of strategies for the bioremediation of subsurface metal contamination. Des micro-organismes simulant la réduction du fer ont la capacité de détruire des polluants organiques dans des conditions anérobies en les oxydant en dioxyde de carbone. Certains micro-organismes réducteurs de fer peuvent aussi dé-chlorer par réduction des polluants chlorés. Des micro-organismes réducteurs de fer peuvent réduire tout un ensemble de métaux polluants et les faire passer de formes solubles à des formes qui sont susceptibles d'être immobilisées dans le milieu souterrain. Des études d'aquifères pollués par du pétrole ont montré que des micro-organismes réducteurs de fer peuvent être des agents efficaces pour éliminer les hydrocarbures aromatiques des eaux souterraines dans des conditions anérobies. Des études en laboratoire ont montré que des micro-organismes réducteurs de fer avaient la capacité d'éliminer l'uranium d'eaux souterraines polluées. L'activité de micro-organismes réducteurs de fer peut être stimulée de différentes manières pour augmenter l'oxydation de polluants organiques et la réduction de métaux. Des analyses moléculaires concernant des études de terrain et de laboratoire ont montré que des micro-organismes du genre Geobacter deviennent les membres dominants de la communauté microbienne quand les conditions de réduction en Fe(III) sont réalisées à la suite d'une pollution organique, ou lorsque la réduction en Fe(III) est stimulée artificiellement. Ces résultats laissent penser que des connaissances supplémentaires sur l'écophysiologie des espèces Geobacter devraient aider à une meilleure prédiction de la diminution naturelle des teneurs en polluants organiques dans des conditions anérobies, ainsi qu'à la définition de stratégies de dépollution biologique de pollutions souterraines par les métaux. Algunos microorganismos Fe(III)-reductores son capaces de destruir selectivamente determinados contaminantes orgánicos en condiciones anaerobias, oxidándolos a dióxido de carbono. Otros de estos microorganismos Fe(III)-reductores pueden reducir, bien compuestos clorados, bien una gran variedad de metales, que dejan de ser solubles y se inmovilizan en el subsuelo. Estudios realizados en acuéferos contaminados por petróleo muestran que los microorganismos Fe(III)-reductores pueden ser unos agentes muy eficientes para eliminar los hidrocarburos aromáticos de las aguas subterráneas en condiciones anaerobias, mientras que estudios de laboratorio muestran el potencial de estos microorganismos para eliminar uranio. La actividad de los microorganismos Fe(III)-reductor

Lovley, Derek R.; Anderson, Robert T.

74

Novel method for cleaning a vacuum chamber from hydrocarbon contamination  

SciTech Connect

A novel method for cleaning a high vacuum chamber is presented. This method is based on concurrent in situ high-energetic UV light activation of contaminants located in the residual gas and at the vacuum chamber surfaces as well as the in situ generation of highly reactive ozone. Ozone oxidizes the contaminants to volatile species. Investigations by energy-dispersive x-ray analysis of residual gas depositions and mass-spectroscopy measurements of the residual gas in the vacuum chamber identify the contaminant species as hydrocarbons. After a cleaning period of 8 h, a decrease in measured chamber contamination by about 90% could be achieved according to atomic force microscope analysis. Mass spectroscopy measurements using a residual gas analyzer indicate the creation of volatile, carbonaceous species during the cleaning process.

Wanzenboeck, H. D.; Roediger, P.; Hochleitner, G.; Bertagnolli, E.; Buehler, W. [Vienna University of Technology, Floragasse 7/1, A-1040 Vienna (Austria); Carl Zeiss NTS GmbH, Carl-Zeiss-Str. 56, Oberkochen 73447 (Germany)

2010-11-15

75

Contaminant Removal Processes in Subsurface-Flow Constructed Wetlands: A Review  

Microsoft Academic Search

The main contaminant removal processes occurring in subsurface-flow constructed wetlands treating wastewater are reviewed. Redox conditions prevailing in the wetlands are analyzed and linked to contaminant removal mechanisms. The removal of organic matter and its accumulation in the granular medium of the wetlands are evaluated with regard to particulate and dissolved components and clogging processes. The main biological processes linked

JOAN GARCÍA; DIEDERIK P. L. ROUSSEAU; JORDI MORATÓ; ELS LESAGE; VICTOR MATAMOROS; JOSEP M. BAYONA

2010-01-01

76

Modelling results for subsurface oil contaminant and their utility for site characterization and monitoring  

NASA Astrophysics Data System (ADS)

Ground water near a former oil installation flows through a subsurface volume with old contamination with crude oil from an event that occurred about 17 years ago. The site and contaminant-related processes are studied within the FP7 project SoilCAM. The slow process of contaminant transport by ground water depends on the highly variable water level in the site. Specific conditions of the region near Trecate (between Turin and Milan) were taken into account in a transient model for calculation of ground water level. The contaminant transport model is based on the simulation of ground water level fluctuations in the contaminated site, allowing to consider ground water action on the contaminant at various depths. Processes taken into account for calculations include: contaminant concentration increase in ground water while it flows through contaminated soil layers, contaminant transport, sorption, degradation of the contaminant during its transport by water. A model type with non-equilibrium transfer of the contaminant from subsurface contaminated volume to ground water was used. Contaminant degradation is influenced by specific concentrations of existing substances in ground water. Refined modelling of the degradation processes allows for detailed analysis of specific aspects regarding degradation and chemical changes due to the contaminant presence in ground water. Modelling results are based on much information obtained by various other methods and give consistent images of ground water flow and degradation processes in the whole area, contributing to site and plume characterization and monitoring. The distributions of calculated concentrations give information for interpretation of geophysical measurements.

Ghinda, T.; Ardeleanu, T.; Maria, C.; Stanescu, C.; Pietrareanu, G.

2012-04-01

77

Release of polyaromatic hydrocarbons from coal tar contaminated soils  

SciTech Connect

A variety of process wastes generated from manufactured gas production (MGP) have contaminated soils and groundwater at production and disposal sites. Coal tar, consisting of a complex mixture of hydrocarbons present as a nonaqueous phase liquid, makes up a large portion of MGP wastes. Of the compounds in coal tar, polyaromatic hydrocarbons (PAHs) are the major constituents of environmental concern due to their potential mutagenic and carcinogenic hazards. Characterization of the release of PAHs from the waste-soil matrix is essential to quantifying long-term environmental impacts in soils and groundwater. Currently, conservative estimates for the release of PAHs to the groundwater are made assuming equilibrium conditions and using relationships derived from artificially contaminated soils. Preliminary work suggests that aged coal tar contaminated soils have much lower rates of desorption and a greater affinity for retaining organic contaminants. To obtain better estimates of desorption rates, the release of PAHs from a coal tar soil was investigated using a flow-interruption, miscible displacement technique. Methanol/water solutions were employed to enhance PAH concentrations above limits of detection. For each methanol/water solution employed, a series of flow interrupts of varying times was invoked. Release rates from each methanol/water solution were estimated from the increase in concentration with duration of flow interruption. Aqueous-phase release rates were then estimated by extrapolation using a log-linear cosolvency model.

Priddy, N.D.; Lee, L.S. [Purdue Univ., West Lafayette, IN (United States). Dept. of Agronomy

1996-11-01

78

Utilization of petroleum hydrocarbons by Pseudomonas fluorescens isolated from a petroleum-contaminated soil  

Microsoft Academic Search

A strain of Pseudomonas fluorescens, isolated from petroleum hydrocarbon-contaminated soil was examined for its ability to utilize a variety of hydrocarbon substrates. Surface tension measurements indicated the production of biosurfactant during the microbial degradation of hydrocarbon. The organism utilized both short and long chain n-alkanes. It emulsified a number of aliphatic and aromatic hydrocarbons.

S Barathi; N Vasudevan

2001-01-01

79

Estimation of hydrocarbon biodegradation rates in gasoline-contaminated sediment from measured respiration rates  

USGS Publications Warehouse

An open microcosm method for quantifying microbial respiration and estimating biodegradation rates of hydrocarbons in gasoline-contaminated sediment samples has been developed and validated. Stainless-steel bioreactors are filled with soil or sediment samples, and the vapor-phase composition (concentrations of oxygen (O2), nitrogen (N2), carbon dioxide (CO2), and selected hydrocarbons) is monitored over time. Replacement gas is added as the vapor sample is taken, and selection of the replacement gas composition facilitates real-time decision-making regarding environmental conditions within the bioreactor. This capability allows for maintenance of field conditions over time, which is not possible in closed microcosms. Reaction rates of CO2 and O2 are calculated from the vapor-phase composition time series. Rates of hydrocarbon biodegradation are either measured directly from the hydrocarbon mass balance, or estimated from CO2 and O2 reaction rates and assumed reaction stoichiometries. Open microcosm experiments using sediments spiked with toluene and p-xylene were conducted to validate the stoichiometric assumptions. Respiration rates calculated from O2 consumption and from CO2 production provide estimates of toluene and p- xylene degradation rates within about ??50% of measured values when complete mineralization stoichiometry is assumed. Measured values ranged from 851.1 to 965.1 g m-3 year-1 for toluene, and 407.2-942.3 g m-3 year-1 for p- xylene. Contaminated sediment samples from a gasoline-spill site were used in a second set of microcosm experiments. Here, reaction rates of O2 and CO2 were measured and used to estimate hydrocarbon respiration rates. Total hydrocarbon reaction rates ranged from 49.0 g m-3 year-1 in uncontaminated (background) to 1040.4 g m-3 year-1 for highly contaminated sediment, based on CO2 production data. These rate estimates were similar to those obtained independently from in situ CO2 vertical gradient and flux determinations at the field site. In these experiments, aerobic conditions were maintained in the microcosms by using air as the replacement gas, thus preserving the ambient aerobic environment of the subsurface near the capillary zone. This would not be possible with closed microcosms.

Baker, R.J.; Baehr, A.L.; Lahvis, M.A.

2000-01-01

80

Tracing subsurface migration of contaminants from an abandoned municipal landfill  

Microsoft Academic Search

This paper aims at determining of inorganic leachate contamination for a capped unsanitary landfill in the absence of hydrogeological\\u000a data. The 2D geoelectrical resistivity imaging, soil physicochemical characterization, and surface water analysis were used\\u000a to determine contamination load and extent of selective heavy metal contamination underneath the landfill. The positions of\\u000a the contaminated subsoil and groundwater were successfully delineated in

E. A. Rahim Bahaa-eldin; I. Yusoff; S. Abdul Rahim; W. Y. Wan Zuhairi; M. R. Abdul Ghani

2011-01-01

81

INFLUENCE OF COUPLED PROCESSES ON CONTAMINANT FATE AND TRANSPORT IN SUBSURFACE ENVIRONMENTS  

SciTech Connect

The following chapter emphasizes subsurface environmental research investigations over the past 10 to 15 years that couple hydrological, geochemical, and biological processes as related to contaminant fate and transport. An attempt is made to focus on field-scale studies with possible reference to laboratory-scale endeavors. Much of the research discussed reflects investigations of the influence of coupled processes on the fate and transport of inorganic, radionuclide, and organic contaminants in subsurface environments as a result of natural processes or energy and weapons production endeavors that required waste disposal. The chapter provides on overview of the interaction between hydro-bio-geochemical processes in structured, heterogeneous subsurface environments and how these interactions control contaminant fate and transport, followed by experimental and numerical subsurface science research and case studies involving specific classes of inorganic and organic contaminants. Lastly, thought provoking insights are highlighted on why the study of subsurface coupled processes is paramount to understanding potential future contaminant fate and transport issues of global concern.

Jardine, Philip M [ORNL

2008-01-01

82

Contrasts between subsurface microbial communities and their metabolic adaptation to polycyclic aromatic hydrocarbons at a forested and an urban coal-tar disposal site.  

PubMed

The abundance and distribution of microorganisms and their potential for mineralizing polycyclic aromatic hydrocarbons (PAHs) were measured in subsurface sediment samples at two geographically separate buried coal-tar sites. At a relatively undisturbed forested site in the northeastern United States, metabolic adaptation to the PAHs was evident: Radiolabeled naphthalene and phenanthrene were converted to (14)CO2 in core material from inside but not outside a plume of groundwater contamination. However, at the urban site in the midwestern United States these PAHs were mineralized in sediments from both contaminated and uncontaminated boreholes. Thus, clear qualitative evidence showing an adaptational response by the subsurface microbial community was not obtained at the urban site. Instead, subtler clues suggesting metabolic adaptation by subsurface microorganisms from the urban site were discerned by comparing lag periods and extents of (14)CO2 production from radiolabeled PAHs added to samples from contaminated and uncontaminated boreholes. Despite slightly higher PAH mineralization activity in contaminated borehole samples, p-hydroxybenzoate was mineralized equally in all samples from the urban site regardless of location. No striking trends in the abundances of actinomycetes, fungi, and either viable or total bacteria were encountered. However, colonies of the soil bacterium, Bacillus mycoides, were detected on enumeration plates of several samples from unsaturated and saturated zones in both urban boreholes. Furthermore, other common soil bacteria, Myxococcus xanthus and Chromobacterium violaceum, were identified in samples from the uncontaminated urban borehole. The occurrence of bacteria usually restricted to surface soil, combined with the observation of fragments of building materials in many of the core samples, suggested that past excavation and backfilling operations may have caused mixing of surface soil with subsurface materials at the urban site. We speculate that this mixing, as well as non-coal-tar-derived sources of PAHs, contributed to the PAH-mineralizing activity present in the sediment samples from the uncontaminated urban borehole. PMID:24193137

Madsen, E L; Winding, A; Malachowsky, K; Thomas, C T; Ghiorse, W C

1992-09-01

83

Review of Geophysical Techniques to Define the Spatial Distribution of Subsurface Properties or Contaminants  

SciTech Connect

This is a letter report to Fluor Hanford, Inc. The purpose of this report is to summarize state-of-the-art, minimally intrusive geophysical techniques that can be used to clarify subsurface geology, structure, moisture, and chemical composition. The technology review focused on geophysical characterization techniques that provide two- or three-dimensional information about the spatial distribution of subsurface properties and/or contaminants.

Murray, Christopher J.; Last, George V.; Truex, Michael J.

2005-08-22

84

Hydrocarbon Contamination Decreases Mating Success in a Marine Planktonic Copepod  

PubMed Central

The mating behavior and the mating success of copepods rely on chemoreception to locate and track a sexual partner. However, the potential impact of the water-soluble fraction of hydrocarbons on these aspects of copepod reproduction has never been tested despite the widely acknowledged acute chemosensory abilities of copepods. I examined whether three concentrations of the water-soluble fraction of diesel oil (0.01%, 0.1% and 1%) impacts (i) the swimming behavior of both adult males and females of the widespread calanoid copepod Temora longcornis, and (ii) the ability of males to locate, track and mate with females. The three concentrations of the water-soluble fraction of diesel oil (WSF) significantly and non-significantly affect female and male swimming velocities, respectively. In contrast, both the complexity of male and female swimming paths significantly decreased with increasing WSF concentrations, hence suggesting a sex-specific sensitivity to WSF contaminated seawater. In addition, the three WSF concentrations impacted both T. longicornis mating behavior and mating success. Specifically, the ability of males to detect female pheromone trails, to accurately follow trails and to successfully track a female significantly decreased with increasing WSF concentrations. This led to a significant decrease in contact and capture rates from control to WSF contaminated seawater. These results indicate that hydrocarbon contamination of seawater decreases the ability of male copepods to detect and track a female, hence suggest an overall impact on population fitness and dynamics. PMID:22053187

Seuront, Laurent

2011-01-01

85

INNOVATIVE PROCESS FOR RECLAMATION OF CONTAMINATED SUBSURFACE ENVIRONMENTS  

EPA Science Inventory

Research to better assess the capabilities and limitations of fixed-film bioreactors for removing selected organic contaminants from ground water or from contaminated vapor streams produced by air stripping of polluted ground water and by soil venting operations is described. ork...

86

INNOVATIVE PROCESSES FOR RECLAMATION OF CONTAMINATED SUBSURFACE ENVIRONMENTS  

EPA Science Inventory

Research to better assess the capabilities and limitations of fixed-film bioreactors for removing selected organic contaminants from ground water or from contaminated vapor streams produced by air stripping of polluted ground water and by soil venting operations is described. ...

87

Monitoring of subsurface contaminants with borehole\\/surface resistivity measurements  

Microsoft Academic Search

Three-dimensional resistivity modeling was performed to simulate the changes in resistivity due to the leakage of fluid contaminants into an aquifer. The simulation represents a case where the fluid is introduced into a 25 m aquifer at a depth of 45 m. The contaminant fluid is assumed to be electrically more conductive than the in-situ ground water. Resistivity measurements were

M. J. Wilt; C. F. Tsang

1985-01-01

88

Magnetic properties changes due to hydrocarbon contaminated groundwater table fluctuations  

NASA Astrophysics Data System (ADS)

This study aims to understand the mechanisms and conditions which control the formation and transformation of ferro(i)magnetic minerals caused by hydrocarbon contaminated groundwater, in particular in the zone of fluctuating water levels. The work extends previous studies conducted at the same site. The study area is a former military air base at Hrad?any, Czech Republic (50°37'22.71"N, 14°45'2.24"E). The site was heavily contaminated with petroleum hydrocarbons, due to leaks in petroleum storage tanks and jet fuelling stations over years of active use by the Soviet Union, which closed the base in 1991. The site is one of the most important sources of high quality groundwater in the Czech Republic. In a previous study, Rijal et al. (2010) concluded that the contaminants could be flushed into the sediments as the water level rose due to remediation processes leading to new formation of magnetite. In this previous study three different locations were investigated; however, from each location only one core was obtained. In order to recognize significant magnetic signatures versus depth three cores from each of these three locations were drilled in early 2012, penetrating the unsaturated zone, the groundwater fluctuation (GWF) zone and extending to about one meter below the groundwater level (~2.3 m depth at the time of sampling). Magnetic susceptibility (MS) profiles combined with other magnetic properties were analyzed to obtain a significant depth distribution of the ferro(i)magnetic concentration. Sediment properties, hydrocarbon content and bacterial activity were additionally studied. The results show that the highest ferrimagnetic mineral concentrations exist between 1.4-1.9 m depth from the baseline which is interpreted as the top of the GWF zone. Spikes of MS detected in the previous studies turned out to represent small-scale isolated features, but the trend of increasing MS values from the lowermost position of the groundwater table upward was verified. Mineral magnetic parameters indicate that magnetite is responsible for the MS signal which confirms the previous results (Rijal et al., 2010). The so far existing uncertainty of the groundwater level position could be solved. Bacterial activity is studied at particular depth horizons as it is assumed to be responsible for iron mineralogy changes. References: Rijal M.L., Appel E., Petrovský E. and Blaha U., 2010. Change of magnetic properties due to fluctuations of hydrocarbon contaminated groundwater in unconsolidated sediments. Environ.Pollut., 158, 1756-1762.

Ameen, Nawrass

2013-04-01

89

USE OF APATITE FOR CHEMICAL STABILIZATION OF SUBSURFACE CONTAMINANTS  

SciTech Connect

Groundwater at many Federal and civilian industrial sites is often contaminated with toxic metals at levels that present a potential concern to regulatory agencies. The U.S. Department of Energy (DOE) has some unique problems associated with radionuclides (primarily uranium), but metal contaminants most likely drive risk-based cleanup decisions, from the perspective of human health, in groundwater at DOE and U.S. Environmental Protection Agency (EPA) Superfund Sites include lead (Pb), arsenic (As), cadmium (Cd), chromium (Cr), mercury (Hg), zinc (Zn), selenium (Se), antimony (Sb), copper (Cu) and nickel (Ni). Thus, the regulatory ''drivers'' for toxic metals in contaminated soils/groundwaters are very comparable for Federal and civilian industrial sites, and most sites have more than one metal above regulatory action limits. Thus improving the performance of remedial technologies for metal-contaminated groundwater will have ''dual use'' (Federal and civilian) benefit.

Dr. William D. Bostick

2003-05-01

90

FIELD-DRIVEN APPROACHES TO SUBSURFACE CONTAMINANT TRANSPORT MODELING.  

EPA Science Inventory

Observations from field sites provide a means for prioritizing research activities. In the case of petroleum releases, observations may include spiking of concentration distributions that may be related to water table fluctuation, co-location of contaminant plumes with geochemi...

91

FIELD-DRIVEN APPROACHES TO SUBSURFACE CONTAMINANT TRANSPORT MODELING  

EPA Science Inventory

Observations from field sites provide a means for prioritizing research activities. For petroleum release sites observations include spiking of concentration distributions that may be related to water table fluctuation, co-location of contaminant plumes with geochemical indicat...

92

Eco-toxicity of petroleum hydrocarbon contaminated soil.  

PubMed

Total petroleum hydrocarbons (TPH) contaminated soil samples were collected from Shengli Oilfield of China. Toxicity analysis was carried out based on earthworm acute toxicity, plant growth experiment and luminescent bacteria test. The soil was contaminated by-petroleum hydrogcarbons with TPH concentration of 10.57%. With lethal and sub-lethal rate as endpoint, earthworm test showed that the LD50 (lethal dose 50%) values in 4 and 7 days were 1.45% and 1.37% respectively, and the inhibition rate of earthworm body weight increased with higher oil concentration. TPH pollution in the soil inhibited seed germination in both wheat and maize experiment when the concentration of petroleum was higher than 0.1%. The EC50 (effective concentration 50%) for germination is 3.04% and 2.86% in maize and wheat, respectively. While lower value of EC50 for root elongation was to be 1.11% and 1.64% in maize and wheat, respectively, suggesting higher sensitivity of root elongation on petroleum contamination in the soil. The EC50 value in luminescent bacteria test was 0.47% for petroleum in the contaminated soil. From the experiment result, it was concluded that TPH content of 1.5% is considered to be a critical value for plant growth and living of earthworm and 0.5% will affect the activity of luminescent bacteria. PMID:21790059

Tang, Jingchun; Wang, Min; Wang, Fei; Sun, Qing; Zhou, Qixing

2011-01-01

93

Uranium Contamination in the Subsurface Beneath the 300 Area, Hanford Site, Washington  

SciTech Connect

This report provides a description of uranium contamination in the subsurface at the Hanford Site's 300 Area. The principal focus is a persistence plume in groundwater, which has not attenuated as predicted by earlier remedial investigations. Included in the report are chapters on current conditions, hydrogeologic framework, groundwater flow modeling, and geochemical considerations. The report is intended to describe what is known or inferred about the uranium contamination for the purpose of making remedial action decisions.

Peterson, Robert E.; Rockhold, Mark L.; Serne, R. Jeffrey; Thorne, Paul D.; Williams, Mark D.

2008-02-29

94

FIELD SCREENING OF POLYCYCLIC HYDROCARBON CONTAMINATION IN SOIL USING A PORTABLE SYNCHRONOUS SCANNING SPECTROFLUOROMETER  

EPA Science Inventory

Polycyclic aromatic hydrocarbon (PAH) contamination is a considerable problem at various hazardous waste sites. sources of PAH contamination include: incomplete combustion processes, wood preservatives, and the fuel industry. he development of rapid, cost-effective field screenin...

95

PROTOZOA IN SUBSURFACE SEDIMENTS FROM SITES CONTAMINATED WITH AVIATION GASOLINE OR JET FUEL  

EPA Science Inventory

Numbers of protozoa in the subsurface of aviation gasoline and jet fuel spill areas at a Coast Guard base at Traverse City, Mich., were determined. oreholes were drilled in an uncontaminated location, in contaminated but untreated parts of the fuel plumes, and in the aviation gas...

96

Closure End States for Facilities, Waste Sites, and Subsurface Contamination  

SciTech Connect

The United States (U.S.) Department of Energy (DOE) manages the largest groundwater and soil cleanup effort in the world. DOE’s Office of Environmental Management (EM) has made significant progress in its restoration efforts at sites such as Fernald and Rocky Flats. However, remaining sites, such as Savannah River Site, Oak Ridge Site, Hanford Site, Los Alamos, Paducah Gaseous Diffusion Plant, Portsmouth Gaseous Diffusion Plant, and West Valley Demonstration Project possess the most complex challenges ever encountered by the technical community and represent a challenge that will face DOE for the next decade. Closure of the remaining 18 sites in the DOE EM Program requires remediation of 75 million cubic yards of contaminated soil and 1.7 trillion gallons of contaminated groundwater, deactivation & decommissioning (D&D) of over 3000 contaminated facilities and thousands of miles of contaminated piping, removal and disposition of millions of cubic yards of legacy materials, treatment of millions of gallons of high level tank waste and disposition of hundreds of contaminated tanks. The financial obligation required to remediate this volume of contaminated environment is estimated to cost more than 7% of the to-go life-cycle cost. Critical in meeting this goal within the current life-cycle cost projections is defining technically achievable end states that formally acknowledge that remedial goals will not be achieved for a long time and that residual contamination will be managed in the interim in ways that are protective of human health and environment. Formally acknowledging the long timeframe needed for remediation can be a basis for establishing common expectations for remedy performance, thereby minimizing the risk of re-evaluating the selected remedy at a later time. Once the expectations for long-term management are in place, remedial efforts can be directed towards near-term objectives (e.g., reducing the risk of exposure to residual contamination) instead of focusing on long-term cleanup requirements. An acknowledgement of the long timeframe for complete restoration and the need for long-term management can also help a site transition from the process of pilot testing different remedial strategies to selecting a final remedy and establishing a long-term management and monitoring approach. This approach has led to cost savings and the more efficient use of resources across the Department of Defense complex and at numerous industrial sites across the U.S. Defensible end states provide numerous benefits for the DOE environmental remediation programs including cost-effective, sustainable long-term monitoring strategies, remediation and site transition decision support, and long-term management of closure sites.

Gerdes, Kurt D.; Chamberlain, Grover S.; Wellman, Dawn M.; Deeb, Rula A.; Hawley, Elizabeth L.; Whitehurst, Latrincy; Marble, Justin

2012-11-21

97

Bioremediation of marine sediments contaminated by hydrocarbons: Experimental analysis and kinetic modeling  

Microsoft Academic Search

This work deals with bioremediation experiments on harbor sediments contaminated by aliphatic and polycyclic aromatic hydrocarbons (PAHs), investigating the effects of a continuous supply of inorganic nutrients and sand amendments on the kinetics of microbial growth and hydrocarbon degradation. Inorganic nutrients stimulated microbial growth and enhanced the biodegradation of low and high molecular weight hydrocarbons, whereas sand amendment increased only

Francesca Beolchini; Laura Rocchetti; Francesco Regoli; Antonio Dell’Anno

2010-01-01

98

Control of Subsurface Contaminant Migration by Vertical Engineered Barriers  

EPA Science Inventory

This Fact Sheet is intended to provide remedial project managers (RPMs), on-scene coordinators (OSCs), contractors, and other remediation stakeholders with a basic overview of hazardous waste containment systems constructed to prevent or limit the migration of contamination in gr...

99

Stimulating in situ surfactant production to increase contaminant bioavailability and augment bioremediation of petroleum hydrocarbons  

NASA Astrophysics Data System (ADS)

The effectiveness of a bioremediation strategy is largely dependent on relationships between contaminant sequestration (geochemical limitations) and microbial degradation potential (biological limitations). As contaminant bioavailability becomes mass transfer limited, contaminant removal will show less sensitivity to biodegradation enhancements without concurrent enhancements to rates of mass transfer into the bioavailable phase. Implementing a strategy that can simultaneously address geochemical and biological limitations is motivated by a subsurface zone of liquid petroleum hydrocarbons (LPH) contamination that is in excess of 10 acres (40,000 sq. meters). Biodegradation potential at the site is high; however, observed biodegradation rates are generally low, indicative of bioavailability limitations (e.g., low aqueous solubilities, nutrient deficiencies, and/or mass transfer limitations), and estimates indicate that bioremediation (i.e., biosparging/bioventing) with unaugmented biodegradation may be unable to achieve the remedial objectives within an acceptable time. Bench-scale experiments using soils native to the site provide evidence that, in addition to nutrient additions, a pulsed oxygen delivery can increase biodegradation rates by stimulating the microbial production of biosurfactants (rhamnolipids), leading to a reduction in surface tension and an increase in contaminant bioavailability. Pilot-scale tests at the field site are evaluating the effectiveness of stimulating in situ biosurfactant production using cyclic biosparging. The cyclic sparging creates extended periods of alternating aerobic and oxygen-depleted conditions in the submerged smear zone. The increased bioavailability of LPH and the resulting biodegradation enhancements during the test are evaluated using measurements of surface tension (as confirmation of biosurfactant accumulation) and nitrate concentrations (as substantiation of anaerobic biodegradation during shut-off periods). The successful promotion of in situ biosurfactant production during biosparging is expected to provide a cost effective solution to site remediation requirements.

Haws, N. W.; Bentley, H. W.; Yiannakakis, A.; Bentley, A. J.; Cassidy, D. P.

2006-12-01

100

Chemical Fate of Contaminants in the Environment: Chlorinated Hydrocarbons in the Groundwater  

Microsoft Academic Search

Chlorinated hydrocarbons (CHCs) are the most common contaminant found at hazardous waste sites and are the most prevalent contaminants on U.S. Department of Energy (DOE) weapons production sites. Many of the CHCs are either known or suspected carcinogens and thus pose health risks to the public and\\/or site workers. Unlike simple hydrocarbons, CHCs are resistant to biodegradation, but can degrade

Donald G. Truhlar; Christopher Cramer; Jiali Gao; Bruce C. Garrett; Michel Dupuis; TP Straatsma; Keiji Morokuma; Thomas H. Dunning; Yurii A. Borisov; Edgar E. Arcia; Jacob S. Thompson

2006-01-01

101

Time series analysis of contaminant transport in the subsurface: Applications to conservative tracer and engineered nanomaterials  

NASA Astrophysics Data System (ADS)

Accurately predicting the transport of contaminants in the field is subject to multiple sources of uncertainty due to the variability of geological settings, the complexity of field measurements, and the scarcity of data. Such uncertainties can be amplified when modeling some emerging contaminants, such as engineered nanomaterials, when a fundamental understanding of their fate and transport is lacking. Typical field work includes collecting concentration at a certain location for an extended period of time, or measuring the movement of plume for an extended period time, which would result in a time series of observation data. This work presents an effort to evaluate the possibility of applying time series analysis, particularly, autoregressive integrated moving average (ARIMA) models, to forecast contaminant transport and distribution in the subsurface environment. ARIMA modeling was first assessed in terms of its capability to forecast tracer transport at two field sites, which had different levels of heterogeneity. After that, this study evaluated the applicability of ARIMA modeling to predict the transport of engineered nanomaterials at field sites, including field measured data of nanoscale zero valent iron and (nZVI) and numerically generated data for the transport of nano-fullerene aggregates (nC60). This proof-of-concept effort demonstrates the possibility of applying ARIMA to predict the contaminant transport in the subsurface environment. Like many other statistical models, ARIMA modeling is only descriptive and not explanatory. The limitation and the challenge associated with applying ARIMA modeling to contaminant transport in the subsurface are also discussed.

Bai, Chunmei; Li, Yusong

2014-08-01

102

Time series analysis of contaminant transport in the subsurface: applications to conservative tracer and engineered nanomaterials.  

PubMed

Accurately predicting the transport of contaminants in the field is subject to multiple sources of uncertainty due to the variability of geological settings, the complexity of field measurements, and the scarcity of data. Such uncertainties can be amplified when modeling some emerging contaminants, such as engineered nanomaterials, when a fundamental understanding of their fate and transport is lacking. Typical field work includes collecting concentration at a certain location for an extended period of time, or measuring the movement of plume for an extended period time, which would result in a time series of observation data. This work presents an effort to evaluate the possibility of applying time series analysis, particularly, autoregressive integrated moving average (ARIMA) models, to forecast contaminant transport and distribution in the subsurface environment. ARIMA modeling was first assessed in terms of its capability to forecast tracer transport at two field sites, which had different levels of heterogeneity. After that, this study evaluated the applicability of ARIMA modeling to predict the transport of engineered nanomaterials at field sites, including field measured data of nanoscale zero valent iron and (nZVI) and numerically generated data for the transport of nano-fullerene aggregates (nC60). This proof-of-concept effort demonstrates the possibility of applying ARIMA to predict the contaminant transport in the subsurface environment. Like many other statistical models, ARIMA modeling is only descriptive and not explanatory. The limitation and the challenge associated with applying ARIMA modeling to contaminant transport in the subsurface are also discussed. PMID:24987973

Bai, Chunmei; Li, Yusong

2014-08-01

103

Unraveling contaminated subsurface complex and dynamic behavior: A scale-dependent perspective  

NASA Astrophysics Data System (ADS)

The uranium plumes present at the United States Department of Energy's (DOE) Hanford site (WA) and Rifle site (CO), have not attenuated as previously expected and predicted due, most likely, to subsurface complex behavior and multiple sources of contaminant uranium. At the Rifle site, both oxidized and naturally reduced zones are present in the subsurface. The naturally reduced zones usually contain high U concentrations, and are likely significant contributors to the groundwater contamination. We have conducted hypothesis driven research to generate the necessary scientific information needed to: 1. Understand and overcome the physical and mineralogical subsurface heterogeneities; 2. Unravel mineral - fluid interface complexity and dynamics by identifying and estimating the role of key geochemical and hydrological reactions and processes controlling contaminant uranium behavior under a variety of conditions; 3. Develop conceptual models and apply predictive models of contaminant behavior to support development, implementation and monitoring of effective and sustainable remediation approaches. In this talk, results from research efforts, such as wet chemical extractions of different types, as well as, batch and hydraulically saturated and unsaturated column experiments of different types, will be presented. These results were combined with those of a variety of techniques such as XRD, µ-XRD, SEM-EDS, SEM-FIB, TEM-SAED, Mössbauer spectroscopy, EMPA, µXRF and XANES. Collectively, these results provided information about the extent and rates of geochemical (sorption/desorption, dissolution/precipitation and redox) and hydrological reactions and processes which control and/or significantly affect the fate of uranium and other co-contaminants that are present in these contaminated subsurface media.

Qafoku, N.

2012-04-01

104

Bioremediation of petroleum hydrocarbon contaminants in marine habitats.  

PubMed

Bioremediation is being increasingly seen as an effective, environmentally benign treatment for shorelines contaminated as a result of marine oil spills. Despite a relatively long history of research on oil-spill bioremediation, it remains an essentially empirical technology and many of the factors that control bioremediation have yet to be adequately understood. Nutrient amendment is a widely accepted practice in oil-spill bioremediation but there is scant understanding of the systematic effects of nutrient amendment on biodegradative microbial populations or the progress of bioremediation. Recent laboratory and field research suggests that resource-ratio theory may provide a theoretical framework that explains the effects of nutrient amendment on indigenous microbial populations. In particular, the theory has been invoked to explain recent observations that nutrient levels, and their relative concentration, influence the composition of hydrocarbon-degrading microbial populations. This in turn influences the biodegradation rate of aliphatic and aromatic hydrocarbons. If such results are confirmed in the field, then it may be possible to use this theoretical framework to select bioremediation treatments that specifically encourage the rapid destruction of the most toxic components of complex pollutant mixtures. PMID:10361073

Head, I M; Swannell, R P

1999-06-01

105

[Bioremediation of petroleum hydrocarbon contaminated soil by bioaugmentation products].  

PubMed

In an experimental investigation of bioaugmentation products affected on the petroleum contaminated soil. The influence of the bioaugmentation products dose, injections and temperature on bioremediation were studied. The results showed that the degradation rate was related positively to the amount of inoculation, when the dose was increased to 0.6 mg x kg(-1), total petroleum hydrocarbon (TPH) degradation rate was 87% in 48 days. The results of GC-MS indicated that the dominant petroleum constituents in oil-contaminated raw soil were 82.1% n-alkane, 16% alkene and little of others hydrocarbons, such as carotane, alkylnaphthalenes, hopanes, and steranes. The peaks amount of GC profile decreased from 32 to 14 after 40 days of bioremediation, this result indicated that branched alkanes, alkene, and alkylnaphthalenes were thoroughly degraded, then line alkanes, hopanes, and steranes were left in soil. In addition, the longer part of n-alkane were degraded with rate relatively higher, while the residual fraction at the end of the test is shorter part of n-alkane because bacteria degraded the longer n-alkane to shorter. The shorter n-alkane concentration decreased with increasing inoculation. One time injection of bioaugmentation products into soil clearly improved the biodegradation efficiency higher than injection of bioaugmentation products in turn. Soil temperature also affected TPH degradation rate when it was 30 degrees C, TPH rate reached 80%, where as when it was 20 degrees C, the TPH rate was lower to 60%, which indicated higher temperature improved TPH degradation and accelerated bioremediation. PMID:19662877

Huang, Ting-Lin; Xu, Jin-Lan; Tang, Zhi-Xin; Xiao, Zhou-Qiang

2009-06-15

106

Modeling of vapor intrusion from hydrocarbon-contaminated sources accounting for aerobic and anaerobic biodegradation  

NASA Astrophysics Data System (ADS)

A one-dimensional steady state vapor intrusion model including both anaerobic and oxygen-limited aerobic biodegradation was developed. The aerobic and anaerobic layer thickness are calculated by stoichiometrically coupling the reactive transport of vapors with oxygen transport and consumption. The model accounts for the different oxygen demand in the subsurface required to sustain the aerobic biodegradation of the compound(s) of concern and for the baseline soil oxygen respiration. In the case of anaerobic reaction under methanogenic conditions, the model accounts for the generation of methane which leads to a further oxygen demand, due to methane oxidation, in the aerobic zone. The model was solved analytically and applied, using representative parameter ranges and values, to identify under which site conditions the attenuation of hydrocarbons migrating into indoor environments is likely to be significant. Simulations were performed assuming a soil contaminated by toluene only, by a BTEX mixture, by Fresh Gasoline and by Weathered Gasoline. The obtained results have shown that for several site conditions oxygen concentration below the building is sufficient to sustain aerobic biodegradation. For these scenarios the aerobic biodegradation is the primary mechanism of attenuation, i.e. anaerobic contribution is negligible and a model accounting just for aerobic biodegradation can be used. On the contrary, in all cases where oxygen is not sufficient to sustain aerobic biodegradation alone (e.g. highly contaminated sources), anaerobic biodegradation can significantly contribute to the overall attenuation depending on the site specific conditions.

Verginelli, Iason; Baciocchi, Renato

2011-11-01

107

Induced Polarization methodology: application to a hydrocarbon contaminated site  

NASA Astrophysics Data System (ADS)

Induced Polarization (IP) is a promising method for environmental studies (Vaudelet et al., 2011; Abdel Aal et al., 2006). This method has already been successful for the study of contaminations in the laboratory scale (Vanhala, 1997; Revil et al., 2011; Schmutz et al., 2012) but is still not trivial on the field. Temporal IP seems relatively common for field studies. When contamination implies a significative change of the polarization parameters, successful studies have been lead (Fiandaca et al. 2012; Dahlin et al., 2002 on landfills). Otherwise hydrocarbon contamination may induce small changes on IP parameters (Vaudelet et al., 2011). Spectral induced polarization has not been widely used for field application yet: this method is sensitive to coupling effects and time consuming. Moreover, all the phenomenon responsible of the signal is not completely understood yet (Kemna et al., 2012). The main aim of our presentation is about IP methodology, applied on site affected by a hydrocarbon contamination. In this case, precautions have to be taken to get explicit answers from the contamination. Field investigations have been made: chargeability measurements in order to delineate the free phase contamination extension and spectral induced polarization soundings in order to characterize more precisely the contamination. We would like to provide recommendations to improve induced polarization measurements especially on three aspects, (i) propose a different measurement sequence to make chargeability measurements and (ii) evaluate the influence of the current injection time on chargeability measurements (iii) give general precautions to achieve SIP measurements. A different new chargeability sequence is proposed integrating the use of separated injection and measure cables to avoid coupling phenomena in multicore cables. Indeed, this kind of coupling can significantly decrease the signal / noise ratio (Dahlin et al., 2012). Direct and reverse measurements have been made in order to evaluate if the data and data quality are comparable. Different times of injection have also been tested to evaluate their influence on chargeability measurements: long injection times (4 and 8 seconds) indicate the same high chargeability trend, to the contrary to small injection time (2 seconds). Long injection time generate (i) the polarization of more elements (ii) a stronger polarization of polarizable elements. For environmental purposes, long injection times are recommended. Spectral induced polarization soundings have been made using the SIP Fuchs device, with an amplifier in order to stabilize the injected current (Radic 2004). Unpolarizable measurement electrodes have been connected to the apparatus with optic fiber and metallic injection electrodes have been link with a specific cable arrangement, both to reduce coupling effect with the ground (Vaudelet et al., 2011; Ghorbani et al., 2007). These precautions give good quality result and allow the inversion of the data to obtain Cole Cole parameters (Ghorbani et al., 2007), useful for hydrogeological interpretations.

Blondel, Amelie; Schmutz, Myriam; Tichane, Frederic; Franceschi, Michel; Carles, Margaux

2013-04-01

108

Subsurface biobarrier formation by microorganism injection for contaminant plume control.  

PubMed

The concept of an in situ mixture of residual soil and aerobic microorganisms as a biobarrier for controlling contaminant plume was evaluated in this study. Azotobacter chroococcum was inoculated into soil with oxygen as the electron acceptor and appropriate substrate to induce biofilm clog soil pores. The hydraulic conductivity of soil decreased by 1/8000 while substrate and oxygen were provided to the injected microorganism, and increased by 400% when no substrate was provided. A series of column experiments were carried out to measure the hydraulic conductivity of soil specimens. The results showed that the highest hydraulic conductivity reduction occurred when the substrate and electron acceptors were first introduced, and this reduction increased toward the outlet of the column. The substrate was consumed mostly at the inlet and was distributed with time. The analysis of volatile substances after the test showed that the inlet had a high organic content and the outlet had a low organic content. PMID:16569610

Kim, Geonha; Lee, Seungbong; Kim, Younguk

2006-02-01

109

Persistence of chlorinated hydrocarbon contamination in a California marine ecosystem  

SciTech Connect

Despite major reductions in the dominant DDT and polychlorinated biphenyls (PCB) input off Los Angeles (California, U.S.A.) in the early 1970s, the levels of these pollutants decreased only slightly from 1972 to 1975 both in surficial bottom sediments and in a flatfish bioindicator (Dover sole, Microstomus pacificus) collected near the submarine outfall. Concentrations of these pollutants in the soft tissues of the mussel Mytilus californianus, collected intertidally well inshore of the highly contaminated bottom sediments, followed much more closely the decreases in the outfall discharges. These observations suggest that contaminated sediments on the seafloor were the principal (although not necessarily direct) cause of the relatively high and persistent concentrations of DDT and PCB residues in tissues. The study indicated that residues of the higher-molecular-weight chlorinated hydrocarbons, such as DDT and PCB, can be highly persistent once released to coastal marine ecosystems and that their accumulation in surficial bottom sediments is the most likely cause of this persistence observed in the biota of the discharge zone.

Young, D.R.; Gossett, R.W.; Heesen, T.C.

1989-01-01

110

Historical Perspective on Subsurface Contaminants Focus Area (SCFA) Success: Counting the Things That Really Count  

SciTech Connect

The Subsurface Contaminants Focus Area, (SCFA) is committed to, and has been accountable for, identifying and providing solutions for the most pressing subsurface contamination problems in the DOE Complex. The SCFA program is a DOE end user focused and problem driven organization that provides the best technical solutions for the highest priority problems. This paper will discuss in some detail specific examples of the most successful, innovative technical solutions and the DOE sites where they were deployed or demonstrated. These solutions exhibited outstanding performance in FY 2000/2001 and appear poised to achieve significant success in saving end users money and time. They also provide a reduction in risk to the environment, workers, and the public while expediting environmental clean up of the sites.

Wright, J. A. Jr.; Middleman, L. I.

2002-02-27

111

Integrated magnetic, gravity, and GPR surveys to locate the probable source of hydrocarbon contamination in Sharm El-Sheikh area, south Sinai, Egypt  

NASA Astrophysics Data System (ADS)

Sharm El-Sheikh waters were suddenly hit by hydrocarbon spills which created a serious threat to the prosperous tourism industry in and around the city. Analysis of soil samples, water samples, and seabed samples collected in and around the contaminated bay area showed anomalous levels of hydrocarbons. An integrated geophysical investigation, using magnetic, gravity, and ground penetrating radar geophysical tools, was conducted in the headland overlooking the contaminated bay in order to delineate the possible subsurface source of contamination. The results of the geophysical investigations revealed three underground manmade reinforced concrete tanks and a complicated network of buried steel pipes in addition to other unidentified buried objects. The depths and dimensions of the discovered objects were determined. Geophysical investigations also revealed the presence of a north-south oblique slip fault running through the eastern part of the studied area. Excavations, conducted later on, confirmed the presence of one of the tanks delineated by the geophysical surveys.

Morsy, Mona; Rashed, Mohamed

2013-01-01

112

ASSESSING UST CORRECTIVE ACTION TECHNOLOGY: A SCIENTIFIC EVALUATION OF THE MOBILITY AND DEGRADABILITY OF ORGANIC CONTAMINANTS IN SUBSURFACE ENVIRONMENTS  

EPA Science Inventory

The problems associated with leakage of motor fuels and organic chemicals from underground storage tanks (USTs) are compounded by a general lack of understanding of the partitioning, retention, transformation, and transport of these contaminants in the subsurface environment. he ...

113

QUANTITATIVE CHARACTERIZATION OF MICROBIAL BIOMASS AND COMMUNITY STRUCTURE IN SUBSURFACE MATERIAL: A PROKARYOTIC CONSORTIUM RESPONSIVE TO ORGANIC CONTAMINATION  

EPA Science Inventory

Application of quantitative methods for microbial biomass, community structure, and nutritional status to the subsurface samples collected with careful attention to contamination reveals a group of microbes. The microbiota are sparse by several measures of biomass compared to sur...

114

RADIO FREQUENCY ENHANCED DECONTAMINATION OF SOILS CONTAMINATED WITH HALOGENATED HYDROCARBONS  

EPA Science Inventory

There has been considerable effort in the development of innovative treatment technologies for the clean up of sites containing hazardous wastes such as hydrocarbons and chlorinated hydrocarbons. Typical examples of such waste material are: chlorinated solvents, polychlorinated b...

115

Bioremediation of subsurface sediment and groundwater contaminated with pyridine and pyridine derivatives  

SciTech Connect

The presence of toxic organic chemicals such as pyridine and its alkyl derivatives, found in groundwater as a consequence of industrial activities, present a direct hazard to human health and to the environment. The toxicity of these compounds, their teratogenic properties, and their irritating odor require urgent remediation. Physical, chemical, and biological treatments are commonly applied for the removal of organic pollutants from groundwater. In this investigation, the potential of a biological treatment was evaluated for the clean-up of subsurface and groundwater contaminated with pyridine and its alkyl derivatives. A pyridine-degrading denitrifying bacterium, an Alcaligenes sp., isolated from a polluted aquifer, successfully mineralized pyridine in the subsurface sediment under anaerobic conditions. Moreover, the isolated bacterium was much more effective, when compared to chemical treatment (Fenton's reagent), in mineralizing pyridine in the groundwater and subsurface sediments. In contrast to pyridine, alkylpyridines were not degraded under anaerobic conditions. However, under aerobic conditions indigenous bacteria were able to degrade all investigated contaminants. Thus, oxygen was the limiting factor for biodegradation of alkylpyridines. Degradation of these compounds also occurred in soil columns. In addition, a mixed culture capable of degrading 14 different alkylpyridine isomers was selected from the sediment and appeared to be very effective in removing pollutants from groundwater. Characterization of the different bacteria showed that all strains were gram-negative rods. The above findings suggest that bioremediation of pyridine-contaminated groundwater is feasible. Bioremediation may be in situ using either inoculation of the subsurface with pyridine-degrading bacteria or stimulation of native microorganisms.

Ronen, Z.

1992-01-01

116

Bioremediation Assessment of Hydrocarbon-Contaminated Soils from the High Arctic  

Microsoft Academic Search

The bioremediation potential of hydrocarbon-contaminated soils from the most northerly inhabited station in the world, Canadian Forces Station - Alert, was assessed. Microbial enumeration, by both viable plate counts and direct counts, combined with molecular analysis (polymerase chain reaction and colony hybridization) for hydrocarbon catabolic genes (alkB, ndoB, xylE), demonstrated the presence of significant numbers of cold-adapted hydrocarbon-degrading microorganisms. The

Lyle G. Whyte; Luc Bourbonnière; Claude Bellerose; Charles W. Greer

1999-01-01

117

FINAL REPORT. ENVIRONMENTAL ANALYSIS OF ENDOCRINE DISRUPTING EFFECTS FROM HYDROCARBON CONTAMINANTS IN THE ECOSYSTEM  

EPA Science Inventory

The objective of this project was to determine how environmental contaminants, namely hydrocarbons, act as hormones or anti- hormones in different species present in aquatic ecosystems. The three major components of the research included: 1)a biotechnology based screening system ...

118

STUDIES ON BIOREMEDIATION OF POLYCYCLIC AROMATIC HYDROCARBON-CONTAMINATED SEDIMENTS: BIOAVAILABILITY, BIODEGRADABILITY, AND TOXICITY ISSUES  

EPA Science Inventory

The widespread contamination of aquatic sediments by polycyclic aromatic hydrocarbons (PAHs) has created a need for cost-effective bioremediation processes, on which the bioavailability and the toxicity of PAHs often have a significant impact. This research investigated the biode...

119

TAILORING CATALYSTS FOR HYDRODECHLORINATING CHLORINATED HYDROCARBON CONTAMINANTS IN GROUNDWATER. (R825689C093)  

EPA Science Inventory

Abstract A palladium-on-zeolite catalyst has been optimized for treating groundwater contaminated with halogenated hydrocarbon compounds (HHCs) by hydrodechlorination with dissolved hydrogen. Aqueous sulfite was used as the model poison and the dechlorination of 1,2-di...

120

TAILORING CATALYSTS FOR HYDRODECHLORINATING CHLORINATED HYDROCARBON CONTAMINANTS IN GROUNDWATER. (R825689C078)  

EPA Science Inventory

Abstract A palladium-on-zeolite catalyst has been optimized for treating groundwater contaminated with halogenated hydrocarbon compounds (HHCs) by hydrodechlorination with dissolved hydrogen. Aqueous sulfite was used as the model poison and the dechlorination of 1,2-di...

121

The physiology of mycorrhizal Lolium multiflorum in the phytoremediation of petroleum hydrocarbon-contaminated soil  

E-print Network

Arbuscular mycorrhizal fungi (AMF) can play an important role in the phytoremediation of petroleum hydrocarbon (PH)-contaminated soil. However, little is known about the effects of AMF in combination with biostimulation via fertilization...

Alarcon, Alejandro

2009-06-02

122

Immunological techniques as tools to characterize the subsurface microbial community at a trichloroethylene contaminated site  

SciTech Connect

Effective in situ bioremediation strategies require an understanding of the effects pollutants and remediation techniques have on subsurface microbial communities. Therefore, detailed characterization of a site`s microbial communities is important. Subsurface sediment borings and water samples were collected from a trichloroethylene (TCE) contaminated site, before and after horizontal well in situ air stripping and bioventing, as well as during methane injection for stimulation of methane-utilizing microorganisms. Subsamples were processed for heterotrophic plate counts, acridine orange direct counts (AODC), community diversity, direct fluorescent antibodies (DFA) enumeration for several nitrogen-transforming bacteria, and Biolog {reg_sign} evaluation of enzyme activity in collected water samples. Plate counts were higher in near-surface depths than in the vadose zone sediment samples. During the in situ air stripping and bioventing, counts increased at or near the saturated zone, remained elevated throughout the aquifer, but did not change significantly after the air stripping. Sporadic increases in plate counts at different depths as well as increased diversity appeared to be linked to differing lithologies. AODCs were orders of magnitude higher than plate counts and remained relatively constant with depth except for slight increases near the surface depths and the capillary fringe. Nitrogen-transforming bacteria, as measured by serospecific DFA, were greatly affected both by the in situ air stripping and the methane injection. Biolog{reg_sign} activity appeared to increase with subsurface stimulation both by air and methane. The complexity of subsurface systems makes the use of selective monitoring tools imperative.

Fliermans, C.B.; Dougherty, J.M.; Franck, M.M.; McKinzey, P.C.; Hazen, T.C.

1992-12-31

123

Immunological techniques as tools to characterize the subsurface microbial community at a trichloroethylene contaminated site  

SciTech Connect

Effective in situ bioremediation strategies require an understanding of the effects pollutants and remediation techniques have on subsurface microbial communities. Therefore, detailed characterization of a site's microbial communities is important. Subsurface sediment borings and water samples were collected from a trichloroethylene (TCE) contaminated site, before and after horizontal well in situ air stripping and bioventing, as well as during methane injection for stimulation of methane-utilizing microorganisms. Subsamples were processed for heterotrophic plate counts, acridine orange direct counts (AODC), community diversity, direct fluorescent antibodies (DFA) enumeration for several nitrogen-transforming bacteria, and Biolog [reg sign] evaluation of enzyme activity in collected water samples. Plate counts were higher in near-surface depths than in the vadose zone sediment samples. During the in situ air stripping and bioventing, counts increased at or near the saturated zone, remained elevated throughout the aquifer, but did not change significantly after the air stripping. Sporadic increases in plate counts at different depths as well as increased diversity appeared to be linked to differing lithologies. AODCs were orders of magnitude higher than plate counts and remained relatively constant with depth except for slight increases near the surface depths and the capillary fringe. Nitrogen-transforming bacteria, as measured by serospecific DFA, were greatly affected both by the in situ air stripping and the methane injection. Biolog[reg sign] activity appeared to increase with subsurface stimulation both by air and methane. The complexity of subsurface systems makes the use of selective monitoring tools imperative.

Fliermans, C.B.; Dougherty, J.M.; Franck, M.M.; McKinzey, P.C.; Hazen, T.C.

1992-01-01

124

Hydrocarbon stress response of four tropical plants in weathered crude oil contaminated soil in microcosms  

Microsoft Academic Search

Responses to hydrocarbon stress of four tropical plants Panicum maximum, Zea mays, Centrosema sp. and Pueraria sp. grown in crude oil contaminated soils (1%, 5% and 10% w\\/w) were evaluated in a green house. Plants’ percentage survival, shoot heights, biomass development, and phytotoxicity susceptibility were used as indicators of growth, stress response and hydrocarbon tolerance. Relative to control, shoot heights

Ifechukwu E. Adieze; Justina C. Orji; Rose N. Nwabueze; G. O. C. Onyeze

2012-01-01

125

Inhibition of hydrocarbon bioremediation by lead in a crude oil-contaminated soil  

Microsoft Academic Search

Analyses of soil samples revealed that the level of lead (total or bioavailable) was three-fold greater in crude oil contaminated than in uncontaminated Kuwaiti soils. Investigation of the possible inhibitory effect of lead on hydrocarbon degradation by the soil microbiota showed that the number of hydrocarbon-degrading bacteria decreased with increased levels of lead nitrate added to soil samples, whether oil

Esmaeil S. AL-Saleh; Christian Obuekwe

2005-01-01

126

Effectiveness of in site biodegradation for the remediation of polycyclic aromatic hydrocarbons at a contaminated oil refinery, Port Arthur, Texas  

E-print Network

The effectiveness of bioremediation for the removal of polycyclic aromatic hydrocarbons (PAHs) from sediments contaminated with highly weathered petroleum was evaluated at a contaminated oil refinery. The sediments were chronically contaminated...

Moffit, Alfred Edward

2000-01-01

127

Petroleum hydrocarbon contamination of ground water in Tiverton, Rhode Island, USA  

NASA Astrophysics Data System (ADS)

Ground water samples from several private wells serving individual homes in Tiverton, Rhode Island were analyzed for petroleum contamination over a 19-month period. The hydrocarbon concentrations initially ranged from 68 to 2350 ppb and then gradually decreased to lower values, ranging from 6 to 1650 ppb, at the end of the study. Samples from the well with the highest hydrocarbon concentration (2350 to 1650 ppb) were investigated in some detail because this was considered a possible source of the petroleum contamination in the area. These studies indicated that most of the hydrocarbons were in the dissolved phase (<1.0 ?m) of the ground water and that it contained large amounts of naphthalene, methyl and dimethyl naphthalenes, and ethyl naphthalenes. In addition, the qualitative distribution of hydrocarbons changed as the concentration decreased over the course of the investigation. There appeared to be preferential loss of the more volatile and easily degraded components relative to the higher molecular weight and more refractory hydrocarbons. Some of the wells at this location are contaminated with at least two different petroleum products, i.e. gasoline and fuel oil. The exact nature and source of the contaminant is not known; it may be spilled or leaking petroleum products, or other materials containing petroleum hydrocarbons (e.g. commercial or industrial cleaning solutions). Based on differences in the qualitative distribution of components, some of the wells contain hydrocarbons that have been environmentally altered or that originate from a source other than the most contaminated well

Zheng, Jinshu; Quinn, James G.

1988-12-01

128

Subsurface Contaminant Focus Area: Monitored Natural Attenuation (MNA)--Programmatic, Technical, and Regulatory Issues  

SciTech Connect

Natural attenuation processes are commonly used for remediation of contaminated sites. A variety of natural processes occur without human intervention at all sites to varying rates and degrees of effectiveness to attenuate (decrease) the mass, toxicity, mobility, volume, or concentration of organic and inorganic contaminants in soil, groundwater, and surface water systems. The objective of this review is to identify potential technical investments to be incorporated in the Subsurface Contaminant Focus Area Strategic Plan for monitored natural attenuation. When implemented, the technical investments will help evaluate and implement monitored natural attenuation as a remediation option at DOE sites. The outcome of this review is a set of conclusions and general recommendations regarding research needs, programmatic guidance, and stakeholder issues pertaining to monitored natural attenuation for the DOE complex.

Krupka, Kenneth M.; Martin, Wayne J.

2001-07-23

129

Microbial Community Responses to Organophosphate Substrate Additions in Contaminated Subsurface Sediments  

PubMed Central

Background Radionuclide- and heavy metal-contaminated subsurface sediments remain a legacy of Cold War nuclear weapons research and recent nuclear power plant failures. Within such contaminated sediments, remediation activities are necessary to mitigate groundwater contamination. A promising approach makes use of extant microbial communities capable of hydrolyzing organophosphate substrates to promote mineralization of soluble contaminants within deep subsurface environments. Methodology/Principal Findings Uranium-contaminated sediments from the U.S. Department of Energy Oak Ridge Field Research Center (ORFRC) Area 2 site were used in slurry experiments to identify microbial communities involved in hydrolysis of 10 mM organophosphate amendments [i.e., glycerol-2-phosphate (G2P) or glycerol-3-phosphate (G3P)] in synthetic groundwater at pH 5.5 and pH 6.8. Following 36 day (G2P) and 20 day (G3P) amended treatments, maximum phosphate (PO43?) concentrations of 4.8 mM and 8.9 mM were measured, respectively. Use of the PhyloChip 16S rRNA microarray identified 2,120 archaeal and bacterial taxa representing 46 phyla, 66 classes, 110 orders, and 186 families among all treatments. Measures of archaeal and bacterial richness were lowest under G2P (pH 5.5) treatments and greatest with G3P (pH 6.8) treatments. Members of the phyla Crenarchaeota, Euryarchaeota, Bacteroidetes, and Proteobacteria demonstrated the greatest enrichment in response to organophosphate amendments and the OTUs that increased in relative abundance by 2-fold or greater accounted for 9%–50% and 3%–17% of total detected Archaea and Bacteria, respectively. Conclusions/Significance This work provided a characterization of the distinct ORFRC subsurface microbial communities that contributed to increased concentrations of extracellular phosphate via hydrolysis of organophosphate substrate amendments. Within subsurface environments that are not ideal for reductive precipitation of uranium, strategies that harness microbial phosphate metabolism to promote uranium phosphate precipitation could offer an alternative approach for in situ sequestration. PMID:24950228

Martinez, Robert J.; Wu, Cindy H.; Beazley, Melanie J.; Andersen, Gary L.; Conrad, Mark E.; Hazen, Terry C.; Taillefert, Martial; Sobecky, Patricia A.

2014-01-01

130

Denitrifying bacteria from the terrestrial subsurface exposed to mixed waste contamination  

SciTech Connect

In terrestrial subsurface environments where nitrate is a critical groundwater contaminant, few cultivated representatives are available with which to verify the metabolism of organisms that catalyze denitrification. In this study, five species of denitrifying bacteria from three phyla were isolated from subsurface sediments exposed to metal radionuclide and nitrate contamination as part of the U.S. Department of Energy s Oak Ridge Integrated Field Research Challenge (OR-IFRC). Isolates belonged to the genera Afipia and Hyphomicrobium (Alphaproteobacteria), Rhodanobacter (Gammaproteobacteria), Intrasporangium (Actinobacteria) and Bacillus (Firmicutes). Isolates from the phylum Proteobacteria were confirmed as complete denitrifiers, whereas the Gram-positive isolates reduced nitrate to nitrous oxide. Ribosomal RNA gene analyses reveal that bacteria from the genus Rhodanobacter comprise a diverse population of circumneutral to moderately acidophilic denitrifiers at the ORIFRC site, with a high relative abundance in areas of the acidic source zone. Rhodanobacter species do not contain a periplasmic nitrite reductase and have not been previously detected in functional gene surveys of denitrifying bacteria at the OR-IFRC site. Sequences of nitrite and nitrous oxide reductase genes were recovered from the isolates and from the terrestrial subsurface by designing primer sets mined from genomic and metagenomic data and from draft genomes of two of the isolates. We demonstrate that a combination of cultivation, genomic and metagenomic data are essential to the in situ characterization of denitrifiers and that current PCR-based approaches are not suitable for deep coverage of denitrifying microorganisms. Our results indicate that the diversity of denitrifiers is significantly underestimated in the terrestrial subsurface.

Green, Stefan [Florida State University; Prakash, Om [Florida State University; Gihring, Thomas [Florida State University; Akob, Denise M. [Florida State University; Jasrotia, Puja [Florida State University; Jardine, Philip M [ORNL; Watson, David B [ORNL; Brown, Steven D [ORNL; Palumbo, Anthony Vito [ORNL; Kostka, Joel [Florida State University

2010-01-01

131

Phytosiderophore Effects on Subsurface Actinide Contaminants: Potential for Phytostabilization and Phytoextraction  

SciTech Connect

This project seeks to understand the influence of phytosiderophore-producing plants (grasses, including crops such as wheat and barley) on the biogeochemistry of actinide and other metal contaminants in the subsurface environment, and to determine the potential of phytosiderophore-producing plants for phytostabilization and phytoextraction of actinides and some metal soil contaminants. Phytosiderophores are secreted by graminaceous plants such as barley and wheat for the solubilization, mobilization and uptake of Fe and other essential nutrients from soils. The ability for these phytosiderophores to chelate and absorb actinides using the same uptake system as for Fe is being investigated though characterization of actinide-phytosiderophore complexes (independently of plants), and characterization of plant uptake of such complexes. We may also show possible harm caused by these plants through increased chelation of actinides that increase in actinide mobilization & migration in the subsurface environment. This information can then be directly applied by either removal of harmful plants, or can be used to develop plant-based soil stabilization/remediation technologies. Such technologies could be the low-cost, low risk solution to many DOE actinide contamination problems.

Ruggiero, Christy

2005-06-01

132

Phytosiderophore Effects on Subsurface Actinide Contaminants: Potential for Phytostabilization and Phytoextraction  

SciTech Connect

This project seeks to understand the influence of phytosiderophore-producing plants (grasses, including crops such as wheat and barley) on the biogeochemistry of actinide and other metal contaminants in the subsurface environment, and to determine the potential of phytosiderophoreproducing plants for phytostabilization and phytoextraction of actinides and some metal soil contaminants. Phytosiderophores are secreted by graminaceous plants such as barley and wheat for the solubilization, mobilization and uptake of Fe and other essential nutrients from soils. The ability for these phytosiderophores to chelate and absorb actinides using the same uptake system, as for Fe is being investigated though characterization of actinide-phytosiderophore complexes (independently of plants), and characterization of plant uptake of such complexes. We may also show possible harm caused by increased chelation of actinides, which may increase actinide mobilization & migration in the subsurface environment. This information can then be directly applied by either removal of harmful plants, or can be used to develop plant-based soil stabilization/remediation technologies. Such technologies could be the low-cost, low risk solution to many DOE actinide contamination problems.

Ruggiero, Christy

2004-06-01

133

Geophysical Responses of Hydrocarbon-impacted Zones at the Various Contamination Conditions  

NASA Astrophysics Data System (ADS)

One controlled experiment and two field surveys were conducted to investigate the geoelectrical responses of hydrocarbon-contaminated zones, so called smeared zone, on the geophysical data at the hydrocarbon- contaminated sites with various conditions. One controlled physical model experiment with GPR using fresh gasoline and two different 3-D electrical resistivity investigations at the aged sites. One field site (former military facilities for arms maintenance) was mainly contaminated with lubricating oils and the other (former gas station) was contaminated with gasoline and diesel, respectively. The results from the physical model experiment show that GPR signals were enhanced when LNAPL was present as a residual saturation in the water-saturated system due to less attenuation of the electromagnetic energy through the soil medium of the hydrocarbon-impacted zone (no biodegradation), compared to when the medium was saturated with only water (no hydrocarbon impaction). In the former gas station site, 3-D resistivity results demonstrate that the highly contaminated zones were imaged with low resistivity anomalies since the biodegradation of petroleum hydrocarbons has been undergone for many years, causing the drastic increase in the TDS at the hydrocarbon-impacted zones. Finally, 3-D resistivity data obtained from the former military maintenance site show that the hydrocarbon-contaminated zones show high resistivity anomalies since the hydrocarbons such as lubricating oils at the contaminated soils were not greatly influenced by microbial degradation and has relatively well kept their original physical properties of high electrical resistivity. The results of the study illustrated that the hydrocarbon-impacted zones under various contamination conditions yielded various geophysical responses which include (1) enhanced GPR amplitudes at the fresh LNAPL (Gasoline to middle distillates) spill sites, (2) low electrical resistivity anomalies due to biodegradation at the aged LNAPL- impacted sites, and (3) high electrical resistivity anomalies at the fresh or aged sites contaminated with residual products of crude oils (lubricating oils). The study results also show that the geophysical methods, as a non-invasive sounding technique, can be effectively applied to mapping hydrocarbon-contaminated zones.

Kim, C.; Ko, K.; Son, J.; Kim, J.

2008-12-01

134

AN EVALUATION OF HANFORD SITE TANK FARM SUBSURFACE CONTAMINATION FY2007  

SciTech Connect

The Tank Farm Vadose Zone (TFVZ) Project conducts activities to characterize and analyze the long-term environmental and human health impacts from tank waste releases to the vadose zone. The project also implements interim measures to mitigate impacts, and plans the remediation of waste releases from tank farms and associated facilities. The scope of this document is to report data needs that are important to estimating long-term human health and environmental risks. The scope does not include technologies needed to remediate contaminated soils and facilities, technologies needed to close tank farms, or management and regulatory decisions that will impact remediation and closure. This document is an update of ''A Summary and Evaluation of Hanford Site Tank Farm Subsurface Contamination''. That 1998 document summarized knowledge of subsurface contamination beneath the tank farms at the time. It included a preliminary conceptual model for migration of tank wastes through the vadose zone and an assessment of data and analysis gaps needed to update the conceptual model. This document provides a status of the data and analysis gaps previously defined and discussion of the gaps and needs that currently exist to support the stated mission of the TFVZ Project. The first data-gaps document provided the basis for TFVZ Project activities over the previous eight years. Fourteen of the nineteen knowledge gaps identified in the previous document have been investigated to the point that the project defines the current status as acceptable. In the process of filling these gaps, significant accomplishments were made in field work and characterization, laboratory investigations, modeling, and implementation of interim measures. The current data gaps are organized in groups that reflect Components of the tank farm vadose zone conceptual model: inventory, release, recharge, geohydrology, geochemistry, and modeling. The inventory and release components address residual wastes that will remain in the tanks and tank-farm infrastructure after closure and potential losses from leaks during waste retrieval. Recharge addresses the impacts of current conditions in the tank farms (i.e. gravel covers that affect infiltration and recharge) as well as the impacts of surface barriers. The geohydrology and geochemistry components address the extent of the existing subsurface contaminant inventory and drivers and pathways for contaminants to be transported through the vadose zone and groundwater. Geochemistry addresses the mobility of key reactive contaminants such as uranium. Modeling addresses conceptual models and how they are simulated in computers. The data gaps will be used to provide input to planning (including the upcoming C Farm Data Quality Objective meetings scheduled this year).

MANN, F.M.

2007-07-10

135

ENVIRONMENTAL ANALYSIS OF ENDOCRINE DISRUPTING EFFECTS FROM HYDROCARBON CONTAMINANTS IN THE ECOSYSTEM  

EPA Science Inventory

The objective of this basic research is to characterize the potential of common hydrocarbon contaminants in ecosystems to act as endocrine disrupters. Although the endocrine disrupting effects of contaminants such as dioxin and PCBs have been well characterized in both animals an...

136

Bioremediation of Poly-Aromatic Hydrocarbon (PAH)Contaminated Soil by Composting  

Microsoft Academic Search

This paper presents a comprehensive and critical review of research on different co-composting approaches to bioremediate hydrocarbon contaminated soil, organisms that have been found to degrade PAHs, and PAH breakdown products. Advantages and limitations of using certain groups of organisms and recommended areas of further research effort are identified. Studies investigating the use of composting techniques to treat contaminated soil

Nadine Loick; Phil J. Hobbs; Mike D. C. Hale; Davey L. Jones

2009-01-01

137

Plant residues--a low cost, effective bioremediation treatment for petrogenic hydrocarbon-contaminated soil.  

PubMed

Petrogenic hydrocarbons represent the most commonly reported environmental contaminant in industrialised countries. In terms of remediating petrogenic contaminated hydrocarbons, finding sustainable non-invasive technologies represents an important goal. In this study, the effect of 4 types of plant residues on the bioremediation of aliphatic hydrocarbons was investigated in a 90 day greenhouse experiment. The results showed that contaminated soil amended with different plant residues led to statistically significant increases in the utilisation rate of Total Petroleum Hydrocarbon (TPH) relative to control values. The maximum TPH reduction (up to 83% or 6800 mg kg(-1)) occurred in soil mixed with pea straw, compared to a TPH reduction of 57% (4633 mg kg(-1)) in control soil. A positive correlation (0.75) between TPH reduction rate and the population of hydrocarbon-utilising microorganisms was observed; a weaker correlation (0.68) was seen between TPH degradation and bacterial population, confirming that adding plant materials significantly enhanced both hydrocarbonoclastic and general microbial soil activities. Microbial community analysis using Denaturing Gradient Gel Electrophoresis (DGGE) showed that amending the contaminated soil with plant residues (e.g., pea straw) caused changes in the soil microbial structure, as observed using the Shannon diversity index; the diversity index increased in amended treatments, suggesting that microorganisms present on the dead biomass may become important members of the microbial community. In terms of specific hydrocarbonoclastic activity, the number of alkB gene copies in the soil microbial community increased about 300-fold when plant residues were added to contaminated soil. This study has shown that plant residues stimulate TPH degradation in contaminated soil through stimulation and perhaps addition to the pool of hydrocarbon-utilising microorganisms, resulting in a changed microbial structure and increased alkB gene copy numbers. These results suggest that pea straw in particular represents a low cost, effective treatment to enhance the remediation of aliphatic hydrocarbons in contaminated soils. PMID:23231887

Shahsavari, Esmaeil; Adetutu, Eric M; Anderson, Peter A; Ball, Andrew S

2013-01-15

138

Protozoa in subsurface sediments from sites contaminated with aviation gasoline or jet fuel  

SciTech Connect

Numbers of protozoa in the subsurface of aviation gasoline and jet fuel spill areas at a Coast Guard base at Traverse City, Mich., were determined. Boreholes were drilled in an uncontaminated location, in contaminated but untreated parts of the fuel plumes, and in the aviation gasoline source area undergoing H2O2 biotreatment. Protozoa were found to occur in elevated numbers in the unsaturated zone, where fuel vapors mixed with atmospheric oxygen, and below the layer of floating fuel, where uncontaminated groundwater came into contact with fuel. Numbers of protozoa in some contaminated areas equalled or exceeded those found in surface soil. The abundance of protozoa in the biotreatment area was high enough that it would be expected to significantly reduce the bacterial community that was degrading the fuel.

Sinclair, J.L.; Kampbell, D.H.; Cook, M.L.; Wilson, J.T.

1993-01-01

139

Enhancing technology acceptance: The role of the subsurface contaminants focus area external integration team  

SciTech Connect

The US DOE is developing and deploying innovative technologies for cleaning up its contaminated facilities using a market-oriented approach. This report describes the activities of the Subsurface Contaminant Focus Area`s (SCFA) External Integration Team (EIT) in supporting DOE`s technology development program. The SCFA program for technology development is market-oriented, driven by the needs of end users. The purpose of EIT is to understand the technology needs of the DOE sites and identify technology acceptance criteria from users and other stakeholders to enhance deployment of innovative technologies. Stakeholders include regulators, technology users, Native Americans, and environmental and other interest groups. The success of this national program requires close coordination and communication among technology developers and stakeholders to work through all of the various phases of planning and implementation. Staff involved must be willing to commit significant amounts of time to extended discussions with the various stakeholders.

Kirwan-Taylor, H.; McCabe, G.H. [Battelle Seattle Research Center, WA (United States); Lesperance, A. [Pacific Northwest National Lab., Richland, WA (United States); Kauffman, J.; Serie, P.; Dressen, L. [EnvironIssues (United States)

1996-09-01

140

Denitrifying bacteria from the genus Rhodanobacter dominate bacterial communities in the highly contaminated subsurface of a nuclear legacy waste site  

SciTech Connect

The effect of long-term mixed-waste contamination, particularly uranium and nitrate, on the microbial community in the terrestrial subsurface was investigated at the field scale at the Oak Ridge Integrated Field Research Challenge (ORIFRC) site in Oak Ridge, TN. The abundance, community composition, and distribution of groundwater microorganisms were examined across the site during two seasonal sampling events. At representative locations, subsurface sediment was also examined from two boreholes, one sampled from the most heavily contaminated area of the site and another from an area with low contamination. A suite of DNA- and RNA-based molecular tools were employed for community characterization, including quantitative PCR of ribosomal RNA and nitrite reductase genes, community composition fingerprinting analysis, and high-throughput pyrotag sequencing of rRNA genes. The results demonstrate that pH is a major driver of the subsurface microbial community structure, and denitrifying bacteria from the genus Rhodanobacter (class Gammaproteobacteria) dominate at low pH. The relative abundance of bacteria from this genus was positively correlated with lower pH conditions, and these bacteria were abundant and active in the most highly contaminated areas. Other factors, such as concentration of nitrogen species, oxygen and sampling season did not appear to strongly influence the distribution of Rhodanobacter. Results indicate that these organisms are acid-tolerant denitrifiers, well suited to the acidic, nitrate-rich subsurface conditions, and pH is confirmed as a dominant driver of bacterial community structure in this contaminated subsurface environment.

Green, Stefan [Florida State University; Prakash, Om [Florida State University; Jasrotia, Puja [Florida State University; Overholt, Will [Florida State University; Cardenas, Erick [Michigan State University, East Lansing; Hubbard, Daniela [Florida State University; Tiedje, James M. [Michigan State University, East Lansing; Watson, David B [ORNL; Schadt, Christopher Warren [ORNL; Brooks, Scott C [ORNL; Kostka, Joel [Florida State University

2011-01-01

141

Phytosiderophore effects on subsurface actinide contaminants: potential for phytostabilization and phytoextraction.  

SciTech Connect

In recognition of the need for a safe, effective technology for long term Pu/Th/Actinide stabilization or removal from soils, we have begun an investigation of the potential for phytoremediation (phytostabilization and/or phytoextraction) of Pu and other actinide soil contaminants at DOE sites using phytosiderophore producing plants, and are investigating the contribution of phytosiderophores to actinide mobility in the subsurface environment. Phytoremediation and Phytostabilization have been proven to be a cost-effective, safe, efficient, and publicly acceptable technology for clean up and/or stabilization of contaminant metals . However, no phyto-based technologies have been developed for stabilization or removal of plutonium from soils and groundwater, and very few have been investigated for other actinides . Current metal-phytostabilization and phytoremediation techniques, predominately based around lead, nickel, and other soft-metal phytoextraction, will almost certainly be inadequate for plutonium due its distinct chemical properties . Phytosiderophore-based phytoremediation may provide technically and financially practical methods for remediation and long-term stewardship of soils that have low to moderate, near surface actinide contamination . We plan to demonstrate potential benefits of phytosiderophore-producing plants for long-term actinide contaminant stabilization by the plant's prevention of soil erosion and actinide migration through hydraulic control and/or through actinide removal through phytoextraction . We may also show possible harm caused by these plants through increased presence of actinide chelators that could increase actinide mobilization and migration in the subsurface environment. This information can then be directly applied by either removal of harmful plants, or be used to develop plant-based soil stabilization/remediation technologies .

Ruggiero, C. E. (Christy E.); Twary, S. N. (Scott N.); Deladurantaye, E. (Elise)

2003-01-01

142

Geochemical and Mineralogical Investigation of Uranium in Multi–element Contaminated, Organic–rich Subsurface Sediment  

SciTech Connect

Alluvial sediments characterized by an abundance of refractory or lignitic organic carbon compounds and reduced Fe and S bearing mineral phases have been identified through drilling activities at the U.S. Department of Energy’s (DOE) Integrated Field Research Challenge (IFRC) site at Rifle, CO. Regions of the subsurface from which such sediments are derived are referred to as Naturally Reduced Zones (NRZ). We conducted a study with NRZ sediments with the objective to: i.) Characterize solid phase contamination of U and other co-contaminants; ii.) Document the occurrence of potential U host minerals; iii.) Determine U valence state and micron scale spatial association with co-contaminants. Macroscopic (wet chemical batch extractions and a column experiment), microscopic (SEM-EDS), and spectroscopic (Mössbauer, µ-XRF and XANES) techniques were employed. Results showed that sediments’ solid phase had significant concentrations of U, S, As, Zn, V, Cr, Cu and Se, and a remarkable assortment of potential U hosts (sorbents and/or electron donors), such as Fe oxides (hematite, magnetite, Al-substituted goethite), siderite, reduced Fe(II) bearing clays, sulfides of different types, Zn sulfide framboids and multi – element sulfides. Multi-contaminants, micron size (ca. 5 to 30 µm) areas of mainly U(IV) and some U(VI), and/or other electron scavengers or donors such as Se, As, Cr, and V were discovered in the sediments, suggesting complex micron-scale system responses to transient redox conditions, and different extent and rates of competing U redox reactions than those of single contaminant systems. Collectively, the results improve our understanding and ability to predict U and NRZ’s complex behavior and will delineate future research directions to further study both the natural attenuation and persistence of contaminant plumes and their contribution to groundwater contamination.

Qafoku, Nikolla; Gartman, Brandy N.; Kukkadapu, Ravi K.; Arey, Bruce W.; Williams, Kenneth H.; Mouser, Paula J.; Heald, Steve M.; Bargar, John R.; Janot, Noemie; Yabusaki, Steven B.; Long, Philip E.

2014-03-02

143

Plant-bacteria partnerships for the remediation of hydrocarbon contaminated soils.  

PubMed

Plant-bacteria partnerships have been extensively studied and applied to improve crop yield. In addition to their application in agriculture, a promising field to exploit plant-bacteria partnerships is the remediation of soil and water polluted with hydrocarbons. Application of effective plant-bacteria partnerships for the remediation of hydrocarbons depend mainly on the presence and metabolic activities of plant associated rhizo- and endophytic bacteria possessing specific genes required for the degradation of hydrocarbon pollutants. Plants and their associated bacteria interact with each other whereby plant supplies the bacteria with a special carbon source that stimulates the bacteria to degrade organic contaminants in the soil. In return, plant associated-bacteria can support their host plant to overcome contaminated-induced stress responses, and improve plant growth and development. In addition, plants further get benefits from their associated-bacteria possessing hydrocarbon-degradation potential, leading to enhanced hydrocarbon mineralization and lowering of both phytotoxicity and evapotranspiration of volatile hydrocarbons. A better understanding of plant-bacteria partnerships could be exploited to enhance the remediation of hydrocarbon contaminated soils in conjunction with sustainable production of non-food crops for biomass and biofuel production. PMID:23058201

Khan, Sumia; Afzal, Muhammad; Iqbal, Samina; Khan, Qaiser M

2013-01-01

144

Augmented In Situ Subsurface Bioremediation Process?BIO-REM, Inc. - Demonstration Bulletin  

EPA Science Inventory

The Augmented In Situ Subsurface Bioremediation Process? developed by BIO-REM, Inc., uses microaerophilic bacteria and micronutrients (H-10) and surface tension depressants/penetrants for the treatment of hydrocarbon contaminated soils and groundwater. The bacteria utilize hydroc...

145

[Bioremediation of petroleum hydrocarbon-contaminated soils by cold-adapted microorganisms: research advance].  

PubMed

Cold-adapted microorganisms such as psychrotrophs and psychrophiles widely exist in the soils of sub-Arctic, Arctic, Antarctic, alpine, and high mountains, being the important microbial resources for the biodegradation of petroleum hydrocarbons at low temperature. Using the unique advantage of cold-adapted microorganisms to the bioremediation of petroleum hydrocarbon-contaminated soils in low temperature region has become a research hotspot. This paper summarized the category and cold-adaptation mechanisms of the microorganisms able to degrade petroleum hydrocarbon at low temperature, biodegradation characteristics and mechanisms of different petroleum fractions under the action of cold-adapted microorganisms, bio-stimulation techniques for improving biodegradation efficiency, e. g., inoculating petroleum-degrading microorganisms and adding nutrients or bio-surfactants, and the present status of applying molecular biotechnology in this research field, aimed to provide references to the development of bioremediation techniques for petroleum hydrocarbon-contaminated soils. PMID:21774336

Wang, Shi-jie; Wang, Xiang; Lu, Gui-lan; Wang, Qun-hui; Li, Fa-sheng; Guo, Guan-lin

2011-04-01

146

Control of petroleum-hydrocarbon contaminated groundwater by intrinsic and enhanced bioremediation.  

PubMed

In the first phase of this study, the effectiveness of intrinsic bioremediation on the containment of petroleum hydrocarbons was evaluated at a gasoline spill site. Evidences of the occurrence of intrinsic bioremediation within the BTEX (benzene, toluene, ethylbenzene, and xylenes) plume included (1) decreased BTEX concentrations; (2) depletion of dissolved oxygen (DO), nitrate, and sulfate; (3) production of dissolved ferrous iron, methane, and CO2; (4) deceased pH and redox potential; and (5) increased methanogens, total heterotrophs, and total anaerobes, especially within the highly contaminated areas. In the second phase of this study, enhanced aerobic bioremediation process was applied at site to enhance the BTEX decay rates. Air was injected into the subsurface near the mid-plume area to biostimulate the naturally occurring microorganisms for BTEX biodegradation. Field results showed that enhanced bioremediation process caused the change of BTEX removal mechanisms from anaerobic biodegradation inside the plume to aerobic biodegradation. This variation could be confirmed by the following field observations inside the plume due to the enhanced aerobic bioremediation process: (1) increased in DO, CO2, redox potential, nitrate, and sulfate, (2) decreased in dissolved ferrous iron, sulfide, and methane, (3) increased total heterotrophs and decreased total anaerobes. Field results also showed that the percentage of total BTEX removal increased from 92% to 99%, and the calculated total BTEX first-order natural attenuation rates increased from 0.0092% to 0.0188% per day, respectively, after the application of enhanced bioremediation system from the spill area to the downgradient area (located approximately 300 m from the source area). PMID:20923098

Chen, Ku-Fan; Kao, Chih-Ming; Chen, Chiu-Wen; Surampalli, Rao Y; Lee, Mu-Sheng

2010-01-01

147

Bioremediation of Contaminated Soils: Effects of Bioaugmentation and Biostimulation on Enhancing Biodegradation of Oil Hydrocarbons  

Microsoft Academic Search

\\u000a Contamination of soils with oil hydrocarbons is currently an important worldwide issue. Among all the available remediation\\u000a methods, bioremediation is widely considered to be a cost-effective and environmentally friendly approach. For bioremediation\\u000a to be effective, the overall rate of intrinsic biodegradation and subsequent removal of hydrocarbons must be accelerated,\\u000a which can be done through biostimulation and bioaugmentation. A variety of

Iwona Zawierucha; Grzegorz Malina

148

Complete Genome Sequence of Anaeromyxobacter sp. Fw109-5, an Anaerobic, Metal-Reducing Bacterium Isolated from a Contaminated Subsurface Environment  

PubMed Central

We report the genome sequence of Anaeromyxobacter sp. Fw109-5, isolated from nitrate- and uranium-contaminated subsurface sediment of the Oak Ridge Integrated Field-Scale Subsurface Research Challenge (IFC) site, Oak Ridge Reservation, TN. The bacterium’s genome sequence will elucidate its physiological potential in subsurface sediments undergoing in situ uranium bioremediation and natural attenuation. PMID:25614562

Copeland, A.; Lucas, S.; Lapidus, A.; Barry, K.; Glavina del Rio, T.; Dalin, E.; Tice, H.; Pitluck, S.; Sims, D.; Brettin, T.; Bruce, D. C.; Detter, J. C.; Han, C. S.; Schmutz, J.; Larimer, F. W.; Land, M. L.; Hauser, L. J.; Kyrpides, N.; Lykidis, A.; Richardson, P.; Belieav, A.; Sanford, R. A.; Löeffler, F. E.; Fields, M. W.

2015-01-01

149

Measurement of Microbially Induced Transformation of Magnetic Iron Minerals in Soils Allows Localization of Hydrocarbon Contamination  

NASA Astrophysics Data System (ADS)

Soil contamination by crude oil and other hydrocarbons represents a severe environmental problem, but often the location and extent of contamination is not known. Hydrocarbons, or their degradation products, can stimulate iron-metabolizing microorganisms, leading to the formation or dissolution of (magnetic) iron minerals and an associated change of soil magnetic properties. Therefore, the screening of soil magnetic properties has the potential to serve as an efficient and inexpensive tool to localize such contaminations. In order to identify the influence of different biogeochemical factors on the microbially influenced changes of magnetic iron minerals after hydrocarbon contamination, oil spills were simulated in laboratory batch experiments. The parameters tested in these experiments included soils with different bedrocks, type and amount of added hydrocarbon, and microbiological parameters (sterile and autochthonous microorganisms). In order to follow the changes of the soil magnetic properties, the magnetic susceptibility of the samples was measured weekly. First results show that changes in the magnetic mineralogy are caused by microbial activity, as sterile samples showed no changes. In the microbially active set-ups, the magnetic susceptibility increased or decreased up to 10% in comparison to the initial magnetic susceptibility within a few weeks. In one iron-rich soil even a decrease of the magnetic susceptibility of ~40% was observed. Although the amount and type of hydrocarbons did not effect the changes in magnetic susceptibility, DGGE fingerprints revealed that they influenced microbial communities. These results show that the magnetic susceptibility changes in the presence of hydrocarbons and that this change is microbially induced. This suggests that the screening of soil magnetic properties can be applied to localize and assess hydrocarbon contamination. In order to understand the biogeochemical processes better, the change of the iron mineralogy will be followed by Moessbauer spectroscopy in future batch experiments. Furthermore, iron-metabolizing microorganisms are currently isolated and identified.

Kappler, A.; Porsch, K.; Rijal, M.; Appel, E.

2007-12-01

150

Subsurface Organics in Aseptic Cores From the MARTE Robotic Drilling Experiment: Ground truth and Contamination Issues  

NASA Astrophysics Data System (ADS)

The subsurface is the key environment for searching for life on planets lacking surface life. This includes the search for past/present life on Mars where possible subsurface life could exist [1]. The Mars-Analog-Rio-Tinto-Experiment (MARTE) performed a simulation of a Mars robotic drilling at the RT Borehole#7 Site ~6.07m, atop a massive-pyrite deposit from the Iberian Pyritic Belt. The RT site is considered an important analog of Sinus Meridiani on Mars, an ideal model analog for a subsurface Martian setting [2], and a relevant example of deep subsurface microbial community including aerobic and anaerobic chemoautotrophs [4-5]. Searching for microbes or bulk organics of biological origin in a subsurface sample from a planet is a key scientific objective of Robotic drilling missions. During the 2005 Field experiment 28 minicores were robotically handled and subsampled for life detection experiments under anti-contamination protocols. Ground truth included visual observation of cores and lab based Elemental and Isotope Ratios Mass Spectrometry analysis (EA-IRMS) of bulk organics in Hematite and Gohetite-rich gossanized tuffs, gossan and clay layers within 0-6m-depth. C-org and N-tot vary up to four orders of magnitude among the litter (~11Wt%, 0-1cm) and the mineralized (~3Wt%, 1-3cm) layers, and the first 6 m-depth (C-org=0.02-0.38Wt%). Overall, the distribution/ preservation of plant and soil-derived organics (d13C-org = 26 per mil to 24 per mil) is ten times higher (C-org=0.33Wt%) that in hematite-poor clays, or where rootlets are present, than in hematite- rich samples (C-org=<0.01Wt%). This is consistent with ATP assay (Lightning-MVP, Biocontrol) for total biomass in subsurface (Borehole#7 ~6.07m, ~avg. 153RLU) vs. surface soil samples (~1,500-81,449RLU) [5]. However, the in-situ ATP assay failed in detecting presence of roots during the in-situ life detection experiment. Furthermore, cm-sized roots were overlooked during remote observations. Finally, ATP Luminometry provided insights for potential contamination from core-handling and environmental dust loadings on cleaned/sterilized control surfaces (e.g., 6,782-36,243RLU/cm2). Cleanliness/sterility can be maintained by applying a simple sterile protocol under field conditions. Science results from this research will support future Astrobiology driven drilling mission planned on Mars. Specifically, ground truth offers relevant insights to assess strengths and limits of in-situ/remote observations vs. laboratory measurements. Results from this experiment will also aid the debate on advantages/ disadvantages of manned vs. robotic drilling missions on Mars or other planets. [1] Boston et al., 1997; [2] http://marte.arc.nasa.gov; [3] Stoker, C., et al., 2006 AbSciCon, [4] Stoker et al., submitted; [5] Bonaccorsi., et al., 2006 AbSciCon.

Bonaccorsi, R.; Stoker, C. R.

2006-12-01

151

Monitoring the bio-stimulation of hydrocarbon-contaminated soils by measurements of soil electrical properties, and CO2 content and its 13C/12C isotopic signature  

NASA Astrophysics Data System (ADS)

Hydrocarbon contaminated soils represent an environmental issue as it impacts on ecosystems and aquifers. Where significant subsurface heterogeneity exists, conventional intrusive investigations and groundwater sampling can be insufficient to obtain a robust monitoring of hydrocarbon contaminants, as the information they provide is restricted to vertical profiles at discrete locations, with no information between sampling points. In order to obtain wider information in space volume on subsurface modifications, complementary methods can be used like geophysics. Among geophysical methods, geoelectrical techniques such as electrical resistivity (ER) and induced polarization (IP) seem the more promising, especially to study the effects of biodegradation processes. Laboratory and field geoelectrical experiments to characterize soils contaminated by oil products have shown that mature hydrocarbon-contaminated soils are characterized by enhanced electrical conductivity although hydrocarbons are electrically resistive. This high bulk conductivity is due to bacterial impacts on geological media, resulting in changes in the chemical and physical properties and thus, to the geophysical properties of the ground. Moreover, microbial activity induced CO2 production and isotopic deviation of carbon. Indeed, produced CO2 will reflect the pollutant isotopic signature. Thus, the ratio ?13C(CO2) will come closer to ?13C(hydrocarbon). BIOPHY, project supported by the French National Research Agency (ANR), proposes to use electrical methods and gas analyses to develop an operational and non-destructive method for monitoring in situ biodegradation of hydrocarbons in order to optimize soil treatment. Demonstration field is located in the South of Paris (France), where liquid fuels (gasoline and diesel) leaked from some tanks in 1997. In order to stimulate biodegradation, a trench has been dug to supply oxygen to the water table and thus stimulate aerobic metabolic bioprocesses. ER and IP surveys are performed regularly to monitor the stimulated biodegradation and progress of remediation until soil cleanup. Microbial activity is characterized by CO2 production increase and ?13C isotopic deviation, in the produced CO2 measured by infrared laser spectroscopy, and by an evolution of electrical conductivity and IP responses in correlation with microbiological and chemical analyses.

Noel, C.; Gourry, J.; Ignatiadis, I.; Colombano, S.; Dictor, M.; Guimbaud, C.; Chartier, M.; Dumestre, A.; Dehez, S.; Naudet, V.

2013-12-01

152

Potential of phytoremediation for the removal of petroleum hydrocarbons in contaminated salt marsh sediments.  

PubMed

Degradation of petroleum hydrocarbons in colonized and un-colonized sediments by salt marsh plants Juncus maritimus and Phragmites australis collected in a temperate estuary was investigated during a 5-month greenhouse experiment. The efficiency of two bioremediation treatments namely biostimulation (BS) by the addition of nutrients, and bioaugmentation (BA) by addition of indigenous microorganisms was tested in comparison with hydrocarbon natural attenuation in un-colonized and with rhizoremediation in colonized sediments. Hydrocarbon degrading microorganisms and root biomass were assessed as well as hydrocarbon degradation levels. During the study, hydrocarbon degradation in un-colonized sediments was negligible regardless of treatments. Rhizoremediation proved to be an effective strategy for hydrocarbon removal, yielding high rates in most experiments. However, BS treatments showed a negative effect on the J. maritimus potential for hydrocarbon degradation by decreasing the root system development that lead to lower degradation rates. Although both plants and their associated microorganisms presented a potential for rhizoremediation of petroleum hydrocarbons in contaminated salt marsh sediments, results highlighted that nutrient requirements may be distinct among plant species, which should be accounted for when designing cleanup strategies. PMID:24584003

Ribeiro, Hugo; Mucha, Ana P; Almeida, C Marisa R; Bordalo, Adriano A

2014-05-01

153

Phospholipid fatty acids of a marine sedimentary microbial community in a laboratory microcosm: Responses to petroleum hydrocarbon contamination  

Microsoft Academic Search

Laboratory microcosm experiments were performed to evaluate petroleum hydrocarbon biodegradation and phospholipid fatty acid (PLFA) composition in either non-contaminated (NC) or contaminated (C) sedimentary microcosms with a crude oil. An analytical procedure was developed to extract both hydrocarbons and PLFAs from the same culture. PLFAs were analyzed over time during an aerobic microcosm experiment (0–21 days) to obtain a better

A.D. Syakti; N. Mazzella; D. Nerini; M. Guiliano; J.C. Bertrand; P. Doumenq

2006-01-01

154

EFFECTS OF BREATHING AIR CONTAINING CONTAMINANTS SUCH AS CO2, CO AND HYDROCARBONS AT 1 AND 5 ATMOSPHERES  

EPA Science Inventory

The neural and behavioral effects of air contaminants such as CO2, CO and hydrocarbons are reviewed. Each contaminant or contaminant class is reviewed separately and then an attempt is made to estimate effects of combinations of contaminants. The effects are reviewed for both nor...

155

Phytoremediation of Alkylated Polycyclic Aromatic Hydrocarbons in a Crude Oil-Contaminated Soil  

Microsoft Academic Search

Phytoremediation uses plants and their associated microorganisms in conjunction with agronomic techniques to remove or degrade\\u000a environmental contaminants. The objective of the field study was to evaluate the effect of vegetation establishment plus fertilizer\\u000a addition on the biodegradation of alkylated polycyclic aromatic hydrocarbons in a crude oil-contaminated soil. Four replications\\u000a of the following treatments were used: non-vegetated non-fertilized control; fescue

Paul M. White; Duane C. Wolf; Gregory J. Thoma; Charles M. Reynolds

2006-01-01

156

Genome Sequences for Three Denitrifying Bacterial Strains Isolated from a Uranium- and Nitrate-Contaminated Subsurface Environment  

PubMed Central

Genome sequences for three strains of denitrifying bacteria (Alphaproteobacteria—Afipia sp. strain 1NLS2 and Hyphomicrobium denitrificans strain 1NES1; Firmicutes—Bacillus sp. strain 1NLA3E) isolated from the nitrate- and uranium-contaminated subsurface of the Oak Ridge Integrated Field Research Challenge (ORIFRC) site, Oak Ridge Reservation, TN, are reported. PMID:23833140

Venkatramanan, Raghavee; Prakash, Om; Woyke, Tanja; Chain, Patrick; Goodwin, Lynne A.; Watson, David; Brooks, Scott; Kostka, Joel E.

2013-01-01

157

A STUDY TO DETERMINE THE FEASIBILITY OF USING A GROUND-PENETRATING RADAR FOR MORE EFFECTIVE REMEDIATION OF SUBSURFACE CONTAMINATION  

EPA Science Inventory

A study was conducted (1) to assess the capability of groundpenetrating radar (GPR) to identify natural subsurface features, detect man-made objects burled in the soil, and both detect and define the extent of contaminated soil or ground water due to a toxic spill, and (2) to det...

158

Biodegradation of petroleum hydrocarbons in contaminated aqueous and sediment environments  

E-print Network

, respectively), a polyoxyethylene, or both positive and negative charges (defined as nonionic and amphoteric) (Figure 4). Typically, the hydrophobic tail is a fiexible-chain hydrocarbon where the longer the chain, the more effective the surfactant. However... micelle concentration (CMC), the surfactant will tend to form submicroscopic association colloids in the aqueous phase. These micelles are spherical aggregates of about 100 inolecules per micelle (Kalweit, 1988). The hydrophilic heads are turned toward...

Mills, Marc Allyn

1994-01-01

159

Bioremediation of hydrocarbons contaminating sewage effluent using man-made biofilms: effects of some variables.  

PubMed

Biofilm samples were established on glass slides by submerging them in oil-free and oil-containing sewage effluent for a month. In batch cultures, such biofilms were effective in removing crude oil, pure n-hexadecane, and pure phenanthrene contaminating sewage effluent. The amounts of the removed hydrocarbons increased with increasing biofilm surface area exposed to the effluent. On the other hand, addition of the reducing agent thioglycollate dramatically inhibited the hydrocarbon bioremediation potential of the biofilms. The same biofilm samples removed contaminating hydrocarbons effectively in three successive batch bioremediation cycles but started to become less effective in the cycles thereafter, apparently due to mechanical biofilm loss during successive transfers. As major hydrocarbonoclastic bacteria, the biofilms harbored species belonging to the genera Pseudomonas, Microvirga, Zavarzinia, Mycobacterium, Microbacterium, Stenotrophomonas, Gordonia, Bosea, Sphingobium, Brachybacterium, and others. The nitrogen fixer Azospirillum brasilense and the microalga Ochromonas distigma were also present; they seemed to enrich the biofilms, with nitrogenous compounds and molecular oxygen, respectively, which are known to enhance microbiological hydrocarbon degradation. It was concluded that man-made biofilms based upon sewage microflora are promising tools for bioremediation of hydrocarbons contaminating sewage effluent. PMID:25146193

Al-Mailem, D M; Kansour, M K; Radwan, S S

2014-11-01

160

Separation of toxic metal ions, hydrophilic hydrocarbons, hydrophobic fuel and halogenated hydrocarbons and recovery of ethanol from a process stream  

DOEpatents

This invention provides a process to tremendously reduce the bulk volume of contaminants obtained from an effluent stream produced subsurface remediation. The chemicals used for the subsurface remediation are reclaimed for recycling to the remediation process. Additional reductions in contaminant bulk volume are achieved by the ultra-violet light destruction of halogenated hydrocarbons, and the complete oxidation of hydrophobic fuel hydrocarbons and hydrophilic hydrocarbons. The contaminated bulk volume will arise primarily from the disposal of the toxic metal ions. The entire process is modular, so if there are any technological breakthroughs in one or more of the component process modules, such modules can be readily replaced. 3 figs.

Kansa, E.J.; Anderson, B.L.; Wijesinghe, A.M.; Viani, B.E.

1999-05-25

161

Separation of toxic metal ions, hydrophilic hydrocarbons, hydrophobic fuel and halogenated hydrocarbons and recovery of ethanol from a process stream  

DOEpatents

This invention provides a process to tremendously reduce the bulk volume of contaminants obtained from an effluent stream produced subsurface remediation. The chemicals used for the subsurface remediation are reclaimed for recycling to the remediation process. Additional reductions in contaminant bulk volume are achieved by the ultra-violet light destruction of halogenated hydrocarbons, and the complete oxidation of hydrophobic fuel hydrocarbons and hydrophilic hydrocarbons. The contaminated bulk volume will arise primarily from the disposal of the toxic metal ions. The entire process is modular, so if there are any technological breakthroughs in one or more of the component process modules, such modules can be readily replaced.

Kansa, Edward J. (Livermore, CA); Anderson, Brian L. (Lodi, CA); Wijesinghe, Ananda M. (Tracy, CA); Viani, Brian E. (Oakland, CA)

1999-01-01

162

Change of magnetic properties due to fluctuations of hydrocarbon contaminated groundwater in unconsolidated sediments.  

PubMed

Sediments affected by fluctuations of hydrocarbon contaminated groundwater were studied at a former military site. Due to remediation, groundwater table fluctuation (GWTF) extends over approximately one meter. Three cores were collected, penetrating through the GWTF zone. Magnetic parameters, sediment properties and hydrocarbon content were measured. We discovered that magnetic concentration parameters increased towards the top of the GWTF zone. Magnetite is responsible for this enhancement; rock magnetic parameters indicate that the newly formed magnetite is in a single domain rather than a superparamagnetic state. The presence of hydrocarbons is apparently essential for magnetite to form, as there is clearly less magnetic enhancement in the core, which is outside of the strongly contaminated area. From our results we conclude that the top of the fluctuation zone has the most intensive geomicrobiological activity probably responsible for magnetite formation. This finding could be relevant for developing methods for simply and quickly detecting oil spills. PMID:19954870

Rijal, Moti L; Appel, Erwin; Petrovský, Eduard; Blaha, Ulrich

2010-05-01

163

Gene biomarkers in diatom Thalassiosira pseudonana exposed to polycyclic aromatic hydrocarbons from contaminated marine surface sediments  

Microsoft Academic Search

Marine diatoms have a key role in the global carbon fixation and therefore in the ecosystem. We used Thalassiosira pseudonana as a model organism to assess the effects of exposure to environmental pollutants at the gene expression level. Diatoms were exposed to polycyclic aromatic hydrocarbons mixture (PAH) from surface sediments collected at a highly PAH contaminated area of the Mediterranean

Raquel N. Carvalho; Alina D. Burchardt; Fabrizio Sena; Giulio Mariani; Anne Mueller; Stephanie K. Bopp; Gunther Umlauf; Teresa Lettieri

2011-01-01

164

STABLE CARBON ISOTOPE BIOGEOCHEMISTRY OF A SHALLOW SAND AQUIFER CONTAMINATED WITH FUEL HYDROCARBONS  

EPA Science Inventory

Ground-water chemistry and the stable C isotope composition ( 13CDIC) of dissolved C (DIC) were measured in a sand aquifer contaminated with JP-4 fuel hydrocarbons. Results show that ground water in the upgradient zone was characterized by DIC content of 14-20 mg C/L and 13CDIC...

165

BIOGEOCHEMICAL EVIDENCE FOR MICROBIAL COMMUNITY CHANGE IN A JET FUEL HYDROCARBONS-CONTAMINATED AQUIFER  

EPA Science Inventory

A glacio-fluvial aquifer located at Wurtsmith Air Force Base, Michigan, had been contaminated with JP-4 fuel hydrocarbons released after the crash of a tanker aircraft in October of 1988 Microbial biomass and community structure, associated with the aquifer sediments, were chara...

166

EARLY WARNING MARINE WATER SUPPLY PROTECTION STRATEGY: THE THREAT OF OIL SPILL (PETROLEUM HYDROCARBON) CONTAMINATION  

EPA Science Inventory

Oil spills resulting from the twice-grounded freighter New Carissa on the Central Oregon coast in the spring of 1999 caused substantial concern regarding potential petroleum hydrocarbon (PHC) contamination of Coos Bay, Alsea Bay and Yaquina Bay estuaries and resident seawater fac...

167

Quantification of in situ polycyclic aromatic hydrocarbon biodegradation at a petroleum contaminated site  

E-print Network

hydrocarbons (PAHS) at a Bunker C contaminated soil. The effectiveness of EPA Seal Beach treatment with a consortium of biosurfactant bacteria in relation of a control is compared. using an EPA Seal Beach consortium of biosurfactant organisms in relation to PAH...

Conti, Enzo Mario

1994-01-01

168

Screening Plant Species for Growth on Weathered, Petroleum Hydrocarbon-Contaminated Sediments  

Microsoft Academic Search

Rapid and cost-effective techniques are needed to select plant species and genotypes for use in phytoremediation, vegetative capping, or revegetation at hazardous waste sites. A greenhouse screening procedure to aid the selection of plant materials would help increase success and decrease the cost. Twenty-nine vascular plant species were compared for growth in weathered sediments contaminated with petroleum hydrocarbons. An uncontaminated

Peter A. Kulakow; A. P. Schwab; M. K. Banks

2000-01-01

169

Petroleum hydrocarbon contamination in boreal forest soils: a mycorrhizal ecosystems perspective  

Microsoft Academic Search

The importance of developing multi-disciplinary approaches to solving problems relating to anthropogenic pollution is now clearly appreciated by the scientific community, and this is especially evident in boreal ecosystems exposed to escalating threats of petroleum hydrocarbon (PHC) contamination through expanded natural resource extraction activities. This review aims to synthesize information regarding the fate and behaviour of PHCs in boreal forest

Susan J. Robertson; William B. McGill; Hugues B. Massicotte; P. Michael Rutherford

2007-01-01

170

Plant aided biopile for remediation of soil contaminated by petroleum hydrocarbons  

NASA Astrophysics Data System (ADS)

As a more innovative technique, plant aided biopile has been developed to enhance the remediation efficiency of biopile, known as one of the remediation methods for soil contaminated by petroleum hydrocarbons. Plant effects were added to the conventional biopile and its potential application was tested by comparing remediation efficiency at artificially diesel contaminated soil. The treatments were a biopile treatment, a plant (alfalfa) aided biopile treatment, and a control treatment. Removal of petroleum hydrocarbons and changes of soil microbial activity, soil organic matter content and pH were investigated at large box lysimeters (1.0m x 1.0m x 1.0 m). Both the removal efficiency of diesel and the microbial activity were the highest in the plant aided biopile treatment. It was suggested that plant formed the root zone at contaminated soil, stimulated microbial activity by plant root exudates, and played an important role in enhanced biodegradation of hydrocarbon compounds. Periodic air injection provided oxygen that was necessary for microorganisms and thus could compensate for the oxygen limitation due to increased microbial activity at the root zone. The results showed that plant aided biopile could enhance the remediation efficiency of conventional biopile. At the same time, utilization of natural substances released by the plant roots resulted in the reduction of expenses for substrate provision in the biopile application. Plant aided biopile may be new environmental friendly remediation alternative for petroleum hydrocarbon contaminated soil.

Chang, Y.; Kim, K.; Sung, K.; Lee, C.

2003-04-01

171

Analysis of hydrocarbon-contaminated groundwater metagenomes as revealed by high-throughput sequencing.  

PubMed

The tendency for chlorinated aliphatics and aromatic hydrocarbons to accumulate in environments such as groundwater and sediments poses a serious environmental threat. In this study, the metabolic capacity of hydrocarbon (aromatics and chlorinated aliphatics)-contaminated groundwater in the KwaZulu-Natal province of South Africa has been elucidated for the first time by analysis of pyrosequencing data. The taxonomic data revealed that the metagenomes were dominated by the phylum Proteobacteria (mainly Betaproteobacteria). In addition, Flavobacteriales, Sphingobacteria, Burkholderiales, and Rhodocyclales were the predominant orders present in the individual metagenomes. These orders included microorganisms (Flavobacteria, Dechloromonas aromatica RCB, and Azoarcus) involved in the degradation of aromatic compounds and various other hydrocarbons that were present in the groundwater. Although the metabolic reconstruction of the metagenome represented composite cell networks, the information obtained was sufficient to address questions regarding the metabolic potential of the microbial communities and to correlate the data to the contamination profile of the groundwater. Genes involved in the degradation of benzene and benzoate, heavy metal-resistance mechanisms appeared to provide a survival strategy used by the microbial communities. Analysis of the pyrosequencing-derived data revealed that the metagenomes represent complex microbial communities that have adapted to the geochemical conditions of the groundwater as evidenced by the presence of key enzymes/genes conferring resistance to specific contaminants. Thus, pyrosequencing analysis of the metagenomes provided insights into the microbial activities in hydrocarbon-contaminated habitats. PMID:23307295

Abbai, Nathlee S; Pillay, Balakrishna

2013-07-01

172

Intrinsic bioremediation of petroleum hydrocarbons in a gas condensate-contaminated aquifer  

Microsoft Academic Search

A study was designed to determine if the intrinsic bioremediation of gas condensate hydrocarbons represented an important fate process in a shallow aquifer underlying a natural gas production site. For over 4 yr, changes in the groundwater, sediment, and vadose zone chemistry in the contaminated portion of the aquifer were interpreted relative to a background zone. Changes included decreased dissolved

Lisa M. Gieg; R. S. Tanner; S. H. Jr. Harris; K. L. Sublette; J. M. Suflita; R. V. Kolhatkar

1999-01-01

173

Venting for the removal of hydrocarbon vapors from gasoline contaminated soil  

Microsoft Academic Search

The utilization of a venting strategy to remove gasoline vapors from contaminated soil strata was investigated in this exper?ment. A contained gasoline “leak”; was created in a large outdoor facility which simulated soil strata and a static water table. An air flow was established, and vapor samples taken before, during, and after venting were checked for hydrocarbon content. The effluent

J. Scott Thornton; Wilford L. Wootan Jr

1982-01-01

174

Chlorinated hydrocarbon contaminants in feces of river otters from the southern Pacific  

E-print Network

hydrocarbon contaminants in coastal river otters (Lontra canadensis) were evaluated by sampling feces (scats.elsevier.com/locate/scitotenv #12;The North American river otter (Lontra canadensis) inhabits coastal regions of the Georgia Basin spatial trends in residues. © 2008 Elsevier B.V. All rights reserved. Keywords: River otter Lontra

175

Denitrifying Bacteria from the Genus Rhodanobacter Dominate Bacterial Communities in the Highly Contaminated Subsurface of a Nuclear Legacy Waste Site  

PubMed Central

The effect of long-term mixed-waste contamination, particularly uranium and nitrate, on the microbial community in the terrestrial subsurface was investigated at the field scale at the Oak Ridge Integrated Field Research Challenge (ORIFRC) site in Oak Ridge, TN. The abundance, community composition, and distribution of groundwater microorganisms were examined across the site during two seasonal sampling events. At representative locations, subsurface sediment was also examined from two boreholes, one sampled from the most heavily contaminated area of the site and another from an area with low contamination. A suite of DNA- and RNA-based molecular tools were employed for community characterization, including quantitative PCR of rRNA and nitrite reductase genes, community composition fingerprinting analysis, and high-throughput pyrotag sequencing of rRNA genes. The results demonstrate that pH is a major driver of the subsurface microbial community structure and that denitrifying bacteria from the genus Rhodanobacter (class Gammaproteobacteria) dominate at low pH. The relative abundance of bacteria from this genus was positively correlated with lower-pH conditions, and these bacteria were abundant and active in the most highly contaminated areas. Other factors, such as the concentration of nitrogen species, oxygen level, and sampling season, did not appear to strongly influence the distribution of Rhodanobacter bacteria. The results indicate that these organisms are acid-tolerant denitrifiers, well suited to the acidic, nitrate-rich subsurface conditions, and pH is confirmed as a dominant driver of bacterial community structure in this contaminated subsurface environment. PMID:22179233

Green, Stefan J.; Prakash, Om; Jasrotia, Puja; Overholt, Will A.; Cardenas, Erick; Hubbard, Daniela; Tiedje, James M.; Watson, David B.; Schadt, Christopher W.; Brooks, Scott C.

2012-01-01

176

Aerobic biodegradation potential of subsurface microorganisms from a jet fuel-contaminated aquifer  

USGS Publications Warehouse

In 1975, a leak of 83,000 gallons (314,189 liters) of jet fuel (JP-4) contaminated a shallow water-table aquifer near North Charleston, S.C. Laboratory experiments were conducted with contaminated sediments to assess the aerobic biodegradation potential of the in situ microbial community. Sediments were incubated with 14C-labeled organic compounds, and the evolution of 14CO2 was measured over time. Gas chromatographic analyses were used to monitor CO2 production and O2 consumption under aerobic conditions. Results indicated that the microbes from contaminated sediments remained active despite the potentially toxic effects of JP-4. 14CO2 was measured from [14C]glucose respiration in unamended and nitrate-amended samples after 1 day of incubation. Total [14C]glucose metabolism was greater in 1 mM nitrate-amended than in unamended samples because of increased cellular incorporation of 14C label. [14C]benzene and [14C]toluene were not significantly respired after 3 months of incubation. With the addition of 1 mM NO3, CO2 production measured by gas chromatographic analysis increased linearly during 2 months of incubation at a rate of 0.099 ??mol g-1 (dry weight) day-1 while oxygen concentration decreased at a rate of 0.124 ??mol g-1 (dry weight) day-1. With no added nitrate, CO2 production was not different from that in metabolically inhibited control vials. From the examination of selected components of JP-4, the n-alkane hexane appeared to be degraded as opposed to the branched alkanes of similar molecular weight. The results suggest that the in situ microbial community is active despite the JP-4 jet fuel contamination and that biodegradation may be compound specific. Also, the community is strongly nitrogen limited, and nitrogen additions may be required to significantly enhance hydrocarbon biodegradation.

Aelion, C.M.; Bradley, P.M.

1991-01-01

177

Activity of Arylsulphatase in Soil Contaminated with Polycyclic Aromatic Hydrocarbons.  

PubMed

An experiment has been performed to determine the activity of arylsulphatase in soil submitted to pressure of four polycyclic aromatic hydrocarbons: naphthalene, phenanthrene, anthracene, and pyrene, in the amount of: 0, 1,000, 2,000, and 4,000 mg kg(-1) dm of soil. Soil samples were also applied some organic substances, such as: cellulose, sucrose, and compost, in the amount of 0 and 9 g kg(-1) dm of soil. The experiment was run under laboratory conditions. It was established on soil which belonged to loamy sand. The soil resistance (RS) and resilience (RL) indices were computed. It has been discovered that the PAHs stimulated arylsulphatase activity, with anthracene raising the activity of the enzyme to the highest degree. The activity of arysulphatase depended significantly on the dose of a PAH, duration of pressure, and type of organic substances added to soil. The highest resistance (RS) was determined in soil exposed to phenanthrene, and the lowest one-in soil polluted with pyrene. Low values of the RL index prove that polycyclic aromatic hydrocarbons cause lasting disorders in the activity of arylsulphatase. PMID:25221368

Lipi?ska, Aneta; Kucharski, Jan; Wyszkowska, Jadwiga

2014-01-01

178

Ultrasonic desorption of petroleum hydrocarbons from crude oil contaminated soils.  

PubMed

Ultrasonic irradiation was applied to improve the desorption of petroleum hydrocarbons (PHC) in crude oil from three types of soil. Soil A was an Ottawa sand, while soil B and soil C were fine soils that contained 27.6% and 55.3% of silt and clay contents, respectively. It was found that the ultrasonic desorption was highly related to soil types, with the highest and the lowest desorption occurring in coarse soil (i.e., soil A) and finer soil (i.e., soil C), respectively. Under the experimental conditions, the maximum ultrasonic desorption enhancement of the total petroleum hydrocarbons (TPH) reached 22% for soil A, 61% for soil B, and 49% for soil C, respectively. The maximum enhancement on the F2 (n-C10 to n-C16), F3 (n-C16 to n-C34), and F4 (n-C34 to n-C50) fractions of PHC reached 91, 44, and 51% for soil B, and 90, 38, and 31% for soil C, respectively. The desorption enhancement also illustrated an increasing trend with initial soil TPH concentration. PMID:23705614

Li, Jianbing; Song, Xinyuan; Hu, Guangji; Thring, Ronald Wallen

2013-01-01

179

Evaluation of the total petroleum hydrocarbon standard for cleanup of petroleum contaminated sites. Master's thesis  

SciTech Connect

This study evaluated the TPH (total petroleum hydrocarbon) cleanup standard for petroleum contaminated soils (PCS). A survey of 13 state regulators was performed to characterize current standards and regulatory viewpoints on the use of a TPH versus a BTEX cleanup standard. The regulatory community considers the BTEX constituents the greatest threat to groundwater, yet expressed concern that the use of a compound specific standard, without an accompanying analysis for TPH, might result in residual soil contamination that may present risk. This study also evaluated the ratio of BTEX TPH in soil over time. Based on JP-4 contaminated site soil data, this study demonstrated that the ratio of BTEX to TPH declines with time. The results indicate that the constant ratio of BTEX to TPH assumed by the California LUFT manual and Stokman and Dime's research is not valid for soils contaminated with JP-4. Lastly, this research identifies the cost savings potential that would result if a BTEX based standard, versus a TPH standard, were required at all Air Force sites. The research shows that only 13% of sites which would require cleanup under a TPH standard would require cleanup under a BTEX based standard. Soil cleanup standards, Petroleum hydrocarbons, Total petroleum hydrocarbons, TPH, Bezene, Toluene, Ethylbenzene, Ethyl-benzene, Xylene, BTEX, Petroleum contamination, JP-4.

Blaisdell, R.A.; Smallwood, M.E.

1993-09-01

180

BIOREMEDIATION OF PETROLEUM HYDROCARBON CONTAMINANTS IN MARINE HABITATS  

EPA Science Inventory

Bioremediation is being increasingly seen as an effective environmentally benign treatment for shorelines contaminated as a result of marine oil spills. Despite a relatively long history of research on oil-spill bioremediation, it remains an essentially empirical technology and m...

181

Microbial contamination of stored hydrocarbon fuels and its control  

Microsoft Academic Search

The major microbial problem in the petroleum refining industry is contamination of stored products, which can lead to loss of product quality, formation of sludge and deterioration of pipework and storage tanks, both in the refinery and at the end-user. Three major classes of fuel are discussed in this article - gasoline, aviation kerosene and diesel, corresponding to increasingly heavy

Christine C. Gaylarde; Fátima M. Bento; Joan Kelley

1999-01-01

182

Bioremediation of petroleum hydrocarbon contaminants in marine habitats  

Microsoft Academic Search

Bioremediation is being increasingly seen as an effective, environmentally benign treatment for shorelines contaminated as a result of marine oil spills. Despite a relatively long history of research on oil-spill bioremediation, it remains an essentially empirical technology and many of the factors that control bioremediation have yet to be adequately understood. Nutrient amendment is a widely accepted practice in oil-spill

Ian M Head; Richard PJ Swannell

1999-01-01

183

CROWTM PROCESS APPLICATION FOR SITES CONTAMINATED WITH LIGHT NON-AQUEOUS PHASE LIQUIDS AND CHLORINATED HYDROCARBONS  

SciTech Connect

Western Research Institute (WRI) has successfully applied the CROWTM (Contained Recovery of Oily Wastes) process at two former manufactured gas plants (MGPs), and a large wood treatment site. The three CROW process applications have all occurred at sites contaminated with coal tars or fuel oil and pentachlorophenol (PCP) mixtures, which are generally denser than water and are classified as dense non-aqueous phase liquids (DNAPLs). While these types of sites are abundant, there are also many sites contaminated with gasoline, diesel fuel, or fuel oil, which are lighter than water and lie on top of an aquifer. A third site type occurs where chlorinated hydrocarbons have contaminated the aquifer. Unlike the DNAPLs found at MGP and wood treatment sites, chlorinated hydrocarbons are approximately one and a half times more dense than water and have fairly low viscosities. These contaminants tend to accumulate very rapidly at the bottom of an aquifer. Trichloroethylene (TCE) and perchloroethylene, or tetrachloroethylene (PCE), are the major industrial chlorinated solvents that have been found contaminating soils and aquifers. The objective of this program was to demonstrate the effectiveness of applying the CROW process to sites contaminated with light non-aqueous phase liquids (LNAPLs) and chlorinated hydrocarbons. Individual objectives were to determine a range of operating conditions necessary to optimize LNAPL and chlorinated hydrocarbon recovery, to conduct numerical simulations to match the laboratory experiments and determine field-scale recoveries, and determine if chemical addition will increase the process efficiency for LNAPLs. The testing consisted of twelve TCE tests; eight tests with PCE, diesel, and wood treatment waste; and four tests with a fuel oil-diesel blend. Testing was conducted with both vertical and horizontal orientations and with ambient to 211 F (99 C) water or steam. Residual saturations for the horizontal tests ranged from 23.6% PV to 0.3% PV. Also conducted was screening of 13 chemicals to determine their relative effectiveness and the selection of three chemicals for further testing.

L.A. Johnson, Jr.

2003-06-30

184

Bioremediation of petroleum hydrocarbon-contaminated ground water: The perspectives of history and hydrology  

USGS Publications Warehouse

Bioremediation, the use of microbial degradation processes to detoxify environmental contamination, was first applied to petroleum hydrocarbon-contaminated ground water systems in the early 1970s. Since that time, these technologies have evolved in some ways that were clearly anticipated early investigators, and in other ways that were not foreseen. The expectation that adding oxidants and nutrients to contaminated aquifers would enhance biodegradation, for example, has been born out subsequent experience. Many of the technologies now in common use such as air sparging, hydrogen peroxide addition, nitrate addition, and bioslurping, are conceptually similar to the first bioremediation systems put into operation. More unexpected, however, were the considerable technical problems associated with delivering oxidants and nutrients to heterogeneous ground water systems. Experience has shown that the success of engineered bioremediation systems depends largely on how effectively directions and rates of ground water flow can be controlled, and thus how efficiently oxidants and nutrients can be delivered to contaminated aquifer sediments. The early expectation that injecting laboratory-selected or genetically engineered cultures of hydrocarbon-degrading bacteria into aquifers would be a useful bioremediation technology has not been born out subsequent experience. Rather, it appears that petroleum hydrocarbon-degrading bacteria are ubiquitous in ground water systems and that bacterial addition is usually unnecessary. Perhaps the technology that was least anticipated early investigators was the development of intrinsic bioremediation. Experience has shown that natural attenuation mechanisms - biodegradation, dilution, and sorption - limit the migration of contaminants to some degree in all ground water systems. Intrinsic bioremediation is the deliberate use of natural attenuation processes to treat contaminated ground water to specified concentration levels at predetermined points in the aquifer. In current practice, intrinsic bioremediation of petroleum hydrocarbons requires a systematic assessment to show that ambient natural attenuation mechanisms are efficient enough to meet regulatory requirements and a monitoring program to verify that performance requirements are met in the future.

Chapelle, F.H.

1999-01-01

185

Low salinity hydrocarbon water disposal through deep subsurface drip irrigation: leaching of native selenium  

USGS Publications Warehouse

A subsurface drip irrigation system is being used in Wyoming’s Powder River Basin that treats high sodium, low salinity, coal bed methane (CBM) produced water with sulfuric acid and injects it into cropped fields at a depth of 0.92 m. Dissolution of native gypsum releases calcium that combats soil degradation that would otherwise result from high sodium water. Native selenium is leached from soil by application of the CBM water and traces native salt mobilization to groundwater. Resulting selenium concentrations in groundwater at this alluvial site were generally low (0.5–23 ?g/L) compared to Wyoming’s agricultural use suitability standard (20 ?g/L).

Bern, Carleton R.; Engle, Mark A.; Boehlke, Adam R.; Zupancic, John W.

2013-01-01

186

Efficiency of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from contaminated soil.  

PubMed

This study describes the potential application of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from the soil samples collected from industrial dumping site. High concentrations of heavy metals (like iron, lead, nickel, cadmium, copper, cobalt and zinc) and petroleum hydrocarbons were present in the contaminated soil samples. Lipopeptide biosurfactant, consisting of surfactin and fengycin was obtained from Bacillus subtilis A21. Soil washing with biosurfactant solution removed significant amount of petroleum hydrocarbon (64.5 %) and metals namely cadmium (44.2 %), cobalt (35.4 %), lead (40.3 %), nickel (32.2 %), copper (26.2 %) and zinc (32.07 %). Parameters like surfactant concentration, temperature, agitation condition and pH of the washing solution influenced the pollutant removing ability of biosurfactant mixture. Biosurfactant exhibited substantial hydrocarbon solubility above its critical micelle concentration. During washing, 50 % of biosurfactant was sorbed to the soil particles decreasing effective concentration during washing process. Biosurfactant washed soil exhibited 100 % mustard seed germination contradictory to water washed soil where no germination was observed. The results indicate that the soil washing with mixture of lipopeptide biosurfactants at concentrations above its critical micelle concentration can be an efficient and environment friendly approach for removing pollutants (petroleum hydrocarbon and heavy metals) from contaminated soil. PMID:23681773

Singh, Anil Kumar; Cameotra, Swaranjit Singh

2013-10-01

187

Prediction of ecotoxicity of hydrocarbon-contaminated soils using physicochemical parameters  

SciTech Connect

The physicochemical properties of eight hydrocarbon-contaminated soils were used to predict toxicity to earthworms (Eisenia fetida) and plants. The toxicity of these preremediated soils was assessed using earthworm avoidance, survival, and reproduction and seed germination and root growth in four plant species. No-observed-effect and 25% inhibitory concentrations were determined from the earthworm and plant assays. Physical property measurements and metals analyses of the soils were conducted. Hydrocarbon contamination was characterized by total petroleum hydrocarbons, oil and grease, and GC boiling-point distribution. Univariate and multivariate statistical methods were used to examine relationships between physical and chemical properties and biological endpoints. Soil groupings based on physicochemical properties and toxicity from cluster and principal component analyses were generally similar. Correlation analysis identified a number of significant relationships between soil parameters and toxicity that were used in univariate model development. Total petroleum hydrocarbons by gas chromatography and polars were identified as predictors of earthworm avoidance and survival and seed germination, explaining 65 to 75% of the variation in the data. Asphaltenes also explained 83% of the variation in seed germination. Gravimetric total petroleum hydrocarbons explained 40% of the variation in earthworm reproduction, whereas 43% of the variation in plant root growth was explained by asphaltenes. Multivariate one-component partial least squares models, which identified predictors similar to those identified by the univariate models, were also developed for worm avoidance and survival and seed germination and had predictive powers of 42 and 29%, respectively.

Wong, D.C.L.; Chai, E.Y.; Chu, K.K.; Dorn, P.B.

1999-11-01

188

Biomarkers for Great Lakes priority contaminants: halogenated aromatic hydrocarbons.  

PubMed Central

One of the major goals of the Great Lakes Action Plan is to actively accumulate and assess toxicological information on persistent toxic substances found in the Great Lakes basin. As part of Health Canada's commitment to this plan, a review of biomarkers for the environmental contaminants polychlorinated biphenyls (PCBs) and polychlorinated dibenzodioxins/dibenzofurans (PCDDs/PCDFs) was conducted. In general, while food consumption was identified as the major source of human exposure to both contaminant groups, certain commodities, such as fish, milk and dairy products, and meat, were found to predominate. Due to the ubiquitous nature of these environmental contaminants and their propensity to bioaccumulate, all humans will have detectable body burdens, which in certain cases can be positively associated with the consumption of particular foods (i.e., PCBs and freshwater fish from the Great Lakes). When dealing with environmental exposure only, relating specific effect biomarkers to contaminant exposure or tissue levels was difficult, due in part to the complex nature of the exposure and the nonspecific nature of the effect. For PCBs, the most likely biomarkers of effect included some form of alteration in lipid metabolism (serum triglyceride/cholesterol levels) and elevation of hepatic-related enzymes, aspartate aminotransferase (AST) and gamma-glutamyltransferase (GGT). Cross-species extrapolation also indicates the potential for neurotoxicologic effects to occur in humans. For PCDDs/PCDFs, dermatologic lesions (chloracne) and indications of hepatic enzyme induction have been documented, but primarily due to occupational or high acute accidental exposures. Recent evidence suggests that neonates may represent a potential at-risk population due to relatively high exposure to PCDDs/PCDFs, as with PCBs, during breast feeding as compared to standard adult dietary intake. Future areas of potential benefit for biomarker development include immunologic and endocrine effects, primarily based on biologic plausibility from experimental animal research. PMID:8635442

Feeley, M M

1995-01-01

189

Effects of Heterogeneities, Sampling Frequencies, Tools and Methods on Uncertainties in Subsurface Contaminant Concentration Measurements  

NASA Astrophysics Data System (ADS)

Long-term monitoring (LTM) is particularly important for contaminants which are mitigated by natural processes of dilution, dispersion, and degradation. At many sites, LTM can require decades of expensive sampling at tens or even hundreds of existing monitoring wells, resulting in hundreds of thousands, or millions of dollars per year for sampling and data management. Therefore, contaminant sampling tools, methods and frequencies are chosen to minimize waste and data management costs while ensuring a reliable and informative time-history of contaminant measurement for regulatory compliance. The interplay play between cause (i.e. subsurface heterogeneities, sampling techniques, measurement frequencies) and effect (unreliable data and measurements gap) has been overlooked in many field applications which can lead to inconsistencies in time- histories of contaminant samples. In this study we address the relationship between cause and effect for different hydrogeological sampling settings: porous and fractured media. A numerical model has been developed using AMR-FEM to solve the physicochemical processes that take place in the aquifer and the monitoring well. In the latter, the flow is governed by the Navier-Stokes equations while in the former the flow is governed by the diffusivity equation; both are fully coupled to mimic stressed conditions and to assess the effect of dynamic sampling tool on the formation surrounding the monitoring well. First of all, different sampling tools (i.e., Easy Pump, Snapper Grab Sampler) were simulated in a monitoring well screened in different homogeneous layered aquifers to assess their effect on the sampling measurements. Secondly, in order to make the computer runs more CPU efficient the flow in the monitoring well was replaced by its counterpart flow in porous media with infinite permeability and the new model was used to simulate the effect of heterogeneities, sampling depth, sampling tool and sampling frequencies on the uncertainties in the concentration measurements. Finally, the models and results were abstracted using a simple mixed-tank approach to further simplify the models and make them more accessible to field hydrogeologists. During the abstraction process a novel method was developed for mapping streamlines in the fractures as well within the monitoring well to illustrate mixing and mixing zones. Applications will be demonstrated for both sampling in porous and fractured media. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

Ezzedine, S. M.; McNab, W. W.

2007-12-01

190

Looking For a Needle in the Haystack: Deciphering Indigenous 1.79 km Deep Subsurface Microbial Communities from Drilling Mud Contaminants Using 454 Pyrotag Sequencing  

NASA Astrophysics Data System (ADS)

Knowledge of the composition, structure and activity of microbial communities that live in deeply buried sedimentary rocks is fundamental to the future of subsurface biosphere stewardship as it relates to hydrocarbon exploration and extraction, carbon sequestration, gas storage and groundwater management. However, the study of indigenous subsurface microorganisms has been limited by the technical challenges of collecting deep formation water samples that have not been heavily contaminated by the mud used to drill the wells. To address this issue, a “clean-sampling method” deploying the newly developed Schlumberger Quicksilver MDT probe was used to collect a subsurface sample at a depth of 1.79 km (5872 ft) from an exploratory well within Cambrian-age sandstones in the Illinois Basin. This yielded a formation water sample that was determined to have less than 4% drilling mud contamination based on tracking changes in the aqueous geochemistry of the formation water during ~3 hours of pumping at depth prior to sample collection. A suite of microscopy and culture-independent molecular analyses were completed using the DNA extracted from microbial cells in the formation water, which included 454 amplicon pyrosequencing that targeted the V1-V3 hypervariable region of bacterial 16S rRNA gene sequences. Results demonstrated an extremely low diversity microbial community living in formation water at 1.79 km-depth. More than 95 % of the total V1-V3 pyrosequencing reads (n=11574) obtained from the formation water were affiliated with a halophilic ?-proteobacterium and most closely related to the genus Halomonas. In contrast, about 3 % of the V1-V3 sequences in the drilling mud library (n=13044) were classified as genus Halomonas but were distinctly different and distantly related to the formation water Halomonas detected at 1.79 km-depth. These results were consistent with those obtained using a suite of other molecular screens (e.g., Terminal-Restriction Fragment Length Polymorphism (T-RFLP) and the initial full length 16S rRNA amplicon libraries) and bioinformatic analyses (e.g., 16S rRNA and Open Reading Frame (ORF) calls established from the 454 metagenomic community analyses). Functional pathway modeling is underway to evaluate the adaptation of this indigenous microbial community to the hydrologic and geologic history of the deep subsurface environment of the Illinois Basin.

Dong, Y.; Cann, I.; Mackie, R.; Price, N.; Flynn, T. M.; Sanford, R.; Miller, P.; Chia, N.; Kumar, C. G.; Kim, P.; Sivaguru, M.; Fouke, B. W.

2010-12-01

191

Processes affecting the fate of monoaromatic hydrocarbons in an aquifer contaminated by crude oil  

USGS Publications Warehouse

Crude oil spilled from a subsurface pipeline in north-central Minnesota has dissolved in the groundwater, resulting in the formation of a plume of aliphatic, aromatic, and alicyclic hydrocarbons. Comparison of paired oil and groundwater samples collected along the central axis of the residual oil body shows that the trailing edge of the oil is depleted in the more soluble aromatic hydrocarbons (e.g., benzene, toluene, etc.) when compared with the leading edge. At the same time, concentrations of monoaromatic hydrocarbons in groundwater beneath the oil increase as the water moves toward the leading edge of the oil. Immediately downgradient from the leading edge of the oil body, certain aromatic hydrocarbons (e.g., benzene) are found at concentrations near those expected of a system at equilibrium, and the concentrations exhibit little variation over time (???8-20%). Other compounds (e.g., toluene) appear to be undersaturated, and their concentrations show considerably more temporal variation (???20-130%). The former are persistent within the anoxic zone downgradient from the oil, whereas concentrations of the latter decrease rapidly. Together, these observations suggest that the volatile hydrocarbon composition of the anoxic groundwater near the oil body is controlled by a balance between dissolution and removal rates with only the most persistent compounds reaching saturation. Examination of the distributions of homologous series and isomeric assemblages of alkylbenzenes reveals that microbial degradation is the dominant process controlling the fate of these compounds once groundwater moves away from the oil. For all but the most persistent compounds, the distal boundary of the plume at the water table extends no more than 10-15 m down-gradient from the oxic/anoxic transition zone. Thus, transport of the monoaromatic hydrocarbons is limited by redox conditions that are tightly coupled to biological degradation processes.

Eganhouse, R.P.; Dorsey, T.F.; Phinney, C.S.; Westcott, A.M.

1996-01-01

192

Coupling of Groundwater Recharge and Biodegradation of Subsurface Crude-Oil Contamination (Invited)  

NASA Astrophysics Data System (ADS)

Surface hydrologic properties controlling groundwater recharge can have a large effect on biodegradation rates in the subsurface. Two studies of crude oil contamination show that degradation rates are dramatically increased where recharge rates are enhanced. The first site, located near Bemidji, Minnesota, was contaminated in August, 1979 when oil from a pipeline rupture infiltrated into a surficial glacial outwash aquifer. Discrete oil phases form three separate pools at the water table, the largest of which is 25x75 m at a depth of 6-8 m. Gas and water concentrations and microbial community data show that methanogenic conditions prevail in this oil pool. There is extreme spatial dependence in the degradation rates such that most of the n-alkanes have been degraded in the upgradient end, but in the downgradient end n-alkane concentrations are nearly unaltered from the original spill. Recharge rates through the two ends of the oil body were estimated using a water table fluctuation method. In 2002, the more degraded end received 15.2 cm of recharge contrasted to 10.7 cm at the less degraded end. The enhanced recharge is caused by topographic focusing of runoff toward a local depression. Microbial data using the Most Probable Number method show that the methanogen concentrations are 10-100 times greater in the more degraded end of the oil body suggesting that a growth nutrient is supplied by recharge. A decrease in partial pressure of N2 compared to Ar in the soil gas indicates nitrogen fixation probably meets N requirements (Amos et al., 2005, WRR, doi:10.1029/2004WR003433). Organic phosphorus is the main form of P in infiltrating pore water and concentration decreases with depth. The second site is located 40 km southeast of the Bemidji site at an oil pipeline pumping station near Cass Lake, Minnesota. This site was contaminated by oil leaking from a pipe coupling for an unknown duration of time between 1971 and 2002. The oil body at this site lies under a fenced area of the pumping station and is comparable in size to the largest Bemidji site oil pool. The oil is heavily degraded with complete loss of the n-alkane fraction suggesting that degradation is accelerated at this site. The pumping station is flat, gravel-covered, devoid of vegetation, and surrounded by a berm. Thus, the combined effects of no runoff, rapid infiltration, and zero transpiration all enhance recharge to the oil body. Recharge rates through the gravel yard and the adjacent forested area were estimated using a water table fluctuation method. Data for the first six months of 2010 showed that recharge below the gravel yard was 40% greater than below the forested area. Groundwater ammonia concentrations increase from 0.02 to 0.5 mmol/L under the oil body, while background NO3 is only 0.01 mmol/L and there is negligible N in the oil, again suggesting that N fixation meets N requirements. Combined, these studies suggest that enhanced transport of a limiting nutrient other than N from the surface may accelerate degradation of subsurface contamination.

Bekins, B. A.; Hostettler, F. D.; Delin, G. N.; Herkelrath, W. N.; Warren, E.; Campbell, P.; Rosenbauer, R. J.; Cozzarelli, I.

2010-12-01

193

Monitored natural attenuation of a long-term petroleum hydrocarbon contaminated sites: a case study.  

PubMed

This study evaluated the potential of monitored natural attenuation (MNA) as a remedial option for groundwater at a long-term petroleum hydrocarbon contaminated site in Australia. Source characterization revealed that total petroleum hydrocarbons (TPH) as the major contaminant of concern in the smear zone and groundwater. Multiple lines of evidence involving the geochemical parameters, microbiological analysis, data modelling and compound-specific stable carbon isotope analysis all demonstrated natural attenuation of hydrocarbons occurring in the groundwater via intrinsic biodegradation. Groundwater monitoring data by Mann-Kendall trend analysis using properly designed and installed groundwater monitoring wells shows the plume is stable and neither expanding nor shrinking. The reason for stable plume is due to the presence of both active source and natural attenuation on the edge of the plume. Assuming no retardation and no degradation the contaminated plume would have travelled a distance of 1,096 m (best case) to 11,496 m (worst case) in 30 years. However, the plume was extended only up to about 170 m from its source. The results of these investigations provide strong scientific evidence for natural attenuation of TPH in this contaminated aquifer. Therefore, MNA can be applied as a defensible management option for this site following significant reduction of TPH in the source zone. PMID:22899178

Naidu, Ravi; Nandy, Subhas; Megharaj, Mallavarapu; Kumar, R P; Chadalavada, Sreenivasulu; Chen, Zuliang; Bowman, Mark

2012-11-01

194

Enzymatic bioremediation of polyaromatic hydrocarbons by fungal consortia enriched from petroleum contaminated soil and oil seeds.  

PubMed

The present study focuses on fungal strains capable of secreting extracellular enzymes by utilizing hydrocarbons present in the contaminated soil. Fungal strains were enriched from petroleum hydrocarbons contaminated soil samples collected from Chennai city, India. The potential fungi were isolated and screened for their enzyme secretion such as lipase, laccase, peroxidase and protease and also evaluated fungal enzyme mediated PAHs degradation. Total, 21 potential PAHs degrading fungi were isolated from PAHs contaminated soil, which belongs to 9 genera such as Aspergillus, Curvularia, Drechslera, Fusarium, Lasiodiplodia, Mucor Penicillium, Rhizopus, Trichoderma, and two oilseed-associated fungal genera such as Colletotrichum and Lasiodiplodia were used to test their efficacy in degradation of PAHs in polluted soil. Maximum lipase production was obtained with P. chrysogenum, M. racemosus and L. theobromae VBE1 under optimized cultural condition, which utilized PAHs in contaminated soil as sole carbon source. Fungal strains, P. chrysogenum, M. racemosus and L. theobromae VBE1, as consortia, used in the present study were capable of degrading branched alkane isoprenoids such as pristine (C17) and pyrene (C18) present in PAHs contaminated soil with high lipase production. The fungal consortia acts as potential candidate for bioremediation of PAHs contaminated environments. PMID:24813008

Balaji, V; Arulazhagan, P; Ebenezer, P

2014-05-01

195

Techniques for assessing the performance of in situ bioreduction and immobilization of metals and radionuclides in contaminated subsurface environments  

SciTech Connect

Department of Energy (DOE) facilities within the weapons complex face a daunting challenge of remediating huge below inventories of legacy radioactive and toxic metal waste. More often than not, the scope of the problem is massive, particularly in the high recharge, humid regions east of the Mississippi river, where the off-site migration of contaminants continues to plague soil water, groundwater, and surface water sources. As of 2002, contaminated sites are closing rapidly and many remediation strategies have chosen to leave contaminants in-place. In situ barriers, surface caps, and bioremediation are often the remedial strategies of chose. By choosing to leave contaminants in-place, we must accept the fact that the contaminants will continue to interact with subsurface and surface media. Contaminant interactions with the geosphere are complex and investigating long term changes and interactive processes is imperative to verifying risks. We must be able to understand the consequences of our action or inaction. The focus of this manuscript is to describe recent technical developments for assessing the performance of in situ bioremediation and immobilization of subsurface metals and radionuclides. Research within DOE's NABIR and EMSP programs has been investigating the possibility of using subsurface microorganisms to convert redox sensitive toxic metals and radionuclides (e.g. Cr, U, Tc, Co) into a less soluble, less mobile forms. Much of the research is motivated by the likelihood that subsurface metal-reducing bacteria can be stimulated to effectively alter the redox state of metals and radionuclides so that they are immobilized in situ for long time periods. The approach is difficult, however, since subsurface media and waste constituents are complex with competing electron acceptors and hydrogeological conditions making biostimulation a challenge. Performance assessment of in situ biostimulation strategies is also difficult and typically requires detailed monitoring of coupled hydrological, geochemical/geophysical, and microbial processes. In the following manuscript we will (1) discuss contaminant fate and transport problems in humid regimes, (2) efforts to immobilize metals and radionuclides in situ via bioremediation, and (3) state-of-the-art techniques for assessing the performance of in situ bioreduction and immobilization of metals and radionuclides. These included (a) in situ solution and solid phase monitoring, (b) in situ and laboratory microbial community analysis, (c) noninvasive geophysical methods, and (d) solid phase speciation via high resolution spectroscopy.

Jardine, P.M.; Watson, D.B.; Blake, D.A.; Beard, L.P.; Brooks, S.C.; Carley, J.M.; Criddle, C.S.; Doll, W.E.; Fields, M.W.; Fendorf, S.E.; Geesey, G.G.; Ginder-Vogel, M.; Hubbard, S.S.; Istok, J.D.; Kelly, S.; Kemner, K.M.; Peacock, A.D.; Spalding, B.P.; White, D.C.; Wolf, A.; Wu, W.; Zhou, J.

2004-11-14

196

Use of the FIDLER Scintillation Probe for the Characterization of Subsurface Radionuclide Contamination  

SciTech Connect

The Measurement Applications and Development Group at the Oak Ridge National Laboratory has used a FIDLER to characterize a site where numerous localized and dispersed concentrations of uranium had been previously discovered beneath a poured concrete floor. The thick floor impeded the evaluation of the distribution of regions containing uranium without boring numerous holes through the concrete. The purpose of this study was to perform a radiological assessment of the building in preparation for remediation of the site. Integrated counts were taken with the FIDLER probes fixed in place on a systematic grid across the area to be evaluated. The results were then superimposed on a drawing of the area of evaluation. This approach allowed the boundaries of the regions with subsurface contamination to be resolved much better than by using standard survey techniques and decreased the number of borehole samples and subsequent analyses. The study demonstrated that this survey technique provides rapid and essential characterization information and reduces sampling, analytical, and remediation costs.

Coleman, R.L.; Murray, M.E.

1999-11-14

197

Bioremediation of contaminated groundwater  

DOEpatents

An apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid is selected to stimulate the growth and reproduction of indigenous subsurface microorganisms that are capable of degrading the contaminants; an oxygenated fluid is selected to create a generally aerobic environment for these microorganisms to degrade the contaminants, leaving only pockets that are anaerobic. The nutrient fluid is injected periodically while the oxygenated fluid is injected continuously and both are extracted so that both are drawn across the plume. The nutrient fluid stimulates microbial colony growth; withholding it periodicially forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is reduced to an acceptable, preselected level. The nutrient fluid can be methane and the oxygenated fluid air for stimulating production of methanotrophs to break down chlorohydrocarbons, especially trichloroethylene (TCE) and tetrachloroethylene.

Hazen, Terry C. (Augusta, GA); Fliermans, Carl B. (Augusta, GA)

1995-01-01

198

Bioremediation of contaminated groundwater  

DOEpatents

An apparatus and method are described for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid is selected to stimulate the growth and reproduction of indigenous subsurface microorganisms that are capable of degrading the contaminants. An oxygenated fluid is selected to create a generally aerobic environment for these microorganisms to degrade the contaminants, leaving only pockets that are anaerobic. The nutrient fluid is injected periodically while the oxygenated fluid is injected continuously and both are extracted so that both are drawn across the plume. The nutrient fluid stimulates microbial colony growth. Withholding it periodically forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is reduced to an acceptable, preselected level. The nutrient fluid can be methane and the oxygenated fluid air for stimulating production of methanotrophs to break down chlorohydrocarbons, especially trichloroethylene (TCE) and tetrachloroethylene. 3 figures.

Hazen, T.C.; Fliermans, C.B.

1995-01-24

199

A case study simulation of DBCP groundwater contamination in Fresno County, California 1. Leaching through the unsaturated subsurface  

Microsoft Academic Search

This paper is the first installment of a multi-paper series concerned with simulating the potential vulnerability of groundwater in Fresno County (California) to contamination resulting from long-term, agriculture related, applications of the nematocide DBCP. In this paper our focus is on the surface and the unsaturated subsurface. Using PRZM-2, we quantitatively estimate, for a 35 year period, the potential fate

Keith Loague; D'Artagnan Lloyd; Anh Nguyen; Stanley N. Davis; Robert H. Abrams

1998-01-01

200

Biogeochemical evidence for subsurface hydrocarbon occurrence, Recluse oil field, Wyoming; preliminary results  

USGS Publications Warehouse

Anomalously high manganese-to-iron ratios occurring in pine needles and sage leaves over the Recluse oil field, Wyoming, suggest effects of petroleum microseepage on the plants. This conclusion is supported by iron and manganese concentrations in soils and carbon and oxygen isotope ratios in rock samples. Seeping hydrocarbons provided reducing conditions sufficient to enable divalent iron and manganese to be organically complexed or adsorbed on solids in the soils. These bound or adsorped elements in the divalent state are essential to plants, and the plants readily assimilate them. The magnitude of the plant anomalies, combined with the supportive isotopic and chemical evidence confirming petroleum leakage, makes a strong case for the use of plants as a biogeochemical prospecting tool.

Dalziel, Mary C.; Donovan, Terrence J.

1980-01-01

201

Fluorescence in situ hybridization (CARD-FISH) of microorganisms in hydrocarbon contaminated aquifer sediment samples.  

PubMed

Groundwater ecosystems are the most important sources of drinking water worldwide but they are threatened by contamination and overexploitation. Petroleum spills account for the most common source of contamination and the high carbon load results in anoxia and steep geochemical gradients. Microbes play a major role in the transformation of petroleum hydrocarbons into less toxic substances. To investigate microbial populations at the single cell level, fluorescence in situ hybridization (FISH) is now a well-established technique. Recently, however, catalyzed reporter deposition (CARD)-FISH has been introduced for the detection of microbes from oligotrophic environments. Nevertheless, petroleum contaminated aquifers present a worst case scenario for FISH techniques due to the combination of high background fluorescence of hydrocarbons and the presence of small microbial cells caused by the low turnover rates characteristic of groundwater ecosystems. It is therefore not surprising that studies of microorganisms from such sites are mostly based on cultivation techniques, fingerprinting, and amplicon sequencing. However, to reveal the population dynamics and interspecies relationships of the key participants of contaminant degradation, FISH is an indispensable tool. In this study, a protocol for FISH was developed in combination with cell quantification using an automated counting microscope. The protocol includes the separation and purification of microbial cells from sediment particles, cell permeabilization and, finally, CARD-FISH in a microwave oven. As a proof of principle, the distribution of Archaea and Bacteria was shown in 60 sediment samples taken across the contaminant plume of an aquifer (Leuna, Germany), which has been heavily contaminated with several ten-thousand tonnes of petroleum hydrocarbons since World War II. PMID:22425347

Tischer, Karolin; Zeder, Michael; Klug, Rebecca; Pernthaler, Jakob; Schattenhofer, Martha; Harms, Hauke; Wendeberg, Annelie

2012-12-01

202

Characterization and safety evaluation of the impact of hydrocarbon contaminants on ecological receptors.  

PubMed

Hydrocarbon-contaminant removal efficiency of Bambara groundnuts and biomagnification was investigated. The crude oil contaminated soil samples in which the plants were established were either un-amended, or amended with NPK, or Urea, or Poultry manure. Amendments improved phytoextraction rates as follows: Urea - 63.37%, NPK - 65.99%, Poultry - manure - 70.04%, for PAH; Urea - 78.80%, NPK - 79.80%, Poultry manure - 87.90%, for BTEX. Hazard characterization from 28-day feeding study revealed negative effects of potentially toxic BTEX and PAH on organ weight, optimum digestibility and animal growth rate. Sleep time decreased with increasing hydrocarbon concentrations probably due to increased liver enzyme activity. PMID:20623265

Nwaichi, Eucharia O; Onyeike, Eugene N; Wegwu, Matthew O

2010-08-01

203

Remediation of petroleum hydrocarbon-contaminated sites by DNA diagnosis-based bioslurping technology.  

PubMed

The application of effective remediation technologies can benefit from adequate preliminary testing, such as in lab-scale and Pilot-scale systems. Bioremediation technologies have demonstrated tremendous potential with regards to cost, but they cannot be used for all contaminated sites due to limitations in biological activity. The purpose of this study was to develop a DNA diagnostic method that reduces the time to select contaminated sites that are good candidates for bioremediation. We applied an oligonucleotide microarray method to detect and monitor genes that lead to aliphatic and aromatic degradation. Further, the bioremediation of a contaminated site, selected based on the results of the genetic diagnostic method, was achieved successfully by applying bioslurping in field tests. This gene-based diagnostic technique is a powerful tool to evaluate the potential for bioremediation in petroleum hydrocarbon contaminated soil. PMID:25129160

Kim, Seungjin; Krajmalnik-Brown, Rosa; Kim, Jong-Oh; Chung, Jinwook

2014-11-01

204

Study to determine the feasibility of using a ground-penetrating radar for more-effective remediation of subsurface contamination  

SciTech Connect

Remediation of hazardous material spills is often costly and entails cumbersome procedures. The traditional method is to drill core samples in the area where the contaminant is thought to be present and then analyze these samples in a laboratory. The denser the sampling grid, the more effective it is; unfortunately, it is also more expensive to implement and more damaging to the environment. A nonintrusive method for detecting subsurface contamination, therefore, would be highly desirable. Toward this end, the capability of ground-penetrating radar (GPR) to identify natural subsurface features, detect man-made objects buried in the soil, and both detect and define the extent of contaminated soil or groundwater was assessed. The study concluded that the technology for the envisioned GPR already exists. In terms of hardware, it was found that a synthetic-pulse radar has the potential to operate effectively in the three types of subsurface environments modeled in the study, environments representative of seven out of ten 'common cases' found at remediation sites.

Douglas, D.G.; Burns, A.A.; Rino, C.L.; Maresca, J.W.

1992-05-01

205

Distribution and geochemistry of contaminated subsurface waters in fissured volcanogenic bed rocks of the Lake Karachai Area, Chelyabinsk, Southern Urals  

SciTech Connect

The present investigation is devoted to the study of the distribution and geochemistry of contaminated subsurface waters, beneath the site of temporary storage of liquid radioactive waste known as Lake Karachai. For this purpose a method of hydrogeochemical logging (HGCL) together with standard hydrogeochemical and geophysical methods of uncased hole logging were used. The distribution of sodium nitrate brine plumes in the subsurface was determined by the physical and physico-chemical properties of these brines and by the petrochemical composition of enclosing rocks and the structural setting of the flow paths. The latter is represented by fractures and large faults in the bedrock of volcanogenic and volcanogenic-sedimentary rocks of intermediate-to-basic composition. The volcanogenic rocks are overlain in some places by a thin cover of unconsolidated sediments, i.e., by loams and relatively impermeable silts. Contaminated waters flow-in accordance with the eluvium bottom relief towards local areas of natural (Mishelyak and Techa rivers) and artificial (Novogomenskii water intake) discharge of subsurface waters. The large Mishelyak fault, southwest of Lake Karachai and under fluvial sediments of the Mishelyak, is assumed to significantly influence the flow pattern of contaminated waters, diverting them from an intake of drinking water.

Solodov, I.N.; Belichkin, V.I.; Zotov, A.V.; Kochkin, B.T. [Russian Academy of Sciences, Moscow (Russian Federation); Drozhko, E.G. [Atomic Energy of Russia (Russian Federation); Glagolev, A.V.; Skokov, A.N. [Russian Federation Committee on Geological and Subsurface Usage (Russian Federation)

1994-06-01

206

Polycyclic aromatic hydrocarbons: Bees, honey and pollen as sentinels for environmental chemical contaminants  

Microsoft Academic Search

Three beehive matrices, sampled in six different apiaries from West France, were analyzed for the presence of four polycyclic aromatic hydrocarbons (PAH4: benzo[a]pyrene, benzo[a]anthracene, benzo[b]fluoranthene and chrysene). Samples were collected during four different periods in both 2008 and 2009. Honey samples showed the lowest levels of PAH4 contamination (min=0.03?gkg?1; max=5.80?gkg?1; mean=0.82?gkg?1; Sd=1.17). Bee samples exhibited higher levels of PAH4 contamination

Olivier Lambert; Bruno Veyrand; Sophie Durand; Philippe Marchand; Bruno Le Bizec; Mélanie Piroux; Sophie Puyo; Chantal Thorin; Frédéric Delbac; Hervé Pouliquen

207

Contamination of soils in the urbanized areas of Belarus with polycyclic aromatic hydrocarbons  

NASA Astrophysics Data System (ADS)

The content of polycyclic aromatic hydrocarbons (PAHs) in the soils of urbanized areas, including the impact zones of Belarus, were studied. The concentrations of 16 PAHs in the soils were determined for individual and high-rise building zones, forests, and forest parks of Belarus. The levels of the PAH accumulation in the soils of different industrial enterprises and boiler stations were analyzed. Possible sources of soil contamination with PAHs were considered, and the structure of the PAHs in the soils was shown. The levels of the soil contamination were determined from the regulated parameters for individual compounds and the sum of 16 PAHs.

Kukharchyk, T. I.; Khomich, V. S.; Kakareka, S. V.; Kurman, P. V.; Kozyrenko, M. I.

2013-02-01

208

Detection of heavy metal and hydrocarbon contamination using a miniature resistivity probe.  

PubMed

The usefulness of the electrical resistivity method for characterization of contaminated sites has been studied in many ways. The most commonly used device is a cone penetrometer that utilizes two or four electrodes to measure electrical resistivity (or conductivity) during a cone penetration test (CPT) along a vertical or horizontal alignment. This paper introduces a new miniature resistivity probe (MRP) that can potentially be deployed from a sampling platform to detect contaminant plumes prior to collecting soil samples. Following bench-scale tests aimed at quantifying the sensitivity of the MRP to various operating and environmental parameters, the response of the MRP in sandy soil containing various concentrations of tour heavy metals (Cu, Zn, Pb and Ni) and two hydrocarbons (phenol and gasoline) is evaluated. The test data revealed that the MRP has the potential to serve as an indexing tool for rapidly delineating contaminant plumes where heavy metals are present. The results for hydrocarbons were less conclusive, ranging from moderate ability to differentiate contaminated and non-contaminated soils for phenol to poor differentiation ability for gasoline. PMID:17624110

Ahn, T; Allouche, E N; Yanful, E K

2007-06-01

209

Influence of oil contamination levels on hydrocarbon biodegradation in sandy sediment  

Microsoft Academic Search

The influence of oil concentration on hydrocarbon biodegradation in a sandy sediment was studied in polyvinyl chloride reactors (0.45×0.28×0.31 m) containing 76.8 kg of beach sand in natura, where the upper layer was artificially contaminated with petroleum. The oil-degrading microorganisms used consisted of a mixed culture named ND, obtained from landfarming and associated with indigenous microorganisms. On the 28th day

J. P Del'Arco; F. P de França

2001-01-01

210

Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation  

Microsoft Academic Search

A culture-independent molecular phylogenetic approach was used to survey constituents of microbial communities associated with an aquifer contaminated with hydrocarbons and chlorinated solvents undergoing intrinsic bioremediation. Samples were obtained from three redox zones: methanogenic, methanogenic-sulfate reducing, and iron or sulfate reducing. Small-subunit rRNA genes were amplified directly from aquifer material DNA by PCR with universally conserved or Bacteria- or Archaea-specific

MICHAEL A. DOJKA; PHILIP HUGENHOLTZ; N. R. Pace; S. K. Haack

1998-01-01

211

Bioremediation of a soil contaminated by hydrocarbon mixtures: the residual concentration problem  

Microsoft Academic Search

The phenomenon of residual concentration was investigated in the aerobic biodegradation of three different petroleum commercial products (i.e., kerosene, diesel fuel and a lubricating mineral oil) in static microcosms. Two different soils exhibiting different physical-chemical characteristics were used (i.e., a biologically treated hydrocarbon-contaminated soil and a pristine soil). Residual concentrations were observed and a simple way to take this phenomenon

M Nocentini; D Pinelli; F Fava

2000-01-01

212

An application of permeable reactive barrier technology to petroleum hydrocarbon contaminated groundwater  

Microsoft Academic Search

A funnel and gate permeable reactive barrier was designed and built to treat groundwater contaminated with dissolved phase toluene, ethyl benzene, and xylene and n-alkanes in the C6–C36 fraction range. Removal efficiencies for the funnel and gate system varied from 63% to 96% for the monocyclic aromatic hydrocarbons. Average removal efficiencies for C6–C9, C10–C14, and C15–C28 fraction ranges were 69.2%,

Turlough F. Guerin; Stuart Horner; Terry McGovern; Brent Davey

2002-01-01

213

Environmental analysis of endocrine disrupting effects from hydrocarbon contaminants in the ecosystem. 1998 annual progress report  

Microsoft Academic Search

'The objective of this project is to determine how environmental contaminants, namely hydrocarbons, can act as hormones or anti-hormones (i.e., environmental hormones) in different species present in aquatic ecosystems. Species of particular focus are those which can serve as sentinel species (e.g., amphibians) and, thus, provide early warning signals for more widespread impacts on an ecosystem and its wildlife and

McLachlan

1998-01-01

214

Bacterial communities of surface and deep hydrocarbon-contaminated waters of the Deepwater Horizon oil spill  

Microsoft Academic Search

We performed a 16S rRNA gene sequencing survey of bacterial communities within oil-contaminated surface water, deep hydrocarbon plume water, and deep water samples above and below the plume to determine spatial and temporal patterns of oil-degrading bacteria growing in response to the Deepwater Horizon oil leak. In addition, we are reporting 16S rRNA sequencing results from time series incubation, enrichment

T. Yang; L. M. Nigro; L. McKay; K. Ziervogel; T. Gutierrez; A. Teske

2010-01-01

215

PILOT-SCALE SUBCRITICAL WATER REMEDIATION OF POLYCYCLIC AROMATIC HYDROCARBON- AND PESTICIDE-CONTAMINATED SOIL. (R825394)  

EPA Science Inventory

Subcritical water (hot water under enough pressure to maintain the liquid state) was used to remove polycyclic aromatic hydrocarbons (PAHs) and pesticides from highly contaminated soils. Laboratory-scale (8 g of soil) experiments were used to determine conditions f...

216

PHOTOACTIVATED POLYCYCLIC AROMATIC HYDROCARBON TOXICITY IN MEDAKA (ORYZIAS LATIPES) EMBRYOS: RELEVANCE TO ENVIRONMENTAL RISK IN CONTAMINATED SITES  

EPA Science Inventory

The hazard for photoactivated toxicity of polycyclic aromatic hydrocarbons (PAHs) has been clearly demonstrated; however, to our knowledge, the risk in contaminated systems has not been characterized. To address this question, a median lethal dose (LD50) for fluoranthene photoa...

217

COMPARISON OF IMMUNOASSAY AND GAS CHROMATOGRAPHY/MASS SPECTROMETRY FOR MEASUREMENT OF POLYCYCLIC AROMATIC HYDROCARBONS IN CONTAMINATED SOIL  

EPA Science Inventory

Polycyclic aromatic hydrocarbons (PAHs) are frequently encountered in the environment and may pose health concerns due to their carcinogenicity. A commercial enzyme-linked immunosorbent assay (ELISA), was evaluated as a screening method for monitoring PAHs at contaminated site...

218

CROSS-INDUCTION OF PYRENE AND PHENANTHRENE IN MYCOBACTERIUM SP. ISOLATED FROM POLYCYCLIC AROMATIC HYDROCARBON CONTAMINATED RIVER SEDIMENTS  

EPA Science Inventory

A polycyclic aromatic hydrocarbon (PAH)-degrading culture enriched from contaminated river sediments and a Mycobacterium sp. isolated from the enrichment were tested to investigate the possible synergistic and antagonistic interactions affecting the degradation of pyrene in the p...

219

Polycyclic aromatic hydrocarbons and petroleum biomarkers in São Sebastião Channel, Brazil: assessment of petroleum contamination.  

PubMed

Polycyclic aromatic hydrocarbons (PAHs) and non-aromatic hydrocarbons (NAHs), including n-alkanes, isoprenoids and petroleum biomarkers (terpanes, hopanes, steranes and diasteranes), were quantified by gas chromatography with flame ionization and mass spectrometer detectors in sediment samples collected from the São Sebastião Channel (SSC), Brazil, where the largest Brazilian maritime petroleum terminal is located. The concentrations of total PAHs, total n-alkanes and petroleum biomarkers ranged from below the detection limits to 370ngg(-1), 28microgg(-1), 2200ngg(-1) (dry weight), respectively. The analysis of PAH distribution suggested combustion sources of PAHs as the main input for these compounds with smaller amount from petroleum contamination. The distribution of petroleum biomarkers undoubtedly demonstrated petroleum as a source of anthropogenic contamination throughout the region. The assessment of petrogenic sources of contamination in marine sediment is more challenging if only PAH analysis were carried out, which demonstrates that more stable hydrocarbons such as petroleum biomarkers are useful for investigating potential presence of petroleum. PMID:20005568

da Silva, Denis A M; Bícego, Márcia C

2010-06-01

220

Chlorinated hydrocarbon contaminants in Hong Kong surficial sediments.  

PubMed

Twenty surficial sediments were sampled from nearshore Hong Kong waters during 1997-1998, and analyzed for a range of chlorinated pesticides and polychlorinated biphenyls (PCBs). Results showed that concentrations (on a dry weight basis) of total HCHs were in the range 0.1-16.7 ng g-1, and total DDTs 0.3-14.8 ng g-1. PCBs, measured as an Aroclor 1242, 1248, 1254, 1260 (1:1:1:1) mixture, were found to be in a range of 0.5-97.9 ng g-1, and were at highest concentrations in Victoria Harbour. Results indicated that chlorinated pesticides and PCBs in Hong Kong nearshore sediments were most likely derived from waste discharge from a variety of sources, including agricultural, sewage, industrial waste disposal and shipping-related activities. In addition, as the north and west sides of Hong Kong are subject to influence from the Pearl River (due mainly to agricultural activities in the Pearl River Delta, and to a lesser extent developments around the Shenzhen Special Economic Zone), these inputs are also thought to be likely sources of contamination. PMID:10448566

Richardson, B J; Zheng, G J

1999-09-01

221

Horizontal arrangement of anodes of microbial fuel cells enhances remediation of petroleum hydrocarbon-contaminated soil.  

PubMed

With the aim of in situ bioremediation of soil contaminated by hydrocarbons, anodes arranged with two different ways (horizontal or vertical) were compared in microbial fuel cells (MFCs). Charge outputs as high as 833 and 762C were achieved in reactors with anodes horizontally arranged (HA) and vertically arranged (VA). Up to 12.5 % of the total petroleum hydrocarbon (TPH) was removed in HA after 135 days, which was 50.6 % higher than that in VA (8.3 %) and 95.3 % higher than that in the disconnected control (6.4 %). Hydrocarbon fingerprint analysis showed that the degradation rates of both alkanes and polycyclic aromatic hydrocarbons (PAHs) in HA were higher than those in VA. Lower mass transport resistance in the HA than that of the VA seems to result in more power and more TPH degradation. Soil pH was increased from 8.26 to 9.12 in HA and from 8.26 to 8.64 in VA, whereas the conductivity was decreased from 1.99 to 1.54 mS/cm in HA and from 1.99 to 1.46 mS/cm in VA accompanied with the removal of TPH. Considering both enhanced biodegradation of hydrocarbon and generation of charge in HA, the MFC with anodes horizontally arranged is a promising configuration for future applications. PMID:25189807

Zhang, Yueyong; Wang, Xin; Li, Xiaojing; Cheng, Lijuan; Wan, Lili; Zhou, Qixing

2015-02-01

222

Mobile hydrocarbon microspheres from >2-billion-year-old carbon-bearing seams in the South African deep subsurface.  

PubMed

By ~2.9 Ga, the time of the deposition of the Witwatersrand Supergroup, life is believed to have been well established on Earth. Carbon remnants of the microbial biosphere from this time period are evident in sediments from around the world. In the Witwatersrand Supergroup, the carbonaceous material is often concentrated in seams, closely associated with the gold deposits and may have been a mobile phase 2 billion years ago. Whereas today the carbon in the Witwatersrand Supergroup is presumed to be immobile, hollow hydrocarbon spheres ranging in size from <1 ?m to >50 ?m were discovered emanating from a borehole drilled through the carbon-bearing seams suggesting that a portion of the carbon may still be mobile in the deep subsurface. ToF-SIMS and STXM analyses revealed that these spheres contain a suite of alkane, alkenes, and aromatic compounds consistent with the described organic-rich carbon seams within the Witwatersrand Supergroup's auriferous reef horizons. Analysis by electron microscopy and ToF-SIMS, however, revealed that these spheres, although most likely composed of biogenic carbon and resembling biological organisms, do not retain any true structural, that is, fossil, information and were formed by an abiogenic process. PMID:22901282

Wanger, G; Moser, D; Hay, M; Myneni, S; Onstott, T C; Southam, G

2012-11-01

223

Treatment Of Groundwater Contaminated With PAHs, Gasoline Hydrocarbons, And Methyl Tert -Butyl Ether In A Laboratory Biomass-Retaining Bioreactor  

EPA Science Inventory

In this study, we investigated the treatability of co-mingled groundwater contaminated with polycyclic aromatic hydrocarbons (PAHs), gasoline hydrocarbons, and methyl tert -butyl ether (MtBE) using an ex-situ aerobic biotreatment system. The PAHs of interest were nap...

224

Field metabolomics and laboratory assessments of anaerobic intrinsic bioremediation of hydrocarbons at a petroleum-contaminated site  

Microsoft Academic Search

Summary Field metabolomics and laboratory assays were used to assess the in situ anaerobic attenuation of hydrocarbons in a contaminated aquifer underly- ing a former refinery. Benzene, ethylbenzene, 2- methylnaphthalene, 1,2,4- and 1,3,5-trimethylbenzene were targeted as contaminants of greatest regulatory concern (COC) whose intrinsic remediation has been previously reported. Metabolite profiles associated with anaerobic hydrocarbon decay revealed the microbial utilization

Victoria A. Parisi; Gaylen R. Brubaker; Matthew J. Zenker; Roger C. Prince; Lisa M. Gieg; Marcio L. B. da Silva; Pedro J. J. Alvarez; Joseph M. Suflita

2009-01-01

225

The prediction of the effectiveness of interceptor trenches in the remediation of ground-water contamination by petroleum hydrocarbons  

E-print Network

is overlain by cuttings in order to minimize infiltration of surface waters into the more permeable trench area. Figures 3 through 6 illustrate the areas of contamination by petroleum hydrocarbons throughout the entire plant as measured in observation wells...THE PREDICTION OF THE EFFECTIVENESS OF INTERCEPTOR TRENCHES IN THE REMEDIATION OF GROUND-WATER CONTAMINATION BY PETROLEUM HYDROCARBONS A Thesis by MARY KATHERINE MAST Submitted to the Office of Graduate Studies Texas A@M University...

Mast, Mary Katherine

1991-01-01

226

A street deposit sampling method for metal and hydrocarbon contamination assessment.  

PubMed

Urban surface contamination, by atmospheric deposits as well as human activities, is a major concern for urban pollution management. Besides coarse street deposits which are clearly perceived and easily removed, suspended solid (SS) surface loads and contamination by heavy metals and hydrocarbons are rarely assessed although they could be of major importance with regards to combined or separate server overflow (CSO and SSO) impacts. Both dry and wet vacuum sampling procedures have been first compared, in the laboratory, using dry and sieved clay or street deposits. Then the wet vacuum sampling procedure has been refined, coupling the injection of water and the hand-brushing of the surface prior to its vacuum cleaning, and evaluated on a car parking area close to the University. Finally this procedure has been assessed in Béarn Street within the 'Le Marais' district in Paris centre, and 34 samples have been analysed for metal and eight for aromatic hydrocarbon contamination. Heavy metal concentrations (0.1-1.7 g kg-1 dry wt. Cu, 0.9-6.1 g kg-1 dry wt. Pb and 1.5-4.6 g kg-1 dry wt. Zn) within street deposit samples collected in Paris centre, indicate a high contamination, especially for copper and zinc, as compared to reported data. Total polyaromatic hydrocarbons (PAHs) are in the 3-11 mg kg-1 dry wt. range, thus approximately 10 times less contaminated than dry atmospheric deposits. This paper presents data obtained and discusses the difficulties encountered when sampling street deposits in busy areas of a city like Paris. The water jet street cleaning procedure used by Paris city workers was tested for its efficiency, by comparison of surface loads before and after the cleaning procedure. Although solids cleaning efficiency is highly variable (20-65%) and somewhat higher for particles larger than 100 microns, particulate metal cleaning efficiency is even more variable (0-75%) and particulate PAHs appear not to be significantly removed. PMID:10535121

Bris, F J; Garnaud, S; Apperry, N; Gonzalez, A; Mouchel, J M; Chebbo, G; Thévenot, D R

1999-09-01

227

Sequential electron acceptor model for evaluation of in situ bioremediation of petroleum hydrocarbon contaminants in groundwater.  

PubMed

Mathematical development and model application is provided for a multiple substrate, sequential electron acceptor model, accounting for hydrodynamic transport, adsorption, and sequential oxygen/iron(III)-based biodegradation. Equations for iron(III)-based biodegradation of petroleum hydrocarbons are developed based on oxygen-inhibited Monod kinetics. The iron(III)-based biodegradation expressions were combined with earlier work by Widdowson and Aelion, to develop the two-dimensional, multiple substrate, oxygen/iron(III) sequential electron acceptor biodegradation model presented here. In addition to mathematical model development, simulations demonstrating the advantages of sequential electron acceptor and multiple substrate biodegradation models are provided. These simulations show that commonly-used single electron acceptor models may underpredict natural, in situ biodegradation potential at sites where indigenous microorganisms are capable of using multiple electron acceptors. Additional simulations show that, for contaminant plumes composed of constituents which biodegrade at different rates and under varying electron acceptor conditions, a multiple substrate model may allow more accurate prediction of both individual contaminant concentrations and the total amount of biodegraded contaminant. Considering that typical contaminant plumes are composed of multiple constituents with varying biodegradation properties and health risks, multiple substrate sequential electron acceptor models have the potential to provide more accurate tracking of individual constituent migration. The model was applied to a leaking UST site in Laurel Bay, South Carolina. Laboratory and monitoring well data presented in Landmeyer et al. have established that the petroleum hydrocarbon contaminants are present in the groundwater and are undergoing sequential oxygen-iron(III)-based biodegradation. Model simulations proved capable of reproducing the trends observed at the Laurel Bay site in that BTX contaminants were removed by sequential biodegradation, occurring first aerobically and subsequently anaerobically, and that iron(III)-reducing organisms biodegrade contaminants only in the absence of oxygen. The BTX compounds were individually but simultaneously modeled, allowing explicit modeling of specific contaminant biodegradation properties (e.g., toluene and xylene are assumed to degrade sequentially and benzene is assumed to degrade aerobically only). Although simulations presented here can reproduce trends observed at the Laurel Bay site, inclusion of additional electron acceptors and additional model calibration to data from this and other sites is necessary to improve and verify the model's capability to predict the efficacy of intrinsic biodegradation of petroleum hydrocarbon contaminants in groundwater. PMID:9472325

Brauner, J S; Widdowson, M A

1997-11-21

228

Horizontal Gene Transfer of PIB-Type ATPases among Bacteria Isolated from Radionuclide- and Metal-Contaminated Subsurface Soils  

PubMed Central

Aerobic heterotrophs were isolated from subsurface soil samples obtained from the U.S. Department of Energy's (DOE) Field Research Center (FRC) located at Oak Ridge, Tenn. The FRC represents a unique, extreme environment consisting of highly acidic soils with cooccurring heavy metals, radionuclides, and high nitrate concentrations. Four hundred isolates obtained from contaminated soil were assayed for heavy metal resistance, and a smaller subset was assayed for tolerance to uranium. The vast majority of the isolates were gram-positive bacteria and belonged to the high-G+C- and low-G+C-content genera Arthrobacter and Bacillus, respectively. Genomic DNA from a randomly chosen subset of 50 Pb-resistant (Pbr) isolates was amplified with PCR primers specific for PIB-type ATPases (i.e., pbrA/cadA/zntA). A total of 10 pbrA/cadA/zntA loci exhibited evidence of acquisition by horizontal gene transfer. A remarkable dissemination of the horizontally acquired PIB-type ATPases was supported by unusual DNA base compositions and phylogenetic incongruence. Numerous Pbr PIB-type ATPase-positive FRC isolates belonging to the genus Arthrobacter tolerated toxic concentrations of soluble U(VI) (UO22+) at pH 4. These unrelated, yet synergistic, physiological traits observed in Arthrobacter isolates residing in the contaminated FRC subsurface may contribute to the survival of the organisms in such an extreme environment. This study is, to the best of our knowledge, the first study to report broad horizontal transfer of PIB-type ATPases in contaminated subsurface soils and is among the first studies to report uranium tolerance of aerobic heterotrophs obtained from the acidic subsurface at the DOE FRC. PMID:16672448

Martinez, Robert J.; Wang, Yanling; Raimondo, Melanie A.; Coombs, Jonna M.; Barkay, Tamar; Sobecky, Patricia A.

2006-01-01

229

Environmental forensics evaluation of sources of sediment hydrocarbon contamination in Milford Haven Waterway.  

PubMed

Current and historic petroleum-related activities in Milford Haven Waterway (MHW; Wales, UK) contribute to hydrocarbon contamination of surficial sediments. Three main hydrocarbon components of sediments were analyzed: (1) aliphatic hydrocarbons of predominantly biogenic origin, representing about 5-15% of total hydrocarbons (THC); (2) polycyclic aromatic hydrocarbons (PAHs) from recent petrogenic and mainly older pyrogenic sources, representing about 2-6% of THC; (3) unresolved complex mixture from spill-related and heavily-weathered petrogenic sources, representing as much as 70-85% of THC. Environmental forensics evaluation of the data demonstrate that although 72?000 tonnes (t) crude oil spilled from the Sea Empress in 1996, the Forties blend cargo was not identified in 2010. However, using biomarkers, heavy fuel oil (HFO) from Sea Empress' bunkers (480 t spilled) was detected further upstream and more widely than previously. Iranian crude (100 t) spilled by the El Omar in 1988 and fuel (130?000 t) lost during bombing in 1940 also were tentatively identified. The PAH source ratios demonstrate that the historic pyrogenic PAHs come mainly from biomass and coal combustion. The distribution pattern of PAHs appeared more pyrogenic in 2012 than in 1996, as if recovering from the more petrogenic signature, in places, of the Sea Empress. The heavier PAH distributions were pyrogenic at most stations, and similar to those in sediments from oil terminal berths up to 2006, when dredging operations peaked. Partly as a result of this, in 2007 the concentrations of PAHs peaked throughout the waterway. Apart from effluent, atmospheric and runoff inputs, most of the identified inputs to the surficial sediments are historic. Therefore, likely processes include disturbance by construction (e.g. pile-driving) and dredging of contaminants sequestered in sediments, followed by their wide redistribution via suspended sediment transport. PMID:25536472

Little, David I; Galperin, Yakov; Bullimore, Blaise; Camplin, Mike

2015-02-11

230

Effects of oxygen supply on the biodegradation rate in oil hydrocarbons contaminated soil  

NASA Astrophysics Data System (ADS)

Respirometry studies using the 10-chamber Micro-Oxymax respirometer (Columbus, Ohio) were conducted to determine the effect of biostimulation (by diverse ways of O2 supply) on enhancing biodegradation in soils contaminated with oil hydrocarbons. Soil was collected from a former military airport in Kluczewo, Poland. Oxygen was supplied by means of aerated water, aqueous solutions of H2O2 and KMnO4. The biodegradation was evaluated on the basis of O2 uptake and CO2 production. The O2 consumption and CO2 production rates during hydrocarbons biodegradation were estimated from the slopes of cumulative curve linear regressions. The pertinent intrinsic and enhanced biodegradation rates were calculated on the basis of mass balance equation and O2 uptake and CO2 production rates. The biodegradation rates of 5-7 times higher as compared to a control were observed when the aqueous solution of KMnO4 in concentration of 20 g L-1 was applied. Permanganate is known to readily oxidize alkene carbon - carbon double bonds; so it can be successfully applied in remediation technology for soils contaminated with oil hydrocarbons. While hydrocarbons are not completely mineralized by permanganate oxidation reactions, their structure is altered by polar functional groups providing vast improvements in aqueous solubility and availability for biodegradation. The 3% aqueous solution of H2O2 caused significant improvement of the biodegradation rates as compared to a control (on average about 260%). Aerobic biodegradation of hydrocarbons can benefit from the presence of oxygen released during H2O2 decomposition. Adding of aerated water resulted in an increase of biodegradation rates (about 114 - 229%) as compared to a control. The aerated water can both be the source of oxygen for microorganisms and determine the transport of substrate to bacteria cells.

Zawierucha, I.; Malina, G.

2011-04-01

231

Ecotoxicological and analytical assessment of hydrocarbon-contaminated soils and application to ecological risk assessment  

SciTech Connect

Ecotoxicological assessments of contaminated soil aim to understand the effect of introduced chemicals on the soil flora and fauna. Ecotoxicity test methods were developed and conducted on hydrocarbon-contaminated soils and on adjacent uncontaminated control soils from eight field locations. Tests included 7-d, 14-d, and chronic survival tests and reproduction assays for the earthworm (Eisenia fetida) and seed germination, root length, and plant growth assays for corn, lettuce, mustard, and wheat. Species-specific responses were observed with no-observed effect concentrations (NOECs) ranging from <1 to 100% contaminated soil. The 14-d earthworm survival NOEC was equal to or greater than the reproduction NOEC values for numbers of cocoons and juveniles, which were similar to one another. Cocoon and juvenile production varied among the control soils. Germination and root length NOECs for mustard and lettuce were less than NOECs for corn and wheat. Root length NOECs were similar to or less than seed germination NOECs. Statistically significant correlations for earthworm survival and seed germination as a function of hydrocarbon measurements were found. The 14-d earthworm survival and the seed germination tests are recommended for use in the context of a risk-based framework for the ecological assessment of contaminated sites.

Saterbak, A.; Toy, R.J.; Wong, D.C.L.; McMain, B.J.; Williams, M.P.; Dorn, P.B.; Brzuzy, L.P.; Chai, E.Y.; Salanitro, J.P.

1999-07-01

232

Hydrocarbon contamination and plant species determine the phylogenetic and functional diversity of endophytic degrading bacteria.  

PubMed

Salt marsh sediments are sinks for various anthropogenic contaminants, giving rise to significant environmental concern. The process of salt marsh plant survival in such environment is very intriguing and at the same time poorly understood. The plant–microbe interactions may play a key role in the process of environment and in planta detoxification.In this study, a combination of culture-dependent and culture-independent molecular approaches [enrichment cultures, polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE), DNA sequencing] were used to investigate the effect of petroleum hydrocarbons (PH) contamination on the structure and function[polycyclic aromatic hydrocarbon (PAH) dioxygenase genes] of endophytic bacterial communities of salt marsh plant species (Halimione portulacoides and Sarcocornia perennis)in the estuarine system Ria de Aveiro (Portugal). Pseudomonads dominated the cultivable fraction of the endophytic communities in the enrichment cultures. In a set of fifty isolates tested, nine were positive for genes encoding for PAH dioxygenases (nahAc)and four were positive for plasmid carrying genes encoding PAH degradation enzymes(nahAc). Interestingly, these plasmids were only detected in isolates from most severely PH-polluted sites. The results revealed site-specific effects on endophytic communities,related to the level of PH contamination in the sediment, and plant-species-specific ‘imprints’ in community structure and in genes encoding for PAH dioxygenases. These results suggest a potential ecological role of bacterial plant symbiosis in the process of plant colonization in urban estuarine areas exposed to PH contamination. PMID:24765659

Oliveira, Vanessa; Gomes, Newton C M; Almeida, Adelaide; Silva, Artur M S; Simões, Mário M Q; Smalla, Kornelia; Cunha, Ângela

2014-03-01

233

Hydrochemical and Isotopic Evidence of Natural Attenuation at the Gas Station Contaminated with Fuel Hydrocarbon  

NASA Astrophysics Data System (ADS)

Groundwater flow, hydrochemistry and the carbon isotope composition (d13C) of dissolved inorganic carbon (DIC) were measured to know the effect of natural attenuation which is induced by biodegradation of petroleum hydrocarbon at the abandoned gas station contaminated fuel hydrocarbons. The aquifer sediment consists of 4 to 5 m of unconsolidated and weathered soils overlying granite. The monitoring results of water level showed the immediate response of that to rainfall. This implies that the site is an unconfined aquifer or is located at the near of groundwater recharge area. The contaminant transport modeling using GMS showed that the contaminants, BTEX, transported to two main directions, south and southwest from UST and pipeline. These results were proved by the filed observation of the BTEX from the groundwater seepage at the streams of south and southwest area. The geochemical indicator of natural attenuation, red iron precipitate, was also observed at the groundwater seepage. The hydrochemical indicators, Fe(II), Mn(II), sufides, and methane, of terminal electron accepting processes represented the sulfate reducing and methanogenesis environment of the site. d13C values of DIC ranged from -20.2 to -9.3 permil and increased in the source zone by the microbial degradation of hydrocarbon under methanogenic condition. The enrichment of isotopically heavy C is caused by the production of light 12CH4 from microbial respiration. The molar ratio of Ca to HCO3 is about 2.5 and this indicates the contribution of microbial oxidation of fuel hydrocarbon to DIC in groundwater. The geochemical modeling using PHREEQC showed the oversaturation of siderite, rhodocrosite and goethite and the saturation index of calcite increased as the increase of bicarbonate, indicating the enhanced microbial degradation. From the research results, the mineralogical, hydrological and microbiological factors can exert influence on groundwater chemistry and d13C of DIC.

Ko, K.; Oh, I.; Suk, H.; Lee, K.

2005-12-01

234

Resistivity and Induced Polarization Imaging at a Hydrocarbon Contaminated Site in Brazil  

NASA Astrophysics Data System (ADS)

An area contaminated by accidental BTEX spills was investigated with resistivity and induced polarization methods. The main objective in this study was to relate the geophysical signature of the area with zones that were possibly undergoing microbial degradation of the contaminants. The spills took place over a decade ago; however, the exact location of these spills is unknown, as well as the amount of contaminant that was released into the subsurface. DC-resistivity identified a high contrast between the background (rho up to 2000 ohm.m) and a relatively conductive zone (rho < 100 ohm.m), where high chargeabilities were also measured (m > 30 mV/V). Normalized chargeability is enhanced in this anomaly zone (mn > 0.1). Soil samples collected in the area were submitted to direct bacterial count, clay content estimation, X-ray diffraction and SEM analysis. The electrical properties of each samples was also measured. The samples collected from the "background" (high resistivity zone) presented total bacterial amounts much smaller (dozens of colony forming units) than the samples from the conductive zone (millions of colony forming units). This observation could lead us to interpret that the zone of higher bacteria amount is undergoing biodegradation that would explain the increased conductivity at that portion of the subsurface. However, the geophysical properties observed at this zone could also be related to the clay content distribution throughout the surveyed area (concentrations up to 30%). Moreover, despite the fact that more microbes were found in the area, SEM images did not find any biodegradation typical feature of the grains, which are for example, mineral corrosion and dissolution or even biomineralization. This study is still undergoing and we are searching for more evidence of biodegradation in the samples. This study shows the limitation of the use of geophysical methods to access contaminant presence and/or biodegradation zones when the exact location of the contamination is unknown.

Ustra, A.; Elis, V.; Hiodo, F.; Bondioli, A.; Miura, G.

2012-12-01

235

Environmental analysis of endocrine disrupting effects from hydrocarbon contaminants in the ecosystem. 1997 annual progress report  

SciTech Connect

'The overall objective of the basic research grant is to characterize the potential of common hydrocarbon contaminants in ecosystems to act as endocrine disruptors. The three major lines of research include (1) a biotechnology based screening system to identify potential hormone mimics and antagonists; (2) an animal screening system to identify biomarkers of endocrine effects. and (3) a literature review to identify compounds at a variety of DOE sites that need to be examined for endocrine disrupting effects. By relating results obtained from this research project to contamination problems at various DOE sites. CBR will provide data and information on endocrine disrupting contaminants to DOE for consideration in risk analyses for determining clean-up levels and priorities needed at the sites.'

NONE

1997-01-01

236

Bioremediation of contaminated groundwater  

DOEpatents

Disclosed is an apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid (NF) is selected to simulated the growth and reproduction of indigenous subsurface microorganisms capable of degrading the contaminants; an oxygenated fluid (OF) is selected to create an aerobic environment with anaerobic pockets. NF is injected periodically while OF is injected continuously and both are extracted so that both are drawn across the plume. NF stimulates microbial colony growth; withholding it periodically forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is acceptable. NF can be methane and OF be air, for stimulating production of methanotrophs to break down chlorohydrocarbons, especially TCE and tetrachloroethylene.

Hazen, T.C.; Fliermans, C.B.

1994-01-01

237

Mechanical Alteration And Contamination Issues In Automated Subsurface Sample Acquisition And Handling  

NASA Astrophysics Data System (ADS)

The Drilling Automation for Mars Exploration (DAME) project's purpose is to develop and field-test drilling automation and robotics technologies for projected use in missions in the 2011-15 period. DAME includes control of the drilling hardware, and state estimation of both the hardware and the lithography being drilled and the state of the hole. A sister drill was constructed for the Mars Analog Río Tinto Experiment (MARTE) project and demonstrated automated core handling and string changeout in 2005 drilling tests at Rio Tinto, Spain. DAME focused instead on the problem of drill control while actively drilling while not getting stuck. Together, the DAME and MARTE projects demonstrate a fully automated robotic drilling capability, including hands-off drilling, adjustment to different strata and downhole conditions, recovery from drilling faults (binding, choking, etc.), drill string changeouts, core acquisition and removal, and sample handling and conveyance to in-situ instruments. The 2006 top-level goal of DAME drilling in-situ tests was to verify and demonstrate a capability for hands-off automated drilling, at an Arctic Mars-analog site. There were three sets of 2006 test goals, all of which were exceeded during the July 2006 field season. The first was to demonstrate the recognition, while drilling, of at least three of the six known major fault modes for the DAME planetary-prototype drill, and to employ the correct recovery or safing procedure in response. The second set of 2006 goals was to operate for three or more hours autonomously, hands-off. And the third 2006 goal was to exceed 3m depth into the frozen breccia and permafrost with the DAME drill (it had not gone further than 2.2m previously). Five of six faults were detected and corrected, there were 43 hours of hands-off drilling (including a 4 hour sequence with no human presence nearby), and 3.2m was the total depth. And ground truth drilling used small commercial drilling equipment in parallel in order to obtain cores and ice profiles at the drilling site. In the course of DAME drilling automation testing, the drilling-induced temperature gradients and their effects on encountered subsurface permafrost and ice layers were observed while drilling in frozen impact breccia at Haughton Crater. In repeated tests of robotic core removal processing and handling in the MARTE project, including field tests, cross-contamination issues arose between successive cores and samples, and procedures and metrics were developed for minimizing the cross-contamination. The MARTE core processing cross-contamination aspects were tested by analyzing a set of pristine samples (those stratigraphically known) vs. cuttings (loose clays) or artifacts from the robotic drilling (indurated clay layers). MARTE ground truth drilling, in parallel with the automated tests, provided control information on the discontinuity/continuity of the stratigraphic record (i.e., texture, color and structure of loose and consolidated materials).

Glass, B. J.; Cannon, H.; Bonaccorsi, R.; Zacny, K.

2006-12-01

238

[Compositions and residual properties of petroleum hydrocarbon in contaminated soil of the oilfields].  

PubMed

The aims of this study were to determine the compositions and residual properties of petroleum hydrocarbon in soil, as well as to identify the source and weathering degree of the pollution. A total of 5 producing wells in Gudao and Hekou oil producing region of Shengli oilfields were analyzed. More than 50 individual target compounds including straight-and branched-chain alkanes( n-alkanes, pristine and phytane) and polycyclic aromatic hydrocarbons (PAHs) in soil samples and crude oil were determined by gas chromatography-mass spectrometry (GC-MS). The percentages of chain alkanes and PAHs in total solvent extractable matters(TSEM) of soil samples were both much lower than those in the crude oil samples. The compositions of petroleum hydrocarbon in soil samples differed from those in crude oil, which indicated the n-alkanes with carbon numbers <12 were much easier to lose in contrast to the n-alkanes with high carbon numbers. With n-octadecane/phytane as index for the weathering rate of oil contaminated soils, the relationship between the index and petroleum hydrocarbon compounds was analyzed using principal component analysis (PCA). The results showed that the n-alkanes with carbon numbers > 33 and the PAHs with rings between 3 and 5 were much harder to degrade. PCA of 4 indexes for source identification revealed more than 50% of the soil samples were polluted by crude oil, which needs more attention during remediation. PMID:24720209

Hu, Di; Li, Chuan; Dong, Qian-Qian; Li, Li-Ming; Li, Guang-He

2014-01-01

239

A Wireless Sensor Network Based Closed-Loop System for Subsurface Contaminant Plume Monitoring  

E-print Network

sensor networking. 1 Introduction Toxic chemicals and biological agents are released into the subsurface as a result of accidental spills, improper dis- posal, or intentional damage. These releases can occur

Han, Qi "Chee"

240

Germination of Lepidium sativum as a method to evaluate polycyclic aromatic hydrocarbons (PAHs) removal from contaminated soil  

Microsoft Academic Search

The sensitivity of Lepidium sativum germination to polycyclic aromatic hydrocarbons (PAHs) was investigated in soil(s) artificially and historically contaminated with mixtures of PAH. The level of germination of L. sativum decreased with increasing concentration of the PAH in the artificially contaminated soil, while no germination occurred in the historically polluted soil. At a concentration of 1000 and 50ppm, the germination

Mphekgo P. Maila; Thomas E. Cloete

2002-01-01

241

MONITORING THE SUCCESS OF SEDIMENT REMEDIATION AT A SITE CONTAMINATED WITH CHLORINATED PESTICIDES, POLYNUCLEAR AROMATIC HYDROCARBONS AND ARSENIC  

EPA Science Inventory

Monitoring the Success of Sediment Remediation at a Site Contaminated with Chlorinated Pesticides, Polynuclear Aromatic Hydrocarbons and Arsenic (Baird & McGuire Superfund Site, Holbrook, MA) Contaminated sediment in the Cochato River adjacent to the Baird & McGuire Superfund Sit...

242

Quantitative assessment of hydrocarbon contamination in soil using reflectance spectroscopy: a "multipath" approach.  

PubMed

Petroleum hydrocarbons are contaminants of great significance. The commonly used analytic method for assessing total petroleum hydrocarbons (TPH) in soil samples is based on extraction with 1,1,2-Trichlorotrifluoroethane (Freon 113), a substance prohibited to use by the Environmental Protection Agency. During the past 20 years, a new quantitative methodology that uses the reflected radiation of solids has been widely adopted. By using this approach, the reflectance radiation across the visible, near infrared-shortwave infrared region (400-2500 nm) is modeled against constituents determined using traditional analytic chemistry methods and then used to predict unknown samples. This technology is environmentally friendly and permits rapid and cost-effective measurements of large numbers of samples. Thus, this method dramatically reduces chemical analytical costs and secondary pollution, enabling a new dimension of environmental monitoring. In this study we adapted this approach and developed effective steps in which hydrocarbon contamination in soils can be determined rapidly, accurately, and cost effectively solely from reflectance spectroscopy. Artificial contaminated samples were analyzed chemically and spectrally to form a database of five soils contaminated with three types of petroleum hydrocarbons (PHCs), creating 15 datasets of 48 samples each at contamination levels of 50-5000 wt% ppm (parts per million). A brute force preprocessing approach was used by combining eight different preprocessing techniques with all possible datasets, resulting in 120 different mutations for each dataset. The brute force was done based on an innovative computing system developed for this study. A new parameter for evaluating model performance scoring (MPS) is proposed based on a combination of several common statistical parameters. The effect of dividing the data into training validation and test sets on modeling accuracy is also discussed. The results of this study clearly show that predicting TPH levels at low concentrations in selected soils at high precision levels is viable. Dividing a dataset into training, validation, and test groups affects the modeling process, and different preprocessing methods, alone or in combination, need to be selected based on soil type and PHC type. MPS was found to be a better parameter for selecting the best performing model than ratio of prediction to deviation, yielding models with the same performance but less complicated and more stable. The use of the "all possibilities" system proved to be mandatory for efficient optimal modeling of reflectance spectroscopy data. PMID:24160885

Schwartz, Guy; Ben-Dor, Eyal; Eshel, Gil

2013-11-01

243

An application of permeable reactive barrier technology to petroleum hydrocarbon contaminated groundwater.  

PubMed

A funnel and gate permeable reactive barrier was designed and built to treat groundwater contaminated with dissolved phase toluene. ethyl benzene. and xylene and n-alkanes in the C6-C36 fraction range. Removal efficienicies for the funnel and gate system varied from 63% to 96% for the monocyclic aromatic hydrocarbons. Average removal efficiencies for C6-C9, C10-C14, and C15-C28 fraction ranges were 69.2%, 77.6% and 79.5%. respectively. The lowest average removal efficiencies were 54% for the C29-C36 n-alkane fraction. The overall average removal efficiency for the funnel and gate system towards petroleum hydrocarbons present in the groundwater was 72% during the 10 month period over which the data were collected, and has allowed relevant water quality objectives to be met. PMID:11766790

Guerin, Turlough F; Horner, Stuart; McGovern, Terry; Davey, Brent

2002-01-01

244

Hydrocarbons in sediments of a chronically contaminated bay: the challenge of source assignment.  

PubMed

Aliphatic hydrocarbons and 39 PAH (parental and alkylated homologs) determined in ca. 100 sediment samples from the Guanabara Bay, Rio de Janeiro, were evaluated for source discrimination using new approaches. Concentrations of total PAH were in the range of 96-135,000 ?g kg(-1) similar to other coastal urbanized embayment. Traditional diagnostic ratios were not as efficient PAH source indicators, e.g. biomass combustion was assigned as the major source of the pyrolytic PAH although the hydrographic basin is highly industrialized and urbanized. It is proved petrogenic imprint cannot be detected if only the 16 USEPA PAH are determined. The high production in the eutrophic system is not apparent in the aliphatic fraction dominated by land derived n-alkanes due to the effectiveness of microbial degradation. The present work demonstrates the complexity of hydrocarbon forensics when applied to chronically contaminated environments. PMID:22178011

Wagener, Angela de L R; Meniconi, Maria de Fátima G; Hamacher, Claudia; Farias, Cassia O; da Silva, Gilson C; Gabardo, Irene T; Scofield, Arthur de L

2012-02-01

245

Use of Advanced Oxidation and Aerobic Degradation for Remediation of Various Hydrocarbon Contaminates  

SciTech Connect

Western Research Institute in conjunction with Sierra West Consultants, Inc., Tetra Tech, Inc., and the U.S. Department of Energy conducted laboratory and field studies to test different approaches to enhance degradation of hydrocarbons and associated contaminants. WRI in conjunction with Sierra West Consultants, Inc., conducted a laboratory and field study for using ozone to treat a site contaminated with MTBE and other hydrocarbons. Results from this study demonstrate that a TOD test can be used to resolve the O{sub 3} dosage problem by establishing a site-specific benchmark dosage for field ozone applications. The follow-up testing of the laboratory samples provided indications that intrinsic biodegradation could be stimulated by adding oxygen. Laboratory studies also suggests that O3 dosage in the full-scale field implementation could be dialed lower than stoichiometrically designed to eliminate the formation of Cr(VI). WRI conducted a study involving a series of different ISCO oxidant applications to diesel-contaminated soil and determined the effects on enhancing biodegradation to degrade the residual hydrocarbons. Soils treated with permanganate followed by nutrients and with persulfate followed by nutrients resulted in the largest decrease in TPH. The possible intermediates and conditions formed from NOM and TPH oxidation by permanganate and activated persulfate favors microbial TPH degrading activity. A 'passive-oxidation' method using microbial fuel cell (MFC) technology was conducted by WRI in conjunction with Tetra Tech, Inc., to degrade MTBE in groundwater. These experiments have demonstrated that a working MFC (i.e., one generating power) could be established in the laboratory using contaminated site water or buffered media inoculated with site water and spiked with MTBE, benzene, or toluene. Electrochemical methods were studied by WRI with goal of utilizing low voltage and amperage electrical sources for 'geo-oxidation' of organic contaminants. The results from a study with TCE contaminated-clay indicate that electrochemically inducing reductive dechlorination of TCE in a saturated matrix may offer an effective and viable alternative to remediation TCE and other contaminants with potential of being reduced. Another study focused on steel wool oxidation to electrochemically increase population of hydrocarbon-degrading denitrifying bacteria. Significantly larger denitrifying activity was observed in the cathode chamber of a treatment unit setup like an MFC with steel wool as the anode. This enhanced nitrate reduction could be due to direct electron utilization by denitrifying bacteria on the cathode, thereby stimulating microbial denitrification or a combination of electron transfer directly to NO{sub 3}{sup -} and electron transfer to nitrate reducing bacteria, which may serve as a type of bio-catalyst on the cathode for nitrate reduction. Overall, the studies conducted under Task 72 demonstrated different innovative methods to enhance petroleum hydrocarbon degradation and associated contaminants.

Paul Fallgren

2009-03-06

246

Migration of selected hydrocarbon contaminants into dry pasta packaged in direct contact with recycled paperboard.  

PubMed

This paper deals with the migration of selected hydrocarbon contaminants, namely mineral oil hydrocarbons (MOH), diisopropyl naphthalenes (DIPN) and polyalphaolefins (PAO) from adhesives into dry semolina and egg pasta packaged in direct contact with recycled paperboard. Migration was monitored during its shelf life (for up to two years) simulating storage in a supermarket (packs on shelves) and conditions preventing exchange with the surrounding environment (packs wrapped in aluminium foil). Migration from the secondary packaging (transport boxes of corrugated board) was also studied for semolina pasta. After 24 months of exposure, semolina pasta stored on shelves reached 3.2 and 0.6 mg kg(-1) of MOSH and MOAH, respectively, Migration from the adhesives used to close the boxes and from the transport boxes contributed about 30% and 25% of the total contamination, respectively. The highest contamination levels (14.5 and 2.0 mg kg(-1) of MOSH and MOAH, respectively, after 24 months) were found in egg pasta stored on shelves (no adhesives), and seemed due to the highest contribution from the external environment. PMID:25571955

Barp, Laura; Suman, Michele; Lambertini, Francesca; Moret, Sabrina

2015-01-01

247

Remediation of hydrocarbon-contaminated soils by ex situ microwave treatment: technical, energy and economic considerations.  

PubMed

In this study, the remediation of diesel-polluted soils was investigated by simulating an ex situ microwave (MW) heating treatment under different conditions, including soil moisture, operating power and heating duration. Based on experimental data, a technical, energy and economic assessment for the optimization of full-scale remediation activities was carried out. Main results show that the operating power applied significantly influences the contaminant removal kinetics and the moisture content in soil has a major effect on the final temperature reachable during MW heating. The first-order kinetic model showed an excellent correlation (r2 > 0.976) with the experimental data for residual concentration at all operating powers and for all soil moistures tested. Excellent contaminant removal values up to 94.8% were observed for wet soils at power higher than 600 W for heating duration longer than 30 min. The use of MW heating with respect to a conventional ex situ thermal desorption treatment could significantly decrease the energy consumption needed for the removal of hydrocarbon contaminants from soils. Therefore, the MW treatment could represent a suitable cost-effective alternative to the conventional thermal treatment for the remediation of hydrocarbon-polluted soil. PMID:25145181

Falciglia, P P; Vagliasindi, F G A

2014-01-01

248

RESEARCH PROJECT -- NITRATE AS AN ALTERNATE ELECTRON ACCEPTOR FOR BIOREMEDIATION OF FUEL-CONTAMINATED AQUIFERS (SUBSURFACE PROTECTION AND REMEDIATION DIVISION, NRMRL)  

EPA Science Inventory

For the past several years, an extensive investigation has been conducted into the feasibility of using nitrate as an alternate electron acceptor for stimulating anaerobic biodegradation of petroleum hydrocarbons for in situ bioremediation of contaminated aquifers. This has invo...

249

RESEARCH PROJECT -- IN SITU CO-OXIDATION OF CHLORINATED SOLVENTS DURING BIOVENTING OF PETROLEUM HYDROCARBONS (SUBSURFACE PROTECTION AND REMEDIATION DIVISION, NRMRL)  

EPA Science Inventory

There are a large number of sites containing both petroleum hydrocarbons and chlorinated solvents. Fire training pits at military bases are the most common example. These were often used to dispose of waste oils and solvents. Incomplete burning resulted in releases of contamin...

250

Temporal evolution of the geoelectrical response on a hydrocarbon contaminated site  

NASA Astrophysics Data System (ADS)

A geoelectrical campaign was initiated in 2009 to delineate a massive hydrocarbon spill, which occurred because of a petroleum pipe breakdown in 2009. These measurements have been compared with both field resistivity measurements made in 2009 and with laboratory measurements. From a physicochemical point of view, a hydrocarbon contamination has to be understood as a spatially and temporally varying object, responsible for a change in geoelectrical response. To evaluate the signal measured on site, geoelectrical laboratory measurements were performed on the petroleum oil extracted from the site during two stages of degradation. On the laboratory scale, the non-degraded oil shows an increase in resistivity, normalized chargeability and quadrature conductivity with oil content, whereas the degraded oil indicates a slight decrease in resistivity, but no modification of the phase-lag and chargeability parameters. In the field, resistivity measurements performed in 2009, just after the pipe breakdown, show weak changes in resistivity measured over the contaminated area. However, between 2009 and 2012, biodegradation of the oil has led to a clear decrease in the resistivity within the impacted zone. No variations in normalized chargeability or quadrature conductivity were measured in 2012 between the contaminated and the non-contaminated areas, despite the presence of biofilms. In the field, the studied hydrocarbon contamination under degradation appears not to modify the capacitive part of conduction, but rather it concerns the ohmic part of conduction. The field and laboratory measurements led us to the conclusion that to choose the most discriminatory and efficient geophysical parameters, it is necessary to have a priori information about the oil (i.e. non-degraded or partially degraded). In the present case study, there is no need to acquire chargeability and phase-lag parameters to locate the contamination in the field, as they do not undergo any change. On the other hand, the resistivity parameter is a good indicator of the presence of partially degraded oil. We also note that normalized chargeability values have been very useful in characterizing the geometry of the clayey-silt roof.

Blondel, Amélie; Schmutz, Myriam; Franceschi, Michel; Tichané, Frédéric; Carles, Margaux

2014-04-01

251

Assessment of petroleum-hydrocarbon contamination in the surficial sediments and ground water at three former underground storage tank locations, Fort Jackson, South Carolina, 1995  

USGS Publications Warehouse

Ground-water and sediment contamination by petroleum hydrocarbons resulting from leaks and overfills was detected during tank removal activities at three former underground storage tank locations at Fort Jackson, near Columbia, South Carolina. Investigations were initiated to assess the effect of contamination to the surficial aquifer at Sites 1062, 2438, and 2444. These investigations involved the installation of permanent monitoring wells and the collection and analysis of sediment and ground-water samples at the three sites. Water-level data were collected at all sites to determine hydraulic gradients and the direction of ground-water flow. In addition, aquifer tests were made at Site 1062 to determine the hydraulic conductivity of the surficial aquifer at that site. Sediment borings were made at the three sites to collect subsurface-sediment samples for lithologic description and laboratory analyses, and for the installation of ground-water monitoring wells. Laboratory analyses of sediment samples collected from boreholes at Site 1062 indicated elevated concentrations of petroleum hydrocarbons at three locations. Total Petroleum Hydrocarbons - Diesel Range Organics were detected at one borehole at a concentration of 388,000 micrograms per kilogram. Total benzene, toluene, ethylbenzene, and xylene concentrations in sediment from the site ranged from less than 350 to over 100,000 micrograms per kilogram. Total lead was detected at concentrations ranging from 2,900 to 5,900 micrograms per kilogram. Petroleum hydrocarbons were detected at Site 2438 in one borehole at a trace concentration of 112 micrograms per kilogram of para- and meta-xylenes. No concentrations exceeding the detection limits were reported for petroleum hydrocarbons in sediment samples collected from Site 2444; however, total lead was detected in sediment samples from two boreholes, each at concentrations of 600 micrograms per kilogram. Ground-water samples were collected from each site for laboratory analysis and field-property determinations. Petroleum hydrocarbons and lead were detected at concentrations exceeding regulatory limits for drinking water in ground water from Site 1062 only. Petroleum hydrocarbons were detected in ground water from three wells at Site 1062, with the highest concentrations occurring in the area of the former underground storage tanks. Benzene was detected at concentrations as much as 28 micrograms per liter; toluene as much as 558 micrograms per liter; para- and meta-xylenes as much as 993 micrograms per liter; and naphthalene as much as 236 micrograms per liter. Ethylbenzene and ortho-xylene were detected in one well at concentrations of 70 and 6 micrograms per liter, respectively. Dissolved lead was detected in ground water from four wells at concentrations from 5 to 152 micrograms per liter. Analysis of ground-water samples collected from Sites 2438 and 2444 showed little evidence of petroleum-hydrocarbon contamination. Petroleum hydrocarbons were not detected in any of the ground-water samples collected from Site 2438. With the exception of a low concentration of naphthalene (11 micrograms per liter) detected in ground water from one well, petroleum hydrocarbons and lead were not detected in ground water collected from Site 2444.

Robertson, J.F.

1996-01-01

252

COMPARISON OF METHODS TO DETERMINE OXYGEN DEMAND FOR BIOREMEDIATION OF A FUEL CONTAMINATED AQUIFER  

EPA Science Inventory

Four analytical methods were compared for estimating concentrations of fuel contaminants in subsurface core samples. The methods were total organic carbon, chemical oxygen demand, oil and grease, and a solvent extraction of fuel hydrocarbons combined with a gas chromatographic te...

253

COMPARISON OF METHODS TO DETERMINE OXYGEN DEMAND FOR BIOREMEDIATION OF A FUEL CONTAMINATED AQUIFER  

EPA Science Inventory

Four analytical methods were compared for estimating concentrations of fuel contaminants in subsurface core samples. he methods were total organic carbon, chemical oxygen demand, oil and grease, and a solvent extraction of fuel hydrocarbons combined with a gas chromatographic tec...

254

Effect of hydrocarbon contamination on laboratory measurements of the streaming potential coupling coefficient  

NASA Astrophysics Data System (ADS)

Streaming potential and geochemical electrical potential both contribute to the spontaneous potentials (SP). In the last decade, SP has been used to map reduced groundwater contaminant plumes. In these cases, the geochemical electrical potential is of interest, and the streaming potential must be modelled and subtracted from the measured SP. Streaming potential can be modelled using the relationship ??? = -L?P, where ? is conductivity,? electrical potential, L streaming current coupling coefficient and P pressure. L cannot be measured directly so it is obtained from L = -?C, where C is the streaming potential coupling coefficient. Commonly, the parameter C is assumed to be constant when modelling the streaming potential both inside and outside of the reduced plume. We postulated that organic contaminants change the sediment surface properties, thereby affecting L, and performed laboratory experiments to test this hypothesis. We used sediment and groundwater samples from hydrocarbon impacted field sites. Samples were equilibrated with water from the site for several weeks before the tests. Each sample was split in two and tested with clean water and hydrocarbon polluted water in an apparatus constructed loosely following the design of Sheffer (2005). The L of the polluted sub-samples was lower than the L of the unpolluted sub-samples for five of the six samples tested. Other parameters measured were hydraulic conductivity, cation exchange capacity, and for the fluid; electrical conductivity, pH, major ions and hydrocarbons, F1 (C6-C10), BTEX, and F2 (C10-C16). These results suggest part of the change in the SP signal measured over contaminant plumes may be due to varying streaming current coupling coefficients. In such cases, the use of a constant coupling coefficient for the removal of the streaming potential contribution is inappropriate.

Forté, S.; Bentley, L. R.

2009-12-01

255

Bioremediation of poly-aromatic hydrocarbon (PAH)-contaminated soil by composting  

SciTech Connect

This paper presents a comprehensive and critical review of research on different co-composting approaches to bioremediate hydrocarbon contaminated soil, organisms that have been found to degrade PAHs, and PAH breakdown products. Advantages and limitations of using certain groups of organisms and recommended areas of further research effort are identified. Studies investigating the use of composting techniques to treat contaminated soil are broad ranging and differ in many respects, which makes comparison of the different approaches very difficult. Many studies have investigated the use of specific bio-additives in the form of bacteria or fungi with the aim of accelerating contaminant removal; however, few have employed microbial consortia containing organisms from both kingdoms despite knowledge suggesting synergistic relationships exist between them in contaminant removal. Recommendations suggest that further studies should attempt to systemize the investigations of composting approaches to bio-remediate PAH-contaminated soil, to focus on harnessing the biodegradative capacity of both bacteria and fungi to create a cooperative environment for PAH degradation, and to further investigate the array of PAHs that can be lost during the composting process by either leaching or volatilization.

Loick, N.; Hobbs, P.J.; Hale, M.D.C.; Jones, D.L. [University of Wales, Bangor (United Kingdom). School of Environmental & Natural Resources

2009-07-01

256

Evaluation of electrochemical processes for the removal of several target aromatic hydrocarbons from petroleum contaminated water.  

PubMed

Ground and surface water contamination resulting from the leakage of crude oil and refined petroleum products is a serious and growing environmental problem throughout the world. Consequently, a study of the use of electrochemical treatment in the clean-up was undertaken with the aim of reducing the water contamination by aromatic pollutants to more acceptable levels. In the experiments described, water contamination by refined petroleum products was simulated under laboratory conditions. Electrochemical treatment, using aluminium electrodes, has been optimised by full factorial design and surface response analysis in term of BTEX and PAHs removal and energy consumption. The optimal conditions of pH, current density, electrolysis time, electrolyte type, and electrolyte concentration have then been applied in the treatment of real water samples which were monitored as petroleum contaminated samples. Treatment results have shown that electrochemical methods could achieve the concentration of these pollutants to undetectable levels in particular groundwater and surface water, hence, they can be highly effective in the remediation of water contaminated by aromatic hydrocarbons, and the use of these processes is therefore recommended. PMID:21243149

Alsalka, Yamen; Karabet, François; Hashem, Shahir

2011-03-01

257

Reduction of polycyclic aromatic hydrocarbons (PAHs) from petroleum-contaminated soil using thermal desorption technology  

SciTech Connect

The remediation of petroleum-contaminated soil typically requires the selection of a treatment option that addresses the removal of both volatile and semi-volatile organic compounds. Volatile organic compounds (VOCs), primarily BTEX (benzene, toluene, ethylbenzene, and xylenes) compounds, can be readily removed from the soil by a variety of well-established technologies. The semivolatile organic compounds, especially the polycyclic aromatic hydrocarbons (PAHS) that are characteristic of petroleum-contaminated soil, are not as amenable to conventional treatment. Low temperature thermal volatilization (LTTV) can be a viable treatment technology depending on the initial contaminant concentrations present and applicable cleanup objectives that must be attained. A-two-phase treatability study was conducted at 14 former underground storage tank (UST) sites to evaluate the applicability and effectiveness of LTTV for remediation of approximately 31,000 tons of PAH-contaminated soil. The PAHs of primary concern included benzo(a)anthracene, chrysene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(g,h,i)perylene, dibenz(a,h) anthracene, and indeno(1,2,3-cd)pyrene. During Phase 1, LTTV operational parameters were varied by trial-and-error and changes in soil treatment effectiveness were monitored. Phase B of the treatability study incorporated the appropriate treatment regime established during Phase 1 to efficiently remediate the remaining contaminated soil.

Silkebakken, D.M.; Davis, H.A.; Ghosh, S.B. [Parsons Engineering Science, Inc., Atlanta, GA (United States); Beardsley, G.P. [Air Force Base Conversion Agency, Rantoul, IL (United States)

1995-12-31

258

Interrelationship of Pyrogenic Polycyclic Aromatic Hydrocarbon (PAH) Contamination in Different Environmental Media  

PubMed Central

Interrelationships between pyrogenic polycyclic aromatic hydrocarbons (PAHs) were assessed in air, soil, water, sediment, and tree leaves by using multi-media monitoring data. Concurrent concentration measurements were taken bimonthly for a year for the multi-media at urban and suburban sites. PAH level correlations between air and other media were observed at the urban site but were less clear at the suburban site. Considering a closer PAHs distribution/fate characteristics to soil than suspended solids, contamination in sediment seemed to be governed primarily by that in soil. The partitioning of PAHs in waters could be better accounted for by sorption onto black carbon and dissolved organic carbon. PMID:22303141

Kim, Seung-Kyu; Lee, Dong Soo; Shim, Won Joon; Yim, Un Hyuk; Shin, Yong-Seung

2009-01-01

259

Microbial changes in rhizospheric soils contaminated with petroleum hydrocarbons after bioremediation.  

PubMed

Effects of bioremediation on microbial communities in soils contaminated with petroleum hydrocarbons are a scientific problem to be solved. Changes in dominate microbial species and the total amount of microorganisms including bacteria and fungi in rhizospheric soils after bioremediation were thus evaluated using field bioremediation experiments. The results showed that there were changed dominant microorganisms including 11 bacterial strains which are mostly Gram positive bacteria and 6 fungal species which were identified. The total amount of microorganisms including bacteria and fungi increased after bioremediation of microbial agents combined with planting maize. On the contrary, fungi in rhizospheric soils were inhibited by adding microbial agents combined with planting soybean. PMID:15900734

Lin, Xin; Li, Pei-Jun; Zhou, Qi-Xing; Xu, Hua-Xia; Zhang, Hai-Rong

2004-01-01

260

Evidence that bio-metallic mineral precipitation enhances the complex conductivity response at a hydrocarbon contaminated site  

NASA Astrophysics Data System (ADS)

The complex conductivity signatures of a hydrocarbon contaminated site, undergoing biodegradation, near Bemidji, Minnesota were investigated. This site is characterized by a biogeochemical process where iron reduction is coupled with the oxidation of hydrocarbon contaminants. The biogeochemical transformations have resulted in precipitation of different bio-metallic iron mineral precipitates such as magnetite, ferroan calcite, and siderite. Our main objective was to elucidate the major factors controlling the complex conductivity response at the site. We acquired laboratory complex conductivity measurements along four cores retrieved from the site in the frequency range between 0.001 and 1000 Hz. Our results show the following: (1) in general higher imaginary conductivity was observed for samples from contaminated locations compared to samples from the uncontaminated location, (2) the imaginary conductivity for samples contaminated with residual and free phase hydrocarbon (smear zone) was higher compared to samples with dissolved phase hydrocarbon, (3) vadose zone samples located above locations with free phase hydrocarbon show higher imaginary conductivity magnitude compared to vadose zone samples from the dissolved phase and uncontaminated locations, (4) the real conductivity was generally elevated for samples from the contaminated locations, but not as diagnostic to the presence of contamination as the imaginary conductivity; (5) for most of the contaminated samples the imaginary conductivity data show a well-defined peak between 0.001 and 0.01 Hz, and (6) sample locations exhibiting higher imaginary conductivity are concomitant with locations having higher magnetic susceptibility. Controlled experiments indicate that variations in electrolytic conductivity and water content across the site are unlikely to fully account for the higher imaginary conductivity observed within the smear zone of contaminated locations. Instead, using magnetite as an example of the bio-metallic minerals in the contaminated location at the site, we observe a clear increase in the imaginary conductivity response with increasing magnetite content. The presence of bio-metallic mineral phases (e.g., magnetite) within the contaminated location associated with hydrocarbon biodegradation may explain the high imaginary conductivity response. Thus, we postulate that the precipitation of bio-metallic minerals at hydrocarbon contaminated sites impacts their complex conductivity signatures and should be considered in the interpretation of complex conductivity data from oil contaminated sites undergoing intrinsic bioremediation.

Mewafy, Farag M.; Werkema, D. Dale; Atekwana, Estella A.; Slater, Lee D.; Abdel Aal, Gamal; Revil, André; Ntarlagiannis, Dimitrios

2013-11-01

261

In situ phytoremediation of a soil historically contaminated by metals, hydrocarbons and polychlorobiphenyls.  

PubMed

In the past several years, industrial and agricultural activities have led to serious environmental pollution, resulting in a large number of contaminated sites. As a result, much recent research activity has focused on the application of bioremediation technologies as an environmentally friendly and economically feasible means for decontamination of polluted soil. In this study horse manure and Populus nigra (var. italica) (HM + P treatment) have been used, at real scale level, as an approach for bioremediation of a soil historically contaminated by metals (Pb, Cr, Cd, Zn, Cu and Ni) and organic contaminants, such as polychlorobiphenyls and petroleum hydrocarbon. After one year, the HM + P phytotreatment was effective in the reclamation of the polluted soil from both organic and inorganic contaminants. A reduction of about 80% in total petroleum hydrocarbon (TPH), and 60% in polychlorobiphenyls (PCBs) and total metals was observed in the HM + P treatment. In contrast, in the horse manure (HM) treatment, used as control, a reduction of only about 30% of TPH was obtained. In order to assess both effectiveness and evolution of the remediation system to a biologically active soil ecosystem, together with the pollution parameters, the parameters describing the evolution of the soil functionality (enzymatic activities and protein SDS-PAGE pattern) were investigated. A stimulation of the metabolic soil processes (increase in dehydrogenase activity) was observed in the HM + P compared to the HM treatment. Finally, preliminary protein SDS-PAGE results have permitted the identification of proteins that have been recovered in the HM + P soil with respect to the HM; this may become a basic tool for improving the biogeochemical status of soil during the decontamination through the identification of microbial populations that are active in soil decontamination. PMID:22446585

Doni, S; Macci, C; Peruzzi, E; Arenella, M; Ceccanti, B; Masciandaro, G

2012-05-01

262

Interdisciplinary investigation of subsurface contaminant transport and fate at point-source releases of gasoline containing MTBE  

SciTech Connect

Methyl tert-butyl ether (MTBE) is commonly found at concentrations above the current U.S. Environmental Protection Agency draft lifetime health advisory for drinking water (20 to 200 micrograms per liter) at many point-source gasoline release sites. MTBE is significantly more persistent than benzene, toluene, ethyl-benzene and xylenes (BTEX) in the subsurface. Therefore, evaluation of the implications of its presence in gasoline to monitored natural attenuation and engineered bioremediation alternatives is warranted. An interdisciplinary, field-based investigation of the subsurface transport and fate of MTBE and petroleum hydrocarbons is being conducted by the U.S. Geological Survey (USGS) Toxic Substances Hydrology Program at the site of an underground gasoline storage-tank release near Beaufort, South Carolina. The objective of the investigation is to provide a systematic evaluation of natural attenuation of MTBE compared to BTEX. Results of the field and laboratory studies at this site will be generalized to a broader range of hydrogeochemical conditions through experiments at other sites. Furthermore, newly developed methods of analysis can be applied to sites across the Nation. This investigation of MTBE at point-source release sites is coordinated with investigations of the occurrence of MTBE in shallow ground water, surface water, precipitation, and the atmosphere being conducted by the USGS National Water-Quality Assessment Program.

Buxton, H.T.; Baehr, A.L. [Geological Survey, West Trenton, NJ (United States); Landmeyer, J.E. [Geological Survey, Columbia, SC (United States)] [and others

1997-12-31

263

Subsurface clade of Geobacteraceae that predominates in a diversity of Fe(III)-reducing subsurface environments  

SciTech Connect

There are distinct differences in the physiology of Geobacter species available in pure culture. Therefore, to understand the ecology of Geobacter species in subsurface environments, it is important to know which species predominate. Clone libraries were assembled with 16S rRNA genes and transcripts amplified from three subsurface environments in which Geobacter species are known to be important members of the microbial community: (1) a uranium-contaminated aquifer located in Rifle, CO, USA undergoing in situ bioremediation; (2) an acetate-impacted aquifer that serves as an analog for the long-term acetate amendments proposed for in situ uranium bioremediation and (3) a petroleum-contaminated aquifer in which Geobacter species play a role in the oxidation of aromatic hydrocarbons coupled with the reduction of Fe(III). The majority of Geobacteraceae 16S rRNA sequences found in these environments clustered in a phylogenetically coherent subsurface clade, which also contains a number of Geobacter species isolated from subsurface environments. Concatamers constructed with 43 Geobacter genes amplified from these sites also clustered within this subsurface clade. 16S rRNA transcript and gene sequences in the sediments and groundwater at the Rifle site were highly similar, suggesting that sampling groundwater via monitoring wells can recover the most active Geobacter species. These results suggest that further study of Geobacter species in the subsurface clade is necessary to accurately model the behavior of Geobacter species during subsurface bioremediation of metal and organic contaminants

Holmes, Dawn; O'Neil, Regina; Vrionis, Helen A.; N'guessan, Lucie A.; Ortiz-Bernad, Irene; Larrahondo, Maria J.; Adams, Lorrie A.; Ward, Joy A.; Nicoll, Julie S.; Nevin, Kelly P.; Chavan, Milind A.; Johnson, Jessica P.; Long, Philip E.; Lovely, Derek R.

2007-12-01

264

Geology and geohydrology at CRREL, Hanover, New Hampshire: Relationship to subsurface contamination. Special report  

Microsoft Academic Search

Trichloroethylene (TCE) was discovered in three of the industrial wells at CRREL, as well as in two domestic wells in bedrock across the river. This report describes the geohydrology of the CRREL vicinity and the subsurface behavior of TCE as part of the preliminary assessment of the CRREL site. There are three hydrologic units near CRREL-a high permeability esker deposit,

S. A. Shoop; L. W. Gatto

1992-01-01

265

Bioremediation of hydrocarbon-contaminated soils and groundwater in northern climates  

SciTech Connect

A field demonstration and research project was conducted in Fairbanks, Alaska, to demonstrate, evaluate, and document the construction and operation of three selected bioremediation technologies-landfarming, recirculating leachbeds, and infiltration galleries. Landfarming involves adding water and nutrients to contaminated soil to stimulate microbial activity and contaminant degradation. Infiltration galleries are dynamic in-situ treatment systems designed to stimulate microbial activity and subsequent hydrocarbon degradation by circulating nutrient and oxygen-amended water through petroleum-contaminated soil. Recirculating leachbeds, in a way similar to slurry reactors, aerate and mix nutrients with contaminated soil, and can be built as on-site bioreactors. Estimated biotreatment costs in the landfarm were between $20 to $30 per cubic yard ($15 to $23 per cubic meter). Nutrient placement has been demonstrated to be a critical factor, even though the site is tilled and mixed frequently. Success of the infiltration gallery was more difficult to document. Benzene was detected at less than 2 ppb and BTEX levels were less than 5 ppb for water extracted from the pumping well during 1992, which is significantly lower than the 1991 levels. Problems were encountered during the brief operation of the recirculating leach bed, but a similar system has performed well. Relatively simple, low-cost techniques provided significant potential for improving degradation rates.

Reynolds, C.M.; Braely, W.A.; Travis, M.D.; Perry, L.B.; Iskandar, I.K.

1998-03-01

266

Microbial activity in an acid resin deposit: biodegradation potential and ecotoxicology in an extremely acidic hydrocarbon contamination.  

PubMed

Acid resins are residues produced in a recycling process for used oils that was in use in the forties and fifties of the last century. The resin-like material is highly contaminated with mineral oil hydrocarbons, extremely acidic and co-contaminated with substituted and aromatic hydrocarbons, and heavy metals. To determine the potential for microbial biodegradation the acid resin deposit and its surroundings were screened for microbial activity by soil respiration measurements. No microbial activity was found in the core deposit. However, biodegradation of hydrocarbons was possible in zones with a lower degree of contamination surrounding the deposit. An extreme acidophilic microbial community was detected close to the core deposit. With a simple ecotoxicological approach it could be shown that the pure acid resin that formed the major part of the core deposit, was toxic to the indigenous microflora due to its extremely low pH of 0-1. PMID:16530313

Kloos, Karin; Schloter, Michael; Meyer, Ortwin

2006-11-01

267

Effects of petroleum hydrocarbon contaminated soil on germination, metabolism and early growth of green gram, Vigna radiata L.  

PubMed

The objective of the present study was to evaluate effects of petroleum hydrocarbon contaminated soil on the leguminous plant, Vigna radiata L. Seed germination, metabolism and early growth performance of V. radiata L. were studied as parameters by applying a combined approach. The employed combined method which included microcalorimetry and analysis of the root cross section revealed dose dependent effects of petroleum hydrocarbon contaminated soil on V. radiata L. for most parameters. Although significant reductions in measured parameters were observed even at low total petroleum hydrocarbon (TPH) levels such as 1 % and 1.5 %, calculated inhibitions, IC50 values and metabolic heat emission-time curves inferred that substantial negative effects can be expected on V. radiata L. in soils with comparatively high contamination levels, such as 2.5 % TPH and higher. PMID:23793799

Masakorala, Kanaji; Yao, Jun; Chandankere, Radhika; Yuan, Haiyan; Liu, Haijun; Yu, Chan; Cai, Minmin

2013-08-01

268

Phytoremediation of petroleum hydrocarbons in tropical coastal soils I. selection of promising woody plants  

Microsoft Academic Search

Goal, Scope and Background  This glasshouse study is aimed at evaluating tropical plants for phytoremediation of petroleum hydrocarbon-contaminated saline\\u000a sandy subsurface soils. Tropical plants were selected for their ability to tolerate high salinity and remove No. 2 diesel\\u000a fuel in coastal topsoil prior to further investigation of the phytoremediation feasibility in deep contaminated soils. The\\u000a residual petroleum-hydrocarbon contaminant at the John

Wenhao H. Sun; Joey B. Lo; Françoise M. Robert; Chittaranjan Ray; Chung-Shih Tang

2004-01-01

269

Characterization of the relationship between microbial degradation processes at a hydrocarbon contaminated site using isotopic methods  

NASA Astrophysics Data System (ADS)

Decisions to employ monitored natural attenuation (MNA) as a remediation strategy at contaminated field sites require a comprehensive characterization of the site-specific biodegradation processes. In the present study, compound-specific carbon and hydrogen isotope analysis (CSIA) was used to investigate intrinsic biodegradation of benzene and ethylbenzene in an aquifer with high levels of aromatic and aliphatic hydrocarbon contamination. Hydrochemical data and isotope fractionation analysis of sulfate and methane was used complementarily to elucidate microbial degradation processes over the course of a three year period, consisting of six sampling campaigns, in the industrial area of Weißandt-Gölzau (Saxony-Anhalt, Germany). Enrichment of 13C and 2H isotopes in the residual benzene and ethylbenzene pool downgradient from the pollution sources provided evidence of biodegradation of BTEX compounds at this site, targeting both compounds as the key contaminants of concern. The enrichment of heavy sulfur isotopes accompanied by decreasing sulfate concentrations and the accumulation of isotopically light methane suggested that sulfate-reducing and methanogenic processes are the major contributors to overall biodegradation in this aquifer. Along the contaminant plume, the oxidation of methane with ?13CCH4 values of up to + 17.5‰ was detected. This demonstrates that methane formed in the contaminant source can be transported along groundwater flow paths and be oxidized in areas with higher redox potentials, thereby competing directly with the pollutants for electron acceptors. Hydrochemical and isotope data was summarized in a conceptual model to assess whether MNA can be used as viable remediation strategy in Weißandt-Gölzau. The presented results demonstrate the benefits of combining different isotopic methods and hydrochemical approaches to evaluate the fate of organic pollutants in contaminated aquifers.

Feisthauer, Stefan; Seidel, Martin; Bombach, Petra; Traube, Sebastian; Knöller, Kay; Wange, Martin; Fachmann, Stefan; Richnow, Hans H.

2012-05-01

270

Influence of soil and hydrocarbon properties on the solvent extraction of high-concentration weathered petroleum from contaminated soils.  

PubMed

Petroleum ether was used to extract petroleum hydrocarbons from soils collected from six oil fields with different history of exploratory and contamination. It was capable of fast removing 76-94 % of the total petroleum hydrocarbons including 25 alkanes (C11-C35) and 16 US EPA priority polycyclic aromatic hydrocarbons from soils at room temperature. The partial least squares analysis indicated that the solvent extraction efficiencies were positively correlated with soil organic matter, cation exchange capacity, moisture, pH, and sand content of soils, while negative effects were observed in the properties reflecting the molecular size (e.g., molecular weight and number of carbon atoms) and hydrophobicity (e.g., water solubility, octanol-water partition coefficient, soil organic carbon partition coefficient) of hydrocarbons. The high concentration of weathered crude oil at the order of 10(5) mg kg(-1) in this study was demonstrated adverse for solvent extraction by providing an obvious nonaqueous phase liquid phase for hydrocarbon sinking and increasing the sequestration of soluble hydrocarbons in the insoluble oil fractions during weathering. A full picture of the mass distribution and transport mechanism of petroleum contaminants in soils will ultimately require a variety of studies to gain insights into the dynamic interactions between environmental indicator hydrocarbons and their host oil matrix. PMID:24442962

Sui, Hong; Hua, Zhengtao; Li, Xingang; Li, Hong; Wu, Guozhong

2014-05-01

271

Temporal and spatial changes of terminal electron-accepting processes in a petroleum hydrocarbon-contaminated aquifer and the significance for contaminant biodegradation  

Microsoft Academic Search

Identifying the predominant terminal electron-accepting processes (TEAPs) in contaminated groundwater is an important step in determining the fate of contaminants. Although petroleum hydrocarbons are most readily degraded under aerobic conditions it is apparent that degradation also occures on methanogenic, sulfate-reducing, ferric iron-reducing, and nitrate reducing conditions. Further, there is evidence that biodegradation rates depend on TEAPs. This paper examines the

Don A. Vroblesky; Francis H. Chapelle

1994-01-01

272

Bioremediation and reclamation of soil contaminated with petroleum oil hydrocarbons by exogenously seeded bacterial consortium: a pilot-scale study  

Microsoft Academic Search

Purpose  Spillage of petroleum hydrocarbons causes significant environmental pollution. Bioremediation is an effective process to remediate\\u000a petroleum oil contaminant from the ecosystem. The aim of the present study was to reclaim a petroleum oil-contaminated soil\\u000a which was unsuitable for the cultivation of crop plants by using petroleum oil hydrocarbon-degrading microbial consortium.\\u000a \\u000a \\u000a \\u000a \\u000a Materials and methods  Bacterial consortium consisting of Bacillus subtilis DM-04 and

Ashis K. Mukherjee; Naba K. Bordoloi

2011-01-01

273

Subsurface Drainage Contribution to Streamflow in Subsurface Drained Agricultural Watersheds  

Microsoft Academic Search

In intensively subsurface drained agricultural watersheds, subsurface drainage influences both the streamflow pattern and the water quality of the receiving streams. Quantification of subsurface drainage volume may improve flood forecasting, enable estimation of contaminant loading through subsurface drains and assist in identification of target areas for load reduction and water conservation measures. The streamflow in a typical subsurface drained watershed

S. Ale; L. C. Bowling

2010-01-01

274

Microbial Diversity and Bioremediation of a Hydrocarbon-Contaminated Aquifer (Vega Baja, Puerto Rico)  

SciTech Connect

Hydrocarbon contamination of groundwater resources has become a major environmental and human health concern in many parts of the world. Our objectives were to employ both culture and culture-independent techniques to characterize the dynamics of microbial community structure within a fluidized bed reactor used to bioremediate a diesel-contaminated groundwater in a tropical environment. Under normal operating conditions, 97 to 99% of total hydrocarbons were removed with only 14 min hydraulic retention time. Over 25 different cultures were isolated from the treatment unit (96% which utilized diesel constituents as sole carbon source). Approximately 20% of the isolates were also capable of complete denitrification to nitrogen gas. Sequence analysis of 16S rDNA demonstrated ample diversity with most belonging to the {infinity}, {beta} and {gamma} subdivision of the Proteobacteria, Bacilli, and Actinobacteria groups. Moreover, the genetic constitution of the microbial community was examined at multiple time points with a Functional Gene Array (FGA) containing over 12,000 probes for genes involved in organic degradation and major biogeochemical cycles. Total community DNA was extracted and amplified using an isothermal {phi}29 polymerase-based technique, labeled with Cy5 dye, and hybridized to the arrays in 50% formimide overnight at 50 C. Cluster analysis revealed comparable profiles over the course of treatment suggesting the early selection of a very stable microbial community. A total of 270 genes for organic contaminant degradation (including naphthalene, toluene [aerobic and anaerobic], octane, biphenyl, pyrene, xylene, phenanthrene, and benzene); and 333 genes involved in metabolic activities (nitrite and nitrous oxide reductases [nirS, nirK, and nosZ], dissimilatory sulfite reductases [dsrAB], potential metal reducing C-type cytochromes, and methane monooxygenase [pmoA]) were repeatedly detected. Genes for degradation of MTBE, nitroaromatics and chlorinated compounds were also present, indicating a broad catabolic potential of the treatment unit. FGA's demonstrated the early establishment of a diverse community with concurrent aerobic and anaerobic processes contributing to the bioremediation process.

Rodriguez-Martinex, Enid M. [University of Puerto Rico; Perez, Ernie [University of Puerto Rico; Schadt, Christopher Warren [ORNL; Zhou, Jizhong [University of Oklahoma; Massol-Deya, Arturo A. [University of Puerto Rico

2006-01-01

275

Microbial Diversity and Bioremediation of aHydrocarbon-Contaminated Aquifer (Vega Baja, Puerto Rico)  

SciTech Connect

Hydrocarbon contamination of groundwater resources hasbecome a major environmental and human health concern in many parts ofthe world. Our objectives were to employ both culture andculture-independent techniques to characterize the dynamics of microbialcommunity structure within a fluidized bed reactor used to bioremediate adiesel-contaminated groundwater in a tropical environment. Under normaloperating conditions, 97 to 99 percent of total hydrocarbons were removedwith only 14 min hydraulic retention time. Over 25 different cultureswere isolated from the treatment unit (96 percent which utilized dieselconstituents as sole carbon source). Approximately 20 percent of theisolates were also capable of complete denitrification to nitrogen gas.Sequence analysis of 16S rDNA demonstrated ample diversity with mostbelonging to the infinity, beta and gamma subdivision of theProteobacteria, Bacilli, and Actinobacteria groups. Moreover, the geneticconstitution of the microbial community was examined at multiple timepoints with a Functional Gene Array (FGA) containing over 12,000 probesfor genes involved in organic degradation and major biogeochemicalcycles. Total community DNA was extracted and amplified using anisothermal phi29 polymerase-based technique, labeled with Cy5 dye, andhybridized to the arrays in 50 percent formimide overnight at 50 degreesC. Cluster analysis revealed comparable profiles over the course oftreatment suggesting the early selection of a very stable microbialcommunity. A total of 270 genes for organic contaminant degradation(including naphthalene, toluene [aerobic and anaerobic], octane,biphenyl, pyrene, xylene, phenanthrene, and benzene); and 333 genesinvolved in metabolic activities (nitrite and nitrous oxide reductases[nirS, nirK, and nosZ], dissimilatory sulfite reductases [dsrAB],potential metal reducing C-type cytochromes, and methane monooxygenase[pmoA]) were repeatedly detected. Genes for degradation of MTBE,nitroaromatics and chlorinated compounds werealso present, indicating abroad catabolic potential of the treatment unit. FGA's demonstrated theearly establishment of a diverse community with concurrent aerobic andanaerobic processes contributing to the bioremediationprocess.

Rodriguez-Martinez, E.M.; Perez, Ernie X.; Schadt, ChristopherW.; Zhou, Jizhong; Massol-Deya, Arturo A.

2006-09-30

276

Microbial Diversity and Bioremediation of a Hydrocarbon-Contaminated Aquifer (Vega Baja, Puerto Rico)  

PubMed Central

Hydrocarbon contamination of groundwater resources has become a major environmental and human health concern in many parts of the world. Our objectives were to employ both culture and culture-independent techniques to characterize the dynamics of microbial community structure within a fluidized bed reactor used to bioremediate a diesel-contaminated groundwater in a tropical environment. Under normal operating conditions, 97 to 99% of total hydrocarbons were removed with only 14 min hydraulic retention time. Over 25 different cultures were isolated from the treatment unit (96% which utilized diesel constituents as sole carbon source). Approximately 20% of the isolates were also capable of complete denitrification to nitrogen gas. Sequence analysis of 16S rDNA demonstrated ample diversity with most belonging to the ?, ? and ? subdivision of the Proteobacteria, Bacilli, and Actinobacteria groups. Moreover, the genetic constitution of the microbial community was examined at multiple time points with a Functional Gene Array (FGA) containing over 12,000 probes for genes involved in organic degradation and major biogeochemical cycles. Total community DNA was extracted and amplified using an isothermal ?29 polymerase-based technique, labeled with Cy5 dye, and hybridized to the arrays in 50% formimide overnight at 50°C. Cluster analysis revealed comparable profiles over the course of treatment suggesting the early selection of a very stable microbial community. A total of 270 genes for organic contaminant degradation (including naphthalene, toluene [aerobic and anaerobic], octane, biphenyl, pyrene, xylene, phenanthrene, and benzene); and 333 genes involved in metabolic activities (nitrite and nitrous oxide reductases [nirS, nirK, and nosZ], dissimilatory sulfite reductases [dsrAB], potential metal reducing C-type cytochromes, and methane monooxygenase [pmoA]) were repeatedly detected. Genes for degradation of MTBE, nitroaromatics and chlorinated compounds were also present, indicating a broad catabolic potential of the treatment unit. FGA’s demonstrated the early establishment of a diverse community with concurrent aerobic and anaerobic processes contributing to the bioremediation process. PMID:16968977

Rodríguez-Martínez, Enid M.; Pérez, Ernie X.; Schadt, Christopher W.; Zhou, Jizhong; Massol-Deyá, Arturo A.

2006-01-01

277

Effects of electrokinetics and cationic surfactant cetyltrimethylammonium bromide [CTAB] on the hydrocarbon removal and retention from contaminated soils.  

PubMed

Hydrocarbon contaminated soil and groundwater is considered to be a leading cause for increased health risk and environmental contamination. Therefore, an efficient technique is needed to retard the movement or enhance the removal of the contaminant depending on the remediation objective. The goals of this study were to evaluate the impact of the addition of a cationic surfactant on the movement of hydrocarbons within a contaminated clay soil subjected to electrokinetic treatment. Water-flushing and surfactant-flushing experiments were conducted on one-dimensional soil columns. The model diesel fuel was composed of a mixture of benzene, toluene, ethylbenzene, xylenes [BTEX] and three selected polycyclic hydrocarbons [PAHs]. In the water-flushing experiments, the application of an electrokinetic treatment was found to enhance the removal of PAHs from the clay columns by about 20%. In contrast, the application of an electrokinetic treatment, when coupled with cationic surfactant-flushing, retarded the movement of BTEX and the three selected PAHs in the clay columns. Hydraulic columns with surfactant (CTAB) removed 17% more naphthalene and 11% more 2-methylnaphthalene compared to columns subjected to electrokinetic treatment with CTAB. The flux through the electrokinetic columns during water flushing as well as surfactant flushing was higher than the flux due to hydraulic gradient alone. As the solubility of hydrocarbons increased, they moved farther with electrokinetic treatment without CTAB. However, with CTAB the electrokinetic treatment tends to retard the movement. Use of a cationic surfactant coupled with electrokinetic treatment was found to retard the movement of contaminants. PMID:16894821

Ranjan, R Sri; Qian, Y; Krishnapillai, M

2006-07-01

278

Deployment of Smart 3D Subsurface Contaminant Characterization at the Brookhaven Graphite Research Reactor  

Microsoft Academic Search

The Brookhaven Graphite Research Reactor (BGRR) Historical Site Assessment (BNL 1999) identified contamination inside the Below Grade Ducts (BGD) resulting from the deposition of fission and activation products from the pile on the inner carbon steel liner during reactor operations. Due to partial flooding of the BGD since shutdown, some of this contamination may have leaked out of the ducts

Terrence Sullivan; John Heiser; Paul Kalb; Lawrence Milian; Clyde Newson; Manny Lilimpakas; Tom Daniels

2002-01-01

279

Influence of ultraviolet light in the toxicity of sediments contaminated with polycyclic aromatic hydrocarbons  

SciTech Connect

Standard 10-d toxicity tests were conducted with freshwater benthic invertebrates using sediments containing a range of concentrations of polycyclic aromatic hydrocarbons (PAHs). The assays were performed both under normal laboratory fluorescent light and ultraviolet (UV) light which mimicked wavelengths present in sunlight at about 10% of ambient solar intensity. Additionally, field experiments used an in situ apparatus to evaluate the phototoxic response of the aquatic oligochaete Lumbriculus variegatus to sediments contaminated with PAHs. Those experiments were conducted using both sunlight exposed and shaded test chambers. In addition to a PAH contaminated site, a reference site lacking in PAHs also was tested as a control. Laboratory tests conducted with PAH contaminated sediments exposed to UV light resulted in significantly greater mortality of Hyalella azteca and Lumbriculus variegatus than tests performed under otherwise comparable conditions with fluorescent light. Results from field experiments corroborated this trend. The results suggest that failure to consider photoactivation of PAHs by sunlight could result in sediment toxicity test methods or criteria which are underprotective of benthic organisms.

Ankley, G.T. [Environmental Protection Agency, Duluth, MN (United States); Monson, P.D. [UWS, Duluth, MN (United States); Kosian, P.A. [ILS, Duluth, MN (United States); Collyard, S.A. [SAIC, Duluth, MN (United States)

1994-12-31

280

Polycyclic aromatic hydrocarbon contamination and recovery characteristics in some organisms after the Nakhodka oil spill.  

PubMed

Following the oil spill from the Russian tanker Nakhodka in 1997 in the Sea of Japan, polycyclic aromatic hydrocarbons (PAH) were monitored for three years in some molluscs from the Mikuni-cho shore in Japan. Total PAH concentrations in marine organisms except for spiny top shell, ranged from 5.3 to 32.7 ng/g wet weight, but no trends were evident. Total PAH concentration in spiny top shell (Turbo cornutus) was 44 ng/g w.w. in the first month after the oil spill. However, it rapidly decreased to less than 5.4 ng/g w.w. from the second month. Spiny top shell, which was exposed to dietary Nakhodka heavy fuel oil, concentrated benzo(a)pyrene to 17.1 ng/g w.w. after two weeks of exposure and then rapidly eliminated it during an elimination phase. These results suggest that spiny top shell accumulates PAHs because of their low ability to metabolize PAH, but it can excrete parent PAHs rapidly when removed from the source of contamination. Thus it is suitable as an indicator organism in monitoring oil contamination. It can also be inferred from these field and laboratory investigations that, in three years, organisms from the Mikuni-cho shore seem to have adequately recovered from the Nakhodka oil spill contamination. PMID:15556192

Koyama, Jiro; Uno, Seiichi; Kohno, Kumiko

2004-12-01

281

Field Investigation of Natural Attenuation of a Petroleum Hydrocarbon Contaminated Aquifer, Gyeonggi Province, Korea  

NASA Astrophysics Data System (ADS)

In remediation of a petroleum hydrocarbon contaminated aquifer, natural attenuation may be significant as a remedial alternative. Therefore, natural attenuation should be investigated in the field in order to effectively design and evaluate the remediation strategy at the contaminated site. This study focused on evaluating the natural attenuation for benzene, toluene, ethylbenzene, and xylene (BTEX) at a contaminated site in South Korea. At the study site, the aquifer is composed of a high permeable gravel layer and relatively low permeable sandy-silt layers. Groundwater level vertically fluctuated between 1m and 2m throughout the year (April, 2003~June, 2004) and showed direct response to rainfall events. Chemical analyses of sampled groundwater were performed to investigate the concentrations of various chemical species which are associated with the natural attenuation processes. To evaluate the degree of the biodegradation, the expressed biodegradation capacity (EBC) analysis was done using aerobic respiration, nitrate reduction, manganese reduction, ferric iron reduction, and sulfate reduction as an indicator. High EBC value of sulfate indicate that anaerobic biodegradation by sulfate reduction was a dominant process of mineralization of BTEX at this site. The EBC values decrease sensitively when heavy rainfall occurs due to the dilution and inflow of electron acceptors through a gravel layer. The first-order biodegradation rates of BTEX were estimated by means of the Buscheck and Alcantar method (1995). Results show that the natural attenuation rate of benzene was the highest among the BTEX.

Yang, J.; Lee, K.; Bae, G.

2004-12-01

282

Microbial in situ degradation of aromatic hydrocarbons in a contaminated aquifer monitored by carbon isotope fractionation  

NASA Astrophysics Data System (ADS)

We present an approach for characterizing in situ microbial degradation using the 13C/ 12C isotope fractionation of contaminants as an indicator of biodegradation. The 13C/ 12C isotope fractionation of aromatic hydrocarbons was studied in anoxic laboratory soil percolation columns with toluene or o-xylene as the sole carbon and electron source, and sulfate as electron acceptor. After approximately 2 months' of incubation, the soil microbial community degraded 32 mg toluene l -1 and 44 mg o-xylene l -1 to less than 0.05 mg l -1, generating a stable concentration gradient in the column. The 13C/ 12C isotope ratio in the residual non-degraded fraction of toluene and o-xylene increased significantly, corresponding to isotope fractionation factors (?C) of 1.0015 and 1.0011, respectively. When the extent of biodegradation in the soil column was calculated based on the measured isotope ratios ( Rt) and an isotope fractionation factor (?C=1.0017) obtained from a sulfate-reducing batch culture the theoretical residual substrate concentrations ( Ct) matched the measured toluene concentrations in the column. This indicated that a calculation of biodegradation based on isotope fractionation could work in systems like soil columns. In a field study, a polluted, anoxic aquifer was analyzed for BTEX and PAH contaminants. These compounds were found to exhibit a significant concentration gradient along an 800-m groundwater flow path downstream of the source of contamination. A distinct increase in the carbon isotope ratio ( ?13C) was observed for the residual non-degraded toluene (7.2‰), o-xylene (8.1‰) and naphthalene fractions (1.2‰). Based on the isotope values and the laboratory-derived isotope fractionation factors for toluene and o-xylene, the extent to which the residual substrate fraction in the monitoring wells had been degraded by microorganisms was calculated. The results revealed significant biodegradation along the groundwater flow path. In the wells at the end of the plume, the bioavailable toluene and o-xylene fractions had been almost completely reduced by in situ microbial degradation. Although indane and indene showed decreasing concentrations downstream of the groundwater flow path, suggesting microbial degradation, their carbon isotope ratios remained constant. As the physical properties of these compounds are similar to those of BTEX compounds, the constant isotope values of indane and indene indicated that microbial degradation did not lead to isotope fractionation of all aromatic hydrocarbons. In addition, physical interaction with the aquifer material during the groundwater passage did not significantly alter the carbon isotope composition of aromatic hydrocarbons.

Richnow, Hans H.; Annweiler, Eva; Michaelis, Walter; Meckenstock, Rainer U.

2003-08-01

283

Chemical Fate of Contaminants in the Environment: Chlorinated Hydrocarbons in the Groundwater  

SciTech Connect

Chlorinated hydrocarbons (CHCs) are the most common contaminant found at hazardous waste sites and are the most prevalent contaminants on U.S. Department of Energy (DOE) weapons production sites. Many of the CHCs are either known or suspected carcinogens and thus pose health risks to the public and/or site workers. Unlike simple hydrocarbons, CHCs are resistant to biodegradation, but can degrade by abiotic processes such as hydrolysis, nucleophilic substitution, and dehydrochlorination. Unfortunately, few studies of the reactions of chlorinated hydrocarbons have been reported in literature, and disagreement still exists about the mechanisms and rates of many of the key reactions. In this work, we modeled the reactions involved in the degradation of CHCs in the groundwater. The goals of the research proposed are: • development of a computational approach that will allow reaction pathways and rate constants to be accurately calculated • development of more approximate approaches, evaluated against the more accurate approach, which will lay the groundwork for exploratory studies of more complex CHCs • application of these approaches to study the degradation pathways of CHCs in aqueous liquids • application of the more approximate approaches to study the mechanism of forming complex CHC polychlorinated benzene compounds and dioxins. We examined elementary reactions involved in the aqueous-phase chemistry of chlorinated methanes and ethylenes in an attempt to obtain a detailed understanding of the abiotic processes involved in the degradation of this important class of contaminants. We began by studying the reactions of CHnCl(4-n) and C2HnCl(4-n) with OH¯, as these are thought to be the dominant processes involved in the degradation of these chlorinated species. We used state-of-the-art theoretical techniques to model the elementary reactions of CHCs important in the groundwater. We employed high-accuracy electronic structure methods (e.g., perturbation theory and coupled cluster methods with correlation-consistent basis sets) to determine the energies of the various stable species, intermediates, and transition states involved in the elementary reactions of CHCs. Effects of solvation on the reaction energetics were studied by including small numbers of solvent molecules (microsolvation). Our own N-layered molecular orbital + molecular mechanics (ONIOM) method was used because it allows the number of solvent molecules to be increased, and hybrid quantum mechanical/molecular mechanics (QM/MM) methods and continuum solvation models were used to estimate the effects of bulk solvation. Rate constants for the gas-phase, microsolvated, and bulk-phase reactions were computed using variational transition state theory (VTST).

Truhlar, Donald G.; Cramer, Christopher; Gao, Jiali; Garrett, Bruce C.; Dupuis, Michel; Straatsma, TP; Morokuma, Keiji; Dunning, Thomas H.; Borisov, Yurii A.; Arcia, Edgar E.; Thompson, Jacob S.

2006-09-21

284

HEALTH RISK ASSESSMENT ON RESIDENTS EXPOSED TO CHLORINATED HYDROCARBONS CONTAMINATED IN GROUNDWATER OF A HAZARDOUS WASTE SITE  

Microsoft Academic Search

We conducted this study to estimate residents' chronic hazard and carcinogenic risk in a groundwater-contaminated community after on-site remediation in Taiwan during 1999-2000. We followed guidelines for assessing hazardous waste sites of the U.S. Environmental Protection Agency (EPA) and used empirically measured contaminant levels and exposure parameters to perform health risk assessment on seven chlorinated hydrocarbons. We measured groundwater concentrations

Lukas Jyuhn-Hsiarn Lee; Chang-Chuan Chan; Chih-Wen Chung; Yee-Chung Ma; Gan-Shuh Wang; Jung-Der Wang

2002-01-01

285

Assessing the hydrocarbon degrading potential of indigenous bacteria isolated from crude oil tank bottom sludge and hydrocarbon-contaminated soil of Azzawiya oil refinery, Libya.  

PubMed

The disposal of hazardous crude oil tank bottom sludge (COTBS) represents a significant waste management burden for South Mediterranean countries. Currently, the application of biological systems (bioremediation) for the treatment of COTBS is not widely practiced in these countries. Therefore, this study aims to develop the potential for bioremediation in this region through assessment of the abilities of indigenous hydrocarbonoclastic microorganisms from Libyan Hamada COTBS for the biotreatment of Libyan COTBS-contaminated environments. Bacteria were isolated from COTBS, COTBS-contaminated soil, treated COTBS-contaminated soil, and uncontaminated soil using Bushnell Hass medium amended with Hamada crude oil (1 %) as the main carbon source. Overall, 49 bacterial phenotypes were detected, and their individual abilities to degrade Hamada crude and selected COBTS fractions (naphthalene, phenanthrene, eicosane, octadecane and hexane) were evaluated using MT2 Biolog plates. Analyses using average well colour development showed that ~90 % of bacterial isolates were capable of utilizing representative aromatic fractions compared to 51 % utilization of representative aliphatics. Interestingly, more hydrocarbonoclastic isolates were obtained from treated contaminated soils (42.9 %) than from COTBS (26.5 %) or COTBS-contaminated (30.6 %) and control (0 %) soils. Hierarchical cluster analysis (HCA) separated the isolates into two clusters with microorganisms in cluster 2 being 1.7- to 5-fold better at hydrocarbon degradation than those in cluster 1. Cluster 2 isolates belonged to the putative hydrocarbon-degrading genera; Pseudomonas, Bacillus, Arthrobacter and Brevundimonas with 57 % of these isolates being obtained from treated COTBS-contaminated soil. Overall, this study demonstrates that the potential for PAH degradation exists for the bioremediation of Hamada COTBS-contaminated environments in Libya. This represents the first report on the isolation of hydrocarbonoclastic bacteria from Libyan COTBS and COTBS-contaminated soil. PMID:24888608

Mansur, Abdulatif A; Adetutu, Eric M; Kadali, Krishna K; Morrison, Paul D; Nurulita, Yuana; Ball, Andrew S

2014-09-01

286

Petroleum hydrocarbon contamination in Nelson Lagoon, Alaska, sampling three different matrices.  

PubMed

Polycyclic aromatic hydrocarbon (PAH) levels were measured in sediments, bivalves and semi-permeable membrane devices (SPMDs) in the relatively pristine marine environment of Nelson Lagoon, Alaska. Most PAH levels in Nelson Lagoon were low, and similar to global background concentrations. Sampling media type can significantly influence conclusions of PAH contamination in the environment. Concentration of a broad size range of PAHs was observed in the tissues of blue mussels (Mytilus edulis). SPMDs collected some two- to three-ring PAHs from the dissolved water phase, while sediments collected five- to six-ring PAHs that were likely adsorbed onto particulate matter. Benzo(a)pyrene, a potent carcinogen, was found in mussels at levels similar to more industrialized harbors in Alaska. PMID:22901960

Lance, Ellen W; Matz, Angela C; Reeves, Mari K; Verbrugge, Lori A

2012-10-01

287

Watershed scale fungal community characterization along a pH gradient in a subsurface environment co-contaminated with uranium and nitrate  

SciTech Connect

The objective of this study was to characterize fungal communities in a subsurface environment co-contaminated with uranium and nitrate at the watershed scale, and to determine the potential contribution of fungi to contaminant transformation (nitrate attenuation). The abundance, distribution and diversity of fungi in subsurface groundwater samples were determined using quantitative and semi-quantitative molecular techniques, including quantitative PCR of eukaryotic SSU rRNA genes and pyrosequencing of fungal internal transcribed spacer (ITS) regions. Potential bacterial and fungal denitrification was assessed in sediment-groundwater slurries amended with antimicrobial compounds and in fungal pure cultures isolated from subsurface. Our results demonstrate that subsurface fungal communities are dominated by members of the phylum Ascomycota, and a pronounced shift in fungal community composition occurs across the groundwater pH gradient at the field site, with lower diversity observed under acidic (pH < 4.5) conditions. Fungal isolates recovered from subsurface sediments were shown to reduce nitrate to nitrous oxide, including cultures of the genus Coniochaeta that were detected in abundance in pyrosequence libraries of site groundwater samples. Denitrifying fungal isolates recovered from the site were classified, and found to be distributed broadly within the phylum Ascomycota, and within a single genus within the Basidiomycota. Potential denitrification rate assays with sediment-groundwater slurries showed the potential for subsurface fungi to reduce nitrate to nitrous oxide under in situ acidic pH conditions.

Jasrotia, Puja [Florida State University, Tallahassee] [Florida State University, Tallahassee; Green, Stefan [University of Illinois, Chicago] [University of Illinois, Chicago; Canion, Andy [Florida State University, Tallahassee] [Florida State University, Tallahassee; Overholt, Will [Florida State University, Tallahassee] [Florida State University, Tallahassee; Prakash, Om [Florida State University, Tallahassee] [Florida State University, Tallahassee; Wafula, Dennis [Georgia Institute of Technology, Atlanta] [Georgia Institute of Technology, Atlanta; Hubbard, Daniela [Florida State University, Tallahassee] [Florida State University, Tallahassee; Watson, David B [ORNL] [ORNL; Schadt, Christopher Warren [ORNL] [ORNL; Brooks, Scott C [ORNL] [ORNL; Kostka, [Georgia Institute of Technology, Atlanta] [Georgia Institute of Technology, Atlanta

2014-01-01

288

Anaerobic oxidation of crude oil hydrocarbons by the resident microorganisms of a contaminated anoxic aquifer.  

PubMed

The biodegradation of two crude oils by microorganisms from an anoxic aquifer previously contaminated by natural gas condensate was examined under methanogenic and sulfate-reducing conditions. Artificially weathered Alaska North Slope crude oil greatly stimulated both methanogenesis and sulfate reduction. Gas chromatographic analysis revealed the entire n-alkane fraction of this oil (C13-C34) was consumed under both conditions. Naphthalene, 2-methylnaphthalene, and 2-ethylnaphthalene were also biodegraded but only in the presence of sulfate. Alba crude oil, which is naturally depleted in n-alkanes, resulted in a relatively modest stimulation of methanogenesis and sulfate reduction. Polycyclic aromatic hydrocarbon biodegradation was similar to that found for the Alaska North Slope crude oil, but a broader range of compounds was metabolized, including 2,6-dimethylnaphthalene and 2,7-dimethylnaphthalene in the presence of sulfate. These results indicate that n-alkanes are relatively labile, and their biodegradation in terrestrial environments is not necessarily limited by electron acceptor availability. Polycyclic aromatic hydrocarbons are relatively more recalcitrant, and the biodegradation of these substrates appeared to be sulfate-dependent and homologue-specific. This information should be useful for assessing the limits of in situ crude oil biodegradation in terrestrial environments and for making decisions regarding risk-based corrective actions. PMID:14655710

Townsend, G Todd; Prince, Roger C; Suflita, Joseph M

2003-11-15

289

Changes in toxicity during in situ bioremediation of weathered drill wastes contaminated with petroleum hydrocarbons.  

PubMed

Bioremediation of weathered drill wastes severely contaminated with total petroleum hydrocarbons (TPH) (90,000-170,000 mg kg(-1)) and BTEX (51.2-95.5 mg kg(-1)) to soil standards was achieved over a 3-year period in three phases: initial remediation, basic bioremediation and inoculation with a biopreparation. Fourteen non-pathogenic indigenous bacteria species belonging mainly to the Actinomycetales were identified and shown to be able to degrade 63-75% of nC(9)-nC(20), 36-51% of nC(21)-nC(36), 36% of BTEX and 20% of PAHs (polycyclic aromatic hydrocarbons). Addition of five non-pathogenic fungi species to the bacterial consortium allowed degradation of 69-89% of nC(9)-nC(20), 47-80% of nC(21)-nC(36), 76% of BTEX, and 68% of PAHs. Microtox, Ostacodtoxkit, Phytotoxkit and Ames tests indicated that changes in toxicity were not connected with the decrease in TPH contents, possibly due to the formation of toxic indirect metabolites during bioremediation. No toxicity was found in the soil after bioremediation. PMID:23018157

Steliga, Teresa; Jakubowicz, Piotr; Kapusta, Piotr

2012-12-01

290

Enhanced bioremediation of hydrocarbon-contaminated soil using pilot-scale bioelectrochemical systems.  

PubMed

Two column-type bioelectrochemical system (BES) modules were installed into a 50-L pilot scale reactor packed with diesel-contaminated soils to investigate the enhancement of passive biodegradation of petroleum compounds. By using low cost electrodes such as biochar and graphite granule as non-exhaustible solid-state electron acceptors, the results show that 82.1-89.7% of the total petroleum hydrocarbon (TPH) was degraded after 120 days across 1-34 cm radius of influence (ROI) from the modules. This represents a maximum of 241% increase of biodegradation compared to a baseline control reactor. The current production in the BESs correlated with the TPH removal, reaching the maximum output of 70.4 ± 0.2 mA/m(2). The maximum ROI of the BES, deducting influence from the baseline natural attenuation, was estimated to be more than 90 cm beyond the edge of the reactor (34 cm), and exceed 300 cm should a non-degradation baseline be used. The ratio of the projected ROI to the radius of BES (ROB) module was 11-12. The results suggest that this BES can serve as an innovative and sustainable technology for enhanced in situ bioremediation of petroleum hydrocarbons in large field scale, with additional benefits of electricity production and being integrated into existing field infrastructures. PMID:24762696

Lu, Lu; Yazdi, Hadi; Jin, Song; Zuo, Yi; Fallgren, Paul H; Ren, Zhiyong Jason

2014-06-15

291

Hydrocarbon degrading microbial communities in bench scale aerobic biobarriers for gasoline contaminated groundwater treatment.  

PubMed

BTEX compounds (benzene, toluene, ethylbenzene and xylenes) and methyl tert-butyl ether (MTBE) are some of the main constituents of gasoline and can be accidentally released in the environment. In this work the effect of bioaugmentation on the microbial communities in a bench scale aerobic biobarrier for gasoline contaminated water treatment was studied by 16S rRNA gene sequencing. Catabolic genes (tmoA and xylM) were quantified by qPCR, in order to estimate the biodegradation potential, and the abundance of total bacteria was estimated by the quantification of the number of copies of the 16S rRNA gene. Hydrocarbon concentration was monitored over time and no difference in the removal efficiency for the tested conditions was observed, either with or without the microbial inoculum. In the column without the inoculum the most abundant genera were Acidovorax, Bdellovibrio, Hydrogenophaga, Pseudoxanthomonas and Serpens at the beginning of the column, while at the end of the column Thauera became dominant. In the inoculated test the microbial inoculum, composed by Rhodococcus sp. CE461, Rhodococcus sp. CT451 and Methylibium petroleiphilum LMG 22953, was outcompeted. Quantitative PCR results showed an increasing in xylM copy number, indicating that hydrocarbon degrading bacteria were selected during the treatment, although only a low increase of the total biomass was observed. However, the bioaugmentation did not lead to an increase in the degradative potential of the microbial communities. PMID:25747304

Daghio, Matteo; Tatangelo, Valeria; Franzetti, Andrea; Gandolfi, Isabella; Papacchini, Maddalena; Careghini, Alessandro; Sezenna, Elena; Saponaro, Sabrina; Bestetti, Giuseppina

2015-07-01

292

Ability of cold-tolerant plants to grow in hydrocarbon-contaminated soil.  

PubMed

Phytoremediation of hydrocarbons in soil involves plants and their associated microorganisms. Differences in environmental conditions and restrictions on species importation mean that each country may need to identify indigenous plants to use for phytoremedation. Screening plants for hydrocarbon tolerance before screening for degradation ability may prove more economical than screening directly for degradation. Thirty-nine cold-tolerant plants native, or exotic and naturalized, in western Canada were assessed for their ability to survive in crude oil-contaminated soil. Four naturalized grasses (i.e., Agropyron pectiniforme, Bromus inermis, Phleum pratense, and Poa pratensis), three naturalized legumes (i.e., Medicago sativa, Melilotus officinalis, and Trifolium repens), two native forbs (i.e., Artemisia frigida and Potentilla pensylvanica), one native grass (i.e., Bromus ciliatus) and two native legumes (i.e., Glycyrrhiza lepidota and Psoralea esculenta) exhibited phytoremediation potential, based on survival. We determined the effect of increasing crude oil concentrations on total and root biomass, and relative growth rate of those species with the highest survival. The addition of 0.5%, 1%, and 5% (crude oil wt/fresh soil wt) crude oil to soil significantly decreased both the total biomass by at least 22% of the control and the relative growth rate of all species except P. esculenta. Root biomass significantly decreased by at least 22% with crude oil addition in all species except P. esculenta and A. frigida. Total biomass production in contaminated soil had a significant negative correlation with the relative growth rate in uncontaminated soil. PMID:12929494

Robson, Diana Bizecki; Knight, J Diane; Farrell, Richard E; Germida, James J

2003-01-01

293

Characterization of a Gas Station Site Contaminated with Fuel Hydrocarbons using Geophysical and Hydrogeological Investigations  

NASA Astrophysics Data System (ADS)

The geophysical and hydrogeological investigations were conducted to characterize a former gas station site contaminated with gasoline and diesel hydrocarbons. The free product of petroleum hydrocarbons, LNAPL, was identified in the downgradient monitoring wells at the site, and also found in the seepage adjacent to the small stream, located approximately 50 meters downstream of the gas station in the southwest direction. To locate buries USTs and fuel lines, GPR (Ground Penetrating Radar) survey was performed at the site. The results of GPR survey showed the presence of buried the seven USTs including one unknown UST and two fuel lines. The electrical resistivity and additional GPR surveys were also conducted to map water table and to characterize shallow geologic structures over the inclined area covered with grass and plants. The investigation results showed that the shallow geologic structure includes: (1) upper soil unit of high resistivity values, mostly rock fragments with sand, (2) lower soil unit of low resistivity values, residual soils weathered from the bedrock which play a role as major groundwater path, and (3) bedrock, granite, of high resistivty values. These geophysical results well matched the sediment core logging. The results also show that the water table elevation varies with topography from approximately 1.5 to 3 meters below the ground surface. It is, therefore, believed that the free product leaked from the USTs and/or fuel lines at the station has transported downgradient over the water table beneath the inclined area and encountered the small stream located southwest of the station, and that most of petroleum-impacted zone lies within the residual, weathered soil near the water table in the area. The study results also show that the geophysical methods can be a very useful tool for characterization of the contamination sites.

Kim, C.; Ko, K.; Kim, J.; Park, S.; Son, J.; Jeong, J.; Cho, S.

2005-12-01

294

Release of Polycyclic Aromatic Hydrocarbons, Dissolved Organic Carbon, and Suspended Matter from Disturbed NAPL-Contaminated Gravelly Soil Material  

Microsoft Academic Search

The fate of polycyclic aromatic hydrocarbons (PAH) is known to depend on the release and redistribution of dissolved organic carbon (DOC) and particles. We studied the release of PAH, DOC, and particles up to a size of 200 mm with column outflow experiments using gravelly soil material. The material was collected at an abandoned industrial tar-oil contaminated site. To detect

Kai Uwe Totsche; Steffen Jann; Ingrid Kögel-Knabner

2006-01-01

295

Capacity of the bioremediation technology for clean-up of soil and groundwater contaminated with petroleum hydrocarbons.  

PubMed

A column reactor was designed and used to simulate conditions affecting the bioremediations of petroleum hydrocarbons. The work illustratively describes the aerobic (model) clean-up of soil samples enabling to predict the efficiency of a technology installed in parallel on contaminated former airport. The data showing the performance of thus precharacterized technology are presented. PMID:14524696

Masak, Jan; Machackova, Jirina; Siglova, Martina; Cejkova, Alena; Jirku, Vladimir

2003-01-01

296

Environmental effects of dredging. Literature review for residue-effects relationships with hydrocarbon contaminants in marine organisms. Technical note  

SciTech Connect

The purpose of this literature review was to identify potential residue-effects relationships involving hydrocarbon contaminants which are described in the scientific literature. That information will be used to develop guidance for interpreting the results of bioaccumulation experiments conducted in the regulatory evaluation of dredged material.

NONE

1990-12-01

297

Role of plasmid in diesel oil degradation by yeast species isolated from petroleum hydrocarbon-contaminated soil  

Microsoft Academic Search

Five yeast species, namely Candida tropicalis, Cryptococcus laurentii, Trichosporon asahii, Rhodotorula mucilaginosa and Candida rugosa isolated from hydrocarbon-contaminated soil were found to be potent degraders of diesel oil. These microorganisms showed the presence of enzymes cytochrome P450, NADPH cytochrome c reductase, aminopyrine N demethylase, alcohol dehydrogenase, aldehyde dehydrogenase, naphthalene dioxygenase, catalase and glutathione S transferase when the cells were incubated

Preethy Chandran; Nilanjana Das

2012-01-01

298

Role of plasmid in diesel oil degradation by yeast species isolated from petroleum hydrocarbon-contaminated soil  

Microsoft Academic Search

Five yeast species, namely Candida tropicalis, Cryptococcus laurentii, Trichosporon asahii, Rhodotorula mucilaginosa and Candida rugosa isolated from hydrocarbon-contaminated soil were found to be potent degraders of diesel oil. These microorganisms showed the presence of enzymes cytochrome P450, NADPH cytochrome c reductase, aminopyrine N demethylase, alcohol dehydrogenase, aldehyde dehydrogenase, naphthalene dioxygenase, catalase and glutathione S transferase when the cells were incubated

Preethy Chandran; Nilanjana Das

2011-01-01

299

A case study of bioremediation of petroleum-hydrocarbon contaminated soil at a crude oil spill site  

Microsoft Academic Search

Laboratory and field pilot studies were carried out on the bioremediation of soil contaminated with petroleum hydrocarbons in the Borhola oil fields, Assam, India. The effects of aeration, nutrients (i.e. nitrogen and phosphorus) and inoculation of extraneous microbial consortia on the bioremediation process were investigated. The beneficial effects of these parameters on the bioremediation rate were realised equally in laboratory

B. K. Gogoi; N. N. Dutta; P. Goswami; T. R. Krishna Mohan

2003-01-01

300

Chlorinated hydrocarbon contaminants in feces of river otters from the southern Pacific coast of Canada, 1998–2004  

Microsoft Academic Search

Chlorinated hydrocarbon contaminants in coastal river otters (Lontra canadensis) were evaluated by sampling feces (scats) collected on the south coast of British Columbia, Canada. A broad survey of industrialized areas of the Strait of Georgia region was conducted in 1998, and a subsequent survey of working harbours in 2004. Samples from 1998 were analyzed for polychlorinated biphenyls (PCBs), organochlorine (OC)

John E. Elliott; Daniel A. Guertin; Jennifer M. E. Balke

2008-01-01

301

The Oak Ridge Field Research Center : Advancing Scientific Understanding of the Transportation, Fate, and Remediation of Subsurface Contamination Sources and Plumes  

SciTech Connect

Historical research, development, and testing of nuclear materials across this country resulted in subsurface contamination that has been identified at over 7,000 discrete sites across the U.S. Department of Energy (DOE) complex. With the end of the Cold War threat, DOE has shifted its emphasis to remediation, decommissioning, and decontamination of the immense volumes of contaminated groundwater, sediments, and structures at its sites. DOE currently is responsible for remediating 1.7 trillion gallons of contaminated groundwater, an amount equal to approximately four times the daily U.S. water consumption, and 40 million cubic meters of contaminated soil, enough to fill approximately 17 professional sports stadiums.* DOE also sponsors research intended to improve or develop remediation technologies, especially for difficult, currently intractable contaminants or conditions. The Oak Ridge FRC is representative of some difficult sites, contaminants, and conditions. Buried wastes in contact with a shallow water table have created huge reservoirs of contamination. Rainfall patterns affect the water table level seasonally and over time. Further, the hydrogeology of the area, with its fractures and karst geology, affects the movement of contaminant plumes. Plumes have migrated long distances and to surface discharge points through ill-defined preferred flowpaths created by the fractures and karst conditions. From the standpoint of technical effectiveness, remediation options are limited, especially for contaminated groundwater. Moreover, current remediation practices for the source areas, such as capping, can affect coupled processes that, in turn, may affect the movement of subsurface contaminants in unknown ways. Research conducted at the FRC or with FRC samples therefore promotes understanding of the processes that influence the transport and fate of subsurface contaminants, the effectiveness and long-term consequences of extant remediation options, and the development of improved remediation strategies.

David Watson

2005-04-18

302

Using trees to remediate groundwaters contaminated with chlorinated hydrocarbons. 1998 annual progress report  

SciTech Connect

'Industrial practices in the past have resulted in contamination of groundwater with chlorinated hydrocarbons (CHCs) at many DOE sites, such as Hanford and Savannah River. Such contamination is a major problem because existing groundwater remediation technologies are expensive and difficult. An inexpensive method for groundwater remediation is greatly needed. Trees could be used to remediate CHC polluted groundwater at minimal cost (phytoremediation). Before phytoremediation can be extensively applied, the authors must determine the range of compounds that are attacked, the effects of metabolic products on the plants and the environment, and the effect of transpiration and concentration of CHC on uptake and metabolism. They will test the ability of hybrid poplar to take up and transform the chlorinated methanes, ethanes and ethylenes. The rate of uptake and transformation by poplar of TCE as a function of concentration in the soil, transpiration rate and illumination level will be determined. Methods will be developed to permit rapid testing of plants from contaminated sites for species able to oxidize and sequester chlorinated compounds. They will identify the nature of the bound residues of TCE metabolism in poplar. They will identify the mechanisms involved in CHC oxidation in poplar and use genetic manipulations to enhance that activity. They will introduce the genes for mammalian cytochrome P-450-IIE1, known to oxidize light CHCs such as TCE to attempt to increase the CHC metabolism capacity of poplar. The results of this research will place phytoremediation of CHCs on a firm scientific footing, allowing a rational assessment of its application to groundwater contamination. This report summarizes the results of the first 1.5 years of work on a three-year project.'

Strand, S.E.; Gordon, M.P.

1998-06-01

303

Use of tree rings to investigate the onset of contamination of a shallow aquifer by chlorinated hydrocarbons  

USGS Publications Warehouse

Oaks (Quercus velutina Lam.) growing over a shallow aquifer contaminated by chlorinated hydrocarbons were studied to determine if it was possible to estimate the approximate year that contamination began. The annual rings of some trees downgradient from the contaminant release site contained elevated concentrations of chloride possibly derived from dechlorination of contaminants. Additionally, a radial-growth decline began in these trees at approximately the same time that chloride became elevated. Growth did not decline in trees that contained smaller concentrations of chloride. The source of elevated chloride and the corresponding reductions in tree growth could not be explained by factors other than contamination. On the basis of tree-ring evidence alone, the release occurred in the late 1960s or early 1970s. Contaminant release at a second location apparently occurred in the mid- to late 1970s, suggesting that the area was used for disposal for at least 5 years and possibly longer. Copyright ?? 2001 Elsevier Science B.V.

Yanosky, T.M.; Hansen, B.P.; Schening, M.R.

2001-01-01

304

Bioavailability of (Geno)toxic Contaminants in Polycyclic Aromatic Hydrocarbon–Contaminated Soil Before and After Biological Treatment  

PubMed Central

Abstract Contaminated soil from a former manufactured-gas plant site was treated in a laboratory-scale bioreactor. Desorbability and biodegradability of 14 polycyclic aromatic hydrocarbons (PAHs) and 4 oxygenated PAHs (oxy-PAHs) were investigated throughout a treatment cycle. Desorbability was determined using a mixed-function sorbent (Oasis® HLB) or a hydrophobic sorbent (Tenax®) in dialysis tubing suspended in the soil slurry. Toxicity and genotoxicity of the whole soil and the desorbable fractions were determined by DNA damage response analysis with the chicken DT40 B-lymphocyte isogenic cell line and its DNA repair-deficient mutant Rad54?/?. Biological treatment significantly removed both PAHs and oxy-PAHs, and their desorbability decreased throughout the bioreactor treatment cycle. Collectively, oxy-PAHs were more desorbable and biodegradable than the corresponding PAHs; for example, the oxy-PAH present at the highest concentration, 9,10-anthraquinone, was more desorbable and biodegradable than anthracene. For both PAHs and oxy-PAHs, the percentage removed in the bioreactor significantly exceeded the percentage desorbed from untreated soil, indicating that desorption did not control the extent of biodegradation. Consistent with previous results on the same soil, genotoxicity of the whole soil slightly increased after biological treatment. However, both toxicity and genotoxicity of the desorbable constituents in the soil decreased after treatment, suggesting that any genotoxic constituents that may have formed during treatment were primarily associated with less accessible domains in the soil. PMID:24803838

Hu, Jing; Adrion, Alden C.; Nakamura, Jun; Shea, Damian; Aitken, Michael D.

2014-01-01

305

Coupled Modeling of Hydrogeochemical and Electrical Resistivity Data for Exploring the Impact of Recharge on Subsurface Contamination  

NASA Astrophysics Data System (ADS)

The application of geophysical methods, in particular electrical resistivity measurements, may be useful for monitoring subsurface contamination. However, interpreting geophysical data without additional data, and without considering the associated hydrogeochemical processes, is challenging since the geophysical response is sensitive to not only heterogeneity in rock properties, but also to the saturation and the chemical composition of pore fluids. We present an inverse modeling framework that incorporates the simulation of hydrogeochemical processes and time-lapse electrical resistivity data, and apply it to datasets collected in 2008 near the S-3 Ponds at the DOE Oak Ridge Integrated Field Research Challenge site, where efforts are underway to better understand freshwater recharge and associated contaminant dilution. Our goal is to examine whether the coupled hydrogeochemical-geophysical modeling framework can a) be used to develop a model that honors all available datasets, b) help understand the response of the geophysical data to subsurface properties and processes and c) allow for the estimation of spatially variable petrophysical parameters that are necessary for interpreting geophysical data collected at the site. We present a series of cases in which the approach is applied using different datasets and increasingly complex models. Successful application of the approach requires the careful consideration of uncertainty in the hydrogeochemical and petrophysical parameters, and the collection of data that are sufficiently sensitive to the parameters of interest. We find that the inclusion of various borehole and cross-borehole datasets in the coupled inversion approach provides useful local-scale information about soil characteristics, recharge-related transport processes, and the geophysical response. (a) Site conceptual model showing geological layers, recharge sources, an intermittently perched water body and the saturated zone; (b) 1D and (c) 2D hydrogeochemical grids; and (d) overlapping electrical resistivity grid.

Kowalsky, M. B.; Gasperikova, E.; Finsterle, S.; Watson, D. B.; Baker, G. S.; Hubbard, S. S.

2010-12-01

306

Development of a multistrain bacterial bioreporter platform for the monitoring of hydrocarbon contaminants in marine environments.  

PubMed

Petroleum hydrocarbons are common contaminants in marine and freshwater aquatic habitats, often occurring as a result of oil spillage. Rapid and reliable on-site tools for measuring the bioavailable hydrocarbon fractions, i.e., those that are most likely to cause toxic effects or are available for biodegradation, would assist in assessing potential ecological damage and following the progress of cleanup operations. Here we examined the suitability of a set of different rapid bioassays (2-3 h) using bacteria expressing the LuxAB luciferase to measure the presence of short-chain linear alkanes, monoaromatic and polyaromatic compounds, biphenyls, and DNA-damaging agents in seawater after a laboratory-scale oil spill. Five independent spills of 20 mL of NSO-1 crude oil with 2 L of seawater (North Sea or Mediterranean Sea) were carried out in 5 L glass flasks for periods of up to 10 days. Bioassays readily detected ephemeral concentrations of short-chain alkanes and BTEX (i.e., benzene, toluene, ethylbenzene, and xylenes) in the seawater within minutes to hours after the spill, increasing to a maximum of up to 80 muM within 6-24 h, after which they decreased to low or undetectable levels. The strong decrease in short-chain alkanes and BTEX may have been due to their volatilization or biodegradation, which was supported by changes in the microbial community composition. Two- and three-ring PAHs appeared in the seawater phase after 24 h with a concentration up to 1 muM naphthalene equivalents and remained above 0.5 muM for the duration of the experiment. DNA-damage-sensitive bioreporters did not produce any signal with the oil-spilled aqueous-phase samples, whereas bioassays for (hydroxy)biphenyls showed occasional responses. Chemical analysis for alkanes and PAHs in contaminated seawater samples supported the bioassay data, but did not show the typical ephemeral peaks observed with the bioassays. We conclude that bacterium-based bioassays can be a suitable alternative for rapid on-site quantitative measurement of hydrocarbons in seawater. PMID:20000678

Tecon, Robin; Beggah, Siham; Czechowska, Kamila; Sentchilo, Vladimir; Chronopoulou, Panagiota-Myrsini; McGenity, Terry J; van der Meer, Jan Roelof

2010-02-01

307

Microbial community response to petroleum hydrocarbon contamination in the unsaturated zone at the experimental field site Vaerløse, Denmark.  

PubMed

This study investigates the influence of petroleum hydrocarbons on a microbial community in the vadose zone under field conditions. An artificial hydrocarbon mixture consisting of volatile and semi-volatile compounds similar to jet-fuel was emplaced in a previously uncontaminated vadose zone in nutrient-poor glacial melt water sand. The experiment included monitoring of microbial parameters and CO(2) concentrations in soil gas over 3 months in and outside the hydrocarbon vapor plume that formed around the buried petroleum. Microbial and chemical analyses of soil and vadose zone samples were performed on samples from cores drilled to 3.3 m depth on three dates and three lateral distances from the buried petroleum mass. Significantly elevated CO(2) concentrations were observed after contamination. Total cell numbers as determined by fluorescence microscopy were strongly correlated with soil organic carbon and nitrogen content but varied little with contamination. Redundancy analysis (RDA) allowed direct analysis of effects of selected environmental variables or the artificial contamination on microbiological parameters. Variation in biomass and CO(2) production was explained by soil parameters, to 46%, and by the duration of contamination, to 39.8%. The microbial community structure was assessed by community level physiological profiles (CLPP) analysis using Biolog(TM) Eco-Plates. In the CLPP data only 35.9% of the variation could be linked to soil parameters and contamination, however, the samples with greatest exposure to hydrocarbons grouped together on RDA plots. It is concluded that, at this nutrient-poor site, the microbial community was dominated by natural heterogeneity and that the influence of petroleum hydrocarbon vapors was weak. PMID:19712308

Kaufmann, Karin; Christophersen, Mette; Buttler, Alexandre; Harms, Hauke; Höhener, Patrick

2004-06-01

308

Fingerprinting of petroleum hydrocarbons (PHC) and other biogenic organic compounds (BOC) in oil-contaminated and background soil samples.  

PubMed

Total petroleum hydrocarbons (TPH) or petroleum hydrocarbons (PHC) are one of the most widespread soil contaminants in Canada, the United States and many other countries worldwide. Clean-up of PHC-contaminated soils costs the Canadian economy hundreds of millions of dollars annually. In Canada, most PHC-contaminated site evaluations are based on the methods developed by the Canadian Council of the Ministers of the Environment (CCME). However, the CCME method does not differentiate PHC from BOC (the naturally occurring biogenic organic compounds), which are co-extracted with petroleum hydrocarbons in soil samples. Consequently, this could lead to overestimation of PHC levels in soil samples. In some cases, biogenic interferences can even exceed regulatory levels (300 ?g g(-1) for coarse soils and 1300 ?g g(-1) for fine soils for Fraction 3, C(16)-C(34) range, in the CCME Soil Quality Level). Resulting false exceedances can trigger unnecessary and costly cleanup or remediation measures. Therefore, it is critically important to develop new protocols to characterize and quantitatively differentiate PHC and BOC in contaminated soils. The ultimate objective of this PERD (Program of Energy Research and Development) project is to correct the misconception that all detectable hydrocarbons should be regulated as toxic petroleum hydrocarbons. During 2009-2010, soil and plant samples were collected from over forty oil-contaminated and paired background sites in various provinces. The silica gel column cleanup procedure was applied to effectively remove all target BOC from the oil-contaminated sample extracts. Furthermore, a reliable GC-MS method in combination with the derivatization technique, developed in this laboratory, was used for identification and characterization of various biogenic sterols and other major biogenic compounds in these oil-contaminated samples. Both PHC and BOC in these samples were quantitatively determined. This paper reports the characterization results of this set of 21 samples. In general, the presence of petroleum-characteristic alkylated PAH homologues and biomarkers can be used as unambiguous indicators of the contamination of oil and petroleum product hydrocarbons; while the absence of petroleum-characteristic alkylated PAH homologues and biomarkers and the presence of abundant BOC can be used as unambiguous indicators of the predominance of natural organic compounds in soil samples. PMID:22796730

Wang, Zhendi; Yang, C; Yang, Z; Hollebone, B; Brown, C E; Landriault, M; Sun, J; Mudge, S M; Kelly-Hooper, F; Dixon, D G

2012-09-01

309

Feasibility studies for the detection of organic surface and subsurface water contaminants by surface-enhanced Raman spectroscopy on silver electrodes  

Microsoft Academic Search

Fundamental components of various families of organic contaminants that are found in surface and subsurface waters have been investigated by surface-enhanced Raman spectroscopy (SERS). The SERS substrate was a silver electrode maintained at various electrode potentials. The limit of detection for pyridine was calculated to be 8.5 pg. Variation of the electrode potential and excitation wavelength was used to qualitatively

Michael M. Carrabba; Robert B. Edmonds; R. David. Rauh

1987-01-01

310

ANNUAL REPORT. FIXATION MECHANISMS AND DESORPTION RATES OF SORBED CS IN HIGH-LEVEL WASTE CONTAMINATED SUBSURFACE SEDIMENTS: IMPLICATIONS TO FUTURE BEHAVIOR AND IN-GROUND STABILITY  

EPA Science Inventory

Research is investigating mineralogic and geochemical factors controlling the desorption rate of 137Cs+ from subsurface sediments on the Hanford Site contaminated with different types of high-level waste. The project will develop kinetic data and models that describe the release ...

311

PROGRESS REPORT. FIXATION MECHANISMS AND DESORPTION RATES OF SORBED CS IN HIGH-LEVEL WASTE CONTAMINATED SUBSURFACE SEDIMENTS: IMPLICATIONS TO FUTURE BEHAVIOR AND IN-GROUND STABILITY  

EPA Science Inventory

This project is focused on defining the in-ground geochemistry of sorbed 137Cs released from high-level waste tanks, so that better future projections can be made of Cs mobility in the vadose zone. The project will study Cs-contaminated subsurface sediments from various Hanford t...

312

Homogeneous Reactor Experiment (HRE) Pond cryogenic barrier technology demonstration: Pre-barrier subsurface hydrology and contaminant transport investigation  

SciTech Connect

The Homogeneous Reactor Experiment (HRE) Pond is the site of a former impoundment for radioactive wastes that has since been drained, filled with soil, and covered with an asphalt cap. The site is bordered to the east and south by a tributary that empties into Melton Branch Creek and that contains significant concentrations of radioactive contaminants, primarily {sup 90}Sr. Because of the proximity of the tributary to the HRE disposal site and the probable flow of groundwater from the site to the tributary, it is hypothesized that the HRE Pond is a source of contamination to he creek. As a means for temporary containment of contaminants within the impoundment, a cryogenic barrier technology demonstration was initiated in FY96 with a background hydrologic investigation that continued through FY97. Cryogenic equipment installation was completed in FY97, and freezing was initiated in September of 1997. This report documents the results of a hydrologic and geologic investigation of the HRE Pond/cryogenic barrier site. The purpose of this investigation is to evaluate the hydrologic conditions within and around the impoundment in order to meet the following objectives: (1) to provide a pre-barrier subsurface hydrologic baseline for post-barrier performance assessment; (2) to confirm that the impoundment is hydraulically connected to the surrounding sediments; and (3) to determine the likely contaminant exit pathways from the impoundment. The methods of investigation included water level and temperature monitoring in a network of wells and standpipes in and surrounding the impoundment, a helium tracer test conducted under ambient flow conditions, and geologic logging during the drilling of boreholes for installation of cryogenic probes and temperature monitoring wells.

Moline, G.R.

1998-03-01

313

Deployment of Smart 3D Subsurface Contaminant Characterization at the Brookhaven Graphite Research Reactor  

SciTech Connect

The Brookhaven Graphite Research Reactor (BGRR) Historical Site Assessment (BNL 1999) identified contamination inside the Below Grade Ducts (BGD) resulting from the deposition of fission and activation products from the pile on the inner carbon steel liner during reactor operations. Due to partial flooding of the BGD since shutdown, some of this contamination may have leaked out of the ducts into the surrounding soils. The baseline remediation plan for cleanup of contaminated soils beneath the BGD involves complete removal of the ducts, followed by surveying the underlying and surrounding soils, then removing soil that has been contaminated above cleanup goals. Alternatively, if soil contamination around and beneath the BGD is either non-existent/minimal (below cleanup goals) or is very localized and can be ''surgically removed'' at a reasonable cost, the BGD can be decontaminated and left in place. The focus of this Department of Energy Accelerated Site Technology Deployment (DOE ASTD) project was to determine the extent (location, type, and level) of soil contamination surrounding the BGD and to present this data to the stakeholders as part of the Engineering Evaluation/Cost Analysis (EE/CA) process. A suite of innovative characterization tools was used to complete the characterization of the soil surrounding the BGD in a cost-effective and timely fashion and in a manner acceptable to the stakeholders. The tools consisted of a tracer gas leak detection system that was used to define the gaseous leak paths out of the BGD and guide soil characterization studies, a small-footprint Geoprobe to reach areas surrounding the BGD that were difficult to access, two novel, field-deployed, radiological analysis systems (ISOCS and BetaScint) and a three-dimensional (3D) visualization system to facilitate data analysis/interpretation. All of the technologies performed as well or better than expected and the characterization could not have been completed in the same time or at the same cost without implementing this approach.

Sullivan, T.; Heiser, J.; Kalb, P.; Milian, L.; Newson, C.; Lilimpakas, M.; Daniels, T.

2002-02-26

314

Closure End States for Facilities, Waste Sites, and Subsurface Contamination - 12543  

SciTech Connect

The United States (U.S.) Department of Energy (DOE) manages the largest groundwater and soil cleanup effort in the world. DOE's Office of Environmental Management (EM) has made significant progress in its restoration efforts at sites such as Fernald and Rocky Flats. However, remaining sites, such as Savannah River Site, Oak Ridge Site, Hanford Site, Los Alamos, Paducah Gaseous Diffusion Plant, Portsmouth Gaseous Diffusion Plant, and West Valley Demonstration Project possess the most complex challenges ever encountered by the technical community and represent a challenge that will face DOE for the next decade. Closure of the remaining 18 sites in the DOE EM Program requires remediation of 75 million cubic yards of contaminated soil and 1.7 trillion gallons of contaminated groundwater, deactivation and decommissioning (D and D) of over 3000 contaminated facilities and thousands of miles of contaminated piping, removal and disposition of millions of cubic yards of legacy materials, treatment of millions of gallons of high level tank waste and disposition of hundreds of contaminated tanks. The financial obligation required to remediate this volume of contaminated environment is estimated to cost more than 7% of the to-go life-cycle cost. Critical in meeting this goal within the current life-cycle cost projections is defining technically achievable end states that formally acknowledge that remedial goals will not be achieved for a long time and that residual contamination will be managed in the interim in ways that are protective of human health and environment. Formally acknowledging the long timeframe needed for remediation can be a basis for establishing common expectations for remedy performance, thereby minimizing the risk of re-evaluating the selected remedy at a later time. Once the expectations for long-term management are in place, remedial efforts can be directed towards near-term objectives (e.g., reducing the risk of exposure to residual contamination) instead of focusing on long-term cleanup requirements. An acknowledgement of the long timeframe for complete restoration and the need for long-term management can also help a site transition from the process of pilot testing different remedial strategies to selecting a final remedy and establishing a long-term management and monitoring approach. This approach has led to cost savings and the more efficient use of resources across the Department of Defense complex and at numerous industrial sites across the U.S. Defensible end states provide numerous benefits for the DOE environmental remediation programs including cost-effective, sustainable long-term monitoring strategies, remediation and site transition decision support, and long-term management of closure sites. (authors)

Gerdes, Kurt; Chamberlain, Grover; Whitehurst, Latrincy; Marble, Justin [Office of Groundwater and Soil Remediation, U.S. Department of Energy, Washington, DC 20585 (United States); Wellman, Dawn [Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Deeb, Rula; Hawley, Elisabeth [ARCADIS U.S., Inc., Emeryville, CA 94608 (United States)

2012-07-01

315

Bioavailability of polycyclic aromatic hydrocarbons in field-contaminated Anacostia River (Washington, DC) sediment.  

PubMed

Sediment-water partitioning behavior and bioavailability of five polycyclic aromatic hydrocarbons (PAHs; phenanthrene, pyrene, chrysene, benzo[k]fluoranthene, and benzo[a]pyrene) were measured in field-contaminated sediment collected from moderately polluted regions of the Anacostia River (Washington, DC, U.S.A.). Much of the sediment PAH burden was resistant to desorption: Effective partition coefficients were 2- to 10-fold greater than expected from literature values, and more than 80% of PAHs remained sorbed after treatment of the sediment with a nonionic polymeric adsorbent (Amberlite XAD-2) for 20 h. Bioaccumulation, elimination, and assimilation of each PAH in the deposit-feeding tubificid oligochaete Ilyodrilus templetoni were measured and compared with the equivalent measurements from laboratory-inoculated sediment. Ilyodrilus templetoni effectively accessed the desorption-resistant fraction of these organic contaminants, as exhibited by high single-gut passage assimilation efficiencies (ASEs) of the five PAHs (60% < ASE < 90%). However, steady-state accumulations of PAHs by I. templetoni were very low and consistent with low pore-water concentrations. The present results suggest that steady-state accumulation of PAHs is controlled by pore-water concentrations and is not necessarily related to route of uptake or assimilation efficiencies. PMID:17089709

Lu, Xiaoxia; Reible, Danny D; Fleeger, John W

2006-11-01

316

Contamination of stream fishes with chlorinated hydrocarbons from eggs of Great Lakes salmon  

SciTech Connect

Pacific salmon Oncorhynchus spp. have been stocked in the Great Lakes where they accumulate body burdens of chlorinated hydrocarbons. The transport of these contaminants to resident communities in spawning streams was studied in two tributaries of Lake Michigan accessible to anadromous spawners and one control tributary blocked to them. No polychlorinated biphenyls (PCBs), DDT, or dieldrin were detected in the sediments or biota of the control stream, or in sediments of the test streams. However, trout Salmo spp. and, to a lesser extent, sculpins Cottus spp. accumulated PCBs and DDT as a result of eating contaminated salmon eggs. Eggs constituted as much as 87% (by weight) of the total stomach contents of trout collected during the salmon spawning season early October to early January. Salmon eggs contained 0.46-9.50 mg PCBs/kg,. and 0.14-1.80 mg DDT/kg. Consumption of eggs varied greatly among individual trout, and there was a strong correlation between numbers of eggs in the stomachs and PCB and DDT concentrations in the fillets.

Merna, J.W.

1986-01-01

317

Analysis of subsurface contaminant migration and remediation using high performance computing  

Microsoft Academic Search

Highly resolved simulations of groundwater flow, chemical migration and contaminant recovery processes are used to test the applicability of stochastic models of flow and transport in a typical field setting. A simulation domain encompassing a portion of the upper saturated aquifer materials beneath the Lawrence Livermore National Laboratory was developed to hierarchically represent known hydrostratigraphic units and more detailed stochastic

Andrew F. B. Tompson; Robert D. Falgout; Steven G. Smith; William J. Bosl; Steven F. Ashby

1998-01-01

318

MICROBIAL PROCESSES AFFECTING MONITORED NATURAL ATTENUATION OF CONTAMINANTS IN THE SUBSURFACE  

EPA Science Inventory

Among the alternatives considered for the remediation of soil and ground water at hazardous wastes sites are the use of natural processes to reduce or remove the contaminants of concern. Under favorable conditions, the use of natural attenuation can result in significant cost sa...

319

Improved management of winter operations to limit subsurface contamination with degradable deicing chemicals in cold regions.  

PubMed

This paper gives an overview of management considerations required for better control of deicing chemicals in the unsaturated zone at sites with winter maintenance operations in cold regions. Degradable organic deicing chemicals are the main focus. The importance of the heterogeneity of both the infiltration process, due to frozen ground and snow melt including the contact between the melting snow cover and the soil, and unsaturated flow is emphasised. In this paper, the applicability of geophysical methods for characterising soil heterogeneity is considered, aimed at modelling and monitoring changes in contamination. To deal with heterogeneity, a stochastic modelling framework may be appropriate, emphasizing the more robust spatial and temporal moments. Examples of a combination of different field techniques for measuring subsoil properties and monitoring contaminants and integration through transport modelling are provided by the SoilCAM project and previous work. Commonly, the results of flow and contaminant fate modelling are quite detailed and complex and require post-processing before communication and advising stakeholders. The managers' perspectives with respect to monitoring strategies and challenges still unresolved have been analysed with basis in experience with research collaboration with one of the case study sites, Oslo airport, Gardermoen, Norway. Both scientific challenges of monitoring subsoil contaminants in cold regions and the effective interaction between investigators and management are illustrated. PMID:24281673

French, Helen K; van der Zee, Sjoerd E A T M

2014-08-01

320

Effects of climatic modalities on polycyclic aromatic hydrocarbons (PAHs) availability and attenuation in historically contaminated Technosol  

NASA Astrophysics Data System (ADS)

Since the decline of industrial activities in France, large areas of polycyclic aromatic hydrocarbon (PAHs)-contaminated soils have remained derelict. Thus, the fate of PAHs in such soils through natural attenuation process needs to be assessed. On the long-term scale (10-100 years), climate will greatly contribute to the evolution of soil physico-chemical properties and by consequences PAHs availability. In our study, we examined the effect of three contrasted climatic conditions (freeze-thawing, wetting-drying and high temperature) on soil aging processes of 11 historically contaminated soils and consequences on the availability of polycyclic aromatic compounds (including the 16 priority pollutants PAHs). Batch experiments were set-up for each modality; freeze-dried soil underwent variation of humidity and/or temperature. In a first step, PACs availability was roughly evaluated, with a water-extraction method using a H2O2 + CaCl2 solution. Dissolved organic carbon (DOC) content was measured in these extracts before and after applying the climatic modalities. Difference in DOC indicated an effect of the climatic modality on PACs availability. If an effect was noticed, available PACs was then accurately measured using (i) an hydrogen-peroxide oxidation on the soils followed (ii) a dichloromethane (DCM) extraction and a Gas Chromatography - Mass Spectrometer (GC-MS) quantification of the remaining PACs (i.e. unavailable). Variation of PACs availability will greatly help to understand the mechanisms associated between PACs desorption/sequestration and the abiotic influence of climate. Results of this work will further help understanding and predict the rate of natural attenuation of PACs in contaminated soils for the incoming decades.

Dagois, Robin; Schwartz, Christophe; Faure, Pierre

2014-05-01

321

Sources, fate, and toxic hazards of oxygenated polycyclic aromatic hydrocarbons (PAHs) at PAH-contaminated sites.  

PubMed

In this paper we show that oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) are important cocontaminants that should be taken into account during risk assessment and remediation of sites with high levels of PAHs. The presented data, which have been collected both from our own research and the published literature, demonstrate that oxy-PAHs are abundant but neglected contaminants at these sites. The oxy-PAHs show relatively high persistency and because they are formed through transformation of PAHs, their concentrations in the environment may even increase as the sites are remediated by methods that promote PAH degradation. Furthermore, we show that oxy-PAHs are toxic to both humans and the environment, although the toxicity seems to be manifested through other effects than those known to be important for polycyclic aromatic compounds in general, that is, mutagenicity and carcinogenicity. Finally, we present data that support the hypothesis that oxy-PAHs are more mobile in the environment than PAHs, due to their polarity, and thus have a higher tendency to spread from contaminated sites via surface water and groundwater. We believe that oxy-PAHs should be included in monitoring programs at PAH-contaminated sites, even if a number of other toxicologically relevant compounds that may also be present, such as nitro-PAHs and azaarenes, are not monitored. This is because oxy-PAH levels are difficult to predict from the PAH levels, because their environmental behavior differs substantially from that of PAHs, and oxy-PAHs may be formed as PAHs are degraded. PMID:17985702

Lundstedt, Staffan; White, Paul A; Lemieux, Christine L; Lynes, Krista D; Lambert, Iain B; Oberg, Lars; Haglund, Peter; Tysklind, Mats

2007-09-01

322

An electrokinetic/Fe0 permeable reactive barrier system for the treatment of nitrate-contaminated subsurface soils.  

PubMed

Effective nitrate removal by Fe(0) permeable reactive barriers (Fe(0) PRB) has been recognized as a challenging task because the iron corrosion product foamed on Fe(0) hinders effective electron transfer from Fe(0) to surface-bound nitrate. The objectives of this study were (i) to demonstrate the effectiveness of an electrokinetic/Fe(0) PRB system for remediating nitrate-contaminated low permeability soils using a bench-scale system and (ii) to deepen the understanding of the behavior and fate of nitrate in the system. Bench-scale laboratory experiments were designed to investigate the influence of the Fe(0) content in the permeable reactive barrier, the pH in the anode well, and the applied voltage on remediation efficiency. The experimental results showed that the major reaction product of nitrate reduction by Fe(0) was ammonium and that nitrate reduction efficiency was significantly influenced by the variables investigated in this study. Nitrate reduction efficiency was enhanced by either increasing the Fe(0) content in the Fe(0) reactive barrier or decreasing the initial anode pH. However, nitrate reduction efficiency was reduced by increasing the applied voltage from 10 V to 40 V due to the insufficient reaction time during nitrate migration through the Fe(0) PRB. For all experimental conditions, nearly all nitrate nitrogen was recovered in either anode or cathode wells as nitrate or ammonium within 100 h, demonstrating the effectiveness of the system for remediating nitrate-contaminated subsurface soils. PMID:22153957

Suzuki, Tasuma; Oyama, Yukinori; Moribe, Mai; Niinae, Masakazu

2012-03-01

323

In situ oxidation of petroleum-hydrocarbon contaminated groundwater using passive ISCO system.  

PubMed

Groundwater contamination by gasoline spill is a worldwide environmental problem. Gasoline contains methyl tertiary-butyl ether (MTBE) (a fuel oxygenates) and benzene, which are the chemicals of concerns among the gasoline components. In this study, an in situ chemical oxidation (ISCO) barrier system was developed to evaluate the feasibility of applying this passive system on the control of MTBE and benzene plume in aquifer. The developed ISCO barrier contained oxidant-releasing materials, which could release oxidants (e.g., persulfate) when contact with water for the contaminants' oxidation in groundwater. In this study, laboratory-scale fill-and-draw experiments were conducted to determine the component ratios of the oxidant-releasing materials and evaluate the persulfate release rates. Results indicate that the average persulfate-releasing rate of 7.26 mg S(2)O(8)(2-)/d/g was obtained when the mass ratio of sodium persulfate/cement/sand/water was 1/1.4/0.24/0.7. The column study was conducted to evaluate the efficiency of in situ application of the developed ISCO barrier system on MTBE and benzene oxidation. Results from the column study indicate that approximately 86-92% of MTBE and 95-99% of benzene could be removed during the early persulfate-releasing stage (before 48 pore volumes of groundwater pumping). The removal efficiencies for MTBE and benzene dropped to approximately 40-56% and 85-93%, respectively, during the latter part of the releasing period due to the decreased persulfate-releasing rate. Results reveal that acetone, byproduct of MTBE, was observed and then further oxidized completely. Results suggest that the addition of ferrous ion would activate the persulfate oxidation. However, excess ferrous ion would compete with organic contaminants for persulfate, and thus, cause the decrease in contaminant oxidation rates. The proposed treatment scheme would be expected to provide a more cost-effective alternative to remediate MTBE, benzene, and other petroleum-hydrocarbon contaminated aquifers. Results from this study will be useful in designing a scale-up system for field application. PMID:21396673

Liang, S H; Kao, C M; Kuo, Y C; Chen, K F; Yang, B M

2011-04-01

324

Biological treatment of waste gas containing volatile hydrocarbons  

SciTech Connect

A biological system to treat volatile hydrocarbon-contaminated gases generated during in situ bioventing and air sparging of subsurfaces contaminated with gasoline was field-tested. The system consisted of an air/water separator, a trickling filter, and a biofilter in series. During the field test, extensive monitoring was carried out to evaluate system performance, including the measurement of physical, chemical, biochemical, and microbiological parameters. Degradation and mineralization of volatile hydrocarbons such as benzene and toluene were demonstrated by gene probing and mineralization assays. Data collected showed an average removal of 90% of the BTX (benzene, toluene, and xylenes) and 72% for total hydrocarbons.

Lei, J.; Lord, D.; Arneberg, R.; Cyr, B. [Biogenie, Inc., Sainte-Foy, Quebec (Canada); Rho, D.; Greer, C. [National Research Council-Canada, Montreal, Quebec (Canada). Biotechnology Research Inst.

1995-12-31

325

Influence of Petroleum Hydrocarbon Contamination on Microalgae and Microbial Activities in a Long-Term Contaminated Soil  

Microsoft Academic Search

.   Petroleum hydrocarbons are widespread environmental pollutants. Although biodegradation of petroleum hydrocarbons has been\\u000a the subject of numerous investigations, information on their toxicity to microorganisms in soil is limited, with virtually\\u000a no work conducted on soil algae. We carried out a screening experiment for total petroleum hydrocarbons (TPH) and their toxicity\\u000a to soil algal populations, microbial biomass, and soil enzymes

M. Megharaj; I. Singleton; N. C. McClure; R. Naidu

2000-01-01

326

Coupling Between Flow and Precipitation in Heterogeneous Subsurface Environments and Effects On Contaminant Fate and Transport  

SciTech Connect

Reactive mixing fronts can occur at large scales, e.g. when chemical amendments are injected in wells, or at small scales (pore-scales) when reactive intermediates are being generated in situ at grain boundaries, cell surfaces and adjacent to biofilms. The product of the reactions such as mineral precipitates, biofilms or filtered colloids modifies permeability leading to the complex coupling between flow and reactions and precipitation. The objectives are to determine how precipitates are distributed within large and small scale mixing fronts, how permeability and flow is modified by precipitation, how the mobility of a representative contaminant, strontium, is affected by the precipitation of carbonates, and how subsequent dissolution of the carbonates result in mobilization of Sr and increased flow. The desired outcomes of the project are to help develop methods leading to sequestration of metal contaminants, and to determine how macroscopic field-scale modeling can be applied to predict the outcome of remediation activities.

Tartakovsky, Alexandre M.; Redden, George D.; Yoshiko Fujita; Scheibe, Tim; Smith, Robert; Reddy, Michael; Kelly, Shelly

2006-06-01

327

Aerobic biodegradation potential of subsurface microorganisms from a jet fuel-contaminated aquifer.  

PubMed Central

In 1975, a leak of 83,000 gallons (314,189 liters) of jet fuel (JP-4) contaminated a shallow water-table aquifer near North Charleston, S.C. Laboratory experiments were conducted with contaminated sediments to assess the aerobic biodegradation potential of the in situ microbial community. Sediments were incubated with 14C-labeled organic compounds, and the evolution of 14CO2 was measured over time. Gas chromatographic analyses were used to monitor CO2 production and O2 consumption under aerobic conditions. Results indicated that the microbes from contaminated sediments remained active despite the potentially toxic effects of JP-4. 14CO2 was measured from [14C]glucose respiration in unamended and nitrate-amended samples after 1 day of incubation. Total [14C]glucose metabolism was greater in 1 mM nitrate-amended than in unamended samples because of increased cellular incorporation of 14C label. [14C]benzene and [14C]toluene were not significantly respired after 3 months of incubation. With the addition of 1 mM NO3, CO2 production measured by gas chromatographic analysis increased linearly during 2 months of incubation at a rate of 0.099 mumol g-1 (dry weight) day-1 while oxygen concentration decreased at a rate of 0.124 mumol g-1 (dry weight) day-1. With no added nitrate, CO2 production was not different from that in metabolically inhibited control vials. From the examination of selected components of JP-4, the n-alkane hexane appeared to be degraded as opposed to the branched alkanes of similar molecular weight. The results suggest that the in situ microbial community is active despite the JP-4 jet fuel contamination and that biodegradation may be compound specific.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1903628

Aelion, C M; Bradley, P M

1991-01-01

328

Microbial diversity in a hydrocarbon- and chlorinated-solvent- contaminated aquifer undergoing intrinsic bioremediation  

USGS Publications Warehouse

A culture-independent molecular phylogenetic approach was used to survey constituents of microbial communities associated with an aquifer contaminated with hydrocarbons (mainly jet fuel) and chlorinated solvents undergoing intrinsic bioremediation. Samples were obtained from three redox zones: methanogenic, methanogenic-sulfate reducing, and iron or sulfate reducing. Small-subunit rRNA genes were amplified directly from aquifer material DNA by PCR with universally conserved or Bacteria- or Archaea-specific primers and were cloned. A total of 812 clones were screened by restriction fragment length polymorphisms (RFLP), approximately 50% of which were unique. All RFLP types that occurred more than once in the libraries, as well as many of the unique types, were sequenced. A total of 104 (94 bacterial and 10 archaeal) sequence types were determined. Of the 94 bacterial sequence types, 10 have no phylogenetic association with known taxonomic divisions and are phylogenetically grouped in six novel division level groups (candidate divisions WS1 to WS6); 21 belong to four recently described candidate divisions with no cultivated representatives (OPS, OP8, OP10, and OP11); and 63 are phylogenetically associated with 10 well-recognized divisions. The physiology of two particularly abundant sequence types obtained from the methanogenic zone could be inferred from their phylogenetic association with groups of microorganisms with a consistent phenotype. One of these sequence types is associated with the genus Syntrophus; Syntrophus spp. produce energy from the anaerobic oxidation of organic acids, with the production of acetate and hydrogen. The organism represented by the other sequence type is closely related to Methanosaeta spp., which are known to be capable of energy generation only through aceticlastic methanogenesis. We hypothesize, therefore, that the terminal step of hydrocarbon degradation in the methanogenic zone of the aquifer is aceticlastic methanogenesis and that the microorganisms represented by these two sequence types occur in syntrophic association.

Dojka, M.A.; Hugenholtz, P.; Haack, S.K.; Pace, N.R.

1998-01-01

329

In situ detection of anaerobic alkane metabolites in subsurface environments  

PubMed Central

Alkanes comprise a substantial fraction of crude oil and refined fuels. As such, they are prevalent within deep subsurface fossil fuel deposits and in shallow subsurface environments such as aquifers that are contaminated with hydrocarbons. These environments are typically anaerobic, and host diverse microbial communities that can potentially use alkanes as substrates. Anaerobic alkane biodegradation has been reported to occur under nitrate-reducing, sulfate-reducing, and methanogenic conditions. Elucidating the pathways of anaerobic alkane metabolism has been of interest in order to understand how microbes can be used to remediate contaminated sites. Alkane activation primarily occurs by addition to fumarate, yielding alkylsuccinates, unique anaerobic metabolites that can be used to indicate in situ anaerobic alkane metabolism. These metabolites have been detected in hydrocarbon-contaminated shallow aquifers, offering strong evidence for intrinsic anaerobic bioremediation. Recently, studies have also revealed that alkylsuccinates are present in oil and coal seam production waters, indicating that anaerobic microbial communities can utilize alkanes in these deeper subsurface environments. In many crude oil reservoirs, the in situ anaerobic metabolism of hydrocarbons such as alkanes may be contributing to modern-day detrimental effects such as oilfield souring, or may lead to more beneficial technologies such as enhanced energy recovery from mature oilfields. In this review, we briefly describe the key metabolic pathways for anaerobic alkane (including n-alkanes, isoalkanes, and cyclic alkanes) metabolism and highlight several field reports wherein alkylsuccinates have provided evidence for anaerobic in situ alkane metabolism in shallow and deep subsurface environments. PMID:23761789

Agrawal, Akhil; Gieg, Lisa M.

2013-01-01

330

In situ detection of anaerobic alkane metabolites in subsurface environments.  

PubMed

Alkanes comprise a substantial fraction of crude oil and refined fuels. As such, they are prevalent within deep subsurface fossil fuel deposits and in shallow subsurface environments such as aquifers that are contaminated with hydrocarbons. These environments are typically anaerobic, and host diverse microbial communities that can potentially use alkanes as substrates. Anaerobic alkane biodegradation has been reported to occur under nitrate-reducing, sulfate-reducing, and methanogenic conditions. Elucidating the pathways of anaerobic alkane metabolism has been of interest in order to understand how microbes can be used to remediate contaminated sites. Alkane activation primarily occurs by addition to fumarate, yielding alkylsuccinates, unique anaerobic metabolites that can be used to indicate in situ anaerobic alkane metabolism. These metabolites have been detected in hydrocarbon-contaminated shallow aquifers, offering strong evidence for intrinsic anaerobic bioremediation. Recently, studies have also revealed that alkylsuccinates are present in oil and coal seam production waters, indicating that anaerobic microbial communities can utilize alkanes in these deeper subsurface environments. In many crude oil reservoirs, the in situ anaerobic metabolism of hydrocarbons such as alkanes may be contributing to modern-day detrimental effects such as oilfield souring, or may lead to more beneficial technologies such as enhanced energy recovery from mature oilfields. In this review, we briefly describe the key metabolic pathways for anaerobic alkane (including n-alkanes, isoalkanes, and cyclic alkanes) metabolism and highlight several field reports wherein alkylsuccinates have provided evidence for anaerobic in situ alkane metabolism in shallow and deep subsurface environments. PMID:23761789

Agrawal, Akhil; Gieg, Lisa M

2013-01-01

331

Impact of Bacterial Biomass on Contaminant Sorption and Transport in a Subsurface Soil †  

PubMed Central

The objective of this study was to investigate the impact of bacterial biomass on the sorption and transport of three solutes (quinoline, naphthalene, and 45Ca) in a subsurface soil. Miscible displacement techniques were employed to measure sorption and transport of the above compounds during steady, saturated water flow in sterile and/or bacterium-inoculated soil columns. The soil was inoculated with either a quinoline-degrading bacterium, Pseudomonas sp. 3N3A isolate, or its mutant isolate, B53, which does not degrade quinoline. In soil columns inoculated with the B53 and 3N3A isolates, quinoline sorption was reduced by about 60 and 20%, respectively. In contrast, 45Ca sorption was minimally reduced, which indicated that biomass did not significantly alter the cation-exchange capacity of the soil. Biomass impacts on sorption were solute specific, even when the sorption mechanism for both quinoline and 45Ca was similar. Thus, the differential response is attributed to biomass-induced changes in quinoline speciation; an increase in pH at the sorbent-water interface would result in a larger proportion of the neutral species and a decrease in sorption. Sorption of naphthalene was reduced by about 30%, which was attributed to accessibility of hydrophobic regions. Minimal biosorption of all solutes indicated negligible biofacilitated transport. Alteration of the soil surfaces upon addition of bacterial biomass reduced sorption of quinoline and naphthalene, thereby enhancing transport. PMID:16348958

Bellin, C. A.; Rao, P. S. C.

1993-01-01

332

Bacterial Community Dynamics and Polycyclic Aromatic Hydrocarbon Degradation during Bioremediation of Heavily Creosote-Contaminated Soil  

PubMed Central

Bacterial community dynamics and biodegradation processes were examined in a highly creosote-contaminated soil undergoing a range of laboratory-based bioremediation treatments. The dynamics of the eubacterial community, the number of heterotrophs and polycyclic aromatic hydrocarbon (PAH) degraders, and the total petroleum hydrocarbon (TPH) and PAH concentrations were monitored during the bioremediation process. TPH and PAHs were significantly degraded in all treatments (72 to 79% and 83 to 87%, respectively), and the biodegradation values were higher when nutrients were not added, especially for benzo(a)anthracene and chrysene. The moisture content and aeration were determined to be the key factors associated with PAH bioremediation. Neither biosurfactant addition, bioaugmentation, nor ferric octate addition led to differences in PAH or TPH biodegradation compared to biodegradation with nutrient treatment. All treatments resulted in a high first-order degradation rate during the first 45 days, which was markedly reduced after 90 days. A sharp increase in the size of the heterotrophic and PAH-degrading microbial populations was observed, which coincided with the highest rates of TPH and PAH biodegradation. At the end of the incubation period, PAH degraders were more prevalent in samples to which nutrients had not been added. Denaturing gradient gel electrophoresis analysis and principal-component analysis confirmed that there was a remarkable shift in the composition of the bacterial community due to both the biodegradation process and the addition of nutrients. At early stages of biodegradation, the ?-Proteobacteria group (genera Sphingomonas and Azospirillum) was the dominant group in all treatments. At later stages, the ?-Proteobacteria group (genus Xanthomonas), the ?-Proteobacteria group (genus Sphingomonas), and the Cytophaga-Flexibacter-Bacteroides group (Bacteroidetes) were the dominant groups in the nonnutrient treatment, while the ?-Proteobacteria group (genus Xathomonas), the ?-Proteobacteria group (genera Alcaligenes and Achromobacter), and the ?-Proteobacteria group (genus Sphingomonas) were the dominant groups in the nutrient treatment. This study shows that specific bacterial phylotypes are associated both with different phases of PAH degradation and with nutrient addition in a preadapted PAH-contaminated soil. Our findings also suggest that there are complex interactions between bacterial species and medium conditions that influence the biodegradation capacity of the microbial communities involved in bioremediation processes. PMID:16269736

Viñas, Marc; Sabaté, Jordi; Espuny, María José; Solanas, Anna M.

2005-01-01

333

Phytoremediation of hydrocarbon contaminants in subantarctic soils: an effective management option.  

PubMed

Accidental fuel spills on world heritage subantarctic Macquarie Island have caused considerable contamination. Due to the island's high latitude position, its climate, and its fragile ecosystem, traditional methods of remediation are unsuitable for on-site clean up. We investigated the tolerance of a subantarctic native tussock grass, Poa foliosa (Hook. f.), to Special Antarctic Blend (SAB) diesel fuel and its potential to reduce SAB fuel contamination via phytoremediation. Toxicity of SAB fuel to P. foliosa was assessed in an 8 month laboratory growth trial under growth conditions which simulated the island's environment. Single seedlings were planted into 1 L pots of soil spiked with SAB fuel at concentrations of 1000, 5 000, 10,000, 2000 and 40,000 mg/kg (plus control). Plants were harvested at 0, 2, 4 and 8 months and a range of plant productivity endpoints were measured (biomass production, plant morphology and photosynthetic efficiency). Poa foliosa was highly tolerant across all SAB fuel concentrations tested with respect to biomass, although higher concentrations of 20,000 and 40,000 mg SAB/kg soil caused slight reductions in leaf length, width and area. To assess the phytoremediation potential of P. foliosa (to 10 000 mg/kg), soil from the planted pots was compared with that from paired unplanted pots at each SAB fuel concentration. The effect of the plant on SAB fuel concentrations and the associated microbial communities found within the soil (total heterotrophs and hydrocarbon degraders) were compared between planted and unplanted treatments at the 0, 2, 4 and 8 month harvest periods. The presence of plants resulted in significantly less SAB fuel in soils at 2 months and a return to background concentration by 8 months. Microbes did not appear to be the sole driving force behind the observed hydrocarbon loss. This study provides evidence that phytoremediation using P. foliosa is a valuable remediation option for use at Macquarie Island, and may be applicable to the management of fuel spills in other cold climate regions. PMID:24836716

Bramley-Alves, Jessica; Wasley, Jane; King, Catherine K; Powell, Shane; Robinson, Sharon A

2014-09-01

334

Phytosiderophore Effects on Subsurface Actinide Contaminants: Potential for Phytostabilization and Phytoextraction  

SciTech Connect

This project seeks to determine the potential of phytosiderophore-producing plants for phytostabilization and phytoextraction of actinides and some metal soil contaminants. Phytosiderophores are secreted by graminaceous plants such as barley and wheat for the solubilization, mobilization and uptake of Fe and other essential nutrients from soils. The ability for these phytosiderophores to chelate and absorb actinides using the same uptake system as for Fe is hereby investigated though characterization of actinide-phytosiderophore complexes (independently of plants), and characterization of plant uptake of such complexes.

Ruggiero, Christy

2003-06-01

335

Borehole Calibration Facilities to Support Gamma Logging for Hanford Subsurface Investigation and Contaminant Monitoring - 13516  

SciTech Connect

Repeated gamma logging in cased holes represents a cost-effective means to monitor gamma-emitting contamination in the deep vadose zone over time. Careful calibration and standardization of gamma log results are required to track changes and to compare results over time from different detectors and logging systems. This paper provides a summary description of Hanford facilities currently available for calibration of logging equipment. Ideally, all logging organizations conducting borehole gamma measurements at the Hanford Site will take advantage of these facilities to produce standardized and comparable results. (authors)

McCain, R.G.; Henwood, P.D.; Pope, A.D.; Pearson, A.W. [S M Stoller Corporation, 2439 Robertson Drive, Richland, WA 99354 (United States)] [S M Stoller Corporation, 2439 Robertson Drive, Richland, WA 99354 (United States)

2013-07-01

336

The effect of subsurface military detonations on vadose zone hydraulic conductivity, contaminant transport and aquifer recharge.  

PubMed

Live fire military training involves the detonation of explosive warheads on training ranges. The purpose of this experiment is to evaluate the hydrogeological changes to the vadose zone caused by military training with high explosive ammunition. In particular, this study investigates artillery ammunition which penetrates underground prior to exploding, either by design or by defective fuze mechanisms. A 105 mm artillery round was detonated 2.6 m underground, and hydraulic conductivity measurements were taken before and after the explosion. A total of 114 hydraulic conductivity measurements were obtained within a radius of 3m from the detonation point, at four different depths and at three different time periods separated by 18months. This data was used to produce a three dimensional numerical model of the soil affected by the exploding artillery round. This model was then used to investigate potential changes to aquifer recharge and contaminant transport caused by the detonating round. The results indicate that an exploding artillery round can strongly affect the hydraulic conductivity in the vadose zone, increasing it locally by over an order of magnitude. These variations, however, appear to cause relatively small changes to both local groundwater recharge and contaminant transport. PMID:23353636

Lewis, Jeffrey; Burman, Jan; Edlund, Christina; Simonsson, Louise; Berglind, Rune; Leffler, Per; Qvarfort, Ulf; Thiboutot, Sonia; Ampleman, Guy; Meuken, Denise; Duvalois, Willem; Martel, Richard; Sjöström, Jan

2013-03-01

337

The effect of subsurface military detonations on vadose zone hydraulic conductivity, contaminant transport and aquifer recharge  

NASA Astrophysics Data System (ADS)

Live fire military training involves the detonation of explosive warheads on training ranges. The purpose of this experiment is to evaluate the hydrogeological changes to the vadose zone caused by military training with high explosive ammunition. In particular, this study investigates artillery ammunition which penetrates underground prior to exploding, either by design or by defective fuze mechanisms. A 105 mm artillery round was detonated 2.6 m underground, and hydraulic conductivity measurements were taken before and after the explosion. A total of 114 hydraulic conductivity measurements were obtained within a radius of 3 m from the detonation point, at four different depths and at three different time periods separated by 18 months. This data was used to produce a three dimensional numerical model of the soil affected by the exploding artillery round. This model was then used to investigate potential changes to aquifer recharge and contaminant transport caused by the detonating round. The results indicate that an exploding artillery round can strongly affect the hydraulic conductivity in the vadose zone, increasing it locally by over an order of magnitude. These variations, however, appear to cause relatively small changes to both local groundwater recharge and contaminant transport.

Lewis, Jeffrey; Burman, Jan; Edlund, Christina; Simonsson, Louise; Berglind, Rune; Leffler, Per; Qvarfort, Ulf; Thiboutot, Sonia; Ampleman, Guy; Meuken, Denise; Duvalois, Willem; Martel, Richard; Sjöström, Jan

2013-03-01

338

Residual indoor contamination from world trade center rubble fires as indicated by polycyclic aromatic hydrocarbon profiles.  

PubMed

The catastrophic destruction of the World Trade Center (WTC) on Sept. 11, 2001 (9/11) created an immense dust cloud followed by fires that emitted smoke and soot into the air of New York City (NYC) well into December. Outdoor pollutant levels in lower Manhattan returned to urban background levels after about 200 days as the fires were put out and the debris cleanup was completed. However, particulate matter (PM) from the original collapse and fires also penetrated into commercial and residential buildings. This has created public concern because WTC dust is thought to cause adverse pulmonary symptoms including "WTC cough" and reduced lung capacity. Additionally, some recent studies have suggested a possible link between exposure to WTC contamination and other adverse health effects. Distinguishing between normal urban pollutant infiltration and residual WTC dust remaining in interior spaces is difficult; efforts are underway to develop such discriminator methods. Some progress has been made in identifying WTC dust by the content of fibers believed to be associated with the initial building collapse. There are also contaminants created by the fires that burned for 100 days in the debris piles of the building rubble. Using WTC ambient air samples, we have developed indicators for fire related PM based on the relative amounts of specific particle bound polycyclic aromatic hydrocarbons (PAHs) and the mass fraction of PAHs per mass of PM. These two parameters are combined, and we show a graphical method for discriminating between fire sources and urban particulate sources as applied to samples of settled dusts. We found that our PAHs based discriminator method can distinguish fire source contributions to WTC related particulate matter and dusts. Other major building fires or large open burn events could have similar PAHs characteristics. We found that random samples collected approximately 3.5 years after the WTC event from occupied indoor spaces (primarily residential) in the New York area are not statistically distinguishable from contemporary city background. PMID:16572771

Pleil, Joachim D; Funk, William E; Rappaport, Stephen M

2006-02-15

339

Intrinsic bioremediation of MTBE-contaminated groundwater at a petroleum-hydrocarbon spill site  

NASA Astrophysics Data System (ADS)

An oil-refining plant site located in southern Taiwan has been identified as a petroleum-hydrocarbon [mainly methyl tert-butyl ether (MTBE) and benzene, toluene, ethylbenzene, and xylenes (BTEX)] spill site. In this study, groundwater samples collected from the site were analyzed to assess the occurrence of intrinsic MTBE biodegradation. Microcosm experiments were conducted to evaluate the feasibility of biodegrading MTBE by indigenous microorganisms under aerobic, cometabolic, iron reducing, and methanogenic conditions. Results from the field investigation and microbial enumeration indicate that the intrinsic biodegradation of MTBE and BTEX is occurring and causing the decrease in MTBE and BTEX concentrations. Microcosm results show that the indigenous microorganisms were able to biodegrade MTBE under aerobic conditions using MTBE as the sole primary substrate. The detected biodegradation byproduct, tri-butyl alcohol (TBA), can also be biodegraded by the indigenous microorganisms. In addition, microcosms with site groundwater as the medium solution show higher MTBE biodegradation rate. This indicates that the site groundwater might contain some trace minerals or organics, which could enhance the MTBE biodegradation. Results show that the addition of BTEX at low levels could also enhance the MTBE removal. No MTBE removal was detected in iron reducing and methanogenic microcosms. This might be due to the effects of low dissolved oxygen (approximately 0.3 mg/L) within the plume. The low iron reducers and methanogens (<1.8×103 cell/g of soil) observed in the aquifer also indicate that the iron reduction and methanogenesis are not the dominant biodegradation patterns in the contaminant plume. Results from the microcosm study reveal that preliminary laboratory study is required to determine the appropriate substrates and oxidation-reduction conditions to enhance the biodegradation of MTBE. Results suggest that in situ or on-site aerobic bioremediation using indigenous microorganisms would be a feasible technology to clean up this MTBE-contaminated site.

Chen, K. F.; Kao, C. M.; Chen, T. Y.; Weng, C. H.; Tsai, C. T.

2006-06-01

340

Field metabolomics and laboratory assessments of anaerobic intrinsic bioremediation of hydrocarbons at a petroleum?contaminated site  

PubMed Central

Summary Field metabolomics and laboratory assays were used to assess the in situ anaerobic attenuation of hydrocarbons in a contaminated aquifer underlying a former refinery. Benzene, ethylbenzene, 2?methylnaphthalene, 1,2,4? and 1,3,5?trimethylbenzene were targeted as contaminants of greatest regulatory concern (COC) whose intrinsic remediation has been previously reported. Metabolite profiles associated with anaerobic hydrocarbon decay revealed the microbial utilization of alkylbenzenes, including the trimethylbenzene COC, PAHs and several n?alkanes in the contaminated portions of the aquifer. Anaerobic biodegradation experiments designed to mimic in situ conditions showed no loss of exogenously amended COC; however, a substantive rate of endogenous electron acceptor reduction was measured (55?±?8?µM SO4 day?1). An assessment of hydrocarbon loss in laboratory experiments relative to a conserved internal marker revealed that non?COC hydrocarbons were being metabolized. Purge and trap analysis of laboratory assays showed a substantial loss of toluene, m? and o?xylene, as well as several alkanes (C6–C12). Multiple lines of evidence suggest that benzene is persistent under the prevailing site anaerobic conditions. We could find no in situ benzene intermediates (phenol or benzoate), the parent molecule proved recalcitrant in laboratory assays and low copy numbers of Desulfobacterium were found, a genus previously implicated in anaerobic benzene biodegradation. This study also showed that there was a reasonable correlation between field and laboratory findings, although with notable exception. Thus, while the intrinsic anaerobic bioremediation was clearly evident at the site, non?COC hydrocarbons were preferentially metabolized, even though there was ample literature precedence for the biodegradation of the target molecules. PMID:21261914

Parisi, Victoria A.; Brubaker, Gaylen R.; Zenker, Matthew J.; Prince, Roger C.; Gieg, Lisa M.; Da Silva, Marcio L.B.; Alvarez, Pedro J. J.; Suflita, Joseph M.

2009-01-01

341

Field metabolomics and laboratory assessments of anaerobic intrinsic bioremediation of hydrocarbons at a petroleum-contaminated site.  

PubMed

Field metabolomics and laboratory assays were used to assess the in situ anaerobic attenuation of hydrocarbons in a contaminated aquifer underlying a former refinery. Benzene, ethylbenzene, 2-methylnaphthalene, 1,2,4- and 1,3,5-trimethylbenzene were targeted as contaminants of greatest regulatory concern (COC) whose intrinsic remediation has been previously reported. Metabolite profiles associated with anaerobic hydrocarbon decay revealed the microbial utilization of alkylbenzenes, including the trimethylbenzene COC, PAHs and several n-alkanes in the contaminated portions of the aquifer. Anaerobic biodegradation experiments designed to mimic in situ conditions showed no loss of exogenously amended COC; however, a substantive rate of endogenous electron acceptor reduction was measured (55 ± 8 µM SO(4) day(-1)). An assessment of hydrocarbon loss in laboratory experiments relative to a conserved internal marker revealed that non-COC hydrocarbons were being metabolized. Purge and trap analysis of laboratory assays showed a substantial loss of toluene, m- and o-xylene, as well as several alkanes (C(6)-C(12)). Multiple lines of evidence suggest that benzene is persistent under the prevailing site anaerobic conditions. We could find no in situ benzene intermediates (phenol or benzoate), the parent molecule proved recalcitrant in laboratory assays and low copy numbers of Desulfobacterium were found, a genus previously implicated in anaerobic benzene biodegradation. This study also showed that there was a reasonable correlation between field and laboratory findings, although with notable exception. Thus, while the intrinsic anaerobic bioremediation was clearly evident at the site, non-COC hydrocarbons were preferentially metabolized, even though there was ample literature precedence for the biodegradation of the target molecules. PMID:21261914

Parisi, Victoria A; Brubaker, Gaylen R; Zenker, Matthew J; Prince, Roger C; Gieg, Lisa M; Da Silva, Marcio L B; Alvarez, Pedro J J; Suflita, Joseph M

2009-03-01

342

Pilot-scale bioremediation of a petroleum hydrocarbon-contaminated clayey soil from a sub-Arctic site.  

PubMed

Bioremediation is a potentially cost-effective solution for petroleum contamination in cold region sites. This study investigates the extent of biodegradation of petroleum hydrocarbons (C16-C34) in a pilot-scale biopile experiment conducted at 15°C for periods up to 385 days, with a clayey soil, from a crude oil-impacted site in northern Canada. Although several studies on bioremediation of petroleum hydrocarbon-contaminated soils from cold region sites have been reported for coarse-textured, sandy soils, there are limited studies of bioremediation of petroleum contamination in fine-textured, clayey soils. Our results indicate that aeration and moisture addition was sufficient for achieving 47% biodegradation and an endpoint of 530 mg/kg for non-volatile (C16-C34) petroleum hydrocarbons. Nutrient amendment with 95 mg-N/kg showed no significant effect on biodegradation compared to a control system without nutrient but similar moisture content. In contrast, in a biopile amended with 1340 mg-N/kg, no statistically significant biodegradation of non-volatile fraction was detected. Terminal Restriction Fragment Length Polymorphism (T-RFLP) analyses of alkB and 16S rRNA genes revealed that inhibition of hydrocarbon biodegradation was associated with a lack of change in microbial community composition. Overall, our data suggests that biopiles are feasible for attaining the bioremediation endpoint in clayey soils. Despite the significantly lower biodegradation rate of 0.009 day(-1) in biopile tank compared to 0.11 day(-1) in slurry bioreactors for C16-C34 hydrocarbons, the biodegradation extents for this fraction were comparable in these two systems. PMID:25218258

Akbari, Ali; Ghoshal, Subhasis

2014-09-15

343

Two- and Three-Dimensional Depiction of Subsurface Geology Using Commercial Software for Support of Groundwater Contaminant Fate and Transport Analysis - 13345  

SciTech Connect

Groundwater contamination by hexavalent chromium and other nuclear reactor operation-related contaminants has resulted in the need for groundwater remedial actions within the Hanford Site reactor areas (the Hanford Site 100 Area). The large geographic extent of the resultant contaminant plumes requires an extensive level of understanding of the aquifer structure, characteristics, and configuration to support assessment and design of remedial alternatives within the former 100-D, 100-H, and 100-K reactor areas. The authors have prepared two- and three-dimensional depictions of the key subsurface geologic structures at two Hanford Site reactor operable units (100-K and 100-D/H). These depictions, prepared using commercial-off-the-shelf (COTS) visualization software, provide a basis for expanding the understanding of groundwater contaminant migration pathways, including identification of geologically-defined preferential groundwater flow pathways. These identified preferential flow pathways support the conceptual site model and help explain both historical and current contaminant distribution and transport. (authors)

Ivarson, Kristine A. [North Wind, Inc. Richland, Washington 99352 (United States)] [North Wind, Inc. Richland, Washington 99352 (United States); Miller, Charles W.; Arola, Craig C. [CH2M HILL Plateau Remediation Company, Richland, Washington 99352 (United States)] [CH2M HILL Plateau Remediation Company, Richland, Washington 99352 (United States)

2013-07-01

344

ESCA study of the effect of hydrocarbon contamination on poly(tetrafluoroethylene) exposed to atomic oxygen plasma  

NASA Technical Reports Server (NTRS)

The ESCA spectra and data obtained by Morra et al. (1989) on poly(tetrafluoroethylene) (PTFE) exposed to atomic oxygen plasma are closely reexamined. It is shown that the spikes observed in Morra et al. plots of O/C or F/C versus time of the exposure of PTFE to atomic oxygen plasma were not characteristic of PTFE per se but were instead a result of a contamination by hydrocarbon present in their PTFE samples. This was demonstrated experimentally by comparing data derived for a very clean PTFE sample exposed for 10, 20, and 30 min to oxygen plasma with data obtained on PTFE samples with very small amounts of hydrocarbon contamination.

Golub, Morton A.; Wydeven, Theodore; Cormia, Robert D.

1991-01-01

345

Identification of persulfate oxidation products of polycyclic aromatic hydrocarbon during remediation of contaminated soil.  

PubMed

The extent of PAH transformation, the formation and transformation of reaction byproducts during persulfate oxidation of polycyclic aromatic hydrocarbons (PAHs) in coking plant soil was investigated. Pre-oxidation analyses indicated that oxygen-containing PAHs (oxy-PAHs) existed in the soil. Oxy-PAHs including 1H-phenalen-1-one, 9H-fluoren-9-one, and 1,8-naphthalic anhydride were also produced during persulfate oxidation of PAHs. Concentration of 1,8-naphthalic anhydride at 4h in thermally activated (50°C) persulfate oxidation (TAPO) treatment increased 12.7 times relative to the oxidant-free control. Additionally, the oxy-PAHs originally present and those generated during oxidation can be oxidized by unactivated or thermally activated persulfate oxidation. For example, 9H-fluoren-9-one concentration decreased 99% at 4h in TAPO treatment relative to the control. Thermally activated persulfate resulted in greater oxy-PAHs removal than unactivated persulfate. Overall, both unactivated and thermally activated persulfate oxidation of PAH-contaminated soil reduced PAH mass, and oxidized most of the reaction byproducts. Consequently, this treatment process could limit environmental risk related to the parent compound and associated reaction byproducts. PMID:24862467

Liao, Xiaoyong; Zhao, Dan; Yan, Xiulan; Huling, Scott G

2014-07-15

346

Influence of the bioaccessible fraction of polycyclic aromatic hydrocarbons on the ecotoxicity of historically contaminated soils.  

PubMed

Sequential supercritical fluid extraction together with a two-site desorption model were employed to estimate the bioaccessible fraction of polycyclic aromatic hydrocarbons (PAHs) in four historically contaminated soils. The ecotoxicity of the soils was assayed by four different contact tests. The same soils were exposed to exhaustive extraction and the extracts were returned to the soils to ensure total 100% bioaccessibility of the pollutants. Then the soils were assayed again. Statistical evaluation revealed that the predicted bioaccessible PAHs generally correlated with the ecotoxicity responses of the tests. The estimated bioaccessible fractions varied from 10 to 98%. This value increased for PAHs with higher lipophilicity and showed no correlation with the organic carbon content in the soils. The ecotoxicity tests in the study indicated different sensitivity toward PAHs and the tests employing Heterocypris incongruens and Eisenia fetida were found to be more suitable than Lemna minor and Vibrio fischeri. Mortality and growth inhibition of ostracods correlated with all the types of PAHs and earthworm growth inhibition and mortality were preferentially sensitive to PAHs with only 3-4 aromatic rings. Determination of the biota-soil accumulation factors indicated that the earthworm growth inhibition corresponded to increased accumulation of PAHs in the earthworm tissue. PMID:23611796

?van?arová, Monika; K?esinová, Zdena; Cajthaml, Tomáš

2013-06-15

347

Pyrosequence analysis of bacterial communities in aerobic bioreactors treating polycyclic aromatic hydrocarbon-contaminated soil  

PubMed Central

Two aerobic, lab-scale, slurry-phase bioreactors were used to examine the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil and the associated bacterial communities. The two bioreactors were operated under semi-continuous (draw-and-fill) conditions at a residence time of 35 days, but one was fed weekly and the other monthly. Most of the quantified PAHs, including high-molecular-weight compounds, were removed to a greater extent in the weekly-fed bioreactor, which achieved total PAH removal of 76%. Molecular analyses, including pyrosequencing of 16S rRNA genes, revealed significant shifts in the soil bacterial communities after introduction to the bioreactors and differences in the abundance and types of bacteria in each of the bioreactors. The weekly-fed bioreactor displayed a more stable bacterial community with gradual changes over time, whereas the monthly-fed bioreactor community was less consistent and may have been more strongly influenced by the influx of untreated soil during feeding. Phylogenetic groups containing known PAH-degrading bacteria previously identified through stable-isotope probing of the untreated soil were differentially affected by bioreactor conditions. Sequences from members of the Acidovorax and Sphingomonas genera, as well as the uncultivated ‘‘Pyrene Group 2’’ were abundant in the bioreactors. However, the relative abundances of sequences from the Pseudomonas, Sphingobium, and Pseudoxanthomonas genera, as well as from a group of unclassified anthracene degraders, were much lower in the bioreactors compared to the untreated soil. PMID:21369833

Richardson, Stephen D.; Aitken, Michael D.

2011-01-01

348

Using discriminant analysis to assess polycyclic aromatic hydrocarbons contamination in Yongding New River.  

PubMed

Yongding New River has been polluted by polycyclic aromatic hydrocarbons (PAHs) which are carcinogenic and mutagenic. In three periods (the abundant water period, mean water period, dry water period), ten sites (totally 30 samples) in Yongding New River were clustered into four categories by hierarchical cluster analysis (hierarchical CA). In the same cluster, the samples had the same approximate contamination situation. In order to eliminate the dimensional differences, the data in each sample, containing 16 kinds of PAHs, were standardized with normal standardization and maximum difference standardization. According to the results of the cubic clustering criterion, pseudo F, and pseudo t (2) (PST2), the proper number of clustering for the 30 samples is 4. Before conducting hierarchical CA and K-means cluster analysis on the samples, we used principal component analysis to obtain another group data set. This data set was composed of the principal component scores which are uncorrelated variables. Hierarchical CA and K-means cluster analysis were used to classify the two data sets into four categories. With the classification results of hierarchical CA and K-means cluster analysis, discriminant analysis is applied to determine which method was better for normalization of the original data and which one was proper to cluster the samples and establish discriminant functions so that a new sample can be grouped into the right categories. PMID:23657734

Wang, Xiaojing; Zou, Zhihong; Zou, Hui

2013-10-01

349

Chlorinated hydrocarbon contaminants and stable isotope ratios in pelagic seabirds from the North Pacific Ocean.  

PubMed

Organochlorine pesticides, polychlorinated biphenyls (PCBs), and stable isotopes of nitrogen (delta15N) and carbon (delta13C) were determined in livers of eight seabird species (Diomedea immutabilis, D. nigripes, Fulmarus glacialis, Puffinus bulleri, P. carneipes, P. griseus, P. tenuirostris, and Fratercula corniculata) collected opportunistically from an experimental fishery in the North Pacific Ocean. Concentrations of P, P'-DDE were found in all samples but were highly variable among species, ranging over >2 orders of magnitude from 1.23 mg/kg (wet weight) in D. nigripes to 0.008 mg/kg in P. tenuirostris, whereas total PCBs ranged from 1.14 to 0.020 mg/kg in those same two species. Residues of hexachlorobenzene, trans-nonachlor, photo-mirex, mirex, beta-hexachlorocyclohexane, oxychlordane, and heptachlor expoxide were quantified at lower concentrations in all samples. There were significant positive regressions of lipid-normalized concentrations of DDE (r2 = 0.526), total PCBs (r2 = 0.566), CB-153 (r2 = 0.565), and mirex (r2 = 0.586) on the hepatic delta15N signature, indicating that trophic level accounted for approximately 50% of the variability in those contaminants among species. In some species, e.g., P. bulleri, concentrations were lower than expected based on delta15N, which was attributed to a dietary switch before sampling and therefore lack of concordance in the time scales integrated by hepatic chlorinated hydrocarbon concentrations compared with delta15N. PMID:15959703

Elliott, J E

2005-07-01

350

Ecotoxicological assessment of bioremediation of a petroleum hydrocarbon-contaminated soil  

SciTech Connect

A battery of bioassays [barley seed germination, barley plant growth, lettuce seed germination, worm mortality, Microtox{reg_sign}, lettuce root elongation, algae Selenastrum capricornutum growth, Daphnia magna mortality, and SOS Chromotest ({+-}S9)] was used to assess an above-ground heap pile treatment of a soil contaminated with aliphatic petroleum hydrocarbons (12 to 24 carbons). Despite an initial oil and grease concentration of 2,000 mg/kg, no significant (geno)toxicity was apparent in the soil sample before treatment. During the treatment, which decreased oil and grease concentrations to 800 mg/kg, slight toxicity was revealed by three bioassays (barley seed germination, worm mortality, Daphnia magna mortality), and a significant increase in genotoxicity was measured with the SOS Chromotest ({+-} S9). It appears that ecotoxicological evaluation revealed harmful condition(s) that were not detected by chemical assessment. This suggests that the remediation had ceased before complete detoxification occurred. This phenomenon must be further investigated, however, to furnish solid conclusions on the toxicological effectiveness of the biotreatment.

Renoux, A.Y.; Tyagi, R.D. [Univ. du Quebec, Montreal, Quebec (Canada). Inst. National de Recherche Scientifique sur l`Eau; Roy, Y. [Analex Inc., Chomedey, Quebec (Canada); Samson, R. [Ecole Polytechnique de Montreal, Quebec (Canada). Chemical Engineering Dept.

1995-12-31

351

Influence of ultraviolet light on the toxicity of sediments contaminated with polycyclic aromatic hydrocarbons  

SciTech Connect

Standard 10-d toxicity tests were conducted with freshwater benthic invertebrates using sediments containing a range of concentrations of polycyclic aromatic hydrocarbons (PAHs). The assays were performed both under normal laboratory fluorescent light and ultraviolet (UV) light, which mimicked wavelengths present in sunlight, at about 10% of ambient solar intensity. In sediments with elevated PAH concentrations, tests conducted with UV light resulted in significantly greater mortality of Hyalella azteca (amphipods) and Lumbriculus variegatus (oligochaetes) than tests performed under otherwise comparable conditions with fluorescent light. There also was increased mortality of these two species, relative to controls, when surviving organisms from the 10-d exposures to the PAH-contaminated sediments were placed in clean water under UV light for 2 h. These results suggest that the organisms accumulated PAHs from the test sediments, which were subsequently photoactivated by UV light to excited states more toxic than the ground-state molecules. The phenomenon of photoactivation has been examined for pelagic species exposed to PAHs, but not for benthic organisms exposed to sediment-associated PAHs. The results suggest that failure to consider photoactivation of PAHs by sunlight could result in sediment toxicity test methods or criteria that are underprotective of benthic organisms.

Ankley, G.T.; Collyard, S.A. (Environmental Protection Agency, Duluth, MN (United States)); Monson, P.D. (Univ. of Wisconsin, Superior, WI (United States)); Kosian, P.A. (Integrated Lab. Systems, Research Triangle Park, NC (United States))

1994-11-01

352

Biostimulation Reveals Functional Redundancy of Anthracene-Degrading Bacteria in Polycyclic Aromatic Hydrocarbon-Contaminated Soil  

PubMed Central

Abstract Stable-isotope probing was previously used to identify bacterial anthracene-degraders in untreated soil from a former manufactured gas plant site. However, subsequent pyrosequence analyses of total bacterial communities and quantification of 16S rRNA genes indicated that relative abundances of the predominant anthracene-degrading bacteria (designated Anthracene Group 1) diminished as a result of biological treatment conditions in lab-scale, aerobic bioreactors. This study identified Alphaproteobacterial anthracene-degrading bacteria in bioreactor-treated soil which were dissimilar to those previously identified. The largest group of sequences was from the Alterythrobacter genus while other groups of sequences were associated with bacteria within the order Rhizobiales and the genus Bradyrhizobium. Conditions in the bioreactor enriched for organisms capable of degrading anthracene which were not the same as those identified as dominant degraders in the untreated soil. Further, these data suggest that identification of polycyclic aromatic hydrocarbon-degrading bacteria in contaminated but untreated soil may be a poor indicator of the most active degraders during biological treatment. PMID:24302851

Dunlevy, Sage R.; Singleton, David R.; Aitken, Michael D.

2013-01-01

353

Bioremediation of weathered petroleum hydrocarbon soil contamination in the Canadian High Arctic: laboratory and field studies.  

PubMed

The bioremediation of weathered medium- to high-molecular weight petroleum hydrocarbons (HCs) in the High Arctic was investigated. The polar desert climate, contaminant characteristics, and logistical constraints can make bioremediation of persistent HCs in the High Arctic challenging. Landfarming (0.3 m(3) plots) was tested in the field for three consecutive years with plots receiving very little maintenance. Application of surfactant and fertilizers, and passive warming using a greenhouse were investigated. The field study was complemented by a laboratory experiment to better understand HC removal mechanisms and limiting factors affecting bioremediation on site. Significant reduction of total petroleum HCs (TPH) was observed in both experiments. Preferential removal of compounds nC16 occurred, whereas in the field, TPH reduction was mainly limited to removal of compounds nC16 was observed in the fertilized field plots only. The greenhouse increased average soil temperatures and extended the treatment season but did not enhance bioremediation. Findings suggest that temperature and low moisture content affected biodegradation of HCs in the field. Little volatilization was measured in the laboratory, but this process may have been predominant in the field. Low-maintenance landfarming may be best suited for remediation of HCs compounds

Sanscartier, David; Laing, Tamsin; Reimer, Ken; Zeeb, Barbara

2009-11-01

354

Determination of polycyclic aromatic hydrocarbons in contaminated water and soil samples by immunological and chromatographic methods  

SciTech Connect

An immunoassay was developed that can be used for the detection of polycyclic aromatic hydrocarbons (PAHs) in water, landfill leachate, and soil. As test format an indirect competitive microtiter plate ELISA (enzyme-linked immunosorbent assay) was applied. While groundwater samples from a former manufactured gas plant site could be analyzed directly, soil and landfill leachate had to be extracted and required at least a 100-fold dilution prior to immunochemical measurement. PAHs could be recovered from fortified reference soils as well as aged field samples with high yield using 1-h ultrasonication with acetonitrile. Extraction efficiency was comparable to Soxhlet extraction and ultrasonication with tetrahydrogurane. Recovery was lower with agitation but would still be acceptable for use in an on-site field test to provide rapid, semiquantitative, and reliable test results for making environmental decisions such as identifying hot spots, site mapping, monitoring of remediation processes, and selecting site samples for laboratory analysis. Classification of ELISA data showed that it was possible to estimate the PAH contamination in soils with about 5% false positive and 5% false negative results that may have arisen from heterogeneity of samples, cross-reactivity of compounds with a similar structure, humic acids, or unknown interferences.

Knopp, D.; Seifert, M.; Vaeaenaenen, V.; Niessner, R.

2000-05-15

355

Evaluation of landfarm remediation of hydrocarbon-contaminated soil at the Inveresk Railyard, Launceston, Australia  

SciTech Connect

The cost of landfarm bioremediation of hydrocarbon-contaminated soil at a disused railyard site in Tasmania, Australia is reported. The landfarm area was enclosed in an impermeable clay embankment and where necessary the base was also rolled with clay. Microbial inoculation was not deemed to be necessary since suitable degrading biota were found to be present in site samples prior to commencement of the landfarming. Fertilizer amendment comprised primarily ammonium sulphate and superphosphate to give a C:N ratio (TPH:fertilizer) of 28:1 and a C:P ratio of 200:1. The soil was turned regularly and watered as required for the 12-month duration of the operation. Over this period levels of TPH showed a linear decline from a mean of 4,644 mg/kg to near 100 mg/kg or less, with greatest losses being in the chain lengths C10-C28. The cost was determined to be $A13.40c per m{sup 3}, which is at the lower end of the spectrum of reported landfarming costs. The cost of such operations is important since the reported economics will influence others` choice of bioremediation techniques.

Line, M.A.; Garland, C.D. [Univ. of Tasmania, Hobart (Australia)] [Univ. of Tasmania, Hobart (Australia); Crowley, M. [Stephenson EMF Consultants, Hobart (Australia)] [Stephenson EMF Consultants, Hobart (Australia)

1996-12-31

356

Screening of biosurfactant producers from petroleum hydrocarbon contaminated sources in cold marine environments.  

PubMed

An overview of literature about isolating biosurfactant producers from marine sources indicated no such producers have been reported form North Atlantic Canada. Water and sediment samples were taken from petroleum hydrocarbon contaminated coastal and offshore areas in this region. Either n-hexadecane or diesel was used as the sole carbon source for the screening. A modified colony-based oil drop collapsing test was used to cover sessile biosurfactant producers. Fifty-five biosurfactant producers belong to genera of Alcanivorax, Exiguobacterium, Halomonas, Rhodococcus, Bacillus, Acinetobacter, Pseudomonas, and Streptomyces were isolated. The first three genera were established after 1980s with interesting characteristics and limited relevant publications. Some of the 55 isolated strains were found with properties such as greatly reducing surface tension, stabilizing emulsion and producing flocculant. Isolates P6-4P and P1-5P were selected to demonstrate the performance of biosurfactant production, and were found to reduce the surface tension of water to as low as 28 dynes/cm. PMID:25034191

Cai, Qinhong; Zhang, Baiyu; Chen, Bing; Zhu, Zhiwen; Lin, Weiyun; Cao, Tong

2014-09-15

357

Anaerobic degradation of cyclohexane by sulfate-reducing bacteria from hydrocarbon-contaminated marine sediments  

PubMed Central

The fate of cyclohexane, often used as a model compound for the biodegradation of cyclic alkanes due to its abundance in crude oils, in anoxic marine sediments has been poorly investigated. In the present study, we obtained an enrichment culture of cyclohexane-degrading sulfate-reducing bacteria from hydrocarbon-contaminated intertidal marine sediments. Microscopic analyses showed an apparent dominance by oval cells of 1.5 × 0.8 ?m. Analysis of a 16S rRNA gene library, followed by whole-cell hybridization with group- and sequence-specific oligonucleotide probes showed that these cells belonged to a single phylotype, and were accounting for more than 80% of the total cell number. The dominant phylotype, affiliated with the Desulfosarcina-Desulfococcus cluster of the Deltaproteobacteria, is proposed to be responsible for the degradation of cyclohexane. Quantitative growth experiments showed that cyclohexane degradation was coupled with the stoichiometric reduction of sulfate to sulfide. Substrate response tests corroborated with hybridization with a sequence-specific oligonucleotide probe suggested that the dominant phylotype apparently was able to degrade other cyclic and n-alkanes, including the gaseous alkane n-butane. Based on GC-MS analyses of culture extracts cyclohexylsuccinate was identified as a metabolite, indicating an activation of cyclohexane by addition to fumarate. Other metabolites detected were 3-cyclohexylpropionate and cyclohexanecarboxylate providing evidence that the overall degradation pathway of cyclohexane under anoxic conditions is analogous to that of n-alkanes. PMID:25806023

Jaekel, Ulrike; Zedelius, Johannes; Wilkes, Heinz; Musat, Florin

2015-01-01

358

Cancer risk assessments of Hong Kong soils contaminated by polycyclic aromatic hydrocarbons.  

PubMed

The aim of this study was to evaluate soils from 12 different land use types on human cancer risks, with the main focus being on human cancer risks related to polycyclic aromatic hydrocarbons (PAHs). Fifty-five locations were selected to represent 12 different types of land use (electronic waste dismantling workshop (EW (DW)); open burning site (OBS); car dismantling workshop (CDW) etc.). The total concentrations of 16 PAHs in terms of total burden and their bioaccessibility were analysed using GC/MS. The PAHs concentrations were subsequently used to establish cancer risks in humans via three exposure pathways, namely, accident ingestion of soil, dermal contact soil and inhalation of soil particles. When the 95th centile values of total PAH concentrations were used to derive ingestion and dermal cancer risk probabilities on humans, the CDW land use type indicated a moderate potential for cancerous development (244 × 10(-6) and 209 × 10(-6), respectively). Bioaccessible PAHs content in soil samples from CDW (3.60 × 10(-6)) were also classified as low cancer risk. CDW soil possessed a higher carcinogenic risk based on PAH concentrations. Bioremediation is recommended to treat the contaminated soil. PMID:23465409

Man, Yu Bon; Kang, Yuan; Wang, Hong Sheng; Lau, Winifred; Li, Hui; Sun, Xiao Lin; Giesy, John P; Chow, Ka Lai; Wong, Ming Hung

2013-10-15

359

Characterization of culturable heterotrophic bacteria in hydrocarbon-contaminated soil from an alpine former military site.  

PubMed

We characterized the culturable, heterotrophic bacterial community in soil collected from a former alpine military site contaminated with petroleum hydrocarbons. The physiologically active eubacterial community, as revealed by fluorescence-in situ-hybridization, accounted for 14.9 % of the total (DAPI-stained) bacterial community. 4.0 and 1.2 % of the DAPI-stained cells could be attributed to culturable, heterotrophic bacteria able to grow at 20 and 10 °C, respectively. The majority of culturable bacterial isolates (23/28 strains) belonged to the Proteobacteria with a predominance of Alphaproteobacteria. The remaining isolates were affiliated with the Firmicutes, Actinobacteria and Bacteroidetes. Five strains could be identified as representatives of novel species. Characterization of the 28 strains demonstrated their adaptation to the temperature and nutrient conditions prevailing in the studied soil. One-third of the strains was able to grow at subzero temperatures (-5 °C). Studies on the effect of temperature on growth and lipase production with two selected strains demonstrated their low-temperature adaptation. PMID:24402300

Zhang, Dechao; Margesin, Rosa

2014-06-01

360

Methods for characterizing subsurface volatile contaminants using in-situ sensors  

DOEpatents

An inverse analysis method for characterizing diffusion of vapor from an underground source of volatile contaminant using data taken by an in-situ sensor. The method uses one-dimensional solutions to the diffusion equation in Cartesian, cylindrical, or spherical coordinates for isotropic and homogenous media. If the effective vapor diffusion coefficient is known, then the distance from the source to the in-situ sensor can be estimated by comparing the shape of the predicted time-dependent vapor concentration response curve to the measured response curve. Alternatively, if the source distance is known, then the effective vapor diffusion coefficient can be estimated using the same inverse analysis method. A triangulation technique can be used with multiple sensors to locate the source in two or three dimensions. The in-situ sensor can contain one or more chemiresistor elements housed in a waterproof enclosure with a gas permeable membrane.

Ho, Clifford K. (Albuquerque, NM)

2006-02-21

361

Combination of surfactant enhanced soil washing and electro-Fenton process for the treatment of soils contaminated by petroleum hydrocarbons.  

PubMed

In order to improve the efficiency of soil washing treatment of hydrocarbon contaminated soils, an innovative combination of this soil treatment technique with an electrochemical advanced oxidation process (i.e. electro-Fenton (EF)) has been proposed. An ex situ soil column washing experiment was performed on a genuinely diesel-contaminated soil. The washing solution was enriched with surfactant Tween(®) 80 at different concentrations, higher than the critical micellar concentration (CMC). The impact of soil washing was evaluated on the hydrocarbons concentration in the leachates collected at the bottom of the soil columns. These eluates were then studied for their degradation potential by EF treatment. Results showed that a concentration of 5% of Tween(®) 80 was required to enhance hydrocarbons extraction from the soil. Even with this Tween(®) 80 concentration, the efficiency of the treatment remained very low (only 1% after 24 h of washing). Electrochemical treatments performed thereafter with EF on the collected eluates revealed that the quasi-complete mineralization (>99.5%) of the hydrocarbons was achieved within 32 h according to a linear kinetic trend. Toxicity was higher than in the initial solution and reached 95% of inhibition of Vibrio fischeri bacteria measured by Microtox(®) method, demonstrating the presence of remaining toxic compounds even after the complete degradation. Finally, the biodegradability (BOD5/COD ratio) reached a maximum of 20% after 20 h of EF treatment, which is not enough to implement a combined treatment with a biological treatment process. PMID:25646675

Huguenot, David; Mousset, Emmanuel; van Hullebusch, Eric D; Oturan, Mehmet A

2015-04-15

362

Anaerobic hydrocarbon degradation in petroleum-contaminated harbor sediments under sulfate-reducing and artificially imposed iron-reducing conditions  

USGS Publications Warehouse

The potential use of iron(III) oxide to stimulate in-situ hydrocarbon degradation in anaerobic petroleum-contaminated harbor sediments was investigated. Previous studies have indicated that Fe(III)-reducing bacteria (FeRB) can oxidize some electron donors more effectively than sulfate- reducing bacteria (SRB). In contrast to previous results in freshwater sediments, the addition of Fe(III) to marine sediments from San Diego Bay, CA did not switch the terminal electron-accepting process (TEAP) from sulfate reduction to Fe-(III) reduction. Addition of Fe(III) also did not stimulate anaerobic hydrocarbon oxidation. Exposure of the sediment to air [to reoxidize Fe(II) to Fe(III)] followed by anaerobic incubation of the sediments, resulted in Fe-(III) reduction as the TEAP, but contaminant degradation was not stimulated and in some instances was inhibited. The difference in the ability of FeRB to compete with the SRB in the different sediment treatments was related to relative population sizes. Although the addition of Fe(III) did not stimulate hydrocarbon degradation, the results presented here as well as other recent studies demonstrate that there may be significant anaerobic hydrocarbon degradation under sulfate-reducing conditions in harbor sediments.

Coates, J.D.; Anderson, R.T.; Woodward, J.C.; Phillips, E.J.P.; Lovley, D.R.

1996-01-01

363

Effect of reduced iron on the degradation of chlorinated hydrocarbons in contaminated soil and ground water: A review of publications  

NASA Astrophysics Data System (ADS)

Chlorinated hydrocarbons are among the most hazardous organic pollutants. The traditional remediation technologies, i.e., pumping of contaminated soil- and groundwater and its purification appear to be costly and not very efficient as applied to these pollutants. In the last years, a cheaper method of destroying chlorine-replaced hydrocarbons has been used based on the construction of an artificial permeable barrier, where the process develops with the participation of in situ bacteria activated by zerovalent iron. The forced significant decrease in the redox potential (Eh) down to -750 mV provides the concentration of electrons necessary for the reduction of chlorinated hydrocarbons. A rise in the pH drastically accelerates the dechlorination process. In addition to chlorine-organic compounds, ground water is often contaminated with heavy metals. The influence of the latter on the effect of zerovalent iron may be different: both accelerating its degradation (Cu) and inhibiting it (Cr). Most of the products of zerovalent iron corrosion, i.e., green rust, magnetite, ferrihydrite, hematite, and goethite, weaken the efficiency of the Fe0 barrier by mitigating the dechlorination and complicating the water filtration. However, pyrrhotite FeS, on the contrary, accelerates the dechlorination of chlorine hydrocarbons.

Vodyanitskii, Yu. N.

2014-02-01

364

Vegetable oil as a contaminated soil remediation amendment: application of peanut oil for extraction of polycyclic aromatic hydrocarbons from soil  

Microsoft Academic Search

Peanut oil may be used as a natural, non-toxic, cost-effective and biodegradable extractant for decontamination of polycyclic aromatic hydrocarbon (PAHs)-contaminated soil. Extraction efficiency was >90% when peanut oil at concentrations of 2.5–20% was used to remove anthracene from garden soil. Optimal pH for these extractions was 6 and 7. When soil spiked with a combination of 10 PAHs at 100?g\\/g

Jasvir K Pannu; Ajay Singh; Owen P Ward

2004-01-01

365

Plant and soil properties determine microbial community structure of shared Pinus - Vaccinium rhizospheres in petroleum hydrocarbon contaminated forest soils  

Microsoft Academic Search

Rhizosphere communities are critical to plant and ecosystem function, yet our understanding of the role of disturbance in\\u000a structuring these communities is limited. We tested the hypothesis that soil contamination with petroleum hydrocarbons (PHCs)\\u000a alters spatial patterns of ecto- (ECM) and ericoid (ERM) mycorrhizal fungal and root-associated bacterial community structure\\u000a in the shared rhizosphere of pine (Pinus contorta var. latifolia)

Susan J. Robertson; P. Michael Rutherford; Hugues B. Massicotte

366

Environmental Analysis of Endocrine Disrupting Effects from Hydrocarbon Contaminants in the Ecosystem  

SciTech Connect

This annual report summarizes the progress of three years of a three-year grant awarded to the Center for Bioenvironmental Research (CBR) at Tulane and Xavier Universities. The objective of this project is to determine how environmental contaminants, namely hydrocarbons, can act as hormones or anti-hormones in different species present in aquatic ecosystems. The three major areas of research include (1) a biotechnology based screening system to identify potential hormone mimics and antagonists; (2) an animal screening system to identify biomarkers of endocrine effects; and (3) a literature review to identify compounds at various DOE sites that are potential endocrine disruptors. Species of particular focus in this study are those which can serve as sentinel species (e.g., amphibians) and, thus, provide early warning signals for more widespread impacts on an ecosystem and its wildlife and human inhabitants. The focus of the literature research was to provide an analysis of the contaminants located on or around various Department of Energy (DOE) sites that are or have the potential to function as endocrine disruptors and to correlate the need for studying endocrine disruptors to DOE's programmatic needs. Previous research within the Center for Bioenvironmental Research at Tulane and Xavier Universities has focused on understanding the effects of environmental agents on the human and wildlife health and disease. In particular this research has focused on how exogenous agents can function to mimic or disrupt normal endocrine signaling, i.e. estrogen, thyroid within various systems from whole animal studies with fish, amphibians and insects to human cancer cell lines. Significant work has focused on the estrogenic and anti-estrogenic action of both synthetic organochlorine chemicals and naturally produced phytochemicals. Recent projects have extended these research objectives to examination of these environmental agents on the symbiotic relationship between nitrogen fixing rhizobial bacteria and leguminous plants. This research will form the foundation for future experiments into the genetic manipulation of plants to potentially promote greater or more specific symbiotic relationships between plant and Rhizobium allowing this biological phenomenon to be used in a greater number of crop types. Future technology developments could include the genetic engineering of crops suitable for in situ vadose zone 2 bioremediation (via microbes) and phytoremediation (through the crop, itself) in contaminated DOE sites.

McLachlan, John A.

2000-06-01

367

Alternative materials for adsorption of heavy metals and petroleum hydrocarbons from contaminated leachates.  

PubMed

In the present work, waste products from forest industries (sawdust, pine bark and fibre sludge ash), as well as some biological materials (peat, shrimp shells and seaweed), have been investigated with respect to their capacities to adsorb metals and hydrocarbons from contaminated waters. Batch and column experiments were carried out with artificial metal ion solutions and contaminated leachates from an industrial landfill. The fibre sludge ash and the Sphagnum peat showed the highest sorption capacities for metals among the materials studied in batch experiments with single-metal solutions. The uptake of metals by the fibre ash for the metals studied was: Cu and Pb 112 microg g(-1), Zn 115 microg g(-1) and Cr 97 microg g(-1). For peat the uptake was: Pb 109 microg g(-1), Cu 105 microg g(-1), Zn 100 microg g(-1) and Cr 99 microg g(-1). These materials were also effective in adsorption of diesel oil, and the n-alkanes C16 and C12. Peat and ash adsorbed respectively 36.6 and 36.4 mg g(-1) of C12, 1.84 and 1.94 mg g(-1) of C16 and for both 0.98 mg g(-1) of diesel oil. Bark adsorbed diesel oil to 0.83 mg g(-1). In the column experiments, the removal of metals from a contaminated landfill leachate by ash and peat was lower than from artificial solutions with only a few metals. The results suggest interference from other components in the leachates, such as competition of ions for the same active sites. It is quite clear that laboratory tests can overestimate the performance of adsorbents and that experiments should be specific for the intended application. For most of the metals studied in columns, peat appeared to be the best adsorbent, with respect to both sorption capacity and service time. The addition of 10% by weight of fibre ash to the peat gave higher adsorption capacities for Cd, Ni and Pb but lower for the Cu and Zn. PMID:18610551

Kalmykova, Y; Strömvall, Ann-Margret; Steenari, Britt-Marie

2008-01-01

368

Activity and diversity of sulfate-reducing bacteria in a petroleum hydrocarbon-contaminated aquifer.  

PubMed

Microbial sulfate reduction is an important metabolic activity in petroleum hydrocarbon (PHC)-contaminated aquifers. We quantified carbon source-enhanced microbial SO(4)(2-) reduction in a PHC-contaminated aquifer by using single-well push-pull tests and related the consumption of sulfate and added carbon sources to the presence of certain genera of sulfate-reducing bacteria (SRB). We also used molecular methods to assess suspended SRB diversity. In four consecutive tests, we injected anoxic test solutions (1,000 liters) containing bromide as a conservative tracer, sulfate, and either propionate, butyrate, lactate, or acetate as reactants into an existing monitoring well. After an initial incubation period, 1,000 liters of test solution-groundwater mixture was extracted from the same well. Average total test duration was 71 h. We measured concentrations of bromide, sulfate, and carbon sources in native groundwater as well as in injection and extraction phase samples and characterized the SRB population by using fluorescence in situ hybridization (FISH) and denaturing gradient gel electrophoresis (DGGE). Enhanced sulfate reduction concomitant with carbon source degradation was observed in all tests. Computed first-order rate coefficients ranged from 0.19 to 0.32 day(-1) for sulfate reduction and from 0.13 to 0.60 day(-1) for carbon source degradation. Sulfur isotope fractionation in unconsumed sulfate indicated that sulfate reduction was microbially mediated. Enhancement of sulfate reduction due to carbon source additions in all tests and variability of rate coefficients suggested the presence of specific SRB genera and a high diversity of SRB. We confirmed this by using FISH and DGGE. A large fraction of suspended bacteria hybridized with SRB-targeting probes SRB385 plus SRB385-Db (11 to 24% of total cells). FISH results showed that the activity of these bacteria was enhanced by addition of sulfate and carbon sources during push-pull tests. However, DGGE profiles indicated that the bacterial community structure of the dominant species did not change during the tests. Thus, the combination of push-pull tests with molecular methods provided valuable insights into microbial processes, activities, and diversity in the sulfate-reducing zone of a PHC-contaminated aquifer. PMID:11916663

Kleikemper, Jutta; Schroth, Martin H; Sigler, William V; Schmucki, Martina; Bernasconi, Stefano M; Zeyer, Josef

2002-04-01

369

Microbial metabolism and community structure in response to bioelectrochemically enhanced remediation of petroleum hydrocarbon-contaminated soil.  

PubMed

This study demonstrates that electrodes in a bioelectrochemical system (BES) can potentially serve as a nonexhaustible electron acceptor for in situ bioremediation of hydrocarbon contaminated soil. The deployment of BES not only eliminates aeration or supplement of electron acceptors as in contemporary bioremediation but also significantly shortens the remediation period and produces sustainable electricity. More interestingly, the study reveals that microbial metabolism and community structure distinctively respond to the bioelectrochemically enhanced remediation. Tubular BESs with carbon cloth anode (CCA) or biochar anode (BCA) were inserted into raw water saturated soils containing petroleum hydrocarbons for enhancing in situ remediation. Results show that total petroleum hydrocarbon (TPH) removal rate almost doubled in soils close to the anode (63.5-78.7%) than that in the open circuit positive controls (37.6-43.4%) during a period of 64 days. The maximum current density from the BESs ranged from 73 to 86 mA/m(2). Comprehensive microbial and chemical characterizations and statistical analyses show that the residual TPH has a strongly positive correlation with hydrocarbon-degrading microorganisms (HDM) numbers, dehydrogenase activity, and lipase activity and a negative correlation with soil pH, conductivity, and catalase activity. Distinctive microbial communities were identified at the anode, in soil with electrodes, and soil without electrodes. Uncommon electrochemically active bacteria capable of hydrocarbon degradation such as Comamonas testosteroni, Pseudomonas putida, and Ochrobactrum anthropi were selectively enriched on the anode, while hydrocarbon oxidizing bacteria were dominant in soil samples. Results from genus or phylum level characterizations well agree with the data from cluster analysis. Data from this study suggests that a unique constitution of microbial communities may play a key role in BES enhancement of petroleum hydrocarbons biodegradation in soils. PMID:24628095

Lu, Lu; Huggins, Tyler; Jin, Song; Zuo, Yi; Ren, Zhiyong Jason

2014-04-01

370

Factors Affecting Indoor Air Concentrations of Volatile Organic Compounds at a Site of Subsurface Gasoline Contamination  

SciTech Connect

We report a field study of soil gas transport of volatile organic compounds (VOCs) into a slab-on-grade building found at a site contaminated with gasoline. Although the high VOC concentrations (30-60 g m{sup -3}) measured in the soil gas at depths of 0.7 m below the building suggest a potential for high levels of indoor VOC, the measured indoor air concentrations were lower than those in the soil gas by approximately six orders of magnitude ({approx} 0.03 mg m{sup -3}). This large ratio is explained by (1) the expected dilution of soil gas entering the building via ambient building ventilation (a factor of {approx}1000), and (2) an unexpectedly sharp gradient in soil gas VOC concentration between the depths of 0.1 and 0.7 m (a factor of {approx}1000). Measurements of the soil physical and biological characteristics indicate that a partial physical barrier to vertical transport in combination with microbial degradation provides a likely explanation for this gradient. These factors are likely to be important to varying degrees at other sites.

Fischer, M.L.; Bentley, A.J.; Dunkin, K.A.; Hodgson, A.T.; Nazaroff, W.W.; Sextro, R.G.; Daisey, J.M.

1995-11-01

371

Apparent contradiction: psychrotolerant bacteria from hydrocarbon-contaminated arctic tundra soils that degrade diterpenoids synthesized by trees.  

PubMed

Resin acids are tricyclic terpenoids occurring naturally in trees. We investigated the occurrence of resin acid-degrading bacteria on the Arctic tundra near the northern coast of Ellesmere Island (82 degrees N, 62 degrees W). According to most-probable-number assays, resin acid degraders were abundant (10(3) to 10(4) propagules/g of soil) in hydrocarbon-contaminated soils, but they were undetectable (<3 propagules/g of soil) in pristine soils from the nearby tundra. Plate counts indicated that the contaminated and the pristine soils had similar populations of heterotrophs (10(6) to 10(7) propagules/g of soil). Eleven resin acid-degrading bacteria belonging to four phylogenetically distinct groups were enriched and isolated from the contaminated soils, and representative isolates of each group were further characterized. Strains DhA-91, IpA-92, and IpA-93 are members of the genus Pseudomonas. Strain DhA-95 is a member of the genus Sphingomonas. All four strains are psychrotolerant, with growth temperature ranges of 4 degrees C to 30 degrees C (DhA-91 and DhA-95) or 4 degrees C to 22 degrees C (IpA-92 and IpA-93) and with optimum temperatures of 15 to 22 degrees C. Strains DhA-91 and DhA-95 grew on the abietanes, dehydroabietic and abietic acids, but not on the pimaranes, isopimaric and pimaric acids. Strains IpA-92 and IpA-93 grew on the pimaranes but not the abietanes. All four strains grew on either aliphatic or aromatic hydrocarbons, which is unusual for described resin acid degraders. Eleven mesophilic resin acid degraders did not use hydrocarbons, with the exception of two Mycobacterium sp. strains that used aliphatic hydrocarbons. We conclude that hydrocarbon contamination in Arctic tundra soil indirectly selected for resin acid degraders, selecting for hydrocarbon degraders that coincidentally use resin acids. Psychrotolerant resin acid degraders are likely important in the global carbon cycle and may have applications in biotreatment of pulp and paper mill effluents. PMID:11097882

Yu, Z; Stewart, G R; Mohn, W W

2000-12-01

372

Feasibility studies for the detection of organic surface and subsurface water contaminants by surface-enhanced Raman spectroscopy on silver electrodes  

SciTech Connect

Fundamental components of various families of organic contaminants that are found in surface and subsurface waters have been investigated by surface-enhanced Raman spectroscopy (SERS). The SERS substrate was a silver electrode maintained at various electrode potentials. The limit of detection for pyridine was calculated to be 8.5 pg. Variation of the electrode potential and excitation wavelength was used to qualitatively determine a two-component mixture of contaminants. The in situ type of conditions of low ionic strengths and humic materials was found not to inhibit the SERS effect on the silver electrode.

Carrabba, M.M.; Edmonds, R.B.; Rauh, R.D.

1987-11-01

373

Cyclodextrin-enhanced in situ bioremediation of polyaromatic hydrocarbons-contaminated soils and plant uptake  

Microsoft Academic Search

In situ bioremediation of polycyclic aromatic hydrocarbons (PAH) polluted soils can be improved by the augmentation of degrading\\u000a microbial populations and by the increase of hydrocarbon bioavailability. ?-cyclodextrin (?-CD) significantly accelerate the\\u000a induction of hydrocarbon biodegradation, but it is not still clear its effectiveness during final, slower stages of degradation.\\u000a Moreover, it is yet not known if the PAH uptake

L. Bardi; C. Martini; F. Opsi; E. Bertolone; S. Belviso; G. Masoero; M. Marzona; F. Ajmone Marsan

2007-01-01

374

The extent and significance of petroleum hydrocarbon contamination in Crater Lake, Oregon  

Microsoft Academic Search

In order to evaluate hydrocarbon inputs to Crater Lake from anthropogenic and natural sources, samples of water, aerosol,\\u000a surface slick and sediment were collected and analyzed by gas chromatography-mass spectrometry (GC-MS) for determination of\\u000a their aliphatic and aromatic hydrocarbon concentrations and compositions. Results show that hydrocarbons originate from both\\u000a natural (terrestrial plant waxes and algae) and anthropogenic (petroleum use) sources

Daniel R. Oros; Robert W. Collier; Bernd R. T. Simoneit

375

The extent and significance of petroleum hydrocarbon contamination in Crater Lake, Oregon  

Microsoft Academic Search

In order to evaluate hydrocarbon inputs to Crater Lake from anthropogenic and natural sources, samples of water, aerosol,\\u000a surface slick and sediment were collected and analyzed by gas chromatography-mass spectrometry (GC-MS) for determination of\\u000a their aliphatic and aromatic hydrocarbon concentrations and compositions. Results show that hydrocarbons originate from both\\u000a natural (terrestrial plant waxes and algae) and anthropogenic (petroleum use) sources

Daniel R. Oros; Robert W. Collier; Bernd R. T. Simoneit

2007-01-01

376

Biomarker sensitivity for polynuclear aromatic hydrocarbon contamination in two marine fish species collected in Galveston Bay, Texas  

SciTech Connect

The Galveston Bay estuary exhibited a contamination gradient for polynuclear aromatic hydrocarbons (PAHs) and halogenated aromatic hydrocarbons, and the comparative sensitivity of various biomarkers in fish from different bay locations were determined. Two fish species, hardhead catfish (Arius felis) and Atlantic croaker (Micropogon undulatus), were collected from four stations where sediment total PAHs ranged from 68 > 1,000 ng/g. The induction of cytochrome P4501A-(CYP1A)-dependent hepatic ethoxyresorufin-O-deethylase (EROD) activity, CYPIA mRNA levels, or CYPIA immunoreactive protein in hardhead catfish was highly variable in the field-collected fish and in fish dosed with up to 15 mg/kg benzo[a]pyrene (BaP). In contrast, significant differences were seen in biliary concentrations of naphthalene, phenanthrene, and BaP metabolites in hardhead catfish from polluted versus less polluted areas. In croakers taken from the same four Galveston Bay locations, EROD and glutathione S-transferase activities, immunoreactive CYP1A protein, biliary PAH metabolites, and PAH-DNA adducts were higher at the contaminated stations compared with less polluted locations. These studies suggest that the croaker is a good species for monitoring contaminants that induce CYP1A-mediated responses. Biliary PAH metabolites and PAH-DNA adducts were also sensitive indicators of exposure to PAH contamination in both species of fish.

Willett, K.L.; Steinberg, M.A.; Safe, S.H. [Texas A and M Univ., College Station, TX (United States). Veterinary Physiology and Pharmacology; McDonald, S.J.; Beatty, K.B.; Kennicutt, M.C. [Geochemical and Environmental Research Group, College Station, TX (United States)

1997-07-01

377

Assessment of diesel contamination in groundwater using electromagnetic induction geophysical techniques  

SciTech Connect

Determining hydrocarbon plumes in groundwater is typically accomplished through the installation of extensive monitoring wells. Issues of scale and site heterogeneities tend to introduce errors in delineating the extent of contamination and environmental impact. In this study, electromagnetic induction survey was investigated as an alternative technique for mapping petroleum contaminants in the subsurface. The surveys were conducted at a coal mining site near Gillette, Wyoming, using the EM34-XL ground conductivity meter. Data from this survey were validated with known concentrations of diesel compounds detected in groundwater from the study site. Groundwater data correlated well with the electromagnetic survey data, which was used to generate a site model to identify subsurface diesel plumes. To our knowledge, this is one of the first studies to use electromagnetic survey techniques for mapping hydrocarbon contamination in groundwater. Results from this study indicate that this geophysical technique can be an effective tool for assessing subsurface petroleum hydrocarbon sources and plumes at contaminated sites.

Jin, S.; Fallgren, P.; Cooper, J.; Morris, J; . Urynowicz, M. [Western Research Institute, Laramie, WY (United States)

2008-07-01

378

Source identification of hydrocarbon contaminants and their transportation over the Zonguldak shelf, Turkish Black Sea  

NASA Astrophysics Data System (ADS)

Under great anthropogenic pressure due to the substantial freshwater input from the surrounding industrial and agricultural areas, especially central and middle-Eastern Europe, the Black Sea basin is ranked among the most ecologically threatened water bodies of the world. Oil levels are unacceptable in many coastal areas perilously close to polluted harbors and many river mouths; the places presenting the highest levels of bio-diversity and having a high socio-economic importance due to human use of coastal resources. There are about sixty sources of pollution which resulted in "hot spots" having disastrous impacts on sensitive marine and coastal areas and needing immediate priorities for action. Beyond such land-based sources, trans-boundary pollution sources from Black Sea riparian countries, heavy maritime traffic, particularly involving petroleum transports and fishing boats, and the improper disposal of ballast and bilge waters and solid waste are also important marine sources of pollution. Found in fossil fuels such as Polycyclic Aromatic Hydrocarbons are generated by incomplete combustion of organic matter. In order to estimate their distribution in sediment and their sources, they were monitored from the bottom samples offshore the Zonguldak industry region, one of the most polluted spots in the Turkish Black Sea. There the budget of pollutants via rivers is not precisely known due to an evident lack of data on chemical and granulometric composition of the river runoff and their fluxes. Therefore the marine sediments, essential components of marine ecosystems, are very important in our estimating the degree of the damage given to the ecosystem by such inputs. Realization of the sources and transport of these contaminants will be a critical tool for future management of the Zonguldak industry region and its watershed. The sea bottom in study area is composed of mainly sand and silt mixtures with small amount of clay. Geochemical analyses have shown that oil contamination was dominated in near-shore sediments. Their spatial distributions over the shelf area make an estimation of possible pollution sources and their transportation routes possible. Sea port activities, industrial inputs and partly maritime petroleum transport are the main sources of pollutants. They are under the control of the longshore currents supplied with river alluvium and coastal abrasion material.

Unlu, S.; Alpar, B.

2009-04-01

379

Environmental analysis of endocrine disrupting effects from hydrocarbon contaminants in the ecosystem. 1998 annual progress report  

SciTech Connect

'The objective of this project is to determine how environmental contaminants, namely hydrocarbons, can act as hormones or anti-hormones (i.e., environmental hormones) in different species present in aquatic ecosystems. Species of particular focus are those which can serve as sentinel species (e.g., amphibians) and, thus, provide early warning signals for more widespread impacts on an ecosystem and its wildlife and human inhabitants. This reports the progress of 1.5 years of a three-year grant awarded to the Tulane/Xavier Center for Bioenvironmental Research (CBR). A growing body of evidence suggests that chemicals in the environment can disrupt the endocrine system of animals (i.e., wildlife and humans) and adversely impact the development of these species. Because of the multitude of known endocrine-disrupting chemicals and the numerous industrial and government sectors producing these chemicals, almost every federal agency has initiated research on the endocrine effects of chemicals relevant to their operations. This study represents the Department of Energy (DOE) Basic Energy Sciences'' only research on the impacts of endocrine-disrupting chemicals. The activities employed by this project to determine these impacts include development of biotechnology screens (in vitro), animal screens (in vivo), and other analyses of aquatic ecosystem biomarkers of exposure. The results from this study can elucidate how chemicals in the environment, including those from DOE activities, can signal (and alter) the development of a number of species in aquatic ecosystems. These signals can have detrimental impacts not only on an organismal level, but also on community, population, and entire ecosystem levels, including humans.'

McLachlan, J.

1998-06-01

380

Enhancement and inhibition of microbial activity in hydrocarbon- contaminated arctic soils: Implications for nutrient-amended bioremediation  

USGS Publications Warehouse

Bioremediation is being used or proposed as a treatment option at many hydrocarbon-contaminated sites. One such site is a former bulk-fuel storage facility near Barrow, AK, where contamination persists after approximately 380 m3 of JP-5 was spilled in 1970. The soil at the site is primarily coarse sand with low organic carbon (<1%) end low moisture (1-3%) contents. We examined the effects of nutrient additions on microorganisms in contaminated soil from this site in laboratory microcosms and in mesocosms incubated for 6 weeks in the field. Nitrogen was the major limiting nutrient in this system, but microbial populations and activity were maximally enhanced by additions of both nitrogen and phosphorus. When nutrients were added to soil in the field at three levels of N:P (100:45, 200:90, and 300:135 mg/kg soil), the greatest stimulation in microbial activity occurred at the lowest, rather than the highest, level of nutrient addition. The total soil-water potentials ranged from -2 to -15 bar with increasing levels of fertilizer. Semivolatile hydrocarbon concentrations declined significantly only in the soils treated at the low fertilizer level. These results indicate that an understanding of nutrient effects at a specific site is essential for successful bioremediation.Bioremediation is being used or proposed as a treatment option at many hydrocarbon-contaminated sites. One such site is a former bulk-fuel storage facility near Barrow, AK, where contamination persists after approximately 380 m3 of JP-5 was spilled in 1970. The soil at the site is primarily coarse sand with low organic carbon (<1%) and low moisture (1-3%) contents. We examined the effects of nutrient additions on microorganisms in contaminated soil from this site in laboratory microcosms and in mesocosms incubated for 6 weeks in the field. Nitrogen was the major limiting nutrient in this system, but microbial populations and activity were maximally enhanced by additions of both nitrogen and phosphorus. When nutrients were added to soil in the field at three levels of N:P (100:45, 200:90, and 300:135 mg/kg soil), the greatest stimulation in microbial activity occurred at the lowest, rather than the highest, level of nutrient addition. The total soil-water potentials ranged from -2 to -15 bar with increasing levels of fertilizer. Semi-volatile hydrocarbon concentrations declined significantly only in the soils treated at the low fertilizer level. These results indicate that an understanding of nutrient effects at a specific site is essential for successful bioremediation.

Braddock, J.F.; Ruth, M.L.; Catterall, P.H.; Walworth, J.L.; McCarthy, K.A.

1997-01-01

381

Profiles of Mycobacterium communities under polycyclic aromatic hydrocarbon contamination stress in the Shenfu Irrigation Area, northeast China.  

PubMed

Indigenous Mycobacterium communities play an important role in the degradation of polycyclic aromatic hydrocarbons (PAHs), but little is known about Mycobacterium distribution in situ at PAH-contaminated sites. In this study, the diversity and distribution of Mycobacterium communities were investigated in sediments and soils at sites upstream, midstream, and downstream of an oil-sewage irrigation channel, using denaturing gradient gel electrophoresis (DGGE). The results show that heavy PAH contamination in upstream sites negatively affected Mycobacterium community diversity compared with midstream and downstream sites in all 3 sample types (sediments, corn field soils, and rice field soils). There was a correlation between the distribution of Mycobacterium communities and PAH contamination, as indicated by canonical correspondence analysis. Mycobacterium diversity and distribution was found to vary between the 3 sample types. PMID:24102223

Li, Xinyu; Li, Xu; Wang, Jian; Wang, Xiujuan; Sun, Jian; Su, Zhencheng; Zhang, Huiwen; Li, Peijun

2013-10-01

382

Radio-frequency enhanced decontamination of soils contaminated with halogenated hydrocarbons  

Microsoft Academic Search

There has been considerable effort in the development of innovative treatment technologies for the cleanup of sites containing hazardous wastes such as hydrocarbons and chlorinated hydrocarbons. Typical examples of such waste material are: chlorinated solvents, polychlorinated biphenyls, waste aviation fuels, gasoline, etc. The feasibility of treating waste sites containing such materials by in-situ radio frequency heating was established by the

H. Dev; J. Bridges; G. Sresty; J. Enk; N. Mshaiel

1989-01-01

383

BENZENE AND NAPHTHALENE SORPTION ON SOIL CONTAMINATED WITH HIGH MOLECULAR WEIGHT RESIDUAL HYDROCARBONS FROM UNLEADED GASOLINE  

EPA Science Inventory

For complex nonaqueous phase liquids (NAPLs), the composition of the NAPL retained in the pore space of geologic material weathers until the residual NAPL no longer acts a liquid and exists as discrete regions of hydrocarbon (termed residual hydrocarbons) in association with the ...

384

Synthesis and characterization of hydrophobic zeolite for the treatment of hydrocarbon contaminated ground water  

Microsoft Academic Search

Hydrophobic zeolite was synthesized, modified and characterized for its suitability as a permeable reactive barrier (PRB) material for treatment of hydrocarbons in groundwater. Batch sorption tests were performed along with a number of standard characterization techniques. High and low ionic strength and pH tests were also conducted to determine their impact on hydrocarbon uptake. Further ion exchange tests were conducted

Kathy A. Northcott; Joannelle Bacus; Naoyuki Taya; Yu Komatsu; Jilska M. Perera; Geoffrey W. Stevens

2010-01-01

385

Ability of Cold-Tolerant Plants to Grow in Hydrocarbon-Contaminated Soil  

Microsoft Academic Search

Phytoremediation of hydrocarbons in soil involves plants and their associated microorganisms. Differences in environmental conditions and restrictions on species importation mean that each country may need to identify indigenous plants to use for phytoremediation. Screening plants for hydrocarbon tolerance before screening for degradation ability may prove more economical than screening directly for degradation. Thirty-nine cold-tolerant plants native, or exotic and

Diana Bizecki Robson; J. Diane Knight; Richard E. Farrell; James J. Germida

2003-01-01

386

Evaluation of a bioslurry remediation of petroleum hydrocarbons contaminated sediments using chemical, mathematical and microscopic analysis  

Microsoft Academic Search

This paper concerns the bioremediation of three petroleum hydrocarbon polluted sediment samples collected from the Gulf of Suez, Egypt. The study used a bioslurry system inoculated with Staphylococcus gallinarum NK1, which showed good bioremediation capability regardless of the type of pollutant hydrocarbon and its concentration.

Yasser M. Moustafa; Mohamed A. K. Barakat; Samiha F. Deriase

2009-01-01

387

Remediation of hydrocarbons in crude oil-contaminated soils using Fenton's reagent.  

PubMed

Sandy soil samples spiked with Bonny light crude oil were subsequently treated with Fenton's reagent at acidic, neutral, and basic pH ranges. Oil extracts from these samples including an untreated one were analyzed 1 week later with a gas chromatograph to provide evidence of hydrocarbon depletion by the oxidant. The reduction of three broad hydrocarbon groups-total petroleum hydrocarbon (TPH); benzene, toluene, ethylbenzene, and xylene (BTEX); and polycyclic aromatic hydrocarbon (PAH) were investigated at various pHs. Hydrocarbon removal was efficient, with treatment at the acidic pH giving the highest removal of about 96% for PAH, 99% for BTEX, and some TPH components experiencing complete disappearance. The four-ringed PAHs were depleted more than their three-ringed counterparts at the studied pH ranges. PMID:22160385

Ojinnaka, Chukwunonye; Osuji, Leo; Achugasim, Ozioma

2012-11-01

388

Immunoquantitation and Microsomal Monooxygenase Activities of Hepatic Cytochromes P4501A and P4502B and Chlorinated Hydrocarbon Contaminant Levels in Polar Bear ( Ursus maritimus)  

Microsoft Academic Search

Contamination of the Arctic ecosystem by anthropogenic compounds has resulted in exposure of polar bear (Ursus maritimus) to lipophilic chlorinated hydrocarbon contaminants (CHCs) accumulated through the marine food web. Liver samples were collected from 16 adult male polar bears in the Canadian arctic and subjected to chemical analysis for CHCs and metabolites, determination of alkoxyresorufinO-dealkylase activities, and immunoquantitation of cytochrome

Robert J. Letcher; Ross J. Norstrom; Song Lin; Malcolm A. Ramsay; Stelvio M. Bandiera

1996-01-01

389

Clonal Variation in Survival and Growth of Hybrid Poplar and Willow in an IN SITU Trial on Soils Heavily Contaminated with Petroleum Hydrocarbons  

Microsoft Academic Search

Species and hybrids between species belonging to the genera Populus (poplar) and Salix (willow) have been used successfully for phytoremediation of contaminated soils. Our objectives were to: 1) evaluate the potential for establishing genotypes of poplar and willow on soils heavily contaminated with petroleum hydrocarbons and 2) identify promising genotypes for potential use in future systems. We evaluated height, diameter,

Ronald S. Zalesny Jr; Edmund O. Bauer; Richard B. Hall; Jill A. Zalesny; Joshua Kunzman; Chris J. Rog; Don E. Riemenschneider

2005-01-01

390

Hydrocarbon biodegradation in oxygen-limited sequential batch reactors by consortium from weathered, oil-contaminated soil.  

PubMed

We studied the use of sequential batch reactors under oxygen limitation to improve and maintain consortium ability to biodegrade hydrocarbons. Air-agitated tubular reactors (2.5 L) were operated for 20 sequential 21-day cycles. Maya crude oil-paraffin mixture (13,000 mg/L) was used as the sole carbon source. The reactors were inoculated with a consortium from the rhizosphere of Cyperus laxus, a native plant that grows naturally in weathered, contaminated soil. Oxygen limitation was induced in the tubular reactor by maintaining low oxygen transfer coefficients (k(L)a < 20.6 h(-1)). The extent and biodegradation rates increased significantly up to the fourth cycle, maintaining values of about 66.33% and 460 mg x L(-1) x d(-1), respectively. Thereafter, sequential batch reactor operation exhibited a pattern with a constant general trend of biodegradation. The effect of oxygen limitation on consortium activity led to a low biomass yield and non-soluble metabolite (0.45 g SS/g hydrocarbons consumed). The average number of hydrocarbon-degrading microorganisms increased from 6.5 x 10(7) (cycles 1-3) to 2.2 x 10(8) (cycles 4-20). Five bacterial strains were identified: Achromobacter (Alcaligenes) xylosoxidans, Bacillus cereus, Bacillus subtilis, Brevibacterium luteum, and Pseudomonas pseudoalcaligenes. Asphaltene-free total petroleum hydrocarbons, extracted from a weathered, contaminated soil, were also biodegraded (97.1 mg x L(-1) x d(-1)) and mineralized (210.48 mg CO2 x L(-1) x d(-1)) by the enriched consortium without inhibition. Our results indicate that sequential batch reactors under oxygen limitation can be used to produce consortia with high and constant biodegradation ability for industrial applications of bioremediation. PMID:15920621

Medina-Moreno, S A; Huerta-Ochoa, S; Gutiérrez-Rojas, M

2005-03-01

391

Method for inverting reflection trace data from 3-D and 4-D seismic surveys and identifying subsurface fluid and pathways in and among hydrocarbon reservoirs based on impedance models  

DOEpatents

A method is disclosed for inverting 3-D seismic reflection data obtained from seismic surveys to derive impedance models for a subsurface region, and for inversion of multiple 3-D seismic surveys (i.e., 4-D seismic surveys) of the same subsurface volume, separated in time to allow for dynamic fluid migration, such that small scale structure and regions of fluid and dynamic fluid flow within the subsurface volume being studied can be identified. The method allows for the mapping and quantification of available hydrocarbons within a reservoir and is thus useful for hydrocarbon prospecting and reservoir management. An iterative seismic inversion scheme constrained by actual well log data which uses a time/depth dependent seismic source function is employed to derive impedance models from 3-D and 4-D seismic datasets. The impedance values can be region grown to better isolate the low impedance hydrocarbon bearing regions. Impedance data derived from multiple 3-D seismic surveys of the same volume can be compared to identify regions of dynamic evolution and bypassed pay. Effective Oil Saturation or net oil thickness can also be derived from the impedance data and used for quantitative assessment of prospective drilling targets and reservoir management.

He, Wei (New Milford, NJ); Anderson, Roger N. (New York, NY)

1998-01-01

392

Method for inverting reflection trace data from 3-D and 4-D seismic surveys and identifying subsurface fluid and pathways in and among hydrocarbon reservoirs based on impedance models  

DOEpatents

A method is disclosed for inverting 3-D seismic reflection data obtained from seismic surveys to derive impedance models for a subsurface region, and for inversion of multiple 3-D seismic surveys (i.e., 4-D seismic surveys) of the same subsurface volume, separated in time to allow for dynamic fluid migration, such that small scale structure and regions of fluid and dynamic fluid flow within the subsurface volume being studied can be identified. The method allows for the mapping and quantification of available hydrocarbons within a reservoir and is thus useful for hydrocarbon prospecting and reservoir management. An iterative seismic inversion scheme constrained by actual well log data which uses a time/depth dependent seismic source function is employed to derive impedance models from 3-D and 4-D seismic datasets. The impedance values can be region grown to better isolate the low impedance hydrocarbon bearing regions. Impedance data derived from multiple 3-D seismic surveys of the same volume can be compared to identify regions of dynamic evolution and bypassed pay. Effective Oil Saturation or net oil thickness can also be derived from the impedance data and used for quantitative assessment of prospective drilling targets and reservoir management. 20 figs.

He, W.; Anderson, R.N.

1998-08-25

393

Linkage between bacterial and fungal rhizosphere communities in hydrocarbon-contaminated soils is related to plant phylogeny  

PubMed Central

Phytoremediation is an attractive alternative to excavating and chemically treating contaminated soils. Certain plants can directly bioremediate by sequestering and/or transforming pollutants, but plants may also enhance bioremediation by promoting contaminant-degrading microorganisms in soils. In this study, we used high-throughput sequencing of bacterial 16S rRNA genes and the fungal internal transcribed spacer (ITS) region to compare the community composition of 66 soil samples from the rhizosphere of planted willows (Salix spp.) and six unplanted control samples at the site of a former petrochemical plant. The Bray–Curtis distance between bacterial communities across willow cultivars was significantly correlated with the distance between fungal communities in uncontaminated and moderately contaminated soils but not in highly contaminated (HC) soils (>2000?mg?kg?1 hydrocarbons). The mean dissimilarity between fungal, but not bacterial, communities from the rhizosphere of different cultivars increased substantially in the HC blocks. This divergence was partly related to high fungal sensitivity to hydrocarbon contaminants, as demonstrated by reduced Shannon diversity, but also to a stronger influence of willows on fungal communities. Abundance of the fungal class Pezizomycetes in HC soils was directly related to willow phylogeny, with Pezizomycetes dominating the rhizosphere of a monophyletic cluster of cultivars, while remaining in low relative abundance in other soils. This has implications for plant selection in phytoremediation, as fungal associations may affect the health of introduced plants and the success of co-inoculated microbial strains. An integrated understanding of the relationships between fungi, bacteria and plants will enable the design of treatments that specifically promote effective bioremediating communities. PMID:23985744

Bell, Terrence H; El-Din Hassan, Saad; Lauron-Moreau, Aurélien; Al-Otaibi, Fahad; Hijri, Mohamed; Yergeau, Etienne; St-Arnaud, Marc

2014-01-01

394

Linkage between bacterial and fungal rhizosphere communities in hydrocarbon-contaminated soils is related to plant phylogeny.  

PubMed

Phytoremediation is an attractive alternative to excavating and chemically treating contaminated soils. Certain plants can directly bioremediate by sequestering and/or transforming pollutants, but plants may also enhance bioremediation by promoting contaminant-degrading microorganisms in soils. In this study, we used high-throughput sequencing of bacterial 16S rRNA genes and the fungal internal transcribed spacer (ITS) region to compare the community composition of 66 soil samples from the rhizosphere of planted willows (Salix spp.) and six unplanted control samples at the site of a former petrochemical plant. The Bray-Curtis distance between bacterial communities across willow cultivars was significantly correlated with the distance between fungal communities in uncontaminated and moderately contaminated soils but not in highly contaminated (HC) soils (>2000?mg?kg(-1) hydrocarbons). The mean dissimilarity between fungal, but not bacterial, communities from the rhizosphere of different cultivars increased substantially in the HC blocks. This divergence was partly related to high fungal sensitivity to hydrocarbon contaminants, as demonstrated by reduced Shannon diversity, but also to a stronger influence of willows on fungal communities. Abundance of the fungal class Pezizomycetes in HC soils was directly related to willow phylogeny, with Pezizomycetes dominating the rhizosphere of a monophyletic cluster of cultivars, while remaining in low relative abundance in other soils. This has implications for plant selection in phytoremediation, as fungal associations may affect the health of introduced plants and the success of co-inoculated microbial strains. An integrated understanding of the relationships between fungi, bacteria and plants will enable the design of treatments that specifically promote effective bioremediating communities. PMID:23985744

Bell, Terrence H; El-Din Hassan, Saad; Lauron-Moreau, Aurélien; Al-Otaibi, Fahad; Hijri, Mohamed; Yergeau, Etienne; St-Arnaud, Marc

2014-02-01

395

Contrasting the community structure of arbuscular mycorrhizal fungi from hydrocarbon-contaminated and uncontaminated soils following willow (Salix spp. L.) planting.  

PubMed

Phytoremediation is a potentially inexpensive alternative to chemical treatment of hydrocarbon-contaminated soils, but its success depends heavily on identifying factors that