Science.gov

Sample records for hydrocarbon-contaminated soils comprehensive

  1. Chemical fingerprinting of hydrocarbon-contamination in soil.

    PubMed

    Boll, Esther S; Nejrup, Jens; Jensen, Julie K; Christensen, Jan H

    2015-03-01

    Chemical fingerprinting analyses of 29 hydrocarbon-contaminated soils were performed to assess the soil quality and determine the main contaminant sources. The results were compared to an assessment based on concentrations of the 16 priority polycyclic aromatic hydrocarbons pointed out by the U.S. Environmental Protection Agency (EPAPAH16) and total petroleum hydrocarbon (TPH). The chemical fingerprinting strategy proposed in this study included four tiers: (i) qualitative analysis of GC-FID chromatograms, (ii) comparison of the chemical composition of both un-substituted and alkyl-substituted polycyclic aromatic compounds (PACs), (iii) diagnostic ratios of selected PACs, and (iv) multivariate data analysis of sum-normalized PAC concentrations. The assessment criteria included quantitative analysis of 19 PACs and C1-C4 alkyl-substituted homologues of naphthalene, fluorene, dibenzothiophene, phenanthrene, pyrene, and chrysene; and 13 oxygenated polycyclic aromatic compounds (O-PACs). The chemical composition of un-substituted and alkyl-substituted PACs and visual interpretation of GC-FID chromatograms were in combination successful in differentiating pyrogenic and petrogenic hydrocarbon sources and in assessing weathering trends of hydrocarbon contamination in the soils. Multivariate data analysis of sum-normalized concentrations could as a stand-alone tool distinguish between hydrocarbon sources of petrogenic and pyrogenic origin, differentiate within petrogenic sources, and detect weathering trends. Diagnostic ratios of PACs were not successful for source identification of the heavily weathered hydrocarbon sources in the soils. The fingerprinting of contaminated soils revealed an underestimation of PACs in petrogenic contaminated soils when the assessment was based solely on EPAPAH16. As alkyl-substituted PACs are dominant in petrogenic sources, the evaluation of the total load of PACs based on EPAPAH16 was not representative. Likewise, the O-PACs are not

  2. Bioremediation treatment of hydrocarbon-contaminated Arctic soils: influencing parameters.

    PubMed

    Naseri, Masoud; Barabadi, Abbas; Barabady, Javad

    2014-10-01

    The Arctic environment is very vulnerable and sensitive to hydrocarbon pollutants. Soil bioremediation is attracting interest as a promising and cost-effective clean-up and soil decontamination technology in the Arctic regions. However, remoteness, lack of appropriate infrastructure, the harsh climatic conditions in the Arctic and some physical and chemical properties of Arctic soils may reduce the performance and limit the application of this technology. Therefore, understanding the weaknesses and bottlenecks in the treatment plans, identifying their associated hazards, and providing precautionary measures are essential to improve the overall efficiency and performance of a bioremediation strategy. The aim of this paper is to review the bioremediation techniques and strategies using microorganisms for treatment of hydrocarbon-contaminated Arctic soils. It takes account of Arctic operational conditions and discusses the factors influencing the performance of a bioremediation treatment plan. Preliminary hazard analysis is used as a technique to identify and assess the hazards that threaten the reliability and maintainability of a bioremediation treatment technology. Some key parameters with regard to the feasibility of the suggested preventive/corrective measures are described as well. PMID:24903252

  3. Culture-Dependent and -Independent Methods Capture Different Microbial Community Fractions in Hydrocarbon-Contaminated Soils

    PubMed Central

    Stefani, Franck O. P.; Bell, Terrence H.; Marchand, Charlotte; de la Providencia, Ivan E.; El Yassimi, Abdel; St-Arnaud, Marc; Hijri, Mohamed

    2015-01-01

    Bioremediation is a cost-effective and sustainable approach for treating polluted soils, but our ability to improve on current bioremediation strategies depends on our ability to isolate microorganisms from these soils. Although culturing is widely used in bioremediation research and applications, it is unknown whether the composition of cultured isolates closely mirrors the indigenous microbial community from contaminated soils. To assess this, we paired culture-independent (454-pyrosequencing of total soil DNA) with culture-dependent (isolation using seven different growth media) techniques to analyse the bacterial and fungal communities from hydrocarbon-contaminated soils. Although bacterial and fungal rarefaction curves were saturated for both methods, only 2.4% and 8.2% of the bacterial and fungal OTUs, respectively, were shared between datasets. Isolated taxa increased the total recovered species richness by only 2% for bacteria and 5% for fungi. Interestingly, none of the bacteria that we isolated were representative of the major bacterial OTUs recovered by 454-pyrosequencing. Isolation of fungi was moderately more effective at capturing the dominant OTUs observed by culture-independent analysis, as 3 of 31 cultured fungal strains ranked among the 20 most abundant fungal OTUs in the 454-pyrosequencing dataset. This study is one of the most comprehensive comparisons of microbial communities from hydrocarbon-contaminated soils using both isolation and high-throughput sequencing methods. PMID:26053848

  4. Delineation of Hydrocarbon Contamination of Soils and Sediments With Environmental Magnetic Methods: Laboratory and Field Studies

    NASA Astrophysics Data System (ADS)

    Rijal, M. L.; Appel, E.; Porsch, K.; Kappler, A.; Blaha, U.; Petrovsky, E.

    2008-12-01

    Hydrocarbon contamination of soils and sediments is a worldwide environmental problem. The present research focuses on the study of magnetic properties of hydrocarbon contaminated soils and sediments using environmental magnetic methods both on field sites as well as in laboratory batch experiments. The main objectives of this research are i) to determine a possible application of magnetic proxies for the delineation of organic contamination in soils and sediments and ii) to examine the role of bacteria in changing soil magnetic properties after hydrocarbon contamination. A former oil field and a former military site which are heavily contaminated with hydrocarbons were studied. Additionally, three different types of natural clean soils were investigated in laboratory experiments by simulating hydrocarbon contamination in sterile and microbial active setups. Magnetic properties, soil properties, iron bioavailability, iron redox state and hydrocarbon content of samples were measured. Additionally, magnetic susceptibility (MS) was monitored weekly in laboratory batch set-ups during several months. Results from the field sites showed that there is an increase of MS and a good correlation between MS and hydrocarbon content. A weekly monitored MS result from the laboratory study clearly indicated~~10% change (increase as well as decrease) of initial MS of respective soils only in microbial active set-ups with saturation after a few weeks of experimental period. This depicts that there is a change of MS caused by microbial iron mineral transformation in presence of hydrocarbon contamination in soils. The results from the field study demonstrate that magnetic proxies can be used to localize hydrocarbon contamination. However, more field sites with hydrocarbon contaminated soils and sediments need to be investigated by using environmental magnetic methods for better understanding the factors driving such changes in magnetic properties.

  5. Control and assessment of the hydrocarbon contamination of Ukrainian soils

    NASA Astrophysics Data System (ADS)

    Miroshnichenko, N. N.

    2008-05-01

    Regularities governing the self-purification of soils from oil hydrocarbons, as well as migration of hydrocarbons, and the effect on the water-physical properties and fertility of soils were revealed in a series of experiments. A system of ecological, economic, and reclamation standards was proposed for regulating economic activities in the case of soil contamination with hydrocarbons.

  6. Sand amendment enhances bioelectrochemical remediation of petroleum hydrocarbon contaminated soil.

    PubMed

    Li, Xiaojing; Wang, Xin; Ren, Zhiyong Jason; Zhang, Yueyong; Li, Nan; Zhou, Qixing

    2015-12-01

    Bioelectrochemical system is an emerging technology for the remediation of soils contaminated by petroleum hydrocarbons. However, performance of such systems can be limited by the inefficient mass transport in soil. Here we report a new method of sand amendment, which significantly increases both oxygen and proton transports, resulting to increased soil porosity (from 44.5% to 51.3%), decreased Ohmic resistance (by 46%), and increased charge output (from 2.5 to 3.5Cg(-1)soil). The degradation rates of petroleum hydrocarbons increased by up to 268% in 135d. The degradation of n-alkanes and polycyclic aromatic hydrocarbons with high molecular weight was accelerated, and denaturing gradient gel electrophoresis showed that the microbial community close to the air-cathode was substantially stimulated by the induced current, especially the hydrocarbon degrading bacteria Alcanivorax. The bioelectrochemical stimulation imposed a selective pressure on the microbial community of anodes, including that far from the cathode. These results suggested that sand amendment can be an effective approach for soil conditioning that will enhances the bioelectrochemical removal of hydrocarbons in contaminated soils. PMID:26135976

  7. Prediction of ecotoxicity of hydrocarbon-contaminated soils using physicochemical parameters

    SciTech Connect

    Wong, D.C.L.; Chai, E.Y.; Chu, K.K.; Dorn, P.B.

    1999-11-01

    The physicochemical properties of eight hydrocarbon-contaminated soils were used to predict toxicity to earthworms (Eisenia fetida) and plants. The toxicity of these preremediated soils was assessed using earthworm avoidance, survival, and reproduction and seed germination and root growth in four plant species. No-observed-effect and 25% inhibitory concentrations were determined from the earthworm and plant assays. Physical property measurements and metals analyses of the soils were conducted. Hydrocarbon contamination was characterized by total petroleum hydrocarbons, oil and grease, and GC boiling-point distribution. Univariate and multivariate statistical methods were used to examine relationships between physical and chemical properties and biological endpoints. Soil groupings based on physicochemical properties and toxicity from cluster and principal component analyses were generally similar. Correlation analysis identified a number of significant relationships between soil parameters and toxicity that were used in univariate model development. Total petroleum hydrocarbons by gas chromatography and polars were identified as predictors of earthworm avoidance and survival and seed germination, explaining 65 to 75% of the variation in the data. Asphaltenes also explained 83% of the variation in seed germination. Gravimetric total petroleum hydrocarbons explained 40% of the variation in earthworm reproduction, whereas 43% of the variation in plant root growth was explained by asphaltenes. Multivariate one-component partial least squares models, which identified predictors similar to those identified by the univariate models, were also developed for worm avoidance and survival and seed germination and had predictive powers of 42 and 29%, respectively.

  8. Pilot-scale feasibility of petroleum hydrocarbon-contaminated soil in situ bioremediation

    SciTech Connect

    Walker, J.F. Jr.; Walker, A.B.

    1995-12-31

    An environmental project was conducted to evaluate in situ bioremediation of petroleum hydrocarbon-contaminated soils on Kwajalein Island, a US Army Kwajalein Atoll base in the Republic of the Marshall Islands. Results of laboratory column studies determined that nutrient loadings stimulated biodegradation rates and that bioremediation of hydrocarbon-contaminated soils at Kwajalein was possible using indigenous microbes. The column studies were followed by an {approximately}10-month on-site demonstration at Kwajalein to further evaluate in situ bioremediation and to determine design and operating conditions necessary to optimize the process. The demonstration site contained low levels of total petroleum hydrocarbons (diesel fuel) in the soil near the ground surface, with concentrations increasing to {approximately}10,000 mg/kg in the soil near the groundwater. The demonstration utilized 12 in situ plots to evaluate the effects of various combinations of water, air, and nutrient additions on both the microbial population and the hydrocarbon concentration within the treatment plots as a function of depth from the ground surface.

  9. Remediation of hydrocarbon-contaminated soils by ex situ microwave treatment: technical, energy and economic considerations.

    PubMed

    Falciglia, P P; Vagliasindi, F G A

    2014-01-01

    In this study, the remediation of diesel-polluted soils was investigated by simulating an ex situ microwave (MW) heating treatment under different conditions, including soil moisture, operating power and heating duration. Based on experimental data, a technical, energy and economic assessment for the optimization of full-scale remediation activities was carried out. Main results show that the operating power applied significantly influences the contaminant removal kinetics and the moisture content in soil has a major effect on the final temperature reachable during MW heating. The first-order kinetic model showed an excellent correlation (r2 > 0.976) with the experimental data for residual concentration at all operating powers and for all soil moistures tested. Excellent contaminant removal values up to 94.8% were observed for wet soils at power higher than 600 W for heating duration longer than 30 min. The use of MW heating with respect to a conventional ex situ thermal desorption treatment could significantly decrease the energy consumption needed for the removal of hydrocarbon contaminants from soils. Therefore, the MW treatment could represent a suitable cost-effective alternative to the conventional thermal treatment for the remediation of hydrocarbon-polluted soil. PMID:25145181

  10. Ecotoxicological and analytical assessment of hydrocarbon-contaminated soils and application to ecological risk assessment

    SciTech Connect

    Saterbak, A.; Toy, R.J.; Wong, D.C.L.; McMain, B.J.; Williams, M.P.; Dorn, P.B.; Brzuzy, L.P.; Chai, E.Y.; Salanitro, J.P.

    1999-07-01

    Ecotoxicological assessments of contaminated soil aim to understand the effect of introduced chemicals on the soil flora and fauna. Ecotoxicity test methods were developed and conducted on hydrocarbon-contaminated soils and on adjacent uncontaminated control soils from eight field locations. Tests included 7-d, 14-d, and chronic survival tests and reproduction assays for the earthworm (Eisenia fetida) and seed germination, root length, and plant growth assays for corn, lettuce, mustard, and wheat. Species-specific responses were observed with no-observed effect concentrations (NOECs) ranging from <1 to 100% contaminated soil. The 14-d earthworm survival NOEC was equal to or greater than the reproduction NOEC values for numbers of cocoons and juveniles, which were similar to one another. Cocoon and juvenile production varied among the control soils. Germination and root length NOECs for mustard and lettuce were less than NOECs for corn and wheat. Root length NOECs were similar to or less than seed germination NOECs. Statistically significant correlations for earthworm survival and seed germination as a function of hydrocarbon measurements were found. The 14-d earthworm survival and the seed germination tests are recommended for use in the context of a risk-based framework for the ecological assessment of contaminated sites.

  11. Presence of Actinobacterial and Fungal Communities in Clean and Petroleum Hydrocarbon Contaminated Subsurface Soil

    PubMed Central

    Björklöf, Katarina; Karlsson, Sanja; Frostegård, Åsa; Jørgensen, Kirsten S

    2009-01-01

    Relatively little is known about the microbial communities adapted to soil environments contaminated with aged complex hydrocarbon mixtures, especially in the subsurface soil layers. In this work we studied the microbial communities in two different soil profiles down to the depth of 7 m which originated from a 30-year-old site contaminated with petroleum hydrocarbons (PHCs) and from a clean site next to the contaminated site. The concentration of oxygen in the contaminated soil profile was strongly reduced in soil layers below 1 m depth but not in the clean soil profile. Total microbial biomass and community composition was analyzed by phospholipid fatty acid (PLFA) measurements. The diversity of fungi and actinobacteria was investigated more in detail by construction of rDNA-based clone libraries. The results revealed that there was a significant and diverse microbial community in subsoils at depth below 2 m, also in conditions where oxygen was limiting. The diversity of actinobacteria was different in the two soil profiles; the contaminated soil profile was dominated by Mycobacterium -related sequences whereas sequences from the clean soil samples were related to other, generally uncultured organisms, some of which may represent two new subclasses of actinobacteria. One dominating fungal sequence which matched with the ascomycotes Acremonium sp. and Paecilomyces sp. was identified both in clean and in contaminated soil profiles. Thus, although the relative amounts of fungi and actinobacteria in these microbial communities were highest in the upper soil layers, many representatives from these groups were found in hydrocarbon contaminated subsoils even under oxygen limited conditions. PMID:19543551

  12. Prospects for arbuscular mycorrhizal fungi (AMF) to assist in phytoremediation of soil hydrocarbon contaminants.

    PubMed

    Rajtor, Monika; Piotrowska-Seget, Zofia

    2016-11-01

    Arbuscular mycorrhizal fungi (AMF) form mutualistic associations with the roots of 80-90% of vascular plant species and may constitute up to 50% of the total soil microbial biomass. AMF have been considered to be a tool to enhance phytoremediation, as their mycelium create a widespread underground network that acts as a bridge between plant roots, soil and rhizosphere microorganisms. Abundant extramatrical hyphae extend the rhizosphere thus creating the hyphosphere, which significantly increases the area of a plant's access to nutrients and contaminants. The paper presents and evaluates the role and significance of AMF in phytoremediation of hydrocarbon contaminated sites. We focused on (1) an impact of hydrocarbons on arbuscular mycorrhizal symbiosis, (2) a potential of AMF to enhance phytoremediation, (3) determinants that influence effectiveness of hydrocarbon removal from contaminated soils. This knowledge may be useful for selection of proper plant and fungal symbionts and crucial to optimize environmental conditions for effective AMF-mediated phytoremediation. It has been concluded that three-component phytoremediation systems based on synergistic interactions between plant roots, AMF and hydrocarbon-degrading microorganisms demonstrated high effectiveness in dissipation of organic pollutants in soil. PMID:27487095

  13. Microbial metabolism and community structure in response to bioelectrochemically enhanced remediation of petroleum hydrocarbon-contaminated soil.

    PubMed

    Lu, Lu; Huggins, Tyler; Jin, Song; Zuo, Yi; Ren, Zhiyong Jason

    2014-04-01

    This study demonstrates that electrodes in a bioelectrochemical system (BES) can potentially serve as a nonexhaustible electron acceptor for in situ bioremediation of hydrocarbon contaminated soil. The deployment of BES not only eliminates aeration or supplement of electron acceptors as in contemporary bioremediation but also significantly shortens the remediation period and produces sustainable electricity. More interestingly, the study reveals that microbial metabolism and community structure distinctively respond to the bioelectrochemically enhanced remediation. Tubular BESs with carbon cloth anode (CCA) or biochar anode (BCA) were inserted into raw water saturated soils containing petroleum hydrocarbons for enhancing in situ remediation. Results show that total petroleum hydrocarbon (TPH) removal rate almost doubled in soils close to the anode (63.5-78.7%) than that in the open circuit positive controls (37.6-43.4%) during a period of 64 days. The maximum current density from the BESs ranged from 73 to 86 mA/m(2). Comprehensive microbial and chemical characterizations and statistical analyses show that the residual TPH has a strongly positive correlation with hydrocarbon-degrading microorganisms (HDM) numbers, dehydrogenase activity, and lipase activity and a negative correlation with soil pH, conductivity, and catalase activity. Distinctive microbial communities were identified at the anode, in soil with electrodes, and soil without electrodes. Uncommon electrochemically active bacteria capable of hydrocarbon degradation such as Comamonas testosteroni, Pseudomonas putida, and Ochrobactrum anthropi were selectively enriched on the anode, while hydrocarbon oxidizing bacteria were dominant in soil samples. Results from genus or phylum level characterizations well agree with the data from cluster analysis. Data from this study suggests that a unique constitution of microbial communities may play a key role in BES enhancement of petroleum hydrocarbons

  14. Evaluation of landfarm remediation of hydrocarbon-contaminated soil at the Inveresk Railyard, Launceston, Australia

    SciTech Connect

    Line, M.A.; Garland, C.D.; Crowley, M.

    1996-12-31

    The cost of landfarm bioremediation of hydrocarbon-contaminated soil at a disused railyard site in Tasmania, Australia is reported. The landfarm area was enclosed in an impermeable clay embankment and where necessary the base was also rolled with clay. Microbial inoculation was not deemed to be necessary since suitable degrading biota were found to be present in site samples prior to commencement of the landfarming. Fertilizer amendment comprised primarily ammonium sulphate and superphosphate to give a C:N ratio (TPH:fertilizer) of 28:1 and a C:P ratio of 200:1. The soil was turned regularly and watered as required for the 12-month duration of the operation. Over this period levels of TPH showed a linear decline from a mean of 4,644 mg/kg to near 100 mg/kg or less, with greatest losses being in the chain lengths C10-C28. The cost was determined to be $A13.40c per m{sup 3}, which is at the lower end of the spectrum of reported landfarming costs. The cost of such operations is important since the reported economics will influence others` choice of bioremediation techniques.

  15. Quantitative assessment of hydrocarbon contamination in soil using reflectance spectroscopy: a "multipath" approach.

    PubMed

    Schwartz, Guy; Ben-Dor, Eyal; Eshel, Gil

    2013-11-01

    Petroleum hydrocarbons are contaminants of great significance. The commonly used analytic method for assessing total petroleum hydrocarbons (TPH) in soil samples is based on extraction with 1,1,2-Trichlorotrifluoroethane (Freon 113), a substance prohibited to use by the Environmental Protection Agency. During the past 20 years, a new quantitative methodology that uses the reflected radiation of solids has been widely adopted. By using this approach, the reflectance radiation across the visible, near infrared-shortwave infrared region (400-2500 nm) is modeled against constituents determined using traditional analytic chemistry methods and then used to predict unknown samples. This technology is environmentally friendly and permits rapid and cost-effective measurements of large numbers of samples. Thus, this method dramatically reduces chemical analytical costs and secondary pollution, enabling a new dimension of environmental monitoring. In this study we adapted this approach and developed effective steps in which hydrocarbon contamination in soils can be determined rapidly, accurately, and cost effectively solely from reflectance spectroscopy. Artificial contaminated samples were analyzed chemically and spectrally to form a database of five soils contaminated with three types of petroleum hydrocarbons (PHCs), creating 15 datasets of 48 samples each at contamination levels of 50-5000 wt% ppm (parts per million). A brute force preprocessing approach was used by combining eight different preprocessing techniques with all possible datasets, resulting in 120 different mutations for each dataset. The brute force was done based on an innovative computing system developed for this study. A new parameter for evaluating model performance scoring (MPS) is proposed based on a combination of several common statistical parameters. The effect of dividing the data into training validation and test sets on modeling accuracy is also discussed. The results of this study clearly show

  16. Bioremediation of Petroleum Hydrocarbon-Contaminated Soils, Comprehensive Report

    SciTech Connect

    Altman, D.J.

    2001-01-12

    The US Department of Energy and the Institute for Ecology of Industrial Areas, Katowice, Poland have been cooperating in the development and implementation of innovative environmental remediation technologies since 1995. U.S. experts worked in tandem with counterparts from the IETU and CZOR throughout this project to characterize, assess and subsequently, design, implement and monitor a bioremediation system.

  17. Physical conditioning to enhance bioremediation of excavated hydrocarbon contaminated soil at McClellan Air Force Base

    SciTech Connect

    Stefanoff, J.G.; Garcia, M.B. Jr.

    1995-05-01

    McClellan Air Force Base conducted an evaluation of an aerated-pile composting process and a slurry bioreactor process for biologically treating excavated hydrocarbon-contaminated soils while controlling emissions of volatile organic compounds. A large aspect of process evaluation was development of soil conditioning steps prior to biological treatment. The conditioning steps evaluated were: soil washing, using rod and hammer mills. Scrubbing was not effective at producing a consistently clean oversize fraction. Milling was effective at reducing the size of larger material and breaking agglomerates. Bioremediation results indicated both processes capable of greater than 90 percent reduction in hydrocarbon levels within 90 days. Aerated-pile composting was the preferred process because it required less operation and maintenance and more easily handled varying soil characteristics. A full-scale treatment process was developed and is described. 6 refs., 5 figs., 1 tab.

  18. Biosurfactant production by Pseudomonas aeruginosa DSVP20 isolated from petroleum hydrocarbon-contaminated soil and its physicochemical characterization.

    PubMed

    Sharma, Deepak; Ansari, Mohammad Javed; Al-Ghamdi, Ahmad; Adgaba, Nuru; Khan, Khalid Ali; Pruthi, Vikas; Al-Waili, Noori

    2015-11-01

    Among 348 microbial strains isolated from petroleum hydrocarbon-contaminated soil, five were selected for their ability to produce biosurfactant based on battery of screening assay including hemolytic activity, surface tension reduction, drop collapse assay, emulsification activity, and cell surface hydrophobicity studies. Of these, bacterial isolate DSVP20 was identified as Pseudomonas aeruginosa (NCBI GenBank accession no. GQ865644) based on biochemical characterization and the 16S rDNA analysis, and it was found to be a potential candidate for biosurfactant production. Maximum biosurfactant production recorded by P. aeruginosa DSVP20 was 6.7 g/l after 72 h at 150 rpm and at a temperature of 30 °C. Chromatographic analysis and high-performance liquid chromatography-mass spectrometry (HPLC-MS) revealed that it was a glycolipid in nature which was further confirmed by nuclear magnetic resonance (NMR) spectroscopy. Bioremediation studies using purified biosurfactant showed that P. aeruginosa DSVP20 has the ability to degrade eicosane (97%), pristane (75%), and fluoranthene (47%) when studied at different time intervals for a total of 7 days. The results of this study showed that the P. aeruginosa DSVP20 and/or biosurfactant produced by this isolate have the potential role in bioremediation of petroleum hydrocarbon-contaminated soil. PMID:26146372

  19. Enhancement and inhibition of microbial activity in hydrocarbon- contaminated arctic soils: Implications for nutrient-amended bioremediation

    USGS Publications Warehouse

    Braddock, J.F.; Ruth, M.L.; Catterall, P.H.; Walworth, J.L.; McCarthy, K.A.

    1997-01-01

    Bioremediation is being used or proposed as a treatment option at many hydrocarbon-contaminated sites. One such site is a former bulk-fuel storage facility near Barrow, AK, where contamination persists after approximately 380 m3 of JP-5 was spilled in 1970. The soil at the site is primarily coarse sand with low organic carbon (<1%) end low moisture (1-3%) contents. We examined the effects of nutrient additions on microorganisms in contaminated soil from this site in laboratory microcosms and in mesocosms incubated for 6 weeks in the field. Nitrogen was the major limiting nutrient in this system, but microbial populations and activity were maximally enhanced by additions of both nitrogen and phosphorus. When nutrients were added to soil in the field at three levels of N:P (100:45, 200:90, and 300:135 mg/kg soil), the greatest stimulation in microbial activity occurred at the lowest, rather than the highest, level of nutrient addition. The total soil-water potentials ranged from -2 to -15 bar with increasing levels of fertilizer. Semivolatile hydrocarbon concentrations declined significantly only in the soils treated at the low fertilizer level. These results indicate that an understanding of nutrient effects at a specific site is essential for successful bioremediation.Bioremediation is being used or proposed as a treatment option at many hydrocarbon-contaminated sites. One such site is a former bulk-fuel storage facility near Barrow, AK, where contamination persists after approximately 380 m3 of JP-5 was spilled in 1970. The soil at the site is primarily coarse sand with low organic carbon (<1%) and low moisture (1-3%) contents. We examined the effects of nutrient additions on microorganisms in contaminated soil from this site in laboratory microcosms and in mesocosms incubated for 6 weeks in the field. Nitrogen was the major limiting nutrient in this system, but microbial populations and activity were maximally enhanced by additions of both nitrogen and phosphorus

  20. Linkage between bacterial and fungal rhizosphere communities in hydrocarbon-contaminated soils is related to plant phylogeny

    PubMed Central

    Bell, Terrence H; El-Din Hassan, Saad; Lauron-Moreau, Aurélien; Al-Otaibi, Fahad; Hijri, Mohamed; Yergeau, Etienne; St-Arnaud, Marc

    2014-01-01

    Phytoremediation is an attractive alternative to excavating and chemically treating contaminated soils. Certain plants can directly bioremediate by sequestering and/or transforming pollutants, but plants may also enhance bioremediation by promoting contaminant-degrading microorganisms in soils. In this study, we used high-throughput sequencing of bacterial 16S rRNA genes and the fungal internal transcribed spacer (ITS) region to compare the community composition of 66 soil samples from the rhizosphere of planted willows (Salix spp.) and six unplanted control samples at the site of a former petrochemical plant. The Bray–Curtis distance between bacterial communities across willow cultivars was significantly correlated with the distance between fungal communities in uncontaminated and moderately contaminated soils but not in highly contaminated (HC) soils (>2000 mg kg−1 hydrocarbons). The mean dissimilarity between fungal, but not bacterial, communities from the rhizosphere of different cultivars increased substantially in the HC blocks. This divergence was partly related to high fungal sensitivity to hydrocarbon contaminants, as demonstrated by reduced Shannon diversity, but also to a stronger influence of willows on fungal communities. Abundance of the fungal class Pezizomycetes in HC soils was directly related to willow phylogeny, with Pezizomycetes dominating the rhizosphere of a monophyletic cluster of cultivars, while remaining in low relative abundance in other soils. This has implications for plant selection in phytoremediation, as fungal associations may affect the health of introduced plants and the success of co-inoculated microbial strains. An integrated understanding of the relationships between fungi, bacteria and plants will enable the design of treatments that specifically promote effective bioremediating communities. PMID:23985744

  1. Bioremediation: An effective remedial alternative for petroleum hydrocarbon-contaminated soil

    SciTech Connect

    Autry, A.R.; Ellis, G.M. )

    1992-11-01

    Bioremediation technologies applied to contaminated soil usually mitigate environmental rate-limiting factors so that biodegradation rates are maximized for any given compound. A newer approach to soil bioremediation mitigates these environmental rate-limiting factors simultaneously, initially allowing biodegradation to proceed at a maximal rate without the need for additional action. This technology involves intensive mixing of contaminated soil in a ribbon blender, introduction of a protein-based, surfactant-containing nutrient additive to the soil while in the mixer, physical entrainment of oxygen-containing air into the soil, discharge of the mixed soil from the mixer, and placement of the mixed soil in curing piles, for curing, during which time biodegradation can occur. No additional treatment actions (e.g., tillage, fertilizer or water applications) are typically required. The remediation, using this approach, of a former distribution facility which possessed soil contaminated with gasoline, is summarized. 22 refs., 6 figs.

  2. Pilot-scale bioremediation of a petroleum hydrocarbon-contaminated clayey soil from a sub-Arctic site.

    PubMed

    Akbari, Ali; Ghoshal, Subhasis

    2014-09-15

    Bioremediation is a potentially cost-effective solution for petroleum contamination in cold region sites. This study investigates the extent of biodegradation of petroleum hydrocarbons (C16-C34) in a pilot-scale biopile experiment conducted at 15°C for periods up to 385 days, with a clayey soil, from a crude oil-impacted site in northern Canada. Although several studies on bioremediation of petroleum hydrocarbon-contaminated soils from cold region sites have been reported for coarse-textured, sandy soils, there are limited studies of bioremediation of petroleum contamination in fine-textured, clayey soils. Our results indicate that aeration and moisture addition was sufficient for achieving 47% biodegradation and an endpoint of 530 mg/kg for non-volatile (C16-C34) petroleum hydrocarbons. Nutrient amendment with 95 mg-N/kg showed no significant effect on biodegradation compared to a control system without nutrient but similar moisture content. In contrast, in a biopile amended with 1340 mg-N/kg, no statistically significant biodegradation of non-volatile fraction was detected. Terminal Restriction Fragment Length Polymorphism (T-RFLP) analyses of alkB and 16S rRNA genes revealed that inhibition of hydrocarbon biodegradation was associated with a lack of change in microbial community composition. Overall, our data suggests that biopiles are feasible for attaining the bioremediation endpoint in clayey soils. Despite the significantly lower biodegradation rate of 0.009 day(-1) in biopile tank compared to 0.11 day(-1) in slurry bioreactors for C16-C34 hydrocarbons, the biodegradation extents for this fraction were comparable in these two systems. PMID:25218258

  3. Bioremediation of petroleum hydrocarbon contaminated soil by Rhodobacter sphaeroides biofertilizer and plants.

    PubMed

    Jiao, Haihua; Luo, Jinxue; Zhang, Yiming; Xu, Shengjun; Bai, Zhihui; Huang, Zhanbin

    2015-09-01

    Bio-augmentation is a promising technique for remediation of polluted soils. This study aimed to evaluate the bio-augmentation effect of Rhodobacter sphaeroides biofertilizer (RBF) on the bioremediation of total petroleum hydrocarbons (TPH) contaminated soil. A greenhouse pot experiment was conducted over a period of 120 days, three methods for enhancing bio-augmentation were tested on TPH contaminated soils, including single addition RBF, planting, and combining of RBF and three crop species, such as wheat (W), cabbage (C) and spinach (S), respectively. The results demonstrated that the best removal of TPH from contaminated soil in the RBF bio-augmentation rhizosphere soils was found to be 46.2%, 65.4%, 67.5% for W+RBF, C+RBF, S+RBF rhizosphere soils respectively. RBF supply impacted on the microbial community diversity (phospholipid fatty acids, PLFA) and the activity of soil enzymes, such as dehydrogenase (DH), alkaline phosphatase (AP) and urease (UR). There were significant difference among the soil only containing crude oil (CK), W, C and S rhizosphere soils and RBF bio-augmentation soils. Moreover, the changes were significantly distinct depended on crops species. It was concluded that the RBF is a valuable material for improving effect of remediation of TPH polluted soils. PMID:26525019

  4. Electrokinetic remediation and microbial community shift of β-cyclodextrin-dissolved petroleum hydrocarbon-contaminated soil.

    PubMed

    Wan, Chunli; Du, Maoan; Lee, Duu-Jong; Yang, Xue; Ma, Wencheng; Zheng, Lina

    2011-03-01

    Electrokinetic (EK) migration of β-cyclodextrin (β-CD), which is inclusive of total petroleum hydrocarbon (TPH), is an economically beneficial and environmentally friendly remediation process for oil-contaminated soils. Remediation studies of oil-contaminated soils generally prepared samples using particular TPHs. This study investigates the removal of TPHs from, and electromigration of microbial cells in field samples via EK remediation. Both TPH content and soil respiration declined after the EK remediation process. The strains in the original soil sample included Bacillus sp., Sporosarcina sp., Beta proteobacterium, Streptomyces sp., Pontibacter sp., Azorhizobium sp., Taxeobacter sp., and Williamsia sp. Electromigration of microbial cells reduced the biodiversity of the microbial community in soil following EK remediation. At 200 V m(-1) for 10 days, 36% TPH was removed, with a small population of microbial cells flushed out, demonstrating that EK remediation is effective for the present oil-contaminated soils collected in field. PMID:21052991

  5. Sample preparation and characterization for a study of environmentally acceptable endpoints for hydrocarbon-contaminated soil

    SciTech Connect

    Kreitinger, J.P.; Finn, J.T.

    1995-12-31

    In the past, the interdisciplinary research effort required to investigate the acceptable cleanup endpoints for hydrocarbon-impacted soils has been limited by the lack of standardized soils for testing. To support the efforts of the various researchers participating in the EAE research initiative, soil samples were collected from ten sites representing hydrocarbon-impacted soils typical of exploration/production, refinery, and bulk storage terminal operations. The hydrocarbons in the standard soils include crude oil, mixed refinery products, diesel, gasoline, and jet fuel. Physical characterization included analysis of soil texture, water retention, particle density, nanoporosity, pH, electrical conductivity, cation exchange capacity, buffer capacity, organic carbon, sodium adsorption ratio, and clay mineralogy. Chemical characterization included analysis of total recoverable petroleum hydrocarbons, total volatile and semivolatile organic compounds and metals, and TCLP for metals and organics. An analysis of the aliphatic and aromatic hydrocarbon fractions was performed on each soil to support the use of various models for assessing soil toxicity. Screening-level toxicity tests were conducted using Microtox{trademark}, plant seed germination and growth, and earthworm mortality and growth. Biodegradability screening tests were performed in slurry shake flasks to estimate the availability of hydrocarbon fractions to soil microorganisms.

  6. Contrasting the Community Structure of Arbuscular Mycorrhizal Fungi from Hydrocarbon-Contaminated and Uncontaminated Soils following Willow (Salix spp. L.) Planting

    PubMed Central

    Stefani, Franck O. P.; Denis, David; Hijri, Mohamed; St-Arnaud, Marc

    2014-01-01

    Phytoremediation is a potentially inexpensive alternative to chemical treatment of hydrocarbon-contaminated soils, but its success depends heavily on identifying factors that govern the success of root-associated microorganisms involved in hydrocarbon degradation and plant growth stimulation. Arbuscular mycorrhizal fungi (AMF) form symbioses with many terrestrial plants, and are known to stimulate plant growth, although both species identity and the environment influence this relationship. Although AMF are suspected to play a role in plant adaptation to hydrocarbon contamination, their distribution in hydrocarbon-contaminated soils is not well known. In this study, we examined how AMF communities were structured within the rhizosphere of 11 introduced willow cultivars as well as unplanted controls across uncontaminated and hydrocarbon-contaminated soils at the site of a former petrochemical plant. We obtained 69 282 AMF-specific 18S rDNA sequences using 454-pyrosequencing, representing 27 OTUs. Contaminant concentration was the major influence on AMF community structure, with different AMF families dominating at each contaminant level. The most abundant operational taxonomic unit in each sample represented a large proportion of the total community, and this proportion was positively associated with increasing contamination, and seemingly, by planting as well. The most contaminated soils were dominated by three phylotypes closely related to Rhizophagus irregularis, while these OTUs represented only a small proportion of sequences in uncontaminated and moderately contaminated soils. These results suggest that in situ inoculation of AMF strains could be an important component of phytoremediation treatments, but that strains should be selected from the narrow group that is both adapted to contaminant toxicity and able to compete with indigenous AMF species. PMID:25032685

  7. Biosurfactant production by Serratia rubidaea SNAU02 isolated from hydrocarbon contaminated soil and its physico-chemical characterization.

    PubMed

    Nalini, S; Parthasarathi, R

    2013-11-01

    The aim of the study was to characterize and optimize the growth media for biosurfactant production from Serratia rubidaea SNAU02 isolated from hydrocarbon-contaminated soil from Cuddalore district, Tamilnadu, India. The biosurfactant produced by S. rubidaea SNAU02, was able to reduce the surface tension to 34.4 mN m(-1) in MSM medium. The biosurfactant was characterized by FT-IR and GC-MS analysis. The GC-MS analysis shows that dirhamnolipid was detected in abundance as predominant congener than monorhamnolipid. The response surface methodology (RSM) -central composite design (CCD) was performed to optimize the media for biosurfactant production. The maximum emulsification index was obtained under the optimal condition of 29.31 g L(-1) mannitol; 2.06 g L(-1) yeast extract, medium pH 6.97 and 5.69 g L(-1) NaCl. The biosurfactant produced by S. rubidaea recovered 92% of used engine oil adsorbed to a sand sample, suggested the potential application in microbial enhanced oil recovery and bioremediation. PMID:23993704

  8. Biological remediation of polynuclear aromatic hydrocarbon contaminated soils using Acinetobacter sp.

    SciTech Connect

    Joshi, M.M.; Lee, S.

    1996-03-01

    Soils contaminated with polynuclear aromatic hydrocarbons (PAHs) pose a hazard to life. The remediation of such sites has been attempted using various methods such as solvent washing, air stripping, incineration, composting, electrokinetic remediation, and supercritical extraction. However, applicability of these physical, chemical, and biological treatment methods or their combination is critically dependent on soil characteristics, nature and level of contamination, site specifications, and economic feasibility, to name a few. Present research is aimed at studying the applicability of biological treatment for decontamination of industrial soil containing PAHs. The current preliminary study included soil analysis, contaminant characterization, and soil treatment using Acinetobacter sp. The soil treatment over a 5-week period, with minimal supplemental nutrient addition, showed removal efficiencies of 80% and more. The effect of initial microbial population in soil on the removal efficiency over a 5-week treatment period was studied. Experiments were designed to compare the removal efficiencies occurring in packed beds versus continuously-stirred tank reactor (CSTR)-type fermentation conditions. This also estimated a conservative range of decontamination efficiencies achievable using minimal control.

  9. Geophysical Monitoring of Hydrocarbon-Contaminated Soils Remediated with a Bioelectrochemical System.

    PubMed

    Mao, Deqiang; Lu, Lu; Revil, André; Zuo, Yi; Hinton, John; Ren, Zhiyong Jason

    2016-08-01

    Efficient noninvasive techniques are desired for monitoring the remediation process of contaminated soils. We applied the direct current resistivity technique to image conductivity changes in sandbox experiments where two sandy and clayey soils were initially contaminated with diesel hydrocarbon. The experiments were conducted over a 230 day period. The removal of hydrocarbon was enhanced by a bioelectrochemical system (BES) and the electrical potentials of the BES reactors were also monitored during the course of the experiment. We found that the variation in electrical conductivity shown in the tomograms correlate well with diesel removal from the sandy soil, but this is not the case with the clayey soil. The clayey soil is characterized by a larger specific surface area and therefore a larger surface conductivity. In sandy soil, the removal of the diesel and products from degradation leads to an increase in electrical conductivity during the first 69 days. This is expected since diesel is electrically insulating. For both soils, the activity of BES reactors is moderately imaged by the inverted conductivity tomogram of the reactor. An increase in current production by electrochemically active bacteria activity corresponds to an increase in conductivity of the reactor. PMID:27386889

  10. Hydrocarbon contamination of arctic tundra soils of the Bol'shoi Lyakhovskii Island (the Novosibirskie Islands)

    NASA Astrophysics Data System (ADS)

    Kachinskii, V. L.; Zavgorodnyaya, Yu. A.; Gennadiev, A. N.

    2014-02-01

    Data on the distribution of the components of oil products that have accumulated in the arctic tundra soils of the Bol'shoi Lyakhovskii Island (the Novosibirskie Islands) under the impact of technogenic loads are analyzed. The examined soils differ in the vertical and lateral distribution patterns of the methanenaphthenic and naphthenic hydrocarbons and in the degree of their transformation. This is determined by the position of particular soils in the catenas and by the sorption of particular hydrocarbon compounds in the soils. The portion of light molecular-weight hydrocarbons in the upper horizons decreases by two-ten times in comparison with the deeper soil layers. In the lateral direction, the twofold difference in the contents of the methane-naphthenic and naphthenic hydrocarbons in the upper horizons is seen. The degree of transformation of the hydrocarbons under the impact of microbiological processes depends on the aeration conditions, the depth of permafrost table, the composition of oil products, and the soil organic matter content.

  11. Pyrosequence analysis of bacterial communities in aerobic bioreactors treating polycyclic aromatic hydrocarbon-contaminated soil

    PubMed Central

    Richardson, Stephen D.; Aitken, Michael D.

    2011-01-01

    Two aerobic, lab-scale, slurry-phase bioreactors were used to examine the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil and the associated bacterial communities. The two bioreactors were operated under semi-continuous (draw-and-fill) conditions at a residence time of 35 days, but one was fed weekly and the other monthly. Most of the quantified PAHs, including high-molecular-weight compounds, were removed to a greater extent in the weekly-fed bioreactor, which achieved total PAH removal of 76%. Molecular analyses, including pyrosequencing of 16S rRNA genes, revealed significant shifts in the soil bacterial communities after introduction to the bioreactors and differences in the abundance and types of bacteria in each of the bioreactors. The weekly-fed bioreactor displayed a more stable bacterial community with gradual changes over time, whereas the monthly-fed bioreactor community was less consistent and may have been more strongly influenced by the influx of untreated soil during feeding. Phylogenetic groups containing known PAH-degrading bacteria previously identified through stable-isotope probing of the untreated soil were differentially affected by bioreactor conditions. Sequences from members of the Acidovorax and Sphingomonas genera, as well as the uncultivated ‘‘Pyrene Group 2’’ were abundant in the bioreactors. However, the relative abundances of sequences from the Pseudomonas, Sphingobium, and Pseudoxanthomonas genera, as well as from a group of unclassified anthracene degraders, were much lower in the bioreactors compared to the untreated soil. PMID:21369833

  12. Chemical oxidation treatment of hydrocarbon contaminated soil using Fenton`s reagent

    SciTech Connect

    Chen, T.C.; Tafuri, A.; Rahman, M.

    1995-12-31

    This study assesses the effectiveness of Fenton`s reagent to oxidize the constituents of petroleum products such as 2-methylnaphthalene and n-hexadecane in soils. Laboratory tests were conducted in 2.5 liter glass bottles at various pH levels and organic concentrations. The results showed that 2-methylnaphthalene was rapidly removed by Fenton`s reagent in soil matrix; however, n-hexadecane was removed at a slower rate. The natural organic content of the soil does not appear to affect the 2-methylnaphthalene destruction. Both contaminants showed higher reaction rates at pH 7 than at pH 2. The slower degradation of n-hexadecane may be due to the competition of natural organic compounds; therefore, alkanes may need additional hydrogen peroxide to be effectively oxidized.

  13. Magnetic Parameter Changes in Soil and Sediments in the Presence of Hydrocarbon Contamination

    NASA Astrophysics Data System (ADS)

    Appel, E.; Porsch, K.; Rijal, M. L.; Ameen, N. N.; Kappler, A.

    2014-12-01

    Magnetic proxies were successfully used for fast and non-destructive detection of fly ash related heavy metal pollution. Correlations of magnetic signals with organic contaminants in soils and sediments were also reported; however, their significance is unclear because of co-existing heavy metal pollution. At a hydrocarbon (HC) contaminated former military airbase (Hradcany, Czech Rep.), where heavy metal contents are insignificant, we detected clearly higher magnetic concentrations at the top of the groundwater fluctuation (GWF) zone. Frequent GWF by up to ca. one meter was caused through remediation by air sparging. In this study and all previous ones magnetite was identified as the dominant phase for higher magnetic concentrations. To determine the importance of microbial activity and soil parameters on changes in magnetic susceptibility (MS) laboratory batch experiments with different microbially active and sterile soils without carbon addition and with gasoline amendment were setup. MS of these microcosms was followed weekly. Depending on the soil MS either increased or decreased by up to ~7% and remained constant afterwards. The main findings were that MS changes were mainly microbially driven and influenced by the bioavailable Fe content, the initial MS and the organic carbon content of the soils. Moreover, we tested magnetic changes in laboratory columns, filled with sand from the field site Hradcany, by simulating water level changes. The observed changes were small and hardly statistically significant. Our laboratory studies revealed that different factors influence changes in magnetic properties of soil/sediments after HC contamination, with much smaller effects than expected from anomalies observed at field sites. With the present results, the ambitious goal of using magnetic monitoring for detecting HC contaminations by oil spills seem far from practical application.

  14. Soil-Water Repellency and Critical Humidity as Cleanup Criteria for Remediation of a Hydrocarbon Contaminated Mud

    NASA Astrophysics Data System (ADS)

    Guzmán, Francisco Javier; Adams, Randy H.

    2010-05-01

    , the FC dropped to 25,6% H, likely due to organic matter decomposition. However, during the following year+ (13½ months) the FC increased to 33,8%H probably due to an increase of soil humic substances while a vigorous vegetative growth was established. During two years of treatment the MED values were reduced 30% from 5,13 to 3,58M, and WDPT values were reduced over 25 times (from 10 exp5,6 s to 10 exp4,2 s). Critical humidity values varied from ~16,9 - 19,5%H for penetration in <5 s and from ~15,1 - 15,5%H for penetration in <60 s, in both treated and untreated material. During the driest part of the year, in May before the first rains, the soil humidity was 20,3%, and thus values below the critical levels were not experienced. This permitted the development of a complete vegetative cover, vigorous growth, and transformation of a geologic substrate (bentonitic drilling muds) into a soil-like material apt for agricultural use. This focus on soil-water relationships and the use of soil fertility parameters in general is important in establishing cleanup criteria for the real remediation of hydrocarbon contaminated sites in agricultural areas. As seen in this study, relatively high WDPT and MED values may not necessarily indicate soil moisture problems and these need to be complemented with actual site information on soil humidity during the annual cycle and with determinations of critical humidity. Additionally, the augmentation of field capacity using organic conditioners may effectively mitigate potential critical humidity problems.

  15. Long-term simulation of in situ biostimulation of polycyclic aromatic hydrocarbon-contaminated soil

    PubMed Central

    Jones, Maiysha D.; Singleton, David R.; Aitken, Michael D.

    2016-01-01

    A continuous-flow column study was conducted to evaluate the long-term effects of in situ biostimulation on the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in soil from a manufactured gas plant site. Simulated groundwater amended with oxygen and inorganic nutrients was introduced into one column, while a second column receiving unamended groundwater served as a control. PAH and dissolved oxygen (DO) concentrations, as well as microbial community profiles, were monitored along the column length immediately before and at selected intervals up to 534 days after biostimulation commenced. Biostimulation resulted in significantly greater PAH removal than in the control condition (73% of total measured PAHs vs. 34%, respectively), with dissolution accounting for a minor amount of the total mass loss (~6%) in both columns. Dissolution was most significant for naphthalene, acenaphthene, and fluorene, accounting for >20% of the total mass removed for each. A known group of PAH-degrading bacteria, ‘Pyrene Group 2’ (PG2), was identified as a dominant member of the microbial community and responded favorably to biostimulation. Spatial and temporal variations in soil PAH concentration and PG2 abundance were strongly correlated to DO advancement, although there appeared to be transport of PG2 organisms ahead of the oxygen front. At an estimated oxygen demand of 6.2 mg O2/g dry soil and a porewater velocity of 0.8 m/day, it took between 374 and 466 days for oxygen breakthrough from the 1-m soil bed in the biostimulated column. This study demonstrated that the presence of oxygen was the limiting factor in PAH removal, as opposed to the abundance and/or activity of PAH-degrading bacteria once oxygen reached a previously anoxic zone. PMID:22311590

  16. Comparison of PAH Biodegradation and Desorption Kinetics During Bioremediation of Aged Petroleum Hydrocarbon Contaminated Soils

    SciTech Connect

    Huesemann, Michael H.; Hausmann, Tom S.; Fortman, Timothy J.

    2000-09-20

    It is commonly assumed that mass-transfer limitations are the cause for slow and incomplete biodegradation of PAHs in aged soils. In order to test this hypothesis, the biodegradation rate and the abiotic release rate were measured and compared for selected PAHs in three different soils. It was found that PAH biodegradation was not mass-transfer limited during slurry bioremediation of an aged loamy soil. By contrast, PAH biodegradation rates were much larger than abiotic release rates in kaolinite clay indicating that sorbed-phase PAHs can apparently be biodegraded directly from mineral surfaces without prior desorption or dissolution into the aqueous phase. A comparison of PAH biodegradation rates and abiotic release rates at termination of the slurry bioremediation treatment revealed that abiotic release rates are much larger than the respective biodegradation rates. In addition, it was found that the number of hydrocarbon degraders decreased by four orders of magnitude during the bioremediation treatment. It can therefore be concluded that the slow and incomplete biodegradation of PAHs is not caused by mass-transfer limitations but rather by microbial factors. Consequently, the residual PAHs that remain after extensive bioremediation treatment are still bioavailable and for that reason could pose a greater risk to environmental receptors than previously thought.

  17. Bioremediation of hydrocarbon-contaminated soils and groundwater in northern climates

    SciTech Connect

    Reynolds, C.M.; Braely, W.A.; Travis, M.D.; Perry, L.B.; Iskandar, I.K.

    1998-03-01

    A field demonstration and research project was conducted in Fairbanks, Alaska, to demonstrate, evaluate, and document the construction and operation of three selected bioremediation technologies-landfarming, recirculating leachbeds, and infiltration galleries. Landfarming involves adding water and nutrients to contaminated soil to stimulate microbial activity and contaminant degradation. Infiltration galleries are dynamic in-situ treatment systems designed to stimulate microbial activity and subsequent hydrocarbon degradation by circulating nutrient and oxygen-amended water through petroleum-contaminated soil. Recirculating leachbeds, in a way similar to slurry reactors, aerate and mix nutrients with contaminated soil, and can be built as on-site bioreactors. Estimated biotreatment costs in the landfarm were between $20 to $30 per cubic yard ($15 to $23 per cubic meter). Nutrient placement has been demonstrated to be a critical factor, even though the site is tilled and mixed frequently. Success of the infiltration gallery was more difficult to document. Benzene was detected at less than 2 ppb and BTEX levels were less than 5 ppb for water extracted from the pumping well during 1992, which is significantly lower than the 1991 levels. Problems were encountered during the brief operation of the recirculating leach bed, but a similar system has performed well. Relatively simple, low-cost techniques provided significant potential for improving degradation rates.

  18. Phytoremediation of hydrocarbon contaminants in subantarctic soils: an effective management option.

    PubMed

    Bramley-Alves, Jessica; Wasley, Jane; King, Catherine K; Powell, Shane; Robinson, Sharon A

    2014-09-01

    Accidental fuel spills on world heritage subantarctic Macquarie Island have caused considerable contamination. Due to the island's high latitude position, its climate, and its fragile ecosystem, traditional methods of remediation are unsuitable for on-site clean up. We investigated the tolerance of a subantarctic native tussock grass, Poa foliosa (Hook. f.), to Special Antarctic Blend (SAB) diesel fuel and its potential to reduce SAB fuel contamination via phytoremediation. Toxicity of SAB fuel to P. foliosa was assessed in an 8 month laboratory growth trial under growth conditions which simulated the island's environment. Single seedlings were planted into 1 L pots of soil spiked with SAB fuel at concentrations of 1000, 5 000, 10,000, 2000 and 40,000 mg/kg (plus control). Plants were harvested at 0, 2, 4 and 8 months and a range of plant productivity endpoints were measured (biomass production, plant morphology and photosynthetic efficiency). Poa foliosa was highly tolerant across all SAB fuel concentrations tested with respect to biomass, although higher concentrations of 20,000 and 40,000 mg SAB/kg soil caused slight reductions in leaf length, width and area. To assess the phytoremediation potential of P. foliosa (to 10 000 mg/kg), soil from the planted pots was compared with that from paired unplanted pots at each SAB fuel concentration. The effect of the plant on SAB fuel concentrations and the associated microbial communities found within the soil (total heterotrophs and hydrocarbon degraders) were compared between planted and unplanted treatments at the 0, 2, 4 and 8 month harvest periods. The presence of plants resulted in significantly less SAB fuel in soils at 2 months and a return to background concentration by 8 months. Microbes did not appear to be the sole driving force behind the observed hydrocarbon loss. This study provides evidence that phytoremediation using P. foliosa is a valuable remediation option for use at Macquarie Island, and may be

  19. Ecotoxicological assessment of bioremediation of a petroleum hydrocarbon-contaminated soil

    SciTech Connect

    Renoux, A.Y.; Tyagi, R.D.; Roy, Y.; Samson, R.

    1995-12-31

    A battery of bioassays [barley seed germination, barley plant growth, lettuce seed germination, worm mortality, Microtox{reg_sign}, lettuce root elongation, algae Selenastrum capricornutum growth, Daphnia magna mortality, and SOS Chromotest ({+-}S9)] was used to assess an above-ground heap pile treatment of a soil contaminated with aliphatic petroleum hydrocarbons (12 to 24 carbons). Despite an initial oil and grease concentration of 2,000 mg/kg, no significant (geno)toxicity was apparent in the soil sample before treatment. During the treatment, which decreased oil and grease concentrations to 800 mg/kg, slight toxicity was revealed by three bioassays (barley seed germination, worm mortality, Daphnia magna mortality), and a significant increase in genotoxicity was measured with the SOS Chromotest ({+-} S9). It appears that ecotoxicological evaluation revealed harmful condition(s) that were not detected by chemical assessment. This suggests that the remediation had ceased before complete detoxification occurred. This phenomenon must be further investigated, however, to furnish solid conclusions on the toxicological effectiveness of the biotreatment.

  20. Horizontal arrangement of anodes of microbial fuel cells enhances remediation of petroleum hydrocarbon-contaminated soil.

    PubMed

    Zhang, Yueyong; Wang, Xin; Li, Xiaojing; Cheng, Lijuan; Wan, Lili; Zhou, Qixing

    2015-02-01

    With the aim of in situ bioremediation of soil contaminated by hydrocarbons, anodes arranged with two different ways (horizontal or vertical) were compared in microbial fuel cells (MFCs). Charge outputs as high as 833 and 762C were achieved in reactors with anodes horizontally arranged (HA) and vertically arranged (VA). Up to 12.5 % of the total petroleum hydrocarbon (TPH) was removed in HA after 135 days, which was 50.6 % higher than that in VA (8.3 %) and 95.3 % higher than that in the disconnected control (6.4 %). Hydrocarbon fingerprint analysis showed that the degradation rates of both alkanes and polycyclic aromatic hydrocarbons (PAHs) in HA were higher than those in VA. Lower mass transport resistance in the HA than that of the VA seems to result in more power and more TPH degradation. Soil pH was increased from 8.26 to 9.12 in HA and from 8.26 to 8.64 in VA, whereas the conductivity was decreased from 1.99 to 1.54 mS/cm in HA and from 1.99 to 1.46 mS/cm in VA accompanied with the removal of TPH. Considering both enhanced biodegradation of hydrocarbon and generation of charge in HA, the MFC with anodes horizontally arranged is a promising configuration for future applications. PMID:25189807

  1. Monitoring the bio-stimulation of hydrocarbon-contaminated soils by measurements of soil electrical properties, and CO2 content and its 13C/12C isotopic signature

    NASA Astrophysics Data System (ADS)

    Noel, C.; Gourry, J.; Ignatiadis, I.; Colombano, S.; Dictor, M.; Guimbaud, C.; Chartier, M.; Dumestre, A.; Dehez, S.; Naudet, V.

    2013-12-01

    Hydrocarbon contaminated soils represent an environmental issue as it impacts on ecosystems and aquifers. Where significant subsurface heterogeneity exists, conventional intrusive investigations and groundwater sampling can be insufficient to obtain a robust monitoring of hydrocarbon contaminants, as the information they provide is restricted to vertical profiles at discrete locations, with no information between sampling points. In order to obtain wider information in space volume on subsurface modifications, complementary methods can be used like geophysics. Among geophysical methods, geoelectrical techniques such as electrical resistivity (ER) and induced polarization (IP) seem the more promising, especially to study the effects of biodegradation processes. Laboratory and field geoelectrical experiments to characterize soils contaminated by oil products have shown that mature hydrocarbon-contaminated soils are characterized by enhanced electrical conductivity although hydrocarbons are electrically resistive. This high bulk conductivity is due to bacterial impacts on geological media, resulting in changes in the chemical and physical properties and thus, to the geophysical properties of the ground. Moreover, microbial activity induced CO2 production and isotopic deviation of carbon. Indeed, produced CO2 will reflect the pollutant isotopic signature. Thus, the ratio δ13C(CO2) will come closer to δ13C(hydrocarbon). BIOPHY, project supported by the French National Research Agency (ANR), proposes to use electrical methods and gas analyses to develop an operational and non-destructive method for monitoring in situ biodegradation of hydrocarbons in order to optimize soil treatment. Demonstration field is located in the South of Paris (France), where liquid fuels (gasoline and diesel) leaked from some tanks in 1997. In order to stimulate biodegradation, a trench has been dug to supply oxygen to the water table and thus stimulate aerobic metabolic bioprocesses. ER and

  2. [Biological treatments for contaminated soils: hydrocarbon contamination. Fungal applications in bioremediation treatment].

    PubMed

    Martín Moreno, Carmen; González Becerra, Aldo; Blanco Santos, María José

    2004-09-01

    Bioremediation is a spontaneous or controlled process in which biological, mainly microbiological, methods are used to degrade or transform contaminants to non or less toxic products, reducing the environmental pollution. The most important parameters to define a contaminated site are: biodegradability, contaminant distribution, lixiviation grade, chemical reactivity of the contaminants, soil type and properties, oxygen availability and occurrence of inhibitory substances. Biological treatments of organic contaminations are based on the degradative abilities of the microorganisms. Therefore the knowledge on the physiology and ecology of the biological species or consortia involved as well as the characteristics of the polluted sites are decisive factors to select an adequate biorremediation protocol. Basidiomycetes which cause white rot decay of wood are able to degrade lignin and a variety of environmentally persistent pollutants. Thus, white rot fungi and their enzymes are thought to be useful not only in some industrial process like biopulping and biobleaching but also in bioremediation. This paper provides a review of different aspects of bioremediation technologies and recent advances on ligninolytic metabolism research. PMID:15709784

  3. Bacterial Endophytes Isolated from Plants in Natural Oil Seep Soils with Chronic Hydrocarbon Contamination

    PubMed Central

    Lumactud, Rhea; Shen, Shu Yi; Lau, Mimas; Fulthorpe, Roberta

    2016-01-01

    The bacterial endophytic communities of four plants growing abundantly in soils highly contaminated by hydrocarbons were analyzed through culturable and culture-independent means. Given their tolerance to the high levels of petroleum contamination at our study site, we sought evidence that Achillea millefolium, Solidago canadensis, Trifolium aureum, and Dactylis glomerata support high levels of hydrocarbon degrading endophytes. A total of 190 isolates were isolated from four plant species. The isolates were identified by partial 16S rDNA sequence analysis, with class Actinobacteria as the dominant group in all species except S. canadensis, which was dominated by Gammaproteobacteria. Microbacterium foliorum and Plantibacter flavus were present in all the plants, with M. foliorum showing predominance in D. glomerata and both endophytic bacterial species dominated T. aureum. More than 50% of the isolates demonstrated degradative capabilities for octanol, toluene, naphthalene, kerosene, or motor oil based on sole carbon source growth screens involving the reduction of tetrazolium dye. P. flavus isolates from all the sampled plants showed growth on all the petroleum hydrocarbons (PHCs) substrates tested. Mineralization of toluene and naphthalene was confirmed using gas-chromatography. 16S based terminal restriction fragment length polymorphism analysis revealed significant differences between the endophytic bacterial communities showing them to be plant host specific at this site. To our knowledge, this is the first account of the degradation potential of bacterial endophytes in these commonly occurring pioneer plants that were not previously known as phytoremediating plants. PMID:27252685

  4. Soil pollution in the railway junction Niš (Serbia) and possibility of bioremediation of hydrocarbon-contaminated soil

    NASA Astrophysics Data System (ADS)

    Jovanovic, Larisa; Aleksic, Gorica; Radosavljevic, Milan; Onjia, Antonije

    2015-04-01

    Mineral oil leaking from vehicles or released during accidents is an important source of soil and ground water pollution. In the railway junction Niš (Serbia) total 90 soil samples polluted with mineral oil derivatives were investigated. Field work at the railway Niš sites included the opening of soil profiles and soil sampling. The aim of this work is the determination of petroleum hydrocarbons concentration in the soil samples and the investigation of the bioremediation technique for treatment heavily contaminated soil. For determination of petroleum hydrocarbons in the soil samples method of gas-chromatography was carried out. On the basis of measured concentrations of petroleum hydrocarbons in the soil it can be concluded that: Obtained concentrations of petroleum hydrocarbons in 60% of soil samples exceed the permissible values (5000 mg/kg). The heavily contaminated soils, according the Regulation on the program of systematic monitoring of soil quality indicators for assessing the risk of soil degradation and methodology for development of remediation programs, Annex 3 (Official Gazette of RS, No.88 / 2010), must be treated using some of remediation technologies. Between many types of phytoremediation of soil contaminated with mineral oils and their derivatives, the most suitable are phytovolatalisation and phytostimulation. During phytovolatalisation plants (poplar, willow, aspen, sorgum, and rye) absorb organic pollutants through the root, and then transported them to the leaves where the reduced pollutants are released into the atmosphere. In the case of phytostimulation plants (mulberry, apple, rye, Bermuda) secrete from the roots enzymes that stimulates the growth of bacteria in the soil. The increase in microbial activity in soil promotes the degradation of pollutants. Bioremediation is performed by composting the contaminated soil with addition of composting materials (straw, manure, sawdust, and shavings), moisture components, oligotrophs and

  5. The ecological and physiological responses of the microbial community from a semiarid soil to hydrocarbon contamination and its bioremediation using compost amendment.

    PubMed

    Bastida, F; Jehmlich, N; Lima, K; Morris, B E L; Richnow, H H; Hernández, T; von Bergen, M; García, C

    2016-03-01

    The linkage between phylogenetic and functional processes may provide profound insights into the effects of hydrocarbon contamination and biodegradation processes in high-diversity environments. Here, the impacts of petroleum contamination and the bioremediation potential of compost amendment, as enhancer of the microbial activity in semiarid soils, were evaluated in a model experiment. The analysis of phospholipid fatty-acids (PLFAs) and metaproteomics allowed the study of biomass, phylogenetic and physiological responses of the microbial community in polluted semiarid soils. Petroleum pollution induced an increase of proteobacterial proteins during the contamination, while the relative abundance of Rhizobiales lowered in comparison to the non-contaminated soil. Despite only 0.55% of the metaproteome of the compost-treated soil was involved in biodegradation processes, the addition of compost promoted the removal of polycyclic aromatic hydrocarbons (PAHs) and alkanes up to 88% after 50 days. However, natural biodegradation of hydrocarbons was not significant in soils without compost. Compost-assisted bioremediation was mainly driven by Sphingomonadales and uncultured bacteria that showed an increased abundance of catabolic enzymes such as catechol 2,3-dioxygenases, cis-dihydrodiol dehydrogenase and 2-hydroxymuconic semialdehyde. For the first time, metaproteomics revealed the functional and phylogenetic relationships of petroleum contamination in soil and the microbial key players involved in the compost-assisted bioremediation. PMID:26225916

  6. The occurrence of multidrug-resistant Pseudomonas aeruginosa on hydrocarbon-contaminated sites.

    PubMed

    Kaszab, Edit; Kriszt, Balázs; Atzél, Béla; Szabó, Gabriella; Szabó, István; Harkai, Péter; Szoboszlay, Sándor

    2010-01-01

    The main aim of this paper was the comprehensive estimation of the occurrence rate and the antibiotic-resistance conditions of opportunistic pathogen Pseudomonas aeruginosa in hydrocarbon-contaminated environments. From 2002 to 2007, 26 hydrocarbon-contaminated sites of Hungary were screened for the detection of environmental isolates. Altogether, 156 samples were collected and examined for the determination of appearance, representative cell counts, and antibiotic-resistance features of P. aeruginosa. The detected levels of minimal inhibitory concentrations of ten different drugs against 36 environmental strains were compared to the results of a widely used reference strain ATCC 27853 and four other clinical isolates of P. aeruginosa. Based on our long-term experiment, it can be established that species P. aeruginosa was detectable in case of 61.5% of the investigated hydrocarbon-contaminated sites and 35.2% of the examined samples that shows its widespread occurrence in polluted soil-groundwater systems. In the course of the antibiotic-resistance assay, our results determined that 11 of the examined 36 environmental strains had multiple drug-resistance against several clinically effective antimicrobial classes: cephalosporins, wide spectrum penicillins, carbapenems, fluoroquinolones, and aminoglycosides. The fact that these multiresistant strains were isolated from 8 different hydrocarbon-contaminated sites, mainly from outskirts, confirms that multiple drug-resistance of P. aeruginosa is widespread not only in clinical, but also in natural surroundings as well. PMID:19597862

  7. Dynamics of carbon and nitrogen in a mixture of polycyclic aromatic hydrocarbons contaminated soil amended with organic residues.

    PubMed

    Rivera-Espinoza, Y; Dendooven, L

    2007-08-01

    Contamination of soil with polycyclic aromatic hydrocarbons (PAHs) through oil spills occurs frequently in Mexico. PAHs are highly resistant to degradation and restoration of these contaminated soils might be achieved by applying readily available organic material. A clayey soil was contaminated in the laboratory with different forms of PAHs, i.e. phenanthrene, anthracene and benzo(a)pyrene, and amended with maize or biosolids while production of carbon dioxide (CO2), dynamics of ammonia (NH4-), nitrate (NO3-) and PAHs were monitored. The largest CO2 production rate was found in soil added with maize and biosolids and the lowest in the unamended soil. The concentration of PAHs added to the sterilized soil did not change significantly over time and addition of organic material had no significant effect on it. The concentration of PAHs in unsterilized soil decreased sharply in the first weeks independent of addition of organic material and changes were small thereafter. After 100 days, 77% of benzo(a)pyrene was removed from soil, but 91% and 93% of phenanthrene and anthracene, respectively was removed. It was concluded that the autochthonous microbial population degraded phenanthrene, anthracene and benzo(a)pyrene, but neither biosolids nor maize accelerated the decomposition of PAHs or affected their residual concentration. PMID:17879847

  8. Hydrous pyrolysis/oxidation process for in situ destruction of chlorinated hydrocarbon and fuel hydrocarbon contaminants in water and soil

    DOEpatents

    Knauss, Kevin G.; Copenhaver, Sally C.; Aines, Roger D.

    2000-01-01

    In situ hydrous pyrolysis/oxidation process is useful for in situ degradation of hydrocarbon water and soil contaminants. Fuel hydrocarbons, chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, petroleum distillates and other organic contaminants present in the soil and water are degraded by the process involving hydrous pyrolysis/oxidation into non-toxic products of the degradation. The process uses heat which is distributed through soils and water, optionally combined with oxygen and/or hydrocarbon degradation catalysts, and is particularly useful for remediation of solvent, fuel or other industrially contaminated sites.

  9. Potential of vetiver (vetiveria zizanioides (L.) Nash) for phytoremediation of petroleum hydrocarbon-contaminated soils in Venezuela.

    PubMed

    Brandt, Regine; Merkl, Nicole; Schultze-Kraft, Rainer; Infante, Carmen; Broll, Gabriele

    2006-01-01

    Venezuela is one of the largest oil producers in the world. For the rehabilitation of oil-contaminated sites, phytoremediation represents a promising technology whereby plants are used to enhance biodegradation processes in soil. A greenhouse study was conducted to determine the tolerance of vetiver (Vetiveria zizanioides (L.) Nash) to a Venezuelan heavy crude oil in soil. Additionally, the plant's potential for stimulating the biodegradation processes of petroleum hydrocarbons was tested under the application of two fertilizer levels. In the presence of contaminants, biomass and plant height were significantly reduced. As for fertilization, the lower fertilizer level led to higher biomass production. The specific root surface area was reduced under the effects of petroleum. However, vetiver was found to tolerate crude-oil contamination in a concentration of 5% (w/w). Concerning total oil and grease content in soil, no significant decrease under the influence of vetiver was detected when compared to the unplanted control. Thus, there was no evidence of vetiver enhancing the biodegradation of crude oil in soil under the conditions of this trial. However, uses of vetiver grass in relation to petroleum-contaminated soils are promising for amelioration of slightly polluted sites, to allow other species to get established and for erosion control. PMID:17305302

  10. Shifts in microbial community structure during in situ surfactant-enhanced bioremediation of polycyclic aromatic hydrocarbon-contaminated soil.

    PubMed

    Wang, Lingwen; Li, Feng; Zhan, Yu; Zhu, Lizhong

    2016-07-01

    This study aims to reveal the microbial mechanism of in situ surfactant-enhanced bioremediation (SEBR). Various concentrations of rhamnolipids, Tween 80, and sodium dodecyl benzenesulfonate (SDBS) were separately sprayed onto soils contaminated with polycyclic aromatic hydrocarbons (PAHs) for years. Within 90 days, the highest level of degradation (95 %) was observed in the soil treated with rhamnolipids (10 mg/kg), followed by 92 % degradation with Tween 80 (50 mg/kg) and 90 % degradation with SDBS (50 mg/kg). The results of the microbial phospholipid fatty acids (PLFAs) suggest that bacteria dominated the enhanced PAH biodegradation (94 % of the maximum contribution). The shift of bacterial community structure during the surfactant treatment was analyzed by using the 16S rRNA gene high-throughput sequencing. In the presence of surfactants, the number of the operational taxonomic units (OTUs) associated with Bacillus, Pseudomonas, and Sphingomonas increased from 2-3 to 15-30 % at the end of the experiment (two to three times of control). Gene prediction with phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) shows that the PAH-degrading genes, such as 1-hydroxy-2-naphthoate dioxygenase and PAH dioxygenase large subunit, significantly increased after the surfactant applications (p < 0.05). The findings of this study provide insights into the surfactant-induced shifts of microbial community, as well as critical factors for efficient bioremediation. PMID:27068902

  11. Use of Substrate-Induced Gene Expression in Metagenomic Analysis of an Aromatic Hydrocarbon-Contaminated Soil

    PubMed Central

    Meier, Matthew J.; Paterson, E. Suzanne

    2015-01-01

    Metagenomics allows the study of genes related to xenobiotic degradation in a culture-independent manner, but many of these studies are limited by the lack of genomic context for metagenomic sequences. This study combined a phenotypic screen known as substrate-induced gene expression (SIGEX) with whole-metagenome shotgun sequencing. SIGEX is a high-throughput promoter-trap method that relies on transcriptional activation of a green fluorescent protein (GFP) reporter gene in response to an inducing compound and subsequent fluorescence-activated cell sorting to isolate individual inducible clones from a metagenomic DNA library. We describe a SIGEX procedure with improved library construction from fragmented metagenomic DNA and improved flow cytometry sorting procedures. We used SIGEX to interrogate an aromatic hydrocarbon (AH)-contaminated soil metagenome. The recovered clones contained sequences with various degrees of similarity to genes (or partial genes) involved in aromatic metabolism, for example, nahG (salicylate oxygenase) family genes and their respective upstream nahR regulators. To obtain a broader context for the recovered fragments, clones were mapped to contigs derived from de novo assembly of shotgun-sequenced metagenomic DNA which, in most cases, contained complete operons involved in aromatic metabolism, providing greater insight into the origin of the metagenomic fragments. A comparable set of contigs was generated using a significantly less computationally intensive procedure in which assembly of shotgun-sequenced metagenomic DNA was directed by the SIGEX-recovered sequences. This methodology may have broad applicability in identifying biologically relevant subsets of metagenomes (including both novel and known sequences) that can be targeted computationally by in silico assembly and prediction tools. PMID:26590287

  12. Use of Substrate-Induced Gene Expression in Metagenomic Analysis of an Aromatic Hydrocarbon-Contaminated Soil.

    PubMed

    Meier, Matthew J; Paterson, E Suzanne; Lambert, Iain B

    2016-02-01

    Metagenomics allows the study of genes related to xenobiotic degradation in a culture-independent manner, but many of these studies are limited by the lack of genomic context for metagenomic sequences. This study combined a phenotypic screen known as substrate-induced gene expression (SIGEX) with whole-metagenome shotgun sequencing. SIGEX is a high-throughput promoter-trap method that relies on transcriptional activation of a green fluorescent protein (GFP) reporter gene in response to an inducing compound and subsequent fluorescence-activated cell sorting to isolate individual inducible clones from a metagenomic DNA library. We describe a SIGEX procedure with improved library construction from fragmented metagenomic DNA and improved flow cytometry sorting procedures. We used SIGEX to interrogate an aromatic hydrocarbon (AH)-contaminated soil metagenome. The recovered clones contained sequences with various degrees of similarity to genes (or partial genes) involved in aromatic metabolism, for example, nahG (salicylate oxygenase) family genes and their respective upstream nahR regulators. To obtain a broader context for the recovered fragments, clones were mapped to contigs derived from de novo assembly of shotgun-sequenced metagenomic DNA which, in most cases, contained complete operons involved in aromatic metabolism, providing greater insight into the origin of the metagenomic fragments. A comparable set of contigs was generated using a significantly less computationally intensive procedure in which assembly of shotgun-sequenced metagenomic DNA was directed by the SIGEX-recovered sequences. This methodology may have broad applicability in identifying biologically relevant subsets of metagenomes (including both novel and known sequences) that can be targeted computationally by in silico assembly and prediction tools. PMID:26590287

  13. Geophysical Signitures From Hydrocarbon Contaminated Aquifers

    NASA Astrophysics Data System (ADS)

    Abbas, M.; Jardani, A.

    2015-12-01

    The task of delineating the contamination plumes as well as studying their impact on the soil and groundwater biogeochemical properties is needed to support the remediation efforts and plans. Geophysical methods including electrical resistivity tomography (ERT), induced polarization (IP), ground penetrating radar (GPR), and self-potential (SP) have been previously used to characterize contaminant plumes and investigate their impact on soil and groundwater properties (Atekwana et al., 2002, 2004; Benson et al., 1997; Campbell et al., 1996; Cassidy et al., 2001; Revil et al., 2003; Werkema et al., 2000). Our objective was to: estimate the hydrocarbon contamination extent in a contaminated site in northern France, and to adverse the effects of the oil spill on the groundwater properties. We aim to find a good combination of non-intrusive and low cost methods which we can use to follow the bio-remediation process, which is planned to proceed next year. We used four geophysical methods including electrical resistivity tomography, IP, GPR, and SP. The geophysical data was compared to geochemical ones obtained from 30 boreholes installed in the site during the geophysical surveys. Our results have shown: low electrical resistivity values; high chargeability values; negative SP anomalies; and attenuated GPR reflections coincident with groundwater contamination. Laboratory and field geochemical measurements have demonstrated increased groundwater electrical conductivity and increased microbial activity associated with hydrocarbon contamination of groundwater. Our study results support the conductive model suggested by studies such as Sauck (2000) and Atekwana et al., (2004), who suggest that biological alterations of hydrocarbon contamination can substantially modify the chemical and physical properties of the subsurface, producing a dramatic shift in the geo-electrical signature from resistive to conductive. The next stage of the research will include time lapse borehole

  14. Bioremediation of Petroleum Hydrocarbon Contaminated Sites

    SciTech Connect

    Fallgren, Paul

    2009-03-30

    Bioremediation has been widely applied in the restoration of petroleum hydrocarbon-contaminated. Parameters that may affect the rate and efficiency of biodegradation include temperature, moisture, salinity, nutrient availability, microbial species, and type and concentration of contaminants. Other factors can also affect the success of the bioremediation treatment of contaminants, such as climatic conditions, soil type, soil permeability, contaminant distribution and concentration, and drainage. Western Research Institute in conjunction with TechLink Environmental, Inc. and the U.S. Department of Energy conducted laboratory studies to evaluate major parameters that contribute to the bioremediation of petroleum-contaminated drill cuttings using land farming and to develop a biotreatment cell to expedite biodegradation of hydrocarbons. Physical characteristics such as soil texture, hydraulic conductivity, and water retention were determined for the petroleum hydrocarbon contaminated soil. Soil texture was determined to be loamy sand to sand, and high hydraulic conductivity and low water retention was observed. Temperature appeared to have the greatest influence on biodegradation rates where high temperatures (>50 C) favored biodegradation. High nitrogen content in the form of ammonium enhanced biodegradation as well did the presence of water near field water holding capacity. Urea was not a good source of nitrogen and has detrimental effects for bioremediation for this site soil. Artificial sea water had little effect on biodegradation rates, but biodegradation rates decreased after increasing the concentrations of salts. Biotreatment cell (biocell) tests demonstrated hydrocarbon biodegradation can be enhanced substantially when utilizing a leachate recirculation design where a 72% reduction of hydrocarbon concentration was observed with a 72-h period at a treatment temperature of 50 C. Overall, this study demonstrates the investigation of the effects of

  15. Low-concentration tailing and subsequent quicklime-enhanced remediation of volatile chlorinated hydrocarbon-contaminated soils by mechanical soil aeration.

    PubMed

    Ma, Yan; Du, Xiaoming; Shi, Yi; Xu, Zhu; Fang, Jidun; Li, Zheng; Li, Fasheng

    2015-02-01

    Mechanical soil aeration has long been regarded as an effective ex-situ remediation technique and as suitable for remediation of large-scale sites contaminated by volatile organic compounds (VOCs) at low cost. However, it has been reported that the removal efficiency of VOCs from soil is relatively low in the late stages of remediation, in association with tailing. Tailing may extend the remediation time required; moreover, it typically results in the presence of contaminants residues at levels far exceeding regulations. In this context, the present study aimed to discuss the tailing that occurs during the process of remediation of soils contaminated artificially with volatile chlorinated hydrocarbons (VCHs) and to assess possible quicklime-enhanced removal mechanisms. The results revealed the following conclusions. First, temperature and aeration rate can be important controls on both the timing of appearance of tailing and the levels of residual contaminants. Furthermore, the addition of quicklime to soil during tailing can reduce the residual concentrations rapidly to below the remedial target values required for site remediation. Finally, mechanical soil aeration can be enhanced using quicklime, which can improve the volatilization of VCHs via increasing soil temperature, reducing soil moisture, and enhancing soil permeability. Our findings give a basic understanding to the elimination of the tailing in the application of mechanical soil aeration, particularly for VOCs-contaminated soils. PMID:25433980

  16. Assessment of the distortions caused by a pipe and an excavation in the electric and electromagnetic responses of a hydrocarbon-contaminated soil

    NASA Astrophysics Data System (ADS)

    Martinelli, Hilda Patricia; Robledo, Fabiana Elizabeth; Osella, Ana María; de la Vega, Matías

    2012-02-01

    Here, we present the results of a geophysical survey performed to characterize a hydrocarbon contamination plume, arising from a puncture in a master crude oil pipe in Argentina. This pipe was buried in an inhabited suburban yard with flat topography. At the moment of the event a stretch of the duct was uncovered and the leaked oil flooded the terrain up to several meters around the puncture. The contamination was produced by infiltration from the surface and also by flowing through the inner layers. The first steps in the treatment of the spill were to pump the oil, excavate the sector nearby the puncture and repair the pipe. Around one year later, we preformed the geophysical prospecting, which goal was to determine the extent of the contaminant plume, required for selecting adequate remediation strategies. We combined dual-coil, frequency domain electromagnetic induction surveys and 2D dipole-dipole geoelectrical profiling. Besides, we performed Wenner soundings at several positions on the walls of the excavation, where contaminated and clean sediments were exposed. From the 1D inversion of the electromagnetic data, 2D inversion of the dipole-dipole data, and Wenner data, we found that, in general, the contamination decreased the resistivity of the affected subsoil volumes. However, three of the geoelectrical profiles exhibited localized, very resistive anomalies, which origin was not clear. They did not seem to be associated to the presence of high concentrations of poorly or non-degraded hydrocarbon, since two of these profiles crossed the more contaminated area, but the other was located quite further away. As an attempt to identify the cause of these anomalies, we carried out a 3D numerical simulation of the effects of the pipe and the excavation on the 2D dipole-dipole images. From this study, we could effectively determine that they were mainly distortions generated by those structures. This allowed for providing a proper interpretation of the images of

  17. Visualizing and Quantifying Bioaccessible Pores in Field-Aged Petroleum Hydrocarbon-Contaminated Clay Soils Using Synchrotron-based X-ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Chang, W.; Kim, J.; Zhu, N.; McBeth, J. M.

    2015-12-01

    Microbial hydrocarbon degradation is environmentally significant and applicable to contaminated site remediation practices only when hydrocarbons (substrates) are physically bioaccessible to bacteria in soil matrices. Powerful X-rays are produced by synchrotron radiation, allowing for bioaccessible pores in soil (larger than 4 microns), where bacteria can be accommodated, colonize and remain active, can be visualized at a much higher resolution. This study visualized and quantified such bioaccessible pores in intact field-aged, oil-contaminated unsaturated soil fractions, and examined the relationship between the abundance of bioaccessible pores and hydrocarbon biodegradation. Using synchrotron-based X-ray Computed Tomography (CT) at the Canadian Light Source, a large dataset of soil particle characteristics, such as pore volumes, surface areas, number of pores and pore size distribution, was generated. Duplicate samples of five different soil fractions with different soil aggregate sizes and water contents (13, 18 and 25%) were examined. The method for calculating the number and distribution of bioaccessible pores using CT images was validated using the known porosity of Ottawa sand. This study indicated that the distribution of bioaccessible pore sizes in soil fractions are very closely related to microbial enhancement. A follow-up aerobic biodegradation experiment for the soils at 17 °C (average site temperature) over 90 days confirmed that a notable decrease in hydrocarbon concentrations occurred in soils fractions with abundant bioaccessible pores and with a larger number of pores between 10 and 100 μm. The hydrocarbon degradation in bioactive soil fractions was extended to relatively high-molecular-weight hydrocarbons (C16-C34). This study provides quantitative information about how internal soil pore characteristics can influence bioremediation performance.

  18. Manganese peroxidase mRNA and enzyme activity levels during bioremediation of polycyclic aromatic hydrocarbon-contaminated soil with Phanerochaete chrysosporium.

    PubMed Central

    Bogan, B W; Schoenike, B; Lamar, R T; Cullen, D

    1996-01-01

    mRNA extraction from soil and quantitation by competitive reverse transcription-PCR were combined to study the expression of three manganese peroxidase (MnP) genes during removal of polycyclic aromatic hydrocarbons from cultures of Phanerochaete chrysosporium grown in presterilized soil. Periods of high mnp transcript levels and extractable MnP enzyme activity were temporally correlated, although separated by a short (1- to 2-day) lag period. This time frame also coincided with maximal rates of fluorene oxidation and chrysene disappearance in soil cultures, supporting the hypothesis that high ionization potential polycyclic aromatic hydrocarbons are oxidized in soil via MnP-dependent mechanisms. The patterns of transcript abundance over time in soil-grown P. chrysosporium were similar for all three of the mnp mRNAs studied, indicating that transcription of this gene family may be coordinately regulated under these growth conditions. PMID:8779576

  19. Assessing the hydrocarbon degrading potential of indigenous bacteria isolated from crude oil tank bottom sludge and hydrocarbon-contaminated soil of Azzawiya oil refinery, Libya.

    PubMed

    Mansur, Abdulatif A; Adetutu, Eric M; Kadali, Krishna K; Morrison, Paul D; Nurulita, Yuana; Ball, Andrew S

    2014-09-01

    The disposal of hazardous crude oil tank bottom sludge (COTBS) represents a significant waste management burden for South Mediterranean countries. Currently, the application of biological systems (bioremediation) for the treatment of COTBS is not widely practiced in these countries. Therefore, this study aims to develop the potential for bioremediation in this region through assessment of the abilities of indigenous hydrocarbonoclastic microorganisms from Libyan Hamada COTBS for the biotreatment of Libyan COTBS-contaminated environments. Bacteria were isolated from COTBS, COTBS-contaminated soil, treated COTBS-contaminated soil, and uncontaminated soil using Bushnell Hass medium amended with Hamada crude oil (1 %) as the main carbon source. Overall, 49 bacterial phenotypes were detected, and their individual abilities to degrade Hamada crude and selected COBTS fractions (naphthalene, phenanthrene, eicosane, octadecane and hexane) were evaluated using MT2 Biolog plates. Analyses using average well colour development showed that ~90 % of bacterial isolates were capable of utilizing representative aromatic fractions compared to 51 % utilization of representative aliphatics. Interestingly, more hydrocarbonoclastic isolates were obtained from treated contaminated soils (42.9 %) than from COTBS (26.5 %) or COTBS-contaminated (30.6 %) and control (0 %) soils. Hierarchical cluster analysis (HCA) separated the isolates into two clusters with microorganisms in cluster 2 being 1.7- to 5-fold better at hydrocarbon degradation than those in cluster 1. Cluster 2 isolates belonged to the putative hydrocarbon-degrading genera; Pseudomonas, Bacillus, Arthrobacter and Brevundimonas with 57 % of these isolates being obtained from treated COTBS-contaminated soil. Overall, this study demonstrates that the potential for PAH degradation exists for the bioremediation of Hamada COTBS-contaminated environments in Libya. This represents the first report on the isolation of

  20. Evaluating the Effects of Bioremediation on Genotoxicity of Polycyclic Aromatic Hydrocarbon-Contaminated Soil Using Genetically Engineered, Higher Eukaryotic Cell Lines

    PubMed Central

    Hu, Jing; Nakamura, Jun; Richardson, Stephen D.; Aitken, Michael D.

    2012-01-01

    Bioremediation is one of the commonly applied remediation strategies at sites contaminated with polycyclic aromatic hydrocarbons (PAHs). However, remediation goals are typically based on removal of the target contaminants rather than on broader measures related to health risks. We investigated changes in the toxicity and genotoxicity of PAH-contaminated soil from a former manufactured-gas plant site before and after two simulated bioremediation processes: a sequencing batch bioreactor system and a continuous-flow column system. Toxicity and genotoxicity of the residues from solvent extracts of the soil were determined by the chicken DT40 B-lymphocyte isogenic cell line and its DNA-repair-deficient mutants. Although both bioremediation processes significantly removed PAHs from the contaminated soil (bioreactor 69% removal; column 84% removal), bioreactor treatment resulted in an increase in toxicity and genotoxicity over the course of a treatment cycle, whereas long-term column treatment resulted in a decrease in toxicity and genotoxicity. However, when screening with a battery of DT40 mutants for genotoxicity profiling, we found that column treatment induced DNA damage types that were not observed in untreated soil. Toxicity and genotoxicity bioassays can supplement chemical analysis-based risk assessment for contaminated soil when evaluating the efficacy of bioremediation. PMID:22443351

  1. Polycyclic aromatic hydrocarbon-contaminated soils: bioaugmentation of autochthonous bacteria and toxicological assessment of the bioremediation process by means of Vicia faba L.

    PubMed

    Ruffini Castiglione, Monica; Giorgetti, Lucia; Becarelli, Simone; Siracusa, Giovanna; Lorenzi, Roberto; Di Gregorio, Simona

    2016-04-01

    Two bacterial strains, Achromobacter sp. (ACH01) and Sphingomonas sp. (SPH01), were isolated from a heavily polycyclic aromatic hydrocarbon (PAH)-contaminated soil (5431.3 ± 102.3 ppm) for their capacity to use a mixture of anthracene, pyrene, phenanthrene and fluorene as sole carbon sources for growth and for the capacity to produce biosurfactants. The two strains were exploited for bioaugmentation in a biopile pilot plant to increase the bioavailability and the degradation of the residual PAH contamination (99.5 ± 7.1 ppm) reached after 9 months of treatment. The denaturing gel gradient electrophoresis (DGGE) profile of the microbial ecology of the soil during the experimentation showed that the bioaugmentation approach was successful in terms of permanence of the two strains in the soil in treatment. The bioaugmentation of the two bacterial isolates positively correlated with the PAH depletion that reached 7.9 ± 2 ppm value in 2 months of treatment. The PAH depletion was assessed by the loss of the phyto-genotoxicity of soil elutriates on the model plant Vicia faba L., toxicological assessment adopted also to determine the minimum length of the decontamination process for obtaining both the depletion of the PAH contamination and the detoxification of the soil at the end of the process. The intermediate phases of the bioremediation process were the most significant in terms of toxicity, inducing genotoxic effects and selective DNA fragmentation in the stem cell niche of the root tip. The selective DNA fragmentation can be related to the selective induction of cell death of mutant stem cells that can compromise offsprings. PMID:26769476

  2. Microbial Degradation of Petroleum Hydrocarbon Contaminants: An Overview

    PubMed Central

    Das, Nilanjana; Chandran, Preethy

    2011-01-01

    One of the major environmental problems today is hydrocarbon contamination resulting from the activities related to the petrochemical industry. Accidental releases of petroleum products are of particular concern in the environment. Hydrocarbon components have been known to belong to the family of carcinogens and neurotoxic organic pollutants. Currently accepted disposal methods of incineration or burial insecure landfills can become prohibitively expensive when amounts of contaminants are large. Mechanical and chemical methods generally used to remove hydrocarbons from contaminated sites have limited effectiveness and can be expensive. Bioremediation is the promising technology for the treatment of these contaminated sites since it is cost-effective and will lead to complete mineralization. Bioremediation functions basically on biodegradation, which may refer to complete mineralization of organic contaminants into carbon dioxide, water, inorganic compounds, and cell protein or transformation of complex organic contaminants to other simpler organic compounds by biological agents like microorganisms. Many indigenous microorganisms in water and soil are capable of degrading hydrocarbon contaminants. This paper presents an updated overview of petroleum hydrocarbon degradation by microorganisms under different ecosystems. PMID:21350672

  3. Factors affecting the distribution of hydrocarbon contaminants and hydrogeochemical parameters in a shallow sand aquifer.

    PubMed

    Lee, J Y; Cheon, J Y; Lee, K K; Lee, S Y; Lee, M H

    2001-07-01

    The distributions of hydrocarbon contaminants and hydrogeochemical parameters were investigated in a shallow sand aquifer highly contaminated with petroleum hydrocarbons leaked from solvent storage tanks. For these purposes, a variety of field investigations and studies were performed, which included installation of over 100 groundwater monitoring wells and piezometers at various depths, soil logging and analyses during well and piezometer installation, chemical analysis of groundwater, pump tests, and slug tests. Continuous water level monitoring at three selected wells using automatic data-logger and manual measuring at other wells were also conducted. Based on analyses of the various investigations and tests, a number of factors were identified to explain the distribution of the hydrocarbon contaminants and hydrogeochemical parameters. These factors include indigenous biodegradation, hydrostratigraphy, preliminary pump-and-treat remedy, recharge by rainfall, and subsequent water level fluctuation. The permeable sandy layer, in which the mean water table elevation is maintained, provided a dominant pathway for contaminant transport. The preliminary pump-and-treat action accelerated the movement of the hydrocarbon contaminants and affected the redox evolution pattern. Seasonal recharge by rain, together with indigenous biodegradation, played an important role in the natural attenuation of the petroleum hydrocarbons via mixing/dilution and biodegradation. The water level fluctuations redistributed the hydrocarbon contaminants by partitioning them into the soil and groundwater. The identified factors are not independent but closely inter-correlated. PMID:11475158

  4. Correlation between index properties and electrical resistivity of hydrocarbon contaminated periodic marine clays

    NASA Astrophysics Data System (ADS)

    Tiwari, P.; Shah, M. V.

    2015-09-01

    Hydrocarbon contamination is a measure issue of concern as it adversely affects the soil inherent properties viz. index properties and strength properties.The main objective of this research work is to determine Electrical resistivity to study and correlate with soil index properties and engineering propertiescontaminated with hydrocarbon at the rate of 3%, 6% and 9% for the period of 15, 30 45 and 60 days and compare it with the results obtained for non-contaminated marine clay. Electrical resistivity of virgin marine clay (bentonite which is expansive in nature) and hydrocarbon contaminated clay for each percent of contamination is obtained in the laboratory for each period and its co-relation with index properties and engineering properties is proposed. CEC, EDAX tests were performed to evaluate the effect of ions of montmorillonite clays and their penetrability into hydrocarbon- clay matrix. The correlations at the end of each period for each percentage of contamination thus enabled to integrate index properties of non-contaminated and hydrocarbon contaminated marine clays with Electrical resistivity.

  5. INVESTIGATING THE GEOELECTRICAL RESPONSE OF HYDROCARBON CONTAMINATION UNDERGOING BIODEGRADATION

    EPA Science Inventory

    A newly proposed geoelectrical model for hydrocarbon contaminated sites predicts high
    conductivities coincident with t he Contaminated zone a s opposed t o t he traditionally accepted low conductivity. The model attributes the high conductivities to mineral weathering resulti...

  6. Characterization and safety evaluation of the impact of hydrocarbon contaminants on ecological receptors.

    PubMed

    Nwaichi, Eucharia O; Onyeike, Eugene N; Wegwu, Matthew O

    2010-08-01

    Hydrocarbon-contaminant removal efficiency of Bambara groundnuts and biomagnification was investigated. The crude oil contaminated soil samples in which the plants were established were either un-amended, or amended with NPK, or Urea, or Poultry manure. Amendments improved phytoextraction rates as follows: Urea - 63.37%, NPK - 65.99%, Poultry - manure - 70.04%, for PAH; Urea - 78.80%, NPK - 79.80%, Poultry manure - 87.90%, for BTEX. Hazard characterization from 28-day feeding study revealed negative effects of potentially toxic BTEX and PAH on organ weight, optimum digestibility and animal growth rate. Sleep time decreased with increasing hydrocarbon concentrations probably due to increased liver enzyme activity. PMID:20623265

  7. Remediation of petroleum hydrocarbon-contaminated sites by DNA diagnosis-based bioslurping technology.

    PubMed

    Kim, Seungjin; Krajmalnik-Brown, Rosa; Kim, Jong-Oh; Chung, Jinwook

    2014-11-01

    The application of effective remediation technologies can benefit from adequate preliminary testing, such as in lab-scale and Pilot-scale systems. Bioremediation technologies have demonstrated tremendous potential with regards to cost, but they cannot be used for all contaminated sites due to limitations in biological activity. The purpose of this study was to develop a DNA diagnostic method that reduces the time to select contaminated sites that are good candidates for bioremediation. We applied an oligonucleotide microarray method to detect and monitor genes that lead to aliphatic and aromatic degradation. Further, the bioremediation of a contaminated site, selected based on the results of the genetic diagnostic method, was achieved successfully by applying bioslurping in field tests. This gene-based diagnostic technique is a powerful tool to evaluate the potential for bioremediation in petroleum hydrocarbon contaminated soil. PMID:25129160

  8. Three-dimensional geologic modeling to determine the spatial attributes of hydrocarbon contamination, Noval Facility Fuel Farm, El Centro, California

    SciTech Connect

    Johnson, C.; Mutch, S.; Padgett, D.; Roche, L. )

    1994-04-01

    An investigation was conducted at the Naval Air Facility located in El Centro (NAFEC), to determine the vertical and horizontal extent of hydrocarbon contamination at the facilities fuel farm. The fuel products are the result of tank and pipeline leakage, past tank cleaning, and past disposal of fuel dispensing and filter cleaning practices. Subsurface soil and groundwater data was collected via soil borings, monitoring wells, and CPT probes. Soil, groundwater, and analytical data were integrated using the LYNX geoscience modeling system (GMS). Interactive sessions with the data visualizer helped guide the modeling and identify data gaps. Modeling results indicate a continuous surface confining clay layer to a depth of about 12 to 15 ft. Groundwater is confined beneath this clay layer and monitoring wells indicate about 3 to 5 ft of artesian head. Hydrocarbon contamination is concentrated within this clay layer from about 5 to 12 ft below the ground surface. Residual fuel products located in the groundwater are attributed to slow leakage through the confirming clay layer. LYNX was also used to compute volumes of contaminated soil to aid in remediation cost analysis. Preliminary figures indicate about 60,000 yards[sup 3] of contaminated soil. Since the contamination is primarily confined to relatively impermeable clayey soils, site remediation will likely be ex-situ land farming.

  9. Characterization of hydrocarbon contaminated areas by multivariate statistical analysis: Case studies.

    PubMed

    Saenz, G; Pingitore, N E

    1991-01-01

    Analysis of soil gases is a relatively rapid and inexpensive method to delineate and measure hydrocarbon contamination in the subsurface caused by diesel or gasoline. Techniques originally developed for petroleum exploration have been adapted to tracking hydrocarbons which have leaked or spilled at or below the earth's surface.Discriminant analysis (a multivariate statistical technique) is used to classify soil gas samples of C1 to C7 hydrocarbons as biogenic (natural soil gases) or thermogenic (contaminant hydrocarbons). Map plots of C1 to C7 total interstitial hydrocarbons, C2 to C7 interstitial hydrocarbons, and C1/ΣC n rations are used to further delineate and document the extent and migration of contamination.Three case studies of the technique are presented: each involves leakage of hydrocarbons from underground storage tanks. Soil gas analysis clearly defines the spread of contamination and can serve as the basis for the correct placement of monitoring wells. The method proved to be accurate, rapid, and cost-effective; it therefore has potential for widespread application to the identification of soil and groundwater contaminated by hydrocarbons. PMID:24233510

  10. In situ determination of the rate of unassisted degradation of saturated-zone hydrocarbon contamination

    SciTech Connect

    Kerfoot, H.B.

    1994-07-01

    A method to measure the in situ degradation rate of dissolved hydrocarbon contamination has been developed and applied at two locations at a field site. The method uses the rates of downward diffusion of oxygen and upward diffusion of carbon dioxide through the unsaturated zone, as calculated from vertical soil-gas concentration gradients, combined with stoichiometry to obtain two degradation rates in hydrocarbon mass per water table surface area per time. Values of 0.385 gram per m{sup 2} per day and 0.52 gram per m{sup 2} per day (based upon oxygen data) and 0.056 gram per m{sup 2} per day and 0.12 gram per m{sup 2} per day (based upon carbon dioxide data) were calculated at a field site with dissolved fuel contamination. This result of lower values from ground-air carbon dioxide concentrations is consistent with a significant fraction of the carbon dioxide produced being lost to the aqueous phase. Based upon a single-stage equilibrium phase-transfer model, gas/water volume ratios of 0.02 and 0.2 for the capillary fringe were calculated. Groundwater carbon dioxide fugacities and soil-gas carbon dioxide concentrations were used at the two locations and a third to determine whether the source of elevated soil carbon dioxide concentrations were unsaturated-zone hydrocarbon degradation or a saturated-zone process. 11 refs., 2 figs., 2 tabs.

  11. Water Protects Graphitic Surface from Airborne Hydrocarbon Contamination.

    PubMed

    Li, Zhiting; Kozbial, Andrew; Nioradze, Nikoloz; Parobek, David; Shenoy, Ganesh Jagadeesh; Salim, Muhammad; Amemiya, Shigeru; Li, Lei; Liu, Haitao

    2016-01-26

    The intrinsic wettability of graphitic materials, such as graphene and graphite, can be readily obscured by airborne hydrocarbon within 5-20 min of ambient air exposure. We report a convenient method to effectively preserve a freshly prepared graphitic surface simply through a water treatment technique. This approach significantly inhibits the hydrocarbon adsorption rate by a factor of ca. 20×, thus maintaining the intrinsic wetting behavior for many hours upon air exposure. Follow-up characterization shows that a nanometer-thick ice-like water forms on the graphitic surface, which remains stabilized at room temperature for at least 2-3 h and thus significantly decreases the adsorption of airborne hydrocarbon on the graphitic surface. This method has potential implications in minimizing hydrocarbon contamination during manufacturing, characterization, processing, and storage of graphene/graphite-based devices. As an example, we show that a water-treated graphite electrode maintains a high level of electrochemical activity in air for up to 1 day. PMID:26673269

  12. Comprehensive methodology for ecological risk assessment of contaminated soils

    SciTech Connect

    Kuperman, R.G.

    1994-12-31

    Development of a comprehensive methodology for ecological risk assessment and monitoring of contaminated soils is essential to assess the impacts of environmental contaminants on soil community and biologically-mediated processes in soil. The proposed four-step plan involves (1) a thorough survey of the soil community to establish biodiversity and a base-line community structure, (2) toxicity trials on indicator species and whole soil invertebrate communities, (3) laboratory and field tests on indicator processes and (4) the use of statistical and simulation models to ascertain changes in the soil ecosystems. This methodology was used in portions of the US Army`s Aberdeen Proving Ground, Maryland as part of an ecological risk assessment. Previous soil analyses showed extensive surface soil contamination with metals, nitrate and PCBs. Preliminary results from field surveys of soil invertebrate communities showed significant reductions in total abundance of animals, reductions in the abundance of several taxonomic and functional groups of soil invertebrates, and changes in the activity of epigeic arthropods in contaminated areas when compared with the local ``background`` area. Laboratory tests also demonstrated that microbial activity and success of egg hatching of ground beetle Harpalus pensylvanicus were reduced in contaminated soils. These results suggest that impacts to soil ecosystems should be explicitly considered in ecological risk assessment. The proposed comprehensive methodology appears to offer an efficient and potentially cost saving tool for remedial investigations of contaminated sites.

  13. State of subsoil in a former petrol station: physicochemical characterization and hydrocarbon contamination evaluation

    NASA Astrophysics Data System (ADS)

    María Rosales, Rosa; Martinez-Pagán, Pedro; Faz, Ángel; Bech, Jaume

    2013-04-01

    Former petrol stations are, possibly, potential hydrocarbon contaminated soil areas due to leakage in Underground Storage Tanks and fuel dispensing activities. Volatile Organic Compounds (VOCs) in gasoline, like benzene and semi-volatile organics in diesel, are carcinogenic and very toxic substances which can involve a serious risk for ecosystem and human health. Based on Electrical Resistivity Tomography 2D results from a previous work, there have been selected three potentially contaminated goal areas in a former petrol station located in SE Spain in order to obtain soil samples by drilling and to assess the gasoline and diesel contamination. A special sampling design was carried out and soil samples for VOCs were preserved at field with a KCl solution to minimize volatilization losses. It had been chosen Headspace-GC-MS as the better technique to quantify individual VOCs and GC-FID to get a Total Petroleum Hydrocarbon (TPH) assessment after a solid/fluid pressurized extraction. The physicochemical characterization of the subsoil was performed to know how humidity, clay content or pH data could be related to the presence of hydrocarbons in the soil samples. Results show that VOCs concentrations in subsoil samples of the petrol station are around ppb levels. TPH ranged between 17 mg/kg soil and 93 mg/kg soil (ppm levels) what involves diesel and gasoline leaks due to these detected residual concentrations in the subsoil. The maximum value was found at 6 m deep in an intermediate zone between Underground Storage Tanks positions (located at 4 m deep). Therefore, these results confirm that organic compounds transference with strong vertical component has taken place. It has been observed that humidity minimum values in the subsoil are related to TPH maximum values that could be explained because of the vapour phase and the retention of hydrocarbon in soil increases when humidity goes down. Adsorption of hydrocarbons in the subsoil tend to be pH-dependent and clay

  14. ENVIRONMENTAL ANALYSIS OF ENDOCRINE DISRUPTING EFFECTS FROM HYDROCARBON CONTAMINANTS IN THE ECOSYSTEM

    EPA Science Inventory

    The objective of this basic research is to characterize the potential of common hydrocarbon contaminants in ecosystems to act as endocrine disrupters. Although the endocrine disrupting effects of contaminants such as dioxin and PCBs have been well characterized in both animals an...

  15. Bioremediation: Technology for treating hydrocarbon-contaminated wastewater

    SciTech Connect

    Towprayoon, S.; Kuntrangwattana, S.

    1996-12-31

    Cutting oil wastewater from an iron and steel factory was applied to the soil windrow. Self-remediation was then compared with remediation with acclimatized indigenous microbes. The incremental reduction rate of the microorganisms and hydrocarbon-degradable microbes was slower in self-remediation than in the latter treatment. Within 30 days, when the acclimatized indigenous microbes were used, there was a significant reduction of the contaminated hydrocarbons, while self-remediation took longer to reduce to the same concentration. Various nitrogen sources were applied to the soil pile, namely, organic compost, chemical fertilizer, ammonium sulfate, and urea. The organic compost induced a high yield of hydrocarbon-degradable microorganisms, but the rate at which the cutting oil in the soil decreased was slower than when other nitrogen sources were used. The results of cutting oil degradation studied by gas chromatography showed the absence of some important hydrocarbons. The increment of the hydrocarbon-degradable microbes in the land treatment ecosystem does not necessarily correspond to the hydrocarbon reduction efficiency. 3 refs., 3 figs.

  16. Use of bioremediation to resolve a petroleum hydrocarbon contamination lawsuit

    SciTech Connect

    Gaglione, R.J.; Johnston, R.S.

    1995-12-31

    Bioremediation was selected to remediate a public works site in the South Bay of San Diego County, California. The soil and groundwater at this site was contaminated with petroleum hydrocarbons and was the subject of extensive litigation. The parties agreed to resolve the dispute by using a combination of bioremediation and excavation/disposal. This paper includes an overview of the legal and technical issues involved in addressing the problems that were encountered and how those problems were solved. A model is presented for economically resolving environmental disputes in which the parties jointly agree to remediation of a site using bioremediation or similar techniques. This case study addresses the problems encountered because of the differing needs and goals of the legal and scientific communities. Notwithstanding the conflicts, it is demonstrated that the parties can, in most cases, work together toward remediation and resolution.

  17. Changes in Magnetic Mineralogy Through a Depth Sequence of Hydrocarbon Contaminated Sediments

    NASA Astrophysics Data System (ADS)

    Ameen, N. N.; Klüglein, N.; Appel, E.; Petrovsky, E.; Kappler, A.

    2013-12-01

    Sediments, soils and groundwater can act as a natural storage for many types of pollution. This study aims to investigate ferro(i)magnetic phase formation and transformation in the presence of organic contaminants (hydrocarbons) and its relation to bacterial activity, in particular in the zone of fluctuating water levels. The work extends previous studies conducted at the same site. The study area is a former military air base at Hradčany, Czech Republic (50°37'22.71"N, 14°45'2.24"E). Due to leaks in petroleum storage tanks and jet fuelling stations over years of active use the site was heavily contaminated with petroleum hydrocarbons, until the base was closed in 1991. This site is one of the most important sources of high quality groundwater in the Czech Republic. During remediation processes the groundwater level in the sediments fluctuated, driving the hydrocarbon contaminants to lower depth levels along with the groundwater and leading to magnetite formation (Rijal et al., Environ.Pollut., 158, 1756-1762, 2010). In our study we drilled triplicate cores at three locations which were studied earlier. Magnetic susceptibility (MS) profiles combined with other magnetic properties were analyzed to obtain the ferro(i)magnetic concentration distributions along the depth sections. Additionally the sediment properties, hydrocarbon content and bacterial activity were studied. The triplicate cores were used to statistically discriminate outliers and to recognize significant magnetic signatures with depth. The results show that the highest concentration of ferrimagnetic phases (interpreted as newly formed magnetite) exists at the probable top of the groundwater fluctuation (GWF) zone. For example at one of the sites this zone is found between 1.4-1.9 m depth (groundwater table at ~2.3 m depth). High S-ratio and the correlation of ARM with MS values confirm the contribution of magnetite for the ferro(i)magnetic enhancement in the GWF zone. In the previous studies the MS

  18. Natural attenuation of fuel hydrocarbon contaminants: Hydraulic conductivity dependency of biodegradation rates in a field case study

    SciTech Connect

    Lu, Guoping; Zheng, Chunmiao

    2003-07-15

    Two biodegradation models are developed to represent natural attenuation of fuel-hydrocarbon contaminants as observed in a comprehensive natural-gradient tracer test in a heterogeneous aquifer on the Columbus Air Force Base in Mississippi. The first, a first-order mass loss model, describes the irreversible losses of BTEX and its individual components, i.e., benzene (B), toluene (T), ethyl benzene (E), and xylene (X). The second, a reactive pathway model, describes sequential degradation pathways for BTEX utilizing multiple electron acceptors, including oxygen, nitrate, iron and sulfate, and via methanogenesis. The heterogeneous aquifer is represented by multiple hydraulic conductivity (K) zones delineated on the basis of numerous flowmeter K measurements. A direct propagation artificial neural network (DPN) is used as an inverse modeling tool to estimate the biodegradation rate constants associated with each of the K zones. In both the mass loss model and the reactive pathway model, the biodegradation rate constants show an increasing trend with the hydraulic conductivity. The finding of correlation between biodegradation kinetics and hydraulic conductivity distributions is of general interest and relevance to characterization and modeling of natural attenuation of hydrocarbons in other petroleum-product contaminated sites.

  19. Natural Attenuation of Fuel Hydrocarbon Contaminants: Correlation of Biodegradation with Hydraulic Conductivity in a Field Case Study

    SciTech Connect

    Lu, Guoping; Zheng, Chunmiao

    2003-10-15

    Two biodegradation models are developed to represent natural attenuation of fuel-hydrocarbon contaminants as observed in a comprehensive natural-gradient tracer test in a heterogeneous aquifer on the Columbus Air Force Base in Mississippi, USA. The first, a first-order mass loss model, describes the irreversible losses of BTEX and its individual components, i.e., benzene (B), toluene (T), ethyl benzene (E), and xylene (X). The second, a reactive pathway model, describes sequential degradation pathways for BTEX utilizing multiple electron acceptors, including oxygen, nitrate, iron and sulfate, and via methanogenesis. The heterogeneous aquifer is represented by multiple hydraulic conductivity (K) zones delineated on the basis of numerous flowmeter K measurements. A direct propagation artificial neural network (DPN) is used as an inverse modeling tool to estimate the biodegradation rate constants associated with each of the K zones. In both the mass loss model and the reactive pathway model, the biodegradation rate constants show an increasing trend with the hydraulic conductivity. The finding of correlation between biodegradation kinetics and hydraulic conductivity distributions is of general interest and relevance to characterization and modeling of natural attenuation of hydrocarbons in other petroleum-product contaminated sites.

  20. Most Hydrocarbonoclastic Bacteria in the Total Environment are Diazotrophic, which Highlights Their Value in the Bioremediation of Hydrocarbon Contaminants

    PubMed Central

    Dashti, Narjes; Ali, Nedaa; Eliyas, Mohamed; Khanafer, Majida; Sorkhoh, Naser A.; Radwan, Samir S.

    2015-01-01

    Eighty-two out of the 100 hydrocarbonoclastic bacterial species that have been already isolated from oil-contaminated Kuwaiti sites, characterized by 16S rRNA nucleotide sequencing, and preserved in our private culture collection, grew successfully in a mineral medium free of any nitrogenous compounds with oil vapor as the sole carbon source. Fifteen out of these 82 species were selected for further study based on the predominance of most of the isolates in their specific sites. All of these species tested positive for nitrogenase using the acetylene reduction reaction. They belonged to the genera Agrobacterium, Sphingomonas, and Pseudomonas from oily desert soil and Nesiotobacter, Nitratireductor, Acinetobacter, Alcanivorax, Arthrobacter, Marinobacter, Pseudoalteromonas, Vibrio, Diatzia, Mycobacterium, and Microbacterium from the Arabian/Persian Gulf water body. A PCR-DGGE-based sequencing analysis of nifH genes revealed the common occurrence of the corresponding genes among all the strains tested. The tested species also grew well and consumed crude oil effectively in NaNO3 -containing medium with and without nitrogen gas in the top space. On the other hand, these bacteria only grew and consumed crude oil in the NaNO3 -free medium when the top space gas contained nitrogen. We concluded that most hydrocarbonoclastic bacteria are diazotrophic, which allows for their wide distribution in the total environment. Therefore, these bacteria are useful for the cost-effective, environmentally friendly bioremediation of hydrocarbon contaminants. PMID:25740314

  1. Most hydrocarbonoclastic bacteria in the total environment are diazotrophic, which highlights their value in the bioremediation of hydrocarbon contaminants.

    PubMed

    Dashti, Narjes; Ali, Nedaa; Eliyas, Mohamed; Khanafer, Majida; Sorkhoh, Naser A; Radwan, Samir S

    2015-01-01

    Eighty-two out of the 100 hydrocarbonoclastic bacterial species that have been already isolated from oil-contaminated Kuwaiti sites, characterized by 16S rRNA nucleotide sequencing, and preserved in our private culture collection, grew successfully in a mineral medium free of any nitrogenous compounds with oil vapor as the sole carbon source. Fifteen out of these 82 species were selected for further study based on the predominance of most of the isolates in their specific sites. All of these species tested positive for nitrogenase using the acetylene reduction reaction. They belonged to the genera Agrobacterium, Sphingomonas, and Pseudomonas from oily desert soil and Nesiotobacter, Nitratireductor, Acinetobacter, Alcanivorax, Arthrobacter, Marinobacter, Pseudoalteromonas, Vibrio, Diatzia, Mycobacterium, and Microbacterium from the Arabian/Persian Gulf water body. A PCR-DGGE-based sequencing analysis of nifH genes revealed the common occurrence of the corresponding genes among all the strains tested. The tested species also grew well and consumed crude oil effectively in NaNO3 -containing medium with and without nitrogen gas in the top space. On the other hand, these bacteria only grew and consumed crude oil in the NaNO3 -free medium when the top space gas contained nitrogen. We concluded that most hydrocarbonoclastic bacteria are diazotrophic, which allows for their wide distribution in the total environment. Therefore, these bacteria are useful for the cost-effective, environmentally friendly bioremediation of hydrocarbon contaminants. PMID:25740314

  2. The role of biominerals in enhancing the geophysical response at hydrocarbon contaminated sites

    NASA Astrophysics Data System (ADS)

    Mewafy, Farag Mohamed

    There are several source mechanisms by which microbial activity in the subsurface can change geophysical signatures. To date the source mechanisms generating the geophysical signatures in microbially active environments remain poorly understood. In this study, we investigated the link between the biogeochemical processes resulting in biotransformation of metallic iron mineral phases and the associated biogeophysical signatures. Hydrocarbon contaminated environments provide excellent laboratories for investigating iron mineral biotransformation. In particular, we investigated the magnetic susceptibility (MS) and the complex conductivity (CC) signatures of a hydrocarbon contaminated site near Bemidji, Minnesota. For the MS study, we investigated the changes in the MS response for cores retrieved from the site as well as down boreholes. The contaminated location revealed two enriched MS zones. The first MS lies within the hydrocarbon smear zone, which is limited to the zone of water table fluctuation with high concentrations of dissolved Fe(II) and organic carbon content. Magnetite and siderite were the dominant minerals formed during this process. However, magnetite was responsible for the bulk of MS changes. The second zone of MS enhancement lies within the vadose zone which is characterized by methane depletion suggesting that aerobic or anaerobic oxidation of methane is coupled to iron-reduction resulting in magnetite precipitation. For the CC work, we conducted laboratory CC measurements along four cores in addition to field CC survey. We found that the real (sigma‧) and imaginary (sigma″) conductivity are higher for samples from within the oil plume especially within the smear zone compared to background uncontaminated samples. Using magnetite as an example of the biometallic minerals in the smear zone at the site, a clear increase in the sigma″ response with increasing magnetite content was observed suggesting that the presence of bio-metallic mineral

  3. XPS study of the effect of hydrocarbon contamination on polytetrafluoroethylene (teflon) exposed to atomic oxygen

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Wydeven, Theodore; Cormia, Robert D.

    1991-01-01

    The presence of hydrocarbon contamination on the surface of polytetrafluoroethylene (PTFE) markedly affects the oxygen uptake, and hence the wettability, of this polymer when exposed to an oxygen plasma. As revealed by X-ray photoelectron spectroscopy (XPS) analysis, the oxygen-to-carbon ratio (O/C) for such a polymer can increase sharply, and correspondingly the fluorine-to-carbon ratio (F/C) can decrease sharply, at very short exposure times; at longer times, however, such changes in the O/C and F/C ratios reverse direction, and these ratios then assume values similar to those of the unexposed PTFE. The greater the extent of hydrocarbon contamination in the PTFE, the larger are the amplitudes of the 'spikes' in the O/C- and F/C-exposure time plots. In contrast, a pristine PTFE experiences a very small, monotonic increase of surface oxidation or O/C ratio with time of exposure to oxygen atoms, while the F/C ratio is virtually unchanged from that of the unexposed polymer (2.0). Unless the presence of adventitious hydrocarbon is taken into account, anomalous surface properties relating to polymer adhesion may be improperly ascribed to PTFE exposed to an oxygen plasma.

  4. Hydrocarbon contamination affects deep-sea benthic oxygen uptake and microbial community composition

    NASA Astrophysics Data System (ADS)

    Main, C. E.; Ruhl, H. A.; Jones, D. O. B.; Yool, A.; Thornton, B.; Mayor, D. J.

    2015-06-01

    Accidental oil well blowouts have the potential to introduce large quantities of hydrocarbons into the deep sea and disperse toxic contaminants to midwater and seafloor areas over ocean-basin scales. Our ability to assess the environmental impacts of these events is currently impaired by our limited understanding of how resident communities are affected. This study examined how two treatment levels of a water accommodated fraction of crude oil affected the oxygen consumption rate of a natural, deep-sea benthic community. We also investigated the resident microbial community's response to hydrocarbon contamination through quantification of phospholipid fatty acids (PLFAs) and their stable carbon isotope (δ13C) values. Sediment community oxygen consumption rates increased significantly in response to increasing levels of contamination in the overlying water of oil-treated microcosms, and bacterial biomass decreased significantly in the presence of oil. Multivariate ordination of PLFA compositional (mol%) data showed that the structure of the microbial community changed in response to hydrocarbon contamination. However, treatment effects on the δ13C values of individual PLFAs were not statistically significant. Our data demonstrate that deep-sea benthic microbes respond to hydrocarbon exposure within 36 h.

  5. Change of magnetic properties due to fluctuations of hydrocarbon contaminated groundwater in unconsolidated sediments.

    PubMed

    Rijal, Moti L; Appel, Erwin; Petrovský, Eduard; Blaha, Ulrich

    2010-05-01

    Sediments affected by fluctuations of hydrocarbon contaminated groundwater were studied at a former military site. Due to remediation, groundwater table fluctuation (GWTF) extends over approximately one meter. Three cores were collected, penetrating through the GWTF zone. Magnetic parameters, sediment properties and hydrocarbon content were measured. We discovered that magnetic concentration parameters increased towards the top of the GWTF zone. Magnetite is responsible for this enhancement; rock magnetic parameters indicate that the newly formed magnetite is in a single domain rather than a superparamagnetic state. The presence of hydrocarbons is apparently essential for magnetite to form, as there is clearly less magnetic enhancement in the core, which is outside of the strongly contaminated area. From our results we conclude that the top of the fluctuation zone has the most intensive geomicrobiological activity probably responsible for magnetite formation. This finding could be relevant for developing methods for simply and quickly detecting oil spills. PMID:19954870

  6. Environmental analysis of endocrine disrupting effects from hydrocarbon contaminants in the ecosystem. 1997 annual progress report

    SciTech Connect

    1997-01-01

    'The overall objective of the basic research grant is to characterize the potential of common hydrocarbon contaminants in ecosystems to act as endocrine disruptors. The three major lines of research include (1) a biotechnology based screening system to identify potential hormone mimics and antagonists; (2) an animal screening system to identify biomarkers of endocrine effects. and (3) a literature review to identify compounds at a variety of DOE sites that need to be examined for endocrine disrupting effects. By relating results obtained from this research project to contamination problems at various DOE sites. CBR will provide data and information on endocrine disrupting contaminants to DOE for consideration in risk analyses for determining clean-up levels and priorities needed at the sites.'

  7. Rapid evolution of redox processes in a petroleum hydrocarbon-contaminated aquifer

    USGS Publications Warehouse

    Chapelle, F.H.; Bradley, P.M.; Lovley, D.R.; O'Neill, K.; Landmeyer, J.E.

    2002-01-01

    Ground water chemistry data collected over a six-year period show that the distribution of contaminants and redox processes in a shallow petroleum hydrocarbon-contaminated aquifer has changed rapidly over time. Shortly after a gasoline release occurred in 1990, high concentrations of benzene were present near the contaminant source area. In this contaminated zone, dissolved oxygen in ground water was depleted, and by 1994 Fe(III) reduction and sulfate reduction were the predominant terminal electron accepting processes. Significantly, dissolved methane was below measurable levels in 1994, indicating the absence of significant methanogenesis. By 1996, however, depletion of solid-phase Fe(III)-oxyhydroxides in aquifer sediments and depletion of dissolved sulfate in ground water resulted in the onset of methanogenesis. Between 1996 and 2000, water-chemistry data indicated that methanogenic metabolism became increasingly prevalent. Molecular analysis of 16S-rDNA extracted from sediments shows the presence of a more diverse methanogenic community inside as opposed to outside the plume core, and is consistent with water-chemistry data indicating a shift toward methanogenesis over time. This rapid evolution of redox processes reflects several factors including the large amounts of contaminants, relatively rapid ground water flow (???0.3 m/day [???1 foot/day]), and low concentrations of microbially reducible Fe(III) oxyhydroxides (???1 ??mol/g) initially present in aquifer sediments. These results illustrate that, under certain hydrologic conditions, redox conditions in petroleum hydrocarbon-contaminated aquifers can change rapidly in time and space, and that the availability of solid-phase Fe(III)-oxyhydroxides affects this rate of change.

  8. Natural attenuation of chlorinated-hydrocarbon contamination at Fort Wainwright, Alaska; a hydrogeochemical and microbiological investigation workplan

    USGS Publications Warehouse

    McCarthy, Kathleen A.; Lilly, Michael R.; Braddock, Joan F.; Hinzman, Larry D.

    1998-01-01

    Natural attenuation processes include biological degradation, by which microorganisms break down contaminants into simpler product compounds; adsorption of contaminants to soil particles, which decreases the mass of contaminants dissolved in ground water; and dispersion, which decreases dissolved contaminant concentrations through dilution. The primary objectives of this study are to (1) assess the degree to which such natural processes are attenuating chlorinated-hydrocarbon contamination in ground water, and (2) evaluate the effects of ground-water/surface-water interactions on natural-attenuation processes in the area of the former East and West Quartermasters Fueling Systems for Fort Wainwright, Alaska. The study will include investigations of the hydrologic, geochemical, and microbiological processes occurring at this site that influence the transport and fate of chlorinated hydrocarbons in ground water. To accomplish these objectives, a data-collection program has been initiated that includes measurements of water-table elevations and the stage of the Chena River; measurements of vertical temperature profiles within the subsurface; characterization of moisture distribution and movement in the unsaturated zone; collection of ground-water samples for determination of both organic and inorganic chemical constituents; and collection of ground-water samples for enumeration of microorganisms and determination of their potential to mineralize contaminants. We will use results from the data-collection program described above to refine our conceptual model of hydrology and contaminant attenuation at this site. Measurements of water-table elevations and river stage will help us to understand the magnitude and direction of ground-water flow and how changes in the stage of the Chena River affect ground-water flow. Because ambient ground water and surface water typically have different temperature characteristics, temperature monitoring will likely provide further insight

  9. FIELD SCREENING OF POLYCYCLIC HYDROCARBON CONTAMINATION IN SOIL USING A PORTABLE SYNCHRONOUS SCANNING SPECTROFLUOROMETER

    EPA Science Inventory

    Polycyclic aromatic hydrocarbon (PAH) contamination is a considerable problem at various hazardous waste sites. sources of PAH contamination include: incomplete combustion processes, wood preservatives, and the fuel industry. he development of rapid, cost-effective field screenin...

  10. Bioremediation of hydrocarbons contaminating sewage effluent using man-made biofilms: effects of some variables.

    PubMed

    Al-Mailem, D M; Kansour, M K; Radwan, S S

    2014-11-01

    Biofilm samples were established on glass slides by submerging them in oil-free and oil-containing sewage effluent for a month. In batch cultures, such biofilms were effective in removing crude oil, pure n-hexadecane, and pure phenanthrene contaminating sewage effluent. The amounts of the removed hydrocarbons increased with increasing biofilm surface area exposed to the effluent. On the other hand, addition of the reducing agent thioglycollate dramatically inhibited the hydrocarbon bioremediation potential of the biofilms. The same biofilm samples removed contaminating hydrocarbons effectively in three successive batch bioremediation cycles but started to become less effective in the cycles thereafter, apparently due to mechanical biofilm loss during successive transfers. As major hydrocarbonoclastic bacteria, the biofilms harbored species belonging to the genera Pseudomonas, Microvirga, Zavarzinia, Mycobacterium, Microbacterium, Stenotrophomonas, Gordonia, Bosea, Sphingobium, Brachybacterium, and others. The nitrogen fixer Azospirillum brasilense and the microalga Ochromonas distigma were also present; they seemed to enrich the biofilms, with nitrogenous compounds and molecular oxygen, respectively, which are known to enhance microbiological hydrocarbon degradation. It was concluded that man-made biofilms based upon sewage microflora are promising tools for bioremediation of hydrocarbons contaminating sewage effluent. PMID:25146193

  11. Migration of selected hydrocarbon contaminants into dry pasta packaged in direct contact with recycled paperboard.

    PubMed

    Barp, Laura; Suman, Michele; Lambertini, Francesca; Moret, Sabrina

    2015-01-01

    This paper deals with the migration of selected hydrocarbon contaminants, namely mineral oil hydrocarbons (MOH), diisopropyl naphthalenes (DIPN) and polyalphaolefins (PAO) from adhesives into dry semolina and egg pasta packaged in direct contact with recycled paperboard. Migration was monitored during its shelf life (for up to two years) simulating storage in a supermarket (packs on shelves) and conditions preventing exchange with the surrounding environment (packs wrapped in aluminium foil). Migration from the secondary packaging (transport boxes of corrugated board) was also studied for semolina pasta. After 24 months of exposure, semolina pasta stored on shelves reached 3.2 and 0.6 mg kg(-1) of MOSH and MOAH, respectively, Migration from the adhesives used to close the boxes and from the transport boxes contributed about 30% and 25% of the total contamination, respectively. The highest contamination levels (14.5 and 2.0 mg kg(-1) of MOSH and MOAH, respectively, after 24 months) were found in egg pasta stored on shelves (no adhesives), and seemed due to the highest contribution from the external environment. PMID:25571955

  12. Microbial communities along biogeochemical gradients in a hydrocarbon-contaminated aquifer.

    PubMed

    Tischer, Karolin; Kleinsteuber, Sabine; Schleinitz, Kathleen M; Fetzer, Ingo; Spott, Oliver; Stange, Florian; Lohse, Ute; Franz, Janett; Neumann, Franziska; Gerling, Sarah; Schmidt, Christian; Hasselwander, Eyk; Harms, Hauke; Wendeberg, Annelie

    2013-09-01

    Micro-organisms are known to degrade a wide range of toxic substances. How the environment shapes microbial communities in polluted ecosystems and thus influences degradation capabilities is not yet fully understood. In this study, we investigated microbial communities in a highly complex environment: the capillary fringe and subjacent sediments in a hydrocarbon-contaminated aquifer. Sixty sediment sections were analysed using terminal restriction fragment length polymorphism (T-RFLP) fingerprinting, cloning and sequencing of bacterial and archaeal 16S rRNA genes, complemented by chemical analyses of petroleum hydrocarbons, methane, oxygen and alternative terminal electron acceptors. Multivariate statistics revealed concentrations of contaminants and the position of the water table as significant factors shaping the microbial community composition. Micro-organisms with highest T-RFLP abundances were related to sulphate reducers belonging to the genus Desulfosporosinus, fermenting bacteria of the genera Sedimentibacter and Smithella, and aerobic hydrocarbon degraders of the genus Acidovorax. Furthermore, the acetoclastic methanogens Methanosaeta, and hydrogenotrophic methanogens Methanocella and Methanoregula were detected. Whereas sulphate and sulphate reducers prevail at the contamination source, the detection of methane, fermenting bacteria and methanogenic archaea further downstream points towards syntrophic hydrocarbon degradation. PMID:23809669

  13. Anaerobic degradation of cyclohexane by sulfate-reducing bacteria from hydrocarbon-contaminated marine sediments

    PubMed Central

    Jaekel, Ulrike; Zedelius, Johannes; Wilkes, Heinz; Musat, Florin

    2015-01-01

    The fate of cyclohexane, often used as a model compound for the biodegradation of cyclic alkanes due to its abundance in crude oils, in anoxic marine sediments has been poorly investigated. In the present study, we obtained an enrichment culture of cyclohexane-degrading sulfate-reducing bacteria from hydrocarbon-contaminated intertidal marine sediments. Microscopic analyses showed an apparent dominance by oval cells of 1.5 × 0.8 μm. Analysis of a 16S rRNA gene library, followed by whole-cell hybridization with group- and sequence-specific oligonucleotide probes showed that these cells belonged to a single phylotype, and were accounting for more than 80% of the total cell number. The dominant phylotype, affiliated with the Desulfosarcina-Desulfococcus cluster of the Deltaproteobacteria, is proposed to be responsible for the degradation of cyclohexane. Quantitative growth experiments showed that cyclohexane degradation was coupled with the stoichiometric reduction of sulfate to sulfide. Substrate response tests corroborated with hybridization with a sequence-specific oligonucleotide probe suggested that the dominant phylotype apparently was able to degrade other cyclic and n-alkanes, including the gaseous alkane n-butane. Based on GC-MS analyses of culture extracts cyclohexylsuccinate was identified as a metabolite, indicating an activation of cyclohexane by addition to fumarate. Other metabolites detected were 3-cyclohexylpropionate and cyclohexanecarboxylate providing evidence that the overall degradation pathway of cyclohexane under anoxic conditions is analogous to that of n-alkanes. PMID:25806023

  14. Cold-active antibacterial and antifungal activities and antibiotic resistance of bacteria isolated from an alpine hydrocarbon-contaminated industrial site.

    PubMed

    Hemala, Lydia; Zhang, Dechao; Margesin, Rosa

    2014-01-01

    Selection pressure in hydrocarbon-contaminated soils may lead not only to increased microbial resistance to antibiotics, but also to increased capacity of the soil indigenous population to produce antimicrobial compounds. Therefore, we studied the antibiotic resistance pattern and antibacterial and/or antifungal activities of 47 bacterial strains isolated from an industrial alpine site heavily polluted with petroleum hydrocarbons. Resistance to penicillin was more widespread (49%) than resistance to chloramphenicol or rifampicin (28%) or streptomycin (26%). Only 9% of the strains were resistant to tetracycline. The ability to produce cold-active (10 °C) antimicrobial compounds was tested by using human pathogenic bacteria (Escherichia coli, Shigella flexneri, Salmonella enterica, Pseudomonas aeruginosa, Staphylococcus aureus) and yeasts (Candida albicans, Cryptococcus neoformans) as indicator microorganisms. About two-thirds of the 47 tested strains produced compounds that inhibited growth of at least one indicator microorganism. Six strains inhibited growth of both bacteria and yeast indicators; 12 and 16 strains showed either antibacterial or antifungal activity, respectively. The most versatile bacteria with regard to multiple antibiotic resistance and antimicrobial activity belonged to Actinobacteria or Gammaproteobacteria. The antimicrobial compounds produced by three Pseudomonas spp. and two Serratia spp. strains were characterized in more detail by TLC and HPLC. Depending on the sensitivity of growth inhibition to enzymes, the compounds produced by the three pseudomonads contained a proteinaceous component. PMID:24880083

  15. A street deposit sampling method for metal and hydrocarbon contamination assessment.

    PubMed

    Bris, F J; Garnaud, S; Apperry, N; Gonzalez, A; Mouchel, J M; Chebbo, G; Thévenot, D R

    1999-09-01

    Urban surface contamination, by atmospheric deposits as well as human activities, is a major concern for urban pollution management. Besides coarse street deposits which are clearly perceived and easily removed, suspended solid (SS) surface loads and contamination by heavy metals and hydrocarbons are rarely assessed although they could be of major importance with regards to combined or separate server overflow (CSO and SSO) impacts. Both dry and wet vacuum sampling procedures have been first compared, in the laboratory, using dry and sieved clay or street deposits. Then the wet vacuum sampling procedure has been refined, coupling the injection of water and the hand-brushing of the surface prior to its vacuum cleaning, and evaluated on a car parking area close to the University. Finally this procedure has been assessed in Béarn Street within the 'Le Marais' district in Paris centre, and 34 samples have been analysed for metal and eight for aromatic hydrocarbon contamination. Heavy metal concentrations (0.1-1.7 g kg-1 dry wt. Cu, 0.9-6.1 g kg-1 dry wt. Pb and 1.5-4.6 g kg-1 dry wt. Zn) within street deposit samples collected in Paris centre, indicate a high contamination, especially for copper and zinc, as compared to reported data. Total polyaromatic hydrocarbons (PAHs) are in the 3-11 mg kg-1 dry wt. range, thus approximately 10 times less contaminated than dry atmospheric deposits. This paper presents data obtained and discusses the difficulties encountered when sampling street deposits in busy areas of a city like Paris. The water jet street cleaning procedure used by Paris city workers was tested for its efficiency, by comparison of surface loads before and after the cleaning procedure. Although solids cleaning efficiency is highly variable (20-65%) and somewhat higher for particles larger than 100 microns, particulate metal cleaning efficiency is even more variable (0-75%) and particulate PAHs appear not to be significantly removed. PMID:10535121

  16. Bioremediation of petroleum hydrocarbon-contaminated ground water: The perspectives of history and hydrology

    USGS Publications Warehouse

    Chapelle, F.H.

    1999-01-01

    Bioremediation, the use of microbial degradation processes to detoxify environmental contamination, was first applied to petroleum hydrocarbon-contaminated ground water systems in the early 1970s. Since that time, these technologies have evolved in some ways that were clearly anticipated early investigators, and in other ways that were not foreseen. The expectation that adding oxidants and nutrients to contaminated aquifers would enhance biodegradation, for example, has been born out subsequent experience. Many of the technologies now in common use such as air sparging, hydrogen peroxide addition, nitrate addition, and bioslurping, are conceptually similar to the first bioremediation systems put into operation. More unexpected, however, were the considerable technical problems associated with delivering oxidants and nutrients to heterogeneous ground water systems. Experience has shown that the success of engineered bioremediation systems depends largely on how effectively directions and rates of ground water flow can be controlled, and thus how efficiently oxidants and nutrients can be delivered to contaminated aquifer sediments. The early expectation that injecting laboratory-selected or genetically engineered cultures of hydrocarbon-degrading bacteria into aquifers would be a useful bioremediation technology has not been born out subsequent experience. Rather, it appears that petroleum hydrocarbon-degrading bacteria are ubiquitous in ground water systems and that bacterial addition is usually unnecessary. Perhaps the technology that was least anticipated early investigators was the development of intrinsic bioremediation. Experience has shown that natural attenuation mechanisms - biodegradation, dilution, and sorption - limit the migration of contaminants to some degree in all ground water systems. Intrinsic bioremediation is the deliberate use of natural attenuation processes to treat contaminated ground water to specified concentration levels at predetermined

  17. Microbial Diversity and Bioremediation of aHydrocarbon-Contaminated Aquifer (Vega Baja, Puerto Rico)

    SciTech Connect

    Rodriguez-Martinez, E.M.; Perez, Ernie X.; Schadt, ChristopherW.; Zhou, Jizhong; Massol-Deya, Arturo A.

    2006-09-30

    Hydrocarbon contamination of groundwater resources hasbecome a major environmental and human health concern in many parts ofthe world. Our objectives were to employ both culture andculture-independent techniques to characterize the dynamics of microbialcommunity structure within a fluidized bed reactor used to bioremediate adiesel-contaminated groundwater in a tropical environment. Under normaloperating conditions, 97 to 99 percent of total hydrocarbons were removedwith only 14 min hydraulic retention time. Over 25 different cultureswere isolated from the treatment unit (96 percent which utilized dieselconstituents as sole carbon source). Approximately 20 percent of theisolates were also capable of complete denitrification to nitrogen gas.Sequence analysis of 16S rDNA demonstrated ample diversity with mostbelonging to the infinity, beta and gamma subdivision of theProteobacteria, Bacilli, and Actinobacteria groups. Moreover, the geneticconstitution of the microbial community was examined at multiple timepoints with a Functional Gene Array (FGA) containing over 12,000 probesfor genes involved in organic degradation and major biogeochemicalcycles. Total community DNA was extracted and amplified using anisothermal phi29 polymerase-based technique, labeled with Cy5 dye, andhybridized to the arrays in 50 percent formimide overnight at 50 degreesC. Cluster analysis revealed comparable profiles over the course oftreatment suggesting the early selection of a very stable microbialcommunity. A total of 270 genes for organic contaminant degradation(including naphthalene, toluene [aerobic and anaerobic], octane,biphenyl, pyrene, xylene, phenanthrene, and benzene); and 333 genesinvolved in metabolic activities (nitrite and nitrous oxide reductases[nirS, nirK, and nosZ], dissimilatory sulfite reductases [dsrAB],potential metal reducing C-type cytochromes, and methane monooxygenase[pmoA]) were repeatedly detected. Genes for degradation of MTBE,nitroaromatics and chlorinated

  18. A quantum cascade laser infrared spectrometer for CO2 stable isotope analysis: Field implementation at a hydrocarbon contaminated site under bio-remediation.

    PubMed

    Guimbaud, Christophe; Noel, Cécile; Chartier, Michel; Catoire, Valéry; Blessing, Michaela; Gourry, Jean Christophe; Robert, Claude

    2016-02-01

    Real-time methods to monitor stable isotope ratios of CO2 are needed to identify biogeochemical origins of CO2 emissions from the soil-air interface. An isotope ratio infra-red spectrometer (IRIS) has been developed to measure CO2 mixing ratio with δ(13)C isotopic signature, in addition to mixing ratios of other greenhouse gases (CH4, N2O). The original aspects of the instrument as well as its precision and accuracy for the determination of the isotopic signature δ(13)C of CO2 are discussed. A first application to biodegradation of hydrocarbons is presented, tested on a hydrocarbon contaminated site under aerobic bio-treatment. CO2 flux measurements using closed chamber method is combined with the determination of the isotopic signature δ(13)C of the CO2 emission to propose a non-intrusive method to monitor in situ biodegradation of hydrocarbons. In the contaminated area, high CO2 emissions have been measured with an isotopic signature δ(13)C suggesting that CO2 comes from petroleum hydrocarbon biodegradation. This first field implementation shows that rapid and accurate measurement of isotopic signature of CO2 emissions is particularly useful in assessing the contribution of contaminant degradation to the measured CO2 efflux and is promising as a monitoring tool for aerobic bio-treatment. PMID:26969546

  19. Analyzing tree cores to detect petroleum hydrocarbon-contaminated groundwater at a former landfill site in the community of Happy Valley-Goose Bay, eastern Canadian subarctic.

    PubMed

    Fonkwe, Merline L D; Trapp, Stefan

    2016-08-01

    This research examines the feasibility of analyzing tree cores to detect benzene, toluene, ethylbenzene, and m, p, o-xylene (BTEX) compounds and methyl tertiary-butyl ether (MTBE) in groundwater in eastern Canada subarctic environments, using a former landfill site in the remote community of Happy Valley-Goose Bay, Labrador. Petroleum hydrocarbon contamination at the landfill site is the result of environmentally unsound pre-1990s disposal of households and industrial solid wastes. Tree cores were taken from trembling aspen, black spruce, and white birch and analyzed by headspace-gas chromatography-mass spectrometry. BTEX compounds were detected in tree cores, corroborating known groundwater contamination. A zone of anomalously high concentrations of total BTEX constituents was identified and recommended for monitoring by groundwater wells. Tree cores collected outside the landfill site at a local control area suggest the migration of contaminants off-site. Tree species exhibit different concentrations of BTEX constituents, indicating selective uptake and accumulation. Toluene in wood exhibited the highest concentrations, which may also be due to endogenous production. Meanwhile, MTBE was not found in the tree cores and is considered to be absent in the groundwater. The results demonstrate that tree-core analysis can be useful for detecting anomalous concentrations of petroleum hydrocarbons, such as BTEX compounds, in subarctic sites with shallow unconfined aquifers and permeable soils. This method can therefore aid in the proper management of contamination during landfill operations and after site closures. PMID:27151238

  20. Microbial Diversity and Bioremediation of a Hydrocarbon-Contaminated Aquifer (Vega Baja, Puerto Rico)

    PubMed Central

    Rodríguez-Martínez, Enid M.; Pérez, Ernie X.; Schadt, Christopher W.; Zhou, Jizhong; Massol-Deyá, Arturo A.

    2006-01-01

    Hydrocarbon contamination of groundwater resources has become a major environmental and human health concern in many parts of the world. Our objectives were to employ both culture and culture-independent techniques to characterize the dynamics of microbial community structure within a fluidized bed reactor used to bioremediate a diesel-contaminated groundwater in a tropical environment. Under normal operating conditions, 97 to 99% of total hydrocarbons were removed with only 14 min hydraulic retention time. Over 25 different cultures were isolated from the treatment unit (96% which utilized diesel constituents as sole carbon source). Approximately 20% of the isolates were also capable of complete denitrification to nitrogen gas. Sequence analysis of 16S rDNA demonstrated ample diversity with most belonging to the ∝, β and γ subdivision of the Proteobacteria, Bacilli, and Actinobacteria groups. Moreover, the genetic constitution of the microbial community was examined at multiple time points with a Functional Gene Array (FGA) containing over 12,000 probes for genes involved in organic degradation and major biogeochemical cycles. Total community DNA was extracted and amplified using an isothermal φ29 polymerase-based technique, labeled with Cy5 dye, and hybridized to the arrays in 50% formimide overnight at 50°C. Cluster analysis revealed comparable profiles over the course of treatment suggesting the early selection of a very stable microbial community. A total of 270 genes for organic contaminant degradation (including naphthalene, toluene [aerobic and anaerobic], octane, biphenyl, pyrene, xylene, phenanthrene, and benzene); and 333 genes involved in metabolic activities (nitrite and nitrous oxide reductases [nirS, nirK, and nosZ], dissimilatory sulfite reductases [dsrAB], potential metal reducing C-type cytochromes, and methane monooxygenase [pmoA]) were repeatedly detected. Genes for degradation of MTBE, nitroaromatics and chlorinated compounds were also

  1. Novel technique to suppress hydrocarbon contamination for high accuracy determination of carbon content in steel by FE-EPMA

    NASA Astrophysics Data System (ADS)

    Yamashita, Takako; Tanaka, Yuji; Yagoshi, Masayasu; Ishida, Kiyohito

    2016-07-01

    In multiphase steels, control of the carbon contents in the respective phases is the most important factor in alloy design for achieving high strength and high ductility. However, it is unusually difficult to determine the carbon contents in multiphase structures with high accuracy by electron probe microanalysis (EPMA) due to the unavoidable effect of hydrocarbon contamination during measurements. We have investigated new methods for suppressing hydrocarbon contamination during field emission (FE) EPMA measurements as well as a conventional liquid nitrogen trap. Plasma cleaner inside the specimen chamber results in a improvement of carbon-content determination by point analysis, increasing precision tenfold from the previous 0.1 mass%C to 0.01 mass%C. Stage heating at about 100 °C dramatically suppresses contamination growth during continuous point measurement and mapping. By the combination of above two techniques, we successfully visualized the two-dimensional carbon distribution in a dual-phase steel. It was also noted that the carbon concentrations at the ferrite/martensite interfaces were not the same across all interfaces, and local variation was observed. The developed technique is expected to be a powerful tool for understanding the mechanisms of mechanical properties and microstructural evolution, thereby contributing to the design of new steel products with superior properties.

  2. Novel technique to suppress hydrocarbon contamination for high accuracy determination of carbon content in steel by FE-EPMA.

    PubMed

    Yamashita, Takako; Tanaka, Yuji; Yagoshi, Masayasu; Ishida, Kiyohito

    2016-01-01

    In multiphase steels, control of the carbon contents in the respective phases is the most important factor in alloy design for achieving high strength and high ductility. However, it is unusually difficult to determine the carbon contents in multiphase structures with high accuracy by electron probe microanalysis (EPMA) due to the unavoidable effect of hydrocarbon contamination during measurements. We have investigated new methods for suppressing hydrocarbon contamination during field emission (FE) EPMA measurements as well as a conventional liquid nitrogen trap. Plasma cleaner inside the specimen chamber results in a improvement of carbon-content determination by point analysis, increasing precision tenfold from the previous 0.1 mass%C to 0.01 mass%C. Stage heating at about 100 °C dramatically suppresses contamination growth during continuous point measurement and mapping. By the combination of above two techniques, we successfully visualized the two-dimensional carbon distribution in a dual-phase steel. It was also noted that the carbon concentrations at the ferrite/martensite interfaces were not the same across all interfaces, and local variation was observed. The developed technique is expected to be a powerful tool for understanding the mechanisms of mechanical properties and microstructural evolution, thereby contributing to the design of new steel products with superior properties. PMID:27431281

  3. Assessing the correlation between anaerobic toluene degradation activity and bssA concentrations in hydrocarbon-contaminated aquifer material.

    PubMed

    Kazy, Sufia K; Monier, Amy L; Alvarez, Pedro J J

    2010-09-01

    The assessment of biodegradation activity in contaminated aquifers is critical to demonstrate the performance of bioremediation and natural attenuation and to parameterize models of contaminant plume dynamics. Real time quantitative PCR (qPCR) was used to target the catabolic bssA gene (coding for benzylsuccinate synthase) and a 16S rDNA phylogenetic gene (for total Bacteria) as potential biomarkers to infer on anaerobic toluene degradation rates. A significant correlation (P = 0.0003) was found over a wide range of initial toluene concentrations (1-100 mg/l) between toluene degradation rates and bssA concentrations in anaerobic microcosms prepared with aquifer material from a hydrocarbon contaminated site. In contrast, the correlation between toluene degradation activity and total Bacteria concentrations was not significant (P = 0.1125). This suggests that qPCR targeting of functional genes might offer a simple approach to estimate in situ biodegradation activity, which would enhance site investigation and modeling of natural attenuation at hydrocarbon-contaminated sites. PMID:20204467

  4. Novel technique to suppress hydrocarbon contamination for high accuracy determination of carbon content in steel by FE-EPMA

    PubMed Central

    Yamashita, Takako; Tanaka, Yuji; Yagoshi, Masayasu; Ishida, Kiyohito

    2016-01-01

    In multiphase steels, control of the carbon contents in the respective phases is the most important factor in alloy design for achieving high strength and high ductility. However, it is unusually difficult to determine the carbon contents in multiphase structures with high accuracy by electron probe microanalysis (EPMA) due to the unavoidable effect of hydrocarbon contamination during measurements. We have investigated new methods for suppressing hydrocarbon contamination during field emission (FE) EPMA measurements as well as a conventional liquid nitrogen trap. Plasma cleaner inside the specimen chamber results in a improvement of carbon-content determination by point analysis, increasing precision tenfold from the previous 0.1 mass%C to 0.01 mass%C. Stage heating at about 100 °C dramatically suppresses contamination growth during continuous point measurement and mapping. By the combination of above two techniques, we successfully visualized the two-dimensional carbon distribution in a dual-phase steel. It was also noted that the carbon concentrations at the ferrite/martensite interfaces were not the same across all interfaces, and local variation was observed. The developed technique is expected to be a powerful tool for understanding the mechanisms of mechanical properties and microstructural evolution, thereby contributing to the design of new steel products with superior properties. PMID:27431281

  5. Comprehension.

    ERIC Educational Resources Information Center

    Bollenbach, Carolyn

    1986-01-01

    Teaching comprehension skills requires teaching to intuition with activities such as presenting puzzling situations to introduce a topic, using art to elicit latent feelings, using imagery and improvisations to enhance visualization, and using music and dance to encourage nonverbal expressions. (DB)

  6. ESCA study of the effect of hydrocarbon contamination on poly(tetrafluoroethylene) exposed to atomic oxygen plasma

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Wydeven, Theodore; Cormia, Robert D.

    1991-01-01

    The ESCA spectra and data obtained by Morra et al. (1989) on poly(tetrafluoroethylene) (PTFE) exposed to atomic oxygen plasma are closely reexamined. It is shown that the spikes observed in Morra et al. plots of O/C or F/C versus time of the exposure of PTFE to atomic oxygen plasma were not characteristic of PTFE per se but were instead a result of a contamination by hydrocarbon present in their PTFE samples. This was demonstrated experimentally by comparing data derived for a very clean PTFE sample exposed for 10, 20, and 30 min to oxygen plasma with data obtained on PTFE samples with very small amounts of hydrocarbon contamination.

  7. X-Ray Photoelectron Spectroscopy Study of the Effect of Hydrocarbon Contamination on Poly(Tetrafluoroethylene) Exposed to a Nitrogen Plasma

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Lopata, Eugene S.; Finney, Lorie S.

    1993-01-01

    In this note, we show that X-ray photoelectron Spectroscopy (XPS) data and the changes in surface properties attending exposure of poly(tetrafluoroethylene) (PTFE) films to a nitrogen plasma can likewise be misinterpreted when the interfering role of minor surface hydrocarbon contamination is not taken into account.

  8. X-Ray Photoelectron Spectroscopy Study of the Effect of Hydrocarbon Contamination on Poly(Tetrafluoroethylene) Exposed to a Nitrogen Plasma

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Lopata, Eugene S.; Finney, Lorie S.

    1993-01-01

    It has been shown that unless the surface of poly(tetrafluoroethylene)(PTFE) is free of hydrocarbon contamination, anomalous changes in the oxygen and fluorine contents, as measured by X-ray photoelectron spectroscopy (XPS), and hence also the surface properties, may be improperly ascribed to a PTFE film exposed to a oxygen plasma.

  9. Characterisation of biodegradation capacities of environmental microflorae for diesel oil by comprehensive two-dimensional gas chromatography.

    PubMed

    Penet, Sophie; Vendeuvre, Colombe; Bertoncini, Fabrice; Marchal, Rémy; Monot, Frédéric

    2006-12-01

    In contaminated soils, efficiency of natural attenuation or engineered bioremediation largely depends on biodegradation capacities of the local microflorae. In the present study, the biodegradation capacities of various microflorae towards diesel oil were determined in laboratory conditions. Microflorae were collected from 9 contaminated and 10 uncontaminated soil samples and were compared to urban wastewater activated sludge. The recalcitrance of hydrocarbons in tests was characterised using both gas chromatography (GC) and comprehensive two-dimensional gas chromatography (GCxGC). The microflorae from contaminated soils were found to exhibit higher degradation capacities than those from uncontaminated soil and activated sludge. In cultures inoculated by contaminated-soil microflorae, 80% of diesel oil on an average was consumed over 4-week incubation compared to only 64% in uncontaminated soil and 60% in activated sludge cultures. As shown by GC, n-alkanes of diesel oil were totally utilised by each microflora but differentiated degradation extents were observed for cyclic and branched hydrocarbons. The enhanced degradation capacities of impacted-soil microflorae resulted probably from an adaptation to the hydrocarbon contaminants but a similar adaptation was noted in uncontaminated soils when conifer trees might have released natural hydrocarbons. GCxGC showed that a contaminated-soil microflora removed all aromatics and all branched alkanes containing less than C(15). The most recalcitrant compounds were the branched and cyclic alkanes with 15-23 atoms of carbon. PMID:16477350

  10. Response of the microbial community to seasonal groundwater level fluctuations in petroleum hydrocarbon-contaminated groundwater.

    PubMed

    Zhou, Ai-xia; Zhang, Yu-ling; Dong, Tian-zi; Lin, Xue-yu; Su, Xiao-si

    2015-07-01

    The effects of seasonal groundwater level fluctuations on the contamination characteristics of total petroleum hydrocarbons (TPH) in soils, groundwater, and the microbial community were investigated at a typical petrochemical site in northern China. The measurements of groundwater and soil at different depths showed that significant TPH residue was present in the soil in this study area, especially in the vicinity of the pollution source, where TPH concentrations were up to 2600 mg kg(-1). The TPH concentration in the groundwater fluctuated seasonally, and the maximum variation was 0.8 mg L(-1). The highest TPH concentrations were detected in the silty clay layer and lied in the groundwater level fluctuation zones. The groundwater could reach previously contaminated areas in the soil, leading to higher groundwater TPH concentrations as TPH leaches into the groundwater. The coincident variation of the electron acceptors and TPH concentration with groundwater-table fluctuations affected the microbial communities in groundwater. The microbial community structure was significantly different between the wet and dry seasons. The canonical correspondence analysis (CCA) results showed that in the wet season, TPH, NO3(-), Fe(2+), TMn, S(2-), and HCO3(-) were the major factors correlating the microbial community. A significant increase in abundance of operational taxonomic unit J1 (97% similar to Dechloromonas aromatica sp.) was also observed in wet season conditions, indicating an intense denitrifying activity in the wet season environment. In the dry season, due to weak groundwater level fluctuations and low temperature of groundwater, the microbial activity was weak. But iron and sulfate-reducing were also detected in dry season at this site. As a whole, groundwater-table fluctuations would affect the distribution, transport, and biodegradation of the contaminants. These results may be valuable for the control and remediation of soil and groundwater pollution at this site

  11. Molecular Analysis of Surfactant-Driven Microbial Population Shifts in Hydrocarbon-Contaminated Soil†

    PubMed Central

    Colores, Gregory M.; Macur, Richard E.; Ward, David M.; Inskeep, William P.

    2000-01-01

    We analyzed the impact of surfactant addition on hydrocarbon mineralization kinetics and the associated population shifts of hydrocarbon-degrading microorganisms in soil. A mixture of radiolabeled hexadecane and phenanthrene was added to batch soil vessels. Witconol SN70 (a nonionic, alcohol ethoxylate) was added in concentrations that bracketed the critical micelle concentration (CMC) in soil (CMC′) (determined to be 13 mg g−1). Addition of the surfactant at a concentration below the CMC′ (2 mg g−1) did not affect the mineralization rates of either hydrocarbon. However, when surfactant was added at a concentration approaching the CMC′ (10 mg g−1), hexadecane mineralization was delayed and phenanthrene mineralization was completely inhibited. Addition of surfactant at concentrations above the CMC′ (40 mg g−1) completely inhibited mineralization of both phenanthrene and hexadecane. Denaturing gradient gel electrophoresis of 16S rRNA gene segments showed that hydrocarbon amendment stimulated Rhodococcus and Nocardia populations that were displaced by Pseudomonas and Alcaligenes populations at elevated surfactant levels. Parallel cultivation studies revealed that the Rhodococcus population can utilize hexadecane and that the Pseudomonas and Alcaligenes populations can utilize both Witconol SN70 and hexadecane for growth. The results suggest that surfactant applications necessary to achieve the CMC alter the microbial populations responsible for hydrocarbon mineralization. PMID:10877792

  12. The Impact of Soil Moisture Anomalies on the General Circulation: A Comprehensive Analysis over North America

    NASA Astrophysics Data System (ADS)

    Koster, R. D.; Chang, Y.; Wang, H.; Schubert, S. D.

    2015-12-01

    Recent work (Koster et al., 2014) has demonstrated the potential for a soil moisture anomaly to influence the general circulation (as characterized by the meridional wind at 250 mb) and to influence thereby the surface meteorological conditions in remote locations, even a thousand kilometers away. An in-depth look at this phenomenon is now afforded by a more comprehensive set of AGCM ensemble experiments. Each experiment is designed to quantify the impact of a specific local dry soil moisture anomaly, prescribed somewhere in North America, on the general circulation. The locations tested in the different experiments span much of the continent, allowing a comprehensive picture of the circulation's sensitivity to soil moisture anomalies. The main result is that while the sensitivity does vary with the imposed anomaly's geographical location, a dry anomaly in general tends to induce, just to the east, a northerly flow at 250 mb, with (at times) consequent impacts on surface meteorological variables. These results tend to be supported by reanalysis data. Koster, R. D., Y. Chang, and S. D. Schubert, 2014: A mechanism for land-atmosphere feedback involving planetary wave structures. J. Climate, 27, 9290-9301.

  13. Metagenome-Based Metabolic Reconstruction Reveals the Ecophysiological Function of Epsilonproteobacteria in a Hydrocarbon-Contaminated Sulfidic Aquifer.

    PubMed

    Keller, Andreas H; Schleinitz, Kathleen M; Starke, Robert; Bertilsson, Stefan; Vogt, Carsten; Kleinsteuber, Sabine

    2015-01-01

    The population genome of an uncultured bacterium assigned to the Campylobacterales (Epsilonproteobacteria) was reconstructed from a metagenome dataset obtained by whole-genome shotgun pyrosequencing. Genomic DNA was extracted from a sulfate-reducing, m-xylene-mineralizing enrichment culture isolated from groundwater of a benzene-contaminated sulfidic aquifer. The identical epsilonproteobacterial phylotype has previously been detected in toluene- or benzene-mineralizing, sulfate-reducing consortia enriched from the same site. Previous stable isotope probing (SIP) experiments with (13)C6-labeled benzene suggested that this phylotype assimilates benzene-derived carbon in a syntrophic benzene-mineralizing consortium that uses sulfate as terminal electron acceptor. However, the type of energy metabolism and the ecophysiological function of this epsilonproteobacterium within aromatic hydrocarbon-degrading consortia and in the sulfidic aquifer are poorly understood. Annotation of the epsilonproteobacterial population genome suggests that the bacterium plays a key role in sulfur cycling as indicated by the presence of an sqr gene encoding a sulfide quinone oxidoreductase and psr genes encoding a polysulfide reductase. It may gain energy by using sulfide or hydrogen/formate as electron donors. Polysulfide, fumarate, as well as oxygen are potential electron acceptors. Auto- or mixotrophic carbon metabolism seems plausible since a complete reductive citric acid cycle was detected. Thus the bacterium can thrive in pristine groundwater as well as in hydrocarbon-contaminated aquifers. In hydrocarbon-contaminated sulfidic habitats, the epsilonproteobacterium may generate energy by coupling the oxidation of hydrogen or formate and highly abundant sulfide with the reduction of fumarate and/or polysulfide, accompanied by efficient assimilation of acetate produced during fermentation or incomplete oxidation of hydrocarbons. The highly efficient assimilation of acetate was recently

  14. Metagenome-Based Metabolic Reconstruction Reveals the Ecophysiological Function of Epsilonproteobacteria in a Hydrocarbon-Contaminated Sulfidic Aquifer

    PubMed Central

    Keller, Andreas H.; Schleinitz, Kathleen M.; Starke, Robert; Bertilsson, Stefan; Vogt, Carsten; Kleinsteuber, Sabine

    2015-01-01

    The population genome of an uncultured bacterium assigned to the Campylobacterales (Epsilonproteobacteria) was reconstructed from a metagenome dataset obtained by whole-genome shotgun pyrosequencing. Genomic DNA was extracted from a sulfate-reducing, m-xylene-mineralizing enrichment culture isolated from groundwater of a benzene-contaminated sulfidic aquifer. The identical epsilonproteobacterial phylotype has previously been detected in toluene- or benzene-mineralizing, sulfate-reducing consortia enriched from the same site. Previous stable isotope probing (SIP) experiments with 13C6-labeled benzene suggested that this phylotype assimilates benzene-derived carbon in a syntrophic benzene-mineralizing consortium that uses sulfate as terminal electron acceptor. However, the type of energy metabolism and the ecophysiological function of this epsilonproteobacterium within aromatic hydrocarbon-degrading consortia and in the sulfidic aquifer are poorly understood. Annotation of the epsilonproteobacterial population genome suggests that the bacterium plays a key role in sulfur cycling as indicated by the presence of an sqr gene encoding a sulfide quinone oxidoreductase and psr genes encoding a polysulfide reductase. It may gain energy by using sulfide or hydrogen/formate as electron donors. Polysulfide, fumarate, as well as oxygen are potential electron acceptors. Auto- or mixotrophic carbon metabolism seems plausible since a complete reductive citric acid cycle was detected. Thus the bacterium can thrive in pristine groundwater as well as in hydrocarbon-contaminated aquifers. In hydrocarbon-contaminated sulfidic habitats, the epsilonproteobacterium may generate energy by coupling the oxidation of hydrogen or formate and highly abundant sulfide with the reduction of fumarate and/or polysulfide, accompanied by efficient assimilation of acetate produced during fermentation or incomplete oxidation of hydrocarbons. The highly efficient assimilation of acetate was recently

  15. The impact of soil amendments on greenhouse gas emissions: a comprehensive life cycle assessment approach

    NASA Astrophysics Data System (ADS)

    DeLonge, M. S.; Ryals, R.; Silver, W. L.

    2011-12-01

    Soil amendments, such as compost and manure, can be applied to grasslands to improve soil conditions and enhance aboveground net primary productivity. Applying such amendments can also lead to soil carbon (C) sequestration and, when materials are diverted from waste streams (e.g., landfills, manure lagoons), can offset greenhouse gas (GHG) emissions. However, amendment production and application is also associated with GHG emissions, and the net impact of these amendments remains unclear. To investigate the potential for soil amendments to reduce net GHG emissions, we developed a comprehensive, field-scale life cycle assessment (LCA) model. The LCA includes GHG (i.e., CO2, CH4, N2O) emissions of soil amendment production, application, and ecosystem response. Emissions avoided by diverting materials from landfills or manure management systems are also considered. We developed the model using field observations from grazed annual grassland in northern California (e.g., soil C; above- and belowground net primary productivity; C:N ratios; trace gas emissions from soils, manure piles, and composting), CENTURY model simulations (e.g., long-term soil C and trace gas emissions from soils under various land management strategies), and literature values (e.g., GHG emissions from transportation, inorganic fertilizer production, composting, and enteric fermentation). The LCA quantifies and contrasts the potential net GHG impacts of applying compost, manure, and commercial inorganic fertilizer to grazing lands. To estimate the LCA uncertainty, sensitivity tests were performed on the most widely ranging or highly uncertain parameters (e.g., compost materials, landfill emissions, manure management system emissions). Finally, our results are scaled-up to assess the feasibility and potential impacts of large-scale adoption of soil amendment application as a land-management strategy in California. Our base case results indicate that C sinks and emissions offsets associated with

  16. Concentration of Petroleum-Hydrocarbon Contamination Shapes Fungal Endophytic Community Structure in Plant Roots

    PubMed Central

    Bourdel, Guillaume; Roy-Bolduc, Alice; St-Arnaud, Marc; Hijri, Mohamed

    2016-01-01

    Plant-root inhabiting fungi are a universal phenomenon found in all ecosystems where plants are able to grow, even in harsh environments. Interactions between fungi and plant roots can vary widely from mutualism to parasitism depending on many parameters. The role of fungal endophytes in phytoremediation of polluted sites, and characterization of the endophytic diversity and community assemblages in contaminated areas remain largely unexplored. In this study, we investigated the composition of endophytic fungal communities in the roots of two plant species growing spontaneously in petroleum-contaminated sedimentation basins of a former petro-chemical plant. The three adjacent basins showed a highly heterogeneous pattern of pollutant concentrations. We combined a culture-based isolation approach with the pyrosequencing of fungal ITS ribosomal DNA. We selected two species, Eleocharis erythropoda Steud. and Populus balsamifera L., and sampled three individuals of each species from each of three adjacent basins, each with a different concentration of petroleum hydrocarbons. We found that contamination level significantly shaped endophytic fungal diversity and community composition in E. erythropoda, with only 9.9% of these fungal Operational Taxonomic Units (OTUs) retrieved in all three basins. However, fungal community structure associated with P. balsamifera remained unaffected by the contamination level with 28.2% of fungal OTUs shared among all three basins. This could be explained by the smaller differences of pollutant concentrations in the soil around our set of P. balsamifera sampless compared to that around our set of E. erythropoda samples. Our culture-based approach allowed isolation of 11 and 30 fungal endophytic species from surface-sterilized roots of E. erythropoda and P. balsamifera, respectively. These isolates were ribotyped using ITS, and all were found in pyrosequensing datasets. Our results demonstrate that extreme levels of pollution reduce fungal

  17. Concentration of Petroleum-Hydrocarbon Contamination Shapes Fungal Endophytic Community Structure in Plant Roots.

    PubMed

    Bourdel, Guillaume; Roy-Bolduc, Alice; St-Arnaud, Marc; Hijri, Mohamed

    2016-01-01

    Plant-root inhabiting fungi are a universal phenomenon found in all ecosystems where plants are able to grow, even in harsh environments. Interactions between fungi and plant roots can vary widely from mutualism to parasitism depending on many parameters. The role of fungal endophytes in phytoremediation of polluted sites, and characterization of the endophytic diversity and community assemblages in contaminated areas remain largely unexplored. In this study, we investigated the composition of endophytic fungal communities in the roots of two plant species growing spontaneously in petroleum-contaminated sedimentation basins of a former petro-chemical plant. The three adjacent basins showed a highly heterogeneous pattern of pollutant concentrations. We combined a culture-based isolation approach with the pyrosequencing of fungal ITS ribosomal DNA. We selected two species, Eleocharis erythropoda Steud. and Populus balsamifera L., and sampled three individuals of each species from each of three adjacent basins, each with a different concentration of petroleum hydrocarbons. We found that contamination level significantly shaped endophytic fungal diversity and community composition in E. erythropoda, with only 9.9% of these fungal Operational Taxonomic Units (OTUs) retrieved in all three basins. However, fungal community structure associated with P. balsamifera remained unaffected by the contamination level with 28.2% of fungal OTUs shared among all three basins. This could be explained by the smaller differences of pollutant concentrations in the soil around our set of P. balsamifera sampless compared to that around our set of E. erythropoda samples. Our culture-based approach allowed isolation of 11 and 30 fungal endophytic species from surface-sterilized roots of E. erythropoda and P. balsamifera, respectively. These isolates were ribotyped using ITS, and all were found in pyrosequensing datasets. Our results demonstrate that extreme levels of pollution reduce fungal

  18. Influence of electron donor on the minimum sulfate concentration required for sulfate reduction in a petroleum hydrocarbon-contaminated aquifer

    USGS Publications Warehouse

    Vroblesky, D.A.; Bradley, P.M.; Chapelle, F.H.

    1996-01-01

    Fluctuations in the availability of electron donor (petroleum hydrocarbons) affected the competition between sulfate-reducing bacteria (SRB) and methanogenic bacteria (MB) for control of electron flow in a petroleum hydrocarbon-contaminated aquifer. The data suggest that abundant electron donor availability allowed MB to sequester a portion of the electron flow even when sulfate was present in sufficient concentrations to support sulfate reduction. For example, in an area of abundant electron-donor availability, SRB appeared to be unable to sequester the electron flow from MB in the presence of 1.4 mg/L sulfate. The data also suggest that when electron-donor availability was limited, SRB outcompeted MB for available substrate at a lower concentration of sulfate than when electron donor was plentiful. For example, in an area of limited electron-donor availability, SRB appeared to maintain dominance of electron flow at sulfate concentrations less than 1 mg/L. The presence of abundant electron donor and a limited amount of sulfate reduced competition for available substrate, allowing both SRB and MB to metabolize available substrates concurrently.

  19. Use of dissolved and vapor-phase gases to investigate methanogenic degradation of petroleum hydrocarbon contamination in the subsurface

    USGS Publications Warehouse

    Amos, R.T.; Mayer, K.U.; Bekins, B.A.; Delin, G.N.; Williams, R.L.

    2005-01-01

    [1] At many sites contaminated with petroleum hydrocarbons, methanogenesis is a significant degradation pathway. Techniques to estimate CH4 production, consumption, and transport processes are needed to understand the geochemical system, provide a complete carbon mass balance, and quantify the hydrocarbon degradation rate. Dissolved and vapor-phase gas data collected at a petroleum hydrocarbon contaminated site near Bemidji, Minnesota, demonstrate that naturally occurring nonreactive or relatively inert gases such as Ar and N2 can be effectively used to better understand and quantify physical and chemical processes related to methanogenic activity in the subsurface. In the vadose zone, regions of Ar and N2 depletion and enrichment are indicative of methanogenic and methanotrophic zones, and concentration gradients between the regions suggest that reaction-induced advection can be an important gas transport process. In the saturated zone, dissolved Ar and N2 concentrations are used to quantify degassing driven by methanogenesis and also suggest that attenuation of methane along the flow path, into the downgradient aquifer, is largely controlled by physical processes. Slight but discernable preferential depletion of N2 over Ar, in both the saturated and unsaturated zones near the free-phase oil, suggests reactivity of N2 and is consistent with other evidence indicating that nitrogen fixation by microbial activity is taking place at this site. Copyright 2005 by the American Geophysical Union.

  20. Phytoremediation of a petroleum-hydrocarbon contaminated shallow aquifer in Elizabeth City, North Carolina, USA

    USGS Publications Warehouse

    Nichols, Elizabeth Guthrie; Cook, Rachel L.; Landmeyer, James E.; Atkinson, Brad; Malone, Donald R.; Shaw, George; Woods, Leilani

    2014-01-01

    A former bulk fuel terminal in North Carolina is a groundwater phytoremediation demonstration site where 3,250 hybrid poplars, willows, and pine trees were planted from 2006 to 2008 over approximately 579,000 L of residual gasoline, diesel, and jet fuel. Since 2011, the groundwater altitude is lower in the area with trees than outside the planted area. Soil-gas analyses showed a 95 percent mass loss for total petroleum hydrocarbons (TPH) and a 99 percent mass loss for benzene, toluene, ethylbenzene, and xylenes (BTEX). BTEX and methyl tert-butyl ether concentrations have decreased in groundwater. Interpolations of free-phase, fuel product gauging data show reduced thicknesses across the site and pooling of fuel product where poplar biomass is greatest. Isolated clusters of tree mortalities have persisted in areas with high TPH and BTEX mass. Toxicity assays showed impaired water use for willows and poplars exposed to the site's fuel product, but Populus survival was higher than the willows or pines on-site, even in a noncontaminated control area. All four Populus clones survived well at the site.

  1. Use of Advanced Oxidation and Aerobic Degradation for Remediation of Various Hydrocarbon Contaminates

    SciTech Connect

    Paul Fallgren

    2009-03-06

    Western Research Institute in conjunction with Sierra West Consultants, Inc., Tetra Tech, Inc., and the U.S. Department of Energy conducted laboratory and field studies to test different approaches to enhance degradation of hydrocarbons and associated contaminants. WRI in conjunction with Sierra West Consultants, Inc., conducted a laboratory and field study for using ozone to treat a site contaminated with MTBE and other hydrocarbons. Results from this study demonstrate that a TOD test can be used to resolve the O{sub 3} dosage problem by establishing a site-specific benchmark dosage for field ozone applications. The follow-up testing of the laboratory samples provided indications that intrinsic biodegradation could be stimulated by adding oxygen. Laboratory studies also suggests that O3 dosage in the full-scale field implementation could be dialed lower than stoichiometrically designed to eliminate the formation of Cr(VI). WRI conducted a study involving a series of different ISCO oxidant applications to diesel-contaminated soil and determined the effects on enhancing biodegradation to degrade the residual hydrocarbons. Soils treated with permanganate followed by nutrients and with persulfate followed by nutrients resulted in the largest decrease in TPH. The possible intermediates and conditions formed from NOM and TPH oxidation by permanganate and activated persulfate favors microbial TPH degrading activity. A 'passive-oxidation' method using microbial fuel cell (MFC) technology was conducted by WRI in conjunction with Tetra Tech, Inc., to degrade MTBE in groundwater. These experiments have demonstrated that a working MFC (i.e., one generating power) could be established in the laboratory using contaminated site water or buffered media inoculated with site water and spiked with MTBE, benzene, or toluene. Electrochemical methods were studied by WRI with goal of utilizing low voltage and amperage electrical sources for 'geo-oxidation' of organic contaminants. The

  2. Comprehensive analysis of soil nitrogen removal by catch crops based on growth and water use

    NASA Astrophysics Data System (ADS)

    Yasutake, D.; Kondo, K.; Yamane, S.; Kitano, M.; Mori, M.; Fujiwara, T.

    2016-07-01

    A new methodology for comprehensive analysis of the characteristics of nitrogen (N) removal from greenhouse soil by catch crop was proposed in relation to its growth and water use. The N removal is expressed as the product of five parameters: net assimilation rate, specific leaf area, shoot dry weight, water use efficiency for N removal, and water requirement for growth. This methodology was applied to the data of a greenhouse experiment where corn was cultivated under three plant densities. We analyzed the effect of plant density and examined the effectiveness of the methodology. Higher plant densities are advantageous not only for total N removal but also for water use efficiency in N removal and growth because of the large specific leaf area, shoot dry weight, and decreased soil evaporation. On the other hand, significant positive or negative linear relationships were found between all five parameters and N removal. This should improve the understanding of the N removal mechanisms and the interactions among its components. We show the effectiveness of our analytical methodology, which can contribute to identifying the optimum plant density according to the field situations (available water amount, soil N quantity to be removed) for practical catch crop cultivation.

  3. Reproductive and morphological condition of wild mink (Mustela vison) and river otters (Lutra canadensis) in relation to chlorinated hydrocarbon contamination.

    PubMed

    Harding, L E; Harris, M L; Stephen, C R; Elliott, J E

    1999-02-01

    We assessed chlorinated hydrocarbon contamination of mink and river otters on the Columbia and Fraser River systems of northwestern North America, in relation to morphological measures of condition. We obtained carcasses of mink and river otters from commercial trappers during the winters 1994-1995 and 1995-1996. Necropsies included evaluation of the following biological parameters: sex, body mass and length, age, thymus, heart, liver, lung, spleen, pancreas, kidney, gonad, omentum, adrenal gland and baculum masses, baculum length, and stomach contents. Livers were analyzed, individually or in pools, for residues of organochlorine (OC) pesticides, polychlorinated biphenyls (PCBs), dibenzo-p-dioxins, and dibenzofurans. Contaminant levels were relatively low compared to those documented in other North American populations, although they ranged higher than those detected during an earlier survey (1990-1992) of these regional populations. Body condition varied slightly among collection regions, but showed no relationship with contaminant burden. Mink from the upper Fraser River had less fat stores and also had some of the lowest OC contamination levels observed. Similarly, a few individuals with enlarged livers and kidneys had low contaminant levels. Although a few individual animals with gross abnormalities of reproductive systems did not show high levels of contamination, there was a significant negative correlation between total PCB concentrations (as Aroclor 1260) and baculum length in juvenile mink (r = 0.707; p = 0.033; n = 8). The association of juvenile baculum length with eventual reproductive success is unknown, but further characterization of reproductive organ morphology and relationship to contaminants should be undertaken in a larger subset of these populations. PMID:9924010

  4. [Comprehensive Risk Assessment of Soil Heavy Metals Based on Monte Carlo Simulation and Case Study].

    PubMed

    Yang, Yang; Dai, Dan; Cai, Yi-min; Chen, Wei-ping; Hou, Yu; Yang, Feng

    2015-11-01

    Based on the stochastic. theory, the Monte Carlo simulation was introduced in ecological risk assessment and health risk assessment. Together with the multi-statistical technique, the proposed models were used for risk analysis in the Bin-Chang Coal Chemical industry park. The results showed that high levels of Cd, Co, and Cr were found in the area with long time mining. The comprehensive single index and comprehensive risk index showed that the ecological risk of soil metals fell into the poor level, with probabilities of 53.2% and 55.6%, respectively. The health risk caused by hand to mouth ingestion was significantly greater than that by dermal exposure, and Cr was of prime concern for pollution control. Children were taking a major health risk. Their non-cancer risks were maintained at a high level, and 5.0-fold higher than adults under hand to mouth ingestion, and 8.2-fold higher than adults under dermal exposure. The cancer risk for children under these two exposure ways were both above the safety standard suggested by USEPA. PMID:26911013

  5. Indications of Coupled Carbon and Iron Cycling at a Hydrocarbon-Contaminated Site from Time-Lapse Magnetic Susceptibility (MS) Profiles

    NASA Astrophysics Data System (ADS)

    Lund, A.; Slater, L. D.; Atekwana, E. A.; Rossbach, S.; Ntarlagiannis, D.; Bekins, B. A.

    2015-12-01

    Magnetic susceptibility (MS) data acquired at hydrocarbon contaminated sites have documented enhanced MS within the smear zone (zone of water table fluctuation at hydrocarbon contaminated location) coincident with the free phase (mobile or free liquids moving down through the unsaturated zone independent of the direction of flow of the groundwater or surface water) hydrocarbon plume These studies suggest that magnetic susceptibility can be used as a tool to: (1) infer regions of hydrocarbon contamination, and (2) investigate intrinsic bioremediation by iron reducing bacteria. We performed a campaign of time-lapse MS monitoring at the National Crude Oil Spill Fate and Natural Attenuation Research Site (Bemidji, MN) between July 2011 and August 2015. This highly instrumented site has multiple boreholes installed through the free phase, dissolved phase and uncontaminated portions of the aquifer impacted by an oil spill resulting from a pipeline rupture in 1979. Magnetic susceptibility (MS) data acquired in 2011 showed that MS values in the smear zone are higher than in the dissolved phase plume and background, leading to the hypothesis that MS measurements could be used to monitor the long-term progress of biodegradation at the site. However, repeated MS data acquired in 2014 and 2015 showed strong changes in the character of the MS signal in the smear zone with multiple free phase contamination locations showing a strong suppression of the signal relative to that observed in 2011. Other locations in the dissolved phase of the plume show evidence for vertical migration of the zone of enhanced MS, possibly due to changes in the redox profiles driven by hydrology. Such changes in the MS signal are hypothesized to result from either variations in Fe(II)/Fe(III) ratios in the magnetite or changes in the magnetite concentration associated with coupled carbon and iron biogeochemistry. This work is generating a unique time-lapse geophysical dataset providing information on

  6. Environmental Analysis of Endocrine Disrupting Effects from Hydrocarbon Contaminants in the Ecosystem - Final Report - 09/15/1996 - 09/14/2000

    SciTech Connect

    McLachlan, John A.

    2000-09-14

    The three major components of the research included: (a) a biotechnology based screening system to identify potential hormone mimics and antagonists (b) an animal screening system to identify biomarkers of endocrine effects and (c) a literature review to identify compounds at various DOE sites that are potential endocrine disruptors. Species of particular interest in this study were those that can serve as sentinel species (e.g., amphibians) and thus provide early warning signals for more widespread impacts on an ecosystem and its wildlife and human inhabitants. The objective of this basic research is to characterize the potential of common hydrocarbon contaminants in ecosystems to act as endocrine disruptors. Although the endocrine disrupting effects of contaminants such as dioxin and PCBs have been well characterized in both animals and humans, little is known about the capacities of other hydrocarbon contaminants to act as endocrine disruptors. Results obtained from this research project have provided information on endocrine disrupting contaminants for consideration in DOE's risk analyses for determining clean-up levels and priorities at contaminated DOE sites.

  7. Application of comprehensive two-dimensional gas chromatography for the assessment of oil contaminated soils.

    PubMed

    Van De Weghe, Hendrik; Vanermen, Guido; Gemoets, Johan; Lookman, Richard; Bertels, Diane

    2006-12-22

    A crucial step in the remediation of oil contaminated soils is the characterization of the pollution. Information on the chemical composition is used to assess the toxicity (and thus the need for remediation) and to determine the most appropriate technology for treatment. Mostly these analyses are carried out in routine environmental laboratories using gas chromatography with flame ionization detection (GC/FID) based on a protocol developed by the Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG). In the present study, an alternative method was developed using comprehensive two-dimensional gas chromatography (GCXGC) with FID. Sample preparation was limited to pressurized liquid extraction (PLE), and the analysis was carried out on a commercially available instrument with a conventional column combination (RTX-1/BPX50) and with standard chromatographic software. Compared to the TPH method, the group-types in the GCXGC analysis are chemically better defined and more specific information is obtained especially for the (toxicologically important) aromatic hydrocarbon fraction. Preliminary results indicate that higher recoveries and lower RSDs are obtained with GCXGC, probably because of the less complex sample preparation. Furthermore a data processing method was developed to generate TPH results from GCXGC data; the volatility distribution profiles compared very well with conventional TPH data. The possibility of extracting physicochemical properties directly from the GCXGC chromatogram was briefly explored, but software limitations hindered this promising application. PMID:17055525

  8. Enhancing petroleum hydrocarbon biodegradation in soils with surfactant/nutrients

    SciTech Connect

    Nelson, E.C.; Walter, M.V.; Bossert, I.D.

    1995-12-31

    Bioremediation of hydrocarbon contaminated soils is an attractive process for treating contaminated soils because it converts contaminants into harmless byproducts at low costs. However, the process is slow; rates of cleanup are typically measured in months or years. The process could be improved with additives that accelerate rates of biodegradation. In this study, molecular surfactant/nutrients were synthesized and tested for their ability to enhance the biodegradation of petroleum hydrocarbon contaminants in soils. Rates of biodegradation of heavy hydrocarbons were evaluated using either oxygen and carbon dioxide respirometry in soil slurries, or periodic measurements of extractable hydrocarbon residues in unsaturated soil microcosms. Results show rate enhancements in both soil slurries and unsaturated soil microcosms that were treated with an anionic nitrogenous surfactant.

  9. Comprehensive 1D Modelling of Reactive Chemical Transport in Unsaturated Soil

    NASA Astrophysics Data System (ADS)

    Wissmeier, L.; Barry, D. A.

    2007-12-01

    Computer models for simulating environmental processes of water flow, solute transport and geochemical reactions have greatly advanced during recent years. However, there is still demand for the development of programs that a capable of simulating the numerous interactions between physical transport processes and biogeochemical reactions in natural soils. We present a new tool for simulating transient vadose zone flow and solute transport according to the moisture- based form of Richards' equation within the widely used geochemical software PHREEQC. The direct implementation into the geochemical framework provides access to comprehensive geochemical models, giving capabilities beyond existing software for coupled unsaturated flow and reaction. Possible reactions include complex aqueous speciation, cation exchange, equilibrium phase dissolution and precipitation, formation of solid solutions, redox reactions, gas phase exchange, surface adsorption considering electrostatics and kinetic reactions with user-defined rate equations, among others. As a result of the close coupling procedure, the influence of geochemical reactions on water content, e.g., through dissolution or precipitation of water-containing phases, can be investigated. For the solution of the partial differential equations of flow and transport, an explicit finite-difference formulation with a second-order space discretization and first-order time discretization was employed. The use of integrated diffusivities transforms Richards' equation into a simple advection-diffusion equation. Changes in water content and solute concentration were conceptualized as local kinetic reactions of individual elements where changes in moisture content result from fluxes of oxygen and hydrogen across cell boundaries. Reactions and chemical element transport are coupled via sequential two-step operator splitting. The scheme was implemented into PHREEQC without any source code modification such that it can be applied by

  10. Effect of anoxic vs. oxic conditions in soils on composition of mobile OM as revealed from comprehensive fluorescence analysis of soil effluents

    NASA Astrophysics Data System (ADS)

    Fritzsche, Andreas; Ritschel, Thomas; Totsche, Kai

    2014-05-01

    The fractionation of OM due to sorption of DOM on mineral surfaces has drawn much attention in soil science. This is mainly motivated by the implied stabilization of OM and the disposition of less affine organic molecules as mobile compounds within porous media, both processes significantly affecting the carbon cycling and that of OM-associated elements. In this study, we provide a time-resolved assessment of mobile OM in soil effluents on the basis of fluorescence excitation-emission-matrices (EEM). Our comprehensive fluorescence EEM analysis was based on a supervised parallel factor analysis (PARAFAC) that permits the fixing of selected components. We estimated the protein content in soil effluent OM with a reference for microbially produced proteins from Bacillus subtilis. The soil effluent was obtained from soil columns filled with topsoil either from a floodplain site or a maize field. Except for the 1 mM NaCl influent, nothing was added to the soil columns. Under water-saturated conditions, the activity of autochthonous microbial communities induced anoxic conditions within the soil columns resulting in the microbial reduction of pedogenic Fe(III) oxides and subsequent discharge of mobile Fe2+ during percolation. Upon re-aeration of the soil effluent, Fe2+ re-oxidized and precipitated as organo-mineral ferrihydrite in the soil effluent. EEM from consecutively sampled effluent fractions pointed to a mainly invariant soil effluent OM composition, where fulvic acid-like components were predominant. However, the OM, which was associated with the effluent ferrihydrite, was enriched in proteins, which was confirmed by corresponding FTIR spectra. This suggests the preferential association of proteins with in situ-precipitated ferrihydrite, rendering proteins less mobile in soils, where precipitation and immobilization of ferrihydrite occurs. Consequently, one would assume lower protein concentrations in the soil effluent if ferrihydrite precipitation occurs within

  11. A cost effective bioremediation strategy using low technology resources for reclamation of dry land hydrocarbon contamination: A case study

    SciTech Connect

    Robb, A.J. III; Hoggatt, P.R.

    1995-12-01

    Hydrocarbon containing soil was bioremediated at a combination wastewater and slop oil skim evaporation pond utilizing cost effective low technology resources. Fluids and sludge from the football field-sized pond were extraction procedure toxicity and purgeable organics tested, and total petroleum hydrocarbon (TPH) concentrations determined. An impact risk analysis was performed, and a corrective action plan developed and implemented. The three year project was closely coordinated with the Kansas Corporation Commission (KCC) and the Kansas Department of Health and Environment (KDHE) who established the closure level. The impacted soils at the pond were completely excavated and closure was immediately granted by KDHE for the excavated area. The 24,000 cubic yards of excavated soil were then surface spread on adjacent Mobil property. A nutrient and microbial base was applied to bioaugment the soil. The preapplication land surface and the subsequently land farmed soil was periodically disced and chiseled. A job safety plan including industrial hygiene measures to eliminate workforce exposure was developed and implemented. The final remediation cost analysis amounts to $1.48 per cubic yard compared to the $30 to $150 per cubic yard industry o estimates for similar projects. Several factors were critical in ailing costs to remain so low: (1) assessment and implementation by local in-house staff, (2) conservative remedial action plan and sampling strategy; (3) local contractors; (4) locally available soil amendment; and (5) effective regulatory coordination. The methods described can be used to cost effectively characterize and bioremediate other sites where hydrocarbon-impacted soils exist in similar dry-land environments.

  12. Comprehensive sampling of an isolated dune system demonstrates clear patterns in soil fungal communities across a successional gradient.

    PubMed

    Roy-Bolduc, Alice; Bell, Terrence H; Boudreau, Stéphane; Hijri, Mohamed

    2015-12-01

    Coastal sand dunes are extremely dynamic ecosystems, characterized by stark ecological succession gradients. Dune stabilization is mainly attributed to plant growth, but the establishment and survival of dune-inhabiting vegetation is closely linked to soil microorganisms and to the ecological functions they fulfill. Fungi are particularly important in this context, as some interact intimately with plant roots, while others are critical to soil structure and nutrient availability. Our study aimed to describe wholly fungal diversity and community composition in a secluded coastal dune ecosystem at eight different stages of succession. We comprehensively sampled a relic foredune plain, which is part of an archipelago in the Gulf of Saint Lawrence (Québec, Canada), by collecting soils from 80 sites and measuring soil characteristics. Soil fungal communities were characterized by pyrosequencing, followed by taxonomic classification and assignment of putative roles. Even though we did not observe clear patterns in diversity, we were able to detect distinct taxonomic and community composition signatures across succession stages, which seemed to translate into variations in fungal life strategies. Our results show that a taxonomically and functionally diverse fungal community exists at each dune succession stage, even in the barren foredunes. PMID:26109372

  13. Comprehensive appraisal of {sup 239+240}Pu in soils around Rocky Flats, Colorado

    SciTech Connect

    Litaor, M.I.; Allen, L.; Ellerbroek, D.

    1995-12-01

    Plutonium contamination of soils around Rocky Flats Environmental & Technology Site, near Golden, Colorado, resulted from past outdoor storage practices and subsequent remobilization due to inadequate cleanup practices. Until now human-health risk assessment has not been performed because of a lack of sufficient information regarding the spatial extent of {sup 239+240}Pu in soils. The purpose of this work was to elucidate the extent of plutonium contamination in surface soils, and to assess the uncertainty associated with the spatial distribution of {sup 239+240}Pu around Rocky Flats Environmental & Technology Site.

  14. A comprehensive appraisal of 241Am in soils around Rocky Flats, Colorado.

    PubMed

    Litaor, M I; Allen, L

    1996-09-01

    Soils east of Rocky Flats Plant (RFETS) near Golden, Colorado, were contaminated with actinides because of accidental release of oils laden with plutonium isotopes. Consequently, these soils were contaminated by 241Am due to radioactive decay of 241Pu (t1/2 = 14.4 y). A spatial analysis of 241Am activity in soils east of RFETS was conducted to elucidate the magnitude and the mode of 241Am dispersion in the soil environment. 241Am activity of 178 soil samples ranged from 0.037 Bq kg-1 to 10,004 Bq kg-1 with a mean of 214 Bq kg-1, median of 7.28 Bq kg-1, standard deviation of 942 Bq kg-1, and a coefficient of variation of 4.3. Spatial analysis of 241Am in soils around RFETS was conducted using indicator kriging, which is a nonparametric technique especially suitable to model a conditional cumulative distribution function (ccdf) of highly skewed environmental data such as 241Am. The ccdf was used to generate an E-type (mean of the conditional cdf) surface. The resulted surfaces were consistent with the hypothesis that the westerly winds were the dominant mechanism of americium dispersal. The spatial distribution and dispersal mechanisms of 241Am were similar to those of 239+240Pu. The ccdf was also used to construct probability of exceedence maps of 241Am in soils. For the purpose of this report two threshold values for the probability maps were selected: (1) the mean measured background activity of 241Am (0.4 Bq kg-1), and (2) the programmatic preliminary remediation goal for residential occupancy scenario (87.7 Bq kg-1). The probability-of-exceedance maps provide estimates of spatial uncertainty associated with each threshold. The E-type maps in conjunction with the probability-of-exceedance maps provide a robust framework for future cleanup options and land use decisions. PMID:8698577

  15. Spatial distributions of sulphur species and sulphate-reducing bacteria provide insights into sulphur redox cycling and biodegradation hot-spots in a hydrocarbon-contaminated aquifer

    NASA Astrophysics Data System (ADS)

    Einsiedl, Florian; Pilloni, Giovanni; Ruth-Anneser, Bettina; Lueders, Tillman; Griebler, Christian

    2015-05-01

    Dissimilatory sulphate reduction (DSR) has been proven to be one of the most relevant redox reactions in the biodegradation of contaminants in groundwater. However, the possible role of sulphur species of intermediate oxidation state, as well as the role of potential re-oxidative sulphur cycling in biodegradation particularly at the groundwater table are still poorly understood. Here we used a combination of stable isotope measurements of SO42-, H2S, and S0 as well as geochemical profiling of sulphur intermediates with special emphasis on SO32-, S2O32-, and S0 to unravel possible sulphur cycling in the biodegradation of aromatics in a hydrocarbon-contaminated porous aquifer. By linking these results to the quantification of total bacterial rRNA genes and respiratory genes of sulphate reducers, as well as pyrotag sequencing of bacterial communities over depth, light is shed on possible key-organisms involved. Our results substantiate the role of DSR in biodegradation of hydrocarbons (mainly toluene) in the highly active plume fringes above and beneath the plume core. In both zones the concentration of sulphur intermediates (S0, SO32- and S2O32-) was almost twice that of other sampling-depths, indicating intense sulphur redox cycling. The dual isotopic fingerprint of oxygen and sulphur in dissolved sulphate suggested a re-oxidation of reduced sulphur compounds to sulphate especially at the upper fringe zone. An isotopic shift in δ34S of S0 of nearly +4‰ compared to the δ34S values of H2S from the same depth linked to a high abundance (∼10%) of sequence reads related to Sulphuricurvum spp. (Epsilonproteobacteria) in the same depth were indicative of intensive oxidation of S0 to sulphate in this zone. At the lower plume fringe S0 constituted the main inorganic sulphur species, possibly formed by abiotic re-oxidation of H2S with Fe(III)oxides subsequent to sulphate reduction. These results provide first insights into intense sulphur redox cycling in a hydrocarbon

  16. Impact of erosion and transfer processes in Polycyclic Aromatic Hydrocarbon contamination of water bodies in the Seine River basin (France)

    NASA Astrophysics Data System (ADS)

    Gateuille, David; Evrard, Olivier; Moreau-Guigon, Elodie; Chevreuil, Marc; Mouchel, Jean-Marie

    2014-05-01

    Polycyclic Aromatic Hydrocarbons (PAHs) reach problematic concentrations in water and sediment of numerous streams of the world. In the Seine River (France), they prevent to achieve the good chemical status enforced by European law. However, the provenance and the fate of PAHs found in rivers are still poorly understood. Here, we combined chemical and fallout radionuclide measurements conducted on a large number of suspended sediment (SS) (n = 231) and soil (n = 37) samples collected at 62 sites during an entire hydrological year. A model was developed to estimate mean PAH concentration in sediment from the population density in the drainage area and good relationships were found during both low stage and flood periods. Influence of human population also appeared to be stronger during the latter period. However, some discrepancies between measured and modeled PAH concentrations were observed and the role of the origin of SS was investigated. During the low flow period, the observed differences were explained by the provenance of river sediment (agricultural topsoil vs. eroded channel banks). Time-averaged PAH concentrations measured in suspended sediment collected in the catchments where erosion of agricultural topsoil dominated were systematically higher than the predicted values. On the contrary, in the catchments where erosion mainly occurred in deep soil or river embankment, the supply of particles protected from atmospheric fallout contamination led to measure concentrations below the predicted values. As this relationship between population density and SS contamination was no longer valid during the flood period, the role of transfer times was also investigated. The percentages of freshly eroded sediment in samples were determined by comparing the 7Be/210Pb ratio in rainfall and SS. An annual turn-over cycle of sediment was observed but no relationship was found between PAH contamination and residence times of particles within rivers. This result suggested

  17. Importance of soil-water relation in assessment endpoint in bioremediated soils: Plant growth and soil physical properties

    SciTech Connect

    Li, X.; Sawatsky, N.

    1995-12-31

    Much effort has been focused on defining the end-point of bioremediated soils by chemical analysis (Alberta Tier 1 or CCME Guideline for Contaminated Soils) or toxicity tests. However, these tests do not completely assess the soil quality, or the capability of soil to support plant growth after bioremediation. This study compared barley (Hordeum vulgare) growth on: (i) non-contaminated, agricultural topsoil, (2) oil-contaminated soil (4% total extractable hydrocarbons, or TEH), and (3) oil-contaminated soil treated by bioremediation (< 2% TEH). Soil physical properties including water retention, water uptake, and water repellence were measured. The results indicated that the growth of barley was significantly reduced by oil-contamination of agricultural topsoil. Furthermore, bioremediation did not improve the barley yield. The lack of effects from bioremediation was attributed to development of water repellence in hydrocarbon contaminated soils. There seemed to be a critical water content around 18% to 20% in contaminated soils. Above this value the water uptake by contaminated soil was near that of the agricultural topsoil. For lower water contents, there was a strong divergence in sorptivity between contaminated and agricultural topsoil. For these soils, water availability was likely the single most important parameter controlling plant growth. This parameter should be considered in assessing endpoint of bioremediation for hydrocarbon contaminated soils.

  18. Biopiles and biofilters combined for soil cleanup

    SciTech Connect

    Lei, J.; Sansregret, J.L.; Cyr, B.

    1994-06-01

    Bioremediation of hydrocarbon-contaminated soils can be completed using a combination of biopile and biofiltration technologies. Target contaminants, such as gasoline, jet fuel, diesel fuel and other petroleum-derived products are removed from the soil by biodegradation and volatilization in the biopile. Air emissions from the biopile containing volatile hydrocarbons are treated subsequently in a biofilter, where the pollutants are degraded and mineralized by heterotrophic aerobic microorganisms. In the biopile process, contaminated soil is excavated and stockpiled in a treatment area. Remediation of the soil relies on microbial degradation and volatilization of hydrocarbons under controlled treatment conditions.

  19. Migration of selected hydrocarbon contaminants into dry semolina and egg pasta packed in direct contact with virgin paperboard and polypropylene film.

    PubMed

    Barp, Laura; Suman, Michele; Lambertini, Francesca; Moret, Sabrina

    2015-01-01

    Migration of mineral oil saturated hydrocarbons (MOSH), polyolefin oligomeric saturated hydrocarbons (POSH), and polyalphaolefins (PAO from hot melts) into dry semolina and egg pasta packed in direct contact with virgin paperboard or polypropylene (PP) flexible film was studied. Migration was monitored during shelf life (up to 24 months), through storage in a real supermarket (packs kept on shelves), conditions preventing exchange with the surrounding environment (packs wrapped in aluminium foil), and storage in a warehouse (packs inside of the transport box of corrugated board). Semolina pasta packed in virgin paperboard (without hot melts) had a MOSH content lower than 1.0 mg kg(-1). An increasing contamination with PAO belonging to the adhesives used to close the boxes was detected in egg pasta, wrapped in aluminium (1.5 and 5 mg kg(-1) after 3 and 24 months, respectively). An environmental contribution to total hydrocarbon contamination was observed in egg pasta kept on shelves that, after 3 and 24 months, showed levels of PAO/MOSH < C25 around 3 and 10 mg kg(-1), respectively. The migration of POSH from PP film into egg pasta wrapped in aluminium was around 0.6 mg kg(-1) after 3 months of contact and reached 1.7 mg kg(-1) after 24 months of contact. After 9 months of contact, semolina pasta packed in PP film and stored in the transport box showed that some MOSH migrated into the pasta from the board of the transport box (through the plastic film). PMID:26209063

  20. Comprehensive appraisal of 239 + 240Pu in soils around Rocky Flats, Colorado.

    PubMed

    Litaor, M I; Ellerbroek, D; Allen, L; Dovala, E

    1995-12-01

    Plutonium contamination of soils around Rocky Flats Environmental & Technology Site, near Golden, Colorado, resulted from past outdoor storage practices and subsequent remobilization due to inadequate cleanup practices. Until now human-health risk assessment has not been performed because of a lack of sufficient information regarding the spatial extent of 239 + 240Pu in soils. The purpose of this work was to elucidate the extent of plutonium contamination in surface soils, and to assess the uncertainty associated with the spatial distribution of 239 + 240Pu around Rocky Flats Environmental & Technology Site. Four data sets were collected or compiled for this investigation: (1) samples collected from 240 plots of 1.01- or 4.05-hectare by compositing 25 evenly-spaced samples from the upper 0.64 cm in each plot; (2) samples collected from the upper 5 cm of soil in 167 of the same 240 plots by compositing 10 samples from the center of each plot; (3) historical data compiled from samples collected between 1969 and 1973, considered to be the most indicative of the original release; and (4) the exhaustive data set that contains the samples from 1, 2, and 3 and other published data sets collected between 1974 and 1994. These latter samples varied in depth and method of sampling. Plutonium activity reported in the exhaustive data set ranged from 0.03 Bq kg-1 to 407,000 Bq kg-1 with a mean of 1,443 Bq kg-1, median of 6.6 Bq kg-1, standard deviation of 18,463 Bq kg-1, and a coefficient of variation of 12.6. The technique of nonparametric indicator kriging was used to model four conditional cumulative distribution functions of 239 + 240Pu in soils around Rocky Flats Environmental & Technology Site. Each of the conditional cumulative distribution functions was used to generate an E-type (mean of the conditional cumulative distribution functions) surface. The resulted surfaces were consistent with the hypothesis that the westerly winds were the dominant mechanism of plutonium

  1. Petroleum hydrocarbon contamination, plant identity and arbuscular mycorrhizal fungal (AMF) community determine assemblages of the AMF spore-associated microbes.

    PubMed

    Iffis, Bachir; St-Arnaud, Marc; Hijri, Mohamed

    2016-09-01

    The root-associated microbiome is a key determinant of pollutant degradation, soil nutrient availability and plant biomass productivity, but could not be examined in depth prior to recent advances in high-throughput sequencing. Arbuscular mycorrhizal fungi (AMF) form symbioses with the majority of vascular plants. They are known to enhance mineral uptake and promote plant growth and are postulated to influence the processes involved in phytoremediation. Amplicon sequencing approaches have previously shown that petroleum hydrocarbon pollutant (PHP) concentration strongly influences AMF community structure in in situ phytoremediation experiments. We examined how AMF communities and their spore-associated microbiomes were structured within the rhizosphere of three plant species growing spontaneously in three distinct waste decantation basins of a former petrochemical plant. Our results show that the AMF community was only affected by PHP concentrations, while the AMF-associated fungal and bacterial communities were significantly affected by both PHP concentrations and plant species identity. We also found that some AMF taxa were either positively or negatively correlated with some fungal and bacterial groups. Our results suggest that in addition to PHP concentrations and plant species identity, AMF community composition may also shape the community structure of bacteria and fungi associated with AMF spores. PMID:27376781

  2. Field note: successful establishment of a phytoremediation system at a petroleum hydrocarbon contaminated shallow aquifer: trends, trials, and tribulations.

    PubMed

    Cook, Rachel L; Landmeyer, James E; Atkinson, Brad; Messier, Jean-Pierre; Nichols, Elizabeth Guthrie

    2010-09-01

    We report the establishment of a mixed hybrid poplar (Populus spp.) and willow (Salix spp.) phytoremediation system at a fuel-contaminated site. Several approaches were used to balance competing goals of cost-effectiveness yet successful tree establishment without artificial irrigation or trenching. Bare root and unrooted cuttings were installed using either: (1) 1.2 m deep holes excavated with an 8 cm diameter auger using a direct-push rig and backfilled with the excavated, in situ soil; (2) 1.2 m deep holes created with a 23 cm diameter auger attached to a Bobcat rig and backfilled with clean topsoil from offsite; and (3) shallow holes between 15-30 cm deep that were created with a 1.3 cm diameter rod and no backfill. Tree mortality from initial plantings indicated contaminated zones not quantified in prior site investigations and remedial actions. Aquifer heterogeneity, underground utilities, and prior remediation infrastructure hampered the ability of the site to support a traditional experimental design. Total stem length and mortality were measured for all planted trees and were incorporated into a geographic information system. Planting early in the growing season, augering a larger diameter hole, and backfilling with clean, uncontaminated topsoil was cost effective and allowed for greater tree cutting growth and survival. PMID:21166278

  3. In situ vitrification: Providing a comprehensive solution for remediation of contaminated soils

    SciTech Connect

    Tixier, J.S.; Thompson, L.E.

    1993-09-01

    In situ vitrification is a thermal treatment technology being developed for remediation of contaminated soils. The process transforms easily leached, contaminated soils into a leach-resistant, vitreous and crystalline monolith. The process is applicable to a wide range of soil types and conditions that include virtually any combination of radioactive, hazardous, and mixed waste contaminants. The process is currently applicable to sites that are less than 5-m deep and that do not contain sealed containers. The range of capabilities and limitations of the process is discussed in the paper. Also discussed are the results of two recent demonstrations, one a pilot-scale test on a model radioactive site at Oak Ridge, TN, the other a full-scale test on a mixed waste disposal crib at Hanford, WA. These and other successful tests have led to preparation for three near-term future demonstrations at these sites; a discussion of the plans and expectations for the demonstrations is also included in the paper.

  4. Rehabilitation of Seven (7) Hydrocarbon Contaminated Sites in a Brackish Water/Lagoon Environment in South Trinidad

    NASA Astrophysics Data System (ADS)

    Mohammed, Avryl; Ramnath, Kelvin; Dyal, Shyam; Lalla, Francesca; Roopchand, Jaipersad

    2007-12-01

    The Petroleum Company of Trinidad and Tobago Limited operates in a wide diversity of tropical habitats in South Trinidad one of which is a brackish water environment known as the Godineau Swamp. Historically this field was operated by predecessor multinational companies, who at that time employed operational practices based on the absence of legal requirements, that were not environmentally considerate. Following a detailed environmental audit of the field (also known as the Oropouche Field), seven (7) contaminated sites were found, that presented a risk to the lagoon and its associated mangrove swamp ecology. Remediation of the seven (7) sites was done in two (2) phases; phase 1 being sampling and characterization of the waste inclusive of migration and phase 2 the actual on-site soil remediation. Phase 1 conducted during the period December 2004 to February 2005, indicated a total of 19,484 m3 of contaminated material with TPH being the main contaminant. The average concentration of TPH was 3.25%. Phase 2 remediation was initiated in October 2005 and involved the following three (3) aspects to achieve a TPH concentration of less than 1%: ▪ Preparation of waste remediation sites adjacent to contaminated sites and excavation and spreading onto cells ▪ Bioremediation onsite using naturally occurring bacteria and rototilling ▪ Rehabilitation and closure of the site following accepted lab results. The benefits of conducting this project in the petroleum industry are to ensure compliance to the national Sensitive Areas Rules and Draft Waste Management Rules, conformance to ISO 14001 Certification requirements and conservation of biodiversity in the mangrove swamp.

  5. Determining indicator toxaphene congeners in soil using comprehensive two-dimensional gas chromatography-tandem mass spectrometry.

    PubMed

    Zhu, Shuai; Gao, Lirong; Zheng, Minghui; Liu, Huimin; Zhang, Bing; Liu, Lidan; Wang, Yiwen

    2014-01-01

    Toxaphene, which is a broad spectrum chlorinated pesticide, is a complex mixture of several hundred congeners, mainly polychlorinated bornanes. Quantifying toxaphene in environmental samples is difficult because of its complexity, and because each congener has a different response factor. Toxaphene chromatograms acquired using one-dimensional gas chromatography (1DGC) show that this technique cannot be used to separate all of the toxaphene congeners. We developed and validated a sensitive and quantitative method for determining three indicator toxaphene congeners in soil using an isotope dilution/comprehensive two-dimensional gas chromatography-tandem mass spectrometry (GC × GC-MS). The samples were extracted using accelerated solvent extraction, and then the extracts were purified using silica gel columns. (13)C₁₀-labeled Parlar 26 and 50 were used as internal standards and (13)C₁₀-labeled Parlar 62 was used as an injection standard. The sample extraction and purification treatments and the GC × GC-MS parameters were optimized. Subsequently the samples were determined by GC × GC-MS. The limits of detection for Parlar 26, 50, and 62 were 0.6 pg/g, 0.4 pg/g, and 1.0 pg/g (S/N=3), respectively, and the calibration curves had good linear correlations between 50 and 1000 μg/L (r(2)>0.99). Comprehensive two-dimensional GC gave substantial improvements over one-dimensional GC in the toxaphene analysis. We analyzed soil samples containing trace quantities of toxaphene to demonstrate that the developed method could be used to analyze toxaphene in environmental samples. PMID:24274290

  6. Bioremediation of poly-aromatic hydrocarbon (PAH)-contaminated soil by composting

    SciTech Connect

    Loick, N.; Hobbs, P.J.; Hale, M.D.C.; Jones, D.L.

    2009-07-01

    This paper presents a comprehensive and critical review of research on different co-composting approaches to bioremediate hydrocarbon contaminated soil, organisms that have been found to degrade PAHs, and PAH breakdown products. Advantages and limitations of using certain groups of organisms and recommended areas of further research effort are identified. Studies investigating the use of composting techniques to treat contaminated soil are broad ranging and differ in many respects, which makes comparison of the different approaches very difficult. Many studies have investigated the use of specific bio-additives in the form of bacteria or fungi with the aim of accelerating contaminant removal; however, few have employed microbial consortia containing organisms from both kingdoms despite knowledge suggesting synergistic relationships exist between them in contaminant removal. Recommendations suggest that further studies should attempt to systemize the investigations of composting approaches to bio-remediate PAH-contaminated soil, to focus on harnessing the biodegradative capacity of both bacteria and fungi to create a cooperative environment for PAH degradation, and to further investigate the array of PAHs that can be lost during the composting process by either leaching or volatilization.

  7. Bioremediation of petroleum hydrocarbo-contaminated soils, comprehensive report, December 1999

    SciTech Connect

    Hazen, Terry

    2000-04-01

    The US Department of Energy and the Institute for Ecology of Industrial Areas (IETU), Katowice, Poland have been cooperating in the development and implementation of innovative environmental remediation technologies since 1995. A major focus of this program has been the demonstration of bioremediation techniques to cleanup the soil and sediment associated with a waste lagoon at the Czechowice Oil Refinery (CZOR) in southern Poland. After an expedited site characterization (ESC), treatability study, and risk assessment study, a remediation system was designed that took advantage of local materials to minimize cost and maximize treatment efficiency. U.S. experts worked in tandem with counterparts from the IETU and CZOR throughout this project to characterize, assess and subsequently, design, implement and monitor a bioremediation system. The CZOR, our industrial partner for this project, was chosen because of their foresight and commitment to the use of new approaches for environmental restoration. This program sets a precedent for Poland in which a portion of the funds necessary to complete the project were provided by the company responsible for the problem. The CZOR was named by PIOS (State Environmental Protection Inspectorate of Poland) as one of the top 80 biggest polluters in Poland. The history of the CZOR dates back more than 100 years to its establishment by the Vacuum Oil Company (a U.S. company and forerunner of Standard Oil). More than a century of continuous use of a sulfuric acid-based oil refining method by the CZOR has produced an estimated 120,000 tons of acidic, highly weathered, petroleum sludge. This waste has been deposited into three open, unlined process waste lagoons, 3 meters deep, now covering 3.8 hectares. Initial analysis indicated that the sludge was composed mainly of high molecular weight paraffinic and polynuclear aromatic hydrocarbons (PAHs). The overall objective of this full-scale demonstration project was to characterize, assess

  8. Potential carbon sequestration of European arable soils estimated by modelling a comprehensive set of management practices.

    PubMed

    Lugato, Emanuele; Bampa, Francesca; Panagos, Panos; Montanarella, Luca; Jones, Arwyn

    2014-11-01

    Bottom-up estimates from long-term field experiments and modelling are the most commonly used approaches to estimate the carbon (C) sequestration potential of the agricultural sector. However, when data are required at European level, important margins of uncertainty still exist due to the representativeness of local data at large scale or different assumptions and information utilized for running models. In this context, a pan-European (EU + Serbia, Bosnia and Herzegovina, Montenegro, Albania, Former Yugoslav Republic of Macedonia and Norway) simulation platform with high spatial resolution and harmonized data sets was developed to provide consistent scenarios in support of possible carbon sequestration policies. Using the CENTURY agroecosystem model, six alternative management practices (AMP) scenarios were assessed as alternatives to the business as usual situation (BAU). These consisted of the conversion of arable land to grassland (and vice versa), straw incorporation, reduced tillage, straw incorporation combined with reduced tillage, ley cropping system and cover crops. The conversion into grassland showed the highest soil organic carbon (SOC) sequestration rates, ranging between 0.4 and 0.8 t C ha(-1)  yr(-1) , while the opposite extreme scenario (100% of grassland conversion into arable) gave cumulated losses of up to 2 Gt of C by 2100. Among the other practices, ley cropping systems and cover crops gave better performances than straw incorporation and reduced tillage. The allocation of 12 to 28% of the European arable land to different AMP combinations resulted in a potential SOC sequestration of 101-336 Mt CO2 eq. by 2020 and 549-2141 Mt CO2 eq. by 2100. Modelled carbon sequestration rates compared with values from an ad hoc meta-analysis confirmed the robustness of these estimates. PMID:24789378

  9. Comprehensive GC²/MS for the monitoring of aromatic tar oil constituents during biodegradation in a historically contaminated soil.

    PubMed

    Vasilieva, Viktoriya; Scherr, Kerstin E; Edelmann, Eva; Hasinger, Marion; Loibner, Andreas P

    2012-02-20

    The constituents of tar oil comprise a wide range of physico-chemically heterogeneous pollutants of environmental concern. Besides the sixteen polycyclic aromatic hydrocarbons defined as priority pollutants by the US-EPA (EPA-PAHs), a wide range of substituted (NSO-PAC) and alkylated (alkyl-PAC) aromatic tar oil compounds are gaining increased attention for their toxic, carcinogenic, mutagenic and/or teratogenic properties. Investigations on tar oil biodegradation in soil are in part hampered by the absence of an efficient analytical tool for the simultaneous analysis of this wide range of compounds with dissimilar analytical properties. Therefore, the present study sets out to explore the applicability of comprehensive two-dimensional gas chromatography (GC²/MS) for the simultaneous measurement of compounds with differing polarity or that are co-eluting in one-dimensional systems. Aerobic tar oil biodegradation in a historically contaminated soil was analyzed over 56 days in lab-scale bioslurry tests. Forty-three aromatic compounds were identified with GC²/MS in one single analysis. The number of alkyl chains on a molecule was found to prime over alkyl chain length in hampering compound biodegradation. In most cases, substitution of carbon with nitrogen and oxygen was related to increased compound degradation in comparison to unalkylated and sulphur- or unsubstituted PAH with a similar ring number.The obtained results indicate that GC²/MS can be employed for the rapid assessment of a large variety of structurally heterogeneous environmental contaminants. Its application can contribute to facilitate site assessment, development and control of microbial cleanup technologies for tar oil contaminated sites. PMID:21924301

  10. Immunoquantitation and microsomal monooxygenase activities of hepatic cytochromes P4501A and P4502B and chlorinated hydrocarbon contaminant levels in polar bear (Ursus maritimus).

    PubMed

    Letcher, R J; Norstrom, R J; Lin, S; Ramsay, M A; Bandiera, S M

    1996-04-01

    Contamination of the Arctic ecosystem by anthropogenic compounds has resulted in exposure of polar bear (Ursus maritimus) to lipophilic chlorinated hydrocarbon contaminants (CHCs) accumulated through the marine food web. Liver samples were collected from 16 adult male polar bears in the Canadian arctic and subjected to chemical analysis for CHCs and metabolites, determination of alkoxyresorufin O-dealkylase activities, and immunoquantitation of cytochrome P450 (CYP) protein levels. We report on the relationships between the hepatic microsomal levels of immunoreactive CYP1A and CYP2B isozymes, catalytic activities, and hepatic CHC and metabolite concentrations in polar bear. We specifically explored the influence of several CHCs on the induction of hepatic CYP in polar bear and the potential use of immunoassay quantitation as a bioindicator of CHC exposure. Polychlorinated biphenyls (PCB) classed as CYP1A and mixed CYP1A/CYP2B inducers accounted for about 25% of the total PCB residues present (18,680 +/- 5053 ng/g lipid). CYP1A protein content correlated strongly with hepatic levels of PCBs, PCDDs (0.032 +/- 0.018 ng/g lipid, and PCDFs (0.011 +/- 0.007 ng/g lipid) and their corresponding toxic equivalents (TEQ, 0.377 +/- 0.182 ng/g lipid). Mono-ortho-CB-156, CB-157, and CB-105 were the predominant TEQ contributors. Correlations between CYP2B protein content and CHC residue levels in polar bear liver suggested that ortho-chlorine-substituted PCBs and chlordanes were the major contributors to CYP2B induction. CYP1A and CYP2B contents were therefore good indicators of CHC exposure in polar bear liver. Ethoxyresorufin, pentoxyresorufin, and benzyloxyresorufin O-dealkylase activities increased with increasing CYP1A protein content up to protein levels of approximately 5 pmol/mg, suggesting that all three activities were primarily CYP1A-mediated. These results were substantiated by antibody inhibition experiments. In summary, immunoquantitated CYP1A and CYP2B isozymes are

  11. Evaluation of a miniaturised single-stage thermal modulator for comprehensive two-dimensional gas chromatography of petroleum contaminated soils.

    PubMed

    Jacobs, Matthew R; Edwards, Matthew; Górecki, Tadeusz; Nesterenko, Pavel N; Shellie, Robert A

    2016-09-01

    A novel miniaturised single-stage resistively heated thermal modulator was investigated as an alternative to cryogenic modulation for use in comprehensive two-dimensional gas chromatography (GC×GC). The single-stage thermal modulator described herein yielded average retention time relative standard deviations (RSD) of ≤0.2% RSD (first-dimension) and ≤3.4% RSD (second-dimension). The average peak widths generated by the modulator were 72±3ms, and the peak area precision was better than 5.3% RSD for a range of polar and non-polar test analytes. GC×GC analysis can be performed using this modulator without the requirement for cryogenic cooling or additional pressure control modules for flow modulation. The modulator and associated electronics are compact and amenable towards field analysis. The modulator was used for qualitative and quantitative characterisation of petroleum-contaminated soils derived from a sub-Antarctic research station at Macquarie Island. The limit of detection compared to standard 1D GC analysis was improved from 64 to 11mgkg(-1). An automated method of analysing and categorising samples using principal component analysis is presented. PMID:27527879

  12. Bioremediation: Effective treatment of petroleum-fuel-contaminated soil, a common environmental problem at industrial and governmental agency sites

    SciTech Connect

    Jolley, R.L.; Donaldson, T.L.; Siegrist, R.L.; Walker, J.F.; MacNeill, J.J.; Ott, D.W.; Machanoff, R.A.; Adler, H.I.; Phelps, T.J.

    1992-07-01

    Bioremediation methods are receiving increased attention for degradation of petroleum-fuel-hydrocarbon contamination in soils. An in situ bioremediation demonstration is being conducted on petroleum-fuel-contaminated soil at Kwajalein Island, a remote Pacific site. Bioreaction parameters studied include water, air, nutrient, and microorganism culture addition. This paper presents planning and design aspects of the demonstration that is scheduled to be completed in 1993.

  13. Bioremediation: Effective treatment of petroleum-fuel-contaminated soil, a common environmental problem at industrial and governmental agency sites

    SciTech Connect

    Jolley, R.L.; Donaldson, T.L.; Siegrist, R.L.; Walker, J.F. ); MacNeill, J.J.; Ott, D.W. ); Machanoff, R.A. ); Adler, H.I. ); Phelps, T.J. )

    1992-01-01

    Bioremediation methods are receiving increased attention for degradation of petroleum-fuel-hydrocarbon contamination in soils. An in situ bioremediation demonstration is being conducted on petroleum-fuel-contaminated soil at Kwajalein Island, a remote Pacific site. Bioreaction parameters studied include water, air, nutrient, and microorganism culture addition. This paper presents planning and design aspects of the demonstration that is scheduled to be completed in 1993.

  14. Assessment of petroleum-hydrocarbon contamination in the surficial sediments and ground water at three former underground storage tank locations, Fort Jackson, South Carolina, 1995

    USGS Publications Warehouse

    Robertson, J.F.

    1996-01-01

    laboratory analysis and field-property determinations. Petroleum hydrocarbons and lead were detected at concentrations exceeding regulatory limits for drinking water in ground water from Site 1062 only. Petroleum hydrocarbons were detected in ground water from three wells at Site 1062, with the highest concentrations occurring in the area of the former underground storage tanks. Benzene was detected at concentrations as much as 28 micrograms per liter; toluene as much as 558 micrograms per liter; para- and meta-xylenes as much as 993 micrograms per liter; and naphthalene as much as 236 micrograms per liter. Ethylbenzene and ortho-xylene were detected in one well at concentrations of 70 and 6 micrograms per liter, respectively. Dissolved lead was detected in ground water from four wells at concentrations from 5 to 152 micrograms per liter. Analysis of ground-water samples collected from Sites 2438 and 2444 showed little evidence of petroleum-hydrocarbon contamination. Petroleum hydrocarbons were not detected in any of the ground-water samples collected from Site 2438. With the exception of a low concentration of naphthalene (11 micrograms per liter) detected in ground water from one well, petroleum hydrocarbons and lead were not detected in ground water collected from Site 2444.

  15. ASSESSMENT OF GENOTOXIC ACTIVITY OF PETROLEUM HYDROCARBON-BIOREMEDIATED SOIL

    SciTech Connect

    BRIGMON, ROBIN

    2004-10-20

    The relationship between toxicity and soil contamination must be understood to develop reliable indicators of environmental restoration for bioremediation. Two bacterial rapid bioassays: SOS chromotest and umu-test with and without metabolic activation (S-9 mixture) were used to evaluate genotoxicity of petroleum hydrocarbon-contaminated soil following bioremediation treatment. The soil was taken from an engineered biopile at the Czor Polish oil refinery. The bioremediation process in the biopile lasted 4 years, and the toxicity measurements were done after this treatment. Carcinogens detected in the soil, polyaromatic hydrocarbons (PAHs), were reduced to low concentrations (2 mg/kg dry wt) by the bioremediation process. Genotoxicity was not observed for soils tested with and without metabolic activation by a liver homogenate (S-9 mixture). However, umu-test was more sensitive than SOS-chromotest in the analysis of petroleum hydrocarbon-bioremediated soil. Analytical results of soil used in the bioassays confirmed that the bioremediation process reduced 81 percent of the petroleum hydrocarbons including PAHs. We conclude that the combined test systems employed in this study are useful tools for the genotoxic examination of remediated petroleum hydrocarbon-contaminated soil.

  16. Long-term SMOS soil moisture products: A comprehensive evaluation across scales and methods in the Duero Basin (Spain)

    NASA Astrophysics Data System (ADS)

    González-Zamora, Ángel; Sánchez, Nilda; Martínez-Fernández, José; Gumuzzio, Ángela; Piles, María; Olmedo, Estrella

    The European Space Agency's Soil Moisture and Ocean Salinity (SMOS) Level 2 soil moisture and the new L3 product from the Barcelona Expert Center (BEC) were validated from January 2010 to June 2014 using two in situ networks in Spain. The first network is the Soil Moisture Measurement Stations Network of the University of Salamanca (REMEDHUS), which has been extensively used for validating remotely sensed observations of soil moisture. REMEDHUS can be considered a small-scale network that covers a 1300 km2 region. The second network is a large-scale network that covers the main part of the Duero Basin (65,000 km2). At an existing meteorological network in the Castilla y Leon region (Inforiego), soil moisture probes were installed in 2012 to provide data until 2014. Comparisons of the temporal series using different strategies (total average, land use, and soil type) as well as using the collocated data at each location were performed. Additionally, spatial correlations on each date were computed for specific days. Finally, an improved version of the Triple Collocation (TC) method, i.e., the Extended Triple Collocation (ETC), was used to compare satellite and in situ soil moisture estimates with outputs of the Soil Water Balance Model Green-Ampt (SWBM-GA). The results of this work showed that SMOS estimates were consistent with in situ measurements in the time series comparisons, with Pearson correlation coefficients (R) and an Agreement Index (AI) higher than 0.8 for the total average and the land-use averages and higher than 0.85 for the soil-texture averages. The results obtained at the Inforiego network showed slightly better results than REMEDHUS, which may be related to the larger scale of the former network. Moreover, the best results were obtained when all networks were jointly considered. In contrast, the spatial matching produced worse results for all the cases studied. These results showed that the recent reprocessing of the L2 products (v5.51) improved

  17. The performance of ammonium exchanged zeolite for the biodegradation of petroleum hydrocarbons migrating in soil water.

    PubMed

    Freidman, Benjamin L; Gras, Sally L; Snape, Ian; Stevens, Geoff W; Mumford, Kathryn A

    2016-08-01

    Nitrogen deficiency has been identified as the main inhibiting factor for biodegradation of petroleum hydrocarbons in low nutrient environments. This study examines the performance of ammonium exchanged zeolite to enhance biodegradation of petroleum hydrocarbons migrating in soil water within laboratory scale flow cells. Biofilm formation and biodegradation were accelerated by the exchange of cations in soil water with ammonium in the pores of the exchanged zeolite when compared with natural zeolite flow cells. These results have implications for sequenced permeable reactive barrier design and the longevity of media performance within such barriers at petroleum hydrocarbon contaminated sites deficient in essential soil nutrients. PMID:27132074

  18. Stimulation of hybrid poplar growth in petroleum-contaminated soils through oxygen addition and soil nutrient amendments.

    PubMed

    Rentz, Jeremy A; Chapman, Brad; Alvarez, Pedro J J; Schnoor, Jerald L

    2003-01-01

    Hybrid poplar trees (Populus deltoides x nigra DN34) were grown in a green-house using hydrocarbon-contaminated soil from a phytoremediation demonstration site in Health, Ohio. Two independent experiments investigated the effect of nutrient addition on poplar growth and the importance of oxygen addition to root development and plant growth. Biomass measurements, poplar height, and leaf color were used as indicators of plant health in the selection of a 10/5/5 NPK fertilizer applied at 1121 kg/ha (112 kg-N, 24.4 kg-P, 46.5 kg-K per ha) to enhance hybrid poplar growth at the Health site. Five passive methods of oxygen delivery were examined, including aeration tubes, gravel addition, and an Oxygen Release Compound (ORC). When ORC was placed in coffee filters above hydrocarbon-contaminated soil, a statistically significant increase of 145% was observed in poplar biomass growth, relative to unamended controls. The ORC in filters also stimulated significant increases in root density. A 15.2-cm interval of soil directly below ORC addition exhibited an increase from 2.6 +/- 1.0 mg/cm3 to 4.8 +/- 1.0 mg/cm3, showing stimulation of root growth in hydrocarbon-stained soil. The positive response of hybrid poplars to oxygen amendments suggests that overcoming oxygen limitation to plants should be considered in phytoremediation projects when soil contamination exerts a high biochemical oxygen demand, such as in former refinery sites. PMID:12710235

  19. Biodegradation of Used Motor Oil in Soil Using Organic Waste Amendments

    PubMed Central

    Abioye, O. P.; Agamuthu, P.; Abdul Aziz, A. R.

    2012-01-01

    Soil and surface water contamination by used lubricating oil is a common occurrence in most developing countries. This has been shown to have harmful effects on the environment and human beings at large. Bioremediation can be an alternative green technology for remediation of such hydrocarbon-contaminated soil. Bioremediation of soil contaminated with 5% and 15% (w/w) used lubricating oil and amended with 10% brewery spent grain (BSG), banana skin (BS), and spent mushroom compost (SMC) was studied for a period of 84 days, under laboratory condition. At the end of 84 days, the highest percentage of oil biodegradation (92%) was recorded in soil contaminated with 5% used lubricating oil and amended with BSG, while only 55% of oil biodegradation was recorded in soil contaminated with 15% used lubricating oil and amended with BSG. Results of first-order kinetic model to determine the rate of biodegradation of used lubricating oil revealed that soil amended with BSG recorded the highest rate of oil biodegradation (0.4361 day−1) in 5% oil pollution, while BS amended soil recorded the highest rate of oil biodegradation (0.0556 day−1) in 15% oil pollution. The results of this study demonstrated the potential of BSG as a good substrate for enhanced remediation of hydrocarbon contaminated soil at low pollution concentration. PMID:22919502

  20. Biodegradation of used motor oil in soil using organic waste amendments.

    PubMed

    Abioye, O P; Agamuthu, P; Abdul Aziz, A R

    2012-01-01

    Soil and surface water contamination by used lubricating oil is a common occurrence in most developing countries. This has been shown to have harmful effects on the environment and human beings at large. Bioremediation can be an alternative green technology for remediation of such hydrocarbon-contaminated soil. Bioremediation of soil contaminated with 5% and 15% (w/w) used lubricating oil and amended with 10% brewery spent grain (BSG), banana skin (BS), and spent mushroom compost (SMC) was studied for a period of 84 days, under laboratory condition. At the end of 84 days, the highest percentage of oil biodegradation (92%) was recorded in soil contaminated with 5% used lubricating oil and amended with BSG, while only 55% of oil biodegradation was recorded in soil contaminated with 15% used lubricating oil and amended with BSG. Results of first-order kinetic model to determine the rate of biodegradation of used lubricating oil revealed that soil amended with BSG recorded the highest rate of oil biodegradation (0.4361 day(-1)) in 5% oil pollution, while BS amended soil recorded the highest rate of oil biodegradation (0.0556 day(-1)) in 15% oil pollution. The results of this study demonstrated the potential of BSG as a good substrate for enhanced remediation of hydrocarbon contaminated soil at low pollution concentration. PMID:22919502

  1. Integrated magnetic, gravity, and GPR surveys to locate the probable source of hydrocarbon contamination in Sharm El-Sheikh area, south Sinai, Egypt

    NASA Astrophysics Data System (ADS)

    Morsy, Mona; Rashed, Mohamed

    2013-01-01

    Sharm El-Sheikh waters were suddenly hit by hydrocarbon spills which created a serious threat to the prosperous tourism industry in and around the city. Analysis of soil samples, water samples, and seabed samples collected in and around the contaminated bay area showed anomalous levels of hydrocarbons. An integrated geophysical investigation, using magnetic, gravity, and ground penetrating radar geophysical tools, was conducted in the headland overlooking the contaminated bay in order to delineate the possible subsurface source of contamination. The results of the geophysical investigations revealed three underground manmade reinforced concrete tanks and a complicated network of buried steel pipes in addition to other unidentified buried objects. The depths and dimensions of the discovered objects were determined. Geophysical investigations also revealed the presence of a north-south oblique slip fault running through the eastern part of the studied area. Excavations, conducted later on, confirmed the presence of one of the tanks delineated by the geophysical surveys.

  2. A comprehensive two-dimensional gas chromatography method for analyzing extractable petroleum hydrocarbons in water and soil.

    PubMed

    Seeley, Stacy K; Bandurski, Steven V; Brown, Robert G; McCurry, James D; Seeley, John V

    2007-01-01

    A flow-switching two-dimensional gas chromatography (GCxGC) apparatus has been constructed that can operate at temperatures as high as 340 degrees C. This system is employed to analyze complex hydrocarbon mixtures such as diesel fuel, gas-oil, motor oil, and petroleum contaminated environmental samples. The GCxGC system generates two-dimensional chromatograms with minimal overlap between the aliphatic and aromatic regions This allows these compound classes to be independently quantitated without prior fractionation. The GCxGC system is used to analyze extracts of spiked water samples, wastewater, and soil. The accuracy of the method is compared to that of the Massachusetts Extractable Petroleum Hydrocarbons (MA EPH) method. The GCxGC system generates a quantitative accuracy similar to the MA EPH method for the analysis of spiked water samples. The GCxGC method and the MA EPH method generate comparable levels of total hydrocarbons when wastewater is analyzed, but the GCxGC method detects a significantly higher aromatic content and lower aliphatic content. Both the GCxGC method and MA EPH method measure comparable levels of aromatics in the soil samples. PMID:18078573

  3. Current status of persistent organic pesticides residues in air, water, and soil, and their possible effect on neighboring countries: a comprehensive review of India.

    PubMed

    Yadav, Ishwar Chandra; Devi, Ningombam Linthoingambi; Syed, Jabir Hussain; Cheng, Zhineng; Li, Jun; Zhang, Gan; Jones, Kevin C

    2015-04-01

    Though the use of pesticides has offered significant economic benefits by enhancing the production and yield of food and fibers and the prevention of vector-borne diseases, evidence suggests that their use has adversely affected the health of human populations and the environment. Pesticides have been widely distributed and their traces can be detected in all areas of the environment (air, water and soil). Despite the ban of DDT and HCH in India, they are still in use, both in domestic and agricultural settings. In this comprehensive review, we discuss the production and consumption of persistent organic pesticides, their maximum residual limit (MRL) and the presence of persistent organic pesticides in multicomponent environmental samples (air, water and soil) from India. In order to highlight the global distribution of persistent organic pesticides and their impact on neighboring countries and regions, the role of persistent organic pesticides in Indian region is reviewed. Based on a review of research papers and modeling simulations, it can be concluded that India is one of the major contributors of global persistent organic pesticide distribution. This review also considers the health impacts of persistent organic pesticides, the regulatory measures for persistent organic pesticides, and the status of India's commitment towards the elimination of persistent organic pesticides. PMID:25540847

  4. Production of Alkaline Protease by Solvent-Tolerant Alkaliphilic Bacillus circulans MTCC 7942 Isolated from Hydrocarbon Contaminated Habitat: Process Parameters Optimization.

    PubMed

    Patil, Ulhas; Chaudhari, Ambalal

    2013-01-01

    In the present investigation, a newly isolated organic solvent-tolerant and alkaliphilic bacterial strain was reported from a hydrocarbon (gasoline and diesel) contaminated soil collected from the petrol station, Shirpur (India). The strain was identified as Bacillus circulans MTCC 7942, based on phenotype, biochemical, and phylogenetic analysis of 16S rRNA gene sequence. The capability of Bacillus circulans to secrete an extracellular, thermostable, alkaline protease and grow in the presence of organic solvents was explored. Bacillus circulans produced maximum alkaline protease (412 U/mL) in optimized medium (g/L): soybean meal, 15; starch, 10; KH2PO4, 1; MgSO4·7H2O, 0.05; CaCl2, 1; Na2CO3, 8; pH 10.0 at 37°C and 100 rpm. The competence of strain to grow in various organic solvents-n-octane, dodecane, n-decane, N,N-dimethylformamide, n-hexane, and dimethyl sulfoxide, establishes its potential as solvent-stable protease source for the possible applications in nonaqueous reactions and fine chemical synthesis. PMID:25937965

  5. Production of Alkaline Protease by Solvent-Tolerant Alkaliphilic Bacillus circulans MTCC 7942 Isolated from Hydrocarbon Contaminated Habitat: Process Parameters Optimization

    PubMed Central

    Patil, Ulhas; Chaudhari, Ambalal

    2013-01-01

    In the present investigation, a newly isolated organic solvent-tolerant and alkaliphilic bacterial strain was reported from a hydrocarbon (gasoline and diesel) contaminated soil collected from the petrol station, Shirpur (India). The strain was identified as Bacillus circulans MTCC 7942, based on phenotype, biochemical, and phylogenetic analysis of 16S rRNA gene sequence. The capability of Bacillus circulans to secrete an extracellular, thermostable, alkaline protease and grow in the presence of organic solvents was explored. Bacillus circulans produced maximum alkaline protease (412 U/mL) in optimized medium (g/L): soybean meal, 15; starch, 10; KH2PO4, 1; MgSO4·7H2O, 0.05; CaCl2, 1; Na2CO3, 8; pH 10.0 at 37°C and 100 rpm. The competence of strain to grow in various organic solvents—n-octane, dodecane, n-decane, N,N-dimethylformamide, n-hexane, and dimethyl sulfoxide, establishes its potential as solvent-stable protease source for the possible applications in nonaqueous reactions and fine chemical synthesis. PMID:25937965

  6. Reactive transport in unsaturated soil: Comprehensive modelling of the dynamic spatial and temporal mass balance of water and chemical components

    NASA Astrophysics Data System (ADS)

    Wissmeier, L.; Barry, D. A.

    2008-05-01

    By implementing the moisture-based form of Richards' equation into the geochemical modelling framework PHREEQC, a generic tool for the simulation of one-dimensional flow and solute transport in the vadose zone undergoing complex geochemical reactions was developed. A second-order, cell-centred, explicit finite difference scheme was employed for the numerical solution of the partial differential equations of flow and transport. In this scheme, the charge-balanced soil solution is treated as an assembly of elements, where changes in water and solute contents result from fluxes of elements across cell boundaries. Therefore, water flow is considered in terms of oxygen and hydrogen transport. The direct implementation into the geochemical framework provides access to the full set of reactions available in PHREEQC, giving capabilities beyond existing software for unsaturated flow and reaction. Possible reactions include complex aqueous speciation, cation exchange, equilibrium phase dissolution and precipitation, formation of solid solutions, redox reactions, gas phase exchange, surface adsorption considering electrostatics and kinetic reactions with user-defined rate equations, among others. Geochemical reactions were coupled to transport processes by non-iterative sequential operator splitting. The scheme is currently limited to cases where changes in physical fluid properties and hydraulic flow characteristics due to geochemical reactions are negligible. Results from extensive code verification with analytical and accurate numerical solutions as well as HYDRUS-1D show the excellent performance of the scheme for a variety of hydraulic models including the Brooks and Corey model and the van Genuchten model. High accuracy was gained by the use of integrated diffusivities in the finite difference formulation. The integration of complex geochemical reactions was verified with HP1 by simulating the infiltration of a hyperalkaline solution into a clay soil involving aqueous

  7. Bioaccessible Porosity in Soil Aggregates and Implications for Biodegradation of High Molecular Weight Petroleum Compounds.

    PubMed

    Akbari, Ali; Ghoshal, Subhasis

    2015-12-15

    We evaluated the role of soil aggregate pore size on biodegradation of essentially insoluble petroleum hydrocarbons that are biodegraded primarily at the oil-water interface. The size and spatial distribution of pores in aggregates sampled from biodegradation experiments of a clayey, aggregated, hydrocarbon-contaminated soil with relatively high bioremediation end point were characterized by image analyses of X-ray micro-CT scans and N2 adsorption. To determine the bioaccessible pore sizes, we performed separate experiments to assess the ability of hydrocarbon degrading bacteria isolated from the soil to pass through membranes with specific sized pores and to access hexadecane (model insoluble hydrocarbon). Hexadecane biodegradation occurred only when pores were 5 μm or larger, and did not occur when pores were 3 μm and smaller. In clayey aggregates, ∼ 25% of the aggregate volume was attributed to pores larger than 4 μm, which was comparable to that in aggregates from a sandy, hydrocarbon-contaminated soil (~23%) scanned for comparison. The ratio of volumes of inaccessible pores (<4 μm) to bioaccessible pores (>4 μm) in the clayey aggregates was 0.32, whereas in the sandy aggregates it was approximately 10 times lower. The role of soil microstructure on attainable bioremediation end points could be qualitatively assessed in various soils by the aggregate characterization approach outlined herein. PMID:26522627

  8. Field Application of a Rapid Spectrophotometric Method for Determination of Persulfate in Soil

    PubMed Central

    Cunningham, Colin J.; Pitschi, Vanessa; Anderson, Peter; Barry, D. A.; Patterson, Colin; Peshkur, Tanya A.

    2013-01-01

    Remediation of hydrocarbon contaminated soils can be performed both in situ and ex situ using chemical oxidants such as sodium persulfate. Standard methods for quantifying persulfate require either centrifugation or prolonged settling times. An optimized soil extraction procedure was developed for persulfate involving simple water extraction using a modified disposable syringe. This allows considerable saving of time and removes the need for centrifugation. The extraction time was reduced to only 5 min compared to 15 min for the standard approach. A comparison of the two approaches demonstrated that each provides comparable results. Comparisons were made using high (93 g kg−1 soil) and low (9.3 g kg−1 soil) additions of sodium persulfate to a petroleum hydrocarbon-contaminated soil, as well as sand spiked with diesel. Recoveries of 95±1% and 96±10% were observed with the higher application rate in the contaminated soil and spiked sand, respectively. Corresponding recoveries of 86±5% and 117±19% were measured for the lower application rate. Results were obtained in only 25 min and the method is well suited to batch analyses. In addition, it is suitable for application in a small field laboratory or even a mobile, vehicle-based system, as it requires minimal equipment and reagents. PMID:23776446

  9. A rapid in situ respiration test for measuring aerobic biodegradation rates of hydrocarbons in soil.

    PubMed

    Hinchee, R E; Ong, S K

    1992-10-01

    An in situ test method to measure the aerobic biodegradation rates of hydrocarbons in contaminated soil is presented. The test method provides an initial assessment of bioventing as a remediation technology for hydrocarbon-contaminated soil. The in situ respiration test consists of ventilating the contaminated soil of the unsaturated zone with air and periodically monitoring the depletion of oxygen (O2) and production of carbon dioxide (CO2) over time after the air is turned off. The test is simple to implement and generally takes about four to five days to complete. The test was applied at eight hydrocarbon-contaminated sites of different geological and climatic conditions. These sites were contaminated with petroleum products or petroleum fuels, except for two sites where the contaminants were primarily polycyclic aromatic hydrocarbons. Oxygen utilization rates for the eight sites ranged from 0.02 to 0.99 percent O2/hour. Estimated biodegradation rates ranged from 0.4 to 19 mg/kg of soil/day. These rates were similar to the biodegradation rates obtained from field and pilot studies using mass balance methods. Estimated biodegradation rates based on O2 utilization were generally more reliable (especially for alkaline soils) than rates based on CO2 production. CO2 produced from microbial respiration was probably converted to carbonate under alkaline conditions. PMID:1418936

  10. Laser-induced hydrocarbon contamination in vacuum

    NASA Astrophysics Data System (ADS)

    Riede, Wolfgang; Allenspacher, Paul; Schröder, Helmut; Wernham, Denny; Lien, Yngve

    2005-12-01

    We investigated laser-induced deposition processes on BK7 substrates under the influence of pulsed Q-switched Nd:YAG laser radiation, starting from small toluene partial pressures in a background vacuum environment. The composition and structure of the deposit was analyzed using microscopic methods like Nomarski DIC, dark-field and white-light interference microscopy, TEM, EDX and XPS. We found a distinct threshold for deposition built-up dependant on the partial pressure of toluene (0.2 J/cm2 at 0.1 mbar, 0.8 J/cm2 at 0.01 mbar toluene). The deposits strictly followed the spherical geometry of the laser spot. No deposit accumulated on MgF2 AR coated BK7 samples even at high toluene partial pressures. The onset of deposit was accompanied by periodic surface ripples formation. EDX and XPS analysis showed a carbon-like layer which strongly absorbed the 1 μm laser radiation. The typical number of shots applied was 50 000. In addition, long term lifetime tests of more than 5 Mio. shots per site were run.

  11. Nitrogen limiation and nitrogen fixation during alkane biodegradation in a sandy soil

    SciTech Connect

    Toccalino, P.L.; Johnson, R.L.; Boone, D.R. )

    1993-09-01

    Leaking underground storage tanks are a significant source of petroleum hydrocarbon contamination in soils and ground water. Hydrocarbon biodegradation studies have been conducted in both ground water and topsoil regions, but few studies have been done on the unsaturated zone between these two. This study examines the effects of Nitrogen on propane and butane biodegradiations in an unsaturated sandy soil. Results indicate that nitrogen additions initially stimulated both propane and butane oxidizing organisms in the soil, but that propane-amended soil became N limited whereas butane-amended soil eventually overcame its N limitations by fixing Nitrogen and that nitrogen fixing organisms grew in butane amended but not in propane amended soil. 27 refs., 6 figs.

  12. Advanced multivariate analysis to assess remediation of hydrocarbons in soils.

    PubMed

    Lin, Deborah S; Taylor, Peter; Tibbett, Mark

    2014-10-01

    Accurate monitoring of degradation levels in soils is essential in order to understand and achieve complete degradation of petroleum hydrocarbons in contaminated soils. We aimed to develop the use of multivariate methods for the monitoring of biodegradation of diesel in soils and to determine if diesel contaminated soils could be remediated to a chemical composition similar to that of an uncontaminated soil. An incubation experiment was set up with three contrasting soil types. Each soil was exposed to diesel at varying stages of degradation and then analysed for key hydrocarbons throughout 161 days of incubation. Hydrocarbon distributions were analysed by Principal Coordinate Analysis and similar samples grouped by cluster analysis. Variation and differences between samples were determined using permutational multivariate analysis of variance. It was found that all soils followed trajectories approaching the chemical composition of the unpolluted soil. Some contaminated soils were no longer significantly different to that of uncontaminated soil after 161 days of incubation. The use of cluster analysis allows the assignment of a percentage chemical similarity of a diesel contaminated soil to an uncontaminated soil sample. This will aid in the monitoring of hydrocarbon contaminated sites and the establishment of potential endpoints for successful remediation. PMID:25028320

  13. Comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry for the forensic study of cadaveric volatile organic compounds released in soil by buried decaying pig carcasses.

    PubMed

    Brasseur, Catherine; Dekeirsschieter, Jessica; Schotsmans, Eline M J; de Koning, Sjaak; Wilson, Andrew S; Haubruge, Eric; Focant, Jean-Francois

    2012-09-14

    This article reports on the use of comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-TOFMS) for forensic geotaphonomy application. Gravesoil samples were collected at various depths and analyzed for their volatile organic compound (VOC) profile. A data processing procedure was developed to highlight potential candidate marker molecules related to the decomposition process that could be isolated from the soil matrix. Some 20 specific compounds were specifically found in the soil sample taken below the carcass and 34 other compounds were found at all depths of the gravesoil samples. The group of the 20 compounds consisted of ketones, nitriles, sulfurs, heterocyclic compounds, and benzene derivatives like aldehydes, alcohols, ketones, ethers and nitriles. The group of the 34 compounds consisted of methyl-branched alkane isomers including methyl-, dimethyl-, trimethyl-, tetramethyl-, and heptamethyl-isomers ranging from C(12) to C(16). A trend in the relative presence of these alkanes over the various layers of soils was observed, with an increase in the amount of the specific alkanes when coming from the carcass to the surface. Based on the specific presence of these methyl-branched alkanes in gravesoils, we created a processing method that applies a specific script to search raw data for characteristic mass spectral features related to recognizable mass fragmentation pattern. Such screening of soil samples for cadaveric decomposition signature was successfully applied on two gravesoil sites and clearly differentiates soils at proximity of buried decaying pig carcasses from control soils. PMID:22520639

  14. APPLICATION OF CHEMICALLY ACCELERATED BIOTREATMENT TO REDUCE RISK IN OIL-IMPACTED SOILS

    SciTech Connect

    J.R. Paterek; W.W. Bogan; L.M. Lahner; V. Trbovic; E. Korach

    2001-05-01

    The overall program objective is to develop and evaluate integrated biological/physical/chemical co-treatment strategies for the remediation of wastes associated with the exploration and production of fossil energy. The specific objectives of this project are: chemical accelerated biotreatment (CAB) technology development for enhanced site remediation, application of the risk based analyses to define and support the rationale for environmental acceptable endpoints (EAE) for exploration and production wastes, and evaluate both the technological technologies in conjugation for effective remediation of hydrocarbon contaminated soils from E&P sites in the USA.

  15. APPLICATION OF CHEMICALLY ACCELERATED BIOTREATMENT TO REDUCE RISK IN OIL-IMPACTED SOILS

    SciTech Connect

    J.R. Paterek; W.W. Bogan; L.M. Lahner; A. May

    2000-04-01

    The overall program objective is to develop and evaluate integrated biological/physical/chemical co-treatment strategies for the remediation of wastes associated with the exploration and production of fossil energy. The specific objectives of this project are: chemical accelerated biotreatment (CAB) technology development for enhanced site remediation, application of the risk based analyses to define and support the rationale for environmental acceptable endpoints (EAE) for exploration and production wastes, and evaluate both the technological technologies in conjugation for effective remediation of hydrocarbon contaminated soils from E&P sites in the USA.

  16. Reclamation of petrol oil contaminated soil by rhamnolipids producing PGPR strains for growing Withania somnifera a medicinal shrub.

    PubMed

    Kumar, Rajesh; Das, Amar Jyoti; Juwarkar, Asha A

    2015-02-01

    Soil contaminated by hydrocarbons, cannot be used for agricultural intents due to their toxic effect to the plants. Surfactants producing by plant growth promotory rhizobacteria (PGPR) can effectively rig the problem of petroleum hydrocarbon contamination and growth promotion on such contaminated soils. In the present study three Pseudomonas strains isolated from contaminated soil identified by 16S rRNA analysis were ascertained for PGPR as well as biosurfactants property. Biosurfactants produced by the strains were further characterized and essayed for rhamnolipids. Inoculation of the strains in petrol hydrocarbon contaminated soil and its interaction with Withania somnifera in presence of petrol oil hydrocarbons depict that the strains helped in growth promotion of Withania somnifera in petrol oil contaminated soil while rhamnolipids helped in lowering the toxicity of petrol oil. The study was found to be beneficial as the growth and antioxidant activity of Withania sominfera was enhanced. Hence the present study signifies that rhamnolipids producing PGPR strains could be a better measure for reclamation of petrol contaminated sites for growing medicinal plants. PMID:25480735

  17. Chemical contamination and transformation of soils in hydrocarbon production regions

    NASA Astrophysics Data System (ADS)

    Zamotaev, I. V.; Ivanov, I. V.; Mikheev, P. V.; Nikonova, A. N.

    2015-12-01

    The current concepts of soil pollution and transformation in the regions of hydrocarbon production have been reviewed. The development of an oil field creates extreme conditions for pedogenesis. Tendencies in the radial migration, spatial distribution, metabolism, and accumulation of pollutants (oil, oil products, and attendant heavy metals) in soils of different bioclimatic zones have been analyzed. The radial and lateral mobility of pollution halos is a universal tendency in the technogenic transformation of soils and soil cover in the regions of hydrocarbon production. The biodegradation time of different hydrocarbon compounds strongly varies under different landscape conditions, from several months to several tens of years. The transformation of original (mineral and organic) soils to their technogenic modifications (mechanically disturbed, chemically contaminated, and chemo soils and chemozems) occurs in the impact zone of technogenic hydrocarbon fluxes under any physiographical conditions. The integrated use of the existing methods for the determination of the total content and qualitative composition of bituminous substances and polyaromatic hydrocarbons in combination with the chromatographic determination of normal alkanes and hydrocarbon gases, as well as innovative methods of studies, allows revealing new processes and genetic relationships in soils and studying the functioning of soils and soil cover. The study of the hydrocarbon contamination of soils is important for development of restoration measures and lays the groundwork for the ecological and hygienic regulation based on the zonation of soil and landscape resistance to different pollutants.

  18. Comprehensive Planning.

    ERIC Educational Resources Information Center

    Pavlenko, Victor V.

    Comprehensive planning, defined as the work of those who engage in efforts, within a delimited geographic area, to identify and order the physical, social, and economic relationships of that area, is discussed in the four sections of this paper. Section I, Introduction, describes what "planning" and "comprehensive planning" are. In Section II, Why…

  19. Comprehensive Care

    MedlinePlus

    ... Text Larger Text Print In this article A complex disease requires a comprehensive approach Today multiple sclerosis ( ... Your Whole Health, Your Whole Team: Managing Your Complex MS Symptoms Webinar/telelearning presented by Roz Kalb, ...

  20. Carbon fiber enhanced bioelectricity generation in soil microbial fuel cells.

    PubMed

    Li, Xiaojing; Wang, Xin; Zhao, Qian; Wan, Lili; Li, Yongtao; Zhou, Qixing

    2016-11-15

    The soil microbial fuel cell (MFC) is a promising biotechnology for the bioelectricity recovery as well as the remediation of organics contaminated soil. However, the electricity production and the remediation efficiency of soil MFC are seriously limited by the tremendous internal resistance of soil. Conductive carbon fiber was mixed with petroleum hydrocarbons contaminated soil and significantly enhanced the performance of soil MFC. The maximum current density, the maximum power density and the accumulated charge output of MFC mixed carbon fiber (MC) were 10, 22 and 16 times as high as those of closed circuit control due to the carbon fiber productively assisted the anode to collect the electron. The internal resistance of MC reduced by 58%, 83% of which owed to the charge transfer resistance, resulting in a high efficiency of electron transfer from soil to anode. The degradation rates of total petroleum hydrocarbons enhanced by 100% and 329% compared to closed and opened circuit controls without the carbon fiber respectively. The effective range of remediation and the bioelectricity recovery was extended from 6 to 20cm with the same area of air-cathode. The mixed carbon fiber apparently enhanced the bioelectricity generation and the remediation efficiency of soil MFC by means of promoting the electron transfer rate from soil to anode. The use of conductively functional materials (e.g. carbon fiber) is very meaningful for the remediation and bioelectricity recovery in the bioelectrochemical remediation. PMID:27162144

  1. Developments and departures in the philosophy of soil science

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Traditional soil science curriculums provide comprehensive instruction on soil properties, soil classification, and the physical, chemical, and biological processes that occur in soils. This reductionist perspective is sometimes balanced with a more holistic perspective that focuses on soils as natu...

  2. Effect of hydrocarbon pollution on the microbial properties of a sandy and a clay soil.

    PubMed

    Labud, Valeria; Garcia, Carlos; Hernandez, Teresa

    2007-01-01

    The aim of this work was to ascertain the effects of different types of hydrocarbon pollution on soil microbial properties and the influence of a soil's characteristics on these effects. For this, toxicity bioassays and microbiological and biochemical parameters were studied in two soils (one sandy and one clayey) contaminated at a loading rate of 5% and 10% with three types of hydrocarbon (diesel oil, gasoline and crude petroleum) differing in their volatilisation potential and toxic substance content. Soils were maintained under controlled conditions (50-70% water holding capacity, and room temperature) for six months and several microbiological and toxicity parameters were monitored 1, 60, 120 and 180 days after contamination. The toxic effects of hydrocarbon contamination were greater in the sandy soil. Hydrocarbons inhibited microbial biomass, the greatest negative effect being observed in the gasoline-polluted sandy soil. In both soils crude petroleum and diesel oil contamination increased microbial respiration, while gasoline had little effect on this parameter, especially in the sandy soil. In general, gasoline had the highest inhibitory effect on the hydrolase activities involved in N, P or C cycles in both soils. All contaminants inhibited hydrolase activities in the sandy soil, while in the clayey soil diesel oil stimulated enzyme activity, particularly at the higher concentration. In both soils, a phytotoxic effect on barley and ryegrass seed germination was observed in the contaminated soils, particularly in those contaminated with diesel or petroleum. PMID:17083964

  3. Thermal desorption of petroleum contaminants from soils and sand using a continuous feed lab scale rotary kiln

    SciTech Connect

    Chern, Hsien-Tsung S.; Bozzelli, J.W.

    1996-10-01

    A continuous feed rotary kiln was designed and constructed to study thermal desorption of petroleum hydrocarbon contaminants from soil and/or sand matrices. Desorption studies on sand were run on 1-dodecene, 1-hexadecene, naphthalene, and anthracene. Results show that desorption rates are effected most by temperature. Residence time is second in importance. Temperatures required for complete removal (98%) of the specific organics including multi ring aromatics range from 100-250{degrees}C. A matrix for optimized parameterization with a reasonable number of experiments was set up for studies on petroleum hydrocarbon contaminated soils from sites. Parameters included temperature, residence time, purge flow, kiln angle, rotation and soil feed. Parameters were varied to try and quantitate effects and determine optimum conditions. Temperature, residence time and purge gas velocity in this order were found to be the most important parameters in the desorption process. The effluent from the kiln was sampled and analyzed to determine the mass balance for carbon. Most of the carbon recovery ranged from 45-115%.

  4. Seasonal effects on bioremediation at a fixed site soil center

    SciTech Connect

    Solsrud, T.T.; Green, R.B.; Hater, G.R.

    1995-12-31

    Temperature influences the bioremediation rate of petroleum hydrocarbon contaminated soil. The measurement of oxygen utilization and carbon dioxide production is a commonly used method of estimating aerobic microbiological activity in soils. In this study, oxygen, carbon dioxide and temperature were monitored at multiple depths during winter and summer operation of two aerated soil piles. Each pile contains up to 40,000 tons of petroleum contaminated soil. This remediation technique known as vacuum heap, consists of an aerated pile inoculated with petroleum degrading bacterial cultures and a nutrient source. Results of the study suggest that carbon dioxide production and oxygen utilization are sensitive to changes in soil temperature. Although soil microbial activity, as measured by oxygen use and carbon dioxide production, slowed at very low temperatures, it did not cease completely. Additionally, petroleum hydrocarbon levels during winter and summer operation were reduced to such levels that the remediated soil could be beneficially reused, thus demonstrating the feasibility of year round treatment of petroleum contaminated soil using this technique.

  5. Combination of surfactant enhanced soil washing and electro-Fenton process for the treatment of soils contaminated by petroleum hydrocarbons.

    PubMed

    Huguenot, David; Mousset, Emmanuel; van Hullebusch, Eric D; Oturan, Mehmet A

    2015-04-15

    In order to improve the efficiency of soil washing treatment of hydrocarbon contaminated soils, an innovative combination of this soil treatment technique with an electrochemical advanced oxidation process (i.e. electro-Fenton (EF)) has been proposed. An ex situ soil column washing experiment was performed on a genuinely diesel-contaminated soil. The washing solution was enriched with surfactant Tween 80 at different concentrations, higher than the critical micellar concentration (CMC). The impact of soil washing was evaluated on the hydrocarbons concentration in the leachates collected at the bottom of the soil columns. These eluates were then studied for their degradation potential by EF treatment. Results showed that a concentration of 5% of Tween 80 was required to enhance hydrocarbons extraction from the soil. Even with this Tween 80 concentration, the efficiency of the treatment remained very low (only 1% after 24 h of washing). Electrochemical treatments performed thereafter with EF on the collected eluates revealed that the quasi-complete mineralization (>99.5%) of the hydrocarbons was achieved within 32 h according to a linear kinetic trend. Toxicity was higher than in the initial solution and reached 95% of inhibition of Vibrio fischeri bacteria measured by Microtox method, demonstrating the presence of remaining toxic compounds even after the complete degradation. Finally, the biodegradability (BOD₅/COD ratio) reached a maximum of 20% after 20 h of EF treatment, which is not enough to implement a combined treatment with a biological treatment process. PMID:25646675

  6. Evaluation of the potential use of microorganisms in the cleanup of petroleum hydrocarbon spills in soils. Final report

    SciTech Connect

    Gunnison, D.

    1991-09-01

    Soils and sediments at many military facilities have been contaminated with petroleum hydrocarbons (gasoline, lubricating oil, diesel fuel, aviation fuel), often as a consequence of spills occurring during storage and/or active use. Various elements of the military are required to clean up contamination resulting from any activity on lands under their jurisdiction. Leakage occurring in underground storage tanks near ground water aquifers can be a particularly serious problem, resulting in contamination of ground water. The presence of petroleum hydrocarbon contaminants in flooded soils and sediments can pose unacceptable toxic hazards to the environment. A study was undertaken to examine the feasibility of using native soil micro-flora to degrade diesel fuels, fuel oil, and motor oils within the soil matrix; to isolate and identify those environmental factors controlling the rate and extent of degradation; and to develop procedures to optimize the rate and extent of biodegradation achieved.

  7. Nutrient-stimulated biodegradation of aged refinery hydrocarbons in soil

    SciTech Connect

    Drake, E.N.; Stokley, K.E.; Calcavecchio, P.; Bare, R.E.; Rothenburger, S.J.; Prince, R.C.; Douglas, G.S.

    1995-12-31

    Aged hydrocarbon-contaminated refinery soil was amended with water and nutrients and tilled weekly for 1 year to stimulate biodegradation. Gas chromatography/mass spectrometry (GC/MS) analysis of polycyclic aromatic compounds (PAHs) and triterpane biomarkers, and Freon IR analysis of total petroleum hydrocarbons (TPH), were used to determine the extent of biodegradation. There was significant degradation of extractable hydrocarbon (up to 60%), but neither hopane, oleanane, nor the amount of polars decreased during this period of bioremediation, allowing them to be used as conserved internal markers for estimating biodegradation. Significant degradation of the more alkylated two- and three-ring compounds, and of the four-ring species pyrene and chrysene and their alkylated congeners, was seen. Substantial degradation (> 40%) of benzo(b)fluoranthene, benzo(k)fluoranthene, and benzo(a)pyrene also was seen. The results show that bioremediation can be a useful treatment in the cleanup of contaminated refinery sites.

  8. In situ recycling of contaminated soil uses bioremediation

    SciTech Connect

    Shevlin, P.J.; Reel, D.A.

    1996-04-01

    OxyChem Pipeline Operations, primarily an ethylene and propylene products mover, has determined that substantial savings can be realized by adopting a bioremediation maintenance and recycling approach to hydrocarbon-contaminated soil. By this method, the soil can be recycled in situ, or in containers. To implement the soil-recycling program, OxyChem elected to use a soil remediator and natural absorbent product, Oil Snapper. This field maintenance material, based on an Enhanced Urea Technology, provides a diet to stimulate the growth of hydrocarbon-eating microbes. It works well either with indigenous soil microbes or with commercial microbes. The product is carried in field vehicles, which makes it immediately available when leaks or spills are discovered. Procedure for clean-up is to apply product and mix it into affected soil. Thus the contaminant is contained, preventing further migration; the contaminant is dispersed throughout the product, making it more accessible to the microbes; nutrients are immediately available to the microbes; and the material contributes aeration and moisture-retention properties.

  9. Enhanced crude oil biodegradation in soil via biostimulation.

    PubMed

    Al-Saleh, Esmaeil; Hassan, Ali

    2016-08-01

    Research on feasible methods for the enhancement of bioremediation in soil contaminated by crude oil is vital in oil-exporting countries such as Kuwait, where crude oil is a major pollutant and the environment is hostile to biodegradation. This study investigated the possibility of enhancing crude oil bioremediation by supplementing soil with cost-effective organic materials derived from two widespread locally grown trees, Conocarpus and Tamarix. Amendments in soils increased the counts of soil microbiota by up to 98% and enhanced their activity by up to 95.5%. The increase in the biodegradation of crude oil (75%) and high levels of alkB expression substantiated the efficiency of the proposed amendment technology for the bioremediation of hydrocarbon-contaminated sites. The identification of crude-oil-degrading bacteria revealed the dominance of the genus Microbacterium (39.6%), Sphingopyxis soli (19.3%), and Bordetella petrii (19.6%) in unamended, Conocarpus-amended, and Tamarix-amended contaminated soils, respectively. Although soil amendments favored the growth of Gram-negative bacteria and reduced bacterial diversity, the structures of bacterial communities were not significantly altered. PMID:26854134

  10. Matrix effects in applying mono- and polyclonal ELISA systems to the analysis of weathered oils in contaminated soil.

    PubMed

    Pollard, S J T; Farmer, J G; Knight, D M; Young, P J

    2002-01-01

    Commercial mono- and polyclonal enzyme-linked immunosorbent assay (ELISA) systems were applied to the on-site analysis of weathered hydrocarbon-contaminated soils at a former integrated steelworks. Comparisons were made between concentrations of solvent extractable matter (SEM) determined gravimetrically by Soxhlet (dichloromethane) extraction and those estimated immunologically by ELISA determination over a concentration range of 2000-330,000 mg SEM/kg soil dry weight. Both ELISA systems tinder-reported for the more weathered soil samples. Results suggest this is due to matrix effects in the sample rather than any inherent bias in the ELISA systems and it is concluded that, for weathered hydrocarbons typical of steelworks and coke production sites, the use of ELISA requires careful consideration as a field technique. Consideration of the target analyte relative to the composition of the hydrocarbon waste encountered appears critical. PMID:11858166

  11. A Rapid, Fluorescence-Based Field Screening Technique for Organic Species in Soil and Water Matrices.

    PubMed

    Russell, Amber L; Martin, David P; Cuddy, Michael F; Bednar, Anthony J

    2016-06-01

    Real-time detection of hydrocarbon contaminants in the environment presents analytical challenges because traditional laboratory-based techniques are cumbersome and not readily field portable. In the current work, a method for rapid and semi-quantitative detection of organic contaminants, primarily crude oil, in natural water and soil matrices has been developed. Detection limits in the parts per million and parts per billion were accomplished when using visual and digital detection methods, respectively. The extraction technique was modified from standard methodologies used for hydrocarbon analysis and provides a straight-forward separation technique that can remove interference from complex natural constituents. For water samples this method is semi-quantitative, with recoveries ranging from 70 % to 130 %, while measurements of soil samples are more qualitative due to lower extraction efficiencies related to the limitations of field-deployable procedures. PMID:26988223

  12. Integration of geophysical, geochemical and microbiological data for a comprehensive small-scale characterization of an aged LNAPL-contaminated site.

    PubMed

    Arato, Alessandro; Wehrer, Markus; Biró, Borbala; Godio, Alberto

    2014-01-01

    Characterization of aged hydrocarbon-contaminated sites is often a challenge due to the heterogeneity of subsurface conditions. Geoelectrical methods can aid in the characterization of such sites due to their non-invasive nature, but need to be supported by geochemical and microbiological data. In this study, a combination of respective methods was used to characterize an aged light non-aqueous phase liquid-contaminated site, which was the scene of a crude oil blow-out in 1994. As a consequence, a significant amount of crude oil was released into the subsurface. Complex resistivity has been acquired, both along single boreholes and in cross-hole configuration, in a two-borehole test site addressed with electrodes, to observe the electrical behaviour at the site over a two-year period (2010-2011). Geoelectrical response has been compared to results of the analysis of hydrocarbon contamination in soil and groundwater samples. Geochemical parameters of groundwater have been observed by collecting samples in a continuous multi-channel tubing (CMT) piezometer system. We have also performed a biological characterization on soil samples by drilling new boreholes close to the monitoring wells. Particular attention has been given to the characterization of the smear zone that is the sub-soil zone affected by the seasonal groundwater fluctuations. In the smear zone, trapped hydrocarbons were present, serving as organic substrate for chemical and biological degradation, as was indicated by an increase of microbial biomass and activity as well as ferrogenic-sulfidogenic conditions in the smear zone. The results show a good agreement between the intense electrical anomaly and the peaks of total organic matter and degradation by-products, particularly enhanced in the smear zone. PMID:24091526

  13. Peculiarities of Environment Pollution as a Special Type of Radioactive Waste: Field Means for Comprehensive Characterization of Soil and Bottom Sediments and their Application in the Survey at the Flood plain of Techa River - 13172

    SciTech Connect

    Ivanov, Oleg; Danilovich, Alexey; Potapov, Victor; Stepanov, Vyacheslav; Smirnov, Sergey; Volkovich, Anatoly

    2013-07-01

    Contamination of natural objects - zone alarm fallout, zones and flood plains near production sites (the result of technological accidents and resource extraction) occupy large areas. Large area and volume of contaminated matter, moderate specific activity (as low - medium-level wastes) make such objects specific types of radioactive waste. These objects exist for a long time, now they are characterized by a bound state of nuclides with the matrix. There is no cost-effective ways to remove these waste, the only solution for the rehabilitation of such areas is their isolation and regular monitoring through direct and indirect measurements. The complex of instruments was developed to field mapping of contamination. It consists of a portable spectrometric collimated detector, collimated spectrometric borehole detector, underwater spectrometer detector, spectrometer for field measurements of the specific activity of Sr-90, connected to a portable MCA 'Colibry (Hummingbird)'. The complex was used in settlements of Bryansk region, rivers Techa and Yenisei. The effectiveness of the developed complex considered by the example of characterization of the reservoir 10 (artificial lake) in Techinsky cascade containing a huge amount of radioactive waste. The developed field means for comprehensive characterization of soil and bottom sediments contamination are very effective for mapping and monitoring of environment contamination after accidents. Especially in case of high non-uniformity of fallout and may be very actual in Fukushima area. (authors)

  14. Abundance and diversity of soil petroleum hydrocarbon-degrading microbial communities in oil exploring areas.

    PubMed

    Yang, Yuyin; Wang, Jie; Liao, Jingqiu; Xie, Shuguang; Huang, Yi

    2015-02-01

    Alkanes and polycyclic aromatic hydrocarbons (PAHs) are the commonly detected petroleum hydrocarbon contaminants in soils in oil exploring areas. Hydrocarbon-degrading genes are useful biomarks for estimation of the bioremediation potential of contaminated sites. However, the links between environmental factors and the distribution of alkane and PAH metabolic genes still remain largely unclear. The present study investigated the abundances and diversities of soil n-alkane and PAH-degrading bacterial communities targeting both alkB and nah genes in two oil exploring areas at different geographic regions. A large variation in the abundances and diversities of alkB and nah genes occurred in the studied soil samples. Various environmental variables regulated the spatial distribution of soil alkane and PAH metabolic genes, dependent on geographic location. The soil alkane-degrading bacterial communities in oil exploring areas mainly consisted of Pedobacter, Mycobacterium, and unknown alkB-harboring microorganisms. Moreover, the novel PAH-degraders predominated in nah gene clone libraries from soils of the two oil exploring areas. This work could provide some new insights towards the distribution of hydrocarbon-degrading microorganisms and their biodegradation potential in soil ecosystems. PMID:25236802

  15. Organic wastes to enhance phyto-treatment of diesel-contaminated soil.

    PubMed

    Dadrasnia, Arezoo; Agamuthu, P

    2013-11-01

    Toxic inorganic and organic chemicals are major contributors to environmental contamination and pose major health risks to human population. In this work, Dracaena reflexa and Podocarpus polystachyus were investigated for their potential to remove hydrocarbons from 2.5% and 1% diesel fuel-contaminated soil amended individually with 5% organic wastes (tea leaf, soy cake and potato skin) for a period of 270 days. Loss of 90% and 99% oil was recorded in soil contaminated with 2.5% and 1% oil with soy cake amendment, respectively, compared with 52% and 62% in unamended soil with D. reflexa at the end of 270 days. Similarly, 84% and 91% oil loss was recorded for P. polystachyus amended with organic wastes in 2.5% and 1% oil, respectively. Diesel fuel disappeared more rapidly in the soil amendment with SC than in other organic waste supplementation. It was evident that plants did not accumulate hydrocarbon from the soil, while the number of hydrocarbon-utilizing bacteria was high in the rhizosphere, thus suggesting that the mechanism of the oil degradation was rhizodegradation. The kinetic model result indicated a high rate of degradation in soil amendment with SC at 1% with D. reflexa compared with other treatments. Thus, a positive relationship was observed between diesel hydrocarbon degradation with plant biomass production. Dracaena reflexa with organic wastes amendment has a greater potential of restoring hydrocarbon-contaminated soil compared to P. polystachyus plant. PMID:24025373

  16. Carbazole degradation in the soil microcosm by tropical bacterial strains

    PubMed Central

    Salam, Lateef B.; Ilori, Matthew O.; Amund, Olukayode O.

    2015-01-01

    In a previous study, three bacterial strains isolated from tropical hydrocarbon-contaminated soils and phylogenetically identified as Achromobacter sp. strain SL1, Pseudomonas sp. strain SL4 and Microbacterium esteraromaticum strain SL6 displayed angular dioxygenation and mineralization of carbazole in batch cultures. In this study, the ability of these isolates to survive and enhance carbazole degradation in soil were tested in field-moist microcosms. Strain SL4 had the highest survival rate (1.8 x 107 cfu/g) after 30 days of incubation in sterilized soil, while there was a decrease in population density in native (unsterilized) soil when compared with the initial population. Gas chromatographic analysis after 30 days of incubation showed that in sterilized soil amended with carbazole (100 mg/kg), 66.96, 82.15 and 68.54% were degraded by strains SL1, SL4 and SL6, respectively, with rates of degradation of 0.093, 0.114 and 0.095 mg kg−1 h−1. The combination of the three isolates as inoculum in sterilized soil degraded 87.13% carbazole at a rate of 0.121 mg kg−1 h−1. In native soil amended with carbazole (100 mg/kg), 91.64, 87.29 and 89.13% were degraded by strains SL1, SL4 and SL6 after 30 days of incubation, with rates of degradation of 0.127, 0.121 and 0.124 mg kg−1 h−1, respectively. This study successfully established the survivability (> 106 cfu/g detected after 30 days) and carbazole-degrading ability of these bacterial strains in soil, and highlights the potential of these isolates as seed for the bioremediation of carbazole-impacted environments. PMID:26691461

  17. Enzymatic bioremediation of polyaromatic hydrocarbons by fungal consortia enriched from petroleum contaminated soil and oil seeds.

    PubMed

    Balaji, V; Arulazhagan, P; Ebenezer, P

    2014-05-01

    The present study focuses on fungal strains capable of secreting extracellular enzymes by utilizing hydrocarbons present in the contaminated soil. Fungal strains were enriched from petroleum hydrocarbons contaminated soil samples collected from Chennai city, India. The potential fungi were isolated and screened for their enzyme secretion such as lipase, laccase, peroxidase and protease and also evaluated fungal enzyme mediated PAHs degradation. Total, 21 potential PAHs degrading fungi were isolated from PAHs contaminated soil, which belongs to 9 genera such as Aspergillus, Curvularia, Drechslera, Fusarium, Lasiodiplodia, Mucor Penicillium, Rhizopus, Trichoderma, and two oilseed-associated fungal genera such as Colletotrichum and Lasiodiplodia were used to test their efficacy in degradation of PAHs in polluted soil. Maximum lipase production was obtained with P. chrysogenum, M. racemosus and L. theobromae VBE1 under optimized cultural condition, which utilized PAHs in contaminated soil as sole carbon source. Fungal strains, P. chrysogenum, M. racemosus and L. theobromae VBE1, as consortia, used in the present study were capable of degrading branched alkane isoprenoids such as pristine (C17) and pyrene (C18) present in PAHs contaminated soil with high lipase production. The fungal consortia acts as potential candidate for bioremediation of PAHs contaminated environments. PMID:24813008

  18. Minnesota's Soils and Their Uses.

    ERIC Educational Resources Information Center

    Halsey, Clifton

    There is an increasing need for land planning and understanding soil is one step toward assuring proper land use. This publication, written by soil scientists and teachers, is designed as a reference for high school teachers. It is designed to be a comprehensive collection about Minnesota soils (although the information can be applied to other…

  19. Evaluation of aromatic pathway induction for creosote contaminated soils in slurried soil media designed to achieve environmentally acceptable treatment endpoints

    SciTech Connect

    Glaser, J.; McCauley, P.; Potter, C.; Herrmann, R.; Dosani, M.

    1995-12-31

    Polyaromatic hydrocarbon contaminants (PAHs) are commonly associated with the use of creosote for wood preservation and the process residues left by municipal gas production. The biological treatment of this set of organic compounds has been found to be difficult since they have low water solubility and reactivity in soil systems. Liquid culture studies have shown that inducer chemicals may assist the biotreatment of PAH contaminated soils. A set of designed experimental treatments were conducted to evaluate the incorporation of potential inducer compounds. The inducers chosen for evaluation were 2-hydroxybenzoic acid and phthalic acid with treatment controls of 3-hydroxybenzoic acid and terephthalic acid at three concentrations in slurried creosote-contaminated soil. An abiotic treatment control of formaldehyde was used for contrast. The designed treatment evaluation used 250mL Erlenmeyer flask slurry reaction vessels. The flask study used an orbital shaker to maintain slurry suspension. At selected time points throughout the study individual flask reactors were sacrificed and the contents were analyzed for PAH concentration, nutrients, and biomass (FAME Analysis). Depletion of individual PAHs, total PAHs, 2 and 3-ring, and 4 and 6-ring PAHs was correlation with the biomass. The effect of selected surfactant addition was also evaluated. Rates of PAH depletion and applications to larger scale investigations will be discussed.

  20. Comprehension of Discourse Markers and Reading Comprehension

    ERIC Educational Resources Information Center

    Khatib, Mohamad

    2011-01-01

    According to many research findings, the presence of discourse markers (DMs) enhances readers' comprehension of the texts they read. However, there is a paucity of research on the relationship between knowledge of DMs and reading comprehension (RC) and the present study explores the relationship between them. Knowledge of DMs is measured through…

  1. Persistence of chlorinated hydrocarbon contamination in a California marine ecosystem

    SciTech Connect

    Young, D.R.; Gossett, R.W.; Heesen, T.C.

    1989-01-01

    Despite major reductions in the dominant DDT and polychlorinated biphenyls (PCB) input off Los Angeles (California, U.S.A.) in the early 1970s, the levels of these pollutants decreased only slightly from 1972 to 1975 both in surficial bottom sediments and in a flatfish bioindicator (Dover sole, Microstomus pacificus) collected near the submarine outfall. Concentrations of these pollutants in the soft tissues of the mussel Mytilus californianus, collected intertidally well inshore of the highly contaminated bottom sediments, followed much more closely the decreases in the outfall discharges. These observations suggest that contaminated sediments on the seafloor were the principal (although not necessarily direct) cause of the relatively high and persistent concentrations of DDT and PCB residues in tissues. The study indicated that residues of the higher-molecular-weight chlorinated hydrocarbons, such as DDT and PCB, can be highly persistent once released to coastal marine ecosystems and that their accumulation in surficial bottom sediments is the most likely cause of this persistence observed in the biota of the discharge zone.

  2. PERSISTENCE OF CHLORINATED HYDROCARBON CONTAMINATION IN A CALIFORNIA MARINE ECOSYSTEM

    EPA Science Inventory

    Despite major reductions in the dominant DDT and polychlorinated biphenyls (PCB) input off Los Angeles (California, USA) in the early 1970s, the levels of these pollutants decreased only slightly from 1972 to 1975 both in surficial bottom sediments and in a flatfish bioindicator ...

  3. Apparatus for removing hydrocarbon contaminants from solid materials

    DOEpatents

    Bala, G.A.; Thomas, C.P.

    1996-02-13

    A system is described for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste). 4 figs.

  4. Method for removing hydrocarbon contaminants from solid materials

    DOEpatents

    Bala, G.A.; Thomas, C.P.

    1995-10-03

    A system is described for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste). 4 figs.

  5. Method for removing hydrocarbon contaminants from solid materials

    DOEpatents

    Bala, Gregory A.; Thomas, Charles P.

    1995-01-01

    A system for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste).

  6. Apparatus for removing hydrocarbon contaminants from solid materials

    DOEpatents

    Bala, Gregory A.; Thomas, Charles P.

    1996-01-01

    A system for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste).

  7. Novel method for cleaning a vacuum chamber from hydrocarbon contamination

    SciTech Connect

    Wanzenboeck, H. D.; Roediger, P.; Hochleitner, G.; Bertagnolli, E.; Buehler, W.

    2010-11-15

    A novel method for cleaning a high vacuum chamber is presented. This method is based on concurrent in situ high-energetic UV light activation of contaminants located in the residual gas and at the vacuum chamber surfaces as well as the in situ generation of highly reactive ozone. Ozone oxidizes the contaminants to volatile species. Investigations by energy-dispersive x-ray analysis of residual gas depositions and mass-spectroscopy measurements of the residual gas in the vacuum chamber identify the contaminant species as hydrocarbons. After a cleaning period of 8 h, a decrease in measured chamber contamination by about 90% could be achieved according to atomic force microscope analysis. Mass spectroscopy measurements using a residual gas analyzer indicate the creation of volatile, carbonaceous species during the cleaning process.

  8. BIOREMEDIATION OF PETROLEUM HYDROCARBON CONTAMINANTS IN MARINE HABITATS

    EPA Science Inventory

    Bioremediation is being increasingly seen as an effective environmentally benign treatment for shorelines contaminated as a result of marine oil spills. Despite a relatively long history of research on oil-spill bioremediation, it remains an essentially empirical technology and m...

  9. Teaching Comprehension Skills.

    ERIC Educational Resources Information Center

    Georgia Association of School Superintendents.

    Materials used in a one-day conference on teaching reading comprehension skills are summarized in this publication. Contents consist of three articles on teaching the comprehension skills, informal reading inventories in science and in geography, Lincoln's Gettysburg Address with comprehension questions, a checklist for the evaluation of teaching…

  10. Rystrom Reading Comprehension Test.

    ERIC Educational Resources Information Center

    Rystrom, Richard

    Designed to measure specific dimensions of reading comprehension, the items for this test are based on a comprehension model which suggests that comprehension can be defined as six different skill areas: vocabulary, syntax, item recall, item sequence, interpretation, and evaluation. The test is divided into sections to correspond to each of the…

  11. Comprehension of Connected Discourse.

    ERIC Educational Resources Information Center

    Mosberg, Ludwig; Shima, Fred

    A rationale was developed for researching reading comprehension based on information gain. Previous definitions of comprehension which were reviewed included operational vs. nonoperational and skills vs. processes. Comprehension was viewed as an informational processing event which includes a constellation of cognitive and learning processes. Two…

  12. Direct measurement of surface carbon concentrations. [in lunar soil

    NASA Technical Reports Server (NTRS)

    Filleux, C.; Tombrello, T. A.; Burnett, D. S.

    1977-01-01

    Measurements of surface concentrations of carbon in lunar soils and soil breccias provide information on the origin of carbon in the regolith. The reaction C-12 (d, p sub zero) is used to measure 'surface' and 'volume' concentrations in lunar samples. This method has a depth resolution of 1 micron, which permits only a 'surface' and a 'volume' component to be measured. Three of four Apollo 16 double drive tube samples show a surface carbon concentration of about 8 by 10 to the 14th power/sq cm, whereas the fourth sample gave 4 by 10 to the 14th power/sq cm. It can be convincingly shown that the measured concentration does not originate from fluorocarbon or hydrocarbon contaminants. Surface adsorbed layers of CO or CO2 are removed by a sputter cleaning procedure using a 2-MeV F beam. It is shown that the residual C concentration of 8 by 10 to the 14th power/sq cm cannot be further reduced by increased F fluence, and it is therefore concluded that it is truly lunar. If one assumes that the measured surface C concentration is a steady-state concentration determined only by a balance between solar-wind implantation and sputtering, a sputter erosion rate of 0.1 A/yr is obtained. However, it would be more profitable to use an independently derived sputter erosion rate to test the hypothesis of a solar-wind origin of the surface carbon.

  13. Chemometric assessment of enhanced bioremediation of oil contaminated soils.

    PubMed

    Soleimani, Mohsen; Farhoudi, Majid; Christensen, Jan H

    2013-06-15

    Bioremediation is a promising technique for reclamation of oil polluted soils. In this study, six methods for enhancing bioremediation were tested on oil contaminated soils from three refinery areas in Iran (Isfahan, Arak, and Tehran). The methods included bacterial enrichment, planting, and addition of nitrogen and phosphorous, molasses, hydrogen peroxide, and a surfactant (Tween 80). Total petroleum hydrocarbon (TPH) concentrations and CHEMometric analysis of Selected Ion Chromatograms (SIC) termed CHEMSIC method of petroleum biomarkers including terpanes, regular, diaromatic and triaromatic steranes were used for determining the level and type of hydrocarbon contamination. The same methods were used to study oil weathering of 2 to 6 ring polycyclic aromatic compounds (PACs). Results demonstrated that bacterial enrichment and addition of nutrients were most efficient with 50% to 62% removal of TPH. Furthermore, the CHEMSIC results demonstrated that the bacterial enrichment was more efficient in degradation of n-alkanes and low molecular weight PACs as well as alkylated PACs (e.g. C₃-C₄ naphthalenes, C₂ phenanthrenes and C₂-C₃ dibenzothiophenes), while nutrient addition led to a larger relative removal of isoprenoids (e.g. norpristane, pristane and phytane). It is concluded that the CHEMSIC method is a valuable tool for assessing bioremediation efficiency. PMID:23644688

  14. A battery of bioassays for the evaluation of phenanthrene biotoxicity in soil.

    PubMed

    Khan, Muhammad Imran; Cheema, Sardar Alam; Tang, Xianjin; Hashmi, Muhammad Zaffar; Shen, Chaofeng; Park, Joonhong; Chen, Yingxu

    2013-07-01

    A battery of bioassays was used to assess the ecotoxicological risk of soil spiked with a range of phenanthrene levels (0.95, 6.29, 38.5, 58.7, 122, and 303 μg g(-1) dry soil) and aged for 69 days. Multiple species (viz. Brassica rapa, Eisenia feotida, Vibrio fischeri), representing different trophic levels, were used as bioindicator organisms. Among acute toxicity assays tested, the V. fischeri luminescence inhibition assay was the most sensitive indicator of phenanthrene biotoxicity. More than 15 % light inhibition was found at the lowest phenanthrene level (0.95 μg g(-1)). Furthermore, comet assay using E. fetida was applied to assess genotoxicity of phenanthrene. The strong correlation (r (2) ≥ 0.94) between phenanthrene concentration and DNA damage indicated that comet assay is appropriate for testing the genotoxic effects of phenanthrene-contaminated soil. In the light of these results, we conclude that the Microtox test and comet assay are robust and sensitive bioassays to be employed for the risk evaluation of polycyclic aromatic hydrocarbon-contaminated soil. PMID:23440446

  15. Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation.

    PubMed

    Xun, Feifei; Xie, Baoming; Liu, Shasha; Guo, Changhong

    2015-01-01

    To investigate the effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) on phytoremediation in saline-alkali soil contaminated by petroleum, saline-alkali soil samples were artificially mixed with different amount of oil, 5 and 10 g/kg, respectively. Pot experiments with oat plants (Avena sativa) were conducted under greenhouse condition for 60 days. Plant biomass, physiological parameters in leaves, soil enzymes, and degradation rate of total petroleum hydrocarbon were measured. The result demonstrated that petroleum inhibited the growth of the plant; however, inoculation with PGPR in combination with AMF resulted in an increase in dry weight and stem height compared with noninoculated controls. Petroleum stress increased the accumulation of malondialdehyde (MDA) and free proline and the activities of the antioxidant enzyme such as superoxide dismutase, catalase, and peroxidase. Application of PGPR and AMF augmented the activities of three enzymes compared to their respective uninoculated controls, but decreased the MDA and free proline contents, indicating that PGPR and AMF could make the plants more tolerant to harmful hydrocarbon contaminants. It also improved the soil quality by increasing the activities of soil enzyme such as urease, sucrase, and dehydrogenase. In addition, the degradation rate of total petroleum hydrocarbon during treatment with PGPR and AMF in moderately contaminated soil reached a maximum of 49.73%. Therefore, we concluded the plants treated with a combination of PGPR and AMF had a high potential to contribute to remediation of saline-alkali soil contaminated with petroleum. PMID:25091168

  16. Pyrene removal and transformation by joint application of alfalfa and exogenous microorganisms and their influence on soil microbial community.

    PubMed

    Ye, Jinshao; Yin, Hua; Peng, Hui; Bai, Jieqiong; Li, Yuepeng

    2014-12-01

    Phytoremediation is an attractive approach for the cleanup of polycyclic aromatic hydrocarbons-contaminated soil. The joint effect of alfalfa and microorganisms, including Arthrobacter oxydans, Staphylococcus auricularis and Stenotrophomonas maltophilia, on pyrene removal was investigated. The results showed that the joint effect primarily contributed to pyrene removal, and the concentration of residual pyrene in rhizosphere soil was lower than that in non-rhizosphere soil. After joint treatment for 45d, pyrene in rhizosphere soils decreased from 11.3, 52.5 and 106.0mg/kg to 2.0-3.0, 15.0-18.7, and 41.2-44.8mg/kg, respectively. These bacteria significantly enhanced pyrene accumulation and microbial community diversity, and increased soil dehydrogenase and polyphenol oxidase activities. Pyrene was initially degraded through ring cleavage. One of the main metabolites 4-dihydroxy-phenanthrene was transformed into naphthol and 1,2-dihydroxynaphthalene, which were further degraded through salicylic acid pathway and phthalic acid pathway, separately. PMID:25232990

  17. Spectrum of Physics Comprehension

    ERIC Educational Resources Information Center

    Blasiak, W.; Godlewska, M.; Rosiek, R.; Wcislo, D.

    2012-01-01

    The paper presents the results of research on the relationship between self-assessed comprehension of physics lectures and final grades of junior high school students (aged 13-15), high school students (aged 16-18) and physics students at the Pedagogical University of Cracow, Poland (aged 21). Students' declared level of comprehension was measured…

  18. Increasing Reading Comprehension.

    ERIC Educational Resources Information Center

    Dixon, Mary; Harris, Linda; McGrath, Marianne; O'Neill, Sheila; Swanson, Sandra

    This report describes a program for improving reading comprehension. The targeted population consists of first, second, third, and fourth grade classrooms in a middle class community located in a suburb of a large midwestern city. The problem regarding poor comprehension skills is evident from teacher observation, student performance, previous…

  19. Disentangling Accent from Comprehensibility

    ERIC Educational Resources Information Center

    Trofimovich, Pavel; Isaacs, Talia

    2012-01-01

    The goal of this study was to determine which linguistic aspects of second language speech are related to accent and which to comprehensibility. To address this goal, 19 different speech measures in the oral productions of 40 native French speakers of English were examined in relation to accent and comprehensibility, as rated by 60 novice raters…

  20. Teaching Main Idea Comprehension.

    ERIC Educational Resources Information Center

    Baumann, James F., Ed.

    Intended to help classroom teachers, curriculum developers, and researchers, this book provides current information on theoretical and instructional aspects of main idea comprehension. Titles and authors are as follows: "The Confused World of Main Idea" (James W. Cunningham and David W. Moore); "The Comprehension of Important Information in…

  1. Drama and Comprehension.

    ERIC Educational Resources Information Center

    Stewig, John Warren

    Intended for use by reading teachers, this document presents classroom activities for using drama as an aid to reading comprehension. Following a brief introduction discussing the rationale for drama in the reading classroom, the paper details various phases in comprehension, matching each level with suggested books and appropriate dramatic…

  2. Comprehension Processes in Reading.

    ERIC Educational Resources Information Center

    Balota, D. A., Ed.; And Others

    Focusing on the process of reading comprehension, this book contains chapters on some central topics relevant to understanding the processes associated with comprehending text. The articles and their authors are as follows: (1) "Comprehension Processes: Introduction" (K. Rayner); (2) "The Role of Meaning in Word Recognition" (D. A. Balota); (3)…

  3. Interruptions disrupt reading comprehension.

    PubMed

    Foroughi, Cyrus K; Werner, Nicole E; Barragán, Daniela; Boehm-Davis, Deborah A

    2015-06-01

    Previous research suggests that being interrupted while reading a text does not disrupt the later recognition or recall of information from that text. This research is used as support for Ericsson and Kintsch's (1995) long-term working memory (LT-WM) theory, which posits that disruptions while reading (e.g., interruptions) do not impair subsequent text comprehension. However, to fully comprehend a text, individuals may need to do more than recognize or recall information that has been presented in the text at a later time. Reading comprehension often requires individuals to connect and synthesize information across a text (e.g., successfully identifying complex topics such as themes and tones) and not just make a familiarity-based decision (i.e., recognition). The goal for this study was to determine whether interruptions while reading disrupt reading comprehension when the questions assessing comprehension require participants to connect and synthesize information across the passage. In Experiment 1, interruptions disrupted reading comprehension. In Experiment 2, interruptions disrupted reading comprehension but not recognition of information from the text. In Experiment 3, the addition of a 15-s time-out prior to the interruption successfully removed these negative effects. These data suggest that the time it takes to process the information needed to successfully comprehend text when reading is greater than that required for recognition. Any interference (e.g., an interruption) that occurs during the comprehension process may disrupt reading comprehension. This evidence supports the need for transient activation of information in working memory for successful text comprehension and does not support LT-WM theory. PMID:25867225

  4. International evaluation of in-situ biorestoration of contaminated soil and groundwater (September 1990)

    SciTech Connect

    Staps, S.J.J.M.

    1990-09-01

    The philosophy of in-situ biorestoration is to stimulate the indigenous soil microorganisms to degrade contaminants by improving the environmental conditions in the soil using a water recirculation system. The objective of the project is to show the possibilities for application of the technique in relation with contaminants, soil conditions and other site-specific circumstances by means of integration and evaluation of results of in-situ biorestoration projects. The project is limited to the Netherlands, West Germany and the USA. Experience has especially been gained with in-situ biorestoration at hydrocarbon-contaminated petrol stations and industrial sites. The system generally consists of a water recirculation system, aboveground water treatment and conditioning of the infiltrating water with nutrients and an oxygen source. However, there is no one-and-only application method for in-situ biorestoration. The remediation, which can last from approximately six months to several years, can reach residual concentrations below the B-value of the Netherlands examination framework.

  5. Comprehensive Psychiatric Evaluation

    MedlinePlus

    ... for Families Guide Skip breadcrumb navigation Comprehensive Psychiatric Evaluation Quick Links Facts For Families Guide Facts For ... Families Guide - Search No. 52; Updated November 2012 Evaluation by a child and adolescent psychiatrist is appropriate ...

  6. Comprehensive metabolic panel

    MedlinePlus

    ... panel - comprehensive; Chem-20; SMA20; Sequential multi-channel analysis with computer-20; SMAC20; Metabolic panel 20 ... How your kidneys and liver are working Blood sugar, cholesterol, and calcium levels Sodium, potassium, and chloride ...

  7. Comprehensive metabolic panel

    MedlinePlus

    A comprehensive metabolic panel is a group of blood tests. They provide an overall picture of your body's chemical balance and metabolism. Metabolism refers to all the physical and chemical processes ...

  8. Comprehensive rotorcraft analysis methods

    NASA Technical Reports Server (NTRS)

    Stephens, Wendell B.; Austin, Edward E.

    1988-01-01

    The development and application of comprehensive rotorcraft analysis methods in the field of rotorcraft technology are described. These large scale analyses and the resulting computer programs are intended to treat the complex aeromechanical phenomena that describe the behavior of rotorcraft. They may be used to predict rotor aerodynamics, acoustic, performance, stability and control, handling qualities, loads and vibrations, structures, dynamics, and aeroelastic stability characteristics for a variety of applications including research, preliminary and detail design, and evaluation and treatment of field problems. The principal comprehensive methods developed or under development in recent years and generally available to the rotorcraft community because of US Army Aviation Research and Technology Activity (ARTA) sponsorship of all or part of the software systems are the Rotorcraft Flight Simulation (C81), Dynamic System Coupler (DYSCO), Coupled Rotor/Airframe Vibration Analysis Program (SIMVIB), Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics (CAMRAD), General Rotorcraft Aeromechanical Stability Program (GRASP), and Second Generation Comprehensive Helicopter Analysis System (2GCHAS).

  9. SOIL Geo-Wiki: A tool for improving soil information

    NASA Astrophysics Data System (ADS)

    Skalský, Rastislav; Balkovic, Juraj; Fritz, Steffen; See, Linda; van der Velde, Marijn; Obersteiner, Michael

    2014-05-01

    soil classification system) and allow experts to upload and share scientifically rigorous soil data; and an application oriented towards the general public, which will be more focused on describing well observed, individual soil properties using simplified classification keys. The latter application will avoid the use of soil science related terminology and focus on the most useful soil parameters such as soil surface features, stone content, soil texture, soil plasticity, calcium carbonate presence, soil color, soil pH, soil repellency, and soil depth. Collection of soil and landscape pictures will also be supported in Soil Geo-Wiki to allow for comprehensive data collection while simultaneously allowing for quality checking by experts.

  10. Development of a suitable test method for evaluating the toxicity of contaminated soils to earthworms in Canada

    SciTech Connect

    Stephenson, G.L.; Scroggins, R.

    1995-12-31

    Environment Canada has embarked on a five year program to develop, standardize, and validate a battery of soil toxicity tests which can be used to assess the relative toxicity of contaminants in soils to terrestrial organisms. These tests must be applicable to soil conditions typically found in Canadian environments and the test species must be representative of the species of soil invertebrates or plants inhabiting soil ecosystems in Canada. One of the toxicity tests being developed is designed to assess the toxicity of contaminated soils to earthworms. Five of the potential test species belong to the Lumbricidae family and include the Canadian worm (Allobophora calignosa/Aporrectodea tuberculate), the European bark worm (Dendrodtilus rubidus (rubida)), the pink soil worm (Eisenia rosea), the red marsh worm (Lumbricus rubellus), and the Canadian night crawler or dew worm (Lumbricus terrestris). The sixth species, the white pot worm (Enchytraeus albidus), belongs to the Enchytraeidae family. Further assessment reduced the number of representative species to three. Most earthworm test methods have been developed to assess the toxicity of chemically-spiked artificial soils to Eisenia fetida or E. andrei. Test methods have also been developed to assess the relative toxicity of contaminated soils from hazardous waste sites. Comparative acute toxicity data for three species of earthworm exposed to a hydrocarbon contamination will be presented. Comparative toxicity data for the same three species of earthworm will also be presented using test procedures and conditions that have been modified to accommodate biological differences among the species of earthworm. Recommendations regarding test design, methods, and conditions optimal for each test species will be summarized and discussed with respect to the precision of test results.

  11. Microbial communities inhabiting oil-contaminated soils from two major oilfields in Northern China: Implications for active petroleum-degrading capacity.

    PubMed

    Sun, Weimin; Dong, Yiran; Gao, Pin; Fu, Meiyan; Ta, Kaiwen; Li, Jiwei

    2015-06-01

    Although oilfields harbor a wide diversity of microorganisms with various metabolic potentials, our current knowledge about oil-degrading bacteria is limited because the vast majority of oil-degrading bacteria remain uncultured. In the present study, microbial communities in nine oil-contaminated soils collected from Daqing and Changqing, two of the largest oil fields in China, were characterized through highthroughput sequencing of 16S rRNA genes. Bacteria related to the phyla Proteobacteria and Actinobacteria were dominant in four and three samples, respectively. At the genus level, Alkanindiges, Arthrobacter, Pseudomonas, Mycobacterium, and Rhodococcus were frequently detected in nine soil samples. Many of the dominant genera were phylogenetically related to the known oil-degrading species. The correlation between physiochemical parameters within the microbial communities was also investigated. Canonical correspondence analysis revealed that soil moisture, nitrate, TOC, and pH had an important impact in shaping the microbial communities of the hydrocarbon-contaminated soil. This study provided an in-depth analysis of microbial communities in oilcontaminated soil and useful information for future bioremediation of oil contamination. PMID:26025169

  12. Effects of diurnal temperature variation on microbial community and petroleum hydrocarbon biodegradation in contaminated soils from a sub-Arctic site.

    PubMed

    Akbari, Ali; Ghoshal, Subhasis

    2015-12-01

    Contaminated soils are subject to diurnal and seasonal temperature variations during on-site ex-situ bioremediation processes. We assessed how diurnal temperature variations similar to that in summer at the site from which petroleum hydrocarbon-contaminated soil was collected affect the soil microbial community and the extent of biodegradation of petroleum hydrocarbons compared with constant temperature regimes. Microbial community analyses for 16S rRNA and alkB genes by pyrosequencing indicated that the microbial community for soils incubated under diurnal temperature variation from 5°C to 15°C (VART5-15) evolved similarly to that for soils incubated at constant temperature of 15°C (CST15). In contrast, under a constant temperature of 5°C (CST5), the community evolved significantly different. The extent of biodegradation of C10-C16 hydrocarbons in the VART5-15 systems was 48%, comparable with the 41% biodegradation in CST15 systems, but significantly higher than CST5 systems at 11%. The enrichment of Gammaproteobacteria was observed in the alkB gene-harbouring communities in VART5-15 and CST15 but not in CST5 systems. However, the Actinobacteria was abundant at all temperature regimes. The results suggest that changes in microbial community composition as a result of diurnal temperature variations can significantly influence petroleum hydrocarbon bioremediation performance in cold regions. PMID:25808640

  13. Evaluating the efficacy of bioremediating a diesel-contaminated soil using ecotoxicological and bacterial community indices.

    PubMed

    Khudur, Leadin Salah; Shahsavari, Esmaeil; Miranda, Ana F; Morrison, Paul D; Nugegoda, Dayanthi; Ball, Andrew S

    2015-10-01

    Diesel represents a common environmental contaminant as a result of operation, storage, and transportation accidents. The bioremediation of diesel in a contaminated soil is seen as an environmentally safe approach to treat contaminated land. The effectiveness of the remediation process is usually assessed by the degradation of the total petroleum hydrocarbon (TPH) concentration, without considering ecotoxicological effects. The aim of this study was to assess the efficacy of two bioremediation strategies in terms of reduction in TPH concentration together with ecotoxicity indices and changes in the bacterial diversity assessed using PCR-denaturing gradient gel electrophoresis (DGGE). The biostimulation strategy resulted in a 90 % reduction in the TPH concentration versus 78 % reduction from the natural attenuation strategy over 12 weeks incubation in a laboratory mesocosm-containing diesel-contaminated soil. In contrast, the reduction in the ecotoxicity resulting from the natural attenuation treatment using the Microtox and earthworm toxicity assays was more than double the reduction resulting from the biostimulation treatment (45 and 20 % reduction, respectively). The biostimulated treatment involved the addition of nitrogen and phosphorus in order to stimulate the microorganisms by creating an optimal C:N:P molar ratio. An increased concentration of ammonium and phosphate was detected in the biostimulated soil compared with the naturally attenuated samples before and after the remediation process. Furthermore, through PCR-DGGE, significant changes in the bacterial community were observed as a consequence of adding the nutrients together with the diesel (biostimulation), resulting in the formation of distinctly different bacterial communities in the soil subjected to the two strategies used in this study. These findings indicate the suitability of both bioremediation approaches in treating hydrocarbon-contaminated soil, particularly biostimulation. Although

  14. Support for comprehensive reuse

    NASA Technical Reports Server (NTRS)

    Basili, V. R.; Rombach, H. D.

    1991-01-01

    Reuse of products, processes, and other knowledge will be the key to enable the software industry to achieve the dramatic improvement in productivity and quality required to satisfy the anticipated growing demands. Although experience shows that certain kinds of reuse can be successful, general success has been elusive. A software life-cycle technology which allows comprehensive reuse of all kinds of software-related experience could provide the means to achieving the desired order-of-magnitude improvements. A comprehensive framework of models, model-based characterization schemes, and support mechanisms for better understanding, evaluating, planning, and supporting all aspects of reuse are introduced.

  15. Enzymes for enhancing bioremediation of petroleum-contaminated soils: a brief review.

    PubMed

    Fan, C Y; Krishnamurthy, S

    1995-06-01

    During the 1950s and 1960s, hundreds of thousands of underground storage tanks (and above-ground storage tanks) containing petroleum products and hazardous chemicals were installed. Many of these tanks either have been abandoned or have exceeded their useful lives and are leaking, thereby posing a serious threat to the nation's surface and groundwater supplies, as well as to public health. Cleaning up releases of petroleum hydrocarbons or other organic chemicals in the subsurface environment is a real-world problem. Biological treatment of hydrocarbon-contaminated soil is considered to be a relatively low-cost and safe technology; however, its potential for effectively treating recalcitrant wastes has not been fully explored. For millions of years, microorganisms such as bacteria, fungi, actinomycete, protozoa, and others have performed the function of recycling organic matter from which new plant life can grow. This paper examines the biological treatment technology for cleaning up petroleum product-contaminated soils, with special emphasis on microbial enzyme systems for enhancing the rate of biodegradation of petroleum hydrocarbons. Classifications and functions of enzymes, as well as the microbes, in degrading the organic contaminants are discussed. In addition, the weathering effect on biodegradation, types of hydrocarbon degraders, advantages associated with enzyme use, methods of enzyme extraction, and future research needs for development and evaluation of enzyme-assisted bioremediation are examined. PMID:7788508

  16. Respiration testing for bioventing and biosparging remediation of petroleum contaminated soil and ground water

    SciTech Connect

    Gray, A.L.; Brown, A.; Moore, B.J.; Payne, R.E.

    1996-12-01

    Respiration tests were performed to measure the effect of subsurface aeration on the biodegradation rates of petroleum hydrocarbon contamination in vadose zone soils (bioventing) and ground water (biosparging). The aerobic biodegradation of petroleum contamination is typically limited by the absence of oxygen in the soil and ground water. Therefore, the goal of these bioremediation technologies is to increase the oxygen concentration in the subsurface and thereby enhance the natural aerobic biodegradation of the organic contamination. One case study for biosparging bioremediation testing is presented. At this site atmospheric air was injected into the ground water to increase the dissolved oxygen concentration in the ground water surrounding a well, and to aerate the smear zone above the ground water table. Aeration flow rates of 3 to 8 cfm (0.09 to 0.23 m{sup 3}/min) were sufficient to increase the dissolved oxygen concentration. Petroleum hydrocarbon biodegradation rates of 32 to 47 {micro}g/l/hour were calculated based on measurements of dissolved oxygen concentration in ground water. The results of this test have demonstrated that biosparging enhances the biodegradation of petroleum hydrocarbons, but the results as they apply to remediation are not known. Two case studies for bioventing respiration testing are presented.

  17. Cognitive Correlates of Listening Comprehension

    ERIC Educational Resources Information Center

    Kim, Young-Suk; Phillips, Beth

    2014-01-01

    In an effort to understand cognitive foundations of oral language comprehension (i.e., listening comprehension), we examined how inhibitory control, theory of mind, and comprehension monitoring are uniquely related to listening comprehension over and above vocabulary and age. A total of 156 children in kindergarten and first grade from…

  18. Designing a Comprehensive Curriculum

    ERIC Educational Resources Information Center

    Faulkner, T. L.

    1970-01-01

    A comprehensive rural "agribusiness industry" curriculum might include: (1) The World of Work (Grade 7 or 8), (2) Vocational Orientation (Grade 9), (3) Basic Agriculture and Industry (Grade 10), (4) Specialized Agribusiness Industry (Grade 11), and (5) Advanced Agribusiness Industry (Grade 12). (DM)

  19. The Comprehensive Health Assessment.

    ERIC Educational Resources Information Center

    Eastern Iowa Community Coll. District, Davenport.

    This report contains information from a fall 1991 health occupations assessment of 1,021 health-related employers in Eastern Iowa and the Illinois Quad Cities area. Twelve chapters present comprehensive results of all surveys; results of 10 labor market survey instruments developed for chiropractic offices, dentists' offices, emergency medical…

  20. Comprehensive care in hemophilia.

    PubMed

    Ruiz-Sáez, Arlette

    2012-04-01

    Hemophilia is a chronic and inherited X-linked bleeding disorder that requires life-long medical care. Hemophilia treatment is costly and complex partly because of the cost of the factor concentrates used in replacement therapy. However, the management of hemophilia is not based solely on achieving access to better treatment with safe factor concentrates; it also includes accurately diagnosing the disorder and providing specialized comprehensive care by a multidisciplinary team of specialists trained in hemophilia management. Comprehensive care for the person with hemophilia is defined as the continuous supervision of all medical and psychological aspects affecting the patient and his family and it demands the establishment of specialized centers, called Hemophilia Treatment Centers. The services that should be offered by a comprehensive hemophilia healthcare center are diverse and the multidisciplinary team should be coordinated preferably by a hematologist with the participation of other health professionals. It has been demonstrated that the benefits of establishing hemophilia centers are observed even in developing countries and that changes can be achieved when resources are re-organized, especially when education and training are provided at all levels. To reach these objectives, it is essential to have the participation of the patient and family members, and to strive to obtain the financial and legislative support from the State or Government in order to achieve a national comprehensive care program contemplating all the aspects needed for improving the quality of life for the community of patients with hemophilia and other bleeding disorders. PMID:22507803

  1. COMPREHENSIVE JUNIOR COLLEGES.

    ERIC Educational Resources Information Center

    NIKITAS, CHRISTUS M.; AND OTHERS

    TO MEET THE STATE'S HIGHER EDUCATION NEEDS, THE NEW HAMPSHIRE JUNIOR COLLEGE COMMISSION DEVELOPED A PLAN OF (1) GRADUAL AND SELECTIVE CONVERSION OF THE STATE'S TECHNICAL AND VOCATIONAL SCHOOLS TO COMPREHENSIVE JUNIOR COLLEGES, (2) SELECTIVE ADDITION OF 2-YEAR PROGRAMS AT THE STATE COLLEGES AND INSTITUTES, AND (3) ESTABLISHMENT OF A STATE…

  2. Comprehensive Environmental Management Process

    SciTech Connect

    Hjeresen, D.L.; Roybal, S.L.

    1994-08-01

    This report contains information about Los Alamos National Laboratory`s Comprehensive Environmental Management Plan. The topics covered include: waste minimization, waste generation, environmental concerns, public relations of the laboratory, and how this plan will help to answer to the demands of the laboratory as their mission changes.

  3. Comprehensive stormwater management study

    SciTech Connect

    Morrison, T. ); Alter, M. ); Wassum, R.H. )

    1994-02-01

    This article examines Tucson, Arizona's approach to stormwater management. The topics of the article include the quantity and quality of stormwater, developing the stormwater master plan, meeting environmental and regulatory constraints. Tucson's comprehensive, watershed by watershed approach to public works planning and stormwater program development is described.

  4. Comprehensive Communication Curriculum Guide.

    ERIC Educational Resources Information Center

    Klein, M. Diane; And Others

    The Comprehensive Communication Curriculum is designed for teaching basic communication skills to severely or profoundly retarded, physically handicapped students. An introductory section mentions the purpose of five major program components: caregiver interview, identification of child's wants and needs, training the child to request wants and…

  5. COMMUNICATION AND COMPREHENSION.

    ERIC Educational Resources Information Center

    TRENAMAN, J.M.

    A SERIES OF BRITISH IMPACT STUDIES DEALT WITH ADULT AUDIENCE CHARACTERISTICS (COMPREHENSION, KNOWLEDGE, INTERESTS, ATTITUDES) AND FACTORS WITHIN THE MEDIUM THAT MAKE FOR EFFECTIVE COMMUNICATION. FIVE DIFFERENT TYPES OF SUBJECT MATTER WERE PRESENTED TO MATCHED SAMPLES OF THE GENERAL PUBLIC BY MEANS OF RADIO, TELEVISION, AND PRINTED ARTICLES. THE…

  6. Reading and Comprehension.

    ERIC Educational Resources Information Center

    Eagan, Ruth L.

    For years, reading teachers in the schools have emphasized word identification skills and believed that reading is comprised of a set of subskills that a child must master before he or she can learn to read. To teach a child to read, however, instruction must focus on comprehension. Therefore, word attack skills should be taught in conjunction…

  7. Comprehension Strategy Gloves.

    ERIC Educational Resources Information Center

    Newman, Gayle

    2002-01-01

    Describes the idea of creating a glove for each of the comprehension strategies for use with different text structures. Notes that the gloves serve as a multisensory approach by providing visual clues through icons on each finger and the palm. Discusses three different gloves: the prereading glove, the narrative text structure glove, and the…

  8. Comprehension at the Core

    ERIC Educational Resources Information Center

    Harvey, Stephanie; Goudvis, Anne

    2013-01-01

    As teachers, we have both the power and the responsibility to create classrooms full of eager, curious, and active readers and learners. Teaching students to become strategic readers and thinkers and to actively use the knowledge they glean from reading are the focus of the comprehension practices discussed in this article. A longstanding research…

  9. Comprehensive Financial Plan.

    ERIC Educational Resources Information Center

    Prince George's Community Coll., Largo, MD. Office of Institutional Research and Analysis.

    Pursuant to Maryland Higher Education Commission guidelines, this comprehensive financial plan for fiscal year (FY) 1994-98 for Prince George's Community College (PGCC) provides data on fiscal trends, strategic goals, and cost containment measures planned by the college. Following introductory materials and information on PGCC's mission, five sets…

  10. Comprehensive School Reform.

    ERIC Educational Resources Information Center

    Hertling, Elizabeth

    2000-01-01

    This issue reviews publications that provide school leaders with guidance in determining how to choose and implement the schoolwide program that is best for their school. American Institutes for Research's "An Educator's Guide to Schoolwide Reform" provides educators with comprehensive profiles and evaluations of 24 of the leading schoolwide…

  11. Effects of electrokinetics and cationic surfactant cetyltrimethylammonium bromide [CTAB] on the hydrocarbon removal and retention from contaminated soils.

    PubMed

    Ranjan, R Sri; Qian, Y; Krishnapillai, M

    2006-07-01

    Hydrocarbon contaminated soil and groundwater is considered to be a leading cause for increased health risk and environmental contamination. Therefore, an efficient technique is needed to retard the movement or enhance the removal of the contaminant depending on the remediation objective. The goals of this study were to evaluate the impact of the addition of a cationic surfactant on the movement of hydrocarbons within a contaminated clay soil subjected to electrokinetic treatment. Water-flushing and surfactant-flushing experiments were conducted on one-dimensional soil columns. The model diesel fuel was composed of a mixture of benzene, toluene, ethylbenzene, xylenes [BTEX] and three selected polycyclic hydrocarbons [PAHs]. In the water-flushing experiments, the application of an electrokinetic treatment was found to enhance the removal of PAHs from the clay columns by about 20%. In contrast, the application of an electrokinetic treatment, when coupled with cationic surfactant-flushing, retarded the movement of BTEX and the three selected PAHs in the clay columns. Hydraulic columns with surfactant (CTAB) removed 17% more naphthalene and 11% more 2-methylnaphthalene compared to columns subjected to electrokinetic treatment with CTAB. The flux through the electrokinetic columns during water flushing as well as surfactant flushing was higher than the flux due to hydraulic gradient alone. As the solubility of hydrocarbons increased, they moved farther with electrokinetic treatment without CTAB. However, with CTAB the electrokinetic treatment tends to retard the movement. Use of a cationic surfactant coupled with electrokinetic treatment was found to retard the movement of contaminants. PMID:16894821

  12. Working with Soil - Soil science in the field

    NASA Astrophysics Data System (ADS)

    Hannam, Jacqueline; Lacelles, Bruce; Owen, Jason; Thompson, Dick; Jones, Bob; Towers, Willie

    2015-04-01

    Working with Soil is the Professional Competency Scheme developed by the British Society of Soil Science's Professional Practice Committee, formerly the Institute of Professional Soil Scientists. Ten competency documents cover the required qualifications, skills and knowledge for different aspects of applied soil science. The Society is currently engaged in a five year plan to translate the competency documents into a comprehensive set of training courses. Foundation skills in field-based science are covered by three separate training courses - Exposing and describing a soil profile (Course 1), Soil classification (Course 2), and Soil survey techniques (Course 3). Course 1 has run successfully twice a year since 2013. The other two courses are under development and are scheduled to start in 2015. The primary objective of Foundation Skills Course 1 is to develop confidence and familiarity with field soil investigation and description, understanding the soil underfoot and putting soils into a wider landscape context. Delegates excavate a soil profile pit, and describe and sample the exposed soil to standard protocols. Delegates work in teams of 4 or 5 so that an element of shared learning is part of the process. This has been a very positive aspect of the courses we have run to date. The course has attracted professionals from agricultural and environmental consultancies but is also very popular with research students and has formed a part of an Advanced Training Programme in Soil Science for postgraduates. As there is only one soil science degree course remaining in the UK, many students on their admission do not have a background in field-based pedology and lack an understanding of soil in the context of landscape scale soil functions. Feedback to date has been very positive.

  13. LNAPL source zone delineation using soil gases in a heterogeneous silty-sand aquifer

    NASA Astrophysics Data System (ADS)

    Cohen, Grégory J. V.; Jousse, Florie; Luze, Nicolas; Höhener, Patrick; Atteia, Olivier

    2016-09-01

    Source delineation of hydrocarbon contaminated sites is of high importance for remediation work. However, traditional methods like soil core extraction and analysis or recent Membrane Interface Probe methods are time consuming and costly. Therefore, the development of an in situ method based on soil gas analysis can be interesting. This includes the direct measurement of volatile organic compounds (VOCs) in soil gas taken from gas probes using a PID (Photo Ionization Detector) and the analysis of other soil gases related to VOC degradation distribution (CH4, O2, CO2) or related to presence of Light Non-Aqueous Phase Liquid (LNAPL) as 222Rn. However, in widespread heterogeneous formations, delineation by gas measurements becomes more challenging. The objective of this study is twofold: (i) to analyse the potential of several in situ gas measurement techniques in comparison to soil coring for LNAPL source delineation at a heterogeneous contaminated site where the techniques might be limited by a low diffusion potential linked to the presence of fine sands and silts, and (ii) to analyse the effect of vertical sediment heterogeneities on the performance of these gas measurement methods. Thus, five types of gases were analysed: VOCs, their three related degradation products O2, CO2 and CH4 and 222Rn. Gas measurements were compared to independent LNAPL analysis by coring. This work was conducted at an old industrial site frequently contaminated by a Diesel-Fuel mixture located in a heterogeneous fine-grained aquifer. Results show that in such heterogeneous media migration of reactive gases like VOCs occurs only across small distances and the VOC concentrations sampled with gas probes are mainly related to local conditions rather than the presence of LNAPL below the gas probe. 222Rn is not well correlated with LNAPL because of sediment heterogeneity. Oxygen, CO2, and especially CH4, have larger lengths of diffusion and give the clearest picture for LNAPL presence at this

  14. LNAPL source zone delineation using soil gases in a heterogeneous silty-sand aquifer.

    PubMed

    Cohen, Grégory J V; Jousse, Florie; Luze, Nicolas; Höhener, Patrick; Atteia, Olivier

    2016-09-01

    Source delineation of hydrocarbon contaminated sites is of high importance for remediation work. However, traditional methods like soil core extraction and analysis or recent Membrane Interface Probe methods are time consuming and costly. Therefore, the development of an in situ method based on soil gas analysis can be interesting. This includes the direct measurement of volatile organic compounds (VOCs) in soil gas taken from gas probes using a PID (Photo Ionization Detector) and the analysis of other soil gases related to VOC degradation distribution (CH4, O2, CO2) or related to presence of Light Non-Aqueous Phase Liquid (LNAPL) as (222)Rn. However, in widespread heterogeneous formations, delineation by gas measurements becomes more challenging. The objective of this study is twofold: (i) to analyse the potential of several in situ gas measurement techniques in comparison to soil coring for LNAPL source delineation at a heterogeneous contaminated site where the techniques might be limited by a low diffusion potential linked to the presence of fine sands and silts, and (ii) to analyse the effect of vertical sediment heterogeneities on the performance of these gas measurement methods. Thus, five types of gases were analysed: VOCs, their three related degradation products O2, CO2 and CH4 and (222)Rn. Gas measurements were compared to independent LNAPL analysis by coring. This work was conducted at an old industrial site frequently contaminated by a Diesel-Fuel mixture located in a heterogeneous fine-grained aquifer. Results show that in such heterogeneous media migration of reactive gases like VOCs occurs only across small distances and the VOC concentrations sampled with gas probes are mainly related to local conditions rather than the presence of LNAPL below the gas probe. (222)Rn is not well correlated with LNAPL because of sediment heterogeneity. Oxygen, CO2, and especially CH4, have larger lengths of diffusion and give the clearest picture for LNAPL presence at

  15. Nutrients Can Enhance the Abundance and Expression of Alkane Hydroxylase CYP153 Gene in the Rhizosphere of Ryegrass Planted in Hydrocarbon-Polluted Soil

    PubMed Central

    Arslan, Muhammad; Afzal, Muhammad; Amin, Imran; Iqbal, Samina; Khan, Qaiser M.

    2014-01-01

    Plant-bacteria partnership is a promising strategy for the remediation of soil and water polluted with hydrocarbons. However, the limitation of major nutrients (N, P and K) in soil affects the survival and metabolic activity of plant associated bacteria. The objective of this study was to explore the effects of nutrients on survival and metabolic activity of an alkane degrading rhizo-bacterium. Annual ryegrass (Lolium multiflorum) was grown in diesel-contaminated soil and inoculated with an alkane degrading bacterium, Pantoea sp. strain BTRH79, in greenhouse experiments. Two levels of nutrients were applied and plant growth, hydrocarbon removal, and gene abundance and expression were determined after 100 days of sowing of ryegrass. Results obtained from these experiments showed that the bacterial inoculation improved plant growth and hydrocarbon degradation and these were further enhanced by nutrients application. Maximum plant biomass production and hydrocarbon mineralization was observed by the combined use of inoculum and higher level of nutrients. The presence of nutrients in soil enhanced the colonization and metabolic activity of the inoculated bacterium in the rhizosphere. The abundance and expression of CYP153 gene in the rhizosphere of ryegrass was found to be directly associated with the level of applied nutrients. Enhanced hydrocarbon degradation was associated with the population of the inoculum bacterium, the abundance and expression of CYP153 gene in the rhizosphere of ryegrass. It is thus concluded that the combination between vegetation, inoculation with pollutant-degrading bacteria and nutrients amendment was an efficient approach to reduce hydrocarbon contamination. PMID:25360680

  16. Comprehension Monitoring and Reading Comprehension in Bilingual Students

    ERIC Educational Resources Information Center

    Kolic-Vehovec, Svjetlana; Bajsanski, Igor

    2007-01-01

    This study explored comprehension monitoring, use of reading strategies and reading comprehension of bilingual students at different levels of perceived proficiency in Italian. The participants were bilingual fifth to eighth-grade elementary school students from four Italian schools in Rijeka, Croatia. Students' reading comprehension was assessed.…

  17. Soil Evaporation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil evaporation can significantly influence energy flux partitioning of partially vegetated surfaces, ultimately affecting plant transpiration. While important, quantification of soil evaporation, separately from canopy transpiration, is challenging. Techniques for measuring soil evaporation exis...

  18. Comprehensive multiplatform collaboration

    NASA Astrophysics Data System (ADS)

    Singh, Kundan; Wu, Xiaotao; Lennox, Jonathan; Schulzrinne, Henning G.

    2003-12-01

    We describe the architecture and implementation of our comprehensive multi-platform collaboration framework known as Columbia InterNet Extensible Multimedia Architecture (CINEMA). It provides a distributed architecture for collaboration using synchronous communications like multimedia conferencing, instant messaging, shared web-browsing, and asynchronous communications like discussion forums, shared files, voice and video mails. It allows seamless integration with various communication means like telephones, IP phones, web and electronic mail. In addition, it provides value-added services such as call handling based on location information and presence status. The paper discusses the media services needed for collaborative environment, the components provided by CINEMA and the interaction among those components.

  19. Idiom Comprehension in Aphasic Patients

    ERIC Educational Resources Information Center

    Papagno, Costanza; Tabossi, Patrizia; Colombo, Maria Rosa; Zampetti, Patrizia

    2004-01-01

    Idiom comprehension was assessed in 10 aphasic patients with semantic deficits by means of a string-to-picture matching task. Patients were also submitted to an oral explanation of the same idioms, and to a word comprehension task. The stimuli of this last task were the words following the verb in the idioms. Idiom comprehension was severely…

  20. Understanding and Teaching Cohesion Comprehension.

    ERIC Educational Resources Information Center

    Irwin, Judith W., Ed.

    Concerned with improving student comprehension of text, this book focuses particularly on teaching students how sentences tie together. Articles in the three sections are grouped as follows: Part 1, What Is Cohesion Comprehension? contains "Cohesion, Coherence, and Comprehension" (Alden J. Moe and Judith W. Irwin); "Identifying Types of Anaphoric…

  1. CPMs: A Kinesthetic Comprehension Strategy

    ERIC Educational Resources Information Center

    Block, Cathy Collins; Parris, Sheri R.; Whiteley, Cinnamon S.

    2008-01-01

    This article discusses a study to determine whether primary grade students can learn comprehension processes via hand motions to portray these mental processes. Comprehension Process Motions (CPMs) were designed to provide students with a way to make abstract comprehension processes more consciously accessible and also to give teachers a way to…

  2. Priming Ditransitive Structures in Comprehension

    ERIC Educational Resources Information Center

    Arai, Manabu; van Gompel, Roger P. G.; Scheepers, Cristoph

    2007-01-01

    Many studies have shown evidence for syntactic priming during language production (e.g., Bock, 1986). It is often assumed that comprehension and production share similar mechanisms and that priming also occurs during comprehension (e.g., Pickering & Garrod, 2004). Research investigating priming during comprehension (e.g., Branigan et al., 2005 and…

  3. Soil-Web: An online soil survey for California, Arizona, and Nevada

    NASA Astrophysics Data System (ADS)

    Beaudette, D. E.; O'Geen, A. T.

    2009-10-01

    Digital soil survey products represent one of the largest and most comprehensive inventories of soils information currently available. The complex structure of these databases, intensive use of codes and scientific jargon make it difficult for non-specialists to utilize digital soil survey resources. A project was initiated to construct a web-based interface to digital soil survey products (STATSGO and SSURGO) for California, Arizona, and Nevada that would be accessible to the general public. A collection of mature, open source applications (including Mapserver, PostGIS and Apache Web Server) were used as a framework to support data storage, querying, map composition, data presentation, and contextual links to related materials. Application logic was written in the PHP language to "glue" together the many components of an online soil survey. A comprehensive website ( http://casoilresource.lawr.ucdavis.edu/map) was created to facilitate access to digital soil survey databases through several interfaces including: interactive map, Google Earth and HTTP-based application programming interface (API). Each soil polygon is linked to a map unit summary page, which includes links to soil component summary pages. The most commonly used soil properties, land interpretations and ratings are presented. Graphical and tabular summaries of soil profile information are dynamically created, and aid with rapid assessment of key soil properties. Quick links to official series descriptions (OSD) and other such information are presented. All terminology is linked back to the USDA-NRCS Soil Survey Handbook which contains extended definitions. The Google Earth interface to Soil-Web can be used to explore soils information in three dimensions. A flexible web API was implemented to allow advanced users of soils information to access our website via simple web page requests. Soil-Web has been successfully used in soil science curriculum, outreach activities, and current research projects

  4. The comprehensive peptaibiotics database.

    PubMed

    Stoppacher, Norbert; Neumann, Nora K N; Burgstaller, Lukas; Zeilinger, Susanne; Degenkolb, Thomas; Brückner, Hans; Schuhmacher, Rainer

    2013-05-01

    Peptaibiotics are nonribosomally biosynthesized peptides, which - according to definition - contain the marker amino acid α-aminoisobutyric acid (Aib) and possess antibiotic properties. Being known since 1958, a constantly increasing number of peptaibiotics have been described and investigated with a particular emphasis on hypocrealean fungi. Starting from the existing online 'Peptaibol Database', first published in 1997, an exhaustive literature survey of all known peptaibiotics was carried out and resulted in a list of 1043 peptaibiotics. The gathered information was compiled and used to create the new 'The Comprehensive Peptaibiotics Database', which is presented here. The database was devised as a software tool based on Microsoft (MS) Access. It is freely available from the internet at http://peptaibiotics-database.boku.ac.at and can easily be installed and operated on any computer offering a Windows XP/7 environment. It provides useful information on characteristic properties of the peptaibiotics included such as peptide category, group name of the microheterogeneous mixture to which the peptide belongs, amino acid sequence, sequence length, producing fungus, peptide subfamily, molecular formula, and monoisotopic mass. All these characteristics can be used and combined for automated search within the database, which makes The Comprehensive Peptaibiotics Database a versatile tool for the retrieval of valuable information about peptaibiotics. Sequence data have been considered as to December 14, 2012. PMID:23681723

  5. Comprehensive national energy strategy

    SciTech Connect

    1998-04-01

    This Comprehensive National Energy Strategy sets forth a set of five common sense goals for national energy policy: (1) improve the efficiency of the energy system, (2) ensure against energy disruptions, (3) promote energy production and use in ways that respect health and environmental values, (4) expand future energy choices, and (5) cooperate internationally on global issues. These goals are further elaborated by a series of objectives and strategies to illustrate how the goals will be achieved. Taken together, the goals, objectives, and strategies form a blueprint for the specific programs, projects, initiatives, investments, and other actions that will be developed and undertaken by the Federal Government, with significant emphasis on the importance of the scientific and technological advancements that will allow implementation of this Comprehensive National Energy Strategy. Moreover, the statutory requirement of regular submissions of national energy policy plans ensures that this framework can be modified to reflect evolving conditions, such as better knowledge of our surroundings, changes in energy markets, and advances in technology. This Strategy, then, should be thought of as a living document. Finally, this plan benefited from the comments and suggestions of numerous individuals and organizations, both inside and outside of government. The Summary of Public Comments, located at the end of this document, describes the public participation process and summarizes the comments that were received. 8 figs.

  6. Identification of Nitrogen-Incorporating Bacteria in Petroleum-Contaminated Arctic Soils by Using [15N]DNA-Based Stable Isotope Probing and Pyrosequencing ▿ †

    PubMed Central

    Bell, Terrence H.; Yergeau, Etienne; Martineau, Christine; Juck, David; Whyte, Lyle G.; Greer, Charles W.

    2011-01-01

    Arctic soils are increasingly susceptible to petroleum hydrocarbon contamination, as exploration and exploitation of the Arctic increase. Bioremediation in these soils is challenging due to logistical constraints and because soil temperatures only rise above 0°C for ∼2 months each year. Nitrogen is often added to contaminated soil in situ to stimulate the existing microbial community, but little is known about how the added nutrients are used by these microorganisms. Microbes vary widely in their ability to metabolize petroleum hydrocarbons, so the question becomes: which hydrocarbon-degrading microorganisms most effectively use this added nitrogen for growth? Using [15N]DNA-based stable isotope probing, we determined which taxonomic groups most readily incorporated nitrogen from the monoammonium phosphate added to contaminated and uncontaminated soil in Canadian Forces Station-Alert, Nunavut, Canada. Fractions from each sample were amplified with bacterial 16S rRNA and alkane monooxygenase B (alkB) gene-specific primers and then sequenced using lage-scale parallel-pyrosequencing. Sequence data was combined with 16S rRNA and alkB gene C quantitative PCR data to measure the presence of various phylogenetic groups in fractions at different buoyant densities. Several families of Proteobacteria and Actinobacteria that are directly involved in petroleum degradation incorporated the added nitrogen in contaminated soils, but it was the DNA of Sphingomonadaceae that was most enriched in 15N. Bacterial growth in uncontaminated soils was not stimulated by nutrient amendment. Our results suggest that nitrogen uptake efficiency differs between bacterial groups in contaminated soils. A better understanding of how groups of hydrocarbon-degraders contribute to the catabolism of petroleum will facilitate the design of more targeted bioremediation treatments. PMID:21498745

  7. The Validity of Reading Comprehension Rate: Reading Speed, Comprehension, and Comprehension Rates

    ERIC Educational Resources Information Center

    Skinner, Christopher H.; Williams, Jacqueline L.; Morrow, Jennifer Ann; Hale, Andre D.; Neddenriep, Christine E.; Hawkins, Renee O.

    2009-01-01

    This article describes a secondary analysis of a brief reading comprehension rate measure, percent comprehension questions correct per minute spent reading (%C/M). This measure includes reading speed (seconds to read) in the denominator and percentage of comprehension questions answered correctly in the numerator. Participants were 22 4th-, 29…

  8. Lunar soil grain size distribution

    NASA Technical Reports Server (NTRS)

    Carrier, W. D., III

    1973-01-01

    A comprehensive review has been made of the currently available data for lunar grain size distributions. It has been concluded that there is little or no statistical difference among the large majority of the soil samples from the Apollo 11, 12, 14, and 15 missions. The grain size distribution for these soils has reached a steady state in which the comminution processes are balanced by the aggregation processes. The median particle size for the steady-state soil is 40 to 130 microns. The predictions of lunar grain size distributions based on the Surveyor television photographs have been found to be quantitatively in error and qualitatively misleading.

  9. Isolation, fingerprinting and genetic identification of indigenous PAHs degrading bacteria from oil-polluted soils.

    PubMed

    Alrumman, Sulaiman A; Hesham, Abd El-Latif; Alamri, Saad A

    2016-01-01

    In the present study, thirty five bacterial isolates were obtained from hydrocarbon-contaminated soil samples using an enrichment method. These isolates were tested to grow on mineral salt medium containing anthracene or phenanthrene as sole carbon source. Only five isolates showed the ability to degrade these compounds. RAPD-PCR fingerprinting was carried out for the five isolates, and the DNA patterns revealed that there was no similarity among the examined bacteria whenever the RFLP using four restriction enzymes HaeIII, Msp1, Hinf1 and Taq1 failed to differentiate among them. Five bacterial isolates were grown in high concentration of anthracene and phenanthrene (4% w/v). Two bacterial isolates were selected due to their high ability to grow in the presence of high concentrations of anthracene and phenanthrene. The isolates were identified as Bacillus flexus and Ochrobactrum anthropi, based on DNA sequencing of amplified 16S rRNA gene and phylogenetic analysis. Finally, the ability of these bacterial strains to tolerate and remove different PAHs looked promising for application in bioremediation technologies. PMID:26930863

  10. Conserving Soil.

    ERIC Educational Resources Information Center

    Soil Conservation Service (USDA), Washington, DC.

    Designed as enrichment materials for grades six through nine, this program is an interdisciplinary study of soils. As part of the program students: (1) examine soil organisms; (2) research history of local Native Americans to see how they and others have used the land and its soils; (3) investigate how soils are degraded and how they are conserved…

  11. [COMPREHENSIVE GERIATRIC ASSESSMENT SCALES].

    PubMed

    Casado Verdejo, Inés; Postigo Mota, Salvador; Muñoz Bermejo, Laura; Vallejo Villalobos, José Ramón; Arrabal Léon, Nazaret; Pinto Montealegre, Jose Eduardo

    2016-01-01

    The process of comprehensive geriatric assessment is one of the key elements of geriatric care management aimed at the population. it includes evaluating the clinical, functional, mental and social aspects of aging result and/or pathological processes that appear at this stage of the life cycle. For their achievement, as well as other tools, professionals have a large number of validated rating scales specifically designed in the assessment of the different areas or fields. Its use can be very useful, especially for the objectification of evaluation results. The future of research in this area goes through deepening the adequacy of the scales to the characteristics and needs of older people in each care level or place of care. PMID:26996044

  12. Comprehensive care of travelers.

    PubMed

    Pust, R E; Peate, W F; Cordes, D H

    1986-12-01

    Travel, especially if it is international, often means major changes for the family. Family physicians should assess the epidemiologic risk and psychosocial significance of travel or relocation in light of the family's life-cycle stage and antecedent health. Using core references, which are kept current in partnership with public health agencies, family physicians are able to provide comprehensive immunization, medications, and patient education for all travel risks. Families are given medical record summaries and recommended sources of care at their destination. Eight weeks after their return patients are reassessed for newly acquired illness and helped to integrate the perspectives gained during the travel into the family's future dynamics. Taking advantage of growing travel medicine opportunities, family medicine educators should base the care of travelers and teaching of residents on defined competence priorities. Travelers' health provides a mutually rewarding model of shared care with public health consultants in the community medicine curriculum. PMID:3537200

  13. LOSS OF ORGANIC CHEMICALS IN SOIL: PURE COMPOUND TREATABILITY STUDIES

    EPA Science Inventory

    Comprehensive screening data on the treatability of 32 organic chemicals in soil were developed. Of the evaluated chemicals, 22 were phenolic compounds. Aerobic batch laboratory microcosm experiments were conducted using two soils: an acidic clay soil with <1% organic matter and ...

  14. Soil carbonates and soil water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The presence of soil carbonates occurring as solidified masses or dispersed particles can alter soil water dynamics from what would be expected based on non-carbonate soil properties. Carbonate minerals in the soil can be derived from high carbonate parent material, additions in the form of carbonat...

  15. Valorization of a treated soil via amendments: fractionation and oral bioaccessibility of Cu, Ni, Pb, and Zn.

    PubMed

    Zagury, Gerald J; Rincon Bello, Jhony A; Guney, Mert

    2016-04-01

    The present study aims to transform a treated soil (TS) into a more desirable resource by modifying physico-chemical properties via amendments while reducing toxic metals' mobility and oral bioaccessibility. A hydrocarbon-contaminated soil submitted to treatment (TS) but still containing elevated concentrations of Cu, Ni, Pb, and Zn has been amended with compost, sand, and Al2(SO4)3 to render it usable for horticulture. Characterization and sequential extraction were performed for TS and four amended mixtures (AM1-4). P and K availability and metal bioaccessibility were investigated in TS and AM2. Amendment improved soil properties for all mixtures and yielded a usable product (AM2 20 % TS, 49 % compost, 30 % sand, 1 % Al2(SO4)3) satisfying regulatory requirements except for Pb content. In particular, AM2 had improved organic matter (OM) and cation exchange capacity (CEC), highly increased P and K availability, and reduced total metal concentrations. Furthermore, amendment decreased metal mobile fraction likely to be plant-available (in mg kg(-1), assumed as soluble/exchangeable + carbonates fractions). For AM2, estimated Pb bioavailability decreased from 1.50 × 10(3) mg kg(-1) (TS) to 238 mg kg(-1) (52.4 % (TS) to 34.2 %). Bioaccessible concentrations of Cu, Ni, and Zn (mg kg(-1)) were lower in AM2 than in TS, but there was no significant decrease for Pb. The results suggest that amendment improved soil by modifying its chemistry, resulting in lower metal mobile fraction (in %, for Cu and Zn) and bioaccessibility (in %, for Cu only). Amending soils having residual metal contamination can be an efficient valorization method, indicating potential for reducing treatment cost and environmental burden by rendering disposal/additional treatment unnecessary. Further studies including plant bioavailability are recommended to confirm results. PMID:26969154

  16. Comprehensive Water-Efficiency Solutions

    SciTech Connect

    McMordie Stoughton, Kate

    2015-07-15

    Energy performance contracts can be an effective way to integrate comprehensive water-efficient technologies and solutions into energy efficiency projects. Current practices often miss key opportunities to incorporate a full suite of water measures primarily because a comprehensive approach is not taken in the assessment. This article provides information on how to develop a comprehensive water project that leads to innovative solutions and potential for large water reduction.

  17. Soil experiment

    NASA Technical Reports Server (NTRS)

    Hutcheson, Linton; Butler, Todd; Smith, Mike; Cline, Charles; Scruggs, Steve; Zakhia, Nadim

    1987-01-01

    An experimental procedure was devised to investigate the effects of the lunar environment on the physical properties of simulated lunar soil. The test equipment and materials used consisted of a vacuum chamber, direct shear tester, static penetrometer, and fine grained basalt as the simulant. The vacuum chamber provides a medium for applying the environmental conditions to the soil experiment with the exception of gravity. The shear strength parameters are determined by the direct shear test. Strength parameters and the resistance of soil penetration by static loading will be investigated by the use of a static cone penetrometer. In order to conduct a soil experiment without going to the moon, a suitable lunar simulant must be selected. This simulant must resemble lunar soil in both composition and particle size. The soil that most resembles actual lunar soil is basalt. The soil parameters, as determined by the testing apparatus, will be used as design criteria for lunar soil engagement equipment.

  18. Comprehensive catalyst management

    SciTech Connect

    Pritchard, S.

    2007-05-15

    From January 2009, as SCR season expands from five months to year-round to meet new US Clean Air Interstate Rule standards, new catalyst strategies are increasingly important. Power plants will need a comprehensive management strategy that accounts for a wide range of old and new issues to achieve peak performance. An optimum plan is necessary for catalyst replacement or addition. SCR systems should be inspected and evaluated at least once a year. Levels of deactivation agents, most often arsenic and calcium oxide, need to match the particular coals used. Tools such as Cormetech's FIELD Guide are available to quantify the effect on catalyst life under various fuel-firing scenarios. Tests should be conducted to evaluate the NH{sub 3}/NOx distribution over time to maximise catalyst performance. The article gives a case study of catalyst management at the Tennessee Valley Authority Allen plant. Recent changes have created new variables to be considered in a catalyst management process, notably the expansion of the operating temperature range, mercury oxidation and SO{sub 3} emission limits. Cormetech has researched these areas. 5 figs., 2 photos.

  19. Comprehensive test ban negotiations

    NASA Astrophysics Data System (ADS)

    Grab, G. Allen; Heckrotte, Warren

    1983-10-01

    Although it has been a stated policy goal of American and Soviet leaders since 1958 (with the exception of Ronald Reagan), the world today is still without a Comprehensive Test Ban Treaty. Throughout their history, test an negotiatins have been plagued by a number of persistent problems. Chief among these is East-West differences on the verification question, with the United States concerned about the problem of possible Soviet cheating and the USSR concerned about the protection of its national sovereignty. In addition, internal bureaucratic politics have played a major role in preventing the successful conclusion of an agreement. Despite these problems, the superpowers have concluded several significant partial meausres: a brief (1958-1961) total moratorium on nuclear weapons tests; the Limited Test Ban Treaty of 1963, banning tests in the air, water and outer space; the Threshold Test Ban Treaty of 1974 (150 KT limit on underground explosions); and the Peaceful Nuclear Explosions Treaty of 1976 (150 KT limit on individal PNEs). Today, the main U.S. objections to a CTBT center is the nuclear weapons laboratories, the Department of Energy, and the Pentagon, who all stress the issues of stockpile reliability and verification. Those who remain committed to a CTBT emphasize and the potential political leverage it offers in checking both horizontal and vertical proliferation.

  20. Comprehensive piezoceramic actuator review

    NASA Astrophysics Data System (ADS)

    Taylor, Chris J.; Washington, Gregory N.

    2002-07-01

    Piezoceramic actuation has become an area of increased interest in the past ten years. Having been used for many years as sensors in such applications as pressure transducers and smoke detectors, piezoceramics are now being used as prime movers in fuel injectors and valve lifters. In an effort to aid the engineering community, this paper will conduct a comprehensive review of several piezoceramic actuators. Classical design parameters will be derived for each actuator such as blocked force and free stroke. In addition, more esoteric entities such as mechanical efficiency and energy density will also be derived. The result will be design metrics of popular piezoceramic actuators containing vital design equations, validated with empirical data. Of the many different configurations of piezoceramic actuators, this paper will investigate the bimorph and unimorph bender. These actuator types are finding increased use in semi-active structural damping, energy harvesting and vibration control. The work in this paper will show experimental verification of various actuator types as well as theoretical derivations. In addition to unimorphs, bimorphs and stack actuators a novel type of unimorph bender, the THUNDER actuator (developed and licensed by NASA) will be included in the review.

  1. Prosody and language comprehension.

    PubMed

    Dahan, Delphine

    2015-01-01

    This review provides a summary of the most recent advances on the study of how prosody is used during language comprehension. Prosody is characterized as an abstract structure composed of discrete tonal elements aligned with the segmental composition of the sentence organized in constituents of increasing size, and this structure is influenced by the phonological, syntactic, and informational structures of the sentence. Here, we discuss evidence that listeners are affected by prosody when establishing those linguistic structures. Prosody has been shown to influence the segmentation of the utterance into syllables and words, and, in some cases, whether a syllable or word is judged to be present or not. The literature on how prosody informs the structural relationship between words and phrases is also discussed, contrasting views that assume a direct (albeit probabilistic) link between syntax and prosody with those that posit a complex interface between syntax and prosodic structure. Finally, the role of prosody in conveying important aspects pertaining to the sentence's information structure (i.e., which parts of the sentence's meaning are highlighted and brought forward to the discourse, which ones are presupposed and left in the background, which attitudes are being conveyed about the concepts or propositional content) has long been recognized. Current research focuses on which prosodic elements contribute to marking the dimensions (or semantic primitives) of the information structure. PMID:26267554

  2. Comprehensive facilities plan

    SciTech Connect

    1997-09-01

    The Ernest Orlando Lawrence Berkeley National Laboratory`s Comprehensive Facilities Plan (CFP) document provides analysis and policy guidance for the effective use and orderly future development of land and capital assets at the Berkeley Lab site. The CFP directly supports Berkeley Lab`s role as a multiprogram national laboratory operated by the University of California (UC) for the Department of Energy (DOE). The CFP is revised annually on Berkeley Lab`s Facilities Planning Website. Major revisions are consistent with DOE policy and review guidance. Facilities planing is motivated by the need to develop facilities for DOE programmatic needs; to maintain, replace and rehabilitate existing obsolete facilities; to identify sites for anticipated programmatic growth; and to establish a planning framework in recognition of site amenities and the surrounding community. The CFP presents a concise expression of the policy for the future physical development of the Laboratory, based upon anticipated operational needs of research programs and the environmental setting. It is a product of the ongoing planning processes and is a dynamic information source.

  3. Benzo(a)pyrene accumulation in soils of technogenic emission zone by subcritical water extraction method

    NASA Astrophysics Data System (ADS)

    Sushkova, Svetlana; Minkina, Tatiana; Kizilkaya, Ridvan; Mandzhieva, Saglara; Batukaev, Abdulmalik; Bauer, Tatiana; Gulser, Coskun

    2016-04-01

    The purpose of research is the assessment of main marker of polycyclic aromatic hydrocarbons contamination, benzo[a]pyrene (BaP) content in soils of emission zone of the power complex plant in soils with use of ecologically clean and effective subcritical water extraction method. Studies were conducted on the soils of monitoring plots subjected to Novocherkassk Power Plant emissions from burning coal. In 2000, monitoring plots were established at different distances from the NPS (1.0-20.0 km). Soil samples for the determination of soil properties and the contents of BaP were taken from a depth of 0-20 cm. The soil cover in the region under study consisted of ordinary chernozems, meadow-chernozemic soils, and alluvial meadow soils. This soil revealed the following physical and chemical properties: Corg-3.1-5.0%, pH-7.3-7.6, ECE-31.2-47.6 mmol(+)/100g; CaCO3-0.2-1.0%, the content of physical clay - 51-67% and clay - 3-37%. BaP extraction from soils was carried out by a subcritical water extraction method. Subcritical water extraction of BaP from soil samples was conducted in a specially developed extraction cartridge made of stainless steel and equipped with screw-on caps at both ends. It was also equipped with a manometer that included a valve for pressure release to maintain an internal pressure of 100 atm. The extraction cartridge containing a sample and water was placed into an oven connected to a temperature regulator under temperature 250oC and pressure 60 atm. The BaP concentration in the acetonitrile extract was determined by HPLC. The efficiency of BaP extraction from soil was determined using a matrix spike. The main accumulation of pollutant in 20 cm layer of soils is noted directly in affected zone on the plots situated at 1.2, 1.6, 5.0, 8.0 km from emission source in the direction of prevailing winds. The maximum quantity of a pollutant was founded in the soil of the plot located mostly close to a source of pollution in the direction of prevailing winds

  4. Composition of toluene-degrading microbial communities from soil at different concentrations of toluene.

    PubMed

    Hubert, C; Shen, Y; Voordouw, G

    1999-07-01

    Toluene-degrading bacteria were isolated from hydrocarbon-contaminated soil by incubating liquid enrichment cultures and agar plate cultures in desiccators in which the vapor pressure of toluene was controlled by dilution with vacuum pump oil. Incubation in desiccators equilibrated with either 100, 10, or 1% (wt/wt) toluene in vacuum pump oil and testing for genomic cross-hybridization resulted in four genomically distinct strains (standards) capable of growth on toluene (strains Cstd1, Cstd2, Cstd5, and Cstd7). The optimal toluene concentrations for growth of these standards on plating media differed considerably. Cstd1 grew best in an atmosphere equilibrated with 0.1% (wt/wt) toluene, but Cstd5 failed to grow in this atmosphere. Conversely, Cstd5 grew well in the presence of 10% (wt/wt) toluene, which inhibited growth of Cstd1. 16S ribosomal DNA sequencing and cross-hybridization analysis indicated that both Cstd1 and Cstd5 are members of the genus Pseudomonas. An analysis of the microbial communities in soil samples that were incubated with 10% (wt/wt) toluene with reverse sample genome probing indicated that Pseudomonas strain Cstd5 was the dominant community member. However, incubation of soil samples with 0.1% (wt/wt) toluene resulted in a community that was dominated by Pseudomonas strain Q7, a toluene degrader that has been described previously (Y. Shen, L. G. Stehmeier, and G. Voordouw, Appl. Environ. Microbiol. 64:637-645, 1998). Q7 was not able to grow by itself in an atmosphere equilibrated with 0.1% (wt/wt) toluene but grew efficiently in coculture with Cstd1, suggesting that toluene or metabolic derivatives of toluene were transferred from Cstd1 to Q7. PMID:10388704

  5. Composition of Toluene-Degrading Microbial Communities from Soil at Different Concentrations of Toluene

    PubMed Central

    Hubert, Casey; Shen, Yin; Voordouw, Gerrit

    1999-01-01

    Toluene-degrading bacteria were isolated from hydrocarbon-contaminated soil by incubating liquid enrichment cultures and agar plate cultures in desiccators in which the vapor pressure of toluene was controlled by dilution with vacuum pump oil. Incubation in desiccators equilibrated with either 100, 10, or 1% (wt/wt) toluene in vacuum pump oil and testing for genomic cross-hybridization resulted in four genomically distinct strains (standards) capable of growth on toluene (strains Cstd1, Cstd2, Cstd5, and Cstd7). The optimal toluene concentrations for growth of these standards on plating media differed considerably. Cstd1 grew best in an atmosphere equilibrated with 0.1% (wt/wt) toluene, but Cstd5 failed to grow in this atmosphere. Conversely, Cstd5 grew well in the presence of 10% (wt/wt) toluene, which inhibited growth of Cstd1. 16S ribosomal DNA sequencing and cross-hybridization analysis indicated that both Cstd1 and Cstd5 are members of the genus Pseudomonas. An analysis of the microbial communities in soil samples that were incubated with 10% (wt/wt) toluene with reverse sample genome probing indicated that Pseudomonas strain Cstd5 was the dominant community member. However, incubation of soil samples with 0.1% (wt/wt) toluene resulted in a community that was dominated by Pseudomonas strain Q7, a toluene degrader that has been described previously (Y. Shen, L. G. Stehmeier, and G. Voordouw, Appl. Environ. Microbiol. 64:637–645, 1998). Q7 was not able to grow by itself in an atmosphere equilibrated with 0.1% (wt/wt) toluene but grew efficiently in coculture with Cstd1, suggesting that toluene or metabolic derivatives of toluene were transferred from Cstd1 to Q7. PMID:10388704

  6. Comprehensive Guidance Programs That Work.

    ERIC Educational Resources Information Center

    Gysbers, Norman C.; And Others

    This monograph describes how the comprehensive guidance model is transforming elementary-secondary school guidance and counseling programs in schools across the country. It incorporates the ideas and experiences of 12 guidance program developers in the actual use of the comprehensive guidance model in diverse school and cultural settings. The book…

  7. Metadiscourse Awareness and ESAP Comprehension

    ERIC Educational Resources Information Center

    Jalififar, A. R.; Shooshtari, Z. G.

    2011-01-01

    The present study examined the effect of explicit instruction about linguistic hedging on the English for Specific Academic Purposes (ESAP) reading comprehension performance of English Language Learning (ELL) university students through an awareness raising task. A reading comprehension test was developed and validated as the pre-test and…

  8. Pragmatic Comprehension Development through Telecollaboration

    ERIC Educational Resources Information Center

    Rafieyan, Vahid; Sharafi-Nejad, Maryam; Khavari, Zahra; Eng, Lin Siew; Mohamed, Abdul Rashid

    2014-01-01

    Pragmatic comprehension can be ideally developed through contact with target language speakers. This contact can be provided in English as Foreign Language contexts through telecollaboration. To test the actual effect of telecollaboration on the development of pragmatic comprehension, 30 Iranian undergraduates of English as a Foreign Language…

  9. Reading Comprehension for Older Readers

    ERIC Educational Resources Information Center

    Vaughn, Sharon; Edmonds, Meaghan

    2006-01-01

    This article provides an overview of a multicomponent comprehension strategy and graphic organizers designed for older readers to gain meaning from text. Practices designed to capitalize on the best research-based elements associated with improved outcomes in reading comprehension, particularly for expository texts, are described. The graphic…

  10. Artificial Intelligence and Language Comprehension.

    ERIC Educational Resources Information Center

    National Inst. of Education (DHEW), Washington, DC. Basic Skills Group. Learning Div.

    The three papers in this volume concerning artificial intelligence and language comprehension were commissioned by the National Institute of Education to further the understanding of the cognitive processes that enable people to comprehend what they read. The first paper, "Artificial Intelligence and Language Comprehension," by Terry Winograd,…

  11. Expectation-Based Syntactic Comprehension

    ERIC Educational Resources Information Center

    Levy, Roger

    2008-01-01

    This paper investigates the role of resource allocation as a source of processing difficulty in human sentence comprehension. The paper proposes a simple information-theoretic characterization of processing difficulty as the work incurred by resource reallocation during parallel, incremental, probabilistic disambiguation in sentence comprehension,…

  12. Reading Comprehension Strategy: Rainbow Dots

    ERIC Educational Resources Information Center

    Moore, Claire; Lo, Lusa

    2008-01-01

    An action research study was conducted using the Rainbow Dots strategy to evaluate its effectiveness on reading comprehension skills in a third-grade class with students both with and without a specific learning disability. Results of the study indicated that students' overall performances in reading comprehension have increased. Students also…

  13. Chernobyl accident: A comprehensive risk assessment

    SciTech Connect

    Vargo, G.J.; Poyarkov, V.; Baryakhtar, V.; Kukhar, V.; Los, I.

    1999-01-01

    The authors, all of whom are Ukrainian and Russian scientists involved with Chernobyl nuclear power plant since the April 1986 accident, present a comprehensive review of the accident. In addition, they present a risk assessment of the remains of the destroyed reactor and its surrounding shelter, Chernobyl radioactive waste storage and disposal sites, and environmental contamination in the region. The authors explore such questions as the risks posed by a collapse of the shelter, radionuclide migration from storage and disposal facilities in the exclusion zone, and transfer from soil to vegetation and its potential regional impact. The answers to these questions provide a scientific basis for the development of countermeasures against the Chernobyl accident in particular and the mitigation of environmental radioactive contamination in general. They also provide an important basis for understanding the human health and ecological risks posed by the accident.

  14. Chernobyl accident: A comprehensive risk assessment

    SciTech Connect

    Vargo, G.J.; Poyarkov, V.; Baryakhtar, V.; Kukhar, V.; Los, I.

    1999-11-01

    The authors, all of whom are Ukrainian and Russian scientists involved with Chernobyl nuclear power plant since the April 1986 accident, present a comprehensive review of the accident. In addition, they present a risk assessment of the remains of the destroyed reactor and its surrounding shelter, Chernobyl radioactive waste storage and disposal sites, and environmental contamination in the region. The authors explore such questions as the risks posed by a collapse of the shelter, radionuclide migration from storage and disposal facilities in the exclusion zone, and transfer from soil to vegetation and its potential regional impact. The answers to these questions provide a scientific basis for the development of countermeasures against the Chernobyl accident in particular and the mitigation of environmental radioactive contamination in general. They also provide an important basis for understanding the human health and ecological risks posed by the accident.

  15. Spatial disaggregation of complex soil map units at regional scale based on soil-landscape relationships

    NASA Astrophysics Data System (ADS)

    Vincent, Sébastien; Lemercier, Blandine; Berthier, Lionel; Walter, Christian

    2015-04-01

    with effectively observed soil types derived from available soil maps at scale of 1:25.000 or 1:50.000. Overall accuracies were 63.1% and 36.2%, respectively considering or not the adjacent pixels. The introduction of expert rules based on soil-landscape relationships to allocate soil types to calibration samples enhanced dramatically the results in comparison with a simple weighted random allocation procedure. It also enabled the production of a comprehensive soil map, retrieving expected spatial organization of soils. Estimation of soil properties for various depths is planned using disaggregated soil types, according to the GlobalSoilmap.net specifications. Odgers, N.P., Sun, W., McBratney, A.B., Minasny, B., Clifford, D., 2014. Disaggregating and harmonising soil map units through resampled classification trees. Geoderma 214, 91-100.

  16. Soil penetrometer

    NASA Technical Reports Server (NTRS)

    Howard, E. A.; Hotz, G. M.; Bryson, R. P. (Inventor)

    1968-01-01

    An auger-type soil penetrometer for burrowing into soil formations is described. The auger, while initially moving along a predetermined path, may deviate from the path when encountering an obstruction in the soil. Alterations and modifications may be made in the structure so that it may be used for other purposes.

  17. Application of a Bayesian nonparametric model to derive toxicity estimates based on the response of Antarctic microbial communities to fuel-contaminated soil

    PubMed Central

    Arbel, Julyan; King, Catherine K; Raymond, Ben; Winsley, Tristrom; Mengersen, Kerrie L

    2015-01-01

    Ecotoxicology is primarily concerned with predicting the effects of toxic substances on the biological components of the ecosystem. In remote, high latitude environments such as Antarctica, where field work is logistically difficult and expensive, and where access to adequate numbers of soil invertebrates is limited and response times of biota are slow, appropriate modeling tools using microbial community responses can be valuable as an alternative to traditional single-species toxicity tests. In this study, we apply a Bayesian nonparametric model to a soil microbial data set acquired across a hydrocarbon contamination gradient at the site of a fuel spill in Antarctica. We model community change in terms of OTUs (operational taxonomic units) in response to a range of total petroleum hydrocarbon (TPH) concentrations. The Shannon diversity of the microbial community, clustering of OTUs into groups with similar behavior with respect to TPH, and effective concentration values at level x, which represent the TPH concentration that causes x% change in the community, are presented. This model is broadly applicable to other complex data sets with similar data structure and inferential requirements on the response of communities to environmental parameters and stressors. PMID:26257876

  18. Soil threats in Europe for the RECARE project

    NASA Astrophysics Data System (ADS)

    Stolte, Jannes; Tesfai, Mehretaeb; Oygarden, Lillian

    2015-04-01

    Soil is one of our most important natural resources that provides us with vital goods and services to sustain life. Nevertheless, soils functions are threatened by a wide range of processes and a number of soil threats have been identified in Europe. Although there is a large body of knowledge available on soil threats in Europe, the complexity and functioning of soil systems and their interaction with human activities, climate change, and ecosystem services (ESS), is still not fully understood. An extensive literature review was carried out by a group of experts on soil threats at the European level. In total, around 60 experts from the 17 case study sites of the RECARE project, were involved in the process of reviewing and drafting the report and 11 soil threats were identified. The objective of WP2 of the RECARE project was to provide an improved overview of existing information on soil threats and degradation at the European scale. These soil threats are soil erosion by water, soil erosion by wind, decline of organic matter (OM) in peat, decline of OM in minerals soils, soil compaction, soil sealing, soil contamination, soil salinization, desertification, flooding and landslides and decline in soil biodiversity. The final report of WP2 provides a comprehensive thematic information on the major soil threats of Europe with due attention given to the Driving force-Pressure-State-Impact-Response to soil threats. Interrelationships between soil threats, between soil threats and soil functions and between soil threats and Ecosystems Services are made, and will be presented. A synergy between the soil threats is made based on the given information in each of the chapters, where we tried to identify the interactions between the threats. We tried to identify in what way one threat acts as a threat for another threat. Also, the link between soil degradation and Ecosystem Services are identified. Again, based on the information given in each chapter, the major climate

  19. Microbial diversity and hydrocarbon degrading gene capacity of a crude oil field soil as determined by metagenomics analysis.

    PubMed

    Abbasian, Firouz; Palanisami, Thavamani; Megharaj, Mallavarapu; Naidu, Ravi; Lockington, Robin; Ramadass, Kavitha

    2016-05-01

    Soils contaminated with crude oil are rich sources of enzymes suitable for both degradation of hydrocarbons through bioremediation processes and improvement of crude oil during its refining steps. Due to the long term selection, crude oil fields are unique environments for the identification of microorganisms with the ability to produce these enzymes. In this metagenomic study, based on Hiseq Illumina sequencing of samples obtained from a crude oil field and analysis of data on MG-RAST, Actinomycetales (9.8%) were found to be the dominant microorganisms, followed by Rhizobiales (3.3%). Furthermore, several functional genes were found in this study, mostly belong to Actinobacteria (12.35%), which have a role in the metabolism of aliphatic and aromatic hydrocarbons (2.51%), desulfurization (0.03%), element shortage (5.6%), and resistance to heavy metals (1.1%). This information will be useful for assisting in the application of microorganisms in the removal of hydrocarbon contamination and/or for improving the quality of crude oil. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:638-648, 2016. PMID:26914145

  20. Evaluation of soil washing for radiologically contaminated soils

    SciTech Connect

    Gombert, D. II

    1994-03-01

    Soil washing has been applied internationally to decontaminate soils due to the widespread increase in environmental awareness manifested in the United States by promulgation of the Comprehensive Environmental Response, Compensation and Liability Act, yet we continue to lack understanding on why the technique works in one application and not in another. A soil washing process typically integrates a variety of modules, each designed to decontaminate the matrix by destroying a particular phase or segregating a particle size fraction in which the contaminants are concentrated. The more known about how the contaminants are fixed, the more likely the process will succeed. Much can be learned from bioavailability studies on heavy metals in soils. Sequential extraction experiments designed to destroy one fixation mechanism at a time can be used to determine how contaminants are bound. This knowledge provides a technical basis for designing a processing strategy to efficiently decontaminate soil while creating a minimum of secondary wastes. In this study, a soil from the Idaho National Engineering Laboratory was physically and chemically characterized, then sequentially extracted to determine if soil washing could be effectively used to remove cesium, cobalt and chromium.

  1. Developing a Comprehensive Assessment Plan.

    PubMed

    Piatt, Kimberly A; Woodruff, Tearney R

    2016-09-01

    This chapter provides practical advice for developing a comprehensive assessment plan. Two examples from institutions that have created both individual and program-level assessment plans for leadership programs are shared. PMID:27502095

  2. Comprehensive Planning in Higher Education

    ERIC Educational Resources Information Center

    Freeman, Jack E.

    1977-01-01

    A review of current planning imperatives, trends, and problems leads to a set of guiding principles. The 12 principles deal with: leadership, clear definitions, coordination, broad participation, financial commitment, clear procedures, written plans, flexibility, comprehensiveness, timely information, and evaluation. (LBH)

  3. Comprehensive Solutions for Urban Reform

    ERIC Educational Resources Information Center

    Kilgore, Sally

    2005-01-01

    The comprehensive school reform (CSR) models build consistency throughout a district while addressing the needs of individual schools. The high-quality CSR programs offer a most effective option for urban education reform.

  4. Anaerobic methane oxidation may be more prevalent in surface soils than was originally thought

    NASA Astrophysics Data System (ADS)

    Gauthier, Mathieu; Bradley, Robert L.; Šimek, Miloslav

    2013-04-01

    Anaerobic oxidation of methane (CH4) (AOM) is a process that was first reported to occur in deep anoxic marine sediments. In this environment, CH4 is oxidized with sulphate (SO42-) as the terminal electron acceptor. It is mediated by a syntrophic consortium formed by SO42- reducing bacteria and anaerobic CH4 oxidizing Archaea, or by the latter alone. Since this landmark discovery, AOM was found to occur in other environments including freshwater lake sediments and water columns, mud volcanoes, landfill leachate, deep buried Holocene sediments and hydrocarbon contaminated aquifers. All of these situations are very specific and point to AOM as being primarily occurring in highly reducing conditions. Thus, observations of AOM in surface soils with fluctuating REDOX conditions are relatively scarce, although a few independent studies have reported AOM in surface peatlands as well as in a forest soil. Furthermore, AOM may follow different pathways, such as via the coupled oxidation of CH4 and reduction of manganese (Mn(IV)) or iron (Fe(III)), or by a lone denitrifying species that converts nitrite to nitric oxide in order to generate O2 that is then used internally to oxidize CH4. Thus, the goal of our study was to determine whether AOM is more prevalent than was thought in hydromorphic surface soils across different environments, and whether the addition of NO3- or SO4= as alternative electron acceptors may stimulate the process. We collected samples from 3 peatland soils in Scotland, 2 acid-sulphate soils in Finland, and shore sediments of 15 drained fish ponds in the Czech Republic. Subsamples were incubated in the absence of O2 and amended with either NO3-, SO42-, or left unamended (control). The net flux of CH4 and CO2 were assessed by gas chromatography after 2, 20, 40 and 60 days. We also used a 13C-CH4 isotope dilution technique to determine gross production and consumption rates of CH4. We detected AOM in all of our soils, with oxidation rates ranging between 0

  5. (Contaminated soil)

    SciTech Connect

    Siegrist, R.L.

    1991-01-08

    The traveler attended the Third International Conference on Contaminated Soil, held in Karlsruhe, Germany. The Conference was a status conference for worldwide research and practice in contaminated soil assessment and environmental restoration, with more than 1500 attendees representing over 26 countries. The traveler made an oral presentation and presented a poster. At the Federal Institute for Water, Soil and Air Hygiene, the traveler met with Dr. Z. Filip, Director and Professor, and Dr. R. Smed-Hildmann, Research Scientist. Detailed discussions were held regarding the results and conclusions of a collaborative experiment concerning humic substance formation in waste-amended soils.

  6. APPLICATION OF CHEMICALLY ACCELERATED BIOTREATMENT TO REDUCE RISKIN OIL-IMPACTED SOILS

    SciTech Connect

    J.R. Paterek; W.W.Bogan; V. Trbovic; W. Sullivan

    2003-01-07

    have been based on total contaminant concentrations in soil, as determined by laboratory extraction methods that use vigorous physical and chemical procedures. Numerous data collected from bioavailability studies in this study and others carried out by GTI and other organizations conducted on contaminated soils and sediments continue to show that not all contaminants are available to environmental receptors including man or ecologically forms. In short, there exist fractions of contaminants in soil that cannot be released from the soil matrix by normal means. These sequestered contaminant fractions should not be considered a risk to human health or the environment. This project focused on CAB technology to treat soil contaminants to these acceptable levels. Therefore, the primary objective of this project was to determine what these contaminant levels are and to reach or exceed cleanup standards using CAB. These determinations were demonstrated and verified using toxicity and chemical mobility tests. Based on GTI's experience with a form of CAB for the remediation of soils at Manufactured Gas Plant sites, use of the technology demonstrated in this project could save the oil and gas industry an estimated $200 million to $500 million over the next ten years. The merging of CAB with the use of EAE for calibration and evaluation of treatment effectiveness addressed the following research objectives: (1) Determination of the kinetics of contaminant desorption and bioavailability; (2) Further development of CAB technology for the treatment of hydrocarbon-contaminated soils; (3) Finalization of the methods, procedures and processes needed to apply CAB technology using EAE; and (4) Verification of the applicability of EAE for the remediation of contaminated soils.

  7. A model of poetic comprehension

    SciTech Connect

    Haase, K.

    1996-12-31

    This article introduces an account of aesthetic comprehension and experience together with an implemented miniature which generates analogical interpretations from a semi-automatic parse of Wordsworth`s {open_quotes}Lines Written in Early Spring{close_quotes}. In our account, a poem serves as an analogy teaching machine by using formal structure to cue the formation of novel analogies. This account builds on an analogical model of comprehension previously applied to large corpora of newspaper summaries. In the miniature, an automatic grammatical and semantic analysis of the text is augmented with information about rhyme and rhythm. These formal cues allow the system to determine analogies which it would not otherwise consider. The article describes the comprehension framework, the annotated piece, and the matcher`s performance on the piece. It closes with a discussion of possible objections to aspects of the thesis or experiment and suggested directions for future work.

  8. Soil Tilth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tilth has and continues to be an interesting term. The term intrigues people because of its connection with the soil and yet confuses people because of the inability to provide an exact definition or measurement. As a term that describes a soil property it is better visualized than quantified; howev...

  9. Desorption and mobilization of three strobilurin fungicides in three types of soil.

    PubMed

    Wu, Ping; Wu, Wen Zhu; Han, Zhi Hua; Yang, Hong

    2016-06-01

    Phenamacril (JS399-19 with independent intellectual property developed by China), azoxystrobin, and kresoxim-methyl are strobilurin fungicide. Due to their broad spectrum and good control of most of known fungi, strobilurin fungicide has been widely used in agriculture management. Thus, it is important to evaluate their environmental behaviors particularly in soils and underground water. In this study, the sorption/desorption and mobility of strobilurin fungicides in three Chinese soils (Jiangxi red soil, Taihu paddy soil, and Northeast China black soil) were conducted using comprehensively analytic approaches including batch experiment and soil thin-layer chromatography. The strobilurin fungicides were hard to be adsorbed in Jiangxi red soil but had medium adsorption capability in Tanhu paddy soil and Northeast China black soil, while the desorption of three strobilurin fungicides ranked in the order of Jiangxi red soil > Taihu paddy soil > Northeast China black soil. Soil properties including soil organic matter (SOM), pH, and cationic exchange capacity (CEC) affected the adsorption/desorption of the fungicides. Azoxystrobin and kresoxim-methyl had weak mobility in the soils. JS399-19 was moderately mobile in Jiangxi red soil but was not easily moved in Taihu paddy soil and Northeast China black soil. Due to their weak mobility in soils, these strobilurin fungicides tended to remain in the soil phase but not to shift downward to underground water. As azoxystrobin and JS399-19 had a long retention period in soil, there may become persistent residues in the soil environment. PMID:27220502

  10. Help with Teaching Reading Comprehension: Comprehension Instructional Frameworks

    ERIC Educational Resources Information Center

    Liang, Lauren Aimonette; Dole, Janice A.

    2006-01-01

    This article presents five instructional frameworks demonstrated by research as being effective in teaching reading comprehension: (1) The Scaffolded Reading Experience (SRE); (2) Questioning the Author (QtA); (3) Collaborative Strategic Reading (CSR); (4) Peer-Assisted Learning Strategies (PALS); and (5) Concept-Oriented Reading Instruction…

  11. Modern Standard Arabic: Aural Comprehension Course. Volume XX: Comprehension Drills.

    ERIC Educational Resources Information Center

    Defense Language Inst., Monterey, CA.

    The last of 20 volumes of lessons designed for use in a full-time, intensive training program in Arabic is presented. The 128 lessons in this volume contain various types of comprehension drills. Lessons 14-128 are completely in Arabic. (AMH)

  12. Selective Comprehensives: The Social Composition of Top Comprehensive Schools

    ERIC Educational Resources Information Center

    Sutton Trust, 2013

    2013-01-01

    This study looks at publicly available data on the proportion of pupils eligible and claiming for free school meals (FSM) in the top 500 comprehensive state schools and at how representative they are of their localities and of their school type. We have looked at the top 500 when measured by five good GCSEs including English and Maths and at the…

  13. Describing Comprehension: Teachers' Observations of Students' Reading Comprehension

    ERIC Educational Resources Information Center

    Vander Does, Susan Lubow

    2012-01-01

    Teachers' observations of student performance in reading are abundant and insightful but often remain internal and unarticulated. As a result, such observations are an underutilized and undervalued source of data. Given the gaps in knowledge about students' reading comprehension that exist in formal assessments, the frequent calls for teachers'…

  14. TREATABILITY POTENTIAL FOR EPA LISTED HAZARDOUS WASTES IN SOIL

    EPA Science Inventory

    This study developed comprehensive screening data on the treatability in soil of: (a) specific listed hazardous organic chemicals, and (b) waste sludge from explosives production (K044) and related chemicals. Laboratory experiments were conducted using two soil types, an acidic s...

  15. A review on temporal stability of soil water contents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temporal stability of soil water content (TS SWC) has been observed across a wide range of soil types, landscapes, climates and scales. A better understanding of TS SWC controls and their interactions needs to be developed. The objective of this work is to develop a comprehensive inventory of publis...

  16. Soil biology for resilient healthy soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    What is a resilient healthy soil? A resilient soil is capable of recovering or adapting to stress; the health of the living/biological component of the soil is crucial for soil resiliency. Soil health is tightly coupled to the concept of soil quality (Text Box 1) and the terms are frequently used ...

  17. SOIL BIOLOGY AND ECOLOGY

    EPA Science Inventory

    The term "Soil Biology", the study of organism groups living in soil, (plants, lichens, algae, moss, bacteria, fungi, protozoa, nematodes, and arthropods), predates "Soil Ecology", the study of interactions between soil organisms as mediated by the soil physical environment. oil ...

  18. Metatranscriptomic census of active protists in soils.

    PubMed

    Geisen, Stefan; Tveit, Alexander T; Clark, Ian M; Richter, Andreas; Svenning, Mette M; Bonkowski, Michael; Urich, Tim

    2015-10-01

    The high numbers and diversity of protists in soil systems have long been presumed, but their true diversity and community composition have remained largely concealed. Traditional cultivation-based methods miss a majority of taxa, whereas molecular barcoding approaches employing PCR introduce significant biases in reported community composition of soil protists. Here, we applied a metatranscriptomic approach to assess the protist community in 12 mineral and organic soil samples from different vegetation types and climatic zones using small subunit ribosomal RNA transcripts as marker. We detected a broad diversity of soil protists spanning across all known eukaryotic supergroups and revealed a strikingly different community composition than shown before. Protist communities differed strongly between sites, with Rhizaria and Amoebozoa dominating in forest and grassland soils, while Alveolata were most abundant in peat soils. The Amoebozoa were comprised of Tubulinea, followed with decreasing abundance by Discosea, Variosea and Mycetozoa. Transcripts of Oomycetes, Apicomplexa and Ichthyosporea suggest soil as reservoir of parasitic protist taxa. Further, Foraminifera and Choanoflagellida were ubiquitously detected, showing that these typically marine and freshwater protists are autochthonous members of the soil microbiota. To the best of our knowledge, this metatranscriptomic study provides the most comprehensive picture of active protist communities in soils to date, which is essential to target the ecological roles of protists in the complex soil system. PMID:25822483

  19. District Comprehensive Dropout Prevention Plan.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This report describes the Dade County, Florida, comprehensive K-12 program for decreasing the dropout rates of all students, with emphasis on minorities. The program involves a number of different components which provide students the opportunity and support for participation in academic and vocation-oriented courses and training programs. The…

  20. A comprehensive Prunus pathogen array

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A comprehensive pathogen array was developed for the detection of pathogens of many major crops in the Prunus genus. The APS disease lists for peach, plum, apricot and cherry were combined into a single Prunus pathogen list, containing 102 pathogens (75 fungi, 18 viruses, 6 bacteria and 3 phytoplasm...

  1. SCUP 32: Comprehensive Enrollment Management.

    ERIC Educational Resources Information Center

    McIntyre, Chuck

    Comprehensive enrollment management (CEM) ensures that academic, student, and fiscal planning are done in concert in order to acknowledge the turbulence confronting an institution. A four-phase model of CEM has been developed that can be replicated at any college or university. In phase 1 of the model, the past 25 years of institutional enrollment…

  2. Quantifier Comprehension in Corticobasal Degeneration

    ERIC Educational Resources Information Center

    McMillan, Corey T.; Clark, Robin; Moore, Peachie; Grossman, Murray

    2006-01-01

    In this study, we investigated patients with focal neurodegenerative diseases to examine a formal linguistic distinction between classes of generalized quantifiers, like "some X" and "less than half of X." Our model of quantifier comprehension proposes that number knowledge is required to understand both first-order and higher-order quantifiers.…

  3. BASIC TEST OF READING COMPREHENSION.

    ERIC Educational Resources Information Center

    CLOWARD, ROBERT D.; COHEN, S. ALAN

    THE TEST WAS DESIGNED TO ASSESS SPEED OF READING COMPREHENSION. IT CONSISTED OF NUMBERED PASSAGES, ONE TO THREE SENTENCES IN LENGTH, ARRANGED IN PARAGRAPH FORM TO SIMULATE THE NORMAL READING EXERCISE. TOWARD THE END OF EACH PASSAGE, A WORD WAS INSERTED WHICH SPOILED THE MEANING OF THE PASSAGE. THE PUPILS WERE INSTRUCTED TO FIND THE WORD THAT…

  4. Innovation Learning in Comprehensive Education?

    ERIC Educational Resources Information Center

    Lindfors, Eila; Hilmola, Antti

    2016-01-01

    The goal of this article is to clarify the concept of innovation and by presenting a research on the basic education outcome assessment data from an innovation learning perspective, answer to a question: Do students learn innovation in comprehensive education? The empirical information in this research is based on data collected in the national…

  5. Memory mechanisms supporting syntactic comprehension

    PubMed Central

    Waters, Gloria

    2013-01-01

    Efforts to characterize the memory system that supports sentence comprehension have historically drawn extensively on short-term memory as a source of mechanisms that might apply to sentences. The focus of these efforts has changed significantly in the past decade. As a result of changes in models of short-term working memory (ST-WM) and developments in models of sentence comprehension, the effort to relate entire components of an ST-WM system, such as those in the model developed by Baddeley (Nature Reviews Neuroscience 4: 829–839, 2003) to sentence comprehension has largely been replaced by an effort to relate more specific mechanisms found in modern models of ST-WM to memory processes that support one aspect of sentence comprehension—the assignment of syntactic structure (parsing) and its use in determining sentence meaning (interpretation) during sentence comprehension. In this article, we present the historical background to recent studies of the memory mechanisms that support parsing and interpretation and review recent research into this relation. We argue that the results of this research do not converge on a set of mechanisms derived from ST-WM that apply to parsing and interpretation. We argue that the memory mechanisms supporting parsing and interpretation have features that characterize another memory system that has been postulated to account for skilled performance—long-term working memory. We propose a model of the relation of different aspects of parsing and interpretation to ST-WM and long-term working memory. PMID:23319178

  6. Anaphoric Relations, Comprehension and Readability.

    ERIC Educational Resources Information Center

    Dutka, Julia To

    The relationship between anaphoric nominal substitution and reading comprehension was studied. The Diagnostic Reading Test and the Substitution Test were administered to 80 college juniors, seniors, and graduate students in teacher certification courses, and to 92 college freshmen seeking assistance in improving their reading skills. Positive and…

  7. A Comprehensive General Chemistry Demonstration

    ERIC Educational Resources Information Center

    Sweeder, Ryan D.; Jeffery, Kathleen A.

    2013-01-01

    This article describes the use of a comprehensive demonstration suitable for a high school or first-year undergraduate introductory chemistry class. The demonstration involves placing a burning candle in a container adjacent to a beaker containing a basic solution with indicator. After adding a lid, the candle will extinguish and the produced…

  8. Word Knowledge Influences on Comprehension.

    ERIC Educational Resources Information Center

    Curtis, Mary E.; And Others

    Two studies examined the relationship between word knowledge and reading comprehension. Subjects were college undergraduates with high and low verbal abilities as indicated by a standardized verbal aptitude test. The first study involved a multiple choice vocabulary test from which words that both groups defined correctly were selected. The…

  9. Analyzing Retellings To Assess Comprehension.

    ERIC Educational Resources Information Center

    Feathers, Karen; And Others

    Three studies examined the impact of different instructional reading materials and subsequent analysis of comprehension by retellings. The first study investigated the influence of the presentation of the material. Subjects, 83 freshmen enrolled in a biology course, were shown one of four combinations of course material involving a slide…

  10. Comprehensive Schools and the Future

    ERIC Educational Resources Information Center

    Barker, Bernard

    2012-01-01

    This article argues that comprehensive reorganisation was not a one-off policy reform but a complex, bottom-up campaign for equity and fairness in education, with varied consequences and outcomes. Recent battles over student fees, free schools and academies show that the quest for democratic education does not lead to a permanent achievement but…

  11. Soil mechanics

    NASA Technical Reports Server (NTRS)

    Mitchell, J. K.; Carrier, W. D., III; Houston, W. N.; Scott, R. F.; Bromwell, L. G.; Durgunoglu, H. T.; Hovland, H. J.; Treadwell, D. D.; Costes, N. C.

    1972-01-01

    Preliminary results are presented of an investigation of the physical and mechanical properties of lunar soil on the Descartes slopes, and the Cayley Plains in the vicinity of the LM for Apollo 16. The soil mechanics data were derived form (1) crew commentary and debriefings, (2) television, (3) lunar surface photography, (4) performance data and observations of interactions between soil and lunar roving vehicle, (5) drive-tube and deep drill samples, (6) sample characteristics, and (7) measurements using the SRP. The general characteristics, stratigraphy and variability are described along with the core samples, penetrometer test results, density, porosity and strength.

  12. Upscaling of point soil moisture measurements to field averages at the OPE3 test site.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To better understand how point soil moisture values relate to field-scale estimates of soil moisture a comprehensive evaluation of soil water dynamics was studied at the Optimizing Production Inputs for Economic and Environmental Enhancement (OPE3) research site in Beltsville, Maryland. The ranking...

  13. Decontaminating soil organic pollutants with manufactured nanoparticles.

    PubMed

    Li, Qi; Chen, Xijuan; Zhuang, Jie; Chen, Xin

    2016-06-01

    Organic pollutants in soils might threaten the environmental and human health. Manufactured nanoparticles are capable to reduce this risk efficiently due to their relatively large capacity of sorption and degradation of organic pollutants. Stability, mobility, and reactivity of nanoparticles are prerequisites for their efficacy in soil remediation. On the basis of a brief introduction of these issues, this review provides a comprehensive summary of the application and effectiveness of various types of manufactured nanoparticles for removing organic pollutants from soil. The main categories of nanoparticles include iron (oxides), titanium dioxide, carbonaceous, palladium, and amphiphilic polymeric nanoparticles. Their advantages (e.g., unique properties and high sorption capacity) and disadvantages (e.g., high cost and low recovery) for soil remediation are discussed with respect to the characteristics of organic pollutants. The factors that influence the decontamination effects, such as properties, surfactants, solution chemistry, and soil organic matter, are addressed. PMID:26906002

  14. MICROBIAL DEGRADATION OF ALKYLBENZENES UNDER SULFATE-REDUCING AND METHANOGENIC CONDITIONS

    EPA Science Inventory

    Aquifer solids and soils obtained from various hydrocarbon-contaminated sites were used to investigate the ability of indigenous microorganisms to degrade monoaromatic hydrocarbons under strictly anaerobic conditions. n anaerobic microcosms inoculated with fuel-contaminated soil ...

  15. Comprehensible Presentation of Topological Information

    SciTech Connect

    Weber, Gunther H.; Beketayev, Kenes; Bremer, Peer-Timo; Hamann, Bernd; Haranczyk, Maciej; Hlawitschka, Mario; Pascucci, Valerio

    2012-03-05

    Topological information has proven very valuable in the analysis of scientific data. An important challenge that remains is presenting this highly abstract information in a way that it is comprehensible even if one does not have an in-depth background in topology. Furthermore, it is often desirable to combine the structural insight gained by topological analysis with complementary information, such as geometric information. We present an overview over methods that use metaphors to make topological information more accessible to non-expert users, and we demonstrate their applicability to a range of scientific data sets. With the increasingly complex output of exascale simulations, the importance of having effective means of providing a comprehensible, abstract overview over data will grow. The techniques that we present will serve as an important foundation for this purpose.

  16. Comprehensive numerical modelling of tokamaks

    SciTech Connect

    Cohen, R.H.; Cohen, B.I.; Dubois, P.F.

    1991-01-03

    We outline a plan for the development of a comprehensive numerical model of tokamaks. The model would consist of a suite of independent, communicating packages describing the various aspects of tokamak performance (core and edge transport coefficients and profiles, heating, fueling, magnetic configuration, etc.) as well as extensive diagnostics. These codes, which may run on different computers, would be flexibly linked by a user-friendly shell which would allow run-time specification of packages and generation of pre- and post-processing functions, including workstation-based visualization of output. One package in particular, the calculation of core transport coefficients via gyrokinetic particle simulation, will become practical on the scale required for comprehensive modelling only with the advent of teraFLOP computers. Incremental effort at LLNL would be focused on gyrokinetic simulation and development of the shell.

  17. Treatability assessment of polycyclic aromatic hydrocarbons contaminated marine sediments using permanganate, persulfate and Fenton oxidation processes.

    PubMed

    Shih, Yu-Jen; Binh, Nguyen Thanh; Chen, Chiu-Wen; Chen, Chih-Feng; Dong, Cheng-Di

    2016-05-01

    Various chemical oxidation techniques, such as potassium permanganate (KMnO4), sodium persulfate (Na2S2O8), Fenton (H2O2/Fe(2+)), and the modified persulfate and Fenton reagents (activated by ferrous complexes), were carried out to treat marine sediments that were contaminated with polycyclic aromatic hydrocarbons (PAHs) and dredged from Kaohsiung Harbor in Taiwan. Experimental results revealed that KMnO4 was the most effective of the tested oxidants in PAH degradation. Owing to the high organic matter content in the sediment that reduced the efficiencies of Na2S2O8 and regular Fenton reactions, a large excess of oxidant was required. Nevertheless, KH2PO4, Na4P2O7 and four chelating agents (EDTA, sodium citrate, oxalic acid, and sodium oxalate) were utilized to stabilize Fe(II) in activating the Na2S2O8 and Fenton oxidations, while Fe(II)-citrate remarkably promoted the PAH degradation. Increasing the molecular weight and number of rings of PAH did not affect the overall removal efficiencies. The correlation between the effectiveness of the oxidation processes and the physicochemical properties of individual PAH was statistically analyzed. The data implied that the reactivity of PAH (electron affinity and ionization potential) affected its treatability more than did its hydrophobicity (Kow, Koc and Sw), particularly using experimental conditions under which PAHs could be effectively oxidized. PMID:26915591

  18. Effects of hydrocarbon contamination on ozone generation with dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Lopez, Jose L.; Vezzu, Guido; Freilich, Alfred; Paolini, Bernhard

    2013-08-01

    The increasing usage of the feed gases of lower grade liquid oxygen (LOX) containing higher levels of trace hydrocarbon impurities in dielectric barrier discharge (DBD) for ozone generation requires a better understanding of the kinetics of the by-product formation resulting from reactions involving these hydrocarbon impurities. As a case study of hydrocarbon impurities, the kinetics of CH4 conversion in DBDs and the subsequent HNO3 formation were investigated by means of gas-phase plasma diagnostics, supported by detailed process modeling, and extensive in-situ and ex-situ by-product analysis. The by-products formation in the plasma with the presence of CH4, were found to differ significantly in oxygen-fed generators as compared to generators fed with oxygen/nitrogen mixtures. The amount of HNO3 formed depends on the concentration of NOx formed in the plasma and the amount of CH4 that is converted, but not on the O3 concentration. In the present work we have investigated CH4 concentrations of up to 1.95 wt% of the feed gas. The rate of deterioration of the overall ozone generator performance was found to be affected by the concentration of nitrogen in the oxygen/nitrogen mixture.

  19. Source identification of hydrocarbon contaminants and their transportation over the Zonguldak shelf, Turkish Black Sea

    NASA Astrophysics Data System (ADS)

    Unlu, S.; Alpar, B.

    2009-04-01

    Under great anthropogenic pressure due to the substantial freshwater input from the surrounding industrial and agricultural areas, especially central and middle-Eastern Europe, the Black Sea basin is ranked among the most ecologically threatened water bodies of the world. Oil levels are unacceptable in many coastal areas perilously close to polluted harbors and many river mouths; the places presenting the highest levels of bio-diversity and having a high socio-economic importance due to human use of coastal resources. There are about sixty sources of pollution which resulted in "hot spots" having disastrous impacts on sensitive marine and coastal areas and needing immediate priorities for action. Beyond such land-based sources, trans-boundary pollution sources from Black Sea riparian countries, heavy maritime traffic, particularly involving petroleum transports and fishing boats, and the improper disposal of ballast and bilge waters and solid waste are also important marine sources of pollution. Found in fossil fuels such as Polycyclic Aromatic Hydrocarbons are generated by incomplete combustion of organic matter. In order to estimate their distribution in sediment and their sources, they were monitored from the bottom samples offshore the Zonguldak industry region, one of the most polluted spots in the Turkish Black Sea. There the budget of pollutants via rivers is not precisely known due to an evident lack of data on chemical and granulometric composition of the river runoff and their fluxes. Therefore the marine sediments, essential components of marine ecosystems, are very important in our estimating the degree of the damage given to the ecosystem by such inputs. Realization of the sources and transport of these contaminants will be a critical tool for future management of the Zonguldak industry region and its watershed. The sea bottom in study area is composed of mainly sand and silt mixtures with small amount of clay. Geochemical analyses have shown that oil contamination was dominated in near-shore sediments. Their spatial distributions over the shelf area make an estimation of possible pollution sources and their transportation routes possible. Sea port activities, industrial inputs and partly maritime petroleum transport are the main sources of pollutants. They are under the control of the longshore currents supplied with river alluvium and coastal abrasion material.

  20. Synthesis and characterization of hydrophobic zeolite for the treatment of hydrocarbon contaminated ground water.

    PubMed

    Northcott, Kathy A; Bacus, Joannelle; Taya, Naoyuki; Komatsu, Yu; Perera, Jilska M; Stevens, Geoffrey W

    2010-11-15

    Hydrophobic zeolite was synthesized, modified and characterized for its suitability as a permeable reactive barrier (PRB) material for treatment of hydrocarbons in groundwater. Batch sorption tests were performed along with a number of standard characterization techniques. High and low ionic strength and pH tests were also conducted to determine their impact on hydrocarbon uptake. Further ion exchange tests were conducted to determine the potential for the zeolite to act as both a hydrocarbon capture material and nutrient a delivery system for bioremediation. The zeolite was coated with octadecyltrichlorosilane (C18) to change its surface properties. The results of the surface characterization tests showed that the underlying zeolite structure was largely unaffected by the coating. TGA measurements showed a reactive carbon content of 1-2%. Hydrocarbon (o-xylene and naphthalene) sorption isotherms results compared well with the behaviour of similar materials investigated by other researchers. Ionic strength and pH had little effect on hydrocarbon sorption and the treated zeolite had an ion exchange capacity of 0.3 mequiv./g, indicating it could be utilised as a nutrient source in PRBs. Recycle tests indicated that the zeolite could be used cleaned and reused at least three times without significant reduction in treatment effectiveness. PMID:20688431

  1. STUDIES ON BIOREMEDIATION OF POLYCYCLIC AROMATIC HYDROCARBON-CONTAMINATED SEDIMENTS: BIOAVAILABILITY, BIODEGRADABILITY, AND TOXICITY ISSUES

    EPA Science Inventory

    The widespread contamination of aquatic sediments by polycyclic aromatic hydrocarbons (PAHs) has created a need for cost-effective bioremediation processes, on which the bioavailability and the toxicity of PAHs often have a significant impact. This research investigated the biode...

  2. Key players and team play: anaerobic microbial communities in hydrocarbon-contaminated aquifers.

    PubMed

    Kleinsteuber, Sabine; Schleinitz, Kathleen M; Vogt, Carsten

    2012-05-01

    Biodegradation of anthropogenic pollutants in shallow aquifers is an important microbial ecosystem service which is mainly brought about by indigenous anaerobic microorganisms. For the management of contaminated sites, risk assessment and control of natural attenuation, the assessment of in situ biodegradation and the underlying microbial processes is essential. The development of novel molecular methods, "omics" approaches, and high-throughput techniques has revealed new insight into complex microbial communities and their functions in anoxic environmental systems. This review summarizes recent advances in the application of molecular methods to study anaerobic microbial communities in contaminated terrestrial subsurface ecosystems. We focus on current approaches to analyze composition, dynamics, and functional diversity of subsurface communities, to link identity to activity and metabolic function, and to identify the ecophysiological role of not yet cultured microbes and syntrophic consortia. We discuss recent molecular surveys of contaminated sites from an ecological viewpoint regarding degrader ecotypes, abiotic factors shaping anaerobic communities, and biotic interactions underpinning the importance of microbial cooperation for microbial ecosystem services such as contaminant degradation. PMID:22476263

  3. SCREENING PLANT SPECIES FOR GROWTH ON WEATHERED, PETROLEUM HYDROCARBON-CONTAMINATED SEDIMENTS. (R825413)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  4. FINAL REPORT. ENVIRONMENTAL ANALYSIS OF ENDOCRINE DISRUPTING EFFECTS FROM HYDROCARBON CONTAMINANTS IN THE ECOSYSTEM

    EPA Science Inventory

    The objective of this project was to determine howenvironmental contaminants, namely hydrocarbons, act as hormones or anti- hormones in different species present in aquatic ecosystems. The three major components of the research included:1)a biotechnology based screening system ...

  5. EARLY WARNING MARINE WATER SUPPLY PROTECTION STRATEGY: THE THREAT OF OIL SPILL (PETROLEUM HYDROCARBON) CONTAMINATION

    EPA Science Inventory

    Oil spills resulting from the twice-grounded freighter New Carissa on the Central Oregon coast in the spring of 1999 caused substantial concern regarding potential petroleum hydrocarbon (PHC) contamination of Coos Bay, Alsea Bay and Yaquina Bay estuaries and resident seawater fac...

  6. [Characterization of polycyclic aromatic hydrocarbons contaminations in surface sediments from Zhalong wetland, China].

    PubMed

    Liu, Jun-Wen; Xie, Qi-Lai; Wang, Yan; Xu, Yue; Li, Jun; Zhang, Gan

    2011-08-01

    Soxhlet extraction, silica gel alumina column for separation and clean up and gas chromatography-mass spectrometer (GC-MS) for qualitative and quantitative analysis were used for study environmental behavior of 15 priority PAHs of twelve surface sediment samples collected from Zhalong wetland, Heilongjiang Province. The objectives of this study were to identify the PAHs contamination level, composition pattern, pollution sources and pathways, and to assess the ecological risk of PAHs to aquatic life in Zhalong wetland. The total concentrations of 15 priority PAHs ranged form 31.9 to 290 ng/g (dry weight), with a mean value of 130 ng/g. The PAHs profiles were dominated by two-to four-ring compounds which accounted for 90% of total PAHs. Phenanthrene, fluorine, fluoranthene, and pyrene represented the highest fractions in all surface sediment samples. Comparing with other results from wetlands and lakes in China or other countries, the PAH concentrations level in Zhalong wetland surface sediments were relatively low, in the same range of Lharu wetland. The linear regression analysis showed that the concentrations of PAHs were significantly correlated to the sediment total organic carbon (TOC) content (R2 = 0.87). PAHs contamination might mainly came from biomass and coal combustion. After long range atmospheric transport and deposition, the released PAHs finally accumulated into wetland sediment. Ecology risk assessment indicated that phenanthrene and fluorine had exhibited a tendency of accumulation on surface sediment of Zhalong wetland, which would exert negative toxic effect on aquatic organism. PMID:22619977

  7. EVIDENCE FOR MICROBIAL ENHANCED ELECTRICAL CONDUCTIVITY IN HYDROCARBON-CONTAMINATED SEDIMENTS

    EPA Science Inventory

    Electrical conductivity of sediments during microbial mineralization of diesel was investigated in a mesoscale column experiment consisting of biotic contaminated and uncontaminated columns. Microbial population numbers increased with a clear pattern of depth zonation within the ...

  8. BIOGEOCHEMICAL EVIDENCE FOR MICROBIAL COMMUNITY CHANGE IN A JET FUEL HYDROCARBONS-CONTAMINATED AQUIFER

    EPA Science Inventory

    A glacio-fluvial aquifer located at Wurtsmith Air Force Base, Michigan, had been contaminated with JP-4 fuel hydrocarbons released after the crash of a tanker aircraft in October of 1988 Microbial biomass and community structure, associated with the aquifer sediments, were chara...

  9. MICROBIAL COMMUNITY STRUCTURE IN A SHALLOW HYDROCARBON-CONTAMINATED AQUIFER ASSOCIATED WITH HIGH ELECTRICAL CONDUCTIVITY

    EPA Science Inventory

    Little is known about the complex interactions between microbial communities and electrical properties in contaminated aquifers. In order to investigate possible connections between these parameters a study was undertaken to investigate the hypothesis that the degradation of hydr...

  10. Activity and Diversity of Sulfate-Reducing Bacteria in a Petroleum Hydrocarbon-Contaminated Aquifer

    PubMed Central

    Kleikemper, Jutta; Schroth, Martin H.; Sigler, William V.; Schmucki, Martina; Bernasconi, Stefano M.; Zeyer, Josef

    2002-01-01

    Microbial sulfate reduction is an important metabolic activity in petroleum hydrocarbon (PHC)-contaminated aquifers. We quantified carbon source-enhanced microbial SO42− reduction in a PHC-contaminated aquifer by using single-well push-pull tests and related the consumption of sulfate and added carbon sources to the presence of certain genera of sulfate-reducing bacteria (SRB). We also used molecular methods to assess suspended SRB diversity. In four consecutive tests, we injected anoxic test solutions (1,000 liters) containing bromide as a conservative tracer, sulfate, and either propionate, butyrate, lactate, or acetate as reactants into an existing monitoring well. After an initial incubation period, 1,000 liters of test solution-groundwater mixture was extracted from the same well. Average total test duration was 71 h. We measured concentrations of bromide, sulfate, and carbon sources in native groundwater as well as in injection and extraction phase samples and characterized the SRB population by using fluorescence in situ hybridization (FISH) and denaturing gradient gel electrophoresis (DGGE). Enhanced sulfate reduction concomitant with carbon source degradation was observed in all tests. Computed first-order rate coefficients ranged from 0.19 to 0.32 day−1 for sulfate reduction and from 0.13 to 0.60 day−1 for carbon source degradation. Sulfur isotope fractionation in unconsumed sulfate indicated that sulfate reduction was microbially mediated. Enhancement of sulfate reduction due to carbon source additions in all tests and variability of rate coefficients suggested the presence of specific SRB genera and a high diversity of SRB. We confirmed this by using FISH and DGGE. A large fraction of suspended bacteria hybridized with SRB-targeting probes SRB385 plus SRB385-Db (11 to 24% of total cells). FISH results showed that the activity of these bacteria was enhanced by addition of sulfate and carbon sources during push-pull tests. However, DGGE profiles indicated that the bacterial community structure of the dominant species did not change during the tests. Thus, the combination of push-pull tests with molecular methods provided valuable insights into microbial processes, activities, and diversity in the sulfate-reducing zone of a PHC-contaminated aquifer. PMID:11916663

  11. Fluorescence in situ hybridization (CARD-FISH) of microorganisms in hydrocarbon contaminated aquifer sediment samples.

    PubMed

    Tischer, Karolin; Zeder, Michael; Klug, Rebecca; Pernthaler, Jakob; Schattenhofer, Martha; Harms, Hauke; Wendeberg, Annelie

    2012-12-01

    Groundwater ecosystems are the most important sources of drinking water worldwide but they are threatened by contamination and overexploitation. Petroleum spills account for the most common source of contamination and the high carbon load results in anoxia and steep geochemical gradients. Microbes play a major role in the transformation of petroleum hydrocarbons into less toxic substances. To investigate microbial populations at the single cell level, fluorescence in situ hybridization (FISH) is now a well-established technique. Recently, however, catalyzed reporter deposition (CARD)-FISH has been introduced for the detection of microbes from oligotrophic environments. Nevertheless, petroleum contaminated aquifers present a worst case scenario for FISH techniques due to the combination of high background fluorescence of hydrocarbons and the presence of small microbial cells caused by the low turnover rates characteristic of groundwater ecosystems. It is therefore not surprising that studies of microorganisms from such sites are mostly based on cultivation techniques, fingerprinting, and amplicon sequencing. However, to reveal the population dynamics and interspecies relationships of the key participants of contaminant degradation, FISH is an indispensable tool. In this study, a protocol for FISH was developed in combination with cell quantification using an automated counting microscope. The protocol includes the separation and purification of microbial cells from sediment particles, cell permeabilization and, finally, CARD-FISH in a microwave oven. As a proof of principle, the distribution of Archaea and Bacteria was shown in 60 sediment samples taken across the contaminant plume of an aquifer (Leuna, Germany), which has been heavily contaminated with several ten-thousand tonnes of petroleum hydrocarbons since World War II. PMID:22425347

  12. Assessment of sediment hydrocarbon contamination from the 2009 Montara oil blow out in the Timor Sea.

    PubMed

    Burns, Kathryn A; Jones, Ross

    2016-04-01

    In August 2009, a blowout of the Montara H1 well 260 km off the northwest coast of Australia resulted in the uncontrolled release of about 4.7 M L of light crude oil and gaseous hydrocarbons into the Timor Sea. Over the 74 day period of the spill, the oil remained offshore and did not result in shoreline incidents on the Australia mainland. At various times slicks were sighted over a 90,000 km(2) area, forming a layer of oil which was tracked by airplanes and satellites but the slicks typically remained within 35 km of the well head platform and were treated with 183,000 L of dispersants. The shelf area where the spill occurred is shallow (100-200 m) and includes off shore emergent reefs and cays and submerged banks and shoals. This study describes the increased inputs of oil to the system and assesses the environmental impact. Concentrations of hydrocarbon in the sediment at the time of survey were very low (total aromatic hydrocarbons (PAHs) ranged from 0.04 to 31 ng g(-1)) and were orders of magnitude lower than concentrations at which biological effects would be expected. PMID:26774768

  13. Influence of food supply and chlorinated hydrocarbon contaminants on breeding success of bald eagles.

    PubMed

    Gill, Christopher E; Elliott, John E

    2003-01-01

    Food supply and contaminants were investigated as possible causes of low bald eagle productivity near a bleached kraft pulp and paper mill at Crofton on Vancouver Island, British Columbia. Over a seven year period, 1992-1998, average productivity of five eagle territories situated south of the pulp mill at Crofton was significantly lower (0.43 young/occupied territory) than six territories north of the mill (1.04 young/occupied territory). A reference population of 32 territories located in Barkley Sound on the west coast of Vancouver Island demonstrated intermediary mean productivity (0.75 young/occupied territory). Measures of prey biomass delivered to nests were lowest south of the mill, and correlated significantly with nesting success. On average, measures of energy delivered to nests and a parameter determined to be related to prey availability, adult nest attendance time, accounted for about 70% of variability in nest success. Contaminant concentrations, including pulp mill derived polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), as well as dichlorodiphenyldichloroethane (DDE), polychlorinated biphenyls (PCBs), and calculated tetrachlorodibenzo-p-dioxin toxic equivalents (TEQs) were significantly greater in plasma samples of nestlings from south of the mill compared to the other two sites, but did not correlate significantly with individual nest success data. Nests south of the mill concentrate around Maple Bay, which appears to be a deposition area for contaminants transported by tides and currents from sources such as the pulp mill. Concentrations of DDE and PCBs in plasma of nestling eagles from south of the mill were less than the critical values estimated to affect production of young. For TEQs, there are no published critical values for plasma by which to compare our results. We conclude that less than adequate energy provisioning to nests, presumably related to low prey availability, was likely the main cause of poor nest success south of the mill site at Crofton. However, higher concentrations of both DDE and PCDD/F derived TEQs may have acted in concert with food stress to further reduce bald eagle productivity. PMID:12739860

  14. Geophysical Signatures of Microbial Activity at Hydrocarbon Contaminated Sites: A Review

    NASA Astrophysics Data System (ADS)

    Atekwana, Estella A.; Atekwana, Eliot A.

    2010-03-01

    Microorganisms participate in a variety of geologic processes that alter the chemical and physical properties of their environment. Understanding the geophysical signatures of microbial activity in the environment has resulted in the development of a new sub-discipline in geophysics called “biogeophysics”. This review focuses primarily on literature pertaining to biogeophysical signatures of sites contaminated by light non-aqueous phase liquids (LNAPL), as these sites provide ideal laboratories for investigating microbial-geophysical relationships. We discuss the spatial distribution and partitioning of LNAPL into different phases because the physical, chemical, and biological alteration of LNAPL and the subsequent impact to the contaminated environment is in large part due to its distribution. We examine the geophysical responses at contaminated sites over short time frames of weeks to several years when the alteration of the LNAPL by microbial activity has not occurred to a significant extent, and over the long-term of several years to decades, when significant microbial degradation of the LNAPL has occurred. A review of the literature suggests that microbial processes profoundly alter the contaminated environment causing marked changes in the petrophysical properties, mineralogy, solute concentration of pore fluids, and temperature. A variety of geophysical techniques such as electrical resistivity, induced polarization, electromagnetic induction, ground penetrating radar, and self potential are capable of defining the contaminated zones because of the new physical properties imparted by microbial processes. The changes in the physical properties of the contaminated environment vary spatially because microbial processes are controlled by the spatial distribution of the contaminant. Geophysical studies must consider the spatial variations in the physical properties during survey design, data analysis, and interpretation. Geophysical data interpretation from surveys conducted at LNAPL-contaminated sites without a microbial and geochemical context may lead to ambiguous conclusions.

  15. IN SITU APPARENT CONDUCTIVITY MEASUREMENTS AND MICROBIAL POPULATION DISTRIBUTION AT A HYDROCARBON CONTAMINATED SITE

    EPA Science Inventory

    We investigated the bulk electrical conductivity and microbial population distribution in sediments at a site contaminated with light non-aqueous phase liquid (LNAPL). The bulk conductivity was measured using in situ vertical resistivity probes, while the most probable number met...

  16. DELINEATION OF SUBSURFACE HYDROCARBON CONTAMINANT DISTRIBUTION USING A DIRECT PUSH RESISTIVITY METHOD

    EPA Science Inventory

    A direct push resistivity method was evaluated as a complementary screening tool to provide rapid in-situ contaminant detection to aid in better defining locations for drilling, sampling, and monitoring well installation at hazardous waste sites. Nine continuous direct push resi...

  17. An application of permeable reactive barrier technology to petroleum hydrocarbon contaminated groundwater.

    PubMed

    Guerin, Turlough F; Horner, Stuart; McGovern, Terry; Davey, Brent

    2002-01-01

    A funnel and gate permeable reactive barrier was designed and built to treat groundwater contaminated with dissolved phase toluene. ethyl benzene. and xylene and n-alkanes in the C6-C36 fraction range. Removal efficienicies for the funnel and gate system varied from 63% to 96% for the monocyclic aromatic hydrocarbons. Average removal efficiencies for C6-C9, C10-C14, and C15-C28 fraction ranges were 69.2%, 77.6% and 79.5%. respectively. The lowest average removal efficiencies were 54% for the C29-C36 n-alkane fraction. The overall average removal efficiency for the funnel and gate system towards petroleum hydrocarbons present in the groundwater was 72% during the 10 month period over which the data were collected, and has allowed relevant water quality objectives to be met. PMID:11766790

  18. TAILORING CATALYSTS FOR HYDRODECHLORINATING CHLORINATED HYDROCARBON CONTAMINANTS IN GROUNDWATER. (R825689C078)

    EPA Science Inventory

    Abstract

    A palladium-on-zeolite catalyst has been optimized for treating groundwater contaminated with halogenated hydrocarbon compounds (HHCs) by hydrodechlorination with dissolved hydrogen. Aqueous sulfite was used as the model poison and the dechlorination of 1,2-di...

  19. TAILORING CATALYSTS FOR HYDRODECHLORINATING CHLORINATED HYDROCARBON CONTAMINANTS IN GROUNDWATER. (R825689C093)

    EPA Science Inventory

    Abstract

    A palladium-on-zeolite catalyst has been optimized for treating groundwater contaminated with halogenated hydrocarbon compounds (HHCs) by hydrodechlorination with dissolved hydrogen. Aqueous sulfite was used as the model poison and the dechlorination of 1,2-di...

  20. Evidence of hydrocarbon contamination from the Burgan oil field, Kuwait: interpretations from thermal remote sensing data.

    PubMed

    ud Din, Saif; Al Dousari, Ahmad; Literathy, Peter

    2008-03-01

    The paper presents the application of thermal remote sensing for mapping hydrocarbon polluted sites. This has been achieved by mono-window algorithm for land surface temperature (LST) measurements, using multi-date band 6 data of Landsat Thematic Mapper (TM). The emissivity, transmittance and mean atmospheric temperature were used as critical factors to estimate LST. The changes in the surface emissivity due to oil pollution alter the apparent temperature, which was used as a recognition element to map out oil polluted surfaces. The LST contrast was successfully used to map spatial distribution of hydrocarbon pollution in the Burgan Oil field area of Kuwait. The methodology can be positively used to detect waste dumping, oil spills in oceans and ports, besides environmental management of oil pollution at or near the land surface. PMID:17291680

  1. Bacterial communities of surface and deep hydrocarbon-contaminated waters of the Deepwater Horizon oil spill

    NASA Astrophysics Data System (ADS)

    Yang, T.; Nigro, L. M.; McKay, L.; Ziervogel, K.; Gutierrez, T.; Teske, A.

    2010-12-01

    We performed a 16S rRNA gene sequencing survey of bacterial communities within oil-contaminated surface water, deep hydrocarbon plume water, and deep water samples above and below the plume to determine spatial and temporal patterns of oil-degrading bacteria growing in response to the Deepwater Horizon oil leak. In addition, we are reporting 16S rRNA sequencing results from time series incubation, enrichment and cultivation experiments. Surface oil slick samples were collected 3 nautical miles from ground zero, (5/6/10, RV Pelican) and were added to uncontaminated surface water (collected within a 30 nautical mile radius of ground zero, 5/6/10 - 5/9/10, RV Pelican). This mixture was incubated for 20 days in a rolling bottle at 25°C. 16S rRNA clone libraries from marine snow-like microbial flocs that had formed during the incubation yielded a highly diverse bacterial community, predominately composed of the Alpha- and Gammaproteobacteria, and a smaller number of Planktomycetes and other bacterial lineages. The most frequently recovered proteobacterial sequences were closely related to cultured species of the genus Cycloclasticus, specialists in aerobic oxidation of aromatic hydrocarbons. These time series incubation results will be compared to the microbial community structure of contaminated surface water, sampled on the same cruise with RV Pelican (5/6/10-5/9/10) and frozen immediately. Stable isotope probing (SIP) experiments with C13-labelled alkanes and polycyclic aromatic substrates and gulf water samples have yielded different enrichments. With naphthalene, predominantly Alteromonas-related clones and a smaller share of Cycloclasticus clones were recovered; phenanthrene yielded predominantly clones related to Cycloclasticus, and diverse other Gamma- and Alphaproteobacteria. Analyses of SIP experiments with hexadecane are in progress. The microbial community composition of the deep hydrocarbon plume was characterized using water column profile samples taken with RV Walton Smith on May 30, at station WS 46 near the leak (28°N659.35; 88°W.43498). Water was collected and filtered from above the plume (800 m), within the plume (1170 m and 1210 m) and below the plume (1320 m) as indicated by Color Dissolved Organic Matter (CDOM) measurements. Clone libraries of both plume samples were dominated by a cluster of closely related 16S rRNA clones within the Oceanospirillales. The closest relatives were aerobic alkane oxidizers of the genera Oleispira and Thalassolituus. In contrast, the water samples above and below the plume showed distinct, diverse bacterial communities that lacked the characteristic clones of the hydrocarbon plume. Analysis of additional water samples from different locations and time points will further resolve spatial and temporal dynamics of oil degrading microbes in the water column. Thus far, our results indicate a stratified bacterial community in the oil-polluted water column with distinct types of oil-degrading bacteria in surface oil slicks and finely dispersed deepwater plumes.

  2. Screening of extremotolerant fungi for the bioremediation of hydrocarbon contaminated sites

    NASA Astrophysics Data System (ADS)

    Poyntner, Caroline; Blasi, Barbara; Prenafeta, Francesc; Sterflinger, Katja

    2015-04-01

    Bioremediation can be used to treat contaminated sites, by taking advantage of microorganisms which have the potential to degrade a wide range of contaminants. While research has been focused mainly on bacteria, the knowledge on other microorganisms, especially fungal communities, is still limited. However, the use of fungi may have advantages compared to bacteria. Extremophile fungi like the black yeasts can withstand high levels of environmental stress (e.g. range of pH, water availability and temperature, presence of toxic chemicals). Therefore they might be applicable in situations, where bacterial communities show limited performance. In order to identify fungi which are good candidates for bioremediation application, a selection of 163 fungal strains, mostly from the group of the black yeasts, was tested for their capability to degrade three different pollutants: hexadecane, toluene, and polychlorinated biphenyl 126, which were used as model compounds for aliphatic hydrocarbons, aromatic hydrocarbons and polychlorinated biphenyls. These chemicals are frequently found in sites contaminated by oil, gas and coal. The screening was based on a two-step selection approach. As a first step, a high throughput method was developed to screen the relatively large amount of fungal strains regarding their tolerance to the contaminants. A microtiter plate based method was developed for monitoring fungal growth in the presence of the selected contaminants photometrically with a Tecan reader. Twenty five strains out of 163, being species of the genera Cladophilaophora, Scedosporium and Exophiala, showed the ability to grow on at least 2 hydrocarbons, and are therefore the most promising candidates for further tests. In a second step, degradation of the contaminants was investigated in more detail for a subset of the screened fungi. This was done by closing the carbon balance in sealed liquid cultures in which the selected pollutant was introduce as the sole source of carbon and energy. Substrate depletion and CO2 accumulation in the headspace were monitored chromatographically. In the course of these experiments, two strains showed a good capacity to grow on toluene. In summary, the presented screening method can be used to identify potential candidates for the fungal degradation of contaminants. Further research is necessary to investigate the potential use of the identified fungal strains for remediation purposes.

  3. Environmental Analysis of Endocrine Disrupting Effects from Hydrocarbon Contaminants in the Ecosystem

    SciTech Connect

    McLachlan, John A.

    2000-06-01

    This annual report summarizes the progress of three years of a three-year grant awarded to the Center for Bioenvironmental Research (CBR) at Tulane and Xavier Universities. The objective of this project is to determine how environmental contaminants, namely hydrocarbons, can act as hormones or anti-hormones in different species present in aquatic ecosystems. The three major areas of research include (1) a biotechnology based screening system to identify potential hormone mimics and antagonists; (2) an animal screening system to identify biomarkers of endocrine effects; and (3) a literature review to identify compounds at various DOE sites that are potential endocrine disruptors. Species of particular focus in this study are those which can serve as sentinel species (e.g., amphibians) and, thus, provide early warning signals for more widespread impacts on an ecosystem and its wildlife and human inhabitants. The focus of the literature research was to provide an analysis of the contaminants located on or around various Department of Energy (DOE) sites that are or have the potential to function as endocrine disruptors and to correlate the need for studying endocrine disruptors to DOE's programmatic needs. Previous research within the Center for Bioenvironmental Research at Tulane and Xavier Universities has focused on understanding the effects of environmental agents on the human and wildlife health and disease. In particular this research has focused on how exogenous agents can function to mimic or disrupt normal endocrine signaling, i.e. estrogen, thyroid within various systems from whole animal studies with fish, amphibians and insects to human cancer cell lines. Significant work has focused on the estrogenic and anti-estrogenic action of both synthetic organochlorine chemicals and naturally produced phytochemicals. Recent projects have extended these research objectives to examination of these environmental agents on the symbiotic relationship between nitrogen fixing rhizobial bacteria and leguminous plants. This research will form the foundation for future experiments into the genetic manipulation of plants to potentially promote greater or more specific symbiotic relationships between plant and Rhizobium allowing this biological phenomenon to be used in a greater number of crop types. Future technology developments could include the genetic engineering of crops suitable for in situ vadose zone 2 bioremediation (via microbes) and phytoremediation (through the crop, itself) in contaminated DOE sites.

  4. Environmental analysis of endocrine disrupting effects from hydrocarbon contaminants in the ecosystem. 1998 annual progress report

    SciTech Connect

    McLachlan, J.

    1998-06-01

    'The objective of this project is to determine how environmental contaminants, namely hydrocarbons, can act as hormones or anti-hormones (i.e., environmental hormones) in different species present in aquatic ecosystems. Species of particular focus are those which can serve as sentinel species (e.g., amphibians) and, thus, provide early warning signals for more widespread impacts on an ecosystem and its wildlife and human inhabitants. This reports the progress of 1.5 years of a three-year grant awarded to the Tulane/Xavier Center for Bioenvironmental Research (CBR). A growing body of evidence suggests that chemicals in the environment can disrupt the endocrine system of animals (i.e., wildlife and humans) and adversely impact the development of these species. Because of the multitude of known endocrine-disrupting chemicals and the numerous industrial and government sectors producing these chemicals, almost every federal agency has initiated research on the endocrine effects of chemicals relevant to their operations. This study represents the Department of Energy (DOE) Basic Energy Sciences'' only research on the impacts of endocrine-disrupting chemicals. The activities employed by this project to determine these impacts include development of biotechnology screens (in vitro), animal screens (in vivo), and other analyses of aquatic ecosystem biomarkers of exposure. The results from this study can elucidate how chemicals in the environment, including those from DOE activities, can signal (and alter) the development of a number of species in aquatic ecosystems. These signals can have detrimental impacts not only on an organismal level, but also on community, population, and entire ecosystem levels, including humans.'

  5. PHOTOACTIVATED TOXICITY IN AMPHIPODS COLLECTED FROM POLYCYCLIC AROMATIC HYDROCARBON-CONTAMINATED SITES

    EPA Science Inventory

    The risk of photo-activated PAH toxicity in contaminated aquatic systems has not been well characterized. To better indicate this potential, amphipods (Gammarus spp.) were collected from two PAH contaminated sites (Hog Island and USX), as well as a reference site (Chipmunk Cove)...

  6. The Effects of Syntactic and Lexical Complexity on the Comprehension of Elementary Science Texts

    ERIC Educational Resources Information Center

    Arya, Diana J.; Hiebert, Elfrieda H.; Pearson, P. David

    2011-01-01

    In this study we examined the effects of syntactic and lexical complexity on third-grade students' comprehension of science texts. A total of 16 expository texts were designed to represent systematic differences in levels of syntactic and lexical complexity across four science-related topics ("Tree Frogs, Soil, Jelly Beans and…

  7. Pictorial support for discourse comprehension.

    PubMed

    Newton, D P

    1994-06-01

    Discourse comprehension often involves the construction of a mental model of a situation and its updating as the discourse progresses. Theory suggests that a picture which depicts the initial physical situation in a story could help young children construct a functional mental model which they might maintain as the story progresses, thereby supporting comprehension. This was tested with young children, 4 to 6 years of age. The ability of those who saw the picture to model the final story event was enhanced and, even though the picture did not depict the main character's goal directly, recall of the goal was increased. This could be explained in terms of the creation of a functional mental model and the increased opportunity that it provides for linking goal-directed events with the goal as the model is updated. Mental representation theory was found useful here for predicting how to support comprehension in ways which could translate readily into practice in the classroom. Some potential applications of the findings in teaching young children are described. PMID:8075014

  8. Forms of organic phosphorus in wetland soils

    NASA Astrophysics Data System (ADS)

    Cheesman, A. W.; Turner, B. L.; Reddy, K. R.

    2014-12-01

    Phosphorus (P) cycling in freshwater wetlands is dominated by biological mechanisms, yet there has been no comprehensive examination of the forms of biogenic P (i.e., forms derived from biological activity) in wetland soils. We used solution 31P NMR spectroscopy to identify and quantify P forms in surface soils of 28 palustrine wetlands spanning a range of climatic, hydrogeomorphic, and vegetation types. Total P concentrations ranged between 51 and 3516 μg P g-1, of which an average of 58% was extracted in a single-step NaOH-EDTA procedure. The extracts contained a broad range of P forms, including phosphomonoesters (averaging 24% of the total soil P), phosphodiesters (averaging 10% of total P), phosphonates (up to 4% of total P), and both pyrophosphate and long-chain polyphosphates (together averaging 6% of total P). Soil P composition was found to be dependant upon two key biogeochemical properties: organic matter content and pH. For example, stereoisomers of inositol hexakisphosphate were detected exclusively in acidic soils with high mineral content, while phosphonates were detected in soils from a broad range of vegetation and hydrogeomorphic types but only under acidic conditions. Conversely inorganic polyphosphates occurred in a broad range of wetland soils, and their abundance appears to reflect more broadly that of a "substantial" and presumably active microbial community with a significant relationship between total inorganic polyphosphates and microbial biomass P. We conclude that soil P composition varies markedly among freshwater wetlands but can be predicted by fundamental soil properties.

  9. Natural attenuation of chlorinated solvents, petroleum hydrocarbons, and other organic compounds

    SciTech Connect

    Alleman, B.C.; Leeson, A.

    1999-11-01

    The natural attenuation option is getting more attention from site managers and regulators as a viable alternative to more costly engineered site remediation approaches. Natural attenuation was first demonstrated at sites with hydrocarbon contamination, but recent studies at sites contaminated by chlorinated compounds have shown that this approach often has merit for these more challenging contamination problems. Covering natural attenuation in media ranging from deep aquifers to shallow soils, and for contaminants ranging from fuels to solvents to herbicides, this volume offers the reader a comprehensive overview of case studies that represent the current state of the art in natural attenuation approaches to site remediation.

  10. Soil information requirements for humanitarian demining: the case for a soil properties database

    NASA Astrophysics Data System (ADS)

    Das, Yogadhish; McFee, John E.; Russell, Kevin L.; Cross, Guy; Katsube, T. John

    2003-09-01

    Landmines are buried typically in the top 30 cm of soil. A number of physical, chemical and electromagnetic properties of this near-surface layer of ground will potentially affect the wide range of technologies under development worldwide for landmine detection and neutralization. Although standard soil survey information, as related to conventional soil classification, is directed toward agricultural and environmental applications, little or no information seems to exist in a form that is directly useful to humanitarian demining and the related R&D community. Thus, there is a general need for an information database devoted specifically to relevant soil properties, their geographic distribution and climate-driven variability. A brief description of the various detection technologies is used to introduce the full range of related soil properties. Following a general description of the need to establish a comprehensive soil property database, the discussion is then narrowed to soil properties affecting electromagnetic induction metal detectors - a problem of much restricted scope but of immediate and direct relevance to humanitarian demining. In particular, the complex magnetic susceptibility and, to a lesser degree, electrical conductivity of the host soil influence the performance of these widely used tools, and in the extreme instance, can render detectors unusable. A database comprising these properties for soils of landmine-affected countries would assist in predicting local detector performance, planning demining operations, designing and developing improved detectors and establishing realistic and representative test-evaluation facilities. The status of efforts made towards developing a database involving soil electromagnetic properties is reported.

  11. On the importance of listening comprehension

    PubMed Central

    Hogan, Tiffany P.; Adlof, Suzanne M.; Alonzo, Crystle

    2015-01-01

    The simple view of reading highlights the importance of two primary components which account for individual differences in reading comprehension across development: word recognition (i.e., decoding) and listening comprehension. While assessments and interventions for decoding have been the focus of pedagogy in the past several decades, the importance of listening comprehension has received less attention. This paper reviews evidence showing that listening comprehension becomes the dominating influence on reading comprehension starting even in the elementary grades. It also highlights a growing number of children who fail to develop adequate reading comprehension skills, primarily due to deficient listening comprehension skills: poor comprehenders. Finally it discusses key language influences on listening comprehension for consideration during assessment and treatment of reading disabilities. PMID:24833426

  12. Comprehension of Figurative Language in Youth.

    ERIC Educational Resources Information Center

    Nippold, Marilyn A.

    1985-01-01

    A review of developmental studies concerning metaphor, idiom, and proverb comprehension suggest a variety of assessment tasks for language impaired children. Also suggested are such intervention considerations as the comprehension of literal meaning of figurative expressions before nonliteral meanings. (CL)

  13. What Is a Comprehensive Dilated Eye Exam?

    MedlinePlus

    ... su oculista What is a comprehensive dilated eye exam? You may think your eyes are healthy, but ... eye care professional for a comprehensive dilated eye exam is the only way to really be sure. ...

  14. A Simple Evaluation of Soil Quality of Waterlogged Purple Paddy Soils with Different Productivities

    PubMed Central

    Liu, Zhanjun; Zhou, Wei; Lv, Jialong; He, Ping; Liang, Guoqing; Jin, Hui

    2015-01-01

    Evaluation of soil quality can be crucial for designing efficient farming systems and ensuring sustainable agriculture. The present study aimed at evaluating the quality of waterlogged purple paddy soils with different productivities in Sichuan Basin. The approach involved comprehensive analyses of soil physical and chemical properties, as well as enzyme activities and microbial community structure measured by phospholipid fatty acid analysis (PLFA). A total of 36 soil samples were collected from four typical locations, with 12 samples representing high productivity purple paddy soil (HPPS), medium productivity purple paddy soil (MPPS) and low productivity purple paddy soil (LPPS), respectively. Most measured soil properties showed significant differences (P ≤ 0.05) among HPPS, MPPS and LPPS. Pearson correlation analysis and principal component analysis were used to identify appropriate soil quality indicators. A minimum data set (MDS) including total nitrogen (TN), available phosphorus (AP), acid phosphatase (ACP), total bacteria (TB) and arbuscular mycorrhizal fungi was established and accounted for 82.1% of the quality variation among soils. A soil quality index (SQI) was developed based on the MDS method, whilst HPPS, MPPS and LPPS received mean SQI scores of 0.725, 0.536 and 0.425, respectively, with a ranking of HPPS > MPPS > LPPS. HPPS showed relatively good soil quality characterized by optimal nutrient availability, enzymatic and microbial activities, but the opposite was true of LPPS. Low levels of TN, AP and soil microbial activities were considered to be the major constraints limiting the productivity in LPPS. All soil samples collected were rich in available N, K, Si and Zn, but deficient in available P, which may be the major constraint for the studied regions. Managers in our study area should employ more appropriate management in the LPPS to improve its rice productivity, and particularly to any potential limiting factor. PMID:25997107

  15. Schoolground Soil Studies.

    ERIC Educational Resources Information Center

    Doyle, Charles

    1978-01-01

    Outlined are simple activities for studying soil, which can be conducted in the schoolyard. Concepts include soil profiles, topsoil, soil sizes, making soil, erosion, slope, and water absorption. (SJL)

  16. 16 CFR 1018.43 - Comprehensive review.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Comprehensive review. 1018.43 Section 1018.43 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION GENERAL ADVISORY COMMITTEE MANAGEMENT Records, Annual Reports and Audits § 1018.43 Comprehensive review. A comprehensive review of...

  17. 18 CFR 801.5 - Comprehensive plan.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Comprehensive plan. 801.5 Section 801.5 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.5 Comprehensive plan. (a) The Compact requires that the Commission formulate and adopt a comprehensive plan for the immediate...

  18. Years Later, Comprehension Strategies Still at Work

    ERIC Educational Resources Information Center

    Keene, Ellin Oliver; Zimmermann, Susan

    2013-01-01

    In this article, authors Ellin Oliver Keene and Susan Zimmermann reflect on comprehension strategy instruction 15 years after the publication of their book, "Mosaic of Thought: Teaching Comprehension in a Reader's Workshop." They reassert their claim that to teach comprehension well, we must first read widely and scrutinize our own reading…

  19. What Parents Should Know About Reading Comprehension.

    ERIC Educational Resources Information Center

    Kerfoot, James F.

    Comprehension is seen as involving meaningful communication between author and reader. Different degrees of comprehension such as literal comprehension, evaluation, reorganization, and reaction are discussed, and experience, intelligence, language development, and decoding skills are noted as important factors which influence reading…

  20. 33 CFR 238.5 - Comprehensive planning.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... DEFENSE WATER RESOURCES POLICIES AND AUTHORITIES: FLOOD DAMAGE REDUCTION MEASURES IN URBAN AREAS § 238.5 Comprehensive planning. Coordinated comprehensive planning at the regional or river basin level, or for an urban... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Comprehensive planning....

  1. 33 CFR 238.5 - Comprehensive planning.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... DEFENSE WATER RESOURCES POLICIES AND AUTHORITIES: FLOOD DAMAGE REDUCTION MEASURES IN URBAN AREAS § 238.5 Comprehensive planning. Coordinated comprehensive planning at the regional or river basin level, or for an urban... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Comprehensive planning....

  2. 33 CFR 238.5 - Comprehensive planning.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... DEFENSE WATER RESOURCES POLICIES AND AUTHORITIES: FLOOD DAMAGE REDUCTION MEASURES IN URBAN AREAS § 238.5 Comprehensive planning. Coordinated comprehensive planning at the regional or river basin level, or for an urban... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Comprehensive planning....

  3. 33 CFR 238.5 - Comprehensive planning.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... DEFENSE WATER RESOURCES POLICIES AND AUTHORITIES: FLOOD DAMAGE REDUCTION MEASURES IN URBAN AREAS § 238.5 Comprehensive planning. Coordinated comprehensive planning at the regional or river basin level, or for an urban... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Comprehensive planning....

  4. Idiom Comprehension in Mandarin-Speaking Children

    ERIC Educational Resources Information Center

    Hsieh, Shelley Ching-Yu; Hsu, Chun-Chieh Natalie

    2010-01-01

    This study examines the effect of familiarity, context, and linguistic convention on idiom comprehension in Mandarin speaking children. Two experiments (a comprehension task followed by a comprehension task coupled with a metapragmatic task) were administered to test participants in three age groups (6 and 9-year-olds, and an adult control group).…

  5. 12 CFR 217.209 - Comprehensive risk.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 2 2014-01-01 2014-01-01 false Comprehensive risk. 217.209 Section 217.209... ADEQUACY OF BOARD-REGULATED INSTITUTIONS Risk-Weighted Assets-Market Risk § 217.209 Comprehensive risk. (a... the method in this section to measure comprehensive risk, that is, all price risk, for one or...

  6. Towards high resolution soil property maps for Austria

    NASA Astrophysics Data System (ADS)

    Schürz, Christoph; Klotz, Daniel; Herrnegger, Mathew; Schulz, Karsten

    2015-04-01

    Soil hydraulic properties, such as soil texture, soil water retention characteristics, hydraulic conductivity, or soil depth are important inputs for hydrologic catchment modelling. However, the availability of such data in Austria is often insufficient to fulfill requirements of well-established hydrological models. Either, soil data is available in sufficient spatial resolution but only covers a small extent of the considered area, or the data is comprehensive but rather coarse in its spatial resolution. Furthermore, the level of detail and quality of the data differs between the available data sets. In order to generate a comprehensive soil data set for whole Austria that includes main soil physical properties, as well as soil depth and organic carbon content in a high spatial resolution (10x10 to 100x100m²) several available soil data bases are merged and harmonized. Starting point is a high resolution soil texture map that only covers agricultural areas and is available due to Austrian land appraisal. Soil physical properties for those areas are derived by applying pedotransfer functions (e.g. Saxton and Rawls, 2006) resulting in expectation values and quantiles of the respective property for each soil texture class. For agricultural areas where no texture information is available, the most likely soil texture is assigned applying a Bayesian network approach incorporating information such as elevation, soil slope, soil type, or hydro-geology at different spatial scales. Soil data for forested areas, that cover a large extent of the state territory, are rather sparse in Austria. For such areas a similar approach as for agricultural areas is applied by using a Bayesian network for prediction of the soil texture. Additionally, information to various soil parameters taken from literature is incorporated. For areas that are covered by land use different to agriculture or forestry, such as bare rock surfaces, or wetland areas, solely literature information is used

  7. Prediction During Natural Language Comprehension.

    PubMed

    Willems, Roel M; Frank, Stefan L; Nijhof, Annabel D; Hagoort, Peter; van den Bosch, Antal

    2016-06-01

    The notion of prediction is studied in cognitive neuroscience with increasing intensity. We investigated the neural basis of 2 distinct aspects of word prediction, derived from information theory, during story comprehension. We assessed the effect of entropy of next-word probability distributions as well as surprisal A computational model determined entropy and surprisal for each word in 3 literary stories. Twenty-four healthy participants listened to the same 3 stories while their brain activation was measured using fMRI. Reversed speech fragments were presented as a control condition. Brain areas sensitive to entropy were left ventral premotor cortex, left middle frontal gyrus, right inferior frontal gyrus, left inferior parietal lobule, and left supplementary motor area. Areas sensitive to surprisal were left inferior temporal sulcus ("visual word form area"), bilateral superior temporal gyrus, right amygdala, bilateral anterior temporal poles, and right inferior frontal sulcus. We conclude that prediction during language comprehension can occur at several levels of processing, including at the level of word form. Our study exemplifies the power of combining computational linguistics with cognitive neuroscience, and additionally underlines the feasibility of studying continuous spoken language materials with fMRI. PMID:25903464

  8. Investigation of soil carbon sequestration processes in a temperate deciduous forest using soil respiration experiments

    NASA Astrophysics Data System (ADS)

    Schütze, Claudia; Marañón-Jiménez, Sara; Zöphel, Hendrik; Gimper, Sebastian; Dienstbach, Laura; Garcia Quirós, Inmaculada; Cuntz, Matthias; Rebmann, Corinna

    2016-04-01

    driving factor influences soil respiration in a complex manner. In the dry summer 2015 decreased respiration rates compared to 2014 occurred due to lower microbial activity caused by low soil moisture. Moreover, the chamber measurements depict also a spatial variability in soil respiration patterns within the forest site. This can be related to vegetation distribution, but also to soil moisture variations or to soil composition changes. More investigations are needed here. Supplementary information based on data of a soil moisture/temperature sensor network, ancillary analysis of trees and understorey vegetation, litter and coarse woody debris decomposition analysis, and soil samples analysis will be included into the comprehensive interpretation.

  9. Data management system for organic soil

    SciTech Connect

    Stinnette, P.

    1999-07-01

    A Data Management System for Organic Soil (DMSOS) has been developed that enables the acquisition, management and analysis of organic soil data as well as the presentation of results to be conducted effectively through a common interface. This development was in response to the data management needs of research investigating the engineering properties of organic soil and its extension to the stabilization of organic soil through dynamic replacement (DR). It is shown how the above functions are implemented efficiently using Windows-based software to perform comprehensive data management and analysis of data gathered from both laboratory and field tests. When the engineering properties of a given organic soil deposit are needed, a build-in Computer Advisor for Organic Soil Projects (CAOSP) predicts the properties from DMSOS based correlations. A unique and useful feature of the CAOSP is its ability to estimate the anticipated ultimate settlement of an organic soil deposit given the loading conditions and the moisture or organic content. Also incorporated in the DMSOS is a quality control system that utilizes computerized data acquisition/data management techniques in order to evaluate the degree of improvement of an organic soil layer at a given stage of treatment using DR.

  10. Soil Enzymes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The functionality and resilience of natural and managed ecosystems mainly rely on the metabolic abilities of microbial communities, the main source of enzymes in soils. Enzyme mediated reactions are critical in the decomposition of organic matter, cycling of nutrients, and in the breakdown of herbic...

  11. Basic Soils. Revision.

    ERIC Educational Resources Information Center

    Montana State Univ., Bozeman. Dept. of Agricultural and Industrial Education.

    This curriculum guide is designed for use in teaching a course in basic soils that is intended for college freshmen. Addressed in the individual lessons of the unit are the following topics: the way in which soil is formed, the physical properties of soil, the chemical properties of soil, the biotic properties of soil, plant-soil-water…

  12. Listening Comprehension in Middle-Aged Adults

    PubMed Central

    2015-01-01

    Purpose The purpose of this summary is to examine changes in listening comprehension across the adult lifespan and to identify factors associated with individual differences in listening comprehension. Method In this article, the author reports on both cross-sectional and longitudinal changes in listening comprehension. Conclusions Despite significant declines in both sensory and cognitive abilities, listening comprehension remains relatively unchanged in middle-aged listeners (between the ages of 40 and 60 years) compared with young listeners. These results are discussed with respect to possible compensatory factors that maintain listening comprehension despite impaired hearing and reduced cognitive capacities. PMID:25768392

  13. A comprehensive drought monitoring method integrating MODIS and TRMM data

    NASA Astrophysics Data System (ADS)

    Du, Lingtong; Tian, Qingjiu; Yu, Tao; Meng, Qingyan; Jancso, Tamas; Udvardy, Peter; Huang, Yan

    2013-08-01

    Drought is a complex hazard caused by the breaking of water balance and it has always an impact on agricultural, ecological and socio-economic spheres. Although the drought indices deriving from remote sensing data have been used to monitor meteorological or agricultural drought, there are no indices that can suitably reflect the comprehensive information of drought from meteorological to agricultural aspects. In this paper, the synthesized drought index (SDI) is defined as a principal component of vegetation condition index (VCI), temperature condition index (TCI) and precipitation condition index (PCI). SDI integrates multi-source remote sensing data from moderate resolution imaging spectroradiometer (MODIS) and tropical rainfall measuring mission (TRMM) and it synthesizes precipitation deficits, soil thermal stress and vegetation growth status in drought process. Therefore, this method is favorable to monitor the comprehensive drought. In our research, a heavy drought process was accurately explored using SDI in Shandong province, China from 2010 to 2011. Finally, a validation was implemented and its results show that SDI is not only strongly correlated with 3-month scales standardized precipitation index (SPI3), but also with variation of crop yield and drought-affected crop areas. It was proved that this index is a comprehensive drought monitoring indicator and it can contain not only the meteorological drought information but also it can reflect the drought influence on agriculture.

  14. Who Did What to Whom? The Relationship between Syntactic Aspects of Sentence Comprehension and Text Comprehension

    ERIC Educational Resources Information Center

    Poulsen, Mads; Gravgaard, Amalie K. D.

    2016-01-01

    This study investigated the relationship between syntactic comprehension at the sentence level and text-level comprehension. The study isolated the specific contribution of syntax by asking whether sentence comprehension efficiency of difficult syntactic constructions explained variance in text comprehension after controlling for sentence…

  15. Investigating Differences in General Comprehension Skill

    PubMed Central

    Gernsbacher, Morton Ann; Varner, Kathleen R.; Faust, Mark E.

    2015-01-01

    For adults, skill at comprehending written language correlates highly with skill at comprehending spoken language. Does this general comprehension skill extend beyond language-based modalities? And if it does, what cognitive processes and mechanisms differentiate individuals who are more versus less proficient in general comprehension skill? In our first experiment, we found that skill in comprehending written and auditory stories correlates highly with skill in comprehending nonverbal, picture stories. This finding supports the hypothesis that general comprehension skill extends beyond language. We also found support for the hypotheses that poorer access to recently comprehended information marks less proficient general comprehension skill (Experiment 2) because less skilled comprehenders develop too many mental substructures during comprehension (Experiment 3), perhaps because they inefficiently suppress irrelevant information (Experiment 4). Thus, the cognitive processes and mechanisms involved in capturing and representing the structure of comprehensible information provide one source of individual differences in general comprehension skill. PMID:2140402

  16. [Analysis of XRD spectral characteristics of soil clay mineral in two typical cultivated soils].

    PubMed

    Zhang, Zhi-Dan; Luo, Xiang-Li; Jiang, Hai-Chao; Li, Qiao; Shen, Cong-Ying; Liu, Hang; Zhou, Ya-Juan; Zhao, Lan-Po; Wang, Ji-Hong

    2014-07-01

    The present paper took black soil and chernozem, the typical cultivated soil in major grain producing area of Northeast, as the study object, and determinated the soil particle composition characteristics of two cultivated soils under the same climate and location. Then XRD was used to study the composition and difference of clay mineral in two kinds of soil and the evolutionary mechanism was explored. The results showed that the two kinds of soil particles were composed mainly of the sand, followed by clay and silt. When the particle accumulation rate reached 50%, the central particle size was in the 15-130 microm interval. Except for black soil profile of Shengli Xiang, the content of clay showed converse sequence to the central particle in two soils. Clay accumulated under upper layer (18.82%) in black soil profile while under caliche layer (17.41%) in chernozem profile. Clay content was the least in parent material horizon except in black profile of Quanyanling. Analysis of clay XRD atlas showed that the difference lied in not only the strength of diffraction peak, but also in the mineral composition. The main contents of black soil and chernozem were both 2 : 1 clay, the composition of black soil was smectite/illite mixed layer-illite-vermiculite and that of chernozem was S/I mixture-illite-montmorillonite, and both of them contained little kaolinite, chlorite, quartz and other primary mineral. This paper used XRD to determine the characteristics of clay minerals comprehensively, and analyzed two kinds of typical cultivated soil comparatively, and it was a new perspective of soil minerals study. PMID:25269317

  17. History of Soil Survey and Evolution of the Brazilian Soil Classification System - SiBCS

    NASA Astrophysics Data System (ADS)

    Cunha dos Anjos, Lúcia Helena; Csekö Nolasco de Carvalho, Claudia; Homem Antunes, Mauro Antonio; Muggler, Cristine Carole

    2014-05-01

    In Brazil soil surveys started around 1940 and the first map with soil information of São Paulo State was published in 1943. The Committee of Soils of the National Service for Agronomic Research was created in 1947 by the Agriculture Ministry and became an historical landmark for soil survey in Brazil. In 1953, the National Program of soil survey was approved and the first soil map and report of Rio de Janeiro State was released in 1958, followed by São Paulo State in 1960. This is also the origin of Embrapa Soil Research institution. Other milestones were the soil surveys published by the Agronomic Institute of Campinas (IAC) and the natural resources studies published within the RADAMBRASIL Project, initially planned for the Amazon region and later covering the whole country. Many soil studies followed and a comprehensive knowledge of tropical soils was achieved resulting in successful technologies for agriculture production, in lands considered by many as of "low fertility and acid soils with limited or no agricultural potential". However, detailed soil surveys are still lacking; only 5% of the country soils are mapped in 1:25.000 scales, and 15-20% in 1:100.000. In the first soil survey reports of Rio de Janeiro (1958) and São Paulo (1960), soil classes were defined according to Baldwin, Kellog & Thorp (Yearbook of Agriculture for 1938), and Thorp & Smith (Soil Science, 67, 1949) publications. It was already clear that the existing classification systems were not adequate to represent the highly weathered tropical soils of the large old landscapes in the cerrado (savanna like) region, or the soils formed on recent hydromorphic conditions at the Amazon Basin and Pantanal region. A national classification system to embody the country's large territory and environmental variation from tropical to subtropical and semiarid conditions, as well as the diversity of soil forming processes in old and new landscapes had to be developed. In 1964, the first attempt of a

  18. From Spill to Sequestration: The Molecular Journey of Contamination via Comprehensive Multiphase NMR.

    PubMed

    Masoom, Hussain; Courtier-Murias, Denis; Soong, Ronald; Maas, Werner E; Fey, Michael; Kumar, Rajeev; Monette, Martine; Stronks, Henry J; Simpson, Myrna J; Simpson, André J

    2015-12-15

    Comprehensive multiphase NMR is a novel NMR technique that permits all components (solutions, gels, and solids) to be studied in unaltered natural samples. In this study a wide range of CMP-NMR interaction and editing-based experiments are combined to follow contaminants (pentafluorophenol (PFP) and perfluorooctanoic acid (PFOA)) from the solution state (after a spill) through the gel-state and finally into the true solid-state (sequestered) in an intact water-swollen soil. Kinetics experiments monitoring each phase illustrate PFOA rapidly transfers from solution to the solid phase while for PFP the process is slower with longer residence times in the solution and gel phase. Interaction-based experiments reveal that PFOA enters the soil via its hydrophobic tails and selectively binds to soil microbial protein. PFP sorption shows less specificity exhibiting interactions with a range of gel and solid soil components with a preference toward aromatics (mainly lignin). The results indicate that in addition to more traditional measurements such as Koc, other factors including the influence of the contaminant on the soil-water interface, specific biological interactions, soil composition (content of lignin, protein, etc.) and physical accessibility/swellability of soil organic components will likely be central to better explaining and predicting the true behavior of contaminants in soil. PMID:26579583

  19. Acidity field of soils as ion-exchange systems and the diagnostics of genetic soil horizons

    NASA Astrophysics Data System (ADS)

    Kokotov, Yu. A.; Sukhacheva, E. Yu.; Aparin, B. F.

    2014-12-01

    For the comprehensive description of the acidity of a two-phase ion-exchange system, we should analyze two curves of the ionite titration by a strong base in water and salt solutions and find the quantitative relationships between the corresponding pH characteristics. An idea of the three-dimensional field of acidity of ion-exchange systems (the phase space of the soil acidity characteristics) and its three two-dimensional projections is suggested. For soils, three interrelated characteristics—the pH values of the salt and water extracts and the degree of base saturation—can serve as spatial coordinates for the acidity field. Representation of factual data in this field makes it possible to compare and analyze the acidity characteristics of different soils and soil horizons and to determine their specific features. Differentiation of the field into separate volumes allows one to present the data in a discrete form. We have studied the distribution patterns of the groups of soil horizons from Leningrad oblast and other regions of northwestern Russia in the acidity field. The studied samples are grouped in different partially overlapping areas of the projections of the acidity field. The results of this grouping attest to the correctness of the modern classification of Russian soils. A notion of the characteristic soil area in the acidity field is suggested; it can be applied to all the soils with a leaching soil water regime.

  20. Anticipatory Deaccenting in Language Comprehension

    PubMed Central

    Carbary, Kathleen; Brown, Meredith; Gunlogson, Christine; McDonough, Joyce M.; Fazlipour, Aleksandra; Tanenhaus, Michael K.

    2014-01-01

    We evaluated the hypothesis that listeners can generate expectations about upcoming input using anticipatory deaccenting, in which the absence of a nuclear pitch accent on an utterance-new noun is licensed by the subsequent repetition of that noun (e.g. Drag the SQUARE with the house to the TRIangle with the house). The phonemic restoration paradigm was modified to obscure word-initial segmental information uniquely identifying the final word in a spoken instruction, resulting in a stimulus compatible with two lexical alternatives (e.g. mouse/house). In Experiment 1, we measured participants’ final interpretations and response times. Experiment 2 used the same materials in a crowd-sourced gating study. Sentence interpretations at gated intervals, final interpretations, and response times provided converging evidence that the anticipatory deaccenting pattern contributed to listeners’ referential expectations. The results illustrate the availability and importance of sentence-level accent patterns in spoken language comprehension. PMID:25642426

  1. A comprehensive concept of optogenetics.

    PubMed

    Dugué, Guillaume P; Akemann, Walther; Knöpfel, Thomas

    2012-01-01

    Fundamental questions that neuroscientists have previously approached with classical biochemical and electrophysiological techniques can now be addressed using optogenetics. The term optogenetics reflects the key program of this emerging field, namely, combining optical and genetic techniques. With the already impressively successful application of light-driven actuator proteins such as microbial opsins to interact with intact neural circuits, optogenetics rose to a key technology over the past few years. While spearheaded by tools to control membrane voltage, the more general concept of optogenetics includes the use of a variety of genetically encoded probes for physiological parameters ranging from membrane voltage and calcium concentration to metabolism. Here, we provide a comprehensive overview of the state of the art in this rapidly growing discipline and attempt to sketch some of its future prospects and challenges. PMID:22341318

  2. 75 FR 984 - Draft Recommended Interim Preliminary Remediation Goals for Dioxin in Soil at CERCLA and RCRA Sites

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-07

    ... AGENCY RIN 2050-ZA05 Draft Recommended Interim Preliminary Remediation Goals for Dioxin in Soil at CERCLA...) developed in the Draft Recommended Interim Preliminary Remediation Goals for Dioxin in Soil at Comprehensive... draft recommended interim PRGs for dioxin in soil. These draft recommended interim PRGs were...

  3. Lunar soil properties and soil mechanics

    NASA Technical Reports Server (NTRS)

    Mitchell, J. K.; Houston, W. N.; Hovland, H. J.

    1972-01-01

    The study to identify and define recognizable fabrics in lunar soil in order to determine the history of the lunar regolith in different locations is reported. The fabric of simulated lunar soil, and lunar soil samples are discussed along with the behavior of simulated lunar soil under dynamic and static loading. The planned research is also included.

  4. An integrated GIS application system for soil moisture data assimilation

    NASA Astrophysics Data System (ADS)

    Wang, Di; Shen, Runping; Huang, Xiaolong; Shi, Chunxiang

    2014-11-01

    The gaps in knowledge and existing challenges in precisely describing the land surface process make it critical to represent the massive soil moisture data visually and mine the data for further research.This article introduces a comprehensive soil moisture assimilation data analysis system, which is instructed by tools of C#, IDL, ArcSDE, Visual Studio 2008 and SQL Server 2005. The system provides integrated service, management of efficient graphics visualization and analysis of land surface data assimilation. The system is not only able to improve the efficiency of data assimilation management, but also comprehensively integrate the data processing and analysis tools into GIS development environment. So analyzing the soil moisture assimilation data and accomplishing GIS spatial analysis can be realized in the same system. This system provides basic GIS map functions, massive data process and soil moisture products analysis etc. Besides,it takes full advantage of a spatial data engine called ArcSDE to effeciently manage, retrieve and store all kinds of data. In the system, characteristics of temporal and spatial pattern of soil moiture will be plotted. By analyzing the soil moisture impact factors, it is possible to acquire the correlation coefficients between soil moisture value and its every single impact factor. Daily and monthly comparative analysis of soil moisture products among observations, simulation results and assimilations can be made in this system to display the different trends of these products. Furthermore, soil moisture map production function is realized for business application.

  5. Influence of soil moisture on soil respiration

    NASA Astrophysics Data System (ADS)

    Fer, Miroslav; Kodesova, Radka; Nikodem, Antonin; Klement, Ales; Jelenova, Klara

    2015-04-01

    The aim of this work was to describe an impact of soil moisture on soil respiration. Study was performed on soil samples from morphologically diverse study site in loess region of Southern Moravia, Czech Republic. The original soil type is Haplic Chernozem, which was due to erosion changed into Regosol (steep parts) and Colluvial soil (base slope and the tributary valley). Soil samples were collected from topsoils at 5 points of the selected elevation transect and also from the parent material (loess). Grab soil samples, undisturbed soil samples (small - 100 cm3, and large - 713 cm3) and undisturbed soil blocks were taken. Basic soil properties were determined on grab soil samples. Small undisturbed soil samples were used to determine the soil water retention curves and the hydraulic conductivity functions using the multiple outflow tests in Tempe cells and a numerical inversion with HYDRUS 1-D. During experiments performed in greenhouse dry large undisturbed soil samples were wetted from below using a kaolin tank and cumulative water inflow due to capillary rise was measured. Simultaneously net CO2 exchange rate and net H2O exchange rate were measured using LCi-SD portable photosynthesis system with Soil Respiration Chamber. Numerical inversion of the measured cumulative capillary rise data using the HYDRUS-1D program was applied to modify selected soil hydraulic parameters for particular conditions and to simulate actual soil water distribution within each soil column in selected times. Undisturbed soil blocks were used to prepare thin soil sections to study soil-pore structure. Results for all soil samples showed that at the beginning of soil samples wetting the CO2 emission increased because of improving condition for microbes' activity. The maximum values were reached for soil column average soil water content between 0.10 and 0.15 cm3/cm3. Next CO2 emission decreased since the pore system starts filling by water (i.e. aggravated conditions for microbes

  6. NEW GIS WATERSHED ANALYSIS TOOLS FOR SOIL CHARACTERIZATION AND EROSION AND SEDIMENTATION MODELING

    EPA Science Inventory

    A comprehensive procedure for computing soil erosion and sediment delivery metrics has been developed which utilizes a suite of automated scripts and a pair of processing-intensive executable programs operating on a personal computer platform.

  7. Petrography and provenance of Apollo 15 soils

    NASA Technical Reports Server (NTRS)

    Basu, A.; Mckay, D. S.

    1979-01-01

    Preliminary petrographic and electron probe data from Apollo 15 soils, collected as a part of a comprehensive project, are presented and four principal soil petrographic provinces at the Apollo 15 site are examined. The ratio of non-mare/mare component decreases gradually from the Apennine Front in the south to the mare surface in the north. KREEP basalts appear to be an essential component of the Apennine Bench Formation. The ANT suite rocks contribute only slightly to the population of monomineralic pyroxene, but approximately 30% of the monomineralic olivine are derived from this suite, suggesting troctolitic and dunitic sources.

  8. Root-soil relationships and terroir

    NASA Astrophysics Data System (ADS)

    Tomasi, Diego

    2015-04-01

    Soil features, along with climate, are among the most important determinants of a succesful grape production in a certain area. Most of the studies, so far, investigated the above-ground vine response to differente edaphic and climate condition, but it is clearly not sufficient to explain the vine whole behaviour. In fact, roots represent an important part of the terroir system (soil-plant-atmosphere-man), and their study can provide better comprehension of vine responses to different environments. The root density and distribution, the ability of deep-rooting and regenerating new roots are good indicators of root well-being, and represents the basis for an efficient physiological activity of the root system. Root deepening and distribution are strongly dependent and sensitive on soil type and soil properties, while root density is affected mostly by canopy size, rootstock and water availability. According to root well-being, soil management strategies should alleviate soil impediments, improving aeration and microbial activity. Moreover, agronomic practices can impact root system performance and influence the above-ground growth. It is well known, for example, that the root system size is largely diminished by high planting densities. Close vine spacings stimulate a more effective utilization of the available soil, water and nutrients, but if the competition for available soil becomes too high, it can repress vine growth, and compromise vineyard longevity, productivity and reaction to growing season weather. Development of resilient rootstocks, more efficient in terms of water and nutrient uptake and capable of dealing with climate and soil extremes (drought, high salinity) are primary goals fore future research. The use of these rootstocks will benefit a more sustainable use of the soil resources and the preservation and valorisation of the terroir.

  9. Soil spectral characterization

    NASA Technical Reports Server (NTRS)

    Stoner, E. R.; Baumgardner, M. F.

    1981-01-01

    The spectral characterization of soils is discussed with particular reference to the bidirectional reflectance factor as a quantitative measure of soil spectral properties, the role of soil color, soil parameters affecting soil reflectance, and field characteristics of soil reflectance. Comparisons between laboratory-measured soil spectra and Landsat MSS data have shown good agreement, especially in discriminating relative drainage conditions and organic matter levels in unvegetated soils. The capacity to measure both visible and infrared soil reflectance provides information on other soil characteristics and makes it possible to predict soil response to different management conditions. Field and laboratory soil spectral characterization helps define the extent to which intrinsic spectral information is available from soils as a consequence of their composition and field characteristics.

  10. A Framework for Considering Comprehensibility in Modeling.

    PubMed

    Gleicher, Michael

    2016-06-01

    Comprehensibility in modeling is the ability of stakeholders to understand relevant aspects of the modeling process. In this article, we provide a framework to help guide exploration of the space of comprehensibility challenges. We consider facets organized around key questions: Who is comprehending? Why are they trying to comprehend? Where in the process are they trying to comprehend? How can we help them comprehend? How do we measure their comprehension? With each facet we consider the broad range of options. We discuss why taking a broad view of comprehensibility in modeling is useful in identifying challenges and opportunities for solutions. PMID:27441712

  11. Reversing expectations during discourse comprehension

    PubMed Central

    Xiang, Ming; Kuperberg, Gina

    2014-01-01

    In two ERP experiments, we asked whether comprehenders used the concessive connective, even so, to predict upcoming events. Participants read coherent and incoherent scenarios, with and without even so, e.g. “Elizabeth had a history exam on Monday. She took the test and aced/failed it. (Even so), she went home and celebrated wildly.”, as they rated coherence (Experiment 1) or simply answered intermittent comprehension questions (Experiment 2). The semantic function of even so was used to reverse real-world knowledge predictions, leading to an attenuated N400 to coherent versus incoherent target words (“celebrated”). Moreover, its pragmatic communicative function enhanced predictive processing, leading to more N400 attenuation to coherent targets in scenarios with than without even so. This benefit however, did not come for free: the detection of failed event predictions triggered a later posterior positivity and/or an anterior negativity effect, and costs of maintaining alternative likelihood relations manifest as a sustained negativity effect on sentence-final words. PMID:25914891

  12. Surface Information Loss in Comprehension

    PubMed Central

    Gernsbacher, Morton Ann

    2014-01-01

    Shortly after a sentence has been comprehended, information about its exact surface form (e.g., its word order) becomes less available. The present research demonstrated this phenomenon during the comprehension of nonverbal stimuli (picture stories). In Experiment 1, significantly more surface (left/right orientation) information was lost after comprehending several picture stories than just one; in Experiment 2, more was lost after comprehending an entire picture story than half of one. In Experiment 3, subjects segmented the picture stories into their constituents; in Experiment 4, significantly more surface information was lost after crossing these constituents’ boundaries than before. The present research also investigated why surface information is lost. Four explanations were considered: Surface information loss is the result of performing grammatical transformations (the linguistic hypothesis), exceeding short-term memory limitations (the memory limitations hypothesis), integrating information into gist (the integration hypothesis), shifting from building one substructure to initiating another (the processing shift hypothesis). The linguistic and memory limitations hypotheses were considered inadequate; the integration and the processing shift hypotheses were tested in the last set of experiments. In Experiment 5 (using nonverbal stimuli), the predictions made by the processing shift hypothesis were confirmed; in Experiment 6 (using verbal stimuli), these results were replicated. Other implications of the processing shift hypothesis concerning surface information loss are discussed. PMID:25308975

  13. Swine Flu -A Comprehensive View

    NASA Astrophysics Data System (ADS)

    Singh, Vandana; Sood, Meenakshi

    2012-07-01

    The present article is aimed on comprehensive view of Swine flu. It was first isolated from pigs in 1930 in USA. Pandemic caused by H1N1 in 2009 brought it in limelight. Itís a viral respiratory disease caused by viruses that infects pigs, resulting in nasal secretions, barking cough, decreased appetite, and listless behavior. Swine virus consist of eight RNA strands, one strand derived from human flu strains, two from avian (bird) strains, and five from swine strains. Swine flu spreads from infected person to healthy person by inhalation or ingestion of droplets contaminated with virus while sneezing or coughing. Two antiviral agents have been reported to help prevent or reduce the effects of swine flu, flu shot and nasal spray. WHO recommended for pandemic period to prevent its future outbreaks through vaccines or non-vaccines means. Antiviral drugs effective against this virus are Tamiflu and Relenza. Rapid antigen testing (RIDT), DFA testing, viral culture, and molecular testing (RT-PCR) are used for its diagnosis in laboratory

  14. CEDR: Comprehensive Epidemiologic Data Resource

    SciTech Connect

    Not Available

    1993-08-01

    The Department of Energy (DOE) and its predecessor agencies have a long history of epidemiologic research programs. The main focus of these programs has been the Health and Mortality Study of the DOE work force. This epidemiologic study began in 1964 with a feasibility study of workers at the Hanford facility. Studies of other populations exposed to radiation have also been supported, including the classic epidemiologic study of radium dial painters and studies of atomic bomb survivors. From a scientific perspective, these epidemiologic research program have been productive, highly credible, and formed the bases for many radiological protection standards. Recently, there has been concern that, although research results were available, the data on which these results were based were not easily obtained by interested investigators outside DOE. Therefore, as part of an effort to integrate and broaden access to its epidemiologic information, the DOE has developed the Comprehensive Epidemiologic Data Resource (CEDR) Program. Included in this effort is the development of a computer information system for accessing the collection of CEDR data and its related descriptive information. The epidemiologic data currently available through the CEDAR Program consist of analytic data sets, working data sets, and their associated documentation files. In general, data sets are the result of epidemiologic studies that have been conducted on various groups of workers at different DOE facilities during the past 30 years.

  15. Comprehensive approach to diabetic nephropathy

    PubMed Central

    Satirapoj, Bancha; Adler, Sharon G.

    2014-01-01

    Diabetic nephropathy (DN) is a leading cause of mortality and morbidity in patients with diabetes. This complication reflects a complex pathophysiology, whereby various genetic and environmental factors determine susceptibility and progression to end-stage renal disease. DN should be considered in patients with type 1 diabetes for at least 10 years who have microalbuminuria and diabetic retinopathy, as well as in patients with type 1 or type 2 diabetes with macroalbuminuria in whom other causes for proteinuria are absent. DN may also present as a falling estimated glomerular filtration rate with albuminuria as a minor presenting feature, especially in patients taking renin–angiotensin–aldosterone system inhibitors (RAASi). The pathological characteristic features of disease are three major lesions: diffuse mesangial expansion, diffuse thickened glomerular basement membrane, and hyalinosis of arterioles. Functionally, however, the pathophysiology is reflected in dysfunction of the mesangium, the glomerular capillary wall, the tubulointerstitium, and the vasculature. For all diabetic patients, a comprehensive approach to management including glycemic and hypertensive control with RAASi combined with lipid control, dietary salt restriction, lowering of protein intake, increased physical activity, weight reduction, and smoking cessation can reduce the rate of progression of nephropathy and minimize the risk for cardiovascular events. This review focuses on the latest published data dealing with the mechanisms, diagnosis, and current treatment of DN. PMID:26894033

  16. Comprehensive Analysis of Neptune's Features

    NASA Astrophysics Data System (ADS)

    Karkoschka, Erich

    2007-07-01

    Hubble took an amazing data set of Neptune in nine GO programs between 1994 and 2006, consisting of 408 WFPC2 exposures with several filters present in each program. The PIs of these programs, Hammel, Sromovsky, and Rages, published a variety of results about Neptune's atmosphere based on each program. However, the typical size of the grants for each program did not allow all scientific questions of these rich data sets to be addressed.I propose to analyze these 400 images to create a consistent data set spanning 12 years, and I will make even the intermediate results available, such as 400 consistently calibrated images. The combined data set will then be able to address more far reaching questions than could be done by single data sets. Whereas previous studies focused on only a few center-to-limb measurements for a limited selection of latitudes and wavelengths, I will investigate the whole data set and analyze 16,000 center-to-limb curves. I will use the principal component analysis and various statistical tests to find the hidden variations on Neptune. I created software for a similar project on Hubble's Saturn images. I am ready to adapt and apply it to Hubble's Neptune images.The huge number of variable features on Neptune contain an ideal probe about atmospheric dynamics. Previous investigations have only scratched pieces of the surface of this treasure. It is time for a comprehensive study of the whole data to discover fundamenatal insights about atmospheric dynamics.

  17. Soil-Pest Relationships

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil is a living, dynamic body composed of mineral solids, air, water, and organic matter. Although soil characteristics vary greatly throughout the United States of America, certain basic soil properties are important in mediating soil-pest relationships. Some properties, such as soil texture, ar...

  18. Freeze-Thaw Cycles Effects on Soil Compaction in a Clay Loam

    NASA Astrophysics Data System (ADS)

    Jabro, J.; Evans, R.; Iversen, W.

    2012-04-01

    Inappropriate soil management practices and heavier farm machinery and equipment have led to an increase in soil compaction in the last two decades prompting increased global concern regarding the impact of soil compaction on crop production and soil quality in modern mechanized agriculture. A 3-yr comprehensive study was established to evaluate the dynamic of freeze-thaw cycles on soil compaction in a clay loam soil. Plots of frozen soils were compared with plots where soils were prevented from freezing with electrically heated blankets commonly used on concrete. Results showed that frequent freeze-thaw cycles over the winter alleviated a majority of soil compaction at the 0 - 20 cm depth. Soil penetration resistance in compacted soils was reduced by 73 and 68% over the winter at the 0 - 10 and 10 - 20 cm depths, respectively, due to dynamic effects of freeze-thaw cycles on soil structure and particles configuration. In unfrozen compacted soils, the penetration resistance was also reduced by 50 and 60% over winter at the 0 - 10 and 10 - 20 cm depths, respectively, due to the biology of soil, microbial activity, and disruptive effects of shrink-swell cycles. These results have demonstrated of how repeated freeze-thaw cycles can alleviate soil compaction, alter soil physical quality and create optimal soil conditions required for profitable growth of agricultural crops. The results from this study will save growers considerable time, money and energy currently required to alleviate soil compaction using other methods such as sub-soiling and deep tillage. We believe that Mother Nature provides ways to reverse soil compaction and improve soil structure and aggregation through the dynamic of freeze-thaw cycles that soils in Montana and other parts of the country go through each year. We concluded that the Mother Nature is the most effective and cheapest way to alleviate soil compaction.

  19. Electrical properties of soils

    NASA Astrophysics Data System (ADS)

    Pozdnyakova, Larisa A.

    In this study, thorough analysis is conducted for soil electrical properties, i.e. electrical resistivity, conductivity, and potential. Soil electrical properties are the parameters of natural and artificially created electrical fields in soils and influenced by distribution of mobile electrical charges, mostly inorganic ions, In soils. Distributions of electrical charges and properties in various soil profiles were shown to be results of the soil-forming processes. Soil properties influencing the density of mobile electrical charges were found to be exponentially related with electrical resistivity and potential based on Boltzmann's law of statistical thermodynamics. Relationships were developed between electrical properties and other soil physical and chemical properties, such as texture, stone content, bulk density, water content, cation exchange capacity, salinity, humus content, and base saturation measured in-situ and in soil samples. Geophysical methods of vertical electrical sounding, four-electrode probe, non-contact electromagnetic profiling, and self-potential were modified for measuring soil electrical properties and tested in different soil studies. The proposed methods are extremely efficient, reliable, and non-disturbing. Compared with conventional methods of soil analysis, the electrical geophysical methods allowed evaluating groundwater table, salt content, depth and thickness of soil horizons, Polluted or disturbed layers in soil profiles, and stone content with an estimation error <10%. The methods provide extensive data on spatial and temporal variations in soil electrical properties, which relate to the distributions of other essential soil properties. The electrical properties were incorporated with the data from conventional soil analyses to enhance the estimation of a number of soil physical and chemical properties and to assist soil survey. The study shows various applications of the modified geophysical methods in soil physics, soil

  20. Development, optimization, validation and application of faster gas chromatography - flame ionization detector method for the analysis of total petroleum hydrocarbons in contaminated soils.

    PubMed

    Zubair, Abdulrazaq; Pappoe, Michael; James, Lesley A; Hawboldt, Kelly

    2015-12-18

    This paper presents an important new approach to improving the timeliness of Total Petroleum Hydrocarbon (TPH) analysis in the soil by Gas Chromatography - Flame Ionization Detector (GC-FID) using the CCME Canada-Wide Standard reference method. The Canada-Wide Standard (CWS) method is used for the analysis of petroleum hydrocarbon compounds across Canada. However, inter-laboratory application of this method for the analysis of TPH in the soil has often shown considerable variability in the results. This could be due, in part, to the different gas chromatography (GC) conditions, other steps involved in the method, as well as the soil properties. In addition, there are differences in the interpretation of the GC results, which impacts the determination of the effectiveness of remediation at hydrocarbon-contaminated sites. In this work, multivariate experimental design approach was used to develop and validate the analytical method for a faster quantitative analysis of TPH in (contaminated) soil. A fractional factorial design (fFD) was used to screen six factors to identify the most significant factors impacting the analysis. These factors included: injection volume (μL), injection temperature (°C), oven program (°C/min), detector temperature (°C), carrier gas flow rate (mL/min) and solvent ratio (v/v hexane/dichloromethane). The most important factors (carrier gas flow rate and oven program) were then optimized using a central composite response surface design. Robustness testing and validation of model compares favourably with the experimental results with percentage difference of 2.78% for the analysis time. This research successfully reduced the method's standard analytical time from 20 to 8min with all the carbon fractions eluting. The method was successfully applied for fast TPH analysis of Bunker C oil contaminated soil. A reduced analytical time would offer many benefits including an improved laboratory reporting times, and overall improved clean up

  1. Soil Health Assessment Approaches and the Cornell Framework

    NASA Astrophysics Data System (ADS)

    van Es, Harold

    2016-04-01

    Soil health constraints beyond nutrient limitations and excesses currently limit agroecosystem productivity and sustainability, resilience to drought and extreme rainfall, and progress in soil and water conservation. With mounting pressure to produce food, feed, fiber, and even fuel for an increasing population, the concept of soil health is gaining national and international attention. Multiple regional, national, and global efforts are now leveraging that work to reach new stakeholder audiences, so that soil health management is expanding into mainstream agriculture. Each grower is generally faced with a unique situation in the choice of management options to address soil health constraints and each system affords its own set of opportunities or limitations to soil management. A more comprehensive understanding of soil health status can better guide farmers' management decisions. Until recently, there has not been a formalized decision making process for implementing a soil health management system that alleviates field-specific constrains identified through standard measurements and then maintains improved soil health. This presentation will discuss current US-based efforts related to soil health assessment, including efforts to build national consensus on appropriate methods for simple (inexpensive) and comprehensive tests. This includes the Cornell Soil Health Management Planning and Implementation Framework. The most relevant components of the framework are 1) measurement of indicators that represent critical soil processes, 2) scoring of measured values that allows for interpretation, and 3) linkage of identified constraints with management practices. Land managers can monitor changes over time through further assessment, and adapt management practices to achieve chosen goals. We will discuss the full tests and approaches for simplification.

  2. Influence of aggregate sizes and microstructures on bioremediation assessment of field-contaminated soils in pilot-scale biopiles

    NASA Astrophysics Data System (ADS)

    Chang, W.; Akbari, A.; Frigon, D.; Ghoshal, S.

    2011-12-01

    Petroleum hydrocarbon contamination of soils and groundwater is an environmental concern. Bioremediation has been frequently considered a cost-effective, less disruptive remedial technology. Formation of soil aggregate fractions in unsaturated soils is generally believed to hinder aerobic hydrocarbon biodegradation due to the slow intra-pore diffusion of nutrients and oxygen within the aggregate matrix and to the reduced bioavailability of hydrocarbons. On the other hand, soil aggregates may harbour favourable niches for indigenous bacteria, providing protective microsites against various in situ environmental stresses. The size of the soil aggregates is likely to be a critical factor for these processes and could be interpreted as a relevant marker for biodegradation assessment. There have been only limited attempts in the past to assess petroleum hydrocarbon biodegradation in unsaturated soils as a function of aggregate size. This study is aimed at investigating the roles of aggregate sizes and aggregate microstructures on biodegradation activity. Field-aged, contaminated, clayey soils were shipped from Norman Wells, Canada. Attempts were made to stimulate indigenous microbial activity by soil aeration and nutrient amendments in a pilot-scale biopile tank (1m L×0.65m W×0.3 m H). A control biopile was maintained without the nutrient amendment but was aerated. The initial concentrations of petroleum hydrocarbons in the field-contaminated soils increased with increasing aggregate sizes, which were classified in three fractions: micro- (<250 μm), meso- (>250-2000 μm) and macro-aggregates (>2000 μm). Compared to the TPH analyses at whole-soil level, the petroleum hydrocarbon analyses based on the aggregate-size levels demonstrated more clearly the extent of biodegradation of non-volatile, heavier hydrocarbons (C16-C34) in the soil. The removal of the C16-C34 hydrocarbons was 44% in macro-aggregates, but only 13% in meso-aggregates. The increased protein

  3. Universal Spatial Correlation Functions for Describing and Reconstructing Soil Microstructure

    PubMed Central

    Skvortsova, Elena B.; Mallants, Dirk

    2015-01-01

    Structural features of porous materials such as soil define the majority of its physical properties, including water infiltration and redistribution, multi-phase flow (e.g. simultaneous water/air flow, or gas exchange between biologically active soil root zone and atmosphere) and solute transport. To characterize soil microstructure, conventional soil science uses such metrics as pore size and pore-size distributions and thin section-derived morphological indicators. However, these descriptors provide only limited amount of information about the complex arrangement of soil structure and have limited capability to reconstruct structural features or predict physical properties. We introduce three different spatial correlation functions as a comprehensive tool to characterize soil microstructure: 1) two-point probability functions, 2) linear functions, and 3) two-point cluster functions. This novel approach was tested on thin-sections (2.21×2.21 cm2) representing eight soils with different pore space configurations. The two-point probability and linear correlation functions were subsequently used as a part of simulated annealing optimization procedures to reconstruct soil structure. Comparison of original and reconstructed images was based on morphological characteristics, cluster correlation functions, total number of pores and pore-size distribution. Results showed excellent agreement for soils with isolated pores, but relatively poor correspondence for soils exhibiting dual-porosity features (i.e. superposition of pores and micro-cracks). Insufficient information content in the correlation function sets used for reconstruction may have contributed to the observed discrepancies. Improved reconstructions may be obtained by adding cluster and other correlation functions into reconstruction sets. Correlation functions and the associated stochastic reconstruction algorithms introduced here are universally applicable in soil science, such as for soil classification

  4. Monitoring Local Comprehension Monitoring in Sentence Reading

    ERIC Educational Resources Information Center

    Vorstius, Christian; Radach, Ralph; Mayer, Michael B.; Lonigan, Christopher J.

    2013-01-01

    on ways to improve children's reading comprehension. However, processes and mechanisms underlying this skill are currently not well understood. This article describes one of the first attempts to study comprehension monitoring using eye-tracking methodology. Students in…

  5. National Survey of Reading Comprehension in Finland.

    ERIC Educational Resources Information Center

    Lehto, Juhani E.; Scheinin, Patrik; Kupiainen, Sirkku; Hautamaki, Jarkko

    2001-01-01

    Examines the cognitively high-level text processing, or macro-processing, of expository passages. Investigates reading comprehension during the sixth and ninth school years. Finds that girls outperformed boys regardless of the comprehension measure and also finds that performance on both measures, but particularly on hierarchy-rating, correlated…

  6. A Low Vision Reading Comprehension Test.

    ERIC Educational Resources Information Center

    Watson, G. R.; And Others

    1996-01-01

    Fifty adults (ages 28-86) with macular degeneration were given the Low Vision Reading Comprehension Assessment (LVRCA) to test its reliability and validity in evaluating the reading comprehension of those with vision impairments. The LVRCA was found to take only nine minutes to administer and was a valid and reliable tool. (CR)

  7. Communication Strategies to Assist Comprehension in Dementia

    PubMed Central

    2010-01-01

    Communication with individuals with dementia requires use of conversational strategies from health care providers. Strategies are provided for issues pertaining to poor comprehension. The strategies promote more successful comprehension and compliance, offset mood disorder, and create ease in the way that health information may be accepted by the patient. PMID:20397508

  8. Cognitive Mechanisms Underlying Second Language Listening Comprehension

    ERIC Educational Resources Information Center

    Hu, Guiling

    2009-01-01

    This dissertation research investigates the cognitive mechanisms underlying second language (L2) listening comprehension. I use three types of sentential contexts, congruent, neutral and incongruent, to look at how L2 learners construct meaning in spoken sentence comprehension. The three types of contexts differ in their context predictability.…

  9. Improving Student Comprehension Skills through Instructional Strategies.

    ERIC Educational Resources Information Center

    Sharp, Patricia; Ashby, Doris

    This report intends to describe a program designed to enhance reading comprehension. Reading comprehension relies on skills that enable students to remember facts, draw out main ideas, make inferences, and relate reading to personal experiences. The focus group consisted of middle and high school students in a metropolitan area in northern…

  10. Revisiting the Reader's Rudder: A Comprehension Strategy.

    ERIC Educational Resources Information Center

    Fischer, Cynthia

    2003-01-01

    Presents the structured comprehension method, a strategy that facilitates literal, inferential, and critical reading comprehension for passive readers who can decode but not comprehend. Uses the method to illustrate how other areas of students' instruction (e.g., vocabulary enhancement through morphemic analysis, use of a phonogram approach to…

  11. Reading Comprehension among African American Graduate Students

    ERIC Educational Resources Information Center

    Onwuegbuzie, Anthony J.; Mayes, Eric; Arthur, Leslie; Johnson, Joseph; Robinson, Veronica; Ashe, Shante; Elbedour, Salman; Collins, Kathleen M. T.

    2004-01-01

    A study was conducted to examine the reading comprehension performance of African American graduate students. The result showed that though the African American sample attained statistically significantly higher levels of reading comprehension than a normative sample of undergraduate students, they achieved lower levels of reading comprehension…

  12. Promoting Persistence through Comprehensive Student Supports

    ERIC Educational Resources Information Center

    McDonnell, Rachel Pleasants; Soricone, Lisa

    2014-01-01

    This publication was developed to support the colleges Jobs For the Future (JFF) works with through Accelerating Opportunity, as well as other institutions in search of strategies to enhance their capacity to provide comprehensive supports. The goal of this paper is to provide clarity on what it means to provide comprehensive support services,…

  13. Comprehensive Education Portfolio with a Career Focus

    ERIC Educational Resources Information Center

    Kruger, Evonne J.; Holtzman, Diane M.; Dagavarian, Debra A.

    2013-01-01

    There are many types of student portfolios used within academia: the prior learning portfolio, credentialing portfolio, developmental portfolio, capstone portfolio, individual course portfolio, and the comprehensive education portfolio. The comprehensive education portfolio (CEP), as used by the authors, is a student portfolio, developed over…

  14. Leadership Lessons from Comprehensive School Reforms.

    ERIC Educational Resources Information Center

    Murphy, Joseph, Ed.; Datnow, Amanda, Ed.

    This volume explores the role of leadership in comprehensive school reform (CSR). It consists of 12 chapters: (1) "The Development of Comprehensive School Reform" (Joseph Murphy and Amanda Datnow); (2) "Expeditionary Learning Schools: Tenacity, Leadership, and School Reform" (Greg Farrell); (3) "The Modern Red School House: Leadership in…

  15. Teaching Reading Comprehension through Collaborative Strategic Reading.

    ERIC Educational Resources Information Center

    Vaughn, Sharon; Klingner, Janette Kettman

    1999-01-01

    Provides an overview of collaborative strategic reading (CSR) as an approach to enhancing the reading-comprehension skills of students with learning disabilities. Procedures for implementing CSR with collaborative groups and techniques for teaching reading-comprehension skills are provided. The role of the teacher is described and sample teaching…

  16. Reading Comprehension and Semantic Memory. Final Report.

    ERIC Educational Resources Information Center

    Wickelgren, Wayne A.; And Others

    A research project investigated the process of reading comprehension through which the reader generates a semantic representation of the message conveyed by a text. The first focus of the project was an examination of the functioning of abstract knowledge in text comprehension. Studies were conducted to explore the activation of proposition…

  17. University Students with Poor Reading Comprehension

    ERIC Educational Resources Information Center

    Georgiou, George K.; Das, J. P.

    2015-01-01

    The present study aimed to examine the nature of the working memory and general cognitive ability deficits experienced by university students with a specific reading comprehension deficit. A total of 32 university students with poor reading comprehension but average word-reading skills and 60 age-word-matched controls with no comprehension…

  18. Teaching Vocabulary to Adolescents To Improve Comprehension.

    ERIC Educational Resources Information Center

    Curtis, Mary E.; Longo, Ann Marie

    2001-01-01

    Contends that providing vocabulary instruction is one of the most significant ways in which teachers can improve students' reading and listening comprehension. Describes a 16-week intervention in which the comprehension of middle and high school students reading below grade level was improved significantly by instruction that developed their…

  19. 18 CFR 801.5 - Comprehensive plan.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Comprehensive plan. 801.5 Section 801.5 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL... comprehensive plan for the immediate and long-range development and use of the water resources of the basin....

  20. 18 CFR 801.5 - Comprehensive plan.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Comprehensive plan. 801.5 Section 801.5 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL... comprehensive plan for the immediate and long-range development and use of the water resources of the basin....

  1. 18 CFR 801.5 - Comprehensive plan.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Comprehensive plan. 801.5 Section 801.5 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL... comprehensive plan for the immediate and long-range development and use of the water resources of the basin....

  2. 18 CFR 801.5 - Comprehensive plan.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Comprehensive plan. 801.5 Section 801.5 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL... comprehensive plan for the immediate and long-range development and use of the water resources of the basin....

  3. Metaphor Comprehension in Alzheimer's Disease: Novelty Matters

    ERIC Educational Resources Information Center

    Amanzio, Martina; Geminiani, Giuliano; Leotta, Daniela; Cappa, Stefano

    2008-01-01

    The comprehension of non-literal language was investigated in 20 probable Alzheimer's disease (pAD) patients by comparing their performance to that of 20 matched control subjects. pAD patients were unimpaired in the comprehension of conventional metaphors and idioms. However, their performance was significantly lower in the case of…

  4. Cognitive Aids for Guiding Graph Comprehension

    ERIC Educational Resources Information Center

    Mautone, Patricia D.; Mayer, Richard E.

    2007-01-01

    This study sought to improve students' comprehension of scientific graphs by adapting scaffolding techniques used to aid text comprehension. In 3 experiments involving 121 female and 88 male college students, some students were shown cognitive aids prior to viewing 4 geography graphs whereas others were not; all students were then asked to write a…

  5. Causal Inferences during Text Comprehension and Production.

    ERIC Educational Resources Information Center

    Kemper, Susan

    As comprehension failure results whenever readers are unable to infer missing causal connections, recent comprehension research has focused both on assessing the inferential complexity of texts and on investigating students' developing ability to infer causal relationships. Studies have demonstrated that texts rely on four types of causal…

  6. Comprehensive Teacher Education: A Handbook of Knowledge.

    ERIC Educational Resources Information Center

    American Association of Colleges for Teacher Education, Washington, DC.

    Since 1992, AACTE and the DeWitt Wallace-Reader's Digest Fund have worked in partnership to advance the knowledge base of comprehensive teacher education. The AACTE/DeWitt Wallace-Reader's Digest Fund's Comprehensive Teacher Education National Demonstration Project is grounded in the mutual belief that preparation of classroom teachers must…

  7. Tests of Reading Comprehension (TORCH) Pilot Study.

    ERIC Educational Resources Information Center

    Burgon, J. R.

    A New Zealand pilot study examined Tests of Reading Comprehension (TORCH) scores compared to PAT: Reading Comprehension scores and compared with teacher ratings. TORCH is a reading test package published in 1987 by the Australian Council for Educational Research. It consists of 14 untimed passages intended to assess the extent to which readers in…

  8. Reading Comprehension in Children with Down Syndrome

    ERIC Educational Resources Information Center

    Laws, Glynis; Brown, Heather; Main, Elizabeth

    2016-01-01

    Two studies aimed to investigate the reading comprehension abilities of 14 readers with Down syndrome aged 6 years 8 months to 13 years relative to those of typically developing children matched on word reading ability, and to investigate how these abilities were associated with reading accuracy, listening comprehension, phonological awareness and…

  9. Identifying Language Comprehension Impairment in Preschool Children

    ERIC Educational Resources Information Center

    Skarakis-Doyle, Elizabeth; Dempsey, Lynn; Lee, Christopher

    2008-01-01

    Purpose: This study examined the validity of 3 discourse comprehension measures for preschool children and the ability of a combination of them to classify children with and without language impairment. Method: Thirty-seven children with typical language and 12 children with language impairment completed 3 measures of oral story comprehension: the…

  10. The Comprehensive High School in American Education.

    ERIC Educational Resources Information Center

    Tanner, Daniel

    1982-01-01

    Defends comprehensive high schools against critics, past and present, who advocate specialized high schools or dual or tripartite systems separating college-bound from noncollege-bound students. Argues that comprehensive high schools promote social class integration and democratic values, and notes James B. Conant's role in supporting…

  11. 33 CFR 238.5 - Comprehensive planning.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Comprehensive planning. 238.5 Section 238.5 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE WATER RESOURCES POLICIES AND AUTHORITIES: FLOOD DAMAGE REDUCTION MEASURES IN URBAN AREAS § 238.5 Comprehensive planning....

  12. Inquiry Summary: Classroom Instruction in Reading Comprehension.

    ERIC Educational Resources Information Center

    Snow, David P.

    For the purpose of investigating instructional techniques that facilitate children's acquisition of reading comprehension skills in the middle and upper elementary grades, a 2-year inquiry into classroom instruction in reading comprehension was begun at the beginning of 1980. The initial focus of the study was on methods of assessment. Analytic…

  13. Does Monitoring Event Changes Improve Comprehension?

    ERIC Educational Resources Information Center

    Bohn-Gettler, Catherine M.

    2014-01-01

    During narrative comprehension, reading times increase for changes in time, space, characters, goals, and causation. This study examined the extent to which instructional manipulations modify dimension monitoring during reading and whether this affects comprehension. Sixty-seven participants read three narratives (pretest). Half of the…

  14. Improving Reading Comprehension through Cooperative Learning.

    ERIC Educational Resources Information Center

    Caposey, Tracey; Heider, Barbara

    This report describes a program for improving reading comprehension through cooperative learning. The targeted population consisted of elementary and middle school students in growing middle class communities, located in northern Illinois. The problems of reading comprehension in content areas were documented through teacher observation and…

  15. A Dynamic Developmental Link between Verbal Comprehension-Knowledge (Gc) and Reading Comprehension: Verbal Comprehension-Knowledge Drives Positive Change in Reading Comprehension

    ERIC Educational Resources Information Center

    Reynolds, Matthew R.; Turek, Joshua J.

    2012-01-01

    Intelligence and general academic achievement have a well-established relation, but the interrelated development of the two constructs over time is less well-known. In this study, the dynamic developmental relation between verbal comprehension-knowledge (Gc) and reading comprehension was examined by applying bivariate dual change score models…

  16. Comprehensive Planning To Address Homelessness. City Initiatives.

    ERIC Educational Resources Information Center

    Zawisza, Kris

    This packet contains documents that provide information about the planning and implementation of a comprehensive plan to address homelessness in cities throughout the U.S. Information on the following components of a comprehensive strategy are included: (1) "Task Forces"; (2) "Assessment Studies"; (3) "Emergency Services"; (4) "Transitional…

  17. 12 CFR 324.209 - Comprehensive risk.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 5 2014-01-01 2014-01-01 false Comprehensive risk. 324.209 Section 324.209... CAPITAL ADEQUACY OF FDIC-SUPERVISED INSTITUTIONS Risk-Weighted Assets-Market Risk § 324.209 Comprehensive risk. (a) General requirement. (1) Subject to the prior approval of the FDIC, an...

  18. 12 CFR 3.209 - Comprehensive risk.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 1 2014-01-01 2014-01-01 false Comprehensive risk. 3.209 Section 3.209 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY CAPITAL ADEQUACY STANDARDS Risk-Weighted Assets-Market Risk § 3.209 Comprehensive risk. (a) General requirement. (1) Subject to the...

  19. Augmented In Situ Subsurface Bioremediation Process™BIO-REM, Inc. - Demonstration Bulletin

    EPA Science Inventory

    The Augmented In Situ Subsurface Bioremediation Process™ developed by BIO-REM, Inc., uses microaerophilic bacteria and micronutrients (H-10) and surface tension depressants/penetrants for the treatment of hydrocarbon contaminated soils and groundwater. The bacteria utilize hydroc...

  20. Physicochemical and biological quality of soil in hexavalent chromium-contaminated soils as affected by chemical and microbial remediation.

    PubMed

    Liao, Yingping; Min, Xiaobo; Yang, Zhihui; Chai, Liyuan; Zhang, Shujuan; Wang, Yangyang

    2014-01-01

    Chemical and microbial methods are the main remediation technologies for chromium-contaminated soil. These technologies have progressed rapidly in recent years; however, there is still a lack of methods for evaluating the chemical and biological quality of soil after different remediation technologies have been applied. In this paper, microbial remediation with indigenous bacteria and chemical remediation with ferrous sulphate were used for the remediation of soils contaminated with Cr(VI) at two levels (80 and 1,276 mg kg(-1)) through a column leaching experiment. After microbial remediation with indigenous bacteria, the average concentration of water-soluble Cr(VI) in the soils was reduced to less than 5.0 mg kg(-1). Soil quality was evaluated based on 11 soil properties and the fuzzy comprehensive assessment method, including fuzzy mathematics and correlative analysis. The chemical fertility quality index was improved by one grade using microbial remediation with indigenous bacteria, and the biological fertility quality index increased by at least a factor of 6. Chemical remediation with ferrous sulphate, however, resulted in lower levels of available phosphorus, dehydrogenase, catalase and polyphenol oxidase. The result showed that microbial remediation with indigenous bacteria was more effective for remedying Cr(VI)-contaminated soils with high pH value than chemical remediation with ferrous sulphate. In addition, the fuzzy comprehensive evaluation method was proven to be a useful tool for monitoring the quality change in chromium-contaminated soils. PMID:23784058

  1. Readability and Its Effects on Reading Rate, Subjective Judgments of Comprehensibility and Comprehension.

    ERIC Educational Resources Information Center

    Coke, Esther U.

    Prose passages read aloud or silently were rated for pronounceability and comprehensibility. The relationships of text-derived readability indices to reading rate, comprehensibility ratings and comprehension test scores were explored. Reading rate in syllables per minute was unrelated to readability. The high correlation between rate in words per…

  2. Measures of Reading Comprehension: A Latent Variable Analysis of the Diagnostic Assessment of Reading Comprehension

    ERIC Educational Resources Information Center

    Francis, David J.; Snow, Catherine E.; August, Diane; Carlson, Coleen D.; Miller, Jon; Iglesias, Aquiles

    2006-01-01

    This study compares 2 measures of reading comprehension: (a) the Woodcock-Johnson Passage Comprehension test, a standard in reading research, and (b) the Diagnostic Assessment of Reading Comprehension (DARC), an innovative measure. Data from 192 Grade 3 Spanish-speaking English language learners (ELLs) were used to fit a series of latent variable…

  3. Relationship between Graphical Device Comprehension and Overall Text Comprehension for Third-Grade Children

    ERIC Educational Resources Information Center

    Roberts, Kathryn L.; Norman, Rebecca R.; Cocco, Jaime

    2015-01-01

    This study examined relationships between reading comprehension, known predictors of reading comprehension (i.e., cognitive flexibility, fluency, reading motivation and attitude, vocabulary), and graphical device comprehension. One-hundred fifty-six third graders completed assessments of known predictor variables and an assessment tapping…

  4. Listen, Listen, Listen and Listen: Building a Comprehension Corpus and Making It Comprehensible

    ERIC Educational Resources Information Center

    Mordaunt, Owen G.; Olson, Daniel W.

    2010-01-01

    Listening comprehension input is necessary for language learning and acculturation. One approach to developing listening comprehension skills is through exposure to massive amounts of naturally occurring spoken language input. But exposure to this input is not enough; learners also need to make the comprehension corpus meaningful to their learning…

  5. DEVELOPING WEED SUPPRESSIVE SOILS THROUGH IMPROVED SOIL QUALITY MANAGEMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustainable agriculture is based in part on efficient management of soil microorganisms for improving soil quality. However, identification of biological indicators of soil quality for predicting weed suppression in soils has received little attention. We investigated differences in soil microbial ...

  6. Integrating Real-time and Manual Monitored Soil Moisture Data to Predict Hillslope Soil Moisture Variations with High Temporal Resolutions

    NASA Astrophysics Data System (ADS)

    Zhu, Qing; Lv, Ligang; Zhou, Zhiwen; Liao, Kaihua

    2016-04-01

    Spatial-temporal variability of soil moisture 15 has been remaining an challenge to be better understood. A trade-off exists between spatial coverage and temporal resolution when using the manual and real-time soil moisture monitoring methods. This restricted the comprehensive and intensive examination of soil moisture dynamics. In this study, we aimed to integrate the manual and real-time monitored soil moisture to depict the hillslope dynamics of soil moisture with good spatial coverage and temporal resolution. Linear (stepwise multiple linear regression-SMLR) and non-linear models (support vector machines-SVM) were used to predict soil moisture at 38 manual sites (collected 1-2 times per month) with soil moisture automatically collected at three real-time monitoring sites (collected every 5 mins). By comparing the accuracies of SMLR and SVM for each manual site, optimal soil moisture prediction model of this site was then determined. Results show that soil moisture at these 38 manual sites can be reliably predicted (root mean square errors<0.035 m3 m-3) using this approach. Absence or occurrence of subsurface flow can probably influence the choosing of SMLR or SVM in the prediction, respectively. Depth to bedrock, elevation, topographic wetness index, profile curvature, and relative difference of soil moisture and its standard deviation influenced the selection of prediction model since they related to the dynamics of soil water distribution and movement. By using this approach, hillslope soil moisture spatial distributions at un-sampled times and dates were predicted after a typical rainfall event. Missing information of hillslope soil moisture dynamics was then acquired successfully. This can be benefit for determining the hot spots and moments of soil water movement, as well as designing the proper soil moisture monitoring plan at the field scale.

  7. A New Comprehensive Final Exam

    NASA Astrophysics Data System (ADS)

    Bhavsar, Suketu P.

    2015-01-01

    Instructors aspire for students to master all the material covered. The final exam should assess the breadth and depth of their learning and be a significant basis for the final grade. I insist on a comprehensive final because I want students to review early material in light of later topics. I believe that this helps students create connections, integrate understanding, and retain knowledge for the long term. For non-science majors, reviewing and retaining the large amount of astronomy material is daunting. I experimented with a final exam format that calmed their fears and encouraged thorough review. It is only practical for a class of about twenty students or less. I provided a number of challenging conceptual and problem solving questions (at least as many as there were students), crafted to interconnect and span the entire range of topics. The order of the questions reflected the sequence in which the topics had been discussed. Students received these questions in ample time to prepare prior to the final. A student could bring up to 5 standard sheets of notes to the final. At the final, each student picked a number out of a hat. This was the question they had to answer in a 5-minute presentation. They were allowed 15 minutes for a final preparation during which they could use their 5 pages of notes. The presentations were given in order, 1- 20. Written comments on at least 10 other talks, explaining what was missed or correcting a mistake were required. They were graded both on their talk and on their comments. This format required students to be prepared for any question and encouraged interaction and communication while studying. Knowing the questions beforehand provided a guide to their studying as well as allayed their fears about what could be asked. The students also received guidance to what constituted a good answer, namely accuracy (correct scientific argument, appropriate facts, no irrelevant material), thoroughness (answered the complete questions

  8. Soil moisture: Some fundamentals. [agriculture - soil mechanics

    NASA Technical Reports Server (NTRS)

    Milstead, B. W.

    1975-01-01

    A brief tutorial on soil moisture, as it applies to agriculture, is presented. Information was taken from books and papers considered freshman college level material, and is an attempt to briefly present the basic concept of soil moisture and a minimal understanding of how water interacts with soil.

  9. Nanoscale Interactions between Engineered Nanomaterials and Black Carbon (Biochar) in Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An understanding of the interactions between engineered nanomaterials (NMs) and soil constituents, and a comprehension of how these interactions may affect biological uptake and toxicity are currently lacking. Charcoal black carbon is a normal constituent of soils due to fire history, and can be pre...

  10. A Problem-Based Learning Approach to Teaching Introductory Soil Science

    ERIC Educational Resources Information Center

    Amador, Jose A.; Gorres, Josef H.

    2004-01-01

    At most land-grant universities in the USA, Introduction to Soil Science is traditionally taught using a combination of lecture and laboratory formats. To promote engagement, improve comprehension, and enhance retention of content by students, we developed a problem-based learning (PBL) introductory soil science course. Students work in groups to…

  11. Early response of soil organic fractions to tillage and integrated crop-livestock production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tillage, cropping system, and cover cropping are important management variables that control the quantity, quality, and placement of organic matter inputs to soil. How soil organic matter and its different fractions respond to management has not been comprehensively studied in integrated crop-lives...

  12. Distribution of Heavy Metal Pollution in Surface Soil Samples in China: A Graphical Review.

    PubMed

    Duan, Qiannan; Lee, Jianchao; Liu, Yansong; Chen, Han; Hu, Huanyu

    2016-09-01

    Soil pollution in China is one of most wide and severe in the world. Although environmental researchers are well aware of the acuteness of soil pollution in China, a precise and comprehensive mapping system of soil pollution has never been released. By compiling, integrating and processing nearly a decade of soil pollution data, we have created cornerstone maps that illustrate the distribution and concentration of cadmium, lead, zinc, arsenic, copper and chromium in surficial soil across the nation. These summarized maps and the integrated data provide precise geographic coordinates and heavy metal concentrations; they are also the first ones to provide such thorough and comprehensive details about heavy metal soil pollution in China. In this study, we focus on some of the most polluted areas to illustrate the severity of this pressing environmental problem and demonstrate that most developed and populous areas have been subjected to heavy metal pollution. PMID:27342589

  13. NOrth AMerica Soil (NOAM-SOIL) Database

    NASA Astrophysics Data System (ADS)

    Miller, D. A.; Waltman, S. W.; Geng, X.; James, D.; Hernandez, L.

    2009-05-01

    NOAM-SOIL is being created by combining the CONUS-SOIL database with pedon data and soil geographic data coverages from Canada and Mexico. Completion of the in-progress NOrth AMerica Soil (NOAM-SOIL) database will provide complete North America coverage comparable to CONUS. Canadian pedons, which number more than 500, have been painstakingly transcribed to a common format, from hardcopy, and key- entered. These data, along with map unit polygons from the 1:1,000,000 Soil Landscapes of Canada, will be used to create the required spatial data coverages. The Mexico data utilizes the INEGI 1:1,000,000 scale soil map that was digitized by U. S. Geological Survey EROS Data Center in the mid 1990's plus about 20,000 pedons. The pedon data were published on the reverse side of the paper 1:250,000 scale Soil Map of Mexico and key entered by USDA and georeferenced by Penn State to develop an attribute database that can be linked to the 1:1,000,000 scale Soil Map of Mexico based on taxonomic information and geographic proximity. The essential properties that will be included in the NOAM-SOIL data base are: layer thickness (depth to bedrock or reported soil depth); available water capacity; sand, silt, clay; rock fragment volume; and bulk density. For quality assurance purposes, Canadian and Mexican soil scientists will provide peer review of the work. The NOAM-SOIL project will provide a standard reference dataset of soil properties for use at 1km resolution by NACP modelers for all of North America. All data resources, including metadata and selected raw data, will be provided through the Penn State web site: Soil Information for Environmental Modeling and Ecosystem Management (www.soilinfo.psu.edu). Progress on database completion is reported.

  14. Temporal changes in soil water repellency linked to the soil respiration and CH4 and CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Qassem, Khalid; Urbanek, Emilia; van Keulen, Geertje

    2014-05-01

    Soil water repellency (SWR) is known to be a spatially and temporally variable phenomenon. The seasonal changes in soil moisture lead to development of soil water repellency, which in consequence may affect the microbial activity and in consequence alter the CO2 and CH4 fluxes from soils. Soil microbial activity is strongly linked to the temperature and moisture status of the soil. In terms of CO2 flux intermediate moisture contents are most favourable for the optimal microbial activity and highest CO2 fluxes. Methanogenesis occurs primarily in anaerobic water-logged habitats while methanotrophy is a strictly aerobic process. In the study we hypothesise that the changes in CO2 and CH4 fluxes are closely linked to critical moisture thresholds for soil water repellency. This research project aims to adopt a multi-disciplinary approach to comprehensively determine the effect of SWR on CO2 and CH4 fluxes. Research is conducted in situ at four sites exhibiting SWR in the southern UK. Flux measurements are carried out concomitant with meteorological and SWR observations Field observations are supported by laboratory measurements carried out on intact soil samples collected at the above identified field sites. The laboratory analyses are conducted under constant temperatures with controlled changes of soil moisture content. Methanogenic and Methanotrophic microbial populations are being analysed at different SWR and moisture contents using the latest metagenomic and metatranscriptomic approaches. Currently available data show that greenhouse gas flux are closely linked with soil moisture thresholds for SWR development.

  15. Soil Classification and Treatment.

    ERIC Educational Resources Information Center

    Clemson Univ., SC. Vocational Education Media Center.

    This instructional unit was designed to enable students, primarily at the secondary level, to (1) classify soils according to current capability classifications of the Soil Conservation Service, (2) select treatments needed for a given soil class according to current recommendations provided by the Soil Conservation Service, and (3) interpret a…

  16. Usable science: soil health

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Healthy soils are fundamental to sustainable rangelands, but soils toil in obscurity and this is reflected in the belowground “black-box” mentality often attributed to soils. Transformational changes get attention for land managers and public. For example, soil erosion associated with Dust Bowl of 1...

  17. Soil decontamination method

    SciTech Connect

    Hutter, G.

    1994-01-04

    A method of processing contaminated soil is disclosed whereby the soil in the form of feed stock is heated in a combustion chamber of a processor with the hydrocarbons being evacuated to a condensing system resulting in a petroleum product while the soil feed stock is detoxified in an afterburner to form clean soil for general use. 1 fig.

  18. MILESTONES IN SOIL PHYSICS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This special issue of “Soil Science“ celebrates the enormous accomplishments made during the past century or more in the field of soil science, including some of the key articles published in Soil Science during its 90 years of existence. In this article, we focus on the contributions in soil physic...

  19. Soil Conditioning Index

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soils are a critical natural resource for the future development and sustainability of humankind. Natural resource assessment tools are often used to evaluate the effects of management on soil properties and processes to ensure the sustainable use of our limited soils resources. The Soil Conditioni...

  20. Fundamentals of soil science

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study guide provides comments and references for professional soil scientists who are studying for the soil science fundamentals exam needed as the first step for certification. The performance objectives were determined by the Soil Science Society of America's Council of Soil Science Examiners...

  1. Soil: Conservation practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The primary source to meet global food and fiber demands is production agriculture, but accelerated soil erosion threatens its sustainability. Soil erosion is an important contributor to the normal soil formation process, but erosion becomes problematic when it is accelerated. Soil conservation prac...

  2. Lunar Soil Particle Separator

    NASA Technical Reports Server (NTRS)

    Berggren, Mark

    2010-01-01

    The Lunar Soil Particle Separator (LSPS) beneficiates soil prior to in situ resource utilization (ISRU). It can improve ISRU oxygen yield by boosting the concentration of ilmenite, or other iron-oxide-bearing materials found in lunar soils, which can substantially reduce hydrogen reduction reactor size, as well as drastically decreasing the power input required for soil heating

  3. Triazine Soil Interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fate of triazine herbicides in soils is controlled by three basic processes: transformation, retention, and transport. Sorption of triazines on surfaces of soil particles is the primary means by which triazines are retained in soils. Soils are very complex mixtures of living organisms, various t...

  4. Sustainable soils: Synthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The six chapters of the "Sustainable Soils" section of the book "Soil Ecology and Ecoystem Services" support the fundamental role that soil biota play in sustaining soil structure and nutrient cycling as the foundation for nearly all ecosystem services while illustrating the challenges of documentin...

  5. Teaching Science with Soil.

    ERIC Educational Resources Information Center

    Schatz, Albert; Kriebs, Jean Oak

    Prepared primarily for junior high school students and utilizing an integrated science approach, this manual offers activities for examining the ecosystem and environmental problems. With organic aspects of soils as the main subject field, it includes study of soil formation, soil fertility, soil contamination, and edaphic relationships. Most of…

  6. PALADYN, a comprehensive land surface-vegetation-carbon cycle model of intermediate complexity

    NASA Astrophysics Data System (ADS)

    Willeit, Matteo; Ganopolski, Andrey

    2016-04-01

    PALADYN is presented, a new comprehensive and computationally efficient land surface-vegetation-carbon cycle model designed to be used in Earth system models of intermediate complexity for long-term simulations and paleoclimate studies. The model treats in a consistent manner the interaction between atmosphere, terrestrial vegetation and soil through the fluxes of energy, water and carbon. Energy, water and carbon are conserved. The model explicitly treats permafrost, both in physical processes and as important carbon pool. The model distinguishes 9 surface types of which 5 are different vegetation types, bare soil, land ice, lake and ocean shelf. Including the ocean shelf allows to treat continuous changes in sea level and shelf area associated with glacial cycles. Over each surface type the model solves the surface energy balance and computes the fluxes of sensible, latent and ground heat and upward shortwave and longwave radiation. It includes a single snow layer. The soil model distinguishes between three different macro surface types which have their own soil column: vegetation and bare soil, ice sheet and ocean shelf. The soil is vertically discretized into 5 layers where prognostic equations for temperature, water and carbon are consistently solved. Phase changes of water in the soil are explicitly considered. A surface hydrology module computes precipitation interception by vegetation, surface runoff and soil infiltration. The soil water equation is based on Darcy's law. Given soil water content, the wetland fraction is computed based on a topographic index. Photosynthesis is computed using a light use efficiency model. Carbon assimilation by vegetation is coupled to the transpiration of water through stomatal conductance. The model includes a dynamic vegetation module with 5 plant functional types competing for the gridcell share with their respective net primary productivity. Each macro surface type has its own carbon pools represented by a litter, a fast

  7. [Changes of soil physical, chemical and ecological factors under mechanized cultivation].

    PubMed

    Xia, Ping

    2002-03-01

    Three-years agricultural mechanization extension project in Huang-Huai-Hai regions showed that the application of comprehensive agricultural technologies which included the return of straw and stalk to field by mechanization, deep application of fertilizer, deep plough and soil no-tillage with mulch, had an obvious biological effects. In comparing with traditional cultivation, the comprehensive mechanized cultivation could decrease soil bulk density by 0.08 g.cm-3, increase soil organic mater by 12%, improve moisture utilization by 10.1-13.6%, and increase the grain yields of wheat and corn by 1218 kg.hm-2. PMID:12132162

  8. Evapotranspiration and soil heterogeneity

    SciTech Connect

    Luxmoore, R J; Sharma, M L

    1982-01-01

    In a previous computer simulation study of a grassland catchment in Oklahoma, evapotranspiration was predicted to increase up to 25% for soils with finer textures than the silt loam reference soil. Results are further analyzed to illustrate plant water responses to scaled soil physical characteristics from the simulations with the Terrestrial Ecosystem Hydrology Model. Finer soils were shown to have higher soil water capacities over wider ranges of soil matric pressures than the reference soil which increased the water supply to vegetation. The water potential and stomatal conductance of foliage were generally higher on soils with higher soil water capacities. The analysis suggests that areal variation in soil hydraulic characteristics may significantly influence areal evapotranspiration.

  9. Comprehensive Oncologic Emergencies Research Network (CONCERN)

    Cancer.gov

    The Comprehensive Oncologic Emergencies Research Network (CONCERN) was established in March 2015 with the goal to accelerate knowledge generation, synthesis and translation of oncologic emergency medicine research through multi-center collaborations.

  10. Context improves comprehension of fronted objects.

    PubMed

    Kristensen, Line Burholt; Engberg-Pedersen, Elisabeth; Poulsen, Mads

    2014-04-01

    Object-initial clauses (OCs) are associated with more processing difficulties than subject-initial clauses (SCs) in a number of languages (e.g. English, German and Finnish), but a supportive context can reduce or neutralize the difference between SCs and OCs with respect to reading times. Still, it is unresolved how context can affect the comprehension of OCs. In the present self-paced reading study of Danish, we therefore investigated both reading times, comprehension accuracy and response times for OCs and SCs. In line with previous studies on word order processing, OCs in an unsupportive context showed longer reading times than SCs, longer response times and a comprehension accuracy as poor as chance level. A manipulation of context showed no effect of reading time, but a supportive context had a stronger facilitating effect on comprehension (response accuracy and response time) for OCs than for SCs. PMID:23504556

  11. Comprehensive Epidemiologic Data Resource (CEDR) (Poster)

    SciTech Connect

    Oak Ridge Institute for Science and Education

    2012-12-12

    This poster introduces the Comprehensive Epidemiologic Data Resource (CEDR), an electronic database with demographic, health outcome, and exposure information for over a million DOE nuclear plant and laboratory workers.

  12. Mycoinsecticides: comprehensive list and current status

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study aimed to assemble a comprehensive list of mycoinsecticides developed worldwide. A variety of sources, including scientific publications, personal communications, and websites from manufacturers and regulatory agencies, was accessed. During the last four decades, ca. 80 companies worldwide...

  13. Improving Reading Comprehension through Metacognitive Training.

    ERIC Educational Resources Information Center

    Mangano, Nancy G.; And Others

    1982-01-01

    Argues that metacognitive training in students can help students to remediate comprehension difficulties, to more accurately guage their success as learners, and to view reading as a flexible, thought-provoking process of interaction with text. (HOD)

  14. Effects of Noise on Reading Comprehension.

    ERIC Educational Resources Information Center

    Jewell, Larry R.; And Others

    1979-01-01

    A study compared the effects of two different noise intensities on the cognitive performance of students. Findings indicated that at the higher noise intensity in the learning environment, performance on the reading comprehension task decreased. (LRA)

  15. Toward a Model of Children's Story Comprehension.

    ERIC Educational Resources Information Center

    Charniak, Eugene

    This report considers the problem of constructing an abstract model of story comprehension. The use of questions that go beyond the story as a test of understanding the story raises a methodological problem which is discussed in detail. (Author)

  16. How Reading Comprehension Is Embodied and Why That Matters

    ERIC Educational Resources Information Center

    Glenberg, Arthur M.

    2011-01-01

    Reading comprehension, much like comprehension of situations and comprehension of oral language, is embodied. In all cases, comprehension is the ability to take effective action on the basis of affordances related to the body, the physical world, and personal goals and cultural norms. In language contexts, action-based comprehension arises from…

  17. Characterizing soils for hazardous waste site assessments.

    PubMed

    Breckenridge, R P; Keck, J F; Williams, J R

    1994-04-01

    This paper provides a review and justification of the minimum data needed to characterize soils for hazardous waste site assessments and to comply with the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). Scientists and managers within the regulatory agency and the liable party need to know what are the important soil characteristics needed to make decisions about risk assessment, what areas need remediation and what remediation options are available. If all parties involved in characterizing a hazardous waste site can agree on the required soils data set prior to starting a site investigation, data can be collected in a more efficient and less costly manner. Having the proper data will aid in reaching decisions on how to address concerns at, and close-out, hazardous waste sites.This paper was prepared to address two specific concerns related to soil characterization for CERCLA remedial response. The first concern is the applicability of traditional soil classification methods to CERCLA soil characterization. The second is the identification of soil characterization data type required for CERCLA risk assessment and analysis of remedial alternatives. These concerns are related, in that the Data Quality Objective (DQO) process addresses both. The DQO process was developed in part to assist CERCLA decision-makers in identifying the data types, data quality, and data quantity required to support decisions that must be made during the remedial investigation/feasibility study (RI/FS) process. Data Quality Objectives for Remedial Response Activities: Development Process (US EPA, 1987a) is a guidebook on developing DQOs. This process as it relates to CERCLA soil characterization is discussed in the Data Quality Objective Section of this paper. PMID:24213742

  18. A History of Rotorcraft Comprehensive Analyses

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2013-01-01

    A history of the development of rotorcraft comprehensive analyses is presented. Comprehensive analyses are digital computer programs that calculate the aeromechanical behavior of the rotor and aircraft, bringing together the most advanced models of the geometry, structure, dynamics, and aerodynamics available in rotary wing technology. The development of the major codes of the last five decades from industry, government, and universities is described. A number of common themes observed in this history are discussed.

  19. Surfactant adsorption to soil components and soils.

    PubMed

    Ishiguro, Munehide; Koopal, Luuk K

    2016-05-01

    Soils are complex and widely varying mixtures of organic matter and inorganic materials; adsorption of surfactants to soils is therefore related to the soil composition. We first discuss the properties of surfactants, including the critical micelle concentration (CMC) and surfactant adsorption on water/air interfaces, the latter gives an impression of surfactant adsorption to a hydrophobic surface and illustrates the importance of the CMC for the adsorption process. Then attention is paid to the most important types of soil particles: humic and fulvic acids, silica, metal oxides and layered aluminosilicates. Information is provided on their structure, surface properties and primary (proton) charge characteristics, which are all important for surfactant binding. Subsequently, the adsorption of different types of surfactants on these individual soil components is discussed in detail, based on mainly experimental results and considering the specific (chemical) and electrostatic interactions, with hydrophobic attraction as an important component of the specific interactions. Adsorption models that can describe the features semi-quantitatively are briefly discussed. In the last part of the paper some trends of surfactant adsorption on soils are briefly discussed together with some complications that may occur and finally the consequences of surfactant adsorption for soil colloidal stability and permeability are considered. When we seek to understand the fate of surfactants in soil and aqueous environments, the hydrophobicity and charge density of the soil or soil particles, must be considered together with the structure, hydrophobicity and charge of the surfactants, because these factors affect the adsorption. The pH and ionic strength are important parameters with respect to the charge density of the particles. As surfactant adsorption influences soil structure and permeability, insight in surfactant adsorption to soil particles is useful for good soil management. PMID

  20. Examining the global distribution of dominant archaeal populations in soil

    PubMed Central

    Bates, Scott T; Berg-Lyons, Donna; Caporaso, J Gregory; Walters, William A; Knight, Rob; Fierer, Noah

    2011-01-01

    Archaea, primarily Crenarchaeota, are common in soil; however, the structure of soil archaeal communities and the factors regulating their diversity and abundance remain poorly understood. Here, we used barcoded pyrosequencing to comprehensively survey archaeal and bacterial communities in 146 soils, representing a multitude of soil and ecosystem types from across the globe. Relative archaeal abundance, the percentage of all 16S rRNA gene sequences recovered that were archaeal, averaged 2% across all soils and ranged from 0% to >10% in individual soils. Soil C:N ratio was the only factor consistently correlated with archaeal relative abundances, being higher in soils with lower C:N ratios. Soil archaea communities were dominated by just two phylotypes from a constrained clade within the Crenarchaeota, which together accounted for >70% of all archaeal sequences obtained in the survey. As one of these phylotypes was closely related to a previously identified putative ammonia oxidizer, we sampled from two long-term nitrogen (N) addition experiments to determine if this taxon responds to experimental manipulations of N availability. Contrary to expectations, the abundance of this dominant taxon, as well as archaea overall, tended to decline with increasing N. This trend was coupled with a concurrent increase in known N-oxidizing bacteria, suggesting competitive interactions between these groups. PMID:21085198