Science.gov

Sample records for hydrodynamic flows part

  1. Understanding leachate flow in municipal solid waste landfills by combining time-lapse ERT and subsurface flow modelling - Part II: Constraint methodology of hydrodynamic models.

    PubMed

    Audebert, M; Oxarango, L; Duquennoi, C; Touze-Foltz, N; Forquet, N; Clément, R

    2016-09-01

    Leachate recirculation is a key process in the operation of municipal solid waste landfills as bioreactors. To ensure optimal water content distribution, bioreactor operators need tools to design leachate injection systems. Prediction of leachate flow by subsurface flow modelling could provide useful information for the design of such systems. However, hydrodynamic models require additional data to constrain them and to assess hydrodynamic parameters. Electrical resistivity tomography (ERT) is a suitable method to study leachate infiltration at the landfill scale. It can provide spatially distributed information which is useful for constraining hydrodynamic models. However, this geophysical method does not allow ERT users to directly measure water content in waste. The MICS (multiple inversions and clustering strategy) methodology was proposed to delineate the infiltration area precisely during time-lapse ERT survey in order to avoid the use of empirical petrophysical relationships, which are not adapted to a heterogeneous medium such as waste. The infiltration shapes and hydrodynamic information extracted with MICS were used to constrain hydrodynamic models in assessing parameters. The constraint methodology developed in this paper was tested on two hydrodynamic models: an equilibrium model where, flow within the waste medium is estimated using a single continuum approach and a non-equilibrium model where flow is estimated using a dual continuum approach. The latter represents leachate flows into fractures. Finally, this methodology provides insight to identify the advantages and limitations of hydrodynamic models. Furthermore, we suggest an explanation for the large volume detected by MICS when a small volume of leachate is injected. PMID:27095292

  2. Weighted Essentially Non-Oscillatory Simulations and Modeling of Complex Hydrodynamic Flows Part 1. Regular Shock Refraction

    SciTech Connect

    Schilling, O; Latini, M

    2004-06-18

    Shock refraction is a fundamental shock phenomenon observed when shocks interact with a material interface separating gases with different properties. Following refraction, a transmitted shock enters the second gas and a reflected wave returns back into the first gas. In the case of regular shock refraction all waves meet at a single point called the triple-point, creating five different states for the two gases. Analytical methods based on shock polar analysis [9, 16] have been developed to determine the state of two ideal gases in each of the five refraction regions. Furthermore, shock refraction constitutes a basic example of complex hydrodynamic flows. For this reason, shock refraction is used in this report as one validation of the high-order accurate weighted essentially non-oscillatory (WENO) shock-capturing method, as implemented in the HOPE code. The following two-step validation process is adopted. First, analytical results are obtained for the normal and oblique shock refraction (with shock-interface angle {beta}{sub int} = 75) observed for a Ma = 1.2 shock. To validate the single-fluid and the two-fluid implementations of the WENO method, two pairs of gases, argon/xenon, having equal adiabatic exponents {gamma} and air(acetone)/sulfur hexafluoride, having different adiabatic exponents {gamma}, are considered. Both the light-to-heavy and heavy-to-light configurations are considered. Second, numerical simulations are performed using the fifth-order WENO method and values of the density, pressure, temperature, speed of sound, and flow velocity in each of the five refraction regions are compared with the analytical predictions from shock polar analysis. In all cases considered, excellent agreement between the simulation results and the analytical predictions was found. The results from this investigation suggest that the WENO method is a very useful numerical method for the simulation and modeling of complex hydrodynamic flows.

  3. Weighted Essentially Non-Oscillatory Simulations and Modeling of Complex Hydrodynamic Flows. Part 1. Regular Shock Refraction

    SciTech Connect

    Latini, M; Schilling, O

    2005-01-31

    Shock refraction is a fundamental shock phenomenon observed when shocks interact with a material interface separating gases with different properties. Following refraction, a transmitted shock enters the second gas and a reflected wave returns back into the first gas. In the case of regular shock refraction, all of the waves meet at a single point called the triple-point, creating five different states for the two gases. Analytical methods based on shock polar analysis have been developed to determine the state of two ideal gases in each of the five refraction regions. Furthermore, shock refraction constitutes a basic example of complex hydrodynamic flows. For this reason, shock refraction is used in this report as one validation of the high-order accurate weighted essentially non-oscillatory (WENO) shock-capturing method, as implemented in the HOPE code. The algorithms used in the HOPE code are described in detail, together with its current capabilities. The following two-step validation process is adopted. First, analytical results are obtained for the normal and oblique shock refraction (with shock-interface angle {beta}{sub interface} = 75{sup o}) observed for a Ma = 1.2 shock. To validate the single-fluid and the two-fluid implementations of the WENO method, two pairs of gases, argon/xenon, having equal adiabatic exponents {gamma} and air(acetone)/sulfur hexafluoride, having different adiabatic exponents, are considered. Both the light-to-heavy and heavy-to-light gas configurations are considered. Second, numerical simulations are performed using the fifth-order WENO method and values of the density, pressure, temperature, speed of sound, and flow velocity in each of the five refraction regions are compared with the analytical predictions obtained from shock polar analysis. In all of the cases considered, excellent agreement is found between the simulation results and the analytical predictions. The results from this investigation suggest that the WENO method

  4. A numerical study of flow-induced noise in a two-dimensional centrifugal pump. Part I. Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Langthjem, M. A.; Olhoff, N.

    2004-04-01

    This paper is concerned with the simulation of the flow in a flat, `two-dimensional' laboratory centrifugal pump. The main concern of the study is the calculation of the flow-induced noise. The aim of the present paper is to develop a computationally simple and fast method which is capable of giving a useful estimate of the noise-generating `background-flow'. A companion paper describes the hydroacoustic part of the analysis. In the numerical flow model of the pump, the inlet is modelled by a point source and the blades of the impeller are covered with vortex elements with discrete, bound vortices. The casing is covered with source panels. Vortices are shed from the trailing edges of the impeller blades and convected with the streaming fluid in order to satisfy Kelvin's theorem. After computation of the velocity field, the fluid forces acting on the impeller blades are calculated by application of the unsteady Bernoulli equation. Some case studies of pump flows are presented. The acoustic properties of these flows is the subject of the second part of the paper.

  5. Hydrodynamic characteristics of the helical flow pump.

    PubMed

    Ishii, Kohei; Hosoda, Kyohei; Nishida, Masahiro; Isoyama, Takashi; Saito, Itsuro; Ariyoshi, Koki; Inoue, Yusuke; Ono, Toshiya; Nakagawa, Hidemoto; Sato, Masami; Hara, Sintaro; Lee, Xinyang; Wu, Sheng-Yuan; Imachi, Kou; Abe, Yusuke

    2015-09-01

    The helical flow pump (HFP) was invented to be an ideal pump for developing the TAH and the helical flow TAH (HFTAH) using two HFPs has been developed. However, since the HFP is quite a new pump, hydrodynamic characteristics inside the pump are not clarified. To analyze hydrodynamic characteristics of the HFP, flow visualization study using the particle image velocimetry and computational fluid dynamics analysis were performed. The experimental and computational models were developed to simulate the left HFP of the HFTAH and distributions of flow velocity vectors, shear stress and pressure inside the pump were examined. In distribution of flow velocity vectors, the vortexes in the vane were observed, which indicated that the HFP has a novel and quite unique working principle in which centrifugal force rotates the fluid in the helical volutes and the fluid is transferred from the inlet to the outlet helical volutes according to the helical structure. In distribution of shear stress, the highest shear stress that was considered to be occurred by the shunt flow across the impeller was found around the entrance of the inlet helical volute. However, it was not so high to cause hemolysis. This shunt flow is thought to be improved by redesigning the inlet and outlet helical volutes. In distribution of pressure, negative pressure was found near the entrance of the inlet helical volute. However, it was not high. Negative pressure is thought to be reduced with an improvement in the design of the impeller or the vane shape. PMID:25784463

  6. Anisotropic flow in transport + hydrodynamics hybrid approaches

    NASA Astrophysics Data System (ADS)

    Petersen, Hannah

    2014-12-01

    This contribution to the focus issue covers anisotropic flow in hybrid approaches. The historical development of hybrid approaches and their impact on the interpretation of flow measurements is reviewed. The major ingredients of a hybrid approach and the transition criteria between transport and hydrodynamics are discussed. The results for anisotropic flow in (event-by-event) hybrid approaches are presented. Some hybrid approaches rely on hadronic transport for the late stages for the reaction (so called afterburner) and others employ transport approaches for the early non-equilibrium evolution. In addition, there are ‘full’ hybrid calculations where a fluid evolution is dynamically embedded in a transport simulation. After demonstrating the success of hybrid approaches at high Relativistic Heavy Ion Collider and Large Hadron Collider energies, existing hybrid caluclations for collective flow observables at lower beam energies are discussed and remaining challenges outlined.

  7. Biomimetic Survival Hydrodynamics and Flow Sensing

    NASA Astrophysics Data System (ADS)

    Triantafyllou, Michael S.; Weymouth, Gabriel D.; Miao, Jianmin

    2016-01-01

    The fluid mechanics employed by aquatic animals in their escape or attack maneuvers, what we call survival hydrodynamics, are fascinating because the recorded performance in animals is truly impressive. Such performance forces us to pose some basic questions on the underlying flow mechanisms that are not yet in use in engineered vehicles. A closely related issue is the ability of animals to sense the flow velocity and pressure field around them in order to detect and discriminate threats in environments where vision or other sensing is of limited or no use. We review work on animal flow sensing and actuation as a source of inspiration and as a way to formulate a number of basic problems and investigate the flow mechanisms that enable animals to perform these remarkable maneuvers. We also describe some intriguing mechanisms of actuation and sensing.

  8. Ultrasensitive SERS Flow Detector Using Hydrodynamic Focusing

    PubMed Central

    Negri, Pierre; Jacobs, Kevin T.; Dada, Oluwatosin O.; Schultz, Zachary D.

    2013-01-01

    Label-free, chemical specific detection in flow is important for high throughput characterization of analytes in applications such as flow injection analysis, electrophoresis, and chromatography. We have developed a surface-enhanced Raman scattering (SERS) flow detector capable of ultrasensitive optical detection on the millisecond time scale. The device employs hydrodynamic focusing to improve SERS detection in a flow channel where a sheath flow confines analyte molecules eluted from a fused silica capillary over a planar SERS-active substrate. Increased analyte interactions with the SERS substrate significantly improve detection sensitivity. The performance of this flow detector was investigated using a combination of finite element simulations, fluorescence imaging, and Raman experiments. Computational fluid dynamics based on finite element analysis was used to optimize the flow conditions. The modeling indicates that a number of factors, such as the capillary dimensions and the ratio of the sheath flow to analyte flow rates, are critical for obtaining optimal results. Sample confinement resulting from the flow dynamics was confirmed using wide-field fluorescence imaging of rhodamine 6G (R6G). Raman experiments at different sheath flow rates showed increased sensitivity compared with the modeling predictions, suggesting increased adsorption. Using a 50-millisecond acquisitions, a sheath flow rate of 180 μL/min, and a sample flow rate of 5 μL/min, a linear dynamic range from nanomolar to micromolar concentrations of R6G with a LOD of 1 nM is observed. At low analyte concentrations, rapid analyte desorption is observed, enabling repeated and high-throughput SERS detection. The flow detector offers substantial advantages over conventional SERS-based assays such as minimal sample volumes and high detection efficiency. PMID:24074461

  9. Weighted Essentially Non-Oscillatory Simulations and Modeling of Complex Hydrodynamic Flows. Part 2. Single-Mode Richtmyer-Meshkov Instability with Reshock

    SciTech Connect

    Latini, M; Schilling, O

    2005-04-27

    The Richtmyer-Meshkov instability is a fundamental fluid instability that occurs when perturbations on an interface separating gases with different properties grow following the passage of a shock. This instability is typically studied in shock tube experiments, and constitutes a fundamental example of a complex hydrodynamic flow. Numerical simulations and models for the instability growth and evolution have also been used to further elucidate the physics of the Richtmyer-Meshkov instability. In the present work, the formally high-order accurate weighted essentially non-oscillatory (WENO) shock-capturing method using a third-order total-variation diminishing (TVD) Runge-Kutta time-evolution scheme (as implemented in the HOPE code [68]) is applied to simulate the single-mode Richtmyer-Meshkov instability with reshock in two spatial dimensions. The initial conditions and computational domain for the simulations are modeled after the Collins and Jacobs [29] single-mode, Mach 1.21 air(acetone)/SF{sub 6} shock tube experiment. The following boundary conditions are used: (1) periodic in the spanwise direction corresponding to the cross section of the test section; (2) outflow at the entrance of the test section in the streamwise direction, and; (3) reflecting at the end wall of the test section in the streamwise direction. The present investigation has three principal motivations: (1) to provide additional validation of the HOPE code against available experimental data; (2) to provide numerical simulation data for detailed analysis of mixing induced by the Richtmyer-Meshkov instability with reshock, and; (3) to systematically investigate the dependence of mixing properties on both the order of WENO reconstruction and on the spatial resolution. The present study constitutes the first comprehensive application of the high-resolution WENO method to the Richtmyer-Meshkov instability with reshock, as well as analysis of the resulting mixing.

  10. Weighted Essentially Non-Oscillatory Simulations and Modeling of Complex Hydrodynamic Flows. Part 2. Single-Mode Richtmyer-Meshkov Instability with Reshock

    SciTech Connect

    Schilling, O; Latini, M

    2004-10-06

    The Richtmyer-Meshkov instability is a fundamental fluid instability that occurs when perturbations on an interface separating gases with different properties grow following the passage of a shock. This instability is typically studied in shock tube experiments, and constitutes a fundamental example of a complex hydrodynamic flow. Numerical simulations and models for the instability growth and evolution have also been used to further understand the physics of the Richtmyer-Meshkov instability. In the present work, the formally high-order accurate weighted essentially non-oscillatory (WENO) shock-capturing method using a third-order total-variation diminishing (TVD) Runge-Kutta time-evolution scheme (as implemented in the HOPE code [57]) is applied to simulate the single-mode Richtmyer-Meshkov instability with reshock in two spatial dimensions. The initial conditions and computational domain for the simulations are modeled after the Collins and Jacobs [23] single-mode, Mach 1.21 air(acetone)/SF6 shock tube experiment. The following boundary conditions are used: (1) periodic in the spanwise direction corresponding to the cross-section of the test section; (2) outflow at the entrance of the test section in the streamwise direction, and; (3) reflecting at the end wall of the test section in the streamwise direction. The present investigation has three principal motivations: (1) to provide additional validation of the HOPE code against available experimental data; (2) to provide numerical simulation data for detailed analysis of mixing induced by the Richtmyer-Meshkov instability with reshock, and; (3) to systematically investigate the dependence of mixing properties on both the order of WENO reconstruction and spatial resolution. The present study constitutes the first comprehensive application of the high-resolution WENO method to the Richtmyer-Meshkov instability with reshock, as well as analysis of the resulting mixing. First, analytical, semi-analytical, and

  11. Characterization of hydrophilic coated gold nanoparticles via capillary electrophoresis and Taylor dispersion analysis. Part II: Determination of the hydrodynamic radius distribution - Comparison with asymmetric flow field-flow fractionation.

    PubMed

    Pyell, Ute; Jalil, Alaa H; Urban, Dominic A; Pfeiffer, Christian; Pelaz, Beatriz; Parak, Wolfgang J

    2015-11-01

    In the first paper of this series we have shown for hydrophilic coated Au nanoparticles that capillary electrophoresis in combination with Taylor dispersion analysis in fused silica capillaries with an inner diameter of 75 μm allows for the unbiased precise determination of the number-weighted mean hydrodynamic diameter, the zeta potential and the effective charge number, although mobility corrected double layer polarization has to be taken into account. In this second paper we investigate whether the modified approximate analytic expression developed by Ohshima (2001) permits the calculation of calibration lines and the concomitant conversion of electropherograms into number-weighted particle radius distributions. We show that with the method developed size distributions are obtained which are independent of the measurement conditions. These size distributions are much narrower than those obtained via dynamic light scattering and data evaluation by the CONTIN algorithm. Capillary electrophoresis together with the proposed data evaluation method reveals that the analyzed nanoparticle populations have very narrow size distributions with a width of 2-4 nm. The hydrodynamic radius distributions of the coated NPs are only slightly broader than the solid particle radius distribution of the Au-NP cores. The presence of monomodal/bimodal size distributions is confirmed by asymmetric flow field-flow fractionation. PMID:26164244

  12. Fractal boundaries in open hydrodynamical flows: Signatures of chaotic saddles

    NASA Astrophysics Data System (ADS)

    Péntek, Áron; Toroczkai, Zoltán; Tél, Tamás; Grebogi, Celso; Yorke, James A.

    1995-05-01

    We introduce the concept of fractal boundaries in open hydrodynamical flows based on two gedanken experiments carried out with passive tracer particles colored differently. It is shown that the signature for the presence of a chaotic saddle in the advection dynamics is a fractal boundary between regions of different colors. The fractal parts of the boundaries found in the two experiments contain either the stable or the unstable manifold of this chaotic set. We point out that these boundaries coincide with streak lines passing through appropriately chosen points. As an illustrative numerical experiment, we consider a model of the von Kármán vortex street, a time periodic two-dimensional flow of a viscous fluid around a cylinder.

  13. Evidence for hydrodynamic electron flow in PdCoO₂.

    PubMed

    Moll, Philip J W; Kushwaha, Pallavi; Nandi, Nabhanila; Schmidt, Burkhard; Mackenzie, Andrew P

    2016-03-01

    Electron transport is conventionally determined by the momentum-relaxing scattering of electrons by the host solid and its excitations. Hydrodynamic fluid flow through channels, in contrast, is determined partly by the viscosity of the fluid, which is governed by momentum-conserving internal collisions. A long-standing question in the physics of solids has been whether the viscosity of the electron fluid plays an observable role in determining the resistance. We report experimental evidence that the resistance of restricted channels of the ultrapure two-dimensional metal palladium cobaltate (PdCoO2) has a large viscous contribution. Comparison with theory allows an estimate of the electronic viscosity in the range between 6 × 10(-3) kg m(-1) s(-1) and 3 × 10(-4) kg m(-1) s(-1), versus 1 × 10(-3) kg m(-1) s(-1) for water at room temperature. PMID:26912359

  14. Radiation Hydrodynamics with FLOW-ER

    NASA Astrophysics Data System (ADS)

    Marcello, Dominic; Tohline, J. E.; Motl, P. M.

    2008-03-01

    The effects of radiative transport are an important aspect of many astrophysical fluid problems, such as binary star accretion discs and common envelope evolution. Unfortunately, the full radiative transport problem is seven dimensional and outside the realm of current computational capabilities. The gray field flux limited diffusion (FLD) approximation has been shown to provide a feasible four dimensional approximation to the full radiative transport problems in many cases. The flux is approximated through an algebraic expression which interpolates between the two extremes of diffusive and free streaming radiation. FLD allows for the exchange of energy and momentum between the fluid and radiation field. We are implementing this into our current Newtonian astrophysical fluid simulation code named FLOW-ER. Unlike other FLD codes, FLOW-ER handles shocks without the use of artificial viscosity. At this point, the code runs in 1D and 2D on a single processor. The ultimate goal is a fully 3D parallel code running on an adaptive mesh. Presented are results for test cases in 1D and 2D, compared to analytic results where available, and to ZeusMP2 when not. This research has been supported, in part, by NSF grants AST-0407070 and AST-0708551.

  15. Nucleation and chiral symmetry breaking under controlled hydrodynamic flows

    NASA Technical Reports Server (NTRS)

    Wu, Xiao-Lun; Martin, Brian; Tharrington, Arnold

    1994-01-01

    The effects of hydrodynamic convection on nucleation and broken chiral symmetry have been investigated for a simple inorganic molecule, sodium chlorate (NaClO3). Our experiment suggests that the symmetry breaking is a result of hydrodynamic amplification of rare nucleation events. The effect is more pronounced when the primary nucleation occurs on the solute-vapor interface, where mixing in the surface sublayer becomes important. The transition from the achiral to the chiral states appears to be smooth as the hydrodynamic parameters, such as flow rate, are varied.

  16. Azimuthal anisotropy: Transition from hydrodynamic flow to jet suppression

    SciTech Connect

    Lacey, R.; PHENIX Collaboration, et al.

    2010-11-09

    Measured second and fourth azimuthal anisotropy coefficients v{sub 2,4}(N{sub part},p{sub T}) are scaled with the initial eccentricity {var_epsilon}{sub 2,4}(N{sub part}) of the collision zone and studied as a function of the number of participants N{sub part} and the transverse momenta p{sub T}. Scaling violations are observed for p{sub T} {le} 3 GeV/c, consistent with a p{sub T}{sup 2} dependence of viscous corrections and a linear increase of the relaxation time with p{sub T}. These empirical viscous corrections to flow and the thermal distribution function at freeze-out constrain estimates of the specific viscosity and the freeze-out temperature for two different models for the initial collision geometry. The apparent viscous corrections exhibit a sharp maximum for p{sub T} {ge} 3 GeV/c, suggesting a breakdown of the hydrodynamic ansatz and the onset of a change from flow-driven to suppression-driven anisotropy.

  17. A hybrid method for hydrodynamic-kinetic flow Part I: A particle-grid method for reducing stochastic noise in kinetic regimes

    SciTech Connect

    Alaia, Alessandro; Puppo, Gabriella

    2011-06-20

    In this work we present a hybrid particle-grid Monte Carlo method for the Boltzmann equation, which is characterized by a significant reduction of the stochastic noise in the kinetic regime. The hybrid method is based on a first order splitting in time to separate the transport from the relaxation step. The transport step is solved by a deterministic scheme, while a hybrid DSMC-based method is used to solve the collision step. Such a hybrid scheme is based on splitting the solution in a collisional and a non-collisional part at the beginning of the collision step, and the DSMC method is used to solve the relaxation step for the collisional part of the solution only. This is accomplished by sampling only the fraction of particles candidate for collisions from the collisional part of the solution, performing collisions as in a standard DSMC method, and then projecting the particles back onto a velocity grid to compute a piecewise constant reconstruction for the collisional part of the solution. The latter is added to a piecewise constant reconstruction of the non-collisional part of the solution, which in fact remains unchanged during the relaxation step. Numerical results show that the stochastic noise is significantly reduced at large Knudsen numbers with respect to the standard DSMC method. Indeed in this algorithm, the particle scheme is applied only on the collisional part of the solution, so only this fraction of the solution is affected by stochastic fluctuations. But since the collisional part of the solution reduces as the Knudsen number increases, stochastic noise reduces as well at large Knudsen numbers.

  18. Ratchets in hydrodynamic flow: more than waterwheels

    PubMed Central

    Sturm, James C.; Cox, Edward C.; Comella, Brandon; Austin, Robert H.

    2014-01-01

    The transport of objects in microfluidic arrays of obstacles is a surprisingly rich area of physics and statistical mechanics. Tom Duke's mastery of these areas had a major impact in the development of biotechnology which uses these ideas at an increasing scale. We first review how biological objects are transported in fluids at low Reynolds numbers, including a discussion of electrophoresis, then concentrate on the separation of objects in asymmetric arrays, sometimes called Brownian ratchets when diffusional symmetry is broken by the structures. We move beyond this to what are called deterministic arrays where non-hydrodynamic forces in asymmetric arrays allow for extraordinary separation, and we look to the future of using these unusual arrays at the nanoscale and at the hundreds of micrometre scale. The emphasis is on how the original ideas of Tom Duke drove this work forward. PMID:25485086

  19. Ratchets in hydrodynamic flow: more than waterwheels.

    PubMed

    Sturm, James C; Cox, Edward C; Comella, Brandon; Austin, Robert H

    2014-12-01

    The transport of objects in microfluidic arrays of obstacles is a surprisingly rich area of physics and statistical mechanics. Tom Duke's mastery of these areas had a major impact in the development of biotechnology which uses these ideas at an increasing scale. We first review how biological objects are transported in fluids at low Reynolds numbers, including a discussion of electrophoresis, then concentrate on the separation of objects in asymmetric arrays, sometimes called Brownian ratchets when diffusional symmetry is broken by the structures. We move beyond this to what are called deterministic arrays where non-hydrodynamic forces in asymmetric arrays allow for extraordinary separation, and we look to the future of using these unusual arrays at the nanoscale and at the hundreds of micrometre scale. The emphasis is on how the original ideas of Tom Duke drove this work forward. PMID:25485086

  20. Hydrodynamic stability of three-dimensional homogeneous flow topologies

    NASA Astrophysics Data System (ADS)

    Mishra, Aashwin A.; Girimaji, Sharath S.

    2015-11-01

    This article examines the hydrodynamic stability of various homogeneous three-dimensional flow topologies. The influence of inertial and pressure effects on the stability of flows undergoing strain, rotation, convergence, divergence, and swirl are isolated. In marked contrast to two-dimensional topologies, for three-dimensional flows the inertial effects are always destabilizing, whereas pressure effects are always stabilizing. In streamline topologies with a negative velocity-gradient third invariant, inertial effects prevail leading to instability. Vortex-stretching is identified as the underlying instability mechanism. In flows with positive velocity-gradient third derivative, pressure overcomes inertial effects to stabilize the flow.

  1. Water Flow Simulation using Smoothed Particle Hydrodynamics (SPH)

    NASA Technical Reports Server (NTRS)

    Vu, Bruce; Berg, Jared; Harris, Michael F.

    2014-01-01

    Simulation of water flow from the rainbird nozzles has been accomplished using the Smoothed Particle Hydrodynamics (SPH). The advantage of using SPH is that no meshing is required, thus the grid quality is no longer an issue and accuracy can be improved.

  2. Launch Environment Water Flow Simulations Using Smoothed Particle Hydrodynamics

    NASA Technical Reports Server (NTRS)

    Vu, Bruce T.; Berg, Jared J.; Harris, Michael F.; Crespo, Alejandro C.

    2015-01-01

    This paper describes the use of Smoothed Particle Hydrodynamics (SPH) to simulate the water flow from the rainbird nozzle system used in the sound suppression system during pad abort and nominal launch. The simulations help determine if water from rainbird nozzles will impinge on the rocket nozzles and other sensitive ground support elements.

  3. The Radiation Hydrodynamics of Relativistic Shear Flows

    NASA Astrophysics Data System (ADS)

    Coughlin, Eric R.; Begelman, Mitchell C.

    2016-07-01

    We present a method for analyzing the interaction between radiation and matter in regions of intense, relativistic shear that can arise in many astrophysical situations. We show that there is a simple velocity profile that should be manifested in regions of large shear that have “lost memory” of their boundary conditions, and we use this self-similar velocity profile to construct the surface of last scattering, or the τ ≃ 1 surface, as viewed from any comoving point within the flow. We demonstrate that a simple treatment of scattering from this τ ≃ 1 surface exactly conserves photon number, and we derive the rate at which the radiation field is heated due to the shear present in the flow. The components of the comoving radiation energy–momentum tensor are calculated, and we show that they have relatively simple, approximate forms that interpolate between the viscous (small shear) and streaming (large shear) limits. We put our expression for the energy–momentum tensor in a covariant form that does not depend on the explicit velocity profile within the fluid and, therefore, represents a natural means for analyzing general, radiation-dominated, relativistic shear flows.

  4. Differences between hydrodynamic and macromolecule induced clusters in microcapillary flow

    NASA Astrophysics Data System (ADS)

    Wagner, Christian; Claveria, Viviana; Aouane, Othmane; Coupier, Gwennou; Misbah, Chaouqi; Abkarian, Manouk

    2015-03-01

    Recent studies have been shown that despite the large shear rates, the presence of either fibrinogen or the synthetic polymer dextran leads to an enhanced formation of robust clusters of RBC in microcapillaries under flow conditions. The contribution of hydrodynamical interactions and interactions induced by the presence of macromolecules in the cluster formation has not been established. In order to elucidate this mechanism, we compare experimentally in microchannels under flow condition, the pure hydrodynamical cluster formation of RBCs and the cluster formation of RBCs in the presence of macromolecules inducing aggregation. The results reveal strong differences in the cluster morphology. Emphasizing on the case of clusters formed by two cells, the surface to surface interdistances between the cells in the different solutions shows a bimodal distribution. Numerical simulations based on the boundary integral method showed a good agreement with the experimental findings.

  5. Biomimetics and Tubercles on Flippers for Hydrodynamic Flow Control

    NASA Astrophysics Data System (ADS)

    Fish, Frank E.

    2011-11-01

    The biomimetic approach seeks to incorporate designs based on biological organisms into engineered technologies. Biomimetics can be used to engineer machines that emulate the performance of organisms, particularly in instances where the organism's performance exceeds current mechanical technology or provides new directions to solve existing problems. The ability to control the flow of water around the body dictates the performance of marine mammals in the aquatic environment. Morphological specializations of marine mammals afford mechanisms for passive flow control. Aside from the design of the body, which minimizes drag, the morphology of the appendages provide hydrodynamic advantages with respect to drag, lift, thrust, and stall. Of particular interest are the pectoral flippers of the humpback whale (Megaptera novaeangliae). These flippers act as wing-like structures to provide hydrodynamic lift for maneuvering. The use of any such wing-like structure in making small radius turns to enhance both agility and maneuverability is constrained by performance associated with stall. Delay of stall can be accomplished passively by modification of the flipper leading edge. The design of the flippers includes prominent leading edge bumps or tubercles. Such a design is exhibited by the leading edge tubercles on the flippers of humpback whales. These novel morphological structures induce a spanwise flow field of separated vortices alternating with regions of accelerated flow. The coupled flow regions maintain areas of attached flow and delay stall to high angles of attack. The morphological features of humpback whales for flow control can be utilized in the biomimetic design of engineered structures and commercial products for increased hydrodynamic performance. Nature retains a store of untouched knowledge, which would be beneficial in advancing technology.

  6. Applications of Modern Hydrodynamics to Aeronautics. [in Two Parts

    NASA Technical Reports Server (NTRS)

    Prandtl, L

    1923-01-01

    The report gives, rather briefly, in part one an introduction to hydrodynamics which is designed to give those who have not yet been actively concerned with this science such a grasp of the theoretical underlying principles that they can follow the subsequent developments. In part two there follows a separate discussion of the different questions to be considered, in which the theory of aerofoils claims the greatest portion of the space. The last part is devoted to the application of the aerofoil theory to screw propellers. A table giving the most important quantities is at the end of the report. A short reference list of the literature on the subject and also a table of contents are added.

  7. Grid-Based Hydrodynamics in Astrophysical Fluid Flows

    NASA Astrophysics Data System (ADS)

    Teyssier, Romain

    2015-08-01

    In this review, the equations of hydrodynamics, magnetohydrodynamics, and radiation hydrodynamics are presented, together with their corresponding nonideal source terms. I overview the current landscape of modern grid-based numerical techniques with an emphasis on numerical diffusion, which plays a fundamental role in stabilizing the solution but is also the main source of errors associated with these numerical techniques. I discuss in great detail the inclusion of additional important source terms, such as cooling and gravity. I also show how to modify classic operator-splitting techniques to avoid undesirable numerical errors associated with these additional source terms, in particular in the presence of highly supersonic flows. I finally present various mesh adaptation strategies that can be used to minimize these numerical errors. To conclude, I review existing astrophysical software that is publicly available to perform simulations for such astrophysical fluids.

  8. The helical flow pump with a hydrodynamic levitation impeller.

    PubMed

    Abe, Yusuke; Ishii, Kohei; Isoyama, Takashi; Saito, Itsuro; Inoue, Yusuke; Ono, Toshiya; Nakagawa, Hidemoto; Nakano, Emiko; Fukazawa, Kyoko; Ishihara, Kazuhiko; Fukunaga, Kazuyoshi; Ono, Minoru; Imachi, Kou

    2012-12-01

    The helical flow pump (HFP) is a novel rotary blood pump invented for developing a total artificial heart (TAH). The HFP with a hydrodynamic levitation impeller, which consists of a multi-vane impeller involving rotor magnets, stator coils at the core position, and double helical-volute pump housing, was developed. Between the stator and impeller, a hydrodynamic bearing is formed. Since the helical volutes are formed at both sides of the impeller, blood flows with a helical flow pattern inside the pump. The developed HFP showed maximum output of 19 l/min against 100 mmHg of pressure head and 11 % maximum efficiency. The profile of the H-Q (pressure head vs. flow) curve was similar to that of the undulation pump. Hydrodynamic levitation of the impeller was possible with higher than 1,000 rpm rotation speed. The normalized index of the hemolysis ratio of the HFP to centrifugal pump (BPX-80) was from 2.61 to 8.07 depending on the design of the bearing. The HFP was implanted in two goats with a left ventricular bypass method. After surgery, hemolysis occurred in both goats. The hemolysis ceased on postoperative days 14 and 9, respectively. In the first experiment, no thrombus was found in the pump after 203 days of pumping. In the second experiment, a white thrombus was found in the pump after 23 days of pumping. While further research and development are necessary, we are expecting to develop an excellent TAH with the HFP. PMID:22926404

  9. Multidimensional tensor array analysis of multiphase flow during a hydrodynamic ram event

    NASA Astrophysics Data System (ADS)

    Lingenfelter, A.; Liu, D.

    2015-12-01

    Flow visualization is necessary to characterize the fluid flow properties during a hydrodynamic ram event. The multiphase flow during a hydrodynamic ram event can make traditional image processing techniques such as contrast feature detection and PIV difficult. By stacking the imagery to form a multidimensional tensor array, feature detection to determine flow field velocities are visualized.

  10. Numerical simulation of the hydrodynamic instability experiments and flow mixing

    NASA Astrophysics Data System (ADS)

    Bai, Jingsong; Wang, Tao; Li, Ping; Zou, Liyong; Liu, Cangli

    2009-12-01

    Based on the numerical methods of volume of fluid (VOF) and piecewise parabolic method (PPM) and parallel circumstance of Message Passing Interface (MPI), a parallel multi-viscosity-fluid hydrodynamic code MVPPM (Multi-Viscosity-Fluid Piecewise Parabolic Method) is developed and performed to study the hydrodynamic instability and flow mixing. Firstly, the MVPPM code is verified and validated by simulating three instability cases: The first one is a Riemann problem of viscous flow on the shock tube; the second one is the hydrodynamic instability and mixing of gaseous flows under re-shocks; the third one is a half height experiment of interfacial instability, which is conducted on the AWE’s shock tube. By comparing the numerical results with experimental data, good agreement is achieved. Then the MVPPM code is applied to simulate the two cases of the interfacial instabilities of jelly models accelerated by explosion products of a gaseous explosive mixture (GEM), which are adopted in our experiments. The first is implosive dynamic interfacial instability of cylindrical symmetry and mixing. The evolving process of inner and outer interfaces, and the late distribution of mixing mass caused by Rayleigh-Taylor (RT) instability in the center of different radius are given. The second is jelly layer experiment which is initialized with one periodic perturbation with different amplitude and wave length. It reveals the complex processes of evolution of interface, and presents the displacement of front face of jelly layer, bubble head and top of spike relative to initial equilibrium position vs. time. The numerical results are in excellent agreement with that experimental images, and show that the amplitude of initial perturbations affects the evolvement of fluid mixing zone (FMZ) growth rate extremely, especially at late times.

  11. Hydrodynamic interaction of two deformable drops in confined shear flow

    NASA Astrophysics Data System (ADS)

    Chen, Yongping; Wang, Chengyao

    2014-09-01

    We investigate hydrodynamic interaction between two neutrally buoyant circular drops in a confined shear flow based on a computational fluid dynamics simulation using the volume-of-fluid method. The rheological behaviors of interactive drops and the flow regimes are explored with a focus on elucidation of underlying physical mechanisms. We find that two types of drop behaviors during interaction occur, including passing-over motion and reversing motion, which are governed by the competition between the drag of passing flow and the entrainment of reversing flow in matrix fluid. With the increasing confinement, the drop behavior transits from the passing-over motion to reversing motion, because the entrainment of the reversing-flow matrix fluid turns to play the dominant role. The drag of the ambient passing flow is increased by enlarging the initial lateral separation due to the departure of the drop from the reversing flow in matrix fluid, resulting in the emergence of passing-over motion. In particular, a corresponding phase diagram is plotted to quantitatively illustrate the dependence of drop morphologies during interaction on confinement and initial lateral separation.

  12. Refining a relativistic, hydrodynamic solver: Admitting ultra-relativistic flows

    NASA Astrophysics Data System (ADS)

    Bernstein, J. P.; Hughes, P. A.

    2009-09-01

    We have undertaken the simulation of hydrodynamic flows with bulk Lorentz factors in the range 102-106. We discuss the application of an existing relativistic, hydrodynamic primitive variable recovery algorithm to a study of pulsar winds, and, in particular, the refinement made to admit such ultra-relativistic flows. We show that an iterative quartic root finder breaks down for Lorentz factors above 102 and employ an analytic root finder as a solution. We find that the former, which is known to be robust for Lorentz factors up to at least 50, offers a 24% speed advantage. We demonstrate the existence of a simple diagnostic allowing for a hybrid primitives recovery algorithm that includes an automatic, real-time toggle between the iterative and analytical methods. We further determine the accuracy of the iterative and hybrid algorithms for a comprehensive selection of input parameters and demonstrate the latter’s capability to elucidate the internal structure of ultra-relativistic plasmas. In particular, we discuss simulations showing that the interaction of a light, ultra-relativistic pulsar wind with a slow, dense ambient medium can give rise to asymmetry reminiscent of the Guitar nebula leading to the formation of a relativistic backflow harboring a series of internal shockwaves. The shockwaves provide thermalized energy that is available for the continued inflation of the PWN bubble. In turn, the bubble enhances the asymmetry, thereby providing positive feedback to the backflow.

  13. Azimuthal anisotropy: Transition from hydrodynamic flow to jet suppression

    NASA Astrophysics Data System (ADS)

    Lacey, Roy A.; Taranenko, A.; Wei, R.; Ajitanand, N. N.; Alexander, J. M.; Jia, J.; Pak, R.; Rischke, Dirk H.; Teaney, D.; Dusling, K.

    2010-09-01

    Measured second and fourth azimuthal anisotropy coefficients v2,4(Npart,pT) are scaled with the initial eccentricity ɛ2,4(Npart) of the collision zone and studied as a function of the number of participants Npart and the transverse momenta pT. Scaling violations are observed for pT≲3 GeV/c, consistent with a pT2 dependence of viscous corrections and a linear increase of the relaxation time with pT. These empirical viscous corrections to flow and the thermal distribution function at freeze-out constrain estimates of the specific viscosity and the freeze-out temperature for two different models for the initial collision geometry. The apparent viscous corrections exhibit a sharp maximum for pT≳3 GeV/c, suggesting a breakdown of the hydrodynamic ansatz and the onset of a change from flow-driven to suppression-driven anisotropy.

  14. Fish Pectoral Fin Hydrodynamics; Part II: Numerical Simulations and Analysis

    NASA Astrophysics Data System (ADS)

    Dong, H.; Madden, P. G.

    2005-11-01

    High-fidelity numerical simulations are being used to examine the key hydrodynamic features and thrust performance of the pectoral fin of a bluegill sunfish which is moving at a constant forward velocity. The numerical modeling approach employs a parallelized immersed boundary solver which can perform direct (DNS) or large-eddy simulation (LES) of flow past highly deformable bodies such as fish pectoral fins. The three-dimensional, time-dependent fin kinematics is obtained via a stereo-videographic technique and experiments also provide PIV data which is used to validate the numerical simulations. The primary objectives of the CFD effort are to quantify the thrust performance of the bluegill sunfish pectoral fin as well as to establish the mechanisms responsible for thrust production. Simulations show that the pectoral fin produces a relatively large amount of thrust at all phases in the fin motion while limiting the magnitude of the transverse forces. The motion of the fin produces a distinct system of connected vortices which are examined in detail in order to gain insight into the thrust producing mechanisms.

  15. Hydrodynamic performance enhancement of a mixed-flow pump

    NASA Astrophysics Data System (ADS)

    Kim, J. H.; Kim, K. Y.

    2012-11-01

    This paper presents an optimization procedure based on a radial basis neural network surrogate model for design of a vaned diffuser in a mixed-flow pump. Numerical analysis of fluid flow in a mixed-flow pump has been carried out by solving three-dimensional Reynolds-averaged Navier-Stokes equations with the shear stress transport turbulence model. The optimization processes have been performed twice to investigate the coupled effects of diverse variables. The first optimization process has been conducted with two design variables defining the straight vane length ratio and the diffusion area ratio, and the second one has been conducted with four design variables, i.e., the angle at the diffuser vane tip, the distance between the impeller blade trailing edge and the diffuser vane leading edge, and the two design variables used in the first optimization. The efficiency as a hydrodynamic performance parameter has been selected as the objective function for optimizations. The objective function values have been assessed through three-dimensional flow analysis at design points sampled by Latin hypercube sampling in the design space. The first and second optimizations with the coupled effects of diverse variables have yielded maximum increases in efficiency of 7.16% and 9.75%, respectively, compared to the reference shape. The off-design performance has been also improved in most of the optimum shapes except in the shut-off flow region.

  16. Optical Electronic Bragg Reflection Sensor System with Hydrodynamic Flow Applications

    NASA Technical Reports Server (NTRS)

    Lyons, D. R.

    2003-01-01

    This project, as described in the following report, involved design and fabrication of fiber optic sensors for the detection and measurement of dynamic fluid density variations. These devices are created using UV (ultraviolet) ablation and generally modified transverse holographic fiber grating techniques. The resulting phase gratings created on or immediately underneath the flat portion of D-shaped optical waveguides are characterized as evanescent field sensing devices. The primary applications include the sensor portion of a real-time localized or distributed measurement system for hydrodynamic flow, fluid density measurements, and phase change phenomena. Several design modifications were implemented in an attempt to accomplish the tasks specified in our original proposal. In addition, we have established key collaborative relationships with numerous people and institutions.

  17. Pencil: Finite-difference Code for Compressible Hydrodynamic Flows

    NASA Astrophysics Data System (ADS)

    Brandenburg, Axel; Dobler, Wolfgang

    2010-10-01

    The Pencil code is a high-order finite-difference code for compressible hydrodynamic flows with magnetic fields. It is highly modular and can easily be adapted to different types of problems. The code runs efficiently under MPI on massively parallel shared- or distributed-memory computers, like e.g. large Beowulf clusters. The Pencil code is primarily designed to deal with weakly compressible turbulent flows. To achieve good parallelization, explicit (as opposed to compact) finite differences are used. Typical scientific targets include driven MHD turbulence in a periodic box, convection in a slab with non-periodic upper and lower boundaries, a convective star embedded in a fully nonperiodic box, accretion disc turbulence in the shearing sheet approximation, self-gravity, non-local radiation transfer, dust particle evolution with feedback on the gas, etc. A range of artificial viscosity and diffusion schemes can be invoked to deal with supersonic flows. For direct simulations regular viscosity and diffusion is being used. The code is written in well-commented Fortran90.

  18. The Hydrodynamic Stability of Channel Flow with Compliant Boundaries

    NASA Astrophysics Data System (ADS)

    Gajjar, J. S. B.; Sibanda, P.

    1996-03-01

    An asymptotic theory is developed for the hydrodynamic stability of an incompressible fluid flowing in a channel in which one wall is rigid and the other is compliant. We exploit the multideck structure of the flow to investigate theoretically the development of disturbances to the flow in the limit of large Reynolds numbers. A simple spring-plate model is used to describe the motion of the compliant wall, and this study considers the effect of the various wall parameters, such as tension, inertia, and damping, on the stability properties. An amplitude equation for a modulated wavetrain is derived and the properties of this equation are studied for a number of cases including linear and nonlinear theory. It is shown that in general the effect of viscoelastic damping is destabilizing. In particular, for large damping, the analysis points to a fast travelling wave, short-scale instability, which may be related to a flutter instability observed in some experiments. This work also demonstrates that the conclusions obtained by previous investigators in which the effect of tension, inertia, and other parameters is neglected, may be misleading. Finally it is shown that a set of compliant-wall parameters exists for which the Haberman type of critical layer analysis leads to stable equilibrium amplitudes, in contrast to many other stability problems where such equilibrium amplitudes are unstable.

  19. Hydro-dynamic damping theory in flowing water

    NASA Astrophysics Data System (ADS)

    Monette, C.; Nennemann, B.; Seeley, C.; Coutu, A.; Marmont, H.

    2014-03-01

    Fluid-structure interaction (FSI) has a major impact on the dynamic response of the structural components of hydroelectric turbines. On mid-head to high-head Francis runners, the rotor-stator interaction (RSI) phenomenon always has to be considered carefully during the design phase to avoid operational issues later on. The RSI dynamic response amplitudes are driven by three main factors: (1) pressure forcing amplitudes, (2) excitation frequencies in relation to natural frequencies and (3) damping. The prediction of the two first factors has been largely documented in the literature. However, the prediction of fluid damping has received less attention in spite of being critical when the runner is close to resonance. Experimental damping measurements in flowing water on hydrofoils were presented previously. Those results showed that the hydro-dynamic damping increased linearly with the flow. This paper presents development and validation of a mathematical model, based on momentum exchange, to predict damping due to fluid structure interaction in flowing water. The model is implemented as an analytical procedure for simple structures, such as cantilever beams, but is also implemented in more general ways using three different approaches for more complex structures such as runner blades: a finite element procedure, a CFD modal work based approach and a CFD 1DOF approach. The mathematical model and all three implementation approaches are shown to agree well with experimental results.

  20. Numerical analysis of hydrodynamic instability in magnetized laser ablation flow

    NASA Astrophysics Data System (ADS)

    Ohnishi, Naofumi; Ishii, Ayako; Kuramitsu, Yasuhiro; Morita, Taichi; Sakawa, Youichi; Takabe, Hideaki

    2015-12-01

    We have conducted radiation magneto-hydrodynamics (RMHD) simulations of Richtmyer-Meshkov instability (RMI) in a magnetized counter flow produced by intense lasers. A jet-like plasma from a planar plastic target is formed and maintained in several-tens of nanoseconds by expanding plasma from rear side of two separated laser spots, and parallelly located another target is ablated by the radiation from the plasma, reproducing past experimental works. A planar shock driven by the radiation interacts with the jet as a nonuniform density structure, resulting in the RMI. The magnetic field is amplified up to ∼40 times greater than the background value at the interface at which the instability occurs. However, a certain extent of the amplification results from the compression effect induced by the counter flow, and the obtained amplification level is difficult to be measured in the experiments. An experiment for observing a clear amplification must be designed through the RMHD simulations so that the RMI takes place in the low-density area between two targets.

  1. PIV measurements of hydrodynamic interactions between biofilms and flow

    NASA Astrophysics Data System (ADS)

    Christensen, Kenneth T.; Kazemifar, Farzan; Aybar, Marcelo; Perez-Calleja, Patricia; Nerenberg, Robert; Sinha, Sumit; Hardy, Richard J.; Best, Jim L.; Sambrook Smith, Greg H.

    2015-11-01

    Biofilms constitute an important form of bacterial life in aquatic environments and are present at the interface of fluids and solid such as riverbeds or bridge columns. They are also utilized in bioreactors for bioremediation and water treatment purposes. They are permeable, heterogeneous, and deformable structures that can influence the flow and mass/momentum transport, yet their interaction with flow is not fully understood in part due to technical obstacles impeding quantitative experimental investigations. We have attempted to address these challenges using the PIV technique and fluorescence imaging to investigate the flow field around cylinders covered with biofilms at different growth stages. These measurements are meant to uncover the coupled dynamics of turbulence and the biofilm development. Preliminary results of PIV measurements of flow-biofilm interactions in channel flow will be presented.

  2. Hydrodynamic Modeling of Oxidizer-Rich Staged Combustion Injector Flow

    NASA Technical Reports Server (NTRS)

    Harper, Brent (Technical Monitor); Canino, J. V.; Heister, S. D.; Garrison, L. A.

    2004-01-01

    The main objective of this work is to determine the unsteady hydrodynamic characteristics of coaxial swirl atomizers of interest in oxidizer-rich staged combustion (ORSC) liquid rocket engines. To this end, the pseudo-density (homogeneous flow) treatment combined with the Marker-and-Cell (MAC) numerical algorithm has been used to develop an axisymmetric with swirl, two-phase, unsteady model. The numerical model is capable of assessing the time-dependent orifice exit conditions and internal mixing for arbitrary fuel and oxidizer gas injection conditions. Parametric studies have been conducted to determine the effect of geometry, gas properties, and liquid properties on the exit massflow rate and velocity. It has been found that the frequency at which the liquid film oscillates increases as the density ratio and thickness increase, decreases as film thickness and liquid swirl velocity increase, and is unaffected by the mixing length. Additionally, it has been determined that the variation in the massflow rate increases as the liquid swirl velocity and liquid film thickness increase, and decreases as the density ratio, collar thickness, and mixing length increase.

  3. Recent developments of analysis for hydrodynamic flow of nematic liquid crystals

    PubMed Central

    Lin, Fanghua; Wang, Changyou

    2014-01-01

    The study of hydrodynamics of liquid crystals leads to many fascinating mathematical problems, which has prompted various interesting works recently. This article reviews the static Oseen–Frank theory and surveys some recent progress on the existence, regularity, uniqueness and large time asymptotic of the hydrodynamic flow of nematic liquid crystals. We will also propose a few interesting questions for future investigations. PMID:25332384

  4. Modifications of Carbonate Fracture Hydrodynamic Properties by CO{sub 2}-Acidified Brine Flow

    SciTech Connect

    Deng, Hang; Ellis, Brian R.; Peters, Catherine A.; Fitts, Jeffrey P.; Crandall, Dustin; Bromhal, Grant S.

    2013-08-01

    Acidic reactive flow in fractures is relevant in subsurface activities such as CO{sub 2} geological storage and hydraulic fracturing. Understanding reaction-induced changes in fracture hydrodynamic properties is essential for predicting subsurface flows such as leakage, injectability, and fluid production. In this study, x-ray computed tomography scans of a fractured carbonate caprock were used to create three dimensional reconstructions of the fracture before and after reaction with CO{sub 2}-acidified brine (Ellis et al., 2011, Greenhouse Gases: Sci. Technol., 1:248-260). As expected, mechanical apertures were found to increase substantially, doubling and even tripling in some places. However, the surface geometry evolved in complex ways including ‘comb-tooth’ structures created from preferential dissolution of calcite in transverse sedimentary bands, and the creation of degraded zones, i.e. porous calcite-depleted areas on reacted fracture surfaces. These geometric alterations resulted in increased fracture roughness, as measured by surface Z{sub 2} parameters and fractal dimensions D{sub f}. Computational fluid dynamics (CFD) simulations were conducted to quantify the changes in hydraulic aperture, fracture transmissivity and permeability. The results show that the effective hydraulic apertures are smaller than the mechanical apertures, and the changes in hydraulic apertures are nonlinear. Overestimation of flow rate by a factor of two or more would be introduced if fracture hydrodynamic properties were based on mechanical apertures, or if hydraulic aperture is assumed to change proportionally with mechanical aperture. The differences can be attributed, in part, to the increase in roughness after reaction, and is likely affected by contiguous transverse sedimentary features. Hydraulic apertures estimated by the 1D statistical model and 2D local cubic law (LCL) model are consistently larger than those calculated from the CFD simulations. In addition, a novel

  5. Hydrodynamic Forces on Macromolecules Protruding from Lipid Bilayers Due to External Liquid Flows.

    PubMed

    Jönsson, Peter; Jönsson, Bengt

    2015-11-24

    It has previously been observed that an externally applied hydrodynamic shear flow above a fluid lipid bilayer can change the local concentration of macromolecules that are associated with the lipid bilayer. The external liquid flow results in a hydrodynamic force on molecules protruding from the lipid bilayer, causing them to move in the direction of the flow. However, there has been no quantitative study about the magnitude of these forces. We here use finite element simulations to investigate how the magnitude of the external hydrodynamic forces varies with the size and shape of the studied macromolecule. The simulations show that the hydrodynamic force is proportional to the effective hydrodynamic area of the studied molecule, Ahydro, multiplied by the mean hydrodynamic shear stress acting on the membrane surface, σhydro. The parameter Ahydro depends on the size and shape of the studied macromolecule above the lipid bilayer and scales with the cross-sectional area of the molecule. We also investigate how hydrodynamic shielding from other surrounding macromolecules decreases Ahydro when the surface coverage of the shielding macromolecules increases. Experiments where the protein streptavidin is anchored to a supported lipid bilayer on the floor of a microfluidic channel were finally performed at three different surface concentrations, Φ = 1%, 6%, and 10%, where the protein is being moved relative to the lipid bilayer by a liquid flow through the channel. From photobleaching measurements of fluorescently labeled streptavidin we found the experimental drift data to be within good accuracy of the simulated results, less than 12% difference, indicating the validity of the results obtained from the simulations. In addition to giving a deeper insight into how a liquid flow can affect membrane-associated molecules in a lipid bilayer, we also see an interesting potential of using hydrodynamic flow experiments together with the obtained results to study the size and

  6. Simulation of film and droplet flow on wide aperture fracture using Smoothed Particle Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Kordilla, J.; Tartakovsky, A.; Geyer, T.

    2012-04-01

    Fractured media provide rapid flow pathways for water percolating through the unsaturated zone. Film flow has been widely acknowledged as a major rapid flow process with average velocities of 3x10-7m/s (Tokunaga, 1997). Further flow regimes such as droplets, rivulets and falling films may reach much higher velocities while coexisting with films (Ghezzehei, 2004). In order to establish a unified description of multiphase flow at such small scales simulation approaches have to be able to deal with the highly dynamical interfaces and reproduce the physical behavior dominated by capillary, surface tension and gravitational forces. In this work we show simulations of free-surface flow on inclined fracture surfaces using a Smoothed Particle Hydrodynamics (SPH) model (Tartakovsky, 2005). The three-dimensional Lagrangian code employs an interpolation kernel in order to solve the Navier-Stokes equation at an arbitrary set of points (particles). Pairwise fluid-fluid and solid-fluid interaction forces are used to simulate a wide range of wetting conditions and Reynolds numbers encountered in laboratory experiments. Model results are verified with empirical and semianalytical solutions. Contact angles of droplets in a critical state, i.e. at the verge of movement, are compared with laboratory experiments reported in literature. Transient droplet dynamics are shown to reproduce the linear scaling proposed by Podgorski (2001). Depending on Reynolds number and static contact angles droplets leave behind trailing films. In order to investigate the influence of adsorbed films on droplet flow surfaces are prewetted with a thin film and simulations repeated. The results indicate a strong dependence of droplet flow dynamics on the existence of adsorbed films with droplet velocities being tripled under certain conditions. Despite their relatively slow velocities, adsorbed films are shown to be an essential part of unsaturated droplet flow dynamics as they enhance the wetting and

  7. Introducing Flow-er: a Hydrodynamics Code for Relativistic and Newtonian Flows

    NASA Astrophysics Data System (ADS)

    Motl, Patrick; Olabarrieta, Ignacio; Tohline, Joel

    2006-04-01

    We present a new numerical code (Flow-er) for calculating astrophysical flows in 1, 2 or 3 dimensions. We have implemented equations appropriate for the treatment of Newtonian gravity as well as the general relativistic formalism to treat flows with either a static or dynamic metric. The heart of the code is the recent non-oscillatory central difference scheme by Kurganov and Tadmor (2000). With this technique, we do not require a characteristic decomposition or the solution of Riemann problems that are required by most other high resolution, shock capturing techniques. Furthermore, the KT scheme naturally incorporates the Method of Lines, allowing considerable flexibility in the choice of time integrators. We have implemented several interpolation kernels that allow us to choose the spatial accuracy of an evolution. Flow-er has been tested against an independent implementation of the KT scheme to solve the relativistic equations in 1d - which we also describe. Flow-er can serve as the driver for the hydrodynamical portion of a simulation utilizing adaptive mesh refinement or on a unigrid. In addition to describing Flow-er, we present results from several test problems.

  8. Exact Relativistic Ideal Hydrodynamical Solutions in (1+3)D with Longitudinal and Transverse Flows

    SciTech Connect

    Liao, Jinfeng; Koch, Volker

    2009-05-20

    A new method for solving relativistic ideal hydrodynamics in (1+3)D is developed. Longitudinal and transverse radial flows are explicitly embedded into the ansatz for velocity field and the hydrodynamic equations are reduced to a single equation for the transverse velocity field only, which is analytically more tractable as compared with the full hydrodynamic equations. As an application we use the method to find analytically all possible solutions whose transverse velocity fields have power dependence on proper time and transverse radius. Possible application to the Relativistic Heavy Ion Collisions and possible generalizations of the method are discussed.

  9. Porous Superhydrophobic Membranes: Hydrodynamic Anomaly in Oscillating Flows

    NASA Astrophysics Data System (ADS)

    Rajauria, S.; Ozsun, O.; Lawall, J.; Yakhot, V.; Ekinci, K. L.

    2011-10-01

    We have fabricated and characterized a novel superhydrophobic system, a meshlike porous superhydrophobic membrane with solid area fraction Φs, which can maintain intimate contact with outside air and water reservoirs simultaneously. Oscillatory hydrodynamic measurements on porous superhydrophobic membranes as a function of Φs reveal surprising effects. The hydrodynamic mass oscillating in phase with the membranes stays constant for 0.9≲Φs≤1, but drops precipitously for Φs<0.9. The viscous friction shows a similar drop after a slow initial decrease proportional to Φs. We attribute these effects to the percolation of a stable Knudsen layer of air at the interface.

  10. Introducing Flow-er: a Hydrodynamics Code for Relativistic and Newtonian Flows

    NASA Astrophysics Data System (ADS)

    Motl, P. M.; Tohline, J. E.; Lehner, L.

    2005-12-01

    We present a new numerical code (Flow-er) for calculating astrophysical flows in 1, 2 or 3 dimensions. We have implemented equations appropriate for the treatment of Newtonian gravity as well as the general relativistic formalism to treat flows with either a static or dynamic metric. The heart of the code is the recent non-oscillatory central difference scheme by Kurganov and Tadmor (2000; hereafter KT). With this technique, we do not require a characteristic decomposition or the solution of Riemann problems that are required by most other high resolution, shock capturing techniques. Furthermore, the KT scheme naturally incorporates the Method of Lines, allowing considerable flexibility in the choice of time integrators. We have implemented several interpolation kernels that allow us to choose the spatial accuracy of an evolution. Through the Cactus framework or independent code, Flow-er serves as a driver for the hydrodynamical portion of a simulation utilizing adaptive mesh refinement or on a unigrid. In addition to describing Flow-er, we present results from several test problems. We are pleased to acknowledge support for this work from the National Science Foundation through grants PHY-0326311 and AST-0407070.

  11. Self-sustained hydrodynamic oscillations in a natural-circulation two-phase-flow boiling loop

    NASA Technical Reports Server (NTRS)

    Jain, K. C.

    1969-01-01

    Results of an experimental and theoretical study of factors affecting self-sustaining hydrodynamic oscillations in boiling-water loops are reported. Data on flow variables, and the effects of geometry, subcooling and pressure on the development of oscillatory behavior in a natural-circulation two-phase-flow boiling loop are included.

  12. Smolt Responses to Hydrodynamic Conditions in Forebay Flow Nets of Surface Flow Outlets, 2007

    SciTech Connect

    Johnson, Gary E.; Richmond, Marshall C.; Hedgepeth, J. B.; Ploskey, Gene R.; Anderson, Michael G.; Deng, Zhiqun; Khan, Fenton; Mueller, Robert P.; Rakowski, Cynthia L.; Sather, Nichole K.; Serkowski, John A.; Steinbeck, John R.

    2009-04-01

    This study provides information on juvenile salmonid behaviors at McNary and The Dalles dams that can be used by the USACE, fisheries resource managers, and others to support decisions on long-term measures to enhance fish passage. We researched smolt movements and ambient hydrodynamic conditions using a new approach combining simultaneous acoustic Doppler current profiler (ADCP) and acoustic imaging device (AID) measurements at surface flow outlets (SFO) at McNary and The Dalles dams on the Columbia River during spring and summer 2007. Because swimming effort vectors could be computed from the simultaneous fish and flow data, fish behavior could be categorized as passive, swimming against the flow (positively rheotactic), and swimming with the flow (negatively rheotactic). We present bivariate relationships to provide insight into fish responses to particular hydraulic variables that engineers might consider during SFO design. The data indicate potential for this empirical approach of simultaneous water/fish measurements to lead to SFO design guidelines in the future.

  13. Hydrodynamic parameters of micro porous media for steady and oscillatory flow: Application to cryocooler regenerators

    NASA Astrophysics Data System (ADS)

    Cha, Jeesung Jeff

    Pulse Tube Cryocoolers (PTC) are a class of rugged and high-endurance refrigeration systems that operate without a moving part at their low temperature ends, and are capable of easily reaching 120°K. These devices can also be configured in multiple stages to reach temperatures below 10 °K. PTCs are particularly suitable for applications in space, missile guiding systems, cryosurgery, medicine preservation, superconducting electronics, magnetic resonance imaging, weather observation, and liquefaction of nitrogen. Although various designs of PTCs have been in use for a few decades, they represent a dynamic and developmental field. PTCs ruggedness comes at the price of relatively low efficiency, however, and thus far they have been primarily used in high-end applications. They have the potential of extensive use in consumer products, however, should sufficiently higher efficiencies be achieved. Intense research competition is underway worldwide, and newer designs are continuously introduced. Some of the fundamental processes that are responsible for their performance are at best not fully understood, however, and consequently systematic modeling of PTC systems is difficult. Among the challenges facing the PTC research community, besides improvement in terms of system efficiency, is the possible miniaturization (total fluid volume of few cubic centimeters (cc)) of these systems. The operating characteristics of a PTC are significantly different from the conventional refrigeration cycles. A PTC implements the theory of oscillatory compression and expansion of the gas within a closed volume to achieve desired refrigeration. Regenerators and pulse tubes are often viewed as the two most complex and essential components in cryocoolers. An important deficiency with respect to the state of art models dealing with PTCs is the essentially total lack of understanding about the directional hydrodynamic and thermal transport parameters associated with periodic flow in

  14. One-layer microfluidic device for hydrodynamic 3D self-flow-focusing operating in low flow speed

    NASA Astrophysics Data System (ADS)

    Daghighi, Yasaman; Gnyawali, Vaskar; Strohm, Eric M.; Tsai, Scott S. H.; Kolios, Michael C.

    2016-03-01

    Hydrodynamic 3D flow-focusing techniques in microfluidics are categorized as (a) sheathless techniques which require high flow rates and long channels, resulting in high operating cost and high flow rates which are inappropriate for applications with flow rate limitations, and (b) sheath-flow based techniques which usually require excessive sheath flow rate to achieve hydrodynamic 3D flow-focusing. Many devices based on these principles use complicated fabrication methods to create multi-layer microchannels. We have developed a sheath-flow based microfluidic device that is capable of hydrodynamic 3D self-flow-focusing. In this device the main flow (black ink) in a low speed, and a sheath flow, enter through two inlets and enter a 180 degree curved channel (300 × 300 μm cross-section). Main flow migrates outwards into the sheath-flow due to centrifugal effects and consequently, vertical focusing is achieved at the end of the curved channel. Then, two other sheath flows horizontally confine the main flow to achieve horizontal focusing. Thus, the core flow is three-dimensionally focused at the center of the channel at the downstream. Using centrifugal force for 3D flow-focusing in a single-layer fabricated microchannel has been previously investigated by few groups. However, their demonstrated designs required high flow speed (>1 m/s) which is not suitable for many applications that live biomedical specie are involved. Here, we introduce a new design which is operational in low flow speed (<0.05 m/s) and is suitable for applications involving live cells. This microfluidic device can be used in detecting, counting and isolating cells in many biomedical applications.

  15. Numerical modeling of debris flow runout for a case in southwestern China with Smooth Particle Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Braun, Anika; Cuomo, Sabatino; Wang, Xueliang; Zhang, Luqing

    2016-04-01

    Debris flows and landslide dams are a major natural hazard causing high socioeconomic risk in inhabited mountainous areas. This is also true for vast parts of southwestern China, which are highly prone to slope failures due to several factors, such as a humid climate with high precipitation in the summer months, geological predisposing factors with highly weathered sedimentary rocks and a high seismicity. Not only do the landslides and flooding related to landslide dams threaten residents, buildings and transportation structures, but also do flooding conditions endanger power supply, which relies in this region partly on hydropower. In order to assess the potential of landslides to block rivers, it is crucial to understand which factors influence possible run-out distances and how they can be quantified. In the study we are presenting a numerical modeling analysis for a particular case of a complex landslide in Ningnan county, southwestern China, which transformed into a debris flow and blocked the river and the major road leading through the valley after heavy rainfall. For this purpose a quasi-3D Smooth Particle Hydrodynamics (SPH) model was implemented that can account for geotechnical slope parameters, run-out distance, velocities and deposition heights. A digital terrain model and the geometry information of the landslide were used as input data in order to estimate the relevant geotechnical parameters by back-analysis. The results of the analysis can be used for the prediction of run-out distances for future events at this site and other similar sites.

  16. Two-Dimensional Microfluidics: hydrodynamics of drops and interfaces in flowing smectic liquid crystal channels

    NASA Astrophysics Data System (ADS)

    Qi, Zhiyuan; Nguyen, Zoom; Park, Cheol; Maclennan, Joe; Maclennan, Matt; Clark, Noel

    2012-02-01

    The quantization of film thickness in freely suspended fluid smectic liquid crystal film enables the study of the hydrodynamics of drops and interfaces in 2D. We report microfluidic experiments, in which we observe the hydrodynamics of 2D drops flowing in channels. Using high-speed video microscopy, we track the shape of 2D drops and interfaces, visualizing the deterministic lateral displacement-based separation and pinched flow separation phenomena previously observed only in 3D. Finally, we demonstrate techniques for 2D drop generation and sorting, which will be used for 2D microfluidic applications.

  17. The hydrodynamics of surface tidal flow exchange in saltmarshes

    NASA Astrophysics Data System (ADS)

    Young, David L.; Bruder, Brittany L.; Haas, Kevin A.; Webster, Donald R.

    2016-04-01

    Modeling studies of estuary circulation show great sensitivity to the water exchange into and out of adjacent marshes, yet there is significant uncertainty in resolving the processes governing marsh surface flow. The objective of this study is to measure the estuary channel-to-saltmarsh pressure gradient and to guide parameterization for how it affects the surface flow in the high marsh. Current meters and high-resolution pressure transducers were deployed along a transect perpendicular to the nearby Little Ogeechee River in a saltmarsh adjacent to Rose Dhu Island near Savannah, Georgia, USA. The vertical elevations of the transducers were surveyed with static GPS to yield high accuracy water surface elevation data. It is found that water level differences between the Little Ogeechee River and neighboring saltmarsh are up to 15 cm and pressure gradients are up to 0.0017 m of water surface elevation change per m of linear distance during rising and falling tides. The resulting Little-Ogeechee-River-to-saltmarsh pressure gradient substantially affects tidal velocities at all current meter locations. At the velocity measurement station located closest to the Little Ogeechee River bank, the tidal velocity is nearly perpendicular to the bank. At this location, surface flow is effectively modeled as a balance between the pressure gradient force and the drag force due to marsh vegetation and bottom stress using the Darcy-Weisbach/Lindner's equations developed for flow-through-vegetation analysis in open channel flow. The study thus provides a direct connection between the pressure gradient and surface flow velocity in the high marsh, thereby overcoming a long-standing barrier in directly relating flow-through-saltmarsh studies to flow-through-vegetation studies in the open channel flow literature.

  18. Applications of Modern Hydrodynamics to Aeronautics. Part 1: Fundamental Concepts and the Most Important Theorems. Part 2: Applications

    NASA Technical Reports Server (NTRS)

    Prandtl, L.

    1979-01-01

    A discussion of the principles of hydrodynamics of nonviscous fluids in the case of motion of solid bodies in a fluid is presented. Formulae are derived to demonstrate the transition from the fluid surface to a corresponding 'control surface'. The external forces are compounded of the fluid pressures on the control surface and the forces which are exercised on the fluid by any solid bodies which may be inside of the control surfaces. Illustrations of these formulae as applied to the acquisition of transformations from a known simple flow to new types of flow for other boundaries are given. Theoretical and experimental investigations of models of airship bodies are presented.

  19. Fish Pectoral Fin Hydrodynamics; Part III: Low Dimensional Models via POD Analysis

    NASA Astrophysics Data System (ADS)

    Bozkurttas, M.; Madden, P.

    2005-11-01

    The highly complex kinematics of the pectoral fin and the resulting hydrodynamics does not lend itself easily to analysis based on simple notions of pitching/heaving/paddling kinematics or lift/drag based propulsive mechanisms. A more inventive approach is needed to dissect the fin gait and gain insight into the hydrodynamic performance of the pectoral fin. The focus of the current work is on the hydrodynamics of the pectoral fin of a bluegill sunfish in steady forward motion. The 3D, time-dependent fin kinematics is obtained via a stereo-videographic technique. We employ proper orthogonal decomposition to extract the essential features of the fin gait and then use CFD to examine the hydrodynamics of simplified gaits synthesized from the POD modes. The POD spectrum shows that the first two, three and five POD modes capture 55%, 67%, and 80% of the motion respectively. The first three modes are in particular highly distinct: Mode-1 is a ``cupping'' motion where the fin cups forward as it is abducted; Mode-2 is an ``expansion'' motion where the fin expands to present a larger area during adduction and finally Mode-3 involves a ``spanwise flick'' of the dorsal edge of the fin. Numerical simulation of flow past fin gaits synthesized from these modes lead to insights into the mechanisms of thrust production; these are discussed in detail.

  20. Hydrodynamic turbulence in quasi-Keplerian rotating flows?

    NASA Astrophysics Data System (ADS)

    Shi, Liang; Avila, Marc; Hof, Bjoern; Liang Shi Team; Marc Avila Team; Bjoern Hof Team

    2013-11-01

    The origin of turbulence in astrophysical accretion discs has been under scrutiny for decades and remains still unclear. The velocity profiles of discs (Keplerien profiles) are centrifugally stable and therefore a different instability mechanism is required for turbulence to arise. While in hot discs turbulence can be triggered through magnetorotational instability, cooler discs lack sufficient ionization and it is unclear how turbulence sets in. In analogy to other linearly stable flows like pipe and Couette flow, subcritical transition to turbulence may be the mechanism. Recently, experimental studies of Taylor-Couette flow in quasi-Keplerian regime have given conflicting results and numerical simulations of above experimental flows showed that the top and bottom end-wall leads to strong deviations from the Keplerian velocity profile and drives turbulence. In order to clarify this, we perform direct numerical simulations of incompressible Taylor-Couette flow without end walls in the quasi Keplerian regime for Re up to 200000. Strong transient growth is observed and gives rise to strongly disorted motion, suggesting that for large enough Re this mechanism may lead to turbulence even for Keplerian flows. This work is supported by Deutsche Forschungsgemeinschaft (DFG) under project SFB 963 and Max Planck Society.

  1. Adjoint sensitivity analysis of hydrodynamic stability in cyclonic flows

    NASA Astrophysics Data System (ADS)

    Guzman Inigo, Juan; Juniper, Matthew

    2015-11-01

    Cyclonic separators are used in a variety of industries to efficiently separate mixtures of fluid and solid phases by means of centrifugal forces and gravity. In certain circumstances, the vortex core of cyclonic flows is known to precess due to the instability of the flow, which leads to performance reductions. We aim to characterize the unsteadiness using linear stability analysis of the Reynolds Averaged Navier-Stokes (RANS) equations in a global framework. The system of equations, including the turbulence model, is linearised to obtain an eigenvalue problem. Unstable modes corresponding to the dynamics of the large structures of the turbulent flow are extracted. The analysis shows that the most unstable mode is a helical motion which develops around the axis of the flow. This result is in good agreement with LES and experimental analysis, suggesting the validity of the approach. Finally, an adjoint-based sensitivity analysis is performed to determine the regions of the flow that, when altered, have most influence on the frequency and growth-rate of the unstable eigenvalues.

  2. Delft3D-FLOW on PRACE infrastructures for real life hydrodynamic applications.

    NASA Astrophysics Data System (ADS)

    Donners, John; Genseberger, Menno; Jagers, Bert; de Goede, Erik; Mourits, Adri

    2013-04-01

    PRACE, the Partnership for Advanced Computing in Europe, offers access to the largest high-performance computing systems in Europe. PRACE invites and helps industry to increase their innovative potential through the use of the PRACE infrastructure. This poster describes different efforts to assist Deltares with porting the open-source simulation software Delft3D-FLOW to PRACE infrastructures. Analysis of the performance on these infrastructures has been done for real life flow applications. Delft3D-FLOW is a 2D and 3D shallow water solver which calculates non-steady flow and transport phenomena resulting from tidal and meteorological forcing on a curvilinear, boundary fitted grid in Cartesian or spherical coordinates. It also includes a module which sediment transport (both suspended and bed total load) and morphological changes for an arbitrary number of cohesive and non-cohesive fractions. As Delft3D-FLOW has been developed over several decades, with a variety of functionality and over 350k lines of source code, porting to PRACE infrastructures needs some effort. At the moment Delft3D-FLOW uses MPI with domain decomposition in one direction as its parallellisation approach. Because it is hard to identify scaling issues if one immediately starts with a complex case with many features enabled, different cases with increasing complexity have been used to investigate scaling of this parallellisation approach on several PRACE platforms. As a base reference case we started with a schematic high-resolution 2D hydrodynamic model of the river Waal that turned out to be surprisingly well-suited to the highly-parallel PRACE machines. Although Delft3D-FLOW employs a sophisticated build system, several modifications were required to port it to most PRACE systems due to the use of specific, highly-tuned compilers and MPI-libraries. After this we moved to a 3D hydrodynamic model of Rotterdam harbour that includes sections of the rivers Rhine and Meuse and a part of the North

  3. Hydrodynamics of foam flows for in situ bioremediation of DNAPL-contaminated subsurface

    SciTech Connect

    Bouillard, J.X.; Enzien, M.; Peters, R.W.; Frank, J.; Botto, R.E.; Cody, G.

    1995-12-31

    In situ remediation technologies such as (1) pump-and-treat, (2) soil vacuum extraction, (3) soil flushing/washing, and (4) bioremediation are being promoted for cleanup of contaminated sites. However, these technologies are limited by flow channeling of chemical treatment agents. Argonne National Laboratory (ANL), the Gas Research Institute, and the Institute of Gas Technology are collaboratively investigating a new bioremediation technology using foams. The ability of a foam to block pores and limit flow bypassing makes it ideal for DNAPL remediation. The hydrodynamics of gas/liquid foam flows differ significantly from the hydrodynamics of single and multiphase nonfoaming flows. This is illustrated using a multiphase flow hydrodynamic computer model and a two-dimensional flow visualization cell. A state-of-the-art, nonintrusive, three-dimensional magnetic resonance imaging technique was developed to visualize DNAPL mobilization in three dimensions. Mechanisms to be investigated are in situ DNAPL interactions with the foam, DNAPL emulsification, DNAPL scouring by the foam, and subsequent DNAPL mobilization/redeposition in the porous media.

  4. The application of single particle hydrodynamics in continuum models of multiphase flow

    NASA Technical Reports Server (NTRS)

    Decker, Rand

    1988-01-01

    A review of the application of single particle hydrodynamics in models for the exchange of interphase momentum in continuum models of multiphase flow is presented. Considered are the equations of motion for a laminar, mechanical two phase flow. Inherent to this theory is a model for the interphase exchange of momentum due to drag between the dispersed particulate and continuous fluid phases. In addition, applications of two phase flow theory to de-mixing flows require the modeling of interphase momentum exchange due to lift forces. The applications of single particle analysis in deriving models for drag and lift are examined.

  5. Comparison of hydrodynamic and semi-kinetic treatments for plasma flow along closed field lines

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Wilson, G. R.; Horwitz, J. L.

    1993-01-01

    Hydrodynamic and semi-kinetic treatments of plasma flow along closed geomagnetic field lines are compared. The hydrodynamic treatment is based on a simplified 16-moment set of transport equations as the equations for the heat flows are not solved; the heat flows are treated heuristically. The semi-kinetic treatment is based on a particle code. The comparison deals with the distributions of the plasma density, flow velocity, and parallel and perpendicular temperatures as obtained from the two treatments during the various stages of the flow. In the kinetic treatment, the appropriate boundary condition is the prescription of the velocity distribution functions for the particles entering the flux tubes at the ionospheric boundaries; those particles leaving the system are determined by the processes occurring in the flux tube. The prescribed distributions are half-Maxwellian with temperature T(sub 0) and density n(sub 0). In the hydrodynamic model, the prescribed boundary conditions are on density (n(sub 0)), flow velocity (V(sub 0)) and temperature (T(sub 0). It was found that results from the hydrodynamic treatment critically depend on V(sub 0); for early stages of the flow this treatment yields results in good agreement with those from the kinetic treatment, when V(sub 0) = square root of (kT(sub 0)/2 (pi)m), which is the average velocity of particles moving in a given direction for a Maxwellian distribution. During this early stage, the flows developing form the conjugate ionospheres show some distinct transitions. For the first hour or so, the flows are highly supersonic and penetrate deep into the opposite hemispheres, and both hydrodynamics and kinetic treatments yield almost similar features. It is found that during this period heatflow effects are negligibly small. When a flow penetrates deep into the opposite hemisphere, the kinetic treatment predicts reflection and setting up of counterstreaming. In contrast, the hydrodynamic treatment yields a shock in the

  6. Hydrodynamical Approach to Vehicular Flow in the Urban Street Canyon

    NASA Astrophysics Data System (ADS)

    Duras, Maciej M.

    2001-06-01

    The vehicular flow in the urban street canyon is considered. The classical field description is used in the modelling of the vehicular movement and of gaseous mixture in generic urban street canyon. The dynamical variables include vehicular densities, velocities, and emissivities: of pollutants, heat and exhaust gases, as well as standard mixture components' variables: densities, velocities, temperature, pressures. The local balances' equations predict the dynamics of the complex system. The automatic control of the vehicular flow is attained by the sets of coordinated traffic lights. The automatic control is aimed at minimization of traffic ecological costs by the application of variational calculus (Lagrange's and Bolz's problems). The theoretical description is accompanied by numerical examples of computer fluid dynamics based on real traffic data.

  7. Hydrodynamic damping, flow-induced oscillations, and biharmonic response

    SciTech Connect

    Sarpkaya, T.

    1995-12-31

    A brief review of damping is followed by a comparison of three sets of lift-force data for circular cylinders, subjected only to transfer oscillation. Then the significance of two-dimensional or biharmonic oscillations (in both the in-line and transverse directions) are discussed in light of experiments undertaken for that purpose, to simulate more closely the true nature of flow-induced oscillations.

  8. Hydrodynamic roughness for wave and current flow over irregular beds (Invited)

    NASA Astrophysics Data System (ADS)

    Pawlak, G. R.; Bandet, M. D.; Jaramillo, S.

    2010-12-01

    The turbulent processes associated with wave and current flow over highly irregular boundaries, characteristic of coral reefs, have important effects on wave dissipation and sediment transport, critical aspects in modeling coastal currents and waves and, subsequently, beach and coastal changes. A fundamental aspect of characterizing these turbulent processes includes parametrization of hydrodynamically relevant roughness scales. AUV-based measurements of the physical roughness scales in the vicinity of the Kilo Nalu Observatory on the south shore of Oahu indicate that the reef roughness is described by a broad-banded spectral distribution. For these multi-scaled, inhomogeneous boundaries, the relationship between hydrodynamic roughness and the measurable roughness scales is not well established. We present field observations of wave and current boundary layer dynamics over a reef at Kilo Nalu that examine this link between physical and hydrodynamic roughness. Observations from a horizontal profiler are used to reconstruct a spatial average of the near-bed flow, augmented by high-resolution vertical profiling. Data resolve the vortical and dissipation structure in the wave boundary layer and show that the flow responds to a range of roughness scales that varies as a function of wave orbital diameter. Effects of roughness on reef scales are assessed using observations of the steady currents, which integrate the spatial roughness distribution and implicitly reflect the wave interactions with the boundary. Mean flow bed stress and hydrodynamic roughness obtained from fixed ADCP current profile data are related to AUV-based measurements of physical roughness. Current structure is also assessed using AUV DVL observations. Bed stress and hydrodynamic roughness are spatially variable, directionally dependent and are modulated in time by variations in the wave-current velocity ratio.

  9. Fluid flow in nanopores: An examination of hydrodynamic boundary conditions

    NASA Astrophysics Data System (ADS)

    Sokhan, V. P.; Nicholson, D.; Quirke, N.

    2001-08-01

    Steady-state Poiseuille flow of a simple fluid in carbon slit pores under a gravity-like force is simulated using a realistic empirical many-body potential model for carbon. In this work we focus on the small Knudsen number regime, where the macroscopic equations are applicable, and simulate different wetting conditions by varying the strength of fluid-wall interactions. We show that fluid flow in a carbon pore is characterized by a large slip length even in the strongly wetting case, contrary to the predictions of Tolstoi's theory. When the surface density of wall atoms is reduced to values typical of a van der Waals solid, the streaming velocity profile vanishes at the wall, in accordance with earlier findings. From the velocity profiles we have calculated the slip length and by analyzing temporal profiles of the velocity components of particles colliding with the wall we obtained values of the Maxwell coefficient defining the fraction of molecules thermalized by the wall.

  10. Relativistic Flows Using Spatial And Temporal Adaptive Structured Mesh Refinement. I. Hydrodynamics

    SciTech Connect

    Wang, Peng; Abel, Tom; Zhang, Weiqun; /KIPAC, Menlo Park

    2007-04-02

    Astrophysical relativistic flow problems require high resolution three-dimensional numerical simulations. In this paper, we describe a new parallel three-dimensional code for simulations of special relativistic hydrodynamics (SRHD) using both spatially and temporally structured adaptive mesh refinement (AMR). We used method of lines to discrete SRHD equations spatially and used a total variation diminishing (TVD) Runge-Kutta scheme for time integration. For spatial reconstruction, we have implemented piecewise linear method (PLM), piecewise parabolic method (PPM), third order convex essentially non-oscillatory (CENO) and third and fifth order weighted essentially non-oscillatory (WENO) schemes. Flux is computed using either direct flux reconstruction or approximate Riemann solvers including HLL, modified Marquina flux, local Lax-Friedrichs flux formulas and HLLC. The AMR part of the code is built on top of the cosmological Eulerian AMR code enzo, which uses the Berger-Colella AMR algorithm and is parallel with dynamical load balancing using the widely available Message Passing Interface library. We discuss the coupling of the AMR framework with the relativistic solvers and show its performance on eleven test problems.

  11. Water pipe flow simulation using improved virtual particles on smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Ting, E. S.; Yeak, S. H.

    2014-12-01

    Smoothed Particle Hydrodynamics (SPH) is a meshless method used widely to solve problems such as fluid flows. Due to its meshless property, it is ideal to solve problems on complex geometry. In this paper, boundary treatment were implied for the rectangular pipe flow simulations using SPH. The repulsive force is applied to the boundary particles along with the improved virtual particles on different geometry alignment. The water flow is solved using incompressible SPH and will be examined throughout the simulation. Results from this simulation will be compared with single layered virtual particles. Based on the result of the study, it is found that the improved virtual particles is more accurate and stable.

  12. Centrality dependence of multiplicity, transverse energy, and elliptic flow from hydrodynamics

    SciTech Connect

    Kolb, Peter F.; Heinz, Ulrich; Huovinen, Pasi; Eskola, Kari J.; Tuominen, Kimmo

    2001-03-21

    The centrality dependence of the charged multiplicity, transverse energy, and elliptic flow coefficient is studied in a hydrodynamic model, using a variety of different initializations which model the initial energy or entropy production process as a hard or soft process, respectively. While the charged multiplicity depends strongly on the chosen initialization, the p{sub T}-integrated elliptic flow for charged particles as a function of charged particle multiplicity and the p{sub T}-differential elliptic flow for charged particles in minimum bias events turn out to be almost independent of the initialization.

  13. Hydrodynamic flow in the vicinity of a nanopore induced by an applied voltage

    PubMed Central

    Mao, Mao; Ghosal, Sandip; Hu, Guohui

    2013-01-01

    Continuum simulation is employed to study ion transport and fluid flow through a nanopore in a solid-state membrane under an applied potential drop. Results show the existence of concentration polarization layers on the surfaces of the membrane. The nonuniformity of the ionic distribution gives rise to an electric pressure that drives vortical motion in the fluid. There is also a net hydrodynamic flow through the nanopore due to an asymmetry induced by the membrane surface charge. The qualitative behavior is similar to that observed in a previous study using molecular dynamic simulations. The current–voltage characteristics show some nonlinear features but are not greatly affected by the hydrodynamic flow in the parameter regime studied. In the limit of thin Debye layers, the electric resistance of the system can be characterized using an equivalent circuit with lumped parameters. Generation of vorticity can be understood qualitatively from elementary considerations of the Maxwell stresses. However, the flow strength is a strongly nonlinear function of the applied field. Combination of electrophoretic and hydrodynamic effects can lead to ion selectivity in terms of valences and this could have some practical applications in separations. PMID:23689946

  14. Hydrodynamic flow in the vicinity of a nanopore in response to an applied voltage

    NASA Astrophysics Data System (ADS)

    Mao, Mao; Ghosal, Sandip

    2013-11-01

    Continuum simulation and analytical modeling is employed to study ion transport and fluid flow through a nanopore in a solid-state membrane under an applied voltage. The ion distribution near the surface of the membrane arises due to the combined effect of the intrinsic surface charge as well as concentration polarization due to the applied field. It gives rise to an electric pressure that drives hydrodynamic flow in the vicinity of the pore. There is a net hydrodynamic flow through the nanopore due to the asymmetry in the Debye layer induced by the membrane surface charge. The qualitative behavior is similar to that observed in a previous study using molecular dynamic simulations. The flow strength is a strongly nonlinear function of the applied field. Combination of electrophoretic and hydrodynamic effects can lead to ion selectivity in terms of valences and this could have some practical applications in separations. This work was supported by grant number R01HG004842 from the National Human Genome Research Institute, National Institutes of Health. One of us (SG) acknowledges support from the Leverhulme Trust (UK).

  15. Unsteady hydrodynamic forces acting on a robotic hand and its flow field.

    PubMed

    Takagi, Hideki; Nakashima, Motomu; Ozaki, Takashi; Matsuuchi, Kazuo

    2013-07-26

    This study aims to clarify the mechanism of generating unsteady hydrodynamic forces acting on a hand during swimming in order to directly measure the forces, pressure distribution, and flow field around the hand by using a robotic arm and particle image velocimetry (PIV). The robotic arm consisted of the trunk, shoulder, upper arm, forearm, and hand, and it was independently computer controllable in five degrees of freedom. The elbow-joint angle of the robotic arm was fixed at 90°, and the arm was moved in semicircles around the shoulder joint in a plane perpendicular to the water surface. Two-component PIV was used for flow visualization around the hand. The data of the forces and pressure acting on the hand were sampled at 200Hz and stored on a PC. When the maximum resultant force acting on the hand was observed, a pair of counter-rotating vortices appeared on the dorsal surface of the hand. A vortex attached to the hand increased the flow velocity, which led to decreased surface pressure, increasing the hydrodynamic forces. This phenomenon is known as the unsteady mechanism of force generation. We found that the drag force was 72% greater and the lift force was 4.8 times greater than the values estimated under steady flow conditions. Therefore, it is presumable that swimmers receive the benefits of this unsteady hydrodynamic force. PMID:23764175

  16. Quantum features in the hydrodynamic flow of a superfluid of light

    NASA Astrophysics Data System (ADS)

    Carusotto, Iacopo

    2015-03-01

    After a number of experiments showing the power of fluids of light in semiconductor microcavity devices for superfluid hydrodynamic studies, a growing activity is being devoted to quantum hydrodynamic features, where hydrodynamic quantities such as density, current, etc. must be described by quantum operators. As a concrete example, we shall consider the emission of phonon pairs from a sonic horizon via analog Hawking radiation processes. The robustness of entanglement against the driven-dissipative nature of the microcavity photon fluid will be discussed and perspectives to detect it will be sketched. In the last part, I will discuss the potential of a different, propagating architecture in view of studies of the conservative quantum dynamics of a photon fluid. After a brief summary of the general theoretical framework, our attention will be focused to a slab geometry able to exploit the power of quantum fluids of light to study the physics of quantum quenches.

  17. Fractality, chaos, and reactions in imperfectly mixed open hydrodynamical flows

    NASA Astrophysics Data System (ADS)

    Péntek, Á.; Károlyi, G.; Scheuring, I.; Tél, T.; Toroczkai, Z.; Kadtke, J.; Grebogi, C.

    1999-12-01

    We investigate the dynamics of tracer particles in time-dependent open flows. If the advection is passive the tracer dynamics is shown to be typically transiently chaotic. This implies the appearance of stable fractal patterns, so-called unstable manifolds, traced out by ensembles of particles. Next, the advection of chemically or biologically active tracers is investigated. Since the tracers spend a long time in the vicinity of a fractal curve, the unstable manifold, this fractal structure serves as a catalyst for the active process. The permanent competition between the enhanced activity along the unstable manifold and the escape due to advection results in a steady state of constant production rate. This observation provides a possible solution for the so-called “paradox of plankton”, that several competing plankton species are able to coexists in spite of the competitive exclusion predicted by classical studies. We point out that the derivation of the reaction (or population dynamics) equations is analog to that of the macroscopic transport equations based on a microscopic kinetic theory whose support is a fractal subset of the full phase space.

  18. Calibration of a two-dimensional hydrodynamic model for parts of the Allegheny, Monongahela, and Ohio Rivers, Allegheny County, Pennsylvania

    USGS Publications Warehouse

    Fulton, John W.; Wagner, Chad R.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Allegheny County Sanitary Authority, developed a validated two-dimensional Resource Management Associates2 (RMA2) hydrodynamic model of parts of the Allegheny, Monongahela, and Ohio Rivers (Three Rivers) to help assess the effects of combined sewer overflows (CSOs) and sanitary sewer overflows (SSOs) on the rivers. The hydrodynamic model was used to drive a water-quality model of the study area that was capable of simulating the transport and fate of fecal-indicator bacteria and chemical constituents under open-water conditions. The study area includes 14 tributary streams and parts of the Three Rivers where they enter and exit Allegheny County, an area of approximately 730 square miles (mi2). The city of Pittsburgh is near the center of the county, where the Allegheny and Monongahela Rivers join to form the headwaters of the Ohio River. The Three Rivers are regulated by a series of fixed-crest dams, gated dams, and radial (tainter) gates and serve as the receiving waters for tributary streams, CSOs, and SSOs. The RMA2 model was separated into four individual segments on the basis of the U.S. Army Corps of Engineers navigational pools in the study area (Dashields; Emsworth; Allegheny River, Pool 2; and Braddock), which were calibrated individually using measured water-surface slope, velocity, and discharge during high- and low-flow conditions. The model calibration process included the comparison of water-surface elevations at five locations and velocity profiles at more than 80 cross sections in the study area. On the basis of the calibration and validation results that included water-surface elevations and velocities, the model is a representative simulation of the Three Rivers flow patterns for discharges ranging from 4,050 to 47,400 cubic feet per second (ft3/s) on the Allegheny River, 2,550 to 40,000 ft3/s on the Monongahela River, and 10,900 to 99,000 ft3/s on the Ohio River. The Monongahela River was

  19. Pairwise Force Smoothed Particle Hydrodynamics model for multiphase flow: Surface tension and contact line dynamics

    NASA Astrophysics Data System (ADS)

    Tartakovsky, Alexandre M.; Panchenko, Alexander

    2016-01-01

    We present a novel formulation of the Pairwise Force Smoothed Particle Hydrodynamics (PF-SPH) model and use it to simulate two- and three-phase flows in bounded domains. In the PF-SPH model, the Navier-Stokes equations are discretized with the Smoothed Particle Hydrodynamics (SPH) method, and the Young-Laplace boundary condition at the fluid-fluid interface and the Young boundary condition at the fluid-fluid-solid interface are replaced with pairwise forces added into the Navier-Stokes equations. We derive a relationship between the parameters in the pairwise forces and the surface tension and static contact angle. Next, we demonstrate the model's accuracy under static and dynamic conditions. Finally, we use the Pf-SPH model to simulate three phase flow in a porous medium.

  20. Hydrodynamic and macromolecules induced clusters of red blood cells in microcapillary flow

    NASA Astrophysics Data System (ADS)

    Claveira, Viviana; Aouane, Othmane; Coupier, Gwennou; Misbah, Chaouqi; Abkarian, Manouk; Wagner, Christian

    2015-11-01

    Recent studies have been shown that despite the large shear rates, the presence of either fibrinogen or the synthetic polymer dextran leads to an enhanced formation of robust clusters of RBC in microcapillaries under flow conditions. The contribution of hydrodynamic interactions and interactions induced by the presence of macromolecules in the cluster formation has not been established. In order to elucidate this mechanism, we compare experimentally in microchannels under flow condition, the pure hydrodynamic cluster formation of RBCs and the cluster formation of RBCs in the presence of macromolecules inducing aggregation. The results reveal strong differences in the cluster morphology. Emphasizing on the case of clusters formed by two cells, the surface to surface interdistances between the cells in the different solutions shows a bimodal distribution. Numerical simulations based on the boundary integral method showed a good agreement with the experimental findings.

  1. On the dynamics of nonlinear, unsteady landslide flow within the smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Khvostova, O.; Averbukh, E.

    2012-04-01

    In the present study the idea of landslide modeling by particle method is described. Smoothed particle hydrodynamics was invented in 1977 by Leon Lucy and independently by Bob Gingold and Joe Monaghan [1]. It was used for astrophysics phenomena's simulation. Later it was adapted for hydrodynamics, gas dynamics and solid body problems. Landslides can be caused by the influence of different factors. Landslides occur when the angle of inclination of the slope of the slope or if the slope is burdened with loose material. A landslide flow is a thin homogeneous layer of nearly incompressible fluid. It is considered that at the initial moment shifted part of a ground mass is splitting and turning into liquid of several layers which then is streaming down along the slope. The landslide flow motion is described with the Navie-Stocks set of equations: D→u-= - 1\\upsidedownBigTriangle P + μ \\upsidedownBigTriangle →u + g Dt ρ (1) D-ρ = 0, Dt (2) where u is velocity vector, t is time, ρ is a flow density, P is a pressure, μ is a viscosity coefficient, g is gravity. Continuum discretization by finite number of lagrangian particles is the main idea of SPH [2,3]. Particles moves with the flow and arbitrary connectivity is allowed. Therefore, SPH does not need a grid to calculate spatial derivatives. For any field A(r), involved in equation (1), e.g. pressure, density, viscosity etc., we consider an approximation with a finite function: A(r) = ∫ω A (r')W (r- r',h)dr' (3) where A is a desired field, r is a radius-vector, W is an interpolating kernel. The free boundary condition problem is discussed. Finding the particles on a free surface is described. Also the surface tension force defining is shown. Described method is implemented and mathematical modeling of landslide flows motion along slope is simulated. Different types of slopes are considered: with constant and variable steepness, long and wide. Wave-breaking effects near the wall are shown. Findings are analyzed

  2. Three-Dimensional Parallel Lattice Boltzmann Hydrodynamic Simulations of Turbulent Flows in Interstellar Dark Clouds

    NASA Astrophysics Data System (ADS)

    Muders, Dirk

    1995-08-01

    Exploring the clumpy and filamentary structure of interstellar molecular clouds is one of the key problems of modern astrophysics. So far, we have little knowledge of the physical processes that cause the structure, but turbulence is suspected to be essential. In this thesis I study turbulent flows and how they contribute to the structure of interstellar dark clouds. To this end, three-dimensional numerical hydrodynamic simulations are needed since the detailed turbulent spatial and velocity structure cannot be analytically calculated. I employ the ``Lattice Boltzmann Method'', a recently developed numerical method which solves the Boltzmann equation in a discretized phase space. Mesoscopic particle packets move with fixed velocities on a Cartesian lattice and at each time step they exchange mass according to given rules. Because of its mainly local operations the method is well suited for application on parallel or clustered computers. As part of my thesis I have developed a parallelized ``Lattice Boltzmann Method'' hydrodynamics code. I have improved the numerical stability for Reynolds numbers of up to 104.5 and Mach numbers of up to 0.9 and I have extended the method to include a second miscible fluid phase. The code has been used on the three currently most powerful workstations at the ``Max-Planck-Institut für Radioastronomie'' in Bonn and on the massively parallel mainframe CM-5 at the ``Gesellschaft für Mathematik und Datenverarbeitung'' in St. Augustin. The simulations consist of collimated shear flows and the motion of molecular clumps through an ambient medium. The dependence of the emerging structure on Reynolds and Mach numbers is studied. The main results are (1) that distinct clumps and filaments appear only at the transition between laminar and fully turbulent flow at Reynolds numbers between 500 and 5000 and (2) that subsonic viscous shear flows are capable of producing the dark cloud velocity structure. The unexpectedly low Reynolds numbers can

  3. Nanoparticle Brownian motion and hydrodynamic interactions in the presence of flow fields

    PubMed Central

    Uma, B.; Swaminathan, T. N.; Radhakrishnan, R.; Eckmann, D. M.; Ayyaswamy, P. S.

    2011-01-01

    We consider the Brownian motion of a nanoparticle in an incompressible Newtonian fluid medium (quiescent or fully developed Poiseuille flow) with the fluctuating hydrodynamics approach. The formalism considers situations where both the Brownian motion and the hydrodynamic interactions are important. The flow results have been modified to account for compressibility effects. Different nanoparticle sizes and nearly neutrally buoyant particle densities are also considered. Tracked particles are initially located at various distances from the bounding wall to delineate wall effects. The results for thermal equilibrium are validated by comparing the predictions for the temperatures of the particle with those obtained from the equipartition theorem. The nature of the hydrodynamic interactions is verified by comparing the velocity autocorrelation functions and mean square displacements with analytical and experimental results where available. The equipartition theorem for a Brownian particle in Poiseuille flow is verified for a range of low Reynolds numbers. Numerical predictions of wall interactions with the particle in terms of particle diffusivities are consistent with results, where available. PMID:21918592

  4. Hydrodynamic interactions of spherical particles in Poiseuille flow between two parallel walls

    NASA Astrophysics Data System (ADS)

    Bhattacharya, S.; Bławzdziewicz, J.; Wajnryb, E.

    2006-05-01

    We study hydrodynamic interactions of spherical particles in incident Poiseuille flow in a channel with infinite planar walls. The particles are suspended in a Newtonian fluid, and creeping-flow conditions are assumed. Numerical results, obtained using our highly accurate Cartesian-representation algorithm [Physica A 356, 294 (2005)] are presented for a single sphere, two spheres, and arrays of many spheres. We consider the motion of freely suspended particles as well as the forces and torques acting on particles adsorbed at a wall. We find that the pair hydrodynamic interactions in this wall-bounded system have a complex dependence on the lateral interparticle distance due to the combined effects of the dissipation in the gap between the particle surfaces and the backflow associated with the presence of the walls. For immobile particle pairs we have examined the crossover between several far-field asymptotic regimes corresponding to different relations between the particle separation and the distances of the particles from the walls. We have also shown that the cumulative effect of the far-field flow substantially influences the force distribution in arrays of immobile spheres, and it affects trajectories of suspended particles. Therefore, the far-field contributions should be included in any reliable algorithm for evaluating many-particle hydrodynamic interactions in the parallel-wall geometry.

  5. Balanced Flow Meters without Moving Parts

    NASA Technical Reports Server (NTRS)

    Kelley, Anthony R.; VanBuskirk, Paul

    2008-01-01

    Balanced flow meters are recent additions to an established class of simple, rugged flow meters that contain no moving parts in contact with flow and are based on measurement of pressure drops across objects placed in flow paths. These flow meters are highly accurate, minimally intrusive, easily manufacturable, and reliable. A balanced flow meter can be easily mounted in a flow path by bolting it between conventional pipe flanges. A balanced flow meter can be used to measure the flow of any of a variety of liquids or gases, provided that it has been properly calibrated. Relative to the standard orifice-plate flow meter, the balanced flow meter introduces less turbulence and two times less permanent pressure loss and is therefore capable of offering 10 times greater accuracy and repeatability with less dissipation of energy. A secondary benefit of the reduction of turbulence is the reduction of vibration and up to 15 times less acoustic noise generation. Both the balanced flow meter and the standard orifice-plate flow meter are basically disks that contain holes and are instrumented with pressure transducers on their upstream and downstream faces. The most obvious difference between them is that the standard orifice plate contains a single, central hole while the balanced flow meter contains multiple holes. The term 'balanced' signifies that in designing the meter, the sizes and locations of the holes are determined in an optimization procedure that involves balancing of numerous factors, including volumetric flow, mass flow, dynamic pressure, kinetic energy, all in an effort to minimize such undesired effects as turbulence, pressure loss, dissipation of kinetic energy, and non-repeatability and nonlinearity of response over the anticipated range of flow conditions. Due to proper balancing of these factors, recent testing demonstrated that the balanced flow-meter performance was similar to a Venturi tube in both accuracy and pressure recovery, but featured reduced

  6. Comment on ``Hydrodynamics of fractal continuum flow'' and ``Map of fluid flow in fractal porous medium into fractal continuum flow''

    NASA Astrophysics Data System (ADS)

    Li, Jun; Ostoja-Starzewski, Martin

    2013-11-01

    In two recent papers [Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.85.025302 85, 025302(R) (2012) and Phys. Rev. E10.1103/PhysRevE.85.056314 85, 056314 (2012)], the authors proposed fractal continuum hydrodynamics and its application to model fluid flows in fractally permeable reservoirs. While in general providing a certain advancement of continuum mechanics modeling of fractal media to fluid flows, some results and statements to previous works need clarification. We first show that the nonlocal character those authors alleged in our paper [Proc. R. Soc. A1364-502110.1098/rspa.2009.0101 465, 2521 (2009)] actually does not exist; instead, all those works are in the same general representation of derivative operators differing by specific forms of the line coefficient c1. Next, the claimed generalization of the volumetric coefficient c3 is, in fact, equivalent to previously proposed product measures when considering together the separate decomposition of c3 on each coordinate. Furthermore, the modified Jacobian proposed in the two commented papers does not relate the volume element between the current and initial configurations, which henceforth leads to a correction of the Reynolds’ transport theorem. Finally, we point out that the asymmetry of the Cauchy stress tensor resulting from the conservation of the angular momentum must not be ignored; this aspect motivates a more complete formulation of fractal continuum models within a micropolar framework.

  7. Comment on "Hydrodynamics of fractal continuum flow" and "Map of fluid flow in fractal porous medium into fractal continuum flow".

    PubMed

    Li, Jun; Ostoja-Starzewski, Martin

    2013-11-01

    In two recent papers [Phys. Rev. E 85, 025302(R) (2012) and Phys. Rev. E 85, 056314 (2012)], the authors proposed fractal continuum hydrodynamics and its application to model fluid flows in fractally permeable reservoirs. While in general providing a certain advancement of continuum mechanics modeling of fractal media to fluid flows, some results and statements to previous works need clarification. We first show that the nonlocal character those authors alleged in our paper [Proc. R. Soc. A 465, 2521 (2009)] actually does not exist; instead, all those works are in the same general representation of derivative operators differing by specific forms of the line coefficient c(1). Next, the claimed generalization of the volumetric coefficient c(3) is, in fact, equivalent to previously proposed product measures when considering together the separate decomposition of c(3) on each coordinate. Furthermore, the modified Jacobian proposed in the two commented papers does not relate the volume element between the current and initial configurations, which henceforth leads to a correction of the Reynolds' transport theorem. Finally, we point out that the asymmetry of the Cauchy stress tensor resulting from the conservation of the angular momentum must not be ignored; this aspect motivates a more complete formulation of fractal continuum models within a micropolar framework. PMID:24329394

  8. Effect of charged particle multiplicity fluctuations on flow harmonics in event-by-event hydrodynamics

    NASA Astrophysics Data System (ADS)

    Chaudhuri, A. K.

    2013-03-01

    In nucleon-nucleon collisions, a charged particle's multiplicity fluctuates. We have studied the effect of multiplicity fluctuation on flow harmonics in nucleus-nucleus collisions in event-by-event hydrodynamics. Assuming that the charged particle's multiplicity fluctuations are governed by the negative binomial distribution, the Monte Carlo Glauber model of initial condition is generalized to include the fluctuations. Explicit simulations with the generalized Monte Carlo Glauber model initial conditions indicate that the multiplicity fluctuations do not have a large effect on the flow harmonics.

  9. Hydrodynamics and heat transfer in a laminar flow of viscoelastic fluid in a flat slot channel

    NASA Astrophysics Data System (ADS)

    Ananyev, D. V.; Halitova, G. R.; Vachagina, E. K.

    2015-01-01

    Results of the numerical study of hydrodynamics and heat transfer in a laminar flow of viscoelastic fluid in a flat slot channel are presented in the present paper. The model of nonlinear viscoelastic fluid of Phan-Thien—Tanner is used to describe the viscoelastic properties of fluid. The solution to the stated problem by software package "COMSOL Multiphysics" is considered. The method of solution is verified, and results are compared with data of the other authors. It is determined that in the flow of viscoelastic fluid in a flat slot channel, the maximal contribution of heating due to dissipation is approximately 7-8 %.

  10. Application of Molecular Hydrodynamics to Astrophysical Flows. II---Unconditional Stability and Galilean Invariance---

    NASA Astrophysics Data System (ADS)

    Murata, H.; Matsuda, T.; Isaka, H.; Ohsugi, Y.; Boffin, H. M. J.

    2008-08-01

    We discuss the physical background of the molecular hydrodynamics method (MH), a new computational fluid dynamics (CFD) technique that we proposed recently, and further test it to simulate isothermal flows including those of zero temperature gas. The problems considered are a shock tube of an isothermal gas, a rotating cone test, a box shear flow test, and a Keplerian disc. We demonstrate that the MH is unconditionally stable in spite of the fact that the scheme is time-explicit. Because of this, we may choose any time step without losing stability. The only penalty for using a longer time step is a gradual degradation of the quality of the solution.

  11. Boundary Layer Theory. Part 2; Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Schlichting, H.

    1949-01-01

    The flow laws of the actual flows at high Reynolds numbers differ considerably from those of the laminar flows treated in the preceding part. These actual flows show a special characteristic, denoted as turbulence. The character of a turbulent flow is most easily understood the case of the pipe flow. Consider the flow through a straight pipe of circular cross section and with a smooth wall. For laminar flow each fluid particle moves with uniform velocity along a rectilinear path. Because of viscosity, the velocity of the particles near the wall is smaller than that of the particles at the center. i% order to maintain the motion, a pressure decrease is required which, for laminar flow, is proportional to the first power of the mean flow velocity. Actually, however, one oberves that, for larger Reynolds numbers, the pressure drop increases almost with the square of the velocity and is very much larger then that given by the Hagen Poiseuille law. One may conclude that the actual flow is very different from that of the Poiseuille flow.

  12. Hydrodynamic instabilities of near-critical CO2 flow in microchannels: Lattice Boltzmann simulation

    NASA Astrophysics Data System (ADS)

    Holdych, D. J.; Georgiadis, J. G.; Buckius, R. O.

    2004-05-01

    Motivated by systematic CO2 evaporation experiments which recently became available (J. Pettersen, "Flow vaporization of CO2 in microchannel tubes," Doctor technicae thesis, Norwegian University of Science and Technology, 2002), the present work constitutes an exploratory investigation of isothermal flow of CO2 near its liquid-vapor critical point through a long 5 μm diameter microchannel. A modified van der Waals constitutive model—with properties closely approximating those of "real" near-critical CO2—is incorporated in a two-dimensional lattice Boltzmann hydrodynamics model by embedding a dimensionless parameter X, with X→1 denoting the "real" fluid. The hydrodynamic phenomena resulting by imposing a constant pressure gradient along a periodic channel are investigated by considering two regimes in tandem: (1) transition from bubbly to annular flow with a liquid film formed at the channel walls and (2) destabilization of the liquid film by the Kelvin-Helmholtz instability. Due to numerical constraints, intrinsic modeling errors are introduced and are shown to be associated with discrepancies in the relative vapor-liquid interfacial thickness, which is expressed by X. The effects of these errors are investigated both theoretically and numerically in the physical limit X→1. Numerically determined flow patterns compare qualitatively well with direct visualization results obtained by Pettersen. Overall, the characteristics of isothermal near-critical two-phase flow in microchannels can be reproduced by the appropriate modification of the thermophysical properties of CO2.

  13. Deformation of double emulsions under conditions of flow cytometry hydrodynamic focusing.

    PubMed

    Ma, Shaohua; Huck, Wilhelm T S; Balabani, Stavroula

    2015-11-21

    Water-in-oil-in-water (w/o/w) microfluidics double emulsions offer a new route to compartmentalise reagents into isolated aqueous microenvironments while maintaining an aqueous carrier fluid phase; this enables compatibility with commercial flow cytometry systems such as fluorescence-activated cell sorting (FACS). Double emulsion (inner core) deformation under hydrodynamic focusing conditions that mimic the environment double emulsions experience in flow cytometry applications is of particular importance for droplet stability and cell viability. This paper reports on an experimental study of the dynamic deformation of aqueous cores of w/o/w double emulsions under hydrodynamic focusing, with the sheath flow directed at 45° to the sample flow. A number of factors affecting the inner core deformation and recovery were examined. Deformation was found to depend significantly on the core or shell viscosity, the droplet-to-sheath flow velocity ratio, and core and shell sizes. Core deformation was found to depend more on the type of surfactant rather concentration with high molecular weight surfactant exhibiting a negligible effect on deformation whereas low molecular weight surfactant enhancing deformation at low concentrations due to their lateral mobility at the interface. PMID:26394745

  14. Numerical characterization of the hydrodynamics and thermal behavior of air flow in flexible air distribution system

    NASA Astrophysics Data System (ADS)

    Gharehdaghi, Samad; Moujaes, Samir

    2013-10-01

    Flexible duct air distribution systems are used in a large percentage of residential and small commercial buildings in the United States . Very few empirical or predictive data are available though to help provide the HVAC design engineer with reliable information . Moreover, because of the ducts flexibility, the shapes of these ducts offer a different set of operating fluid flow and thermal conditions from traditional smooth metal ducts. Hence, both the flow field and heat transfer through this kind of ducts are much more complex and merit to be analyzed from a numerical predictive approach. The aim of this research paper is to compute some of the hydrodynamic and heat transfer characteristics of the air flow inside these ducts over a range of Re numbers commonly used in the flow conditions of these air distribution systems. The information resulting from this CFD simulation, where a κ-ɛ turbulent model is used to predict the flow conditions, provide pressure drop and average convective heat transfer coefficients that exist in these ducts and was compared to previously found data. Circulation zones in the depressions of these ducts are found to exist which are suspected of influencing the pressured drop and heat transfer coefficients as compared to smooth ducts. The results show that fully developed conditions exist much earlier with regard to the inlet for both hydrodynamic and thermal entrance regions than what would be expected in smooth ducts under the same turbulent conditions.

  15. Modeling the hydrodynamic and electrochemical efficiency of semi-solid flow batteries

    SciTech Connect

    Brunini, VE; Chiang, YM; Carter, WC

    2012-05-01

    A mathematical model of flow cell operation incorporating hydrodynamic and electrochemical effects in three dimensions is developed. The model and resulting simulations apply to recently demonstrated high energy-density semi-solid flow cells. In particular, state of charge gradients that develop during low flow rate operation and their effects on the spatial non-uniformity of current density within flow cells are quantified. A one-dimensional scaling model is also developed and compared to the full three-dimensional simulation. The models are used to demonstrate the impact of the choice of electrochemical couple on flow cell performance. For semi-solid flow electrodes, which can use solid active materials with a wide variety of voltage-capacity responses, we find that cell efficiency is maximized for electrochemical couples that have a relatively flat voltage vs. capacity curve, operated under slow flow conditions. For example, in flow electrodes limited by macroscopic charge transport, an LiFePO4-based system requires one-third the polarization to reach the same cycling rate as an LiCoO2-based system, all else being equal. Our conclusions are generally applicable to high energy density flow battery systems, in which flow rates can be comparatively low for a given required power. (C) 2012 Elsevier Ltd. All rights reserved.

  16. Smoothed Particle Hydrodynamics simulation and laboratory-scale experiments of complex flow dynamics in unsaturated fractures

    NASA Astrophysics Data System (ADS)

    Kordilla, J.; Tartakovsky, A. M.; Pan, W.; Shigorina, E.; Noffz, T.; Geyer, T.

    2015-12-01

    Unsaturated flow in fractured porous media exhibits highly complex flow dynamics and a wide range of intermittent flow processes. Especially in wide aperture fractures, flow processes may be dominated by gravitational instead of capillary forces leading to a deviation from the classical volume effective approaches (Richard's equation, Van Genuchten type relationships). The existence of various flow modes such as droplets, rivulets, turbulent and adsorbed films is well known, however, their spatial and temporal distribution within fracture networks is still an open question partially due to the lack of appropriate modeling tools. With our work we want to gain a deeper understanding of the underlying flow and transport dynamics in unsaturated fractured media in order to support the development of more refined upscaled methods, applicable on catchment scales. We present fracture-scale flow simulations obtained with a parallelized Smoothed Particle Hydrodynamics (SPH) model. The model allows us to simulate free-surface flow dynamics including the effect of surface tension for a wide range of wetting conditions in smooth and rough fractures. Due to the highly efficient generation of surface tension via particle-particle interaction forces the dynamic wetting of surfaces can readily be obtained. We validated the model via empirical and semi-analytical solutions and conducted laboratory-scale percolation experiments of unsaturated flow through synthetic fracture systems. The setup allows us to obtain travel time distributions and identify characteristic flow mode distributions on wide aperture fractures intercepted by horizontal fracture elements.

  17. A smoothed particle hydrodynamics model for droplet and film flow on smooth and rough fracture surfaces

    SciTech Connect

    Kordilla, Jannes; Tartakovsky, Alexandre M.; Geyer, Tobias

    2013-09-01

    Flow on fracture surfaces has been identified by many authors as an important flow process in unsaturated fractured rock formations. Given the complexity of flow dynamics on such small scales, robust numerical methods have to be employed in order to capture the highly dynamic interfaces and flow intermittency. In this work we present microscale free-surface flow simulations using a three-dimensional multiphase Smoothed Particle Hydrodynamics (SPH) code. Pairwise solid-fluid and fluid-fluid interaction forces are used to control the wetting behavior and cover a wide range of static and transient contact angles as well as Reynolds numbers encountered in droplet flow on rock surfaces. We validate our model via comparison with existing empirical and semi-analyical solutions for droplet flow. We use the model to investigate the occurence of adsorbed trailing films of droplets under various flow conditions and its importance for the flow dynamics when films and droplets coexist. We show that flow velocities are higher on prewetted surfaces covered by a thin film which is qualitatively attributed to the enhanced dynamic wetting and dewetting at the trailing and advancing contact line.

  18. Multiscale flow in an electro-hydrodynamically driven oil-in-oil emulsion.

    PubMed

    Varshney, Atul; Gohil, Smita; Sathe, Mayur; R V, Seshagiri Rao; Joshi, J B; Bhattacharya, S; Yethiraj, Anand; Ghosh, Shankar

    2016-02-14

    Efficient mixing strategies in a fluid involve generation of multi-scale flows which are strongly suppressed in highly viscous systems. In this work, we report a novel form of multi-scale flow, driven by an external electric field, in a highly viscous (η∼ 1 Pa s) oil-in-oil emulsion system consisting of micron-size droplets. This electro-hydrodynamic flow leads to dynamical organization at spatial scales much larger than that of the individual droplets. We characterize the dynamics associated with these structures by measuring the time variation of the bulk Reynolds stress in a rheometer, as well as through a micro-scale rheometric measurement by probing the spectrum of fluctuations of a thin fiber cantilever driven by these flows. The results display scale invariance in the energy spectra over three decades with a power law reminiscent of turbulent convection. We also demonstrate the mixing efficiency in such micro-scale systems. PMID:26693675

  19. Hydrodynamic chromatography using flow of a highly concentrated dextran solution through a coiled tube.

    PubMed

    Miyagawa, Yoichi; Morisada, Shintaro; Ohto, Keisuke; Hidetaka, Kawakita

    2016-08-01

    Separation of colloidal particles in non-Newtonian fluid is important in food engineering. Using hydrodynamic chromatography, colloidal particles and starch granules originating from corn were individually injected into dextran solutions (Mw 2,000,000g/mol) flowing through a coiled tube for efficient size separation. Rheological properties of dextran solutions ranging from 50 to 250g/L were determined, revealing pseudoplastic fluid behavior. Velocity profiles for dextran solution flow in coiled tubes were obtained from rheological power law parameters. Suspensions of colloidal particles of diameters 1.0 and 20μm were individually injected into the dextran flows, demonstrating that dextran solutions at high concentration separated colloidal particles. Starch granules were separated by size using a dextran solution flow (250g/L). Thus, we expect to obtain efficient separation of colloidal particles in foods using highly concentrated dextran solutions. PMID:27112856

  20. Hierarchical Hydrodynamic Flow Confinement: Efficient Use and Retrieval of Chemicals for Microscale Chemistry on Surfaces

    PubMed Central

    2014-01-01

    We devised, implemented, and tested a new concept for efficient local surface chemistry that we call hierarchical hydrodynamic flow confinement (hierarchical HFC). This concept leverages the hydrodynamic shaping of multiple layers of liquid to address challenges inherent to microscale surface chemistry, such as minimal dilution, economical consumption of reagent, and fast liquid switching. We illustrate two modes of hierarchical HFC, nested and pinched, by locally denaturing and recovering a 26 bp DNA with as little as 2% dilution and by efficiently patterning an antibody on a surface, with a 5 μm resolution and a 100-fold decrease of reagent consumption compared to microcontact printing. In addition, valveless switching between nanoliter volumes of liquids was achieved within 20 ms. We believe hierarchical HFC will have broad utility for chemistry on surfaces at the microscale. PMID:24625080

  1. NMR imaging and hydrodynamic analysis of neutrally buoyant non-Newtonian slurry flows

    SciTech Connect

    Bouillard, J.X.; Sinton, S.W.

    1995-02-01

    The flow of solids loaded suspension in cylindrical pipes has been the object of intense experimental and theoretical investigations in recent years. These types of flows are of great interest in chemical engineering because of their important use in many industrial manufacturing processes. Such flows are for example encountered in the manufacture of solid-rocket propellants, advanced ceramics, reinforced polymer composites, in heterogenous catalytic reactors, and in the pipeline transport of liquid-solids suspensions. In most cases, the suspension microstructure and the degree of solids dispersion greatly affect the final performance of the manufactured product. For example, solid propellant pellets need to be extremely-well dispersed in gel matrices for use as rocket engine solid fuels. The homogeneity of pellet dispersion is critical to allow good uniformity of the burn rate, which in turn affects the final mechanical performance of the engine. Today`s manufacturing of such fuels uses continuous flow processes rather than batch processes. Unfortunately, the hydrodynamics of such flow processes is poorly understood and is difficult to assess because it requires the simultaneous measurements of liquid/solids phase velocities and volume fractions. Due to the recent development in pulsed Fourier Transform NMR imaging, NMR imaging is now becoming a powerful technique for the non intrusive investigation of multi-phase flows. This paper reports and exposes a state-of-the-art experimental and theoretical methodology that can be used to study such flows. The hydrodynamic model developed for this study is a two-phase flow shear thinning model with standard constitutive fluid/solids interphase drag and solids compaction stresses. this model shows good agreement with experimental data and the limitations of this model are discussed.

  2. Hydrodynamic pressure sensing with an artificial lateral line in steady and unsteady flows.

    PubMed

    Venturelli, Roberto; Akanyeti, Otar; Visentin, Francesco; Ježov, Jaas; Chambers, Lily D; Toming, Gert; Brown, Jennifer; Kruusmaa, Maarja; Megill, William M; Fiorini, Paolo

    2012-09-01

    With the overall goal being a better understanding of the sensing environment from the local perspective of a situated agent, we studied uniform flows and Kármán vortex streets in a frame of reference relevant to a fish or swimming robot. We visualized each flow regime with digital particle image velocimetry and then took local measurements using a rigid body with laterally distributed parallel pressure sensor arrays. Time and frequency domain methods were used to characterize hydrodynamically relevant scenarios in steady and unsteady flows for control applications. Here we report that a distributed pressure sensing mechanism has the capability to discriminate Kármán vortex streets from uniform flows, and determine the orientation and position of the platform with respect to the incoming flow and the centre axis of the Kármán vortex street. It also enables the computation of hydrodynamic features which may be relevant for a robot while interacting with the flow, such as vortex shedding frequency, vortex travelling speed and downstream distance between vortices. A Kármán vortex street was distinguished in this study from uniform flows by analysing the magnitude of fluctuations present in the sensor measurements and the number of sensors detecting the same dominant frequency. In the Kármán vortex street the turbulence intensity was 30% higher than that in the uniform flow and the sensors collectively sensed the vortex shedding frequency as the dominant frequency. The position and orientation of the sensor platform were determined via a comparative analysis between laterally distributed sensor arrays; the vortex travelling speed was estimated via a cross-correlation analysis among the sensors. PMID:22498729

  3. Event-by-event hydrodynamics and elliptic flow from fluctuating initial states

    SciTech Connect

    Holopainen, H.; Eskola, K. J.; Niemi, H.

    2011-03-15

    We develop a framework for event-by-event ideal hydrodynamics to study the differential elliptic flow, which is measured at different centralities in Au + Au collisions at the Relativistic Heavy Ion Collider (RHIC). Fluctuating initial energy density profiles, which here are the event-by-event analogs of the wounded nucleon profiles, are created using a Monte Carlo Glauber model. Using the same event plane method for obtaining v{sub 2} as in the data analysis, we can reproduce both the measured centrality dependence and the p{sub T} shape of charged-particle elliptic flow up to p{sub T}{approx}2 GeV. We also consider the relation of elliptic flow to the initial-state eccentricity using different reference planes and discuss the correlation between the physical event plane and the initial participant plane. Our results demonstrate that event-by-event hydrodynamics with initial-state fluctuations must be accounted for before a meaningful lower limit for viscosity can be obtained from elliptic flow data.

  4. Blockage effects on the hydrodynamic performance of a marine cross-flow turbine.

    PubMed

    Consul, Claudio A; Willden, Richard H J; McIntosh, Simon C

    2013-02-28

    This paper explores the influence of blockage and free-surface deformation on the hydrodynamic performance of a generic marine cross-flow turbine. Flows through a three-bladed turbine with solidity 0.125 are simulated at field-test blade Reynolds numbers, O(10(5)-10(6)), for three different cross-stream blockages: 12.5, 25 and 50 per cent. Two representations of the free-surface boundary are considered: rigid lid and deformable free surface. Increasing the blockage is observed to lead to substantial increases in the power coefficient; the highest power coefficient computed is 1.23. Only small differences are observed between the two free-surface representations, with the deforming free-surface turbine out-performing the rigid lid turbine by 6.7 per cent in power at the highest blockage considered. This difference is attributed to the increase in effective blockage owing to the deformation of the free surface. Hydrodynamic efficiency, the ratio of useful power generated to overall power removed from the flow, is found to increase with blockage, which is consistent with the presence of a higher flow velocity through the core of the turbine at higher blockage ratios. Froude number is found to have little effect on thrust and power coefficients, but significant influence on surface elevation drop across the turbine. PMID:23319712

  5. Flow cell hydrodynamics and their effects on E. coli biofilm formation under different nutrient conditions and turbulent flow.

    PubMed

    Teodósio, J S; Simões, M; Melo, L F; Mergulhão, F J

    2011-01-01

    Biofilm formation is a major factor in the growth and spread of both desirable and undesirable bacteria as well as in fouling and corrosion. In order to simulate biofilm formation in industrial settings a flow cell system coupled to a recirculating tank was used to study the effect of a high (550 mg glucose l⁻¹) and a low (150 mg glucose l⁻¹) nutrient concentration on the relative growth of planktonic and attached biofilm cells of Escherichia coli JM109(DE3). Biofilms were obtained under turbulent flow (a Reynolds number of 6000) and the hydrodynamic conditions of the flow cell were simulated by using computational fluid dynamics. Under these conditions, the flow cell was subjected to wall shear stresses of 0.6 Pa and an average flow velocity of 0.4 m s⁻¹ was reached. The system was validated by studying flow development on the flow cell and the applicability of chemostat model assumptions. Full development of the flow was assessed by analysis of velocity profiles and by monitoring the maximum and average wall shear stresses. The validity of the chemostat model assumptions was performed through residence time analysis and identification of biofilm forming areas. These latter results were obtained through wall shear stress analysis of the system and also by assessment of the free energy of interaction between E. coli and the surfaces. The results show that when the system was fed with a high nutrient concentration, planktonic cell growth was favored. Additionally, the results confirm that biofilms adapt their architecture in order to cope with the hydrodynamic conditions and nutrient availability. These results suggest that until a certain thickness was reached nutrient availability dictated biofilm architecture but when that critical thickness was exceeded mechanical resistance to shear stress (ie biofilm cohesion) became more important. PMID:21082456

  6. TOUGH2Biot - A simulator for coupled thermal-hydrodynamic-mechanical processes in subsurface flow systems: Application to CO2 geological storage and geothermal development

    NASA Astrophysics Data System (ADS)

    Lei, Hongwu; Xu, Tianfu; Jin, Guangrong

    2015-04-01

    Coupled thermal-hydrodynamic-mechanical processes have become increasingly important in studying the issues affecting subsurface flow systems, such as CO2 sequestration in deep saline aquifers and geothermal development. In this study, a mechanical module based on the extended Biot consolidation model was developed and incorporated into the well-established thermal-hydrodynamic simulator TOUGH2, resulting in an integrated numerical THM simulation program TOUGH2Biot. A finite element method was employed to discretize space for rock mechanical calculation and the Mohr-Coulomb failure criterion was used to determine if the rock undergoes shear-slip failure. Mechanics is partly coupled with the thermal-hydrodynamic processes and gives feedback to flow through stress-dependent porosity and permeability. TOUGH2Biot was verified against analytical solutions for the 1D Terzaghi consolidation and cooling-induced subsidence. TOUGH2Biot was applied to evaluate the thermal, hydrodynamic, and mechanical responses of CO2 geological sequestration at the Ordos CCS Demonstration Project, China and geothermal exploitation at the Geysers geothermal field, California. The results demonstrate that TOUGH2Biot is capable of analyzing change in pressure and temperature, displacement, stress, and potential shear-slip failure caused by large scale underground man-made activity in subsurface flow systems. TOUGH2Biot can also be easily extended for complex coupled process problems in fractured media and be conveniently updated to parallel versions on different platforms to take advantage of high-performance computing.

  7. Hydrodynamic modelling and global datasets: Flow connectivity and SRTM data, a Bangkok case study.

    NASA Astrophysics Data System (ADS)

    Trigg, M. A.; Bates, P. B.; Michaelides, K.

    2012-04-01

    The rise in the global interconnected manufacturing supply chains requires an understanding and consistent quantification of flood risk at a global scale. Flood risk is often better quantified (or at least more precisely defined) in regions where there has been an investment in comprehensive topographical data collection such as LiDAR coupled with detailed hydrodynamic modelling. Yet in regions where these data and modelling are unavailable, the implications of flooding and the knock on effects for global industries can be dramatic, as evidenced by the recent floods in Bangkok, Thailand. There is a growing momentum in terms of global modelling initiatives to address this lack of a consistent understanding of flood risk and they will rely heavily on the application of available global datasets relevant to hydrodynamic modelling, such as Shuttle Radar Topography Mission (SRTM) data and its derivatives. These global datasets bring opportunities to apply consistent methodologies on an automated basis in all regions, while the use of coarser scale datasets also brings many challenges such as sub-grid process representation and downscaled hydrology data from global climate models. There are significant opportunities for hydrological science in helping define new, realistic and physically based methodologies that can be applied globally as well as the possibility of gaining new insights into flood risk through analysis of the many large datasets that will be derived from this work. We use Bangkok as a case study to explore some of the issues related to using these available global datasets for hydrodynamic modelling, with particular focus on using SRTM data to represent topography. Research has shown that flow connectivity on the floodplain is an important component in the dynamics of flood flows on to and off the floodplain, and indeed within different areas of the floodplain. A lack of representation of flow connectivity, often due to data resolution limitations, means

  8. Experimental and Computational Study of Multiphase Flow Hydrodynamics in 2D Trickle Bed Reactors

    NASA Astrophysics Data System (ADS)

    Nadeem, H.; Ben Salem, I.; Kurnia, J. C.; Rabbani, S.; Shamim, T.; Sassi, M.

    2014-12-01

    Trickle bed reactors are largely used in the refining processes. Co-current heavy oil and hydrogen gas flow downward on catalytic particle bed. Fine particles in the heavy oil and/or soot formed by the exothermic catalytic reactions deposit on the bed and clog the flow channels. This work is funded by the refining company of Abu Dhabi and aims at mitigating pressure buildup due to fine deposition in the TBR. In this work, we focus on meso-scale experimental and computational investigations of the interplay between flow regimes and the various parameters that affect them. A 2D experimental apparatus has been built to investigate the flow regimes with an average pore diameter close to the values encountered in trickle beds. A parametric study is done for the development of flow regimes and the transition between them when the geometry and arrangement of the particles within the porous medium are varied. Liquid and gas flow velocities have also been varied to capture the different flow regimes. Real time images of the multiphase flow are captured using a high speed camera, which were then used to characterize the transition between the different flow regimes. A diffused light source was used behind the 2D Trickle Bed Reactor to enhance visualizations. Experimental data shows very good agreement with the published literature. The computational study focuses on the hydrodynamics of multiphase flow and to identify the flow regime developed inside TBRs using the ANSYS Fluent Software package. Multiphase flow inside TBRs is investigated using the "discrete particle" approach together with Volume of Fluid (VoF) multiphase flow modeling. The effect of the bed particle diameter, spacing, and arrangement are presented that may be used to provide guidelines for designing trickle bed reactors.

  9. Lattice hydrodynamic modeling of two-lane traffic flow with timid and aggressive driving behavior

    NASA Astrophysics Data System (ADS)

    Sharma, Sapna

    2015-03-01

    In this paper, a new two-lane lattice hydrodynamic traffic flow model is proposed by considering the aggressive or timid characteristics of driver's behavior. The effect of driver's characteristic on the stability of traffic flow is examined through linear stability analysis. It is shown that for both the cases of lane changing or without lane changing the stability region significantly enlarges (reduces) as the proportion of aggressive (timid) drivers increases. To describe the propagation behavior of a density wave near the critical point, nonlinear analysis is conducted and mKdV equation representing kink-antikink soliton is derived. The effect of anticipation parameter with more aggressive (timid) drivers is also investigated and found that it has a positive (negative) effect on the stability of two-lane traffic flow dynamics. Simulation results are found consistent with the theoretical findings which confirm that the driver's characteristics play a significant role in a two-lane traffic system.

  10. Evaluation of erythrocyte flow at a bearing gap in a hydrodynamically levitated centrifugal blood pump.

    PubMed

    Murashige, Tomotaka; Kosaka, Ryo; Sakota, Daisuke; Nishida, Masahiro; Kawaguchi, Yasuo; Yamane, Takashi; Maruyama, Osamu

    2015-01-01

    We have developed a hydrodynamically levitated centrifugal blood pump for extracorporeal circulatory support. In the blood pump, a spiral groove bearing was adopted for a thrust bearing. In the spiral groove bearing, separation of erythrocytes and plasma by plasma skimming has been postulated to occur. However, it is not clarified that plasma skimming occurs in a spiral groove bearing. The purpose of this study is to verify whether plasma skimming occurs in the spiral groove bearing of a hydrodynamically levitated centrifugal blood pump. For evaluation of plasma skimming in the spiral groove bearing, an impeller levitation performance test using a laser focus displacement meter and a microscopic visualization test of erythrocyte flow using a high-speed microscope were conducted. Bovine blood diluted with autologous plasma to adjust hematocrit to 1.0% was used as a working fluid. Hematocrit on the ridge region in the spiral groove bearing was estimated using image analysis. As a result, hematocrits on the ridge region with gaps of 45 μm, 31 μm, and 25 μm were calculated as 1.0%, 0.6%, and 0.3%, respectively. Maximum skimming efficiency in this study was calculated as 70% with a gap of 25 μm. We confirmed that separation of erythrocyte and plasma occurred in the spiral groove bearing with decrease in bearing gap in a hydrodynamically levitated centrifugal blood pump. PMID:26736252

  11. Apical constriction drives tissue-scale hydrodynamic flow to mediate cell elongation

    PubMed Central

    He, Bing; Doubrovinski, Konstantin; Polyakov, Oleg; Wieschaus, Eric

    2014-01-01

    Epithelial folding mediated by apical constriction converts flat epithelial sheets into multilayered, complex tissue structures and is employed throughout the development in most animals1. Little is known, however, how forces produced near the apical surface of the tissue are transmitted within individual cells to generate the global changes in cell shape that characterize tissue deformation. Here we apply particle tracking velocimetry in gastrulating Drosophila embryos to measure the movement of cytoplasm and plasma membrane during ventral furrow (VF) formation2, 3. We find that cytoplasmic redistribution during the lengthening phase of VF formation can be precisely described by viscous flows that quantitatively match the predictions of hydrodynamics. Cell membranes move with the ambient cytoplasm, with little resistance to or driving force on the flow. Strikingly, apical constriction produces similar flow patterns in mutant embryos that fail to form cells prior to gastrulation (“acellular” embryos), such that the global redistribution of cytoplasm mirrors the summed redistribution occurring in individual cells of wild type embryos. Our results suggest that during the lengthening phase of VF formation, hydrodynamic behavior of the cytoplasm provides the predominant mechanism transmitting apically generated forces deep into the tissue and that cell individualization is dispensable. PMID:24590071

  12. Combined effect of hydrodynamic and interfacial flow parameters on lysozyme deactivation in a stirred tank bioreactor.

    PubMed

    Ghadge, Rajaram S; Patwardhan, Ashwin W; Joshi, Jyeshtharaj B

    2006-01-01

    The dynamic environment within a bioreactor and in the purification equipment is known to affect the activity and yield of enzyme production. The present research focuses on the effect of hydrodynamic flow parameters (average energy dissipation rate, maximum energy dissipation rate, average shear rate, and average normal stress) and the interfacial flow parameters (specific interfacial area and mass transfer coefficient) on the activity of lysozyme. Flow parameters were estimated using CFD simulation based on the k-epsilon approach. Enzyme deactivation was investigated in 0.1, 0.3, 0.57, and 1 m i.d. vessels. Enzyme solution was subjected to hydrodynamic stress using various types of impellers and impeller combinations over a wide range of power consumption (0.03 < P(G)/V < 7, kW/m3). The effects of tank diameter, impeller diameter, blade width, blade angle, and the number of blades on the extent of deactivation were investigated. At equal value of P(G)/V, epsilon(max), and gamma(avg), the extent of deactivation was dramatically different for different impeller types. The extent of deactivation was found to correlate well with the average turbulent normal stress and the mass transfer coefficient. PMID:16739947

  13. Apical constriction drives tissue-scale hydrodynamic flow to mediate cell elongation.

    PubMed

    He, Bing; Doubrovinski, Konstantin; Polyakov, Oleg; Wieschaus, Eric

    2014-04-17

    Epithelial folding mediated by apical constriction converts flat epithelial sheets into multilayered, complex tissue structures and is used throughout development in most animals. Little is known, however, about how forces produced near the apical surface of the tissue are transmitted within individual cells to generate the global changes in cell shape that characterize tissue deformation. Here we apply particle tracking velocimetry in gastrulating Drosophila embryos to measure the movement of cytoplasm and plasma membrane during ventral furrow formation. We find that cytoplasmic redistribution during the lengthening phase of ventral furrow formation can be precisely described by viscous flows that quantitatively match the predictions of hydrodynamics. Cell membranes move with the ambient cytoplasm, with little resistance to, or driving force on, the flow. Strikingly, apical constriction produces similar flow patterns in mutant embryos that fail to form cells before gastrulation ('acellular' embryos), such that the global redistribution of cytoplasm mirrors the summed redistribution occurring in individual cells of wild-type embryos. Our results indicate that during the lengthening phase of ventral furrow formation, hydrodynamic behaviour of the cytoplasm provides the predominant mechanism transmitting apically generated forces deep into the tissue and that cell individualization is dispensable. PMID:24590071

  14. Analysis of hydrodynamic conditions in adjacent free and heterogeneous porous flow domains

    NASA Astrophysics Data System (ADS)

    Das, D. B.; Hanspal, N. S.; Nassehi, V.

    2005-09-01

    The existence of a free-flow domain (e.g. a liquid layer) adjacent to a porous medium is a common occurrence in many environmental and petroleum engineering problems. The porous media may often contain various forms of heterogeneity, e.g. layers, fractures, micro-scale lenses, etc. These heterogeneities affect the pressure distribution within the porous domain. This may influence the hydrodynamic conditions at the free-porous domain interface and, hence, the combined flow behaviour. Under steady-state conditions, the heterogeneities are known to have negligible effects on the coupled flow behaviour. However, the significance of the heterogeneity effects on coupled free and porous flow under transient conditions is not certain. In this study, numerical simulations have been carried out to investigate the effects of heterogeneous (layered) porous media on the hydrodynamics conditions in determining the behaviour of combined free and porous regimes. Heterogeneity in the porous media is introduced by defining a domain composed of two layers of porous media with different values of intrinsic permeability. The coupling of the governing equations of motion in free and porous domains has been achieved through the well-known Beavers and Joseph interfacial condition. Of special interest in this work are porous domains with flow-through ends. They represent the general class of problems where large physical domains are truncated to smaller sections for ease of mathematical analysis. However, this causes a practical difficulty in modelling such systems. This is because the information on flow behaviour, i.e. boundary conditions at the truncated sections, is usually not available. Use of artificial boundary conditions to solve these problems effectively implies the imposition of conditions that do not necessarily match with the solutions required for the interior of the domain. This difficulty is resolved in this study by employing stress-free boundary conditions at the open

  15. Two-fluid Hydrodynamic Model for Fluid-Flow Simulation in Fluid-Solids Systems

    Energy Science and Technology Software Center (ESTSC)

    1994-06-20

    FLUFIX is a two-dimensional , transient, Eulerian, and finite-difference program, based on a two-fluid hydrodynamic model, for fluid flow simulation in fluid-solids systems. The software is written in a modular form using the Implicit Multi-Field (IMF) numerical technique. Quantities computed are the spatial distribution of solids loading, gas and solids velocities, pressure, and temperatures. Predicted are bubble formation, bed frequencies, and solids recirculation. Applications include bubbling and circulating atmospheric and pressurized fluidized bed reactors, combustors,more » gasifiers, and FCC (Fluid Catalytic Cracker) reactors.« less

  16. Hydrodynamic effects and receptor interactions of platelets and their aggregates in linear shear flow.

    PubMed Central

    Tandon, P; Diamond, S L

    1997-01-01

    We have modeled platelet aggregation in a linear shear flow by accounting for two body collision hydrodynamics, platelet activation and receptor biology. Considering platelets and their aggregates as unequal-sized spheres with DLVO interactions (psi(platelet) = -15 mV, Hamaker constant = 10(-19) J), detailed hydrodynamics provided the flow field around the colliding platelets. Trajectory calculations were performed to obtain the far upstream cross-sectional area and the particle flux through this area provided the collision frequency. Only a fraction of platelets brought together by a shearing fluid flow were held together if successfully bound by fibrinogen cross-bridging GPIIb/IIIa receptors on the platelet surfaces. This fraction was calculated by modeling receptor-mediated aggregation using the formalism of Bell (Bell, G. I. 1979. A theoretical model for adhesion between cells mediated by multivalent ligands. Cell Biophys. 1:133-147) where the forward rate of bond formation dictated aggregation during collision and was estimated from the diffusional limited rate of lateral association of receptors multiplied by an effectiveness factor, eta, to give an apparent rate. For a value of eta = 0.0178, we calculated the overall efficiency (including both receptor binding and hydrodynamics effects) for equal-sized platelets with 50,000 receptors/platelet to be 0.206 for G = 41.9 s(-1), 0.05 for G = 335 s(-1), and 0.0086 for G = 1920 s(-1), values which are in agreement with efficiencies determined from initial platelet singlet consumption rates in flow through a tube. From our analysis, we predict that bond formation proceeds at a rate of approximately 0.1925 bonds/microm2 per ms, which is approximately 50-fold slower than the diffusion limited rate of association. This value of eta is also consistent with a colloidal stability of unactivated platelets at low shear rates. Fibrinogen was calculated to mediate aggregation quite efficiently at low shear rates but not at

  17. Magneto-hydrodynamic detection of vortex shedding for molten salt flow sensing.

    SciTech Connect

    Kruizenga, Alan Michael; Crocker, Robert W.

    2012-09-01

    High temperature flow sensors must be developed for use with molten salts systems at temperatures in excess of 600%C2%B0C. A novel magneto-hydrodynamic sensing approach was investigated. A prototype sensor was developed and tested in an aqueous sodium chloride solution as a surrogate for molten salt. Despite that the electrical conductivity was a factor of three less than molten salts, it was found that the electrical conductivity of an electrolyte was too low to adequately resolve the signal amidst surrounding noise. This sensor concept is expected to work well with any liquid metal application, as the generated magnetic field scales proportionately with electrical conductivity.

  18. Flow fraction in charged rectangular microchannel to optimally design hydrodynamic filtration chip for cell sorting

    NASA Astrophysics Data System (ADS)

    Chun, Myung-Suk; Jeong, Sohyun; Kim, Jae Hun; Lee, Tae Seok

    2015-11-01

    Among the passive separations, hydrodynamic filtration (HDF) can perform the fractionation of cells or particles by selective extraction of streamlines controlled by the flow fraction at each branch. Only the stream near the sidewall enters the branches as the focusing, with the amount of fluid leaving the main channel being determined by the flow distribution related to the hydraulic flow resistances. Its understanding is important, but in-depth consideration has not been treated until now. The virtual boundary of the fluid layer should be first specified, and the parabolic velocity profile starts to form from the steady state flow with high Péclet numbers. We computed the 3-dimensional flow profile at the rectangular cross-section with any aspect ratios, by considering electrokinetic transport coupled with the Poisson-Boltzmann and Navier-Stokes equations. The chip was designed with the parameters rigorously determined by the complete analysis of laminar flow for flow fraction and complicated networks of main and multi-branched channels for cell sorting into the finite number of subpopulations. For potential applications to the precise sorting, our designed microfluidic chip can be validated by applying model cells consisting of heterogeneous subpopulations. Supported by the KIST Institutional Program (No. 2E25382).

  19. Three-dimensional effects of the linear hydrodynamic instability on the plane wake flow

    NASA Astrophysics Data System (ADS)

    Mele, P.; Morganti, M.; Attili, F.

    The LINEAR hydrodynamic stability for plane shear flows considers planar disturbances super-imposed over the main flow. Squire transforms justify the use of disturbances of this kind in order to detect the critical Reynolds number. In this way the behavior of the onset of oscillations of the flow field is well described, especially for flows with a profile of the basic velocity with points of inflexion like wake profile flows. A tentative approach is pursued for the study of the behavior of the flow for a Reynolds number slightly greater than the critical value using the Squire transforms to obtain new solutions of the flow field, with disturbances neither amplified nor damped but of three-dimensional character. The two-dimensional mode is obtained as an eigenfunction of the Orr-Sommerfeld equation by an already tested Galerkin procedure. Hence the Poisson equation is solved in order to obtain the pressure field of the disturbance. The presence of more than one mode is analyzed with their influence on the two- and three-dimensional organized structures of large eddies. Numerical and experimental results are compared.

  20. Baleen Hydrodynamics and Morphology of Cross-Flow Filtration in Balaenid Whale Suspension Feeding

    PubMed Central

    Werth, Alexander J.; Potvin, Jean

    2016-01-01

    The traditional view of mysticete feeding involves static baleen directly sieving particles from seawater using a simple, dead-end flow-through filtration mechanism. Flow tank experiments on bowhead (Balaena mysticetus) baleen indicate the long-standing model of dead-end filtration, at least in balaenid (bowhead and right) whales, is not merely simplistic but wrong. To recreate continuous intraoral flow, sections of baleen were tested in a flume through which water and buoyant particles circulated with variable flow velocity. Kinematic sequences were analyzed to investigate movement and capture of particles by baleen plates and fringes. Results indicate that very few particles flow directly through the baleen rack; instead much water flows anteroposteriorly along the interior (lingual) side of the rack, allowing items to be carried posteriorly and accumulate at the posterior of the mouth where they might readily be swallowed. Since water flows mainly parallel to rather than directly through the filter, the cross-flow mechanism significantly reduces entrapment and tangling of minute items in baleen fringes, obviating the need to clean the filter. The absence of copepods or other prey found trapped in the baleen of necropsied right and bowhead whales supports this hypothesis. Reduced through-baleen flow was observed with and without boundaries modeling the tongue and lips, indicating that baleen itself is the main if not sole agent of crossflow. Preliminary investigation of baleen from balaenopterid whales that use intermittent filter feeding suggests that although the biomechanics and hydrodynamics of oral flow differ, cross-flow filtration may occur to some degree in all mysticetes. PMID:26918630

  1. Baleen Hydrodynamics and Morphology of Cross-Flow Filtration in Balaenid Whale Suspension Feeding.

    PubMed

    Werth, Alexander J; Potvin, Jean

    2016-01-01

    The traditional view of mysticete feeding involves static baleen directly sieving particles from seawater using a simple, dead-end flow-through filtration mechanism. Flow tank experiments on bowhead (Balaena mysticetus) baleen indicate the long-standing model of dead-end filtration, at least in balaenid (bowhead and right) whales, is not merely simplistic but wrong. To recreate continuous intraoral flow, sections of baleen were tested in a flume through which water and buoyant particles circulated with variable flow velocity. Kinematic sequences were analyzed to investigate movement and capture of particles by baleen plates and fringes. Results indicate that very few particles flow directly through the baleen rack; instead much water flows anteroposteriorly along the interior (lingual) side of the rack, allowing items to be carried posteriorly and accumulate at the posterior of the mouth where they might readily be swallowed. Since water flows mainly parallel to rather than directly through the filter, the cross-flow mechanism significantly reduces entrapment and tangling of minute items in baleen fringes, obviating the need to clean the filter. The absence of copepods or other prey found trapped in the baleen of necropsied right and bowhead whales supports this hypothesis. Reduced through-baleen flow was observed with and without boundaries modeling the tongue and lips, indicating that baleen itself is the main if not sole agent of crossflow. Preliminary investigation of baleen from balaenopterid whales that use intermittent filter feeding suggests that although the biomechanics and hydrodynamics of oral flow differ, cross-flow filtration may occur to some degree in all mysticetes. PMID:26918630

  2. Hydrodynamics Flow and Transport Characterization of a Karstified Physical Model Using Temporal Moment Analysis

    NASA Astrophysics Data System (ADS)

    Anaya, A. A.; Padilla, I. Y.

    2013-12-01

    High productivity of karst groundwater systems is often associated with conduit flow and high matrix permeability. Spatial heterogeneities and anisotropy, among others factors, result in highly complex flow patterns in these systems. The same characteristics that make these aquifers very productive also make them highly vulnerable to contamination and a likely for contaminant exposure. The understanding of contamination fate and transport processes in these complex aquifers demand different statistical and numerical approaches, such as the Temporal Moment Analysis (TMA). TMA of solute breakthrough curves provide qualitative and quantitative results to characterize hydrodynamic variables that affect the release, mobility, persistence, and possible pathways of contaminants in karst groundwater systems. The general objective of this work is to characterize flow and transport processes in conduit and diffusion-dominated flow under low and high flow conditions using TMA in a karstified physical model. A multidimensional, laboratory-scale, Geo-Hydrobed model (GHM) containing a karstified limestone block collected from the karst aquifer formation of northern Puerto Rico are used for this purpose. Experimental work entails injecting dissolved CaCl2 and trichloroethene (TCE) in the upstream boundary of the GHM while monitoring their concentrations spatially and temporally in the limestone under different groundwater flow regimes. Results from the TMA show a highly heterogeneous system resulting in large preferential flow components and specific mass-transfer limitations zones especially in diffuse flow areas. Flow variables like velocity and Reynolds number indicates defined preferential flow paths increasing spatially as flow rate increase. TMA results show to be qualitatively consistent with a previous statistical novel approach developed using mixed models. Comparison between the dissolved CaCl2 tracer and TCE show implications for reactive contaminants in the karst

  3. General relativistic radiation hydrodynamics of accretion flows - II. Treating stiff source terms and exploring physical limitations

    NASA Astrophysics Data System (ADS)

    Roedig, C.; Zanotti, O.; Alic, D.

    2012-10-01

    We present the implementation of an implicit-explicit (IMEX) Runge-Kutta numerical scheme for general relativistic (GR) hydrodynamics coupled to an optically thick radiation field in two existing GR-(magneto)hydrodynamics codes. We argue that the necessity of such an improvement arises naturally in most astrophysically relevant regimes where the optical thickness is high as the equations become stiff. By performing several simple 1D tests, we verify the codes' new ability to deal with this stiffness and show consistency. Then, still in one spatial dimension, we compute a luminosity versus accretion rate diagram for the set-up of spherical accretion on to a Schwarzschild black hole and find good agreement with previous work which included more radiation processes than we currently have available. Lastly, we revisit the supersonic Bondi-Hoyle-Lyttleton (BHL) accretion in two dimensions where we can now present simulations of realistic temperatures, down to T ˜ 106 K or less. Here we find that radiation pressure plays an important role, but also that these highly dynamical set-ups push our approximate treatment towards the limit of physical applicability. The main features of radiation hydrodynamics BHL flows manifest as (i) an effective adiabatic index approaching γeff ˜ 4/3; (ii) accretion rates two orders of magnitude lower than without radiation pressure, but still super-Eddington; (iii) luminosity estimates around the Eddington limit, hence with an overall radiative efficiency as small as ηBHL˜10-2; (iv) strong departures from thermal equilibrium in shocked regions; (v) no appearance of the flip-flop instability. We conclude that the current optically thick approximation to the radiation transfer does give physically substantial improvements over the pure hydro also in set-ups departing from equilibrium, and, once accompanied by an optically thin treatment, is likely to provide a fundamental tool for investigating accretion flows in a large variety of

  4. Invariant Functional Forms for K(r,P) Type Equations of State for Hydrodynamically Driven Flow

    NASA Astrophysics Data System (ADS)

    Hrbek, George

    2001-06-01

    At the 11th American Physical Society Topical Group Meeting on Shock Compression of Condensed Matter, Group Theoretic Methods, as defined by Lie were applied to the problem of temperature independent, hydrodynamic shock in a Birch-Murnaghan continuum. (1) Group parameter ratios were linked to the physical quantities (i.e., KT, K'T, and K''T) specified for the various order Birch-Murnaghan approximations. This technique has now been generalized to provide a mathematical formalism applicable to a wide class of forms (i.e., K(r,P)) for the equation of state. Variations in material expansion and resistance (i.e., counter pressure) are shown to be functions of compression and material variation ahead of the expanding front. Illustrative examples include the Birch-Murnaghan, Vinet, Brennan-Stacey, Shanker, Tait, Poirier, and Jones-Wilkins-Lee (JWL) forms. The results of this study will allow the various equations of state, and their respective fitting coefficients, to be compared with experiments. To do this, one must introduce the group ratios into a numerical simulation for the flow and generate the density, pressure, and particle velocity profiles as the shock moves through the material. (2) (1) Hrbek, G. M., Invariant Functional Forms For The Second, Third, And Fourth Order Birch-Murnaghan Equation of State For Materials Subject to Hydrodynamic Shock, Proceedings of the 11th American Physical Society Topical Group Meeting on Shock Compression of Condensed Matter (SCCM Shock 99), Snowbird, Utah (2) Hrbek, G. M., Physical Interpretation of Mathematically Invariant K(r,P) Type Equations Of State For Hydrodynamically Driven Flows, Submitted to the 12th American Physical Society Topical Group Meeting on Shock Compression of Condensed Matter (SCCM Shock 01), Atlanta, Georgia

  5. Flow and Transport in Smooth and Rough Unsaturated Wide Aperture Fractures with Smoothed Particle Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Kordilla, J.; Tartakovsky, A. M.; Geyer, T.

    2014-12-01

    Unsaturated flow in fractured porous media exhibits highly complex flow dynamics and a wide range of intermittent flow processes. Especially in wide aperture fractures, flow processes may be dominated by gravitational instead of capillary forces leading to a deviation from the classical volume effective approaches (Richard's equation, Van Genuchten type relationships). The existence of various flow modes such as droplets, rivulets, turbulent and adsorbed films is well known, however, their spatial and temporal distribution within fracture networks is still an open question partially due to the lack of appropriate modeling tools. With our work we want to gain a deeper understanding of the underlying flow and transport dynamics in unsaturated fractured media in order to support the development of more refined upscaled methods, applicable on catchment scales. We present pore- and fracture-scale flow simulations obtained with a Smoothed Particle Hydrodynamics (SPH) model. The model allows to simulate free-surface flow dynamics including the effect of surface tension for a wide range of wetting conditions. Several empirical and semi-analytical solutions are used to verify the model. We show that our results satisfy the empirical scaling laws for droplet velocity and critical contact angle. Due to the efficient generation of surface tension via particle-particle interaction forces the dynamic wetting of surfaces as well as the velocity enhancement of droplets on saturated surfaces can readily be obtained. Furthermore, we study the effect of surface roughness on droplet velocities. Lastly, we present flow and transport simulations in the presence of an adjacent porous matrix in order to investigate its influence on the fracture surface flow dynamics and transport across the matrix-fracture interface.

  6. Hydrodynamics of embedded planets' first atmospheres - I. A centrifugal growth barrier for 2D flows

    NASA Astrophysics Data System (ADS)

    Ormel, Chris W.; Kuiper, Rolf; Shi, Ji-Ming

    2015-01-01

    In the core accretion paradigm of planet formation, gas giants only form a massive atmosphere after their progenitors exceeded a threshold mass: the critical core mass. Most (exo)planets, being smaller and rock/ice-dominated, never crossed this line. Nevertheless, they were massive enough to attract substantial amounts of gas from the disc, while their atmospheres remained in pressure-equilibrium with the disc. Our goal is to characterize the hydrodynamical properties of the atmospheres of such embedded planets and the implications for their (long-term) evolution. In this paper - the first in series - we start to investigate the properties of an isothermal and inviscid flow past a small, embedded planet by conducting local, 2D hydrodynamical simulations. Using the PLUTO code, we confirm that the flow is steady and bound. This steady outcome is most apparent for the log-polar grid (with the grid spacing proportional to the distance from the planet). For low-mass planets, Cartesian grids are somewhat less efficient as they have difficulty to follow the circular, large speeds in the deep atmosphere. Relating the amount of rotation to the gas fraction of the atmosphere, we find that more massive atmospheres rotate faster - a finding consistent with Kelvin's circulation theorem. Rotation therefore limits the amount of gas that planets can acquire from the nebula. Dependent on the Toomre-Q parameter of the circumstellar disc, the planet's atmosphere will reach Keplerian rotation before self-gravity starts to become important.

  7. Optimization of a Two-Fluid Hydrodynamic Model of Churn-Turbulent Flow

    SciTech Connect

    Donna Post Guillen

    2009-07-01

    A hydrodynamic model of two-phase, churn-turbulent flows is being developed using the computational multiphase fluid dynamics (CMFD) code, NPHASE-CMFD. The numerical solutions obtained by this model are compared with experimental data obtained at the TOPFLOW facility of the Institute of Safety Research at the Forschungszentrum Dresden-Rossendorf. The TOPFLOW data is a high quality experimental database of upward, co-current air-water flows in a vertical pipe suitable for validation of computational fluid dynamics (CFD) codes. A five-field CMFD model was developed for the continuous liquid phase and four bubble size groups using mechanistic closure models for the ensemble-averaged Navier-Stokes equations. Mechanistic models for the drag and non-drag interfacial forces are implemented to include the governing physics to describe the hydrodynamic forces controlling the gas distribution. The closure models provide the functional form of the interfacial forces, with user defined coefficients to adjust the force magnitude. An optimization strategy was devised for these coefficients using commercial design optimization software. This paper demonstrates an approach to optimizing CMFD model parameters using a design optimization approach. Computed radial void fraction profiles predicted by the NPHASE-CMFD code are compared to experimental data for four bubble size groups.

  8. Hydrodynamic behavior in the outer shear layer of partly obstructed open channels

    NASA Astrophysics Data System (ADS)

    Ben Meftah, Mouldi; De Serio, Francesca; Mossa, Michele

    2014-06-01

    Despite the many studies on flow in partly obstructed open channels, this issue remains of fundamental importance in order to better understand the interaction between flow behavior and the canopy structure. In the first part of this study we suggest a new theoretical approach able to model the flow pattern within the shear layer in the unobstructed domain, adjacent to the canopy area. Differently from previous studies, the new analytical solution of flow momentum equations takes into account the transversal velocity component of the flow, which is modelled as a linear function of the streamwise velocity. The proposed theoretical model is validated by different experiments carried out on a physical model of a very large rectangular channel by the research group of the Department of Civil, Environmental, Building Engineering and Chemistry of the Technical University of Bari. An array of vertical, rigid, and circular steel cylinders was partially mounted on the bottom in the central part of the flume, leaving two lateral areas of free flow circulation near the walls. The three-dimensional flow velocity components were measured using a 3D Acoustic Doppler Velocimeter. A comparison of the measured and predicted data of the present study with those obtained in other previous studies, carried out with different canopy density, show a non-dependence of this analytical solution on the array density and the Reynolds number. In the second part of the paper, detailed observations of turbulent intensities and spanwise Reynolds stresses in the unobstructed flow are analyzed and discussed. Differently from some earlier studies, it was observed that the peak of the turbulence intensity and that of the spanwise Reynolds stress are significantly shifted toward the center of the shear layer.

  9. Coupling of Smoothed Particle Hydrodynamics with Finite Volume method for free-surface flows

    NASA Astrophysics Data System (ADS)

    Marrone, S.; Di Mascio, A.; Le Touzé, D.

    2016-04-01

    A new algorithm for the solution of free surface flows with large front deformation and fragmentation is presented. The algorithm is obtained by coupling a classical Finite Volume (FV) approach, that discretizes the Navier-Stokes equations on a block structured Eulerian grid, with an approach based on the Smoothed Particle Hydrodynamics (SPH) method, implemented in a Lagrangian framework. The coupling procedure is formulated in such a way that each solver is applied in the region where its intrinsic characteristics can be exploited in the most efficient and accurate way: the FV solver is used to resolve the bulk flow and the wall regions, whereas the SPH solver is implemented in the free surface region to capture details of the front evolution. The reported results clearly prove that the combined use of the two solvers is convenient from the point of view of both accuracy and computing time.

  10. Hydrodynamics of two-phase flow in gas-liquid cylindrical cyclone separators

    SciTech Connect

    Arpandi, I.; Joshi, A.R.; Shoham, O.

    1995-12-31

    This paper presents new experimental data and an improved mechanistic model for the Gas-Liquid Cylindrical Cyclone (GLCC) separator. The data were acquired utilizing a 3 inch ID laboratory-scale GLCC, and are presented along with a limited number of field data. The data include measurements of several parameters of the flow behavior and the operational envelope of the GLCC. The operational envelope defines the conditions for which there will be no liquid carry-over or gas carry-under. The developed model enables the prediction of the hydrodynamic flow behavior in the GLCC, including the operational envelope, equilibrium liquid level, vortex shape, velocity and holdup distributions and pressure drop across the GLCC. The predictions of the model are compared with the experimental data. These provide the state-of-the-art for the design of GLCC`s for the industry.

  11. Smoothed Particle Hydrodynamics pore-scale simulations of unstable immiscible flow in porous media

    SciTech Connect

    Bandara, Dunusinghe Mudiyanselage Uditha C.; Tartakovsky, Alexandre M.; Oostrom, Martinus; Palmer, Bruce J.; Grate, Jay W.; Zhang, Changyong

    2013-12-01

    We have conducted a series of high-resolution numerical experiments using the Pair-Wise Force Smoothed Particle Hydrodynamics (PF-SPH) multiphase flow model. First, we derived analytical expressions relating parameters in the PF-SPH model to the surface tension and static contact angle. Next, we used the model to study viscous fingering, capillary fingering, and stable displacement of immiscible fluids in porous media for a wide range of capillary numbers and viscosity ratios. We demonstrated that the steady state saturation profiles and the boundaries of viscous fingering, capillary fingering, and stable displacement regions compare favorably with micromodel laboratory experimental results. For displacing fluid with low viscosity, we observed that the displacement pattern changes from viscous fingering to stable displacement with increasing injection rate. When a high viscosity fluid is injected, transition behavior from capillary fingering to stable displacement occurred as the flow rate was increased. These observation also agree with the results of the micromodel laboratory experiments.

  12. Shear-induced crystallization of a dense rapid granular flow: hydrodynamics beyond the melting point.

    PubMed

    Khain, Evgeniy; Meerson, Baruch

    2006-06-01

    We investigate shear-induced crystallization in a very dense flow of monodisperse inelastic hard spheres. We consider a steady plane Couette flow under constant pressure and neglect gravity. We assume that the granular density is greater than the melting point of the equilibrium phase diagram of elastic hard spheres. We employ a Navier-Stokes hydrodynamics with constitutive relations all of which (except the shear viscosity) diverge at the crystal-packing density, while the shear viscosity diverges at a smaller density. The phase diagram of the steady flow is described by three parameters: an effective Mach number, a scaled energy loss parameter, and an integer number m: the number of half-oscillations in a mechanical analogy that appears in this problem. In a steady shear flow the viscous heating is balanced by energy dissipation via inelastic collisions. This balance can have different forms, producing either a uniform shear flow or a variety of more complicated, nonlinear density, velocity, and temperature profiles. In particular, the model predicts a variety of multilayer two-phase steady shear flows with sharp interphase boundaries. Such a flow may include a few zero-shear (solidlike) layers, each of which moving as a whole, separated by fluidlike regions. As we are dealing with a hard sphere model, the granulate is fluidized within the "solid" layers: the granular temperature is nonzero there, and there is energy flow through the boundaries of the solid layers. A linear stability analysis of the uniform steady shear flow is performed, and a plausible bifurcation diagram of the system, for a fixed m, is suggested. The problem of selection of m remains open. PMID:16906816

  13. General Relativistic Hydrodynamic Simulation of Accretion Flow from a Stellar Tidal Disruption

    NASA Astrophysics Data System (ADS)

    Shiokawa, Hotaka; Krolik, Julian H.; Cheng, Roseanne M.; Piran, Tsvi; Noble, Scott C.

    2015-05-01

    We study how the matter dispersed when a supermassive black hole tidally disrupts a star joins an accretion flow. Combining a relativistic hydrodynamic simulation of the stellar disruption with a relativistic hydrodynamics simulation of the subsequent debris motion, we track the evolution of such a system until ≃ 80% of the stellar mass bound to the black hole has settled into an accretion flow. Shocks near the stellar pericenter and also near the apocenter of the most tightly bound debris dissipate orbital energy, but only enough to make its characteristic radius comparable to the semimajor axis of the most bound material, not the tidal radius as previously envisioned. The outer shocks are caused by post-Newtonian relativistic effects, both on the stellar orbit during its disruption and on the tidal forces. Accumulation of mass into the accretion flow is both non-monotonic and slow, requiring several to 10 times the orbital period of the most tightly bound tidal streams, while the inflow time for most of the mass may be comparable to or longer than the mass accumulation time. Deflection by shocks does, however, cause some mass to lose both angular momentum and energy, permitting it to move inward even before most of the mass is accumulated into the accretion flow. Although the accretion rate still rises sharply and then decays roughly as a power law, its maximum is ≃ 0.1× the previous expectation, and the timescale of the peak is ≃ 5× longer than previously predicted. The geometric mean of the black hole mass and stellar mass inferred from a measured event timescale is therefore ≃ 0.2× the value given by classical theory.

  14. An Integrated Numerical Hydrodynamic Shallow Flow-Solute Transport Model for Urban Area

    NASA Astrophysics Data System (ADS)

    Alias, N. A.; Mohd Sidek, L.

    2016-03-01

    The rapidly changing on land profiles in the some urban areas in Malaysia led to the increasing of flood risk. Extensive developments on densely populated area and urbanization worsen the flood scenario. An early warning system is really important and the popular method is by numerically simulating the river and flood flows. There are lots of two-dimensional (2D) flood model predicting the flood level but in some circumstances, still it is difficult to resolve the river reach in a 2D manner. A systematic early warning system requires a precisely prediction of flow depth. Hence a reliable one-dimensional (1D) model that provides accurate description of the flow is essential. Research also aims to resolve some of raised issues such as the fate of pollutant in river reach by developing the integrated hydrodynamic shallow flow-solute transport model. Presented in this paper are results on flow prediction for Sungai Penchala and the convection-diffusion of solute transports simulated by the developed model.

  15. Two-phase electro-hydrodynamic flow modeling by a conservative level set model.

    PubMed

    Lin, Yuan

    2013-03-01

    The principles of electro-hydrodynamic (EHD) flow have been known for more than a century and have been adopted for various industrial applications, for example, fluid mixing and demixing. Analytical solutions of such EHD flow only exist in a limited number of scenarios, for example, predicting a small deformation of a single droplet in a uniform electric field. Numerical modeling of such phenomena can provide significant insights about EHDs multiphase flows. During the last decade, many numerical results have been reported to provide novel and useful tools of studying the multiphase EHD flow. Based on a conservative level set method, the proposed model is able to simulate large deformations of a droplet by a steady electric field, which is beyond the region of theoretic prediction. The model is validated for both leaky dielectrics and perfect dielectrics, and is found to be in excellent agreement with existing analytical solutions and numerical studies in the literature. Furthermore, simulations of the deformation of a water droplet in decyl alcohol in a steady electric field match better with published experimental data than the theoretical prediction for large deformations. Therefore the proposed model can serve as a practical and accurate tool for simulating two-phase EHD flow. PMID:23161380

  16. Hydrodynamic flow regimes, gas holdup, and liquid circulation in airlift reactors

    SciTech Connect

    Abashar, M.E.; Narsingh, U.; Rouillard, A.E.; Judd, R.

    1998-04-01

    This study reports an experimental investigation into the hydrodynamic behavior of an external-loop airlift reactor (ALR) for the air-water system. Three distinct flow regimes are identified--namely homogeneous, transition, and heterogeneous regimes. The transition between homogeneous and heterogeneous flow is observed to occur over a wide range rather than being merely a single point as has been previously reported in the literature. A gas holdup correlation is developed for each flow regime. The correlations fit the experimental gas holdup data with very good accuracy (within {+-}5%). It would appear, therefore, that a deterministic equation to describe each flow regime is likely to exist in ALRs. This equation is a function of the reactor geometry and the system`s physical properties. New data concerning the axial variation of gas holdup is reported in which a minimum value is observed. This phenomenon is discussed and an explanation offered. Discrimination between two sound theoretical models--namely model 1 (Chisti et al., 1988) and model 2 (Garcia Calvo, 1989)--shows that model 1 predicts satisfactorily the liquid circulation velocity with an error of less than {+-} 10%. The good predictive features of model 1 may be due to the fact that it allows for a significant energy dissipation by wakes behind bubbles. Model 1 is now further improved by the new gas holdup correlations which are derived for the three different flow regimes.

  17. Analysis of hydrodynamic fluctuations in heterogeneous adjacent multidomains in shear flow.

    PubMed

    Bian, Xin; Deng, Mingge; Tang, Yu-Hang; Karniadakis, George Em

    2016-03-01

    We analyze hydrodynamic fluctuations of a hybrid simulation under shear flow. The hybrid simulation is based on the Navier-Stokes (NS) equations on one domain and dissipative particle dynamics (DPD) on the other. The two domains overlap, and there is an artificial boundary for each one within the overlapping region. To impose the artificial boundary of the NS solver, a simple spatial-temporal averaging is performed on the DPD simulation. In the artificial boundary of the particle simulation, four popular strategies of constraint dynamics are implemented, namely the Maxwell buffer [Hadjiconstantinou and Patera, Int. J. Mod. Phys. C 08, 967 (1997)], the relaxation dynamics [O’Connell and Thompson, Phys. Rev. E 52, R5792 (1995)], the least constraint dynamics [Nie et al.,J. Fluid Mech. 500, 55 (2004); Werder et al., J. Comput. Phys. 205, 373 (2005)], and the flux imposition [Flekkøy et al., Europhys. Lett. 52, 271 (2000)], to achieve a target mean value given by the NS solver. Going beyond the mean flow field of the hybrid simulations, we investigate the hydrodynamic fluctuations in the DPD domain. Toward that end, we calculate the transversal autocorrelation functions of the fluctuating variables in k space to evaluate the generation, transport, and dissipation of fluctuations in the presence of a hybrid interface. We quantify the unavoidable errors in the fluctuations, due to both the truncation of the domain and the constraint dynamics performed in the artificial boundary. Furthermore, we compare the four methods of constraint dynamics and demonstrate how to reduce the errors in fluctuations. The analysis and findings of this work are directly applicable to other hybrid simulations of fluid flow with thermal fluctuations. PMID:27078489

  18. Analysis of hydrodynamic fluctuations in heterogeneous adjacent multidomains in shear flow

    NASA Astrophysics Data System (ADS)

    Bian, Xin; Deng, Mingge; Tang, Yu-Hang; Karniadakis, George Em

    2016-03-01

    We analyze hydrodynamic fluctuations of a hybrid simulation under shear flow. The hybrid simulation is based on the Navier-Stokes (NS) equations on one domain and dissipative particle dynamics (DPD) on the other. The two domains overlap, and there is an artificial boundary for each one within the overlapping region. To impose the artificial boundary of the NS solver, a simple spatial-temporal averaging is performed on the DPD simulation. In the artificial boundary of the particle simulation, four popular strategies of constraint dynamics are implemented, namely the Maxwell buffer [Hadjiconstantinou and Patera, Int. J. Mod. Phys. C 08, 967 (1997), 10.1142/S0129183197000837], the relaxation dynamics [O'Connell and Thompson, Phys. Rev. E 52, R5792 (1995), 10.1103/PhysRevE.52.R5792], the least constraint dynamics [Nie et al., J. Fluid Mech. 500, 55 (2004), 10.1017/S0022112003007225; Werder et al., J. Comput. Phys. 205, 373 (2005), 10.1016/j.jcp.2004.11.019], and the flux imposition [Flekkøy et al., Europhys. Lett. 52, 271 (2000), 10.1209/epl/i2000-00434-8], to achieve a target mean value given by the NS solver. Going beyond the mean flow field of the hybrid simulations, we investigate the hydrodynamic fluctuations in the DPD domain. Toward that end, we calculate the transversal autocorrelation functions of the fluctuating variables in k space to evaluate the generation, transport, and dissipation of fluctuations in the presence of a hybrid interface. We quantify the unavoidable errors in the fluctuations, due to both the truncation of the domain and the constraint dynamics performed in the artificial boundary. Furthermore, we compare the four methods of constraint dynamics and demonstrate how to reduce the errors in fluctuations. The analysis and findings of this work are directly applicable to other hybrid simulations of fluid flow with thermal fluctuations.

  19. Probe Without Moving Parts Measures Flow Angle

    NASA Technical Reports Server (NTRS)

    Corda, Stephen; Vachon, M. Jake

    2003-01-01

    The measurement of local flow angle is critical in many fluid-dynamic applications, including the aerodynamic flight testing of new aircraft and flight systems. Flight researchers at NASA Dryden Flight Research Center have recently developed, flight-tested, and patented the force-based flow-angle probe (FLAP), a novel, force-based instrument for the measurement of local flow direction. Containing no moving parts, the FLAP may provide greater simplicity, improved accuracy, and increased measurement access, relative to conventional moving vane-type flow-angle probes. Forces in the FLAP can be measured by various techniques, including those that involve conventional strain gauges (based on electrical resistance) and those that involve more advanced strain gauges (based on optical fibers). A correlation is used to convert force-measurement data to the local flow angle. The use of fiber optics will enable the construction of a miniature FLAP, leading to the possibility of flow measurement in very small or confined regions. This may also enable the tufting of a surface with miniature FLAPs, capable of quantitative flow-angle measurements, similar to attaching yarn tufts for qualitative measurements. The prototype FLAP was a small, aerodynamically shaped, low-aspect-ratio fin about 2 in. (approximately equal to 5 cm) long, 1 in. (approximately equal to 2.5 cm) wide, and 0.125 in. (approximately equal to 0.3 cm) thick (see Figure 1). The prototype FLAP included simple electrical-resistance strain gauges for measuring forces. Four strain gauges were mounted on the FLAP; two on the upper surface and two on the lower surface. The gauges were connected to form a full Wheatstone bridge, configured as a bending bridge. In preparation for a flight test, the prototype FLAP was mounted on the airdata boom of a flight-test fixture (FTF) on the NASA Dryden F-15B flight research airplane.

  20. Developing a weakly compressible smoothed particle hydrodynamics model for biological flows

    NASA Astrophysics Data System (ADS)

    Vasyliv, Yaroslav; Alexeev, Alexander

    2014-11-01

    Smoothed Particle Hydrodynamics (SPH) is a meshless particle method originally developed for astrophysics applications in 1977. Over the years, limitations of the original formulations have been addressed by different groups to extend the domain of SPH application. In biologically relevant internal flows, two of the several challenges still facing SPH are 1) treatment of inlet, outlet, and no slip boundary conditions and 2) treatment of second derivatives present in the viscous terms. In this work, we develop a 2D weakly compressible SPH (WCSPH) for simulating viscous internal flows which incorporates some of the recent advancements made by groups in the above two areas. The method is validated against several analytical and experimental benchmark solutions for both steady and unsteady laminar flows. In particular, the 2013 U.S. Food and Drug Administration benchmark test case for medical devices - steady forward flow through a nozzle with a sudden contraction and conical diffuser - is simulated for different Reynolds numbers in the laminar region and results are validated against the published experimental and CFD datasets. Support from the National Science Foundation Graduate Research Fellowship Program (NSF GRFP) is gratefully acknowledged.

  1. Numerical Analysis of Hydrodynamic Flow in Microfluidic Biochip for Single-Cell Trapping Application.

    PubMed

    Khalili, Amelia Ahmad; Ahmad, Mohd Ridzuan

    2015-01-01

    Single-cell analysis has become the interest of a wide range of biological and biomedical engineering research. It could provide precise information on individual cells, leading to important knowledge regarding human diseases. To perform single-cell analysis, it is crucial to isolate the individual cells before further manipulation is carried out. Recently, microfluidic biochips have been widely used for cell trapping and single cell analysis, such as mechanical and electrical detection. This work focuses on developing a finite element simulation model of single-cell trapping system for any types of cells or particles based on the hydrodynamic flow resistance (Rh) manipulations in the main channel and trap channel to achieve successful trapping. Analysis is carried out using finite element ABAQUS-FEA™ software. A guideline to design and optimize single-cell trapping model is proposed and the example of a thorough optimization analysis is carried out using a yeast cell model. The results show the finite element model is able to trap a single cell inside the fluidic environment. Fluid's velocity profile and streamline plots for successful and unsuccessful single yeast cell trapping are presented according to the hydrodynamic concept. The single-cell trapping model can be a significant important guideline in designing a new chip for biomedical applications. PMID:26569218

  2. Smoothed Particle Hydrodynamics Stochastic Model for Flow and Transport in Porous Media

    SciTech Connect

    Tartakovsky, Alexandre M.; Tartakovsky, Daniel M.; Meakin, Paul

    2008-11-03

    A meso-scale stochastic Lagrangian particle model was developed and used to simulate conservative and reactive transport in porous media. In the stochastic model, the fluid flow in a porous continuum is governed by a combination of a Langevin equation and continuity equation. Pore-scale velocity fluctuations, the source of hydrodynamic dispersion, are represented by the white noise. A smoothed particle hydrodynamics method was used to solve the governing equations. Changes in the properties of the fluid particles (e.g., the solute concentration) are governed by the advection-diffusion equation. The separate treatment of advective and diffusive mixing in the stochastic transport model is more realistic than the classical advection-dispersion theory, which uses a single effective diffusion coefficient (the dispersion coefficient) to describe both types of mixing leading to over-prediction of mixing induced effective reaction rates. The stochastic model predicts much lower reaction product concentrations in mixing induced reactions. In addition, the dispersion theory predicts more stable fronts (with a higher effective fractal dimension) than the stochastic model during the growth of Rayleigh-Taylor instabilities.

  3. Numerical Analysis of Hydrodynamic Flow in Microfluidic Biochip for Single-Cell Trapping Application

    PubMed Central

    Ahmad Khalili, Amelia; Ahmad, Mohd Ridzuan

    2015-01-01

    Single-cell analysis has become the interest of a wide range of biological and biomedical engineering research. It could provide precise information on individual cells, leading to important knowledge regarding human diseases. To perform single-cell analysis, it is crucial to isolate the individual cells before further manipulation is carried out. Recently, microfluidic biochips have been widely used for cell trapping and single cell analysis, such as mechanical and electrical detection. This work focuses on developing a finite element simulation model of single-cell trapping system for any types of cells or particles based on the hydrodynamic flow resistance (Rh) manipulations in the main channel and trap channel to achieve successful trapping. Analysis is carried out using finite element ABAQUS-FEA™ software. A guideline to design and optimize single-cell trapping model is proposed and the example of a thorough optimization analysis is carried out using a yeast cell model. The results show the finite element model is able to trap a single cell inside the fluidic environment. Fluid’s velocity profile and streamline plots for successful and unsuccessful single yeast cell trapping are presented according to the hydrodynamic concept. The single-cell trapping model can be a significant important guideline in designing a new chip for biomedical applications. PMID:26569218

  4. Hydrodynamic theory for nematic shells: The interplay among curvature, flow, and alignment

    NASA Astrophysics Data System (ADS)

    Napoli, Gaetano; Vergori, Luigi

    2016-08-01

    We derive the hydrodynamic equations for nematic liquid crystals lying on curved substrates. We invoke the Lagrange-Rayleigh variational principle to adapt the Ericksen-Leslie theory to two-dimensional nematics in which a degenerate anchoring of the molecules on the substrate is enforced. The only constitutive assumptions in this scheme concern the free-energy density, given by the two-dimensional Frank potential, and the density of dissipation which is required to satisfy appropriate invariance requirements. The resulting equations of motion couple the velocity field, the director alignment, and the curvature of the shell. To illustrate our findings, we consider the effect of a simple shear flow on the alignment of a nematic lying on a cylindrical shell.

  5. Hydrodynamic chromatography and field flow fractionation in finite aspect ratio channels.

    PubMed

    Shendruk, T N; Slater, G W

    2014-04-25

    Hydrodynamic chromatography (HC) and field-flow fractionation (FFF) separation methods are often performed in 3D rectangular channels, though ideal retention theory assumes 2D systems. Devices are commonly designed with large aspect ratios; however, it can be unavoidable or desirable to design rectangular channels with small or even near-unity aspect ratios. To assess the significance of finite-aspect ratio effects and interpret experimental retention results, an ideal, analytical retention theory is needed. We derive a series solution for the ideal retention ratio of HC and FFF rectangular channels. Rather than limiting devices' ability to resolve samples, our theory predicts that retention curves for normal-mode FFF are well approximated by the infinite plate solution and that the performance of HC is actually improved. These findings suggest that FFF devices need not be designed with large aspect ratios and that rectangular HC channels are optimal when the aspect ratio is unity. PMID:24674643

  6. On the influence of cold-water coral mound size on flow hydrodynamics, and vice versa

    NASA Astrophysics Data System (ADS)

    Cyr, Frédéric; Haren, Hans; Mienis, Furu; Duineveld, Gerard; Bourgault, Daniel

    2016-01-01

    Using a combination of in situ observations and idealistic 2-D nonhydrostatic numerical simulations, the relation between cold-water coral (CWC) mound size and hydrodynamics is explored for the Rockall Bank area in the North Atlantic Ocean. It is shown that currents generated by topographically trapped tidal waves in this area cause large isopycnal depressions resulting from an internal hydraulic control above CWC mounds. The oxygen concentration distribution is used as a tracer to visualize the flow behavior and the turbulent mixing above the mounds. By comparing two CWC mounds of different sizes and located close to each other, it is shown that the resulting mixing is highly dependent on the size of the mound. The effects of the hydraulic control for mixing, nutrient availability, and ecosystem functioning are also discussed.

  7. Hydrodynamic theory for nematic shells: The interplay among curvature, flow, and alignment.

    PubMed

    Napoli, Gaetano; Vergori, Luigi

    2016-08-01

    We derive the hydrodynamic equations for nematic liquid crystals lying on curved substrates. We invoke the Lagrange-Rayleigh variational principle to adapt the Ericksen-Leslie theory to two-dimensional nematics in which a degenerate anchoring of the molecules on the substrate is enforced. The only constitutive assumptions in this scheme concern the free-energy density, given by the two-dimensional Frank potential, and the density of dissipation which is required to satisfy appropriate invariance requirements. The resulting equations of motion couple the velocity field, the director alignment, and the curvature of the shell. To illustrate our findings, we consider the effect of a simple shear flow on the alignment of a nematic lying on a cylindrical shell. PMID:27627231

  8. Hydrodynamic Coupling in Microbially Mediated Fracture Mineralization: Formation of Self-Organized Groundwater Flow Channels

    NASA Astrophysics Data System (ADS)

    Lunn, R. J.; El Mountassir, G.; MacLachlan, E.; Moir, H.

    2013-12-01

    Evidence of fossilized microorganisms embedded within mineral veins and mineral-filled fractures has been observed in a wide range of geological environments. Microorganisms can act as sites for mineral nucleation and also contribute to mineral precipitation by inducing local geochemical changes. In this study, we explore fundamental controls on microbially induced mineralization in rock fractures. Specifically, we systematically investigate the influence of hydrodynamics (velocity, flow rate, aperture) on microbially mediated calcite precipitation. We use a case study of microbially induced calcite precipitation as a model biomineralization system to investigate potential feedback mechanisms between the temporally varying patterns of mineral precipitation within a fracture and the resulting variations in the local velocity field. Fractures are represented as a series of precision-etched parallel channels between a pair of sealed Perspex plates. Multiple channels are designed to maintain a constant flow rate, whilst independently adjusting channel aperture and width to explore the effects of aperture and fluid velocity on biomineral precipitation. Our experimental results demonstrate that a feedback mechanism exists between the gradual reduction in fracture aperture due to precipitation, and its effect on the local fluid velocity. This feedback results in mineral fill distributions that focus flow into a small number of self-organizing channels that remain open, ultimately controlling the final aperture profile that governs flow within the fracture. This feedback mechanism exists because precipitation on the fracture walls (as opposed to in solution) requires the bacteria to be transported to the fracture surface. Bacteria settle out of a quiescent solution at a velocity that is dependent on individual floc size and density. This settling velocity competes with the bed shear velocity, inhibiting deposition via entrainment. As precipitation progresses, the flow

  9. The hydrodynamic part of the 3D CEMBS model for the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Dzierzbicka-Glowacka, Lidia; Jakacki, Jaromir; Janecki, Maciej; Nowicki, Artur

    2013-04-01

    The paper presents a hydrodynamic part of the coupled ice-ocean model 3D CEMBS designed for the Baltic Sea. It is based on the Community Earth System Model (CESM from the National Center for Atmospheric Research). It was adopted for the Baltic Sea as a coupled sea-ice model. It consists of the Community Ice Code (CICE model, version 4.0) and the Parallel Ocean Program (version 2.1). The models are linked through the coupler (CPL7) based on the Model Coupling Toolkit library. The ocean model has 21 vertical levels and horizontal grid of 600x640 cells. Horizontal resolution is approximately 2km. It is forced by atmospheric fields from European Centre for Medium-Range Weather Forecasts and in operational mode from 48-hour atmospheric forecasts provided by the UM model from the Interdisciplinary Centre for Mathematical and Computational Modelling of Warsaw University (ICM). The study was financially supported by the Polish State Committee of Scientific Research (grants: No N N305 111636, N N306 353239). The partial support for this study was also provided by the project Satellite Monitoring of the Baltic Sea Environment - SatBaltyk founded by European Union through European Regional Development Fund contract no. POIG 01.01.02-22-011/09. Calculations were carried out at the Academy Computer Centre in Gdansk.

  10. Flow hydrodynamics and contaminant transport in the flow past a lateral square cavity

    NASA Astrophysics Data System (ADS)

    Escauriaza, Cristian; Polanco, Juan Ignacio; August, Olivia; Bolster, Diogo

    2015-11-01

    Turbulent flows past lateral cavities play an important role in the transport of contaminants in rivers and streams. Cavities are surface storage zones, where large-scale unsteady coherent structures are the leading mechanisms that produce longer residence times and control the fate of contaminants in the river. In this work we study the recirculating flow and mass transport in a lateral square cavity, by performing numerical simulations with a hybrid URANS/LES turbulence model (DES-LR). We focus on the dynamics of the coherent structures and their impacts on the transport and storage of a passive scalar. In addition, we use the numerical results to develop new 1D models that improve the description of the evolution of the averaged concentration inside the cavity. By transferring the information to larger spatial scales, we provide new insights on the mechanisms of contaminant transport and analyze the overall effects of surface storage zones in open channel flows. supported by Fondecyt grant 1130940.

  11. Smoothed particle hydrodynamics modelling of the fluid flow and heat transfer in the weld pool during laser spot welding

    NASA Astrophysics Data System (ADS)

    Tong, Mingming; Browne, David J.

    2012-01-01

    Smoothed particle hydrodynamics is employed, for the first time, to develop a numerical model for the melting and fluid flow during laser welding process. In this meshlessLagrangian method the gas-melt two phase flow, heat transfer, surface tension, and melting of solid parent material are considered. This model was used to study the evolution of temperature field and fluid flow in the case study of laser spot welding in 2D. The simulation results show a strong influence of the melting process on the flow of liquid metal and a clear influence of the Marangoni flow on the heat transfer is also found.

  12. MAESTRO: An Adaptive Low Mach Number Hydrodynamics Algorithm for Stellar Flows

    NASA Astrophysics Data System (ADS)

    Nonaka, Andrew; Almgren, A. S.; Bell, J. B.; Malone, C. M.; Zingale, M.

    2010-01-01

    Many astrophysical phenomena are highly subsonic, requiring specialized numerical methods suitable for long-time integration. We present MAESTRO, a low Mach number stellar hydrodynamics code that can be used to simulate long-time, low-speed flows that would be prohibitively expensive to model using traditional compressible codes. MAESTRO is based on an equation set that we have derived using low Mach number asymptotics; this equation set does not explicitly track acoustic waves and thus allows a significant increase in the time step. MAESTRO is suitable for two- and three-dimensional local atmospheric flows as well as three-dimensional full-star flows, and uses adaptive mesh refinement (AMR) to locally refine grids in regions of interest. Our initial scientific applications include the convective phase of Type Ia supernovae and Type I X-ray Bursts on neutron stars. The work at LBNL was supported by the SciDAC Program of the DOE Office of Advanced Scientific Computing Research under the DOE under contract No. DE-AC02-05CH11231. The work at Stony Brook was supported by the DOE/Office of Nuclear Physics, grant No. DE-FG02-06ER41448. We made use of the Jaguar via a DOE INCITE allocation at the OLCF at ORNL and Franklin at NERSC at LBNL.

  13. Multi-resolution flow simulations by smoothed particle hydrodynamics via domain decomposition

    NASA Astrophysics Data System (ADS)

    Bian, Xin; Li, Zhen; Tang, Yu-Hang; Karniadakis, George

    2015-11-01

    We present a methodology to concurrently couple particle-based methods via a domain decomposition (DD) technique for simulating viscous flows. In particular, we select two resolutions of the smoothed particle hydrodynamics (SPH) method as demonstration. Within the DD framework, a simulation domain is decomposed into two (or more) overlapping sub-domains, each of which has an individual particle scale determined by the local flow physics. Consistency of the two sub-domains is achieved in the overlap region by matching the two independent simulations based on Lagrangian interpolation of state variables and fluxes. The domain decomposition based SPH method (DD-SPH) employs different spatial and temporal resolutions, and hence, each sub-domain has its own smoothing length and time step. As a consequence, particle refinement and de-refinement are performed asynchronously according to individual time advancement of each sub-domain. The proposed strategy avoids SPH force interactions between different resolutions on purpose, so that coupling, in principle, can go beyond SPH - SPH, and may allow SPH to be coupled with other mesoscopic or microscopic particle methods. The DD-SPH method is validated first for a transient Couette flow, where simulation results base. US DOE Collaboratory on Mathematics for Mesoscopic Modeling of Materials (CM4).

  14. Hydrodynamics and sediment transport in a meandering channel with a model axial-flow hydrokinetic turbine

    NASA Astrophysics Data System (ADS)

    Hill, Craig; Kozarek, Jessica; Sotiropoulos, Fotis; Guala, Michele

    2016-02-01

    An investigation into the interactions between a model axial-flow hydrokinetic turbine (rotor diameter, dT = 0.15 m) and the complex hydrodynamics and sediment transport processes within a meandering channel was carried out in the Outdoor StreamLab research facility at the University of Minnesota St. Anthony Falls Laboratory. This field-scale meandering stream with bulk flow and sediment discharge control provided a location for high spatiotemporally resolved measurements of bed and water surface elevations around the model turbine. The device was installed within an asymmetric, erodible channel cross section under migrating bed form and fixed outer bank conditions. A comparative analysis between velocity and topographic measurements, with and without the turbine installed, highlights the local and nonlocal features of the turbine-induced scour and deposition patterns. In particular, it shows how the cross-section geometry changes, how the bed form characteristics are altered, and how the mean flow field is distorted both upstream and downstream of the turbine. We further compare and discuss how current energy conversion deployments in meander regions would result in different interactions between the turbine operation and the local and nonlocal bathymetry compared to straight channels.

  15. Development and validation of a magneto-hydrodynamic solver for blood flow analysis

    NASA Astrophysics Data System (ADS)

    Kainz, W.; Guag, J.; Benkler, S.; Szczerba, D.; Neufeld, E.; Krauthamer, V.; Myklebust, J.; Bassen, H.; Chang, I.; Chavannes, N.; Kim, J. H.; Sarntinoranont, M.; Kuster, N.

    2010-12-01

    The objective of this study was to develop a numerical solver to calculate the magneto-hydrodynamic (MHD) signal produced by a moving conductive liquid, i.e. blood flow in the great vessels of the heart, in a static magnetic field. We believe that this MHD signal is able to non-invasively characterize cardiac blood flow in order to supplement the present non-invasive techniques for the assessment of heart failure conditions. The MHD signal can be recorded on the electrocardiogram (ECG) while the subject is exposed to a strong static magnetic field. The MHD signal can only be measured indirectly as a combination of the heart's electrical signal and the MHD signal. The MHD signal itself is caused by induced electrical currents in the blood due to the moving of the blood in the magnetic field. To characterize and eventually optimize MHD measurements, we developed a MHD solver based on a finite element code. This code was validated against literature, experimental and analytical data. The validation of the MHD solver shows good agreement with all three reference values. Future studies will include the calculation of the MHD signals for anatomical models. We will vary the orientation of the static magnetic field to determine an optimized location for the measurement of the MHD blood flow signal.

  16. Hydrodynamic Dryout in Two-Phase Flows: Observations of Low Bond Number Systems

    NASA Technical Reports Server (NTRS)

    Weislogel, Mark M.; McQuillen, John B.

    1998-01-01

    Dryout occurs readily in certain slug and annular two-phase flows for systems that exhibit partial wetting. The mechanism for the ultimate rupture of the film is attributed to van der Waals forces, but the pace towards rupture is quickened by the surface tension instability (Rayleigh-type) of the annular film left by the advancing slug and by the many perturbations of the free surface present in the Re(sub g) approximately 0(10(exp 3)), Re(sub l) approximately 0(10(exp 4)), and Ca approximately 0(10(exp -1) flows. Results from low-gravity experiments using three different test fluids are presented and discussed. For the range of tests conducted, the effect of increasing viscosity is shown to eliminate the film rupture while the decrease of surface tension via a surfactant additive is shown to dramatically enhance it. Laboratory measurements using capillary tubes are presented which reveal the sensitivity of the dryout phenomena to particulate and surfactant contamination. Rom such observations, dryout due to the hydrodynamic-van der Waals instability can be expected in a certain range of flow parameters in the absence of heat transfer. The addition of heat transfer may only exacerbate the problem by producing thermal transport lines replete with "hot spots." A caution to this effect is issued to future space systems designers concerning the use of partially wetting working fluids.

  17. Effect of the hydrodynamic conditions of electrolyte flow on critical states in electrochemical machining

    NASA Astrophysics Data System (ADS)

    Sawicki, Jerzy; Paczkowski, Tomasz

    2015-05-01

    The paper presents the results of experimental studies of electrochemical machining process oriented on occurring in the treatment critical states caused by electrolyte flow hydrodynamic conditions in the gap between electrodes. Material forming in electrochemical machining is carried out by anodic dissolution. In general in ECM process, the essence of the treatment is that the workpiece is the anode and the tool is the cathode. The space between the anode and cathode is filled by electrolyte. The current flow between the electrodes causes anodic dissolution process, resulting in the removal of material from the anode. Choosing in the process of electrochemical machining, respectively: anode and cathode material, electrolyte and processing parameters, such conditions can be created that enable a high process efficiency and smoothness of the surface. Inappropriate selection of machining parameters can cause the emergence of critical states in the ECM, which are mainly related to the flow of the electrolyte in the gap between electrodes. This work is an attempt to assess the occurring critical states in ECM on the example of machining of curved surfaces with any sort of outline and curved rotating surfaces.

  18. Hydrodynamical Numerical Simulation of Wind Production from Black Hole Hot Accretion Flows at Very Large Radii

    NASA Astrophysics Data System (ADS)

    Bu, De-Fu; Yuan, Feng; Gan, Zhao-Ming; Yang, Xiao-Hong

    2016-02-01

    Previous works show that strong winds exist in hot accretion flows around black holes. Those works focus only on the region close to the black hole, so it is unknown whether or where the wind production stops at large radii. In this paper, we investigate this problem with hydrodynamical simulations. We take into account the gravities of both the black hole and the nuclear star clusters. For the latter, we assume that the velocity dispersion of stars is a constant and its gravitational potential \\propto {σ }2{ln}(r), where σ is the velocity dispersion of stars, and r is the distance from the center of the galaxy. We focus on the region where the gravitational potential is dominated by the star cluster. We find that, just as for the accretion flow at small radii, the mass inflow rate decreases inward, and the flow is convectively unstable. However, a trajectory analysis shows that there is very little wind launched from the flow. Our result, combined with the results of Yuan et al.’s study from 2015, indicates that the mass flux of wind launched from hot accretion flow {\\dot{M}}{{wind}}={\\dot{M}}{{BH}}(r/20{r}s), with r≲ {R}A\\equiv {{GM}}{{BH}}/{σ }2. Here, {\\dot{M}}{{BH}} is the accretion rate at the black hole horizon, and RA is similar to the Bondi radius. We argue that the inward decrease of inflow rate is not due to mass loss via wind, but to convective motion. The disappearance of wind outside RA must be due to the change of the gravitational potential, but the exact reason remains to be probed.

  19. Numerical study of a quasi-hydrodynamic system of equations for flow computation at small mach numbers

    NASA Astrophysics Data System (ADS)

    Balashov, V. A.; Savenkov, E. B.

    2015-10-01

    The applicability of numerical algorithms based on a quasi-hydrodynamic system of equations for computing viscous heat-conducting compressible gas flows at Mach numbers M = 10-2-10-1 is studied numerically. The numerical algorithm is briefly described, and the results obtained for a number of two- and three-dimensional test problems are presented and compared with earlier numerical data.

  20. Discharge characteristics and hydrodynamics behaviors of atmospheric plasma jets produced in various gas flow patterns

    NASA Astrophysics Data System (ADS)

    Setsuhara, Yuichi; Uchida, Giichiro; Nakajima, Atsushi; Takenaka, Kosuke; Koga, Kazunori; Shiratani, Masaharu

    2015-09-01

    Atmospheric nonequilibrium plasma jets have been widely employed in biomedical applications. For biomedical applications, it is an important issue to understand the complicated mechanism of interaction of the plasma jet with liquid. In this study, we present analysis of the discharge characteristics of a plasma jet impinging onto the liquid surface under various gas flow patterns such as laminar and turbulence flows. For this purpose, we analyzed gas flow patters by using a Schlieren gas-flow imaging system in detail The plasma jet impinging into the liquid surface expands along the liquid surface. The diameter of the expanded plasma increases with gas flow rate, which is well explained by an increase in the diameter of the laminar gas-flow channel. When the gas flow rate is further increased, the gas flow mode transits from laminar to turbulence in the gas flow channel, which leads to the shortening of the plasm-jet length. Our experiment demonstrated that the gas flow patterns strongly affect the discharge characteristics in the plasma-jet system. This study was partly supported by a Grant-in-Aid for Scientific Research on Innovative Areas ``Plasma Medical Innovation'' (24108003) from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT).

  1. Significance of thermal fluctuations and hydrodynamic interactions in receptor-ligand-mediated adhesive dynamics of a spherical particle in wall-bound shear flow.

    PubMed

    Ramesh, K V; Thaokar, R; Prakash, J Ravi; Prabhakar, R

    2015-02-01

    The dynamics of adhesion of a spherical microparticle to a ligand-coated wall, in shear flow, is studied using a Langevin equation that accounts for thermal fluctuations, hydrodynamic interactions, and adhesive interactions. Contrary to the conventional assumption that thermal fluctuations play a negligible role at high Péclet numbers, we find that for particles with low surface densities of receptors, rotational diffusion caused by fluctuations about the flow and gradient directions aids in bond formation, leading to significantly greater adhesion on average, compared to simulations where thermal fluctuations are completely ignored. The role of wall hydrodynamic interactions on the steady-state motion of a particle, when the particle is close to the wall, has also been explored. At high Péclet numbers, the shear induced force that arises due to the stresslet part of the Stokes dipole plays a dominant role, reducing the particle velocity significantly and affecting the states of motion of the particle. The coupling between the translational and rotational degrees of freedom of the particle, brought about by the presence of hydrodynamic interactions, is found to have no influence on the binding dynamics. On the other hand, the drag coefficient, which depends on the distance of the particle from the wall, plays a crucial role at low rates of bond formation. A significant difference in the effect of both the shear force and the position-dependent drag force on the states of motion of the particle is observed when the Péclet number is small. PMID:25768500

  2. Collective flow in event-by-event partonic transport plus hydrodynamics hybrid approach

    NASA Astrophysics Data System (ADS)

    Bhalerao, Rajeev S.; Jaiswal, Amaresh; Pal, Subrata

    2015-07-01

    Complete evolution of the strongly interacting matter formed in ultrarelativistic heavy-ion collisions is studied within a coupled Boltzmann and relativistic viscous hydrodynamics approach. For the initial nonequilibrium evolution phase, we employ a multiphase transport (AMPT) model that explicitly includes event-by-event fluctuations in the number and positions of the participating nucleons as well as of the produced partons with subsequent parton transport. The ensuing near-equilibrium evolution of quark-gluon and hadronic matter is modeled within the (2 +1 ) -dimensional relativistic viscous hydrodynamics. We probe the role of parton dynamics in generating and maintaining the spatial anisotropy in the preequilibrium phase. Substantial spatial eccentricities ɛn are found to be generated in the event-by-event fluctuations in parton production from initial nucleon-nucleon collisions. For ultracentral heavy-ion collisions, the model is able to explain qualitatively the unexpected hierarchy of the harmonic flow coefficients vn(pT) (n =2 -6 ) observed at energies currently available at the CERN Large Hadron Collider (LHC). We find that the results for vn(pT) are rather insensitive to the variation (within a range) of the time of switchover from AMPT parton transport to hydrodynamic evolution. The usual Grad and the recently proposed Chapman-Enskog-like (nonequilibrium) single-particle distribution functions are found to give very similar results for vn(n =2 -4 ) . The model describes well both the BNL Relativistic Heavy Ion Collider and LHC data for vn(pT) at various centralities, with a constant shear viscosity to entropy density ratio of 0.08 and 0.12, respectively. The event-by-event distributions of v2 ,3 are in good agreement with the LHC data for midcentral collisions. The linear response relation vn=knɛn is found to be true for n =2 ,3 , except at large values of ɛn, where a larger value of kn is required, suggesting a small admixture of positive nonlinear

  3. Ideal hydrodynamics and elliptic flow at CERN Super Proton Synchrotron (SPS) energies: Importance of the initial conditions

    SciTech Connect

    Petersen, Hannah; Bleicher, Marcus

    2009-05-15

    The elliptic flow excitation function calculated in a full (3+1) dimensional hybrid Boltzmann approach with an intermediate hydrodynamic stage for heavy ion reactions from GSI Schwerionen Synchrotron to the highest CERN Super Proton Synchrotron (SPS) energies is discussed in the context of the experimental data. In this study, we employ a hadron gas equation of state to investigate the differences in the dynamics and viscosity effects. The specific event-by-event setup with initial conditions and freeze-out from a nonequilibrium transport model allows for a direct comparison between ideal fluid dynamics and transport simulations. At higher SPS energies, where the pure transport calculation cannot account for the high elliptic flow values, the smaller mean free path in the hydrodynamic evolution leads to higher elliptic flow values. In contrast to previous studies within pure hydrodynamics, the more realistic initial conditions employed here and the inclusion of a sequential final state hadronic decoupling provides results that are in line with the experimental data almost over the whole energy range from E{sub lab}=2-160A GeV. Thus, this new approach leads to a substantially different shape of the v{sub 2}/{epsilon} scaling curve as a function of (1/SdN{sub ch}/dy) in line with the experimental data compared to previous ideal hydrodynamic calculations. This hints at a strong influence of the initial conditions for the hydrodynamic evolution on the finally observed v{sub 2} values, thus questioning the standard interpretation that the hydrodynamic limit is only reached at BNL Relativistic Heavy Ion Collider energies.

  4. Investigation of flow mechanism of a robotic fish swimming by using flow visualization synchronized with hydrodynamic force measurement

    NASA Astrophysics Data System (ADS)

    Tan, Guang-Kun; Shen, Gong-Xin; Huang, Shuo-Qiao; Su, Wen-Han; Ke, Yu

    When swimming in water by flapping its tail, a fish can overcome the drag from uniform flow and propel its body. The involved flow mechanism concerns 3-D and unsteady effects. This paper presents the investigation of the flow mechanism on the basis of a 3-D robotic fish model which has the typical geometry of body and tail with periodic flapping 2-freedom kinematical motion testing in the case of St = 0.78, Re = 6,600 and phase delay mode (φ = - 75°), in which may have a greater or maximum propulsion (without consideration of the optimal efficiency). Using a special technique of dye visualization which can clearly show vortex sheet and vortices in detail and using the inner 3-component force balance and cable supporting system with the phase-lock technique, the 3-D flow structure visualized in the wake of fish and the hydrodynamic force measurement were synchronized and obtained. Under the mentioned flapping parameters, we found the key flow structure and its evolution, a pair of complex 3-D chain-shape vortex (S-H vortex-rings, S1 - H1 and S2 - H2, and their legs L1 and L2) flow structures, which attach the leading edge and the trailing edge, then shed, move downstream and outwards and distribute two antisymmetric staggering arrays along with the wake of the fish model in different phase stages during the flapping period. It is different with in the case of St = 0.25-0.35. Its typical flow structure and evolution are described and the results prove that they are different from the viewpoints based on the investigation of 2-D cases. For precision of the dynamic force measurement, in this paper it was provided with the method and techniques by subtracting the inertial forces and the forces induced by buoyancy and gravity effect in water, etc. from original data measured. The evolution of the synchronized measuring forces directly matching with the flow structure was also described in this paper.

  5. Investigation of flow mechanism of a robotic fish swimming by using flow visualization synchronized with hydrodynamic force measurement

    NASA Astrophysics Data System (ADS)

    Tan, Guang-Kun; Shen, Gong-Xin; Huang, Shuo-Qiao; Su, Wen-Han; Ke, Yu

    2007-11-01

    When swimming in water by flapping its tail, a fish can overcome the drag from uniform flow and propel its body. The involved flow mechanism concerns 3-D and unsteady effects. This paper presents the investigation of the flow mechanism on the basis of a 3-D robotic fish model which has the typical geometry of body and tail with periodic flapping 2-freedom kinematical motion testing in the case of St = 0.78, Re = 6,600 and phase delay mode ( φ = -75°), in which may have a greater or maximum propulsion (without consideration of the optimal efficiency). Using a special technique of dye visualization which can clearly show vortex sheet and vortices in detail and using the inner 3-component force balance and cable supporting system with the phase-lock technique, the 3-D flow structure visualized in the wake of fish and the hydrodynamic force measurement were synchronized and obtained. Under the mentioned flapping parameters, we found the key flow structure and its evolution, a pair of complex 3-D chain-shape vortex (S-H vortex-rings, S1-H1 and S2-H2, and their legs L1 and L2) flow structures, which attach the leading edge and the trailing edge, then shed, move downstream and outwards and distribute two anti-symmetric staggering arrays along with the wake of the fish model in different phase stages during the flapping period. It is different with in the case of St = 0.25-0.35. Its typical flow structure and evolution are described and the results prove that they are different from the viewpoints based on the investigation of 2-D cases. For precision of the dynamic force measurement, in this paper it was provided with the method and techniques by subtracting the inertial forces and the forces induced by buoyancy and gravity effect in water, etc. from original data measured. The evolution of the synchronized measuring forces directly matching with the flow structure was also described in this paper.

  6. Computational extended magneto-hydrodynamical study of shock structure generated by flows past an obstacle

    SciTech Connect

    Zhao, Xuan; Seyler, C. E.

    2015-07-15

    The magnetized shock problem is studied in the context where supersonic plasma flows past a solid obstacle. This problem exhibits interesting and important phenomena such as a bow shock, magnetotail formation, reconnection, and plasmoid formation. This study is carried out using a discontinuous Galerkin method to solve an extended magneto-hydrodynamic model (XMHD). The main goals of this paper are to present a reasonably complete picture of the properties of this interaction using the MHD model and then to compare the results to the XMHD model. The inflow parameters, such as the magnetosonic Mach number M{sub f} and the ratio of thermal pressure to magnetic pressure β, can significantly affect the physical structures of the flow-obstacle interaction. The Hall effect can also significantly influence the results in the regime in which the ion inertial length is numerically resolved. Most of the results presented are for the two-dimensional case; however, two three-dimensional simulations are presented to make a connection to the important case in which the solar wind interacts with a solid body and to explore the possibility of performing scaled laboratory experiments.

  7. Effect of Anode Change on Heat Transfer and Magneto-hydrodynamic Flow in Aluminum Reduction Cell

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Li, Baokuan; Fafard, Mario

    2016-02-01

    In order to explore the impact of anode replacement on heat transfer and magneto-hydrodynamic flow in aluminum smelting cells, a transient three-dimensional coupled mathematical model has been developed. With a steady state magnetic field, an electrical potential approach was used to obtain electromagnetic fields. Joule heating and Lorentz force, which were the source terms in the energy and momentum equations, were updated at each iteration. The phase change of molten electrolyte (bath) was modeled by an enthalpy-based technique in which the mushy zone was treated as a porous medium with porosity equal to the liquid fraction. A reasonable agreement between the test data and simulated results was achieved. Under normal conditions, the bath at the middle of the cell is hotter, while becoming colder at the four corners. Due to the heat extracted from the bath, the temperature of the new cold anode increases over time. The temperature of the bath under the new cold anode therefore quickly drops, resulting in a decrease of the electrical conductivity. More Joule effect is created. In addition, the bath under the new cold anode gradually freezes and flows more slowly. The temperature of the new anode located at the middle of the cell rises faster because of the warmer bath. It is easier to eliminate the effect of anode change when it occurs in the middle of the cell.

  8. On a bivariate spectral relaxation method for unsteady magneto-hydrodynamic flow in porous media.

    PubMed

    Magagula, Vusi M; Motsa, Sandile S; Sibanda, Precious; Dlamini, Phumlani G

    2016-01-01

    The paper presents a significant improvement to the implementation of the spectral relaxation method (SRM) for solving nonlinear partial differential equations that arise in the modelling of fluid flow problems. Previously the SRM utilized the spectral method to discretize derivatives in space and finite differences to discretize in time. In this work we seek to improve the performance of the SRM by applying the spectral method to discretize derivatives in both space and time variables. The new approach combines the relaxation scheme of the SRM, bivariate Lagrange interpolation as well as the Chebyshev spectral collocation method. The technique is tested on a system of four nonlinear partial differential equations that model unsteady three-dimensional magneto-hydrodynamic flow and mass transfer in a porous medium. Computed solutions are compared with previously published results obtained using the SRM, the spectral quasilinearization method and the Keller-box method. There is clear evidence that the new approach produces results that as good as, if not better than published results determined using the other methods. The main advantage of the new approach is that it offers better accuracy on coarser grids which significantly improves the computational speed of the method. The technique also leads to faster convergence to the required solution. PMID:27119059

  9. Strongly coupled single-phase flow problems: Effects of density variation, hydrodynamic dispersion, and first order decay

    SciTech Connect

    Oldenburg, C.M.; Pruess, K.

    1995-03-01

    We have developed TOUGH2 modules for strongly coupled flow and transport that include full hydrodynamic dispersion. T2DM models two-dimensional flow and transport in systems with variable salinity, while T2DMR includes radionuclide transport with firstorder decay of a parent-daughter chain of radionuclide components in variable salinity systems. T2DM has been applied to a variety of coupled flow problems including the pure solutal convection problem of Elder and the mixed free and forced convection salt-dome flow problem. In the Elder and salt-dome flow problems, density changes of up to 20% caused by brine concentration variations lead to strong coupling between the velocity and brine concentration fields. T2DM efficiently calculates flow and transport for these problems. We have applied T2DMR to the dispersive transport and decay of radionuclide tracers in flow fields with permeability heterogeneities and recirculating flows. Coupling in th ese problems occurs by velocity-dependent hydrodynamic dispersion. Our results show that the maximum daughter species concentration may occur fully within a recirculating or low-velocity region. In all of the problems, we observe very efficient handling of the strongly coupled flow and transport processes.

  10. Multi-resolution flow simulations by smoothed particle hydrodynamics via domain decomposition

    NASA Astrophysics Data System (ADS)

    Bian, Xin; Li, Zhen; Karniadakis, George Em

    2015-09-01

    We present a methodology to concurrently couple particle-based methods via a domain decomposition (DD) technique for simulating viscous flows. In particular, we select two resolutions of the smoothed particle hydrodynamics (SPH) method as demonstration. Within the DD framework, a simulation domain is decomposed into two (or more) overlapping sub-domains, each of which has an individual particle scale determined by the local flow physics. Consistency of the two sub-domains is achieved in the overlap region by matching the two independent simulations based on Lagrangian interpolation of state variables and fluxes. The domain decomposition based SPH method (DD-SPH) employs different spatial and temporal resolutions, and hence, each sub-domain has its own smoothing length and time step. As a consequence, particle refinement and de-refinement are performed asynchronously according to individual time advancement of each sub-domain. The proposed strategy avoids SPH force interactions between different resolutions on purpose, so that coupling, in principle, can go beyond SPH-SPH, and may allow SPH to be coupled with other mesoscopic or microscopic particle methods. The DD-SPH method is validated first for a transient Couette flow, where simulation results based on proper coupling of spatial-temporal scales agree well with analytical solutions. In particular, we find that the size of the overlap region should be at least rc,1 + 2rc,2, where rc,1 and rc,2 are cut off radii in the two sub-domains with rc,1 ≤rc,2. Subsequently, a perturbation wave is considered traveling either parallel or perpendicular to the hybrid interface. Compressibility is significant if transient behavior at short sonic-time-scale is relevant, while the fluid can be treated as quasi-incompressible at sufficiently long time scale. To this end, we propose a coupling of density fields from the two sub-domains. Finally, a steady Wannier flow is simulated, where a rotating cylinder is placed next to a

  11. Chemo-hydrodynamic patterns in porous media.

    PubMed

    De Wit, A

    2016-10-13

    Chemical reactions can interplay with hydrodynamic flows to generate chemo-hydrodynamic instabilities affecting the spatio-temporal evolution of the concentration of the chemicals. We review here such instabilities for porous media flows. We describe the influence of chemical reactions on viscous fingering, buoyancy-driven fingering in miscible systems, convective dissolution as well as precipitation patterns. Implications for environmental systems are discussed.This article is part of the themed issue 'Energy and the subsurface'. PMID:27597788

  12. Galactic scale gas flows in colliding galaxies: 3-dimensional, N-body/hydrodynamics experiments

    NASA Technical Reports Server (NTRS)

    Lamb, Susan A.; Gerber, Richard A.; Balsara, Dinshaw S.

    1994-01-01

    We present some results from three dimensional computer simulations of collisions between models of equal mass galaxies, one of which is a rotating, disk galaxy containing both gas and stars and the other is an elliptical containing stars only. We use fully self consistent models in which the halo mass is 2.5 times that of the disk. In the experiments we have varied the impact parameter between zero (head on) and 0.9R (where R is the radius of the disk), for impacts perpendicular to the disk plane. The calculations were performed on a Cray 2 computer using a combined N-body/smooth particle hydrodynamics (SPH) program. The results show the development of complicated flows and shock structures in the direction perpendicular to the plane of the disk and the propagation outwards of a density wave in both the stars and the gas. The collisional nature of the gas results in a sharper ring than obtained for the star particles, and the development of high volume densities and shocks.

  13. Electro-Hydrodynamics and Kinetic Modeling of Dry and Humid Air Flows Activated by Corona Discharges

    NASA Astrophysics Data System (ADS)

    P. Sarrette, J.; Eichwald, O.; Marchal, F.; Ducasse, O.; Yousfi, M.

    2016-05-01

    The present work is devoted to the 2D simulation of a point-to-plane Atmospheric Corona Discharge Reactor (ACDR) powered by a DC high voltage supply. The corona reactor is periodically crossed by thin mono filamentary streamers with a natural repetition frequency of some tens of kHz. The study compares the results obtained in dry air and in air mixed with a small amount of water vapour (humid air). The simulation involves the electro-dynamics, chemical kinetics and neutral gas hydrodynamics phenomena that influence the kinetics of the chemical species transformation. Each discharge lasts about one hundred of a nanosecond while the post-discharge occurring between two successive discharges lasts one hundred of a microsecond. The ACDR is crossed by a lateral dry or humid air flow initially polluted with 400 ppm of NO. After 5 ms, the time corresponding to the occurrence of 50 successive discharge/post-discharge phases, a higher NO removal rate and a lower ozone production rate are found in humid air. This change is due to the presence of the HO2 species formed from the H primary radical in the discharge zone.

  14. DNA separation and enrichment using electro-hydrodynamic bidirectional flows in viscoelastic liquids.

    PubMed

    Ranchon, Hubert; Malbec, Rémi; Picot, Vincent; Boutonnet, Audrey; Terrapanich, Pattamon; Joseph, Pierre; Leïchlé, Thierry; Bancaud, Aurélien

    2016-03-23

    DNA size separation followed by purification and enrichment constitute essential operations for genetic engineering. These processes are mostly carried out using DNA electrophoresis in gels or in polymer solutions, a well-established yet lengthy technique which has been notably improved using Lab-on-Chip technologies. So far, innovations for DNA separation or enrichment have been mostly undertaken separately, and we present an approach that allows us to perform these two processes simultaneously for DNA fragments spanning 0.2-50 kilo base pairs (kbp) in length. Our technology involves an electric field and a counter hydrodynamic flow in viscoelastic liquids, in which we show the occurrence of transverse forces oriented toward the walls. These forces increase with DNA molecular weight (MW) and hence induce a progressive reduction in DNA migration speed that triggers size separation in microfluidic channels as well as in capillaries. The separation of MW markers in the range 1-50 kbp is achieved in 15 minutes, thus outperforming gel electrophoresis that takes ∼3 hours for this sample. Furthermore, the use of a funnel, where electric and flow fields are modulated spatially, enables us to adjust the transverse forces so as to stall the motion of DNA molecules at a position where they accumulate at factors of up to 1000 per minute. In this configuration, we establish that the operations of DNA enrichment and separation can be carried out simultaneously for the bands of a DNA MW marker between 0.2-1.5 kbp diluted at 0.02 ng μL(-1) in 30 s. Altogether, our technology, which can readily be integrated as an in-line module in Lab-on-Chips, offers unique opportunities for sample preparation and analysis of minute genomic samples. PMID:26936389

  15. Airlift column photobioreactors for Porphyridium sp. culturing: part I. effects of hydrodynamics and reactor geometry.

    PubMed

    Luo, Hu-Ping; Al-Dahhan, Muthanna H

    2012-04-01

    Photosynthetic microorganisms have been attracting world attention for their great potential as renewable energy sources in recent years. Cost effective production in large scale, however, remains a major challenge to overcome. It is known to the field that turbulence could help improving the performance of photobioreactors due to the so-called flashing light effects. Better understanding of the multiphase fluid dynamics and the irradiance distribution inside the reactor that cause the flashing light effects, as well as quantifying their impacts on the reactor performance, thus, are crucial for successful design and scale-up of photobioreactors. In this study, a species of red marine microalgae, Porphyridium sp., was grown in three airlift column photobioreactors (i.e., draft tube column, bubble column, and split column). The physical properties of the culture medium, the local fluid dynamics and the photobioreactor performances were investigated and are reported in this part of the manuscript. Results indicate that the presence of microalgae considerably affected the local multiphase flow dynamics in the studied draft tube column. Results also show that the split column reactor works slightly better than the draft tube and the bubble columns due to the spiral flow pattern inside the reactor. PMID:22068325

  16. AGN Obscuration Through Dusty Infrared Dominated Flows. 1; Radiation-Hydrodynamics Solution for the Wind

    NASA Technical Reports Server (NTRS)

    Dorodnitsyn, A.; Bisnovatyi-Kogan. G. S.; Kallman, T.

    2011-01-01

    We construct a radiation-hydrodynamics model for the obscuring toroidal structure in active galactic nuclei. In this model the obscuration is produced at parsec scale by a dense, dusty wind which is supported by infrared radiation pressure on dust grains. To find the distribution of radiation pressure, we numerically solve the 2D radiation transfer problem in a flux limited diffusion approximation. We iteratively couple the solution with calculations of stationary 1D models for the wind, and obtain the z-component of the velocity. Our results demonstrate that for AGN luminosities greater than 0.1 L(sub edd) external illumination can support a geometrically thick obscuration via outflows driven by infrared radiation pressure. The terminal velocity of marginally Compton-thin models (0.2 < tau(sub T) < 0.6), is comparable to or greater than the escape velocity. In Compton thick models the maximum value of the vertical component of the velocity is lower than the escape velocity, suggesting that a significant part of our torus is in the form of failed wind. The results demonstrate that obscuration via normal or failed infrared-driven winds is a viable option for the AGN torus problem and AGN unification models. Such winds can also provide an important channel for AGN feedback.

  17. Effects of excluded volume and hydrodynamic interaction on the deformation, orientation and motion of ring polymers in shear flow.

    PubMed

    Chen, Wenduo; Zhao, Hongchao; Liu, Lijun; Chen, Jizhong; Li, Yunqi; An, Lijia

    2015-07-14

    A ring polymer is a classical model to explore the behaviors of biomacromolecules. Compared with its linear counterpart in shear flow, the ring polymer should be more sensitive to excluded volume and hydrodynamic interaction attributed to the absence of chain ends. We carried out multiparticle collision dynamics combined with molecular dynamics simulation to study the effects of excluded volume and hydrodynamic interaction on the behaviors of ring polymers in shear flow. The results show that in the absence of the strong excluded volume interaction, the ring polymer prefers a two-strand linear conformation with high deformation and orientation in the flow-gradient plane, and the tank-treading motion is nearly negligible. Ring polymers without excluded volume show no significant difference from linear polymers in the scaling exponents for the deformation, orientation and tumbling motion. We also observed that the hydrodynamic interaction could efficiently slow down the relaxation of ring polymers while the scaling exponents against the Weissenberg number have rarely been affected. PMID:26053427

  18. Averaged implicit hydrodynamic model of semiflexible filaments.

    PubMed

    Chandran, Preethi L; Mofrad, Mohammad R K

    2010-03-01

    We introduce a method to incorporate hydrodynamic interaction in a model of semiflexible filament dynamics. Hydrodynamic screening and other hydrodynamic interaction effects lead to nonuniform drag along even a rigid filament, and cause bending fluctuations in semiflexible filaments, in addition to the nonuniform Brownian forces. We develop our hydrodynamics model from a string-of-beads idealization of filaments, and capture hydrodynamic interaction by Stokes superposition of the solvent flow around beads. However, instead of the commonly used first-order Stokes superposition, we do an equivalent of infinite-order superposition by solving for the true relative velocity or hydrodynamic velocity of the beads implicitly. We also avoid the computational cost of the string-of-beads idealization by assuming a single normal, parallel and angular hydrodynamic velocity over sections of beads, excluding the beads at the filament ends. We do not include the end beads in the averaging and solve for them separately instead, in order to better resolve the drag profiles along the filament. A large part of the hydrodynamic drag is typically concentrated at the filament ends. The averaged implicit hydrodynamics methods can be easily incorporated into a string-of-rods idealization of semiflexible filaments that was developed earlier by the authors. The earlier model was used to solve the Brownian dynamics of semiflexible filaments, but without hydrodynamic interactions incorporated. We validate our current model at each stage of development, and reproduce experimental observations on the mean-squared displacement of fluctuating actin filaments . We also show how hydrodynamic interaction confines a fluctuating actin filament between two stationary lateral filaments. Finally, preliminary examinations suggest that a large part of the observed velocity in the interior segments of a fluctuating filament can be attributed to induced solvent flow or hydrodynamic screening. PMID:20365783

  19. A hydrodynamical model of shear flow over semi-infinite barriers with application to density currents

    SciTech Connect

    Shapiro, A. )

    1992-12-01

    Vertically sheared airflow over semi-infinite barriers is investigated with a simple hydrodynamical model. The idealized flow is steady, two-dimensional, neutrally buoyant, and inviscid, bounded on the bottom by a semi-infinite impermeable barrier and on the top by a rigid tropopause lid. With attention further restricted to an exponentially decreasing wind shear, the equations of motion (Euler's equations) reduce, without approximation, to a modified Poisson equation for a pseudo streamfunction and a formula for the Exner function. The free parameters characterizing the model's environment are the tropopause height, the density scale height, the wind speed at ground level, and the wind speed at tropopause level. Additional parameters characterize the barrier geometry. Exact solutions of the equations of motion are obtained for semi-infinite plateau barriers and for a barrier qualitatively resembling the shallow density current associated with some thunderstorm outflows. These solutions are noteworthy in that the reduction of a certain nondimensional shear parameter (through negative values) results in greater vertical parcel displacements over the barrier despite a corresponding reduction in the vertical velocity. This steepening tendency culminates in overturning motions associated with both upstream and down-stream steering levels. In this latter case the low-level inflow impinging on the barrier participates in a mixed jump and overturning updraft reminiscent of updrafts simulated in numerical convective models. Conversely, for large values of the nondimensional shear parameter, parcels undergo small vertical parcel displacements over the barrier despite large vertical velocities. This latter behavior may account for the finding that strong convergence along the leading edge of storm outflows does not always trigger deep convection even in unstable environments.

  20. Predicted macroinvertebrate response to water diversion from a montane stream using two-dimensional hydrodynamic models and zero flow approximation

    USGS Publications Warehouse

    Holmquist, Jeffrey G.; Waddle, Terry J.

    2013-01-01

    We used two-dimensional hydrodynamic models for the assessment of water diversion effects on benthic macroinvertebrates and associated habitat in a montane stream in Yosemite National Park, Sierra Nevada Mountains, CA, USA. We sampled the macroinvertebrate assemblage via Surber sampling, recorded detailed measurements of bed topography and flow, and coupled a two-dimensional hydrodynamic model with macroinvertebrate indicators to assess habitat across a range of low flows in 2010 and representative past years. We also made zero flow approximations to assess response of fauna to extreme conditions. The fauna of this montane reach had a higher percentage of Ephemeroptera, Plecoptera, and Trichoptera (%EPT) than might be expected given the relatively low faunal diversity of the study reach. The modeled responses of wetted area and area-weighted macroinvertebrate metrics to decreasing discharge indicated precipitous declines in metrics as flows approached zero. Changes in area-weighted metrics closely approximated patterns observed for wetted area, i.e., area-weighted invertebrate metrics contributed relatively little additional information above that yielded by wetted area alone. Loss of habitat area in this montane stream appears to be a greater threat than reductions in velocity and depth or changes in substrate, and the modeled patterns observed across years support this conclusion. Our models suggest that step function losses of wetted area may begin when discharge in the Merced falls to 0.02 m3/s; proportionally reducing diversions when this threshold is reached will likely reduce impacts in low flow years.

  1. Inlet flow field investigation. Part 1: Transonic flow field survey

    NASA Technical Reports Server (NTRS)

    Yetter, J. A.; Salemann, V.; Sussman, M. B.

    1984-01-01

    A wind tunnel investigation was conducted to determine the local inlet flow field characteristics of an advanced tactical supersonic cruise airplane. A data base for the development and validation of analytical codes directed at the analysis of inlet flow fields for advanced supersonic airplanes was established. Testing was conducted at the NASA-Langley 16-foot Transonic Tunnel at freestream Mach numbers of 0.6 to 1.20 and angles of attack from 0.0 to 10.0 degrees. Inlet flow field surveys were made at locations representative of wing (upper and lower surface) and forebody mounted inlet concepts. Results are presented in the form of local inlet flow field angle of attack, sideflow angle, and Mach number contours. Wing surface pressure distributions supplement the flow field data.

  2. Phase Transitions and the Korteweg-De Vries Equation in the Density Difference Lattice Hydrodynamic Model of Traffic Flow

    NASA Astrophysics Data System (ADS)

    Tian, Jun-Fang; Yuan, Zhen-Zhou; Jia, Bin; Fan, Hong-Qiang

    2013-03-01

    We investigate the phase transitions and the Korteweg-de Vries (KdV) equation in the density difference lattice hydrodynamic (DDLM) model, which shows a close connection with the gas-kinetic-based model and the microscopic car following model. The KdV equation near the neutral stability line is derived and the corresponding soliton solution describing the density waves is obtained. Numerical simulations are conducted in two aspects. On the one hand, under periodic conditions perturbations are applied to demonstrate the nonlinear analysis result. On the other hand, the open boundary condition with random fluctuations is designed to explore the empirical congested traffic patterns. The phase transitions among the free traffic (FT), widening synchronized flow pattern (WSP), moving localized cluster (MLC), oscillatory congested traffic (OCT) and homogeneous congested traffic (HCT) occur by varying the amplitude of the fluctuations. To our knowledge, it is the first research showing that the lattice hydrodynamic model could reproduce so many congested traffic patterns.

  3. Hydrodynamic impeller stiffness, damping, and inertia in the rotordynamics of centrifugal flow pumps

    NASA Technical Reports Server (NTRS)

    Jery, S.; Acosta, A. J.; Brennen, C. E.; Caughey, T. K.

    1984-01-01

    The lateral hydrodynamic forces experienced by a centrifugal pump impeller performing circular whirl motions within several volute geometries were measured. The lateral forces were decomposed into: (1) time averaged lateral forces and (2) hydrodynamic force matrices representing the variation of the lateral forces with position of the impeller center. It is found that these force matrices essentially consist of equal diagonal terms and skew symmetric off diagonal terms. One consequence of this is that during its whirl motion the impeller experiences forces acting normal and tangential to the locus of whirl. Data on these normal and tangential forces are presented; it is shown that there exists a region of positive reduced whirl frequencies, within which the hydrodynamic forces can be destablizing with respect to whirl.

  4. Parallel Godunov smoothed particle hydrodynamics (SPH) with improved treatment of Boundary Conditions and an application to granular flows

    NASA Astrophysics Data System (ADS)

    Kumar, D.; Patra, A. K.; Pitman, E. B.; Chi, H.

    2013-10-01

    Smoothed Particle Hydrodynamics has been successfully used for various fluid-dynamics problems, such as breaking-waves, flooding etc., since it was originally proposed. While the Lagrangian approach is naturally suitable for free-surface flows, enforcing boundary conditions and poor approximations in the presence of discontinuities in the solution are major difficulties with the method. In this paper we present an enhanced conservative Godunov SPH based on the work of Inutsuka [S. Inutsuka, Reformulation of smoothed particle hydrodynamics with Riemann solver, Journal of Computational Physics 179 (2002) 238-267] that accurately resolves discontinuities without the need to use artificial viscosity, preserves partition of unity everywhere in the domain, correctly and flexibly enforces necessary essential and frictional slip boundary conditions to approximately solve free-surface granular flows. The development is motivated by the need to improve upon depth averaged grid based models of large scale debris flows and avalanches often characterized as granular flows. Simple validation of the results is obtained by comparison to table-top experiments.

  5. Hydrodynamic forces on a wall-bound leukocyte due to interactions with flowing red cells

    NASA Astrophysics Data System (ADS)

    Isfahani, Amir H. G.; Freund, Jonathan B.

    2011-11-01

    As part of both healthy and pathologically physiological mechanisms sphere-like white blood cells (leukocytes) adhere to the walls of small blood vessels. We use quantitative numerical simulations to compare the forces from flowing red blood cells on a wall-adhered leukocyte to a homogenized model of blood at the same flow conditions. We model the highly flexible red blood cells using a fast O (N log N) boundary integral formulation. These elastic membranes deform substantially but strongly resist surface dilatation. They enclose a higher than plasma viscosity hemoglobin solution. The no-slip condition is enforced on the stationary leukocyte as well as the vessel walls. Vessel diameters of 10 to 20 microns are studied. Different hematocrits, leukocyte shapes, and flow conditions are examined. In vessels comparable to the size of the cells, we show that the particulate character of blood significantly affects the magnitude of the forces that the leukocyte experiences, transiently increasing it well above the homogenized-blood prediction: for example, for a tube hematocrit of 25 % and a spherical protrusion with a diameter 0.75 that of the tube, the average forces are increased by about 40 % and the local forces by more than 100 % relative to those expected for a blood model homogenized by its effective viscosity.

  6. Effect of fluid flow on cavitation erosion of materials under exposure to vibrations from a hydrodynamic generator

    NASA Astrophysics Data System (ADS)

    Ganiev, R. F.; Zhebynev, D. A.; Feldman, A. M.

    2016-07-01

    The results of investigation of cavitation erosion of lead in various places of a hydrodynamic-generator submerged jet are presented. Features of erosion caused by the effect of flow are established. It can both strengthen the erosion intensity and weaken it in dependence on the angle of incidence. The stratification of air bubbles under the action of pressure waves is possible in the flow under the interaction with the surface of objects. The flow can change the number of air bubbles participating in the cavitation near the surface. It can also influence the mechanical effect on the surface of the tested materials inducing their nonuniform deformation. All the factors listed affect the cavitation erosion complicating considerably the physics of the process.

  7. Hydraulic visibility and effective cross sections based on hydrodynamical modeling of flow lines gained by satellite altimetry

    NASA Astrophysics Data System (ADS)

    Biancamaria, S.; Garambois, P. A.; Calmant, S.; Roux, H.; Paris, A.; Monnier, J.; Santos da Silva, J.

    2015-12-01

    Hydrodynamic laws predict that irregularities in a river bed geometry produce spatial and temporal variations in the water level, hence in its slope. Conversely, observation of these changes is a goal of the SWOT mission with the determination of the discharge as a final objective. In this study, we analyse the relationship between river bed undulations and water surface for an ungauged reach of the Xingu river, a first order tributary of the Amazon river. It is crosscut more than 10 times by a single ENVISAT track over a hundred of km. We have determined time series of water levelsat each of these crossings, called virtual stations (VS), hence slopes of the flow line. Using the discharge series computed by Paiva et al. (2013) between 1998 and 2009, Paris et al. (submitted) determined at each VS a rating curve relating these simulated discharge with the ENVISAT height series. One parameter of these rating curves is the zero-flow depth Z 0 . We show that it is possible to explain the spatial and temporal variations of the water surface slope in terms of hydrodynamical response of the longitudinal changes of the river bed geometry given by the successive values of Z 0 . Our experiment is based on an effective, single thread representation of a braided river, realistic values for the Manning coefficient and river widths picked up on JERS images. This study confirms that simulated flow lines are consistent with water surface elevations (WSE) and slopes gained by satellite altimetry. Hydrodynamical signatures are more visible where the river bed geometry varies significantly, and for reaches with a strong downstream control. Therefore, this study suggests that the longitudinal variations of the slope might be an interesting criteria for the question of river segmentation into elementary reaches for the SWOT mission which will provide continuous measurements of the water surface elevation, the slope and the reach width.

  8. Heat Source/Sink in a Magneto-Hydrodynamic Non-Newtonian Fluid Flow in a Porous Medium: Dual Solutions.

    PubMed

    Hayat, Tasawar; Awais, Muhammad; Imtiaz, Amna

    2016-01-01

    This communication deals with the properties of heat source/sink in a magneto-hydrodynamic flow of a non-Newtonian fluid immersed in a porous medium. Shrinking phenomenon along with the permeability of the wall is considered. Mathematical modelling is performed to convert the considered physical process into set of coupled nonlinear mathematical equations. Suitable transformations are invoked to convert the set of partial differential equations into nonlinear ordinary differential equations which are tackled numerically for the solution computations. It is noted that dual solutions for various physical parameters exist which are analyzed in detail. PMID:27598314

  9. Boundary Layer Theory. Part 1; Laminar Flows

    NASA Technical Reports Server (NTRS)

    Schlichting, H.

    1949-01-01

    The purpose of this presentation is to give you a survey of a field of aerodynamics which has for a number of years been attracting an ever growing interest. The subject is the theory of flows with friction, and, within that field, particularly the theory of friction layers, or boundary layers. As you know, a great many considerations of aerodynamics are based on the so-called ideal fluid, that is, the frictionless incompressible fluid. By neglect of compressibility and friction the extensive mathematical theory of the ideal fluid (potential theory) has been made possible.

  10. [Understanding of cerebrospinal fluid hydrodynamics in idiopathic hydrocephalus (A) Visualization of CSF bulk flow with MRI time-spatial labeling pulse method (time-SLIP)].

    PubMed

    Yamada, Shinya; Goto, Tadateru

    2010-11-01

    Cerebrospinal fluids (CSF) hydrodynamics in normal and hydrocephalic brain was observed noninvasively using a time-spatial labeling inversion pulse (SLIP) technique. A time-SLIP technique applied label to CSF in the region of interest so that CSF became internal CSF tracer. CSF hydrodynamics even in normal brain appeared to be much different from it was imagine from conventional CSF physiology text books. Various amplitudes of pulsatile CSF flow were observed in the different regions of the brain. CSF hydrodynamics altered when hydrocephalus was developed. A time-SLIP CSF flow imaging is helpful to understand CSF hydrodynamics in the normal physiological and hydrocephalic brain. It may be useful to distinguish the hydrocephalus brain from the senile atrophic brain. PMID:21921529

  11. 3D modelling of the flow of self-compacting concrete with or without steel fibres. Part I: slump flow test

    NASA Astrophysics Data System (ADS)

    Deeb, R.; Kulasegaram, S.; Karihaloo, B. L.

    2014-12-01

    In part I of this two-part paper, a three-dimensional Lagrangian smooth particle hydrodynamics method has been used to model the flow of self-compacting concrete (SCC) with or without short steel fibres in the slump cone test. The constitutive behaviour of this non-Newtonian viscous fluid is described by a Bingham-type model. The 3D simulation of SCC without fibres is focused on the distribution of large aggregates (larger than or equal to 8 mm) during the flow. The simulation of self-compacting high- and ultra-high- performance concrete containing short steel fibres is focused on the distribution of fibres and their orientation during the flow. The simulation results show that the fibres and/or heavier aggregates do not precipitate but remain homogeneously distributed in the mix throughout the flow.

  12. Bulk-Flow Analysis, part A

    NASA Technical Reports Server (NTRS)

    Childs, Dara W.

    1993-01-01

    The bulk-flow analysis results for this contract are incorporated in the following publications: 'Fluid-Structure Interaction Forces at Pump-Impeller Shroud Surfaces for Axial Vibration Analysis'; 'Centrifugal Acceleration Modes for Incompressible Fluid in the Leakage Annulus Between a Shrouded Pump Impeller and Its Housing'; 'Influence of Impeller Shroud Forces on Pump Rotordynamics'; 'Pressure Oscillation in the Leakage Annulus Between a Shrouded Impeller and Its Housing Due to Impeller-Discharge-Pressure Disturbances'; and 'Compressibility Effects on Rotor Forces in the Leakage Path Between a Shrouded Pump Impeller and Its Housing'. These publications are summarized and included in this final report. Computational Fluid Mechanics (CFD) results developed by Dr. Erian Baskharone are reported separately.

  13. Shock-wave heating model for chondrule formation: Hydrodynamic simulation of molten droplets exposed to gas flows

    NASA Astrophysics Data System (ADS)

    Miura, Hitoshi; Nakamoto, Taishi

    2007-05-01

    Millimeter-sized, spherical silicate grains abundant in chondritic meteorites, which are called as chondrules, are considered to be a strong evidence of the melting event of the dust particles in the protoplanetary disk. One of the most plausible scenarios is that the chondrule precursor dust particles are heated and melt in the high-velocity gas flow (shock-wave heating model). We developed the non-linear, time-dependent, and three-dimensional hydrodynamic simulation code for analyzing the dynamics of molten droplets exposed to the gas flow. We confirmed that our simulation results showed a good agreement in a linear regime with the linear solution analytically derived by Sekyia et al. [Sekyia, M., Uesugi, M., Nakamoto, T., 2003. Prog. Theor. Phys. 109, 717-728]. We found that the non-linear terms in the hydrodynamical equations neglected by Sekiya et al. [Sekiya, M., Uesugi, M., Nakamoto, T., 2003. Prog. Theor. Phys. 109, 717-728] can cause the cavitation by producing negative pressure in the droplets. We discussed that the fragmentation through the cavitation is a new mechanism to determine the upper limit of chondrule sizes. We also succeeded to reproduce the fragmentation of droplets when the gas ram pressure is stronger than the effect of the surface tension. Finally, we compared the deformation of droplets in the shock-wave heating with the measured data of chondrules and suggested the importance of other effects to deform droplets, for example, the rotation of droplets. We believe that our new code is a very powerful tool to investigate the hydrodynamics of molten droplets in the framework of the shock-wave heating model and has many potentials to be applied to various problems.

  14. Physical Intrepretation of Mathematically Invariant K(r,P) Type Equations of State for Hydrodynamically Driven Flow

    NASA Astrophysics Data System (ADS)

    Hrbek, George

    2001-06-01

    At SCCM Shock 99, Lie Group Theory was applied to the problem of temperature independent, hydrodynamic shock in a Birch-Murnaghan continuum. (1) Ratios of the group parameters were shown to be linked to the physical parameters specified in the second, third, and fourth order BM-EOS approximations. This effort has subsequently been extended to provide a general formalism for a wide class of mathematical forms (i.e., K(r,P)) of the equation of state. Variations in material expansion and resistance (i.e., counter pressure) are shown to be functions of compression and material variation ahead of the expanding front. Specific examples included the Birch-Murnaghan, Vinet, Brennan-Stacey, Shanker, Tait, Poirier, and Jones-Wilkins-Lee (JWL) forms. (2) With these ratios defined, the next step is to predict the behavior of these K(r,P) type solids. To do this, one must introduce the group ratios into a numerical simulation for the flow and generate the density, pressure, and particle velocity profiles as the shock moves through the material. This will allow the various equations of state, and their respective fitting coefficients, to be compared with experiments, and additionally, allow the empirical coefficients for these EOS forms to be adjusted accordingly. (1) Hrbek, G. M., Invariant Functional Forms For The Second, Third, And Fourth Order Birch-Murnaghan Equation of State For Materials Subject to Hydrodynamic Shock, Proceedings of the 11th American Physical Society Topical Group Meeting on Shock Compression of Condensed Matter (SCCM Shock 99), Snowbird, Utah (2) Hrbek, G. M., Invariant Functional Forms For K(r,P) Type Equations Of State For Hydrodynamically Driven Flows, Submitted to the 12th American Physical Society Topical Group Meeting on Shock Compression of Condensed Matter (SCCM Shock 01), Atlanta, Georgia

  15. ZEUS-2D: A radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. I - The hydrodynamic algorithms and tests.

    NASA Astrophysics Data System (ADS)

    Stone, James M.; Norman, Michael L.

    1992-06-01

    A detailed description of ZEUS-2D, a numerical code for the simulation of fluid dynamical flows including a self-consistent treatment of the effects of magnetic fields and radiation transfer is presented. Attention is given to the hydrodynamic (HD) algorithms which form the foundation for the more complex MHD and radiation HD algorithms. The effect of self-gravity on the flow dynamics is accounted for by an iterative solution of the sparse-banded matrix resulting from discretizing the Poisson equation in multidimensions. The results of an extensive series of HD test problems are presented. A detailed description of the MHD algorithms in ZEUS-2D is presented. A new method of computing the electromotive force is developed using the method of characteristics (MOC). It is demonstrated through the results of an extensive series of MHD test problems that the resulting hybrid MOC-constrained transport method provides for the accurate evolution of all modes of MHD wave families.

  16. Ion-temperature-gradient sensitivity of the hydrodynamic instability caused by shear in the magnetic-field-aligned plasma flow

    SciTech Connect

    Mikhailenko, V. V.; Mikhailenko, V. S.; Lee, Hae June; Koepke, M. E.

    2014-07-15

    The cross-magnetic-field (i.e., perpendicular) profile of ion temperature and the perpendicular profile of the magnetic-field-aligned (parallel) plasma flow are sometimes inhomogeneous for space and laboratory plasma. Instability caused either by a gradient in the ion-temperature profile or by shear in the parallel flow has been discussed extensively in the literature. In this paper, (1) hydrodynamic plasma stability is investigated, (2) real and imaginary frequency are quantified over a range of the shear parameter, the normalized wavenumber, and the ratio of density-gradient and ion-temperature-gradient scale lengths, and (3) the role of inverse Landau damping is illustrated for the case of combined ion-temperature gradient and parallel-flow shear. We find that increasing the ion-temperature gradient reduces the instability threshold for the hydrodynamic parallel-flow shear instability, also known as the parallel Kelvin-Helmholtz instability or the D'Angelo instability. We also find that a kinetic instability arises from the coupled, reinforcing action of both free-energy sources. For the case of comparable electron and ion temperature, we illustrate analytically the transition of the D'Angelo instability to the kinetic instability as (a) the shear parameter, (b) the normalized wavenumber, and (c) the ratio of density-gradient and ion-temperature-gradient scale lengths are varied and we attribute the changes in stability to changes in the amount of inverse ion Landau damping. We show that near a normalized wavenumber k{sub ⊥}ρ{sub i} of order unity (i) the real and imaginary values of frequency become comparable and (ii) the imaginary frequency, i.e., the growth rate, peaks.

  17. The hydrodynamics of single- and multi-particle fluidized beds: Steady and time-dependent flow regimes

    NASA Astrophysics Data System (ADS)

    Howley, Maureen Ann

    A mathematical framework for modeling the steady state and dynamic behavior of multi-particle fluidized beds was developed using a continuum approach. Constitutive relations were adopted for closing the multi-phase equations using an excluded volume approach. The hydrodynamics of various fluidized beds of binary particles (having different diameters and densities) was examined, and steady state solutions were found for a system of (small & heavy) glass beads and (large & light) carbon char in water. Solutions characterize the composition and expansion behavior of mixing states, and provide a description of the observed phenomenon of "layer inversion". Comparison with experimental data suggested that the hydrodynamic mechanism of fluid-particle interaction is not fully captured with an excluded volume assumption. Thus, we showed how experimental data can be used to derive functional forms for expressing complex hydrodynamic behavior within the framework of the model. Steady state results suggest that fluidized particles might exhibit different patterns of behavior if the direction of fluid flow was reversed. We thus examined the stability of single-component systems, operating in inverse and normal mode, and computed one-dimensional traveling wave solutions. Beds having reciprocal fluid to solid density ratios delta were compared to investigate how delta and the dimensionless Froude (Fr) number affect stability behavior and bifurcation structure. The Fr number appeared to be a good indicator of the strength of primary instabilities, and delta appeared to control the onset of the instability. High amplitude, one-dimensional traveling wave solutions exhibited reversed asymmetry of wave structure, and vertically traveling waves always propagated in the direction of fluid flow. The hydrodynamic stability of binary mixtures was examined to determine if mixtures are inherently more stable than their segregated counterparts. In a linear stability analysis, mixed beds of

  18. A new approach to model weakly nonhydrostatic shallow water flows in open channels with smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Chang, Tsang-Jung; Chang, Kao-Hua; Kao, Hong-Ming

    2014-11-01

    A new approach to model weakly nonhydrostatic shallow water flows in open channels is proposed by using a Lagrangian meshless method, smoothed particle hydrodynamics (SPH). The Lagrangian form of the Boussinesq equations is solved through SPH to merge the local and convective derivatives as the material derivative. In the numerical SPH procedure, the present study uses a predictor-corrector method, in which the pure space derivative terms (the hydrostatic and source terms) are explicitly solved and the mixed space and time derivatives term (the material term of B1 and B2) is computed with an implicit scheme. It is thus a convenient tool in the processes of the space discretization compared to other Eulerian approaches. Four typical benchmark problems in weakly nonhydrostatic shallow water flows, including solitary wave propagation, nonlinear interaction of two solitary waves, dambreak flow propagation, and undular bore development, are selected to employ model validation under the closed and open boundary conditions. Numerical results are compared with the analytical solutions or published laboratory and numerical results. It is found that the proposed approach is capable of resolving weakly nonhydrostatic shallow water flows. Thus, the proposed SPH approach can supplement the lack of the SPH-Boussinesq researches in the literatures, and provide an alternative to model weakly nonhydrostatic shallow water flows in open channels.

  19. Pulsatile magneto-hydrodynamic blood flows through porous blood vessels using a third grade non-Newtonian fluids model.

    PubMed

    Akbarzadeh, Pooria

    2016-04-01

    In this paper, the unsteady pulsatile magneto-hydrodynamic blood flows through porous arteries concerning the influence of externally imposed periodic body acceleration and a periodic pressure gradient are numerically simulated. Blood is taken into account as the third-grade non-Newtonian fluid. Besides the numerical solution, for small Womersley parameter (such as blood flow through arterioles and capillaries), the analytical perturbation method is used to solve the nonlinear governing equations. Consequently, analytical expressions for the velocity profile, wall shear stress, and blood flow rate are obtained. Excellent agreement between the analytical and numerical predictions is evident. Also, the effects of body acceleration, magnetic field, third-grade non-Newtonian parameter, pressure gradient, and porosity on the flow behaviors are examined. Some important conclusions are that, when the Womersley parameter is low, viscous forces tend to dominate the flow, velocity profiles are parabolic in shape, and the center-line velocity oscillates in phase with the driving pressure gradient. In addition, by increasing the pressure gradient, the mean value of the velocity profile increases and the amplitude of the velocity remains constant. Also, when non-Newtonian effect increases, the amplitude of the velocity profile. PMID:26792174

  20. Effect of River Training Project on Hydrodynamics Flow Circumstances by 2D Finite Element Numerical Model

    NASA Astrophysics Data System (ADS)

    Zou, B.; Li, D. F.; Hu, H. J.; Zhang, H. W.; Lou, L. H.; Chen, M.; Lv, Z. Y.

    Based on the verified two dimensional(2D) finite element model for river flow simulation, the effect of estuary training levees on the water flow and sediment movement in the Yellow River estuary is analyzed. For disclosing the effect of setting the two training levees on the flow and sediment motion, the calculation and analysis for the two projects, (one is no levees, the other is setting up two no levees) are given. The results show that when setting up two training levees, water flow is bound by levees and the water flows become more concentrated. As a result, velocity increases in the main channel, sediment carrying capacity of water flow increases correspondingly.

  1. Hydrodynamic behaviour of micro/nanoscale Poiseuille flow under thermal creep condition

    NASA Astrophysics Data System (ADS)

    Akhlaghi, Hassan; Balaj, Mojtaba; Roohi, Ehsan

    2013-08-01

    Current work investigates the effect of thermal creep on the behavior of rarefied gas flow through micro/nanochannels using the direct simulation Monte Carlo method. Thermal creep effects are studied on velocity profiles, streamwise velocity and pressure, and thermal mass flow rate. The strength of thermal creep is examined at different Knudsen number, channel pressure ratio, and bulk temperature. The thermal mass flow rate variation is investigated over a wide range of flow rarefaction from the slip to free molecular regime.

  2. Open-source MFIX-DEM software for gas-solids flows: Part II Validation studies

    SciTech Connect

    Li, Tingwen; Garg, Rahul; Galvin, Janine; Pannala, Sreekanth

    2012-01-01

    With rapid advancements in computer hardware and numerical algorithms, computational fluid dynamics (CFD) has been increasingly employed as a useful tool for investigating the complex hydrodynamics inherent in multiphase flows. An important step during the development of a CFD model and prior to its application is conducting careful and comprehensive verification and validation studies. Accordingly, efforts to verify and validate the open-source MFIX-DEM software, which can be used for simulating the gas solids flow using an Eulerian reference frame for the continuum fluid and a Lagrangian discrete framework (Discrete Element Method) for the particles, have been made at the National Energy Technology Laboratory (NETL). In part I of this paper, extensive verification studies were presented and in this part, detailed validation studies of MFIX-DEM are presented. A series of test cases covering a range of gas solids flow applications were conducted. In particular the numerical results for the random packing of a binary particle mixture, the repose angle of a sandpile formed during a side charge process, velocity, granular temperature, and voidage profiles from a bounded granular shear flow, lateral voidage and velocity profiles from a monodisperse bubbling fluidized bed, lateral velocity profiles from a spouted bed, and the dynamics of segregation of a binary mixture in a bubbling bed were compared with available experimental data, and in some instances with empirical correlations. In addition, sensitivity studies were conducted for various parameters to quantify the error in the numerical simulation.

  3. Open-Source MFIX-DEM Software for Gas-Solids Flows: Part II - Validation Studies

    SciTech Connect

    Li, Tingwen

    2012-04-01

    With rapid advancements in computer hardware and numerical algorithms, computational fluid dynamics (CFD) has been increasingly employed as a useful tool for investigating the complex hydrodynamics inherent in multiphase flows. An important step during the development of a CFD model and prior to its application is conducting careful and comprehensive verification and validation studies. Accordingly, efforts to verify and validate the open-source MFIX-DEM software, which can be used for simulating the gas–solids flow using an Eulerian reference frame for the continuum fluid and a Lagrangian discrete framework (Discrete Element Method) for the particles, have been made at the National Energy Technology Laboratory (NETL). In part I of this paper, extensive verification studies were presented and in this part, detailed validation studies of MFIX-DEM are presented. A series of test cases covering a range of gas–solids flow applications were conducted. In particular the numerical results for the random packing of a binary particle mixture, the repose angle of a sandpile formed during a side charge process, velocity, granular temperature, and voidage profiles from a bounded granular shear flow, lateral voidage and velocity profiles from a monodisperse bubbling fluidized bed, lateral velocity profiles from a spouted bed, and the dynamics of segregation of a binary mixture in a bubbling bed were compared with available experimental data, and in some instances with empirical correlations. In addition, sensitivity studies were conducted for various parameters to quantify the error in the numerical simulation.

  4. Modified hydrodynamics in canopies with longitudinal gaps exposed to oscillatory flows

    NASA Astrophysics Data System (ADS)

    El Allaoui, Nazha; Serra, Teresa; Soler, Marianna; Colomer, Jordi; Pujol, Dolors; Oldham, Carolyn

    2015-12-01

    Longitudinal gaps are commonly found in aquatic canopies. While the ecological significance of gaps may be large, we know little about their impact on the hydrodynamics within the canopy. We used laboratory experiments to investigate the effect of longitudinal gaps within canopies exposed to a wave field. In rigid submerged and emergent vegetation, wave velocities were reduced compared to the case without vegetation. Flexible canopies also attenuated waves, but this attenuation was lower than for rigid canopies. The presence of the gap modified the mean current associated with the waves in both the gap and the lateral vegetation. A gap within a canopy of 5% solid plant fraction did not show differences in the wave attenuation between the gap and the lateral vegetation. In contrast, gaps within canopies of 10% solid plant fraction resulted in large differences between the gap and the lateral vegetation. In all the experiments, the effect of a gap within a canopy reduced the wave attenuation within the lateral vegetation adjacent to the gap when compared with a canopy without a gap. In canopies with rigid plants, the lateral vegetation modified the wave attenuation in the nearby gap. In contrast, the lateral flexible vegetation did not produce any effect on the wave attenuation of the adjacent gap. Canopy density, plant height and plant flexibility were critical for determining the hydrodynamics throughout the canopy and in the gap.

  5. The role of the lateral line and vision on body kinematics and hydrodynamic preference of rainbow trout in turbulent flow.

    PubMed

    Liao, James C

    2006-10-01

    The ability to detect water flow using the hair cells of the lateral line system is a unique feature found in anamniotic aquatic vertebrates. Fishes use their lateral line to locate prey, escape from predators and form cohesive schooling patterns. Despite the prevalence of complex flows in nature, almost nothing is known about the function of the lateral line and its relationship to other sensory modalities for freely swimming fishes in turbulent flows. Past studies indicate that under certain conditions the lateral line is not needed to swim steadily in uniform flow. This paper examines how the lateral line and vision affect body kinematics and hydrodynamic habitat selection of rainbow trout (Oncorhynchus mykiss) exposed to vortices generated behind a cylinder. Trout Kármán gaiting (i.e. exploiting vortices to hold station in a vortex street) with a pharmacologically blocked lateral line display altered kinematics; body wavelength and wave speed increase compared to control animals. When visual cues are withheld by performing experiments in the dark, almost all Kármán gait kinematics measured for fish with and without a functional lateral line are the same. The lateral line, rather than vision, plays a larger role in affecting body kinematics when trout hold station in a vortex street. Trout show a preference to Kármán gait in the light but not in the dark, which may be attributed to physiological state rather than hydrodynamic or sensorimotor reasons. In the dark, trout both with and without a functional lateral line hold station near the downstream suction region of the cylinder wake (i.e. entraining) and avoid the vortex street. Vision therefore plays a larger role in the preference to associate with a turbulent vortex street. Trout in the light with a blocked lateral line show individual variation in their preference to Kármán gait or entrain. In the dark, entraining trout with an intact lateral line will alternate between right and left sides of the

  6. Analysis of the Hydrodynamics and Heat Transfer Aspects of Microgravity Two-Phase Flows

    NASA Technical Reports Server (NTRS)

    Rezkallah, Kamiel S.

    1996-01-01

    Experimental results for void fractions, flow regimes, and heat transfer rates in two-phase, liquid-gas flows are summarized in this paper. The data was collected on-board NASA's KC-135 reduced gravity aircraft in a 9.525 mm circular tube (i.d.), uniformly heated at the outer surface. Water and air flows were examined as well as three glycerol/water solutions and air. Results are reported for the water-air data.

  7. Operating and hydrodynamic characteristics of a reversed flow jet loop bioreactor (RFJLB) with ejector.

    PubMed

    Wagh, Sameer M; Koranne, Kishore V; Sonolikar, Ram L

    2012-04-01

    The hydrodynamic characteristics of RFJLB was studied with superficial liquid velocity (Ul), nozzle diameter (Dn) and nozzle height (Hn) in the range of 0.0293-0.094m/s, 17.4-22.0mm and 50-400mm, respectively. For Dn=17.4mm, Hn=50 and 200mm, with ejector mode and regular operating procedure i.e. simultaneous entry of gas with increasing liquid velocity, had limitation of not establishing the circulation loop. To overcome this limitation a modified operating procedure i.e. entry of gas after established liquid circulation loop is proposed. Also the comparison of gas holdups with ejector and injector mode proves the effectiveness of ejector mode and can eliminate the supply of compressed gas. Thus proper choice of Dn, Hn and also the operating procedure becomes necessary. PMID:22326114

  8. AGN Obscuration Through Dusty Infrared Dominated Flows. II. Multidimensional, Radiation-Hydrodynamics Modeling

    NASA Technical Reports Server (NTRS)

    Dorodnitsyn, Anton; Kallman, Tim; Bisno\\vatyiI-Kogan, Gennadyi

    2011-01-01

    We explore a detailed model in which the active galactic nucleus (AGN) obscuration results from the extinction of AGN radiation in a global ow driven by the pressure of infrared radiation on dust grains. We assume that external illumination by UV and soft X-rays of the dusty gas located at approximately 1pc away from the supermassive black hole is followed by a conversion of such radiation into IR. Using 2.5D, time-dependent radiation hydrodynamics simulations in a ux-limited di usion approximation we nd that the external illumination can support a geometrically thick obscuration via out ows driven by infrared radiation pressure in AGN with luminosities greater than 0:05 L(sub edd) and Compton optical depth, Tau(sub T) approx > & 1.

  9. On the efficient swimming of a ray-inspired underwater vehicle. Part II: Computational analysis of fin hydrodynamics

    NASA Astrophysics Data System (ADS)

    Liu, Geng; Ren, Yan; Zhu, Jianzhou; Bart-Smith, Hilary; Dong, Haibo

    2014-11-01

    High-fidelity numerical simulations are being used to examine the key hydrodynamic features and thrust performance of the fin of a manta ray-inspired underwater vehicle (MantaBot) which is moving at a constant forward velocity. The numerical modeling approach employs a parallelized DNS immersed boundary solver for low-Reynolds number flows past highly deformable bodies such as fish pectoral fins and insect wings. The three-dimensional, time-dependent fin kinematics is obtained via a stereo-videographic technique. The primary objectives of the CFD effort are to quantify the thrust performance of the MantaBot fin with different bending stiffness as well as to establish the mechanisms responsible for thrust production. Simulations show that the bending angle and bending rate of the fin play important roles in thrust producing. A distinct system of connected vortices produced by the deformable fins is also examined in detail for understanding the thrust producing mechanisms. This research was supported by the Office of Naval Research (ONR) under the Multidisciplinary University Research Initiative (MURI) Grant N00014-14-1-0533.

  10. Analysis of Hydrodynamics and Heat Transfer in a Thin Liquid Film Flowing over a Rotating Disk by Integral Method

    NASA Technical Reports Server (NTRS)

    Basu, S.; Cetegen, B. M.

    2005-01-01

    An integral analysis of hydrodynamics and heat transfer in a thin liquid film flowing over a rotating disk surface is presented for both constant temperature and constant heat flux boundary conditions. The model is found to capture the correct trends of the liquid film thickness variation over the disk surface and compare reasonably well with experimental results over the range of Reynolds and Rossby numbers covering both inertia and rotation dominated regimes. Nusselt number variation over the disk surface shows two types of behavior. At low rotation rates, the Nusselt number exhibits a radial decay with Nusselt number magnitudes increasing with higher inlet Reynolds number for both constant wall temperature and heat flux cases. At high rotation rates, the Nusselt number profiles exhibit a peak whose location advances radially outward with increasing film Reynolds number or inertia. The results also compare favorably with the full numerical simulation results from an earlier study as well as with the reported experimental results.

  11. Parallel shear flow instabilities in strongly coupled Yukawa liquids: A comparison of generalized hydrodynamic model and molecular dynamics results

    SciTech Connect

    Ashwin, J.; Ganesh, R.

    2010-10-15

    Using a generalized hydrodynamic (GH) model, the growth rate spectra of Kelvin-Helmholtz (KH) instability has been obtained analytically for a step shear profile in strongly coupled Yukawa liquids. The class of shear flows studied is assumed to be incompressible in nature. The growth rate spectra calculated exhibit viscous damping at high mode numbers, destabilization at stronger coupling, and in the limit {tau}{sub m} (viscoelastic relaxation time){yields}0, reduce to the regular Navier-Stokes growth rate spectra. A direct comparison is made with previous molecular dynamics (MD) simulations [Ashwin J. and R. Ganesh, Phys. Rev. Lett. 104, 215003 (2010)] of KH instability. We find that for a given value of Reynolds number R and coupling parameter 1<{Gamma}<100, the GH and MD growth rates are in a qualitative agreement. The inclusion of the effect of shear heating as an effective coupling parameter {Gamma}{sub e} appears to improve the quantitative comparison as well.

  12. Radiation Hydrodynamics

    SciTech Connect

    Castor, J I

    2003-10-16

    hydrogen atoms from helium atoms, for instance. There are all just components of a mixed fluid in this case. So why do we have a special subject called ''radiation hydrodynamics'', when photons are just one of the many kinds of particles that comprise our fluid? The reason is that photons couple rather weakly to the atoms, ions and electrons, much more weakly than those particles couple with each other. Nor is the matter-radiation coupling negligible in many problems, since the star or nebula may be millions of mean free paths in extent. Radiation hydrodynamics exists as a discipline to treat those problems for which the energy and momentum coupling terms between matter and radiation are important, and for which, since the photon mean free path is neither extremely large nor extremely small compared with the size of the system, the radiation field is not very easy to calculate. In the theoretical development of this subject, many of the relations are presented in a form that is described as approximate, and perhaps accurate only to order of {nu}/c. This makes the discussion cumbersome. Why are we required to do this? It is because we are using Newtonian mechanics to treat our fluid, yet its photon component is intrinsically relativistic; the particles travel at the speed of light. There is a perfectly consistent relativistic kinetic theory, and a corresponding relativistic theory of fluid mechanics, which is perfectly suited to describing the photon gas. But it is cumbersome to use this for the fluid in general, and we prefer to avoid it for cases in which the flow velocity satisfies {nu} << c. The price we pay is to spend extra effort making sure that the source-sink terms relating to our relativistic gas component are included in the equations of motion in a form that preserves overall conservation of energy and momentum, something that would be automatic if the relativistic equations were used throughout.

  13. The Hydrodynamic Stability of a Fluid-Particle Flow: Instabilities in Gas-Fluidized Beds

    ERIC Educational Resources Information Center

    Liu, Xue; Howley, Maureen A.; Johri, Jayati; Glasser, Benjamin J.

    2008-01-01

    A simplified model of an industrially relevant fluid-particle flow system is analyzed using linear stability theory. Instabilities of the uniform state of a fluidized bed are investigated in response to small flow perturbations. Students are expected to perform each step of the computational analysis, and physical insight into key mechanistic…

  14. Galactic cosmic-ray mediation of a spherical solar wind flow. 1: The steady state cold gas hydrodynamical approximation

    NASA Technical Reports Server (NTRS)

    Le Roux, J. A.; Ptuskin, V. S.

    1995-01-01

    Realistic models of the outer heliosphere should consider that the interstellar cosmic-ray pressure becomes comparable to pressures in the solar wind at distances more than 100 AU from the Sun. The cosmic-ray pressure dynamically affects solar wind flow through deceleration. This effect, which occurs over a scale length of the order of the effective diffusion length at large radial distances, has important implications for cosmic-ray modulation and acceleration. As a first step toward solution of this nonlinear problem, a steady state numerical model was developed for a relatively cold spherical solar wind flow which encounters the confining isotropic pressure of the surrounding Galactic medium. This pressure is assumed to be dominated by energetic particles (Galactic cosmic rays). The system of equations, which are solved self-consistently, includes the relevant hydrodynamical equations for the solar wind flow and the spherical cosmic-ray transport equation. To avoid the closure parameter problem of the two-fluid model, the latter equation is solved for the energy-dependent cosmic-ray distribution function.

  15. A flow integrated DSD hydrodynamics strategy for computing the motion of detonation of insensitive high explosives on an Eulerian grid

    SciTech Connect

    Short, Mark; Aslam, Tariq D

    2010-01-01

    The detonation structure in many insensitive high explosives consists of two temporally disparate zones of heat release. In PBX 9502, there is a fast reaction zone ({approx} 25 ns) during which reactants are converted to gaseous products and small carbon clusters, followed by a slower regime ({approx} 250 ns) of carbon coagulation. A hybrid approach for determining the propagation of two-stage heat release detonations has been developed that utilizes a detonation shock dynamics (DSD) based strategy for the fast reaction zone with a direct hydrodynamic simulation of the flow in the slow zone. Unlike a standard DSD/programmed bum formulation, the evolution of the fast zone DSD-like surface is coupled to the flow in the slow reaction zone. We have termed this formulation flow integrated detonation shock dynamics (FIDSD). The purpose of the present paper is to show how the FIDSD formulation can be applied to detonation propagation on an Eulerian grid using an algorithm based on level set interface tracking and a ghost fluid approach.

  16. Lecture Series "Boundary Layer Theory". Part I - Laminar Flows. Part 1; Laminar Flows

    NASA Technical Reports Server (NTRS)

    Schlichting, H.

    1949-01-01

    In the lecture series starting today author want to give a survey of a field of aerodynamics which has for a number of years been attracting an ever growing interest. The subject is the theory of flows with friction, and, within that field, particularly the theory of friction layers, or boundary layers. A great many considerations of aerodynamics are based on the ideal fluid, that is the frictionless incompressibility and fluid. By neglect of compressibility and friction the extensive mathematical theory of the ideal fluid, (potential theory) has been made possible. Actual liquids and gases satisfy the condition of incomressibility rather well if the velocities are not extremely high or, more accurately, if they are small in comparison with sonic velocity. For air, for instance, the change in volume due to compressibility amounts to about 1 percent for a velocity of 60 meters per second. The hypothesis of absence of friction is not satisfied by any actual fluid; however, it is true that most technically important fluids, for instance air and water, have a very small friction coefficient and therefore behave in many cases almost like the ideal frictionless fluid. Many flow phenomena, in particular most cases of lift, can be treated satisfactorily, - that is, the calculations are in good agreement with the test results, -under the assumption of frictionless fluid. However, the calculations with frictionless flow show a very serious deficiency; namely, the fact, known as d'Alembert's paradox, that in frictionless flow each body has zero drag whereas in actual flow each body experiences a drag of greater or smaller magnitude. For a long time the theory has been unable to bridge this gap between the theory of frictionless flow and the experimental findings about actual flow. The cause of this fundamental discrepancy is the viscosity which is neglected in the theory of ideal fluid; however, in spite of its extraordinary smallness it is decisive for the course of the flow

  17. Reconstructing Hydrodynamic Flow Parameters of the 1700 Tsunami at Ecola Creek, Cannon Beach, Oregon

    NASA Astrophysics Data System (ADS)

    Witter, R. C.; Zhang, Y.; Priest, G. R.

    2008-12-01

    Coastal communities in the western U.S. face risks of inundation by distant tsunamis that travel across the Pacific Ocean as well as local tsunamis produced by great (M >8) earthquakes on the Cascadia subduction zone. In 1964 the M 9.2 Alaska earthquake generated a distant tsunami that flooded Cannon Beach, a small community (population 1640) in northwestern Oregon, causing over $230,000 in damages. However, in the wake of the 2004 Indian Ocean tsunami, renewed concern about the potential impacts of a local Cascadia tsunami, has motivated a need for closer examination of the hazard. This study applies a simple sediment transport model, TsuSedMod (Jaffe and Gelfenbaum, 2007), to reconstruct the flow speed of the most recent Cascadia tsunami that flooded the region in 1700 using the thickness and grain size of sand layers deposited by the waves. Sand sheets recording the 1700 tsunami were sampled in the field and analyzed in the laboratory to produce model inputs. TsuSedMod calculates tsunami flow speed from the shear velocity required to suspend the quantity and grain size distribution of the observed sand layers. The model assumes a steady, spatially uniform tsunami flow and that sand deposits form from sediment falling out of suspension when the flow stops. Assuming sensitivity analyses test the appropriate parameter values found in nature, flow speeds estimated for the 1700 tsunami range from about 5 to 9 m/s. Using flow depths constrained by tsunami simulations for Cannon Beach, the sediment model calculated flow speeds of 6.5 to 7.6 m/s for sites within 0.3 km of the beach and higher flow speeds (7.4 to 8.8 m/s) for sites 0.6 to 1.2 km inland. The higher flow speeds calculated for the two sites furthest landward contrast with much lower maximum velocities (<3.8 m/s) predicted by the simulations. Grain size distributions of sand layers from the most distal sites are inconsistent with deposition from sediment falling out of suspension. We infer that rapid

  18. Smoothed particle hydrodynamic modeling of volcanic debris flows: Application to Huiloac Gorge lahars (Popocatépetl volcano, Mexico)

    NASA Astrophysics Data System (ADS)

    Haddad, Bouchra; Palacios, David; Pastor, Manuel; Zamorano, José Juan

    2016-09-01

    Lahars are among the most catastrophic volcanic processes, and the ability to model them is central to mitigating their effects. Several lahars recently generated by the Popocatépetl volcano (Mexico) moved downstream through the Huiloac Gorge towards the village of Santiago Xalitzintla. The most dangerous was the 2001 lahar, in which the destructive power of the debris flow was maintained throughout the extent of the flow. Identifying the zone of hazard can be based either on numerical or empirical models, but a calibration and validation process is required to ensure hazard map quality. The Geoflow-SPH depth integrated numerical model used in this study to reproduce the 2001 lahar was derived from the velocity-pressure version of the Biot-Zienkiewicz model, and was discretized using the smoothed particle hydrodynamics (SPH) method. The results of the calibrated SPH model were validated by comparing the simulated deposit depth with the field depth measured at 16 cross sections distributed strategically along the gorge channel. Moreover, the dependency of the results on topographic mesh resolution, initial lahar mass shape and dimensions is also investigated. The results indicate that to accurately reproduce the 2001 lahar flow dynamics the channel topography needed to be discretized using a mesh having a minimum 5 m resolution, and an initial lahar mass shape that adopted the source area morphology. Field validation of the calibrated model showed that there was a satisfactory relationship between the simulated and field depths, the error being less than 20% for 11 of the 16 cross sections. This study demonstrates that the Geoflow-SPH model was able to accurately reproduce the lahar path and the extent of the flow, but also reproduced other parameters including flow velocity and deposit depth.

  19. Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena.

    PubMed

    Asadnia, Mohsen; Kottapalli, Ajay Giri Prakash; Miao, Jianmin; Warkiani, Majid Ebrahimi; Triantafyllou, Michael S

    2015-10-01

    Using biological sensors, aquatic animals like fishes are capable of performing impressive behaviours such as super-manoeuvrability, hydrodynamic flow 'vision' and object localization with a success unmatched by human-engineered technologies. Inspired by the multiple functionalities of the ubiquitous lateral-line sensors of fishes, we developed flexible and surface-mountable arrays of micro-electromechanical systems (MEMS) artificial hair cell flow sensors. This paper reports the development of the MEMS artificial versions of superficial and canal neuromasts and experimental characterization of their unique flow-sensing roles. Our MEMS flow sensors feature a stereolithographically fabricated polymer hair cell mounted on Pb(Zr(0.52)Ti(0.48))O3 micro-diaphragm with floating bottom electrode. Canal-inspired versions are developed by mounting a polymer canal with pores that guide external flows to the hair cells embedded in the canal. Experimental results conducted employing our MEMS artificial superficial neuromasts (SNs) demonstrated a high sensitivity and very low threshold detection limit of 22 mV/(mm s(-1)) and 8.2 µm s(-1), respectively, for an oscillating dipole stimulus vibrating at 35 Hz. Flexible arrays of such superficial sensors were demonstrated to localize an underwater dipole stimulus. Comparative experimental studies revealed a high-pass filtering nature of the canal encapsulated sensors with a cut-off frequency of 10 Hz and a flat frequency response of artificial SNs. Flexible arrays of self-powered, miniaturized, light-weight, low-cost and robust artificial lateral-line systems could enhance the capabilities of underwater vehicles. PMID:26423435

  20. Hydrodynamic directional control of liquid metal droplets within a microfluidic flow focusing system

    NASA Astrophysics Data System (ADS)

    Gol, Berrak; Kurdzinski, Michael E.; Tovar-Lopez, Francisco J.; Petersen, Phred; Mitchell, Arnan; Khoshmanesh, Khashayar

    2016-04-01

    Here, we investigate the directional control of Galinstan liquid metal droplets when transferring from the high-viscosity glycerol core into the parallel low-viscosity NaOH sheath streams within a flow focusing microfluidic system. In the presence of sufficient flow mismatch between the sheath streams, the droplets are driven toward the higher velocity interface and cross the interface under the influence of surface tension gradient. A minimum flow mismatch of 125 μl/min is required to enable the continuous transfer of droplets toward the desired sheath stream. The response time of droplets, the time required to change the direction of droplet transfer, is governed by the response time of the syringe pump driven microfluidic system and is found to be 3.3 and 8.8 s when increasing and decreasing the flow rate of sheath stream, respectively.

  1. Formation of Microbial Streamers by Flow-Induced Shear and Their Hydrodynamic Effects

    NASA Astrophysics Data System (ADS)

    Gong, J.; Olsen, K. A.; Nguyen, T.; Tice, M. M.; 2012; 2013, G. C.

    2014-12-01

    Microbial streamers are productive elements of surface-attached microbial communities that paradoxically seem to roughen mats under rapid, high shear flows, potentially exposing the mat to greater risk of erosion. They are common features found in modern hot-spring outflow channels, yet their formation mechanisms and effects on mat erosion are poorly understood. We test a hypothesis that streamers are produced by shear-induced viscoelastic deformation, and that streamers grow to heal detached turbulent boundary layers. Laboratory flume experiments were conducted using Particle Image/Tracking Velocimetry (PIV/PTV) to gain quantitative insights into the behavior of flows around small projections constructed from 3D-printed plastics or hydrated EPS gels, as well as artificial streamers. The combined use of fabricated hard and viscoelastic shapes, tracer particles, sheet lasers and high speed cameras allowed visualization of flows and quantitative measurements. Results show that primary and secondary flows (backflow behind projections) combine to produce deformations that drive the elongation of the top and ultimately initiate streamer formation. With insufficient secondary flows, streamers are not able to rise up from the basal mat. This implies that a combination of sufficient topographic relief and flow strength is required for streamers to form. In addition, flow measurements indicate that the presence of artificial streamers made the surface hydraulically smoother, and in effect reducing bed shear at the base. These results suggest a novel set of feedbacks that could reduce net mat erosion in energetic flows, and could help guide the evaluation of biosignatures in sedimentary rocks deposited in the presence of microbial mats.

  2. Volumetric quantification of fluid flow reveals fish's use of hydrodynamic stealth to capture evasive prey

    PubMed Central

    Gemmell, Brad J.; Adhikari, Deepak; Longmire, Ellen K.

    2014-01-01

    In aquatic ecosystems, predation on zooplankton by fish provides a major pathway for the transfer of energy to higher trophic levels. Copepods are an abundant zooplankton group that sense hydromechanical disturbances produced by approaching predators and respond with rapid escapes. Despite this capability, fish capture copepods with high success. Previous studies have focused on the predatory strike to elucidate details of this interaction. However, these raptorial strikes and resulting suction are only effective at short range. Thus, small fish must closely approach highly sensitive prey without triggering an escape in order for a strike to be successful. We use a new method, high-speed, infrared, tomographic particle image velocimetry, to investigate three-dimensional fluid patterns around predator and prey during approaches. Our results show that at least one planktivorous fish (Danio rerio) can control the bow wave in front of the head during the approach and consumption of prey (copepod). This alters hydrodynamic profiles at the location of the copepod such that it is below the threshold required to elicit an escape response. We find this behaviour to be mediated by the generation of suction within the buccopharyngeal cavity, where the velocity into the mouth roughly matches the forward speed of the fish. These results provide insight into how animals modulate aspects of fluid motion around their bodies to overcome escape responses and enhance prey capture. PMID:24227312

  3. Incompressible-compressible flows with a transient discontinuous interface using smoothed particle hydrodynamics (SPH)

    NASA Astrophysics Data System (ADS)

    Lind, S. J.; Stansby, P. K.; Rogers, B. D.

    2016-03-01

    A new two-phase incompressible-compressible Smoothed Particle Hydrodynamics (SPH) method has been developed where the interface is discontinuous in density. This is applied to water-air problems with a large density difference. The incompressible phase requires surface pressure from the compressible phase and the compressible phase requires surface velocity from the incompressible phase. Compressible SPH is used for the air phase (with the isothermal stiffened ideal gas equation of state for low Mach numbers) and divergence-free (projection based) incompressible SPH is used for the water phase, with the addition of Fickian shifting to produce sufficiently homogeneous particle distributions to enable stable, accurate, converged solutions without noise in the pressure field. Shifting is a purely numerical particle regularisation device. The interface remains a true material discontinuity at a high density ratio with continuous pressure and velocity at the interface. This approach with the physics of compressibility and incompressibility represented is novel within SPH and is validated against semi-analytical results for a two-phase elongating and oscillating water drop, analytical results for low amplitude inviscid standing waves, the Kelvin-Helmholtz instability, and a dam break problem with high interface distortion and impact on a vertical wall where experimental and other numerical results are available.

  4. Hydrodynamic effects in proteins

    NASA Astrophysics Data System (ADS)

    Szymczak, Piotr; Cieplak, Marek

    2011-01-01

    Experimental and numerical results pertaining to flow-induced effects in proteins are reviewed. Special emphasis is placed on shear-induced unfolding and on the role of solvent mediated hydrodynamic interactions in the conformational transitions in proteins.

  5. Hydrodynamic effects in proteins.

    PubMed

    Szymczak, Piotr; Cieplak, Marek

    2011-01-26

    Experimental and numerical results pertaining to flow-induced effects in proteins are reviewed. Special emphasis is placed on shear-induced unfolding and on the role of solvent mediated hydrodynamic interactions in the conformational transitions in proteins. PMID:21406855

  6. Predictive and reinforcement learning for magneto-hydrodynamic control of hypersonic flows

    NASA Astrophysics Data System (ADS)

    Kulkarni, Nilesh Vijay

    Increasing needs for autonomy in future aerospace systems and immense progress in computing technology have motivated the development of on-line adaptive control techniques to account for modeling errors, changes in system dynamics, and faults occurring during system operation. After extensive treatment of the inner-loop adaptive control dealing mainly with stable adaptation towards desired transient behavior, adaptive optimal control has started receiving attention in literature. Motivated by the problem of optimal control of the magneto-hydrodynamic (MHD) generator at the inlet of the scramjet engine of a hypersonic flight vehicle, this thesis treats the general problem of efficiently combining off-line and on-line optimal control methods. The predictive control approach is chosen as the off-line method for designing optimal controllers using all the existing system knowledge. This controller is then adapted on-line using policy-iteration-based Q-learning, which is a stable model-free reinforcement learning approach. The combined approach is first illustrated in the optimal control of linear systems, which helps in the analysis as well as the validation of the method. A novel neural-networks-based parametric predictive control approach is then designed for the off-line optimal control of non-linear systems. The off-line approach is illustrated by applications to aircraft and spacecraft systems. This is followed by an extensive treatment of the off-line optimal control of the MHD generator using this neuro-control approach. On-line adaptation of the controller is implemented using several novel schemes derived from the policy-iteration-based Q-learning. The implementation results demonstrate the success of these on-line algorithms for adapting towards modeling errors in the off-line design.

  7. Mathematical Description of the Hydrodynamic Regimes of an Asymptotic Model for Two-Phase Flow Arising in PFBC Boilers

    NASA Astrophysics Data System (ADS)

    de Vicente, S.; Galiano, G.; Velasco, J.; Aróstegui, J. M.

    Two-phase systems where a dense phase of small particles is fluidized with a gas flow appear in many industrial applications, among which the fluidized bed combustors are probably the most important. A homogenization technique allows us to formulate the mathematical model in form of the compressible Navier-Stokes system type with some particularities: 1) the volumetric fraction of the dense phase (analogous to the density in the Navier-Stokes equations) may vanish, 2) the constitutive viscosity law may depend in a nonlinear form on this density, 3) the source term is nonlinear and coupled with state equations involving drag forces and hydrodynamic pressure, and 4) the state equation for the collision pressure of dense phase blows up for finite values of the density. We develop a rigorous theory for a special kind of solutions we call stationary clouds. Such solutions exist only under restrictions on the geometry of combustor and on the boundary conditions that usually meet in engineering applications. In return, these solutions have a stationary one-dimensional structure very simple and, from them, it is possible to reconstruct much of the dynamics of the whole system, responding to most of the practical issues of interest. Finally, we study the linear stability for the trivial solutions corresponding to uniform fluidized states injecting plane wave perturbations in our equations. Depending on the parameters of the equations of state describing the collisions between solid particles, hydrodynamic pressure, and the values of blowing boundary condition, we can draw detailed abacus separating stable regions of unstable regions where bubbles appear. Then, we use the dispersion relations of this multidimensional linearized model, combined with the stationary phase theorem, to approach the profiles and the evolution of the bubbles appearing in unstable regimes, and verify that the obtained results adjust to the observations.

  8. Augmenting two-dimensional hydrodynamic simulations with measured velocity data to identify flow paths as a function of depth on Upper St. Clair River in the Great Lakes basin

    USGS Publications Warehouse

    Holtschlag, D.J.; Koschik, J.A.

    2005-01-01

    Upper St. Clair River, which receives outflow from Lake Huron, is characterized by flow velocities that exceed 7 feet per second and significant channel curvature that creates complex flow patterns downstream from the Blue Water Bridge in the Port Huron, Michigan, and Sarnia, Ontario, area. Discrepancies were detected between depth-averaged velocities previously simulated by a two-dimensional (2D) hydrodynamic model and surface velocities determined from drifting buoy deployments. A detailed ADCP (acoustic Doppler current profiler) survey was done on Upper St. Clair River during July 1-3, 2003, to help resolve these discrepancies. As part of this study, a refined finite-element mesh of the hydrodynamic model used to identify source areas to public water intakes was developed for Upper St. Clair River. In addition, a numerical procedure was used to account for radial accelerations, which cause secondary flow patterns near channel bends. The refined model was recalibrated to better reproduce local velocities measured in the ADCP survey. ADCP data also were used to help resolve the remaining discrepancies between simulated and measured velocities and to describe variations in velocity with depth. Velocity data from ADCP surveys have significant local variability, and statistical processing is needed to compute reliable point estimates. In this study, velocity innovations were computed for seven depth layers posited within the river as the differences between measured and simulated velocities. For each layer, the spatial correlation of velocity innovations was characterized by use of variogram analysis. Results were used with kriging to compute expected innovations within each layer at applicable model nodes. Expected innovations were added to simulated velocities to form integrated velocities, which were used with reverse particle tracking to identify the expected flow path near a sewage outfall as a function of flow depth. Expected particle paths generated by use of

  9. Analytical studies on a new lattice hydrodynamic traffic flow model with consideration of traffic current cooperation among three consecutive sites

    NASA Astrophysics Data System (ADS)

    Li, Zhipeng; Zhong, Chenjie; Chen, Lizhu; Xu, Shangzhi; Qian, Yeqing

    2016-09-01

    In this paper, the original lattice hydrodynamic model of traffic flow is extended to take into account the traffic current cooperation among three consecutive sites. The basic idea of the new consideration is that the cooperative traffic current of the considered site is determined by the traffic currents of the site itself, the immediately preceding site and the immediately following one. The stability criterion of the extended model is obtained by applying the linear stability analysis. The result reveals the traffic current cooperation of the immediately preceding site is positive correlation with the stability of traffic system, while negative correlation is found between the traffic stability and the traffic current cooperation of the nearest follow site. To describe the phase transition, the modified KdV equation near the critical point is derived by using the reductive perturbation method, with obtaining the dependence of the propagation kink solution for traffic jams on the traffic current cooperation among three consecutive sites. The direct numerical are conducted to verify the results of theoretical analysis, and explore the effects of the traffic current cooperation on the traffic flux of the vehicle flow system.

  10. Effect of Flow Rates on Generation of Monodisperse Clay-Poly(N-isopropylacrylamide) Embolic Microspheres Using Hydrodynamic Focusing Microfluidic Device

    NASA Astrophysics Data System (ADS)

    Han, Kyungsup; Lee, Sona; Duck Seo, Kyoung; Choi, Sung-Up; Lee, Jonghwi; Lee, Jaehwi; Kwak, Byung Kook; Choi, Hae-Jin; Kim, Dong Sung

    2011-06-01

    Vascular embolization is a minimally invasive nonsurgical technique obstructing a blood vessel by lodgment of embolic materials to treat cancers and vascular lesions. In this paper, we have carried out a parametric study of generation of monodisperse clay-poly(N-isopropylacrylamide) (clay-PNIPAAm) embolic microspheres of which size is comparable to a blood vessel (about 400 µm). To achieve monodisperse water-phase clay/NIPAAm microdroplets, we have designed and fabricated a poly(dimethylsiloxane) (PDMS) hydrodynamic focusing microfluidic device (HFMD) for the generation of microdroplets with the affinity of continuous oil-phase fluid to the hydrophobic PDMS taken into account. We have investigated the influence of process-related flow conditions on the microdroplet generation to determine a proper processing window for obtaining monodisperse microdroplets with the fabricated HFMD. A parametric study of generation of monodisperse microdroplets was carried out by changing volumetric flow rates of two immiscible fluids within the determined processing window. For the suggested condition, the fabricated clay-PNIPAAm microspheres of about 400 µm in diameter showed an extremely narrow size distribution with a coefficient of variation of 0.41%. We have also showed the floatability of the fabricated clay-PNIPAAm microspheres in saline and the smooth passage of the microspheres through a commercially available microcatheter as in vitro characterization for embolization.

  11. Unsteady hydrodynamic forces acting on a robotic arm and its flow field: application to the crawl stroke.

    PubMed

    Takagi, Hideki; Nakashima, Motomu; Ozaki, Takashi; Matsuuchi, Kazuo

    2014-04-11

    This study aims to clarify the mechanisms by which unsteady hydrodynamic forces act on the hand of a swimmer during a crawl stroke. Measurements were performed for a hand attached to a robotic arm with five degrees of freedom independently controlled by a computer. The computer was programmed so the hand and arm mimicked a human performing the stroke. We directly measured forces on the hand and pressure distributions around it at 200 Hz; flow fields underwater near the hand were obtained via 2D particle image velocimetry (PIV). The data revealed two mechanisms that generate unsteady forces during a crawl stroke. One is the unsteady lift force generated when hand movement changes direction during the stroke, leading to vortex shedding and bound vortex created around it. This bound vortex circulation results in a lift that contributes to the thrust. The other occurs when the hand moves linearly with a large angle of attack, creating a Kármán vortex street. This street alternatively sheds clockwise and counterclockwise vortices, resulting in a quasi-steady drag contributing to the thrust. We presume that professional swimmers benefit from both mechanisms. Further studies are necessary in which 3D flow fields are measured using a 3D PIV system and a human swimmer. PMID:24524992

  12. Electro-hydrodynamics and kinetic modelling of polluted air flow activated by multi-tip-to-plane corona discharge

    SciTech Connect

    Meziane, M.; Eichwald, O.; Ducasse, O.; Marchal, F.; Sarrette, J. P.; Yousfi, M.

    2013-04-21

    The present paper is devoted to the 2D simulation of an Atmospheric Corona Discharge Reactor (ACDR) involving 10 pins powered by a DC high voltage and positioned 7 mm above a grounded metallic plane. The corona reactor is periodically crossed by thin mono filamentary streamers with a natural repetition frequency of some tens of kHz. The simulation involves the electro-dynamic, chemical kinetic, and neutral gas hydrodynamic phenomena that influence the kinetics of the chemical species transformation. Each discharge stage (including the primary and the secondary streamers development and the resulting thermal shock) lasts about one hundred nanoseconds while the post-discharge stages occurring between two successive discharge phases last one hundred microseconds. The ACDR is crossed by a lateral air flow including 400 ppm of NO. During the considered time scale of 10 ms, one hundred discharge/post-discharge cycles are simulated. The simulation involves the radical formation and thermal exchange between the discharges and the background gas. The results show how the successive discharges activate the flow gas and how the induced turbulence phenomena affect the redistribution of the thermal energy and the chemical kinetics inside the ACDR.

  13. Unsteady hydrodynamic forces acting on a hand and its flow field during sculling motion.

    PubMed

    Takagi, Hideki; Shimada, Shohei; Miwa, Takahiro; Kudo, Shigetada; Sanders, Ross; Matsuuchi, Kazuo

    2014-12-01

    The goal of this research is to clarify the mechanism by which unsteady forces are generated during sculling by a skilled swimmer and thereby to contribute to improving propulsive techniques. We used particle image velocimetry (PIV) to acquire data on the kinematics of the hand during sculling, such as fluid forces and flow field. By investigating the correlations between these data, we expected to find a new propulsion mechanism. The experiment was performed in a flow-controlled water channel. The participant executed sculling motions to remain at a fixed position despite constant water flow. PIV was used to visualize the flow-field cross-section in the plane of hand motion. Moreover, the fluid forces acting on the hand were estimated from pressure distribution measurements performed on the hand and simultaneous three-dimensional motion analysis. By executing the sculling motion, a skilled swimmer produces large unsteady fluid forces when the leading-edge vortex occurs on the dorsal side of the hand and wake capture occurs on the palm side. By using a new approach, we observed interesting unsteady fluid phenomena similar to those of flying insects. The study indicates that it is essential for swimmers to fully exploit vortices. A better understanding of these phenomena might lead to an improvement in sculling techniques. PMID:25310026

  14. Research in Natural Laminar Flow and Laminar-Flow Control, part 2

    NASA Technical Reports Server (NTRS)

    Hefner, Jerry N. (Compiler); Sabo, Frances E. (Compiler)

    1987-01-01

    Part 2 of the Symposium proceedings includes papers addressing various topics in basic wind tunnel research/techniques and computational transitional research. Specific topics include: advanced measurement techniques; laminar flow control; Tollmien-Schlichting wave characteristics; boundary layer transition; flow visualization; wind tunnel tests; flight tests; boundary layer equations; swept wings; and skin friction.

  15. Non-Newtonian hydrodynamics for a dilute granular suspension under uniform shear flow

    NASA Astrophysics Data System (ADS)

    Chamorro, Moisés G.; Reyes, Francisco Vega; Garzó, Vicente

    2015-11-01

    We study in this work a steady shearing laminar flow with null heat flux (usually called "uniform shear flow") in a gas-solid suspension at low density. The solid particles are modeled as a gas of smooth hard spheres with inelastic collisions while the influence of the surrounding interstitial fluid on the dynamics of grains is modeled by means of a volume drag force, in the context of a rheological model for suspensions. The model is solved by means of three different but complementary routes, two of them being theoretical (Grad's moment method applied to the corresponding Boltzmann equation and an exact solution of a kinetic model adapted to granular suspensions) and the other being computational (Monte Carlo simulations of the Boltzmann equation). Unlike in previous studies on granular sheared suspensions, the collisional moment associated with the momentum transfer is determined in Grad's solution by including all the quadratic terms in the stress tensor. This theoretical enhancement allows for the detection and evaluation of the normal stress differences in the plane normal to the laminar flow. In addition, the exact solution of the kinetic model gives the explicit form of the velocity moments of the velocity distribution function. Comparison between our theoretical and numerical results shows in general a good agreement for the non-Newtonian rheological properties, the kurtosis (fourth velocity moment of the distribution function), and the velocity distribution of the kinetic model for quite strong inelasticity and not too large values of the (scaled) friction coefficient characterizing the viscous drag force. This shows the accuracy of our analytical results that allows us to describe in detail the flow dynamics of the granular sheared suspension.

  16. Non-Newtonian hydrodynamics for a dilute granular suspension under uniform shear flow.

    PubMed

    Chamorro, Moisés G; Reyes, Francisco Vega; Garzó, Vicente

    2015-11-01

    We study in this work a steady shearing laminar flow with null heat flux (usually called "uniform shear flow") in a gas-solid suspension at low density. The solid particles are modeled as a gas of smooth hard spheres with inelastic collisions while the influence of the surrounding interstitial fluid on the dynamics of grains is modeled by means of a volume drag force, in the context of a rheological model for suspensions. The model is solved by means of three different but complementary routes, two of them being theoretical (Grad's moment method applied to the corresponding Boltzmann equation and an exact solution of a kinetic model adapted to granular suspensions) and the other being computational (Monte Carlo simulations of the Boltzmann equation). Unlike in previous studies on granular sheared suspensions, the collisional moment associated with the momentum transfer is determined in Grad's solution by including all the quadratic terms in the stress tensor. This theoretical enhancement allows for the detection and evaluation of the normal stress differences in the plane normal to the laminar flow. In addition, the exact solution of the kinetic model gives the explicit form of the velocity moments of the velocity distribution function. Comparison between our theoretical and numerical results shows in general a good agreement for the non-Newtonian rheological properties, the kurtosis (fourth velocity moment of the distribution function), and the velocity distribution of the kinetic model for quite strong inelasticity and not too large values of the (scaled) friction coefficient characterizing the viscous drag force. This shows the accuracy of our analytical results that allows us to describe in detail the flow dynamics of the granular sheared suspension. PMID:26651687

  17. Numerical investigation of submarine hydrodynamics and flow field in steady turn

    NASA Astrophysics Data System (ADS)

    Cao, Liu-shuai; Zhu, Jun; Wan, Wen-bin

    2016-03-01

    This paper presents numerical simulations of viscous flow past a submarine model in steady turn by solving the Reynolds-Averaged Navier-Stokes Equations (RANSE) for incompressible, steady flows. The rotating coordinate system was adopted to deal with the rotation problem. The Coriolis force and centrifugal force due to the computation in a bodyfixed rotating frame of reference were treated explicitly and added to momentum equations as source terms. Furthermore, velocities of entrances were coded to give the correct magnitude and direction needed. Two turbulence closure models (TCMs), the RNG κ - ɛ model with wall functions and curvature correction and the Shear Stress Transport (SST) κ - ω model without the use of wall functions, but with curvature correction and low- Re correction were introduced, respectively. Take DARPA SUBOFF model as the test case, a series of drift angle varying between 0° and 16° at a Reynolds number of 6.53×106 undergoing rotating arm test simulations were conducted. The computed forces and moment as a function of drift angle during the steady turn are mostly in close agreement with available experimental data. Though the difference between the pressure coefficients around the hull form was observed, they always show the same trend. It was demonstrated that using sufficiently fine grids and advanced turbulence models will lead to accurate prediction of the flow field as well as the forces and moments on the hull.

  18. A hydrodynamic analysis of fluid flow between meshing spur gear teeth

    NASA Astrophysics Data System (ADS)

    Wittbrodt, M. J.; Pechersky, M. J.

    1987-10-01

    A one dimensional analysis of the fluid pumping action resulting from the meshing of spur gears was performed by writing a computer algorithm. Two separate analyses were conducted; one using incompressible and the other using compressible flow theory. The incompressible flow calculations correspond to heavily lubricated gears whereas the compressible flow calculations are representative of lightly lubricated gears. The analysis demonstrated that the velocity of the discharged fluid reached high velocities for both cases. The high meshing rate of the teeth along with the small discharge area is the cause for the high fluid velocities. Certain geometric design variables of the gears were seen to affect the peak velocities for each case. The variables most significantly affecting the peak velocity appear to be the drive ratio and the face width. The high velocities may contribute to the noise generated during meshing of gear teeth due to the jet noise as a result of the high velocity jets impinging on the enclosures surrounding the gears and the formation of shock waves at the exit plane of the teeth.

  19. Hydrodynamic and Thermal Slip Effect on Double-Diffusive Free Convective Boundary Layer Flow of a Nanofluid Past a Flat Vertical Plate in the Moving Free Stream

    PubMed Central

    Khan, Waqar A.; Uddin, Md Jashim; Ismail, A. I. Md.

    2013-01-01

    The effects of hydrodynamic and thermal slip boundary conditions on the double-diffusive free convective flow of a nanofluid along a semi-infinite flat solid vertical plate are investigated numerically. It is assumed that free stream is moving. The governing boundary layer equations are non-dimensionalized and transformed into a system of nonlinear, coupled similarity equations. The effects of the controlling parameters on the dimensionless velocity, temperature, solute and nanofluid concentration as well as on the reduced Nusselt number, reduced Sherwood number and the reduced nanoparticle Sherwood number are investigated and presented graphically. To the best of our knowledge, the effects of hydrodynamic and thermal slip boundary conditions have not been investigated yet. It is found that the reduced local Nusselt, local solute and the local nanofluid Sherwood numbers increase with hydrodynamic slip and decrease with thermal slip parameters. PMID:23533566

  20. Numerical simulation of the flow fields around falling ice crystals with inclined orientation and the hydrodynamic torque

    NASA Astrophysics Data System (ADS)

    Hashino, Tempei; Chiruta, Mihai; Polzin, Dierk; Kubicek, Alexander; Wang, Pao K.

    2014-12-01

    The flow field and orientation of ice particles are fundamental information to understand cloud microphysical processes, optical phenomena, and electric-field induced orientation and to improve remote sensing of ice clouds. The purpose of this study is to investigate the flow fields and hydrodynamic torques of falling ice columns and hexagonal plates with their largest dimension inclined with respect to the airflow. The Reynolds numbers range from 2 to 70 for columns and 2 to 120 for plates. The flow fields are obtained by numerically solving the relevant Navier-Stokes equations under the assumption of air incompressibility. It was found that for the intermediate Reynolds number the streamlines around the inclined crystals exhibit less spiral rotation behind them than those around the stable posture. The vorticity magnitude was larger in the upstream side and broader in the downstream than the one without inclination. For plates, a high-pressure dome on the center of the lower basal face disappears with inclination, possibly leading to an increase of riming there. The torques acting on the crystals have a local maximum over the inclined angle and exhibit almost symmetric around 45° over the range of Reynolds numbers. The torque parameterization was performed under pressures of 300, 500, and 800 hPa as a function of Reynolds number and aspect ratio. It was found that the time scale of rotation for plates is smaller than the one for columns. Furthermore, the torque formula was applied to assess alignment of crystals along electric fields. It was found that these crystals of millimeter size require 120 kV/m for the electrical alignment, which agrees with previous studies.

  1. Initial hydrodynamic study on a new intraaortic axial flow pump: Dynamic aortic valve.

    PubMed

    Li, G; Zhao, H; Hu, S; Zhu, X; Wu, Q; Ren, B; Ma, W

    2001-04-01

    Rotary blood pumps have been researched as implantable ventricular assist devices for years. To further reduce the complex of implanted axial pumps, the authors proposed a new concept of intraaortic axial pump, termed previously as "dynamic aortic valve (DAV)". Instead of being driven by an intraaortic micro-electric motor, it was powered by a magnetic field from outside of body. To ensure the perfusion of coronary artery, the axial flow pump is to be implanted in the position of aortic valve. It could serve as either a blood pump or a mechanical valve depending on the power input. This research tested the feasibility of the new concept in model study. A column, made from permanent magnet, is jointed to an impeller in a concentric way to form a "rotor-impeller". Supported by a hanging shaft cantilevered in the center of a rigid cage, the rotor-impeller can be turned by the magnetic field in the surrounding space. In the present prototype, the rotor is 8 mm in diameter and 15 mm in length, the impeller has 3 vanes with an outer diameter of 18 mm. The supporting cage is 22 mm in outer diameter and 20 mm in length. When tested, the DAV prototype is inserted into the tube of a mock circuit. The alternative magnetic field is produced by a rotating magnet placed side by side with the rotor-impeller at a distance of 30 mm. Once the alternative magnetic field is presented in the surrounding space, the DAV starts to turn, leading to a pressure difference and liquid flow in the tube. The flow rate or pressure difference is proportioned to rotary speed. At the maximal output of hydraulic power, the flow rate reached 5 L/min against an afterload of 100 mmHg. The maximal pressure difference generated by DAV at a rotation rate of 12600 r/min was 147 mmHg. The preliminary results demonstrated the feasibility of "DAV", further research on this concept is justifiable. PMID:18726438

  2. Hydrodynamics of two phase flow through homogeneous and stratified porous layers

    SciTech Connect

    Chu, W; Lee, H; Dhir, V K; Catton, I

    1984-01-01

    An experimental investigation of two-phase flow through porous layers formed of nonheated glass particles has been made. The effect of particle size, particle size distribution, bed porosity and bed stratification on void fraction and pressure drop through particulate beds formed in a cylindrical and rectangular test section has been investigated. A model based on drift flux approach has been developed for the void fraction in homogeneous beds. Using the two phase friction pressure drop data, the relative permeabilities of the two phases have been concluded with void fraction. The void fraction and two-phase friction pressure gradient in beds composed of mixtures of spherical particles as well as sharps of different nominal sizes have also been examined. It is found that the models for single size particles are also applicable to mixtures of particles if a mean particle diameter for the mixture is defined. The observations in stratified beds indicate depletion or build up of voids at the interface between high and low permeability regions. Blocking of the flow into one of the layers of laterally stratified beds caused the pressures at different horizontal locations at the same bed height to be different from each other.

  3. Hydrodynamic segregation in a bidisperse colloidal suspension in microchannel flow: A theoretical study

    NASA Astrophysics Data System (ADS)

    Kanehl, Philipp; Stark, Holger

    2015-06-01

    Colloids in suspension exhibit shear-induced migration towards regions of low viscous shear. In dense bidisperse colloidal suspensions under pressure driven flow large particles can segregate in the center of a microchannel and the suspension partially demixes. To develop a theoretical understanding of these effects, we formulate a phenomenological model for the particle currents based on the work of Phillips et al. [Phys. Fluids 4, 30 (1992)]. We also simulate hard spheres under pressure-driven flow in two and three dimensions using the mesoscale simulation technique of multi-particle collision dynamics. Using a single fit parameter for the intrinsic diffusivity, our theory accurately reproduces the simulated density profiles across the channel. We present a detailed parameter study on how a monodisperse suspension enriches the channel center and quantitatively confirm the experimental observation that a binary colloidal mixture partially segregates into its two species. In particular, we always find a strong accumulation of large particles in the center. Qualitative differences between two and three dimensions reveal that collective diffusion is more relevant in two dimensions.

  4. Hydrodynamic segregation in a bidisperse colloidal suspension in microchannel flow: A theoretical study.

    PubMed

    Kanehl, Philipp; Stark, Holger

    2015-06-01

    Colloids in suspension exhibit shear-induced migration towards regions of low viscous shear. In dense bidisperse colloidal suspensions under pressure driven flow large particles can segregate in the center of a microchannel and the suspension partially demixes. To develop a theoretical understanding of these effects, we formulate a phenomenological model for the particle currents based on the work of Phillips et al. [Phys. Fluids 4, 30 (1992)]. We also simulate hard spheres under pressure-driven flow in two and three dimensions using the mesoscale simulation technique of multi-particle collision dynamics. Using a single fit parameter for the intrinsic diffusivity, our theory accurately reproduces the simulated density profiles across the channel. We present a detailed parameter study on how a monodisperse suspension enriches the channel center and quantitatively confirm the experimental observation that a binary colloidal mixture partially segregates into its two species. In particular, we always find a strong accumulation of large particles in the center. Qualitative differences between two and three dimensions reveal that collective diffusion is more relevant in two dimensions. PMID:26049518

  5. Hybrid Models: Bridging Particle and Continuum Scales in Hydrodynamic Flow Simulations

    NASA Astrophysics Data System (ADS)

    Flekkoy, Eirik G.; McNamara, Sean; Maloy, Jorgen; Maloy, Knut; Feder, Jens; Wagner, Geri

    Different models for the coupling of field and particle descriptions are introduced and examined. For the purpose of establishing how a molecular description may be coupled to a continuum description of the same physical system, we study a molecular dynamics system coupled to a Navier-Stokes description within the same physical space. A simple toy model version of this system is studied as well, i.e., a system of random walkers coupled to the diffusion equation. These coupling schemes are shown to work in the sense that they provide a seamless coupling between the different representations. In order to establish a sufficiently computationally efficient method for the simulation of gas-grain flow, we introduce a model where the grains are described explicitly but where the gas is described only through its continuum pressure field. It is shown that this model easily produces macroscopic structures, such as the bubbles in fluidized beds. The model is also used to study a novel bubble instability observed experimentally in the flow of gas-grain systems in simple tubes.

  6. An Axisymmetric Hydrodynamical Model for the Torus Wind in AGN. 2; X-ray Excited Funnel Flow

    NASA Technical Reports Server (NTRS)

    Dorodnitsyn, A.; Kallman, T.; Proga, D.

    2008-01-01

    We have calculated a series of models of outflows from the obscuring torus in active galactic nuclei (AGN). Our modeling assumes that the inner face of a rotationally supported torus is illuminated and heated by the intense X-rays from the inner accretion disk and black hole. As a result of such heating a strong biconical outflow is observed in our simulations. We calculate 3-dimensional hydrodynamical models, assuming axial symmetry, and including the effects of X-ray heating, ionization, and radiation pressure. We discuss the behavior of a large family of these models, their velocity fields, mass fluxes and temperature, as functions of the torus properties and X-ray flux. Synthetic warm absorber spectra are calculated, assuming pure absorption, for sample models at various inclination angles and observing times. We show that these models have mass fluxes and flow speeds which are comparable to those which have been inferred from observations of Seyfert 1 warm absorbers, and that they can produce rich absorption line spectra.

  7. Radiation hydrodynamics

    SciTech Connect

    Pomraning, G.C.

    1982-12-31

    This course was intended to provide the participant with an introduction to the theory of radiative transfer, and an understanding of the coupling of radiative processes to the equations describing compressible flow. At moderate temperatures (thousands of degrees), the role of the radiation is primarily one of transporting energy by radiative processes. At higher temperatures (millions of degrees), the energy and momentum densities of the radiation field may become comparable to or even dominate the corresponding fluid quantities. In this case, the radiation field significantly affects the dynamics of the fluid, and it is the description of this regime which is generally the charter of radiation hydrodynamics. The course provided a discussion of the relevant physics and a derivation of the corresponding equations, as well as an examination of several simplified models. Practical applications include astrophysics and nuclear weapons effects phenomena.

  8. Branch Flow Model: Relaxations and Convexification-Part II

    SciTech Connect

    Farivar, M; Low, SH

    2013-08-01

    We propose a branch flow model for the analysis and optimization of mesh as well as radial networks. The model leads to a new approach to solving optimal power flow (OPF) that consists of two relaxation steps. The first step eliminates the voltage and current angles and the second step approximates the resulting problem by a conic program that can be solved efficiently. For radial networks, we prove that both relaxation steps are always exact, provided there are no upper bounds on loads. For mesh networks, the conic relaxation is always exact but the angle relaxation may not be exact, and we provide a simple way to determine if a relaxed solution is globally optimal. We propose convexification of mesh networks using phase shifters so that OPF for the convexified network can always be solved efficiently for an optimal solution. We prove that convexification requires phase shifters only outside a spanning tree of the network and their placement depends only on network topology, not on power flows, generation, loads, or operating constraints. Part I introduces our branch flow model, explains the two relaxation steps, and proves the conditions for exact relaxation. Part II describes convexification of mesh networks, and presents simulation results.

  9. Branch Flow Model: Relaxations and Convexification-Part I

    SciTech Connect

    Farivar, M; Low, SH

    2013-08-01

    We propose a branch flow model for the analysis and optimization of mesh as well as radial networks. The model leads to a new approach to solving optimal power flow (OPF) that consists of two relaxation steps. The first step eliminates the voltage and current angles and the second step approximates the resulting problem by a conic program that can be solved efficiently. For radial networks, we prove that both relaxation steps are always exact, provided there are no upper bounds on loads. For mesh networks, the conic relaxation is always exact but the angle relaxation may not be exact, and we provide a simple way to determine if a relaxed solution is globally optimal. We propose convexification of mesh networks using phase shifters so that OPF for the convexified network can always be solved efficiently for an optimal solution. We prove that convexification requires phase shifters only outside a spanning tree of the network and their placement depends only on network topology, not on power flows, generation, loads, or operating constraints. Part I introduces our branch flow model, explains the two relaxation steps, and proves the conditions for exact relaxation. Part II describes convexification of mesh networks, and presents simulation results.

  10. Improving variational mass-consistent models of hydrodynamic flows via boundary conditions

    NASA Astrophysics Data System (ADS)

    Núñez, M. A.

    2012-04-01

    Variational mass-consistent models for the velocity field v have been used by mesoscale meteorological community to modeling the wind field from an observed field v 0 in a bounded region Ω with boundary Γ. Variational calculus reduces the problem to the solution of an elliptic equation for a Lagrange multiplier λ subject to Dirichlet Boundary Condition (DBC) on flow-through boundaries. In this work, it is shown that DBC decreases the regularity of λ and this in turn decreases the accuracy with which the velocity field satisfies the mass-balance. The boundary condition (BC) v · n = v T · ngiven by the true field v T on the whole boundary Γ, leads only to a Neumann boundary condition (NBC) for λ. Approximations of this BC are studied. Analytic and numerical results show that the velocity field U 0 obtained from v 0 by direct integration of the continuity equation, yields a NBC that improves significantly the fields obtained with DBC's.