Science.gov

Sample records for hydrogen absorption characteristics

  1. A first-principles study on interaction of Mg/Ni interface and its hydrogen absorption characteristics

    NASA Astrophysics Data System (ADS)

    Chen, Yuying; Dai, Jianhong; Xie, Ruiwen; Song, Yan

    2016-07-01

    We have investigated the interaction of Mg/Ni interface and its hydrogen adsorption characteristics using first-principles calculations to obtain a better understanding of the Mg/Ni interface as a hydrogen storage material. The smallest work of adhesion of Mg/Ni interface is 4.28 J/m2 with AB stacking sequence in the studied systems. Hydrogen adsorption energy and electronic structures were evaluated to study the interaction characteristics between hydrogen and Mg/Ni interface. The hydrogen adsorption is energetically favored on all considered sites. The hydrogen atom prefers to adsorb on the tetrahedral site of the Ni side of the interface owning the lowest adsorption energy. The plane-averaged charge density and the density of states analysis indicate that the absorption of hydrogen could stabilize the Mg/Ni interface owing to the strongly bonding interactions between hydrogen atom and the host Mg and Ni atoms. Therefore, Mg/Ni interface provides a promising medium for hydrogen storage.

  2. Influences of hydrogen dilution on microstructure and optical absorption characteristics of nc-SiOx:H film

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Du, Lin-Yuan; Jiang, Zhao-Yi; Yin, Chen-Chen; Yu, Wei; Fu, Guang-Sheng

    2015-10-01

    By using the plasma enhanced chemical vapor deposition (PECVD) technique, amorphous silicon oxide films containing nanocrystalline silicon grain (nc-SiOx:H) are deposited, and the bonding configurations and optical absorption properties of the films are investigated. The grain size can be well controlled by varying the hydrogen and oxygen content, and the largest size is obtained when the hydrogen dilution ratio R is 33. The results show that the crystallinity and the grain size of the film first increased and then decreased as R increased. The highest degree of crystallinity is obtained at R = 30. The analyses of bonding characteristics and light absorption characteristics show that the incorporation of hydrogen leads to an increase of overall bonding oxygen content in the film, and the film porosity first increases and then decreases. When R = 30, the film can be more compact, the optical absorption edge of the film is blue shifted, and the film has a lower activation energy. Project supported by the Key Basic Research Project of Hebei Province, China (Grant No. 12963930D) and the Natural Science Foundation of Hebei Province, China (Grant Nos. F2013201250 and B2012402011).

  3. The Effect of Platinum-coatings on Hydrogen- and Water-absorption and Desorption Characteristics of Lithium Zirconate

    NASA Astrophysics Data System (ADS)

    Tsuchiya, B.; Bandow, S.; Nagata, S.; Saito, K.; Tokunaga, K.; Morita, K.

    Hydrogen (H)- and water (H2O)-storage and desorption characteristics of 25 nm thick Pt films onLi2ZrO3composite materials, exposed to normal air at room temperature, have been investigated by means of elastic recoil detection (ERD), Rutherford backscattering spectrometry (RBS), weight gain measurement (WGM), and thermal desorption spectroscopy (TDS) techniques. It was found by the ERD and TDS that H and H2O were absorbed into the Pt-coated Li2ZrO3 in air at room temperature and desorbed from it in vacuum at much low temperatures of approximately 317 and 309 K, respectively. In addition, the WGM and TDS spectra revealed that the absorption and desorption characters ofsome gases such as CH4, CO, and CO2including H as well as H2Ointo the Li2ZrO3 bulk were improved by Pt deposition.

  4. Acoustic Absorption Characteristics of People.

    ERIC Educational Resources Information Center

    Kingsbury, H. F.; Wallace, W. J.

    1968-01-01

    The acoustic absorption characteristics of informally dressed college students in typical classroom seating are shown to differ substantially from data for formally dressed audiences in upholstered seating. Absorption data, expressed as sabins per person or absorption coefficient per square foot, shows that there is considerable variation between…

  5. Ultraviolet absorption cross sections of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Lin, C. L.; Rohatgi, N. K.; Demore, W. B.

    1978-01-01

    Absorption cross-sections of hydrogen peroxide vapor and of neutral aqueous solutions of hydrogen peroxide were measured in the wavelength range from 195 to 350 nm at 296 K. The spectrophotometric procedure is described, and the reported cross-sections are compared with values obtained by other researchers. Photodissociation coefficients of atmospheric H2O2 were calculated for direct absorption of unscattered solar radiation, and the vertical distributions of these coefficients are shown for various solar zenith angles.

  6. Characteristics of the local interstellar hydrogen determined from PROGNOZ 5 and 6 interplanetary Lyman-alpha line profile measurements with a hydrogen absorption cell

    NASA Astrophysics Data System (ADS)

    Bertaux, J. L.; Lallement, R.; Kurt, V. G.; Mironova, E. N.

    1985-09-01

    The flow of interstellar H atoms in the solar system was observed through resonance scattering of solar Lyman-alpha protons with two Lyman-alpha photometers on the Prognoz 5 and 6 satellites. Data collected at five different locations in the solar system were compared with a model of the interstellar H flow, modified by solar interaction. Five parameters describing atomic hydrogen of the local interstellar medium and two parameters describing the solar interaction were derived simultaneously to give a good fit of the upwind hemisphere. The solar Lyman-alpha flux at line center was determined along with the ionization rate of H atoms.

  7. Nickel-hydrogen cell reversal characteristics

    NASA Technical Reports Server (NTRS)

    Lurie, Charles

    1994-01-01

    Nickel-hydrogen cell reversal characteristics are being studied as part of a TRW program directed towards development of a high current battery cell bypass switch. The following are discussed: cell bypass switch; nickel-hydrogen cell reversal characteristics; and nickel-hydrogen cell chemistry: discharge/reversal and overdischarge (reversal) with nickel and hydrogen precharge.

  8. Impedance Characteristics of the Plasma Absorption Probe

    NASA Astrophysics Data System (ADS)

    Yamazawa, Yohei

    2009-10-01

    The plasma absorption probe (PAP) is a diagnostics for determination of spatially resolved electron density.footnotetextH. Kokura, et al., Jpn. J. Appl. Phys. 38 5262 (1999). PAP has attracted considerable interest because of its applicability in a reactive plasma. The simple structure of the probe allows us a robust measurement while the mechanism of the absorption is complicated and there are still some uncertainty.footnotetextM. Lapke, et al., Appl. Phys. Lett. 90, 121502 (2007) In this study, we focus on the frequency characteristics of the impedance instead of the absorption spectrum. An electromagnetic field simulation reveals that there is only one parallel resonance in the impedance characteristics even in a case there are many peaks in absorption spectrum. Thus, the impedance characteristics provide a clue to understanding the mechanism.

  9. Infrared absorption of hydrogen-related defects in ammonothermal GaN

    NASA Astrophysics Data System (ADS)

    Suihkonen, Sami; Pimputkar, Siddha; Speck, James S.; Nakamura, Shuji

    2016-05-01

    Polarization controlled Fourier transform infrared (FTIR) absorption measurements were performed on a high quality m-plane ammonothermal GaN crystal grown using basic chemistry. The polarization dependence of characteristic absorption peaks of hydrogen-related defects at 3000-3500 cm-1 was used to identify and determine the bond orientation of hydrogenated defect complexes in the GaN lattice. Majority of hydrogen was found to be bonded in gallium vacancy complexes decorated with one to three hydrogen atoms (VGa-H1,2,3) but also hydrogenated oxygen defect complexes, hydrogen in bond-center sites, and lattice direction independent absorption were observed. Absorption peak intensity was used to determine a total hydrogenated VGa density of approximately 4 × 1018 cm-3, with main contribution from VGa-H1,2. Also, a significant concentration of electrically passive VGa-H3 was detected. The high density of hydrogenated defects is expected to have a strong effect on the structural, optical, and electrical properties of ammonothermal GaN crystals.

  10. General model of electrochemical hydrogen absorption into metals

    SciTech Connect

    Lasia, A.; Gregoire, D.

    1995-10-01

    A general model for the hydrogen adsorption and hydrogen absorption into metals has been proposed. It includes reactions of hydrogen evolution M+H{sub 2}O+e=MH{sub ads}+OH{sup {minus}}; MH{sub ads}+H{sub 2}O+e=M+H{sub 2}+OH{sup {minus}}; and 2MH{sub ads}+2M+H{sub 2}; hydrogen absorption MH{sub ads}+MH{sub abs}; and hydrogen diffusion into metal. This problem leads to a system of differential equations which was solved using the differential algebraic equations method. Solutions were obtained for constant potential and constant current charging/discharging in the case of semi-infinite and finite length diffusion for planar, spherical, and cylindrical diffusion. Numerical solutions give new information about the reaction mechanism and may be useful in the determination of the kinetics of these processes.

  11. Hydrogen absorption in iron exposed to simulated concrete pore solutions

    SciTech Connect

    Lillard, R.S.; Scully, J.R.

    1996-02-01

    Safe cathodic protection (CP) limits are required for prestressed steel in concrete to avoid the risk of hydrogen embrittlement (HE). This preliminary study addressed some effects of concrete pore solution chemistry and metal surface condition on hydrogen absorption in iron. To accomplish this, the Devanathan-Stachurski permeation technique was used to investigate hydrogen absorption in 99.5% iron foils exposed to NaOH, saturated Ca(OH){sub 2}, and saturated Ca(OH){sub 2} + 0.6 M NaCl, all at pH 12.5. The foils used in this investigation were tested after various surface preparations: (a) polished, (b) with a thermal oxide formed by a heat treatment designed to simulate the stress relief oxide, and (c) with corrosion films to simulate an inservice tendon that was exposed to a marine environment for some time prior to CP. Hydrogen uptake in iron was most efficient for foils covered with Portland cement-based mortar, at least 2.5 times greater than that in NaOH of the same pH and hydrogen production rate. Absorption in saturated Ca(OH){sub 2} was somewhat less than that from the mortar cover. While chloride had no direct effect on the hydrogen absorption rate, the corrosion product and the thermal oxide were found to decrease hydrogen absorption compared to polished iron. The thermal oxide acted as a complete barrier at all charging current densities investigated. The effectiveness of this thermal oxide barrier to hydrogen, however, was compromised by corrosion resulting from alternate immersion exposure to a chloride environment.

  12. Extremely fast hydrogen absorption/desorption through platinum overlayers

    NASA Astrophysics Data System (ADS)

    Połczyński, Piotr; Jurczakowski, Rafał

    2016-02-01

    The hydrogen electrosorption in thin palladium films (50-1000 nm) was investigated at palladium electrodes covered with platinum overlayers. The results for this model system show that the rates of the hydrogen sorption/desorption are orders of magnitude higher for platinized samples with respect to pure palladium. The highest absorption kinetics have been observed for Pd electrodes fully covered with 1-3 platinum monolayers. By means of electrochemical impedance spectroscopy (EIS) we have shown that the process is diffusion limited at platinized Pd layers. Diffusion coefficient, DH, determined in EIS, is two orders of magnitude higher than that previously reported for thin palladium films and approaches DH for bulk palladium. The system stability after hydrogen absorption was assessed and the sorption mechanism was discussed. Surprisingly high durability of the platinized palladium enables its use in a variety of applications where fast and selective response in the presence of hydrogen is required.

  13. Absorption coefficients of a hydrogen plasma for laser radiation

    NASA Technical Reports Server (NTRS)

    Stallcop, J. R.

    1974-01-01

    The formalism for the calculation of the absorption of radiation by a hydrogen plasma at common laboratory conditions is summarized. The hydrogen plasma absorption coefficient for laser radiation has been computed for a wide range of electron densities and temperatures (10,000-40,000 K). The results of this computation are presented in a graphical form that permits a determination of the absorption coefficient for the following laser wavelengths: 0.176, 0.325, 0.337, 0.442, 0.488, 0.515, 0.633, 0.694, 1.06, 1.15, 2.36, 3.39, 5.40 and 10.6 microns. The application of these results and laser radiation absorption measurements to plasma diagnostics is discussed briefly.

  14. THE ABSORPTION OF HYDROGEN ON LOW PRESSURE HYDRIDE MATERIALS

    SciTech Connect

    Morgan, G.; Korinko, P.

    2012-04-03

    For this study, hydrogen getter materials (Zircaloy-4 and pure zirconium) that have a high affinity for hydrogen (and low overpressure) have been investigated to determine the hydrogen equilibrium pressure on Zircaloy-4 and pure zirconium. These materials, as with most getter materials, offered significant challenges to overcome given the low hydrogen equilibrium pressure for the temperature range of interest. Hydrogen-zirconium data exists for pure zirconium at 500 C and the corresponding hydrogen overpressure is roughly 0.01 torr. This manuscript presents the results of the equilibrium pressures for the absorption and desorption of hydrogen on zirconium materials at temperatures ranging from 400 C to 600 C. The equilibrium pressures in this temperature region range from 150 mtorr at 600 C to less than 0.1 mtorr at 400 C. It has been shown that the Zircaloy-4 and zirconium samples are extremely prone to surface oxidation prior to and during heating. This oxidation precludes the hydrogen uptake, and therefore samples must be heated under a minimum vacuum of 5 x 10{sup -6} torr. In addition, the Zircaloy-4 samples should be heated at a sufficiently low rate to maintain the system pressure below 0.5 mtorr since an increase in pressure above 0.5 mtorr could possibly hinder the H{sub 2} absorption kinetics due to surface contamination. The results of this study and the details of the testing protocol will be discussed.

  15. Atomistic Simulation of Carbon Nanotube Ropes and Hydrogen Absorption

    NASA Astrophysics Data System (ADS)

    Li, Ju; Yip, Sidney; Fujiwara, Joshua

    2001-06-01

    Atomistic Simulation of Carbon Nanotube Ropes and Hydrogen Absorption Ju Li, Sidney Yip, Massachusetts Institute of Technology, Department of Nuclear Engineering, Cambridge, MA 02139; Joshua Fujiwara, Honda R&D Co., Ltd., Wako Research Center, JAPAN. Using Brenner type Reactive Empirical Bond Order (REBO) interatomic potentials, we perform atomistic simulations to calculate the optimized structures, tensile and bending strengths, and thermal conductivities of both straight and twisted single-walled nanotube ropes (bundles) where results from direct simulation are checked against those from the Green-Kubo linear response theory. Preliminary calculations are performed to study hydrogen absorption by SWNTs at room temperature and 77K.

  16. Ultraviolet absorption spectrum of hydrogen peroxide vapor. [for atmospheric abundances

    NASA Technical Reports Server (NTRS)

    Molina, L. T.; Schinke, S. D.; Molina, M. J.

    1977-01-01

    The ultraviolet absorption cross sections of hydrogen peroxide vapor have been determined over the wavelength range 210 to 350 nm at 296 K. At the longer wavelengths, the gas phase absorptivities are significantly larger than the corresponding values in condensed phase. The atmospheric H2O2 photodissociation rate for overhead sun at the earth's surface is estimated to be about 1.3 x 10 to the -5th/sec.

  17. Hydrogenated blue titania with high solar absorption and greatly improved photocatalysis.

    PubMed

    Zhu, Guilian; Shan, Yufeng; Lin, Tianquan; Zhao, Wenli; Xu, Jijian; Tian, Zhangliu; Zhang, Hui; Zheng, Chong; Huang, Fuqiang

    2016-02-18

    Hydrogenated black titania, with a crystalline core/amorphous shell structure, has attracted global interest due to its excellent photocatalytic properties. However, the understanding of its structure-property relationships remains a great challenge and a more effective method to produce hydrogenated titania is desirable. Herein, we report a TiH2 assisted reduction method to synthesize bluish hydrogenated titania (TiO2-x:H) that is highly crystallized. The characteristic amorphous shells, which are essential for the enhancement of solar absorption and photocatalysis in many reported hydrogenated titania, are completely removed by hydrogen peroxide. The blue TiO2-x:H sample without amorphous shells delivers not only significantly improved visible- and infrared-light absorption but also greatly enhanced photocatalytic activity compared to pristine TiO2. Its water decontamination is 2.5 times faster and the hydrogen production was 1.9-fold higher over pristine TiO2. Photoelectrochemical measurement reveals greatly improved carrier density and photocurrent (a 4.3-fold increase) in the reduced TiO2-x:H samples. This work develops a facile and versatile method to prepare hydrogenated titania and proposes a new understanding of the hydrogenated titania that doped hydrogen atoms, instead of the amorphous shells, are essential for its high photocatalytic performance. PMID:26858035

  18. Thermodynamic Evaluation of Hydrogen Absorption by Niobium During SRF Fabrication

    SciTech Connect

    Ricker, R. E.; Myneni, G. R.

    2011-03-31

    The properties and performance of the ultra high purity Nb used to fabricate superconducting radio frequency (SRF) particle accelerator cavities have been found to vary with processing conditions. One hypothesis for these variations is that hydrogen, absorbed during processing, is responsible for this behavior. The key assumption behind this hypothesis is that niobium can absorb hydrogen from one or more of the processing environments. This paper reviews work examining the validity of this assumption. It was determined that Nb will spontaneously react with water producing adsorbed atomic hydrogen that is readily absorbed into the metal. The passivating oxide film normally prevents this reaction, but this film is frequently removed during processing and it is attacked by the fluoride ion used in the polishing solutions for SRF cavities. However, during electropolishing that cathodic reduction of hydrogen is transferred to the auxiliary electrode and this should suppress hydrogen absorption.

  19. Thermodynamic Evaluation of Hydrogen Absorption by Niobium During SRF Fabrication

    SciTech Connect

    R.E. Ricker, G.R. Myneni

    2011-03-01

    The properties and performance of the ultra high purity Nb used to fabricate superconducting radio frequency (SRF) particle accelerator cavities have been found to vary with processing conditions. One hypothesis for these variations is that hydrogen, absorbed during processing, is responsible for this behavior. The key assumption behind this hypothesis is that niobium can absorb hydrogen from one or more of the processing environments. This paper reviews work examining the validity of this assumption. It was determined that Nb will spontaneously react with water producing adsorbed atomic hydrogen that is readily absorbed into the metal. The passivating oxide film normally prevents this reaction, but this film is frequently removed during processing and it is attacked by the fluoride ion used in the polishing solutions for SRF cavities. However, during electropolishing that cathodic reduction of hydrogen is transferred to the auxiliary electrode and this should suppress hydrogen absorption.

  20. RECTIFIED ABSORPTION METHOD FOR THE SEPARATION OF HYDROGEN ISOTOPES

    DOEpatents

    Hunt, C.D.; Hanson, D.N.

    1961-10-17

    A method is described for separating and recovering heavy hydrogen isotopes from gaseous mixtures by multiple stage cyclic absorption and rectification from an approximate solvent. In particular, it is useful for recovering such isoteoes from ammonia feedstock streams containing nitrogen solvent. Modifications of the process ranging from isobaric to isothermal are provided. Certain impurities are tolerated, giving advantages over conventional fractional distillation processes. (AEC)

  1. Molecular absorption cryogenic cooler for liquid hydrogen propulsion systems

    NASA Technical Reports Server (NTRS)

    Klein, G. A.; Jones, J. A.

    1982-01-01

    A light weight, long life molecular absorption cryogenic cooler (MACC) system is described which can use low temperature waste heat to provide cooling for liquid hydrogen propellant tanks for interplanetary spacecraft. Detailed tradeoff studies were made to evaluate the refrigeration system component interactions in order to minimize the mass of the spacecraft cooler system. Based on this analysis a refrigerator system mass of 31 kg is required to provide the .48 watts of cooling required by a 2.3 meter diameter liquid hydrogen tank.

  2. Hydrogen absorption behavior into boron films by glow discharges in hydrogen and helium

    NASA Astrophysics Data System (ADS)

    Tsuzuki, K.; Natsir, M.; Inoue, N.; Sagara, A.; Noda, N.; Motojima, O.; Mochizuki, T.; Hino, T.; Yamashina, T.

    1997-02-01

    Hydrogen absorption behavior into boron films deposited on graphite and stainless steel (SS) has been studied. Hydrogen absorption into a H-depleted boron film was investigated during a hydrogen glow discharge with pressure drop measured by a diaphragm gauge. It was found that, after strong but short time absorption at initial phase, hydrogen atoms were slowly (a few percents of injected H atoms) but continuously absorbed without saturation up to 3 h, which was not observed with SS liner without boron coating. Hydrogen atoms were not only desorbed but also implanted into the film during a helium glow discharge and thus, hydrogen atoms were accumulated in the film when H 2 and He discharges were repeated alternately. These accumulation effects enhanced by ions from the glow discharge were investigated quantitatively and the effect of bombarding ion species (H + or He +) was discussed. Depth profile of H atoms was measured by elastic recoil detection (ERD). The density of only near surface region was increased when the hydrogen atoms were injected. Longer time exposure to H 2 discharge resulted in increase in surface density and shift of the peak position to deeper into the film. These results were explained by diffusion of H atoms due to ion impact into the films with keeping its saturation level if we consider resolution of ERD method of 25 nm. From the results, applicability of boron film as protection layer of tritium permeation is discussed.

  3. Induced absorption and annihilation in hadronic hydrogen atoms

    NASA Astrophysics Data System (ADS)

    Pomerantsev, Vladimir N.; Popov, Vladimir P.

    The induced absorption or annihilation in the collisions of the hydrogen hadronic atoms in the excited states with ordinary hydrogen have been described in a unified manner with the elastic scattering, Stark transitions, and Coulomb de-excitation in the framework of a close-coupling approach including both the open and closed channels corresponding to both the stationary and non-stationary states of hadronic atom. The general features of the induced absorption cross sections have been studied in a wide range of the complex energy-shift values. The total and differential cross sections of all processes have been calculated for π - p, K - p, and bar p p atoms with the principal quantum numbers n = 2 - 8 and kinetic energy from 0.001 eV up to 100 eV.

  4. Induced absorption and annihilation in hadronic hydrogen atoms

    NASA Astrophysics Data System (ADS)

    Pomerantsev, Vladimir N.; Popov, Vladimir P.

    2012-05-01

    The induced absorption or annihilation in the collisions of the hydrogen hadronic atoms in the excited states with ordinary hydrogen have been described in a unified manner with the elastic scattering, Stark transitions, and Coulomb de-excitation in the framework of a close-coupling approach including both the open and closed channels corresponding to both the stationary and non-stationary states of hadronic atom. The general features of the induced absorption cross sections have been studied in a wide range of the complex energy-shift values. The total and differential cross sections of all processes have been calculated for π - p, K - p, and bar p p atoms with the principal quantum numbers n = 2 - 8 and kinetic energy from 0.001 eV up to 100 eV.

  5. Nebular Hydrogen Absorption in the Ejecta of Eta Carinae

    NASA Technical Reports Server (NTRS)

    Gull, Theodore R.; Ishibashi, K.; Davidson, K.; Fisher, Richard R. (Technical Monitor)

    2000-01-01

    Space Telescope Imaging Spectrograph (STIS) observations of Eta Carinae and immediate ejecta reveal narrow Balmer absorption lines in addition to the nebular-scattered broad P-Cygni absorptions. The narrow absorption correlates with apparent disk structure that separates the two Homunculus lobes. We trace these features about half way up the Northern lobe until the scattered stellar Balmer line doppler-shifts redward beyond the nebular absorption feature. Three-dimensional data cubes, made by mapping the Homunculus at Balmer alpha and Balmer beta with the 52 x 0.1 arcsecond aperture and about 5000 spectral resolving power, demonstrate that the absorption feature changes slowly in velocity with nebular position. We have monitored the stellar Balmer alpha line profile of the central source over the past four years. The equivalent width of the nebular absorption feature changes considerably between observations. The changes do not correlate with measured brightness of Eta Carinae. Likely clumps of neutral hydrogen with a scale size comparable to the stellar disk diameter are passing through the intervening light path on the timescales less than several months. The excitation mechanism involves Lyman alpha radiation (possibly the Lyman series plus Lyman continuum) and collisions leading to populating the 2S metastable state. Before the electron can jump to the ground state by two photon emission (lifetime about 1/8 second), a stellar Balmer photon is absorbed and the electron shifts to an NP level. We see the absorption feature in higher Balmer lines, and but not in Paschen lines. Indeed we see narrow nebular Paschen emission lines. At present, we do not completely understand the details of the absorption. Better understanding should lead to improved insight of the unique conditions around Eta Carinae that leads to these absorptions.

  6. Hydrogenated blue titania with high solar absorption and greatly improved photocatalysis

    NASA Astrophysics Data System (ADS)

    Zhu, Guilian; Shan, Yufeng; Lin, Tianquan; Zhao, Wenli; Xu, Jijian; Tian, Zhangliu; Zhang, Hui; Zheng, Chong; Huang, Fuqiang

    2016-02-01

    Hydrogenated black titania, with a crystalline core/amorphous shell structure, has attracted global interest due to its excellent photocatalytic properties. However, the understanding of its structure-property relationships remains a great challenge and a more effective method to produce hydrogenated titania is desirable. Herein, we report a TiH2 assisted reduction method to synthesize bluish hydrogenated titania (TiO2-x:H) that is highly crystallized. The characteristic amorphous shells, which are essential for the enhancement of solar absorption and photocatalysis in many reported hydrogenated titania, are completely removed by hydrogen peroxide. The blue TiO2-x:H sample without amorphous shells delivers not only significantly improved visible- and infrared-light absorption but also greatly enhanced photocatalytic activity compared to pristine TiO2. Its water decontamination is 2.5 times faster and the hydrogen production was 1.9-fold higher over pristine TiO2. Photoelectrochemical measurement reveals greatly improved carrier density and photocurrent (a 4.3-fold increase) in the reduced TiO2-x:H samples. This work develops a facile and versatile method to prepare hydrogenated titania and proposes a new understanding of the hydrogenated titania that doped hydrogen atoms, instead of the amorphous shells, are essential for its high photocatalytic performance.Hydrogenated black titania, with a crystalline core/amorphous shell structure, has attracted global interest due to its excellent photocatalytic properties. However, the understanding of its structure-property relationships remains a great challenge and a more effective method to produce hydrogenated titania is desirable. Herein, we report a TiH2 assisted reduction method to synthesize bluish hydrogenated titania (TiO2-x:H) that is highly crystallized. The characteristic amorphous shells, which are essential for the enhancement of solar absorption and photocatalysis in many reported hydrogenated titania, are

  7. Transient absorption spectra of the laser-dressed hydrogen atom

    NASA Astrophysics Data System (ADS)

    Murakami, Mitsuko; Chu, Shih-I.

    2013-10-01

    We present a theoretical study of transient absorption spectra of laser-dressed hydrogen atoms, based on numerical solutions of the time-dependent Schrödinger equation. The timing of absorption is controlled by the delay between an extreme ultra violet (XUV) pulse and an infrared (IR) laser field. The XUV pulse is isolated and several hundred attoseconds in duration, which acts as a pump to drive the ground-state electron to excited p states. The subsequent interaction with the IR field produces dressed states, which manifest as sidebands between the 1s-np absorption spectra separated by one IR-photon energy. We demonstrate that the population of dressed states is maximized when the timing of the XUV pulse coincides with the zero crossing of the IR field, and that their energies can be manipulated in a subcycle time scale by adding a chirp to the IR field. An alternative perspective to the problem is to think of the XUV pulse as a probe to detect the dynamical ac Stark shifts. Our results indicate that the accidental degeneracy of the hydrogen excited states is removed while they are dressed by the IR field, leading to large ac Stark shifts. Furthermore, we observe the Autler-Townes doublets for the n=2 and 3 levels using the 656 nm dressing field, but their separation does not agree with the prediction by the conventional three-level model that neglects the dynamical ac Stark shifts.

  8. Novel insight into the hydrogen absorption mechanism at the Pd(110) surface

    SciTech Connect

    Ohno, Satoshi E-mail: wilde@iis.u-tokyo.ac.jp; Wilde, Markus E-mail: wilde@iis.u-tokyo.ac.jp; Fukutani, Katsuyuki

    2014-04-07

    The microscopic mechanism of low-temperature (80 K < T < 160 K) hydrogen (H) ingress into the H{sub 2} (<2.66 × 10{sup −3} Pa) exposed Pd(110) surface is explored by H depth profiling with {sup 15}N nuclear reaction analysis (NRA) and thermal desorption spectroscopy (TDS) with isotope (H, D) labeled surface hydrogen. NRA and TDS reveal two types of absorbed hydrogen states of distinctly different depth distributions. Between 80 K and ∼145 K a near-surface hydride phase evolving as the TDS α{sub 1} feature at 160 K forms, which initially extends only several nanometers into depth. On the other hand, a bulk-absorbed hydrogen state develops between 80 K and ∼160 K which gives rise to a characteristic α{sub 3} TDS feature above 190 K. These two absorbed states are populated at spatially separated surface entrance channels. The near-surface hydride is populated through rapid penetration at minority sites (presumably defects) while the bulk-absorbed state forms at regular terraces with much lower probability per site. In both cases, absorption of gas phase hydrogen transfers pre-adsorbed hydrogen atoms below the surface and replaces them at the chemisorption sites by post-dosed hydrogen in a process that requires much less activation energy (<100 meV) than monatomic diffusion of chemisorbed H atoms into subsurface sites. This small energy barrier suggests that the rate-determining step of the absorption process is either H{sub 2} dissociation on the H-saturated Pd surface or a concerted penetration mechanism, where excess H atoms weakly bound to energetically less favorable adsorption sites stabilize themselves in the chemisorption wells while pre-chemisorbed H atoms simultaneously transit into the subsurface. The peculiarity of absorption at regular Pd(110) terraces in comparison to Pd(111) and Pd(100) is discussed.

  9. Novel insight into the hydrogen absorption mechanism at the Pd(110) surface.

    PubMed

    Ohno, Satoshi; Wilde, Markus; Fukutani, Katsuyuki

    2014-04-01

    The microscopic mechanism of low-temperature (80 K < T < 160 K) hydrogen (H) ingress into the H2 (<2.66 × 10(-3) Pa) exposed Pd(110) surface is explored by H depth profiling with (15)N nuclear reaction analysis (NRA) and thermal desorption spectroscopy (TDS) with isotope (H, D) labeled surface hydrogen. NRA and TDS reveal two types of absorbed hydrogen states of distinctly different depth distributions. Between 80 K and ∼145 K a near-surface hydride phase evolving as the TDS α1 feature at 160 K forms, which initially extends only several nanometers into depth. On the other hand, a bulk-absorbed hydrogen state develops between 80 K and ∼160 K which gives rise to a characteristic α3 TDS feature above 190 K. These two absorbed states are populated at spatially separated surface entrance channels. The near-surface hydride is populated through rapid penetration at minority sites (presumably defects) while the bulk-absorbed state forms at regular terraces with much lower probability per site. In both cases, absorption of gas phase hydrogen transfers pre-adsorbed hydrogen atoms below the surface and replaces them at the chemisorption sites by post-dosed hydrogen in a process that requires much less activation energy (<100 meV) than monatomic diffusion of chemisorbed H atoms into subsurface sites. This small energy barrier suggests that the rate-determining step of the absorption process is either H2 dissociation on the H-saturated Pd surface or a concerted penetration mechanism, where excess H atoms weakly bound to energetically less favorable adsorption sites stabilize themselves in the chemisorption wells while pre-chemisorbed H atoms simultaneously transit into the subsurface. The peculiarity of absorption at regular Pd(110) terraces in comparison to Pd(111) and Pd(100) is discussed. PMID:24712806

  10. Superior hydrogen absorption and desorption behavior of Mg thin films

    NASA Astrophysics Data System (ADS)

    Qu, Jianglan; Wang, Yuntao; Xie, Lei; Zheng, Jie; Liu, Yang; Li, Xingguo

    Pd-capped Mg films prepared by magnetron sputtering achieved complete dehydrogenation in air at room temperature and behaved as favorable gasochromic switchable mirrors. Their cyclic hydrogen absorption and desorption kinetics in air were investigated by using the Bruggeman effective medium approximation. The overall activation energy was 80 kJ mol -1, while the reaction orders controlling desorption were deduced to be n = 2 at 328 K and n = 1 at lower temperatures by analyzing the transmittance data. The hydrogen diffusion coefficient and the corresponding activation energy were calculated by electrochemical measurements. Mg thin films exhibited the smaller activation energy and remarkable diffusion kinetics at room temperature which implied potential applications in smart windows.

  11. Spectroscopic study of low-temperature hydrogen absorption in palladium

    SciTech Connect

    Ienaga, K. Takata, H.; Onishi, Y.; Inagaki, Y.; Kawae, T.; Tsujii, H.; Kimura, T.

    2015-01-12

    We report real-time detection of hydrogen (H) absorption in metallic palladium (Pd) nano-contacts immersed in liquid H{sub 2} using inelastic electron spectroscopy (IES). After introduction of liquid H{sub 2}, the spectra exhibit the time evolution from the pure Pd to the Pd hydride, indicating that H atoms are absorbed in Pd nano-contacts even at the temperature where the thermal process is not expected. The IES time and bias voltage dependences show that H absorption develops by applying bias voltage 30 ∼ 50 mV, which can be explained by quantum tunneling. The results represent that IES is a powerful method to study the kinetics of high density H on solid surface.

  12. Temperature-dependent absorption cross sections for hydrogen peroxide vapor

    NASA Technical Reports Server (NTRS)

    Nicovich, J. M.; Wine, P. H.

    1988-01-01

    Relative absorption cross sections for hydrogen peroxide vapor were measured over the temperature ranges 285-381 K for lambda = 230 nm-295 nm and 300-381 K for lambda = 193 nm-350 nm. The well established 298 K cross sections at 202.6 and 228.8 nm were used as an absolute calibration. A significant temperature dependence was observed at the important tropospheric photolysis wavelengths lambda over 300 nm. Measured cross sections were extrapolated to lower temperatures, using a simple model which attributes the observed temperature dependence to enhanced absorption by molecules possessing one quantum of O-O stretch vibrational excitation. Upper tropospheric photodissociation rates calculated using the extrapolated cross sections are about 25 percent lower than those calculated using currently recommended 298 K cross sections.

  13. Gamma radiation induces hydrogen absorption by copper in water

    NASA Astrophysics Data System (ADS)

    Lousada, Cláudio M.; Soroka, Inna L.; Yagodzinskyy, Yuriy; Tarakina, Nadezda V.; Todoshchenko, Olga; Hänninen, Hannu; Korzhavyi, Pavel A.; Jonsson, Mats

    2016-04-01

    One of the most intricate issues of nuclear power is the long-term safety of repositories for radioactive waste. These repositories can have an impact on future generations for a period of time orders of magnitude longer than any known civilization. Several countries have considered copper as an outer corrosion barrier for canisters containing spent nuclear fuel. Among the many processes that must be considered in the safety assessments, radiation induced processes constitute a key-component. Here we show that copper metal immersed in water uptakes considerable amounts of hydrogen when exposed to γ-radiation. Additionally we show that the amount of hydrogen absorbed by copper depends on the total dose of radiation. At a dose of 69 kGy the uptake of hydrogen by metallic copper is 7 orders of magnitude higher than when the absorption is driven by H2(g) at a pressure of 1 atm in a non-irradiated dry system. Moreover, irradiation of copper in water causes corrosion of the metal and the formation of a variety of surface cavities, nanoparticle deposits, and islands of needle-shaped crystals. Hence, radiation enhanced uptake of hydrogen by spent nuclear fuel encapsulating materials should be taken into account in the safety assessments of nuclear waste repositories.

  14. Gamma radiation induces hydrogen absorption by copper in water.

    PubMed

    Lousada, Cláudio M; Soroka, Inna L; Yagodzinskyy, Yuriy; Tarakina, Nadezda V; Todoshchenko, Olga; Hänninen, Hannu; Korzhavyi, Pavel A; Jonsson, Mats

    2016-01-01

    One of the most intricate issues of nuclear power is the long-term safety of repositories for radioactive waste. These repositories can have an impact on future generations for a period of time orders of magnitude longer than any known civilization. Several countries have considered copper as an outer corrosion barrier for canisters containing spent nuclear fuel. Among the many processes that must be considered in the safety assessments, radiation induced processes constitute a key-component. Here we show that copper metal immersed in water uptakes considerable amounts of hydrogen when exposed to γ-radiation. Additionally we show that the amount of hydrogen absorbed by copper depends on the total dose of radiation. At a dose of 69 kGy the uptake of hydrogen by metallic copper is 7 orders of magnitude higher than when the absorption is driven by H2(g) at a pressure of 1 atm in a non-irradiated dry system. Moreover, irradiation of copper in water causes corrosion of the metal and the formation of a variety of surface cavities, nanoparticle deposits, and islands of needle-shaped crystals. Hence, radiation enhanced uptake of hydrogen by spent nuclear fuel encapsulating materials should be taken into account in the safety assessments of nuclear waste repositories. PMID:27086752

  15. Gamma radiation induces hydrogen absorption by copper in water

    PubMed Central

    Lousada, Cláudio M.; Soroka, Inna L.; Yagodzinskyy, Yuriy; Tarakina, Nadezda V.; Todoshchenko, Olga; Hänninen, Hannu; Korzhavyi, Pavel A.; Jonsson, Mats

    2016-01-01

    One of the most intricate issues of nuclear power is the long-term safety of repositories for radioactive waste. These repositories can have an impact on future generations for a period of time orders of magnitude longer than any known civilization. Several countries have considered copper as an outer corrosion barrier for canisters containing spent nuclear fuel. Among the many processes that must be considered in the safety assessments, radiation induced processes constitute a key-component. Here we show that copper metal immersed in water uptakes considerable amounts of hydrogen when exposed to γ-radiation. Additionally we show that the amount of hydrogen absorbed by copper depends on the total dose of radiation. At a dose of 69 kGy the uptake of hydrogen by metallic copper is 7 orders of magnitude higher than when the absorption is driven by H2(g) at a pressure of 1 atm in a non-irradiated dry system. Moreover, irradiation of copper in water causes corrosion of the metal and the formation of a variety of surface cavities, nanoparticle deposits, and islands of needle-shaped crystals. Hence, radiation enhanced uptake of hydrogen by spent nuclear fuel encapsulating materials should be taken into account in the safety assessments of nuclear waste repositories. PMID:27086752

  16. Characteristics of advanced hydrogen maser frequency standards

    NASA Technical Reports Server (NTRS)

    Peters, H. E.

    1973-01-01

    Measurements with several operational atomic hydrogen maser standards have been made which illustrate the fundamental characteristics of the maser as well as the analysability of the corrections which are made to relate the oscillation frequency to the free, unperturbed, hydrogen standard transition frequency. Sources of the most important perturbations, and the magnitude of the associated errors, are discussed. A variable volume storage bulb hydrogen maser is also illustrated which can provide on the order of 2 parts in 10 to the 14th power or better accuracy in evaluating the wall shift. Since the other basic error sources combined contribute no more than approximately 1 part in 10 to the 14th power uncertainty, the variable volume storage bulb hydrogen maser will have net intrinsic accuracy capability of the order of 2 parts in 10 to the 14th power or better. This is an order of magnitude less error than anticipated with cesium standards and is comparable to the basic limit expected for a free atom hydrogen beam resonance standard.

  17. Thermoluminescence characteristics of hydrogenated amorphous zirconia

    NASA Astrophysics Data System (ADS)

    Montalvo, T. R.; Tenorio, L. O.; Nieto, J. A.; Salgado, M. B.; Estrada, A. M. S.; Furetta, C.

    2005-05-01

    This paper reports the experimental results concerning the thermoluminescent (TL) characteristics of hydrogenated amorphous zirconium oxide (a-Zr:H) powder prepared by the sol-gel method. The advantages of this method are the homogeneity and the purity of the gels associated with a relatively low sintering temperature. Hydrogenated amorphous powder was characterized by thermal analysis and X-ray diffraction. The main TL characteristics investigated were the TL response as a function of the absorbed dose, the reproducibility of the TL readings and the fading. The undoped a-Zr:H powder presents a TL glow curve with two peaks centered at 150 and 260 degrees C, respectively, after beta irradiation. The TL response a-Zr:H as a function of the absorbed dose showed a linear behavior over a wide range. The results presented open the possibility to use this material as a good TL dosimeter.

  18. Nanostructured Palladium-Rhodium for Hydrogen Absorption: Processing, Structure, and Properties

    NASA Astrophysics Data System (ADS)

    Yee, Joshua Keng

    Impetus to identify and implement alternatives to fossil fuels has driven research on several different energy sources. Use of hydrogen as a fuel has been of particular interest, due to its relative abundance and cleanliness as a fuel, amongst other desirable characteristics. However, one of the current challenges to using hydrogen is finding an effective and safe method to store it for later use. Metal hydrides have been proposed as possibilities for safe solid state storage of hydrogen. In the present thesis, cryomilled Pd-10%Rh was investigated as potential solid state storage material of hydrogen. Pd-10%Rh was first atomized, and then subsequently cryomilled. The cryomilled Pd-10%Rh was then examined using microstructural characterization techniques including optical microscopy, electron microscopy, and X-ray diffraction. Pd-10%Rh particles were significantly flattened, increasing the apparent surface area. Microstructural refinement was observed in the cryomilled Pd-10%Rh, generating grains at the nanometric scale through dislocation based activity. Hydrogen sorption properties were also characterized, generating both capacity as well as kinetics measurements. It was found that the microstructural refinement due to cryomilling did not play a significant role on hydrogen sorption properties until the smallest grain size (on the order of ~25 nm) was achieved. Additionally, the increased surface area and other changes in particle morphology were associated with cryomilling changed the kinetics of hydrogen absorption.

  19. Hydrogen Absorption in Pd-based Nanostructures - Final Report

    SciTech Connect

    David Lederman

    2012-10-22

    Pd is known to absorb hydrogen. Molecules are normally chemisorbed at the surface in a process where the molecule breaks into two hydrogen atoms, and the protons are then absorbed into the bulk. This process consists of electron filling holes in the Pd 4d band near the Fermi energy, which due to the high density of states at the Fermi energy, is an energetically favorable process. Our aim with this project was to determine possible changes in magnetic properties with Pd nm-length-scale thick layers intercalated by magnetic materials. Before the start of this work, the literature indicated that there were several possible scenarios by which this could happen: i) the Pd will be magnetized due to a proximity effect with nearby magnetic layers, resulting in changes in the magnetization due to H2 absorption; ii) some H will be absorbed into the magnetic layers, causing a change in the magnetic exchange interactions; or iii) absorption of H2 will cause an expansion of the lattice, resulting in a magnetoelastic effect which changes the magnetic properties.

  20. Hydrogen and Nitrogen Broadened Ethane and Propane Absorption Cross Sections

    NASA Astrophysics Data System (ADS)

    Hargreaves, Robert J.; Appadoo, Dominique; Billinghurst, Brant E.; Bernath, Peter F.

    2015-06-01

    High-resolution infrared absorption cross sections are presented for the ν9 band of ethane (C2H6) at 823 cm-1. These cross sections make use of spectra recorded at the Australian Synchrotron using a Fourier transform infrared spectrometer with maximum resolution of 0.00096 cm-1. The spectra have been recorded at 150, 120 and 90 K for hydrogen and nitrogen broadened C2H6. They cover appropriate temperatures, pressures and broadening gases associated with the atmospheres of the Outer Planets and Titan, and will improve atmospheric retrievals. The THz/Far-IR beamline at the Australian Synchrotron is unique in combining a high-resolution Fourier transform spectrometer with an 'enclosive flow cooling' (EFC) cell designed to study molecules at low temperatures. The EFC cell is advantageous at temperatures for which the vapor pressure is very low, such as C2H6 at 90 K. Hydrogen broadened absorption cross sections of propane between 700 and 1200 cm-1 will also be presented based on spectra obtained at the Canadian Light Source.

  1. Hydrogen atom temperature measured with wavelength-modulated laser absorption spectroscopy in large scale filament arc negative hydrogen ion source

    SciTech Connect

    Nakano, H. Goto, M.; Tsumori, K.; Kisaki, M.; Ikeda, K.; Nagaoka, K.; Osakabe, M.; Takeiri, Y.; Kaneko, O.; Nishiyama, S.; Sasaki, K.

    2015-04-08

    The velocity distribution function of hydrogen atoms is one of the useful parameters to understand particle dynamics from negative hydrogen production to extraction in a negative hydrogen ion source. Hydrogen atom temperature is one of the indicators of the velocity distribution function. To find a feasibility of hydrogen atom temperature measurement in large scale filament arc negative hydrogen ion source for fusion, a model calculation of wavelength-modulated laser absorption spectroscopy of the hydrogen Balmer alpha line was performed. By utilizing a wide range tunable diode laser, we successfully obtained the hydrogen atom temperature of ∼3000 K in the vicinity of the plasma grid electrode. The hydrogen atom temperature increases as well as the arc power, and becomes constant after decreasing with the filling of hydrogen gas pressure.

  2. Collision-induced vibrational absorption in molecular hydrogens

    SciTech Connect

    Reddy, S.P.

    1993-05-01

    Collision induced absorption (CIA) spectra of the first overtone bands of H{sub 2}, D{sub 2}, and HD have been recorded for gas densities up to 500 amagat at 77-300 K. Analyses of these spectra reveal that (1) contrary to the observations in the fundamental bands, the contribution of the isotropic overlap interaction to the first overtone bands is negligible, (2) the squares of the matrix elements B{sub 32}(R)/ea{sub o} [= {lambda}{sub 32} exp(-(R-{sigma})/{rho}{sub 32}) + 3 (R/a{sub o}){sup -4}] where the subscripts 3 and 2 represent L and {lambda}, respectively, account for the absorption intensity of the bands and (3) the mixed term, 2,3 {lambda}{sub 32} exp (-(R-{sigma})/{rho}{sub 32}) <{vert_bar}Q{vert_bar}> <{alpha}> (R/a){sup -4}, gives a negative contribution. In the CIA spectra of H{sub 2} in its second overtone region recorded at 77, 201 and 298 K for gas densities up to 1000 amagat, a dip in the Q branch with characteristic Q{sub p} and Q{sub R} components has been observed. The analysis of the absorption profiles reveals, in addition to the previously known effects, the occurrence of the triple-collision transitions of H{sub 2} of the type Q{sub 1}(J) + Q{sub 1}(J) + Q{sub 1}(J) for the first time. From the profile analysis the absorption coefficient of these transitions is obtained.

  3. Discovery of spontaneous deformation of Pd metal during hydrogen absorption/desorption cycles

    PubMed Central

    Yamazaki, Toshimitsu; Sato, Masaharu; Itoh, Satoshi

    2009-01-01

    A drastic deformation was observed in Pd metal of various shapes after hydrogen absorption and desorption cycles at 150 °C at a gas pressure of 1–5 MPa. All of the phenomena observed indicate that some strong internal force is induced spontaneously during hydrogen absorption/desorption cycles to produce a collective deformation so as to minimize the surface. PMID:19444010

  4. Hydrogen Absorption into Austenitic Stainless Steels Under High-Pressure Gaseous Hydrogen and Cathodic Charge in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Enomoto, Masato; Cheng, Lin; Mizuno, Hiroyuki; Watanabe, Yoshinori; Omura, Tomohiko; Sakai, Jun'ichi; Yokoyama, Ken'ichi; Suzuki, Hiroshi; Okuma, Ryuji

    2014-12-01

    Type 316L and Type 304 austenitic stainless steels, both deformed and non-deformed, were hydrogen charged cathodically in an aqueous solution as well as by exposure to high-pressure gaseous hydrogen in an attempt to identify suitable conditions of cathodic charge for simulating hydrogen absorption from gaseous hydrogen environments. Thermal desorption analysis (TDA) was conducted, and the amount of absorbed hydrogen and the spectrum shape were compared between the two charging methods. Simulations were performed by means of the McNabb-Foster model to analyze the spectrum shape and peak temperature, and understand the effects of deformation on the spectra. It was revealed that the spectrum shape and peak temperature were dependent directly upon the initial distribution of hydrogen within the specimen, which varied widely according to the hydrogen charge condition. Deformation also had a marked effect on the amount of absorbed hydrogen in Type 304 steel due to the strain-induced martensitic transformation.

  5. Optical Hydrogen Absorption Consistent with a Bow Shock Leading the Hot Jupiter HD 189733b

    NASA Astrophysics Data System (ADS)

    Cauley, Paul Wilson; Redfield, Seth; Jensen, Adam

    2015-08-01

    Bow shocks are ubiquitous astrophysical phenomena resulting from the supersonic passage of an object through a gas. Recently, pre-transit absorption in UV metal transitions of the hot Jupiter exoplanets HD 189733b and WASP12-b have been interpreted as being caused by material compressed in a planetary bow shock. Here we present a robust detection of a time-resolved pre-transit, as well as in-transit, absorption signature around the hot Jupiter exoplanet HD 189733b using high spectral resolution observations of several hydrogen Balmer lines. The line shape of the pre-transit feature and the shape of the time series absorption provide the strongest constraints on the morphology and physical characteristics of extended structures around an exoplanet. The in-transit measurements confirm the exospheric Hα detection of Jensen et al. (2012) although the absorption depth measured here is ~50% lower. The pre-transit absorption feature occurs 125 minutes before the predicted optical transit, a projected linear distance to the stellar disk of 7.2 Rp. The absorption strength observed in the Balmer lines indicates an optically thick, but physically small, geometry. We model this signal as the early ingress of a planetary bow shock. If the bow shock is mediated by a planetary magnetosphere, the large standoff distance derived from the model suggests a large planetary magnetic field strength. Better knowledge of exoplanet magnetic field strengths is crucial to understanding the role these fields play in star-planet interactions and protecting planets in the habitable zone from dangerous stellar flares.

  6. Hydrogen sorption characteristics of nanostructured Pd–10Rh processed by cryomilling

    DOE PAGESBeta

    Yang, Nancy; Yee, Joshua K.; Zhang, Zhihui; Kurmanaeva, Lilia; Cappillino, Patrick; Stavila, Vitalie; Lavernia, Enrique J.; San Marchi, Chris

    2014-10-03

    Palladium and its alloys are model systems for studying solid-state storage of hydrogen. Mechanical milling is commonly used to process complex powder systems for solid-state hydrogen storage; however, milling can also be used to evolve nanostructured powder to modify hydrogen sorption characteristics. In the present study, cryomilling (mechanical attrition milling in a cryogenic liquid) is used to produce nanostructured palladium-rhodium alloy powder. Characterization of the cryomilled Pd-10Rh using electron microscopy, X-ray diffraction, and surface area analysis reveals that (i) particle morphology evolves from spherical to flattened disk-like particles; while the (ii) crystallite size decreases from several microns to less thanmore » 100 nm and (iii) dislocation density increases with increased cryomilling time. Hydrogen absorption and desorption isotherms as well as the time scales for absorption were measured for cryomilled Pd-10Rh, and correlated with observed microstructural changes induced by the cryomilling process. In short, as the microstructure of the Pd-10Rh alloy is refined by cryomilling: (i) the maximum hydrogen concentration in the α-phase increases, (ii) the pressure plateau becomes flatter, and (iii) the equilibrium hydrogen capacity at 760 Torr increases. In addition, the rate of hydrogen absorption was reduced by an order of magnitude compared to non-cryomilled (atomized) powder.« less

  7. Hydrogen sorption characteristics of nanostructured Pd–10Rh processed by cryomilling

    SciTech Connect

    Yang, Nancy; Yee, Joshua K.; Zhang, Zhihui; Kurmanaeva, Lilia; Cappillino, Patrick; Stavila, Vitalie; Lavernia, Enrique J.; San Marchi, Chris

    2014-10-03

    Palladium and its alloys are model systems for studying solid-state storage of hydrogen. Mechanical milling is commonly used to process complex powder systems for solid-state hydrogen storage; however, milling can also be used to evolve nanostructured powder to modify hydrogen sorption characteristics. In the present study, cryomilling (mechanical attrition milling in a cryogenic liquid) is used to produce nanostructured palladium-rhodium alloy powder. Characterization of the cryomilled Pd-10Rh using electron microscopy, X-ray diffraction, and surface area analysis reveals that (i) particle morphology evolves from spherical to flattened disk-like particles; while the (ii) crystallite size decreases from several microns to less than 100 nm and (iii) dislocation density increases with increased cryomilling time. Hydrogen absorption and desorption isotherms as well as the time scales for absorption were measured for cryomilled Pd-10Rh, and correlated with observed microstructural changes induced by the cryomilling process. In short, as the microstructure of the Pd-10Rh alloy is refined by cryomilling: (i) the maximum hydrogen concentration in the α-phase increases, (ii) the pressure plateau becomes flatter, and (iii) the equilibrium hydrogen capacity at 760 Torr increases. In addition, the rate of hydrogen absorption was reduced by an order of magnitude compared to non-cryomilled (atomized) powder.

  8. Moving-mesh cosmology: properties of neutral hydrogen in absorption

    NASA Astrophysics Data System (ADS)

    Bird, Simeon; Vogelsberger, Mark; Sijacki, Debora; Zaldarriaga, Matias; Springel, Volker; Hernquist, Lars

    2013-03-01

    We examine the distribution of neutral hydrogen in cosmological simulations carried out with the new moving-mesh code AREPO and compare it with the corresponding GADGET simulations based on the smoothed particle hydrodynamics (SPH) technique. The two codes use identical gravity solvers and baryonic physics implementations, but very different methods for solving the Euler equations, allowing us to assess how numerical effects associated with the hydro solver impact the results of simulations. Here we focus on an analysis of the neutral gas, as detected in quasar absorption lines. We find that the high column density regime probed by damped Lyα (DLA) and Lyman limit systems (LLS) exhibits significant differences between the codes. GADGET produces spurious artefacts in large haloes in the form of gaseous clumps, boosting the LLS cross-section. Furthermore, it forms haloes with denser central baryonic cores than AREPO, which leads to a substantially greater DLA cross-section from smaller haloes. AREPO thus produces a significantly lower cumulative abundance of DLAs, which is intriguingly in much closer agreement with observations. The column density function, however, is not altered enough to significantly reduce the discrepancy with the observed value. For the low column density gas probed by the Lyα forest, the codes differ only at the level of a few per cent, suggesting that this regime is quite well described by both methods, a fact that is reassuring for the many Lyα studies carried out with SPH thus far. While the residual differences are smaller than the errors on current Lyα forest data, we note that this will likely change for future precision experiments.

  9. Dynamic energy absorption characteristics of hollow microlattice structures

    SciTech Connect

    Liu, YL; Schaedler, TA; Chen, X

    2014-10-01

    Hollow microlattice structures are promising candidates for advanced energy absorption and their characteristics under dynamic crushing are explored. The energy absorption can be significantly enhanced by inertial stabilization, shock wave effect and strain rate hardening effect. In this paper we combine theoretical analysis and comprehensive finite element method simulation to decouple the three effects, and then obtain a simple model to predict the overall dynamic effects of hollow microlattice structures. Inertial stabilization originates from the suppression of sudden crushing of the microlattice and its contribution scales with the crushing speed, v. Shock wave effect comes from the discontinuity across the plastic shock wave front during dynamic loading and its contribution scales with e. The strain rate effect increases the effective yield strength upon dynamic deformation and increases the energy absorption density. A mechanism map is established that illustrates the dominance of these three dynamic effects at a range of crushing speeds. Compared with quasi-static loading, the energy absorption capacity a dynamic loading of 250 m/s can be enhanced by an order of magnitude. The study may shed useful insight on designing and optimizing the energy absorption performance of hollow microlattice structures under various dynamic loads. (C) 2014 Elsevier Ltd. All rights reserved.

  10. Hydrogen absorption in solid aluminum during high-temperature steam oxidation

    NASA Technical Reports Server (NTRS)

    Andreev, L. A.; Gelman, B. G.; Zhukhovitskiy, A. A.

    1979-01-01

    Hydrogen is emitted by aluminum heated in a vacuum after high-temperature steam treatment. Wire samples are tested for this effect, showing dependence on surface area. Two different mechanisms of absorption are inferred, and reactions deduced.

  11. Characteristics of Single/Double-Effect Combination Absorption Refrigerator

    NASA Astrophysics Data System (ADS)

    Kimijima, Shingi; Waragai, Shisei; Uekusa, Tsuneo; Nakao, Masaki; Kawai, Sunao

    This report refers to the single/double-effect combination absorption refrigerator, which is driven by waste heat from phosphoric acid fuel cells, and investigates the influence of heat supply conditions, for the purpose of the effectual utilization of the low grade waste heat such as hot water (60~90([°C]). Since waste heat from fuel cells is recovered in two forms of steam and hot water, there is a characteristic of mutual intervention between steam and hot water in absorption refrigeration cycle. For effective use of waste heat, it becomes necessary to clarify this characteristic of mutual intervention. Accordingly, we inquire the effect of heat supply conditions on above mentioned characteristic by simulation. In addition to this, the cooling performance of the absorption refrigerators with two different ways to use hot water (preheating of solution type and generating refrigerant vapor in the low temperature generator type) is investigated. Through out the research, some knowledges for effective use of low grade waste heat are obtained

  12. Performance characteristics of an S-600 portable atomic absorption spectrophotometer

    SciTech Connect

    Pelieva, L.A.; Dyndar, Zh.I.

    1995-12-01

    Performance characteristics of an S-600 portable atomic absorption spectrophotometer are discussed. The optimum analysis conditions, characteristic mass, and detection limit for determining Be, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn in solutions and in powders are specified. Direct analysis of solid-state samples (standard soil samples) is described. The relative error of measurement by the calibration graph method lies, with few exceptions, within 7-30%, and by the addition method, within 4-20%. The time needed for a single element determination is 10-20 min.

  13. Neutral hydrogen self-absorption in the Milky Way Galaxy

    NASA Astrophysics Data System (ADS)

    Kavars, Dain William

    2006-06-01

    To develop a better understanding of the cold neutral medium phase of the interstellar medium, we present a detailed analysis of neutral hydrogen self- absorption (HISA) clouds in the Milky Way Galaxy. These HISA clouds are in the Southern Galactic Plane Survey (SGPS), spanning the region l = 253°--358° and | b | <= 1.3°, and in the VLA Galactic Plane Survey (VGPS), spanning the region l = 18°--67° and | b | <= 1.3°--2.3°. The SGPS and VGPS have an angular resolution of ~1 arcminute and a velocity channel spacing of 0.82 km s -1 . With the recent completion of these surveys, we can study HISA features across the Galaxy at a much better resolution and sensitivity than any previous work. To analyze HISA in detail, catalogs of clouds of all sizes, including those undetectable by eye alone, are required. We present an automated search routine to detect all HISA clouds in the SGPS. We compare HISA to CO data and find some HISA clouds associated with CO, but others have no associated CO. This suggests that HISA clouds are in a transition between molecular and atomic gas, bridging the gap between dense molecular clouds and warmer, diffuse atomic clouds. HISA thus plays an important role in the overall evolution of the Galaxy. To study this transition further, we present observations of the OH molecule toward a select sample of HISA clouds in the VGPS, using the Green Bank Telescope (GBT). We present an analysis of the molecular properties of this sample, including a derivation of an OH to H 2 conversion factor and H 2 to H I abundance ratios. We discuss the complex relationship between H I, OH, 12 CO, and 13 CO emission. Finally we present a statistical analysis comparing HISA with infrared data from the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) project. The GLIMPSE data reveal a large number of compact, dark infrared clouds believed to be in the early stages of star formation. If GLIMPSE clouds are associated with HISA, they provide

  14. Hydrogen Absorption in Fluids: An Unexplored Solution for Onboard Hydrogen Storage

    SciTech Connect

    Berry, G D

    2005-02-10

    Adoption of hydrogen (H{sub 2}) vehicles has been advocated for decades as an ecological ideal, capable of eliminating petroleum consumption as well as tail-pipe air pollution and carbon dioxide (CO{sub 2}) from automobiles. Storing sufficient hydrogen fuel onboard still remains a great technological challenge, despite recent advances in lightweight automotive materials, hybrid-electric drivetrains and fuel cells enabling 60-100 mpg equivalent H{sub 2}-fueled automobiles. Future onboard hydrogen storage choices will be pivotal, with lasting strategic consequences for the eventual scale, shape, security, investment requirements, and energy intensity of the H{sub 2} refueling infrastructure, in addition to impacts on automotive design, cost, range, performance, and safety. Multiple hydrogen storage approaches have been examined and deployed onboard prototype automobiles since the 1970's. These include storing H{sub 2} as a cryogenic liquid (LH{sub 2}) at temperatures of 20-25 Kelvin, compressing room temperature H{sub 2} gas to pressures as high as 10,000 psi, and reversible chemical absorption storage within powdered metal hydrides (e.g. LaNi{sub 5}H{sub 6}, TiFeH{sub 2}, MgH{sub 2}, NaAlH{sub 4}) which evolve H{sub 2} when warmed. Each of these approaches face well-known fundamental physical limits (thermal endurance, volume, and weight, respectively). This report details preliminary experiments investigating the potential of a new approach to H{sub 2} storage: absorption in fluids, specifically liquid nitrogen (LN{sub 2}). N{sub 2} was chosen for this study because it offers unique advantages as an inert but lightweight solvent with high hydrogen solubility and is an abundant atmospheric component. H{sub 2} absorbed in liquid nitrogen (LN{sub 2}) can be lighter than metal hydrides, with greater thermal endurance than cryogenic H{sub 2} or LH{sub 2}, while being more compact than ambient compressed H{sub 2}. Previous researchers have examined H{sub 2} mixed with a

  15. Mechanical properties and energy absorption characteristics of a polyurethane foam

    SciTech Connect

    Goods, S.H.; Neuschwanger, C.L.; Henderson, C.; Skala, D.M.

    1997-03-01

    Tension, compression and impact properties of a polyurethane encapsulant foam have been measured as a function of foam density. Significant differences in the behavior of the foam were observed depending on the mode of testing. Over the range of densities examined, both the modulus and the elastic collapse stress of the foam exhibited power-law dependencies with respect to density. The power-law relationship for the modulus was the same for both tension and compression testing and is explained in terms of the elastic compliance of the cellular structure of the foam using a simple geometric model. Euler buckling is used to rationalize the density dependence of the collapse stress. Neither tension nor compression testing yielded realistic measurements of energy absorption (toughness). In the former case, the energy absorption characteristics of the foam were severely limited due to the inherent lack of tensile ductility. In the latter case, the absence of a failure mechanism led to arbitrary measures of energy absorption that were not indicative of true material properties. Only impact testing revealed an intrinsic limitation in the toughness characteristics of the material with respect to foam density. The results suggest that dynamic testing should be used when assessing the shock mitigating qualities of a foam.

  16. The use of infrared absorption to determine density of liquid hydrogen.

    NASA Technical Reports Server (NTRS)

    Unland, H. D.; Timmerhaus, K. D.; Kropschot, R. H.

    1972-01-01

    Experimental evaluation of the use of infrared absorption for determining the density of liquid hydrogen, and discussion of the feasibility of an airborne densitometer based on this concept. The results indicate that infrared absorption of liquid hydrogen is highly sensitive to the density of hydrogen, and, under the operating limitations of the equipment and experimental techniques used, the determined values proved to be repeatable to an accuracy of 2.7%. The desiderata and limitations of an in-flight density-determining device are outlined, and some of the feasibility problems are defined.

  17. The impact absorption characteristics of cricket batting helmets.

    PubMed

    Stretch, R A

    2000-12-01

    To determine whether the helmets currently used by cricket batsmen offer sufficient protection against impacts of a cricket ball, the impact absorption characteristics of six helmets were measured using the drop test at an impact velocity equivalent to a cricket ball with a release speed of 160 km x h(-1) (44.4 m x s(-1)). An accelerometer transducer attached to a 5.0 kg striker was dropped from a height of 3.14 m onto the batting helmets to measure the impact characteristics at the three different impact sites: right temple, forehead and back of the helmet. These data were further expressed as a percentage above (-) or below (+) the recommended safety standard of 300 g. The results indicate that the force absorption characteristics of the helmets showed inter- and intra-helmet variations, with 14 of the 18 impact sites (66.7%) assessed meeting the recommended safety standards. Helmets 1, 2 and 4 succeeded in meeting the safety standards at all impact sites; helmets 5 and 6 both failed at the back and forehead, while helmet 3 failed at all impact sites. These differences were due to the structure and composition of the inner protective layer of the helmets. The helmets that succeeded in meeting the standards were made with a moulded polystyrene insert, a heat-formed ethylene vinyl acetate (EVA) insert, or EVA with a relatively high density that allows a minimal amount of movement of the helmet at ball impact. PMID:11138985

  18. Determination of the Relative Two-photon Absorption Cross-section Between Xenon and Hydrogen

    NASA Astrophysics Data System (ADS)

    Elliott, Drew; Scime, Earl; McCarren, Dustin; Vandervort, Robert; Soderholm, Mark

    2014-10-01

    Two-photon Absorption Laser Induced Fluorescence (TALIF) is a non-perturbative method for measuring the density and temperature of neutral hydrogen in a fusion plasma. Calibration of a TALIF system, for absolute density measurements, requires a measurement of a known density of particles under controlled conditions. Since hydrogen is diatomic, hydrogen TALIF system calibration requires measurements of target cold monatomic gas with a two-photon transition from the ground state and fluorescence decay at accessible energies. Here we present single-sided TALIF (angular momentum change of 2) measurements of a new transition in xenon with absorption and emission wavelengths nearly identical to those of the hydrogen TALIF sequence (the n = 3 to n = 2 emission in hydrogen is at 656.27 nm whereas it is at 655.99 nm in xenon). The xenon calibration approach provides the first opportunity for absolute calibration of Doppler-free (angular momentum change of 0) hydrogen TALIF. We first measure the relative TALIF absorption cross section between xenon and krypton and then use the known cross section ratio between the krypton and hydrogen transitions to calculate the relative xenon-hydrogen cross section. Single isotope xenon samples are used to remove the confounding factors of isotopic and hyperfine splitting.

  19. Optical and electrical characteristics of pure and doped potassium hydrogen tartrate single crystals

    NASA Astrophysics Data System (ADS)

    Quasim, I.; Firdous, A.; Khosa, S. K.; Kotru, P. N.

    2009-08-01

    The optical and electrical characteristics of pure, sodium- and lithium-doped potassium hydrogen tartrate crystals grown by the gel technique are reported. An optical absorption study conducted in the UV-Vis range of 200-800 nm reveals the transparency of these crystals in the entire visible range but not in the ultraviolet range. The optical band gap of pure potassium hydrogen tartrate crystals is found to be dependent on doping by Na or Li ions. The non-linear optical behaviour of these crystals is reported and explained. The electrical properties of pure and doped potassium hydrogen tartrate crystals are studied by measuring electrical resistivity from 80 to 300 K. It is shown that while pure potassium hydrogen tartrate crystal is an insulator at room temperature (300 K), doping by Na or Li ions makes it a semiconductor. The results have been explained in terms of the variable range hopping model.

  20. Change in soft magnetic properties of Fe-based metallic glasses during hydrogen absorption and desorption

    SciTech Connect

    Novak, L.; Lovas, A.; Kiss, L.F.

    2005-08-15

    The stress level can be altered in soft magnetic amorphous alloys by hydrogen absorption. The resulting changes in the soft magnetic parameters are reversible or irreversible, depending on the chemical composition. Some of these effects are demonstrated in Fe-B, Fe-W-B, and Fe-V-B glassy ribbons, in which various magnetic parameters are measured mainly during hydrogen desorption. The rate of hydrogen desorption is also monitored by measuring the pressure change in a hermetically closed bomb. The observed phenomena are interpreted on the basis of induced stresses and chemical interactions between the solute metal and hydrogen.

  1. Absorption of infrared radiation by electrons in the field of a neutral hydrogen atom

    NASA Technical Reports Server (NTRS)

    Stallcop, J. R.

    1974-01-01

    An analytical expression for the absorption coefficient is developed from a relationship between the cross-section for inverse bremsstrahlung absorption and the cross-section for electron-atom momentum transfer; it is accurate for those photon frequencies v and temperatures such that hv/kT is small. The determination of the absorption of infrared radiation by free-free transitions of the negative hydrogen ion has been extended to higher temperatures. A simple analytical expression for the absorption coefficient has been derived.

  2. Absorption Characteristics of Vertebrate Non-Visual Opsin, Opn3

    PubMed Central

    Sugihara, Tomohiro; Nagata, Takashi; Mason, Benjamin; Koyanagi, Mitsumasa; Terakita, Akihisa

    2016-01-01

    Most animals possess multiple opsins which sense light for visual and non-visual functions. Here, we show spectral characteristics of non-visual opsins, vertebrate Opn3s, which are widely distributed among vertebrates. We successfully expressed zebrafish Opn3 in mammalian cultured cells and measured its absorption spectrum spectroscopically. When incubated with 11-cis retinal, zebrafish Opn3 formed a blue-sensitive photopigment with an absorption maximum around 465 nm. The Opn3 converts to an all-trans retinal-bearing photoproduct with an absorption spectrum similar to the dark state following brief blue-light irradiation. The photoproduct experienced a remarkable blue-shift, with changes in position of the isosbestic point, during further irradiation. We then used a cAMP-dependent luciferase reporter assay to investigate light-dependent cAMP responses in cultured cells expressing zebrafish, pufferfish, anole and chicken Opn3. The wild type opsins did not produce responses, but cells expressing chimera mutants (WT Opn3s in which the third intracellular loops were replaced with the third intracellular loop of a Gs-coupled jellyfish opsin) displayed light-dependent changes in cAMP. The results suggest that Opn3 is capable of activating G protein(s) in a light-dependent manner. Finally, we used this assay to measure the relative wavelength-dependent response of cells expressing Opn3 chimeras to multiple quantally-matched stimuli. The inferred spectral sensitivity curve of zebrafish Opn3 accurately matched the measured absorption spectrum. We were unable to estimate the spectral sensitivity curve of mouse or anole Opn3, but, like zebrafish Opn3, the chicken and pufferfish Opn3-JiL3 chimeras also formed blue-sensitive pigments. These findings suggest that vertebrate Opn3s may form blue-sensitive G protein-coupled pigments. Further, we suggest that the method described here, combining a cAMP-dependent luciferase reporter assay with chimeric opsins possessing the third

  3. Hydrogen Balmer Series Self-Absorption Measurement in Laser-Induced Air Plasma

    NASA Astrophysics Data System (ADS)

    Gautam, Ghaneshwar; Parigger, Christian

    2015-05-01

    In experimental studies of laser-induced plasma, we use focused Nd:YAG laser radiation to generate optical breakdown in laboratory air. A Czerny-Turner type spectrometer and an ICCD camera are utilized to record spatially and temporally resolved spectra. Time-resolved spectroscopy methods are employed to record plasma dynamics for various time delays in the range of 0.300 microsecond to typically 10 microsecond after plasma initiation. Early plasma emission spectra reveal hydrogen alpha and ionized nitrogen lines for time delays larger than 0.3 microsecond, the hydrogen beta line emerges from the free-electron background radiation later in the plasma decay for time delays in excess of 1 microsecond. The self-absorption analyses include comparisons of recorded data without and with the use of a doubling mirror. The extent of self-absorption of the hydrogen Balmer series is investigated for various time delays from plasma generation. There are indications of self-absorption of hydrogen alpha by comparison with ionized nitrogen lines at a time delay of 0.3 microsecond. For subsequent time delays, self-absorption effects on line-widths are hardly noticeable, despite the fact of the apparent line-shape distortions. Of interest are comparisons of inferred electron densities from hydrogen alpha and hydrogen beta lines as the plasma decays, including assessments of spatial variation of electron density.

  4. Characteristics of advanced hydrogen maser frequency standards

    NASA Technical Reports Server (NTRS)

    Peters, H. E.

    1973-01-01

    In house research and development at Goddard Space Flight Center to provide advanced frequency and time standards for the most demanding applications is concentrated primarily in field operable atomic hydrogen masers. Some of the most important goals for the new maser designs have been improved long and short term stability, elimination of the need for auto tuning, increased maser oscillation level, improved hydrogen economy, increased operational life, minimization of operator control or monitoring, improvement in magnetic isolation or sensitivity, and reduction in size and weight. New design concepts which have been incorporated in these masers to achieve these goals are described. The basic maser assemblies and control systems have recently been completed; the masers are oscillating; and operational testing has begun. Data illustrating the improvements in maser performance was available and presented.

  5. Hydrogen absorption by Zr-1Nb alloy with TiNx film deposited by filtered cathodic vacuum arc

    NASA Astrophysics Data System (ADS)

    Kashkarov, E. B.; Nikitenkov, N. N.; Syrtanov, M. S.; Babihina, M. N.

    2016-02-01

    coating for Zr-2.5Nb alloy from hydrogenation. Dense TiNx films were prepared by filtered cathodic vacuum arc (CVA). Hydrogen absorption rate was calculated from the kinetic curves of hydrogen sorption at elevated temperature of the sample (T = 673 K) and pressure (P = 2 atm). Results revealed that TiNx films significantly reduced hydrogen absorption rate of Zr-2.5Nb.

  6. A survey of local interstellar hydrogen from OAO-2 observations of Lyman alpha absorption

    NASA Technical Reports Server (NTRS)

    Savage, B. D.; Jenkins, E. B.

    1972-01-01

    The Wisconsin far ultraviolet spectrometer aboard OAO-2 observed the wavelength region near 1216 A for 69 stars of spectral type B2 or earlier. From the strength of the observed interstellar L sub alpha absorption, atomic hydrogen column densities were derived over distances averaging 300 pc away from the sun. The OAO data were compared to synthetic ultraviolet spectra, originally derived from earlier higher resolution rocket observations, which were computer processed to simulate the effects of absorption by different amounts of hydrogen followed by the instrumental blending.

  7. Absorption and Metabolism Characteristics of Rutin in Caco-2 Cells

    PubMed Central

    Zhang, Xiaofang; Song, Jinhui; Shi, Xiaopeng; Miao, Shan; Li, Yan

    2013-01-01

    The intestinal absorption and metabolism characteristics of the potentially beneficial polyphenol rutin were studied by measuring the intracellular accumulation and transport of rutin into Caco-2 cells with the sensitive and reliable analytical method of HPLC-coupled tandem mass spectrometry. Rutin and glucuronidated rutin were absorbed differently by the basolateral and apical membranes, and rutin showed differential permeability through the apical and basolateral sides. Approximately 33% of the rutin was metabolized to glucuronidated rutin, and the intracellular concentration of glucuronidated rutin was much lower than that of parent rutin. P-glycoprotein and multidrug-resistant proteins 2 and 3 were involved in the transmembrane transport and intracellular accumulation of rutin by Caco-2 cells. These results suggest that a specific transport system mediates rutin movement across the apical membrane in Caco-2 cells and that metabolic enzymes are important for this process. PMID:24198722

  8. In situ x-ray-absorption spectroscopy study of hydrogen absorption by nickel-magnesium thin films

    NASA Astrophysics Data System (ADS)

    Farangis, B.; Nachimuthu, P.; Richardson, T. J.; Slack, J. L.; Perera, R. C.; Gullikson, E. M.; Lindle, D. W.; Rubin, M.

    2003-02-01

    Structural and electronic properties of co-sputtered Ni-Mg thin films with varying Ni to Mg ratio were studied by in situ x-ray absorption spectroscopy in the Ni L-edge and Mg K-edge regions. Codeposition of the metals led to increased disorder and decreased coordination around Ni and Mg compared to pure metal films. Exposure of the metallic films to hydrogen resulted in formation of hydrides and increased disorder. The presence of hydrogen as a near neighbor around Mg caused a drastic reduction in the intensities of multiple scattering resonances at higher energies. The optical switching behavior and changes in the x-ray spectra varied with Ni to Mg atomic ratio. Pure Mg films with Pd overlayers were converted to MgH2: The H atoms occupy regular sites as in bulk MgH2. Although optical switching was slow in the absence of Ni, the amount of H2 absorption was large. Incorporation of Ni in Mg films led to an increase in the speed of optical switching but decreased maximum transparency. Significant shifts in the Ni L3 and L2 peaks are consistent with strong interaction with hydrogen in the mixed films.

  9. The influence of surface effects on the hydrogen absorption investigated on the V H model system

    NASA Astrophysics Data System (ADS)

    Müller, K.-H.; Paulus, H.; Kiss, G.

    2001-07-01

    The system V-O-H has been chosen as a model system to investigate surface effects on hydrogen absorption in metals. By means of XPS, SIMS, and thermal desorption mass spectrometry (TDMS) methods, the influence of oxygen segregated from the bulk as well as adsorbed from the gas phase has been pointed out. Segregated oxygen obstructs the hydrogen absorption, whereas non-stoichiometric and stoichiometric oxides have a preventing effect already with coverages in the range of monolayers. Ion bombardment in connection with sputter-cleaning or SNMS and SIMS analyses produces additional absorption sites in the surface near region for hydrogen. These can be populated by hydrogen from the gas phase during H 2 exposure or diffusing from the bulk, if the sample was H 2 loaded before. Beside elements like vanadium, there exist alloys (e.g. TiFe, LaNi 5, TiMn 2), which are particularly suitable for practical storage purposes. It is important for the further development of such alloys but also for a better understanding of absorption kinetics to investigate the influence of surface effects also on these alloys.

  10. Characteristic hydrogen concentrations for various redox processes in batch study.

    PubMed

    Lu, X X; Tao, S; Bosma, T; Gerritse, J

    2001-01-01

    The dissolved hydrogen concentrations under various redox processes were investigated based on batch experiments. Chloroethenes including tetrachloroethene (PCE), cis-dichloroethene (cis-DCE) and vinylchloride (VC) were respectively used as culture substrates. For each chloroethene, a series of bottles were prepared with the additions of different electron acceptors or donors such as nitrate, manganese oxide, ferrous iron, sulfate, carbondioxide and volatile fatty acids. Hydrogen concentrations as well as redox species were measured over time to ensure the achievements of characteristic hydrogen levels in various enrichment batches. The results showed that redox processes with nitrate, manganese oxide and ferric iron as the electron acceptors exhibited hydrogen threshold values close to PCE/TCE dechlorination, whereas cis-DCE and VC dechlorinations exhibited hydrogen threshold values in the range of sulfate reduction and methanogenesis, respectively. Characteristic hydrogen concentrations for various redox processes were as follows (nM): denitrification, 0.1-0.4; manganese reduction, 0.1-2.0; iron reduction, 0.1-0.4; sulfate reduction, 1.5-4.5; methanogenesis, 2.5-24; PCE/TCE dechlorination, 0.6-0.9; eis-DCE dechlorination, 0.1-2.5; and VC dechlorination, 2-24. PMID:11688686

  11. Visible Absorption Properties of Retinoic Acid Controlled on Hydrogenated Amorphous Silicon Thin Film

    NASA Astrophysics Data System (ADS)

    Tsujiuchi, Yutaka; Masumoto, Hiroshi; Goto, Takashi

    2008-02-01

    Langmuir-Blodgett (LB) films of retinoic acid and LB films of retinoic acid mixed with a peptide that contains an alanine-lysine-valine (AKV) amino acid sequence deposited on a hydrogenated amorphous silicon (a-Si:H) film prepared by electron cyclotron resonance (ECR) plasma sputtering were fabricated, and their light absorption spectrums were compared. A specific visible light absorption at approximately 500 nm occurred in a film that had a film thickness of more than 80 nm and a hydrogen concentration of more than 20% in the sputtering process gas. Mixing the AKV sequence peptide with retinoic acid caused a 6 nm blueshift, from 363 to 357 nm, of the absorption maximum of the composite LB film on a SiO2 substrate. Using the same peptide, a large 30 nm blueshift, from 500 to 470 nm, was induced in the composite LB film on the a-Si:H film.

  12. Complex surface analytical investigations on hydrogen absorption and desorption processes of a TiMn2-based alloy.

    PubMed

    Schülke, Mark; Kiss, Gábor; Paulus, Hubert; Lammers, Martin; Ramachandran, Vaidyanath; Sankaran, Kannan; Müller, Karl-Heinz

    2009-04-01

    Metal hydrides are one of the most promising technologies in the field of hydrogen storage due to their high volumetric storage density. Important reaction steps take place at the very surface of the solid during hydrogen absorption. Since these reaction steps are drastically influenced by the properties and potential contamination of the solid, it is very important to understand the characteristics of the surface, and a variety of analytical methods are required to achieve this. In this work, a TiMn(2)-type metal hydride alloy is investigated by means of high-pressure activation measurements, X-ray photoelectron spectroscopy (XPS), secondary neutral mass spectrometry (SNMS) and thermal desorption mass spectrometry (TDMS). In particular, TDMS is an analytical tool that, in contrast to SIMS or SNMS, allows the hydrogen content in a metal to be quantified. Furthermore, it allows the activation energy for desorption to be determined from TDMS profiles; the method used to achieve this is presented here in detail. In the results section, it is shown that the oxide layer formed during manufacture and long-term storage prevents any hydrogen from being absorbed, and so an activation process is required. XPS measurements show the oxide states of the main alloy elements, and a layer 18 nm thick is determined via SNMS. Furthermore, defined oxide layers are produced and characterized in UHV using XPS. The influence of these thin oxide layers on the hydrogen sorption process is examined using TDMS. Finally, the activation energy of desorption is determined for the investigated alloy using the method presented here, and values of 46 kJ/mol for hydrogen sorbed in UHV and 103 kJ/mol for hydrogen originating from the manufacturing process are obtained. PMID:19294368

  13. Hydrogen sensing via anomalous optical absorption of palladium-based metamaterials

    NASA Astrophysics Data System (ADS)

    Hierro-Rodriguez, A.; Leite, I. T.; Rocha-Rodrigues, P.; Fernandes, P.; Araujo, J. P.; Jorge, P. A. S.; Santos, J. L.; Teixeira, J. M.; Guerreiro, A.

    2016-05-01

    A palladium (Pd)-based optical metamaterial has been designed, fabricated and characterized for its application in hydrogen sensing. The metamaterial can replace Pd thin films in optical transmission schemes for sensing with performances far superior to those of conventional sensors. This artificial material consists of a palladium-alumina metamaterial fabricated using inexpensive and industrial-friendly bottom-up techniques. During the exposure to hydrogen, the system exhibits anomalous optical absorption when compared to the well-known response of Pd thin films, this phenomenon being the key factor for the sensor sensitivity. The exposure to hydrogen produces a large variation in the light transmission through the metamembrane (more than 30% with 4% in volume hydrogen-nitrogen gas mixture at room temperature and atmospheric pressure), thus avoiding the need for sophisticated optical detection systems. An optical homogenization model is proposed to explain the metamaterial response. These results contribute to the development of reliable and low-cost hydrogen sensors with potential applications in the hydrogen economy and industrial processes to name a few, and also open the door to optically study the hydrogen diffusion processes in Pd nanostructures.

  14. Hydrogen sensing via anomalous optical absorption of palladium-based metamaterials.

    PubMed

    Hierro-Rodriguez, A; Leite, I T; Rocha-Rodrigues, P; Fernandes, P; Araujo, J P; Jorge, P A S; Santos, J L; Teixeira, J M; Guerreiro, A

    2016-05-01

    A palladium (Pd)-based optical metamaterial has been designed, fabricated and characterized for its application in hydrogen sensing. The metamaterial can replace Pd thin films in optical transmission schemes for sensing with performances far superior to those of conventional sensors. This artificial material consists of a palladium-alumina metamaterial fabricated using inexpensive and industrial-friendly bottom-up techniques. During the exposure to hydrogen, the system exhibits anomalous optical absorption when compared to the well-known response of Pd thin films, this phenomenon being the key factor for the sensor sensitivity. The exposure to hydrogen produces a large variation in the light transmission through the metamembrane (more than 30% with 4% in volume hydrogen-nitrogen gas mixture at room temperature and atmospheric pressure), thus avoiding the need for sophisticated optical detection systems. An optical homogenization model is proposed to explain the metamaterial response. These results contribute to the development of reliable and low-cost hydrogen sensors with potential applications in the hydrogen economy and industrial processes to name a few, and also open the door to optically study the hydrogen diffusion processes in Pd nanostructures. PMID:27003717

  15. Measurement of Hydrogen Absorption in Ternary Alloys with Volumetric (Sieverts Loop) Techniques

    SciTech Connect

    Aceves, S.

    2015-10-26

    The Sieverts loop is an inexpensive, robust and reliable methodology for calculating hydrogen absorption in materials [1]. In this approach, we start by storing a sample of the material being tested in the volume Vcell (Figure 1) and initiate the process by producing a high vacuum in the system while the material sample is heated to eliminate (most of) the hydrogen and other impurities previously absorbed. The system typically operates isothermally, with the volume Vref at ambient temperature and the sample at a temperature of interest – high enough to liquefy the alloy for the current application to nuclear fusion.

  16. A temperature dependent infrared absorption study of strong hydrogen bonds in bis(glycinium)oxalate

    NASA Astrophysics Data System (ADS)

    Bhatt, Himal; Deo, M. N.; Murli, C.; Vishwakarma, S. R.; Chitra, R.; Sharma, Surinder M.

    2016-05-01

    We report infrared absorption studies on Bis(glycinium)oxalate, an organic complex of the simplest amino acid Glycine, under varying temperatures in the range 77 - 350 K. The measurements have been carried out in the spectral range 400 - 4000 cm-1 and the strongest O-H---O hydrogen bond, which plays a vital role in the structural stabilization, has been studied. Subtle changes in widths of modes and temperature dependent frequency variations have been observed near 250 K. The hydrogen bonding network remains stable in the entire temperature range. This is in contrast to its reported high pressure behavior.

  17. Real-time detection of hydrogen absorption and desorption in metallic palladium using vibrating wire method

    NASA Astrophysics Data System (ADS)

    Inagaki, Yuji; Nishimura, Atsuki; Yokooji, Honoka; Takata, Hiroki; Kawae, Tatsuya

    2015-09-01

    A vibrating wire (VW) method was applied to investigate the hydrogen absorption and desorption properties of palladium. At room temperature, a considerable shift in resonance frequency was successfully observed in VW spectra under H2 gas exposure. The shift is reversible in the initial stage of the exposure and is attributed to changes in the density and Young’s modulus of the VW sensor. Irreversibility of the shift because of embrittlement is detected after a sufficient exposure time. H absorption is slowed down enormously at T = 200 K owing to suppression of the thermal activation process.

  18. Zinc glycine chelate absorption characteristics in Sprague Dawley rat.

    PubMed

    Yue, M; Fang, S L; Zhuo, Z; Li, D D; Feng, J

    2015-06-01

    This study was conducted to investigate absorption characteristics of zinc glycine chelate (Zn-Gly) by evaluating tissues zinc status and the expression of zinc transporters in rats. A total of 24 male rats were randomly allocated to three treatments and administered either saline or 35 mg Zn/kg body weight from zinc sulphate (ZnSO4 ) or Zn-Gly by feeding tube separately. Four rats per group were slaughtered and tissues were collected at 2 and 6 h after gavage respectively. Our data showed that Zn-Gly did more effectively in increasing (p < 0.05) serum zinc levels, and the activities of serum and liver alkaline phosphatase (ALP) and liver Cu/Zn superoxide dismutase (Cu/Zn SOD) at 2 and 6 h. By 2 h after the zinc load, the mRNA and protein abundance of intestinal metallothionein1 (MT1) and zinc transporter SLC30A1 (ZnT1) were higher (p < 0.05), and zinc transporter SLC39A4 (Zip4) lower (p < 0.05) in ZnSO4 compared to other groups. Zinc transporter SLC39A5 (Zip5) mRNA expression was not zinc responsive, but Zip5 protein abundance was remarkably (p < 0.05) increased in ZnSO4 2 h later. Overall, our results indicated that in short-term periods, Zn-Gly was more effective in improving body zinc status than ZnSO4 , and ZnSO4 did more efficiently on the regulation of zinc transporters in small intestine. PMID:25266789

  19. Controllable nonlinear refraction characteristics in hydrogenated nanocrystalline silicon

    SciTech Connect

    Zheng, D. Q.; Ye, Q. H.; Shen, W. Z.; Su, W. A.

    2014-02-07

    Nonlinear refraction (NLR) of hydrogenated nanocrystalline silicon (nc-Si:H) has been investigated through the close aperture Z-scan method. We demonstrate a significant NLR and a unique feature of controllable NLR characteristics between saturable and Kerr NLR with the incident photon energy. We numerically evaluate the proportion of these two mechanisms in different wavelengths by a modified NLR equation. The band tail of nc-Si:H appears to play a crucial role in such NLR responses.

  20. Optical characteristics of particles produced using electroerosion dispersion of titanium in hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Pyachin, S. A.; Burkov, A. A.; Makarevich, K. S.; Zaitsev, A. V.; Karpovich, N. F.; Ermakov, M. A.

    2016-07-01

    Titanium oxide particles are produced using electric-discharge dispersion of titanium in aqueous solution of hydrogen peroxide. Electron vacuum microscopy, X-ray diffraction, and diffuse reflection spectroscopy are used to study the morphology, composition, and optical characteristics of the erosion particles. It has been demonstrated that the particles consist of titanium and titanium oxides with different valences. The edge of the optical absorption is located in the UV spectral range. The band gap is 3.35 eV for indirect transitions and 3.87 eV for direct allowed transitions. The band gap decreases due to the relatively long heating in air at a temperature of 480-550°C, so that powder oxide compositions can be obtained, the optical characteristics of which are similar to optical characteristics of anatase. The erosion products are completely oxidized to rutile after annealing in air at a temperature of 1000°C.

  1. Extended Pre-Transit Structures and the Exosphere Detected for HD189733b in Optical Hydrogen Balmer Line Absorption

    NASA Astrophysics Data System (ADS)

    Redfield, Seth; Cauley, P. Wilson; Jensen, Adam G.; Barman, Travis; Endl, Michael; Cochran, William

    2015-12-01

    We present two separate observations of HD189733b in the three strongest hydrogen Balmer lines (H-alpha, H-beta, and H-gamma), with HiRES on Keck I that show definitive in-transit absorption, confirming the detection with the HET by Jensen et al. (2012), as well as, significant pre-transit absorption. Recently, pre-transit absorption in UV metal transitions of the hot Jupiter exoplanets HD 189733b and WASP12-b have been interpreted as being caused by material compressed in a planetary bow shock, however our observations are the first to densely time-sample and redundantly detect these extended planetary structures. While our first observations (obtained in 2013 and presented in Cauley et al. 2015), were consistent with a bow shock, our subsequent observation taken in August 2015 show pre-transit absorption but with a pattern that is inconsistent with the 2013 model. Instead, the observations indicate significant variability in the strength and timing of the pre-transit absorption. We also find differences in the strength of the in-transit exospheric absorption as well. These changes could be indicative of variability in the extreme stellar wind properties found at just 8 stellar radii, which could drive the extended atmospheric interaction between star and planet. The pre-transit absorption in 2013 was first observed 65 minutes prior to transit (corresponding to a linear distance of ~7 planetary radii), although it could have started earlier. The pre-transit signal in 2015, which is well sampled, is first detected 165 minutes prior to transit (a linear distance of ~17 planetary radii). The line shape of the pre-transit feature and the shape of the time series absorption provide the strongest constraints on the morphology and physical characteristics of extended structures around the exoplanet. The absorption strength observed in the Balmer lines indicates an optically thick, but physically small, geometry. If part of this extended structure is a bow shock mediated

  2. Effect of carbon on hydrogen desorption and absorption of mechanically milled MgH 2

    NASA Astrophysics Data System (ADS)

    Shang, C. X.; Guo, Z. X.

    The use of MgH 2, instead of pure Mg, in the mechanical synthesis of Mg-based hydrogen storage materials offers added benefit to powder size refinement and reduced oxygen contamination. Alloying additions can further improve the sorption kinetics at a relatively low temperature. This paper examines the effect of graphitic carbon on the desorption and absorption of MgH 2. Graphite powder of different concentrations were mechanically milled with MgH 2 particles. The milled powder was characterised by XRD, SEM and simultaneous TG and DSC techniques. The results show that graphite poses little influence on the desorption properties of MgH 2. However, it does benefit the absorption process, leading to rapid hydrogen uptake in the re-hydrogenated sample. After dehydrogenation, 5 wt.% of hydrogen was re-absorbed within 30 min at 250 °C for the ( MgH 2+10 G) mixture prior-milled for 8 h, while only 0.8 wt.% for the pure MgH 2 milled for 8 h, the effect may be attributed to the interaction between crystalline graphite with H 2 disassociation close to the MgH 2 or Mg surface. Moreover, graphite can also inhibit the formation of a new oxide layer on the surface of Mg particles.

  3. Measurement of Gas Temperature in Negative Hydrogen Ion Source by Wavelength-Modulated Laser Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Nishiyama, S.; Sasaki, K.; Nakano, H.; Goto, M.; Kisaki, M.; Tsumori, K.; NIFS-NBI Team

    2014-10-01

    Measurement of the energy distribution of hydrogen atom is important and essential to understand the production mechanism of its negative ion (H-) in cesium-seeded negative ion sources. In this work, we evaluated the temperature of atomic hydrogen in the large-scale arc-discharge negative hydrogen ion source in NIFS by wavelength-modulated laser absorption spectroscopy. The laser beam was passed through the adjacent region to the grid electrode for extracting negative ions. The frequency of the laser was scanned slowly over the whole range of the Doppler width (100 GHz in 1s). A sinusoidal frequency modulation at 600 Hz with a width of 30 GHz was superposed onto the slow modulation. The transmitted laser was detected using a photodiode, and its second harmonic component of the sinusoidal modulation was amplified using a lock-in amplifier. The obtained spectrum was in good agreement with an expected spectrum of the Doppler-broadened Balmer- α line. The estimated temperature of atomic hydrogen was approximately 3000 K. The absorption increased with the arc-discharge power, while the temperature was roughly independent of the power. This work is supported by the NIFS Collaboration Research Program NIFS13KLER021.

  4. Hydrogen absorption/desorption behavior with oxygen-contaminated boron film

    NASA Astrophysics Data System (ADS)

    Tsuzuki, K.; Eiki, H.; Inoue, N.; Sagara, A.; Noda, N.; Hirohata, Y.; Hino, T.

    The effect of oxygen contamination on hydrogen absorption and desorption behavior from a boron coating film has been studied. Oxygen atoms were implanted by glow discharge in an O 2/He gas mixture until near saturation, into the boron film deposited by PCVD. The depth profile measurement by AES showed that O atoms were retained up to the depth of 20 nm. Hydrogen discharges were carried out to investigate the H absorption behavior. The capability of H absorption decreased for 30-50% compared to the pure boron film without O contamination. After the discharge, the depth profile of the oxygen atoms was not changed, which means that a stable oxide layer had formed. The reduction of the H absorption capability occurs probably because the formation of the boron oxide prevents H atoms from trapping in the form of B-H bonding. Most of the retained H atoms can be released by a heating up to 500°C with the O contamination. The required temperature for H evacuation is slightly higher than that for pure boron film. In addition, a small peak was observed at around 200°C. From these results, the applicability of boronization to future long term discharges was discussed, in which the boron film saturates with O contamination.

  5. Effect of temperature on NOx absorption into nitric acid solutions containing hydrogen peroxide

    SciTech Connect

    Thomas, D.; Vanderschuren, J.

    1998-11-01

    A mathematical model previously developed by the authors for the absorption of NOx into nitric acid solutions containing hydrogen peroxide at 20 C was adapted to take the effect of temperature into account. It was used to determine at 10 and 30 C the overall kinetic parameters relative to the absorption of the different NOx species, for increasing HNO{sub 3} molarities (up to 2 M) and a low concentration of H{sub 2}O{sub 2} (0.02 M), from test runs performed in a small packed column. The interpretation of the experimental results obtained at 10 and 30 C according to the model confirmed the previous findings: hydrolysis is the main controlling step for tetravalent nitrogen oxides, and nitrous acid is likely to contribute for the most part to the absorption of trivalent species.

  6. Characteristic of Absorption Heat Transfer using LiBr+LiI Solution

    NASA Astrophysics Data System (ADS)

    Tsujimori, Atsushi; Ozaki, Eiichi; Nakao, Kazushige

    LiBr-H20 absorption chiller is widely used in Japan, and many research have been made for absorption characteristic in terms of enhancing heat transfer. Another study have been performed for widening working range with higher crystallization limits, and it was reported that adding LiI salt to LiBr-H20 working fluid provide about 5 [mass%] higher crystallization limit under the condition of absorption pressure range. It is necessary to reveal absorption heat transfer performance to utilize this working fluid pair for absorption chiller. In this study absorption heat transfer characteristic was investigated for horizontal and vertical tube. As a result, it was found that heat transfer coefficient increased as mass flow rate of solution increased and mass concentration of solution decrease and that these characteristic were almost the same as LiBr solution, though this solution gave slightly less heat transfer coefficient than LiBr solution.

  7. Energy absorption characteristics of nano-composite conical structures

    NASA Astrophysics Data System (ADS)

    Silva, F.; Sachse, S.; Njuguna, J.

    2012-09-01

    The effect of the filler material on the energy absorption capabilities of polyamide 6 composite structures is studied in details in the present paper. The axial dynamic and quasi-static collapse of conical structures was conducted using a high energy drop tower, as well as Instron 5500R electro-mechanical testing machine. The impact event was recorded using a high-speed camera and the fracture surface was investigated using scanning electron microscopy (SEM). The obtained results indicate an important influence of filler material on the energy absorption capabilities of the polymer composites. A significant increase in specific energy absorption (SEA) is observed in polyamide 6 (PA6) reinforced with nano-silica particles (SiO2) and glass-spheres (GS), whereas addition of montmorillonite (MMT) did not change the SEA parameter.

  8. Absorption and desorption of hydrogen, deuterium, and tritium for Zr--V--Fe getter

    SciTech Connect

    Ichimura, K.; Inoue, N.; Watanabe, K.; Takeuchi, T.

    1984-07-01

    Nonevaporable getters have wide applicability for developing the tritium handling techniques for thermonuclear fusion devices. From this viewpoint, mechanisms of the absorption and desorption of hydrogen isotopes and the isotope effects were investigated for a Zr--V--Fe alloy (St-707) by means of the mass analyzed thermal desorption spectroscopy. It was observed that the absorption rate was proportional to the first power of the pressure, indicating that the rate limiting step is the dissociative adsorption of hydrogen isotopes on the surface. The activation energy was very small, in the order of magnitude of a few tens of calories per mole in a temperature range from -196 to 200 /sup 0/C. The desorption rate was proportional to the square of the amount of absorption, indicating that the rate limiting step is the associative desorption reaction of hydrogen atoms or ions diffused to the surface from the bulk. The rate constants for hydrogen and deuterium were determined as k/sub d/(H/sub 2/) = (5.3/sup +2.6//sub -1.7/)exp(-(28.0 +- 0.7) x 10/sup 3//RT) and k/sub d/(D/sub 2/) = (5.0/sup +2.7//sub -1.7/)exp(-(28.6 +- 0.8) x 10/sup 3//RT) in (1/Pa 1 s), respectively, where R is in (cal/mol deg). With regard to tritium, the rate constant was evaluated as k/sub d/(T/sub 2/) = (5.0/sup +20//sub -4.0/)exp(-(29.3 +- 3) x 10/sup 3//RT), however, the frequency factor will have to be corrected by knowing the relative sensitivity factor of the mass spectrometer for tritium (T/sub 2/).

  9. Hydrogen absorption in {alpha}{sub 2} + {gamma} titanium aluminides during mechanical grinding

    SciTech Connect

    Brass, A.M.; Chene, J.

    1998-11-03

    Several studies have shown the high sensitivity of titanium aluminides to environmental effects with a detrimental role of water vapor. Water is considered to dissociate on bare metallic surfaces resulting from the rupture of the surface oxide, leading to hydrogen diffusion in the bulk and the subsequent embrittlement of the material. However very limited direct experimental evidence of the phenomenon of water dissociation and of hydrogen entry remain unclear whereas controversial results have been reported on the hydrogen embrittling effect in these alloys. The use of deuterium or tritium as tracers can help to characterize water dissociation and H entry in materials exposed to aqueous solution or moist atmospheres. The study of deuterium profiles as a function of various parameters such as the nature and pH of the environment, the temperature, the applied stress and strain,... is currently performed by Secondary Ion Mass Spectrometry (SIMS) analysis. The first results showed that a precise measurement of the deuterium penetration in the alloy exposed to a deuterated medium requires preliminary investigations on the influence of the surface preparation on the hydrogen and deuterium profiles before exposure to the environment. In this study a special attention has been paid to the effect of the oxide layer on hydrogen absorption during mechanical grinding under water.

  10. Hydrogen absorption by thin Pd/Nb films deposited on glass

    SciTech Connect

    Reisfeld, G.; Jisrawi, N.M.; Ruckman, M.W.; Strongin, M.

    1996-02-01

    Hydrogen absorption by 200{endash}2000-A-thick Pd-capped Nb films, between 5 and 110{degree}C, was studied by simultaneous four-probe resistivity and volumetric measurements. The resistivity as a function of hydrogen concentration was measured while charging the films with hydrogen, and was used to compute the change in hydrogen concentration in the film, during the reaction with oxygen. For the thinnest films (200 A thick), the hydrogen charging and discharging curves indicate that a first-order gas-liquid-like phase transition with a {ital T}{sub {ital c}} of 70{endash}75{degree}C takes place. The H-Nb phase diagram for the 200-A film looks like the H/bulk Nb {alpha}-{alpha}{prime} phase diagram which has a higher {ital T}{sub {ital c}} (173{degree}C). We attribute the substantial modifications of the film{close_quote}s phase diagram to the clamping of the Nb film at its interfaces with glass and Pd and to the nanostructure of the films. {copyright} {ital 1996 The American Physical Society.}

  11. Effect of hydrogenic impurity on linear and nonlinear optical absorption coefficients and refractive index changes in a quantum dot

    NASA Astrophysics Data System (ADS)

    Guo, Kangxian; Zhang, Zhongmin; Mou, Sen; Xiao, Bo

    2015-05-01

    The analytical expressions of linear and nonlinear optical absorption coefficients and refractive index changes in a quantum dot with a hydrogenic impurity are obtained by using the compact-density-matrix approach and iterative method. The wave functions and the energy levels are obtained by using the variational method. Numerical results show that the optical absorption coefficients and refractive index changes are strongly affected by the hydrogenic impurity.

  12. Absorption characteristics of elemental mercury in mercury chloride solutions.

    PubMed

    Ma, Yongpeng; Xu, Haomiao; Qu, Zan; Yan, Naiqiang; Wang, Wenhua

    2014-11-01

    Elemental mercury (Hg(0)) in flue gases can be efficiently captured by mercury chloride (HgCl2) solution. However, the absorption behaviors and the influencing effects are still poorly understood. The mechanism of Hg(0) absorption by HgCl2 and the factors that control the removal were studied in this paper. It was found that when the mole ratio of Cl(-) to HgCl2 is 10:1, the Hg(0) removal efficiency is the highest. Among the main mercury chloride species, HgCl3(-) is the most efficient ion for Hg(0) removal in the HgCl2 absorption system when moderate concentrations of chloride ions exist. The Hg(0) absorption reactions in the aqueous phase were investigated computationally using Moller-Plesset perturbation theory. The calculated Gibbs free energies and energy barriers are in excellent agreement with the results obtained from experiments. In the presence of SO3(2-) and SO2, Hg(2+) reduction occurred and Hg(0) removal efficiency decreased. The reduced Hg(0) removal can be controlled through increased chloride concentration to some degree. Low pH value in HgCl2 solution enhanced the Hg(0) removal efficiency, and the effect was more significant in dilute HgCl2 solutions. The presence of SO4(2-) and NO3(-) did not affect Hg(0) removal by HgCl2. PMID:25458680

  13. Structural, morphological, magnetic and hydrogen absorption properties of LaNi5 alloy: A comprehensive study

    NASA Astrophysics Data System (ADS)

    Sarhaddi, Reza; Arabi, Hadi; Pourarian, Faiz

    2014-04-01

    A comprehensive study of structural, morphological, magnetic and hydrogen absorption properties of LaNi5-H system was investigated. The X-ray diffraction patterns show that as-synthesized LaNi5 alloy is single phase with CaCu5-type structure while some weak peaks of elemental nickel also appeared after several hydrogenation/dehydrogenation (H/D) cycling. The presence of pure Ni was also followed using the room temperature magnetic measurements. After H/D cycling, the particle size decreases and particle size distribution was found nearly uniform compared to noncycled alloy. The pressure-composition isotherms (PCIs) of the hydrogen absorption reaction were determined in the temperature range 20-80°C using a homemade Sievert's type experimental apparatus, and then the enthalpy and entropy of hydride formation were calculated. The hydriding kinetic mechanism of LaNi5 was evaluated using the different fitting models: Jander diffusion model (JDM), Johnson-Mehl-Avrami (JMA) and Chou models. All employed models confirm an increase in the hydriding reaction rate with temperature. However, the calculated results using JMA model show a better agreement with the experimental data and hence we believe that diffusion along with nucleation and growth is the rate-controlling step for the hydriding reaction. The values of activation energy for hydriding reaction were also obtained by JD and JMA models.

  14. THE 217.5 nm BAND, INFRARED ABSORPTION, AND INFRARED EMISSION FEATURES IN HYDROGENATED AMORPHOUS CARBON NANOPARTICLES

    SciTech Connect

    Duley, W. W.; Hu, Anming E-mail: a2hu@uwaterloo.ca

    2012-12-20

    We report on the preparation of hydrogenated amorphous carbon nanoparticles whose spectral characteristics include an absorption band at 217.5 nm with the profile and characteristics of the interstellar 217.5 nm feature. Vibrational spectra of these particles also contain the features commonly observed in absorption and emission from dust in the diffuse interstellar medium. These materials are produced under ''slow'' deposition conditions by minimizing the flux of incident carbon atoms and by reducing surface mobility. The initial chemistry leads to the formation of carbon chains, together with a limited range of small aromatic ring molecules, and eventually results in carbon nanoparticles having an sp {sup 2}/sp {sup 3} ratio Almost-Equal-To 0.4. Spectroscopic analysis of particle composition indicates that naphthalene and naphthalene derivatives are important constituents of this material. We suggest that carbon nanoparticles with similar composition are responsible for the appearance of the interstellar 217.5 nm band and outline how these particles can form in situ under diffuse cloud conditions by deposition of carbon on the surface of silicate grains. Spectral data from carbon nanoparticles formed under these conditions accurately reproduce IR emission spectra from a number of Galactic sources. We provide the first detailed fits to observational spectra of Type A and B emission sources based entirely on measured spectra of a carbonaceous material that can be produced in the laboratory.

  15. Hydrogen capacity and absorption rate of the SAES St707 non-evaporable getter at various temperatures.

    SciTech Connect

    Hsu, Irving; Mills, Bernice E.

    2010-08-01

    A prototype of a tritium thermoelectric generator (TTG) is currently being developed at Sandia. In the TTG, a vacuum jacket reduces the amount of heat lost from the high temperature source via convection. However, outgassing presents challenges to maintaining a vacuum for many years. Getters are chemically active substances that scavenge residual gases in a vacuum system. In order to maintain the vacuum jacket at approximately 1.0 x 10{sup -4} torr for decades, nonevaporable getters that can operate from -55 C to 60 C are going to be used. This paper focuses on the hydrogen capacity and absorption rate of the St707{trademark} non-evaporable getter by SAES. Using a getter testing manifold, we have carried out experiments to test these characteristics of the getter over the temperature range of -77 C to 60 C. The results from this study can be used to size the getter appropriately.

  16. Characteristics of Single/Double-Effect Combination Absorption Refrigerator

    NASA Astrophysics Data System (ADS)

    Kimijima, Shinji; Waragai, Shisei; Uekusa, Tsuneo; Nakao, Masaki; Kawai, Sunao

    In recent years, co-generation system with fuel cell occupies the attention of the world from a standpoint of the environmental protection and the effective utilization of the energy. Since the waste heat of phosphoric acid fuel cell is recovered in two forms of steam (0.6 [MPa]) and hot water (65∼90 [°C]), this type of absorption refrigerator is driven by two heat sources. In this paper, we inquire the result of the experiment intented for this absorption refrigerator the standard cooling capacity of which is 35[kW]. It is recognized that there is a mutual intervention when the supply condition of steam pressure is changed. Also the effects of hot water temperature, cooling water temperature and chilled water temperature for the performance of this absorption refrigerator is clarified. As a result, the effectiveness of using steam and hot water simultaneously in year-round operation is shown. Furthermore, it is clarified that the utilization of the low boiling temperature medium as the heat transfer medium for air-conditioner is effective.

  17. The Far-Infrared Absorption Spectrum of Low Temperature Hydrogen Gas.

    NASA Astrophysics Data System (ADS)

    Wishnow, Edward Hyman

    The far-infrared absorption spectrum of normal hydrogen gas has been measured from 20-320 cm^ {-1} (lambda = 500-31 mu M), over the temperature range 21-38 K, and the pressure range 0.6-3 atmospheres. The spectra cover the very weak and broad collision-induced translational absorption band of H_2 which at these low temperatures is observed well isolated from the H_2 rotational lines. Translational absorption occurs when two molecules collide and absorb a photon via a transient induced dipole moment. The molecules emerge from the collision with altered translational energies, and the rotational, vibrational, and electronic energy states remain unaffected. The present spectra are the lowest temperature, lowest pressure, and highest resolution studies of the H_2 translational spectrum. In order to observe the weak translational absorption band, a long pathlength multireflection absorption cell ('White cell'), cooled by the continuous flow of helium vapour, has been designed and constructed. The cell has an f/10 optical beam that allows long wavelength radiation to be transmitted, with low diffraction losses, over an optical path of up to 60 m. The cell is coupled to a Fourier transform interferometer and H_2^ectra are obtained at a spectral resolution of 0.24 cm ^{-1}, 10 times higher than previous experiments. Low temperature absorption spectra are due to not only transitions between molecular translational energy states, but also rotational transitions between the bound states of the van der Waals complex formed by two hydrogen molecules. The integrated absorption of the measured H _2 translational spectrum is consistent with the binary absorption coefficient calculated using the Poll and Van Kranendonk theory of collison-induced absorption. The calculation is based on the quantum mechanical pair distribution function derived from the Lennard-Jones intermolecular potential, and it includes contributions from H_2 dimer bound states. Although dimer transitions

  18. Hydrogen-assisted catalytic ignition characteristics of different fuels

    SciTech Connect

    Zhong, Bei-Jing; Yang, Fan; Yang, Qing-Tao

    2010-10-15

    Hydrogen-assisted catalytic ignition characteristics of methane (CH{sub 4}), n-butane (n-C{sub 4}H{sub 10}) and dimethyl ether (DME) were studied experimentally in a Pt-coated monolith catalytic reactor. It is concluded that DME has the lowest catalytic ignition temperature and the least required H{sub 2} flow, while CH{sub 4} has the highest catalytic ignition temperature and the highest required H{sub 2} flow among the three fuels. (author)

  19. A high-efficiency power cycle in which hydrogen is compressed by absorption in metal hydrides.

    PubMed

    Powell, J R; Salzano, F J; Yu, W S; Milau, J S

    1976-07-23

    A high-efficiency power cycle is proposed in which molecular hydrogen gas is used as a working fluid in a regenerative closed Brayton cycle. The hydrogen gas is compressed by an absorption-desorption cycle on metal hydride (FeTiH(x)) beds. Low-temperature solar or geothermal heat (temperature about 100 degrees C) is used for the compression process, and high-temperature fossil fuel or nuclear heat (temperature about 700 degrees C) supplies the expansion work in the turbine. Typically, about 90 percent of the high-temperature heat input is converted to electricity, while about 3 kilowatts of low-temperature heat is required per kilowatt of electrical output. PMID:17745726

  20. A comparison of neutral hydrogen 21 cm observations with UV and optical absorption-line measurements

    NASA Technical Reports Server (NTRS)

    Giovanelli, R.; York, D. G.; Shull, J. M.; Haynes, M. P.

    1978-01-01

    Several absorption components detected in visible or UV lines have been identified with emission features in new high-resolution, high signal-to-noise 21 cm observations. Stars for which direct overlap is obtained are HD 28497, lambda Ori, mu Col, HD 50896, rho Leo, HD 93521, and HD 219881. With the use of the inferred H I column densities from 21 cm profiles, rather than the integrated column densities obtained from L-alpha, more reliable densities can be derived from the existence of molecular hydrogen. Hence the cloud thicknesses are better determined; and 21 cm emission maps near these stars can be used to obtain dimensions on the plane of the sky. It is now feasible to derive detailed geometries for isolated clumps of gas which produce visual absorption features.

  1. Absorption-polarization characteristics of rhodamine 6G and its base in poly(methyl methacrylate)

    SciTech Connect

    Prishchepov, A.S.; Nizamou, N.

    1986-01-01

    Results are presented of the measurement and analysis of the absorption-polarization characteristics of rhodamine 6G and the base of rhodamine 6G (BR6G) in polymeric films of poly(methylmethacrylate) (PMMA). The absorption spectrum of a PMMA film containing BR6G and the cationic dye in the monomeric and associated states are shown.

  2. Communication: Hydrogen bonding interactions in water-alcohol mixtures from X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Lam, Royce K.; Smith, Jacob W.; Saykally, Richard J.

    2016-05-01

    While methanol and ethanol are macroscopically miscible with water, their mixtures exhibit negative excess entropies of mixing. Despite considerable effort in both experiment and theory, there remains significant disagreement regarding the origin of this effect. Different models for the liquid mixture structure have been proposed to address this behavior, including the enhancement of the water hydrogen bonding network around the alcohol hydrophobic groups and microscopic immiscibility or clustering. We have investigated mixtures of methanol, ethanol, and isopropanol with water by liquid microjet X-ray absorption spectroscopy on the oxygen K-edge, an atom-specific probe providing details of both inter- and intra-molecular structure. The measured spectra evidence a significant enhancement of hydrogen bonding originating from the methanol and ethanol hydroxyl groups upon the addition of water. These additional hydrogen bonding interactions would strengthen the liquid-liquid interactions, resulting in additional ordering in the liquid structures and leading to a reduction in entropy and a negative enthalpy of mixing, consistent with existing thermodynamic data. In contrast, the spectra of the isopropanol-water mixtures exhibit an increase in the number of broken alcohol hydrogen bonds for mixtures containing up to 0.5 water mole fraction, an observation consistent with existing enthalpy of mixing data, suggesting that the measured negative excess entropy is a result of clustering or micro-immiscibility.

  3. Communication: Hydrogen bonding interactions in water-alcohol mixtures from X-ray absorption spectroscopy.

    PubMed

    Lam, Royce K; Smith, Jacob W; Saykally, Richard J

    2016-05-21

    While methanol and ethanol are macroscopically miscible with water, their mixtures exhibit negative excess entropies of mixing. Despite considerable effort in both experiment and theory, there remains significant disagreement regarding the origin of this effect. Different models for the liquid mixture structure have been proposed to address this behavior, including the enhancement of the water hydrogen bonding network around the alcohol hydrophobic groups and microscopic immiscibility or clustering. We have investigated mixtures of methanol, ethanol, and isopropanol with water by liquid microjet X-ray absorption spectroscopy on the oxygen K-edge, an atom-specific probe providing details of both inter- and intra-molecular structure. The measured spectra evidence a significant enhancement of hydrogen bonding originating from the methanol and ethanol hydroxyl groups upon the addition of water. These additional hydrogen bonding interactions would strengthen the liquid-liquid interactions, resulting in additional ordering in the liquid structures and leading to a reduction in entropy and a negative enthalpy of mixing, consistent with existing thermodynamic data. In contrast, the spectra of the isopropanol-water mixtures exhibit an increase in the number of broken alcohol hydrogen bonds for mixtures containing up to 0.5 water mole fraction, an observation consistent with existing enthalpy of mixing data, suggesting that the measured negative excess entropy is a result of clustering or micro-immiscibility. PMID:27208929

  4. Modeling of NO{sub x} absorption into nitric acid solutions containing hydrogen peroxide

    SciTech Connect

    Thomas, D.; Vanderschuren, J.

    1997-08-01

    A mathematical model was developed for the isothermal absorption of nitrogen oxides into nitric acid solutions containing hydrogen peroxide. This model, based on the two-film theory of absorption with chemical reactions, includes diffusive transport and equilibrium between species in the gas phase and simultaneous absorption of the NO{sub x} components with fast irreversible reactions in the liquid phase. Kinetic parameters relative to the absorption of the different NO{sub x} species were determined at increasing acidities and for a low concentration of H{sub 2}O{sub 2} from test runs performed in a small packed column at 20 C and atmospheric pressure for various NO{sub x} partial pressures up to 500 Pa and the whole range of NO{sub x} oxidation ratios. Only the parameter relative to trivalent NO{sub x} was found to increase with the HNO{sub 3} molarity, the other ones remaining constant. Interpretation of the experimental results according to the model showed that the hydrolysis is the main controlling step for tetravalent nitrogen oxides and that among the trivalent components nitrous acid is likely to be a major transporting species.

  5. Airfoil Heat Transfer Characteristics in Syngas and Hydrogen Turbines

    SciTech Connect

    Mazzotta, D.W.; Chyu, M.K.; Alvin, M.A.

    2007-05-01

    Hydrogen or coal-derivative syngas turbines promise increased efficiency with exceptionally low NOx emissions compared to the natural gas based turbines. To reach this goal, turbine inlet temperature (TIT) will need to be elevated to a level exceeding 1700°C [1, 2]. The thermal load induced by such a temperature increase alone will lead to immense challenges in maintaining material integrity of turbine components. In addition, as working fluid in the gas path will primarily be steam, possibly mixed with carbon oxides, the aero-thermal characteristic in a hydrogen turbine is expected to be far different from that of air/nitrogen enriched gas stream in a gas turbine. For instance, steam has distinctly higher density and specific heat in comparison to a mixture of air and combustion gases as they are expanded in a conventional gas turbine. Even if the temperature limits remain about the same, the expansion in a hydrogen turbine will have to proceed with a greater enthalpy drop and therefore requires a larger number of stages. This also implies that the flow areas may need to be expanded and blade span to be enlarged. Meanwhile, a greater number of stages and hot surfaces need to be protected. This also suggests that current cooling technology available for modern day gas turbines has to be significantly improved. The ultimate goal of the present study is to systematically investigate critical issues concerning cooling technology as it is applicable to oxy-fuel and hydrogen turbine systems, and the main scope is to develop viable means to estimate the thermal load on the turbine “gas side”, that is eventually to be removed from the “coolant side”, and to comparatively quantify the implication of external heat load and potential thermal barrier coating (TBC) degradation on the component durability and lifing. The analysis is based on two well-tested commercial codes, FLUENT and ANSYS.

  6. Effects of lump characteristics on plutonium self absorption correction methods

    SciTech Connect

    Curtis, D. C.; Wormald, M. R.; Croft, S.

    2007-07-01

    An evaluation study has been undertaken to assess the robustness of several published Pu self-absorption correction methods against variation in size, shape, density etc. for use in the gamma assay of nuclear waste. The correction methods studied are a numerical plutonium self absorption correction (PuSAC) technique, the Fleissner 2-line, Fleissner 3-line and Infinite Energy Extrapolation methods with both linear and polynomial extrapolation to 1/E=0. The performance of these methods has been compared for a limited set of measured encapsulated PuO{sub 2} sources plus a range of modelled unencapsulated Pu lumps. An indication of the magnitude of the uncertainties of the numerical PuSAC method has been determined for cases of blind assays where the Pu material, shape and distribution are unknown with the aim of ultimately applying it to real waste. The importance of the range of Pu lumps used in the baseline modelled dataset has been examined. Data are presented to illustrate how the uncertainties in the method are affected by the shape, composition, density, number and mass distribution of Pu particles in a sample for a given modelled base dataset. (authors)

  7. Energy absorption characteristics of lightweight structural member by stacking conditions

    NASA Astrophysics Data System (ADS)

    Choi, Juho; Yang, Yongjun; Hwang, Woochae; Pyeon, Seokbeom; Min, Hanki; Yeo, Ingoo; Yang, Inyoung

    2012-04-01

    The recent trend in vehicle design is aimed at improving crash safety and environmental-friendliness. To solve these issues, the needs for lighter vehicle to limit exhaust gas and improve fuel economy has been requested for environmental-friendliness. Automobile design should be made for reduced weight once the safety of vehicle is maintained. In this study, composite structural members were manufactured using carbon fiber reinforced plastic (CFRP) which are representative lightweight structural materials. Carbon fiber has been researched as alternative to metals for lightweight vehicle and better fuel economy. CFRP is an anisotropic material which is the most widely adapted lightweight structural member because of their inherent design flexibility and high specific strength and stiffness. Also, variation of CFRP interface number is important to increase the energy absorption capacity. In this study, one type of circular shaped composite tube was used, combined with reinforcing foam. The stacking condition was selected to investigate the effect of the fiber orientation angle and interface number. The crashworthy behavior of circular composite material tubes subjected to static axial compression under same conditions is reported. The axial static collapse tests were carried out for each section member. The collapse modes and the energy absorption capability of the members were analyzed.

  8. Energy absorption characteristics of lightweight structural member by stacking conditions

    NASA Astrophysics Data System (ADS)

    Choi, Juho; Yang, Yongjun; Hwang, Woochae; Pyeon, Seokbeom; Min, Hanki; Yeo, Ingoo; Yang, Inyoung

    2011-11-01

    The recent trend in vehicle design is aimed at improving crash safety and environmental-friendliness. To solve these issues, the needs for lighter vehicle to limit exhaust gas and improve fuel economy has been requested for environmental-friendliness. Automobile design should be made for reduced weight once the safety of vehicle is maintained. In this study, composite structural members were manufactured using carbon fiber reinforced plastic (CFRP) which are representative lightweight structural materials. Carbon fiber has been researched as alternative to metals for lightweight vehicle and better fuel economy. CFRP is an anisotropic material which is the most widely adapted lightweight structural member because of their inherent design flexibility and high specific strength and stiffness. Also, variation of CFRP interface number is important to increase the energy absorption capacity. In this study, one type of circular shaped composite tube was used, combined with reinforcing foam. The stacking condition was selected to investigate the effect of the fiber orientation angle and interface number. The crashworthy behavior of circular composite material tubes subjected to static axial compression under same conditions is reported. The axial static collapse tests were carried out for each section member. The collapse modes and the energy absorption capability of the members were analyzed.

  9. Relating water absorption features to soil moisture characteristics

    NASA Astrophysics Data System (ADS)

    Tian, Jia; Philpot, William D.

    2015-09-01

    The spectral reflectance of a sample of quartz sand was monitored as the sample progressed from air-dry to fully saturated, and then back to air-dry. Wetting was accomplished by spraying small amounts of water on the surface of the sample, and collecting spectra whenever change occurred. Drying was passive, driven by evaporation from the sand surface, with spectra collected every 5 minutes until the sample was air dry. Water content was determined by monitoring the weight of the sample through both wetting and drying. There was a pronounced difference in the pattern of change in reflectance during wetting and drying, with the differences being apparent both in spectral details (i.e., the depth of absorption bands) and in the magnitude of the reflectance for a particular water content. The differences are attributable to the disposition of water in the sample. During wetting, water initially occurred only on the surface, primarily as water adsorbed onto sand particles. With increased wetting the water infiltrated deeper into the sample, gradually covering all particles and filling the pore spaces. During drying, water and air were distributed throughout the sample for most of the drying period. The differences in water distribution are assumed to be the cause of the differences in reflectance and to the differences in the depths of four strong water absorption bands.

  10. Evaluation of Hydrogen Storage System Characteristics for Light-Duty Vehicle Applications (Poster)

    SciTech Connect

    Thornton, M.; Day, K.; Brooker, A.

    2010-05-01

    This poster presentation demonstrates an approach to evaluate trade-offs among hydrogen storage system characteristic across several vehicle configurations and estimates the sensitivity of hydrogen storage system improvements on vehicle viability.

  11. Absorption and swelling characteristics of silver (I) antimicrobial wound dressings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An important characteristic of moist wound dressings is their ability to swell and absorb exudates from the wound, while maintaining a moist atmosphere at the wound site. At the Southern Regional Research Center (SRRC), we have previously developed antimicrobial silver-sodium-carboxymethylated (CM)-...

  12. On the sizes of neutral hydrogen regions giving rise to damped Lyα absorption systems

    NASA Astrophysics Data System (ADS)

    Monier, E. M.; Turnshek, D. A.; Rao, S.

    2009-08-01

    Using quasi-stellar object (QSO) absorption-line spectra obtained along closely spaced sightlines, we examine the transverse sizes of regions containing large columns of neutral hydrogen gas at redshifts z ~ 1.5. The observations are primarily of intervening damped Lyα (DLA) and sub-DLA absorption-line systems in gravitationally lensed QSOs. In particular, Hubble Space Telescope spectroscopy of the four-component Cloverleaf QSO (H1413+1143) reveals three new DLA/sub-DLA systems at z ~ 1.44, 1.49 and 1.66. A neutral hydrogen column density of NHI >= 2 × 1020atomscm-2 is required for a system to be classified as a DLA, but none of the three systems has an HI column density above the DLA threshold in all four components. Over component separations <1.4 arcsec in the Cloverleaf, corresponding to transverse sizes of ~5-12h-170kpc, the HI column densities typically change by factors of ~2-40. Similar observations of other QSOs containing absorption systems in the DLA regime are summarized from the literature. In addition to establishing approximate sizes for DLA regions, the results have implications for their volume-averaged HI gas number densities and neutral gas masses. By combining our results on DLA absorber sizes with published results on the sizes of lower column density QSO absorbers, which however arise in very ionized regions, we infer the useful relation that the typical transverse size of an absorber in the redshift interval z ~ [1, 2] is Sabs ~ 11h-170[NHI/1020]-1/4kpc. Based on observations made with the NASA/ESA Hubble Space Telescope. E-mail: emonier@brockport.edu

  13. Si isotopic structure of the infrared absorption of the fully hydrogenated vacancy in silicon.

    PubMed

    Clerjaud, B; Pajot, B

    2013-05-14

    An infrared absorption spectrum consisting in three lines observed around 2223 cm(-1) at liquid helium temperature characterizes a defect common in silicon crystals containing hydrogen. Several investigations of this spectrum have converged towards its assignment to a fully hydrogenated lattice vacancy defect V(Si-H)4. However, the fact that the ratios of the intensities of the three lines have been reported to be proportional to the natural abundances of the three silicon isotopes suggests that only one Si atom is involved in the defect, apparently contradicting the above assignment. In this paper, the spectroscopic investigation of this defect is revisited and the Si-related isotopic structures of V(Si-H)4 and V(Si-D)4 defects are modeled. It is shown that the near proportionalities observed between the intensities of these lines and the abundances of the Si isotopes are fortuitous. Our analysis of the isotope dependence of the 2223 cm(-1) line finds the V(Si-H)4 model to be correct and that the model of a single interstitial Si atom complexed with H can be rejected. The investigation is extended to the analysis of tetra-hydrogenated vacancy trapped by a carbon atom. PMID:23676054

  14. Absorption Reveals and Hydrogen Addition Explains New Interstellar Aldehydes: Propenal and Propanal

    NASA Technical Reports Server (NTRS)

    Hollis, J. M.; Jewell, P. R.; Lovas, F. J.; Remijan, A.; Mollendal, H.

    2004-01-01

    New interstellar molecules propenal (CH2CHCHO) and propanal (CH3CH2CHO) have been detected largely in absorption toward the star-forming region Sagittarius B2(N) by means of rotational transitions observed with the 100-m Green Bank Telescope (GBT) operating in the range of 18 GHz (lambda approximately 1.7 cm) to 26 GHz (lambda approximately 1.2 cm). The GBT was also used to observe the previously reported interstellar aldehyde propynal (HC2CHO) in Sagittarius B2(N) which is known for large molecules believed to form on interstellar grains. The presence of these three interstellar aldehydes toward Sagittarius B2(N) strongly suggests that simple hydrogen addition on interstellar grains accounts for successively larger molecular species: from propynal to propenal and from propenal to propanal. Energy sources within Sagittarius B2(N) likely permit the hydrogen addition reactions on grain surfaces to proceed. This work demonstrates that successive hydrogen addition is probably an important chemistry route in the formation of a number of complex interstellar molecules. We also searched for but did not detect the three-carbon sugar glyceraldehyde (CH2OHCHOHCHO).

  15. Spectroscopy of Superheavy Hydrogen Isotopes in Stopped-Pion Absorption by Nuclei

    SciTech Connect

    Gurov, Yu.B.; Aleshkin, D.V.; Behr, M.N.; Lapushkin, S.V.; Morokhov, P.V.; Pechkurov, V.A.; Poroshin, N.O.; Sandukovsky, V.G.; Tel'kushev, M.V.; Chernyshev, B.A.; Tschurenkova, T.D.

    2005-03-01

    The structure of levels of superheavy hydrogen isotopes {sup 4-6}H is analyzed on the basis of a record statistics of experimental data on the absorption of negatively charged pions by light nuclei. Qualitatively new experimental data are obtained for the spectroscopy of the superheavy hydrogen isotopes {sup 5}H and {sup 6}H. Peaks due to four resonance states of {sup 5}H are observed in the missing-mass spectra for the reaction channels {sup 9}Be({pi}{sup -}, pt)X and {sup 9}Be({pi}{sup -}, dd)X. A structure that is associated with four resonance states of {sup 6}H is observed in the missing-mass spectra for the reaction channels {sup 9}Be({pi}{sup -}, pd)X and {sup 11}B({pi}{sup -}, p{sup 4}He)X. On the basis of the results presented for ground-state parameters, it can be concluded that the binding energy of superheavy hydrogen isotopes decreases as the number of neutrons increases. Excited levels of the isotopes {sup 5}H and {sup 6}H are observed for the first time. On the energy scale, all of these states lie above the threshold for decay to free nucleons.

  16. Si isotopic structure of the infrared absorption of the fully hydrogenated vacancy in silicon

    NASA Astrophysics Data System (ADS)

    Clerjaud, B.; Pajot, B.

    2013-05-01

    An infrared absorption spectrum consisting in three lines observed around 2223 cm-1 at liquid helium temperature characterizes a defect common in silicon crystals containing hydrogen. Several investigations of this spectrum have converged towards its assignment to a fully hydrogenated lattice vacancy defect V(Si-H)4. However, the fact that the ratios of the intensities of the three lines have been reported to be proportional to the natural abundances of the three silicon isotopes suggests that only one Si atom is involved in the defect, apparently contradicting the above assignment. In this paper, the spectroscopic investigation of this defect is revisited and the Si-related isotopic structures of V(Si-H)4 and V(Si-D)4 defects are modeled. It is shown that the near proportionalities observed between the intensities of these lines and the abundances of the Si isotopes are fortuitous. Our analysis of the isotope dependence of the 2223 cm-1 line finds the V(Si-H)4 model to be correct and that the model of a single interstitial Si atom complexed with H can be rejected. The investigation is extended to the analysis of tetra-hydrogenated vacancy trapped by a carbon atom.

  17. Optimal Weld Parameters, Weld Microstructure, Mechanical Properties, and Hydrogen Absorption: An Effective Analysis

    NASA Astrophysics Data System (ADS)

    Bhattacharya, J.; Pal, T. K.

    2011-10-01

    Weld bead-in-grooves were deposited on low alloy, high strength steel plates (ASTM A 517 Grade "F") with a commercial flux-cored filler wire, Auto-MIG 420, at different welding conditions. Microstructure and mechanical properties of welds were characterized by means of optical microscopy, SEM, TEM, EPMA, microhardness measurements, tensile tests, and Charpy impact tests. Hydrogen content of weld metals in as-weld condition and after exposing in simulated service condition was measured by LECO Gas Analyzer. Microstructure of weld metals consisted primarily of lath martensite with small amount of M-A constituents (Martensite-Austenite alternating layers). For some particular welding conditions, such as higher heat input and lower preheat temperatures etc., acicular ferrite is observed with lath martensite. Welds consisting of acicular ferrite in the microstructure showed improved mechanical properties as well as lower hydrogen absorption. The study provides guidelines for selecting proper welding conditions, which results in lower propensity to absorb hydrogen during service, as well as better mechanical properties. Necessity of post-weld heat treatment processes, which is mainly performed to achieve toughness, may be reduced; consequently saving cost and time of the welding process.

  18. Enhanced absorption in tandem solar cells by applying hydrogenated In2O3 as electrode

    NASA Astrophysics Data System (ADS)

    Yin, Guanchao; Steigert, Alexander; Manley, Phillip; Klenk, Reiner; Schmid, Martina

    2015-11-01

    To realize the high efficiency potential of perovskite/chalcopyrite tandem solar cells in modules, hydrogenated In2O3 (IO:H) as electrode is investigated. IO:H with an electron mobility of 100 cm2 V-1 s-1 is demonstrated. Compared to the conventional Sn doped In2O3 (ITO), IO:H exhibits a decreased electron concentration and leads to almost no sub-bandgap absorption up to the wavelength of 1200 nm. Without a trade-off between transparency and lateral resistance in the IO:H electrode, the tandem cell keeps increasing in efficiency as the IO:H thickness increases and efficiencies above 22% are calculated. In contrast, the cells with ITO as electrode perform much worse due to the severe parasitic absorption in ITO. This indicates that IO:H has the potential to lead to high efficiencies, which is otherwise constrained by the parasitic absorption in conventional transparent conductive oxide electrode for tandem solar cells in modules.

  19. Experimental Study of the Impedance Characteristics of the Plasma Absorption Probe

    NASA Astrophysics Data System (ADS)

    Yamazawa, Yohei

    2011-10-01

    The plasma absorption probe (PAP) is a diagnostic which permits the determination of the spatially resolved electron density in a plasma. The simple structure of the probe allows us a robust measurement; however, the mechanism of the absorption is complicated and several papers report that there is still some uncertainty. Basically, the PAP detects the plasma density by determining the absorption peak frequency in the frequency characteristics of the reflection coefficient. We have shown, by an electromagnetic field simulation (GT3-0003, GEC2009) that the frequency characteristics of the PAP impedance reflect the plasma resonance more directly than the frequency characteristics of the reflection coefficient. This time, we will report the experimental observation of the resonance in the frequency characteristics of impedance.

  20. VUV Absorption Spectroscopy of a Penning Surface - Negative Hydrogen Ion Source

    NASA Astrophysics Data System (ADS)

    Pitcher, Eric John

    The demand for energetic, high-current H ^- beams is ever-growing. Because H ^- is efficiently neutralized at high energies, these beams are ideally suited to applications where energetic neutral beams of particles are required to propagate across magnetic fields. Prime examples are neutral-beam heating of magnetic fusion plasmas and directed-energy weapons for ballistic missile defense. Such applications place demanding requirements on sources of H^ - ions, particularly with respect to the parameters of beam current, brightness, quiescence, reliability, and duty-factor. A class of sources that holds great promise for meeting these stringent requirements is the surface-plasma source (SPS), and in particular, the Penning type of SPS. It has long been conjectured that atomic hydrogen plays an important role in both H^- formation and transport in these sources. Understanding the interdependence of atomic hydrogen properties and those of H^ -, and how this relationship might be exploited to improve source performance is the motivation for this research. An overview of SPS's is presented. Previous measurements on the discharge are reviewed. Absorption spectroscopy, the diagnostic technique used to gather all of the data presented here, is discussed. Techniques that may potentially be used to measure the properties of H^ - in the discharge are discussed. The two absorption spectrometers used in this experiment are described. Measurements of ground-state atomic hydrogen density and temperature in a Penning SPS are presented. These measurements are the first of this kind for this type of discharge. An upper limit on the H^- density in the extraction region of the source is measured by the application of a novel diagnostic technique: the hydrogen atom density following H^- photodetachment by a Nd:YAG beam is measured and compared to the equilibrium atomic density. A simple model is derived that describes the dependence of the atomic temperature on the externally

  1. Recent advances in SRS on hydrogen isotope separation using thermal cycling absorption process

    SciTech Connect

    Xiao, X.; Kit Heung, L.; Sessions, H.T.

    2015-03-15

    TCAP (Thermal Cycling Absorption Process) is a gas chromatograph in principle using palladium in the column packing, but it is unique in the fact that the carrier gas, hydrogen, is being isotopically separated and the system is operated in a semi-continuous manner. TCAP units are used to purify tritium. The recent TCAP advances at Savannah River Site (SRS) include compressor-free concept for heating/cooling, push and pull separation using an active inverse column, and compact column design. The new developments allow significantly higher throughput and better reliability from 1/10 of the current production system's footprint while consuming 60% less energy. Various versions are derived in the meantime for external customers to be used in fusion energy projects.

  2. Plasma probe characteristics in low density hydrogen pulsed plasmas

    NASA Astrophysics Data System (ADS)

    Astakhov, D. I.; Goedheer, W. J.; Lee, C. J.; Ivanov, V. V.; Krivtsun, V. M.; Zotovich, A. I.; Zyryanov, S. M.; Lopaev, D. V.; Bijkerk, F.

    2015-10-01

    Probe theories are only applicable in the regime where the probe’s perturbation of the plasma can be neglected. However, it is not always possible to know, a priori, that a particular probe theory can be successfully applied, especially in low density plasmas. This is especially difficult in the case of transient, low density plasmas. Here, we applied probe diagnostics in combination with a 2D particle-in-cell model, to an experiment with a pulsed low density hydrogen plasma. The calculations took into account the full chamber geometry, including the plasma probe as an electrode in the chamber. It was found that the simulations reproduce the time evolution of the probe IV characteristics with good accuracy. The disagreement between the simulated and probe measured plasma density is attributed to the limited applicability of probe theory to measurements of low density pulsed plasmas on a similarly short time scale as investigated here. Indeed, in the case studied here, probe measurements would lead to, either a large overestimate, or underestimate of the plasma density, depending on the chosen probe theory. In contrast, the simulations of the plasma evolution and the probe characteristics do not suffer from such strict applicability limits. These studies show that probe theory cannot be justified through probe measurements. However, limiting cases of probe theories can be used to estimate upper and lower bounds on plasma densities. These theories include and neglect orbital motion, respectively, with different collisional terms leading to intermediate estimates.

  3. Absorption characteristics of lithium bromide (LiBr) solution constrained by superhydrophobic nanofibrous structures

    SciTech Connect

    Isfahani, RN; Moghaddam, S

    2013-08-01

    An experimental study on absorption characteristics of water vapor into a thin lithium bromide (LiBr) solution flow is presented. The LiBr solution flow is constrained between a superhydrophobic vapor permeable wall and a solid surface that removes the heat of absorption. As opposed to conventional falling film absorbers, in this configuration, the solution film thickness and velocity can be controlled independently to enhance the absorption rate. The effects of water vapor pressure, cooling surface temperature, solution film thickness, and solution flow velocity on the absorption rate are studied. An absorption rate of approximately 0.006 kg/m(2) s was measured at a LiBr solution channel thickness and flow velocity of 100 mu m and 5 mm/s, respectively. The absorption rate increased linearly with the water vapor driving potential at the test conditions of this study. It was demonstrated that decreasing the solution film thickness and increasing the solution velocity enhance the absorption rate. The high absorption rate and the inherently compact form of the proposed,absorber facilitate development of compact small-scale waste heat or solar-thermal driven cooling systems. Published by Elsevier Ltd.

  4. Concentration studies of collision-induced fundamental absorption of hydrogen dissolved in liquid neon.

    PubMed

    Herrebout, W A; van der Veken, B J; Kouzov, A P

    2012-08-28

    We report further and more detailed results of our recent investigation [W. A. Herrebout, B. J. van der Veken, and A. P. Kouzov, Phys. Rev. Lett. 101, 093001 (2008)] on the collision-induced fundamental absorption by hydrogen dissolved in liquid neon (T ≈ 25 K). The band shapes were studied in a wide range of concentrations (0.003-0.05 mole fractions) as well as for different ortho/para ratios and at much higher level of accuracy and resolution than before. Due to almost unhindered rotation of the hydrogen molecule and low temperature, an unprecedently rich frequency-domain picture produced by different terms of the interaction-induced polarization was observed. While some of them are conspicuous via fast intracell motion of a light guest (H(2)), others--induced by the electrostatic field of the guest--give rise to lines whose shapes are imprinted by fluctuations of the nearest surrounding. Strong motional narrowing observed on the guest-guest induced lines shows up in their Lorentzian shapes which are signatures of microscopic-scale diffusion. Near-Lorentzian peaks were also detected at the tops of the diffuse lines induced by isolated guests. Their formation may be associated with a long-living defect (vacancy) emerging in the vicinity of the polarization inductor. Altogether, our results give the first unambiguous spectroscopic evidence on the diffusional evolution of isolated binary interactions that emerge in dense chaotic media. PMID:22938252

  5. Turbulent Flame Propagation Characteristics of High Hydrogen Content Fuels

    SciTech Connect

    Seitzman, Jerry; Lieuwen, Timothy

    2014-09-30

    This final report describes the results of an effort to better understand turbulent flame propagation, especially at conditions relevant to gas turbines employing fuels with syngas or hydrogen mixtures. Turbulent flame speeds were measured for a variety of hydrogen/carbon monoxide (H2/CO) and hydrogen/methane (H2/CH4) fuel mixtures with air as the oxidizer. The measurements include global consumption speeds (ST,GC) acquired in a turbulent jet flame at pressures of 1-10 atm and local displacement speeds (ST,LD) acquired in a low-swirl burner at atmospheric pressure. The results verify the importance of fuel composition in determining turbulent flame speeds. For example, different fuel-air mixtures having the same unstretched laminar flame speed (SL,0) but different fuel compositions resulted in significantly different ST,GC for the same turbulence levels (u'). This demonstrates the weakness of turbulent flame speed correlations based simply on u'/SL,0. The results were analyzed using a steady-steady leading points concept to explain the sensitivity of turbulent burning rates to fuel (and oxidizer) composition. Leading point theories suggest that the premixed turbulent flame speed is controlled by the flame front characteristics at the flame brush leading edge, or, in other words, by the flamelets that advance farthest into the unburned mixture (the so-called leading points). For negative Markstein length mixtures, this is assumed to be close to the maximum stretched laminar flame speed (SL,max) for the given fuel-oxidizer mixture. For the ST,GC measurements, the data at a given pressure were well-correlated with an SL,max scaling. However the variation with pressure was not captured, which may be due to non-quasi-steady effects that are not included in the current model. For the ST,LD data, the leading points model again faithfully captured the variation of turbulent flame speed over a wide range of fuel-compositions and turbulence intensities. These results provide

  6. Direct measurement of interstellar extinction toward young stars using atomic hydrogen Lyα absorption

    SciTech Connect

    McJunkin, Matthew; France, Kevin; Brown, Alexander; Schneider, P. C.; Herczeg, Gregory J.; Hillenbrand, Lynne; Schindhelm, Eric; Edwards, Suzan

    2014-01-10

    Interstellar reddening corrections are necessary to reconstruct the intrinsic spectral energy distributions (SEDs) of accreting protostellar systems. The stellar SED determines the heating and chemical processes that can occur in circumstellar disks. Measurement of neutral hydrogen absorption against broad Lyα emission profiles in young stars can be used to obtain the total H I column density (N(H I)) along the line of sight. We measure N(H I) with new and archival ultraviolet observations from the Hubble Space Telescope (HST) of 31 classical T Tauri and Herbig Ae/Be stars. The H I column densities range from log{sub 10}(N(H I)) ≈19.6-21.1, with corresponding visual extinctions of A{sub V} =0.02-0.72 mag, assuming an R{sub V} of 3.1. We find that the majority of the H I absorption along the line of sight likely comes from interstellar rather than circumstellar material. Extinctions derived from new HST blue-optical spectral analyses, previous IR and optical measurements, and new X-ray column densities on average overestimate the interstellar extinction toward young stars compared to the N(H I) values by ∼0.6 mag. We discuss possible explanations for this discrepancy in the context of a protoplanetary disk geometry.

  7. Hydrogen sensing characteristics from carbon nanotube field emissions.

    PubMed

    Dong, Changkun; Luo, Haijun; Cai, Jianqiu; Wang, Fuquan; Zhao, Yangyang; Li, Detian

    2016-03-14

    An innovative hydrogen sensing concept is demonstrated based on the field emission from multi-walled carbon nanotubes, where the low emission currents rise in proportion to hydrogen partial pressures above 10(-9) Torr. Experimental and first principles studies reveal that the sensing mechanism is attributed to the effective work function reduction from dissociative hydrogen chemisorption. The embedded Ni catalyst would assist both the hydrogen dissociation and work function reduction. This technique is promising to build miniature low cost hydrogen sensors for multiple applications. This work is valuable for studies of nanocarbon-gas reaction mechanisms and the work function properties in adsorption related applications, including field emission, hydrogen storage, energy cells, and gas sensing. PMID:26890686

  8. Hydrogen sensing characteristics from carbon nanotube field emissions

    NASA Astrophysics Data System (ADS)

    Dong, Changkun; Luo, Haijun; Cai, Jianqiu; Wang, Fuquan; Zhao, Yangyang; Li, Detian

    2016-03-01

    An innovative hydrogen sensing concept is demonstrated based on the field emission from multi-walled carbon nanotubes, where the low emission currents rise in proportion to hydrogen partial pressures above 10-9 Torr. Experimental and first principles studies reveal that the sensing mechanism is attributed to the effective work function reduction from dissociative hydrogen chemisorption. The embedded Ni catalyst would assist both the hydrogen dissociation and work function reduction. This technique is promising to build miniature low cost hydrogen sensors for multiple applications. This work is valuable for studies of nanocarbon-gas reaction mechanisms and the work function properties in adsorption related applications, including field emission, hydrogen storage, energy cells, and gas sensing.

  9. Detection of hydrogen fluoride absorption in diffuse molecular clouds with Herschel/HIFI: an ubiquitous tracer of molecular gas

    NASA Astrophysics Data System (ADS)

    Sonnentrucker, P.; Neufeld, D. A.; Phillips, T. G.; Gerin, M.; Lis, D. C.; de Luca, M.; Goicoechea, J. R.; Black, J. H.; Bell, T. A.; Boulanger, F.; Cernicharo, J.; Coutens, A.; Dartois, E.; Kaźmierczak, M.; Encrenaz, P.; Falgarone, E.; Geballe, T. R.; Giesen, T.; Godard, B.; Goldsmith, P. F.; Gry, C.; Gupta, H.; Hennebelle, P.; Herbst, E.; Hily-Blant, P.; Joblin, C.; Kołos, R.; Krełowski, J.; Martín-Pintado, J.; Menten, K. M.; Monje, R.; Mookerjea, B.; Pearson, J.; Perault, M.; Persson, C. M.; Plume, R.; Salez, M.; Schlemmer, S.; Schmidt, M.; Stutzki, J.; Teyssier, D.; Vastel, C.; Yu, S.; Caux, E.; Güsten, R.; Hatch, W. A.; Klein, T.; Mehdi, I.; Morris, P.; Ward, J. S.

    2010-10-01

    We discuss the detection of absorption by interstellar hydrogen fluoride (HF) along the sight line to the submillimeter continuum sources W49N and W51. We have used Herschel's HIFI instrument in dual beam switch mode to observe the 1232.4762 GHz J = 1-0 HF transition in the upper sideband of the band 5a receiver. We detected foreground absorption by HF toward both sources over a wide range of velocities. Optically thin absorption components were detected on both sight lines, allowing us to measure - as opposed to obtain a lower limit on - the column density of HF for the first time. As in previous observations of HF toward the source G10.6-0.4, the derived HF column density is typically comparable to that of water vapor, even though the elemental abundance of oxygen is greater than that of fluorine by four orders of magnitude. We used the rather uncertain N(CH)-N(H2) relationship derived previously toward diffuse molecular clouds to infer the molecular hydrogen column density in the clouds exhibiting HF absorption. Within the uncertainties, we find that the abundance of HF with respect to H2 is consistent with the theoretical prediction that HF is the main reservoir of gas-phase fluorine for these clouds. Thus, hydrogen fluoride has the potential to become an excellent tracer of molecular hydrogen, and provides a sensitive probe of clouds of small H2 column density. Indeed, the observations of hydrogen fluoride reported here reveal the presence of a low column density diffuse molecular cloud along the W51 sight line, at an LSR velocity of ~24 km s-1, that had not been identified in molecular absorption line studies prior to the launch of Herschel. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  10. Quantum cascade laser-based multipass absorption system for hydrogen peroxide detection

    NASA Astrophysics Data System (ADS)

    Cao, Yingchun; Sanchez, Nancy P.; Jiang, Wenzhe; Ren, Wei; Lewicki, Rafal; Jiang, Dongfang; Griffin, Robert J.; Tittel, Frank K.

    2015-01-01

    Hydrogen peroxide (H2O2) is a relevant molecular trace gas species, that is related to the oxidative capacity of the atmosphere, the production of radical species such as OH, the generation of sulfate aerosol via oxidation of S(IV) to S(VI), and the formation of acid rain. The detection of atmospheric H2O2 involves specific challenges due to its high reactivity and low concentration (ppbv to sub-ppbv level). Traditional methods for measuring atmospheric H2O2 concentration are often based on wet-chemistry methods that require a transfer from the gas- to liquid-phase for a subsequent determination by techniques such as fluorescence spectroscopy, which can lead to problems such as sampling artifacts and interference by other atmospheric constituents. A quartz-enhanced photoacoustic spectroscopy-based system for the measurement of atmospheric H2O2 with a detection limit of 75 ppb for 1-s integration time was previously reported. In this paper, an updated H2O2 detection system based on long-optical-path-length absorption spectroscopy by using a distributed feedback quantum cascade laser (DFB-QCL) will be described. A 7.73-μm CW-DFB-QCL and a thermoelectrically cooled infrared detector, optimized for a wavelength of 8 μm, are employed for theH2O2 sensor system. A commercial astigmatic Herriott multi-pass cell with an effective optical path-length of 76 m is utilized for the reported QCL multipass absorption system. Wavelength modulation spectroscopy (WMS) with second harmonic detection is used for enhancing the signal-to-noise-ratio. A minimum detection limit of 13.4 ppb is achieved with a 2 s sampling time. Based on an Allan-Werle deviation analysis the minimum detection limit can be improved to 1.5 ppb when using an averaging time of 300 s.

  11. Intestinal absorption characteristics of imperialine: in vitro and in situ assessments

    PubMed Central

    Lin, Qing; Ling, Li-qin; Guo, Ling; Gong, Tao; Sun, Xun; Zhang, Zhi-rong

    2015-01-01

    Aim: Imperialine is an effective compound in the traditional Chinese medicine chuanbeimu (Bulbus Fritillariae Cirrhosae) that has been used as antitussive/expectorant in a clinical setting. In this study we investigated the absorption characteristics of imperialine in intestinal segments based on an evaluation of its physicochemical properties. Methods: Caco-2 cells were used to examine uptake and transport of imperialine in vitro, and a rat in situ intestinal perfusion model was used to characterize the absorption of imperialine. The amount of imperialine in the samples was quantified using LC-MS/MS. Results: The aqueous solubility and oil/water partition coefficient of imperialine were determined. This compound demonstrated a relatively weak alkalinity with a pKa of 8.467±0.028. In Caco-2 cells, the uptake of imperialine was increased with increasing pH in medium, but not affected by temperature. The apparent absorptive and secretive coefficient was (8.39±0.12)×10−6 cm/s and (7.78±0.09)×10−6 cm/s, respectively. Furthermore, neither the P-glycoprotein inhibitor verapamil nor Niemann-Pick C1-Like 1 transporter inhibitor ezetimibe affected the absorption and secretion of imperialine in vitro. The in situ intestinal perfusion study showed that the absorption parameters of imperialine varied in 4 intestinal segments (duodenum, jejunum, ileum and colon) with the highest ones in the colon, where a greater number of non-ionized form of imperialine was present. Conclusion: The intestinal absorptive characteristics of imperialine are closely related to its physicochemical properties. The passive membrane diffusion dominates the intestinal absorption of imperialine. PMID:26051111

  12. Energetic, crystallographic and diffusion characteristics of hydrogen isotopes in iron

    NASA Astrophysics Data System (ADS)

    Sivak, A. B.; Sivak, P. A.; Romanov, V. A.; Chernov, V. M.

    2015-06-01

    Energetic, crystallographic and diffusion characteristics of various interstitial configurations of H atoms and their complexes with self-point defects (SIA - self-interstitial atom, V - vacancy) in bcc iron have been calculated by molecular statics and molecular dynamics using Fe-H interatomic interaction potential developed by Ramasubramaniam et al. (2009) and modified by the authors of the present work and Fe-Fe matrix potential M07 developed by Malerba et al. (2010). The most energetically favorable configuration of an interstitial H atom is tetrahedral configuration. The energy barrier for H atom migration is 0.04 eV. The highest binding energy of all the considered complexes "vacancy - H atom" and "SIA - H atom" is 0.54 and 0.15 eV, respectively. The binding energy of H atom with edge dislocations in slip systems <1 1 1>{1 1 0}, <1 1 1>{1 1 2}, <1 0 0>{1 0 0}, <1 0 0>{1 1 0} is 0.32, 0.30, 0.45, 0.54 eV, respectively. The binding energy of H atom in VHn complexes (n = 1 … 15) decreases from 0.54 to 0.35 eV with increasing of n from 1 to 6. At n > 6, it decreases to ∼0.1 eV. The temperature dependences of hydrogen isotopes (P, D, T) diffusivities have been calculated for the temperature range 70-1800 K. Arrhenius-type dependencies describe the calculated data at temperatures T < 100 K. At T > 250 K, the temperature dependencies of the diffusivities DP, DD, DT have a parabolic form. The diffusivities of H isotopes are within 10% at room temperature. The isotope effect becomes stronger at higher temperatures, e.g., ratios DP/DD and DP/DT at 1800 K equal 1.23 and 1.40, respectively.

  13. Molecular Hydrogen Absorption from the Halo of a z ˜ 0.4 Galaxy

    NASA Astrophysics Data System (ADS)

    Muzahid, Sowgat; Kacprzak, Glenn G.; Charlton, Jane C.; Churchill, Christopher W.

    2016-05-01

    Lyman- and Werner-band absorption of molecular hydrogen ({{{H}}}2) is detected in ˜50% of low-redshift (z\\lt 1) DLAs/sub-DLAs with N({{{H}}}2) \\gt {10}14.4 cm‑2. However, the true origin(s) of the {{{H}}}2-bearing gas remain elusive. Here we report a new detection of an {{{H}}}2 absorber at {z}{{abs}} = 0.4298 in the Hubble Space Telescope (HST)/Cosmic Origins Spectrograph spectra of quasar PKS 2128–123. The total N({{H}} {{i}}) of {10}19.50+/- 0.15 cm‑2 classifies the absorber as a sub-DLA. {{{H}}}2 absorption is detected up to the J = 3 rotational level with a total {log}N({{{H}}}2) = 16.36 ± 0.08, corresponding to a molecular fraction of {log}{f}{{{H}}2} = ‑2.84 ± 0.17. The excitation temperature of {T}{{ex}} = 206 ± 6 K indicates the presence of cold gas. Using detailed ionization modeling, we obtain a near-solar metallicity (i.e., [O/H] = ‑0.26 ± 0.19) and a dust-to-gas ratio of {log}κ ˜ -0.45 for the {{{H}}}2-absorbing gas. The host galaxy of the sub-DLA is detected at an impact parameter of ρ ˜ 48 kpc with an inclination angle of i ˜ 48° and an azimuthal angle of Φ ˜ 15° with respect to the QSO sightline. We show that corotating gas in an extended disk cannot explain the observed kinematics of Mg ii absorption. Moreover, the inferred high metallicity is not consistent with the scenario of gas accretion. An outflow from the central region of the host galaxy, on the other hand, would require a large opening angle (i.e., 2θ \\gt 150^\\circ ), much larger than the observed outflow opening angles in Seyfert galaxies, in order to intercept the QSO sightline. We thus favor a scenario in which the {{{H}}}2-bearing gas is stemming from a dwarf-satellite galaxy, presumably via tidal and/or ram pressure stripping. Detection of a dwarf galaxy candidate in the HST/WFPC2 image at an impact parameter of ˜12 kpc reinforces such an idea.

  14. Influence of hydrogen absorption on the electrochemical potential noise of an iron electrode under corrosion with gas evolution

    SciTech Connect

    Huet, F.; Jerome, M.; Manolatos, P.; Wenger, F.

    1996-12-31

    Using the electrochemical permeation technique and a model for hydrogen diffusion in a metal, the fluctuations of the concentration, {Delta}C(t), of hydrogen absorbed in the first atomic layers of an Armco iron membrane, under cathodic polarization and at the corrosion potential in sulfuric acid solution, were measured. The fluctuations of the electrode potential, {Delta}E(t), and of the electrolyte resistance, {Delta}R{sub e}(t), induced by bubble evolution were also simultaneously recorded. Under cathodic potential, {Delta}E(t) and {Delta}C(t) are clearly induced by the evolution of big hydrogen gas bubbles. However, at the corrosion potential, another source of {Delta}E(t) and {Delta}C(t) must be proposed. It has been shown that this difference is related to the influence of an intermediate reaction species which partly blocks the hydrogen absorption under cathodic polarization and disappears at the corrosion potential.

  15. Improved absorption and in vivo kinetic characteristics of nanoemulsions containing evodiamine–phospholipid nanocomplex

    PubMed Central

    Hu, Jiangbo; Chen, Dilong; Jiang, Rong; Tan, Qunyou; Zhu, Biyue; Zhang, Jingqing

    2014-01-01

    Purpose The purpose of this study was to assess the improved absorption and in vivo kinetic characteristics of a novel water-in-oil nanoemulsion containing evodiamine–phospholipid nanocomplex (NEEPN) when administered orally. Methods NEEPN was fabricated by loading an evodiamine–phospholipid nanocomplex into a water-in-oil nanoemulsive system. The gastrointestinal absorption of NEEPN was investigated using an in situ perfusion method. The modified in vivo kinetic characteristics of evodiamine (EDA) in NEEPN were also evaluated. Results Compared with EDA or conventional nanoemulsions containing EDA instead of evodiamine–phospholipid complex, NEEPN with its favorable in vivo kinetic characteristics clearly enhanced the gastrointestinal absorption and oral bioavailability of EDA; for example, the relative bioavailability of NEEPN to free EDA was calculated to be 630.35%, and the effective permeability of NEEPN in the colon was 8.64-fold that of EDA. Conclusion NEEPN markedly improved the oral bioavailability of EDA, which was probably due to its increased gastrointestinal absorption. NEEPN also increased efficacy and reduced adverse effects for oral delivery of EDA. Such finding demonstrates great clinical significance as an ideal drug delivery system demands high efficacy and no adverse effects. PMID:25258531

  16. The Effect of Heat on Structural Characteristics and Water Absorption Behavior of Agave Fibers

    NASA Astrophysics Data System (ADS)

    Saikia, Dip

    2008-04-01

    The structural characteristics and water absorptions behavior agave fibers were investigated over a range of temperature by using XRD, IR, TG and gravimetric methods. Three distinct thermal processes were observed during heating the fiber in the temperature range 310-760 K in air, oxygen and nitrogen invariably. The cellulose structures of the fibers were unaffected on heating up to 450 K. The samples showed thermal decomposition processes beyond 500 K. Fibers displayed a two-stage diffusion behavior. The structural parameters and kinetic of water absorption of the fibers at specific temperatures were analyzed.

  17. Absorption characteristics of glass fiber materials at normal and oblique incidence. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Wyerman, B. R.

    1974-01-01

    The absorption characteristics of several fibrous materials of the Owens Corning 700 Fiberglas Series were measured to determine the variation in impedance as a function of incident angle of the sound wave. The results, indicate that the fibrous absorbents behave as extended reacting materials. The poor agreement between measurement and theory for sound absorption based on the parameters of flow resistance and porosity indicates that this theory does not adequately predict the acoustic behavior of fibrous materials. A much better agreement with measured results is obtained for values calculated from the bulk acoustic parameters of the material.

  18. Field-rugged sensitive hydrogen peroxide sensor based on tunable diode laser absorption spectroscopy (TDLAS)

    NASA Astrophysics Data System (ADS)

    Frish, M. B.; Morency, J. R.; Laderer, M. C.; Wainner, R. T.; Parameswaran, K. R.; Kessler, W. J.; Druy, M. A.

    2010-04-01

    This paper reports the development and initial testing of a field-portable sensor for monitoring hydrogen peroxide (H2O2) and water (H2O) vapor concentrations during building decontamination after accidental or purposeful exposure to hazardous biological materials. During decontamination, a sterilization system fills ambient air with water and peroxide vapor to near-saturation. The peroxide concentration typically exceeds several hundred ppm for tens of minutes, and subsequently diminishes below 1 ppm. The H2O2/ H2O sensor is an adaptation of a portable gas-sensing platform based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) technology. By capitalizing on its spectral resolution, the TDLAS analyzer isolates H2O2 and H2O spectral lines to measure both vapors using a single laser source. It offers a combination of sensitivity, specificity, fast response, dynamic range, linearity, ease of operation and calibration, ruggedness, and portability not available in alternative H2O2 detectors. The H2O2 range is approximately 0- 5,000 ppm. The autonomous and rugged instrument provides real-time data. It has been tested in a closed-loop liquid/vapor equilibrium apparatus and by comparison against electrochemical sensors.

  19. Quantification Of Cesium In Negative Hydrogen Ion Sources By Laser Absorption Spectroscopy

    SciTech Connect

    Fantz, U.; Wimmer, Ch.

    2011-09-26

    The use of cesium in negative hydrogen ion sources and the resulting cesium dynamics caused by the evaporation and redistribution in the vacuum and plasma phase makes a reliable and on-line monitoring of the cesium amount in the source highly desirable. For that purpose, a robust and compact laser absorption setup suitable for the ion source environment has been developed utilizing the Cs D{sub 2} resonance line at 852.1 nm. First measurements are taken in a small laboratory plasma chamber with cesium evaporation. A detection limit of {approx_equal}5x10{sup 13} m{sup -3} at a typical path length of 15 cm has been obtained with a dynamic range of more than three orders of magnitude, limited by line saturation at high densities. For on-line monitoring an automatic data analysis is established achieving a temporal resolution of 100 ms. The setup has then been applied to the ITER prototype ion sources developed at IPP. It is been shown that the method is well suited for routine measurements revealing a new insight into the cesium dynamics during source operation and cesium conditioning.

  20. Static Characteristics of Absorption Chiller-Heater Supplying Cold and Hot Water Simultaneously

    NASA Astrophysics Data System (ADS)

    Inoue, Naoyuki; Irie, Tomoyoshi

    Absorption chiller-heaters which can supply both chilled water and hot water at the same time, are used for cooling and heating air conditioning systems. In this paper, we classified absorption cold and hot water generating cycles and control methods, studied these absorption cycles by cycle simulation. In economizer cycle, condensed refrigerant which heats hot water is transported to cooling cycle and used effectively for cooling chilled water, Concerning with transported condensed refrigerant, there are two methods, all condensed refrigerant or required refrigerant for cooling are transported to cooling cycle, and required refrigerant method is better for energy saving. Adding improvement of solution control to this economizer cycle, simultaneous cold and hot water supplying chiller-heaters have good characteristics of energy saving in the all region.

  1. Absorption characteristics of optically complex inland waters: Implications for water optical classification

    NASA Astrophysics Data System (ADS)

    Shi, Kun; Li, Yunmei; Li, Lin; Lu, Heng

    2013-06-01

    Multiple bio-optical measurements were conducted in inland waters of China, including Lake Taihu [spring and autumn], Lake Chaohu, Lake Dianchi, and Three Gorges Reservoirs. The variations in the absorption characteristics of chromophoric dissolved organic matter (CDOM), phytoplankton, and non-algal particles (NAP) and their relative contributions to total absorption among these waters were analyzed. The obtained results indicated that these areas are representative of the optically complex inland waters characterized by strong regional variations of their absorption properties. By means of the relative contributions of NAP and phytoplankton to the total water absorption at 550 and 675 nm, these waters were classified into three optical water types, each one having specific biogeochemical and optical properties. Two of the types were distinct and corresponded to waters that are optically controlled by NAP (Type I) and dominated by phytoplankton (Type III). Type II was related to relatively optically mixed waters where the absorption properties are controlled by NAP and phytoplankton. Additionally, the differences in remote-sensing reflectance (Rrs) spectra among the three classified water types were clarified to establish optical criteria for identifying these water types. On this basis, the classification criteria for MERIS images were developed, which allowed one to cluster every Rrs spectrum into one of the three water types by comparing the values from band 6, band 8, and band 9 of MERIS images. The proposed criteria were subsequently conducted to map the water types of Lake Taihu using MERIS images.

  2. Performance characteristics and modeling of carbon dioxide absorption by amines in a packed column

    SciTech Connect

    Lin, S.H.; Shyu, C.T. . Dept. of Chemical Engineering)

    1999-01-01

    Carbon dioxide (CO[sub 2]) is widely recognized as a major greenhouse gas contributing to global warming. To mitigate the global warming problem, removal of CO[sub 2] from the industrial flue gases is necessary. Absorption of carbon dioxide by amines in a packed column was experimentally investigated. The amines employed in the present study were the primary mono-ethanolamine (MEA) and tertiary N-methyldiethanolamine (MDEA), two very popular amines widely used in the industries for gas purification. The CO[sub 2] absorption characteristics by these two amines were experimentally examined under various operating conditions. A theoretical model was developed for describing the CO[sub 2] absorption behavior. Test data have revealed that the model predictions and the observed CO[sub 2] absorption breakthrough curves agree very well, validating the proposed model. Preliminary regeneration tests of exhausted amine solution were also conducted. The results indicated that the tertiary amine is easier to regenerate with less loss of absorption capacity than the primary one.

  3. Broadband Two-Photon Absorption Characteristics of Highly Photostable Fluorenyl-Dicyanoethylenylated [60]Fullerene Dyads.

    PubMed

    Jeon, Seaho; Wang, Min; Ji, Wei; Tan, Loon-Seng; Cooper, Thomas; Chiang, Long Y

    2016-01-01

    We synthesized four C60-(light-harvesting antenna) dyads C60 (>CPAF-Cn) (n = 4, 9, 12, or 18) 1-Cn for the investigation of their broadband nonlinear absorption effect. Since we have previously demonstrated their high function as two-photon absorption (2PA) materials at 1000 nm, a different 2PA wavelength of 780 nm was applied in the study. The combined data taken at two different wavelength ranges substantiated the broadband characteristics of 1-Cn. We proposed that the observed broadband absorptions may be attributed by a partial π-conjugation between the C60 > cage and CPAF-Cn moieties, via endinitrile tautomeric resonance, giving a resonance state with enhanced molecular conjugation. This transient state could increase its 2PA and excited-state absorption at 800 nm. In addition, a trend of concentration-dependent 2PA cross-section (σ₂ ) and excited-state absorption magnitude was detected showing a higher σ value at a lower concentration that was correlated to increasing molecular separation with less aggregation for dyads C60(>CPAF-C18) and C60(>CPAF-C₉), as better 2PA and excited-state absorbers. PMID:27187350

  4. Microsecond X-ray Absorption Spectroscopy Identification of Co(I) Intermediates in Cobaloxime-Catalyzed Hydrogen Evolution.

    PubMed

    Smolentsev, Grigory; Cecconi, Bianca; Guda, Alexander; Chavarot-Kerlidou, Murielle; van Bokhoven, Jeroen A; Nachtegaal, Maarten; Artero, Vincent

    2015-10-19

    Rational development of efficient photocatalytic systems for hydrogen production requires understanding the catalytic mechanism and detailed information about the structure of intermediates in the catalytic cycle. We demonstrate how time-resolved X-ray absorption spectroscopy in the microsecond time range can be used to identify such intermediates and to determine their local geometric structure. This method was used to obtain the solution structure of the Co(I) intermediate of cobaloxime, which is a non-noble metal catalyst for solar hydrogen production from water. Distances between cobalt and the nearest ligands including two solvent molecules and displacement of the cobalt atom out of plane formed by the planar ligands have been determined. Combining in situ X-ray absorption and UV/Vis data, we demonstrate how slight modification of the catalyst structure can lead to the formation of a catalytically inactive Co(I) state under similar conditions. Possible deactivation mechanisms are discussed. PMID:26388205

  5. Triplet excited electronic state switching induced by hydrogen bonding: A transient absorption spectroscopy and time-dependent DFT study.

    PubMed

    Ravi Kumar, Venkatraman; Ariese, Freek; Umapathy, Siva

    2016-03-21

    The solvent plays a decisive role in the photochemistry and photophysics of aromatic ketones. Xanthone (XT) is one such aromatic ketone and its triplet-triplet (T-T) absorption spectra show intriguing solvatochromic behavior. Also, the reactivity of XT towards H-atom abstraction shows an unprecedented decrease in protic solvents relative to aprotic solvents. Therefore, a comprehensive solvatochromic analysis of the triplet-triplet absorption spectra of XT was carried out in conjunction with time dependent density functional theory using the ad hoc explicit solvent model approach. A detailed solvatochromic analysis of the T-T absorption bands of XT suggests that the hydrogen bonding interactions are different in the corresponding triplet excited states. Furthermore, the contributions of non-specific and hydrogen bonding interactions towards differential solvation of the triplet states in protic solvents were found to be of equal magnitude. The frontier molecular orbital and electron density difference analysis of the T1 and T2 states of XT indicates that the charge redistribution in these states leads to intermolecular hydrogen bond strengthening and weakening, respectively, relative to the S0 state. This is further supported by the vertical excitation energy calculations of the XT-methanol supra-molecular complex. The intermolecular hydrogen bonding potential energy curves obtained for this complex in the S0, T1, and T2 states support the model. In summary, we propose that the different hydrogen bonding mechanisms exhibited by the two lowest triplet excited states of XT result in a decreasing role of the nπ(∗) triplet state, and are thus responsible for its reduced reactivity towards H-atom abstraction in protic solvents. PMID:27004870

  6. Triplet excited electronic state switching induced by hydrogen bonding: A transient absorption spectroscopy and time-dependent DFT study

    NASA Astrophysics Data System (ADS)

    Ravi Kumar, Venkatraman; Ariese, Freek; Umapathy, Siva

    2016-03-01

    The solvent plays a decisive role in the photochemistry and photophysics of aromatic ketones. Xanthone (XT) is one such aromatic ketone and its triplet-triplet (T-T) absorption spectra show intriguing solvatochromic behavior. Also, the reactivity of XT towards H-atom abstraction shows an unprecedented decrease in protic solvents relative to aprotic solvents. Therefore, a comprehensive solvatochromic analysis of the triplet-triplet absorption spectra of XT was carried out in conjunction with time dependent density functional theory using the ad hoc explicit solvent model approach. A detailed solvatochromic analysis of the T-T absorption bands of XT suggests that the hydrogen bonding interactions are different in the corresponding triplet excited states. Furthermore, the contributions of non-specific and hydrogen bonding interactions towards differential solvation of the triplet states in protic solvents were found to be of equal magnitude. The frontier molecular orbital and electron density difference analysis of the T1 and T2 states of XT indicates that the charge redistribution in these states leads to intermolecular hydrogen bond strengthening and weakening, respectively, relative to the S0 state. This is further supported by the vertical excitation energy calculations of the XT-methanol supra-molecular complex. The intermolecular hydrogen bonding potential energy curves obtained for this complex in the S0, T1, and T2 states support the model. In summary, we propose that the different hydrogen bonding mechanisms exhibited by the two lowest triplet excited states of XT result in a decreasing role of the nπ∗ triplet state, and are thus responsible for its reduced reactivity towards H-atom abstraction in protic solvents.

  7. Glass-type hydrogen and deuterium absorption cells developed for D/H ratio measurements in the Martian atmosphere.

    PubMed

    Kawahara, T D; Okano, S; Abe, T; Fukunishi, H; Ito, K

    1997-04-01

    Hydrogen and deuterium absorption cells of a new glass type have been developed for the D/H ratio measurements on the Japanese Mars mission PLANET-B. The H/D cells work as narrow-band rejection filters for the H/D Lyman-alpha line, respectively, when the H or D atoms are produced at a heated filament inside the cells. The absorption profiles of the cells were successfully measured with a high-resolution vacuum ultraviolet spectrometer with a wavelength resolution of 6.6 x 10(-4) nm. The derived optical thickness was found to be ~7 and ~14 for the hydrogen and deuterium cells, respectively. It was also found that the derived temperature of atomic gas ranges between the temperature of the cell wall and that of the heated filament, and it increases with increasing filament temperature. The measured profiles showed that the absorption efficiencies of the developed absorption cells are sufficient to observe the D/H ratios of the Martian atmosphere. PMID:18253198

  8. Hydrogen storage characteristics of mechanically alloyed amorphous metals

    SciTech Connect

    Harris, J.H.; Curtin, W.A.; Schultz, L.

    1988-09-01

    The hydrogen storage properties of a series of mechanically alloyed (MA) amorphous Ni/sub 1//sub --//sub x/Zr/sub x/ alloys are studied, using both gas phase and electrochemical techniques, and are compared to H storage of rapidly quenched (RQ) amorphous Ni/sub 1-//sub x/Zr/sub x/. In the MA alloys, hydrogen resides in the Ni/sub 4-//sub n/Zr/sub n/ (n = 4,3,2) tetrahedral interstitial sites, with a maximum hydrogen-to-metal ratio of 1.9(/sup 4//sub n/)x/sup n/(1-x)/sup 4-//sup n/. These features are identical to those of the RQ alloys and indicate that the topological and chemical order of the MA and RQ materials are essentially the same. However, the typical binding energy of hydrogen in a Ni/sub 4-//sub n/Zr/sub n/ site, E/sub n/, is shifted in the MA alloys relative to the RQ alloys and the distribution of binding energies centered on E/sub n/ is significantly broader in the MA samples. Thus, the MA and RQ alloys are not identical and sample annealing does not alter this subtle distinction. The sensitivity of H storage to the presence of chemical order in binary alloys are analyzed theoretically and the data is found to be most consistent with little or no chemical order (random alloys).

  9. Characteristics of Knock in Hydrogen-Oxygen-Argon SI Engine

    SciTech Connect

    Killingsworth, N; Rapp, V; Flowers, D; Aceves, S; Chen, J; Dibble, R

    2010-02-23

    A promising approach for improving the efficiency of internal combustion engines is to employ a working fluid with a high specific heat ratio such as the noble gas argon. Moreover, all harmful emissions are eliminated when the intake charge is composed of oxygen, nonreactive argon, and hydrogen fuel. Previous research demonstrated indicated thermal efficiencies greater than 45% at 5.5 compression ratio in engines operating with hydrogen, oxygen, and argon. However, knock limits spark advance and increasing the efficiency further. Conditions under which knock occurs in such engines differs from typical gasoline fueled engines. In-cylinder temperatures using hydrogen-oxygen-argon are higher due to the high specific heat ratio and pressures are lower because of the low compression ratio. Better understanding of knock under these conditions can lead to operating strategies that inhibit knock and allow operation closer to the knock limit. In this work we compare knock with a hydrogen, oxygen, and argon mixture to that of air-gasoline mixtures in a variable compression ratio cooperative fuels research (CFR) engine. The focus is on stability of knocking phenomena, as well as, amplitude and frequency of the resulting pressure waves.

  10. Collision-Induced Infrared Absorption by Collisional Complexes in Dense Hydrogen-Helium Gas Mixtures at Thousands of Kelvin

    NASA Astrophysics Data System (ADS)

    Abel, Martin; Frommhold, Lothar; Li, Xiaoping; Hunt, Katharine L. C.

    2011-06-01

    The interaction-induced absorption by collisional pairs of H{_2} molecules is an important opacity source in the atmospheres of the outer planets and cool stars. The emission spectra of cool white dwarf stars differ significantly in the infrared from the expected blackbody spectra of their cores, which is largely due to absorption by collisional H{_2}-H{_2}, H{_2}-He, and H{_2}-H complexes in the stellar atmospheres. Using quantum-chemical methods we compute the atmospheric absorption from hundreds to thousands of kelvin. Laboratory measurements of interaction-induced absorption spectra by H{_2} pairs exist only at room temperature and below. We show that our results reproduce these measurements closely, so that our computational data permit reliable modeling of stellar atmosphere opacities even for the higher temperatures. L. Frommhold, Collision-Induced Absorption in Gases, Cambridge University Press, Cambridge, New York, 1993 and 2006 Xiaoping Li, Katharine L. C. Hunt, Fei Wang, Martin Abel, and Lothar Frommhold, "Collision-Induced Infrared Absorption by Molecular Hydrogen Pairs at Thousands of Kelvin", International Journal of Spectroscopy, vol. 2010, Article ID 371201, 11 pages, 2010. doi: 10.1155/2010/371201 M. Abel, L. Frommhold, X. Li, and K. L. C. Hunt, "Collision-induced absorption by H{_2} pairs: From hundreds to thousands of Kelvin," J. Phys. Chem. A, published online, DOI: 10.1021/jp109441f L. Frommhold, M. Abel, F. Wang, M. Gustafsson, X. Li, and K. L. C. Hunt, "Infrared atmospheric emission and absorption by simple molecular complexes, from first principles", Mol. Phys. 108, 2265, 2010

  11. Theoretical analysis of the sound absorption characteristics of periodically stiffened micro-perforated plates

    NASA Astrophysics Data System (ADS)

    Zhou, Hai-An; Wang, Xiao-Ming; Mei, Yu-Lin

    2014-10-01

    The vibro-acoustic responses and sound absorption characteristics of two kinds of periodically stiffened micro-perforated plates are analyzed theoretically. The connected periodical structures of the stiffened plates can be ribs or block-like structures. Based on fundamental acoustic formulas of the micro-perforated plate of Maa and Takahashi, semi-analytical models of the vibrating stiffened plates are developed in this paper. Approaches like the space harmonicmethod, Fourier transforms and finite elementmethod (FEM) are adopted to investigate both kinds of the stiffened plates. In the present work, the vibro-acoustic responses of micro-perforated stiffened plates in the wavenumber space are expressed as functions of plate displacement amplitudes. After approximate numerical solutions of the amplitudes, the vibration equations and sound absorption coefficients of the two kinds of stiffened plates in the physical space are then derived by employing the Fourier inverse transform. In numerical examples, the effects of some physical parameters, such as the perforation ratio, incident angles and periodical distances etc., on the sound absorption performance are examined. The proposed approaches are also validated by comparing the present results with solutions of Takahashi and previous studies of stiffened plates. Numerical results indicate that the flexural vibration of the plate has a significant effect on the sound absorption coefficient in the water but has little influence in the air.

  12. Hydrogen venting characteristics of commercial carbon-composite filters and applications to TRU waste

    SciTech Connect

    Callis, E.L.; Marshall, R.S.; Cappis, J.H.

    1997-04-01

    The generation of hydrogen (by radiolysis) and of other potentially flammable gases in radioactive wastes which are in contact with hydrogenous materials is a source of concern, both from transportation and on-site storage considerations. Because very little experimental data on the generation and accumulation of hydrogen was available in actual waste materials, work was initiated to experimentally determine factors affecting the concentration of hydrogen in the waste containers, such as the hydrogen generation rate, (G-values) and the rate of loss of hydrogen through packaging and commercial filter-vents, including a new design suitable for plastic bags. This report deals only with the venting aspect of the problem. Hydrogen venting characteristics of two types of commercial carbon-composite filter-vents, and two types of PVC bag closures (heat-sealed and twist-and-tape) were measured. Techniques and equipment were developed to permit measurement of the hydrogen concentration in various layers of actual transuranic (TRU) waste packages, both with and without filter-vents. A test barrel was assembled containing known configuration and amounts of TRU wastes. Measurements of the hydrogen in the headspace verified a hydrogen release model developed by Benchmark Environmental Corporation. These data were used to calculate revised wattage Emits for TRU waste packages incorporating the new bag filter-vent.

  13. Time-resolved X-Ray Absorption Spectroscopy of a Cobalt-Based Hydrogen Evolution System for Artificial Photosynthesis

    NASA Astrophysics Data System (ADS)

    Moonshiram, Dooshaye; Gimbert, Carolina; Lehmann, Carl; Southworth, Stephen; Llobet, Antoni; Argonne National Laboratory Team; Institut Català d'Investigació Química Collaboration

    2015-03-01

    Production of cost-effective hydrogen gas through solar power is an important challenge of the Department of Energy among other global industry initiatives. In natural photosynthesis, the oxygen evolving complex(OEC) can carry out four-electron water splitting to hydrogen with an efficiency of around 60%. Although, much progress has been carried out in determining mechanistic pathways of the OEC, biomimetic approaches have not duplicated Nature's efficiency in function. Over the past years, we have witnessed progress in developments of light harvesting modules, so called chromophore/catalytic assemblies. In spite of reportedly high catalytic activity of these systems, quantum yields of hydrogen production are below 40 % when using monochromatic light. Proper understanding of kinetics and bond making/breaking steps has to be achieved to improve efficiency of hydrogen evolution systems. This project shows the timing implementation of ultrafast X-ray absorption spectroscopy to visualize in ``real time'' the photo-induced kinetics accompanying a sequence of redox reactions in a cobalt-based molecular photocatalytic system. Formation of a Co(I) species followed by a Co(III) hydride species all the way towards hydrogen evolution is shown through time-resolved XANES.

  14. Study on the Partial Load Characteristics of Double-Effect Absorption Systems

    NASA Astrophysics Data System (ADS)

    Kawakami, Ryuichiro; Fukuchi, Toru; Kaita, Yoshio

    Simulation analysis was carried out to study the partial load characteristics of three different types of double-effect LiBr-water absorption cycle, namely series flow, parallel flow and reverse flow. A computer program was developed for this study to simulate the behavior of the absorption cycles equipped with flow rate control of absorbent, cooling water and chilling water on partial load. The effects of the flow rate control on the coefficient of performance (COP), the maximum temperature and maximum pressure were studied. The results show that not only flow rate control of absorbent is essential for high COP on the partial load, but also flow rate control of cooling water and chilling water is recommendable to save the power of pumping.

  15. Solar absorption characteristics of several coatings and surface finishes. [for solar energy collectors

    NASA Technical Reports Server (NTRS)

    Lowery, J. R.

    1977-01-01

    Solar absorption characteristics are established for several films potentially favorable for use as receiving surfaces in solar energy collectors. Included in the investigation were chemically produced black films, black electrodeposits, and anodized coatings. It was found that black nickel exhibited the best combination of selective optical properties of any of the coatings studied. A serious drawback to black nickel was its high susceptibility to degradation in the presence of high moisture environments. Electroplated black chrome generally exhibited high solar absorptivities, but the emissivity varied considerably and was also relatively high under some conditions. The black chrome had the greatest moisture resistance of any of the coatings tested. Black oxide coatings on copper and steel substrates showed the best combination of selective optical properties of any of the chemical conversion films studied.

  16. Moisture absorption and bakeout characteristics of rigid-flexible multilayer printed wiring boards

    SciTech Connect

    Lula, J.W.

    1991-01-01

    Moisture absorption and bakeout characteristics of Allied-Signal Inc., Kansas City Division (KCD) rigid-flexible printed wiring boards were determined. It was found that test specimens had absorbed 0.95 weight percent moisture when equilibrated to a 50 percent RH, 25{degree}C environment. Heating those equilibrated specimens in a 120{degree}C static air oven removed 92 percent of this absorbed moisture in 24 h. Heating the samples in a 80{degree}C static air oven removed only 64 percent of the absorbed moisture at the end of 24 h. A 120{degree}C vacuum bake removed moisture at essentially the same rate with parylene slowed the absorption rate by approximately 50 percent but did not appreciably affect the equilibrium moisture content or the drying rate.

  17. Solar energy absorption characteristics and the effects of heat on the optical properties of several coatings

    NASA Technical Reports Server (NTRS)

    Lowery, J. R.

    1981-01-01

    The solar energy absorption characteristics of several high temperature coatings were determined and effects of heat on these coatings were evaluated. Included in the investigation were an electroplated alloy of black chrome and vanadium, electroplated black chrome, and chemically colored 316 stainless steel. Each of the coatings possessed good selective solar energy absorption properties at laboratory ambient temperature. Measured at a temperature of 700 K (800 F), the emittances of black chrome, black chrome vanadium, and colored stainless steel were 0.11, 0.61, and 0.15, respectively. Black chrome and black chrome vanadium did not degrade optically in the presence of high heat (811 K (1000 F)). Chemically colored stainless steel showed slight optical degradation when exposed to moderately high heat (616 K (650 F)0, but showed more severe degradation at exposure temperatures beyond this level. Each of the coatings showed good corrosion resistance to a salt spray environment.

  18. Characteristics of hydrogen bond revealed from water clusters

    NASA Astrophysics Data System (ADS)

    Song, Yan; Chen, Hongshan; Zhang, Cairong; Zhang, Yan; Yin, Yuehong

    2014-09-01

    The hydrogen bond network is responsible for the exceptional physical and chemical properties of water, however, the description of hydrogen bond remains a challenge for the studies of condensed water. The investigation of structural and binding properties of water clusters provides a key for understanding the H-bonds in bulk water. In this paper, a new set of geometric parameters are defined to describe the extent of the overlap between the bonding orbital of the donor OH and the nonbonding orbital of the lone-pair of the acceptor molecule. This orbital overlap plays a dominant role for the strength of H-bonds. The dependences of the binding energy of the water dimer on these parameters are studied. The results show that these parameters properly describe the H-bond strength. The ring, book, cage and prism isomers of water hexamer form 6, 7, 8 and 9 H-bonds, and the strength of the bonding in these isomers changes markedly. The internally-solvated and the all-surface structures of (H2O) n for n = 17, 19 and 21 are nearly isoenergetic. The internally-solvated isomers form fewer but stronger H-bonds. The hydrogen bonding in the above clusters are investigated in detail. The geometric parameters can well describe the characters of the H-bonds, and they correlate well with the H-bond strength. For the structures forming stronger H-bonds, the H-bond lengths are shorter, the angle parameters are closer to the optimum values, and their rms deviations are smaller. The H-bonds emanating from DDAA and DDA molecules as H-donor are relatively weak. The vibrational spectra of (H2O) n ( n = 17, 19 and 21) are studied as well. The stretching vibration of the intramolecular OH bond is sensitive to its bonding environment. The H-bond strength judged from the geometric parameters is in good agreement with the bonding strength judged from the stretching frequencies.

  19. Electrochromic poly(acetylene)s with switchable visible/near-IR absorption characteristics.

    PubMed

    Pauly, Anja C; Varnado, C Daniel; Bielawski, Christopher W; Theato, Patrick

    2014-01-01

    Ferrocene is incorporated into a poly(acetylene) derivative via the postpolymerization amidation of a polymer precursor bearing pentafluorophenyl ester-leaving groups with aminoferrocene. While the neutral polymer exhibits a strong absorbance at 553 nm due to its conjugated backbone, oxidation of the ferrocene moieties with silver tetrafluoroborate causes the material to absorb in the near-IR (λ max ≈ 1215 nm). Subsequent reduction of the oxidized polymer with decamethylferrocene restores the initial absorbance profile, demonstrating that the material features switchable visible/near-IR absorption characteristics. PMID:23996218

  20. A method for monitoring the variability in nuclear absorption characteristics of aviation fuels

    NASA Technical Reports Server (NTRS)

    Sprinkle, Danny R.; Shen, Chih-Ping

    1988-01-01

    A technique for monitoring variability in the nuclear absorption characteristics of aviation fuels has been developed. It is based on a highly collimated low energy gamma radiation source and a sodium iodide counter. The source and the counter assembly are separated by a geometrically well-defined test fuel cell. A computer program for determining the mass attenuation coefficient of the test fuel sample, based on the data acquired for a preset counting period, has been developed and tested on several types of aviation fuel.

  1. Hydrogen permeation characteristics of some Fe-Cr-Al alloys

    NASA Astrophysics Data System (ADS)

    Van Deventer, E. H.; Maroni, V. A.

    1983-01-01

    Hydrogen permeation data are reported for two Fe-Cr-Al alloys, Type-405 SS (Cr 14-A1 0.2) and a member of the Fecralloy family of alloys (Cr 16-A1 5). The hydrogen permeability of each alloy (in a partially oxidized condition) was measured over a period of several weeks at randomly selected temperatures (between 150 and 850°C) and upstream H 2 pressures (between 2 and 1.5 × 10 4 Pa). The permeabilities showed considerable scatter with both time and temperature and were 10 2 to 10 3 times lower than those of pure iron, even in strongly reducing environments. The exponent, n, for the relationship between upstream H 2 pressure, P, and permeability, φ, ( φ ~ Pn) was closer to 0.7 than to the expected 0.5, indicating a process limited by surface effects (e.g., surface oxide films) as opposed to bulk material effects. Comparison of these results with prior permeation measurements on other Fe-Cr-Al alloys, on Fe-Cr alloys, and on pure iron shows that the presence of a few weight percent aluminum offers the best prospects for achieving low tritium permeabilities with martensitic and ferritic steels used in fusion-reactor first wall and blanket applications.

  2. Combustion characteristics of hydrogen. Carbon monoxide based gaseous fuels

    NASA Astrophysics Data System (ADS)

    Notardonato, J. J.; White, D. J.; Kubasco, A. J.; Lecren, R. T.

    1981-10-01

    An experimental rig program was conducted with the objective of evaluating the combuston performance of a family of fuel gases based on a mixture of hydrogen and carbon monoxide. These gases, in addition to being members of a family, were also representative of those secondary fuels that could be produced from coal by various gasification schemes. In particular, simulated Winkler, Lurgi, and Blue-water low and medium energy content gases were used as fuels in the experimental combustor rig. The combustor used was originally designed as a low NOx rich-lean system for burning liquid fuels with high bound nitrogen levels. When used with the above gaseous fuels this combustor was operated in a lean-lean mode with ultra long residence times. The Blue-water gas was also operated in a rich-lean mode. The results of these tests indicate the possibility of the existence of an 'optimum' gas turbine hydrogen - carbon monoxide based secondary fuel. Such a fuel would exhibit NOx and high efficiency over the entire engine operating range. It would also have sufficient stability range to allow normal light-off and engine acceleration. Solar Turbines Incorporated would like to emphasize that the results presented here have been obtained with experimental rig combustors. The technologies generated could, however, be utilized in future commercial gas turbines.

  3. Combustion characteristics of hydrogen. Carbon monoxide based gaseous fuels

    NASA Technical Reports Server (NTRS)

    Notardonato, J. J.; White, D. J.; Kubasco, A. J.; Lecren, R. T.

    1981-01-01

    An experimental rig program was conducted with the objective of evaluating the combuston performance of a family of fuel gases based on a mixture of hydrogen and carbon monoxide. These gases, in addition to being members of a family, were also representative of those secondary fuels that could be produced from coal by various gasification schemes. In particular, simulated Winkler, Lurgi, and Blue-water low and medium energy content gases were used as fuels in the experimental combustor rig. The combustor used was originally designed as a low NOx rich-lean system for burning liquid fuels with high bound nitrogen levels. When used with the above gaseous fuels this combustor was operated in a lean-lean mode with ultra long residence times. The Blue-water gas was also operated in a rich-lean mode. The results of these tests indicate the possibility of the existence of an 'optimum' gas turbine hydrogen - carbon monoxide based secondary fuel. Such a fuel would exhibit NOx and high efficiency over the entire engine operating range. It would also have sufficient stability range to allow normal light-off and engine acceleration. Solar Turbines Incorporated would like to emphasize that the results presented here have been obtained with experimental rig combustors. The technologies generated could, however, be utilized in future commercial gas turbines.

  4. [Oat growth and cation absorption characteristics under salt and alkali stress].

    PubMed

    Fan, Yuan; Ren, Chang-Zhong; Li, Pin-Fang; Ren, Tu-Sheng

    2011-11-01

    This paper monitored the oat growth and cation absorption characteristics on a saline-alkali soil in the Baicheng region of Jilin Province under low, medium, and high levels of salt stress. No significant differences were observed in the shoot growth and yield components under the three levels of salt stress, but the root biomass and root/shoot ratio decreased significantly with increasing salt stress level. At maturing stage, the root/shoot ratio under medium and high salt stresses was 77.2% and 64.5% of that under low salt stress, respectively. Under the three levels of salt stress, the K+/Na+ and Ca2+/Na+ ratios in oat plant had significant differences at trefoil stage, but no significant differences at heading stage. With the increase of salt stress level, the cation absorption selectivity coefficient of oat at filling stage decreased significantly, but the transportation selectivity coefficient had no significant difference under the three levels of stress. It was concluded that oat could adapt to the salt and alkali stress of soda-alkaline soil to some extent, and the adaptation capability decreased with the increasing level of stress. The decrease of oat root biomass and the stronger ion selective absorption capacity at heading stage under salt and alkali stress could benefit the shoot growth and yield components of oat. PMID:22303664

  5. Hydrogen sensing characteristics of semipolar (112{sup ¯}2) GaN Schottky diodes

    SciTech Connect

    Hyeon Baik, Kwang; Kim, Hyonwoong; Jang, Soohwan; Lee, Sung-Nam; Lim, Eunju; Pearton, S. J.; Ren, F.

    2014-02-17

    The hydrogen detection characteristics of semipolar (112{sup ¯}2) plane GaN Schottky diodes were investigated and compared to c-plane Ga- and N-polar and nonpolar a-plane (112{sup ¯}0) GaN diodes. The semipolar GaN diodes showed large current response to 4% hydrogen in nitrogen gas with an accompanying Schottky barrier reduction of 0.53 eV at 25 °C, and the devices exhibited full recovery to the initial current level upon switching to a nitrogen ambient. The current-voltage characteristics of the semipolar devices remained rectifying after hydrogen exposure, in sharp contrast to the case of c-plane N-polar GaN. These results show that the surface atom configuration and polarity play a strong role in hydrogen sensing with GaN.

  6. Effects of hydrogen absorption in TbNiAl and UNiAl

    SciTech Connect

    Bordallo, H.N.; Nakotte, H.; Schultz, A.; Kolomiets, A.V.; Havela, L.; Andreev, A.V.

    1998-12-31

    Although hydrides of intermetallic compounds are used extensively as hydrogen-storage media, little is known about the exact nature of metal-hydrogen interactions. However, this knowledge is of essential importance for the understanding of thermodynamics and other properties. Hydrides (deuterides) of TbNiAl and UNiAl have been widely studied because of drastic increase of magnetic ordering temperature under hydrogenation. Here the authors report neutron-diffraction results of the three deuterides, TbNiAlD{sub 1.28}, TbNiAlD{sub 0.8}a nd UNiAlD{sub 2.23}.

  7. In-situ neutron investigation of hydrogen absorption kinetics in La(FexSi1-x)13 magnetocaloric alloys for room-temperature refrigeration application

    NASA Astrophysics Data System (ADS)

    Hai, Xueying; Mayer, Charlotte; Colin, Claire V.; Miraglia, Salvatore

    2016-02-01

    Promising magnetocaloric material La(Fe,Si)13 with a first-order magnetic transition has been widely investigated. The observed instability of hydrogen in the material is detrimental for its industrial upscale and a better control of the hydrogen absorption/desorption is necessary to optimize its application potential. In this article, the hydrogen absorption kinetics is studied through an in-situ neutron diffraction experiment. The results allow us to have an inside look at the structure "breathing" to accommodate the interstitial atoms and compare the effect of hydrides with carbohydrides.

  8. 21 cm absorption by compact hydrogen discs around black holes in radio-loud nuclei of galaxies

    SciTech Connect

    Loeb, Abraham

    2008-05-15

    The clumpy maser discs observed in some galactic nuclei mark the outskirts of the accretion disc that fuels the central black hole and provide a potential site of nuclear star formation. Unfortunately, most of the gas in maser discs is currently not being probed; large maser gains favor paths that are characterized by a small velocity gradient and require rare edge-on orientations of the disc. Here we propose a method for mapping the atomic hydrogen distribution in nuclear discs through its 21 cm absorption against the radio continuum glow around the central black hole. In NGC 4258, the 21 cm optical depth may approach unity for high angular resolution (VLBI) imaging of coherent clumps which are dominated by thermal broadening and have the column density inferred from x-ray absorption data, {approx}10{sup 23} cm{sup -2}. Spreading the 21 cm absorption over the full rotation velocity width of the material in front of the narrow radio jets gives a mean optical depth of {approx}0.1. Spectroscopic searches for the 21 cm absorption feature in other galaxies can be used to identify the large population of inclined gaseous discs which are not masing in our direction. Follow-up imaging of 21 cm silhouettes of accelerating clumps within these discs can in turn be used to measure cosmological distances.

  9. Flow pattern and mass transfer characteristics of valve tray in absorption process

    NASA Astrophysics Data System (ADS)

    Nurkhamidah, Siti; Altway, Ali; Wulansari, Ayu Savitri; Khanifah, Evi Fitriyah

    2015-12-01

    The flow pattern characteristics of valve tray in absorption process which is expressed in pressure drop and the number of equivalent tank in series (N) has an important role to know the efficiency and performance of a process. This study has been done in the absorption column by using water and air as liquid and gas phase, respectively. To observe pressure drop and flow pattern in the column, flow rate of liquid and air has been variated. Flow pattern has been determined by using pulse method and using NaCl as tracer. The experiment results show that the column pressure drop is mainly influenced by the liquid height on the tray. When the water flow rate is high, liquid height on the tray is higher so that the column pressure drops increases. Flow pattern characteristic of fluid on valve tray is affected by water and air flowrates. For high water flow rate, the residence time distribution (RTD) curve is sharper and the number of N is greater and the flow pattern tends to a plug flow. However, the number of N decreases when the air flowrate increases. The liquid-side mass transfer coefficient (kLa') is shown by the following empirical relationship kLa' = 2,607QL0,202Qv0,456.

  10. Performance characteristics of single effect lithium bromide/ water absorption chiller for small data centers

    NASA Astrophysics Data System (ADS)

    Mysore, Abhishek Arun Babu

    A medium data center consists of servers performing operations such as file sharing, collaboration and email. There are a large number of small and medium data centers across the world which consume more energy and are less efficient when compared to large data center facilities of companies such as GOOGLE, APPLE and FACEBOOK. Such companies are making their data center facilities more environmental friendly by employing renewable energy solutions such as wind and solar to power the data center or in data center cooling. This not only reduces the carbon footprint significantly but also decreases the costs incurred over a period of time. Cooling of data center play a vital role in proper functioning of the servers. It is found that cooling consumes about 50% of the total power consumed by the data center. Traditional method of cooling includes the use of mechanical compression chillers which consume lot of power and is not desirable. In order to eliminate the use of mechanical compressor chillers renewable energy resources such as solar and wind should be employed. One such technology is solar thermal cooling by means of absorption chiller which is powered by solar energy. The absorption chiller unit can be coupled with either flat plate or evacuated tube collectors in order to achieve the required inlet temperature for the generator of the absorption chiller unit. In this study a modular data center is considered having a cooling load requirement of 23kw. The performance characteristics of a single stage Lithium Bromide/ water refrigeration is presented in this study considering the cooling load of 23kw. Performance characteristics of each of the 4 heat exchangers within the unit is discussed which helps in customizing the unit according to the users' specific needs. This analysis helps in studying the importance of different properties such as the effect of inlet temperatures of hot water for generator, inlet temperatures of cooling water for absorber and

  11. Characteristics of Nasal-Associated Lymphoid Tissue (NALT) and Nasal Absorption Capacity in Chicken

    PubMed Central

    Kang, Haihong; Yan, Mengfei; Yu, Qinghua; Yang, Qian

    2013-01-01

    As the main mucosal immune inductive site of nasal cavity, nasal-associated lymphoid tissue (NALT) plays an important role in both antigen recognition and immune activation after intranasal immunization. However, the efficiency of intranasal vaccines is commonly restricted by the insufficient intake of antigen by the nasal mucosa, resulting from the nasal mucosal barrier and the nasal mucociliary clearance. The distribution of NALT and the characteristic of nasal cavity have already been described in humans and many laboratory rodents, while data about poultry are scarce. For this purpose, histological sections of the chicken nasal cavities were used to examine the anatomical structure and histological characteristics of nasal cavity. Besides, the absorptive capacity of chicken nasal mucosa was also studied using the materials with different particle size. Results showed that the NALT of chicken was located on the bottom of nasal septum and both sides of choanal cleft, which mainly consisted of second lymphoid follicle. A large number of lymphocytes were distributed under the mucosal epithelium of inferior nasal meatus. In addition, there were also diffuse lymphoid tissues located under the epithelium of the concha nasalis media and the walls of nasal cavity. The results of absorption experiment showed that the chicken nasal mucosa was capable to absorb trypan blue, OVA, and fluorescent latex particles. Inactivated avian influenza virus (IAIV) could be taken up by chicken nasal mucosa except for the stratified squamous epithelium sites located on the forepart of nasal cavity. The intake of IAIV by NALT was greater than that of the nasal mucosa covering on non-lymphoid tissue, which could be further enhanced after intranasal inoculation combined with sodium cholate or CpG DNA. The study on NALT and nasal absorptive capacity will be benefit for further understanding of immune mechanisms after nasal vaccination and development of nasal vaccines for poultry. PMID

  12. Infrared absorption study of hydrogen incorporation in thick nanocrystalline diamond films

    SciTech Connect

    Tang, C.J.; Neves, A.J.; Carmo, M.C.

    2005-05-30

    We present an infrared (IR) optical absorbance study of hydrogen incorporation in nanocrystalline diamond films. The thick nanocrystalline diamond films were synthesized by microwave plasma-assisted chemical vapor deposition and a high growth rate about 3.0 {mu}m/h was achieved. The morphology, phase quality, and hydrogen incorporation were assessed by means of scanning electron microscopy, Raman spectroscopy, and Fourier-transform infrared spectroscopy (FTIR). Large amount of hydrogen bonded to nanocrystalline diamond is clearly evidenced by the huge CH stretching band in the FTIR spectrum. The mechanism of hydrogen incorporation is discussed in light of the growth mechanism of nanocrystalline diamond. This suggests the potential of nanocrystalline diamond for IR electro-optical device applications.

  13. Shaping of broad IR absorption in proton transfer equilibrating OH⋯N hydrogen bonded systems

    NASA Astrophysics Data System (ADS)

    Schreiber, V. M.; Rospenk, M.; Kulbida, A. I.; Sobczyk, L.

    1997-10-01

    The temperature dependence of UV and IR absorption spectra of chlorophenols with tributylamine (TBA) were studied in solution and in low temperature matrices. The UV spectra allowed us to estimate the proton transfer (PT) equilibrium constants and thermodynamic parameters for this process. A strong negative entropy effect was confirmed. In cases when proton transfer species are detected in UV spectrum, a frequency broad absorption below 700 cm -1 usually appears, which we ascribe to non-aggregated species. The potential energy curve for the proton motion is then characterized most probably by a low lying second minimum or a shoulder. The increase of charge separation evoked by aggregation or by enhancement of solvent polarity leads to disappearance of low frequency wing of broad absorption. The involvement of low frequency modes of TBA and phenol moieties, particularly bending δCNC and δNCC modes in shaping of the low frequency part of broad absorption was shown.

  14. Simultaneous absorption of carbon dioxide and hydrogen sulfide with carbonyl sulfide contamination in aqueous methyldiethanolamine

    SciTech Connect

    Al-Ghawas, H.A.

    1988-01-01

    The primary objectives of the research were to: (1) obtain experimental data for simultaneous gas absorption systems to help formulate and test theoretical models of multicomponent mass transfer, and (2) develop the theoretical models which predict mass transfer rates from chemical reaction kinetics, system hydrodynamics and boundary conditions. To fulfill these objectives two-phase contact devices were designed and constructed. These were, a solubility of equilibrium apparatus, a laminar liquid jet apparatus, and a wetted-sphere apparatus. These devices were used to measure fundamental physiochemical properties of gases in liquids. The properties measured were the solubilities and diffusivities of N{sub 2}O, CO{sub 2}, and COS in aqueous MDEA. The reaction rate constants of the reactions between CO{sub 2} and MDEA and between COS and MDEA were also measured. In addition to these devices, a stirred tank absorber was used to obtain experimental data on multicomponent simultaneous absorption. A computer program was developed to solve the two-point boundary value problems generated by film theory. This research involved modeling and analyzing gas absorption systems with the chemical reactions taken as irreversible in one case and reversible in another. A parametric study of the case of reversible reactions revealed that for certain ranges of the parameter space the model predicted forced desorption. The program was tested against experimental data from two simultaneous absorption experiments. These were the simultaneous absorption of CO{sub 2}, COS, and N{sub 2} into aqueous MDEA and the simultaneous absorption of CO{sub 2}, H{sub 2}S, COS and N{sub 2} into aqueous MDEA. The program predictions of gas absorption rates were within 13% of the experimental values for the former experiment and within 9% for the latter.

  15. The hydrogen-poor superluminous supernova iPTF 13ajg and its host galaxy in absorption and emission

    SciTech Connect

    Vreeswijk, Paul M.; Gal-Yam, Avishay; De Cia, Annalisa; Rubin, Adam; Yaron, Ofer; Tal, David; Ofek, Eran O.; Savaglio, Sandra; Quimby, Robert M.; Sullivan, Mark; Cenko, S. Bradley; Filippenko, Alexei V.; Clubb, Kelsey I.; Perley, Daniel A.; Cao, Yi; Taddia, Francesco; Sollerman, Jesper; Leloudas, Giorgos; Arcavi, Iair; Kasliwal, Mansi M.; and others

    2014-12-10

    We present imaging and spectroscopy of a hydrogen-poor superluminous supernova (SLSN) discovered by the intermediate Palomar Transient Factory, iPTF 13ajg. At a redshift of z = 0.7403, derived from narrow absorption lines, iPTF 13ajg peaked at an absolute magnitude of M {sub u,} {sub AB} = –22.5, one of the most luminous supernovae to date. The observed bolometric peak luminosity of iPTF 13ajg is 3.2 × 10{sup 44} erg s{sup –1}, while the estimated total radiated energy is 1.3 × 10{sup 51} erg. We detect narrow absorption lines of Mg I, Mg II, and Fe II, associated with the cold interstellar medium in the host galaxy, at two different epochs with X-shooter at the Very Large Telescope. From Voigt profile fitting, we derive the column densities log N(Mg I) =11.94 ± 0.06, log N(Mg II) =14.7 ± 0.3, and log N(Fe II) =14.25 ± 0.10. These column densities, as well as the Mg I and Mg II equivalent widths of a sample of hydrogen-poor SLSNe taken from the literature, are at the low end of those derived for gamma-ray bursts (GRBs) whose progenitors are also thought to be massive stars. This suggests that the environments of hydrogen-poor SLSNe and GRBs are different. From the nondetection of Fe II fine-structure absorption lines, we derive a lower limit on the distance between the supernova and the narrow-line absorbing gas of 50 pc. The neutral gas responsible for the absorption in iPTF 13ajg exhibits a single narrow component with a low velocity width, ΔV = 76 km s{sup –1}, indicating a low-mass host galaxy. No host galaxy emission lines are detected, leading to an upper limit on the unobscured star formation rate (SFR) of SFR{sub [O} {sub II]}<0.07M{sub ⊙}yr{sup −1}. Late-time imaging shows the iPTF 13ajg host galaxy to be faint, with g {sub AB} ≈ 27.0 and R {sub AB} ≥ 26.0 mag, corresponding to M {sub B,} {sub Vega} ≳ –17.7 mag.

  16. The Hydrogen-poor Superluminous Supernova iPTF 13ajg and its Host Galaxy in Absorption and Emission

    NASA Astrophysics Data System (ADS)

    Vreeswijk, Paul M.; Savaglio, Sandra; Gal-Yam, Avishay; De Cia, Annalisa; Quimby, Robert M.; Sullivan, Mark; Cenko, S. Bradley; Perley, Daniel A.; Filippenko, Alexei V.; Clubb, Kelsey I.; Taddia, Francesco; Sollerman, Jesper; Leloudas, Giorgos; Arcavi, Iair; Rubin, Adam; Kasliwal, Mansi M.; Cao, Yi; Yaron, Ofer; Tal, David; Ofek, Eran O.; Capone, John; Kutyrev, Alexander S.; Toy, Vicki; Nugent, Peter E.; Laher, Russ; Surace, Jason; Kulkarni, Shrinivas R.

    2014-12-01

    We present imaging and spectroscopy of a hydrogen-poor superluminous supernova (SLSN) discovered by the intermediate Palomar Transient Factory, iPTF 13ajg. At a redshift of z = 0.7403, derived from narrow absorption lines, iPTF 13ajg peaked at an absolute magnitude of M u, AB = -22.5, one of the most luminous supernovae to date. The observed bolometric peak luminosity of iPTF 13ajg is 3.2 × 1044 erg s-1, while the estimated total radiated energy is 1.3 × 1051 erg. We detect narrow absorption lines of Mg I, Mg II, and Fe II, associated with the cold interstellar medium in the host galaxy, at two different epochs with X-shooter at the Very Large Telescope. From Voigt profile fitting, we derive the column densities log N(Mg I) =11.94 ± 0.06, log N(Mg II) =14.7 ± 0.3, and log N(Fe II) =14.25 ± 0.10. These column densities, as well as the Mg I and Mg II equivalent widths of a sample of hydrogen-poor SLSNe taken from the literature, are at the low end of those derived for gamma-ray bursts (GRBs) whose progenitors are also thought to be massive stars. This suggests that the environments of hydrogen-poor SLSNe and GRBs are different. From the nondetection of Fe II fine-structure absorption lines, we derive a lower limit on the distance between the supernova and the narrow-line absorbing gas of 50 pc. The neutral gas responsible for the absorption in iPTF 13ajg exhibits a single narrow component with a low velocity width, ΔV = 76 km s-1, indicating a low-mass host galaxy. No host galaxy emission lines are detected, leading to an upper limit on the unobscured star formation rate (SFR) of SFR_[O \\scriptsize{II]}<0.07 {M_⊙ yr-1}. Late-time imaging shows the iPTF 13ajg host galaxy to be faint, with g AB ≈ 27.0 and R AB >= 26.0 mag, corresponding to M B, Vega >~ -17.7 mag.

  17. Hydrogen absorption induced metal deposition on palladium and palladium-alloy particles

    DOEpatents

    Wang, Jia X.; Adzic, Radoslav R.

    2009-03-24

    The present invention relates to methods for producing metal-coated palladium or palladium-alloy particles. The method includes contacting hydrogen-absorbed palladium or palladium-alloy particles with one or more metal salts to produce a sub-monoatomic or monoatomic metal- or metal-alloy coating on the surface of the hydrogen-absorbed palladium or palladium-alloy particles. The invention also relates to methods for producing catalysts and methods for producing electrical energy using the metal-coated palladium or palladium-alloy particles of the present invention.

  18. Physiological characteristics of the extreme thermophile Caldicellulosiruptor saccharolyticus: an efficient hydrogen cell factory

    PubMed Central

    2010-01-01

    Global concerns about climate changes and their association with the use of fossil fuels have accelerated research on biological fuel production. Biological hydrogen production from hemicellulose-containing waste is considered one of the promising avenues. A major economical issue for such a process, however, is the low substrate conversion efficiency. Interestingly, the extreme thermophilic bacterium Caldicellulosiruptor saccharolyticus can produce hydrogen from carbohydrate-rich substrates at yields close to the theoretical maximum of the dark fermentation process (i.e., 4 mol H2/mol hexose). The organism is able to ferment an array of mono-, di- and polysaccharides, and is relatively tolerant to high partial hydrogen pressures, making it a promising candidate for exploitation in a biohydrogen process. The behaviour of this Gram-positive bacterium bears all hallmarks of being adapted to an environment sparse in free sugars, which is further reflected in its low volumetric hydrogen productivity and low osmotolerance. These two properties need to be improved by at least a factor of 10 and 5, respectively, for a cost-effective industrial process. In this review, the physiological characteristics of C. saccharolyticus are analyzed in view of the requirements for an efficient hydrogen cell factory. A special emphasis is put on the tight regulation of hydrogen production in C. saccharolyticus by both redox and energy metabolism. Suggestions for strategies to overcome the current challenges facing the potential use of the organism in hydrogen production are also discussed. PMID:21092203

  19. Operational characteristics of the J-PARC cryogenic hydrogen system for a spallation neutron source

    SciTech Connect

    Tatsumoto, Hideki; Ohtsu, Kiichi; Aso, Tomokazu; Kawakami, Yoshihiko; Teshigawara, Makoto

    2014-01-29

    The J-PARC cryogenic hydrogen system provides supercritical hydrogen with the para-hydrogen concentration of more than 99 % and the temperature of less than 20 K to three moderators so as to provide cold pulsed neutron beams of a higher neutronic performance. Furthermore, the temperature fluctuation of the feed hydrogen stream is required to be within ± 0.25 K. A stable 300-kW proton beam operation has been carried out since November 2012. The para-hydrogen concentrations were measured during the cool-down process. It is confirmed that para-hydrogen always exists in the equilibrium concentration because of the installation of an ortho-para hydrogen convertor. Propagation characteristics of temperature fluctuation were measured by temporarily changing the heater power under off-beam condition to clarify the effects of a heater control for thermal compensation on the feed temperature fluctuation. The experimental data gave an allowable temperature fluctuation of ± 1.05 K. It is clarified through a 286-kW and a 524-kW proton beam operations that the heater control would be applicable for the 1-MW proton beam operation by extrapolating from the experimental data.

  20. Estimating organic micro-pollutant removal potential of activated carbons using UV absorption and carbon characteristics.

    PubMed

    Zietzschmann, Frederik; Altmann, Johannes; Ruhl, Aki Sebastian; Dünnbier, Uwe; Dommisch, Ingvild; Sperlich, Alexander; Meinel, Felix; Jekel, Martin

    2014-06-01

    Eight commercially available powdered activated carbons (PAC) were examined regarding organic micro-pollutant (OMP) removal efficiencies in wastewater treatment plant (WWTP) effluent. PAC characteristic numbers such as B.E.T. surface, iodine number and nitrobenzene number were checked for their potential to predict the OMP removal of the PAC products. Furthermore, the PAC-induced removal of UV254 nm absorption (UVA254) in WWTP effluent was determined and also correlated with OMP removal. None of the PAC characteristic numbers can satisfactorily describe OMP removal and accordingly, these characteristics have little informative value on the reduction of OMP concentrations in WWTP effluent. In contrast, UVA254 removal and OMP removal correlate well for carbamazepine, diclofenac, and several iodinated x-ray contrast media. Also, UVA254 removal can roughly describe the average OMP removal of all measured OMP, and can accordingly predict PAC performance in OMP removal. We therefore suggest UVA254 as a handy indicator for the approximation of OMP removal in practical applications where direct OMP concentration quantification is not always available. In continuous operation of large-scale plants, this approach allows for the efficient adjustment of PAC dosing to UVA254, in order to ensure reliable OMP removal whilst minimizing PAC consumption. PMID:24651017

  1. Combustion characteristics of hydrogen-carbon monoxide based gaseous fuels

    NASA Technical Reports Server (NTRS)

    White, D. J.; Kubasco, A. J.; Lecren, R. T.; Notardonato, J. J.

    1982-01-01

    The results of trials with a staged combustor designed to use coal-derived gaseous fuels and reduce the NO(x) emissions from nitrogen-bound fuels to 75 ppm and 37 ppm without bound nitrogen in 15% O2 are reported. The combustor was outfitted with primary zone regenerative cooling, wherein the air cooling the primary zone was passed into the combustor at 900 F and mixed with the fuel. The increase in the primary air inlet temperature eliminated flashback and autoignition, lowered the levels of CO, unburned hydrocarbons, and smoke, and kept combustion efficiencies to the 99% level. The combustor was also equipped with dual fuel injection to test various combinations of liquid/gas fuel mixtures. Low NO(x) emissions were produced burning both Lurgi and Winkler gases, regardless of the inlet pressure and temperature conditions. Evaluation of methanation of medium energy gases is recommended for providing a fuel with low NO(x) characteristics.

  2. Determination of trace nickel in hydrogenated cottonseed oil by electrothermal atomic absorption spectrometry after microwave-assisted digestion.

    PubMed

    Zhang, Gai

    2012-01-01

    Microwave digestion of hydrogenated cottonseed oil prior to trace nickel determination by electrothermal atomic absorption spectrometry (ETAAS) is proposed here for the first time. Currently, the methods outlined in U.S. Pharmacopeia 28 (USP28) or British Pharmacopeia (BP2003) are recommended as the official methods for analyzing nickel in hydrogenated cottonseed oil. With these methods the samples may be pre-treated by a silica or a platinum crucible. However, the samples were easily tarnished during sample pretreatment when using a silica crucible. In contrast, when using a platinum crucible, hydrogenated cottonseed oil acting as a reducing material may react with the platinum and destroy the crucible. The proposed microwave-assisted digestion avoided tarnishing of sample in the process of sample pretreatment and also reduced the cycle of analysis. The programs of microwave digestion and the parameters of ETAAS were optimized. The accuracy of the proposed method was investigated by analyzing real samples. The results were compared with the ones by pressurized-PTFE-bomb acid digestion and ones obtained by the U.S. Pharmacopeia 28 (USP28) method. The new method involves a relatively rapid matrix destruction technique compared with other present methods for the quantification of metals in oil. PMID:22133102

  3. Enhanced absorption in tandem solar cells by applying hydrogenated In{sub 2}O{sub 3} as electrode

    SciTech Connect

    Yin, Guanchao Manley, Phillip; Steigert, Alexander; Klenk, Reiner; Schmid, Martina

    2015-11-23

    To realize the high efficiency potential of perovskite/chalcopyrite tandem solar cells in modules, hydrogenated In{sub 2}O{sub 3} (IO:H) as electrode is investigated. IO:H with an electron mobility of 100 cm{sup 2} V{sup −1} s{sup −1} is demonstrated. Compared to the conventional Sn doped In{sub 2}O{sub 3} (ITO), IO:H exhibits a decreased electron concentration and leads to almost no sub-bandgap absorption up to the wavelength of 1200 nm. Without a trade-off between transparency and lateral resistance in the IO:H electrode, the tandem cell keeps increasing in efficiency as the IO:H thickness increases and efficiencies above 22% are calculated. In contrast, the cells with ITO as electrode perform much worse due to the severe parasitic absorption in ITO. This indicates that IO:H has the potential to lead to high efficiencies, which is otherwise constrained by the parasitic absorption in conventional transparent conductive oxide electrode for tandem solar cells in modules.

  4. Annealing characteristics of irradiated hydrogenated amorphous silicon solar cells

    NASA Technical Reports Server (NTRS)

    Payson, J. S.; Abdulaziz, S.; Li, Y.; Woodyard, J. R.

    1991-01-01

    It was shown that 1 MeV proton irradiation with fluences of 1.25E14 and 1.25E15/sq cm reduces the normalized I(sub SC) of a-Si:H solar cell. Solar cells recently fabricated showed superior radiation tolerance compared with cells fabricated four years ago; the improvement is probably due to the fact that the new cells are thinner and fabricated from improved materials. Room temperature annealing was observed for the first time in both new and old cells. New cells anneal at a faster rate than old cells for the same fluence. From the annealing work it is apparent that there are at least two types of defects and/or annealing mechanisms. One cell had improved I-V characteristics following irradiation as compared to the virgin cell. The work shows that the photothermal deflection spectroscopy (PDS) and annealing measurements may be used to predict the qualitative behavior of a-Si:H solar cells. It was anticipated that the modeling work will quantitatively link thin film measurements with solar cell properties. Quantitative predictions of the operation of a-Si:H solar cells in a space environment will require a knowledge of the defect creation mechanisms, defect structures, role of defects on degradation, and defect passivation and annealing mechanisms. The engineering data and knowledge base for justifying space flight testing of a-Si:H alloy based solar cells is being developed.

  5. Absorption and diffusion of hydrogen in palladium-silver alloys by density functional theory

    NASA Astrophysics Data System (ADS)

    Ke, Xuezhi; Kramer, Gert Jan

    2002-11-01

    The vibrational states, absorption energies, and diffusions of H in Pd and Pd1-xAgx(0<~x<~1) have been studied by first-principle calculations. All results compare favorably to experiment. The zero-point motion of H is important in the determination of the H site occupation, in the estimation of the diffusion barrier, and in the explanation of the reversed isotope effect. The interesting anomalous isotope effect is explored, and a diffusion mechanism is proposed for tritium. The preferred diffusion paths of H in Pd and Pd1-xAgx are “indirect” paths. According to the absorption energies and diffusion barriers, H diffusion in Pd-Ag alloys should avoid the Ag-rich areas.

  6. Absorption of hydrogen at the iron-solution interface: FTIR and RT approach

    SciTech Connect

    Carbajal-Castaneda, J.L.

    1986-01-01

    An investigation of the relation of surface H to that adsorbed in the metal was carried out. The adsorption of thiourea and thiocyanate in solution on iron was also studied. The work carried out included the measurement of the coverage of iron electrodes with H as a function of potential in borate buffer solution, pH = 8.4, in the presence and absence of inhibitors, utilizing a new technique (FTIR); the determination of the hydrogen evolution reaction (HER) with H and D to obtain isotope effect; the determination of adsorption on iron as a function of potential and concentration of thiourea and thiocyanate; the determination of diffusion and solubility of H in Fe at a variety of electrode potentials in ranges relevant to corrosion. Rationalization of the overpotential relation to theta/sub H/ and C/sub H/ was obtained. A plot of C/sub H/ vs theta/sub H/ produces a straight line with slope K which was deduced from a Langmuirian approach. The presence of thiocyanate increased the K value due to a reduction in the rate of hydrogen discharge. It was also found that the majority of H is absorbed on the surface. The increase of hydrogen permeation in the presence of thiourea and thiocyanate is due to the adsorption of these additives on high energy sites leaving the low energy sites for the hydrogen discharge. The adsorption of thiourea fits a Bockris-Swinkels isotherm which represents a water displacement model. Thiourea was found to displace 3 water molecules. Thiocyanate adsorption was found to fit a Bockris-Devanathan-Muller isotherm.

  7. Investigation of hydrogen absorption in Li7VN4 and Li7MnN4.

    PubMed

    He, Guang; Herbst, J F; Ramesh, T N; Pinkerton, F E; Meyer, M S; Nazar, Linda

    2011-05-21

    The hydrogen storage properties of Li(7)VN(4) and Li(7)MnN(4) were investigated both by experiment and by density functional theory calculations. Li(7)VN(4) did not sorb hydrogen under our experimental conditions. Li(7)MnN(4) was observed to sorb 7 hydrogen atoms through the formation of LiH, Mn(4)N, and ammonia gas. An applied pressurized mixture of H(2)/Ar and H(2)/N(2) gases was helpful to mitigate the release of NH(3) but could not prevent its formation. The introduction of N(2) also caused weight gain of the sample by re-nitriding the absorbed products LiH and Mn(4)N, which correlated with the presence of Li(2)NH, LiNH(2), and Mn(2)N detected by X-ray diffraction. While our observed results for Li(7)VN(4) and Li(7)MnN(4) differ in detail, they are in overall qualitative agreement with our theoretical work, which strongly suggests that both compounds are unlikely to form quaternary hydrides. PMID:21455525

  8. Hydrogen sulfide absorption spectrum in the 5700-6600 cm-1 spectral region

    NASA Astrophysics Data System (ADS)

    Brown, L. R.; Naumenko, O. V.; Polovtseva, E. R.; Sinitsa, Leonid N.

    2004-01-01

    High resolution FT absorption spectrum of H2S from 5700 to 6600 cm-1 was experimentally recorded and theoretically treated. As a result of the spectrum assignment 1100 precise energy levels were derived for the 2nd hexad interacting states of H232S, H233S, and H234S isotope species including the highly excited (050) state. These energy levels were modeled using Watson-type rotational Hamiltonian and taking into account Coriolis, Darling-Dennison and weak Fermi-resonance interactions inside polyad of interacting states. An average accuracy of the energy levels fitting is of 0.0019 cm-1 for the main isotope species. New evaluation of the band origin of the dark (012) state Ev = 6385.299cm-1 is obtained from the fitting process which agrees well with recent prediction by Naumenko et al. (J. Mol. Spectrosc. 50, 100-110 (2001)). Precise line intensity measurements were performed for more than 1200 absorption lines with accuracy varying from 1 to 7%. These intensities were modeled within 3.3% using wavefunctions derived in the process of the energy levels fitting. The transformed transition moment expansion with 29 terms for 1088 intensities was used. Detailed and accurate H2S absorption line list was generated in the HITRAN format for the analyzed spectral region.

  9. Coupled optical absorption, charge carrier separation, and surface electrochemistry in surface disordered/hydrogenated TiO2 for enhanced PEC water splitting reaction.

    PubMed

    Behara, Dilip Kumar; Ummireddi, Ashok Kumar; Aragonda, Vidyasagar; Gupta, Prashant Kumar; Pala, Raj Ganesh S; Sivakumar, Sri

    2016-03-28

    The central governing factors that influence the efficiency of photoelectrochemical (PEC) water splitting reaction are photon absorption, effective charge-carrier separation, and surface electrochemistry. Attempts to improve one of the three factors may debilitate other factors and we explore such issues in hydrogenated TiO2, wherein a significant increase in optical absorption has not resulted in a significant increase in PEC performance, which we attribute to the enhanced recombination rate due to the formation of amorphization/disorderness in the bulk during the hydrogenation process. To this end, we report a methodology to increase the charge-carrier separation with enhanced optical absorption of hydrogenated TiO2. Current methodology involves hydrogenation of non-metal (N and S) doped TiO2 which comprises (1) lowering of the band gap through shifting of the valence band via less electronegative non-metal N, S-doping, (2) lowering of the conduction band level and the band gap via formation of the Ti(3+) state and oxygen vacancies by hydrogenation, and (3) material processing to obtain a disordered surface structure which favors higher electrocatalytic (EC) activity. This design strategy yields enhanced PEC activity (%ABPE = 0.38) for the N-S co-doped TiO2 sample hydrogenated at 800 °C for 24 h over possible combinations of N-S co-doped TiO2 samples hydrogenated at 500 °C/24 h, 650 °C/24 h and 800 °C/72 h. This suggests that hydrogenation at lower temperatures does not result in much increase in optical absorption and prolonged hydrogenation results in an increase in optical absorption but a decrease in charge carrier separation by forming disorderness/oxygen vacancies in the bulk. Furthermore, the difference in double layer capacitance (C(dl)) calculated from electrochemical impedance spectroscopy (EIS) measurements of these samples reflects the change in the electrochemical surface area (ECSA) and facilitates assessing the key role of surface

  10. Heat and mass transfer characteristics of absorption of R134a into DMAC in a horizontal tube absorber

    NASA Astrophysics Data System (ADS)

    Harikrishnan, L.; Maiya, M. P.; Tiwari, S.; Wohlfeil, A.; Ziegler, F.

    2009-10-01

    In this paper the heat and mass transfer characteristics of a horizontal tube absorber for the mixture R134a/DMAC in terms of experimentally gained heat and mass transfer coefficients are presented. The heat transfer coefficient is mainly dependent on the solution’s mass flow rate. The mass transfer coefficient is strongly related to the subcooling of the solution. The data are compared to experimental absorption characteristics of water into aqueous lithium bromide in an absorption chiller. The mass transfer coefficients are of similar size whereas the heat transfer coefficients are about one order of magnitude smaller for R134a-DMAC.

  11. Effects of ion beam modification on absorption and transport of hydrogen in perovskite-type oxide ceramics

    NASA Astrophysics Data System (ADS)

    Tsuchiya, B.; Nagata, S.; Toh, K.; Shikama, T.

    2006-01-01

    Surface modification of proton conductive material (Yb-doped SrCeO3 perovskite-type ceramics) has been carried out by irradiation with 10 keV D2+ , He+ or Ar+ ions at room temperature. By exposure of Ar gas including H2O to the irradiated surface, the concentration of H in the projected range increased. The absorption of H is associated due to dissociation of H2O. The concentrations of the absorbed H by D+, He+ and Ar+ ion irradiations became about 2.0, 0.3 and 1.0 times, respectively, as much as the saturation concentration by H+ ion implantation. It was also found by isochronal annealing experiments that the thermal desorption rate of H retained in the irradiated surface was lower than that in the unirradiated one. These results show that the trapping and migration of hydrogen atoms in the proton conducting oxide ceramics are enhanced by ion beam modification.

  12. Sensitive absorption measurements of hydrogen sulfide at 1.578 μm using wavelength modulation spectroscopy

    NASA Astrophysics Data System (ADS)

    Xia, Hua; Dong, Feng-Zhong; Wu, Bian; Zhang, Zhi-Rong; Pang, Tao; Sun, Peng-Shuai; Cui, Xiao-Juan; Han, Luo; Wang, Yu

    2015-03-01

    Sensitive detection of hydrogen sulfide (H2S) has been performed by means of wavelength modulation spectroscopy (WMS) near 1.578 μm. With the scan amplitude and the stability of the background baseline taken into account, the response time is 4 s for a 0.8 L multi-pass cell with a 56.7 m effective optical path length. Moreover, the linearity has been tested in the 0-50 ppmv range. The detection limit achievable by the Allan variance is 224 ppb within 24 s under room temperature and ambient pressure conditions. This tunable diode laser absorption spectroscopy (TDLAS) system for H2S detection has the feasibility of real-time online monitoring in many applications. Project supported by the Special Fund for Basic Research on Scientific Instruments of the Chinese Academy of Sciences (Grant No. YZ201315) and the National Natural Science Foundation of China (Grant Nos. 11204320, 41405034, and 11204319).

  13. Searches for the superheavy hydrogen isotope {sup 7}H in the absorption of stopped {pi}{sup -} mesons

    SciTech Connect

    Gurov, Yu. B.; Aleshkin, D. V.; Lapushkin, S. V.; Laukhin, I. V.; Pechkurov, V. A.; Poroshin, N. O.; Sandukovsky, V. G.; Tel'kushev, M. V.; Chernyshev, B. A.

    2006-09-15

    Experimental searches for the superheavy hydrogen isotope {sup 7}H were performed in reactions involving the absorption of stopped {pi}{sup -} mesons on {sup 9}Be and {sup 11}B nuclei. In the reaction {sup 9}Be({pi}{sup -}, pp)X, the missing-mass spectrum shows evidence for the formation of {sup 7}H states, that of E{sub r} = 16 {+-} 1 MeV and {gamma} {approx_equal} 2 MeV and that of E{sub r} = 21 {+-} 1 MeV and {gamma} {approx_equal} 5 MeV (E{sub r} is the resonance energy with respect to breakup into a trition and four neutrons, and {gamma} is the observed level width)

  14. High Capacity Hydrogen Absorption in Transition Metal-Ethylene Complexes Observed via Nanogravimetry

    NASA Astrophysics Data System (ADS)

    Phillips, A. B.; Shivaram, B. S.

    2008-03-01

    Using a surface acoustic wave based high resolution gravimetric technique where samples close to a monolayer are measured we observe high weight percentage hydrogen (H2) uptake with rapid kinetics at room temperature in transition metal (TM) ethylene (C2H4) complexes formed by laser ablation. By ablating titanium (Ti) in C2H4 we obtain a complex that exhibits 12 wt % uptake of H2 with substitution by deuterium providing a doubling. Mass spectroscopic studies during ablation of Ti show presence of a species, with a mass=78amu, a likely candidate for the high H2 uptake.

  15. The interstellar deuterium-to-hydrogen ratio - A reevaluation of Lyman absorption-line measurements

    NASA Technical Reports Server (NTRS)

    Mccullough, Peter R.

    1992-01-01

    The D/H ratio in the local interstellar medium is evaluated based upon previously published measurements of Lyman absorption lines together with the hypothesis that the D/H ratio is constant. A unique value for the D/H ratio of 1.5 (+/- 0.2) x 10 exp -5 by number is shown to be consistent with all published determinations made with the Copernicus and the International Ultraviolet Explorer satellites. The possibility that the D/H ratio may vary substantially in the local interstellar medium is considered and found to be unnecessary.

  16. Recent Advances in SRS on Hydrogen Isotope Separation Using Thermal Cycling Absorption Process

    DOE PAGESBeta

    Xiao, Xin; Sessions, Henry T.; Heung, L. Kit

    2015-02-01

    The recent Thermal Cycling Absorption Process (TCAP) advances at Savannah River Site (SRS) include compressor-free concept for heating/cooling, push and pull separation using an active inverse column, and compact column design. The new developments allow significantly higher throughput and better reliability from 1/10th of the current production system’s footprint while consuming 60% less energy. Various versions are derived in the meantime for external customers to be used in fusion energy projects and medical isotope production.

  17. [Effects of selenite addition on selenium absorption, root morphology and physiological characteristics of rape seedlings].

    PubMed

    Liu, Xin-wei; Wang, Qiao-lan; Duan, Bi-hui; Lin, Ya-meng; Zhao, Xiao-hu; Hu, Cheng-xiao; Zhao, Zhu-qing

    2015-07-01

    Abstract: The rape (Brassica napus L. cv. Xiangnongyou 571) was chosen as the experimental material to undergo solution cultivation at seedling stage to investigate the effects of selenite addition on the selenium (Se) absorption and distribution, root morphology and physiological characteristics of rape seedlings. The results showed that the bioaccumulation ability of Se decreased significantly with increasing the Se application rate, but the Se distribution coefficient remained around 0.9 with no significant influence. The application of 10 µmol . L-1 selenite stimulated the growth of rape seedlings through improving the root physiological characteristics and root morphology significantly, including significantly increasing the production of superoxide radical (O2∙-) rate and the activities of superoxide dismutase (SOD), peroxidase (POD) and fungal catalase (CAT) in the root system, which resulted in a reduction of the lipids peroxidation (MDA) content as much as 26.0%, consequently increasing the root activity as much as 17.4%. The promoting degrees of selenite on root morphological parameters were from strong to weak in such a tendency: root volume > total surface area > number of root forks > total root length > number of root tips > average diameter. However, such positive effects had no significant difference with those in treatment with 1 µmol . L-1 selenite, indicating that small amounts (≤ 10 Lmol . L-1) of selenite were able to increase the activity of antioxidant enzymes and reduce the content of MDA in root system, which could increase root activity and improve root morphology, hence increased the biomass of rape seedlings. PMID:26710631

  18. Cold Atomic Hydrogen, Narrow Self-Absorption, and the Age of Molecular Clouds

    NASA Technical Reports Server (NTRS)

    Goldsmith, Paul F.

    2006-01-01

    This viewgraph presentation reviews the history, and current work on HI and its importance in star formation. Through many observations of HI Narrow Self Absorption (HINSA) the conclusions are drawn and presented. Local molecular clouds have HI well-mixed with molecular constituents This HI is cold, quiescent, and must be well-shielded from the UV radiation field The density and fractional abundance (wrt H2) of the cold HI are close to steady state values The time required to convert these starless clouds from purely HI initial state to observed present composition is a few to ten million years This timescale is a lower limit - if dense clouds being swept up from lower density regions by shocks, the time to accumulate material to get A(sub v) is approximately 1 and provide required shielding may be comparable or longer

  19. Analysis of the Release Characteristics of Cu-Treated Antimicrobial Implant Surfaces Using Atomic Absorption Spectrometry

    PubMed Central

    Zietz, Carmen; Fritsche, Andreas; Finke, Birgit; Stranak, Vitezslav; Haenle, Maximilian; Hippler, Rainer; Mittelmeier, Wolfram; Bader, Rainer

    2012-01-01

    New developments of antimicrobial implant surfaces doped with copper (Cu) ions may minimize the risk of implant-associated infections. However, experimental evaluation of the Cu release is influenced by various test parameters. The aim of our study was to evaluate the Cu release characteristics in vitro according to the storage fluid and surface roughness. Plasma immersion ion implantation of Cu (Cu-PIII) and pulsed magnetron sputtering process of a titanium copper film (Ti-Cu) were applied to titanium alloy (Ti6Al4V) samples with different surface finishing of the implant material (polished, hydroxyapatite and corundum blasted). The samples were submersed into either double-distilled water, human serum, or cell culture medium. Subsequently, the Cu concentration in the supernatant was measured using atomic absorption spectrometry. The test fluid as well as the surface roughness can alter the Cu release significantly, whereby the highest Cu release was determined for samples with corundum-blasted surfaces stored in cell medium. PMID:22162672

  20. Analysis of the release characteristics of cu-treated antimicrobial implant surfaces using atomic absorption spectrometry.

    PubMed

    Zietz, Carmen; Fritsche, Andreas; Finke, Birgit; Stranak, Vitezslav; Haenle, Maximilian; Hippler, Rainer; Mittelmeier, Wolfram; Bader, Rainer

    2012-01-01

    New developments of antimicrobial implant surfaces doped with copper (Cu) ions may minimize the risk of implant-associated infections. However, experimental evaluation of the Cu release is influenced by various test parameters. The aim of our study was to evaluate the Cu release characteristics in vitro according to the storage fluid and surface roughness. Plasma immersion ion implantation of Cu (Cu-PIII) and pulsed magnetron sputtering process of a titanium copper film (Ti-Cu) were applied to titanium alloy (Ti6Al4V) samples with different surface finishing of the implant material (polished, hydroxyapatite and corundum blasted). The samples were submersed into either double-distilled water, human serum, or cell culture medium. Subsequently, the Cu concentration in the supernatant was measured using atomic absorption spectrometry. The test fluid as well as the surface roughness can alter the Cu release significantly, whereby the highest Cu release was determined for samples with corundum-blasted surfaces stored in cell medium. PMID:22162672

  1. Aging Effects on the Hydrogen Storage Characteristics of Li-Mg-B-N-H Complex Hydrides

    NASA Astrophysics Data System (ADS)

    Srinivasan, Sesha; Vickers, Eric; Mulharan, James; Darkazalli, Gazi; Goswami, Yogi; Stefanakos, Elias; FLPoly-CERC Collaboration

    2015-03-01

    The aging effects on the hydrogen storage characteristics and chemical formulations of the complex hydrides are discussed in this study. The aging effects due to atmospheric events such as oxygen and moisture coverage and self-decomposition are currently under investigation. The candidate material chosen for this study is Lithium/Magnesium based complex hydride LiBH4/LiNH2/MgH2. These materials were prepared using high energy ball milling under Ar/H2 atmosphere with different milling durations. The chemical, structural and microstructural characteristics of the synthesized and aged materials were compared and investigated using TGA/DSC, FTIR, XRD, BET and SEM analytical tools. Hydrogen storage properties such as hydrogen sorption kinetics, cycle life and pressure-composition isotherm (PCI) was examined via high pressure, high temperature Sievert's type apparatus. This current study will shed light to compare and contrast the above mentioned characteristics for the aged samples practically at the same experimental conditions. Furthermore, we have investigated the relationship between the aging effects with respect to the crystallite sizes of the candidate compounds and their nano-dopant variants. We acknowledge the grant from Florida Energy Systems Consortium and support from Florida Polytechnic University.

  2. Effect of hydrogen concentration in conventional and IAD coatings on the absorption and laser-induced damage at 10.6 μm

    NASA Astrophysics Data System (ADS)

    Rahe, Manfred; Ristau, Detlev; Schmidt, Holger

    1993-06-01

    In this paper, data of single layers of YbF3, BaF2, YF3, and NaF and multilayer coatings produced by conventional thermal evaporation (boat, e-beam) and ion assisted deposition (IAD) are compared. Hydrogen concentration depth profiling was performed using nuclear reaction analysis based on the reaction 1H(15N, (alpha) (gamma) )12C. Absorption was measured with the aid of a laser calorimeter and a cw CO2 laser. A computer-controlled test facility with a TEA CO2 laser was used for determining the 1-on-1 damage thresholds of the coatings. The results point out that the absorption and damage behavior of coatings for the CO2 laser wavelength are related to the total amount of species containing hydrogen. Most of the IAD coatings exhibit a lower hydrogen contamination than conventional thin films.

  3. Metal-and hydrogen-bonding competition during water absorption on Pd(111) and Ru(0001)

    SciTech Connect

    Tatarkhanov, Mouslim; Ogletree, D. Frank; Rose, Franck; Mitsui, Toshiyuki; Fomin, Evgeny; Rose, Mark; Cerda, Jorge I.; Salmeron, Miquel

    2009-09-03

    The initial stages of water adsorption on the Pd(111) and Ru(0001) surfaces have been investigated experimentally by Scanning Tunneling Microscopy in the temperature range between 40 K and 130 K, and theoretically with Density Functional Theory (DFT) total energy calculations and STM image simulations. Below 125 K water dissociation does not occur at any appreciable rate and only molecular films are formed. Film growth starts by the formation of flat hexamer clusters where the molecules bind to the metal substrate through the O-lone pair while making H-bonds with neighboring molecules. As coverage increases, larger networks of linked hexagons are formed with a honeycomb structure, which requires a fraction of the water molecules to have their molecular plane perpendicular to the metal surface with reduced water-metal interaction. Energy minimization favors the growth of networks with limited width. As additional water molecules adsorb on the surface they attach to the periphery of existing islands, where they interact only weakly with the metal substrate. These molecules hop along the periphery of the clusters at intermediate temperatures. At higher temperatures they bind to the metal to continue the honeycomb growth. The water-Ru interaction is significantly stronger than the water-Pd interaction, which is consistent with the greater degree of hydrogen-bonded network formation and reduced water-metal bonding observed on Pd relative to Ru.

  4. Oral characteristics of bergenin and the effect of absorption enhancers in situ, in vitro and in vivo.

    PubMed

    Qin, Xuan; Yuan, Fang; Zhou, Dan; Huang, Yuan

    2010-01-01

    The purpose of this study was to explore the absorption characteristics of bergenin (CAS 477-90-7) and to improve its bioavailability by modulation of the gastrointestinal (GI) absorption using two enhancers (borneol and Poloxamer 188, resp. F68) based on in situ absorption model, in vitro Caco-2 monolayer and in vivo pharmacokinetics studies and comparing the results obtained. The effect of borneol and F68 on drug absorption was quantified at two concentration levels (1 or 4 mg/ml). The observations from in situ and in vitro model indicated that the oral absorption of bergenin is limited and passive diffusion could be the main manner. After oral administration alone (60 mg/kg), a biphasic characteristic was observed. AUC0-->infinity was only 1.95 +/- 0.29 microg x h/ml and Cmax was 0.44 +/- 0.11 microg/ml. From the results of in situ experiments, both of the enhancers were able to increase the absorption percentage of bergenin. Significantly increased (P < 0.05) apparent permeability was observed in Caco-2 cell monolayer. The oral bioavailability of bergenin in rats was improved in the presence of borneol or F68. AUC0-->infinity increased significantly (P < 0.05) to 8.61 +/- 3.74 and 3.41 +/- 1.17 microg x h/ml, which were 4.42 and 1.75-fold higher with borneol and F68 than that of the control group, respectively. The enhanced bioavailability suggests that borneol and F68 could promote the absorption of bergenin in the GI tract. PMID:20486470

  5. Experimental Investigations on the Characteristics of the Ammonia-Water Absorption Refrigerator for Low Temperature Solution Cycle

    NASA Astrophysics Data System (ADS)

    Takei, Toshitaka; Kimijima, Shinji; Saito, Kiyoshi; Kawai, Sunao

    This report refers to some static characteristics of the ammonia-water absorption refrigerator for low temperature refrigerating process which needs the temperature below the freezing point. Especially, the influence of evaporating temperature and cooling water temperature is clarified by the experimental investigation. In addition to this, the validity of constructed simulation model of this absorption refrigerator is mentioned. The validity of simulation model is verified by the comparison of experimental results and calculation. To examine the characteristics, we conducted the performance test using the trial product of which the standard cooling capacity is 175kW. The performance is estimated according to cooling capacity and COP. As a result, the effects of the evaporating temperature and cooling water temperature on the cooling performance are clarified by the experimental research. Furthermore, the calculation of the static characteristics predicted by the simulation model is in good agreements with the experimental results.

  6. Effects of nitrogen doping on the electrical conductivity and optical absorption of ultrananocrystalline diamond/hydrogenated amorphous carbon films prepared by coaxial arc plasma deposition

    NASA Astrophysics Data System (ADS)

    Zkria, Abdelrahman; Katamune, Yūki; Yoshitake, Tsuyoshi

    2016-07-01

    3 at. % nitrogen-doped ultrananocrystalline diamond/hydrogenated amorphous carbon composite (UNCD/a-C:H) films were synthesized by coaxial arc plasma deposition. Optically, the films possess large absorption coefficients of more than 105 cm‑1 at photon energies from 3 to 5 eV. The optical band gap was estimated to be 1.28 eV. This value is smaller than that of undoped films, which might be attributable to increased sp2 fractions. The temperature dependence of the electrical conductivity implies that carrier transport follows a hopping conduction model. Heterojunctions with p-type Si substrates exhibited a typical rectifying action. From the capacitance–voltage characteristics that evidently indicated the expansion of a depletion region into the film side, the built-in potential and carrier concentration were estimated to be 0.51 eV and 7.5 × 1016 cm‑3, respectively. It was experimentally demonstrated that nitrogen-doped UNCD/a-C:H films are applicable as an n-type semiconductor.

  7. Experimental studies of selective acid gas removal: Absorption of hydrogen sulfide and carbon dioxide into aqueous methyldiethanolamine using packed columns

    SciTech Connect

    Schubert, C.N.

    1988-01-01

    The use of aqueous methyldiethanolamine (MDEA) for selective removal of hydrogen sulfide from acid gas streams has been studied in a 2 inch column packed with 1/4 inch ceramic Intalox saddles. The column was operated in a counter-current, steady state fashion. The feed gas composition varied between 1 and 5 mole % hydrogen sulfide and between 0 and 50 mole % carbon dioxide. In order to assist the development of packed column absorption models, the rate at which pure carbon dioxide absorbs into 2 M MDEA was measured as a function of pressure, liquid flow rate and packed bed length. The importance of end effects was carefully evaluated. In addition, draining and tracer methods were used to estimate the amount of static holdup present in the column. Using classical draining methods, as much as 50 % of the total holdup was found to be static. However, according to the step decrease in tracer method, less than 5 % of the total holdup was static. Since the step decrease in tracer method measures the amount of static holdup present in the bed under irrigated conditions, it seems likely that the draining method provides an unrealistic estimate of static holdup. Thus, although the notion of static holdup may be useful as a means of correlating mass transfer coefficients, the data indicate that very little static holdup exists in the column under irrigated conditions. Hence, in the absence of a mechanistically sound model, the choice of whether to use static holdup or dispersion as a means of accounting for deviations from plug flow in the liquid phase should be made on the basis of computational convenience.

  8. The low-lying states and optical absorption properties of a hydrogenic impurity in a parabolic quantum dot modulation by applied electric field

    NASA Astrophysics Data System (ADS)

    Yuan, Jian-Hui; Zhang, Yan; Guo, Xinxia; Zhang, Jinjin; Mo, Hua

    2015-04-01

    Using the configuration-integration method, we investigated theoretically the low-lying states and optical absorption properties of a hydrogenic impurity in a parabolic quantum dot modulation by applied electric field. The low-lying states and optical absorption properties depend sensitively on the electric field F and the strength of the parabolic confinement ℏω0 . We discuss the linear and third-order nonlinear optical absorption coefficients of the dot (i) with the impurity ion and (ii) without the impurity ion. In the first case, the increase of the parabolic confinement ℏω0 (or the electric field F) can induce the blueshift (or redshift) of the peak of the absorption coefficient. Also the optical intensity can induce the increase of the third-order nonlinear optical absorption coefficients to weaken and even bleach the total optical absorption coefficients. Similar behavior has also been observed in the second case, but there is no redshift of the peak positions of the absorption coefficient with the increase of the electric field F. Compared with the second case, it is easily seen that there are the blueshifts of the peak of the absorption coefficients, which can be used as a technical means for detecting impurities.

  9. [Light Absorption Characteristics of FeS2-Fe1-xS Heterostructures Synthesized under Hydrothermal Conditions].

    PubMed

    Liu, Jia; Huang, Fei; Meng, Lin; Yu, Hao-ran; Chen, Ying-hua

    2015-05-01

    Fe-S series, especially FeS2 and Fe1-x S is the main component of crustal rocks as important metal sulphides. Pyrite (FeS2) shows a promising vision in solar cell materials for its high absorption coefficient and suitable band gap. Predecessors have done some researches on the photovoltaic properties of Fe-S series under different conditions. However, little researches have been done on the coexisted sulphide of FeS2 and Fe1-xS. FeS2 and Fe1-xS often appear as symbiotically due to their similar formation conditions. So the study on the optical absorption characteristics of FeS2 and Fe1-xS are of important significance. In order to study the optical absorption characteristics of FeS2-Fe1-xS heterostructures, using the SEM and XRD to characterize the morphology, composition and structure, respectively. The results show that the samples were cubic pyrite with a certain amount of pyrhotite (Fe1-xS). The crystal partical size was between 5 and 10 nm. Measurement of the absorption spectrum was performed using Cary 500 UV-Vis-NIR spectrophotoineter, acquiring the results of 1 860-1 889 nm, and the absorption peak in 1879nm. According to the band gap (eV) formula, the band gap value is calculated to be 0. 657 8 eV. The extreme electrical-to-optical conversion efficiency achieved was about 15%. By the first principles, we analysed the reason of the changing of the band gap value, and then compared the result with previous one. The internal structure of mineral is the important factor affecting the photoelectric conversion. The light absorption characteristics of FeS2-Fel-xS heterostructures synthesized under hydrothermal conditions is better than the characteristics from natural pyrite with defects of Co and Ni. The heterostructures can improve the electrical-to-optical conversion efficiency and provide scientific basis for the absorption characteristics research of Fe-S series materials. PMID:26415446

  10. Reversible Hydrogen Storage Characteristics of Catalytically Enhanced Ca(Li)-nMg-B-N-H System

    NASA Astrophysics Data System (ADS)

    Srinivasan, Sesha; Emre Demircak, Dervis; Sharma, Prakash; Yogi, Goswami; Stefanakos, Elias

    2013-04-01

    The aim of the present investigation is to study the synergistic effects of multi-walled carbon nanotubes, Nb2O5 and other catalysts for reversible hydrogen storage characteristics of Ca(Li)-nMg-B-N-H systems. Multinary hydride using light weight, high capacity hydride compounds such as Ca(BH4)2, LiBH4, LiNH2, nanoMgH2 in 3:1:8:4 composition was synthesized using high energy planetary milling under Ar/H2 ambient. Various nano additives and bi-metallic catalysts were added in a very small concentration with the host hydride (Ca)Li-nMg-B-N-H. The TGA and DSC results demonstrated that the catalytically enhanced Ca(Li)-nMg-B-N-H with hydrogen release at lower temperatures when compared to the pristine systems such as either Ca-Li-B-H or Ca-Li-Mg-B-H. Analyses of metrological characterization using XRD, SEM and have revealed the effectiveness and the role of the catalytic nanoparticles and their enhanced reversible hydrogen storage behavior on the host hydride matrix. The mass spectrometric investigations employing RGA on these nanocrystalline, multi-component hydride systems exhibit the release of hydrogen in major proportion (˜80-90%) as compared to previously attributed ammonia.

  11. Laboratory Measurements of Infrared Absorption Spectra of Hydrogen-ordered Ice: A Step to the Exploration of Ice XI in Space

    NASA Astrophysics Data System (ADS)

    Arakawa, M.; Kagi, H.; Fukazawa, H.

    2009-10-01

    Infrared absorption spectra of ice were obtained at 4, 60, 100, 140, 160, and 240 K to make spectroscopic observations of hydrogen ordering at low temperatures. A broad peak observed at around 850 cm-1 (11.7 μm) was derived from libration of water molecules. The peak width was notably narrower at temperatures less than 140 K. A decrease in the peak width occurring in accordance with the formation of ice with ordered arrangements of hydrogen atoms was suggested from incoherent inelastic neutron-scattering studies. These results are consistent with ordering of hydrogen atoms. The existence of hydrogen-ordered ice in space is the subject of continuing astronomical debate. Our results demonstrate that ordered ice in space is detectable using infrared telescopes and planetary exploration.

  12. Pressure influence on the structural characteristics of modified absorptive glass mat separators: A standard contact porosimetry study

    NASA Astrophysics Data System (ADS)

    Burashnikova, M. M.; Khramkova, T. S.; Kazarinov, I. A.; Shmakov, S. L.

    2015-09-01

    The article presents a comparative analysis of the structural characteristics of absorptive glass mats manufactured by "Hollingsworth & Vose" (a 2.8 mm thickness) and "Bernard Dumas" (a 3.0 mm thickness) modified by impregnation with polymeric emulsions based on polyvinylidene fluoride, a polyvinylpyrrolidone styrene copolymer, and polytetrafluoroethylene, by means of standard contact porosimetry. The key study is influence of features of the porous structure on the compression properties, the rate of wicking, and the oxygen cycle efficiency in lead-acid battery mock-ups under several plate-group compression pressures. It is found that the treatment of the absorptive glass mat separators with polymeric emulsions leads to redistribution of their pores by size. An increased pressure in the electrode unit insignificantly changes the pore structure of the modified absorptive glass mat separators, and the oxygen cycle efficiency rises in comparison with unmodified separators.

  13. Growth and optical characteristics of coumarin 6 doped potassium hydrogen phthalate (KAP) crystals

    NASA Astrophysics Data System (ADS)

    Enculescu, Monica

    2009-12-01

    Single-crystals of potassium hydrogen phthalate (KAP) doped with coumarin 6 (C6) were grown by solution evaporation technique. Powder X-ray diffraction, optical transmission and luminescence measurements were performed. The structure and morphology of the KAP crystals are not changed with the incorporation of the dye. Transparency of the dye-doped crystals is suited for non-linear optical (NLO) applications and UV cut-off is not changed when compared with the pure KAP crystals. The dye-doped crystals present an absorption band at 350 nm while the growth solution exhibits a peak at 400 nm. The doped crystals have a strong emission band at 450 nm that is excited at 350 nm and the second harmonic generating (SHG) properties are demonstrated using luminescence measurements.

  14. Characteristics of anomalous skin effect and evolution of power absorption regions in a cylindrical radio frequency inductively coupled plasma

    SciTech Connect

    Ding, Z. F.; Sun, B.; Huo, W. G.

    2015-06-15

    In a low-pressure radio-frequency (13.56 MHz), inductively coupled argon plasma generated by a normal cylindrical rf coil, electric field, current density, and absorbed power density is calculated from magnetic field measured with a phase-resolved magnetic probe. The anomalous skin effect (ASE) for the cylindrical rf coil is compared to those previously reported for the planar and re-entrant cylindrical rf coils. Physical reasons for our observed characteristics of ASE are presented. With the increasing discharge power, the size and the number of negative and positive power absorption regions evolve into several distinct patterns. For the low discharge power (at 156.9 W), there is one area of positive and one area of negative power absorption in the radial direction. For the medium discharge power (279 W–683.5 W), there are two areas of negative and two areas of positive power absorption. For the even higher discharge power (above 803.5 W), the number of areas is the same as that of the medium discharge power, but the size of the inner positive and negative power absorption areas is approximately doubled and halved, respectively, while the outer positive and negative power absorption areas slightly shrinks. The evolution of positive and negative power absorption regions is explained as a result of electron thermal diffusion and the energy conversion between rf current and electric field. The spatial decays of electric field and current density are also elucidated by linking them with the positive and negative power absorption pattern.

  15. Contrasting phytoplankton community structure and associated light absorption characteristics of the western Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Pandi, Sudarsana Rao; Kiran, Rayaprolu; Sarma, Nittala S.; Srikanth, A. S.; Sarma, V. V. S. S.; Krishna, M. S.; Bandyopadhyay, D.; Prasad, V. R.; Acharyya, T.; Reddy, K. G.

    2014-01-01

    Absorption spectra, particulate pigments, and hydrochemical constituents were measured in the western Bay of Bengal (BoB) during July-August 2010 when influence of river discharge is at peak. Chromophoric dissolved organic matter (CDOM) absorption coefficient (aCDOM(440)) displayed a significant inverse linear relationship with salinity in the surface waters implying conservative mixing of marine and terrestrial end members. The northern part of the study area is influenced by discharge from the river Ganga and a dominant terrestrial CDOM signal is seen. The southern part receives discharge from peninsular rivers with corresponding signals of higher CDOM than the linear model would indicate and higher UV-specific absorption coefficient (SUVA) indicating more aged and humified DOM. Lower contribution of CDOM to total non-water absorption and higher phytoplankton biomass (chlorophyll a absorption coefficient, aph(440)) but lower chlorophyll a specific phytoplankton absorption coefficient (a{ph/*}(440)) characterize the northern part, compared to the southern part. Chlorophyll b had a distinct linear relationship with chlorophyll a in the latter. The size index (SI) indicated dominance of microphytoplankton in the northern and nano and picophytoplankton in the southern parts. Chlorophyll a is significantly related to a{ph/*}(440) by an inverse power model in the northern part but by an inverse linear model in the southern part. Our study suggests that knowledge of the phytoplankton community structure is essential to improve chlorophyll a algorithm in the coastal Bay of Bengal.

  16. Degradation in performance of orthodontic wires caused by hydrogen absorption during short-term immersion in 2.0% acidulated phosphate fluoride solution.

    PubMed

    Kaneko, Kazuyuki; Yokoyama, Ken'ichi; Moriyama, Keiji; Asaoka, Kenzo; Sakai, Jun'ichi

    2004-08-01

    The purpose of this study was to investigate the degradation in performance of four major alloys of orthodontic wires, namely nickel-titanium, beta titanium, stainless steel, and cobalt-chromium-nickel, caused by hydrogen absorption during short-term immersion in an acid fluoride solutions. The hydrogen-related degradation of orthodontic wires after immersion in 2.0% acidulated phosphate fluoride solution at 37 degrees C for 60 minutes was evaluated by a tensile test, scanning electron microscope observation, and hydrogen thermal desorption analysis. Upon immersion, the tensile strengths of the nickel-titanium and beta titanium wires decreased. Particularly, the nickel-titanium wire fractured before yielding, and the fracture mode changed from ductile to brittle. The amounts of absorbed hydrogen in the nickel-titanium and beta titanium wires were 200 and 100 mass ppm, respectively. On the other hand, the tensile strengths of the stainless steel and cobalt-chromium-nickel wires were only slightly affected by immersion. The results of this study suggest that degradation in performance of orthodontic wires of titanium alloys occurs because of hydrogen absorption even after a short-term immersion in fluoride solutions. PMID:15387026

  17. Absorption and fluorescence characteristics of rainwater CDOM and contribution to Lake Taihu, China

    NASA Astrophysics Data System (ADS)

    Zhang, Yunlin; Gao, Guang; Shi, Kun; Niu, Cheng; Zhou, Yongqiang; Qin, Boqiang; Liu, Xiaohan

    2014-12-01

    We characterized the composition and sources of chromophoric dissolved organic matter (CDOM) in rainwater, and assessed the relative contribution of rainwater CDOM to lake water in Lake Taihu based on rainwater collected during 35 rainfall events in 2012. Chemical analysis, ultraviolet-visible absorbance, and three-dimensional fluorescence spectroscopy were used to characterize CDOM. The CDOM absorption coefficient at 254 nm (a254) had a significant seasonal variation, with a mean of 3.67 ± 1.69 m-1 in the wet season (from April to early August), which was significantly lower than the means in the two dry seasons (8.26 ± 2.94 m-1 from January to March, and 7.60 ± 3.80 m-1 from late August to December). The mean humification index and the mean index of recent autochthonous contribution were 0.74 ± 0.48 and 1.31 ± 0.35, respectively, indicating that rainwater CDOM was dominated by an atmospheric microbial origin component. We identified four fluorescence components using parallel factor analysis modeling in the rainwater CDOM, i.e., two protein-like components (C1 and C2) and two fulvic-like components (C3 and C4), which had characteristics similar to those of protein and humic-like substances, respectively. The a254 was significantly and positively (p < 0.001) correlated with each of the five nutrient parameters: total dissolved nitrogen (r2 = 0.76), ammonium (r2 = 0.65), nitrate (r2 = 0.36), total dissolved phosphorus (r2 = 0.55), and phosphate (r2 = 0.50) showing the tightly coupling between CDOM and nutrients. Based on the deposition of the rainwater CDOM and the storage of the CDOM in Lake Taihu, the annual relative contribution of rainwater CDOM to the lake water was 11.7% in 2012. The results showed the important effect of wet deposition on CDOM sources in Lake Taihu, which is located in a region with severe air pollution in the Yangtze River Delta.

  18. HST/COS SPECTRA OF DF Tau AND V4046 Sgr: FIRST DETECTION OF MOLECULAR HYDROGEN ABSORPTION AGAINST THE Ly{alpha} EMISSION LINE

    SciTech Connect

    Yang Hao; Linsky, Jeffrey L.; France, Kevin E-mail: jlinsky@jilau1.colorado.edu

    2011-03-20

    We report the first detection of molecular hydrogen (H{sub 2}) absorption in the Ly{alpha} emission line profiles of two classical T Tauri stars (CTTSs), DF Tau and V4046 Sgr, observed by the Hubble Space Telescope/Cosmic Origins Spectrograph. This absorption is the energy source for many of the Lyman-band H{sub 2} fluorescent lines commonly seen in the far-ultraviolet spectra of CTTSs. We find that the absorbed energy in the H{sub 2} pumping transitions from a portion of the Ly{alpha} line significantly differ from the amount of energy in the resulting fluorescent emission. By assuming additional absorption in the H I Ly{alpha} profile along our light of sight, we can correct the H{sub 2} absorption/emission ratios so that they are close to unity. The required H I absorption for DF Tau is at a velocity close to the radial velocity of the star, consistent with H I absorption in the edge-on disk and interstellar medium. For V4046 Sgr, a nearly face-on system, the required absorption is between +100 km s{sup -1} and +290 km s{sup -1}, most likely resulting from H I gas in the accretion columns falling onto the star.

  19. [Effects of temperature on the ultraviolet absorption characteristics of SO2].

    PubMed

    Zheng, Hai-Ming; Jin, Wei-Jia

    2013-03-01

    Absorption spectrum of SO2 is obtained under the condition of room temperature and atmosphere pressure. The spectrum is composed of banded structure superimposed on a continuum. The continuum structure comes from the transition of SO2 molecule from the ground electronic state to the higher dense rovibronic energy levels, and the banded one comes from the transition of B1B1<--X1A1. The symmetric stretch and bend vibration frequencies are obtained from the banded structure. They are omega1 =(665+/-29) cm-1 and omega2 = (448+/-17) cm-1, respectively. Measuring the absorption spectra of SOz at different temperature, it was also found that the configuration of the spectra is similar. But the absorption cross-section decreases with the increase in temperature. The absorption cross-section corresponding to the absorption peaks varies with temperature in the manner of cube. But the rate coefficients are different. So the effect of temperature on the measurement results must be considered when we use the technique of DOAS for the detection of SO2. PMID:23705452

  20. Absorption spectroscopy setup for determination of whole human blood and blood-derived materials spectral characteristics

    NASA Astrophysics Data System (ADS)

    Wróbel, M. S.; Gnyba, M.; Milewska, D.; Mitura, K.; Karpienko, K.

    2015-09-01

    A dedicated absorption spectroscopy system was set up using tungsten-halogen broadband source, optical fibers, sample holder, and a commercial spectrometer with CCD array. Analysis of noise present in the setup was carried out. Data processing was applied to the absorption spectra to reduce spectral noise, and improve the quality of the spectra and to remove the baseline level. The absorption spectra were measured for whole blood samples, separated components: plasma, saline, washed erythrocytes in saline and human whole blood with biomarkers - biocompatible nanodiamonds (ND). Blood samples had been derived from a number of healthy donors. The results prove a correct setup arrangement, with adequate preprocessing of the data. The results of blood-ND mixtures measurements show no toxic effect on blood cells, which proves the NDs as a potential biocompatible biomarkers.

  1. Optical nonlinear absorption characteristics of Sb{sub 2}Se{sub 3} nanoparticles

    SciTech Connect

    Muralikrishna, Molli Kiran, Aditha Sai Ravikanth, B. Sowmendran, P. Muthukumar, V. Sai Venkataramaniah, Kamisetti

    2014-04-24

    In this work, we report for the first time, the nonlinear optical absorption properties of antimony selenide (Sb{sub 2}Se{sub 3}) nanoparticles synthesized through solvothermal route. X-ray diffraction results revealed the crystalline nature of the nanoparticles. Electron microscopy studies revealed that the nanoparticles are in the range of 10 - 40 nm. Elemental analysis was performed using EDAX. By employing open aperture z-scan technique, we have evaluated the effective two-photon absorption coefficient of Sb{sub 2}Se{sub 3} nanoparticles to be 5e-10 m/W at 532 nm. These nanoparticles exhibit strong intensity dependent nonlinear optical absorption and hence could be considered to have optical power limiting applications in the visible range.

  2. Monitoring of Atmospheric Hydrogen Peroxide in Houston Using Long Path-Length Laser-Based Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sanchez, N. P.; Cao, Y.; Jiang, W.; Tittel, F. K.; Griffin, R. J.

    2014-12-01

    Hydrogen peroxide (H2O2) is a relevant atmospheric species mainly formed by recombination of hydroperoxyl radicals. H2O2 participates in the formation of sulfate aerosol by in-cloud oxidation of S(IV) to S(VI) and has been associated with the generation of multi-functional water soluble organic compounds in atmospheric particulate matter. Furthermore, H2O2 plays an important role in the oxidative capacity of the atmosphere as it acts as a reservoir for HOx radicals (OH and HO2). Particular conditions in the Houston area (e.g. extensive presence of petrochemical industry and high ozone and humidity levels) indicate the potential relevance of this species at this location. Despite its atmospheric relevance, no reports on the levels of H2O2 in Houston have been presented previously in the scientific literature. Determination of atmospheric H2O2 usually has been conducted based on transfer of the gas-phase H2O2 to the liquid phase prior to quantification by techniques such as fluorescence spectroscopy. Although these methods allow detection of H2O2 at the sub-ppb level, they present some limitations including the interference from other atmospheric constituents and potential sampling artifacts. In this study, a high sensitivity sensor based on long-path absorption spectroscopy using a distributed-feedback quantum cascade laser was developed and used to conduct direct gas-phase H2O2 monitoring in Houston. The sensor, which targets a strong H2O2 absorption line (~7.73 μm) with no interference from other atmospheric species, was deployed at a ground level monitoring station near the University of Houston main campus during summer 2014. The performance of this novel sensor was evaluated by side-by-side comparison with a fluorescence-based instrument typically used for atmospheric monitoring of H2O2. H2O2 levels were determined, and time series of H2O2 mixing ratios were generated allowing insight into the dynamics, trends, and atmospheric inter-relations of H2O2 in the

  3. Effects of High-Pressure Hydrogen Annealing (HPHA) on Reliability Characteristics of RRAM.

    PubMed

    Song, Jeonghwan; Lee, Daeseok; Woo, Jiyong; Cha, Euijun; Lee, Sangheon; Hwang, Hyunsang

    2016-05-01

    Reliability characteristics (retention and endurance) of RRAM are critical for its practical realization and need to be improved. In this work, we confirmed the trade-off between retention and endurance by using various top electrode thickness conditions. The trade-off between retention and endurance characteristics was mainly due to the different amount of oxygen in scavenging layer (Ta) and the amount of oxygen vacancy in switching layer (HfO2). The amount of the oxygen in scavenging layer (Ta) and the amount of the oxygen vacancy in switching layer (HfO2) will be increased with the increase of Ta thickness. Therefore, the thicker Ta cells have worse retention because the large amount of oxygen in scavenging layer (Ta) can diffuse back into switching layer (HfO2) and recombine with oxygen vacancies in the filament. However, it has longer endurance because the large amount of oxygen vacancy in switching layer (HfO2) can be a source of the filament. Hence, there exists a trade-off relation between retention and endurance under the various Ta thickness conditions. To improve both retention and endurance characteristics, we proposed a new method by using high-pressure hydrogen annealing (HPHA). The thin Ta cells have longer retention and worse endurance because it has small amount of both oxygen in scavenging layer (Ta) and oxygen vacancy in switching layer (HfO2). Therefore, to generate more oxygen vacancies in switching layer (HfO2) maintaining small amount of oxygen in scavenging layer (Ta), we treated the samples by HPHA before Ta deposition. Finally, we obtained both improved retention and endurance characteristics in HfO2 based RRAM devices after high-pressure hydrogen annealing treatment. PMID:27483819

  4. Analysis of molecular hydrogen absorption toward QSO B0642–5038 for a varying proton-to-electron mass ratio

    SciTech Connect

    Bagdonaite, J.; Ubachs, W.; Murphy, M. T.; Whitmore, J. B.

    2014-02-10

    Rovibronic molecular hydrogen (H{sub 2}) transitions at redshift z {sub abs} ≅ 2.659 toward the background quasar B0642–5038 are examined for a possible cosmological variation in the proton-to-electron mass ratio μ. We utilize an archival spectrum from the Very Large Telescope/Ultraviolet and Visual Echelle Spectrograph (UVES) with a signal-to-noise ratio of ∼35 per 2.5 km s{sup –1} pixel at the observed H{sub 2} wavelengths (335-410 nm). Some 111 H{sub 2} transitions in the Lyman and Werner bands have been identified in the damped Lyα system for which a kinetic gas temperature of ∼84 K and a molecular fraction log f = –2.18 ± 0.08 are determined. The H{sub 2} absorption lines are included in a comprehensive fitting method, which allows us to extract a constraint on a variation of the proton-electron mass ratio Δμ/μ from all transitions at once. We obtain Δμ/μ = (17.1 ± 4.5{sub stat} ± 3.7{sub sys}) × 10{sup –6}. However, we find evidence that this measurement has been affected by wavelength miscalibration errors recently identified in UVES. A correction based on observations of objects with solar-like spectra gives a smaller Δμ/μ value and contributes to a larger systematic uncertainty: Δμ/μ = (12.7 ± 4.5{sub stat} ± 4.2{sub sys}) × 10{sup –6}.

  5. Direct determination of peracetic acid, hydrogen peroxide, and acetic acid in disinfectant solutions by far-ultraviolet absorption spectroscopy.

    PubMed

    Higashi, Noboru; Yokota, Hiroshi; Hiraki, Satoru; Ozaki, Yukihiro

    2005-04-01

    In this paper we propose a rapid and highly selective far-ultraviolet (FUV) spectroscopic method for the simultaneous determination of peracetic acid (PAA), hydrogen peroxide, and acetic acid (AA). For this purpose we developed a novel FUV spectrometer that enables us to measure the spectra down to 180 nm. Direct determination of PAA, H(2)O(2), and AA, the three main species in disinfectant solutions, was carried out by using their absorption bands in the 180-220-nm region. The proposed method does not require any reagents or catalysts, a calibration standard, and a complicated procedure for the analysis. The only preparation procedure requested is a dilution of H(2)O(2) with pure water to a concentration range lower than 0.2 wt % in the sample solutions. Usually, the required concentration range can be obtained by the 10 times volume dilution of the actual disinfectant solutions. As the measured sample does not leave any impurity for the disinfection, it can be reused completely by using a circulation system. The detection limit for PAA of the new FUV spectrometer was evaluated to be 0.002 wt %, and the dynamic ranges of the measured concentrations were from 0 to 0.05 wt %, from 0 to 0.2 wt %, and from 0 to 0.2 wt % for PAA, H(2)O(2), and AA, respectively. The response time for the simultaneous determination of the three species is 30 s, and the analysis is applicable even to the flowing samples. This method may become a novel approach for the continuous monitoring of PAA in disinfectant solutions on the process of sterilization. PMID:15801764

  6. Effect of hydrogen bonding on far-ultraviolet water absorption and potential implications for 193-nm ArF excimer laser-tissue interaction

    NASA Astrophysics Data System (ADS)

    Walsh, Joseph T., Jr.; Staveteig, Paul T.

    1995-05-01

    The mechanisms causing transient 193-nm optical absorption of collagen during ablative-fluence ArF excimer pulses are poorly understood. The preponderance of hypotheses proposed to explain this phenomenon, such as ultrafast secondary-structure denaturation of proteins and transient free radical formation, focus on the protein matrix and ignore potential contributions from other tissue components such as water. A substantial body of spectroscopic literature places 193 nm adjacent to a steep absorption edge of water that rises to 60,000 cm-1 at 163 nm; other evidence shows that this absorption edge shifts toward 193 nm upon hydrogen-bond breakage. In this paper we show that heating of water from 20-100°C increases the liquid's absorption coefficient. Further investigations using an infrared pump laser show a significant increase in absorption by water of a 193-nm probe beam. Based on this evidence, we speculate that 193-nm laser ablation of tissue may contain a photothermal component related to dynamic absorption of incident radiation by water.

  7. Study of gain and photoresponse characteristics for back-illuminated separate absorption and multiplication GaN avalanche photodiodes

    SciTech Connect

    Wang, Xiaodong; Pan, Ming; Hou, Liwei; Xie, Wei; Hu, Weida Xu, Jintong; Li, Xiangyang; Chen, Xiaoshuang Lu, Wei

    2014-01-07

    The gain and photoresponse characteristics have been numerically studied for back-illuminated separate absorption and multiplication (SAM) GaN avalanche photodiodes (APDs). The parameters of fundamental models are calibrated by simultaneously comparing the simulated dark and light current characteristics with the experimental results. Effects of environmental temperatures and device dimensions on gain characteristics have been investigated, and a method to achieve the optimum thickness of charge layer is obtained. The dependence of gain characteristics and breakdown voltage on the doping concentration of the charge layer is also studied in detail to get the optimal charge layer. The bias-dependent spectral responsivity and quantum efficiency are then presented to study the photoresponse mechanisms inside SAM GaN APDs. It is found the responsivity peak red-shifts at first due to the Franz-Keldysh effect and then blue-shifts due to the reach-through effect of the absorption layer. Finally, a new SAM GaN/AlGaN heterojunction APD structure is proposed for optimizing SAM GaN APDs.

  8. Combined effects of cold work and chemical polishing on the absorption and release of hydrogen from SRF cavities inferred from resistance measurements of cavity-grade niobium bars

    NASA Astrophysics Data System (ADS)

    Dzyuba, A.; Cooley, L. D.

    2014-03-01

    A series of small fine-grained and single-crystal bars, with strain from 0% (recrystallized) to 50%, were given different amounts of chemical polishing. Four-point resistivity (ρ) data was used to characterize the electron scattering from dislocations, hydrogen, and any other trace contaminants. As noted by previous studies, annealed Nb displayed a weak linear increase of ρ (11 K) with polishing time due to hydrogen absorption, and bulk hydrogen concentration did not exceed 15% for 200 μm metal removed. Cold-worked samples displayed steeper slopes with polishing time (after subtracting resistivity due to strain alone), suggesting that dislocations assist the absorption of hydrogen during polishing. Absorption accelerated above 30% strain and 100 μm material removal, with room-temperature hydrogen concentration rising rapidly from 2% up to 5%. This threshold is significant, since superconducting radio-frequency (SRF) cavities are usually polished as-formed, with >35% strain, and polishing removes >150 μm of metal. Resistance jumps between 40 and 150 K, which signal the formation of hydride precipitates, were stronger in cold-worked samples, suggesting that dislocations also assist precipitate nucleation. High-vacuum anneals at 800 °C for 2 h, which are known to fully recrystallize cavity-grade niobium and de-gas hydrogen, removed the 40-150 K jumps and recovered the resistivity increase due to chemical polishing entirely. But, about 30% of the resistivity increase due to cold work remained, possibly due to residual dislocation clusters. Continued annealing only facilitated the diffusion of surface impurities into the bulk and did not recover the initial 0% state. Strain, polishing, and annealing thus appear to combine as irreversible paths that change the material. Bearing this in mind, the significant difference in hydrogen uptake between annealed and cold-worked samples suggests that annealing SRF cavities prior to chemical polishing could greatly reduce

  9. Fully reversible hydrogen absorption and desorption reactions with Sc(Al{sub 1-x}Mg{sub x}), x=0.0, 0.15, 0.20

    SciTech Connect

    Sahlberg, Martin; Zlotea, Claudia; Latroche, Michel; Andersson, Yvonne

    2011-01-15

    The hydrogen storage properties of Sc(Al{sub 1-x}Mg{sub x}), x=0.0, 0.15, 0.20, have been studied by X-ray powder diffraction, thermal desorption spectroscopy, pressure-composition-isotherms and scanning electron microscopy techniques. Hydrogen is absorbed from the gas phase at 70 kPa and 400 {sup o}C under the formation of ScH{sub 2} and aluminium with magnesium in solid solution. The reaction is fully reversible in vacuum at 500 {sup o}C and shows the hydrogenation-disproportionation-desorption-recombination (HDDR) behaviour. The activation energy of desorption was determined by the Kissinger method to 185 kJ/mol. The material is stable up to at least six absorption-desorption cycles and there is no change in particle size during cycling. -- Graphical abstract: XRD pattern of Sc(Al{sub 1-x}Mg{sub x}). From the top: x=0, 0.15, 0.20. The hydrogen absorption properties were studied by thermal desorption spectroscopy, pressure-composition-isotherms and scanning electron microscopy techniques. Display Omitted

  10. Graphical expression of thermodynamic characteristics of absorption process in ammonia-water system

    NASA Astrophysics Data System (ADS)

    Pospíšil, Jiří; Fortelný, Zdeněk

    2012-04-01

    The adiabatic sorption is very interesting phenomenon that occurs when vapor of refrigerant is in contact with unsaturated liquid absorbent-refrigerant mixture and exchange of heat is forbid between the system and an environment. This contribution introduces new auxiliary lines that enable correct position determination of the adiabatic sorption process in the p-T-x diagram of ammoniawater system. The presented auxiliary lines were obtained from common functions for fast calculation of water-ammonia system properties. Absorption cycles designers often utilize p-t-x diagrams of working mixtures for first suggestion of new absorption cycles. The p-t-x diagrams enable fast correct determination of saturate states of liquid (and gaseous) mixtures of refrigerants and absorbents. The working mixture isn't only at saturated state during a real working cycle. If we know pressure and temperature of an unsaturated mixture, exact position determination is possible in the p-t-x diagrams too.

  11. Surface and bulk absorption characteristics of chemically vapor-deposited zinc selenide in the infrared.

    PubMed

    Klein, C A; Miller, R P; Stierwalt, D L

    1994-07-01

    Chemically vapor-deposited zinc selenide exhibits outstanding properties in the infrared and has been established as a prime material for transmissive optics applications. Here we present and discuss data relating to the surface and the bulk absorption forward-looking infrared- (FLIR-) grade chemically vapor-deposited ZnSe, at wavelengths (2-20 µm) and temperatures (100-500 K) of current interest.

    This investigation is based on both spectral emittance measurements and infrared transmission spectroscopy performed in the context of a systems development program. Surface effects can be detected at wavelengths of up to 14 µm and usually predominate at wavelengths of less than 8 µm. Fractional surface absorptions are temperature independent from approximately 200 to 400 K and can be fitted to a Fourier series, at wavelengths ranging from 3.5 to 13.5 µm. The bulk absorption coefficient (βv) is strongly dependent on temperature as well as wavelength, but it can be approximated by a bivariate polynomial expressin that yields recommended values. At wavelengths λ ≲ 10 µm, βv decreases with increasing temperature; it is shown that a wavelength-independent Debye-Waller factor provides a correct description of the temperature dependence, thus pointing to infrared-active localized modes. At wavelengths λ ≳ 14 µm, βv increases with temperature and exhibits temperature dependencies (T(1.7), T(2.6)) that reflect three- and four-phonon summation processes. Finally, an analysis of the temperature dependence of βv at 10.6 µm demonstrates that the intrinsic lattice dynamical contribution to bulk absorption at this wavelength should be close to 4 × 10(-4) cm(-1), in accord with the results of earlier laser calorimetry tests performed on exceptionally pure laser-grade chemically vapor-deposited ZnSe.

    PMID:20935788

  12. Structural and Physical Characteristics of Ultrananocrystalline Diamond/Hydrogenated Amorphous Carbon Composite Films Deposited Using a Coaxial Arc Plasma Gun

    NASA Astrophysics Data System (ADS)

    Yoshitake, Tsuyoshi; Nakagawa, You; Nagano, Akira; Ohtani, Ryota; Setoyama, Hiroyuki; Kobayashi, Eiichi; Sumitani, Kazushi; Agawa, Yoshiaki; Nagayama, Kunihito

    2010-01-01

    Ultrananocrystalline diamond (UNCD)/hydrogenated amorphous carbon (a-C:H) films were formed without initial nucleation using a coaxial arc plasma gun. The UNCD crystallite diameters estimated from the X-ray diffraction peaks were approximately 2 nm. The Fourier transform infrared absorption spectrum exhibited an intense sp3-CH peak that might originate from the grain boundaries between UNCD crystallites whose dangling bonds are terminated with hydrogen atoms. A narrow sp3 peak in the photoemission spectrum implied that the film comprises a large number of UNCD crystallites. Large optical absorption coefficients at photon energies larger than 3 eV that might be due to the grain boundaries are specific to the UNCD/a-C:H films.

  13. Scattering and absorption characteristics of atmospheric aerosols over a semi-urban coastal environment

    NASA Astrophysics Data System (ADS)

    Aruna, K.; Lakshmi Kumar, T. V.; Rao, D. Narayana; Krishna Murthy, B. V.; Babu, S. Suresh; Krishnamoorthy, K.

    2014-11-01

    The scattering and absorption components of Aerosol Optical Depth (AOD) over a semi-urban coastal location (12.81°N, 80.03°E) near the mega city Chennai in peninsular India are separated using the collocated measurements of Black Carbon concentration and Atmospheric Boundary Layer Height (ABLH) from ERA Interim Reanalysis data assuming that most of the BC is contained and homogeneously mixed in the ABL. It is found that the absorption component to scattering component ratio has a strong seasonal variation with a pronounced maximum in the South West (SW) monsoon season. This is indicative of more effective wet removal of scattering aerosols than absorbing (BC) aerosols. There could also be an effect due to preferential removal of large particles which would have a lower content of BC. The Angstrom wavelength exponent shows a minimum in the SW monsoon season, the minimum being more pronounced for the scattering aerosols implying relative dominance of coarse mode particles. Investigation of the effect of Relative Humidity on scattering and absorption components of AOD revealed that the BC (absorbing) aerosols are non-hydrophilic/not coated with hydrophilic substance.

  14. [Absorption Characteristics of Particulates and CDOM in Waters of Chagan Lake and Xinlicheng Reservoir in Autumn].

    PubMed

    Li, Si-jia; Song, Kai-shan; Zhao, Ying; Mu, Guang-yi; Shao, Tian-tian; Ma, Jian-hang

    2016-01-15

    Field surveys and laboratory analysis were carried out in Chagan Lake and Xinlicheng Reservoir under different salinity conditions in September 2012. In the laboratory, the absorption coefficients of particulates and chromophoric dissolved organic matter (CDOM) were measured, aiming to compare the absorption features, source of optical active substances and relative contribution of optical active constituents over the range of PAR (400-700 nm) in Chagan Lake and Xinlicheng Reservoir. The results showed that the Chagan Lake and Xinlicheng Reservoir were water bodies with medium eutrophication in autumn by TAL nutrient index and the absorption spectra of particulates matters were similar to those of phytoplankton. For the Chagan Lake with high salinity( EC = 988. 87 micro S x cm(-1)), the total particulate absorption was dominated by the nonalgal particles, and the contribution rate was in the order of nonalgal particles > phytoplankton > CDOM. For the Xinlicheng Reservoir with low salinity (EC = 311.67 microS x -cm(-1)), the total particulate absorption was dominated by the phytoplankton, and the contribution rate was ranked as phytoplankton > nonalgal particles > CDOM. Positive correlation was observed between a(p) (440), a(p) (675), a(d) (440) and total suspended matter (TSM), inorganic suspended matter (ISM), organic suspended matter (OSM) and Chl-a respectively in Chagan Lake, with correlation coefficients all above 0.55. Positive correlation was observed between a(p)(440), a(p) (675) and Chl-a (0.77 and 0.85, P < 0.05) , so did a(d) (440) and ISM (0.74, P < 0.01), while negative correlation was observed between a(p) (440) and OSM in the Xinlicheng Reservoir. In terms of Chagan Lake, negative correlation was merely observed between a(g) (440) and OSM (-0.54, P < 0.05) , but not in the Xinlicheng Reservoir. Both Sg, which was calculated by the fitting absorption curve from 250 to 400 nm, and relative molecular weight M showed that Sg[ (0.021 +/- 0.001) m(-1)] in

  15. Terahertz Absorption Characteristics of NiCr Film and Enhanced Absorption by Reactive Ion Etching in a Microbolometer Focal Plane Array

    NASA Astrophysics Data System (ADS)

    Gou, Jun; Wang, Jun; Li, Weizhi; Tai, Huiling; Gu, Deen; Jiang, Yadong

    2013-08-01

    Nano - scale metallic films have been proven to be an effective terahertz (THz) absorption layer in uncooled infrared (IR) microbolometers operated in THz spectral range. Optimized absorption can be achieved by adjusting the thickness of metallic film. Nickel - chromium (NiCr) thin films are deposited on the diaphragms of 320 × 240 VOx - based infrared focal plane arrays (IRFPA). Absorption measurements of the diaphragms with different thicknesses of NiCr (5 to 40 nm) agree reasonably well with the predicted absorption. To improve THz absorption further, a reactive ion etching (RIE) process applied to the dielectric support layer is first suggested, which generates nano - scale surface structures and increases the effective surface area of NiCr absorption film. This provides an effective way which is easy to accomplish and compatible with the manufacturing process of microbolometer IRFPAs to improve THz absorption and detection sensitivity.

  16. Ab-initio calculations of the hydrogen-uranium system. Part I: Surface phenomena, absorption, transport and trapping

    SciTech Connect

    Taylor, Christopher D; Lillard, R Scott

    2009-01-01

    Density functional theory was applied to the initial steps of uranium hydriding: surface phenomena, absorption, bulk transport and trapping. H adsorbs exothermically to the (0 0 1) surface, yet H absorption into the bulk is endothermic, with off-center octahedral absorption having the lowest absorption energy of 0.39 eV, relative to molecular H{sub 2}. H absorption in interstitial sites causes a local softening of the bulk modulus. Diffusion of H in unstrained {alpha}-U has a barrier of 0.6 eV. The energy of H absorption adjacent to the chemical impurities C, S, Si was lowered by an amount proportional to the size of the impurity atom, and the resulting lattice strain Si > S > C. Thus, impurities may promote hydriding by providing surfaces or prestrained zones for H uptake.

  17. Moisture absorption characteristics of the Orbiter thermal protection system and methods used to prevent water ingestion

    NASA Technical Reports Server (NTRS)

    Schomburg, C.; Dotts, R. L.; Tillian, D. J.

    1983-01-01

    The Space Shuttle Orbiter's silica tile Thermal Protection System (TPS) is beset by the moisture absorption problems inherently associated with low density, highly porous insulation systems. Attention is presently given to the comparative success of methods for the minimization and/or prevention of water ingestion by the TPS tiles, covering the development of water-repellent agents and their tile application techniques, flight test program results, and materials improvements. The use of external films for rewaterproofing of the TPS tiles after each mission have demonstrated marginal to unacceptable performance. By contrast, a tile interior waterproofing agent has shown promise.

  18. Diversity in the Visible-NIR Absorption Band Characteristics of Lunar and Asteroidal Plagioclase

    NASA Technical Reports Server (NTRS)

    Hiroi, T.; Kaiden, H.; Misawa, K.; Kojima, H.; Uemoto, K.; Ohtake, M.; Arai, T.; Sasaki, S.; Takeda, H.; Nyquist, L. E.; Shih, C.-Y.

    2012-01-01

    Studying the visible and near-infrared (VNIR) spectral properties of plagioclase has been challenging because of the difficulty in obtaining good plagioclase separates from pristine planetary materials such as meteorites and returned lunar samples. After an early study indicated that the 1.25 m band position of plagioclase spectrum might be correlated with the molar percentage of anorthite (An#) [1], there have been few studies which dealt with the band center behavior. In this study, the VNIR absorption band parameters of plagioclase samples have been derived using the modified Gaussian model (MGM) [2] following a pioneering study by [3].

  19. Characteristics of Hydrogen Negative Ion Source with FET based RF System

    SciTech Connect

    Ando, A.; Matsuno, T.; Funaoi, T.; Tanaka, N.; Tsumori, K.; Takeiri, Y.

    2011-09-26

    Characteristics of radio frequency (RF) plasma production were investigated using a FET inverter power supply as a RF generator. High density hydrogen plasma was obtained using an external coil wound a cylindrical ceramic tube (driver region) with RF frequency of lower than 0.5 MHz. When an axial magnetic field around 10 mT was applied to the driver region, an electron density increased drastically and attained to over 10{sup 19} m{sup -3} in the driver region. Effect of the axial magnetic field in driver and expansion region was examined. Lower gas pressure operation below 0.5 Pa was possible with higher RF frequency. H{sup -} density in the expansion region was measured by using laser photo-detachment system. It decreased as the axial magnetic field applied, which was caused by the increase of energetic electron from the driver.

  20. Hydrogen Gas Sensing Characteristics of Multiwalled Carbon Nanotubes Based Hybrid Composites

    NASA Astrophysics Data System (ADS)

    Dhall, Shivani; Jaggi, Neena

    2016-01-01

    In the present work, hydrogen (H2) gas sensing characteristics of hybrid composites prepared by sputtering of platinum (Pt) metal on the synthesized composites of functionalized multiwalled carbon nanotubes (F-MWCNTs) with selective metal oxides (nickel oxide and cuprous oxide) have been investigated. Both of these sensors are found to have fast response, complete resistance recovery, and good baseline stability at room temperature (25°C). These sensors stably and reversibly respond to 0.05% concentration of H2 gas at 25°C. This sensing material was characterized by x-ray diffraction, Raman spectroscopy ,and scanning electron microscopy. To the best of our knowledge, detection of such low concentration of H2 gas is reported here for the first time using F-MWCNTs/NiO/Pt and F-MWCNTs/Cu2O/Pt hybrid nanostructures at 25°C.

  1. Ethylene hydrogenation catalysis on Pt(111) single-crystal surfaces studied by using mass spectrometry and in situ infrared absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Tillekaratne, Aashani; Simonovis, Juan Pablo; Zaera, Francisco

    2016-10-01

    The catalytic hydrogenation of ethylene promoted by a Pt(111) single crystal was studied by using a ultrahigh-vacuum surface-science instrument equipped with a so-called high-pressure cell. Kinetic data were acquired continuously during the catalytic conversion of atmospheric-pressure mixtures of ethylene and hydrogen by using mass spectrometry while simultaneously characterizing the surface species in operando mode by reflection-absorption infrared spectroscopy (RAIRS). Many observations reported in previous studies of this system were corroborated, including the presence of adsorbed alkylidyne intermediates during the reaction and the zero-order dependence of the rate of hydrogenation on the pressure of ethylene. In addition, the high quality of the kinetic data, which could be recorded continuously versus time and processed to calculate time-dependent turnover frequencies (TOFs), afforded a more detailed analysis of the mechanism. Specifically, deuterium labeling could be used to estimate the extent of isotope scrambling reached with mixed-isotope-substituted reactants (C2H4 + D2 and C2D4 + H2). Perhaps the most important new observation from this work is that, although extensive H-D exchange takes place on ethylene before being fully converted to ethane, the average stoichiometry of the final product retains the expected stoichiometry of the gas mixture, that is, four regular hydrogen atoms and two deuteriums per ethane molecule in the case of the experiments with C2H4 + D2. This means that no hydrogen atoms are removed from the surface via their inter-recombination to produce X2 (X = H or D). It is concluded that, under catalytic conditions, hydrogen surface recombination is much slower than ethylene hydrogenation and H-D exchange.

  2. Investigation of absorption and scattering characteristics of kiwifruit tissue using a single integrating sphere system.

    PubMed

    Fang, Zhen-Huan; Fu, Xia-Ping; He, Xue-Ming

    2016-06-01

    For a quantitative understanding of light interaction with fruit tissue, it is critical to obtain two fundamental parameters: the absorption coefficient and the scattering coefficient of the tissue. This study was to investigate the optical properties of kiwifruit tissue at the wavelength of 632.8 nm. The total reflectance and total transmittance of kiwifruit tissue from three parts (including the flesh part, the seed part, and the seed-base part) were measured using a single integrating sphere system. Based on the measured spectral signals, the absorption coefficient μa and the reduced scattering coefficient μs' of kiwifruit tissue were calculated using the inverse adding-doubling (IAD) method. Phantoms made from Intralipid 20% and India ink as well as a Biomimic solid phantom were used for system validation. The mean values of μa and μs' of different parts of the kiwifruit were 0.031-0.308 mm(-1) and 0.120-0.946 mm(-1), respectively. The results showed significant differences among the μa and μs' of the three parts of the kiwifruit. The results of this study confirmed the importance of studying the optical properties for a quantitative understanding of light interaction with fruit tissue. Further investigation of fruit optical properties will be extended to a broader spectral region and different kinds of fruits. PMID:27256682

  3. Investigation of absorption and scattering characteristics of kiwifruit tissue using a single integrating sphere system*

    PubMed Central

    Fang, Zhen-huan; Fu, Xia-ping; He, Xue-ming

    2016-01-01

    For a quantitative understanding of light interaction with fruit tissue, it is critical to obtain two fundamental parameters: the absorption coefficient and the scattering coefficient of the tissue. This study was to investigate the optical properties of kiwifruit tissue at the wavelength of 632.8 nm. The total reflectance and total transmittance of kiwifruit tissue from three parts (including the flesh part, the seed part, and the seed-base part) were measured using a single integrating sphere system. Based on the measured spectral signals, the absorption coefficient μ a and the reduced scattering coefficient μ s' of kiwifruit tissue were calculated using the inverse adding-doubling (IAD) method. Phantoms made from Intralipid 20% and India ink as well as a Biomimic solid phantom were used for system validation. The mean values of μ a and μ s' of different parts of the kiwifruit were 0.031–0.308 mm−1 and 0.120–0.946 mm−1, respectively. The results showed significant differences among the μ a and μ s' of the three parts of the kiwifruit. The results of this study confirmed the importance of studying the optical properties for a quantitative understanding of light interaction with fruit tissue. Further investigation of fruit optical properties will be extended to a broader spectral region and different kinds of fruits. PMID:27256682

  4. Effects of palladium on the optical and hydrogen sensing characteristics of Pd-doped ZnO nanoparticles

    PubMed Central

    Giang, Hong Thai; Do, Thu Thi; Pham, Ngan Quang; Ho, Giang Truong

    2014-01-01

    Summary The effect of palladium doping of zinc oxide nanoparticles on the photoluminescence (PL) properties and hydrogen sensing characteristics of gas sensors is investigated. The PL intensity shows that the carrier dynamics coincides with the buildup of the Pd-related green emission. The comparison between the deep level emission and the gas sensing response characteristics allows us to suggest that the dissociation of hydrogen takes place at PdZn-vacancies ([Pd 2+(4d9)]). The design of this sensor allows for a continuous monitoring in the range of 0–100% LEL H2 concentration with high sensitivity and selectivity. PMID:25247110

  5. First calibration measurements of an FTIR absorption spectroscopy system for liquid hydrogen isotopologues for the isotope separation system of fusion power plants

    SciTech Connect

    Groessle, R.; Beck, A.; Bornschein, B.; Fischer, S.; Kraus, A.; Mirz, S.; Rupp, S.

    2015-03-15

    Fusion facilities like ITER and DEMO will circulate huge amounts of deuterium and tritium in their fuel cycle with an estimated throughput of kg per hour. One important capability of these fuel cycles is to separate the hydrogen isotopologues (H{sub 2}, D{sub 2}, T{sub 2}, HD, HT, DT). For this purpose the Isotope Separation System (ISS), using cryogenic distillation, as part of the Tritium Enrichment Test Assembly (TRENTA) is under development at Tritium Laboratory Karlsruhe. Fourier transform infrared absorption spectroscopy (FTIR) has been selected to prove its capability for online monitoring of the tritium concentration in the liquid phase at the bottom of the distillation column of the ISS. The actual research-development work is focusing on the calibration of such a system. Two major issues are the identification of appropriate absorption lines and their dependence on the isotopic concentrations and composition. For this purpose the Tritium Absorption IR spectroscopy experiment has been set up as an extension of TRENTA. For calibration a Raman spectroscopy system is used. First measurements, with equilibrated mixtures of H{sub 2}, D{sub 2} and HD demonstrate that FTIR can be used for quantitative analysis of liquid hydro-gen isotopologues and reveal a nonlinear dependence of the integrated absorbance from the D{sub 2} concentration in the second vibrational branch of D{sub 2} FTIR spectra. (authors)

  6. The influence of impact object characteristics on impact force and force absorption by mouthguard material.

    PubMed

    Takeda, Tomotaka; Ishigami, Keiichi; Shintaro, Kawamura; Nakajima, Kazunori; Shimada, Atsushi; Regner, Connell Wayne

    2004-02-01

    Most impact force and impact energy absorption tests for mouthguards have used a steel ball in a drop-ball or the pendulum device. However, in reality most sports-related trauma is caused by objects other than the steel ball, e.g. various sized balls, hockey puck, or bat or stick. Also, the elasticity, the velocity and the mass of the object could change the degree and the extent of injuries. In this study, we attempted to measure the impact force from actual sports equipment in order to clarify the exact mechanism of dental-related sports injuries and the protective effects of mouthguards. The present study was conducted using the pendulum impact device and load cell. Impact objects were removable. Seven mobile impact objects were selected for testing: a steel ball, baseball, softball, field hockey ball, ice hockey puck, cricket ball, and wooden baseball bat. The mouthguard material used in this study was a 3-mm-thick Drufosoft (Dreve-Dentamid GmbH, Unna, Germany), and test samples were made of the one-layer type. The peak transmitted forces without mouthguard ranged from the smallest (ice hockey stick, 46.9 kgf) to the biggest (steel ball, 481.6 kgf). The peak transmitted forces were smaller when the mouthguard was attached than without it for all impact materials but the effect was significantly influenced by the object type. The steel ball showed the biggest (62.1%) absorption ability while the wooden bat showed the second biggest (38.3%). The other balls or the puck showed from 0.6 to 6.0% absorbency. These results show that it is important to test the effectiveness of mouthguards on specific types of sports equipment. In future, we may select different materials and mouthguard designs suitable for specific sports. PMID:14998410

  7. Morphological characteristics and optical properties of hydrogenated amorphous silicon thin films

    NASA Astrophysics Data System (ADS)

    Tang, Haihua; Liu, Shuang; Zhou, Xiang; Liu, Yunfei; Chen, Dejun; Liu, Yong; Zhong, Zhiyong

    2016-05-01

    Hydrogenated amorphous silicon (a-Si:H) thin films were prepared by radio frequency (RF) plasma enhanced chemical vapor deposition (RF-PECVD) technique with silane (SiH4) as reactive gas. The influence of process parameters on the morphological characteristics and optical properties of a-Si:H thin films were systematically investigated. When the RF power density was taken as the only variable, it firstly improves the smoothness of the surface with increasing the RF power density below the value of 0.17 W/cm2, and then exhibits an obvious degradation at further power density. The refractive index, extinction coefficient, optical energy gap initially increase and reach a maximum at 0.17 W/cm2, followed by a significant decrease with further RF power density. When the RF power density was taken as the only variable, the surface of a-Si:H thin films become smoother by increasing the reaction pressure in the investigated range (from 50 Pa to 140 Pa), and the refractive index, extinction coefficient, optical energy gap increase with increasing of reaction pressure. The effect of RF power density and the reaction pressure on the morphological characteristics and optical properties of a-Si:H thin films was obtained, contributing to the further studies of the performance and applications of a-Si:H thin films.

  8. Anode flooding characteristics as design boundary for a hydrogen supply system for automotive polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Jenssen, Dirk; Berger, Oliver; Krewer, Ulrike

    2015-12-01

    An automotive fuel cell is investigated to define the design boundaries for an automotive hydrogen supply system with regard to anode flooding. The flooding characteristics of the fuel cell anode at various operating conditions (hydrogen flow rate, pressure, temperature, current density) are analyzed by in-situ and ex-situ measurements. Stable operation conditions are identified and a relation to the operating conditions is established. For adequate water removal, a minimum Reynolds number in the gas channels has to be adjusted. Using this information, different hydrogen supply system designs are compared in their compliance with the stability requirements. It is shown that passive hydrogen supply systems do not achieve all fuel cell requirements regarding power density, lifetime and robustness.

  9. Activation and deactivation of a robust immobilized Cp*Ir-transfer hydrogenation catalyst: a multielement in situ X-ray absorption spectroscopy study.

    PubMed

    Sherborne, Grant J; Chapman, Michael R; Blacker, A John; Bourne, Richard A; Chamberlain, Thomas W; Crossley, Benjamin D; Lucas, Stephanie J; McGowan, Patrick C; Newton, Mark A; Screen, Thomas E O; Thompson, Paul; Willans, Charlotte E; Nguyen, Bao N

    2015-04-01

    A highly robust immobilized [Cp*IrCl2]2 precatalyst on Wang resin for transfer hydrogenation, which can be recycled up to 30 times, was studied using a novel combination of X-ray absorption spectroscopy (XAS) at Ir L3-edge, Cl K-edge, and K K-edge. These culminate in in situ XAS experiments that link structural changes of the Ir complex with its catalytic activity and its deactivation. Mercury poisoning and "hot filtration" experiments ruled out leached Ir as the active catalyst. Spectroscopic evidence indicates the exchange of one chloride ligand with an alkoxide to generate the active precatalyst. The exchange of the second chloride ligand, however, leads to a potassium alkoxide-iridate species as the deactivated form of this immobilized catalyst. These findings could be widely applicable to the many homogeneous transfer hydrogenation catalysts with Cp*IrCl substructure. PMID:25768298

  10. Molar absorptivity (ε) and spectral characteristics of cyanidin-based anthocyanins from red cabbage.

    PubMed

    Ahmadiani, Neda; Robbins, Rebecca J; Collins, Thomas M; Giusti, M Monica

    2016-04-15

    Red cabbage extract contains mono and di-acylated cyanidin (Cy) anthocyanins and is often used as food colorants. Our objectives were to determine the molar absorptivity (ε) of different red cabbage Cy-derivatives and to evaluate their spectral behaviors in acidified methanol (MeOH) and buffers pH 1-9. Major red cabbage anthocyanins were isolated using a semi-preparatory HPLC, dried and weighed. Pigments were dissolved in MeOH and diluted with either MeOH (0.1% HCl) or buffers to obtain final concentrations between 5×10(-5) and 1×10(-3) mol/L. Spectra were recorded and ε calculated using Lambert-Beer's law. The ε in acidified MeOH and buffer pH 1 ranged between ~16,000-30,000 and ~13,000-26,000 L/mol cm, respectively. Most pigments showed higher ε in pH 8 than pH 2, and lowest ε between pH 4 and 6. There were bathochromic shifts (81-105 nm) from pH 1 to 8 and hypsochromic shifts from pH 8 to 9 (2-19 nm). Anthocyanins molecular structures and the media were important variables which greatly influenced their ε and spectral behaviors. PMID:26617032

  11. Suicide Fads: Frequency and Characteristics of Hydrogen Sulfide Suicides in the United States

    PubMed Central

    Reedy, Sarah Jane D.; Schwartz, Michael D.; Morgan, Brent W.

    2011-01-01

    Objective: To assess the frequency of hydrogen sulfide (H2S) suicides and describe the characteristics of victims in the United States (U.S.) since the technique became common in Japan in 2007. Methods: To ascertain the frequency of intentional H2S related deaths in the U.S. prior to the start of the Japanese trend in 2007, we searched the multiple-cause-of-death data from the National Vital Statistics System. To collect as much information about the victims as possible, we sent an email to the National Association of Medical Examiners (NAME) listserv asking for their cooperation in identifying cases of H2S suicide. To identify cases that were not voluntarily reported by medical examiners but were reported by the media, we conducted Google searches using the search terms: “hydrogen sulfide suicide,” “H2S suicide,” “detergent suicide,” “chemical suicide,” and “suicide fad.” We obtained all available autopsy reports and abstracted information, including the site of the incident, the presence of a note warning others about the toxic gas and the demographic characteristics of the victims. We contacted medical examiners who potentially had custody of the cases that were identified through media reports and requested autopsies of these victims. When unable to obtain the autopsies, we gathered information from the media reports. Results: Forty-five deaths from H2S exposure occurred in the U.S. from 1999 to 2007, all unintentional. Responses from the NAME listserv yielded autopsy reports for 11 victims, and Google searches revealed an additional 19 H2S suicides in the U.S. since 2008. Overall (n=30), two cases were identified during 2008, 10 in 2009, and 18 in 2010. The majority of victims were white males, less than 30-years-old, left a warning note, and were found in cars. There were five reports of injuries to first responders, but no secondary fatalities. Conclusion: H2S suicides are increasing in the U.S., and their incidence is probably

  12. Modeling the effects of wind tunnel wall absorption on the acoustic radiation characteristics of propellers

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Eversman, W.

    1986-01-01

    Finite element theory is used to calculate the acoustic field of a propeller in a soft walled circular wind tunnel and to compare the radiation patterns to the same propeller in free space. Parametric solutions are present for a "Gutin" propeller for a variety of flow Mach numbers, admittance values at the wall, microphone position locations, and propeller to duct radius ratios. Wind tunnel boundary layer is not included in this analysis. For wall admittance nearly equal to the characteristic value of free space, the free field and ducted propeller models agree in pressure level and directionality. In addition, the need for experimentally mapping the acoustic field is discussed.

  13. Modeling the effects of wind tunnel wall absorption on the acoustic radiation characteristics of propellers

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Eversman, W.

    1986-01-01

    Finite element theory is used to calculate the acoustic field of a propeller in a soft walled circular wind tunnel and to compare the radiation patterns to the same propeller in free space. Parametric solutions are present for a 'Gutin' propeller for a variety of flow Mach numbers, admittance values at the wall, microphone position locations, and propeller to duct radius ratios. Wind tunnel boundary layer is not included in this analysis. For wall admittance nearly equal to the characteristic value of free space, the free field and ducted propeller models agree in pressure level and directionality. In addition, the need for experimentally mapping the acoustic field is discussed.

  14. Operating characteristics of a hydrogen-argon plasma torch for supersonic combustion applications

    NASA Technical Reports Server (NTRS)

    Barbi, E.; Mahan, J. R.; O'Brien, W. F.; Wagner, T. C.

    1989-01-01

    The residence time of the combustible mixture in the combustion chamber of a scramjet engine is much less than the time normally required for complete combustion. Hydrogen and hydrocarbon fuels require an ignition source under conditions typically found in a scramjet combustor. Analytical studies indicate that the presence of hydrogen atoms should greatly reduce the ignition delay in this environment. Because hydrogen plasmas are prolific sources of hydrogen atoms, a low-power, uncooled hydrogen plasma torch has been built and tested to evaluate its potential as a possible flame holder for supersonic combustion. The torch was found to be unstable when operated on pure hydrogen; however, stable operation could be obtained by using argon as a body gas and mixing in the desired amount of hydrogen. The stability limits of the torch are delineated and its electrical and thermal behavior documented. An average torch thermal efficiency of around 88 percent is demonstrated.

  15. Operating characteristics of a hydrogen-argon plasma torch for supersonic combustion applications

    SciTech Connect

    Barbi, E.; Mahan, J.R.; O'brien, W.F.; Wagner, T.C.

    1989-04-01

    The residence time of the combustible mixture in the combustion chamber of a scramjet engine is much less than the time normally required for complete combustion. Hydrogen and hydrocarbon fuels require an ignition source under conditions typically found in a scramjet combustor. Analytical studies indicate that the presence of hydrogen atoms should greatly reduce the ignition delay in this environment. Because hydrogen plasmas are prolific sources of hydrogen atoms, a low-power, uncooled hydrogen plasma torch has been built and tested to evaluate its potential as a possible flame holder for supersonic combustion. The torch was found to be unstable when operated on pure hydrogen; however, stable operation could be obtained by using argon as a body gas and mixing in the desired amount of hydrogen. The stability limits of the torch are delineated and its electrical and thermal behavior documented. An average torch thermal efficiency of around 88 percent is demonstrated. 10 references.

  16. An organic dye-polymer (phenol red-poly (vinyl alcohol)) composite architecture towards tunable -optical and -saturable absorption characteristics

    NASA Astrophysics Data System (ADS)

    Sreedhar, Sreeja; Illyaskutty, Navas; Sreedhanya, S.; Philip, Reji; Muneera, C. I.

    2016-05-01

    Herein, we demonstrate that blending an organic dye (guest/filler), with a vinyl polymer (host template), is an inexpensive and simple approach for the fabrication of multifunctional photonic materials which could display an enhancement in the desirable properties of the constituent materials and, at the same time provide novel synergistic properties for the guest-host system. A new guest-host nanocomposite system comprising Phenol Red dye and poly (vinyl alcohol) as guest and host template, respectively, which exhibits tunable optical characteristics and saturable absorption behavior, is introduced. The dependence of local electronic environment provided by the polymer template and the interactions of the polymer molecules with the encapsulated guest molecules on the observed optical/nonlinear absorption behavior is discussed. An understanding of the tunability of the optical/ photophysical processes, with respect to the filler content, as discussed herein could help in the design of improved optical materials for several photonic device applications like organic light emitting diodes and saturable absorbers.

  17. Effect of light incidence angle on optical absorption characteristics of low bandgap polymer-based bulk heterojunction organic solar cells

    NASA Astrophysics Data System (ADS)

    Lee, Kwan-Yong; Park, Sun-Joo; Kim, Do-Hyun; Kim, Young-Joo

    2014-08-01

    The bulk heterojunction organic solar cell based on thieno[3,4-b]thiophene/benzodithiophene (PTB7) is one of an alternative candidate for traditional silicon-based solar cells owing to its advantages of ease of manufacture, low cost, and flexibility. Currently, many research studies of these devices focus on power conversion efficiency (PCE) enhancement with only normal sunlight incidence. In this study, we have experimentally verified that PCE markedly decreased from 5.51 to 3.47% as incidence angle was changed from 0 to 60°. Using the finite-difference time-domain method, we found that the degeneration of optical absorption is caused by the decreased electrical field intensity in the photoactive layer over the entire wavelength range due to the optical interference profile change. In addition, we confirmed that a higher incidence angle also results in unbalanced charge carrier transport characteristics, resulting in further decrease in solar cell efficiency.

  18. Hydrogen bonding between acetate-based ionic liquids and water: Three types of IR absorption peaks and NMR chemical shifts change upon dilution

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Cao, Yuanyuan; Zhang, Yuwei; Mu, Tiancheng

    2014-01-01

    The hydrogen-bonding interaction between acetate-based ionic liquids (AcIL) and water was investigated by attenuated total reflection infrared (ATR-IR) and 1H NMR. Interestingly, the relative change of chemical shift δ of 1H NMR upon dilution could be divided into three regions. All the H show an upfield shift in Regions 1 and 2 while a different tendency in Region 3 (upfield, no, and downfield shift classified as Types 1, 2, 3, respectively). For ATR-IR, the red, no, or blue shift of νOD (IR absorption peak of OD in D2O) and ν± (IR absorption peak of AcILs) also have three types, respectively. Two-Times Explosion Mechanism (TTEM) was proposed to interpret the dynamic processes of AcILs upon dilution macroscopically, meanwhile an Inferior Spring Model (ISM) was proposed to help to understand the TTEM microscopically, All those indicate that AcILs present the state of network, sub-network, cluster, sub-cluster, ion pairs and sub-ion pairs in sequence upon dilution by water and the elongation of hydrogen bonding between AcILs-water, between cation-anion of AcILs is plastic deformation rather than elastic deformation.

  19. Evaluation of the two-photon absorption characteristics of GaSb/GaAs quantum rings

    SciTech Connect

    Wagener, M. C.; Botha, J. R.; Carrington, P. J.; Krier, A.

    2014-07-28

    The optical parameters describing the sub-bandgap response of GaSb/GaAs quantum rings solar cells have been obtained from photocurrent measurements using a modulated pseudo-monochromatic light source in combination with a second, continuous photo-filling source. By controlling the charge state of the quantum rings, the photoemission cross-sections describing the two-photon sub-bandgap transitions could be determined independently. Temperature dependent photo-response measurements also revealed that the barrier for thermal hole emission from the quantum rings is significantly below the quantum ring localisation energy. The temperature dependence of the sub-bandgap photo-response of the solar cell is also described in terms of the photo- and thermal-emission characteristics of the quantum rings.

  20. Improving Memory Characteristics of Hydrogenated Nanocrystalline Silicon Germanium Nonvolatile Memory Devices by Controlling Germanium Contents.

    PubMed

    Kim, Jiwoong; Jang, Kyungsoo; Phu, Nguyen Thi Cam; Trinh, Thanh Thuy; Raja, Jayapal; Kim, Taeyong; Cho, Jaehyun; Kim, Sangho; Park, Jinjoo; Jung, Junhee; Lee, Youn-Jung; Yi, Junsin

    2016-05-01

    Nonvolatile memory (NVM) with silicon dioxide/silicon nitride/silicon oxynitride (ONO(n)) charge trap structure is a promising flash memory technology duo that will fulfill process compatibility for system-on-panel displays, down-scaling cell size and low operation voltage. In this research, charge trap flash devices were fabricated with ONO(n) stack gate insulators and an active layer using hydrogenated nanocrystalline silicon germanium (nc-SiGe:H) films at a low temperature. In this study, the effect of the interface trap density on the performance of devices, including memory window and retention, was investigated. The electrical characteristics of NVM devices were studied controlling Ge content from 0% to 28% in the nc-SiGe:H channel layer. The optimal Ge content in the channel layer was found to be around 16%. For nc-SiGe:H NVM with 16% Ge content, the memory window was 3.13 V and the retention data exceeded 77% after 10 years under the programming condition of 15 V for 1 msec. This showed that the memory window increased by 42% and the retention increased by 12% compared to the nc-Si:H NVM that does not contain Ge. However, when the Ge content was more than 16%, the memory window and retention property decreased. Finally, this research showed that the Ge content has an effect on the interface trap density and this enabled us to determine the optimal Ge content. PMID:27483856

  1. Collision-Induced Absorption Spectra of Binary Mixtures of Molecular Hydrogen with Molecular Deuterium and Argon and of Pure Hydrogen, D

    NASA Astrophysics Data System (ADS)

    Hsieh, Chang-Tsang William

    In the present research project a systematic study of the collision-induced infrared absorption (CIA) spectra of the binary mixtures of H_2 - D_2 in the region of the double fundamental vibrations of H_2 and D_2, and H_2 - Ar in the fundamental band of H_2, and of pure HD in its fundamental and first overtone regions was undertaken. The experiments were carried out with a 2.0 m high-pressure low-temperature transmission-type absorption cell at 77, 201 and 296 K at total gas densities up to 550 amagat. Infrared prism and grating spectrometers equipped with a microprocessor -controlled stepping motor were used to record the spectra. All the experimental results obtained represent first-time observations in collision-induced absorption. Collision-induced infrared absorption spectra of the double transitions of H_2(v=1>=ts 0) and D_2(v=1>=ts 0) have been observed at 77 and 201 K in the spectral region 7000-8000 cm^{-1} for total gas densities up to 550 amagat with a partial gas density ratio of 1:1 of H_2 and D_2. The observed spectra are interpreted in terms of the transitions, Q_1(J) of H_2+Q_1(J) of D _2, Q_1(J) of H_2+S _1(J) of D_2, S_1(J) of H_2 + Q_1(J) of D_2, and S_1(J) of H_2 + S_1(J) of D_2 for J = 0 and 1 for H _2 and J = 0, 1, and 2 for D_2. Analysis of the experimental absorption profiles was carried out using appropriate lineshape functions. The absorption coefficients, lineshape parameters, etc., are obtained from the analysis. Collision-induced enhancement absorption spectra of the fundamental band of H_2 in H_2 - Ar mixtures were recorded at room temperature for a base density of 72 amagat of H_2 for several partial densities of Ar up to 440 amagat. Hexadecapole-induced U transitions, U_1(1), U_1(2), Q_1(0)+U _0(1), and Q_1(1) + U_0(1) have been identified in the spectral region 5400 -6200 cm^{-1}. A "cage" model has been proposed to account for the double transitions of H_2 - H_2 in the H _2 - Ar enhancement spectra. From the analysis of the

  2. Exploiting the superior absorption characteristics of protons for treating human disease

    SciTech Connect

    Slater, J.

    1993-04-01

    A patient-dedicated, hospital-based proton accelerator system has been developed for treating cancer and some benign diseases with protons. The design requirements for such a system differ from those needed in a medium-energy physics laboratory. Variable energy; relatively low intensity; uniformity of extraction; precision, three-dimensional beam delivery; and patient safety requirements all place unique demands on the accelerator and the control system. Examination of the interaction characteristics in tissue for a variety of radiation species indicates that heavy-charged particles have superior attributes for treating human disease as compared with photons and electrons which are currently used for conventional radiation therapy. Protons deposit less energy in the normal tissues between the skin surface and the deeply located tumor than in the target volume, and no significant energy is deposited beyond a few millimeters of the distal surface of the target volume. Megavoltage photons deposit their maximum energy in the range of 0.5 cm to 4.5 cm below the skin surface and energy deposition falls off exponentially thereafter. For protons, this results in a lower volume integral dose deposited in the normal tissues surrounding the target in comparison to the volume integral dose deposited in the target volume with the most beam portals. The biologic effect of protons is quite similar to cobalt-60 photons, whose energy deposition occurs below 10 keV per micron 9keV/{mu}m. Typically in the entrance and proximal regions, 4-10% of the the energy is > 10 keV/{mu}m and 0.5-1% is > 100 keV/{mu}m; in the distal region, 20% is > 10 keV/{mu}m, 0.5-1% is > 100 keV/{mu}m; and in the region of distal drop-off 40% of the lineal-energy transfer is > 10 keV/{mu}m, 1-2% is > 100 keV/{mu}m.

  3. The study of discharge characteristic of the cold-cathode negative hydrogen PIG-type ion source

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Dong, P.; Long, J. D.; Wang, T.; Lan, C. H.; Peng, Y. F.; Wei, T.; He, X. Z.; Zhang, K. Z.; Shi, J. S.

    2012-09-01

    The cold-cathode Penning ion gage (PIG)-type ion source is designed for the internal ion source of the compact cyclotron. This kind of ion source has been used for generation of the negative hydrogen (H-) ions for many decades. The discharge characteristics of the ion source are investigated systematically for hydrogen operation at different discharge currents, gas flow rates and magnetic fields, respectively. In this paper, optical emission spectroscopy measurement is carried out to diagnose the parameters of the hydrogen plasma in the ion source. The preliminary optimization of the H- formation with the gas flow rates is discussed and analyzed. Current experimental results can provide useful information for the design and operation of the negative ion source.

  4. Hydrogen sulfide decreases β-adrenergic agonist-stimulated lung liquid clearance by inhibiting ENaC-mediated transepithelial sodium absorption.

    PubMed

    Agné, Alisa M; Baldin, Jan-Peter; Benjamin, Audra R; Orogo-Wenn, Maria C; Wichmann, Lukas; Olson, Kenneth R; Walters, Dafydd V; Althaus, Mike

    2015-04-01

    In pulmonary epithelia, β-adrenergic agonists regulate the membrane abundance of the epithelial sodium channel (ENaC) and, thereby, control the rate of transepithelial electrolyte absorption. This is a crucial regulatory mechanism for lung liquid clearance at birth and thereafter. This study investigated the influence of the gaseous signaling molecule hydrogen sulfide (H2S) on β-adrenergic agonist-regulated pulmonary sodium and liquid absorption. Application of the H2S-liberating molecule Na2S (50 μM) to the alveolar compartment of rat lungs in situ decreased baseline liquid absorption and abrogated the stimulation of liquid absorption by the β-adrenergic agonist terbutaline. There was no additional effect of Na2S over that of the ENaC inhibitor amiloride. In electrophysiological Ussing chamber experiments with native lung epithelia (Xenopus laevis), Na2S inhibited the stimulation of amiloride-sensitive current by terbutaline. β-adrenergic agonists generally increase ENaC abundance by cAMP formation and activation of PKA. Activation of this pathway by forskolin and 3-isobutyl-1-methylxanthine increased amiloride-sensitive currents in H441 pulmonary epithelial cells. This effect was inhibited by Na2S in a dose-dependent manner (5-50 μM). Na2S had no effect on cellular ATP concentration, cAMP formation, and activation of PKA. By contrast, Na2S prevented the cAMP-induced increase in ENaC activity in the apical membrane of H441 cells. H441 cells expressed the H2S-generating enzymes cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase, and they produced H2S amounts within the employed concentration range. These data demonstrate that H2S prevents the stimulation of ENaC by cAMP/PKA and, thereby, inhibits the proabsorptive effect of β-adrenergic agonists on lung liquid clearance. PMID:25632025

  5. Hydrogen sulfide decreases β-adrenergic agonist-stimulated lung liquid clearance by inhibiting ENaC-mediated transepithelial sodium absorption

    PubMed Central

    Agné, Alisa M.; Baldin, Jan-Peter; Benjamin, Audra R.; Orogo-Wenn, Maria C.; Wichmann, Lukas; Olson, Kenneth R.; Walters, Dafydd V.

    2015-01-01

    In pulmonary epithelia, β-adrenergic agonists regulate the membrane abundance of the epithelial sodium channel (ENaC) and, thereby, control the rate of transepithelial electrolyte absorption. This is a crucial regulatory mechanism for lung liquid clearance at birth and thereafter. This study investigated the influence of the gaseous signaling molecule hydrogen sulfide (H2S) on β-adrenergic agonist-regulated pulmonary sodium and liquid absorption. Application of the H2S-liberating molecule Na2S (50 μM) to the alveolar compartment of rat lungs in situ decreased baseline liquid absorption and abrogated the stimulation of liquid absorption by the β-adrenergic agonist terbutaline. There was no additional effect of Na2S over that of the ENaC inhibitor amiloride. In electrophysiological Ussing chamber experiments with native lung epithelia (Xenopus laevis), Na2S inhibited the stimulation of amiloride-sensitive current by terbutaline. β-adrenergic agonists generally increase ENaC abundance by cAMP formation and activation of PKA. Activation of this pathway by forskolin and 3-isobutyl-1-methylxanthine increased amiloride-sensitive currents in H441 pulmonary epithelial cells. This effect was inhibited by Na2S in a dose-dependent manner (5–50 μM). Na2S had no effect on cellular ATP concentration, cAMP formation, and activation of PKA. By contrast, Na2S prevented the cAMP-induced increase in ENaC activity in the apical membrane of H441 cells. H441 cells expressed the H2S-generating enzymes cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase, and they produced H2S amounts within the employed concentration range. These data demonstrate that H2S prevents the stimulation of ENaC by cAMP/PKA and, thereby, inhibits the proabsorptive effect of β-adrenergic agonists on lung liquid clearance. PMID:25632025

  6. State of Ni in catalysts for glycerol hydrogenation and methane steam reforming as studied by X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Tkachenko, O. P.; Kustov, L. M.

    2013-06-01

    X-ray absorption spectroscopy is used to study 1% Ni/Al2O3, 5% Ni/Al2O3, and 5% Ni/TiO2 catalysts for glycerol and methane conversion. The effect of treatment in H2 under microwave irradiation on the reduction of part of the nickel to the metallic state in the titanium oxide-supported catalyst is demonstrated.

  7. Effect of gas residence time on near-edge X-ray absorption fine structures of hydrogenated amorphous carbon films grown by plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Jia, Lingyun; Sugiura, Hirotsugu; Kondo, Hiroki; Takeda, Keigo; Ishikawa, Kenji; Oda, Osamu; Sekine, Makoto; Hiramatsu, Mineo; Hori, Masaru

    2016-04-01

    In hydrogenated amorphous carbon films, deposited using a radical-injection plasma-enhanced chemical vapor deposition system, the chemical bonding structure was analyzed by near-edge X-ray absorption fine-structure spectroscopy. With a change in the residence times of source gases in a reactor, whereby total gas flow rates of H2/CH4 increased from 50 to 400 sccm, sp2-C fractions showed the minimum value at 150 sccm, while H concentration negligibly changed according to the results of secondary ion mass spectroscopy. On the other hand, widths of σ* C-C peaks increased with decreasing gas residence time, which indicates an increase in the fluctuation of bonding structures.

  8. Pd nanoparticles embedded into a metal-organic framework: synthesis, structural characteristics, and hydrogen sorption properties.

    PubMed

    Zlotea, Claudia; Campesi, Renato; Cuevas, Fermin; Leroy, Eric; Dibandjo, Philippe; Volkringer, Christophe; Loiseau, Thierry; Férey, Gérard; Latroche, Michel

    2010-03-10

    The metal-organic framework MIL-100(Al) has been used as a host to synthesize Pd nanoparticles (around 2.0 nm) embedded within the pores of the MIL, showing one of the highest metal contents (10 wt %) without degradation of the porous host. Textural properties of MIL-100(Al) are strongly modified by Pd insertion, leading to significant changes in gas sorption properties. The loss of excess hydrogen storage at low temperature can be correlated with the decrease of the specific surface area and pore volume after Pd impregnation. At room temperature, the hydrogen uptake in the composite MIL-100(Al)/Pd is almost twice that of the pristine material. This can be only partially accounted by Pd hydride formation, and a "spillover" mechanism is expected to take place promoting the dissociation of molecular hydrogen at the surface of the metal nanoparticles and the diffusion of monatomic hydrogen into the porosity of the host metal-organic framework. PMID:20155921

  9. Thermal characteristics and mass absorption efficiency of carbonaceous aerosol measured during a post-harvest burning period

    NASA Astrophysics Data System (ADS)

    Batmunkh, T.; Kim, Y. J.; Cayetano, M. G.; Lee, K.; Kim, K.; Park, K.

    2012-12-01

    In order to better understand the characteristics of carbonaceous aerosol time-resolved OC, EC, and BC were measured by a Sunset OC/EC analyzer and an Aethalometer, respectively, during a post-harvest burning period from November 22 to December 20, 2011 at a sub-urban site in Gwangju, Korea. OC and EC were analyzed by the thermal-optical transmittance (TOT) method with NIOSH temperature protocol. The spectral light absorption coefficient (babs) was determined based on the Aethalometer data. Overall average OC and EC concentrations were found to be 5.0±2.4 ugC/ m3 and 1.5±0.9 ugC/ m3, respectively for the sampling period. On average, babs at seven Aethalometer wavelengths was found to be 38.4±27.8 Mm-1, 24.3±17.8 Mm-1, 20.8±15.4 Mm-1, 17.9±13.3 Mm-1, 14.9±11.1 Mm-1, 9.9±7.4 Mm-1, and 8.8±6.6 Mm-1 at 370 nm, 470 nm, 520 nm, 590 nm, 660 nm, 880 nm, and 950 nm, respectively. Clear diurnal variations with morning (7:00 AM~9:00 AM) and evening (7:00 PM~11:00 PM) peaks were observed for OC, EC, and babs mostly due to local burning activities. Based on the 4-day back-trajectory analyses conducted using the HYSPLIT model. Event cases were classified into four categories, based on the 4-day air mass back trajectories, as Clean(C), Stagnant(ST), Continental(CC), and Local Burning(LB) events. In order to better investigate the characteristics of atmospheric carbonaceous aerosol, thermal evolution patterns of carbonaceous aerosol measured by the Sunset analyzer were characterized as OC1, OC2, and EC, which were detected in temperature steps of 600 C, 840 C in an non-oxidizing atmosphere, and 870 C in an oxidizing atmosphere, respectively. High ratio of OC2/OC1; 1.39~1.41 was observed in the evening 9:00~11:00 PM due to local burning event. Concentration of OC2 was higher up to 1.4 times than that of OC1 for the LB cases, showing that higher molecular weight fraction of organic aerosol was dominant for the time. As expected, higher correlation was found between EC and

  10. Evaluation of metal ion absorptive characteristics of three types of plastic sample bags used for pecipitation sampling

    USGS Publications Warehouse

    Good, A.B.; Schroder, L.J.

    1984-01-01

    Simulated precipitation samples containing 16 metal ions were prepared at 4 pH values. Absorptive characteristics of polypropylene, polyethylene, and polyester/polyolefin sacks were evaluated at pH 3.5, 4.0, 4.5, and 5.0. Simulated precipitation was in contact with the sacks for 17 days, and subsamples were removed for chemical analysis at 3, 7, 10, 14, and 17 days after initial contact. All three types of plastic sacks absorbed Fe throughout the entire pH range. Polypropylene and polyethylene absorbed Pb throughout the entire pH range; polyester/polyolefin sacks absorbed Pb at pH 4.0 or greater. All plastic sacks also absorbed Cu, Mo, and V at pH 4.5 and 5.0. Leaching the plastic sacks with 0.7 percent HNO3 did not result in 100 percent of Cu, Fe, Pb, and V. These sacks would be suitable collection vessels for Ba, Be, Ca, Cd, Co, Li, Mg, Mn, Na Sr and Zn in precipitation through the pH range of 3.5 to 5.0.

  11. Dynamic mechanical analysis and high strain-rate energy absorption characteristics of vertically aligned carbon nanotube reinforced woven fiber-glass composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The dynamic mechanical behavior and energy absorption characteristics of nano-enhanced functionally graded composites, consisting of 3 layers of vertically aligned carbon nanotube (VACNT) forests grown on woven fiber-glass (FG) layer and embedded within 10 layers of woven FG, with polyester (PE) and...

  12. Simulation of gas absorption with chemical reaction: The selective removal of hydrogen sulfide by aqueous methyldiethanolamine in packed columns

    SciTech Connect

    Lindner, J.R.

    1988-01-01

    The design of separation devices, particularly for solvent-based selective removal of H{sub 2}S from CO{sub 2}, requires an accurate mathematical model. Unfortunately, this requirement for high accuracy is often in conflict with the need for efficient computation. The addition of more and more complicated analyses, such as a move from Henry's law to a method incorporating gas and liquid activities for computing vapor liquid equilibria, may give a more accurate solution, but only at the cost of decreased computational efficiency. The efforts in this work have been directed toward two goals. The first was to develop an accurate mathematical model for the aqueous methyldiethanolamine (MDEA) system. The steady-state packed column model developed in this work has been tested with data from Schubert (1988) to verify its accuracy. The second goal was to modify the model to improve its computational efficiency. Areas such as vapor-liquid equilibrium calculations, flow hydrodynamics, and thermal effects were examined to determine what simplifications could be made, and how these simplifications affected both the accuracy and the efficiency of the model. The result of this effort is a mathematical model for multicomponent chemical absorption in a continuous contactor that balances computation efficiency with rigorous physical and chemical treatment. This model is useful not only for the analysis of the MDEA-H{sub 2}S-CO{sub 2} system, but the same framework also could be applied to other chemical absorption systems.

  13. Constraint on a varying proton-to-electron mass ratio from molecular hydrogen absorption towards quasar SDSS J123714.60+064759.5

    NASA Astrophysics Data System (ADS)

    Daprà, M.; Bagdonaite, J.; Murphy, M. T.; Ubachs, W.

    2015-11-01

    Molecular hydrogen transitions in the sub-damped Lyman α absorber at redshift zabs ≃ 2.69, towards the background quasar SDSS J123714.60+064759.5, were analysed in order to search for a possible variation of the proton-to-electron mass ratio μ over a cosmological time-scale. The system is composed of three absorbing clouds where 137 H2 and HD absorption features were detected. The observations were taken with the Very Large Telescope/Ultraviolet and Visual Echelle Spectrograph with a signal-to-noise ratio of 32 per 2.5 km s-1 pixel, covering the wavelengths from 356.6 to 409.5 nm. A comprehensive fitting method was used to fit all the absorption features at once. Systematic effects of distortions to the wavelength calibrations were analysed in detail from measurements of asteroid and `solar twin' spectra, and were corrected for. The final constraint on the relative variation in μ between the absorber and the current laboratory value is Δμ/μ = (-5.4 ± 6.3stat ± 4.0syst) × 10-6, consistent with no variation over a look-back time of 11.4 Gyr.

  14. Probing electrons in TiO2 polaronic trap states by IR-absorption: evidence for the existence of hydrogenic states.

    PubMed

    Sezen, Hikmet; Buchholz, Maria; Nefedov, Alexei; Natzeck, Carsten; Heissler, Stefan; Di Valentin, Cristiana; Wöll, Christof

    2014-01-01

    An important step in oxide photochemistry, the loading of electrons into shallow trap states, was studied using infrared (IR) spectroscopy on both, rutile TiO2 powders and single-crystal, r-TiO2(110) oriented samples. After UV-irradiation or n-doping by exposure to H-atoms broad IR absorption lines are observed for the powders at around 940 cm(-1). For the single crystal substrates, the IR absorption bands arising from an excitation of the trapped electrons into higher-lying final states show additional features not observed in previous work. On the basis of our new, high-resolution data and theoretical studies on the polaron binding energy in rutile we propose that the trap states correspond to polarons and are thus intrinsic in nature. We assign the final states probed by the IR-experiments to hydrogenic states within the polaron potential. Implications of these observations for photochemistry on oxides will be briefly discussed. PMID:24448350

  15. Vibrational absorption and vibrational circular dichroism spectra of leucine in water under different pH conditions: hydrogen-bonding interactions with water.

    PubMed

    Poopari, Mohammad Reza; Zhu, Peiyan; Dezhahang, Zahra; Xu, Yunjie

    2012-11-21

    Vibrational absorption (VA) and vibrational circular dichroism (VCD) spectroscopy have been used to study leucine, a flexible branched-chain amino acid, in aqueous solution. The VA spectra in the range of 1800-1250 cm(-1) of leucine in D(2)O under three representative pHs from strongly acidic (pH = 1), near neutral (pH = 6), to strongly basic (pH = 13), have been measured. The related VCD spectrum has been obtained under near neutral condition. Searches have been carried out to identify the most stable conformers of the Zwitterionic, protonated, and deprotonated forms of leucine in water. The geometry optimization, harmonic frequency calculations, and VA and VCD intensities have been computed at the B3LYP/6-311++G(d,p) level with the implicit polarizable continuum solvation model. While the observed VA spectra under three pHs can be well interpreted with the inclusion of the implicit solvation model, both implicit and explicit solvation models have been found to be crucial for the adequate interpretation of the complex VCD features observed. Molecular dynamics simulations and radial distribution functions have been used to aid the modeling of the leucine-(water)(N) clusters. It has been recognized that the insertion of a water molecule between the COO(-) and NH(3) (+) functional groups in the explicit solvated clusters is critical to reproduce the VCD signatures observed. Furthermore, the inclusion of the implicit bulk water environment has been found to be essential to lock water molecules, which are directly hydrogen bonded to leucine, into the positions expected in solution. The application of the explicit and implicit solvation models simultaneously allows new insights into the hydrogen bonding network surrounding leucine in aqueous solution and the role of the surrounding bulk water in stabilizing such hydrogen-bonding network. PMID:23181307

  16. Enhanced Hydrogen Evolution in the Presence of Plasmonic Au-Photo-Sensitized g-C3N4 with an Extended Absorption Spectrum from 460 to 640 nm.

    PubMed

    Xie, Lihong; Ai, Zhuyu; Zhang, Meng; Sun, Runze; Zhao, Weirong

    2016-01-01

    Extensively spectral-responsive photocatalytic hydrogen production was achieved over g-C3N4 photo-sensitized by Au nanoparticles. The photo-sensitization, which was achieved by a facile photo-assisted reduction route, resulted in an extended spectral range of absorption from 460 to 640 nm. The photo-sensitized g-C3N4 (Au/g-C3N4) photocatalysts exhibit significantly enhanced photocatalytic hydrogen evolution with a TOF value of 223 μmol g-1 h-1, which is a 130-fold improvement over g-C3N4. The hydrogen production result confirms that Au nanoparticles are effective photo-sensitizers for the visible light-responsive substrate g-C3N4. UV-vis diffuse reflection spectra (DRS), photoluminescence spectra (PL), electron spin resonance (ESR), and electrochemical measurements were used to investigate the transfer process of photogenerated electrons. The optimal Au/g-C3N4 photocatalyst displays the lowest charge transfer resistance of 18.45 Ω cm-2 and a high electron transfer efficiency, as determined by electrochemical impedance spectroscopy (EIS). The photo-sensitized g-C3N4 shows a broad range of response to visible light (400-640 nm), with significantly high incident photon-to-current efficiency (IPCE) values of 14.52%, 2.9%, and 0.74% under monochromatic light irradiation of 400, 550, and 640 nm, respectively. ESR characterization suggests that Au nanoparticles are able to absorb visible light of wavelengths higher than 460 nm and to generate hot electrons due to the SPR effect. PMID:27575246

  17. Enhanced Hydrogen Evolution in the Presence of Plasmonic Au-Photo-Sensitized g-C3N4 with an Extended Absorption Spectrum from 460 to 640 nm

    PubMed Central

    Xie, Lihong; Ai, Zhuyu; Zhang, Meng; Sun, Runze; Zhao, Weirong

    2016-01-01

    Extensively spectral-responsive photocatalytic hydrogen production was achieved over g-C3N4 photo-sensitized by Au nanoparticles. The photo-sensitization, which was achieved by a facile photo-assisted reduction route, resulted in an extended spectral range of absorption from 460 to 640 nm. The photo-sensitized g-C3N4 (Au/g-C3N4) photocatalysts exhibit significantly enhanced photocatalytic hydrogen evolution with a TOF value of 223 μmol g-1 h-1, which is a 130-fold improvement over g-C3N4. The hydrogen production result confirms that Au nanoparticles are effective photo-sensitizers for the visible light-responsive substrate g-C3N4. UV–vis diffuse reflection spectra (DRS), photoluminescence spectra (PL), electron spin resonance (ESR), and electrochemical measurements were used to investigate the transfer process of photogenerated electrons. The optimal Au/g-C3N4 photocatalyst displays the lowest charge transfer resistance of 18.45 Ω cm-2 and a high electron transfer efficiency, as determined by electrochemical impedance spectroscopy (EIS). The photo-sensitized g-C3N4 shows a broad range of response to visible light (400–640 nm), with significantly high incident photon-to-current efficiency (IPCE) values of 14.52%, 2.9%, and 0.74% under monochromatic light irradiation of 400, 550, and 640 nm, respectively. ESR characterization suggests that Au nanoparticles are able to absorb visible light of wavelengths higher than 460 nm and to generate hot electrons due to the SPR effect. PMID:27575246

  18. Vibrational absorption and vibrational circular dichroism spectra of leucine in water under different pH conditions: Hydrogen-bonding interactions with water

    NASA Astrophysics Data System (ADS)

    Poopari, Mohammad Reza; Zhu, Peiyan; Dezhahang, Zahra; Xu, Yunjie

    2012-11-01

    Vibrational absorption (VA) and vibrational circular dichroism (VCD) spectroscopy have been used to study leucine, a flexible branched-chain amino acid, in aqueous solution. The VA spectra in the range of 1800-1250 cm-1 of leucine in D2O under three representative pHs from strongly acidic (pH = 1), near neutral (pH = 6), to strongly basic (pH = 13), have been measured. The related VCD spectrum has been obtained under near neutral condition. Searches have been carried out to identify the most stable conformers of the Zwitterionic, protonated, and deprotonated forms of leucine in water. The geometry optimization, harmonic frequency calculations, and VA and VCD intensities have been computed at the B3LYP/6-311++G(d,p) level with the implicit polarizable continuum solvation model. While the observed VA spectra under three pHs can be well interpreted with the inclusion of the implicit solvation model, both implicit and explicit solvation models have been found to be crucial for the adequate interpretation of the complex VCD features observed. Molecular dynamics simulations and radial distribution functions have been used to aid the modeling of the leucine-(water)N clusters. It has been recognized that the insertion of a water molecule between the COO- and NH3+ functional groups in the explicit solvated clusters is critical to reproduce the VCD signatures observed. Furthermore, the inclusion of the implicit bulk water environment has been found to be essential to lock water molecules, which are directly hydrogen bonded to leucine, into the positions expected in solution. The application of the explicit and implicit solvation models simultaneously allows new insights into the hydrogen bonding network surrounding leucine in aqueous solution and the role of the surrounding bulk water in stabilizing such hydrogen-bonding network.

  19. Model calculation of the characteristic mass for convective and diffusive vapor transport in graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Bencs, László; Laczai, Nikoletta; Ajtony, Zsolt

    2015-07-01

    A combination of former convective-diffusive vapor-transport models is described to extend the calculation scheme for sensitivity (characteristic mass - m0) in graphite furnace atomic absorption spectrometry (GFAAS). This approach encompasses the influence of forced convection of the internal furnace gas (mini-flow) combined with concentration diffusion of the analyte atoms on the residence time in a spatially isothermal furnace, i.e., the standard design of the transversely heated graphite atomizer (THGA). A couple of relationships for the diffusional and convectional residence times were studied and compared, including in factors accounting for the effects of the sample/platform dimension and the dosing hole. These model approaches were subsequently applied for the particular cases of Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, V and Zn analytes. For the verification of the accuracy of the calculations, the experimental m0 values were determined with the application of a standard THGA furnace, operating either under stopped, or mini-flow (50 cm3 min- 1) of the internal sheath gas during atomization. The theoretical and experimental ratios of m0(mini-flow)-to-m0(stop-flow) were closely similar for each study analyte. Likewise, the calculated m0 data gave a fairly good agreement with the corresponding experimental m0 values for stopped and mini-flow conditions, i.e., it ranged between 0.62 and 1.8 with an average of 1.05 ± 0.27. This indicates the usability of the current model calculations for checking the operation of a given GFAAS instrument and the applied methodology.

  20. Performance characteristics of a two-stage dark fermentative system producing hydrogen and methane continuously.

    PubMed

    Kyazze, G; Dinsdale, R; Guwy, A J; Hawkes, F R; Premier, G C; Hawkes, D L

    2007-07-01

    The performance of a mesophilic two-stage system generating hydrogen and methane continuously from sucrose (10-30 g/L) was investigated. A hydrogen-generating CSTR followed by an upflow anaerobic filter were both inoculated with anaerobically digested sewage sludge, and ORP, pH, gas output, %H(2), %CH(4) and %CO(2) monitored. pH was controlled with NaOH, KOH or Ca(OH)(2). Using NaOH as alkali with 10 g/L sucrose, yields of 1.62 +/- 0.2 mol H(2)/mol hexose added and 323 mL CH(4)/gCOD added to the hydrogen and methane reactors respectively were achieved. The overall chemical oxygen demand (COD) reduction was 92.6% with 0.90 +/- 0.1 g/L sodium and 316 +/- 40 mg/L residual acetate in the methane reactor. Operation at 20 g/L sucrose and NaOH as alkali led to impaired volatile fatty acid (VFA) degradation in the methane reactor with 2.23 +/- 0.2 g/L sodium, 1,885 mg/L residual acetate, a hydrogen yield of 1.47 +/- 0.1 mol/mol hexose added, a methane yield of 294 mL/gCOD added and an overall COD reduction of 83%. Using Ca(OH)(2) as alkali with 20 g/L sucrose gave a hydrogen yield of 1.29 +/- 0.3 mol/mol hexose added, a methane yield of 337 mL/gCOD added and improved the overall COD reduction to 91% with residual acetate concentrations of 522 +/- 87 mg/L. Operation at 30 g/L sucrose with Ca(OH)(2) gave poorer overall COD reduction (68%), a hydrogen yield of 1.47 +/- 0.2 mol/mol hexose added, a methane yield of 138 mL/gCOD added and residual acetate 7,343 +/- 715 mg/L. It was shown that sodium toxicity and overloading are important issues for successful anaerobic digestion of effluent from biohydrogen reactors in high rate systems. PMID:17163512

  1. Low temperature hydrogen plasma-assisted atomic layer deposition of copper studied using in situ infrared reflection absorption spectroscopy

    SciTech Connect

    Chaukulkar, Rohan P.; Rai, Vikrant R.; Agarwal, Sumit; Thissen, Nick F. W.

    2014-01-15

    Atomic layer deposition (ALD) is an ideal technique to deposit ultrathin, conformal, and continuous metal thin films. However, compared to the ALD of binary materials such as metal oxides and metal nitrides, the surface reaction mechanisms during metal ALD are not well understood. In this study, the authors have designed and implemented an in situ reflection-absorption infrared spectroscopy (IRAS) setup to study the surface reactions during the ALD of Cu on Al{sub 2}O{sub 3} using Cu hexafluoroacetylacetonate [Cu(hfac){sub 2}] and a remote H{sub 2} plasma. Our infrared data show that complete ligand-exchange reactions occur at a substrate temperature of 80 °C in the absence of surface hydroxyl groups. Based on infrared data and previous studies, the authors propose that Cu(hfac){sub 2} dissociatively chemisorbs on the Al{sub 2}O{sub 3} surface, where the Al-O-Al bridge acts as the surface reactive site, leading to surface O-Cu-hfac and O-Al-hfac species. Surface saturation during the Cu(hfac){sub 2} half-cycle occurs through blocking of the available chemisorption sites. In the next half-reaction cycle, H radicals from an H{sub 2} plasma completely remove these surface hfac ligands. Through this study, the authors have demonstrated the capability of in situ IRAS as a tool to study surface reactions during ALD of metals. While transmission and internal reflection infrared spectroscopy are limited to the first few ALD cycles, IRAS can be used to probe all stages of metal ALD starting from initial nucleation to the formation of a continuous film.

  2. Absorption spectra and spectral-kinetic characteristics of the fluorescence of Sanguinarine in complexes with polyelectrolytes and DNA

    NASA Astrophysics Data System (ADS)

    Motevich, I. G.; Strekal, N. D.; Nowicky, J. W.; Maskevich, S. A.

    2010-07-01

    The absorption spectra and stationary and time resolved fluorescence spectra of the isoquinoline alkaloid sanguinarine are studied in aqueous media and during interactions with synthetic polyelectrolytes (polystyrene sulfonate and polyallylamine) and a natural polyelectrolyte (DNA).

  3. Corrosion characteristics of Ni-base superalloys in high temperature steam with and without hydrogen

    NASA Astrophysics Data System (ADS)

    Kim, Donghoon; Kim, Daejong; Lee, Ho Jung; Jang, Changheui; Yoon, Duk Joo

    2013-10-01

    The hot steam corrosion behavior of Alloy 617 and Haynes 230 were evaluated in corrosion tests performed at 900 °C in steam and steam + 20 vol.% H2 environments. Corrosion rates of Alloy 617 was faster than that of Haynes 230 at 900 °C in steam and steam + 20 vol.% H2 environments. When hydrogen was added to steam, the corrosion rate was accelerated because added hydrogen increased the concentration of Cr interstitial defects in the oxide layer. Isolated nodular MnTiO3 oxides were formed on the MnCr2O4/Cr2O3 oxide layer and sub-layer Cr2O3 was formed in steam and steam + 20 vol.% H2 for Alloy 617. On the other hand, a MnCr2O4 layer was formed on top of the Cr2O3 oxide layer for Haynes 230. The extensive sub-layer Cr2O3 formation resulted from the oxygen or hydroxide inward diffusion in such environments. When hydrogen was added, the initial surface oxide morphology was changed from a convex shape to platelets because of the accelerated diffusion of cations under the oxide layer.

  4. Effect of surface characteristics of wood-based activated carbons on adsorption of hydrogen sulfide

    SciTech Connect

    Adib, F.; Bagreev, A.; Bandosz, T.J.

    1999-06-15

    Three wood-based commercial activated carbons supplied by Westvaco were studied as adsorbents of hydrogen sulfide. The initial materials were characterized using sorption of nitrogen, Boehm titration, potentiometric titration, water sorption, thermal analysis, and temperature-programmed desorption. The breakthrough tests were done at low concentrations of H{sub 2}S in the input gas to simulate conditions in water pollution control plants where carbon beds are used as odor adsorbents. In spite of apparent general similarities in the origin of the materials, method of activation, surface chemistry, and porosity, significant differences in their performance as hydrogen sulfide adsorbents were observed. Results show that the combined effect of the presence of pores large enough to accommodate surface functional groups and small enough to have the film of water at relatively low pressure contributes to oxidation of hydrogen sulfide. Moreover, there are features of activated carbon surfaces such as local environment of acidic/basic groups along with the presence of alkali metals which are important to the oxidation process.

  5. Hydrogen induced fracture characteristics of single crystal nickel-based superalloys

    NASA Technical Reports Server (NTRS)

    Chen, Po-Shou; Wilcox, Roy C.

    1990-01-01

    A stereoscopic method for use with x ray energy dispersive spectroscopy of rough surfaces was adapted and applied to the fracture surfaces single crystals of PWA 1480E to permit rapid orientation determinations of small cleavage planes. The method uses a mathematical treatment of stereo pair photomicrographs to measure the angle between the electron beam and the surface normal. One reference crystal orientation corresponding to the electron beam direction (crystal growth direction) is required to perform this trace analysis. The microstructure of PWA 1480E was characterized before fracture analysis was performed. The fracture behavior of single crystals of the PWA 1480E nickel-based superalloy was studied. The hydrogen-induced fracture behavior of single crystals of the PWA 1480E nickel-based superalloy was also studied. In order to understand the temperature dependence of hydrogen-induced embrittlement, notched single crystals with three different crystal growth orientations near zone axes (100), (110), and (111) were tensile tested at 871 C (1600 F) in both helium and hydrogen atmospheres at 34 MPa. Results and conclusions are given.

  6. Hydrogen environment embrittlement.

    NASA Technical Reports Server (NTRS)

    Gray, H. R.

    1972-01-01

    Hydrogen embrittlement is classified into three types: internal reversible hydrogen embrittlement, hydrogen reaction embrittlement, and hydrogen environment embrittlement. Characteristics of and materials embrittled by these types of hydrogen embrittlement are discussed. Hydrogen environment embrittlement is reviewed in detail. Factors involved in standardizing test methods for detecting the occurrence of and evaluating the severity of hydrogen environment embrittlement are considered. The effects of test technique, hydrogen pressure, purity, strain rate, stress concentration factor, and test temperature are discussed.

  7. Chemiluminescence characteristics of cumarin derivatives as blue fluorescers in peroxyoxalate-hydrogen peroxide system.

    PubMed

    Chaichi, Mohammad Javad; Karami, Ali Reza; Shockravi, Abbas; Shamsipur, Mojtaba

    2003-04-01

    The chemiluminescence characteristics of seven different cumarin derivatives were studied in detail. The fluorescence and chemiluminescence spectra were compared; all cumarins used were found to act as blue fluorescers. The intensity and kinetic parameters for the chemiluminescent systems were evaluated from computer fitting of the resulting intensity-time plots. Among different cumarin derivatives used, 7-amino-4-trifluoromethylcumarin revealed the most promising characteristics as an efficient blue fluorescent emitter. PMID:12659882

  8. Chemiluminescence characteristics of cumarin derivatives as blue fluorescers in peroxyoxalate-hydrogen peroxide system

    NASA Astrophysics Data System (ADS)

    Chaichi, Mohammad Javad; Karami, Ali Reza; Shockravi, Abbas; Shamsipur, Mojtaba

    2003-04-01

    The chemiluminescence characteristics of seven different cumarin derivatives were studied in detail. The fluorescence and chemiluminescence spectra were compared; all cumarins used were found to act as blue fluorescers. The intensity and kinetic parameters for the chemiluminescent systems were evaluated from computer fitting of the resulting intensity-time plots. Among different cumarin derivatives used, 7-amino-4-trifluoromethylcumarin revealed the most promising characteristics as an efficient blue fluorescent emitter.

  9. LIGHT-WEIGHT NANOCRYSTALLINE HYDROGEN STORAGE MATERIALS

    SciTech Connect

    S. G. Sankar; B. Zande; R.T. Obermyer; S. Simizu

    2005-11-21

    During Phase I of this SBIR Program, Advanced Materials Corporation has addressed two key issues concerning hydrogen storage: 1. We have conducted preliminary studies on the effect of certain catalysts in modifying the hydrogen absorption characteristics of nanocrystalline magnesium. 2. We have also conducted proof-of-concept design and construction of a prototype instrument that would rapidly screen materials for hydrogen storage employing chemical combinatorial technique in combination with a Pressure-Composition Isotherm Measurement (PCI) instrument. 3. Preliminary results obtained in this study approach are described in this report.

  10. Hydrogen/Deuterium Exchange Mass Spectrometry Applied to IL-23 Interaction Characteristics: Potential Impact for Therapeutics

    PubMed Central

    Iacob, Roxana E.; Krystek, Stanley R.; Huang, Richard Y.-C.; Wei, Hui; Tao, Li; Lin, Zheng; Morin, Paul E.; Doyle, Michael L.; Tymiak, Adrienne A.; Engen, John R.

    2015-01-01

    Interleukin-23 (IL-23) is an important therapeutic target for the treatment of inflammatory diseases. Adnectins are targeted protein therapeutics that are derived from domain III of human fibronectin, and have similar protein scaffold to antibodies. A specific adnectin (Adnectin 2) was identified to bind to IL-23 and compete with IL-23/IL-23R interaction, being a potential protein therapeutic. Hydrogen/deuterium exchange mass spectrometry (HDX MS) and computational methods were applied to probe the binding interactions between IL-23 and Adnectin2 and to determine the correlation between the two orthogonal methods. This review article summarizes the current structural knowledge about Il-23 and it focuses on the applicability of HDX MS to investigate the higher order structure of proteins, which plays an important role for the discovery of new and improved biotherapeutics. PMID:25711416

  11. Extreme changes in stable hydrogen isotopes and precipitation characteristics in a landfalling Pacific storm

    USGS Publications Warehouse

    Coplen, T.B.; Neiman, P.J.; White, A.B.; Landwehr, J.M.; Ralph, F.M.; Dettinger, M.D.

    2008-01-01

    With a new automated precipitation collector we measured a remarkable decrease of 51??? in the hydrogen isotope ratio (?? 2H) of precipitation over a 60-minute period during the landfall of an extratropical cyclone along the California coast on 21 March 2005. The rapid drop in ??2H occurred as precipitation generation transitioned from a shallow to a much deeper cloud layer, in accord with synoptic-scale ascent and deep "seeder-feeder" precipitation. Such unexpected ?? 2H variations can substantially impact widely used isotope-hydrograph methods. From extreme ??2H values of -26 and -78???, we calculate precipitation temperatures of 9.7 and -4.2??C using an adiabatic condensation isotope model, in good agreement with temperatures estimated from surface observations and radar data. This model indicates that 60 percent of the moisture was precipitated during ascent as temperature decreased from 15??C at the ocean surface to -4??C above the measurement site.

  12. Chemometric analysis of correlations between electronic absorption characteristics and structural and/or physicochemical parameters for ampholytic substances of biological and pharmaceutical relevance

    NASA Astrophysics Data System (ADS)

    Judycka-Proma, U.; Bober, L.; Gajewicz, A.; Puzyn, T.; Błażejowski, J.

    2015-03-01

    Forty ampholytic compounds of biological and pharmaceutical relevance were subjected to chemometric analysis based on unsupervised and supervised learning algorithms. This enabled relations to be found between empirical spectral characteristics derived from electronic absorption data and structural and physicochemical parameters predicted by quantum chemistry methods or phenomenological relationships based on additivity rules. It was found that the energies of long wavelength absorption bands are correlated through multiparametric linear relationships with parameters reflecting the bulkiness features of the absorbing molecules as well as their nucleophilicity and electrophilicity. These dependences enable the quantitative analysis of spectral features of the compounds, as well as a comparison of their similarities and certain pharmaceutical and biological features. Three QSPR models to predict the energies of long-wavelength absorption in buffers with pH = 2.5 and pH = 7.0, as well as in methanol, were developed and validated in this study. These models can be further used to predict the long-wavelength absorption energies of untested substances (if they are structurally similar to the training compounds).

  13. Identification of four-hydrogen complexes in In-rich InxGa1-xN (x>0.4) alloys using photoluminescence, x-ray absorption, and density functional theory

    NASA Astrophysics Data System (ADS)

    De Luca, M.; Pettinari, G.; Ciatto, G.; Amidani, L.; Filippone, F.; Polimeni, A.; Fonda, E.; Boscherini, F.; Bonapasta, A. Amore; Giubertoni, D.; Knübel, A.; Lebedev, V.; Capizzi, M.

    2012-11-01

    Postgrowth hydrogen incorporation in In-rich InxGa1-xN (x>0.4) alloys strongly modifies the optical and structural properties of the material: A large blueshift of the emission and absorption energies is accompanied by a remarkable broadening of the interatomic-distance distribution, as probed by synchrotron radiation techniques. Both effects vanish at a finite In-concentration value (x ˜ 0.5). Synergic x-ray absorption measurements and first-principle calculations unveil two different defective species forming upon hydrogenation: one due to the high chemical reactivity of H, the other ascribed to mere lattice damage. In the former species, four H atoms bind to as many N atoms, all nearest-neighbors of a same In atom. The stability of this peculiar complex, which is predicted to behave as a donor, stems from atomic displacements cooperating to reduce local strain.

  14. Effect of the initial pressure on the characteristics of the flame propagation in hydrogen-propane-air mixtures

    NASA Astrophysics Data System (ADS)

    Cheng, Guanbing; Bauer, Pascal; Zitoun, Ratiba

    2014-08-01

    This paper is aimed at an experimental investigation on effects of initial pressure on flame propagation characteristics of binary fuels hydrogen-propane-air mixtures at room temperature. The experiments are performed in a square channel equipped with perforated orifice obstacles. Four initial pressures are examined. Based on pressure transducers along the channel, the flame velocity, maximum pressure of the front peak and characteristic distances are measured. Successive stages are observed as flame propagates: (i) a velocity increase at the beginning, (ii) a velocity equal to the sound speed of combustion products and (iii) a decrease of the velocity. When the initial pressure is more important, the flame velocity and the maximal pressure of the front peak are higher, which yields a shorter characteristic distance of flame propagation. By means of a Schlieren photography technique, the physical mechanisms of flame propagation are identified in its initial stage. The physical mechanisms such as flame surface area increase and combustion product expansion as well as delayed combustion between two adjacent plates are responsible for flame acceleration upon its initial stage. The oscillations of the centerline flame velocity are due to the constrained-expanded structure of flow in reactants ahead of flame when it crosses the plates.

  15. Current-voltage characteristics of hydrogen DC plasma torches with different sizes in an external axial magnetic field

    NASA Astrophysics Data System (ADS)

    Ma, Jie; Wen, Guang-Dong; Su, Bao-Gen; Yang, Yi-Wen; Ren, Qi-Long

    2015-06-01

    Current-voltage (I-V) characteristics of hydrogen DC plasma torches with different sizes in an external axial magnetic field under atmospheric pressure are reported. Three anodes with different diameters are adopted in a 50-kW torch: 25 mm, 30 mm, and 35 mm, respectively. Two different diameters of anodes, that is, 100 mm and 130 mm, are adopted in a 1-MW plasma torch. The arc voltage shows a negative trend with the increase of arc current under the operating regimes. On the contrary, arc voltage shows a positive trend as the flow rate of carrier gas increases, and a similar trend is found with increasing the external magnetic flux density. A similarity formula is constructed to correlate the experimental data of the torches mentioned above. Linear fitting shows that the Pearson correlation coefficient is 0.9958. Project supported by the Special Fund for Basic Scientific Research of Central Colleges, China (Grant No. 2012FZA4023).

  16. Prelaunch self-discharge and charge-acceptance characteristics of the Hubble Space Telescope nickel hydrogen batteries

    NASA Technical Reports Server (NTRS)

    Lanier, John R., Jr.; Bush, John R., Jr.

    1991-01-01

    Tests performed at NASA/MSFC on the Hubble Space Telescope (HST) nickel-hydrogen batteries (flight spare module and flight spare battery) were used to determine self-discharge and charge-acceptance characteristics when the batteries were exposed to charged wet-stand conditions, pulse charging on the launch pad, and battery capacity at solar array deployment. An equation is presented which was used to predict the capacity that would be available in the HST NiH2 batteries after an extended stand time on the launch pad plus up to 2 days on orbit prior to solar array deployment (either ground power or orbiter power were used to supply HST loads until shortly before the solar arrays were deployed). It is shown that a fairly accurate estimate of the available capacity was made.

  17. Experimental Analysis of the Effects of Vapor Flow Characteristics on Falling Film Absorption Rate in NH3-H2O Systems

    NASA Astrophysics Data System (ADS)

    Kang, Yong Tae; Fujita, Yasushi; Akisawa, Atsushi; Kashiwagi, Takao

    In this paper, experimental analysis was performed for ammonia-water falling film absorption process in a plate heat exchanger with enhanced surfaces such as offset strip fin. This paper examined the effect of vapor flow characteristics, inlet subcooling of the liquid flow and inlet concentration difference on heat and mass transfer performance. The inlet liquid concentration was kept constant at 0% while the inlet vapor concentration was varied from70. 36 to 77.31% It was found that before absorption started there was rectification process at the top of the test section by the inlet subcooling effect. Water desorption phenomenon was found near the bottom of test section. The lower inlet liquid temperature, the higher Nusselt and Sherwood numbers were obtained. NusseIt and Sherwood correlations were developed as functions of vapor Reynolds number ReV, inlet subcooling and inlet concentration difference with ±10% and ±5% error bands, respectively.

  18. Absorption characteristics of aerosols over the northwestern region of India: Distinct seasonal signatures of biomass burning aerosols and mineral dust

    NASA Astrophysics Data System (ADS)

    Gogoi, Mukunda M.; Suresh Babu, S.; Krishna Moorthy, K.; Manoj, M. R.; Chaubey, Jai Prakash

    2013-07-01

    Continuous measurements of aerosol black carbon (BC) mass concentrations made over a period of 3 years from a semi-arid, near-coastal, remote and sparsely inhabited location along with satellite-based data of aerosol absorption index, optical depth and extinction profiles in western India are used to characterize the distinct nature of aerosols near the surface and in the free troposphere and their seasonality. Despite being far remote and sparsely inhabited, significant levels of BC are observed in the ambient during winter (1.45 ± 0.71 μg m-3) attributed to biomass burning aerosols, advected to the site from the north and west; while during summer the concentrations are far reduced (0.23 ± 0.11 μg m-3) and represent the apparent background concentrations. The spectral absorption coefficients suggest the BC during summer be mostly of fossil fuel combustions. The strong convective boundary layer dynamics produces significant diurnal variation during winter and modulates to a lesser extent the seasonal variation. Examination of aerosol (absorption) index from OMI data for the study period showed a seasonal pattern that is almost opposite to that seen at the surface; with high aerosol index in summer, showing a significant difference between the surface and columnar aerosol types in summer. MISR and MODIS-derived columnar AOD follow the OMI pattern. Analysis of the vertical profiles of aerosol extinction and volume depolarization ratio (VDR), derived from CALIPSO data indicates the presence of strong dust layers with VDR ˜ 0.3 in the altitude region 4-6 km, contributing to the high aerosol index in the OMI data, while the surface measurements show absorptive properties representing fossil fuel BC aerosols.

  19. In situ intestinal permeability and in vivo absorption characteristics of olmesartan medoxomil in self-microemulsifying drug delivery system.

    PubMed

    Kang, Myung J; Kim, Hyung S; Jeon, Ho S; Park, Jong H; Lee, Bong S; Ahn, Byeong K; Moon, Ki Y; Choi, Young W

    2012-05-01

    To characterize the intestinal absorption behavior of olmesartan medoxomil (OLM) and to evaluate the absorption-improving potential of a self-microemulsifying drug delivery system (SMEDDS), we performed in situ single-pass intestinal perfusion (SPIP) and in vivo pharmacokinetic studies in rats. The SPIP study revealed that OLM is absorbed throughout whole intestinal regions, favoring proximal segments, at drug levels of 10-90 μM. The greatest value for effective permeability coefficient (P(eff)) was 11.4 × 10(-6) cm/s in the duodenum (90 μM); the lowest value was 2.9 × 10(-6) cm/s in the ileum (10 μM). A SMEDDS formulation consisting of Capryol 90, Labrasol, and Transcutol, which has a droplet size of 200 nm and self-dispersion time of 21 s, doubled upper intestinal permeability of OLM. The SMEDDS also improved oral bioavailability of OLM in vivo: a 2.7-fold increase in the area under the curve (AUC) with elevated maximum plasma concentration (C(max)) and shortened peak time (T(max)) compared to an OLM suspension. A strong correlation (r(2) = 0.955) was also found between the in situ jejunal P(eff) and the in vivo AUC values. Our study illustrates that the SMEDDS formulation holds great potential as an alternative to increased oral absorption of OLM. PMID:21988221

  20. A Few Facts about Hydrogen [and] Hydrogen Bibliography.

    ERIC Educational Resources Information Center

    Hinds, H. Roger

    Divided into two sections, this publication presents facts about and the characteristics of hydrogen and a bibliography on hydrogen. The first section lists nine facts on what hydrogen is, four on where hydrogen is found, nine on how hydrogen is used, nine on how hydrogen can be used, and 14 on how hydrogen is made. Also included are nine…

  1. A comprehensive investigation of structural, morphological, hydrogen absorption and magnetic properties of MmNi4.22Co0.48Mn0.15Al0.15 alloy

    NASA Astrophysics Data System (ADS)

    Zareii, Seyyed Mojtaba; Arabi, Hadi; Pourarian, Faiz

    2014-05-01

    A comprehensive study of structural, morphological, hydrogen absorption and magnetic properties of MmNi4.22 Co0.48Mn0.15Al0.15 alloy as a promising hydrogen storage media was investigated. The X-ray diffraction (XRD) profiles show that the alloy maintains its crystal structure (hexagonal LaNi5-type) even after 30 hydrogenation/dehydrogenation (H/D) cycles. However, the XRD peaks are found to be slightly broadened after cycling. SEM images reveal that particles size of the cycled sample decreases, with more uniform particle size distribution compared to noncycled ones. The pressure-composition (PC) isotherms and kinetics curves of hydrogen absorption reaction were obtained at different working temperatures by using a homemade Sievert apparatus. The enthalpy and entropy of hydride formation of the alloy were evaluated. Furthermore, the Jander diffusion and Johnson-Mehl-Avrami models as the fitting models were employed to study the kinetic mechanism of hydriding reaction and its activation energy. The room temperature magnetic measurements indicate that the milling and H/D cycling change the magnetic properties of the as-annealed alloy.

  2. Characteristics and indications of hydrogen and oxygen isotopes distribution in lake ice body.

    PubMed

    Zhen, Zhi-Lei; Li, Chang-You; Zhang, Sheng; Li, Wen-Bao; Shi, Xiao-Hong; Sun, Biao

    2015-01-01

    Stable isotopes have been used to identify the characteristics of precipitation, evaporation, basin hydrology, and residence times. However, lakes in the cold regions are usually covered by ice for 5-6 months. To get a better understanding of stable isotopes characteristics and indications in lake ice bodies, ice and water were sampled during the icebound season in both the ice and water bodies in Dali Lake, and deuterium, oxygen-18 total nitrogen (TN), and the major ions were analyzed. The results showed that deuterium and oxygen-18 compositions (δD-δ¹⁸O) compositions in the ice body were greater than in the water body beneath, scattered on a straight line, and deviating downward from the global meteoric water line in the top right. The ice profile showed that the δD-δ¹⁸O compositions increased from the ice surface downward and decreased near to the bottom. In contrast, the TN and the major ions in the ice decreased from the ice surface downward and increased near to the bottom, meaning that the concentrations of δ¹⁸O had a negative correlation with the concentrations of TN and major ions. These indicated that stable isotopes can be used for tracing the nutriment and ion transport processes in the ice body. PMID:25860710

  3. Hydrogen environment embrittlement

    NASA Technical Reports Server (NTRS)

    Gray, H. R.

    1972-01-01

    Hydrogen embrittlement is classified into three types: internal reversible hydrogen embrittlement, hydrogen reaction embrittlement, and hydrogen environment embrittlement. Characteristics of and materials embrittled by these types of hydrogen embrittlement are discussed. Hydrogen environment embrittlement is reviewed in detail. Factors involved in standardizing test methods for detecting the occurrence of and evaluating the severity of hydrogen environment embrittlement are considered. The effect of test technique, hydrogen pressure, purity, strain rate, stress concentration factor, and test temperature are discussed. Additional research is required to determine whether hydrogen environment embrittlement and internal reversible hydrogen embrittlement are similar or distinct types of embrittlement.

  4. Daidzein-phospholipid complex loaded lipid nanocarriers improved oral absorption: in vitro characteristics and in vivo behavior in rats

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiwen; Huang, Yan; Gao, Fang; Bu, Huihui; Gu, Wangwen; Li, Yaping

    2011-04-01

    A nano-based delivery system was developed to improve the oral absorption of daidzein, which has poor hydrophilicity and lipophilicity. A daidzein-phospholipid complex (DPC) was firstly prepared to improve its lipophilicity, and then encapsulated into lipid nanocarriers (DLNs) to verify the effectiveness of the strategy in enhancing the oral delivery of daidzein. DLNs were spherical nanosized particles with evidently increased dissolution. DLNs were mainly distributed in stomach and proximal intestine of mice after oral administration, and the intestinal permeability of DLNs in rats was significantly improved when compared with that of daidzein solution. The peak concentration of daidzein in rats after oral administration of DPC and DLNs was 6833 +/- 1112 ng mL-1 and 14 512 +/- 2390 ng mL-1, respectively, which was improved over 10-fold and 21-fold than that of free daidzein. Moreover, the areas under the concentration-time curve (AUC0-t) of DPC and DLNs were enhanced by 3.62-fold and 6.87-fold compared with that of free daidzein. These results suggested that DLNs could be an effective strategy to improve the oral absorption of poor hydrophilic and lipophilic drugs like daidzein.

  5. An ATR-FTIR Study on the Effect of Molecular Structural Variations on the CO2 Absorption Characteristics of Heterocyclic Amines, Part II

    PubMed Central

    Robinson, Kelly; McCluskey, Adam; Attalla, Moetaz I

    2012-01-01

    This paper reports on an ATR-FTIR spectroscopic investigation of the CO2 absorption characteristics of a series of heterocyclic diamines: hexahydropyrimidine (HHPY), 2-methyl and 2,2-dimethylhexahydropyrimidine (MHHPY and DMHHPY), hexahydropyridazine (HHPZ), piperazine (PZ) and 2,5- and 2,6-dimethylpiperazine (2,6-DMPZ and 2,5-DMPZ). By using in situ ATR-FTIR the structure–activity relationship of the reaction between heterocyclic diamines and CO2 is probed. PZ forms a hydrolysis-resistant carbamate derivative, while HHPY forms a more labile carbamate species with increased susceptibility to hydrolysis, particularly at higher CO2 loadings (>0.5 mol CO2/mol amine). HHPY exhibits similar reactivity toward CO2 to PZ, but with improved aqueous solubility. The α-methyl-substituted MHHPY favours HCO3− formation, but MHHPY exhibits comparable CO2 absorption capacity to conventional amines MEA and DEA. MHHPY show improved reactivity compared to the conventional α-methyl- substituted primary amine 2-amino-2-methyl-1-propanol. DMHHPY is representative of blended amine systems, and its reactivity highlights the advantages of such systems. HHPZ is relatively unreactive towards CO2. The CO2 absorption capacity CA (mol CO2/mol amine) and initial rates of absorption RIA (mol CO2/mol amine min−1) for each reactive diamine are determined: PZ: CA=0.92, RIA=0.045; 2,6-DMPZ: CA=0.86, RIA=0.025; 2,5-DMPZ: CA=0.88, RIA=0.018; HHPY: CA=0.85, RIA=0.032; MHHPY: CA=0.86, RIA=0.018; DMHHPY: CA=1.1, RIA=0.032; and HHPZ: no reaction. Calculations at the B3LYP/6-31+G** and MP2/6-31+G** calculations show that the substitution patterns of the heterocyclic diamines affect carbamate stability, which influences hydrolysis rates. PMID:22517608

  6. Preliminary evaluation of the air and fuel specific-impulse characteristics of several potential ram-jet fuels IV : hydrogen, a-methylnaphthalene, and carbon / Benson E. Gammon

    NASA Technical Reports Server (NTRS)

    Gammon, Benson E

    1951-01-01

    A preliminary analytical evaluation of the air and fuel specific-impulse characteristics of hydrogen, a-methylnapthalene, and graphite carbon has been made. Adiabatic constant-pressure combustion flame temperatures for each fuel at several equivalence ratios were calculated for an initial air temperature of 560 degrees R and a pressure of 2 atmospheres.

  7. Absorption characteristics of anions (I-, Br-, and Te2-) into zeolite in molten LiCl-KCl eutectic salt

    NASA Astrophysics Data System (ADS)

    Uozumi, Koichi; Sugihara, Kei; Kinoshita, Kensuke; Koyama, Tadafumi; Tsukada, Takeshi; Terai, Takayuki; Suzuki, Akihiro

    2014-04-01

    The behaviors of anion fission product (FP) elements to be absorbed into zeolite in molten LiCl-KCl eutectic salt were studied using iodine, bromine, and tellurium. First, the type-A zeolite was selected as the most suitable type of zeolite among type-A, type-X, and type-Y zeolites through experiments in which zeolites were heated together with LiCl-KCl-KI salt. As the next step, experiments in which the type-A zeolite was immersed in molten LiCl-KCl salt containing various concentrations of iodine, bromine, or tellurium were performed. The degree of absorption of the anion FP elements was evaluated using the separation factor (SF) value versus chlorine. Although the SF values for iodine and tellurium were higher than 1.0, which meant that these elements were absorbed into the type-A zeolite more intensively than chlorine in the salt, the corresponding value for bromine was approximately 1.0. The effects of coexisting cation FPs were also examined using cesium, strontium, and neodymium, and it was revealed that the SF values for iodine were less than those in the case without cation addition. On the other hand, the SF values for tellurium were not affected by the coexistence of cesium and strontium. Finally, the feasibility of the present pyroprocess flowsheet was evaluated by calculating the inventory of each anion FP in an electrorefiner based on the obtained SF values instead of temporary values for the anion FPs absorption, which were set due to lack of experimental data.

  8. Composition for absorbing hydrogen

    DOEpatents

    Heung, L.K.; Wicks, G.G.; Enz, G.L.

    1995-05-02

    A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  9. Composition for absorbing hydrogen

    DOEpatents

    Heung, Leung K.; Wicks, George G.; Enz, Glenn L.

    1995-01-01

    A hydrogen absorbing composition. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  10. A study on the characteristics of the deflagration of hydrogen-air mixture under the effect of a mesh aluminum alloy.

    PubMed

    Pang, Lei; Wang, Chenxu; Han, Mengxing; Xu, Zilong

    2015-12-15

    Mesh aluminum alloys (MAAs) have been widely used in military and civilian applications to suppress the explosion of flammable gases (fluids) inside containers. However, MAAs have not been tested in or applied to the hydrogen suppression-explosions. Hence, a typical MAA product, i.e., one that has been in wide use, is selected as the experimental material in the present study. The characteristics of the deflagration of hydrogen-air mixture inside an MAA-filled tube are investigated, and the effects of the filling density of the MAA and the concentration of hydrogen in air on the deflagration are examined. The suppressing effect of the MAA on the deflagration of hydrogen-air mixture is compared with its effect on the deflagration of a typical hydrocarbon fuel in air. The results show that not only is the existing MAA product unable to effectively suppress the deflagration of hydrogen-air mixture, but it also increases the maximum explosion pressure, which is opposite to the satisfactory suppressing effect of the MAA product on the deflagration of hydrocarbon fuels such as methane. The results of this study provide a scientific basis for the effective prevention of explosion accidents with hydrogen and for the development of explosion-suppression products. PMID:26124063

  11. Optical absorption characteristics in the assessment of powder phosphor-based x-ray detectors: from nano- to micro-scale.

    PubMed

    Liaparinos, P F

    2015-11-21

    X-ray phosphor-based detectors have enormously improved the quality of medical imaging examinations through the optimization of optical diffusion. In recent years, with the development of science and technology in the field of materials, improved powder phosphors require structural and optical properties that contribute to better optical signal propagation. The purpose of this paper was to provide a quantitative and qualitative understanding of the optical absorption characteristics in the assessment of powder phosphor-based detectors (from nano- scale up to micro-scale). Variations on the optical absorption parameters (i.e. the light extinction coefficient [Formula: see text] and the percentage probability of light absorption p%) were evaluated based on Mie calculations examining a wide range of light wavelengths, particle refractive indices and sizes. To model and assess the effects of the aforementioned parameters on optical diffusion, Monte Carlo simulation techniques were employed considering: (i) phosphors of different layer thickness, 100 μm (thin layer) and 300 μm (thick layer), respectively, (ii) light extinction coefficient values, 1, 3 and 6 μm(-1), and (iii) percentage probability of light absorption p% in the range 10(-4)-10(-2). Results showed that the [Formula: see text] coefficient is high for phosphor grains in the submicron scale and for low light wavelengths. At higher wavelengths (above 650 nm), optical quanta follow approximately similar depths until interaction for grain diameter 500 nm and 1 μm. Regarding the variability of the refractive index, high variations of the [Formula: see text] coefficient occurred above 1.6. Furthermore, results derived from Monte Carlo modeling showed that high spatial resolution phosphors can be accomplished by increasing the [Formula: see text] parameter. More specifically, the FWHM was found to decrease (i.e. higher resolution): (i) 4.8% at 100 μm and (ii) 9.5%, at 300 μm layer thickness. This study

  12. Optical absorption characteristics in the assessment of powder phosphor-based x-ray detectors: from nano- to micro-scale

    NASA Astrophysics Data System (ADS)

    Liaparinos, P. F.

    2015-11-01

    X-ray phosphor-based detectors have enormously improved the quality of medical imaging examinations through the optimization of optical diffusion. In recent years, with the development of science and technology in the field of materials, improved powder phosphors require structural and optical properties that contribute to better optical signal propagation. The purpose of this paper was to provide a quantitative and qualitative understanding of the optical absorption characteristics in the assessment of powder phosphor-based detectors (from nano- scale up to micro-scale). Variations on the optical absorption parameters (i.e. the light extinction coefficient {{m}\\text{ext}} and the percentage probability of light absorption p%) were evaluated based on Mie calculations examining a wide range of light wavelengths, particle refractive indices and sizes. To model and assess the effects of the aforementioned parameters on optical diffusion, Monte Carlo simulation techniques were employed considering: (i) phosphors of different layer thickness, 100 μm (thin layer) and 300 μm (thick layer), respectively, (ii) light extinction coefficient values, 1, 3 and 6 μm-1, and (iii) percentage probability of light absorption p% in the range 10-4-10-2. Results showed that the {{m}\\text{ext}} coefficient is high for phosphor grains in the submicron scale and for low light wavelengths. At higher wavelengths (above 650 nm), optical quanta follow approximately similar depths until interaction for grain diameter 500 nm and 1 μm. Regarding the variability of the refractive index, high variations of the {{m}\\text{ext}} coefficient occurred above 1.6. Furthermore, results derived from Monte Carlo modeling showed that high spatial resolution phosphors can be accomplished by increasing the {{m}\\text{ext}} parameter. More specifically, the FWHM was found to decrease (i.e. higher resolution): (i) 4.8% at 100 μm and (ii) 9.5%, at 300 μm layer thickness. This study attempted to

  13. [Characteristics of Hydrogen and Oxygen Isotopes of Soil Water in the Water Source Area of Yuanyang Terrace].

    PubMed

    Zhang, Xiao-juan; Song, Wei-feng; Wu, Jin-kui; Wang, Zhuo-juan

    2015-06-01

    Stable isotope techniques provide a new approach to study soil water movement. The precipitation and the soil water from 0 to 100 cm soil layer in 4 kinds of typical vegetation types (forest, shrub forest, grassland and non-forest land) over the water source area of Yuanyang terrace were sampled, and their isotope compositions were analyzed, aimed to understand the characteristics of stable isotopes in different depth of the soil water. The results showed that the meteoric water line in the water source area of Yuanyang terrace was δD = 6.838 4δ(18)O-5.6921 (R2 = 0.8787, n = 20), the slope and intercept were less than the global atmospheric precipitation. The hydrogen and oxygen stable isotopes in the soil water of the 4 kinds of typical types was lower than the local meteoric water line side and the fluctuation of isotope value on surface soil profile was greater. With the increasing soil depth, the fluctuation of delta 18O value was smaller and smaller, especially in the 80-100 cm soil layer which was the most obvious. The delta 18O values of the deep soil water in forest and grassland were higher than that in the surface soil. while it was on the contrary in shrub forest and non-forest land. PMID:26387313

  14. Statistical analysis of whole-body absorption depending on anatomical human characteristics at a frequency of 2.1 GHz

    NASA Astrophysics Data System (ADS)

    El Habachi, A.; Conil, E.; Hadjem, A.; Vazquez, E.; Wong, M. F.; Gati, A.; Fleury, G.; Wiart, J.

    2010-04-01

    In this paper, we propose identification of the morphological factors that may impact the whole-body averaged specific absorption rate (WBSAR). This study is conducted for the case of exposure to a front plane wave at a 2100 MHz frequency carrier. This study is based on the development of different regression models for estimating the WBSAR as a function of morphological factors. For this purpose, a database of 12 anatomical human models (phantoms) has been considered. Also, 18 supplementary phantoms obtained using the morphing technique were generated to build the required relation. This paper presents three models based on external morphological factors such as the body surface area, the body mass index or the body mass. These models show good results in estimating the WBSAR (<10%) for families obtained by the morphing technique, but these are still less accurate (30%) when applied to different original phantoms. This study stresses the importance of the internal morphological factors such as muscle and fat proportions in characterization of the WBSAR. The regression models are then improved using internal morphological factors with an estimation error of approximately 10% on the WBSAR. Finally, this study is suitable for establishing the statistical distribution of the WBSAR for a given population characterized by its morphology.

  15. The central structure of Broad Absorption Line QSOs: observational characteristics in the cm-mm wavelength domain

    NASA Astrophysics Data System (ADS)

    Bruni, G.; Mack, K.-H.; Dallacasa, D.; Montenegro-Montes, F. M.; Benn, C. R.; Carballo, R.; González-Serrano, J. I.; Holt, J.; Jiménez-Luján, F.

    2012-07-01

    Accounting for ~20% of the total QSO population, Broad Absorption Line QSOs are still an unsolved problem in the AGN context. They present wide troughs in the UV spectrum, due to material with velocities up to 0.2 c toward the observer. The two models proposed in literature try to explain them as a particular phase of the evolution of QSOs or as normal QSOs, but seen from a particular line of sight. We built a statistically complete sample of Radio-Loud BAL QSOs, and carried out an observing campaign to piece together the whole spectrum in the cm wavelength domain, and highlight all the possible differences with respect to a comparison sample of Radio-Loud non-BAL QSOs. VLBI observations at high angular resolution have been performed, to study the pc-scale morphology of these objects. Finally, we tried to detect a possible dust component with observations at mm-wavelengths. Results do not seem to indicate a young age for all BAL QSOs. Instead a variety of orientations and morphologies have been found, constraining the outflows foreseen by the orientation model to have different possible angles with respect to the jet axis.

  16. METAL HYDRIDE HYDROGEN COMPRESSORS: A REVIEW

    SciTech Connect

    Bowman Jr, Robert C; Yartys, Dr. Volodymyr A.; Lototskyy, Dr. Michael V; Pollet, Dr. B.G.

    2014-01-01

    Metal hydride (MH) thermal sorption compression is an efficient and reliable method allowing a conversion of energy from heat into a compressed hydrogen gas. The most important component of such a thermal engine the metal hydride material itself should possess several material features in order to achieve an efficient performance in the hydrogen compression. Apart from the hydrogen storage characteristics important for every solid H storage material (e.g. gravimetric and volumetric efficiency of H storage, hydrogen sorption kinetics and effective thermal conductivity), the thermodynamics of the metal-hydrogen systems is of primary importance resulting in a temperature dependence of the absorption/desorption pressures). Several specific features should be optimized to govern the performance of the MH-compressors including synchronisation of the pressure plateaus for multi-stage compressors, reduction of slope of the isotherms and hysteresis, increase of cycling stability and life time, together with challenges in system design associated with volume expansion of the metal matrix during the hydrogenation. The present review summarises numerous papers and patent literature dealing with MH hydrogen compression technology. The review considers (a) fundamental aspects of materials development with a focus on structure and phase equilibria in the metal-hydrogen systems suitable for the hydrogen compression; and (b) applied aspects, including their consideration from the applied thermodynamic viewpoint, system design features and performances of the metal hydride compressors and major applications.

  17. A multiphase mixture model for substrate concentration distribution characteristics and photo-hydrogen production performance of the entrapped-cell photobioreactor.

    PubMed

    Guo, Cheng-Long; Cao, Hong-Xia; Pei, Hong-Shan; Guo, Fei-Qiang; Liu, Da-Meng

    2015-04-01

    A multiphase mixture model was developed for revealing the interaction mechanism between biochemical reactions and transfer processes in the entrapped-cell photobioreactor packed with gel granules containing Rhodopseudomonas palustris CQK 01. The effects of difference operation parameters, including operation temperature, influent medium pH value and porosity of packed bed, on substrate concentration distribution characteristics and photo-hydrogen production performance were investigated. The results showed that the model predictions were in good agreement with the experimental data reported. Moreover, the operation temperature of 30 °C and the influent medium pH value of 7 were the most suitable conditions for photo-hydrogen production by biodegrading substrate. In addition, the lower porosity of packed bed was beneficial to enhance photo-hydrogen production performance owing to the improvement on the amount of substrate transferred into gel granules caused by the increased specific area for substrate transfer in the elemental volume. PMID:25625465

  18. Analysis of diffential absorption lidar technique for measurements of anhydrous hydrogen chloride from solid rocket motors using a deuterium fluoride laser

    NASA Technical Reports Server (NTRS)

    Bair, C. H.; Allario, F.

    1977-01-01

    An active optical technique (differential absorption lidar (DIAL)) for detecting, ranging, and quantifying the concentration of anhydrous HCl contained in the ground cloud emitted by solid rocket motors (SRM) is evaluated. Results are presented of an experiment in which absorption coefficients of HCl were measured for several deuterium fluoride (DF) laser transitions demonstrating for the first time that a close overlap exists between the 2-1 P(3) vibrational transition of the DF laser and the 1-0 P(6) absorption line of HCl, with an absorption coefficient of 5.64 (atm-cm) to the -1 power. These measurements show that the DF laser can be an appropriate radiation source for detecting HCl in a DIAL technique. Development of a mathematical computer model to predict the sensitivity of DIAL for detecting anhydrous HCl in the ground cloud is outlined, and results that assume a commercially available DF laser as the radiation source are presented.

  19. High capacity hydrogen storage nanocomposite materials

    DOEpatents

    Zidan, Ragaiy; Wellons, Matthew S

    2015-02-03

    A novel hydrogen absorption material is provided comprising a mixture of a lithium hydride with a fullerene. The subsequent reaction product provides for a hydrogen storage material which reversibly stores and releases hydrogen at temperatures of about 270.degree. C.

  20. Effect of controlled deactivation on the thermochemical characteristics of hydrogen adsorption on skeletal nickel from sodium hydroxide-water solutions

    NASA Astrophysics Data System (ADS)

    Prozorov, D. A.; Lukin, M. V.; Ulitin, M. V.

    2013-04-01

    Differential heats of adsorption in a wide range of surface coverage and maximum amounts of adsorbed hydrogen are determined by adsorption calorimetry on partially deactivated skeletal nickel from aqueous solutions of sodium hydroxide. The effect of the composition of solutions on the values of limiting adsorption and adsorption equilibria of individual forms of hydrogen is shown.

  1. Microwave resonance lamp absorption technique for measuring temperature and OH number density in combustion environments

    NASA Technical Reports Server (NTRS)

    Lempert, Walter R.

    1988-01-01

    A simple technique for simultaneous determination of temperature and OH number density is described, along with characteristic results obtained from measurements using a premixed, hydrogen air flat flame burner. The instrumentation is based upon absorption of resonant radiation from a flowing microwave discharge lamp, and is rugged, relatively inexpensive, and very simple to operate.

  2. Hydrogen Passivation of Interstitial Zn Defects in Heteroepitaxial InP Cell Structures and Influence on Device Characteristics

    NASA Technical Reports Server (NTRS)

    Ringel, S. A.; Chatterjee, B.

    2004-01-01

    Hydrogen passivation of heteroepitaxial InP solar cells is of recent interest for deactivation of dislocations and other defects caused by the cell/substrate lattice mismatch that currently limit the photovoltaic performance of these devices. In this paper we present strong evidence that, in addition to direct hydrogen-dislocation interactions, hydrogen forms complexes with the high concentration of interstitial Zn defects present within the p(+) Zn-doped emitter of MOCVD-grown heteroepitaxial InP devices, resulting in a dramatic increase of the forward bias turn-on voltage by as much as 280 mV, from 680 mV to 960 mV. This shift is reproducible and thermally reversible and no such effect is observed for either n(+)p structures or homoepitaxial p(+)n structures grown under identical conditions. A combination of photoluminescence (PL), electrochemical C-V dopant profiling, SIMS and I-V measurements were performed on a set of samples having undergone a matrix of hydrogenation and post-hydrogenation annealing conditions to investigate the source of this voltage enhancement and confirm the expected role of interstitial Zn and hydrogen. A precise correlation between all measurements is demonstrated which indicates that Zn interstitials within the p(+) emitter and their interaction with hydrogen are indeed responsible for this device behavior.

  3. Electrical and hydrogen-sensing characteristics of field effect transistors based on nanorods of ZnO and WO2.72.

    PubMed

    Rout, Chandra Sekhar; Kulkarni, G U; Rao, C N R

    2009-09-01

    Top-gated field effect transistors (FETs) using Au-gap (5 microm) electrodes on glass substrate and SiO2/Si as gate have been fabricated with undoped and doped nanorods of ZnO as well as with WO2.72 nanorods as active semiconductor elements. The I-V characteristics at different gate voltages show that the nanorods are n-type semiconductors and the derived transfer characteristics show that the FET devices function in the depletion mode. Al-doping (3 at%) enhances the carrier mobility of ZnO nanorods to 128.6 cm2/V x s as against to 0.009 cm2/V x s estimated in the case of the undoped nanorods. Doping with Cd and Mg (3 at%) as well as N (approximately 1 at%) similarly increases the mobility although to a smaller extent. The Cd-doped ZnO nanorods exhibit the high sensitivity (defined as the ratio of the resistance in air to that in the hydrogen) (20) for 1000 ppm of hydrogen. Application of gate voltage decreases the recovery times of the nanorod sensors. FETs based on WO2.72 nanorods also show the depletion mode type characteristics and a carrier mobility of 8.38 cm2/V x s is obtained. The WO2.72 based FETs exhibit good sensitivity (approximately 10) for 1000 ppm hydrogen. PMID:19928282

  4. [Characteristics of absorption and fluorescence spectra of dissolved organic matter from confluence of rivers: case study of Qujiang River-Jialing River and Fujiang River-Jialing River].

    PubMed

    Yan, Jin-Long; Jiang, Tao; Gao, Jie; Wei, Shi-Qiang; Lu, Song; Liu, Jiang

    2015-03-01

    Three-dimensional fluorescence spectroscopy combined with ultraviolet-visible (UV-Vis) absorption spectra was used to investigate the change characteristics of dissolved organic matter (DOM) in confluences water of Qujiang River-Jialing River and Fujiang River-Jialing River, respectively. The results suggested that DOM showed a significant terrestrial input signal in all the sampling sites, FI < 1.4, HIX > 0.8, possibly representing remarkable signals of humus resulted from humic-like component. Moreover, the mixing zone of this study showed a non-conservative mixed behavior, which had a limited contribution, and was not the dominant factor to interpret the change characteristics of DOM in confluences zones. Different land-use types along all the rivers had an obvious impact on DOM inputs. Results of cluster analysis showed that a higher degree of aromaticity and humification components was observed as the predominant contributor to DOM when the land-use type was forest and farmland ecosystem, for example the confluences of Qujiang River-Jialing River. On the other hand, high concentrations of DOM with relative simple structures were found in the water when the urban land-use type was predominant, for example the confluences of Fujiang River-Jialing River. Meanwhile, a new fluorescent signal of protein-like components (peak T) appeared, which manifested a significant effect on the water quality resulted from anthropogenic activities. PMID:25929053

  5. The effects of a ration change from a total mixed ration to pasture on rumen fermentation, volatile fatty acid absorption characteristics, and morphology of dairy cows.

    PubMed

    Schären, M; Seyfang, G M; Steingass, H; Dieho, K; Dijkstra, J; Hüther, L; Frahm, J; Beineke, A; von Soosten, D; Meyer, U; Breves, G; Dänicke, S

    2016-05-01

    To investigate the effect of the change from a concentrate and silage-based ration (total mixed ration, TMR) to a pasture-based ration, a 10-wk trial (wk 1-10) was performed, including 10 rumen- and duodenum-fistulated German Holstein dairy cows (182±24 d in milk, 23.5±3.5kg of milk/d; mean ± standard deviation). The cows were divided in either a pasture group (PG, n=5) or a confinement group (CG, n=5). The CG stayed on a TMR-based ration (35% corn silage, 35% grass silage, 30% concentrate; dry matter basis), whereas the PG was gradually transitioned from a TMR to a pasture-based ration (wk 1: TMR only; wk 2: 3 h/d on pasture wk 3 and 4: 12 h/d on pasture wk 5-10: pasture only). Ruminal pH, volatile fatty acids (VFA), NH3-N, and lipopolysaccharide (LPS) concentrations were measured in rumen fluid samples collected medially and ventrally on a weekly basis. Ruminal pH was continuously recorded during 1 to 4 consecutive days each week using ruminal pH measuring devices. In wk 1, 5, and 10, rumen contents were evacuated and weighed, papillae were collected from 3 locations in the rumen, and subsequently a VFA absorption test was performed. In the PG, mean rumen pH and molar acetate proportions decreased, and molar butyrate proportions increased continuously over the course of the trial, which can most likely be ascribed to an increased intake of rapidly fermentable carbohydrates. During the first weeks on a full grazing ration (wk 5-7), variation of rumen pH decreased, and in wk 5 a lower rumen content, papillae surface area, and potential for VFA absorption were observed. In wk 8 to 10, variation of rumen pH and total VFA concentrations increased again, and acetate/propionate ratio decreased. In wk-10 rumen content, papillae area and VFA absorption characteristics similar to initial levels were observed. Although continuous rumen pH assessments and LPS concentrations did not reveal an increased risk for subacute rumen acidosis (SARA) during the adaption period

  6. Performance and characteristics of a high pressure, high temperature capillary cell with facile construction for operando x-ray absorption spectroscopy.

    PubMed

    Bansode, Atul; Guilera, Gemma; Cuartero, Vera; Simonelli, Laura; Avila, Marta; Urakawa, Atsushi

    2014-08-01

    We demonstrate the use of commercially available fused silica capillary and fittings to construct a cell for operando X-ray absorption spectroscopy (XAS) for the study of heterogeneously catalyzed reactions under high pressure (up to 200 bars) and high temperature (up to 280 °C) conditions. As the first demonstration, the cell was used for CO2 hydrogenation reaction to examine the state of copper in a conventional Cu/ZnO/Al2O3 methanol synthesis catalyst. The active copper component of the catalyst was shown to remain in the metallic state under supercritical reaction conditions, at 200 bars and up to 260 °C. With the coiled heating system around the capillary, one can easily change the length of the capillary and control the amount of catalyst under investigation. With precise control of reactant(s) flow, the cell can mimic and serve as a conventional fixed-bed micro-reactor system to obtain reliable catalytic data. This high comparability of the reaction performance of the cell and laboratory reactors is crucial to gain insights into the nature of actual active sites under technologically relevant reaction conditions. The large length of the capillary can cause its bending upon heating when it is only fixed at both ends because of the thermal expansion. The degree of the bending can vary depending on the heating mode, and solutions to this problem are also presented. Furthermore, the cell is suitable for Raman studies, nowadays available at several beamlines for combined measurements. A concise study of CO2 phase behavior by Raman spectroscopy is presented to demonstrate a potential of the cell for combined XAS-Raman studies. PMID:25173285

  7. Performance and characteristics of a high pressure, high temperature capillary cell with facile construction for operando x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Bansode, Atul; Guilera, Gemma; Cuartero, Vera; Simonelli, Laura; Avila, Marta; Urakawa, Atsushi

    2014-08-01

    We demonstrate the use of commercially available fused silica capillary and fittings to construct a cell for operando X-ray absorption spectroscopy (XAS) for the study of heterogeneously catalyzed reactions under high pressure (up to 200 bars) and high temperature (up to 280 °C) conditions. As the first demonstration, the cell was used for CO2 hydrogenation reaction to examine the state of copper in a conventional Cu/ZnO/Al2O3 methanol synthesis catalyst. The active copper component of the catalyst was shown to remain in the metallic state under supercritical reaction conditions, at 200 bars and up to 260 °C. With the coiled heating system around the capillary, one can easily change the length of the capillary and control the amount of catalyst under investigation. With precise control of reactant(s) flow, the cell can mimic and serve as a conventional fixed-bed micro-reactor system to obtain reliable catalytic data. This high comparability of the reaction performance of the cell and laboratory reactors is crucial to gain insights into the nature of actual active sites under technologically relevant reaction conditions. The large length of the capillary can cause its bending upon heating when it is only fixed at both ends because of the thermal expansion. The degree of the bending can vary depending on the heating mode, and solutions to this problem are also presented. Furthermore, the cell is suitable for Raman studies, nowadays available at several beamlines for combined measurements. A concise study of CO2 phase behavior by Raman spectroscopy is presented to demonstrate a potential of the cell for combined XAS-Raman studies.

  8. Performance and characteristics of a high pressure, high temperature capillary cell with facile construction for operando x-ray absorption spectroscopy

    SciTech Connect

    Bansode, Atul; Urakawa, Atsushi; Guilera, Gemma; Simonelli, Laura; Avila, Marta; Cuartero, Vera

    2014-08-15

    We demonstrate the use of commercially available fused silica capillary and fittings to construct a cell for operando X-ray absorption spectroscopy (XAS) for the study of heterogeneously catalyzed reactions under high pressure (up to 200 bars) and high temperature (up to 280 °C) conditions. As the first demonstration, the cell was used for CO{sub 2} hydrogenation reaction to examine the state of copper in a conventional Cu/ZnO/Al{sub 2}O{sub 3} methanol synthesis catalyst. The active copper component of the catalyst was shown to remain in the metallic state under supercritical reaction conditions, at 200 bars and up to 260 °C. With the coiled heating system around the capillary, one can easily change the length of the capillary and control the amount of catalyst under investigation. With precise control of reactant(s) flow, the cell can mimic and serve as a conventional fixed-bed micro-reactor system to obtain reliable catalytic data. This high comparability of the reaction performance of the cell and laboratory reactors is crucial to gain insights into the nature of actual active sites under technologically relevant reaction conditions. The large length of the capillary can cause its bending upon heating when it is only fixed at both ends because of the thermal expansion. The degree of the bending can vary depending on the heating mode, and solutions to this problem are also presented. Furthermore, the cell is suitable for Raman studies, nowadays available at several beamlines for combined measurements. A concise study of CO{sub 2} phase behavior by Raman spectroscopy is presented to demonstrate a potential of the cell for combined XAS-Raman studies.

  9. Threshold switching behavior of Ag-Si based selector device and hydrogen doping effect on its characteristics

    SciTech Connect

    Yoo, Jongmyung; Woo, Jiyong; Song, Jeonghwan; Hwang, Hyunsang

    2015-12-15

    The effect of hydrogen treatment on the threshold switching property in a Ag/amorphous Si based programmable metallization cells was investigated for selector device applications. Using the Ag filament formed during motion of Ag ions, a steep-slope (5 mV/dec.) for threshold switching with higher selectivity (∼10{sup 5}) could be achieved. Because of the faster diffusivity of Ag atoms, which are inside solid-electrolytes, the resulting Ag filament could easily be dissolved under low current regime, where the Ag filament possesses weak stability. We found that the dissolution process could be further enhanced by hydrogen treatment that facilitated the movement of the Ag atoms.

  10. Ultrafast conversions between hydrogen bonded structures in liquid water observed by femtosecond x-ray spectroscopy

    SciTech Connect

    Wen, Haidan; Huse, Nils; Schoenlein, Robert W.; Lindenberg, Aaron M.

    2010-05-01

    We present the first femtosecond soft x-ray spectroscopy in liquids, enabling the observation of changes in hydrogen bond structures in water via core-hole excitation. The oxygen K-edge of vibrationally excited water is probed with femtosecond soft x-ray pulses, exploiting the relation between different water structures and distinct x-ray spectral features. After excitation of the intramolecular OH stretching vibration, characteristic x-ray absorption changes monitor the conversion of strongly hydrogen-bonded water structures to more disordered structures with weaker hydrogen-bonding described by a single subpicosecond time constant. The latter describes the thermalization time of vibrational excitations and defines the characteristic maximum rate with which nonequilibrium populations of more strongly hydrogen-bonded water structures convert to less-bonded ones. On short time scales, the relaxation of vibrational excitations leads to a transient high-pressure state and a transient absorption spectrum different from that of statically heated water.

  11. Microwave peak absorption frequency of liquid

    NASA Astrophysics Data System (ADS)

    Han, Guangze; Chen, Mingdong

    2008-09-01

    Microwave-assisted extraction is a new effective method which has practical applications in many fields. Microwave heating is one of its physical mechanisms, and it also has the characteristic of selectivity. When the applied microwave frequency equals a certain absorption frequency of the material (or specific component), the material will intensively absorb microwave energy. This is also known as resonant absorption, and the frequency is called the peak absorption frequency which depends on the physical structure of the material. In this work, dynamic hydrogen bond energy was included in molecular activation energy; with the liquid cell model, the expression of interaction energy between dipolar molecules was derived. The rotational relaxation time was gotten from the Eyring viscosity formula. Then based on the relationship between dielectric dissipation coefficient and relaxation time, the expression of microwave peak absorption frequency as a function of the material physical structure, rotational inertia and electrical dipole moment of molecules was established. These theoretical formulas were applied to water and benzene, and the calculated results agree fairly well with the experimental data. This work can not only deepen the study of the interaction between microwave and material, but also provide a possible guide for the experiment of microwave-assisted extraction.

  12. Damage Characteristics of TiD2 Films Irradiated by a Mixed Pulsed Beam of Titanium and Hydrogen Ions

    NASA Astrophysics Data System (ADS)

    Liu, Meng; He, Tie; Yan, Jie; Ke, Jianlin; Lin, Jufang; Lu, Biao

    2016-07-01

    Titanium deuteride is an important nuclear material used in the field of nuclear technology, and further research is needed into TiD2 films irradiated by pulsed ion beams of the vacuum arc discharge with hydrogen. In the current study, these irradiated TiD2 films have been investigated using scanning electronic microscopy and slow positron annihilation techniques. Both the thermal effect and irradiation defects of TiD2 films were studied, following their irradiation with mixed pulsed ion beams of titanium and hydrogen ions. It is found that the thermal effect is trivial on the irradiated surfaces, and the dominant effect is irradiation defects which can be enhanced by repetitive shots and is characterized by the inner diffusion of irradiation defects.

  13. Exploring adsorption and desorption characteristics of molecular hydrogen on neutral and charged Mg nanoclusters: A first principles study

    NASA Astrophysics Data System (ADS)

    Banerjee, Paramita; Chandrakumar, K. R. S.; Das, G. P.

    2016-05-01

    To surmount the limitations of bulk MgH2 for the purpose of hydrogen storage, we report here, a detailed first principles density functional theory (DFT) based study on the structure and stability of neutral (Mgm) and positively charged (Mgm+) Mg nanoclusters of different sizes (m = 2, 4, 8 and 12) and their interaction with molecular hydrogen (H2). Our results demonstrate that H2 is weakly bound to the Mg nanoclusters through van der Waals interactions. Incorporation of Grimme's dispersion correction (D3) in the DFT based exchange-correlation functionals leads to improved accuracy of H2 interaction energy (IE) values that fall within an energy window (between physisorption and chemisorption) desirable for hydrogen storage. Energy decomposition analysis reveals the significance of polarization energy for these Mg-H2 binding. Ab-initio molecular dynamics simulation shows that complete dehydrogenation from these Mg nanoclusters occur at ∼100 °C which is a significant improvement over bulk MgH2 (∼300 °C).

  14. Heterojunction of Zinc Blende/Wurtzite in Zn1-xCdxS Solid Solution for Efficient Solar Hydrogen Generation: X-ray Absorption/Diffraction Approaches.

    PubMed

    Hsu, Ying-Ya; Suen, Nian-Tzu; Chang, Chung-Chieh; Hung, Sung-Fu; Chen, Chi-Liang; Chan, Ting-Shan; Dong, Chung-Li; Chan, Chih-Chieh; Chen, San-Yuan; Chen, Hao Ming

    2015-10-14

    In the past decade, inorganic semiconductors have been successfully demonstrated as light absorbers in efficient solar water splitting to generate chemical fuels. Pseudobinary semiconductors Zn1-xCdxS (0≤x≤1) have exhibited a superior photocatalytic reactivity of H2 production from splitting of water by artificial solar irradiation without any metal catalysts. However, most studies had revealed that the extremely high efficiency with an optimal content of Zn1-xCdxS solid solution was determined as a result of elevating the conduction band minimum (CBM) and the width of bandgap. In addition to corresponding band structure and bandgap, the local crystal structure should be taken into account as well to determine its photocatalytic performance. Herein, we demonstrated the correlations between the photocatalytic activity and structural properties that were first studied through synchrotron X-ray diffraction and X-ray absorption spectroscopy. The crystal structure transformed from zinc blende to coexisted phases of major zinc blende and minor wurtzite phases at a critical point. The heterojunction formed by coexistence of zinc blende and wurtzite phases in the Zn1-xCdxS solid solution can significantly improve the separation and migration of photoinduced electron-hole pairs. Besides, X-ray absorption spectra and UV-vis spectra revealed that the bandgap of the Zn0.45Cd0.55S sample extended into the region of visible light because of the incorporation of Cd element in the sample. These results provided a significant progress toward the realization of the photoelectrochemical mechanism in heterojunction between zinc blende and wurtzite phases, which can effectively separate the charge-carriers and further suppress their recombination to enhance the photocatalytic reactivity. PMID:26402651

  15. Absorption characteristic of paeoniflorin-6'-O-benzene sulfonate (CP-25) in in situ single-pass intestinal perfusion in rats.

    PubMed

    Yang, Xiao-Dan; Wang, Chun; Zhou, Peng; Yu, Jun; Asenso, James; Ma, Yong; Wei, Wei

    2016-09-01

    1. Paeoniflorin-6'-O-benzene sulfonate (CP-25) was synthesized to improve the poor oral absorption of paeoniflorin (Pae). 2. This study was performed to investigate the absorptive behavior and mechanism of CP-25 in in situ single-pass intestinal perfusion in rats, using Pae as a control. 3. The results showed that intestinal absorption of CP-25 was neither segmental nor sex dependent. However, the main segment of intestine that absorbed Pae was the duodenum. Furthermore, passive transport was confirmed to be the main absorption pattern of CP-25. More importantly, the absorption of CP-25 was much higher than Pae in the small intestine. 4. Among the ABC transporter inhibitors, the absorption rate of Pae increased in the presence of P-gp inhibitors verapamil and GF120918, which indicated that Pae was a substrate of P-glycoprotein (P-gp), however, such was not observed in the presence of breast cancer resistance protein and multidrug resistance-associated protein 2. Finally, the ABC transporter inhibitors did not have any significant impact on CP-25 as demonstrated in the parallel studies. 5. CP-25 could improve the poor absorption of Pae, which may be attributed to both the lipid solubility enhancement and its resistance to P-gp-mediated efflux. PMID:26711120

  16. Ultrafine hydrogen storage powders

    DOEpatents

    Anderson, Iver E.; Ellis, Timothy W.; Pecharsky, Vitalij K.; Ting, Jason; Terpstra, Robert; Bowman, Robert C.; Witham, Charles K.; Fultz, Brent T.; Bugga, Ratnakumar V.

    2000-06-13

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  17. Experiment research on ellipsoidal structure methane using the absorption characteristics of 3.31 μm mid-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Wang, Fang-rong; Zhao, Yan-hui; Wang, Yi-ding; Cui, Tian; Kan, Ru-wen; Wu, Li-chun; Zhang, Tie-qiang; Zhang, Yuan-kun

    2012-07-01

    The intensity distribution of absorption spectroscopy of methane mid-infrared fundamental absorption bands, near-infrared combination band of v2 + 2v3 and overtone band of 2v3 were discussed in details in this paper. Quantitative data showed that the absorption intensities of fundamental bands are twice larger than overtone bands, and three times larger than combination bands. Based on the methane 3.31 μm (v3) fundamental absorption bands and differential signal disposal method, a rotational ellipsoidal light structure was designed using ordinary light source and detector to improve gas detection sensitivity. The experimental results of concentration detection showed that the precision of concentration measurement can reach 3% and detection sensitivity is 50 ppm. Meanwhile, experiment was performed to investigate the influence of temperature on mid-infrared absorption performance of methane and the experience curve of 3.31 μm (v3) fundamental absorption signal depending on temperature and its rate of change was drawn.

  18. Cholesterol absorption.

    PubMed

    Ostlund, Richard E

    2002-03-01

    Cholesterol absorption is a key regulatory point in human lipid metabolism because it determines the amount of endogenous biliary as well as dietary cholesterol that is retained, thereby influencing whole body cholesterol balance. Plant sterols (phytosterols) and the drug ezetimibe reduce cholesterol absorption and low-density lipoprotein cholesterol in clinical trials, complementing the statin drugs, which inhibit cholesterol biosynthesis. The mechanism of cholesterol absorption is not completely known but involves the genes ABC1, ABCG5, and ABCG8, which are members of the ATP-binding cassette protein family and appear to remove unwanted cholesterol and phytosterols from the enterocyte. ABC1 is upregulated by the liver X (LXR) and retinoid X (RXR) nuclear receptors. Acylcholesterol acytransferase-2 is an intestinal enzyme that esterifies absorbed cholesterol and increases cholesterol absorption when dietary intake is high. New clinical treatments based on better understanding of absorption physiology are likely to substantially improve clinical cholesterol management in the future. PMID:17033296

  19. Influence of hydrogen oxidation kinetics on hydrogen environment embrittlement

    NASA Technical Reports Server (NTRS)

    Walter, R. J.; Kendig, M. W.; Meisels, A. P.

    1992-01-01

    Results are presented from experiments performed to determine the roles of hydrogen absorption and hydrogen electron transfer on the susceptibility of Fe- and Ni-base alloys to ambient-temperature hydroen embrittlement. An apparent independence is noted between hydrogen environment embrittlement and internal hydrogen embrittlement. The experiments were performed on Inconel 718, Incoloy 903, and A286. The electrochemical results obtained indicate that Inconel 718 either adsorbs hydrogen more rapidly and/or the electrochemical oxidation of the adsorbed hydrogen occurred more rapidly than in the other two materials.

  20. Operating and environmental characteristics of Sigma Tau hydrogen masers used in the Very Long Baseline Array (VLBA)

    NASA Technical Reports Server (NTRS)

    Tucker, T. K.

    1989-01-01

    Presented here are the results obtained from performance evaluation of a pair of Sigma Tau Standards Corporation Model VLBA-112 active hydrogen maser frequency standards. These masers were manufactured for the National Radio Astronomy Observatory (NRAO) for use on the Very Long Baseline Array (VLBA) project and were furnished to the Jet Propulsion Laboratory (JPL) for the purpose of these tests. Tests on the two masers were performed in the JPL Frequency Standards Laboratory (FSL) and included the characterization of output frequency stability versus environmental factors such as temperature, humidity, magnetic field, and barometric pressure. The performance tests also included the determination of phase noise and Allan variance using both FSL and Sigma Tau masers as references. All tests were conducted under controlled laboratory conditions, with only the desired environmental and operational parameters varied to determine sensitivity to external environment.

  1. Infrared absorption of trans-1-chloromethylallyl and trans-1-methylallyl radicals produced in photochemical reactions of trans-1,3-butadiene and Cℓ2 in solid para-hydrogen

    NASA Astrophysics Data System (ADS)

    Bahou, Mohammed; Wu, Jen-Yu; Tanaka, Keiichi; Lee, Yuan-Pern

    2012-08-01

    The reactions of chlorine and hydrogen atoms with trans-1,3-butadiene in solid para-hydrogen (p-H2) were investigated with infrared (IR) absorption spectra. When a p-H2 matrix containing Cℓ2 and trans-1,3-butadiene was irradiated with ultraviolet light at 365 nm, intense lines at 650.3, 809.0, 962.2, 1240.6 cm-1, and several weaker ones due to the trans-1-chloromethylallyl radical, •(CH2CHCH)CH2Cℓ, appeared. Observed wavenumbers and relative intensities agree with the anharmonic vibrational wavenumbers and IR intensities predicted with the B3PW91/6-311++g(2d, 2p) method. That the Cℓ atom adds primarily to the terminal carbon atom of trans-1,3-butadiene is in agreement with the path of minimum energy predicted theoretically, but in contrast to the reaction of Cℓ + propene in solid p-H2 [J. Amicangelo and Y.-P. Lee, J. Phys. Chem. Lett. 1, 2956 (2010)], 10.1021/jz101119b in which the addition of Cℓ to the central C atom is favored, likely through steric effects in a p-H2 matrix. A second set of lines, intense at 781.6, 957.9, 1433.6, 2968.8, 3023.5, 3107.3 cm-1, were observed when the UV-irradiated Cℓ2/trans-1,3-butadiene/p-H2 matrix was further irradiated with IR light from a SiC source. These lines are assigned to the trans-1-methylallyl radical, •(CH2CHCH)CH3, produced from reaction of 1,3-butadiene with a H atom resulted from the reaction of Cℓ atoms with solid p-H2 exposed to IR radiation.

  2. Testing for hydrogen environment embrittlement - Experimental variables

    NASA Technical Reports Server (NTRS)

    Gray, H. R.

    1974-01-01

    Hydrogen embrittlement is classified into three types: internal reversible hydrogen embrittlement, hydrogen reaction embrittlement, and hydrogen environment embrittlement. Characteristics of and materials embrittled by these types of hydrogen embrittlement are discussed. Hydrogen environment embrittlement is reviewed in detail. Factors involved in standardizing test methods for detecting the occurrence of and evaluating the severity of hydrogen environment embrittlement are considered. The effects of test technique, hydrogen pressure, gas purity, strain rate, stress concentration factor, and test temperature are discussed.

  3. Formation and infrared absorption of protonated naphthalenes (1-C10H9+ and 2-C10H9+) and their neutral counterparts in solid para-hydrogen.

    PubMed

    Bahou, Mohammed; Wu, Yu-Jong; Lee, Yuan-Pern

    2013-02-14

    Protonated naphthalene (C(10)H(9)(+)) and its neutral counterparts (hydronaphthyl radicals, C(10)H(9)) are important intermediates in the reactions of aromatic compounds and in understanding the unidentified infrared (IR) emissions from interstellar media. We report the IR spectra of 1-C(10)H(9)(+), 2-C(10)H(9)(+), 1-C(10)H(9), and 2-C(10)H(9) trapped in solid para-hydrogen (p-H(2)); the latter three are new. These species were produced upon electron bombardment of a mixture of naphthalene (C(10)H(8)) and p-H(2) during matrix deposition. The intensities of IR features of 1-C(10)H(9)(+) decreased after the matrix was maintained in darkness for 19 h, whereas those of 1-C(10)H(9) and 2-C(10)H(9) increased. Irradiation of this matrix sample with light at 365 nm diminished lines of 1-C(10)H(9)(+) and 2-C(10)H(9) and enhanced lines of 1-C(10)H(9) and 2-C(10)H(9)(+); the latter species was unstable and converted to 1-C(10)H(9)(+) in less than 30 min and 2-C(10)H(9) was converted to 1-C(10)H(9) at 365 nm. Observed wavenumbers and relative intensities of these species agree satisfactorily with the anharmonic vibrational wavenumbers and IR intensities predicted with the B3PW91/6-311++G(2d,2p) method. Compared with spectra recorded previously with IR photodissociation of Ar-tagged C(10)H(9)(+) or IR multiphoton dissociation of C(10)H(9)(+), our method has the advantages of producing high-resolution IR spectra with a wide spectral coverage, true IR intensity and excellent ratio of signal to noise; both protonated species and their neutral counterparts are produced with little interference from other fragments. With these advantages, the IR spectra of 1-C(10)H(9)(+), 2-C(10)H(9)(+), 1-C(10)H(9), and 2-C(10)H(9) are here clearly characterized. PMID:23254551

  4. Room temperature hydrogen gas sensing characteristics of porous quaternary AlInGaN film prepared via UV-assisted photo-electrochemical etching

    NASA Astrophysics Data System (ADS)

    Quah, Hock Jin; Ahmed, Naser Mahmoud; Zainal, Norzaini; Yam, Fong Kwong; Hassan, Zainuriah; Lim, Way Foong

    2016-07-01

    This paper reports room temperature hydrogen gas sensing characteristics of porous quaternary AlInGaN prepared via ultraviolet-assisted photo-electrochemical etching in 1-4% diluted potassium hydroxide (KOH) solution. The highest sensitivity (S), the lowest response time and recovery time were obtained by the 4% KOH etched sample, owing to good adsorption and desorption of adsorbed H atoms over the largest surface area provided by the highest pore density. An increase in forward bias to 2.0 V has enhanced S (98.0%) of the sample while a relatively low bias of 0.5 V was sufficient to yield S of 81.9% in the sample.

  5. A numerical study of transient ignition and flame characteristics of diluted hydrogen versus heated air in counterflow

    SciTech Connect

    Yoo, Chun Sang; Chen, Jacqueline H.; Frank, Jonathan H.

    2008-11-15

    Combined experimental and numerical studies of the transient response of ignition to strained flows require a well-characterized ignition trigger. Laser deposition of a small radical pool provides a reliable method for initiating ignition of mixtures that are near the ignition limit. Two-dimensional direct numerical simulations are used to quantify the sensitivity of ignition kernel formation and subsequent edge-flame propagation to the oxidizer temperature and the initial width and amplitude of O-atom deposition used to trigger ignition in an axisymmetric counterflow of heated air versus ambient hydrogen/nitrogen. The ignition delay and super-equilibrium OH concentration in the nascent ignition kernel are highly sensitive to variations in these initial conditions. The ignition delay decreases as the amplitude of the initial O-atom deposition increases. The spatial distribution and the magnitude of the OH overshoot are governed by multi-dimensional effects. The degree of OH overshoot near the burner centerline increases as the diameter of the initial O-atom deposition region decreases. This result is attributed to preferential diffusion of hydrogen in the highly curved leading portion of the edge flame that is established following thermal runaway. The edge-flame speed and OH overshoot at the leading edge of the edge flame are relatively insensitive to variations in the initial conditions of the ignition. The steady edge-flame speed is approximately twice the corresponding laminar flame speed. The rate at which the edge flame approaches its steady state is insensitive to the initial conditions and depends solely on the diffusion time scale at the edge flame. The edge flame is curved toward the heated oxidizer stream as a result of differences in the chemical kinetics between the leading edge and the trailing diffusion flame. The structure of the highly diluted diffusion flame considered in this study corresponds to Linan's 'premixed flame regime' in which only the

  6. A numerical study of transient ignition and flame characteristics of diluted hydrogen versus heated air in counterflow

    SciTech Connect

    Yoo, Chun Sang; Chen, Jacqueline H.; Frank, Jonathan H.

    2009-01-15

    Combined experimental and numerical studies of the transient response of ignition to strained flows require a well-characterized ignition trigger. Laser deposition of a small radical pool provides a reliable method for initiating ignition of mixtures that are near the ignition limit. Two-dimensional direct numerical simulations are used to quantify the sensitivity of ignition kernel formation and subsequent edge-flame propagation to the oxidizer temperature and the initial width and amplitude of O-atom deposition used to trigger ignition in an axisymmetric counterflow of heated air versus ambient hydrogen/nitrogen. The ignition delay and super-equilibrium OH concentration in the nascent ignition kernel are highly sensitive to variations in these initial conditions. The ignition delay decreases as the amplitude of the initial O-atom deposition increases. The spatial distribution and the magnitude of the OH overshoot are governed by multi-dimensional effects. The degree of OH overshoot near the burner centerline increases as the diameter of the initial O-atom deposition region decreases. This result is attributed to preferential diffusion of hydrogen in the highly curved leading portion of the edge flame that is established following thermal runaway. The edge-flame speed and OH overshoot at the leading edge of the edge flame are relatively insensitive to variations in the initial conditions of the ignition. The steady edge-flame speed is approximately twice the corresponding laminar flame speed. The rate at which the edge flame approaches its steady state is insensitive to the initial conditions and depends solely on the diffusion time scale at the edge flame. The edge flame is curved toward the heated oxidizer stream as a result of differences in the chemical kinetics between the leading edge and the trailing diffusion flame. The structure of the highly diluted diffusion flame considered in this study corresponds to Linan's 'premixed flame regime' in which only the

  7. A numerical study of transient ignition and flame characteristics of diluted hydrogen versus heated air in counterflow.

    SciTech Connect

    Yoo, Chun Sang; Chen, Jacqueline H.; Frank, Jonathan H.

    2008-08-01

    Combined experimental and numerical studies of the transient response of ignition to strained flows require a well-characterized ignition trigger. Laser deposition of a small radical pool provides a reliable method for initiating ignition of mixtures that are near the ignition limit. Two-dimensional direct numerical simulations are used to quantify the sensitivity of ignition kernel formation and subsequent edge-flame propagation to the oxidizer temperature and the initial width and amplitude of O-atom deposition used to trigger ignition in an axisymmetric counterflow of heated air versus ambient hydrogen/nitrogen. The ignition delay and super-equilibrium OH concentration in the nascent ignition kernel are highly sensitive to variations in these initial conditions. The ignition delay decreases as the amplitude of the initial O-atom deposition increases. The spatial distribution and the magnitude of the OH overshoot are governed by multi-dimensional effects. The degree of OH overshoot near the burner centerline increases as the diameter of the initial O-atom deposition region decreases. This result is attributed to preferential diffusion of hydrogen in the highly curved leading portion of the edge flame that is established following thermal runaway. The edge-flame speed and OH overshoot at the leading edge of the edge flame are relatively insensitive to variations in the initial conditions of the ignition. The steady edge-flame speed is approximately twice the corresponding laminar flame speed. The rate at which the edge flame approaches its steady state is insensitive to the initial conditions and depends solely on the diffusion time scale at the edge flame. The edge flame is curved toward the heated oxidizer stream as a result of differences in the chemical kinetics between the leading edge and the trailing diffusion flame. The structure of the highly diluted diffusion flame considered in this study corresponds to Linan's 'premixed flame regime' in which only the

  8. The effects of calcium hydroxide on hydrogen chloride emission characteristics during a simulated densified refuse-derived fuel combustion process.

    PubMed

    Chiang, Kung-Yuh; Jih, Jer-Chyuan; Lin, Kae-Long

    2008-08-30

    This study investigated the effects of different calcium hydroxide (Ca(OH)(2)) addition methods on the potential for hydrogen chloride (HCl) formation in a simulated densified refuse-derived fuel (RDF-5) with single metal combustion system. These experiments were conducted at 850 degrees C with the Ca(OH)(2) spiked in the RDF-5 production or injection in the flue gas treatment system. The results indicated that the potential for HCl formation was decreased significantly by Ca(OH)(2) spiked in the RDF-5 production or injection in the flue gas treatment system. However, the Ca(OH)(2) injection method in the flue gas for HCl emission reduction was better than other method. According to the relationship between the HCl emission and amount of Ca(OH)(2) injected or spiked, it is interesting to find that when the Ca(OH)(2) injected or spiked ranged from 0% to 5%, the potential for HCl formation in the single metal combustion system decreases significantly with increasing Ca(OH)(2) injected or spiked ratio. A corresponding increase in the amount of CaCl(2) partitioned to the fly ash was observed. However, with the ratio of Ca(OH)(2) higher than 5%, the amount of HCl formation showed that no further significant variation occurred with increasing Ca(OH)(2) spiked ratio. PMID:18272287

  9. Analytical Investigation of the Effect of Turbopump Design on Gross-Weight Characteristics of a Hydrogen-Propelled Nuclear Rocket

    NASA Technical Reports Server (NTRS)

    Rohlik, Harold E.; Crouse, James E.

    1959-01-01

    The effect of turbopump design on rocket gross weight was investigated for a high-pressure bleed-type hydrogen-reactor long-range rocket with a fixed mission. Axial-flow, mixed-flow, and centrifugal pumps driven by single and twin turbines were considered. With an efficiency of 0.7 assumed for all pumps, the lowest rocket gross weights were obtained with an axial-flow or a mixed-flow pump driven by a single turbine of at least eight stages. All turbopump combinations could be used, however, with gross weight varying less than 8 percent for a given payload. Turbopump efficiencies have a significant effect on the ratio of gross weight to payload with the magnitude of the effect determined by the ratio of rocket structural weight to total propellant weight. One point in pump efficiency is worth 0.2 percent in gross weight for a given payload with a structural weight parameter of 0.1 and 0.6 percent with a structural weight parameter of 0.2. Turbine and pump weights are much less significant in terms of gross-to-pay weight ratio than the efficiencies of these components. One point in pump efficiency is equivalent to approximately 13 percent in pump weight, while 1 point in turbine efficiency is equivalent to about 7 percent in turbine weight.

  10. Stability of Hydrated Methylamine: Structural Characteristics and H2N···H–O Hydrogen Bonds

    SciTech Connect

    Lv, Sha-Sha; Liu, Yi-Rong; Huang, Teng; Feng, Ya-Juan; Jiang, Shuai; Huang, Wei

    2015-04-23

    Methylamine is the simplest aliphatic amine found in human urine, blood, and tissues. It is thought to play a significant part in central nervous system disturbances observed during renal and hepatic disease. In this work we have investigated the methylamine hydration clusters using a basin hopping (BH) algorithm with the density functional theory (DFT). The results presented herein yield a detailed understanding of the structure and stability for a system consisting of one methylamine molecule and up to seven waters: the most stable geometries arise from a fusion of tetramer or pentamer rings; by the geometrical parameters and topological parameters analysis, the strengths of the H2N···H–O hydrogen bonds of the global minima increase as the sizes of clusters increase, except for n = 5 where there is a slight fluctuation. This work may shed light on the form mechanism of methylamine existing in organisms and the hydration structures of larger molecules containing amino functional groups and their interaction with the water molecules nearby.

  11. Optical absorption measurements of hydrogen chloride at high temperature and high concentration in the presence of water using a tunable diode laser system for application in pyrohydrolysis non-ferrous industrial process control.

    PubMed

    Tzanetakis, Tommy; Susilo, Robin; Wang, Zhenyou; Padmanabhan, Arathi; Davis, Boyd R; Thomson, Murray J

    2015-06-01

    A tunable diode laser (TDL) was used to measure hydrogen chloride (HCl) spectra at 5747 cm(-1) (1.74 μm) and temperatures of 25-950 °C in a quartz cell. The purpose was to evaluate the capability of monitoring HCl concentration under pyrohydrolysis conditions using a near-infrared (NIR) laser. These conditions are characterized by 20-40% HCl, 2-40% H2O, and the presence of metal chloride vapors at temperatures of 600-1000 °C. Spectral peak area measurements of HCl-N2 mixtures at atmospheric pressure and a path length of 8.1 cm showed linear absorption behavior between concentrations of 5-95% and temperatures of 25-950 °C. Results from the addition of 2-40% water (H2O) indicate that the HCl peak area relationships are not affected for temperatures of 350-950 °C. Evaporating NiCl2 within the cell did not show spectral interference effects with HCl between 650 and 850 °C. The results from this work indicate that a near-infrared optical sensor is capable of measuring high HCl concentrations at high temperatures in the presence of high H2O content during pyrohydrolysis process conditions. PMID:26054333

  12. Relationship of high molecular weight glutenin subunit composition and molecular weight distribution of wheat flour protein with water absorption and color characteristics of noodle dough

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Colors of noodle doughs made from hard white winter wheat flours from Oregon were measured at optimum noodle water absorptions (NWA). Partial correlations, removing effect of protein concentration, indicated that NWA had negative relationships with 0 hr L* and 24 hr b*, and positive relationships wi...

  13. Resistance degradation due to interstitial hydrogen in photorefractive potassium lithium tantalate niobate single crystals

    NASA Astrophysics Data System (ADS)

    Ivker, M.; Agranat, A. J.

    2004-12-01

    Resistance degradation in potassium lithium tantalate niobate (KLTN) doped with iron and titanium was measured in a single sample containing various concentrations of interstitial hydrogen. In this crystal the degradation arose from the migration of interstitial hydrogen and not oxygen vacancies, as reported in previous research. Interstitial hydrogen and oxygen vacancy defects both arise to compensate the valence shortfall of the substitutional iron impurities and the thermodynamic balance between the two compensation mechanisms can be controlled using reaction chemistry techniques. Through appropriate annealing treatments a single crystal of KLTN was prepared in three states: hydrogen-rich oxidized, hydrogen-poor reduced, and hydrogen-rich reduced. The characteristic degradation times for the three cases were 29, 2710, and 26min, respectively. The degradation rate is correlated with hydrogen concentration and not oxidation state of the crystal. Infrared absorption from near the two electrodes of the hydrogen-rich reduced crystal after degradation confirmed polarization of the hydrogen concentration. Electrocoloration was also found to correlate with hydrogen—it was observed in both hydrogen-rich states, but was absent from the hydrogen-poor crystal.

  14. Measurements of the volt-ampere characteristics and the breakdown voltages of direct-current helium and hydrogen discharges in microgaps

    SciTech Connect

    Klas, M.; Matejčik, Š.; Radjenović, B.; Radmilović-Radjenović, M.

    2014-10-15

    The discharge phenomena for micro meter gap sizes include many interesting problems from engineering and physical perspectives. In this paper, the authors deal with the experimental and theoretical results of the breakdown voltage and current-voltage characteristics of the direct-current helium and hydrogen discharges. The measurements were performed at a constant pressure of around one atmosphere, while varying the gap size between two parallel plane tungsten electrodes between 1 μm and 100 μm. From the measured breakdown voltage curves, the effective yields and the ionization coefficients were derived for both gases. Present data for the ionization coefficients correlate with the data obtained for the breakdown voltage curves measured for fixed 100 μm interelectrode separation. The current-voltage characteristics were plotted for the various gap sizes illustrating the role of the field emission effects in the microgaps. Based on the Fowler-Nordheim theory, the enhancement factors were determined. The gap spacing dependence of the field emission current can be explained by the introduction of two ideas, the first being a space charge effect by emitted electrons, and the second a change in the breakdown mechanism. Experimental results, presented here, demonstrate that Townsend phenomenology breaks down when field emission becomes the key mechanism affecting the breakdown and deforming the left hand side of the breakdown voltage curves.

  15. Measurements of the volt-ampere characteristics and the breakdown voltages of direct-current helium and hydrogen discharges in microgaps

    NASA Astrophysics Data System (ADS)

    Klas, M.; Matejčik, Š.; Radjenović, B.; Radmilović-Radjenović, M.

    2014-10-01

    The discharge phenomena for micro meter gap sizes include many interesting problems from engineering and physical perspectives. In this paper, the authors deal with the experimental and theoretical results of the breakdown voltage and current-voltage characteristics of the direct-current helium and hydrogen discharges. The measurements were performed at a constant pressure of around one atmosphere, while varying the gap size between two parallel plane tungsten electrodes between 1 μm and 100 μm. From the measured breakdown voltage curves, the effective yields and the ionization coefficients were derived for both gases. Present data for the ionization coefficients correlate with the data obtained for the breakdown voltage curves measured for fixed 100 μm interelectrode separation. The current-voltage characteristics were plotted for the various gap sizes illustrating the role of the field emission effects in the microgaps. Based on the Fowler-Nordheim theory, the enhancement factors were determined. The gap spacing dependence of the field emission current can be explained by the introduction of two ideas, the first being a space charge effect by emitted electrons, and the second a change in the breakdown mechanism. Experimental results, presented here, demonstrate that Townsend phenomenology breaks down when field emission becomes the key mechanism affecting the breakdown and deforming the left hand side of the breakdown voltage curves.

  16. Infrared absorption of trans-1-chloromethylallyl and trans-1-methylallyl radicals produced in photochemical reactions of trans-1,3-butadiene and C Script-Small-L {sub 2} in solid para-hydrogen

    SciTech Connect

    Bahou, Mohammed; Wu, Jen-Yu; Tanaka, Keiichi; Lee, Yuan-Pern

    2012-08-28

    The reactions of chlorine and hydrogen atoms with trans-1,3-butadiene in solid para-hydrogen (p-H{sub 2}) were investigated with infrared (IR) absorption spectra. When a p-H{sub 2} matrix containing C Script-Small-L {sub 2} and trans-1,3-butadiene was irradiated with ultraviolet light at 365 nm, intense lines at 650.3, 809.0, 962.2, 1240.6 cm{sup -1}, and several weaker ones due to the trans-1-chloromethylallyl radical, Bullet (CH{sub 2}CHCH)CH{sub 2}C Script-Small-L , appeared. Observed wavenumbers and relative intensities agree with the anharmonic vibrational wavenumbers and IR intensities predicted with the B3PW91/6-311++g(2d, 2p) method. That the C Script-Small-L atom adds primarily to the terminal carbon atom of trans-1,3-butadiene is in agreement with the path of minimum energy predicted theoretically, but in contrast to the reaction of C Script-Small-L + propene in solid p-H{sub 2}[J. Amicangelo and Y.-P. Lee, J. Phys. Chem. Lett. 1, 2956 (2010)] in which the addition of C Script-Small-L to the central C atom is favored, likely through steric effects in a p-H{sub 2} matrix. A second set of lines, intense at 781.6, 957.9, 1433.6, 2968.8, 3023.5, 3107.3 cm{sup -1}, were observed when the UV-irradiated C Script-Small-L {sub 2}/trans-1,3-butadiene/p-H{sub 2} matrix was further irradiated with IR light from a SiC source. These lines are assigned to the trans-1-methylallyl radical, Bullet (CH{sub 2}CHCH)CH{sub 3}, produced from reaction of 1,3-butadiene with a H atom resulted from the reaction of C Script-Small-L atoms with solid p-H{sub 2} exposed to IR radiation.

  17. Efficiency of a solar cell with intermediate energy levels: An example study on hydrogen implanted Si solar cells

    NASA Astrophysics Data System (ADS)

    Ichimura, Masaya; Sakakibara, Hiromu; Wada, Koji; Kato, Masashi

    2013-09-01

    For any pn junction solar cell, there is a theoretical limit to its conversion efficiency, which is determined by its band gap. This efficiency may exceed the limit by introducing an intermediate level (IL) that can facilitate the sub-band-gap optical absorption, but the IL can simultaneously enhance the carrier recombination rate. To understand the net effects of the IL, it is necessary to estimate the rates of both the optical absorption and carrier capture via the IL. In this study, trap parameters and the optical absorption coefficient are evaluated for defect levels in hydrogen implanted silicon wafers using deep level transient spectroscopy, the optical-capacitance transient spectroscopy, and carrier lifetime measurements. Using the obtained trap parameters, the characteristics of hydrogen implanted silicon solar cells are simulated. The simulation results indicate that it is not possible to realize improvements in efficiency by performing hydrogen implantation.

  18. X-ray Absorption Spectroscopy and Density Functional Theory Studies of [(H3buea)FeIII-X]n1 (X= S2-, O2-,OH-): Comparison of Bonding and Hydrogen Bonding in Oxo and Sulfido Complexes

    SciTech Connect

    Dey, Abhishek; Hocking, Rosalie K.; Larsen, Peter; Borovik, Andrew S.; Hodgson, Keith O.; Hedman, Britt; Solomon, Edward I.; /SLAC, SSRL

    2006-09-27

    Iron L-edge, iron K-edge, and sulfur K-edge X-ray absorption spectroscopy was performed on a series of compounds [Fe{sup III}H{sub 3}buea(X)]{sup n-} (X = S{sup 2-}, O{sup 2-}, OH{sup -}). The experimentally determined electronic structures were used to correlate to density functional theory calculations. Calculations supported by the data were then used to compare the metal-ligand bonding and to evaluate the effects of H-bonding in Fe{sup III}-O vs Fe{sup III-}S complexes. It was found that the Fe{sup III-}O bond, while less covalent, is stronger than the FeIII-S bond. This dominantly reflects the larger ionic contribution to the Fe{sup III-}O bond. The H-bonding energy (for three H-bonds) was estimated to be -25 kcal/mol for the oxo as compared to -12 kcal/mol for the sulfide ligand. This difference is attributed to the larger charge density on the oxo ligand resulting from the lower covalency of the Fe-O bond. These results were extended to consider an Fe{sup IV-}O complex with the same ligand environment. It was found that hydrogen bonding to Fe{sup IV-}O is less energetically favorable than that to Fe{sup III-}O, which reflects the highly covalent nature of the Fe{sup IV-}O bond.

  19. Role of the medium on the C343 inter/intramolecular hydrogen bond interactions. An absorption, emission, and 1HNMR investigation of C343 in benzene/n-heptane mixtures.

    PubMed

    Gutierrez, Jorge A; Falcone, R Darío; Silber, Juana J; Correa, N Mariano

    2010-07-15

    C343, a common molecular probe utilized in solvation dynamics experiments, was studied in homogeneous media. Absorption, emission, and (1)HNMR spectroscopies were used to investigate the behavior of C343 in benzene and in benzene/n-heptane mixtures. We demonstrate the implications of the medium polarity, measured as the Kamlet-Taft polarity-polarizability (pi*) parameter, in the C343 inter/intramolecular hydrogen bond (H-bond) interactions and the role that this interaction plays in the dimerization process of the dye. In pure benzene, the dimer prevails because the intermolecular H-bond interaction is favored. On the other hand, as the n-heptane content increases the intramolecular H-bond is the strongest and the C343 monomer is favored. As the polarity of the medium decreases, the solvophobic interaction makes that C343 monomer species experiences a more complicated aggregation process beyond the simple monomer dimer equilibrium present in pure benzene. Thus, the addition of n-heptane to the mixture yields a C343 higher-order aggregates species. Thus, our work reveals the importance that the medium has on the behavior of a widespread dye used as chromophore for very different systems such as homogeneous and microheterogenous media. This is very important since the use of chromophores without understanding its chemistry can induce artifacts into the interpretation of solvation dynamics in heterogeneous environments, in particular, those provided by biological systems such as proteins. Considerable care in choosing and characterizing the system is required to analyze the results fully. PMID:20565101

  20. Morphological and light-absorption characteristics of individual BC particles collected in an urban seaside area at Tokaimura, eastern central Japan.

    PubMed

    Fu, Feng Fu; Watanabe, Kazuo; Shinohara, Nobuo; Xu, Xueqin; Xu, Liangjun; Akagi, Tasuku

    2008-04-15

    To observe surface morphology and light-absorption property of different black carbon (BC) particles, different-sized aerosols were collected in Tokaimura (36.27 degrees N, 140.36 degrees E), an urban seaside area of eastern central Japan, using a high-volume Andersen type sampler during a whole year (Jan. to Dec. in 2004). The morphology of individual BC particle separated from different-sized aerosols was observed with Scanning Electron Microscope with Energy Dispersive X-ray Spectrometer (SEM-EDX) and four types of morphology were observed: 50 nm spherical particles, micrometer-sized plates with homogeneous surfaces, micrometer-sized spherical particles with homogeneous surfaces and micrometer-sized spherical particles with small holes on surfaces. The light-absorption property of BC particles with different morphology has been determined by infrared spectrometry (IRS) with a photoacoustic technique in a region of 400-4000 wavenumbers (cm(-1)). All morphology BC particles showed a strong light-absorption during 500-3000 wavenumbers (cm(-1)) with two strong broad peaks in 750-1100 and 1200-2200 wavenumbers (cm(-1)), implying that all morphology BC particles can absorb a significant part of thermal infrared emitted from the earth (wavelength 4000-50,000 nm). The seasonal variation and the size-distribution of aerosols and its chemical components (e.g. C, Na, Cl, NH(4)(+), NO(3)(-), SO(4)(2-), Al, Ca, Mg and Fe) were also measured in this study. More than 55% of non-inorganic carbon (OC+BC) in the atmosphere was detected in the aerosols with a size smaller than 1.1 microm and the concentration of non-inorganic carbon in the atmosphere showed only a faint variation during a whole year, although the concentrations of total aerosols and its chemical components exhibited a distinct variation. PMID:18262223

  1. Effect of prenatal lead toxicity on surface ultrastructural features, elemental composition and infrared absorption characteristics of the skin of albino mice.

    PubMed

    Dey, S; Arjun, J; Das, M; Bhattacharjee, C R; Dkhar, P S

    2001-01-01

    The epidermis and dermis of albino mice born to females receiving oral sublethal doses of lead during pregnancy developed several abnormalities. These included perforations, tissue damage, cell deformity, and disordered organization of collagen bundles, as revealed by scanning electron microscopy. An increase in the concentrations of zinc, iron, magnesium, calcium and a decrease in that of copper was evident from atomic absorption spectroscopical analysis, when entire skin tissues were examined. Infrared spectroscopy revealed the occurrence of split bands in the spectra at 1,200-1,000 cm(-1), suggesting a reduction in the symmetry of the sulphate group (glycosaminoglycans) of skin probably caused by covalent bonding of it with lead. PMID:11545451

  2. Effects of hydrogen on metals

    NASA Technical Reports Server (NTRS)

    Cataldo, C. E.

    1969-01-01

    Several rules to guide choice of materials, and methods of welding, electroplating, and heat treatment will provide a method for minimizing failures in storage tanks and related hardware. Failures are caused by high-pressure hydrogen effects, the formation of hydrides in titanium, and hydrogen absorption through various metals processing techniques.

  3. Operando X-ray absorption and infrared fuel cell spectroscopy

    SciTech Connect

    Lewis, Emily A.; Kendrick, Ian; Jia, Qingying; Grice, Corey; Segre, Carlo U.; Smotkin, Eugene S.

    2011-11-17

    A polymer electrolyte fuel cell enables operando X-ray absorption and infrared spectroscopy of the membrane electrode assembly catalytic layer with flowing fuel and air streams at controlled temperature. Time-dependent X-ray absorption near edge structure spectra of the Pt and Ni edge of Pt based catalysts of an air-breathing cathode show that catalyst restructuring, after a potential step, has time constants from minutes to hours. The infrared Stark tuning plots of CO adsorbed on Pt at 100, 200, 300 and 400 mV vs. hydrogen reference electrode were obtained. The Stark tuning plots of CO adsorbed at 400 mV exhibit a precipitous drop in frequency coincident with the adsorption potential. The turn-down potential decreases relative to the adsorption potential and is approximately constant after 300 mV. These Stark tuning characteristics are attributed to potential dependent adsorption site selection by CO and competitive adsorption processes.

  4. Modeling hydrogen-cyanide absorption in fires

    NASA Technical Reports Server (NTRS)

    Cagliostro, D. E.; Islas, A.

    1981-01-01

    A mathematical model is developed for predicting blood concentrations of cyanide as functions of exposure time to constant levels of cyanide in the atmosphere. A toxic gas (which may form as a result of decomposition of combustion materials used in transportation vehicles) is breathed into the alveolar space and transferred from the alveolar space to the blood by a first-order process, dependent on the concentration of the toxicant in the alveolar space. The model predicts that blood cyanide levels are more sensitive to the breathing cycle than to blood circulation. A model estimate of the relative effects of CO and HCN atmospheres, generated in an experimental chamber with an epoxy polymer, shows that toxic effects of cyanide occur long before those of carbon monoxide.

  5. Stability of absorption phenomena in laser-thermal propulsion

    NASA Technical Reports Server (NTRS)

    Merkle, C. L.; Tsai, Y.-L. P.

    1984-01-01

    The mean flow and stability characteristics of laser absorption phenomena in a choked converging-diverging nozzle are considered. Calculations are presented for a given nozzle geometry and a series of laser intensities. Gas absorptivities corresponding to a hydrogen-cesium mixture are used with different initial temperatures being selected to investigate the effects of changes in the shape of the k-T curve. Both stability and mean flow calculations are limited to the one-dimensional case. The mean flow results show a decrease in mass flow as laser power is increased, along with increasingly steep temperature profiles. Calculations span regions of partial and complete absorption. One region is found where multiple solutions exist. Local stability results indicate the u-c characteristic is the only unstable mode in the unheated case. Laser heat addition makes this mode more unstable and also destabilizes the u-characteristic. Numerical calculations of disturbance propagation show that the instability of the u-c disturbances is counteracted by their reflection to u + c disturbances at the upstream end. The growth of the u-disturbances is localized in regions where the temperature profile is steep and they are damped in other regions. The increasing destabilization that is observed with increased laser power is probably the reason for difficulty in obtaining converged mean flow solutions at high laser intensities.

  6. Hydrogen production

    NASA Technical Reports Server (NTRS)

    England, C.; Chirivella, J. E.; Fujita, T.; Jeffe, R. E.; Lawson, D.; Manvi, R.

    1975-01-01

    The state of hydrogen production technology is evaluated. Specific areas discussed include: hydrogen production fossil fuels; coal gasification processes; electrolysis of water; thermochemical production of hydrogen; production of hydrogen by solar energy; and biological production of hydrogen. Supply options are considered along with costs of hydrogen production.

  7. Short communication: Chemical composition, fatty acid composition, and sensory characteristics of Chanco cheese from dairy cows supplemented with soybean and hydrogenated vegetable oils.

    PubMed

    Vargas-Bello-Pérez, E; Fehrmann-Cartes, K; Íñiguez-González, G; Toro-Mujica, P; Garnsworthy, P C

    2015-01-01

    Lipid supplements can be used to alter fatty acid (FA) profiles of dairy products. For Chanco cheese, however, little information is available concerning effects of lipid supplements on sensorial properties. The objective of this study was to examine effects of supplementation of dairy cow diets with soybean (SO) and hydrogenated vegetable (HVO) oils on chemical and FA composition of milk and cheese and sensory characteristics of cheese. Nine multiparous Holstein cows averaging 169±24d in milk at the beginning of the study were used in a replicated (n=3) 3×3 Latin square design that included 3 periods of 21d. All cows received a basal diet formulated with a 56:44 forage:concentrate ratio. Dietary treatments consisted of the basal diet (control; no fat supplement), and the basal diet supplemented with SO (unrefined oil; 500g/d per cow) and HVO (manufactured from palm oil; 500g/d per cow). Milk fat yield was lower with HVO compared with control and SO. Cheese chemical composition and sensory profile were not affected by dietary treatment. Vaccenic (C18:1 trans-11) and oleic (C18:1 cis-9) acids were higher for SO than for control and HVO. Compared with control and HVO, SO decreased saturated FA and increased monounsaturated FA. The thrombogenic index of milk and cheese produced when cows were fed SO was lower than when cows were fed on control and HVO. The outcome of this study showed that, compared with control and HVO, supplementing dairy cow diets with SO improves milk and cheese FA profile without detrimental effects on the chemical composition of milk and cheese and the sensory characteristics of cheese. PMID:25465558

  8. Concentrations and light absorption characteristics of carbonaceous aerosol in PM2.5 and PM10 of Lhasa city, the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Li, Chaoliu; Chen, Pengfei; Kang, Shichang; Yan, Fangping; Hu, Zhaofu; Qu, Bin; Sillanpää, Mika

    2016-02-01

    Light absorption properties of carbonaceous aerosol strongly influence the Earth's radiative balance, yet the related knowledge is limited for the Tibetan Plateau (TP), the highest and largest plateau in the world. In this study, organic carbon (OC), elemental carbon (EC) and water soluble organic carbon (WSOC) of PM2.5 and PM10 of Lhasa collected from May 2013 to March 2014 were studied. It showed that daily-average concentrations of OC, EC and WSOC of PM2.5 and PM10 were lower than those of other megacities. Lhasa PM2.5 was characterized by low OC/EC ratio (1.46 ± 0.55), which was similar to that of Lhasa roadside PM2.5 (1.25 ± 0.45), reflecting mainly direct influence of primary emissions and less secondary formation. Hence, although Lhasa atmosphere is relatively clean, it is intensively influenced by local vehicle emissions. Mass absorption cross-section of EC (MACEC) for both PM2.5 and PM10 at 632 nm were 7.19 ± 1.19 m2 g-1 and 7.98 ± 2.32 m2 g-1, respectively, both of which had similar variation patterns to OC/EC and secondary OC (SOC)/OC, indicating that the increase of MACEC might be caused by coating with organic aerosol. Additionally, the loading of EC for both PM2.5 and PM10 showed logarithmic relationships with those of optical attenuation (ATN) of EC, implying that the shadowing effect enhanced logarithmic with increased EC concentration. MAC of WSOC at 365 nm for PM2.5 (0.74 ± 0.22 m2 g-1) and PM10 (0.78 ± 0.21 m2 g-1) were also close to reported values of other cities mainly influenced by fossil combustion. Additionally, attenuation at 365 nm of WSOC of both PM2.5 and PM10 showed the same relationship with their WSOC concentrations, implying no difference for light absorption properties of WSOC for these two grain sizes.

  9. Hydrogen Generation Via Sodium Borohydride

    NASA Astrophysics Data System (ADS)

    Mohring, Richard M.; Wu, Ying

    2003-07-01

    Along with the technological challenges associated with developing fuel cells and hydrogen burning engines, a major issue that must be addressed to ensure the ultimate success of a hydrogen economy is the ability to store and transport hydrogen effectively. Millennium Cell has developed and patented a proprietary system for storing and generating hydrogen gas called Hydrogen on Demand™. The system releases the hydrogen stored in fuel solutions of sodium borohydride as needed through an easily controllable catalytic process. The fuel itself is water-based, rich in hydrogen content, and non-flammable. It can be stored in plastic containers under no pressure. After the hydrogen from the fuel is consumed, the remaining product, sodium metaborate (chemically similar to borax), can be recycled back into fresh fuel. In this paper, an overview of the Hydrogen on Demand™ technology is presented along with data showing the performance characteristics of practical hydrogen generation systems. A brief discussion of sodium borohydride regeneration chemistry is also provided.

  10. Preparation of andrographolide-loaded solid lipid nanoparticles and their in vitro and in vivo evaluations: characteristics, release, absorption, transports, pharmacokinetics, and antihyperlipidemic activity.

    PubMed

    Yang, Tao; Sheng, Huan-Huan; Feng, Nian-Ping; Wei, Hai; Wang, Zheng-Tao; Wang, Chang-Hong

    2013-12-01

    Andrographolide (AND) is one of diterpenoids separated from Andrographis paniculata with a wide spectrum of biological activities of being anti-inflammatory, anticancer, hepatoprotective, and antihyperlipidemic. But its poor water solubility and instability resulted in lower bioavailability and seriously limited its pharmacological function. In this study, AND-loaded solid lipid nanoparticles (AND-SLNs) were prepared by a high-pressure homogenization method and presented as spherically shaped under transmission electron microscopy with an average diameter of 286.1 nm and zeta potential of -20.8 mV. The average drug-entrapment efficiency and drug loading were 91.00% and 3.49%, respectively. The results indicated that the lower bioavailability of AND is not only because of the poor solubility but also owing to its metabolic instability in intestinal segments. Furthermore, the transport mechanism of AND in Caco-2 cell model is complex in which an active transport carrier (P-glycoprotein) is involved in. The bioavailability and antihyperlipidemic activity of AND were improved by AND-SLNs by increasing the solubility and stability of AND in the intestine and by changing its transport mode in Caco-2 cell. The bioavailability of AND was increased to 241% by AND-SLNs as compared with AND suspension. AND-SLNs would be a promising drug-delivery system to enhance the oral absorption and bioavailability of AND. PMID:24166599

  11. Photodetector with enhanced light absorption

    DOEpatents

    Kane, James

    1985-01-01

    A photodetector including a light transmissive electrically conducting layer having a textured surface with a semiconductor body thereon. This layer traps incident light thereby enhancing the absorption of light by the semiconductor body. A photodetector comprising a textured light transmissive electrically conducting layer of SnO.sub.2 and a body of hydrogenated amorphous silicon has a conversion efficiency about fifty percent greater than that of comparative cells. The invention also includes a method of fabricating the photodetector of the invention.

  12. The microbial-kill characteristics of saturated steam plus 1,000 to 10,000 ppm hydrogen peroxide at atmospheric pressure.

    PubMed

    Pflug, Irving J; Melgaard, Hans L; Schaffer, Shawn M; Lysfjord, Jack P

    2008-01-01

    This is the report of a project carried out to determine the microbial-kill characteristics of saturated steam plus hydrogen peroxide (H2O2) using a specially-constructed test apparatus. Spores on stainless-steel planchets were inserted into a flowing gaseous atmosphere of steam plus H2O2 for a timed exposure to the lethal agent. The specially-designed test apparatus and its operating parameters are described. Geobacillus stearothermophilus (former name, Bacillus stearothermophilus) spore-death rates were evaluated in several spore-planchet handling modes. Enumeration microbial recovery methods were used. The data were analyzed using survivor-curve methods; D-values were calculated using the initial number of spores per planchet and the number of spores surviving the process. Extensive tests were carried out using Geobacillus stearothermophilus spores; limited tests were carried out using Bacillus smithii ATCC 51232 (former name, Bacillus coagulans), Bacillus macerans, and Bacillus subtilis, subtilis ATCC 35021 spores (former name, Bacillus subtilis, CCC 5230, Kerns 15U). For G. stearothermophilus spores subjected to steam plus H2O2 and recovered using the 2B procedure (planchets deposited in sterile, 100-mL bottles containing 50.0 mL of buffer immediately after they were subjected to the steam-H2O2 condition; 11 experiments), the mean D-value was 0.48 min at 2,500 ppm and 0.22 min at 7,500 ppm. The application of steam plus H2O2 to the sterilization of barrier isolator enclosures is discussed. PMID:18540535

  13. HYDROGEN SEPARATION MEMBRANES

    SciTech Connect

    Donald P. McCollor; John P. Kay

    1999-08-01

    A likely membrane for future testing of high-temperature hydrogen separation from a gasification product stream was targeted as an inorganic analog of a dense-metal membrane, where the hydrogen would dissolve into and diffuse through the membrane structure. An amorphous membrane such as zinc sulfide appeared to be promising. Previously, ZnS film coating tests had been performed using an electron-beam vacuum coating instrument, with zinc films successfully applied to glass substrates. The coatings appeared relatively stable in air and in a simple simulated gasification atmosphere at elevated temperature. Because the electron-beam coating instrument suffered irreparable breakdown, several alternative methods were tested in an effort to produce a nitrogen-impermeable, hydrogen-permeable membrane on porous sintered steel substrates. None of the preparation methods proved successful in sealing the porous substrate against nitrogen gas. To provide a nitrogen-impermeable ZnS material to test for hydrogen permeability, two ZnS infrared sample windows were purchased. These relatively thick ''membranes'' did not show measurable permeation of hydrogen, either due to lack of absorption or a negligible permeation rate due to their thickness. To determine if hydrogen was indeed adsorbed, thermogravimetric and differential thermal analyses tests were performed on samples of ZnS powder. A significant uptake of hydrogen gas occurred, corresponding to a maximum of 1 mole H{sub 2} per 1 mole ZnS at a temperature of 175 C. The hydrogen remained in the material at ambient temperature in a hydrogen atmosphere, but approximately 50% would be removed in argon. Reheating in a hydrogen atmosphere resulted in no additional hydrogen uptake. Differential scanning calorimetry indicated that the hydrogen uptake was probably due to the formation of a zinc-sulfur-hydrogen species resulting in the formation of hydrogen sulfide. The zinc sulfide was found to be unstable above approximately 200 C

  14. Fracture characteristics of Ti-6Al-4V and Ti-5Al-2.5Fe with refined microstructure using hydrogen

    NASA Astrophysics Data System (ADS)

    Niinomi, M.; Gong, B.; Kobayashi, T.; Ohyabu, Y.; Toriyama, O.

    1995-05-01

    The hydrogenation behavior of Ti-6Al-4V, with the starting microstructures of coarse equiaxed α and coarse Widmanstätten α, respectively, was investigated under a hydrogen pressure of 0.1 MPa at temperatures between 843 and 1123 K. The hydrogen content was determined as a function of hydrogenation time, hydrogenation temperature, and hydrogen flow rate. The phases presented in the alloy of after hydrogenation were determined with X-ray and electron diffraction analysis in order to define the effect of Thermochemical Processing (TCP) on the microstructure of the alloy. Mechanical properties and fracture toughness of Ti-6Al-4V and Ti-5Al-2.5Fe subjected to the various TCP were then investigated. Hydrogenation of Ti-6Al-4V with the starting microstructure of coarse equiaxed α at 1023 K, just below hydrogen saturated β (denoted β″ (H)) transus temperature, produces a microstructure of a, orthohombic martensite (denoted α″ (H)) and β (H). Hydrogenation at 1123 K, above β (H) transus, results in a microstructure of α″ (H) and β (H). Microstructure refinement during TCP results mainly from decomposition of α″ (H) and ;β (H) into a fine mixture of α + β during dehydrogenation. An alternative TCP method is below β (H) transus hydrogenation (BTH), consisting of hydrogenation of the alloy below the hydrogenated β (H) transus temperature, air cooling to room temperature, and dehydrogenation at a lower temperature, which is found to improve mechanical properties significantly over a conventional TCP treatment. Compared with the untreated material, the BTH treatment increases the yield strength and increases the ultimate tensile strength significantly without decreasing the tensile elongation in the starting microstructure of coarse equiaxed α or with a little decrease in the tensile elongation in the starting microstructure of coarse Widmanstätten α, although the conventional TCP treatment results in a large decrease in elongation over the

  15. SEARCHING FOR HYDROGEN IN TYPE Ib SUPERNOVAE

    SciTech Connect

    James, Spencer; Baron, E.

    2010-08-01

    We present synthetic spectral fits of the typical Type Ib SN 1999dn and the hydrogen-rich Ib SN 2000H using the generalized non-local thermodynamic equilibrium stellar atmospheres code PHOENIX. We fit model spectra to five epochs of SN 1999dn ranging from 10 days pre-maximum light to 17 days post-maximum light and to the two earliest epochs of SN 2000H available, maximum light and six days post-maximum. Our goal is to investigate the possibility of hydrogen in Type Ib supernovae (SNe Ib), specifically a feature around 6200 A which has previously been attributed to high-velocity H{alpha}. In earlier work on SN 1999dn we found the most plausible alternative to H{alpha} to be a blend of Si II and Fe II lines which can be adjusted to fit by increasing the metallicity. Our models are simple; they assume a power-law density profile with radius, homologous expansion, and solar compositions. The helium core is produced by 'burning' 4H{yields}He in order to conserve the nucleon number. For models with hydrogen the outer skin of the model consists of a shell of solar composition. The hydrogen mass of the standard solar composition shell is M{sub H} {approx}< 10{sup -3} M{sub sun} in SN 1999dn and M{sub H} {approx}< 0.2 M{sub sun} for SN 2000H. Our models fit the observed spectra reasonably well, successfully reproducing most features including the characteristic He I absorptions. The hydrogen feature in SN 1999dn is clear, but much more pronounced in SN 2000H. We discuss a possible evolutionary scenario that accounts for the dichotomy in the hydrogen shell mass between these two SNe.

  16. Studies on Hydrogen Extraction Characteristics of Proton-Conducting Ceramics and Their Applications to a Tritium Recovery System and a Tritium Monitor

    SciTech Connect

    Tanaka, M.; Asakura, Y.; Uda, T.; Katahira, K.; Iwahara, H.; Tsuji, N.; Yamamoto, I.

    2005-07-15

    For the purpose of the recovery of a hydrogen isotope exhausted from a fusion device and its application to a tritium monitor, hydrogen extraction properties using SrZr{sub 0.9}Yb{sub 0.1}O{sub 3-{alpha}} and CaZr{sub 0.9}In{sub 0.1}O{sub 3-{alpha}} and the effect of the electrode attachment method on the hydrogen extraction were evaluated under various atmospheres and temperatures. As a result, hydrogen could be extracted from mixed gases containing hydrogen, water vapor and methane. Furthermore, water vapor electrolysis for the tritium monitor was also evaluated under a wet atmosphere containing oxygen. From these results, it was revealed that a plated platinum electrode was suitable for mixed gases containing hydrogen, water vapor and methane, and that a porous pasted platinum electrode was suitable for water vapor electrolysis. From the findings obtained from the study of the hydrogen extraction properties, we described an optimum specification of the platinum electrode for a tritium recovery system and the number of proton-conducting ceramics for a tritium monitor.

  17. ABSORPTION ANALYZER

    DOEpatents

    Brooksbank, W.A. Jr.; Leddicotte, G.W.; Strain, J.E.; Hendon, H.H. Jr.

    1961-11-14

    A means was developed for continuously computing and indicating the isotopic assay of a process solution and for automatically controlling the process output of isotope separation equipment to provide a continuous output of the desired isotopic ratio. A counter tube is surrounded with a sample to be analyzed so that the tube is exactly in the center of the sample. A source of fast neutrons is provided and is spaced from the sample. The neutrons from the source are thermalized by causing them to pass through a neutron moderator, and the neutrons are allowed to diffuse radially through the sample to actuate the counter. A reference counter in a known sample of pure solvent is also actuated by the thermal neutrons from the neutron source. The number of neutrons which actuate the detectors is a function of a concentration of the elements in solution and their neutron absorption cross sections. The pulses produced by the detectors responsive to each neu tron passing therethrough are amplified and counted. The respective times required to accumulate a selected number of counts are measured by associated timing devices. The concentration of a particular element in solution may be determined by utilizing the following relation: T2/Ti = BCR, where B is a constant proportional to the absorption cross sections, T2 is the time of count collection for the unknown solution, Ti is the time of count collection for the pure solvent, R is the isotopic ratlo, and C is the molar concentration of the element to be determined. Knowing the slope constant B for any element and when the chemical concentration is known, the isotopic concentration may be readily determined, and conversely when the isotopic ratio is known, the chemical concentrations may be determined. (AEC)

  18. Influence of temperature on the electrochemical characteristics of MmNi 3.03Si 0.85Co 0.60Mn 0.31Al 0.08 hydrogen storage alloys

    NASA Astrophysics Data System (ADS)

    Raju, M.; Ananth, M. V.; Vijayaraghavan, L.

    The heat of hydride formation is a crucial parameter in characterizing a hydrogen storage alloy for battery applications. Novel AB 5-type, non-stoichiometric, lanthanum-rich MmNi 3.03Si 0.85Co 0.60Mn 0.31Al 0.08 (Mm: Misch metal) hydrogen storage metal hydride alloy electrodes are prepared. Electrochemical hydrogen absorption/desorption and electrochemical impedance measurements are carried out at various temperatures in conjunction with sintered nickel hydroxide positive electrodes. The specific capacity of the prepared metal hydride electrodes decreases from 283 mAh g -1 at 303 K to 213 mAh g -1 at 328 K. Electrochemical pressure-composition-temperature (PCT) isotherms are constructed from galvanostatic discharge curves and the change in enthalpy (Δ He °) and the change of entropy (Δ Se °) of the metal hydride alloy electrodes are evaluated as -41.74 kJ mol -1 and 146.28 J mol -1 K -1, respectively. Kinetic parameters are obtained by fitting the electrochemical impedance spectrum performed at different temperatures. The charge-transfer resistance decreases with temperature, whereas exchange current density and diffusion coefficient parameters increase with temperature. It is concluded that the deterioration in capacity is due to enhanced surface activity at higher temperatures.

  19. Hydrogen sensor

    DOEpatents

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  20. Aerosols in the arid southwestern United States - Measurements of mass loading, volatility, size distribution, absorption characteristics, black carbon content, and vertical structure to 7 km above sea level

    NASA Astrophysics Data System (ADS)

    Pinnick, R. G.; Fernandez, G.; Martinez-Andazola, E.; Hinds, B. D.; Hansen, A. D. A.; Fuller, K.

    1993-02-01

    A variety of methods and sensors including quartz fiber filter samplers, hi-vol samplers, ground-based and aircraft-mounted light-scattering aerosol counters, an aerosol counter equipped with a heated inlet, and an aethalometer are used to determine near-surface and lower tropospheric aerosol characteristics at several remote sites near Orogrande, New Mexico. The results of these measurements, which were taken sporadically over the last 15 yr, suggest that regardless of season, aerosol consists of two modes - a submicron fraction composed primarily of ammonium/acid sulfates and elemental black carbon and a supermicron fraction composed mainly of quartz and clay minerals of soil origin. Limited aircraft measurements in the lowest few kilometers of the troposphere reveal a well-mixed aerosol for a neutral atmospheric condition, and a significant decrease in aerosol concentration with altitude for a stable atmospheric condition.

  1. Study to minimize hydrogen embrittlement of ultrahigh-strength steels

    NASA Technical Reports Server (NTRS)

    Elsea, S. T.; Fletcher, E. E.; Groeneveld, T. P.

    1967-01-01

    Hydrogen-stress cracking in high-strength steels is influenced by hydrogen content of the material and its hydrogen absorption tendency. Non-embrittling cleaning, pickling, and electroplating processes are being studied. Protection from this hydrogen embrittlement is important to the aerospace and aircraft industries.

  2. Diffusion coefficients significant in modeling the absorption rate of carbon dioxide into aqueous blends of N-methyldiethanolamine and diethanolamine and of hydrogen sulfide into aqueous N-methyldiethanolamine

    SciTech Connect

    Adams, M.E.; Marshall, T.L.; Rowley, R.L.

    1998-07-01

    Absorption rates of gaseous CO{sub 2} into aqueous blends of N-methyldiethanolamine (MDEA) and diethanolamine (DEA) and of gaseous H{sub 2}S into aqueous MDEA were measured in a quiescent, inverted-tube diffusiometer by monitoring the rate of pressure drop. A numerical model for absorption, diffusion, and reaction of CO{sub 2} and H{sub 2}S in blends of MDEA, DEA, and water was developed. The model was used to regress diffusion coefficients of bicarbonate, carbamate, and MDEAH{sub 2}CO{sub 3} for the case of CO{sub 2} absorption and of bisulfide ion for the case of H{sub 2}S absorption from measured absorption rates. CO{sub 2} absorption rates and diffusion coefficients of bicarbonate, carbamate, and MDEAH{sub 2}CO{sub 3} were obtained at 298.2 K and 318.2 K in aqueous solutions containing 50 mass % total amine at DEA:MDEA mole ratios of 1:20, 1:4, 1L3, and 2:3. H{sub 2}S absorption rates and diffusion coefficients of bisulfide ion were obtained at 298.2 K and 318.2 K in aqueous solutions containing 20, 35, and 50 mass % MDEA.

  3. Hydrogenation apparatus

    DOEpatents

    Friedman, Joseph [Encino, CA; Oberg, Carl L [Canoga Park, CA; Russell, Larry H [Agoura, CA

    1981-01-01

    Hydrogenation reaction apparatus comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1100.degree. to 1900.degree. C., while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products.

  4. Real and potential nickel hydrogen superiority

    NASA Technical Reports Server (NTRS)

    Betz, F. E.

    1983-01-01

    Events from the development and orbital flight experience with a nickel hydrogen battery are described. The events highlight characteristics of nickel hydrogen which afford superior capability in overcharge, overdischarge and state of charge evaluation, when compared to the nickel cadmium electrochemical system. Some developments in nickel hydrogen technology that provide the potential of furthering nickel hydrogen superiority for satellite applications are also discussed.

  5. Optical absorption of the anthracene and temperature-dependent capacitance-voltage characteristics of the Au/anthracene/n-Si heterojunction in metal-organic-semiconductor configuration

    NASA Astrophysics Data System (ADS)

    Kaçus, H.; Aydoğan, Ş.; Ekinci, D.; Kurudirek, S. V.; Türüt, A.

    2015-11-01

    An anthracene film has been deposited on an n-type silicon to fabricate an Au/anthracene/n-Si junction device. The band gap of the anthracene film has been determined from the optical measurement as Eg=1.65 eV. After the fabrication of the Au/anthracene/n-Si junction device, temperature dependent capacitance-voltage characteristics in the range of 160-300 K were studied to obtain the junction parameters of the device. The diffusion potential, barrier height, Fermi energy level and donor concentration parameters have been determined from the linear 1/C2-V curves with reverse bias at all temperatures. Both Fermi energy level and the barrier height increased with the increasing temperature. Temperature-dependence of the barrier height has been attributed to inhomogeneous barrier, traps and interface states. The ionized donor concentrations have varied with the temperature in an unsystematic manner due to the trapping/de-trapping of the charges at various temperatures.

  6. Thermal-Hydraulic Analyses of Heat Transfer Fluid Requirements and Characteristics for Coupling A Hydrogen Production Plant to a High-Temperature Nuclear Reactor

    SciTech Connect

    C. B. Davis; C. H. Oh; R. B. Barner; D. F. Wilson

    2005-06-01

    The Department of Energy is investigating the use of high-temperature nuclear reactors to produce hydrogen using either thermochemical cycles or high-temperature electrolysis. Although the hydrogen production processes are in an early stage of development, coupling either of these processes to the hightemperature reactor requires both efficient heat transfer and adequate separation of the facilities to assure that off-normal events in the production facility do not impact the nuclear power plant. An intermediate heat transport loop will be required to separate the operations and safety functions of the nuclear and hydrogen plants. A next generation high-temperature reactor could be envisioned as a single-purpose facility that produces hydrogen or a dual-purpose facility that produces hydrogen and electricity. Early plants, such as the proposed Next Generation Nuclear Plant, may be dual-purpose facilities that demonstrate both hydrogen and efficient electrical generation. Later plants could be single-purpose facilities. At this stage of development, both single- and dual-purpose facilities need to be understood. Seven possible configurations for a system that transfers heat between the nuclear reactor and the hydrogen and/or electrical generation plants were identified. These configurations included both direct and indirect cycles for the production of electricity. Both helium and liquid salts were considered as the working fluid in the intermediate heat transport loop. Methods were developed to perform thermalhydraulic and cycle-efficiency evaluations of the different configurations and coolants. The thermalhydraulic evaluations estimated the sizes of various components in the intermediate heat transport loop for the different configurations. The relative sizes of components provide a relative indication of the capital cost associated with the various configurations. Estimates of the overall cycle efficiency of the various configurations were also determined. The

  7. A Finite Element Model of a MEMS-based Surface Acoustic Wave Hydrogen Sensor

    PubMed Central

    EL Gowini, Mohamed M.; Moussa, Walied A.

    2010-01-01

    Hydrogen plays a significant role in various industrial applications, but careful handling and continuous monitoring are crucial since it is explosive when mixed with air. Surface Acoustic Wave (SAW) sensors provide desirable characteristics for hydrogen detection due to their small size, low fabrication cost, ease of integration and high sensitivity. In this paper a finite element model of a Surface Acoustic Wave sensor is developed using ANSYS12© and tested for hydrogen detection. The sensor consists of a YZ-lithium niobate substrate with interdigital electrodes (IDT) patterned on the surface. A thin palladium (Pd) film is added on the surface of the sensor due to its high affinity for hydrogen. With increased hydrogen absorption the palladium hydride structure undergoes a phase change due to the formation of the β-phase, which deteriorates the crystal structure. Therefore with increasing hydrogen concentration the stiffness and the density are significantly reduced. The values of the modulus of elasticity and the density at different hydrogen concentrations in palladium are utilized in the finite element model to determine the corresponding SAW sensor response. Results indicate that with increasing the hydrogen concentration the wave velocity decreases and the attenuation of the wave is reduced. PMID:22205865

  8. Atomic hydrogen in planetary nebulae

    NASA Technical Reports Server (NTRS)

    Schneider, Stephen E.; Silverglate, Peter R.; Altschuler, Daniel R.; Giovanardi, Carlo

    1987-01-01

    The authors searched for neutral atomic hydrogen associated with 22 planetary nebulae and three evolved stars in the 21 cm line at the Arecibo Observatory. Objects whose radial velocities permitted discrimination from Galactic H I were chosen for observation. Hydrogen was detected in absorption from IC 4997. From the measurements new low limits are derived to the mass of atomic hydrogen associated with the undetected nebulae. Radio continuum observations were also made of several of the nebulae at 12.6 cm. The authors reexamine previous measurements of H I in planetary nebulae, and present the data on a consistent footing. The question of planetary nebula distances is considered at length. Finally, implications of the H I measurements for nebular evolution are discussed and it is suggested that atomic hydrogen seen in absorption was expelled from the progenitor star during the final 1000 yr prior to the onset of ionization.

  9. Absorption of carbonyl sulfide in aqueous methyldiethanolamine

    SciTech Connect

    Al-Ghawas, H.A.; Ruiz-Ibanez, G.; Sandall, O.C. )

    1988-01-01

    The absorption of carbonyl sulfide in aqueous methyldiethanolamine (MDEA) was studied over a range of temperatures and MDEA concentrations. MDEA is commonly used for selective absorption of hydrogen sulfide in the presence of carbon dioxide. However, sulfur in the form of COS may also be present and it is necessary that estimates of absorption rates of this compound be made. The objective of this study is to determine the physiochemical properties needed to predict COS absorption rates in aqueous MDEA. Free gas solubility and the diffusivity of COS in MDEA solutions were measured over the temperature range 15 to 40{sup 0}C for MDEA concentrations up to 30 weight per cent using the nitrous oxide analogy method. Solubilities were measured volumetrically in an equilibrium cell and diffusivities were measured using a laminar liquid jet absorber. The kinetics of the reaction between COS and MDEA were studied by measuring absorption rates in a single wetted-sphere absorber.

  10. Spectroscopic detection of stratospheric hydrogen cyanide

    NASA Technical Reports Server (NTRS)

    Coffey, M. T.; Mankin, W. G.; Cicerone, R. J.

    1981-01-01

    A number of features have been identified as absorption lines of hydrogen cyanide in infrared spectra of stratospheric absorption obtained from a high-altitude aircraft. Column amounts of stratospheric hydrogen cyanide have been derived from spectra recorded on eight flights. The average vertical column amount above 12 kilometers is 7.1 + or - 0.8 x 10 to the 14th molecules per square centimeter, corresponding to an average mixing ratio of 170 parts per trillion by volume.

  11. Modelling aging effects on a thermal cycling absorption process column

    SciTech Connect

    Laquerbe, C.; Contreras, S.; Demoment, J.

    2008-07-15

    Palladium coated on alumina is used in hydrogen separation systems operated at CEA/Valduc, and more particularly in Thermal Cycling Absorption Process columns. With such materials, tritium decay is known to induce aging effects which have direct side effects on hydrogen isotopes absorption isotherms. Furthermore in a TCAP column, aging occurs in an heterogeneous way. The possible impacts of these intrinsic material evolutions on the separation performances are investigated here through a numerical approach. (authors)

  12. Hydrogen-environment embrittlement of metals and its control

    NASA Technical Reports Server (NTRS)

    Chandler, W. T.; Walter, R. J.

    1975-01-01

    Types of hydrogen embrittlement are discussed together with characteristics of hydrogen-environment embrittlement, the degree of hydrogen-environment embrittlement of a wide variety of alloys, the effect of hydrogen environments on various properties, (tension, fatigue, creep and fracture mechanics), and the influence of hydrogen exposure parameters on the degree of embrittlement. Design methods for high-pressure hydrogen service and for prevention of hydrogen-environment embrittlement are also covered.

  13. Hydrogen Production

    SciTech Connect

    2014-09-01

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produce hydrogen. It includes an overview of research goals as well as “quick facts” about hydrogen energy resources and production technologies.

  14. Hydrogen Bonding, (1)H NMR, and Molecular Electron Density Topographical Characteristics of Ionic Liquids Based on Amino Acid Cations and Their Ester Derivatives.

    PubMed

    Rao, Soniya S; Bejoy, Namitha Brijit; Gejji, Shridhar P

    2015-08-13

    Amino acid ionic liquids (AAILs) have attracted significant attention in the recent literature owing to their ubiquitous applications in diversifying areas of modern chemistry, materials science, and biosciences. The present work focuses on unraveling the molecular interactions underlying AAILs. Electronic structures of ion pairs consisting of amino acid cations ([AA(+)], AA = Gly, Ala, Val, Leu, Ile, Pro, Ser, Thr) and their ester substituted derivatives [AAE(+)] interacting with nitrate anion [NO3(-)] have been obtained from the dispersion corrected M06-2x density functional theory. The formation of ion pair is accompanied by the transfer of proton from quaternary nitrogen to anion facilitated via hydrogen bonding. The [Ile], [Pro], [Ser], and [Thr] and their esters reveal relatively strong inter- as well as intramolecular hydrogen-bonding interactions. Consequently, the hierarchy in binding energies of [AA][NO3] ion pairs and their ester analogues turns out to be [Gly] > [Ala] > [Ser] ∼ [Val] ∼ [Ile] > [Leu] ∼ [Thr] > [Pro]. The work underlines how the interplay of intra- as well as intermolecular hydrogen-bonding interactions in [AA]- and [AAE]-based ILs manifest in their infrared and (1)H NMR spectra. Substitution of -OCH3 functional group in [AA][NO3] ILs lowers the melting point attributed to weaker hydrogen-bonding interactions, making them suitable for room temperature applications. As opposed to gas phase structures, the presence of solvent (DMSO) does not bring about any proton transfer in the ion pairs or their ester analogues. Calculated (1)H NMR chemical shifts of the solvated structures agree well with those from experiment. Correlations of decomposition temperatures in [AA]- and [AAE]-based ILs with binding energies and electron densities at the bond critical point(s) in molecular electron density topography, have been established. PMID:26192454

  15. Hydrogen-Trapping Mechanisms in Nanostructured Steels

    NASA Astrophysics Data System (ADS)

    Szost, B. A.; Vegter, R. H.; Rivera-Díaz-del-Castillo, Pedro E. J.

    2013-10-01

    Nanoprecipitation-hardened martensitic bearing steels (100Cr6) and carbide-free nanobainitic steels (superbainite) are examined. The nature of the hydrogen traps present in both is determined via the melt extraction and thermal desorption analysis techniques. It is demonstrated that 100Cr6 can admit large amounts of hydrogen, which is loosely bound to dislocations around room temperature; however, with the precipitation of fine coherent vanadium carbide traps, hydrogen can be immobilized. In the case of carbide-free nanostructured bainite, retained austenite/bainite interfaces act as hydrogen traps, while concomitantly retained austenite limits hydrogen absorption. In nanostructured steels where active hydrogen traps are present, it is shown that the total hydrogen absorbed is proportional to the trapped hydrogen, indicating that melt extraction may be employed to quantify trapping capacity.

  16. Hydrogen peroxide on the surface of Europa

    USGS Publications Warehouse

    Carlson, R.W.; Anderson, M.S.; Johnson, R.E.; Smythe, W.D.; Hendrix, A.R.; Barth, C.A.; Soderblom, L.A.; Hansen, G.B.; McCord, T.B.; Dalton, J.B.; Clark, R.N.; Shirley, J.H.; Ocampo, A.C.; Matson, D.L.

    1999-01-01

    Spatially resolved infrared and ultraviolet wavelength spectra of Europa's leading, anti-jovian quadrant observed from the Galileo spacecraft show absorption features resulting from hydrogen peroxide. Comparisons with laboratory measurements indicate surface hydrogen peroxide concentrations of about 0.13 percent, by number, relative to water ice. The inferred abundance is consistent with radiolytic production of hydrogen peroxide by intense energetic particle bombardment and demonstrates that Europa's surface chemistry is dominated by radiolysis.

  17. Hydrogen peroxide on the surface of Europa.

    PubMed

    Carlson, R W; Anderson, M S; Johnson, R E; Smythe, W D; Hendrix, A R; Barth, C A; Soderblom, L A; Hansen, G B; McCord, T B; Dalton, J B; Clark, R N; Shirley, J H; Ocampo, A C; Matson, D L

    1999-03-26

    Spatially resolved infrared and ultraviolet wavelength spectra of Europa's leading, anti-jovian quadrant observed from the Galileo spacecraft show absorption features resulting from hydrogen peroxide. Comparisons with laboratory measurements indicate surface hydrogen peroxide concentrations of about 0.13 percent, by number, relative to water ice. The inferred abundance is consistent with radiolytic production of hydrogen peroxide by intense energetic particle bombardment and demonstrates that Europa's surface chemistry is dominated by radiolysis. PMID:10092224

  18. Hydrogenation apparatus

    DOEpatents

    Friedman, J.; Oberg, C. L.; Russell, L. H.

    1981-06-23

    Hydrogenation reaction apparatus is described comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1,100 to 1,900 C, while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products. 2 figs.

  19. Heat transfer characteristics of the metal hydride vessel based on the plate-fin type heat exchanger

    NASA Astrophysics Data System (ADS)

    Oi, Tsutomu; Maki, Kohei; Sakaki, Yoshinori

    Heat transfer characteristics of the metal hydride vessel based on the plate-fin type heat exchanger were investigated. Metal hydride beds were filled with AB 2 type hydrogen-storage alloy's particles, Ti 0.42Zr 0.58Cr 0.78Fe 0.57Ni 0.2Mn 0.39Cu 0.03, with a storage capacity of 0.92 wt.%. Heat transfer model in the metal hydride bed based on the heat transfer mechanism for packed bed proposed by Kunii and co-workers is presented. The time-dependent hydrogen absorption/desorption rate and pressure in the metal hydride vessel calculated by the model were compared with the experimental results. During the hydriding, calculated hydrogen absorption rates agreed with measured ones. Calculated thermal equilibrium hydrogen pressures were slightly lower than the measured hydrogen pressures at the inlet of metal hydride vessel. Taking account of the pressure gradient between the inlet of metal hydride vessel and the metal hydride bed, it is considered that this discrepancy is reasonable. During the dehydriding, there were big differences between the calculated hydrogen desorption rates and measured ones. As calculated hydrogen desorption rates were lower than measured ones, there were big differences between the calculated thermal equilibrium hydrogen pressures and the measured hydrogen pressures at the inlet of metal hydride vessel. It is considered that those differences are due to the differences of the heat transfer characteristics such as thermal conductivity of metal hydride particles and porosity between the assumed and actual ones. It is important to obtain the heat transfer characteristics such as thermal conductivity of metal hydride particles and porosity both during the hydriding and dehydriding to design a metal hydride vessel.

  20. Recovery of purified helium or hydrogen from gas mixtures

    DOEpatents

    Merriman, J.R.; Pashley, J.H.; Stephenson, M.J.; Dunthorn, D.I.

    1974-01-15

    A process is described for the removal of helium or hydrogen from gaseous mixtures also containing contaminants. The gaseous mixture is contacted with a liquid fluorocarbon in an absorption zone maintained at superatomspheric pressure to preferentially absorb the contaminants in the fluorocarbon. Unabsorbed gas enriched in hydrogen or helium is withdrawn from the absorption zone as product. Liquid fluorocarbon enriched in contaminants is withdrawn separately from the absorption zone. (10 claims)

  1. Hydrogen diffusion and trapping in nickel

    NASA Technical Reports Server (NTRS)

    Louthan, M. R., Jr.; Donovan, J. A.; Caskey, G. R., Jr.

    1975-01-01

    An analysis of hydrogen transport in pure polycrystalline nickel foils and rods at 300-550 K shows that both trapping and short-circuit diffusion are present and have small yet significant effects on permeation, evolution, and absorption. Both effects appear to be associated primarily with the dislocation substructure of nickel. Relations describing hydrogen transport in nickel are obtained using the data on deuterium permeation, tritium absorption, and outgassing in pure polycrystalline nickel together with earlier measurements of diffusivity and solubility of hydrogen isotopes.

  2. Hydrogen Storage and Production Project

    SciTech Connect

    Bhattacharyya, Abhijit; Biris, A. S.; Mazumder, M. K.; Karabacak, T.; Kannarpady, Ganesh; Sharma, R.

    2011-07-31

    This is the final technical report. This report is a summary of the project. The goal of our project is to improve solar-to-hydrogen generation efficiency of the PhotoElectroChemical (PEC) conversion process by developing photoanodes with high absorption efficiency in the visible region of the solar radiation spectrum and to increase photo-corrosion resistance of the electrode for generating hydrogen from water. To meet this goal, we synthesized nanostructured heterogeneous semiconducting photoanodes with a higher light absorption efficiency compared to that of TiO2 and used a corrosion protective layer of TiO2. While the advantages of photoelectrochemical (PEC) production of hydrogen have not yet been realized, the recent developments show emergence of new nanostructural designs of photoanodes and choices of materials with significant gains in photoconversion efficiency.

  3. Diffusion and effusion of hydrogen in microcrystalline silicon

    SciTech Connect

    Beyer, W.; Hapke, P.; Zastrow, U.

    1997-07-01

    The diffusion and effusion of hydrogen in hydrogenated microcrystalline silicon films deposited in an electron cyclotron resonance reactor were studied for various deposition temperatures T{sub s}. For deposition temperatures below 250 C, hydrogen effusion is found to be dominated by desorption of hydrogen from internal surfaces followed by rapid out-diffusion of H{sub 2}. Higher substrate temperatures result in an increased hydrogen stability suggesting the growth of a more compact material. For this latter type of samples, a hydrogen diffusion coefficient similar as in compact plasma-grown a-Si:H films is found despite a different predominant bonding of hydrogen according to infrared absorption.

  4. Hydrogen Generator

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Another spinoff from spacecraft fuel cell technology is the portable hydrogen generator shown. Developed by General Electric Company, it is an aid to safer operation of systems that use hydrogen-for example, gas chromatographs, used in laboratory analysis of gases. or flame ionization detectors used as $ollution monitors. The generator eliminates the need for high-pressure hydrogen storage bottles, which can be a safety hazard, in laboratories, hospitals and industrial plants. The unit supplies high-purity hydrogen by means of an electrochemical process which separates the hydrogen and oxygen in distilled water. The oxygen is vented away and the hydrogen gas is stored within the unit for use as needed. GE's Aircraft Equipment Division is producing about 1,000 of the generators annually.

  5. Enhanced squeezing by absorption

    NASA Astrophysics Data System (ADS)

    Grünwald, P.; Vogel, W.

    2016-04-01

    Absorption is usually expected to be detrimental to quantum coherence effects. However, there have been few studies into the situation for complex absorption spectra. We consider the resonance fluorescence of excitons in a semiconductor quantum well. The creation of excitons requires absorption of the incoming pump-laser light. Thus, the absorption spectrum of the medium acts as a spectral filter for the emitted light. Surprisingly, absorption can even improve quantum effects, as is demonstrated for the squeezing of the resonance fluorescence of the quantum-well system. This effect can be explained by an improved phase matching due to absorption.

  6. Hydrogen Storage in Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Gilbert, Joseph; Gilbert, Matthew; Naab, Fabian; Savage, Lauren; Holland, Wayne; Duggan, Jerome; McDaniel, Floyd

    2004-10-01

    Hydrogen as a fuel source is an attractive, relatively clean alternative to fossil fuels. However, a major limitation in its use for the application of automobiles has been the requirement for an efficient hydrogen storage medium. Current hydrogen storage systems are: physical storage in high pressure tanks, metal hydride, and gas-on-solid absorption. However, these methods do not fulfill the Department of Energy's targeted requirements for a usable hydrogen storage capacity of 6.5 wt.%, operation near ambient temperature and pressure, quick extraction and refueling, reliability and reusability.Reports showing high capacity hydrogen storage in single-walled carbon nanotubes originally prompted great excitement in the field, but further research has shown conflicting results. Results for carbon nanostructures have ranged from less than 1 wt.% to 70 wt.%. The wide range of adsorption found in previous experiments results from the difficulty in measuring hydrogen in objects just nanometers in size. Most previous experiments relied on weight analysis and residual gas analysis to determine the amount of hydrogen being adsorbed by the CNTs. These differing results encouraged us to perform our own analysis on single-walled (SWNTs), double-walled (DWNTs), and multi-walled carbon nanotubes (MWNTs), as well as carbon fiber. We chose to utilize direct measurement of hydrogen in the materials using elastic recoil detection analysis (ERDA). This work was supported by the National Science Foundation's Research Experience for Undergraduates and the University of North Texas.

  7. D-xylose absorption

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003606.htm D-xylose absorption To use the sharing features on this page, please enable JavaScript. D-xylose absorption is a laboratory test to determine ...

  8. The HI absorption "Zoo"

    NASA Astrophysics Data System (ADS)

    Geréb, K.; Maccagni, F. M.; Morganti, R.; Oosterloo, T. A.

    2015-03-01

    We present an analysis of the H I 21 cm absorption in a sample of 101 flux-selected radio AGN (S1.4 GHz> 50 mJy) observed with the Westerbork Synthesis Radio Telescope (WSRT). We detect H I absorption in 32 objects (30% of the sample). In a previous paper, we performed a spectral stacking analysis on the radio sources, while here we characterize the absorption spectra of the individual detections using the recently presented busy function. The H I absorption spectra show a broad variety of widths, shapes, and kinematical properties. The full width half maximum (FWHM) of the busy function fits of the detected H I lines lies in the range 32 km s-1absorption (FW20) lies in the range 63 km s-1 200 km s-1). We study the kinematical and radio source properties of each group, with the goal of identifying different morphological structures of H I. Narrow lines mostly lie at the systemic velocity and are likely produced by regularly rotating H I disks or gas clouds. More H I disks can be present among galaxies with lines of intermediate widths; however, the H I in these sources is more unsettled. We study the asymmetry parameter and blueshift/redshift distribution of the lines as a function of their width. We find a trend for which narrow profiles are also symmetric, while broad lines are the most asymmetric. Among the broadest lines, more lines appear blueshifted than redshifted, similarly to what was found by previous studies. Interestingly, symmetric broad lines are absent from the sample. We argue that if a profile is broad, it is also asymmetric and shifted relative to the systemic velocity because it is tracing unsettled H I gas. In particular, besides three of the broadest (up to FW20 = 825 km s-1

  9. Hydrogen Bibliography

    SciTech Connect

    Not Available

    1991-12-01

    The Hydrogen Bibliography is a compilation of research reports that are the result of research funded over the last fifteen years. In addition, other documents have been added. All cited reports are contained in the National Renewable Energy Laboratory (NREL) Hydrogen Program Library.

  10. Hydrogen energy.

    PubMed

    Edwards, P P; Kuznetsov, V L; David, W I F

    2007-04-15

    The problem of anthropogenically driven climate change and its inextricable link to our global society's present and future energy needs are arguably the greatest challenge facing our planet. Hydrogen is now widely regarded as one key element of a potential energy solution for the twenty-first century, capable of assisting in issues of environmental emissions, sustainability and energy security. Hydrogen has the potential to provide for energy in transportation, distributed heat and power generation and energy storage systems with little or no impact on the environment, both locally and globally. However, any transition from a carbon-based (fossil fuel) energy system to a hydrogen-based economy involves significant scientific, technological and socio-economic barriers. This brief report aims to outline the basis of the growing worldwide interest in hydrogen energy and examines some of the important issues relating to the future development of hydrogen as an energy vector. PMID:17272235

  11. Proposal of high efficiency solar cells with closely stacked InAs/In{sub 0.48}Ga{sub 0.52}P quantum dot superlattices: Analysis of polarized absorption characteristics via intermediate–band

    SciTech Connect

    Yoshikawa, H. Kotani, T.; Kuzumoto, Y.; Izumi, M.; Tomomura, Y.; Hamaguchi, C.

    2014-07-07

    We present a theoretical study of the electronic structures and polarized absorption properties of quantum dot superlattices (QDSLs) using wide–gap matrix material, InAs/In{sub 0.48}Ga{sub 0.52}P QDSLs, for realizing intermediate–band solar cells (IBSCs) with two–step photon–absorption. The plane–wave expanded Burt–Foreman operator ordered 8–band k·p theory is used for this calculation, where strain effect and piezoelectric effect are taken into account. We find that the absorption spectra of the second transitions of two–step photon–absorption can be shifted to higher energy region by using In{sub 0.48}Ga{sub 0.52}P, which is lattice–matched material to GaAs substrate, as a matrix material instead of GaAs. We also find that the transverse magnetic polarized absorption spectra in InAs/In{sub 0.48}Ga{sub 0.52}P QDSL with a separate IB from the rest of the conduction minibands can be shifted to higher energy region by decreasing the QD height. As a result, the second transitions of two–step photon–absorption by the sunlight occur efficiently. These results indicate that InAs/In{sub 0.48}Ga{sub 0.52}P QDSLs are suitable material combination of IBSCs toward the realization of ultrahigh efficiency solar cells.

  12. Absorption of laser radiation in a H-He plasma. I - Theoretical calculation of the absorption coefficient

    NASA Technical Reports Server (NTRS)

    Stallcop, J. R.

    1974-01-01

    The theory for calculating the absorption of laser radiation by hydrogen is outlined for the temperatures and pressures of common laboratory plasmas. Nonhydrogenic corrections for determining the absorption by helium are also included. The coefficients for the absorption of He-Ne laser radiation at the wavelengths of 0.633, 1.15, and 3.39 microns in a H plasma is presented for temperatures in the range from 10,000 to 40,000 K and electron number densities in the range from 10 to the 15th power to 10 to the 18th power per cu cm. The total absorption of a H-He plasma calculated from this theory is compared with the measured absorption. The theoretical composition of the H-He absorption is analyzed with respect to the significant absorption processes, inverse bremsstrahlung, photoionization, resonance excitation, and photodetachment.

  13. 21 CFR 178.3610 - α-Methylstyrene-vinyltoluene resins, hydrogenated.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... resins, hydrogenated. Hydrogenated α-methylstyrene-vinyltoluene copolymer resins having a molar ratio of...-vinyltoluene copolymer resins have a drop-softening point of 125° to 165 °C and a maximum absorptivity of...

  14. 21 CFR 178.3610 - α-Methylstyrene-vinyltoluene resins, hydrogenated.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... resins, hydrogenated. Hydrogenated α-methylstyrene-vinyltoluene copolymer resins having a molar ratio of...-vinyltoluene copolymer resins have a drop-softening point of 125° to 165 °C and a maximum absorptivity of...

  15. Chlorine analysis by diode laser atomic absorption spectrometry.

    PubMed

    Koch, J; Zybin, A; Niemax, K

    2000-04-01

    The general characteristics of Diode Laser Absorption Spectrometry (DLAAS) in low pressure plasmas particularly with respect to the detection of non-metals are comprehensively recapitulated and discussed. Furthermore, a detector, which is based on DLAAS in a microwave-induced low pressure plasma as an alternative technique for halogene-specific analysis of volatile compounds and polymeric matrices is described. The analytical capability of the technique is demonstrated on the chlorine-specific analysis of ablated polymer fragments as well as gas chromatographically separated hydrocarbons. Since the measurements were carried out by means of a balanced-heterodyne detection scheme, different technical noise contributions, such as laser excess and RAM noise could efficiently be suppressed and the registered absorption was limited only by the principal shot noise. Thus, in the case of the polymer analysis a chlorine-specific absolute detection limit of 10 pg could be achieved. Furthermore, fundamental investigations concerning the influence of hydrocarbons on the dissociation capability of the microwave induced plasma were performed. For this purpose, the carbon-, chlorine- and hydrogen-specific stoichiometry of the compounds were empirically determined. Deviations from the expected proportions were found to be insignificant, implying the possibility of internal standardization relative to the response of a reference sample. PMID:12953476

  16. Hydrogen peroxide poisoning.

    PubMed

    Watt, Barbara E; Proudfoot, Alex T; Vale, J Allister

    2004-01-01

    Hydrogen peroxide is an oxidising agent that is used in a number of household products, including general-purpose disinfectants, chlorine-free bleaches, fabric stain removers, contact lens disinfectants and hair dyes, and it is a component of some tooth whitening products. In industry, the principal use of hydrogen peroxide is as a bleaching agent in the manufacture of paper and pulp. Hydrogen peroxide has been employed medicinally for wound irrigation and for the sterilisation of ophthalmic and endoscopic instruments. Hydrogen peroxide causes toxicity via three main mechanisms: corrosive damage, oxygen gas formation and lipid peroxidation. Concentrated hydrogen peroxide is caustic and exposure may result in local tissue damage. Ingestion of concentrated (>35%) hydrogen peroxide can also result in the generation of substantial volumes of oxygen. Where the amount of oxygen evolved exceeds its maximum solubility in blood, venous or arterial gas embolism may occur. The mechanism of CNS damage is thought to be arterial gas embolisation with subsequent brain infarction. Rapid generation of oxygen in closed body cavities can also cause mechanical distension and there is potential for the rupture of the hollow viscus secondary to oxygen liberation. In addition, intravascular foaming following absorption can seriously impede right ventricular output and produce complete loss of cardiac output. Hydrogen peroxide can also exert a direct cytotoxic effect via lipid peroxidation. Ingestion of hydrogen peroxide may cause irritation of the gastrointestinal tract with nausea, vomiting, haematemesis and foaming at the mouth; the foam may obstruct the respiratory tract or result in pulmonary aspiration. Painful gastric distension and belching may be caused by the liberation of large volumes of oxygen in the stomach. Blistering of the mucosae and oropharyngeal burns are common following ingestion of concentrated solutions, and laryngospasm and haemorrhagic gastritis have been

  17. Proliposome powders for enhanced intestinal absorption and bioavailability of raloxifene hydrochloride: effect of surface charge.

    PubMed

    Velpula, Ashok; Jukanti, Raju; Janga, Karthik Yadav; Sunkavalli, Sharath; Bandari, Suresh; Kandadi, Prabhakar; Veerareddy, Prabhakar Reddy

    2013-12-01

    The primary goal of the present study was to investigate the combined prospective of proliposomes and surface charge for the improved oral delivery of raloxifene hydrochloride (RXH). Keeping this objective, the present systematic study was focused to formulate proliposomes by varying the ratio of hydrogenated soyphosphatidylcholine and cholesterol. Furthermore, to assess the role of surface charge on improved absorption of RXH, anionic and cationic vesicles were prepared using dicetyl phosphate and stearylamine, respectively. The formulations were characterized for size, zeta potential and entrapment efficiency. The improved dissolution characteristics assessed from dissolution efficiency, mean dissolution rate were higher for proliposome formulations. The solid state characterization studies indicate the transformation of native crystalline form of the drug to amorphous and/or molecular state. The higher effective permeability coefficient and fraction absorbed in humans extrapolated from in situ single-pass intestinal absorption study data in rats provide an insight on the potential of proliposomes and cationic surface charge for augment in absorption across gastro intestinal barrier. To draw the conclusions, in vivo pharmacokinetic study carried out in rats indicate a threefold enhancement in the rate and extent of absorption of RXH from cationic proliposome formulation which unfurl the potential of proliposomes and role of cationic charge for improved oral delivery of RXH. PMID:22458264

  18. Hydrogenation of Zr-2.5Nb alloy after plasma-immersion titanium implantation

    NASA Astrophysics Data System (ADS)

    Sutygina, A. N.; Kashkarov, E. B.; Nikitenkov, N. N.; Tyurin, Yu I.; Syrtanov, M. S.

    2016-02-01

    The study results of the influence of plasma-immersion ion implantation of titanium in Zr-2.5Nb on hydrogenation are presented. The titanium implantation was carried out in two modes: with active plasma filtering (APF) and passive plasma filtering (PPF). The results of total hydrogen concentration, absorption rate, XRD analyses and depth distribution of elements revealed that modified surface layer after titanium ion implantation is formed hydrogen diffusion barrier reduces hydrogen absorption by Zr-2.5Nb.

  19. High Pressure Hydrogen Materials Compatibility of Piezoelectric Films

    SciTech Connect

    Alvine, Kyle J.; Shutthanandan, V.; Bennett, Wendy D.; Bonham, Charles C.; Skorski, Daniel C.; Pitman, Stan G.; Dahl, Michael E.; Henager, Charles H.

    2010-12-02

    Abstract: Hydrogen is being considered as a next-generation clean burning fuel. However, hydrogen has well known materials issues, including blistering and embrittlement in metals. Piezoelectric materials are used as actuators in hydrogen fuel technology. We present studies of materials compatibility of piezoelectric films in a high pressure hydrogen environment. Absorption of high pressure hydrogen was studied with Elastic Recoil Detection Analysis (ERDA) and Rutherford Back Scattering (RBS) in lead zirconate titanate (PZT) and barium titanate (BTO) thin films. Hydrogen surface degradation in the form of blistering and Pb mixing was also observed.

  20. Hydrogen Sensors and Switches from Electrodeposited Palladium Mesowire Arrays

    NASA Astrophysics Data System (ADS)

    Favier, Frédéric; Walter, Erich C.; Zach, Michael P.; Benter, Thorsten; Penner, Reginald M.

    2001-09-01

    Hydrogen sensors and hydrogen-activated switches were fabricated from arrays of mesoscopic palladium wires. These palladium ``mesowire'' arrays were prepared by electrodeposition onto graphite surfaces and were transferred onto a cyanoacrylate film. Exposure to hydrogen gas caused a rapid (less than 75 milliseconds) reversible decrease in the resistance of the array that correlated with the hydrogen concentration over a range from 2 to 10%. The sensor response appears to involve the closing of nanoscopic gaps or ``break junctions'' in wires caused by the dilation of palladium grains undergoing hydrogen absorption. Wire arrays in which all wires possessed nanoscopic gaps reverted to open circuits in the absence of hydrogen gas.

  1. Hydrogen electrosorption into Pd-Cd nanostructures.

    PubMed

    Adams, Brian D; Ostrom, Cassandra K; Chen, Aicheng

    2010-05-18

    Hydrogen-absorbing materials are crucial for both the purification and storage of hydrogen. Pd and Pd-based alloys have been studied extensively for their use as both hydrogen dissociation catalysts and hydrogen selective membrane materials. It is known that incorporating metal atoms of different sizes into the Pd lattice has a major impact on the hydrogen absorption process. In this paper, hydrogen electrosorption into nanostructured Pd-Cd alloys has been studied for different compositions of Cd that varied from 0 to 15 at. %. The low cost of Cd makes it an attractive material to combine with Pd for hydrogen sorption. A combination of chronoamperometry and cyclic voltammetric experiments was used to determine the ratio of the H/(Pd + Cd) and the kinetics of hydrogen sorption into these Pd-Cd alloys at different potentials. It was found that the maximum H/(Pd + Cd) value was 0.66 for pure Pd, and this decreased with increasing the amount of Cd. Also, the alpha (solid solution) to beta phase (metal hydride) hydrogen transition was determined to be the slowest step in the absorption process and was practically eliminated when an optimum amount of Cd atoms was doped (i.e., Pd-Cd(15%)). With increasing the amount of Cd, more hydrogen was absorbed into the Pd-Cd nanostructures at the higher potentials (the alpha phase region). The faster kinetics, along with the decrease in the phase transition of hydrogen sorption into the Pd-Cd nanostructures when compared to pure Pd, makes the Pd-Cd nanostructures attractive for use as a hydrogen dissociation catalytic capping layer for other metal hydrides or as a hydrogen selective membrane. PMID:20099788

  2. Hydrogen Effect against Hydrogen Embrittlement

    NASA Astrophysics Data System (ADS)

    Murakami, Yukitaka; Kanezaki, Toshihiko; Mine, Yoji

    2010-10-01

    The well-known term “hydrogen embrittlement” (HE) expresses undesirable effects due to hydrogen such as loss of ductility, decreased fracture toughness, and degradation of fatigue properties of metals. However, this article shows, surprisingly, that hydrogen can have an effect against HE. A dramatic phenomenon was found in which charging a supersaturated level of hydrogen into specimens of austenitic stainless steels of types 304 and 316L drastically improved the fatigue crack growth resistance, rather than accelerating fatigue crack growth rates. Although this mysterious phenomenon has not previously been observed in the history of HE research, its mechanism can be understood as an interaction between hydrogen and dislocations. Hydrogen can play two roles in terms of dislocation mobility: pinning (or dragging) and enhancement of mobility. Competition between these two roles determines whether the resulting phenomenon is damaging or, unexpectedly, desirable. This finding will, not only be the crucial key factor to elucidate the mechanism of HE, but also be a trigger to review all existing theories on HE in which hydrogen is regarded as a dangerous culprit.

  3. Corrosion inhibitor for aqueous ammonia absorption system

    DOEpatents

    Phillips, Benjamin A.; Whitlow, Eugene P.

    1998-09-22

    A method of inhibiting corrosion and the formation of hydrogen and thus improving absorption in an ammonia/water absorption refrigeration, air conditioning or heat pump system by maintaining the hydroxyl ion concentration of the aqueous ammonia working fluid within a selected range under anaerobic conditions at temperatures up to 425.degree. F. This hydroxyl ion concentration is maintained by introducing to the aqueous ammonia working fluid an inhibitor in an amount effective to produce a hydroxyl ion concentration corresponding to a normality of the inhibitor relative to the water content ranging from about 0.015 N to about 0.2 N at 25.degree. C. Also, working fluids for inhibiting the corrosion of carbon steel and resulting hydrogen formation and improving absorption in an ammonia/water absorption system under anaerobic conditions at up to 425.degree. F. The working fluids may be aqueous solutions of ammonia and a strong base or aqueous solutions of ammonia, a strong base, and a specified buffer.

  4. Corrosion inhibitor for aqueous ammonia absorption system

    DOEpatents

    Phillips, B.A.; Whitlow, E.P.

    1998-09-22

    A method is described for inhibiting corrosion and the formation of hydrogen and thus improving absorption in an ammonia/water absorption refrigeration, air conditioning or heat pump system by maintaining the hydroxyl ion concentration of the aqueous ammonia working fluid within a selected range under anaerobic conditions at temperatures up to 425 F. This hydroxyl ion concentration is maintained by introducing to the aqueous ammonia working fluid an inhibitor in an amount effective to produce a hydroxyl ion concentration corresponding to a normality of the inhibitor relative to the water content ranging from about 0.015 N to about 0.2 N at 25 C. Also, working fluids for inhibiting the corrosion of carbon steel and resulting hydrogen formation and improving absorption in an ammonia/water absorption system under anaerobic conditions at up to 425 F. The working fluids may be aqueous solutions of ammonia and a strong base or aqueous solutions of ammonia, a strong base, and a specified buffer. 5 figs.

  5. A dual anode nickel-hydrogen cell

    NASA Astrophysics Data System (ADS)

    Gahn, Randall F.; Ryan, Timothy P.

    1992-02-01

    A dual anode cell with decreased polarization effects provides improved performance characteristics, such as voltage characteristics and depth-of-discharge characteristics. A hydrogen electrode is placed on both sides of a nickel electrode. An electrolyte saturated separator is placed between each hydrogen electrode and the nickel electrode. The electrolyte saturated separator can be a layered-type separator consisting of one layer of zirconia knit cloth next to the hydrogen electrode and a layer of radiation-grafted polyethylene film next to the nickel electrode. These layers of the electrochemical cell are cut in a pineapple-slice configuration. Both hydrogen electrodes are connected in parallel to form a single electrical node. The electrochemical cell is placed in a vessel pressurized with hydrogen and saturated with a potassium hydroxide electrolyte. A gas screen is placed on the outer surface of each of the hydrogen electrodes.

  6. Characteristics of ammonia, hydrogen sulfide, carbon dioxide, and particulate matter concentrations in high-rise and manure-belt layer hen houses

    NASA Astrophysics Data System (ADS)

    Ni, Ji-Qin; Chai, Lilong; Chen, Lide; Bogan, Bill W.; Wang, Kaiying; Cortus, Erin L.; Heber, Albert J.; Lim, Teng-Teeh; Diehl, Claude A.

    2012-09-01

    Indoor air pollutants at high concentrations in poultry houses can potentially affect workers' health, and animal welfare and productivity. This paper presents research results of a 2-year continuous monitoring of ammonia (NH3), carbon dioxide (CO2), hydrogen sulfide (H2S), and particulate matter (PM) concentrations from to date the most comprehensive study on a single farm in two 180,000-bird high-rise (HR) and two 200,000-bird manure-belt (MB) layer hen houses located in Indiana, USA. Air was sampled at ventilation fans of the mechanically-ventilated houses. Concentrations of NH3 and CO2 were measured with photoacoustic multi-gas monitors. Concentrations of H2S and PM10 were monitored with pulsed fluorescence analyzers and Tapered Element Oscillating Microbalances (TEOM), respectively. The 2-year mean ± standard deviation concentrations at ventilation fans of the four layer hen houses were 48.9 ± 39 and 51.9 ± 40.7 ppm in HR, and 13.3 ± 9.1 and 12.9 ± 10.5 ppm in MB for NH3; 26.4 ± 17.6 and 24.9 ± 19 ppb in HR, 40.0 ± 21.1 and 41.2 ± 31.5 ppb in MB for H2S; 1755 ± 848 and 1804 ± 887 ppm in HR, and 2295 ± 871 and 2285 ± 946 ppm in MB for CO2; and 540 ± 303 and 552 ± 338 μg m-3 in HR, and 415 ± 428 and 761 ± 661 μg m-3 in MB for PM10. Compared with the MB houses, concentrations of the HR houses were higher for NH3, and lower for CO2, H2S, and PM10 (P < 0.05). High concentrations of NH3 detected in winter represent potential challenges to workers' health and animal welfare. Variations in pollutant concentrations at the exhaust fans were affected by outdoor temperature, ventilation, bird condition, and farm operation. A new weekly variation, characterized by significantly lower PM10 concentrations on Sundays, was identified and was related to the weekly schedule of house operational activities.

  7. The electronic absorption edge of petroleum

    SciTech Connect

    Mullins, O.C.; Mitra-Kirtley, S.; Zhu, Yifu

    1992-09-01

    The electronic absorption spectra of more than 20 crude oils and asphaltenes are examined. The spectral location of the electronic absorption edge varies over a wide range, from the near-infrared for heavy oils and asphaltenes to the near-UV for gas condensates. The functional form of the electronic absorption edge for all crude oils (measured) is characteristic of the {open_quotes}Urbach tail,{close_quotes} a phenomenology which describes electronic absorption edges in wide-ranging materials. The crude oils all show similar Urbach widths, which are significantly larger than those generally found for various materials but are similar to those previously reported for asphaltenes. Monotonically increasing absorption at higher photon energy continues for all crude oils until the spectral region is reached where single-ring aromatics dominate absorption. However, the rate of increasing absorption at higher energies moderates, thereby deviating from the Urbach behavior. Fluorescence emission spectra exhibit small red shifts from the excitation wavelength and small fluorescence peak widths in the Urbach regions of different crude oils, but show large red shifts and large peak widths in spectral regions which deviate from the Urbach behavior. This observation implies that the Urbach spectral region is dominated by lowest-energy electronic absorption of corresponding chromophores. Thus, the Urbach tail gives a direct measure of the population distribution of chromophores in crude oils. Implied population distributions are consistent with thermally activated growth of large chromophores from small ones. 12 refs., 8 figs.

  8. Study on the d state of platinum in Pt/SiO sub 2 and Na/Pt/SiO sub 2 catalysts under C double bond C hydrogenation conditions by X-ray absorption near-edge structure spectroscopy

    SciTech Connect

    Yoshitake, Hideaki; Iwasawa, Yasuhiro )

    1991-09-19

    The change in the d-electron density of platinum during D{sub 2} + CH{sub 2}{double bond}CHX reactions on Pt/SiO{sub 2} and Na/Pt/SiO{sub 2} catalysts and its influence on the catalysis were studied by X-ray absorption near-edge structure (XANES) spectroscopy, kinetics and FT-IR. It was demonstrated from the change of the white lines in XANES spectra at Pt L{sub 2} and L{sub 3} edges that CH{sub 2}{double bond}CHX (X = H, CH{sub 3}, COCH{sub 3}, CF{sub 3}, and CN) is adsorbed on the Pt surface and extracts the electrons of the d state. Hence, the deuterogenation rate is reduced as the value of Hammett's {sigma}{sub P} increases. The linear free energy relationship between the reaction rate and {sigma}{sub P} was observed for the deuterogenation of CH{sub 2}{double bond}CHX. The rate of ethene deuterogenation was promoted by Na{sub 2}O addition. The electron density of unoccupied d states of pt under vacuum decreased by Na{sub 2}O addition, indicating the electron donation from Na{sub 2}O addition. The electron density of unoccupied d states of Pt under vacuum decreased by Na{sub 2}O addition, indicating the electron donation from Na{sub 2}O addition. However, most of these additional electrons were observed to move to ethene under reaction conditions. The acceptor of the electrons was suggested by di-{sigma}-ethene by the shift of {upsilon}(C-H). The kinetic parameters are discussed in relation to the change in the d state of Pt as a function of {sigma}{sub P} and Na quantity.

  9. Hydrogen bonding tunes the early stage of hydrogen-atom abstracting reaction.

    PubMed

    Yang, Yang; Liu, Lei; Chen, Junsheng; Han, Keli

    2014-09-01

    The spontaneous and collision-assisted hydrogen-atom abstracting reaction (HA) dynamics of triplet benzil are investigated through the combination of transient absorption spectroscopy with TD-DFT calculations. HA dynamics exhibit a remarkable dependence on the hydrogen donor properties. The effects of the triplet-state hydrogen bonding on the reaction dynamics are illustrated. In particular, it is experimentally observed that strengthened triplet-state hydrogen bonding could accelerate the HA, whereas weakened triplet-state hydrogen bonding would postpone the HA. The triplet-state hydrogen bonding has great influences on the early stage of the HA reaction, while the bond dissociation energy of the hydrogen donors determines the subsequent reaction pathways. Protic solvents could sustain longer lifetimes of the excited-state intermediate formed after HA than non-protic solvents by 10 μs. This investigation provides insights into the HA dynamics and guidance to improve the product efficiency of photochemical reactions. PMID:25036436

  10. Hydrogen-extraction experiments on grossular

    NASA Astrophysics Data System (ADS)

    Kurka, A.; Blanchard, M.; Ingrin, J.

    2003-04-01

    Grossular generally contains the highest amount of hydrogen within the garnet-group and is a minor component in many pyrope-rich mantle garnets, despite some mantle garnets are known showing significant grossular-component. Gemmy, orange-brown colored, grossular-samples from Madagascar of composition Gr 83.2 Py 2.2 An 14.3 were used to study the hydrogen-extraction behaviour. Five doubly polished, single crystal-slices with a thickness ranging from about 350 to 500 microns were cut. The slices were heated in air at temperatures of 800^o, 900^o, 950^o, 1000^o and 1050^o C for 2 hours up to 900 hours. The hydrogen content was determined using FTIR-spectroscopy. Our material shows a spectra characteristic for grossular with about 12 absorption-bands in the OH-region. The initial OH content was determined as 0.022 wt% H_2O. The diffusion coefficients calculated using the equation proposed by Hercule &Ingrin (1999) range from 7 10-15 to 2 10-12 (m2/s) leading to an activation energy for H-extraction in grossular at about 260 kJ/mol, which is similar to that of pyrope from Dora Maira (personal communication M. Blanchard) but slightly higher than pyrope investigated by Wang et al. (1996). It should be further noticed that the extraction rate of some bands at lower energies shows slightly different behaviour than that of other bands. This may affect the model of H-incorporation in grossular, that is usually described by the classic hydrogen-incorporation via O_4H_4 - SiO_4, and may support more sophisticated models of OH-substitution in garnet as proposed recently by Andrut et al. (2002). This study was financially supported by the EU through the Human Potential Program HPRN-CT-2000-0056. References: [1] Wang, L., Zhang, Y., Essene, E. (1996) Diffusion of the hydrous component in pyrope. Am. Mineral., 81, 701-718. [2] Hercule, S. and Ingrin, J. (1999) Hydrogen in diopside: Diffusion, kinetics of extraction-incorporation, and solubility. Am. Mineral., 84, 1577-1587. [3

  11. Aerosol Absorption Measurements in MILAGRO.

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.

    2007-12-01

    During the month of March 2006, a number of instruments were used to determine the absorption characteristics of aerosols found in the Mexico City Megacity and nearby Valley of Mexico. These measurements were taken as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City (MAX-Mex) that was carried out in collaboration with the Megacity Interactions: Local and Global Research Observations (MILAGRO) campaign. MILAGRO was a joint effort between the DOE, NSF, NASA, and Mexican agencies aimed at understanding the impacts of a megacity on the urban and regional scale. A super-site was operated at the Instituto Mexicano de Petroleo in Mexico City (designated T-0) and at the Universidad Technologica de Tecamac (designated T-1) that was located about 35 km to the north east of the T-0 site in the State of Mexico. A third site was located at a private rancho in the State of Hidalgo approximately another 35 km to the northeast (designated T-2). Aerosol absorption measurements were taken in real time using a number of instruments at the T-0 and T-1 sites. These included a seven wavelength aethalometer, a multi-angle absorption photometer (MAAP), and a photo-acoustic spectrometer. Aerosol absorption was also derived from spectral radiometers including a multi-filter rotating band spectral radiometer (MFRSR). The results clearly indicate that there is significant aerosol absorption by the aerosols in the Mexico City megacity region. The absorption can lead to single scattering albedo reduction leading to values below 0.5 under some circumstances. The absorption is also found to deviate from that expected for a "well-behaved" soot anticipated from diesel engine emissions, i.e. from a simple 1/lambda wavelength dependence for absorption. Indeed, enhanced absorption is seen in the region of 300-450 nm in many cases, particularly in the afternoon periods indicating that secondary organic aerosols are contributing to the aerosol absorption. This is likely due

  12. Interstellar clouds and molecular hydrogen

    NASA Technical Reports Server (NTRS)

    Jura, M.

    1977-01-01

    Data obtained from the Copernicus Orbiting Astronomical Observatory, launched in 1972 and still obtaining information, are used in a discussion of the interstellar medium. The Copernicus instruments have facilitated direct estimates for the density and temperature of individual interstellar clouds, and improved the ability to determine where along the line of sight a cloud lies with respect to background stars. The physical characteristics of hydrogen molecules are considered, with attention to the formation and destruction of interstellar hydrogen. The differences between 'thin' clouds, in which molecular hydrogen is optically thin, and 'thick' clouds are examined. Several features of the interstellar medium are described.

  13. Hydrogen fueled subsonic aircraft - A prospective

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.

    1977-01-01

    The performance characteristics of hydrogen-fueled subsonic transport aircraft are compared with those of aircraft using conventional aviation kerosene. Results of the Cryogenically Fueled Aircraft Technology Program sponsored by NASA indicate that liquid hydrogen may be particularly efficient for subsonic transport craft when ranges of 4000 km or more are involved; however, development of advanced cryogenic tanks for liquid hydrogen fuel is required. The NASA-sponsored program also found no major technical obstacles for international airports converting the liquid hydrogen fueling systems. Resource utilization efficiency and fuel production costs for hydrogen produced by coal gasification or for liquid methane or synthetic aviation kerosene are also assessed.

  14. Measurement of plasma temperature and density using laser absorption

    NASA Technical Reports Server (NTRS)

    Billman, K. W.; Stallcop, J. R.

    1973-01-01

    A laser radiation absorption technique, suitable for temporal measurement of the electron density, the temperature, or a simultaneous determination of both, in an LTE plasma, is discussed. The theoretical calculation of the absorption coefficient for a hydrogen plasma is outlined; some results are presented for visible wavelengths. Measurements of electron density and temperature are presented and shown to be in good agreement with those values obtained by other methods. Finally, the possible use of the argon ion laser for simultaneous electron density and temperature measurement is discussed, and the theoretical curves necessary for its application to hydrogen plasma diagnostics are shown.

  15. Storing Hydrogen

    SciTech Connect

    Kim, Hyun Jeong; Karkamkar, Abhijeet J.; Autrey, Thomas; Chupas, Peter; Proffen, Thomas E.

    2010-05-31

    Researchers have been studying mesoporous materials for almost two decades with a view to using them as hosts for small molecules and scaffolds for molding organic compounds into new hybrid materials and nanoparticles. Their use as potential storage systems for large quantities of hydrogen has also been mooted. Such systems that might hold large quantities of hydrogen safely and in a very compact volume would have enormous potential for powering fuel cell vehicles, for instance. A sponge-like form of silicon dioxide, the stuff of sand particles and computer chips, can soak up and store other compounds including hydrogen. Studies carried out at the XOR/BESSRC 11-ID-B beamline at the APS have revealed that the nanoscopic properties of the hydrogenrich compound ammonia borane help it store hydrogen more efficiently than usual. The material may have potential for addressing the storage issues associated with a future hydrogen economy. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  16. Hydrogen production by photosynthetic microorganisms

    SciTech Connect

    Akano, T.; Fukatsu, K.; Miyasaka, H. |

    1996-12-31

    Hydrogen is a clean energy alternative to the fossil fuels, the main source of greenhouse gas emissions. We developed a stable system for the conversion of solar energy into hydrogen using photosynthetic microorganisms. Our system consists of the following three stages: (1) Photosynthetic starch accumulation in green microalgae (400 L x2); (2) Dark anaerobic fermentation of the algal starch biomass to produce hydrogen and organic compounds (155 L x2); and (3) Further conversion of the organic compounds to produce hydrogen using photosynthetic bacteria (three types of reactors, parallel plate, raceway, and tubular). We constructed a test plant of this process at Nankoh power plant of Kansai Electric Power Company in Osaka, Japan, and carried out a series of tests using CO{sub 2} obtained from a chemical absorption pilot-plant. The photobiological hydrogen production process used a combination of a marine alga, Chlamydomonas sp. MGA 161 and marine photosynthetic bacterium, Rhodopseudomonas sp. W-1S. The dark anaerobic fermentation of algal starch biomass was also investigated. Sustained and stable starch accumulation, starch degradation in the algal cell, and hydrogen production from algal fermentation and photosynthetic bacteria in the light were demonstrated during several experiments. 3 refs., 12 figs., 1 tab.

  17. Hydrogen in magnesium palladium thin layer structures

    NASA Astrophysics Data System (ADS)

    Kruijtzer, G. L.

    2008-02-01

    In this thesis, the study of hydrogen storage, absorption and desorption in magnesium layers is described. The magnesium layers have a thickness of 50-500 nm and are covered by a palladium layer which acts as a hydrogen dissociation/association catalyst. The study was preformed under ultra high vacuum conditions to avoid oxygen contamination. The main analysis techniques were RBS, ERD and TDS.

  18. YMgGa as a hydrogen storage compound

    SciTech Connect

    Sahlberg, Martin; Zlotea, Claudia; Moretto, Pietro; Andersson, Yvonne

    2009-07-15

    The hydrogen absorption and desorption properties of the recently found ternary phase YMgGa have been studied. This compound absorbs 2.2 wt% hydrogen during the first cycle, but only 1.1 wt% can be stored reversibly for the following cycles under the applied pressure and temperature conditions. Hydrogen absorption and desorption properties were investigated by measuring the thermal desorption spectra and the pressure-composition isotherms while the crystal structure was determined using X-ray diffraction (XRD). The compound absorbs hydrogen at pressures above 0.2 MPa and 250 deg. C by decomposing into YH{sub 3} and MgGa. This reaction is reversed when heating the hydride in a He atmosphere; hydrogen is released and the YMgGa phase is partially recovered together with YGa{sub 2} and YH{sub 2}. The reformation of YMgGa occurs at temperatures below 450 deg. C on the expenses of hydrogen desorption from YH{sub 2}. This is not expected under these temperature conditions as YH{sub 2} normally does not desorb hydrogen below 800 deg. C. - Graphical abstract: Hydrogen absorption in YMgGa studied by in situ powder X-ray diffraction. The hydrogen absorption and desorption properties were investigated by thermal desorption spectra and pressure-composition isotherms.

  19. Hydrogen program overview

    SciTech Connect

    Gronich, S.

    1997-12-31

    This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

  20. Solar absorption surface panel

    DOEpatents

    Santala, Teuvo J.

    1978-01-01

    A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.

  1. Time-dependent oral absorption models

    NASA Technical Reports Server (NTRS)

    Higaki, K.; Yamashita, S.; Amidon, G. L.

    2001-01-01

    The plasma concentration-time profiles following oral administration of drugs are often irregular and cannot be interpreted easily with conventional models based on first- or zero-order absorption kinetics and lag time. Six new models were developed using a time-dependent absorption rate coefficient, ka(t), wherein the time dependency was varied to account for the dynamic processes such as changes in fluid absorption or secretion, in absorption surface area, and in motility with time, in the gastrointestinal tract. In the present study, the plasma concentration profiles of propranolol obtained in human subjects following oral dosing were analyzed using the newly derived models based on mass balance and compared with the conventional models. Nonlinear regression analysis indicated that the conventional compartment model including lag time (CLAG model) could not predict the rapid initial increase in plasma concentration after dosing and the predicted Cmax values were much lower than that observed. On the other hand, all models with the time-dependent absorption rate coefficient, ka(t), were superior to the CLAG model in predicting plasma concentration profiles. Based on Akaike's Information Criterion (AIC), the fluid absorption model without lag time (FA model) exhibited the best overall fit to the data. The two-phase model including lag time, TPLAG model was also found to be a good model judging from the values of sum of squares. This model also described the irregular profiles of plasma concentration with time and frequently predicted Cmax values satisfactorily. A comparison of the absorption rate profiles also suggested that the TPLAG model is better at prediction of irregular absorption kinetics than the FA model. In conclusion, the incorporation of a time-dependent absorption rate coefficient ka(t) allows the prediction of nonlinear absorption characteristics in a more reliable manner.

  2. Petawatt laser absorption bounded

    PubMed Central

    Levy, Matthew C.; Wilks, Scott C.; Tabak, Max; Libby, Stephen B.; Baring, Matthew G.

    2014-01-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that f exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials. PMID:24938656

  3. Petawatt laser absorption bounded

    NASA Astrophysics Data System (ADS)

    Levy, Matthew C.; Wilks, Scott C.; Tabak, Max; Libby, Stephen B.; Baring, Matthew G.

    2014-06-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that f exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials.

  4. Percutaneous absorption of drugs.

    PubMed

    Wester, R C; Maibach, H I

    1992-10-01

    The skin is an evolutionary masterpiece of living tissue which is the final control unit for determining the local and systemic availability of any drug which must pass into and through it. In vivo in humans, many factors will affect the absorption of drugs. These include individual biological variation and may be influenced by race. The skin site of the body will also influence percutaneous absorption. Generally, those body parts exposed to the open environment (and to cosmetics, drugs and hazardous toxic substances) are most affected. Treating patients may involve single daily drug treatment or multiple daily administration. Finally, the body will be washed (normal daily process or when there is concern about skin decontamination) and this will influence percutaneous absorption. The vehicle of a drug will affect release of drug to skin. On skin, the interrelationships of this form of administration involve drug concentration, surface area exposed, frequency and time of exposure. These interrelationships determine percutaneous absorption. Accounting for all the drug administered is desirable in controlled studies. The bioavailability of the drug then is assessed in relationship to its efficacy and toxicity in drug development. There are methods, both quantitative and qualitative, in vitro and in vivo, for studying percutaneous absorption of drugs. Animal models are substituted for humans to determine percutaneous absorption. Each of these methods thus becomes a factor in determining percutaneous absorption because they predict absorption in humans. The relevance of these predictions to humans in vivo is of intense research interest. The most relevant determination of percutaneous absorption of a drug in humans is when the drug in its approved formulation is applied in vivo to humans in the intended clinical situation. Deviation from this scenario involves the introduction of variables which may alter percutaneous absorption. PMID:1296607

  5. Estimation of Concentration and Bonding Environment of Water Dissolved in Common Solvents Using Near Infrared Absorptivity

    PubMed Central

    Dickens, Brian; Dickens, Sabine H.

    1999-01-01

    Integrated near infrared (NIR) absorbance has been used to determine the absorptivity of the υ2 + υ3 combination band of the asymmetric stretch (υ2) and the bending vibration (υ3) for water in several organic solvents. Absorptivity measured in this way is essentially constant across the absorption envelope and is found to be 336 L mol−1 cm−1 with a standard deviation of 4 L mol−1 cm−1 as estimated from a least squares fit of a straight line to data from water concentrations between 0.01 mol/L and 0.06 mol/L. Absorptivity measured from the peak maximum of the υ2 + υ3 combination band of water varies with the type of hydrogen bonding of the water molecule because the shape of the NIR absorption envelope changes with the hydrogen bonding. Because the integrated NIR absorptivity of the υ2 + υ3 combination band of water is essentially constant across the absorption envelope, the NIR absorption envelope reflects the distribution of hydrogen bonding of the water. The shape and location of the absorption envelope appear to be governed mostly by the number of hydrogen bonds from the water molecules to easily polarized atoms. Water that is a donor in hydrogen bonds to atoms which are not easily polarized (such as the oxygen of a typical carbonyl group) absorbs near 5240 cm−1 to 5260 cm−1. Water that donates one hydrogen bond to an easily polarized atom (such as a water molecule oxygen) absorbs near 5130 cm−1 to 5175 cm−1, and water that donates two hydrogen bonds to easily polarized atoms is estimated to absorb near 5000 cm−1 to 5020 cm−1. Water donating two hydrogen bonds to other water molecules may be said to be in a water-like environment. In no case does a small amount of water absorbed in a host material appear to have a water-like environment.

  6. Liquid Hydrogen: Target, Detector

    SciTech Connect

    Mulholland, G.T.; Harigel, G.G.

    2004-06-23

    In 1952 D. Glaser demonstrated that a radioactive source's radiation could boil 135 deg. C superheated-diethyl ether in a 3-mm O glass vessel and recorded bubble track growth on high-speed film in a 2-cm3 chamber. This Bubble Chamber (BC) promised improved particle track time and spatial resolution and cycling rate. Hildebrand and Nagle, U of Chicago, reported Liquid Hydrogen minimum ionizing particle boiling in August 1953. John Wood created the 3.7-cm O Liquid Hydrogen BC at LBL in January 1954. By 1959 the Lawrence Berkley Laboratory (LBL) Alvarez group's '72-inch' BC had tracks in liquid hydrogen. Within 10 years bubble chamber volumes increased by a factor of a million and spread to every laboratory with a substantial high-energy physics program. The BC, particle accelerators and special separated particle beams created a new era of High Energy Physics (HEP) experimentation. The BC became the largest most complex cryogenic installation at the world's HEP laboratories for decades. The invention and worldwide development, deployment and characteristics of these cryogenic dynamic target/detectors and related hydrogen targets are described.

  7. Hydrogen chloride

    Integrated Risk Information System (IRIS)

    Hydrogen chloride ; CASRN 7647 - 01 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogeni

  8. Hydrogen sulfide

    Integrated Risk Information System (IRIS)

    Hydrogen sulfide ; 7783 - 06 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effec

  9. Estimation of molar absorptivities and pigment sizes for eumelanin and pheomelanin using femtosecond transient absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Piletic, Ivan R.; Matthews, Thomas E.; Warren, Warren S.

    2009-11-01

    Fundamental optical and structural properties of melanins are not well understood due to their poor solubility characteristics and the chemical disorder present during biomolecular synthesis. We apply nonlinear transient absorption spectroscopy to quantify molar absorptivities for eumelanin and pheomelanin and thereby get an estimate for their average pigment sizes. We determine that pheomelanin exhibits a larger molar absorptivity at near IR wavelengths (750nm), which may be extended to shorter wavelengths. Using the molar absorptivities, we estimate that melanin pigments contain ˜46 and 28 monomer units for eumelanin and pheomelanin, respectively. This is considerably larger than the oligomeric species that have been recently proposed to account for the absorption spectrum of eumelanin and illustrates that larger pigments comprise a significant fraction of the pigment distribution.

  10. Quasar Absorption Studies

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Elvis, Martin

    2004-01-01

    The aim of the proposal is to investigate the absorption properties of a sample of inter-mediate redshift quasars. The main goals of the project are: Measure the redshift and the column density of the X-ray absorbers; test the correlation between absorption and redshift suggested by ROSAT and ASCA data; constrain the absorber ionization status and metallicity; constrain the absorber dust content and composition through the comparison between the amount of X-ray absorption and optical dust extinction. Unanticipated low energy cut-offs where discovered in ROSAT spectra of quasars and confirmed by ASCA, BeppoSAX and Chandra. In most cases it was not possible to constrain adequately the redshift of the absorber from the X-ray data alone. Two possibilities remain open: a) absorption at the quasar redshift; and b) intervening absorption. The evidences in favour of intrinsic absorption are all indirect. Sensitive XMM observations can discriminate between these different scenarios. If the absorption is at the quasar redshift we can study whether the quasar environment evolves with the Cosmic time.

  11. Development of a mechanical mover device by compositing hydrogen storage alloy thin films with a perfluorosulfonic acid layer

    NASA Astrophysics Data System (ADS)

    Ogasawara, Takashi; Uchida, Haru-Hisa; Nishi, Yoshitake

    2007-01-01

    Perfluorosulfonic Acid (PFSA) film, commonly used in the Polymer Electrolyte Fuel Cells (PEFC), indicates conductance of proton and permeability of H IIO. In this study a mechanical composite mover device with this PFSA and hydrogen storage alloy (HSA) thin films was made up for expecting the movement driven by volume change in the course of hydrogen migration between PFSA and HSA layers. Hydrogen storage alloy, such as LaNi 5 indicates as much as 25% of volume change in the course of H II absorption in gas phase. Using this characteristics, a mechanical mover device was made of PFSA film of an electrolyte polymer sandwiched by hydrogen storage alloy thin films with Au-Pd intermediate layers. The mover device was operated by migrating hydrogen ions from the PFSA layer to the HSA layer, which were generated by electrolysis of H IIO in a PFSA layer. Electrical potential was given from the outsides lead wires. All experiments were carried out in the water. We confirmed large interesting movement generated by migration of hydrogen ion by applying electric potentials.

  12. Metallic Hydrogen

    NASA Astrophysics Data System (ADS)

    Silvera, Isaac; Zaghoo, Mohamed; Salamat, Ashkan

    2015-03-01

    Hydrogen is the simplest and most abundant element in the Universe. At high pressure it is predicted to transform to a metal with remarkable properties: room temperature superconductivity, a metastable metal at ambient conditions, and a revolutionary rocket propellant. Both theory and experiment have been challenged for almost 80 years to determine its condensed matter phase diagram, in particular the insulator-metal transition. Hydrogen is predicted to dissociate to a liquid atomic metal at multi-megabar pressures and T =0 K, or at megabar pressures and very high temperatures. Thus, its predicted phase diagram has a broad field of liquid metallic hydrogen at high pressure, with temperatures ranging from thousands of degrees to zero Kelvin. In a bench top experiment using static compression in a diamond anvil cell and pulsed laser heating, we have conducted measurements on dense hydrogen in the region of 1.1-1.7 Mbar and up to 2200 K. We observe a first-order phase transition in the liquid phase, as well as sharp changes in optical transmission and reflectivity when this phase is entered. The optical signature is that of a metal. The mapping of the phase line of this transition is in excellent agreement with recent theoretical predictions for the long-sought plasma phase transition to metallic hydrogen. Research supported by the NSF, Grant DMR-1308641, the DOE Stockpile Stewardship Academic Alliance Program, Grant DE-FG52-10NA29656, and NASA Earth and Space Science Fellowship Program, Award NNX14AP17H.

  13. Absorptive coating for aluminum solar panels

    NASA Technical Reports Server (NTRS)

    Desmet, D.; Jason, A.; Parr, A.

    1979-01-01

    Method for coating forming coating of copper oxide from copper component of sheet aluminum/copper alloy provides strong durable solar heat collector panels. Copper oxide coating has solar absorption characteristics similar to black chrome and is much simpler and less costly to produce.

  14. Neutral hydrogen at the present epoch: A constraint on the evolution of high redshift systems

    NASA Technical Reports Server (NTRS)

    Rao, Sandhya; Briggs, Frank H.

    1993-01-01

    Damped Lyman-alpha and metal absorption lines in the spectra of quasars indicate the presence of intervening gas-rich systems at high redshift (z greater than 2). These systems have characteristic size scales, velocity dispersions, and neutral hydrogen column densities (N(H1)) similar to present day spirals and are thus thought to be their progenitors. Constraints on galaxy evolution can be derived by comparing the H1 properties of high redshift systems to the present galaxy population. Good observational statistics on high redshift absorbers specify the number of these systems along the line of sight as a function of N(H1), the column density of neutral hydrogen per absorber. Similar statistics for nearby (z = 0) galaxies of which spirals are the only gas-rich systems that provide a significant cross-section for the interception of light from quasars is derived.

  15. Recombination line intensities for hydrogenic ions. III - Effects of finite optical depth and dust

    NASA Technical Reports Server (NTRS)

    Hummer, D. G.; Storey, P. J.

    1992-01-01

    The effect on the recombination spectrum of hydrogen arising from: (1) finite optical thickness in the Lyman lines; (2) the overlapping of Lyman lines near the series limit; (3) the absorption of Lyman lines by dust or photoionization, and (4) the long-wave radiation emitted by dust is examined. Full account is taken of electron and heavy particle collisions in redistributing energy and angular momentum. It is seen that each of these deviations from the classical Case B leads to observable effects, and that dust influences the recombination spectrum in characteristic ways that may make possible new observational constraints on dust properties in nebulosities. On the basis of these calculations it is believed that the uncertainty in the determination of the helium-to-hydrogen abundance ratio in the universe may be larger than currently claimed.

  16. Flame inhibition by hydrogen halides - Some spectroscopic measurements

    NASA Technical Reports Server (NTRS)

    Lerner, N. R.; Cagliostro, D. E.

    1973-01-01

    The far-ultraviolet absorption spectrum of an air-propane diffusion flame inhibited with hydrogen halides has been studied. Plots of the absorption of light by hydrogen halides as a function of position in the flame and also as a function of the amount of hydrogen halide added to the flame have been obtained. The hydrogen halides are shown to be more stable on the fuel side of the reaction zone than they are on the air side. Thermal diffusion is seen to be important in determining the concentration distribution of the heavier hydrogen halides in diffusion flames. The relationship between the concentration distribution of the hydrogen halides in the flame and the flame inhibition mechanism is discussed.

  17. Use of hydrogen to store, transmit power

    NASA Astrophysics Data System (ADS)

    Boccanera, P.; Moriconi, A.; Naviglio, A.

    1980-02-01

    A mode of using hydrogen specifically as an energy storage component is discussed. A system is described in which electrical energy taken from the power distribution network during low-demand periods is used to produce H2 by electrolysis. The hydrogen energy potential produced is stored by absorption of the gas in iron-titanium hydrid beds, from which it is recovered (during energy peak demand periods) in the form of electrical energy through hydrogen-fueled fuel cells, that is, electric cells that use as a fuel the hydrogen previously absorbed by the FeTi hydride and subsequently dissociated from it through simple heating. The thermal energy developed during the formation of the metallic hydride and that which must be supplied to release hydrogen are respectively removed and transferred by a thermal-carrier liquid circulating in pipes inside the vessels containing the hydride.

  18. Analysis of NTSC's Timekeeping Hydrogen Masers

    NASA Astrophysics Data System (ADS)

    Song, H. J.; Dong, S. W.; Wang, Z. M.; Qu, L. L.; Jing, Y. J.; Li, W.

    2015-11-01

    In this article, the hydrogen masers were tested in NTSC (National Time Service Center) keeping time laboratory. In order to avoid the impact of larger noise of caesium atomic clocks, TA(k) or UTC(k) was not used as reference, and four hydrogen masers were mutually referred and tested. The frequency stabilities of hydrogen masers were analyzed by using four-cornered hat method, and the Allan standard deviation of single hydrogen maser was estimated in different sampling time. Then according to the characteristics of hydrogen masers, by removing the trend term, excluding outliers, and smoothing data with mathematical methods to separate the Gaussian noise of hydrogen masers, and finally through the normal Kolmogorov-Smirnov test, a single hydrogen maser's Gaussian noise has been estimated.

  19. Compounds affecting cholesterol absorption

    NASA Technical Reports Server (NTRS)

    Hua, Duy H. (Inventor); Koo, Sung I. (Inventor); Noh, Sang K. (Inventor)

    2004-01-01

    A class of novel compounds is described for use in affecting lymphatic absorption of cholesterol. Compounds of particular interest are defined by Formula I: ##STR1## or a pharmaceutically acceptable salt thereof.

  20. Absorption heat pump system

    DOEpatents

    Grossman, Gershon

    1984-01-01

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  1. Absorption heat pump system

    DOEpatents

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  2. Dipeptide absorption in man

    PubMed Central

    Hellier, M. D.; Holdsworth, C. D.; McColl, I.; Perrett, D.

    1972-01-01

    A quantitative perfusion method has been used to study intestinal absorption of two dipeptides—glycyl-glycine and glycyl-l-alanine—in normal subjects. In each case, the constituent amino acids were absorbed faster when presented as dipeptides than as free amino acids, suggesting intact dipeptide transport. During absorption constituent amino acids were measured within the lumen and it is suggested that these represent amino acids which have diffused back to the lumen after absorption as dipeptide. Portal blood analyses during absorption of a third dipeptide, glycyl-l-lysine, have shown that this dipeptide, known to be transported intact from the intestinal lumen, is hydrolysed to its constitutent amino acids before it reaches portal venous blood. PMID:4652039

  3. Optical absorption measurement system

    DOEpatents

    Draggoo, Vaughn G.; Morton, Richard G.; Sawicki, Richard H.; Bissinger, Horst D.

    1989-01-01

    The system of the present invention contemplates a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature.

  4. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward

    2004-08-31

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  5. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward

    2003-10-14

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  6. Hydrogen storage in molecular compounds.

    PubMed

    Mao, Wendy L; Mao, Ho-Kwang

    2004-01-20

    At low temperature (T) and high pressure (P), gas molecules can be held in ice cages to form crystalline molecular compounds that may have application for energy storage. We synthesized a hydrogen clathrate hydrate, H(2)(H(2)O)(2), that holds 50 g/liter hydrogen by volume or 5.3 wt %. The clathrate, synthesized at 200-300 MPa and 240-249 K, can be preserved to ambient P at 77 K. The stored hydrogen is released when the clathrate is warmed to 140 K at ambient P. Low T also stabilizes other molecular compounds containing large amounts of molecular hydrogen, although not to ambient P, e.g., the stability field for H(2)(H(2)O) filled ice (11.2 wt % molecular hydrogen) is extended from 2,300 MPa at 300 K to 600 MPa at 190 K, and that for (H(2))(4)CH(4) (33.4 wt % molecular hydrogen) is extended from 5,000 MPa at 300 K to 200 MPa at 77 K. These unique characteristics show the potential of developing low-T molecular crystalline compounds as a new means for hydrogen storage. PMID:14711993

  7. Hydrogen bonding on the surface of poly(2-methoxyethyl acrylate).

    PubMed

    Li, Guifeng; Ye, Shen; Morita, Shigeaki; Nishida, Takuma; Osawa, Masatoshi

    2004-10-01

    Hydrogen bonding on the interface and in the bulk of a poly(2-methoxyethyl acrylate) (PMEA) thin film has been investigated by sum frequency generation, infrared reflection absorption, and Raman scattering measurements in different kinds of solutions containing hydrogen-bonding donators. These results indicate that the majority of the carbonyl groups on the PMEA surface are hydrogen-bonded with water or ethanol molecules, while the PMEA bulk is still dominated by the free carbonyl group. PMID:15453716

  8. Hydrogen in vanadium: Site occupancy and isotope effects

    NASA Astrophysics Data System (ADS)

    Xin, Xiao; Johansson, Robert; Wolff, Max; Hjörvarsson, Björgvin

    2016-04-01

    We discuss the influence of site occupancy on the absorption of the hydrogen isotopes H and D in thin V(001) layers. By growing V(001) under biaxial compressive strain in Fe/V(001) superlattices, the hydrogen (H as well as D) is forced to reside exclusively in octahedral (Oz) sites, even at the lowest concentrations. A weakening of the isotope effects is observed when hydrogen resides in octahedral as compared to tetrahedral sites.

  9. Stable palladium alloys for diffusion of hydrogen

    NASA Technical Reports Server (NTRS)

    Patapoff, M.

    1973-01-01

    Literature search on hydrogen absorption effect on palladium alloys revealed existence of alloy compositions in which alpha--beta transition does not take place. Survey conclusions: 40 percent gold alloy of palladium should be used in place of palladium; alloy must be free of interstitial impurities; and metallic surfaces of tube must be clean.

  10. Hydrogen scavengers

    SciTech Connect

    Carroll, David W.; Salazar, Kenneth V.; Trkula, Mitchell; Sandoval, Cynthia W.

    2002-01-01

    There has been invented a codeposition process for fabricating hydrogen scavengers. First, a .pi.-bonded allylic organometallic complex is prepared by reacting an allylic transition metal halide with an organic ligand complexed with an alkali metal; and then, in a second step, a vapor of the .pi.-bonded allylic organometallic complex is combined with the vapor of an acetylenic compound, irradiated with UV light, and codeposited on a substrate.

  11. Slush hydrogen transfer studies at the NASA K-Site Test Facility

    NASA Technical Reports Server (NTRS)

    Hardy, Terry L.; Whalen, Margaret V.

    1992-01-01

    An experimental study was performed as part of the National Aerospace Plane (NASP) effort to determine slush hydrogen production and transfer characteristics. Flow rate and pressure drop characteristics were determined for slush hydrogen flow through a vacuum-jacketed transfer system. These characteristics were compared to similar tests using normal boiling point and triple point hydrogen. In addition, experimental flow characteristic data was compared with predictions from the FLUSH analytical model. Slush hydrogen density loss during the transfer process was also examined.

  12. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, Robert C.; Biermann, Wendell J.

    1989-01-01

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit.

  13. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, R.C.; Biermann, W.J.

    1989-05-09

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit. 1 fig.

  14. 14 CFR 23.723 - Shock absorption tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Landing Gear § 23.723 Shock absorption tests. (a) It must be shown that the limit load factors selected... landing gear system with identical energy absorption characteristics may be used for increases in previously approved takeoff and landing weights. (b) The landing gear may not fail, but may yield, in a...

  15. Water absorption properties of ultrasonic treated brown rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To understand the effect of ultrasonic treated on brown rice, it is important to research the water absorption processing of brown rice before and after ultrasonic treatment. The objective of this study was investigate and modeling water absorption characteristics of brown rice using Peleg’s equatio...

  16. High temperature measurement of water vapor absorption

    NASA Technical Reports Server (NTRS)

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  17. HCl absorption toward Sagittarius B2

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.; Blake, G. A.; Carlstrom, J.; Keene, J.; Miller, D.

    1995-01-01

    We have detected the 626 GHz J = 1 approaches 0 transition of hydrogen chloride (H(sup 35)Cl) in absorption against the blending of the three hyperfine components of this transition by the velocity profile of Sgr B2 observed in other species. The apparent optical depth of the line is tau approximately equal to 1, and the minimum HCl column density is 1.6 x 10(exp 14)/sq cm. A detailed radiative transfer model was constructed which includes collisional and radiative excitation, absorption and emission by dust, and the radial variation of temperature and density. Good agreement between the model and the data is obtained for HCl/H2 approximately 1.1 x 10(exp -9). Comparison of this result to chemical models indicates that the depletion factor of gas-phase chlorine is between 50-180 in the molecular envelope surrounding the SgrB2(N) and (M) dust cores.

  18. The colon: Absorptive, seccretory and metabolic functions.

    PubMed

    Cummings, J G

    1975-01-01

    The role which the human colon fulfils in digestion and metabolism remains largely undocumented. Its capacity to conserve water and electrolytes is well known although how this is controlled is uncertain. In the animal kingdom, calcium and magnesium absorption from the colon are improtant as are absorption and synthesis of vitamins. The abundant microflora of the human colon gives it unique properties. Dietary residue is metabolised forming short-chain fatty acids, hydrogen, carbon dioxide and methane; whilst 20% of urea synthesised in man is broken down in the colon to ammonia, which is reabsorbed, and carbonic acid. The microflora also degrades a wide variety of organic compounds including food additives, drugs, bile salts, and cholesterol which may be relevant to the development of colon cancer. Regional differences in colonic function also exist making interpretation of data from this relatively inaccessible organ more difficult. PMID:1205009

  19. Birefringence and anisotropic optical absorption in porous silicon

    SciTech Connect

    Efimova, A. I. Krutkova, E. Yu.; Golovan', L. A.; Fomenko, M. A.; Kashkarov, P. K.; Timoshenko, V. Yu.

    2007-10-15

    The refractive indices and the coefficients of optical absorption by free charge carriers and local vibrations in porous silicon (por-Si) films, comprising nanometer-sized silicon residues (nanocrystals) separated by nanometer-sized pores (nanopores) formed in the course of electrochemical etching of the initial single crystal silicon, have been studied by polarization-resolved IR absorption spectroscopy techniques. It is shown that the birefringence observed in por-Si is related to the anisotropic shapes of nanocrystals and nanopores, while the anisotropy (dichroism) of absorption by the local vibrational modes is determined predominantly by the microrelief of the surface of nanocrystals. It is demonstrated that silicon-hydrogen surface bonds in nanocrystals can be restored by means of selective hydrogen thermodesorption with the formation of a considerable number of H-terminated surface Si-Si dimers.

  20. In situ measurement of alternating current magnetic susceptibility of Pd-hydrogen system for determination of hydrogen concentration in bulk

    NASA Astrophysics Data System (ADS)

    Akamaru, Satoshi; Hara, Masanori; Matsuyama, Masao

    2012-07-01

    An alternating current magnetic susceptometer for use as a hydrogen gauge for hydrogen-storage materials was designed and developed. The experimental system can simultaneously measure the hydrogen equilibrium pressure and the magnetic susceptibility of metal hydrides. The background voltage of the susceptometer was stabilized for a long period of time, without any adjustments, by attaching an efficient compensation circuit. The performance of the susceptometer at a static hydrogen concentration was demonstrated by measuring the magnetic susceptibility of a Pd-hydrogen system under equilibrium conditions. The in situ measurement of the magnetic susceptibility of Pd during hydrogen absorption was carried out using the susceptometer. Since the in situ magnetic susceptibility obtained at a lower initial hydrogen pressure agreed with the magnetic susceptibility measured at a static hydrogen concentration, the susceptometer could be used to determine the hydrogen concentration in Pd in situ. At a higher initial hydrogen pressure, enhancement of the magnetic susceptibility was observed at the beginning of hydrogen absorption because the magnetic moments induced by the large temporary strain generated in the Pd affected the magnetic susceptibility.

  1. In situ measurement of alternating current magnetic susceptibility of Pd-hydrogen system for determination of hydrogen concentration in bulk.

    PubMed

    Akamaru, Satoshi; Hara, Masanori; Matsuyama, Masao

    2012-07-01

    An alternating current magnetic susceptometer for use as a hydrogen gauge for hydrogen-storage materials was designed and developed. The experimental system can simultaneously measure the hydrogen equilibrium pressure and the magnetic susceptibility of metal hydrides. The background voltage of the susceptometer was stabilized for a long period of time, without any adjustments, by attaching an efficient compensation circuit. The performance of the susceptometer at a static hydrogen concentration was demonstrated by measuring the magnetic susceptibility of a Pd-hydrogen system under equilibrium conditions. The in situ measurement of the magnetic susceptibility of Pd during hydrogen absorption was carried out using the susceptometer. Since the in situ magnetic susceptibility obtained at a lower initial hydrogen pressure agreed with the magnetic susceptibility measured at a static hydrogen concentration, the susceptometer could be used to determine the hydrogen concentration in Pd in situ. At a higher initial hydrogen pressure, enhancement of the magnetic susceptibility was observed at the beginning of hydrogen absorption because the magnetic moments induced by the large temporary strain generated in the Pd affected the magnetic susceptibility. PMID:22852719

  2. Hydrogen transport and storage in engineered microspheres

    SciTech Connect

    Rambach, G.; Hendricks, C.

    1996-10-01

    This project is a collaboration between Lawrence Livermore National Laboratory (LLNL) and W.J. Schafer Associates (WJSA). The authors plan to experimentally verify the performance characteristics of engineered glass microspheres that are relevant to the storage and transport of hydrogen for energy applications. They will identify the specific advantages of hydrogen transport by microspheres, analyze the infrastructure implications and requirements, and experimentally measure their performance characteristics in realistic, bulk storage situations.

  3. Petawatt laser absorption bounded

    NASA Astrophysics Data System (ADS)

    Levy, Matthew; Wilks, Scott; Tabak, Max; Libby, Stephen; Baring, Matthew

    2014-10-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top relativistic particle accelerators, ultrafast charged particle imaging systems and fast ignition inertial confinement fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. In this presentation, using a relativistic Rankine-Hugoniot-like analysis, we show how to derive the theoretical maximum and minimum of f. These boundaries constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. Close agreement is shown with several dozens of published experimental data points and simulation results, helping to confirm the theory. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials.

  4. Enhanced diffusion of molecular hydrogen in germanosilicate fibres loaded with hydrogen at high pressures

    SciTech Connect

    Vasil'ev, Sergei A; Koltashev, V V; Sokolov, V O; Medvedkov, O I; Rybaltovsky, A A; Plotnichenko, V G; Dianov, Evgenii M; Rybaltovskii, A O; Klyamkin, Semen N; Malosiev, A R

    2005-03-31

    Absorption spectra and spontaneous Raman spectra of optical fibres with a germanosilicate core loaded with molecular hydrogen at a pressure of 150-170 MPa are studied; the variation of these spectra during the outdiffusion of hydrogen from the fibres is also investigated. The purely rotational transitions of molecular hydrogen in Raman spectra of optical fibres are recorded for the first time. The changes in the spectral parameters of fibre Bragg gratings loaded with hydrogen are analysed. It is observed for the first time that under such high loading pressures, the decrease in the hydrogen concentration in the fibre core after completion of hydrogen loading occurs in two clearly manifested stages, the initial stage being characterised by a more rapid outlet of hydrogen as compared to the dynamics of hydrogen outdiffusing at pressures of 10-15 MPa. Barodiffusion of molecular hydrogen in optical fibres is considered as the main mechanism explaining this effect. An increase in the solubility of molecular hydrogen in germanosilicate fibres exposed to UV radiation is observed for the first time. (optical fibres)

  5. Percutaneous absorption from soil.

    PubMed

    Andersen, Rosa Marie; Coman, Garrett; Blickenstaff, Nicholas R; Maibach, Howard I

    2014-01-01

    Abstract Some natural sites, as a result of contaminants emitted into the air and subsequently deposited in soil or accidental industrial release, have high levels of organic and non-organic chemicals in soil. In occupational and recreation settings, these could be potential sources of percutaneous exposure to humans. When investigating percutaneous absorption from soil - in vitro or vivo - soil load, particle size, layering, soil "age" time, along with the methods of performing the experiment and analyzing the results must be taken into consideration. Skin absorption from soil is generally reduced compared with uptake from water/acetone. However, the absorption of some compounds, e.g., pentachlorophenol, chlorodane and PCB 1254, are similar. Lipophilic compounds like dichlorodiphenyltrichloroethane, benzo[A]pyrene, and metals have the tendency to form reservoirs in skin. Thus, one should take caution in interpreting results directly from in vitro studies for risk assessment; in vivo validations are often required for the most relevant risk assessment. PMID:25205703

  6. Mechanochemistry of lithium nitride under hydrogen gas.

    PubMed

    Li, Z; Zhang, J; Wang, S; Jiang, L; Latroche, M; Du, J; Cuevas, F

    2015-09-14

    Hydrogen uptake during the mechanochemistry of lithium nitride under 9 MPa hydrogen pressure has been analyzed by means of in situ solid-gas absorption and ex situ X-ray diffraction (XRD) measurements. In situ hydrogenation curves show two H-sorption steps leading to an overall hydrogen uptake of 9.8 wt% H after 3 hours of milling. The milled end-products consist of nanocrystalline (∼10 nm) LiNH2 and LiH phases. The first reaction step comprises the transformation of the polymorph α-Li3N (S.G. P6/mmm) into the β-Li3N (S.G. P63/mmc) metastable phase and the reaction of the latter with hydrogen to form lithium imide: β-Li3N + H2→ Li2NH + LiH. Reaction kinetics of the first step is zero-order. Its rate-limiting control is assigned to the collision frequency between milling balls and Li3N powder. In the second absorption step, lithium imide converts to lithium amide following the reaction scheme Li2NH + H2→ LiNH2 + LiH. Reaction kinetics is here limited by one-dimensional nucleation and the growth mechanism, which, in light of structural data, is assigned to the occurrence of lithium vacancies in the imide compound. This study provides new insights into the reaction paths and chemical kinetics of light hydrogen storage materials during their mechanochemical synthesis. PMID:26234206

  7. Hydrogen detector

    DOEpatents

    Kanegae, Naomichi; Ikemoto, Ichiro

    1980-01-01

    A hydrogen detector of the type in which the interior of the detector is partitioned by a metal membrane into a fluid section and a vacuum section. Two units of the metal membrane are provided and vacuum pipes are provided independently in connection to the respective units of the metal membrane. One of the vacuum pipes is connected to a vacuum gauge for static equilibrium operation while the other vacuum pipe is connected to an ion pump or a set of an ion pump and a vacuum gauge both designed for dynamic equilibrium operation.

  8. Perfect electromagnetic absorption at one-atom-thick scale

    SciTech Connect

    Li, Sucheng; Duan, Qian; Li, Shuo; Yin, Qiang; Lu, Weixin; Li, Liang; Hou, Bo; Gu, Bangming; Wen, Weijia

    2015-11-02

    We experimentally demonstrate that perfect electromagnetic absorption can be realized in the one-atom thick graphene. Employing coherent illumination in the waveguide system, the absorbance of the unpatterned graphene monolayer is observed to be greater than 94% over the microwave X-band, 7–13 GHz, and to achieve a full absorption, >99% in experiment, at ∼8.3 GHz. In addition, the absorption characteristic manifests equivalently a wide range of incident angle. The experimental results agree very well with the theoretical calculations. Our work accomplishes the broadband, wide-angle, high-performance absorption in the thinnest material with simple configuration.

  9. A study of hydrogen effects on fracture behavior of radioactive waste storage tanks. Final report, October 1992--September 1994

    SciTech Connect

    Murty, K.L.; Elleman, T.S.

    1994-12-31

    The processing of high-level radioactive wastes now stored at Hanford and Savannah River Laboratories will continue over many years and it will be necessary for some of the liquids to remain in the tanks until well into the next century. Continued tank integrity is therefore an issue of prime importance and it will be necessary to understand any processes which could lead to tank failure. Hydrogen embrittlement resulting from absorption of radiolytic hydrogen could alter tank fracture behavior and be an issue in evaluating the effect of stresses on the tanks from rapid chemical oxidation-reduction reactions. The intense radiation fields in some of the tanks could be a factor in increasing the hydrogen permeation rates through protective oxide films on the alloy surface and be an additional factor in contributing to embrittlement. The project was initiated in October 1992 for a two year period to evaluate hydrogen uptake in low carbon steels that are representative of storage tanks. Steel specimens were exposed to high gamma radiation fields to generate radiolytic hydrogen and to potentially alter the protective surface films to increase hydrogen uptake. Direct measurements of hydrogen uptake were made using tritium as a tracer and fracture studies were undertaken to determine any alloy embrittlement. The rates of hydrogen uptake were noted to be extremely low in the experimental steels. Gamma radiation did not reveal any significant changes in the mechanical and fracture characteristics following exposures as long as a month. It is highly desirable to investigate further the tritium diffusion under stress in a cracked body where stress-assisted diffusion is expected to enhance these rates. More importantly, since welds are the weakest locations in the steel structures, the mechanical and fracture tests should be performed on welds exposed to tritium with and without stressed crack-fronts.

  10. Multiplasmon Absorption in Graphene

    NASA Astrophysics Data System (ADS)

    Jablan, Marinko; Chang, Darrick E.

    2015-06-01

    We show that graphene possesses a strong nonlinear optical response in the form of multiplasmon absorption, with exciting implications in classical and quantum nonlinear optics. Specifically, we predict that graphene nanoribbons can be used as saturable absorbers with low saturation intensity in the far-infrared and terahertz spectrum. Moreover, we predict that two-plasmon absorption and extreme localization of plasmon fields in graphene nanodisks can lead to a plasmon blockade effect, in which a single quantized plasmon strongly suppresses the possibility of exciting a second plasmon.

  11. Chaotic Systems with Absorption

    NASA Astrophysics Data System (ADS)

    Altmann, Eduardo G.; Portela, Jefferson S. E.; Tél, Tamás

    2013-10-01

    Motivated by applications in optics and acoustics we develop a dynamical-system approach to describe absorption in chaotic systems. We introduce an operator formalism from which we obtain (i) a general formula for the escape rate κ in terms of the natural conditionally invariant measure of the system, (ii) an increased multifractality when compared to the spectrum of dimensions Dq obtained without taking absorption and return times into account, and (iii) a generalization of the Kantz-Grassberger formula that expresses D1 in terms of κ, the positive Lyapunov exponent, the average return time, and a new quantity, the reflection rate. Simulations in the cardioid billiard confirm these results.

  12. Absorption heat pump system

    DOEpatents

    Grossman, Gershon; Perez-Blanco, Horacio

    1984-01-01

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  13. Hydrogen diffusion in Zircon

    NASA Astrophysics Data System (ADS)

    Ingrin, Jannick; Zhang, Peipei

    2016-04-01

    Hydrogen mobility in gem quality zircon single crystals from Madagascar was investigated through H-D exchange experiments. Thin slices were annealed in a horizontal furnace flushed with a gas mixture of Ar/D2(10%) under ambient pressure between 900 ° C to 1150 ° C. FTIR analyses were performed on oriented slices before and after each annealing run. H diffusion along [100] and [010] follow the same diffusion law D = D0exp[-E /RT], with log D0 = 2.24 ± 1.57 (in m2/s) and E = 374 ± 39 kJ/mol. H diffusion along [001] follows a slightly more rapid diffusion law, with log D0 = 1.11 ± 0.22 (in m2/s) and E = 334 ± 49 kJ/mol. H diffusion in zircon has much higher activation energy and slower diffusivity than other NAMs below 1150 ° C even iron-poor garnets which are known to be among the slowest (Blanchard and Ingrin, 2004; Kurka et al. 2005). During H-D exchange zircon incorporates also deuterium. This hydration reaction involves uranium reduction as it is shown from the exchange of U5+ and U4+ characteristic bands in the near infrared region during annealing. It is the first time that a hydration reaction U5+ + OH‑ = U4+ + O2‑ + 1/2H2, is experimentally reported. The kinetics of deuterium incorporation is slightly slower than hydrogen diffusion, suggesting that the reaction is limited by hydrogen mobility. Hydrogen isotopic memory of zircon is higher than other NAMs. Zircons will be moderately retentive of H signatures at mid-crustal metamorphic temperatures. At 500 ° C, a zircon with a radius of 300 μm would retain its H isotopic signature over more than a million years. However, a zircon is unable to retain this information for geologically significant times under high-grade metamorphism unless the grain size is large enough. Refrences Blanchard, M. and Ingrin, J. (2004) Hydrogen diffusion in Dora Maira pyrope. Physics and Chemistry of Minerals, 31, 593-605. Kurka, A., Blanchard, M. and Ingrin, J. (2005) Kinetics of hydrogen extraction and deuteration in

  14. Acoustic Absorption in Porous Materials

    NASA Technical Reports Server (NTRS)

    Kuczmarski, Maria A.; Johnston, James C.

    2011-01-01

    An understanding of both the areas of materials science and acoustics is necessary to successfully develop materials for acoustic absorption applications. This paper presents the basic knowledge and approaches for determining the acoustic performance of porous materials in a manner that will help materials researchers new to this area gain the understanding and skills necessary to make meaningful contributions to this field of study. Beginning with the basics and making as few assumptions as possible, this paper reviews relevant topics in the acoustic performance of porous materials, which are often used to make acoustic bulk absorbers, moving from the physics of sound wave interactions with porous materials to measurement techniques for flow resistivity, characteristic impedance, and wavenumber.

  15. Mechanochemical hydrogenation of coal

    DOEpatents

    Yang, Ralph T.; Smol, Robert; Farber, Gerald; Naphtali, Leonard M.

    1981-01-01

    Hydrogenation of coal is improved through the use of a mechanical force to reduce the size of the particulate coal simultaneously with the introduction of gaseous hydrogen, or other hydrogen donor composition. Such hydrogen in the presence of elemental tin during this one-step size reduction-hydrogenation further improves the yield of the liquid hydrocarbon product.

  16. Hydrogen cryofuel in internal combustion engines

    SciTech Connect

    Peschka, W.

    1994-12-31

    The main reason to support hydrogen as a fuel lies in the foreseeable problems regarding the CO{sub 2} pollution of the Earth`s atmosphere due to the unrestrained use of fossil energy. While combustion of currently used, or feasible hydrocarbon fuels releases about the same amount of CO{sub 2} per amount of heat produced, even hydrocarbon fuels with a greater hydrogen content do not lead to substantial improvement in this regard. Hydrogen represents the only practical, technically feasible, carbon free fuel. Cryogenic characteristics of hydrogen such as high density and a considerable cooling effect favor the fuel injection, the mixing process and thus the combustion process. In addition to the preferred use of liquid hydrogen due to its range per tank filling and low amount of mass for storage in the vehicle, the cryogenic characteristics of hydrogen provide significant advantages. In addition to engine operation with external mixture formation, considerable success was made with internal mixture formation with injection of cryogenic high pressure hydrogen. Only pressurization of cryogenic hydrogen can be accomplished without investing a considerable amount of engine power. Hybrid mixture formation, a proper combination of external and internal mixture formation with suitably pressurized cryogenic hydrogen, is very attractive with respect to power and torque flow as well as other positive characteristics under steady and intermittent operating conditions. The state of the art technology of liquid hydrogen represents a suitable base for large scale demonstration projects now. Additional aims of more intense R&D work relate to internal mixture formation and improved engine roadability as well as utility vehicle application including trucks and buses. With respect to fuel costs there will be an increased demand in developing hydrogen production free from CO{sub 2} emissions even from fossil energy sources such as crude oil or natural gas.

  17. Interaction of hydrogen with transition metal fcc(111) surfaces

    NASA Astrophysics Data System (ADS)

    Löautber, R.; Hennig, D.

    1997-02-01

    The interaction of atomic hydrogen with the fcc(111) surfaces of Pd and Rh was investigated theoretically with an ab initio method, to find out the differences and similiarities between these neighboring metals. At the Rh surface the hcp site of the threefold-coordinated adsorption sites is preferred, while at Pd almost no difference between the hcp and fcc sites was found. For Pd, the occupation of subsurface positions was calculated to be more stable than bulklike positions. The energy gain caused by hydrogen absorption in subsurface positions is only about 100 meV lower than for hydrogen adsorption at the surface. In contrast, for Rh, significant differences between adsorption and absorption were calculated. The diffusion barrier for hydrogen diffusion from surface to subsurface positions was calculated and compared to the diffusion barrier in bulk. The hydrogen-induced work-function changes for the considered 4d transition-metal surfaces were positive for coverage θ=1.

  18. Two-Phonon Absorption

    ERIC Educational Resources Information Center

    Hamilton, M. W.

    2007-01-01

    A nonlinear aspect of the acousto-optic interaction that is analogous to multi-photon absorption is discussed. An experiment is described in which the second-order acousto-optically scattered intensity is measured and found to scale with the square of the acoustic intensity. This experiment using a commercially available acousto-optic modulator is…

  19. Total absorption Cherenkov spectrometers

    NASA Astrophysics Data System (ADS)

    Malinovski, E. I.

    2015-05-01

    A short review of 50 years of work done with Cherenkov detectors in laboratories at the Lebedev Physical Institute is presented. The report considers some issues concerning the use of Cherenkov total absorption counters based on lead glass and heavy crystals in accelerator experiments.

  20. Cholesterol Absorption and Metabolism.

    PubMed

    Howles, Philip N

    2016-01-01

    Inhibitors of cholesterol absorption have been sought for decades as a means to treat and prevent cardiovascular diseases (CVDs) associated with hypercholesterolemia. Ezetimibe is the one clear success story in this regard, and other compounds with similar efficacy continue to be sought. In the last decade, the laboratory mouse, with all its genetic power, has become the premier experimental model for discovering the mechanisms underlying cholesterol absorption and has become a critical tool for preclinical testing of potential pharmaceutical entities. This chapter briefly reviews the history of cholesterol absorption research and the various gene candidates that have come under consideration as drug targets. The most common and versatile method of measuring cholesterol absorption is described in detail along with important considerations when interpreting results, and an alternative method is also presented. In recent years, reverse cholesterol transport (RCT) has become an area of intense new interest for drug discovery since this process is now considered another key to reducing CVD risk. The ultimate measure of RCT is sterol excretion and a detailed description is given for measuring neutral and acidic fecal sterols and interpreting the results. PMID:27150091