Science.gov

Sample records for hydrogen atmosphere issledovanie

  1. An archetype hydrogen atmosphere problem

    NASA Technical Reports Server (NTRS)

    Athay, R. G.; Mihalas, D.; Shine, R. A.

    1975-01-01

    Populations for the first three bound states and the continuum of hydrogen are determined for an isothermal hydrostatic atmosphere at 20,000 K. The atmosphere is treated as optically thin in the Balmer and Paschen continua and illuminated by continuum radiation at these wavelengths with prescribed radiation temperatures. The atmosphere is optically thick in the 2-1, 3-1, 3-2 and c-1 transitions. Three stages of approximation are treated: (1) radiative detailed balance in the 2-1, 3-1 and 3-2 transitions, (2) radiative detailed balance in the 3-1 and 3-2 transitions, and (3) all transitions out of detailed balance. The solution of this problem is nontrivial and presents sufficient difficulty to have caused the failure of at least one rather standard technique. The problem is thus a good archetype against which new methods or new implementations of old methods may be tested.

  2. HLINOP: Hydrogen LINe OPacity in stellar atmospheres

    NASA Astrophysics Data System (ADS)

    Barklem, P. S.; Piskunov, N.

    2015-07-01

    HLINOP is a collection of codes for computing hydrogen line profiles and opacities in the conditions typical of stellar atmospheres. It includes HLINOP for approximate quick calculation of any line of neutral hydrogen (suitable for model atmosphere calculations), based on the Fortran code of Kurucz and Peterson found in ATLAS9. It also includes HLINPROF, for detailed, accurate calculation of lower Balmer line profiles (suitable for detailed analysis of Balmer lines) and HBOP, to implement the occupation probability formalism of Daeppen, Anderson and Milhalas (1987) and thus account for the merging of bound-bound and bound-free opacity (used often as a wrapper to HLINOP for model atmosphere calculations).

  3. Isotopic composition of atmospheric hydrogen and methane

    USGS Publications Warehouse

    Bainbridge, A.E.; Suess, H.E.; Friedman, I.

    1961-01-01

    IN a recent communication, Bishop and Taylor1 express the opinion that the tritium concentration of free hydrogen in the atmosphere has been rising over the past ten years, with a doubling time of approximately 18 months. The authors suspect that artificial tritium was released into the atmosphere several years before the Castle test series in 1954, which is commonly assumed to have led to the first pronounced rise in the tritium concentration of terrestrial surface water. Bishop and Taylor's communication includes a diagram of the logarithms of all the experimentally determined tritium values in free atmospheric hydrogen plotted against time. The plot shows that the values follow a straight line that includes the first value obtained by Faltings and Harteck2 on atmospheric hydrogen collected in 1948. ?? 1961 Nature Publishing Group.

  4. Atomic hydrogen distribution. [in Titan atmospheric model

    NASA Technical Reports Server (NTRS)

    Tabarie, N.

    1974-01-01

    Several possible H2 vertical distributions in Titan's atmosphere are considered with the constraint of 5 km-A a total quantity. Approximative calculations show that hydrogen distribution is quite sensitive to two other parameters of Titan's atmosphere: the temperature and the presence of other constituents. The escape fluxes of H and H2 are also estimated as well as the consequent distributions trapped in the Saturnian system.

  5. Atmospheric hydrogen scavenging: from enzymes to ecosystems.

    PubMed

    Greening, Chris; Constant, Philippe; Hards, Kiel; Morales, Sergio E; Oakeshott, John G; Russell, Robyn J; Taylor, Matthew C; Berney, Michael; Conrad, Ralf; Cook, Gregory M

    2015-02-01

    We have known for 40 years that soils can consume the trace amounts of molecular hydrogen (H2) found in the Earth’s atmosphere.This process is predicted to be the most significant term in the global hydrogen cycle. However, the organisms and enzymes responsible for this process were only recently identified. Pure culture experiments demonstrated that several species of Actinobacteria, including streptomycetes and mycobacteria, can couple the oxidation of atmospheric H2 to the reduction of ambient O2. A combination of genetic, biochemical, and phenotypic studies suggest that these organisms primarily use this fuel source to sustain electron input into the respiratory chain during energy starvation. This process is mediated by a specialized enzyme, the group 5 [NiFe]-hydrogenase, which is unusual for its high affinity, oxygen insensitivity, and thermostability. Atmospheric hydrogen scavenging is a particularly dependable mode of energy generation, given both the ubiquity of the substrate and the stress tolerance of its catalyst. This minireview summarizes the recent progress in understanding how and why certain organisms scavenge atmospheric H2. In addition, it provides insight into the wider significance of hydrogen scavenging in global H2 cycling and soil microbial ecology. PMID:25501483

  6. Atmospheric Hydrogen Scavenging: from Enzymes to Ecosystems

    PubMed Central

    Constant, Philippe; Hards, Kiel; Morales, Sergio E.; Oakeshott, John G.; Russell, Robyn J.; Taylor, Matthew C.; Berney, Michael; Conrad, Ralf; Cook, Gregory M.

    2014-01-01

    We have known for 40 years that soils can consume the trace amounts of molecular hydrogen (H2) found in the Earth's atmosphere. This process is predicted to be the most significant term in the global hydrogen cycle. However, the organisms and enzymes responsible for this process were only recently identified. Pure culture experiments demonstrated that several species of Actinobacteria, including streptomycetes and mycobacteria, can couple the oxidation of atmospheric H2 to the reduction of ambient O2. A combination of genetic, biochemical, and phenotypic studies suggest that these organisms primarily use this fuel source to sustain electron input into the respiratory chain during energy starvation. This process is mediated by a specialized enzyme, the group 5 [NiFe]-hydrogenase, which is unusual for its high affinity, oxygen insensitivity, and thermostability. Atmospheric hydrogen scavenging is a particularly dependable mode of energy generation, given both the ubiquity of the substrate and the stress tolerance of its catalyst. This minireview summarizes the recent progress in understanding how and why certain organisms scavenge atmospheric H2. In addition, it provides insight into the wider significance of hydrogen scavenging in global H2 cycling and soil microbial ecology. PMID:25501483

  7. Photosynthesis in hydrogen-dominated atmospheres.

    PubMed

    Bains, William; Seager, Sara; Zsom, Andras

    2014-01-01

    The diversity of extrasolar planets discovered in the last decade shows that we should not be constrained to look for life in environments similar to early or present-day Earth. Super-Earth exoplanets are being discovered with increasing frequency, and some will be able to retain a stable, hydrogen-dominated atmosphere. We explore the possibilities for photosynthesis on a rocky planet with a thin H2-dominated atmosphere. If a rocky, H2-dominated planet harbors life, then that life is likely to convert atmospheric carbon into methane. Outgassing may also build an atmosphere in which methane is the principal carbon species. We describe the possible chemical routes for photosynthesis starting from methane and show that less energy and lower energy photons could drive CH4-based photosynthesis as compared with CO2-based photosynthesis. We find that a by-product biosignature gas is likely to be H2, which is not distinct from the hydrogen already present in the environment. Ammonia is a potential biosignature gas of hydrogenic photosynthesis that is unlikely to be generated abiologically. We suggest that the evolution of methane-based photosynthesis is at least as likely as the evolution of anoxygenic photosynthesis on Earth and may support the evolution of complex life. PMID:25411926

  8. Photosynthesis in Hydrogen-Dominated Atmospheres

    PubMed Central

    Bains, William; Seager, Sara; Zsom, Andras

    2014-01-01

    The diversity of extrasolar planets discovered in the last decade shows that we should not be constrained to look for life in environments similar to early or present-day Earth. Super-Earth exoplanets are being discovered with increasing frequency, and some will be able to retain a stable, hydrogen-dominated atmosphere. We explore the possibilities for photosynthesis on a rocky planet with a thin H2-dominated atmosphere. If a rocky, H2-dominated planet harbors life, then that life is likely to convert atmospheric carbon into methane. Outgassing may also build an atmosphere in which methane is the principal carbon species. We describe the possible chemical routes for photosynthesis starting from methane and show that less energy and lower energy photons could drive CH4-based photosynthesis as compared with CO2-based photosynthesis. We find that a by-product biosignature gas is likely to be H2, which is not distinct from the hydrogen already present in the environment. Ammonia is a potential biosignature gas of hydrogenic photosynthesis that is unlikely to be generated abiologically. We suggest that the evolution of methane-based photosynthesis is at least as likely as the evolution of anoxygenic photosynthesis on Earth and may support the evolution of complex life. PMID:25411926

  9. Atmospheric hydrogen peroxide and Eoarchean iron formations.

    PubMed

    Pecoits, E; Smith, M L; Catling, D C; Philippot, P; Kappler, A; Konhauser, K O

    2015-01-01

    It is widely accepted that photosynthetic bacteria played a crucial role in Fe(II) oxidation and the precipitation of iron formations (IF) during the Late Archean-Early Paleoproterozoic (2.7-2.4 Ga). It is less clear whether microbes similarly caused the deposition of the oldest IF at ca. 3.8 Ga, which would imply photosynthesis having already evolved by that time. Abiological alternatives, such as the direct oxidation of dissolved Fe(II) by ultraviolet radiation may have occurred, but its importance has been discounted in environments where the injection of high concentrations of dissolved iron directly into the photic zone led to chemical precipitation reactions that overwhelmed photooxidation rates. However, an outstanding possibility remains with respect to photochemical reactions occurring in the atmosphere that might generate hydrogen peroxide (H2 O2 ), a recognized strong oxidant for ferrous iron. Here, we modeled the amount of H2 O2 that could be produced in an Eoarchean atmosphere using updated solar fluxes and plausible CO2 , O2 , and CH4 mixing ratios. Irrespective of the atmospheric simulations, the upper limit of H2 O2 rainout was calculated to be <10(6) molecules cm(-2) s(-1) . Using conservative Fe(III) sedimentation rates predicted for submarine hydrothermal settings in the Eoarchean, we demonstrate that the flux of H2 O2 was insufficient by several orders of magnitude to account for IF deposition (requiring ~10(11) H2 O2 molecules cm(-2) s(-1) ). This finding further constrains the plausible Fe(II) oxidation mechanisms in Eoarchean seawater, leaving, in our opinion, anoxygenic phototrophic Fe(II)-oxidizing micro-organisms the most likely mechanism responsible for Earth's oldest IF. PMID:25324177

  10. The potential impact of hydrogen energy use on the atmosphere

    NASA Astrophysics Data System (ADS)

    van Ruijven, B. J.; Lamarque, J. F.; van Vuuren, D. P.; Kram, T.; Eerens, H.

    2009-04-01

    Energy models show very different trajectories for future energy systems (partly as function of future climate policy). One possible option is a transition towards a hydrogen-based energy system. The potential impact of such hydrogen economy on atmospheric emissions is highly uncertain. On the one hand, application of hydrogen in clean fuel cells reduces emissions of local air pollutants, like SOx and NOx. On the other hand, emissions of hydrogen from system leakages are expected to change the atmospheric concentrations and behaviour (see also Price et al., 2007; Sanderson et al., 2003; Schultz et al., 2003; Tromp et al., 2003). The uncertainty arises from several sources: the expected use of hydrogen, the intensity of leakages and emissions, and the atmospheric chemical behaviour of hydrogen. Existing studies to the potential impacts of a hydrogen economy on the atmosphere mostly use hydrogen emission scenarios that are based on simple assumptions. This research combines two different modelling efforts to explore the range of impacts of hydrogen on atmospheric chemistry. First, the potential role of hydrogen in the global energy system and the related emissions of hydrogen and other air pollutants are derived from the global energy system simulation model TIMER (van Vuuren, 2007). A set of dedicated scenarios on hydrogen technology development explores the most pessimistic and optimistic cases for hydrogen deployment (van Ruijven et al., 2008; van Ruijven et al., 2007). These scenarios are combined with different assumptions on hydrogen emission factors. Second, the emissions from the TIMER model are linked to the NCAR atmospheric model (Lamarque et al., 2005; Lamarque et al., 2008), in order to determine the impacts on atmospheric chemistry. By combining an energy system model and an atmospheric model, we are able to consistently explore the boundaries of both hydrogen use, emissions and impacts on atmospheric chemistry. References: Lamarque, J.-F., Kiehl, J. T

  11. Atomic hydrogen and nitrogen distributions from atmosphere explorer measurements

    NASA Technical Reports Server (NTRS)

    Breig, Edward L.

    1992-01-01

    We were selective as to our approach to research activities, and devoted primary attention to two investigations concerning the global behavior of atomic hydrogen in the Earth's upper atmosphere. We derive the thermospheric concentration of H by applying the condition of charge-exchange equilibrium between hydrogen and oxygen atoms and ions to in-situ measurements of F-region composition and temperature from the series of Atmosphere Explorer (AE) aeronomy satellites. Progress and accomplishments on these chosen research projects are summarized.

  12. Role of Double Hydrogen Atom Transfer Reactions in Atmospheric Chemistry.

    PubMed

    Kumar, Manoj; Sinha, Amitabha; Francisco, Joseph S

    2016-05-17

    Hydrogen atom transfer (HAT) reactions are ubiquitous and play a crucial role in chemistries occurring in the atmosphere, biology, and industry. In the atmosphere, the most common and traditional HAT reaction is that associated with the OH radical abstracting a hydrogen atom from the plethora of organic molecules in the troposphere via R-H + OH → R + H2O. This reaction motif involves a single hydrogen transfer. More recently, in the literature, there is an emerging framework for a new class of HAT reactions that involves double hydrogen transfers. These reactions are broadly classified into four categories: (i) addition, (ii) elimination, (iii) substitution, and (iv) rearrangement. Hydration and dehydration are classic examples of addition and elimination reactions, respectively whereas tautomerization or isomerization belongs to a class of rearrangement reactions. Atmospheric acids and water typically mediate these reactions. Organic and inorganic acids are present in appreciable levels in the atmosphere and are capable of facilitating two-point hydrogen bonding interactions with oxygenates possessing an hydroxyl and/or carbonyl-type functionality. As a result, acids influence the reactivity of oxygenates and, thus, the energetics and kinetics of their HAT-based chemistries. The steric and electronic effects of acids play an important role in determining the efficacy of acid catalysis. Acids that reduce the steric strain of 1:1 substrate···acid complex are generally better catalysts. Among a family of monocarboxylic acids, the electronic effects become important; barrier to the catalyzed reaction correlates strongly with the pKa of the acid. Under acid catalysis, the hydration of carbonyl compounds leads to the barrierless formation of diols, which can serve as seed particles for atmospheric aerosol growth. The hydration of sulfur trioxide, which is the principle mechanism for atmospheric sulfuric acid formation, also becomes barrierless under acid catalysis

  13. DISCOVERY OF MOLECULAR HYDROGEN IN WHITE DWARF ATMOSPHERES

    SciTech Connect

    Xu, S.; Jura, M.; Klein, B.; Zuckerman, B.; Koester, D. E-mail: jura@astro.ucla.edu E-mail: ben@astro.ucla.edu

    2013-04-01

    With the Cosmic Origins Spectrograph on board the Hubble Space Telescope, we have detected molecular hydrogen in the atmospheres of three white dwarfs with effective temperatures below 14,000 K, G29-38, GD 133, and GD 31. This discovery provides new independent constraints on the stellar temperature and surface gravity of white dwarfs.

  14. Hydrogen-atmosphere induction furnace has increased temperature range

    NASA Technical Reports Server (NTRS)

    Caves, R. M.; Gresslin, C. H.

    1966-01-01

    Improved hydrogen-atmosphere induction furnace operates at temperatures up to 5,350 deg F. The furnace heats up from room temperature to 4,750 deg F in 30 seconds and cools down to room temperature in 2 minutes.

  15. Discovery of Molecular Hydrogen in White Dwarf Atmospheres

    NASA Astrophysics Data System (ADS)

    Xu, S.; Jura, M.; Koester, D.; Klein, B.; Zuckerman, B.

    2013-04-01

    With the Cosmic Origins Spectrograph on board the Hubble Space Telescope, we have detected molecular hydrogen in the atmospheres of three white dwarfs with effective temperatures below 14,000 K, G29-38, GD 133, and GD 31. This discovery provides new independent constraints on the stellar temperature and surface gravity of white dwarfs.

  16. Atmospheric hydrogen peroxide and methyl hydroperoxide in Yanbian, China

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Ji, B.; Lee, M.; Kim, K.; Lee, G.

    2003-04-01

    Hydrogen peroxide and organic peroxides are photochemical byproducts. They are referred as the indicator of oxidizing capacity of the atmosphere. Further, they are related with the production and removal of ozone in photochemistry. To better understand the photochemical processes in the troposphere, it is essential to know the correct concentration of hydroperoxides. Hydrogen peroxide and methyl Hydroperoxide were measured from 24 Aug to 3 Sep in Yanbian, China. Measurements were made for continuously during the whole course of the experiments. After collected in aqueous solution using continuous scrubbing coil, hydroperoxides were separated by HPLC, and then quantified by fluorescence produced using postcolumn enzyme derivatization. Collection and analysis were done automatically Average concentration of hydrogen peroxide and methyl hydroperoxide were 0.9ppbc and 1.6 ppb, respectively. In general, hydroperoxides showed typical diurnal variations with the maximum concentration during day. It was the first study of air pollution conducted in Yanbian, China. Detailed results will be presented in the meeting.

  17. Ultraviolet absorption spectrum of hydrogen peroxide vapor. [for atmospheric abundances

    NASA Technical Reports Server (NTRS)

    Molina, L. T.; Schinke, S. D.; Molina, M. J.

    1977-01-01

    The ultraviolet absorption cross sections of hydrogen peroxide vapor have been determined over the wavelength range 210 to 350 nm at 296 K. At the longer wavelengths, the gas phase absorptivities are significantly larger than the corresponding values in condensed phase. The atmospheric H2O2 photodissociation rate for overhead sun at the earth's surface is estimated to be about 1.3 x 10 to the -5th/sec.

  18. Para hydrogen equilibration in the atmospheres of the outer planets

    NASA Technical Reports Server (NTRS)

    Conrath, Barney J.

    1986-01-01

    The thermodynamic behavior of the atmospheres of the Jovian planets is strongly dependent on the extent to which local thermal equilibration of the ortho and para states of molecular hydrogen is achieved. Voyager IRIS data from Jupiter imply substantial departures of the para hydrogen fraction from equilibrium in the upper troposphere at low latitudes, but with values approaching equilibrium at higher latitudes. Data from Saturn are less sensitive to the orth-para ratio, but suggest para hydrogen fractions near the equilibrium value. Above approximately the 200 K temperature level, para hydrogen conversion can enhance the efficiency of convection, resulting in a substantial increase in overturning times on all of the outer planets. Currently available data cannot definitively establish the ortho-para ratios in the atmospheres of Uranus and Neptune, but suggest values closer to local equilibrium than to the 3.1 normal ratio. Modeling of sub-millimeter wavelength measurements of these planets suggest thermal structures with frozen equilibrium lapse rates in their convective regions.

  19. Isotopic fractionation during soil uptake of atmospheric hydrogen

    NASA Astrophysics Data System (ADS)

    Rice, A.; Dayalu, A.; Quay, P.; Gammon, R.

    2011-03-01

    Soil uptake of atmospheric hydrogen (H2) and the associated hydrogen isotope effect were studied using soil chambers in a Western Washington second-growth coniferous forest. Chamber studies were conducted during both winter and summer seasons to account for large natural variability in soil moisture content (4-50%) and temperature (6-22 °C). H2 deposition velocities were found to range from 0.01-0.06 cm s-1 with an average of 0.033 ± 0.008 cm s-1 (95% confidence interval). Consistent with prior studies, deposition velocities were correlated with soil moisture below 20% soil moisture content during the summer season. During winter, there was considerable variability observed in deposition velocity that was not closely related to soil moisture. The hydrogen kinetic isotope effect with H2 uptake was found to range from -24‰ to -109‰. Aggregate analysis of experimental data results in an average KIE of -57 ± 5‰ (95% CI). Some of the variability in KIE can be explained by larger isotope effects at lower (<10%) and higher (>30%) soil moisture contents. The measured KIE was also found to be correlated with deposition velocity, with smaller isotope effects occurring at higher deposition velocities. If correct, these findings will have an impact on the interpretation of atmospheric measurements and modeling of δD of H2.

  20. Isotopic fractionation during soil uptake of atmospheric hydrogen

    NASA Astrophysics Data System (ADS)

    Rice, A.; Dayalu, A.; Quay, P.; Gammon, R.

    2010-11-01

    Soil uptake of atmospheric hydrogen (H2) and the associated hydrogen isotope effect were studied using soil chambers in a Western Washington second-growth coniferous forest. Chamber studies were conducted during both winter and summer seasons to account for large natural variability in soil moisture content (4-50%) and temperature (6-22 °C). H2 deposition velocities were found to range from 0.01-0.06 cm s-1 with an average of 0.033 ± 0.008 cm s-1 (95% confidence interval). Consistent with prior studies, deposition velocities were correlated with soil moisture below 20% soil moisture content during the summer season. Considerable variability in deposition velocity observed during winter was not found to be closely related to soil moisture. The hydrogen kinetic isotope effect with H2 uptake was found to range from -24‰ to -109‰. Aggregate analysis of experimental data results in an average KIE of -57 ± 5‰ (95% CI). Some of the variability in KIE can be explained by larger isotope effects at lower (<10%) and higher (>30%) soil moisture contents. The measured KIE was also found to be correlated with deposition velocity, with smaller isotope effects occurring at higher deposition velocities. If correct, these findings will have an impact on the interpretation of atmospheric measurements and modeling of δD of H2.

  1. Detection of Molecular Hydrogen in theAtmosphere of Mars

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, Vladimir A.; Feldman, Paul D.

    2001-11-01

    Four hydrogen (H2) lines have been detected in a spectrum of Mars observed with the Far Ultraviolet Spectroscopic Explorer. Three of those lines are excited by the solar Lyman β photons. The line intensities correspond to a column H2 abundance of 1.17 (+/-0.13) × 1013 per square centimeter above 140 kilometers on Mars. A photochemical model for the upper atmosphere that simulates the observed H2 abundance results in an H2 mixing ratio of 15 +/- 5 parts per million in the lower atmosphere. The H2 and HD mixing ratios agree with photochemical fractionation of D (deuterium) between H2O and H2. Analysis of D fractionation among a few reservoirs of ice, water vapor, and molecular hydrogen on Mars implies that a global ocean more than 30 meters deep was lost since the end of hydrodynamic escape. Only 4% of the initially accreted water remained on the planet at the end of hydrodynamic escape, and initially Mars could have had even more water (as a proportion of mass) than Earth.

  2. Detection of molecular hydrogen in the atmosphere of Mars.

    PubMed

    Krasnopolsky, V A; Feldman, P D

    2001-11-30

    Four hydrogen (H2) lines have been detected in a spectrum of Mars observed with the Far Ultraviolet Spectroscopic Explorer. Three of those lines are excited by the solar Lyman beta photons. The line intensities correspond to a column H2 abundance of 1.17 (+/-0.13) x 10(13) per square centimeter above 140 kilometers on Mars. A photochemical model for the upper atmosphere that simulates the observed H2 abundance results in an H2 mixing ratio of 15 +/- 5 parts per million in the lower atmosphere. The H2 and HD mixing ratios agree with photochemical fractionation of D (deuterium) between H2O and H2. Analysis of D fractionation among a few reservoirs of ice, water vapor, and molecular hydrogen on Mars implies that a global ocean more than 30 meters deep was lost since the end of hydrodynamic escape. Only 4% of the initially accreted water remained on the planet at the end of hydrodynamic escape, and initially Mars could have had even more water (as a proportion of mass) than Earth. PMID:11729314

  3. McPHAC: McGill Planar Hydrogen Atmosphere Code

    NASA Astrophysics Data System (ADS)

    Haakonsen, Christian Bernt; Turner, Monica L.; Tacik, Nick A.; Rutledge, Robert E.

    2012-10-01

    The McGill Planar Hydrogen Atmosphere Code (McPHAC) v1.1 calculates the hydrostatic equilibrium structure and emergent spectrum of an unmagnetized hydrogen atmosphere in the plane-parallel approximation at surface gravities appropriate for neutron stars. McPHAC incorporates several improvements over previous codes for which tabulated model spectra are available: (1) Thomson scattering is treated anisotropically, which is shown to result in a 0.2%-3% correction in the emergent spectral flux across the 0.1-5 keV passband; (2) the McPHAC source code is made available to the community, allowing it to be scrutinized and modified by other researchers wishing to study or extend its capabilities; and (3) the numerical uncertainty resulting from the discrete and iterative solution is studied as a function of photon energy, indicating that McPHAC is capable of producing spectra with numerical uncertainties <0.01%. The accuracy of the spectra may at present be limited to ~1%, but McPHAC enables researchers to study the impact of uncertain inputs and additional physical effects, thereby supporting future efforts to reduce those inaccuracies. Comparison of McPHAC results with spectra from one of the previous model atmosphere codes (NSA) shows agreement to lsim1% near the peaks of the emergent spectra. However, in the Wien tail a significant deficit of flux in the spectra of the previous model is revealed, determined to be due to the previous work not considering large enough optical depths at the highest photon frequencies. The deficit is most significant for spectra with T eff < 105.6 K, though even there it may not be of much practical importance for most observations.

  4. SEISMOLOGY OF A MASSIVE PULSATING HYDROGEN ATMOSPHERE WHITE DWARF

    SciTech Connect

    Kepler, S. O.; Pelisoli, Ingrid; Pecanha, Viviane; Costa, J. E. S.; Fraga, Luciano; Hermes, J. J.; Winget, D. E.; Castanheira, Barbara; Corsico, A. H.; Romero, A. D.; Althaus, Leandro; Kleinman, S. J.; Nitta, A.; Koester, D.; Kuelebi, Baybars; Kanaan, Antonio

    2012-10-01

    We report our observations of the new pulsating hydrogen atmosphere white dwarf SDSS J132350.28+010304.22. We discovered periodic photometric variations in frequency and amplitude that are commensurate with nonradial g-mode pulsations in ZZ Ceti stars. This, along with estimates for the star's temperature and gravity, establishes it as a massive ZZ Ceti star. We used time-series photometric observations with the 4.1 m SOAR Telescope, complemented by contemporary McDonald Observatory 2.1 m data, to discover the photometric variability. The light curve of SDSS J132350.28+010304.22 shows at least nine detectable frequencies. We used these frequencies to make an asteroseismic determination of the total mass and effective temperature of the star: M{sub *} = 0.88 {+-} 0.02 M{sub Sun} and T{sub eff} = 12, 100 {+-} 140 K. These values are consistent with those derived from the optical spectra and photometric colors.

  5. MAVEN observations of solar wind hydrogen deposition in the atmosphere of Mars

    NASA Astrophysics Data System (ADS)

    Halekas, J. S.; Lillis, R. J.; Mitchell, D. L.; Cravens, T. E.; Mazelle, C.; Connerney, J. E. P.; Espley, J. R.; Mahaffy, P. R.; Benna, M.; Jakosky, B. M.; Luhmann, J. G.; McFadden, J. P.; Larson, D. E.; Harada, Y.; Ruhunusiri, S.

    2015-11-01

    Mars Atmosphere and Volatile EvolutioN mission (MAVEN) observes a tenuous but ubiquitous flux of protons with the same energy as the solar wind in the Martian atmosphere. During high flux intervals, we observe a corresponding negative hydrogen population. The correlation between penetrating and solar wind fluxes, the constant energy, and the lack of a corresponding charged population at intermediate altitudes implicate products of hydrogen energetic neutral atoms from charge exchange between the upstream solar wind and the exosphere. These atoms, previously observed in neutral form, penetrate the magnetosphere unaffected by electromagnetic fields (retaining the solar wind velocity), and some fraction reconvert to charged form through collisions with the atmosphere. MAVEN characterizes the energy and angular distributions of both penetrating and backscattered particles, potentially providing information about the solar wind, the hydrogen corona, and collisional interactions in the atmosphere. The accretion of solar wind hydrogen may provide an important source term to the Martian atmosphere over the planet's history.

  6. Deprotonated Dicarboxylic Acid Homodimers: Hydrogen Bonds and Atmospheric Implications.

    PubMed

    Hou, Gao-Lei; Valiev, Marat; Wang, Xue-Bin

    2016-04-21

    Dicarboxylic acids represent an important class of water-soluble organic compounds found in the atmosphere. In this work we are studying properties of dicarboxylic acid homodimer complexes (HO2C(CH2)nCO2(-)[HO2C(CH2)nCO2H], n = 0-12), as potentially important intermediates in aerosol formation processes. Our approach is based on experimental data from negative ion photoelectron spectra of the dimer complexes combined with updated measurements of the corresponding monomer species. These results are analyzed with quantum-mechanical calculations, which provide further information about equilibrium structures, thermochemical parameters associated with the complex formation, and evaporation rates. We find that upon formation of the dimer complexes the electron binding energies increase by 1.3-1.7 eV (30.0-39.2 kcal/mol), indicating increased stability of the dimerized complexes. Calculations indicate that these dimer complexes are characterized by the presence of strong intermolecular hydrogen bonds with high binding energies and are thermodynamically favorable to form with low evaporation rates. Comparison with the previously studied HSO4(-)[HO2C(CH2)2CO2H] complex (J. Phys. Chem. Lett. 2013, 4, 779-785) shows that HO2C(CH2)2CO2(-)[HO2C(CH2)2CO2H] has very similar thermochemical properties. These results imply that dicarboxylic acids not only can contribute to the heterogeneous complexes formation involving sulfuric acid and dicarboxylic acids but also can promote the formation of homogeneous complexes by involving dicarboxylic acids themselves. PMID:27032015

  7. Hydrogen uptake by barium manganite at atmospheric pressure

    SciTech Connect

    Mandal, Tapas Kumar; Sebastian, Litty; Gopalakrishnan, J. . E-mail: gopal@sscu.iisc.ernet.in; Abrams, Lloyd; Goodenough, J.B.

    2004-12-02

    Investigation of the interaction of hydrogen with alkaline earth manganites (IV) AMnO{sub 3} (A = Ca, Sr, Ba), dispersed with 1 at.% Pt, has revealed an unprecedented uptake of hydrogen by BaMnO{sub 3}/Pt to the extent of {approx}1.25 mass% at moderate temperatures (190-260 deg. C) and ambient pressure. Gravimetric sorption isotherms and mass spectrometric analysis of the desorption products indicate that approximately three hydrogen atoms per mol of BaMnO{sub 3}/Pt is inserted reversibly. The nature of hydrogen in the insertion product, BaMnO{sub 3}H{sub 3}, is discussed. The work suggests the possibility of developing new hydrogen storage materials based on electropositive metal-transition metal-oxide systems.

  8. Hydrogen-deficient atmospheres for cool carbon stars

    NASA Technical Reports Server (NTRS)

    Johnson, H. R.; Bower, C. D.; Lemke, D. A.; Luttermoser, D. G.; Petrakis, J. P.; Reinhart, M. D.; Welch, K. A.; Alexander, D. R.; Goebel, J. H.

    1985-01-01

    Motivated by recent work which hints at a possible deficiency of hydrogen in non-Mira N-type carbon stars and to further explore the parameter space of chemical composition, computations have been made of a series of hydrogen-deficient models for carbon stars. For these models Teff = 3000 K, and log g = 0.0. Solar abundances are used for all elements except for carbon (which is enhanced to give C/O = 1.05), hydrogen, and helium. As the fractional abundance of hydrogen is decreased, being replaced by helium, the temperature-optical depth relation is affected only slightly, but the temperature-pressure relation is changed. The most striking change in the emergent flux is the decrease of the H(-) peak at 1.65 micron compared with the blackbody peak at 1.00 micron.

  9. Ignition during hydrogen release from high pressure into the atmosphere

    NASA Astrophysics Data System (ADS)

    Oleszczak, P.; Wolanski, P.

    2010-12-01

    The first investigations concerned with a problem of hydrogen jet ignition, during outflow from a high-pressure vessel were carried out nearly 40 years ago by Wolanski and Wojcicki. The research resulted from a dramatic accident in the Chorzow Chemical Plant Azoty, where the explosion of a synthesis gas made up of a mixture composed of three moles of hydrogen per mole of nitrogen, at 300°C and 30 MPa killed four people. Initial investigation had excluded potential external ignition sources and the main aim of the research was to determine the cause of ignition. Hydrogen is currently considered as a potential fuel for various vehicles such as cars, trucks, buses, etc. Crucial safety issues are of potential concern, associated with the storage of hydrogen at a very high pressure. Indeed, the evidence obtained nearly 40 years ago shows that sudden rupture of a high-pressure hydrogen storage tank or other component can result in ignition and potentially explosion. The aim of the present research is identification of the conditions under which hydrogen ignition occurs as a result of compression and heating of the air by the shock wave generated by discharge of high-pressure hydrogen. Experiments have been conducted using a facility constructed in the Combustion Laboratory of the Institute of Heat Engineering, Warsaw University of Technology. Tests under various configurations have been performed to determine critical conditions for occurrence of high-pressure hydrogen ignition. The results show that a critical pressure exists, leading to ignition, which depends mainly on the geometric configuration of the outflow system, such as tube diameter, and on the presence of obstacles.

  10. Hydrogen-water vapor mixtures: Control of hydrothermal atmospheres by hydrogen osmosis

    USGS Publications Warehouse

    Shaw, H.R.

    1963-01-01

    Experiments at 700??C and 800 bars total pressure demonstrate positive deviations from ideality for mixtures of hydrogen and H2O gases. The deviations are greater than predicted with Stockmayer's method. The composition of the mixture and the fugacity of hydrogen are controlled by diffusing hydrogen through metallic membranes. The results give the fugacities of both H 2O and oxygen.

  11. The Effect of Atmospheric Hydrogen on the Albedo and Surface Temperature of Mars

    NASA Astrophysics Data System (ADS)

    Wallack, Nicole Lisa; Kaltenegger, Lisa; Ramirez, Ramses

    2016-01-01

    The presence of hydrogen in planetary atmospheres has been shown to have the potential to dramatically effect the temperatures of planets. The collision-induced absorption (CIA) of hydrogen with carbon dioxide or nitrogen has been shown to have a substantial effect on the atmospheric temperature and albedo of a planet, possibly to the point at which life could exist on a planet where without such CIA the planet would be too cold. Using a single-column radiative-convective climate model, we investigated the effect of the presence of hydrogen on planetary temperatures and albedos across different amounts of hydrogen and across host stars of different temperatures using present-day Mars-like planets. We found that the addition of hydrogen in a planet's atmosphere increased the surface temperature of the planet. This effect was stronger for the planets orbiting hotter stars. The water vapor profiles showed that this was the case due to the presence of more water vapor in the atmospheres of planets orbiting hotter stars across all percentages of hydrogen. The water vapor concentrations also varied more with the addition of more hydrogen for the planets orbiting hotter stars.

  12. The Evolution of Stellar Rotation and the Hydrogen Atmospheres of Habitable-zone Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Johnstone, C. P.; Güdel, M.; Stökl, A.; Lammer, H.; Tu, L.; Kislyakova, K. G.; Lüftinger, T.; Odert, P.; Erkaev, N. V.; Dorfi, E. A.

    2015-12-01

    Terrestrial planets formed within gaseous protoplanetary disks can accumulate significant hydrogen envelopes. The evolution of such an atmosphere due to XUV driven evaporation depends on the activity evolution of the host star, which itself depends sensitively on its rotational evolution, and therefore on its initial rotation rate. In this Letter, we derive an easily applicable method for calculating planetary atmosphere evaporation that combines models for a hydrostatic lower atmosphere and a hydrodynamic upper atmosphere. We show that the initial rotation rate of the central star is of critical importance for the evolution of planetary atmospheres and can determine if a planet keeps or loses its primordial hydrogen envelope. Our results highlight the need for a detailed treatment of stellar activity evolution when studying the evolution of planetary atmospheres.

  13. Effective hydrodynamic hydrogen escape from an early Earth atmosphere inferred from high-accuracy numerical simulation

    NASA Astrophysics Data System (ADS)

    Kuramoto, Kiyoshi; Umemoto, Takafumi; Ishiwatari, Masaki

    2013-08-01

    Hydrodynamic escape of hydrogen driven by solar extreme ultraviolet (EUV) radiation heating is numerically simulated by using the constrained interpolation profile scheme, a high-accuracy scheme for solving the one-dimensional advection equation. For a wide range of hydrogen number densities at the lower boundary and solar EUV fluxes, more than half of EUV heating energy is converted to mechanical energy of the escaping hydrogen. Less energy is lost by downward thermal conduction even giving low temperature for the atmospheric base. This result differs from a previous numerical simulation study that yielded much lower escape rates by employing another scheme in which relatively strong numerical diffusion is implemented. Because the solar EUV heating effectively induces hydrogen escape, the hydrogen mixing ratio was likely to have remained lower than 1 vol% in the anoxic Earth atmosphere during the Archean era.

  14. Hydrogen and deuterium loss from the terrestrial atmosphere - A quantitative assessment of nonthermal escape fluxes

    NASA Technical Reports Server (NTRS)

    Yung, Yuk L.; Wen, Jun-Shan; Moses, Julianne I.; Landry, Bridget M.; Allen, Mark; Hsu, Kuang-Jung

    1989-01-01

    A comprehensive one-dimensional photochemical model extending from the middle atmosphere (50 km) to the exobase (432 km) has been used to study the escape of hydrogen and deuterium from the earth's atmosphere. The model incorporates recent advances in chemical kinetics as well as atmospheric observations by satellites, especially the Atmosphere Explorer C satellite. The results suggest that the escape fluxes of both H and D are limited by the upward transport of total hydrogen and total deuterium at the homopause. About one fourth of total hydrogen escape is thermal, the rest being nonthermal. It is shown that escape of D is nonthermal and that charge exchange and polar wind are important mechanisms for the nonthermal escape of H and D.

  15. Laser driven hydrogen transfer reactions in atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Lester, Marsha I.

    2015-03-01

    Ozonolysis of alkenes, an important non-photolytic source of OH radicals in the troposphere, proceeds through energized Criegee intermediates that undergo unimolecular decay to produce OH radicals. In this work, infrared laser activation of cold methyl-substituted Criegee intermediates is utilized to drive hydrogen transfer from the methyl group to the terminal oxygen, followed by dissociation to OH radicals. State-selective excitation of the Criegee intermediates in the CH stretch overtone region combined with sensitive OH detection reveals the infrared spectra of CH3CHOO and (CH3)2 COO, effective barrier heights for the critical hydrogen transfer step, and rapid decay dynamics to OH products. Complementary theory provides insights on the infrared overtone spectra as well as vibrational excitations, structural changes, and energy required to move from the minimum energy configuration of the Criegee intermediates to the transition state for the hydrogen transfer reaction. Research supported by the National Science Foundation.

  16. DIMETHYL AND METHYL HYDROGEN SULFATE IN THE ATMOSPHERE

    EPA Science Inventory

    A novel technique of using the sample tube penetration profile of trace reactive gases has been applied to the sampling and indirect identification of candidate species through their diffusion coefficients. Laboratory studies of trace dimethyl and methyl hydrogen sulfate flow and...

  17. Variability of the hydrogen in the martian upper atmosphere as simulated by a 3D atmosphere-exosphere coupling

    NASA Astrophysics Data System (ADS)

    Chaufray, J.-Y.; Gonzalez-Galindo, F.; Forget, F.; Lopez-Valverde, M. A.; Leblanc, F.; Modolo, R.; Hess, S.

    2015-01-01

    We present the temporal variability of the atomic and molecular hydrogen density derived from a 3D General Circulation Model describing the martian atmosphere from the surface to the exobase. A kinetic exospheric model is used to compute the hydrogen density above the exobase. We use these models to study the diurnal and seasonal variations of the hydrogen density and the Jeans escape rate as well as their variations with solar activity, assuming a classic dust scenario. We find that the diurnal variations of the hydrogen density are important with a peak in the dawn region during equinoxes and a peak on the nightside during solstices. These features result from the dynamics of the martian upper atmosphere. The variations of the atomic hydrogen Jeans escape with seasons and solar activity are in the range 1.3 × 1025 s-1-4.4 × 1026 s-1. A factor ∼8 is due to the seasonal variations with a maximum during the winter solstice in the northern hemisphere and a minimum during the summer solstice in the northern hemisphere that we attribute to the variation of the Mars-Sun distance. A factor ∼5 is due to the solar cycle with a maximum escape rate at high solar activity. The variations of the molecular hydrogen Jeans escape with seasons and solar activity are in the range 3 × 1022 s-1-6 × 1024 s-1. A factor ∼10 is due to the seasonal variations with a maximum during the winter solstice in the northern hemisphere and a minimum during the summer solstice in the northern hemisphere. A factor ∼20 is due to the solar cycle with a maximum escape rate at high solar activity. If Jeans escape is the major escape channel for hydrogen, the hydrogen escape is never limited by diffusion. The hydrogen density above 10,000 km presents seasonal and solar cycle variations similar to the Jeans escape rate at all latitudes and local times. This 3D temporal model of the hydrogen thermosphere/exosphere will be useful to interpret future MAVEN observations and the consequences of the

  18. Mean molecular weight and hydrogen abundance of Titan's atmosphere

    NASA Technical Reports Server (NTRS)

    Samuelson, R. E.; Hanel, R. A.; Kunde, V. G.; Maguire, W. C.

    1981-01-01

    The 200-600/cm continuum opacity in the troposphere and lower stratosphere of Titan is inferred from thermal emission spectra from the Voyager 1 IR spectrometer (IRIS). The surface temperature and mean molecular weight are between 94 and 97 K and between 28.3 and 29.2 AMU, respectively. The mole fraction of molecular hydrogen is 0.002 + or - 0.001, which is equivalent to an abundance of approximately 0.2 + or - 0.1 km amagat.

  19. Outer satellite atmospheres: Their extended nature and planetary interactions. [sodium cloud of Io, hydrogen torus of Titan, and comet atmospheres

    NASA Technical Reports Server (NTRS)

    Smyth, W. H.

    1980-01-01

    Highly developed numerical models are applied to interpret extended-atmosphere data for the sodium cloud of Io and the hydrogen torus of Titan. Solar radiation pressure was identified and verified by model calculations as the mechanism to explain two different east-west asymmetries observed in the sodium cloud. Analysis of sodium line profile data, suggesting that a Jupiter magnetospheric wind may be responsible for high speed sodium atoms emitted from Io, and preliminary modeling of the interaction of the Io plasma torus and Io's sodium cloud are also reported. Models presented for Titan's hydrogen torus are consistent both with the recent Pioneer 11 measurements and earlier Earth-orbiting observations by the Copernicus satellite. Progress is reported on developing models for extended gas and dust atmospheres of comets.

  20. Atmospheric chemistry of hydrogen halides: Reactions on ice and in strong acids

    SciTech Connect

    Ravishankara, A.R.

    1995-12-31

    Reactions of hydrogen halides, HCl, HBr, and HI, in sulfuric acid droplets, ice, and liquid water play important roles in the chemistry of Earth`s atmosphere. The hydrogen halides react with other species such as HOCl, ClONO{sub 2}, BrONO{sub 2}, and HOBr to liberate active halogens, the form that can destroy ozone. The impact of these reactions on the chemistry of the ozone in the atmosphere will be described. Also, a brief discussion of the mechanisms of these reactions will be given. Possible experimental and theoretical investigations that can shed light on these reactions will be pointed out.

  1. Hydrogen and climate in primitive terrestrial and super-Earth atmospheres (Invited)

    NASA Astrophysics Data System (ADS)

    Wordsworth, R.

    2013-12-01

    For the three terrestrial planets with significant atmospheres in the Solar System (Earth, Venus and Mars), present-day conditions are oxidizing, with combinations of CO2, N2, O2 and H2O dominating by mass and in terms of the greenhouse effect. However, primitive terrestrial or ';super-Earth' exoplanet atmospheres may be much more reducing (i.e., hydrogen-rich), with major implications for climate, composition, and pre-biotic chemistry. Here I discuss recent work on the role of hydrogen in terrestrial planetary atmospheres, with a particular focus on the early Earth. I describe how collision-induced absorption (CIA) by hydrogen may have significantly warmed Earth's surface in the Archean and Hadean by blocking the critical water vapour absorption window at 800-1200 cm-1. This warming may have helped mitigate the faint young Sun effect early on. After the emergence of widespread methanogenesis, the consumption of H2 and CO2 should have led to a global shift in climate, with potentially observable consequences in the geological record. Because of variations in planetary mass, stellar XUV input and outgassing rates, hydrogen is also likely to be an important component of many super-Earth atmospheres. As I will discuss, this should have a significant effect on climate evolution and the carbon cycle on such planets, which should be considered in future predictions of atmospheric spectra and biosignatures.

  2. Hydrogen termination of CVD diamond films by high-temperature annealing at atmospheric pressure.

    PubMed

    Seshan, V; Ullien, D; Castellanos-Gomez, A; Sachdeva, S; Murthy, D H K; Savenije, T J; Ahmad, H A; Nunney, T S; Janssens, S D; Haenen, K; Nesládek, M; van der Zant, H S J; Sudhölter, E J R; de Smet, L C P M

    2013-06-21

    A high-temperature procedure to hydrogenate diamond films using molecular hydrogen at atmospheric pressure was explored. Undoped and doped chemical vapour deposited (CVD) polycrystalline diamond films were treated according to our annealing method using a H2 gas flow down to ~50 ml∕min (STP) at ~850 °C. The films were extensively evaluated by surface wettability, electron affinity, elemental composition, photoconductivity, and redox studies. In addition, electrografting experiments were performed. The surface characteristics as well as the optoelectronic and redox properties of the annealed films were found to be very similar to hydrogen plasma-treated films. Moreover, the presented method is compatible with atmospheric pressure and provides a low-cost solution to hydrogenate CVD diamond, which makes it interesting for industrial applications. The plausible mechanism for the hydrogen termination of CVD diamond films is based on the formation of surface carbon dangling bonds and carbon-carbon unsaturated bonds at the applied tempera-ture, which react with molecular hydrogen to produce a hydrogen-terminated surface. PMID:23802976

  3. Hydrogen termination of CVD diamond films by high-temperature annealing at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Seshan, V.; Ullien, D.; Castellanos-Gomez, A.; Sachdeva, S.; Murthy, D. H. K.; Savenije, T. J.; Ahmad, H. A.; Nunney, T. S.; Janssens, S. D.; Haenen, K.; Nesládek, M.; van der Zant, H. S. J.; Sudhölter, E. J. R.; de Smet, L. C. P. M.

    2013-06-01

    A high-temperature procedure to hydrogenate diamond films using molecular hydrogen at atmospheric pressure was explored. Undoped and doped chemical vapour deposited (CVD) polycrystalline diamond films were treated according to our annealing method using a H2 gas flow down to ˜50 ml/min (STP) at ˜850 °C. The films were extensively evaluated by surface wettability, electron affinity, elemental composition, photoconductivity, and redox studies. In addition, electrografting experiments were performed. The surface characteristics as well as the optoelectronic and redox properties of the annealed films were found to be very similar to hydrogen plasma-treated films. Moreover, the presented method is compatible with atmospheric pressure and provides a low-cost solution to hydrogenate CVD diamond, which makes it interesting for industrial applications. The plausible mechanism for the hydrogen termination of CVD diamond films is based on the formation of surface carbon dangling bonds and carbon-carbon unsaturated bonds at the applied tempera-ture, which react with molecular hydrogen to produce a hydrogen-terminated surface.

  4. The manned hydrogen balloon - an appropriate platform for airborne Lagrange experiments in atmospheric research

    SciTech Connect

    Rabl, P.F.H.; Euskirchen, J.

    1996-10-01

    During the last decade hydrogen ballooning provided a reliable basis for special airborne measurements especially for experiments that give evidence about atmospheric chemistry and structure. Although the balloon is not quite a small particle without inertia, Lagrange-like movements of atmospheric mass can be simulated. During two experiments, the vertical gradients of ozone concentration were measured in the downwind area of Munich. The results show remarkable differences in ozone concentration and production, dependent of the daytime. 3 refs., 3 figs.

  5. Hydrogen chemistry - Perspective on experiment and theory. [atmospheric chemistry

    NASA Technical Reports Server (NTRS)

    Kaufman, F.

    1975-01-01

    A review is presented of the advantages and limitations of various experimental methods for the investigation of the kinetics of hydrogen chemistry, including classic thermal and photochemical methods and the crossed molecular beam method. Special attention is given to the flash photolysis-resonance fluorescence apparatus developed by Braun et al, in which repetitive vacuum UV flashes result in the photolytic generation of the desired species, and to the discharge-flow technique. The use of various theoretical methods for the selection or elimination of kinetic data is considered in a brief discussion of the rate theory of two-body encounters and recombination-dissociation processes in neutral reactions. Recent kinetic studies of a series of OH reactions and of a major loss process for odd H in the stratosphere are summarized.

  6. Ground-based infrared spectroscopic measurements of atmospheric hydrogen cyanide

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Smith, M. A. H.; Rinsland, P. L.; Goldman, A.; Brault, J. W.; Stokes, G. M.

    1982-01-01

    A number of lines of the nu-3 band of hydrogen cyanide have been detected in solar absorption spectra recorded near sunrise and sunset at Kitt Peak National Observatory (elevation 2095 m) with a 0.01/cm resolution Fourier transform spectrometer. Analysis of two of the strongest and best isolated lines has led to a value of 2.73 x 10 to the 15th molecules/sq cm for the vertical column abundance of HCN above Kitt Peak. The accuracy of this value is estimated as + or - 25%. This result, combined with the stratospheric concentration of HCN derived by Coffey, Mankin, and Cicerone (1981), yields 166 parts per trillion by volume for the average mixing ratio of HCN between 2 and 12 km. This is the first determination of the HCN concentration in the nonurban troposphere.

  7. Hydrogen atom initiated chemistry. [chemical evolution in planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Hong, J. H.; Becker, R. S.

    1979-01-01

    H Atoms have been created by the photolysis of H2S. These then initiated reactions in mixtures involving acetylene-ammonia-water and ethylene-ammonia-water. In the case of the acetylene system, the products consisted of two amino acids, ethylene and a group of primarily cyclic thio-compounds, but no free sulfur. In the case of the ethylene systems, seven amino acids, including an aromatic one, ethane, free sulfur, and a group of solely linear thio-compounds were produced. Total quantum yields for the production of amino acids were about 3 x 10 to the -5th and about 2 x 10 to the -4th with ethylene and acetylene respectively as carbon substrates. Consideration is given of the mechanism for the formation of some of the products and implications regarding planetary atmosphere chemistry, particularly that of Jupiter, are explored.

  8. White dwarfs with hydrogen-deficient atmospheres and the dark matter content of the Galaxy

    NASA Astrophysics Data System (ADS)

    Torres, S.; Camacho, J.; Isern, J.; García-Berro, E.

    2010-02-01

    Context. The nature of the several microlensing events observed by the MACHO team towards the Large Magellanic Cloud (LMC) is still a subject of debate. Low-mass substellar objects and stars with masses larger than 1 Msun have been ruled out as major components of a massive astrophysical compact halo object (MACHO) galactic halo, while stars of half a solar mass seem to be viable candidates. Main sequence stars have been already discarded, and there are tight restrictions on the role played by white dwarfs with hydrogen-dominated atmospheres. Aims: In this paper we evaluate the contribution to the dark matter content of the Galaxy of white dwarfs with hydrogen-deficient atmospheres. Methods: For this purpose we use a Monte Carlo simulator which incorporates up-to-date evolutionary sequences of white dwarfs with hydrogen-rich and hydrogen-deficient atmospheres. We also take into account detailed descriptions of the thick disk and the halo of our Galaxy as well as of a reliable model of the LMC. Results: We find that the contribution of white dwarfs with hydrogen-deficient atmospheres moderately increases the theoretical estimate of the optical depth with respect to the value obtained when only hydrogen-rich white dwarfs are considered. We also find that the contribution of the thick disk population of white dwarfs is comparable to the halo contribution. However, the contributions of both the halo and the thick disk white-dwarf populations are still insufficient to explain the number of events observed by the MACHO team. Conclusions: Finally, we find that the contribution to the halo dark matter of the entire population under study is less than 10% at the 95% conficence level.

  9. Can one infer the presence of a hydrogen corona around a CO2-dominated exoplanetary atmosphere ?

    NASA Astrophysics Data System (ADS)

    Bernard, David; Lilensten, Jean; Barthélemy, Mathieu; Gronoff, Guillaume

    2014-05-01

    Among the new exoplanets found every week, more and more are in the Earth/super-Earth mass regime. Some of these planets like the Kepler-11 system exhibit very low densities, which can be explained by a high content in water ("waterworld") or a large hydrogen/helium atmosphere. Recent work has been done to explain how a low mass planet could sustain such an atmosphere for several Gy. On the other hand, some authors have proposed methods based on transit absorption spectroscopy to detect and characterize these possible atmospheres. Here, we explore the possibility of inferring the presence of a hydrogen corona by looking at its influence on thermospheric emissions of a lower CO2 atmosphere. We use a 1D transport code coupled to a radiative transfer one to calculate the emissions of the planet and the contrast with its parent star in two emission lines. In the case of a telluric planet at 1 AU from a G-type star, these emissions cannot yet be detected. In the case of a close-in telluric planet around an active M-dwarf, the contrast between the planet and the star approaches the sensitivity of current facilities. Considering the development of new instruments with better sensitivities, this method could be applied to detect or confirm the presence of a massive hydrogen corona around a CO2-dominated atmosphere.

  10. Middle atmosphere heating by exothermic chemical reactions involving odd-hydrogen species

    NASA Technical Reports Server (NTRS)

    Mlynczak, Martin G.; Solomon, Susan

    1991-01-01

    The rate of heating which occurs in the middle atmosphere due to four exothermic reactions involving members of the odd-hydrogen family is calculated. The following reactions are considered: O + OH yields O2 + H; H + O2 + M yields HO2 + M; H + O3 yields OH + O2; and O + HO2 yields OH + O2. It is shown that the heating rates due to these reactions rival the oxygen-related heating rates conventionally considered in middle-atmosphere models. The conversion of chemical potential energy into molecular translational energy (heat) by these odd-hydrogen reactions is shown to be a significant energy source in the middle atmosphere that has not been previously considered.

  11. A Search for Heavy Hydrogen Isotopes in Cosmic-Ray Atmospheric Albedo With SAMPEX/PET

    NASA Astrophysics Data System (ADS)

    Looper, M. D.; Blake, J. B.; Mewaldt, R. A.

    2008-12-01

    Bidoli et al. (2003) reported observations of large abundances of deuterium and tritium relative to hydrogen below a few tens of MeV/nuc among the secondary particles escaping the atmosphere after the impact of primary cosmic rays. The SAMPEX satellite spent much of 1996-1998 spinning at 1 RPM, and since late 2007 it has been back in 1 RPM spin mode again; thus its sensors spend half their time looking downward, allowing atmospheric albedo particles to be observed directly. With the Proton/Electron Telescope (PET), hydrogen isotopes are measured in the energy range from about 18 MeV/nuc to 60 to 500 MeV/nuc depending on species. We have previously used PET to measure deuterium and tritium among the Earth's geomagnetically-trapped particle population; we will report here on the results of a search for these isotopes among atmospheric albedo during solar-activity minimum conditions.

  12. Carbon Dioxide in Exoplanetary Atmospheres: Rarely Dominant Compared to Carbon Monoxide and Water in Hot, Hydrogen-dominated Atmospheres

    NASA Astrophysics Data System (ADS)

    Heng, Kevin; Lyons, James R.

    2016-02-01

    We present a comprehensive study of the abundance of carbon dioxide in exoplanetary atmospheres in hot, hydrogen-dominated atmospheres. We construct novel analytical models of systems in chemical equilibrium that include carbon monoxide, carbon dioxide, water, methane and acetylene and relate the equilibrium constants of the chemical reactions to temperature and pressure via the tabulated Gibbs free energies. We prove that such chemical systems may be described by a quintic equation for the mixing ratio of methane. By examining the abundances of these molecules across a broad range of temperatures (spanning equilibrium temperatures from 600 to 2500 K), pressures (via temperature-pressure profiles that explore albedo and opacity variations) and carbon-to-oxygen ratios, we conclude that carbon dioxide is subdominant compared to carbon monoxide and water. Atmospheric mixing does not alter this conclusion if carbon dioxide is subdominant everywhere in the atmosphere. Carbon dioxide and carbon monoxide may attain comparable abundances if the metallicity is greatly enhanced, but this property is negated by temperatures above 1000 K. For hydrogen-dominated atmospheres, our generic result has the implication that retrieval studies may wish to set the subdominance of carbon dioxide as a prior of the calculation and not let its abundance completely roam free as a fitting parameter, because it directly affects the inferred value of the carbon-to-oxygen ratio and may produce unphysical conclusions. We discuss the relevance of these implications for the hot Jupiter WASP-12b and suggest that some of the previous results are chemically impossible. The relative abundance of carbon dioxide to acetylene is potentially a sensitive diagnostic of the carbon-to-oxygen ratio.

  13. Effects of hydrogen atmosphere on pulsed-DC sputtered nanocrystalline Si:H films

    SciTech Connect

    Cherng, J.S.; Chang, S.H.; Hong, S.H.

    2012-10-15

    Highlights: ► Nanocrystalline silicon films were made by pulsed-DC magnetron sputtering. ► A threshold hydrogen concentration was required. ► High defect density due to ion bombardment and oxygen contamination caused low conductivity. -- Abstract: Hydrogenated nanocrystalline silicon (nc-Si:H) films were prepared by a pulsed-DC magnetron sputtering method under an atmosphere of hydrogen/argon mixture. The effects of hydrogen concentration on the structural and electrical properties of the films were systematically investigated using grazing incidence X-ray diffraction (GIXRD), Raman spectroscopy, and conductivity measurement. A threshold hydrogen concentration of about 70% was found necessary before any crystallinity was detectable. The deposition rate decreased monotonically with increasing hydrogen concentration, while the conductivity varied with crystallite size. The abnormally low conductivity level of these nc-Si:H films was due to the extraordinarily high defect density, which was attributed both to the enhanced ion bombardment from the pulsed-DC plasma and to the oxygen contamination from the target.

  14. Bonded and Sealed External Insulations for Liquid-Hydrogen-Fueled Rocket Tanks During Atmospheric Flight

    NASA Technical Reports Server (NTRS)

    Gray, V. H.; Gelder, T. F.; Cochran, R. P.; Goodykoontz, J. H.

    1960-01-01

    Several currently available nonmetallic insulation materials that may be bonded onto liquid-hydrogen tanks and sealed against air penetration into the insulation have been investigated for application to rockets and spacecraft. Experimental data were obtained on the thermal conductivities of various materials in the cryogenic temperature range, as well as on the structural integrity and ablation characteristics of these materials at high temperatures occasioned by aerodynamic heating during atmospheric escape. Of the materials tested, commercial corkboard has the best overall properties for the specific requirements imposed during atmospheric flight of a high-acceleration rocket vehicle.

  15. Energy density dependence of hydrogen combustion efficiency in atmospheric pressure microwave plasma

    SciTech Connect

    Yoshida, T.; Ezumi, N.; Sawada, K.; Tanaka, Y.; Tanaka, M.; Nishimura, K.

    2015-03-15

    The recovery of tritium in nuclear fusion plants is a key issue for safety. So far, the oxidation procedure using an atmospheric pressure plasma is expected to be part of the recovery method. In this study, in order to clarify the mechanism of hydrogen oxidation by plasma chemistry, we have investigated the dependence of hydrogen combustion efficiency on gas flow rate and input power in the atmospheric pressure microwave plasma. It has been found that the combustion efficiency depends on energy density of absorbed microwave power. Hence, the energy density is considered as a key parameter for combustion processes. Also neutral gas temperatures inside and outside the plasma were measured by an optical emission spectroscopy method and thermocouple. The result shows that the neutral gas temperature in the plasma is much higher than the outside temperature of plasma. The high neutral gas temperature may affect the combustion reaction. (authors)

  16. Blowoff and escape of H2. [instability of Titan hydrogen atmospheric model

    NASA Technical Reports Server (NTRS)

    Hunten, D. M.

    1974-01-01

    It is shown that a pure hydrogen atmosphere cannot be retained by Titan, but will blow off in a few hours. Addition of a heavier gas, such as CH4 or N2, in comparable abundance gives a great improvement, although the escape rate can still be large. Moreover, the actual flux can be predicted with confidence from the mixing ratio of H2 to heavy gas.

  17. Fractionation of terrestrial neon by hydrodynamic hydrogen escape from ancient steam atmospheres

    NASA Technical Reports Server (NTRS)

    Zahnle, K.

    1991-01-01

    Atmospheric neon is isotopically heavier than mantle neon. By contrast, nonradiogenic mantle Ar, Kr, and Xe are not known to differ from the atmosphere. These observations are most easily explained by selective neon loss to space; however, neon is much too massive to escape from the modern atmosphere. Steam atmospheres are a likely, if intermittent, feature of the accreting Earth. They occur because, on average, the energy liberated during accretion places Earth above the runaway greenhouse threshold, so that liquid water is not stable at the surface. It is found that steam atmospheres should have lasted some ten to fifty million years. Hydrogen escape would have been vigorous, but abundant heavy constituents would have been retained. There is no lack of plausible candidates; CO2, N2, or CO could all suffice. Neon can escape because it is less massive than any of the likely pollutants. Neon fractionation would have been a natural byproduct. Assuming that the initial Ne-20/Ne-22 ratio was solar, it was found that it would have taken some ten million years to effect the observed neon fractionation in a 30 bar steam atmosphere fouled with 10 bars of CO. Thicker atmospheres would have taken longer; less CO, shorter. This mechanism for fractionating neon has about the right level of efficiency. Because the lighter isotope escapes much more readily, total neon loss is pretty minimal; less than half of the initial neon endowment escapes.

  18. Vibrational Spectroscopy of Sodium Halide and Hydrogen Halide Aqueous Solutions: Application to Atmospheric Aerosol Chemistry

    NASA Astrophysics Data System (ADS)

    Levering, L. M.; Liu, D.; Allen, H. C.

    2003-12-01

    Heterogeneous reactions on the surfaces of atmospheric aerosols play an important role in atmospheric chemistry. These reactions are capable of converting alkyl and hydrogen halides (common constituents of marine boundary aerosols) into active halogen compounds. Fundamental questions still remain concerning surface species and reaction mechanisms pertaining to marine boundary aerosols. The first step in beginning to understand these heterogeneous reactions is to determine how ions in solution affect the structure of water at the interface. Vibrational sum frequency generation spectroscopy is used to examine the air-liquid interface of sodium halide and hydrogen halide (i.e. strong acid) solutions. In addition, comparison of the bulk water structure to that of the interface is accomplished using Raman spectroscopy. The hydrogen-bonding environment at the surface of NaCl is found to be similar to that of the air-water interface. In contrast, the interfacial water structure of NaBr, HCl, and HBr solutions is significantly altered from that of neat water. In the bulk, NaCl, NaBr, HCl, and HBr solutions disturb the hydrogen-bonding network of neat water. A comparison between the corresponding salts and acids show that the salts produce greater disorder (i.e. less coupling of the water symmetric stretching modes) in the bulk water structure.

  19. Stable hydrogen and oxygen isotope ratios for selected sites of the National Oceanic and Atmospheric Administration's Atmospheric Integrated Research Monitoring Network (AIRMoN)

    USGS Publications Warehouse

    Coplen, Tyler B.; Huang, Richard

    2000-01-01

    Increasingly, hydrologic studies require information on the isotopic composition of natural waters. This report presents stable hydrogen (δ2H) and oxygen isotope ratios (δ180) of precipitation samples from seven selected sites of the National Oceanic and Atmospheric Administration's Atmospheric Integrated Research Monitoring Network (AIRMoN) collected during the years 1992-1994.

  20. Seasonal variability of soil sink for atmospheric hydrogen: a case study from southern Poland

    NASA Astrophysics Data System (ADS)

    Bartyzel, J.; Pycia, M.; Necki, J. M.; Rozanski, K.

    2009-04-01

    Although hydrogen is rarely mentioned as a greenhouse gas, it is expected that elevated concentrations of this gas in the atmosphere in the coming decades, associated with massive anthropogenic emissions may lead to longer residence time of atmospheric CH4 and associated enhancement of the greenhouse effect. The global average mixing ratio of atmospheric H2 amounts at present to approximately 500 ppb. The sources and sinks of hydrogen are not well quantified. In particular, little is known about the strength and spatial and temporal variability of hydrogen uptake by soils. The EU 6th Framework Project EUROHYDROS is aimed at initialising European monitoring capability for atmospheric hydrogen, including the ability to derive isotope ratios and to use these observations, together with studies on sinks and sources of H2 and modelling work, to improve the understanding of hydrogen budget on the global scale. As a part of EUROHYDROS project, a dedicated study aimed at quantifying seasonal variability of soil sink for atmospheric hydrogen is being conducted in southern Poland. The experimental site is located on the outskirts of Krakow, a large city with numerous anthropogenic sources of H2. To quantify the soil sink for H2, a dedicated equipment has been constructed, based on the inverted cap principle. To quantify the uptake of H2 by soils, a 20-liter chamber made of stainless steel and plexiglas is placed on the soil surface and concentration of hydrogen inside the chamber is measured in regular time intervals in order to quantify the dynamics H2 removal via enzymatic reactions taking place in the upper soil layers. The concentration of hydrogen was measured in samples of air collected under the chamber in specified time intervals. A commercially available instrument (Peak Performer 1, Peak Laboratories, USA) equipped with RGA detector was used for this purpose. The measurements were performed regularly every two weeks. Apart of hydrogen concentrations, also several

  1. A Micro-fabricated Hydrogen Storage Module with Sub-atmospheric Activation and Durability in Air Exposure.

    PubMed

    Shan, Xi; Payer, Joe H; Wainright, Jesse S; Dudik, Laurie

    2011-01-15

    The objective of this work was to develop a hydrogen storage module for onboard electrical power sources suitable for use in micro power systems and micro-electro-mechanical systems (MEMS). Hydrogen storage materials were developed as thin-film inks to be compatible with an integrated manufacturing process. Important design aspects were (a) ready activation at sub-atmospheric hydrogen pressure and room temperature and (b) durability, i.e. capable of hundreds of absorption/desorption cycles and resistance to deactivation on exposure to air. Inks with palladium-treated intermetallic hydrogen storage alloys were developed and are shown here to be compatible with a thin-film micro-fabrication process. These hydrogen storage modules absorb hydrogen readily at atmospheric pressure, and the absorption/desorption rates remained fast even after the ink was exposed to air for 47 weeks. PMID:20967132

  2. A Micro-fabricated Hydrogen Storage Module with Sub-atmospheric Activation and Durability in Air Exposure

    PubMed Central

    Shan, Xi; Payer, Joe H.; Wainright, Jesse S; Dudik, Laurie

    2010-01-01

    The objective of this work was to develop a hydrogen storage module for onboard electrical power sources suitable for use in micro power systems and micro-electro-mechanical systems (MEMS). Hydrogen storage materials were developed as thin-film inks to be compatible with an integrated manufacturing process. Important design aspects were (a) ready activation at sub-atmospheric hydrogen pressure and room temperature and (b) durability, i.e. capable of hundreds of absorption/desorption cycles and resistance to deactivation on exposure to air. Inks with palladium-treated intermetallic hydrogen storage alloys were developed and are shown here to be compatible with a thin-film micro-fabrication process. These hydrogen storage modules absorb hydrogen readily at atmospheric pressure, and the absorption/desorption rates remained fast even after the ink was exposed to air for 47 weeks. PMID:20967132

  3. Atmospheric Hydrogenation of Esters Catalyzed by PNP-Ruthenium Complexes with an N-Heterocyclic Carbene Ligand.

    PubMed

    Ogata, Osamu; Nakayama, Yuji; Nara, Hideki; Fujiwhara, Mitsuhiko; Kayaki, Yoshihito

    2016-08-01

    New pincer ruthenium complexes bearing a monodentate N-heterocyclic carbene ligand were synthesized and demonstrated as powerful hydrogenation catalysts. With an atmospheric pressure of hydrogen gas, aromatic, heteroaromatic, and aliphatic esters as well as lactones were converted into the corresponding alcohols at 50 °C. This reaction protocol offers reliable access to alcohols using an easy operational setup. PMID:27439106

  4. Improvement of saturation magnetization of Fe nanoparticles by post-annealing in a hydrogen gas atmosphere

    SciTech Connect

    Kin, Masane Tanaka, Masaaki; Hayashi, Yasushi; Hasaegawa, Jun; Kura, Hiroaki; Ogawa, Tomoyuki

    2015-05-07

    Fe nanoparticles (NPs) were synthesized by the thermal decomposition of Fe(CO){sub 5} and then post-annealing in a hydrogen gas atmosphere to produce highly monodisperse Fe NPs with high saturation magnetization (M{sub s}). The as-synthesized pre-anneal Fe NPs had an expanded α-Fe structure and M{sub s} was only 39% of that for bulk Fe because of the low crystallinity and the inclusion of a surfactant. Post-annealing of the Fe NPs in a hydrogen gas atmosphere at 200 °C improved the crystallinity of the Fe NPs from an amorphous-like structure to a body centered cubic (bcc) structure without any lattice expansion. This result indicates that hydrogen gas plays a significant role in improvement of the crystallinity of Fe NPs. Accompanying the improvement in crystallinity, M{sub s} for the Fe NPs increased from 86 to 190 emu/g{sub net} at 300 K, the values of which include the weight of surfactant. This enhanced M{sub s} is almost the same as that of bulk Fe (218 emu/{sub Fe}). It was concluded that the crystallinity has a significant influence on the M{sub s} of the Fe NPs because long-range ordering of the lattice can maintain strong direct exchange interactions between Fe atoms.

  5. Spectral properties of hydrogen, helium, methane, and ammonia at thermal infrared wavelengths. [for Jupiter atmosphere

    NASA Technical Reports Server (NTRS)

    Taylor, F. W.; Jones, A. D., III

    1976-01-01

    The paper presents some results of a theoretical and laboratory program to determine the thermal infrared spectral properties of the principal gaseous constituents of the atmosphere of Jupiter. Birnbaum (1975) has measured laboratory spectra in the 16- to 1000-micron wavelength range for hydrogen and hydrogen-helium mixtures at Jovian temperatures. These are compared with theoretically computed spectra in order to determine the temperature dependence of the line strengths in the pressure-induced rotational band and the overlap parameters from the translational band. Existing spectral data for methane do not agree well with measurements of the nu 4 band at room temperature. A revised allocation of line intensities is proposed. Existing data for the nu 2 (10-micron) band of ammonia agree reasonably well with measurements at room temperature and at -77 C, but there are some important discrepancies which remain to be explained.

  6. Opacities and spectra of hydrogen atmospheres of moderately magnetized neutron stars

    NASA Astrophysics Data System (ADS)

    Potekhin, A. Y.; Chabrier, G.; Ho, W. C. G.

    2014-12-01

    Context. There is observational evidence that central compact objects (CCOs) in supernova remnants have moderately strong magnetic fields B ~ 1011 G. Meanwhile, available models of partially ionized hydrogen atmospheres of neutron stars with strong magnetic fields are restricted to B ≳ 1012 G. Extension of the applicability range of the photosphere models to lower field strengths is complicated by a stronger asymmetry of decentered atomic states and by the importance of excited bound states. Aims: We extend the equation of state and radiative opacities, as presented in previous papers for 1012G ≲ B ≲ 1015 G, to weaker fields. Methods: We constructed analytical fitting formulae for binding energies, sizes, and oscillator strengths for different bound states of a hydrogen atom moving in moderately strong magnetic fields and calculate an extensive database for photoionization cross sections of such atoms. Using these atomic data, in the framework of the chemical picture of plasmas we solved the ionization equilibrium problem and calculated thermodynamic functions and basic opacities of partially ionized hydrogen plasmas at these field strengths. Then plasma polarizabilities were calculated from the Kramers-Kronig relation, and the radiative transfer equation for the coupled normal polarization modes was solved to obtain model spectra. Results: An equation of state and radiative opacities for a partially ionized hydrogen plasma are obtained at magnetic fields B, temperatures T, and densities ρ typical for atmospheres of CCOs and other isolated neutron stars with moderately strong magnetic fields. The first- and second-order thermodynamic functions, monochromatic radiative opacities, and Rosseland mean opacities are calculated and tabulated, considering partial ionization, for 3 × 1010G ≲ B ≲ 1012 G, 105 K ≲ T ≲ 107 K, and a wide range of densities. Atmosphere models and spectra are calculated to verify the applicability of the results and to determine

  7. Diphosphine is an intermediate in the photolysis of phosphine to phosphorus and hydrogen. [Jupiter atmospheric chemistry

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Benson, R.

    1980-01-01

    The photolysis of phosphine to red phosphorus (P4) and hydrogen is investigated in light of the potential significance of the reaction in the atmospheric chemistry of Jupiter. It is reported that the photolysis of PH3 at room temperature by a 206.2-nm light source gave rise to a product identified by its UV and IR spectra and gas chromatographic retention time as P2H4, the yield of which is found to increase to a maximum and then decrease to 20% of the maximum value with illumination time. A mechanism for phosphine photolysis including diphosphine formation as an intermediate step is proposed, and it is concluded that P2H4 is a likely constituent of the atmospheres of the Jovian planets.

  8. Magnetic Hydrogen Atmosphere Models and the Neutron Star RX J1856.5-3754

    SciTech Connect

    Ho, Wynn C.G.; Kaplan, David L.; Chang, Philip; van Adelsberg, Matthew; Potekhin, Alexander Y.; /Cornell U., Astron. Dept. /Ioffe Phys. Tech. Inst.

    2006-12-08

    RX J1856.5-3754 is one of the brightest nearby isolated neutron stars, and considerable observational resources have been devoted to it. However, current models are unable to satisfactorily explain the data. We show that our latest models of a thin, magnetic, partially ionized hydrogen atmosphere on top of a condensed surface can fit the entire spectrum, from X-rays to optical, of RX J1856.5-3754, within the uncertainties. In our simplest model, the best-fit parameters are an interstellar column density N{sub H} {approx} 1 x 10{sup 20} cm{sup -2} and an emitting area with R{sup {infinity}} {approx} 17 km (assuming a distance to RX J1856.5-3754 of 140 pc), temperature T{sup {infinity}} {approx} 4.3 x 10{sup 5} K, gravitational redshift z{sub g} {approx} 0.22, atmospheric hydrogen column y{sub H} {approx} 1 g cm{sup -2}, and magnetic field B {approx} (3-4) x 10{sup 12} G; the values for the temperature and magnetic field indicate an effective average over the surface. We also calculate a more realistic model, which accounts for magnetic field and temperature variations over the neutron star surface as well as general relativistic effects, to determine pulsations; we find there exist viewing geometries that produce pulsations near the currently observed limits. The origin of the thin atmospheres required to fit the data is an important question, and we briefly discuss mechanisms for producing these atmospheres. Our model thus represents the most self-consistent picture to date for explaining all the observations of RX J1856.5-3754.

  9. Surface preparation for high purity alumina ceramics enabling direct brazing in hydrogen atmospheres

    DOEpatents

    Cadden, Charles H.; Yang, Nancy Yuan Chi; Hosking, Floyd M.

    2001-01-01

    The present invention relates to a method for preparing the surface of a high purity alumina ceramic or sapphire specimen that enables direct brazing in a hydrogen atmosphere using an active braze alloy. The present invention also relates to a method for directly brazing a high purity alumina ceramic or sapphire specimen to a ceramic or metal member using this method of surface preparation, and to articles produced by this brazing method. The presence of silicon, in the form of a SiO.sub.2 -containing surface layer, can more than double the tensile bond strength in alumina ceramic joints brazed in a hydrogen atmosphere using an active Au-16Ni-0.75 Mo-1.75V filler metal. A thin silicon coating applied by PVD processing can, after air firing, produce a semi-continuous coverage of the alumina surface with a SiO.sub.2 film. Room temperature tensile strength was found to be proportional to the fraction of air fired surface covered by silicon-containing films. Similarly, the ratio of substrate fracture versus interface separation was also related to the amount of surface silicon present prior to brazing. This process can replace the need to perform a "moly-manganese" metallization step.

  10. Hydrogen discharges operating at atmospheric pressure in a semiconductor gas discharge system

    NASA Astrophysics Data System (ADS)

    Aktas, K.; Acar, S.; Salamov, B. G.

    2011-08-01

    Analyses of physical processes which initiate electrical breakdown and spatial stabilization of current and control it with a photosensitive cathode in a semiconductor gas discharge system (SGDS) are carried out in a wide pressure range up to atmospheric pressure p, interelectrode distance d and diameter D of the electrode areas of the semiconductor cathode. The study compares the breakdown and stability curves of the gas discharge in the planar SGDS where the discharge gap is filled with hydrogen and air in two cases. The impact of the ionizing component of the discharge plasma on the control of the stable operation of the planar SGDS is also investigated at atmospheric pressure. The loss of stability is primarily due to modification of the semiconductor-cathode properties on the interaction with low-energy hydrogen ions and the formation of a space charge of positive ions in the discharge gap which changes the discharge from Townsend to glow type. The experimental results show that the discharge current in H2 is more stable than in air. The breakdown voltages are measured for H2 and air with parallel-plane electrodes, for pressures between 28 and 760 Torr. The effective secondary electron emission (SEE) coefficient is then determined from the breakdown voltage results and compared with the experimental results. The influence of the SEE coefficient is stated in terms of the differences between the experimental breakdown law.

  11. Contributions of Atmospheric CO and Hydrogen Uptake to Microbial Dynamics on Recent Hawaiian Volcanic Deposits†

    PubMed Central

    King, Gary M.

    2003-01-01

    A series of sites were established on Hawaiian volcanic deposits ranging from about 18 to 300 years old. Three sites occurred in areas that supported tropical rain forests; the remaining sites were in areas that supported little or no plant growth. Sites >26 years old consumed atmospheric CO and hydrogen at rates ranging from about 0.2 to 5 mg of CO m−2 day−1 and 0.1 to 4 mg of H2 m−2 day−1, respectively. Respiration, measured as CO2 production, for a subset of the sites ranged from about 40 to >1,400 mg of CO2 m−2 day−1. CO and H2 accounted for about 13 to 25% of reducing equivalent flow for all but a forested site, where neither substrate appeared significant. Based on responses to chloroform fumigation, hydrogen utilization appeared largely due to microbial uptake. In contrast to results for CO and hydrogen, methane uptake occurred consistently only at the forest site. Increasing deposit age was generally accompanied by increasing concentrations of organic matter and microbial biomass, measured as phospholipid phosphate. Exoenzymatic activities (acid and alkaline phosphatases and α- and β-glucosidases) were positively correlated with deposit age in spite of considerable variability within sites. The diversity of substrates utilized in Biolog Ecoplate assays also increased with deposit age, possibly reflecting changes in microbial community complexity. PMID:12839783

  12. The McGill Planar Hydrogen Atmosphere Code (McPHAC)

    NASA Astrophysics Data System (ADS)

    Haakonsen, Christian Bernt; Turner, Monica L.; Tacik, Nick A.; Rutledge, Robert E.

    2012-04-01

    The McGill Planar Hydrogen Atmosphere Code (McPHAC) v1.1 calculates the hydrostatic equilibrium structure and emergent spectrum of an unmagnetized hydrogen atmosphere in the plane-parallel approximation, at surface gravities appropriate for neutron stars. McPHAC incorporates several improvements over previous codes for which tabulated model spectra are available: (1) Thomson scattering is treated anisotropically, which is shown to result in a 0.2%-3% correction in the emergent spectral flux across the 0.1-5 keV passband; (2) the McPHAC source code is made available to the community, allowing it to be scrutinized and modified by other researchers wishing to study or extend its capabilities; and (3) the numerical uncertainty resulting from the discrete and iterative solution is studied as a function of photon energy, indicating that McPHAC is capable of producing spectra with numerical uncertainties <0.01%. The accuracy of the spectra may at present be limited to ~1%, but McPHAC enables researchers to study the impact of uncertain inputs and additional physical effects, thereby supporting future efforts to reduce those inaccuracies. Comparison of McPHAC results with spectra from one of the previous model atmosphere codes (NSA) shows agreement to lsim1% near the peaks of the emergent spectra. However, in the Wien tail a significant deficit of flux in the spectra of the previous model is revealed, determined to be due to the previous work not considering large enough optical depths at the highest photon frequencies. The deficit is most significant for spectra with T eff < 105.6 K, though even there it may not be of much practical importance for most observations.

  13. Simple method for preparing hydrogenated amorphous silicon films by chemical vapor deposition at atmospheric pressure

    SciTech Connect

    Ellis, F.B. Jr.

    1983-01-01

    An inexpensive one-step method is presented for fabricating hydrogenated amorphous silicon (a-Si:H) films with good photovoltaic properties using chemical vapor deposition (CVD) from a mixture of silane, disilane, trisilane, and higher polysilanes in hydrogen at one atmosphere total pressure. The gas mixture is generated by the action of dilute acid on magnesium silicide and used immediately in the CVD process. Thus, elaborate techniques for handling, transporting or storing the pyrophoric polysilanes are avoided. In addition, the method requires no expensive vacuum or electrical equipment. The conditions necessary for high (approx. =10%) hydrogen incorporation and very high deposition rates (50-100 A/sec) are explained. Experimental parameters are explained and properties as a function of these parameters are shown. The measurements include hydrogen content, optical, electrical and photovoltaic properties of the a-Si:H films. A chemical kinetic model is presented for this and other silane and polysilane CVD systems between about 400 and 600/sup 0/C. Both homogeneous and heterogeneous reactions are considered. The model is derived from homogeneous gas-phase silane and polysilane chemistry and predicts, in agreement with our experiments, that the homogeneous gas-phase chemistry determines the a-Si:H film growth rate under a variety of conditions. The model is sufficiently predictive to be useful in determining appropriate experimental conditions. Stable solar cells are proposed for a-Si:H and fluorine doped tin oxide which can be produced by CVD at very high deposition rates. The unstable a-Si:H/tin oxide interface is eliminated by a very thin layer of titanium nitride and oxide between the a-Si:H and tin oxide.

  14. Detection and isolation of plant-associated bacteria scavenging atmospheric molecular hydrogen.

    PubMed

    Kanno, Manabu; Constant, Philippe; Tamaki, Hideyuki; Kamagata, Yoichi

    2016-09-01

    High-affinity hydrogen (H2 )-oxidizing bacteria possessing group 5 [NiFe]-hydrogenase genes are important contributors to atmospheric H2 uptake in soil environments. Although previous studies reported the occurrence of a significant H2 uptake activity in vegetation, there has been no report on the identification and diversity of the responsible microorganisms. Here, we show the existence of plant-associated bacteria with the ability to consume atmospheric H2 that may be a potential energy source required for their persistence in plants. Detection of the gene hhyL - encoding the large subunit of group 5 [NiFe]-hydrogenase - in plant tissues showed that plant-associated high-affinity H2 -oxidizing bacteria are widely distributed in herbaceous plants. Among a collection of 145 endophytic isolates, seven Streptomyces strains were shown to possess hhyL gene and exhibit high- or intermediate-affinity H2 uptake activity. Inoculation of Arabidopsis thaliana (thale cress) and Oryza sativa (rice) seedlings with selected isolates resulted in an internalization of the bacteria in plant tissues. H2 uptake activity per bacterial cells was comparable between plant and soil, demonstrating that both environments are favourable for the H2 uptake activity of streptomycetes. This study first demonstrated the occurrence of plant-associated high-affinity H2 -oxidizing bacteria and proposed their potential contribution as atmospheric H2 sink. PMID:26636257

  15. (abstract) Line Mixing Behavior of Hydrogen-Broadened Ammonia Under Jovian Atmospheric Conditions

    NASA Technical Reports Server (NTRS)

    Spilker, Thomas R.

    1994-01-01

    Laboratory spectral data reported last year have been used to investigate the line mixing behavior of hydrogen-broadened ammonia inversion lines. The data show that broadening parameters appearing in the modified Ben-Reuven opacity formalism of Berge and Gulkis (1976) cannot maintain constant values over pressure ranges that include low to moderate pressures and high pressures. Also, they cannot change drastically in value, as in the Spilker (1990) revision of the Berge and Gulkis formalism. It has long been recognized that at low pressures, less than about 1 bar of a Jovian atmospheric mixture, a VVW formalism yields more accurate predictions of ammonia opacity than Ben-Reuven formalisms. At higher pressures the Ben-Reuven formalisms are more accurate. Since the Ben-Reuven lineshape collapses to a VVW lineshape in the low pressure limit, this low pressure inaccuracy of the Ben-Reuven formalisms is surprising. By incorporating various behavior, a new formalism is produced that is more accurate than previous formalisms, particularly in the critical 'transition region' from 0.5 to 2 bars, and that can be used without discontinuity from pressures of zero to hundreds of bars. The new formalism will be useful in such applications as interpretation of radio astronomical and radio occultation data on giant planet atmospheres, and radiative transfer modeling of those atmospheres.

  16. EUV-driven mass loss of protoplanetary cores with hydrogen-dominated atmospheres: The influences of ionization and orbital distance

    NASA Astrophysics Data System (ADS)

    Erkaev, N. V.; Lammer, H.; Odert, P.; Kislyakova, K. G.; Johnstone, C. P.; Güdel, M.; Khodachenko, M. L.

    2016-04-01

    We investigate the loss rates of the hydrogen atmospheres of terrestrial planets with a range of masses and orbital distances by assuming a stellar extreme ultraviolet (EUV) luminosity that is 100 times stronger than that of the current Sun. We apply a 1D upper atmosphere radiation absorption and hydrodynamic escape model that takes into account ionization, dissociation and recombination to calculate hydrogen mass loss rates. We study the effects of the ionization, dissociation and recombination on the thermal mass loss rates of hydrogen-dominated super-Earths and compare the results to those obtained by the energy-limited escape formula which is widely used for mass loss evolution studies. Our results indicate that the energy-limited formula can to a great extent over- or underestimate the hydrogen mass loss rates by amounts that depend on the stellar EUV flux and planetary parameters such as mass, size, effective temperature, and EUV absorption radius.

  17. High-density capacitors based on amorphous BaTiO3 layers grown under hydrogen containing atmosphere

    NASA Astrophysics Data System (ADS)

    Gonon, P.; El Kamel, F.

    2007-06-01

    Addition of hydrogen (H2) during the sputter deposition of BaTiO3 amorphous thin films drastically modifies their dielectric properties. Films grown under hydrogen containing atmospheres display large capacitances (several μF /cm2 for 1μm thick films), that are hundred times higher than capacitances measured for films grown without hydrogen. This is explained by the formation of a double-layer capacitor which arises from mobile protons (protonic conduction with an activation energy around 0.3eV). These films could find applications for the elaboration of integrated supercapacitors.

  18. Studies of Evaluation of Hydrogen Embrittlement Property of High-Strength Steels with Consideration of the Effect of Atmospheric Corrosion

    NASA Astrophysics Data System (ADS)

    Akiyama, Eiji; Wang, Maoqiu; Li, Songjie; Zhang, Zuogui; Kimura, Yuuji; Uno, Nobuyoshi; Tsuzaki, Kaneaki

    2013-03-01

    Hydrogen embrittlement of high-strength steels was investigated by using slow strain rate test (SSRT) of circumferentially notched round bar specimens after hydrogen precharging. On top of that, cyclic corrosion tests (CCT) and outdoor exposure tests were conducted prior to SSRT to take into account the effect of hydrogen uptake under atmospheric corrosion for the evaluation of the susceptibility of high-strength steels. Our studies of hydrogen embrittle properties of high-strength steels with 1100 to 1500 MPa of tensile strength and a prototype ultrahigh-strength steel with 1760 MPa containing hydrogen traps using those methods are reviewed in this article. A power law relationship between notch tensile strength of hydrogen-precharged specimens and diffusible hydrogen content has been found. It has also been found that the local stress and the local hydrogen concentration are controlling factors of fracture. The results obtained by using SSRT after CCT and outdoor exposure test were in good agreement with the hydrogen embrittlement fracture property obtained by means of long-term exposure tests of bolts made of the high-strength steels.

  19. Thermodynamic analysis of chemical stability of ceramic materials in hydrogen-containing atmospheres at high temperatures

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1990-01-01

    The chemical stability of several ceramic materials in hydrogen-containing environments was analyzed with thermodynamic considerations in mind. Equilibrium calculations were made as a function of temperature, moisture content, and total system pressure. The following ceramic materials were considered in this study: SiC, Si3N4, SiO2, Al2O3, mullite, ZrO2, Y2O3, CaO, MgO, BeO, TiB2, TiC, HfC, and ZrC. On the basis of purely thermodynamic arguments, upper temperature limits are suggested for each material for long-term use in H2-containing atmospheres.

  20. A probabilistic approach to radiative energy loss calculations for optically thick atmospheres - Hydrogen lines and continua

    NASA Technical Reports Server (NTRS)

    Canfield, R. C.; Ricchiazzi, P. J.

    1980-01-01

    An approximate probabilistic radiative transfer equation and the statistical equilibrium equations are simultaneously solved for a model hydrogen atom consisting of three bound levels and ionization continuum. The transfer equation for L-alpha, L-beta, H-alpha, and the Lyman continuum is explicitly solved assuming complete redistribution. The accuracy of this approach is tested by comparing source functions and radiative loss rates to values obtained with a method that solves the exact transfer equation. Two recent model solar-flare chromospheres are used for this test. It is shown that for the test atmospheres the probabilistic method gives values of the radiative loss rate that are characteristically good to a factor of 2. The advantage of this probabilistic approach is that it retains a description of the dominant physical processes of radiative transfer in the complete redistribution case, yet it achieves a major reduction in computational requirements.

  1. Finite element modeling and numerical simulation of sintered tungsten components under hydrogen atmosphere

    NASA Astrophysics Data System (ADS)

    Mamen, B.; Song, J.; Barriere, T.; Gelin, J.-C.

    2013-05-01

    Powder injection molding (PIM) is a suitable technology for manufacturing of complex shapes with tungsten powders and has a great potential in many applications. Sintering is one of the most important steps in Powder Injection Molding process. The sintering behaviour of tungsten injection moulded components, under pure hydrogen atmosphere at temperature up to 1700°C using fine 0.4μm and coarse powders 7.0 μm, is investigated by means of the beam bending and dilatometric tests in the Setaram{copyright, serif} analyser. To simulate the shrinkage and shape distortion of tungsten injection moulded components during the sintering process using finite element methods, viscoplastic constitutive law is implemented in ABAQUS software as user subroutine UMAT and incorporated with the identified parameters. Comparison between the numerical simulations results and experimental ones, in term of shrinkages and sintered densities, shows good agreement between the two.

  2. Multiwalled carbon nanotubes grown in hydrogen atmosphere: An x-ray diffraction study

    SciTech Connect

    Maniwa, Yutaka; Fujiwara, Ryuji; Kira, Hiroshi; Tou, Hideki; Nishibori, Eiji; Takata, Masaki; Sakata, Makoto; Fujiwara, Akihiko; Zhao, Xinluo; Iijima, Sumio

    2001-08-15

    X-ray diffraction study of multiwalled carbon nanotube (MWNT) grown by arc discharge in hydrogen atmosphere is presented. It is found that the thermal-expansion coefficient along the radial direction of MWNT is widely distributed in a range from 1.6 x 10{sup -5} K{sup -1} to 2.6 x 10{sup -5} K{sup -1}, indicating the existence of both of Russian doll MWNT and highly defective MWNT. Russian doll MWNT is suggested to have the outer diameter less than {approx}100 Aa. Thicker MWNT's are typically highly defective, and may have the jelly roll (scroll) or defective polygonal structure consisting of flat graphite domains.

  3. Hydrogen/deuterium exchange on aromatic rings during atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Davies, Noel W; Smith, Jason A; Molesworth, Peter P; Ross, John J

    2010-04-15

    It has been demonstrated that substituted indoles fully labelled with deuterium on the aromatic ring can undergo substantial exchange back to partial and even fully protonated forms during atmospheric pressure chemical ionisation (APCI) liquid chromatography/mass spectrometry (LC/MS). The degree of this exchange was strongly dependent on the absolute quantity of analyte, the APCI desolvation temperature, the nature of the mobile phase, the mobile phase flow rate and the instrument used. Hydrogen/deuterium (H/D) exchange on several other aromatic ring systems during APCI LC/MS was either undetectable (nitrobenzene, aniline) or extremely small (acetanilide) compared to the effect observed for substituted indoles. This observation has major implications for quantitative assays using deuterium-labelled internal standards and for the detection of deuterium-labelled products from isotopically labelled feeding experiments where there is a risk of back exchange to the protonated form during the analysis. PMID:20213724

  4. A gas chromatographic instrument for measurement of hydrogen cyanide in the lower atmosphere

    NASA Astrophysics Data System (ADS)

    Ambrose, J. L.; Zhou, Y.; Haase, K.; Mayne, H. R.; Talbot, R.; Sive, B. C.

    2012-06-01

    A gas-chromatographic (GC) instrument was developed for measuring hydrogen cyanide (HCN) in the lower atmosphere. The main features of the instrument are (1) a cryogen-free cooler for sample dehumidification and enrichment, (2) a porous polymer PLOT column for analyte separation, (3) a flame thermionic detector (FTD) for sensitive and selective detection, and (4) a dynamic dilution system for calibration. We deployed the instrument for a ∼4 month period from January-June, 2010 at the AIRMAP atmospheric monitoring station Thompson Farm 2 (THF2) in rural Durham, NH. A subset of measurements made during 3-31 March is presented here with a detailed description of the instrument features and performance characteristics. The temporal resolution of the measurements was ~20 min, with a 75 s sample capture time. The 1σ measurement precision was <10% and the instrument response linearity was excellent on a calibration scale of 0.10-0.75 ppbv (±5%). The estimated method detection limit (MDL) and accuracy were 0.021 ppbv and 15%, respectively. From 3-31 March 2010, ambient HCN mixing ratios ranged from 0.15-1.0 ppbv (±15%), with a mean value of 0.36 ± 0.16 ppbv (1σ). The approximate mean background HCN mixing ratio of 0.20 ± 0.04 ppbv appeared to agree well with tropospheric column measurements reported previously. The GC-FTD HCN measurements were strongly correlated with acetonitrile (CH3CN) measured concurrently with a proton transfer-reaction mass spectrometer (PTR-MS), as anticipated given our understanding that the nitriles share a common primary biomass burning source to the global atmosphere. The nitriles were overall only weakly correlated with carbon monoxide (CO), which is reasonable considering the greater diversity of sources for CO. However, strong correlations with CO were observed on several nights under stable atmospheric conditions and suggest regional combustion-based sources for the nitriles. These results demonstrate that the GC-FTD instrument is

  5. Observations of Europa's Extended Atmosphere and Torus; Oxygen and the Discovery of Hydrogen

    NASA Astrophysics Data System (ADS)

    Hansen, C. J.; Shemansky, D. E.; Hendrix, A. R.

    2003-05-01

    Cassini UVIS observed Europa in January 2001. With 0.25 mrad resolution we identify Europa as a point source of e- + O2 oxygen emission. We also recognize a spatially broader source apparently produced by electron and photon excitation of atomic oxygen. This second emission source may be indicative of a torus of atomic oxygen. Atomic hydrogen emission suggests a strong peak at Europa merged with a more complex spatially extended distribution, partially from a different source. UVIS observed Europa and its environment with 0.48 nm spectral resolution. The UVIS slit, with 64 spatial pixels, was oriented perpendicular to Jupiter's equatorial plane. The total extent of the slit was such that spatial coverage extended well beyond the orbital planes of the Galilean satellites. The total integration time in the January 6 observation was 17,000 seconds, and on January 12 integration time was 41,000 seconds. The UVIS data clearly shows the 130.4 nm and 135.6 nm emission features first detected by HST and attributed by Hall et al (1995) to a bound O2 atmosphere at Europa. These are actually atomic oxygen emission lines and using the intrinsic capability of the UVIS instrument we are able to identify both a closely bound O2 component to Europa's atmosphere and an extended atomic oxygen component. We will discuss the compatibility of our results with the torus of neutrals in Europa's orbit first reported by Mauk et al (2003) using the Cassini INCA instrument. We can identify the composition of this torus to be almost entirely hydrogen. Atomic oxygen forms a very minor component. We find the torus to be much smaller in extent than they reported, with a diameter of just 0.3 Jovian radii. Part of this work was performed at the Jet Propulsion Laboratory / California Institute of Technology.

  6. Moist convection in hydrogen atmospheres and the frequency of Saturn’s giant storms

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Ingersoll, Andrew P.

    2015-05-01

    A giant storm erupted on Saturn in December 2010. It produced intense lightning and cloud disturbances and encircled the planet in six months. Six giant storms--also called Great White Spots--have been observed on Saturn since 1876, recurring every 20 to 30 years and alternating between mid-latitudes and the equator. Here we use thermodynamic arguments to demonstrate that the quasi-periodic occurrence of Saturn’s giant storms can be explained by a water-loading mechanism, in which moist convection is suppressed for decades owing to the relatively large molecular weight of water in a hydrogen-helium atmosphere. We find that the interaction between moist convection and radiative cooling in the troposphere above the cloud base produces an oscillation that leads to giant storm generation with a period of approximately 60 years for either mid-latitudes or the equator, provided the mixing ratio of water vapour in the troposphere exceeds 1.0%. We use a two-dimensional axisymmetric dynamic model and a top-cooling convective adjustment scheme to apply our conceptual model to Saturn. For a water vapour mixing ratio of 1.1%, simulated storms show a recurrence interval, ammonia depletion and tropospheric warming that are consistent with 2010 observations. Jupiter’s atmosphere is more depleted in water than Saturn, which may explain its lack of planet-encircling storms.

  7. Moist convection in hydrogen atmospheres and the frequency of Saturn's giant storms

    NASA Astrophysics Data System (ADS)

    Li, C.; Ingersoll, A. P.

    2015-12-01

    A giant planet-encircling storm occurred on Saturn on Dec. 5th, 2010 at planetographic latitude 37.7 N. It produced intense lightning, created enormous cloud disturbances and wrapped around the planet in 6 months. Six such storms, called Great White Spots, have erupted since 1876. They have alternated between mid-latitudes and the equator at intervals ranging from 20 to 30 years. The reason for the intermittent explosion is not clear and there are no similar storms on brother Jupiter. Here we describe the water-loading mechanism, which could suppress moist convection for decades due to the larger molecular weight of water in a hydrogen-helium atmosphere. We show that this mechanism requires the deep water vapor mixing ratio to be greater than 1.0%, which implies O/H at least 10 times the solar value. Observations imply that Saturn's atmosphere is more enriched in water than Jupiter, which could explain why Saturn has such storms and Jupiter does not. We further use a two-dimensional axisymmetric dynamic model and a top-cooling convective adjustment scheme to connect our theory to observation. We show that for a deep water vapor mixing ratio of 1.1%, the ammonia vapor is depleted down to 6 bars, the tropospheric warming is ~6 K, and the interval between two consecutive storms at one latitude is ~70 years. These values are consistent with observations.

  8. Investigation of parameters controlling the soil sink of atmospheric molecular hydrogen

    NASA Astrophysics Data System (ADS)

    Schmitt, S.; Hanselmann, A.; Wollschläger, U.; Hammer, S.; Levin, I.

    2009-04-01

    Enclosure measurements have been performed on a bare mineral soil at an experimental field site near Heidelberg, Germany. From observed molecular hydrogen (H2) mixing ratio changes in the enclosure, deposition velocities were calculated ranging from 8.4 × 10-3 to 8.2 × 10-2cms-1 and with an annual mean value of 3.1 × 10-2cms-1. In the studied range of 2- 27°C, the uptake showed a significant temperature dependence. However, this turned out not to be the primary driving mechanism of the uptake flux. Soil moisture content, co-varying with temperature, was identified as the major parameter being responsible for the diffusive permeability of H2 in the soil and the final rate of H2 uptake. A simple Millington-Quirk diffusion model approach could largely explain this behaviour and yielded a diffusion path length of H2 in the studied soil of only 0.2-1.8cm, suggesting that total H2 consumption occurs within the first few centimetres of the soil. The diffusion model, when applied to continuous measurements of soil moisture content, atmospheric pressure, temperature and the mixing ratio of H2 in the atmosphere, could largely reproduce the measured deposition flux densities, assuming a mean thickness of the diffusion path length of 0.7cm.

  9. Hydrogen Isotopic Composition of Water in the Martian Atmosphere and Released from Rocknest Fines

    NASA Technical Reports Server (NTRS)

    Leshin, L. A.; Webster, C. R.; Mahaffy, P. R.; Flesh, G. J.; Christensen, L. E.; Stern, J. C.; Franz, H. B.; McAdam, A. C.; Niles, P. B.; Archer, P. B., Jr.; Sutter, B.; Jones, J. H.; Ming, D. W.; Atreya, S. K.; Owen, T. C.; Conrad, P.

    2013-01-01

    The Mars Science Laboratory Curiosity rover sampled the aeolian bedform called Rocknest as its first solid samples to be analyzed by the analytical instruments CheMin and SAM. The instruments ingested aliquots from a sieved sample of less than 150 micrometer grains. As discussed in other reports at this conference [e.g., 1], CheMin discovered many crystalline phases, almost all of which are igneous minerals, plus some 10s of percent of x-ray amorphous material. The SAM instrument is focused on understanding volatiles and possible organics in the fines, performing evolved gas analysis (EGA) with the SAM quadrapole mass spectrometer (QMS), isotope measurements using both the QMS and the tunable laser spectrometer (TLS), which is sensitive to CO2, water and methane, and organics with the gas chromatograph mass spectrometer (GCMS). As discussed in the abstract by Franz et al. [2] and others, EGA of Rocknest fines revealed the presence of significant amounts of H2O as well as O-, C- and S-bearing materials. SAM has also tasted the martian atmosphere several times, analyzing the volatiles in both the TLS and QMS [e.g., 3,4]. This abstract will focus on presentation of initial hydrogen isotopic data from the TLS for Rocknest soils and the atmosphere, and their interpretation. Data for CO2 isotopes and O isotopes in water are still being reduced, but should be available by at the conference.

  10. First Detection of Molecular Hydrogen in the Atmosphere of Mars: Implications for Evolution of Water

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, V. A.; Feldman, P. D.

    2001-11-01

    We observed Mars using the Far Ultraviolet Spectroscopic Explorer (FUSE) and obtained a high-quality spectrum at 904-1186 Å with resolution of 0.2 Å. The spectrum consists of many lines of H, O, N, C, Ar, He (in the second order), O+, N+, C+, and bands of CO and N2. Four H2 lines at 1071.62, 1090.45, 1118.61, and 1166.76 Å were detected. Their intensities ( 0.3 R) were corrected for air mass, contribution of the airglow at Mars' limb, selfabsorption, and resulted in the H2 column abundance of (1.56+/-0.17)x1013 cm-2 above 140 km. We developed a model which calculates self-consistently the density profiles of CO2, N2, CO, O, H2, H, HD, D, and 14 ions at 80-300 km for low, medium, and high solar activity. H2 forms in the lower atmosphere and is delivered to the upper atmosphere by eddy and molecular diffusion. Removal of H2 from the upper atmosphere is due to the reactions with CO2+, O+, CO+, N2+, N+, O(1D), ionization, and photoelectron dissociation. The observed H2 abundance corresponds to the H2 mixing ratio of 15+/-4 ppm in the lower atmosphere, which is smaller by a factor of 2.7 than the predictions of the recent models. By fitting the HST observation of D, our model gives HD/H2=0.29 HDO/H2O which is in reasonable agreement with the recent data on deuterium fractionation in the lower atmosphere. The isotope fractionation factor for hydrogen escape varies from 0.053 at solar minimum to 0.128 at solar maximum with a mean value of 0.09. Coupled with the abundance of ice of 14 m in the polar caps and the D/H ratio of 1.9 at the end of hydrodynamic escape, this results in a loss of 30 m of water in the last 4 Ga. If the initial D/H was at the terrestrial value, then more than 1 km of water was lost by hydrodynamic escape. Most probably, the initially accreted H2 and that released in the reaction of Fe + H2O could escape hydrodynamically. This supports the hypothesis that initially Mars was even more rich in water than Earth. An alternative interpretation, with no

  11. Thermodynamics of a solar mixture of molecular hydrogen and helium at high pressure. [for Jupiter atmospheric model

    NASA Technical Reports Server (NTRS)

    Slattery, W. L.; Hubbard, W. B.

    1976-01-01

    The thermodynamic properties of a model molecular hydrogen and helium mixture are calculated in the strongly interacting region of 0.005 to 0.3 per cu cm for a range of temperatures that are of interest for the envelopes of the Jovian planets. Computed adiabats fit the gravity data and boundary conditions from model atmospheres of Jupiter.

  12. XUV-Exposed, Non-Hydrostatic Hydrogen-Rich Upper Atmospheres of Terrestrial Planets. Part II: Hydrogen Coronae and Ion Escape

    PubMed Central

    Lammer, Helmut; Holmström, Mats; Panchenko, Mykhaylo; Odert, Petra; Erkaev, Nikolai V.; Leitzinger, Martin; Khodachenko, Maxim L.; Kulikov, Yuri N.; Güdel, Manuel; Hanslmeier, Arnold

    2013-01-01

    Abstract We studied the interactions between the stellar wind plasma flow of a typical M star, such as GJ 436, and the hydrogen-rich upper atmosphere of an Earth-like planet and a “super-Earth” with a radius of 2 REarth and a mass of 10 MEarth, located within the habitable zone at ∼0.24 AU. We investigated the formation of extended atomic hydrogen coronae under the influences of the stellar XUV flux (soft X-rays and EUV), stellar wind density and velocity, shape of a planetary obstacle (e.g., magnetosphere, ionopause), and the loss of planetary pickup ions on the evolution of hydrogen-dominated upper atmospheres. Stellar XUV fluxes that are 1, 10, 50, and 100 times higher compared to that of the present-day Sun were considered, and the formation of high-energy neutral hydrogen clouds around the planets due to the charge-exchange reaction under various stellar conditions was modeled. Charge-exchange between stellar wind protons with planetary hydrogen atoms, and photoionization, lead to the production of initially cold ions of planetary origin. We found that the ion production rates for the studied planets can vary over a wide range, from ∼1.0×1025 s−1 to ∼5.3×1030 s−1, depending on the stellar wind conditions and the assumed XUV exposure of the upper atmosphere. Our findings indicate that most likely the majority of these planetary ions are picked up by the stellar wind and lost from the planet. Finally, we estimated the long-time nonthermal ion pickup escape for the studied planets and compared them with the thermal escape. According to our estimates, nonthermal escape of picked-up ionized hydrogen atoms over a planet's lifetime within the habitable zone of an M dwarf varies between ∼0.4 Earth ocean equivalent amounts of hydrogen (EOH) to <3 EOH and usually is several times smaller in comparison to the thermal atmospheric escape rates. Key Words: Stellar activity—Low-mass stars—Early atmospheres—Earth-like exoplanets—Energetic neutral

  13. XUV-exposed, non-hydrostatic hydrogen-rich upper atmospheres of terrestrial planets. Part II: hydrogen coronae and ion escape.

    PubMed

    Kislyakova, Kristina G; Lammer, Helmut; Holmström, Mats; Panchenko, Mykhaylo; Odert, Petra; Erkaev, Nikolai V; Leitzinger, Martin; Khodachenko, Maxim L; Kulikov, Yuri N; Güdel, Manuel; Hanslmeier, Arnold

    2013-11-01

    We studied the interactions between the stellar wind plasma flow of a typical M star, such as GJ 436, and the hydrogen-rich upper atmosphere of an Earth-like planet and a "super-Earth" with a radius of 2 R(Earth) and a mass of 10 M(Earth), located within the habitable zone at ∼0.24 AU. We investigated the formation of extended atomic hydrogen coronae under the influences of the stellar XUV flux (soft X-rays and EUV), stellar wind density and velocity, shape of a planetary obstacle (e.g., magnetosphere, ionopause), and the loss of planetary pickup ions on the evolution of hydrogen-dominated upper atmospheres. Stellar XUV fluxes that are 1, 10, 50, and 100 times higher compared to that of the present-day Sun were considered, and the formation of high-energy neutral hydrogen clouds around the planets due to the charge-exchange reaction under various stellar conditions was modeled. Charge-exchange between stellar wind protons with planetary hydrogen atoms, and photoionization, lead to the production of initially cold ions of planetary origin. We found that the ion production rates for the studied planets can vary over a wide range, from ∼1.0×10²⁵ s⁻¹ to ∼5.3×10³⁰ s⁻¹, depending on the stellar wind conditions and the assumed XUV exposure of the upper atmosphere. Our findings indicate that most likely the majority of these planetary ions are picked up by the stellar wind and lost from the planet. Finally, we estimated the long-time nonthermal ion pickup escape for the studied planets and compared them with the thermal escape. According to our estimates, nonthermal escape of picked-up ionized hydrogen atoms over a planet's lifetime within the habitable zone of an M dwarf varies between ∼0.4 Earth ocean equivalent amounts of hydrogen (EO(H)) to <3 EO(H) and usually is several times smaller in comparison to the thermal atmospheric escape rates. PMID:24283926

  14. The Role of Hydrogen in Determining the Stability of CO2 Atmospheres of Terrestrial Exoplanets Around M Dwarfs

    NASA Astrophysics Data System (ADS)

    Gao, Peter; Hu, Renyu; Robinson, Tyler D.; Yung, Yuk L.

    2014-11-01

    The recent discovery of terrestrial worlds in the Habitable Zones of M Dwarfs necessitates a more intensive investigation of the properties of these planets. One major feature of certain M Dwarfs is their high fluxes of EUV radiation, which photolyzes CO2, an important greenhouse gas that should be abundant on rocky worlds. This photolytic destruction of CO2 can be countered by HOx chemistry: photolysis of HOx species by NUV radiation generates OH, which reacts with CO to regenerate CO2. These processes are balanced around Sun-like stars such that Venus and Mars can maintain CO2-dominated atmospheres. However, M Dwarfs tend to have much lower NUV/EUV flux ratios, which could prevent the formation of significant CO2 atmospheres on any planets they may host. In this study, we evaluate the properties of CO2 atmospheres surrounding an Earth-massed, Earth-sized exoplanet in orbit of an M Dwarf using a 1D photochemical kinetics model. We consider an atmosphere similar in composition to that of Mars, but scaled to have a surface pressure of 1 bar. We choose to focus on Mars-like atmospheres rather than Earth-like ones, as Earth's atmosphere has been altered through biological sources and sinks and the presence of a large liquid water ocean, which are not necessarily present on terrestrial exoplanets. Our preliminary results show that the hydrogen content of the atmosphere is crucial in determining the ratio of CO2 to CO and O2. In particular, for a H2 mixing ratio identical to that of Mars 20-30 ppm), a steady state atmosphere is reached after 10 Gyr consisting of ~85% CO2, ~10% CO, and ~5% O2, with an ozone mixing ratio of ~0.01 ppm. In the extreme case where all hydrogen is lost to space, an atmosphere consisting of ~64% CO2, ~24% CO, and 12% O2 results, while ozone levels reach ~10 ppm. Finally, for H2 mixing ratios similar to that of Earth 0.5 ppm) and no atmospheric escape, a 49% CO2, 34% CO, 17% O2, and 0.1 ppm O3 atmosphere is possible. This not only points to the

  15. Coupled Oxygen and Hydrogen Isotope Analysis of Water Along the Soil-Plant- Atmosphere Continuum

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Webb, E. A.; Longstaffe, F. J.

    2008-12-01

    The oxygen and hydrogen isotope compositions of water within a plant vary with transpiration rates and the isotopic composition of soil water. Both of these parameters are affected by temperature and relative humidity. A controlled-temperature, growth-chamber experiment was conducted to determine the relationships among temperature, relative humidity, soil water evaporation and plant-water isotope composition in cattails and horsetails. Typha, a cattail species that grows in wetland conditions, and Equisetum, a horsetail species that prefers dry soils, were each grown in four chambers at 15, 20, 25 and 30 degrees Celsius. The oxygen and hydrogen isotope compositions of watering water, soil water, vapour in the growth chambers and plant water from the leaves and stems were analyzed throughout the eight-month long artificial growing season. Although the oxygen isotope composition of the watering water remained constant, the soil water, atmospheric vapour and plant water were progressively enriched in oxygen-18 and deuterium in each of the four chambers from low to high temperatures as a result of increasing evaporation. The oxygen isotope composition of plant water along the length of a single stem or leaf was increasingly enriched in the heavier isotopes towards the apex. There was no significant difference in the magnitude of this trend between species. These results indicate that the isotopic composition of plant water is primarily controlled by environmental conditions. The oxygen isotope composition of the water vapour in the growing chamber increased with temperature, consistent with equilibration between the vapour and the oxygen-18 enriched soil and plant water reservoirs. The magnitude and interaction of these variables, as measured for these modern samples of cattails and horsetails, should be useful in calibrating paleoclimate proxies based on fossilized plant materials (e.g., cellulose, phytoliths).

  16. Measurements of atmospheric dimethylsulfide, hydrogen sulfide, and carbon disulfide during GTE/CITE 3

    NASA Technical Reports Server (NTRS)

    Cooper, David J.; Saltzman, Eric S.

    1993-01-01

    Measurements of atmospheric dimethylsulfide (DMS), hydrogen sulfide (H2S), and carbon disulfide (CS2) were made over the North and South Atlantic Ocean as part of the Global Tropospheric Experiment/Chemical Instrumentation Test and Evaluation (GTE/CITE 3) project. DMS and CS2 samples were collected and analyzed using an automated gas chromatography/flame photometric detection system with a sampling frequency of 10 min. H2S samples were collected using silver nitrate impregnated filters and analyzed by fluorescence quenching. The DMS data from both hemispheres have a bimodal distribution. Over the North Atlantic this reflects the difference between marine and continental air masses. Over the South Atlantic it may reflect differences in the sea surface source of DMS, corresponding to different air mass source regions. The median boundary layer H2S and CS2 levels were significantly higher in the northern hemisphere than the southern hemisphere, reflecting the higher frequency of samples influenced by pollutant and/or coastal emissions. Composite vertical profiles of DMS and H2S are similar to each other, are consistent with a sea surface source. Vertical profiles of CS2 have maxima in the free troposphere, implicating a continental source. The low levels of H2S and CS2 found in the southern hemisphere constrain the role of these compounds in global budgets to significantly less than previously estimated.

  17. XUV-exposed, non-hydrostatic hydrogen-rich upper atmospheres of terrestrial planets. Part I: atmospheric expansion and thermal escape.

    PubMed

    Erkaev, Nikolai V; Lammer, Helmut; Odert, Petra; Kulikov, Yuri N; Kislyakova, Kristina G; Khodachenko, Maxim L; Güdel, Manuel; Hanslmeier, Arnold; Biernat, Helfried

    2013-11-01

    The recently discovered low-density "super-Earths" Kepler-11b, Kepler-11f, Kepler-11d, Kepler-11e, and planets such as GJ 1214b represent the most likely known planets that are surrounded by dense H/He envelopes or contain deep H₂O oceans also surrounded by dense hydrogen envelopes. Although these super-Earths are orbiting relatively close to their host stars, they have not lost their captured nebula-based hydrogen-rich or degassed volatile-rich steam protoatmospheres. Thus, it is interesting to estimate the maximum possible amount of atmospheric hydrogen loss from a terrestrial planet orbiting within the habitable zone of late main sequence host stars. For studying the thermosphere structure and escape, we apply a 1-D hydrodynamic upper atmosphere model that solves the equations of mass, momentum, and energy conservation for a planet with the mass and size of Earth and for a super-Earth with a size of 2 R(Earth) and a mass of 10 M(Earth). We calculate volume heating rates by the stellar soft X-ray and extreme ultraviolet radiation (XUV) and expansion of the upper atmosphere, its temperature, density, and velocity structure and related thermal escape rates during the planet's lifetime. Moreover, we investigate under which conditions both planets enter the blow-off escape regime and may therefore experience loss rates that are close to the energy-limited escape. Finally, we discuss the results in the context of atmospheric evolution and implications for habitability of terrestrial planets in general. PMID:24251443

  18. XUV-Exposed, Non-Hydrostatic Hydrogen-Rich Upper Atmospheres of Terrestrial Planets. Part I: Atmospheric Expansion and Thermal Escape

    PubMed Central

    Lammer, Helmut; Odert, Petra; Kulikov, Yuri N.; Kislyakova, Kristina G.; Khodachenko, Maxim L.; Güdel, Manuel; Hanslmeier, Arnold; Biernat, Helfried

    2013-01-01

    Abstract The recently discovered low-density “super-Earths” Kepler-11b, Kepler-11f, Kepler-11d, Kepler-11e, and planets such as GJ 1214b represent the most likely known planets that are surrounded by dense H/He envelopes or contain deep H2O oceans also surrounded by dense hydrogen envelopes. Although these super-Earths are orbiting relatively close to their host stars, they have not lost their captured nebula-based hydrogen-rich or degassed volatile-rich steam protoatmospheres. Thus, it is interesting to estimate the maximum possible amount of atmospheric hydrogen loss from a terrestrial planet orbiting within the habitable zone of late main sequence host stars. For studying the thermosphere structure and escape, we apply a 1-D hydrodynamic upper atmosphere model that solves the equations of mass, momentum, and energy conservation for a planet with the mass and size of Earth and for a super-Earth with a size of 2 REarth and a mass of 10 MEarth. We calculate volume heating rates by the stellar soft X-ray and extreme ultraviolet radiation (XUV) and expansion of the upper atmosphere, its temperature, density, and velocity structure and related thermal escape rates during the planet's lifetime. Moreover, we investigate under which conditions both planets enter the blow-off escape regime and may therefore experience loss rates that are close to the energy-limited escape. Finally, we discuss the results in the context of atmospheric evolution and implications for habitability of terrestrial planets in general. Key Words: Stellar activity—Low-mass stars—Early atmospheres—Earth-like exoplanets—Energetic neutral atoms—Ion escape—Habitability. Astrobiology 13, 1011–1029. PMID:24251443

  19. Hydrogen production from banyan leaves using an atmospheric-pressure microwave plasma reactor.

    PubMed

    Lin, Yuan-Chung; Wu, Tzi-Yi; Jhang, Syu-Ruei; Yang, Po-Ming; Hsiao, Yi-Hsing

    2014-06-01

    Growth of the hydrogen market has motivated increased study of hydrogen production. Understanding how biomass is converted to hydrogen gas can help in evaluating opportunities for reducing the environmental impact of petroleum-based fuels. The microwave power used in the reaction is found to be proportional to the rate of production of hydrogen gas, mass of hydrogen gas produced per gram of banyan leaves consumed, and amount of hydrogen gas formed with respect to the H-atom content of banyan leaves decomposed. Increase the microwave power levels results in an increase of H2 and decrease of CO2 concentrations in the gaseous products. This finding may possibly be ascribed to the water-gas shift reaction. These results will help to expand our knowledge concerning banyan leaves and hydrogen yield on the basis of microwave-assisted pyrolysis, which will improve the design of hydrogen production technologies. PMID:24721492

  20. Atmospheric degradation mechanisms of hydrogen containing chlorofluorocarbons (HCFC) and fluorocarbons (HFC)

    NASA Technical Reports Server (NTRS)

    Zellner, Reinhard

    1990-01-01

    The current knowledge of atmospheric degradation of hydrogen containing chlorofluorocarbons (HCFC 22 (CHClF2), HCFC 123 (CHCl2CF3), HCFC 124 (CHClFCF3), HCFC 141b (CFCl2CH3), HCFC 142b (CF2ClCH3)) and fluorocarbons (HFC 125 (CHF2CF3), HFC 134a (CH2FCF3), HFC 152a (CHF2CH3)) is assessed. Except for the initiation reaction by OH radicals, there are virtually no experimental data available concerning the subsequent oxidative breakdown of these molecules. However, from an analogy to the degradation mechanisms of simple alkanes, some useful guidelines as to the expected intermediates and final products can be derived. A noteable exception from this analogy, however, appears for the oxi-radicals. Here, halogen substitution induces new reaction types (C-Cl and C-C bond ruptures) which are unknown to the unsubstituted analogues and which modify the nature of the expected carbonyl products. Based on an evaluation of these processes using estimated bond strength data, the following simplified rules with regards to the chlorine content of the HCFC's may be deduced: (1) HCFC's containing one chlorine atom such as 22 and 142b seem to release their chlorine content essentially instantaneous with the initial attack on the parent by OH radicals, and for HCFC 124, such release is apparently prevented; (2) HCFC's such as 123 and 141b with two chlorine atoms are expected to release only one of these instantaneously; and the second chlorine atom may be stored in potentially long-lived carbonyl compounds such as CF3CClO or CClFO.

  1. Insoluble surface carbon on steel sheet annealed in hydrogen-nitrogen atmosphere

    NASA Astrophysics Data System (ADS)

    Biber, H. E.; Takacs, R. C.; Dickey, A. E.

    1983-09-01

    The way in which heating in hydrogen-nitrogen atmosphere affects the pyrolysis of the residual lubricant on cold-reduced steel sheet was studied to discover the factors responsible for the formation of carbonaceous films on the steel surface. These films, referred to as insoluble surface carbon, cannot be removed with the usual solvents or water-base cleaners and adversely affect the paintability of the steel. A surprising result was the observation that the full-hard steel surface has a significant amount of insoluble surface carbon; amounts in excess of 0.010 gm/m2 (1 mg/ft2) were observed. The origin of this “initial” insoluble carbon can be traced to the pickling operation after hot rolling. During annealing much of the residual rolling lubricant on the surface is driven off by evaporation, but concurrently insoluble pyrolysis products are formed. The amount of insoluble pyrolysis product formed is directly related to the amount of “initial” insoluble carbon on the surface before annealing. The results show that at some point during annealing the total amount of insoluble carbon on the surface is more than double the amount of “initial” insoluble carbon. These insoluble pyrolysis products can also be driven from the surface at higher temperatures than are required for evaporation of the oil. The results suggest that removal of the “initial” insoluble carbon prior to cold reduction might be very beneficial with respect to decreasing the amount of insoluble carbon on the surface of steel sheet after annealing.

  2. Variability of Deuterium Fractionation Associated With Soil Uptake of Atmospheric Molecular Hydrogen

    NASA Astrophysics Data System (ADS)

    Rahn, T.; Randerson, J. T.; Eiler, J.

    2005-12-01

    Molecular hydrogen (H2) is the second most abundant reduced gas in the atmosphere (after methane) with a globally averaged mixing ratio of ~530 nmol/mol. Its largest sources are photochemical oxidation of methane and non-methane hydrocarbons with other recognized sources that include biomass burning, fossil fuel burning, nitrogen fixation, and ocean degassing. These sources are balanced by reaction of H2 with hydroxyl radicals (~25%) in the atmosphere and by deposition at the terrestrial soil surface (~75%). As with other atmospheric trace gases, the stable isotopic content of H2 has the potential to help quantify the various aspects of its production and destruction. The average deuterium content of H2 is dDH2 = ~130 ‰ relative to Standard Mean Ocean Water. While recent studies have begun to elucidate the deuterium content of the individual sources of H2 and the fractionation associated with hydroxyl oxidation has been well established in the laboratory, there are still few data documenting the fractionation associated with soil uptake. We measured the fractionation associated with soil uptake in May, June and August of 2002 in three upland ecosystems that were part of an Alaskan fire chronosequence. Fire occurred at these sites in 1999, 1987, and ~1920. Grasses and herbaceous vegetation establish initially after fire and are gradually replaced by deciduous trees and finally by evergreen trees and moss. All three sites were in interior Alaska near the town of Delta Junction (63° 54'N, 145° 40'W). Fluxes were measured with a Plexiglas flux chamber (8 liter volume) with a manifold of four ~400 ml double-valved glass flasks in parallel and a diaphragm pump for circulation (5 SLPM). Flasks were continuously flushed by the circulating system and isolated sequentially; they were then returned to the laboratory at Caltech for subsequent analysis. In the field, the chamber was seated on Plexiglas collars that were installed prior to initiating the study and left in

  3. Effect of Hydrogen in Size-Limited Growth of Graphene by Atmospheric Pressure Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Haoran; Zhang, Yanhui; Wang, Bin; Chen, Zhiying; Sui, Yanping; Zhang, Yaqian; Tang, Chunmiao; Zhu, Bo; Xie, Xiaoming; Yu, Guanghui; Jin, Zhi; Liu, Xinyu

    2015-01-01

    Analysis of graphene domain synthesis explains the main graphene growth process. Size-limited graphene growth caused by hydrogen is studied to achieve efficient graphene synthesis. Graphene synthesis on Cu foils via the chemical vapor deposition method using methane as carbon source is limited by high hydrogen concentration. Results indicate that hydrogen affects graphene nucleation, the growth rate, and the final domain size. Considering the role of hydrogen as both activator and etching reagent, we build a model to explain the cause of this low graphene growth rate for high hydrogen partial pressure. A two-step method is proposed to control the graphene nucleation and growth rate separately. Half the time is required to obtain similar domain size compared with single-step synthesis, indicating improved graphene synthesis efficiency. The change of the partial pressure and transmission time between the two steps is a factor that cannot be ignored to control the graphene growth.

  4. On Formation Of HXR, Hydrogen, White Light Emission and Sunquakes in Hydrodynamic Flaring Atmospheres Heated by Particle Beams

    NASA Astrophysics Data System (ADS)

    Dobranskis, R.; Zharkova, V. V.; Zharkov, S.; Druett, M.

    2014-12-01

    We report analysis of kinetic simulations for precipitation of various particle beams (electrons, protons, mixed beam) and hydrodynamic simulations of flaring atmosphere heating by these beams using the approach described by Zharkova and Zharkov (2007). The results show temperature, density and macro-velocity variations as functions of both column and linear depths that for some beam parameters reveals a strong suppression of the upper atmosphere in a form of shocks towards the photosphere and beneath into the solar interior at some distances of 500-3000 km. The shocks deposited at different depths below the photosphere are found to produce varying seismic responses as per model by Zharkov (2013) while the atmospheres above the photosphere reveal various degrees of evaporation of the pressed ambient plasma into the corona depending on beam parameters. After a beam switch off the flaring atmospheres are shown to relax within short timescales to their original status. For physical models corresponding to hydrodynamic responses above we also simulate hydrogen emission produced by these atmospheres using full non-LTE approach and considering collisional excitation and ionisation by electron beams. We compare temporal and spatial distributions of HXR and optical emission in some flares with those produced by the complex simulations above, in attempt to resolve the puzzle of co-spatial formation of HXR and WL emission reported by Martinez-Oliveros et al. (2012).

  5. Functionalization of Hydrogen-free Diamond-like Carbon Films using Open-air Dielectric Barrier Discharge Atmospheric Plasma Treatments

    SciTech Connect

    Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Instituto de Materiales de Madrid, C.S.I.C., Cantoblanco, 28049 Madrid, Spain; Instituto de Quimica-Fisica"Rocasolano"C.S.I.C., 28006 Madrid, Spain; Mahasarakham University, Mahasarakham 44150, Thailand; CASTI, CNR-INFM Regional Laboratory, L'Aquila 67100, Italy; SUNY Upstate Medical University, Syracuse, NY 13210, USA; Endrino, Jose; Endrino, J. L.; Marco, J. F.; Poolcharuansin, P.; Phani, A.R.; Allen, M.; Albella, J. M.; Anders, A.

    2007-12-28

    A dielectric barrier discharge (DBD) technique has been employed to produce uniform atmospheric plasmas of He and N2 gas mixtures in open air in order to functionalize the surface of filtered-arc deposited hydrogen-free diamond-like carbon (DLC) films. XPS measurements were carried out on both untreated and He/N2 DBD plasma treated DLC surfaces. Chemical states of the C 1s and N 1s peaks were collected and used to characterize the surface bonds. Contact angle measurements were also used to record the short- and long-term variations in wettability of treated and untreated DLC. In addition, cell viability tests were performed to determine the influence of various He/N2 atmospheric plasma treatments on the attachment of osteoblast MC3T3 cells. Current evidence shows the feasibility of atmospheric plasmas in producing long-lasting variations in the surface bonding and surface energy of hydrogen-free DLC and consequently the potential for this technique in the functionalization of DLC coated devices.

  6. The constitution of the atmospheric layers and the extreme ultraviolet spectrum of hot hydrogen-rich white dwarfs

    NASA Technical Reports Server (NTRS)

    Vennes, Stephane

    1992-01-01

    An analysis is presented of the atmospheric properties of hot, H-rich, DA white dwarfs that is based on optical, UV, and X-ray observations aimed at predicting detailed spectral properties of these stars in the range 80-800 A. The divergences between observations from a sample of 15 hot DA white dwarfs emitting in the EUV/soft X-ray range and pure H synthetic spectra calculated from a grid of model atmospheres characterized by Teff and g are examined. Seven out of 15 DA stars are found to consistently exhibit pure hydrogen atmospheres, the remaining seven stars showing inconsistency between FUV and EUV/soft X-ray data that can be explained by the presence of trace EUV/soft X-ray absorbers. Synthetic data are computed assuming two other possible chemical structures: photospheric traces of radiatively levitated heavy elements and a stratified hydrogen/helium distribution. Predictions about forthcoming medium-resolution observations of the EUV spectrum of selected hot H-rich white dwarfs are made.

  7. Comment on "Dynamic transition of supercritical hydrogen: Defining the boundary between interior and atmosphere in gas giants"

    NASA Astrophysics Data System (ADS)

    Bryk, Taras

    2015-03-01

    Trachenko et al. [Phys. Rev. E 89, 032126 (2014), 10.1103/PhysRevE.89.032126] have argued for the existence of a "Frenkel line" in fluid hydrogen that separates "rigid" and "nonrigid" regimes in a supercritical region. On that basis, they proposed a criterion for locating the boundary between the interior and the atmosphere for gas giants. This Comment shows that the two methods they use to locate the transition between the rigid and nonrigid states are both questionable, which casts doubt on the claims in the paper.

  8. Gaseous toroid around Saturn. [Saturnian ring system for atomic hydrogen trapping in Titan atmospheric model

    NASA Technical Reports Server (NTRS)

    Mcdonough, T. R.

    1974-01-01

    The trapping of Titan's escaping atmosphere in the Saturnian system by a toroidal ring is discussed. The radius of the toroid is comparable to Titan's orbit, or about ten times larger than the visible rings. Theoretical atmospheric models are formulated that consider Saturn's gravitational attraction and magnetospheric properties in forming this toroid and in protecting toroid particles from direct ionization by solar wind particles.

  9. London atmospheric Hydrogen and Carbon Monoxide: 12 year record, fluxes, and diurnal studies.

    NASA Astrophysics Data System (ADS)

    Lanoisellé, M.; Fisher, R. E.; Sriskantharajah, S.; Lowry, D.; Fowler, C. M. R.; Nisbet, E. G.

    2009-04-01

    Atmospheric hydrogen (H2) and carbon monoxide (CO) have been measured at the Royal Holloway site, 30km WSW of London, for 12 years. This site receives air that has passed over London when there are easterly winds and cleaner, background air when the wind comes from the SW. H2 and CO mixing ratios are measured continuously at 30 minute intervals on a Trace Analytical Reduction Gas Detector coupled to a HP5890 GC since September 1996, and on a Peak Performer I (or PP1) since July 2007 at 5 minute intervals. Both instruments use 2 1/8" packed columns in series: a Unibeads 1S and a Molecular Sieve 5A. The PP1 detector (Reduced Compound Photometer) is an updated version of the old RGD2, and both use zero air as the carrier gas. CO is calibrated twice a month against NOAA-CMDL standards (mixing ratios range: 186 to 300 ppb). H2 was uncalibrated until 2006, but is now calibrated monthly against internal standards (range 530 to 750 ppb) measured at MPI-Jena as part of the Eurohydros project. A linearity correction is applied to each instrument, based on the standard measurements. A secondary standard is measured before each sample on the GC-RGD and another one is measured 4 to 6 times in a row twice a day on the PP1. A target gas is measured daily on both instruments since September 2008. The secondary standards and the target gas are dry ambient air in 70L stainless steel tanks filled to a pressure of 8 bars. Comparison of results from the two instruments suggests that for the most part the data are in good agreement, but an interlaboratory round robin comparison exercise for the Eurohydros project showed that the RGD is not linear at low values of CO. This is particularly noticeable for CO levels below 150 ppb. The long-term record of CO at Royal Holloway shows a significant decline since the start of the record: the annual mean CO mixing ratio in 2008 was three times lower than in 1997. Flux calculations, by ratio against 222Rn, CH4 and CO2, suggest CO emissions

  10. Microstructural evolution of Cu-1at% Ti alloy aged in a hydrogen atmosphere and its relation with the electrical conductivity.

    PubMed

    Semboshi, Satoshi; Al-Kassab, Talaat; Gemma, Ryota; Kirchheim, Reiner

    2009-04-01

    Copper alloys with titanium additions between 1 and 6at% Ti emerge currently as attractive conductive materials for electrical and electronic commercial products, since they exhibit superior mechanical and electrical properties. However, their electrical conductivity is reduced owing to the residual amount of Ti solutes in the Cu solid solution (Cu(ss)) phase. Since Cu shows only poor reactivity with hydrogen (H), while Ti exhibits high affinity to it, we were inspired by the idea that hydrogenation of Cu-Ti alloys would influence their microstructure, resulting in a significant change of their properties. In this contribution, the influence of aging under a deuterium (D(2)) atmosphere of Cu-1at% Ti alloys on their microstructure is investigated to explore the effects on the electrical conductivity. The specimens were investigated by means of transmission electron microscopy (TEM), field ion microscopy (FIM), computer-aided field ion image tomography (cFIIT), and atom probe tomography (APT). At an early aging stage at 623K in a D(2) atmosphere of 0.08MPa, ellipsoidal alpha-Cu(4)Ti precipitates are formed in the alloy, and during subsequent aging, delta-TiD(2) is competitively nucleated instead of growth of alpha-Cu(4)Ti particles. The co-precipitation of alpha-Cu(4)Ti and delta-TiD(2) efficiently reduces the Ti concentration of Cu(ss) matrix, particularly in the later aging stages in comparison to the aging in vacuum conditions. The electrical conductivity of the alloy aged in the D(2) atmosphere increases steeply up to 48% International Annealed Copper Standard (IACS) after 1030h, while it saturates to approximately 20% IACS in the alloy aged in vacuum. The outstanding increase of electrical conductivity during aging in D(2) atmosphere can be basically explained by the reduction of Ti solute concentration in Cu(ss) matrix. PMID:19243888

  11. Monitoring of Atmospheric Hydrogen Peroxide in Houston Using Long Path-Length Laser-Based Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sanchez, N. P.; Cao, Y.; Jiang, W.; Tittel, F. K.; Griffin, R. J.

    2014-12-01

    Hydrogen peroxide (H2O2) is a relevant atmospheric species mainly formed by recombination of hydroperoxyl radicals. H2O2 participates in the formation of sulfate aerosol by in-cloud oxidation of S(IV) to S(VI) and has been associated with the generation of multi-functional water soluble organic compounds in atmospheric particulate matter. Furthermore, H2O2 plays an important role in the oxidative capacity of the atmosphere as it acts as a reservoir for HOx radicals (OH and HO2). Particular conditions in the Houston area (e.g. extensive presence of petrochemical industry and high ozone and humidity levels) indicate the potential relevance of this species at this location. Despite its atmospheric relevance, no reports on the levels of H2O2 in Houston have been presented previously in the scientific literature. Determination of atmospheric H2O2 usually has been conducted based on transfer of the gas-phase H2O2 to the liquid phase prior to quantification by techniques such as fluorescence spectroscopy. Although these methods allow detection of H2O2 at the sub-ppb level, they present some limitations including the interference from other atmospheric constituents and potential sampling artifacts. In this study, a high sensitivity sensor based on long-path absorption spectroscopy using a distributed-feedback quantum cascade laser was developed and used to conduct direct gas-phase H2O2 monitoring in Houston. The sensor, which targets a strong H2O2 absorption line (~7.73 μm) with no interference from other atmospheric species, was deployed at a ground level monitoring station near the University of Houston main campus during summer 2014. The performance of this novel sensor was evaluated by side-by-side comparison with a fluorescence-based instrument typically used for atmospheric monitoring of H2O2. H2O2 levels were determined, and time series of H2O2 mixing ratios were generated allowing insight into the dynamics, trends, and atmospheric inter-relations of H2O2 in the

  12. Deuterium to Hydrogen Ratios in Solid and Atmospheric Samples from the SAM Experiment in Gale Crater

    NASA Astrophysics Data System (ADS)

    Mahaffy, P. R.; Webster, C. R.; Brunner, A.; Atreya, S. K.; McAdam, A.; Stern, J.; Kashyap, S.

    2014-07-01

    Low D/H ratios in the smectite clay hydroxyl water relative to the current atmospheric values suggest that substantial early escape must have fractionated martian water prior to the formation of the Yellowknife Bay mudstones.

  13. Jovian atmospheres

    SciTech Connect

    Allison, M.; Travis, L.D.

    1986-10-01

    A conference on the atmosphere of Jupiter produced papers in the areas of thermal and ortho-para hydrogen structure, clouds and chemistry, atmospheric structure, global dynamics, synoptic features and processes, atmospheric dynamics, and future spaceflight opportunities. A session on the atmospheres of Uranus and Neptune was included, and the atmosphere of Saturn was discussed in several papers.

  14. Novel atmospheric pressure plasma device releasing atomic hydrogen: reduction of microbial-contaminants and OH radicals in the air

    NASA Astrophysics Data System (ADS)

    Nojima, Hideo; Park, Rae-Eun; Kwon, Jun-Hyoun; Suh, Inseon; Jeon, Junsang; Ha, Eunju; On, Hyeon-Ki; Kim, Hye-Ryung; Choi, Kyoung Hui; Lee, Kwang-Hee; Seong, Baik-Lin; Jung, Hoon; Kang, Shin Jung; Namba, Shinichi; Takiyama, Ken

    2007-01-01

    A novel atmospheric pressure plasma device releasing atomic hydrogen has been developed. This device has specific properties such as (1) deactivation of airborne microbial-contaminants, (2) neutralization of indoor OH radicals and (3) being harmless to the human body. It consists of a ceramic plate as a positive ion generation electrode and a needle-shaped electrode as an electron emission electrode. Release of atomic hydrogen from the device has been investigated by the spectroscopic method. Optical emission of atomic hydrogen probably due to recombination of positive ions, H+(H2O)n, generated from the ceramic plate electrode and electrons emitted from the needle-shaped electrode have been clearly observed in the He gas (including water vapour) environment. The efficacy of the device to reduce airborne concentrations of influenza virus, bacteria, mould fungi and allergens has been evaluated. 99.6% of airborne influenza virus has been deactivated with the operation of the device compared with the control test in a 1 m3 chamber after 60 min. The neutralization of the OH radical has been investigated by spectroscopic and biological methods. A remarkable reduction of the OH radical in the air by operation of the device has been observed by laser-induced fluorescence spectroscopy. The cell protection effects of the device against OH radicals in the air have been observed. Furthermore, the side effects have been checked by animal experiments. The harmlessness of the device has been confirmed.

  15. Vapor hydrogen and oxygen isotopes reflect water of combustion in the urban atmosphere.

    PubMed

    Gorski, Galen; Strong, Courtenay; Good, Stephen P; Bares, Ryan; Ehleringer, James R; Bowen, Gabriel J

    2015-03-17

    Anthropogenic modification of the water cycle involves a diversity of processes, many of which have been studied intensively using models and observations. Effective tools for measuring the contribution and fate of combustion-derived water vapor in the atmosphere are lacking, however, and this flux has received relatively little attention. We provide theoretical estimates and a first set of measurements demonstrating that water of combustion is characterized by a distinctive combination of H and O isotope ratios. We show that during periods of relatively low humidity and/or atmospheric stagnation, this isotopic signature can be used to quantify the concentration of water of combustion in the atmospheric boundary layer over Salt Lake City. Combustion-derived vapor concentrations vary between periods of atmospheric stratification and mixing, both on multiday and diurnal timescales, and respond over periods of hours to variations in surface emissions. Our estimates suggest that up to 13% of the boundary layer vapor during the period of study was derived from combustion sources, and both the temporal pattern and magnitude of this contribution were closely reproduced by an independent atmospheric model forced with a fossil fuel emissions data product. Our findings suggest potential for water vapor isotope ratio measurements to be used in conjunction with other tracers to refine the apportionment of urban emissions, and imply that water vapor emissions associated with combustion may be a significant component of the water budget of the urban boundary layer, with potential implications for urban climate, ecohydrology, and photochemistry. PMID:25733906

  16. Vapor hydrogen and oxygen isotopes reflect water of combustion in the urban atmosphere

    PubMed Central

    Gorski, Galen; Strong, Courtenay; Good, Stephen P.; Bares, Ryan; Ehleringer, James R.; Bowen, Gabriel J.

    2015-01-01

    Anthropogenic modification of the water cycle involves a diversity of processes, many of which have been studied intensively using models and observations. Effective tools for measuring the contribution and fate of combustion-derived water vapor in the atmosphere are lacking, however, and this flux has received relatively little attention. We provide theoretical estimates and a first set of measurements demonstrating that water of combustion is characterized by a distinctive combination of H and O isotope ratios. We show that during periods of relatively low humidity and/or atmospheric stagnation, this isotopic signature can be used to quantify the concentration of water of combustion in the atmospheric boundary layer over Salt Lake City. Combustion-derived vapor concentrations vary between periods of atmospheric stratification and mixing, both on multiday and diurnal timescales, and respond over periods of hours to variations in surface emissions. Our estimates suggest that up to 13% of the boundary layer vapor during the period of study was derived from combustion sources, and both the temporal pattern and magnitude of this contribution were closely reproduced by an independent atmospheric model forced with a fossil fuel emissions data product. Our findings suggest potential for water vapor isotope ratio measurements to be used in conjunction with other tracers to refine the apportionment of urban emissions, and imply that water vapor emissions associated with combustion may be a significant component of the water budget of the urban boundary layer, with potential implications for urban climate, ecohydrology, and photochemistry. PMID:25733906

  17. Supercritical fluid chromatography coupled with in-source atmospheric pressure ionization hydrogen/deuterium exchange mass spectrometry for compound speciation.

    PubMed

    Cho, Yunju; Choi, Man-Ho; Kim, Byungjoo; Kim, Sunghwan

    2016-04-29

    An experimental setup for the speciation of compounds by hydrogen/deuterium exchange (HDX) with atmospheric pressure ionization while performing chromatographic separation is presented. The proposed experimental setup combines the high performance supercritical fluid chromatography (SFC) system that can be readily used as an inlet for mass spectrometry (MS) and atmospheric pressure photo ionization (APPI) or atmospheric pressure chemical ionization (APCI) HDX. This combination overcomes the limitation of an approach using conventional liquid chromatography (LC) by minimizing the amount of deuterium solvents used for separation. In the SFC separation, supercritical CO2 was used as a major component of the mobile phase, and methanol was used as a minor co-solvent. By using deuterated methanol (CH3OD), AP HDX was achieved during SFC separation. To prove the concept, thirty one nitrogen- and/or oxygen-containing standard compounds were analyzed by SFC-AP HDX MS. The compounds were successfully speciated from the obtained SFC-MS spectra. The exchange ions were observed with as low as 1% of CH3OD in the mobile phase, and separation could be performed within approximately 20min using approximately 0.24 mL of CH3OD. The results showed that SFC separation and APPI/APCI HDX could be successfully performed using the suggested method. PMID:27020885

  18. Hydrogen Isotopes Record the History of the Martian Hydrosphere and Atmosphere

    NASA Technical Reports Server (NTRS)

    Usui, T.; Simon, J. I.; Jones, J. H.; Kurokawa, H.; Sato, M.; Alexander, C. M. O'D; Wang, J.

    2015-01-01

    The surface geology and geomorphology of Mars indicates that it was once warm enough to maintain a large body of liquid water on its surface, though such a warm environment might have been transient. The transition to the present cold and dry Mars is closely linked to the history of surface water, yet the evolution of surficial water is poorly constrained. This study presents insights from hydrogen isotopes for the origin and evolution of Martian water reservoirs.

  19. The quenching effect of hydrogen on the nitrogen in metastable state in atmospheric-pressure N{sub 2}-H{sub 2} microwave plasma torch

    SciTech Connect

    Li, Shou-Zhe Zhang, Xin; Chen, Chuan-Jie; Zhang, Jialiang; Wang, Yong-Xing; Xia, Guang-Qing

    2014-07-15

    The atmospheric-pressure microwave N{sub 2}-H{sub 2} plasma torch is generated and diagnosed by optical emission spectroscopy. It is found that a large amount of N atoms and NH radicals are generated in the plasma torch and the emission intensity of N{sub 2}{sup +} first negative band is the strongest over the spectra. The mixture of hydrogen in nitrogen plasma torch causes the morphology of the plasma discharge to change with appearance that the afterglow shrinks greatly and the emission intensity of N{sub 2}{sup +} first negative band decreases with more hydrogen mixed into nitrogen plasma. In atmospheric-pressure microwave-induced plasma torch, the hydrogen imposes a great influence on the characteristics of nitrogen plasma through the quenching effect of the hydrogen on the metastable state of N{sub 2}.

  20. EUV-driven mass-loss of protoplanetary cores with hydrogen-dominated atmospheres: the influences of ionization and orbital distance

    NASA Astrophysics Data System (ADS)

    Erkaev, N. V.; Lammer, H.; Odert, P.; Kislyakova, K. G.; Johnstone, C. P.; Güdel, M.; Khodachenko, M. L.

    2016-08-01

    We investigate the loss rates of the hydrogen atmospheres of terrestrial planets with a range of masses and orbital distances by assuming a stellar extreme ultraviolet (EUV) luminosity that is 100 times stronger than that of the current Sun. We apply a 1D upper atmosphere radiation absorption and hydrodynamic escape model that takes into account ionization, dissociation and recombination to calculate hydrogen mass-loss rates. We study the effects of the ionization, dissociation and recombination on the thermal mass-loss rates of hydrogen-dominated super-Earths and compare the results to those obtained by the energy-limited escape formula which is widely used for mass-loss evolution studies. Our results indicate that the energy-limited formula can to a great extent over- or underestimate the hydrogen mass-loss rates by amounts that depend on the stellar EUV flux and planetary parameters such as mass, size, effective temperature and EUV absorption radius.

  1. Comment on 'Middle atmosphere heating by exothermic chemical reactions involving odd-hydrogen species'

    NASA Astrophysics Data System (ADS)

    McDade, Ian C.; Llewellyn, Edward J.

    1991-09-01

    It is shown that the H + O3 heating efficiencies calculated using the McDade and Llewellyn (1987) and Lopez-Moreno et al. (1987) Meinel band models are very similar. This result corroborates the Mlynczak and Solomon (1991) thesis that the H + O3 reaction must be a significant source of heat in the middle atmosphere.

  2. Effects of residual hydrogen in sputtering atmosphere on structures and properties of amorphous In-Ga-Zn-O thin films

    NASA Astrophysics Data System (ADS)

    Tang, Haochun; Ishikawa, Kyohei; Ide, Keisuke; Hiramatsu, Hidenori; Ueda, Shigenori; Ohashi, Naoki; Kumomi, Hideya; Hosono, Hideo; Kamiya, Toshio

    2015-11-01

    We investigated the effects of residual hydrogen in sputtering atmosphere on subgap states and carrier transport in amorphous In-Ga-Zn-O (a-IGZO) using two sputtering systems with different base pressures of ˜10-4 and 10-7 Pa (standard (STD) and ultrahigh vacuum (UHV) sputtering, respectively), which produce a-IGZO films with impurity hydrogen contents at the orders of 1020 and 1019 cm-3, respectively. Several subgap states were observed by hard X-ray photoemission spectroscopy, i.e., peak-shape near-valence band maximum (near-VBM) states, shoulder-shape near-VBM states, peak-shape near-conduction band minimum (near-CBM) states, and step-wise near-CBM states. It was confirmed that the formation of these subgap states were affected strongly by the residual hydrogen (possibly H2O). The step-wise near-CBM states were observed only in the STD films deposited without O2 gas flow and attributed to metallic In. Such step-wise near-CBM state was not detected in the other films including the UHV films even deposited without O2 flow, substantiating that the metallic In is segregated by the strong reduction effect of the hydrogen/H2O. Similarly, the density of the near-VBM states was very high for the STD films deposited without O2. These films had low film density and are consistent with a model that voids in the amorphous structure form a part of the near-VBM states. On the other hand, the UHV films had high film densities and much less near-VBM states, keeping the possibility that some of the near-VBM states, in particular, of the peak-shape ones, originate from -OH and weakly bonded oxygen. These results indicate that 2% of excess O2 flow is required for the STD sputtering to compensate the effects of the residual hydrogen/H2O. The high-density near-VBM states and the metallic In segregation deteriorated the electron mobility to 0.4 cm2/(V s).

  3. Effects of residual hydrogen in sputtering atmosphere on structures and properties of amorphous In-Ga-Zn-O thin films

    SciTech Connect

    Tang, Haochun; Ishikawa, Kyohei; Ide, Keisuke; Hiramatsu, Hidenori; Hosono, Hideo; Kamiya, Toshio; Ueda, Shigenori; Ohashi, Naoki; Kumomi, Hideya

    2015-11-28

    We investigated the effects of residual hydrogen in sputtering atmosphere on subgap states and carrier transport in amorphous In-Ga-Zn-O (a-IGZO) using two sputtering systems with different base pressures of ∼10{sup −4} and 10{sup −7 }Pa (standard (STD) and ultrahigh vacuum (UHV) sputtering, respectively), which produce a-IGZO films with impurity hydrogen contents at the orders of 10{sup 20} and 10{sup 19 }cm{sup −3}, respectively. Several subgap states were observed by hard X-ray photoemission spectroscopy, i.e., peak-shape near-valence band maximum (near-VBM) states, shoulder-shape near-VBM states, peak-shape near-conduction band minimum (near-CBM) states, and step-wise near-CBM states. It was confirmed that the formation of these subgap states were affected strongly by the residual hydrogen (possibly H{sub 2}O). The step-wise near-CBM states were observed only in the STD films deposited without O{sub 2} gas flow and attributed to metallic In. Such step-wise near-CBM state was not detected in the other films including the UHV films even deposited without O{sub 2} flow, substantiating that the metallic In is segregated by the strong reduction effect of the hydrogen/H{sub 2}O. Similarly, the density of the near-VBM states was very high for the STD films deposited without O{sub 2}. These films had low film density and are consistent with a model that voids in the amorphous structure form a part of the near-VBM states. On the other hand, the UHV films had high film densities and much less near-VBM states, keeping the possibility that some of the near-VBM states, in particular, of the peak-shape ones, originate from –OH and weakly bonded oxygen. These results indicate that 2% of excess O{sub 2} flow is required for the STD sputtering to compensate the effects of the residual hydrogen/H{sub 2}O. The high-density near-VBM states and the metallic In segregation deteriorated the electron mobility to 0.4 cm{sup 2}/(V s)

  4. Effect of cumulated dose on hydrogen emission from polyethylene irradiated under oxidative atmosphere using gamma rays and ion beams

    NASA Astrophysics Data System (ADS)

    Ferry, M.; Pellizzi, E.; Boughattas, I.; Fromentin, E.; Dauvois, V.; de Combarieu, G.; Coignet, P.; Cochin, F.; Ngono-Ravache, Y.; Balanzat, E.; Esnouf, S.

    2016-01-01

    This work reports the effect of very high doses, up to 10 MGy, on the H2 emission from high density polyethylene (HDPE) irradiated with gamma rays and ion beams, in the presence of oxygen. This was obtained through a two-step procedure. First, HDPE films were pre-aged, at different doses, using either gamma rays or ion beams. In the second step, the pre-aged samples were irradiated in closed glass ampoules for gas quantification, using the same beam type as for pre-ageing. The hydrogen emission rate decreases when dose increases for both gamma rays and ion beams. However, the decreasing rate appears higher under gamma rays than under ion beam irradiations and this is assigned to a lesser oxidation level under the latter. Herein, we show the effectiveness of the radiation-induced defects scavenging effect under oxidative atmosphere, under low and high excitation densities.

  5. Facile and efficient one-pot synthesis of 2-arylbenzoxazoles using hydrogen tetrachloroaurate as catalyst under oxygen atmosphere*

    PubMed Central

    Liu, Yun-kui; Mao, Da-jie; Lou, Shao-jie; Qian, Jian-qiang; Xu, Zhen-yuan

    2009-01-01

    In this paper, we presented a novel method for the facile and efficient one-pot synthesis of 2-arylbenzoxazoles, which were directly synthesized from 2-aminophenol and aldehydes catalyzed by hydrogen tetrachloroaurate (HAuCl4·4H2O) under an oxygen atmosphere with anhydrous tetrahydrofuran (THF) as solvent or in solvent-free condition. The results show that this method could bring excellent yields as high as 96%. THF was proven to be the best choice among several solvents screened and the reaction was tolerated with a variety of aromatic aldehydes possessing electron-donating or withdrawing groups. The advantages of the present method lie in catalytic process using economic and environmentally benign dioxygen as oxidant. PMID:19489113

  6. Effect of annealing in hydrogen atmosphere on ZnO films for field emission display

    NASA Astrophysics Data System (ADS)

    Zulkifli, Zurita; Sharma, Subash; Shinde, Sachin; Kalita, Golap; Tanemura, M.

    2015-11-01

    Surface morphology, crystallinity, conductivity and optical transmittance of ZnO films can be modified by annealing process. Hydrogen is one of the popular annealing gases as well as nitrogen, argon, oxygen and air which are commonly used for thin film cleaning or the removal of native oxide. In general, annealing is done at high temperatures (> 600degC) to improve the film properties. From a view point of environment, however, lower annealing temperature is preferable. In this work, low annealing process was challenged to understand the effect of annealing temperature on properties of ZnO thin films and nanostructured film grown on glass substrates for transparent field emission device applications. The annealing temperature employed was 100, 200 and 450°C at 100 sccm hydrogen flow rate. ZnO thin films were deposited by RF magnetron sputtering. The ZnO thin films were characterized by X-ray diffraction analysis (XRD), Atomic Force Microscopy (AFM), UV-VIS and Raman spectroscopy. The sheet resistances reduced about 15 kohm/sq at low annealing temperature. By contrast, the optical transmittance did not show any significant changes after annealing. The FE current density increased after the ZnO nanostructures film was annealed in 100°C. The results obtained could motivate a surface treatment for flexible ZnO thin film since the substrate is always suffered by heat.

  7. Glass-type hydrogen and deuterium absorption cells developed for D/H ratio measurements in the Martian atmosphere.

    PubMed

    Kawahara, T D; Okano, S; Abe, T; Fukunishi, H; Ito, K

    1997-04-01

    Hydrogen and deuterium absorption cells of a new glass type have been developed for the D/H ratio measurements on the Japanese Mars mission PLANET-B. The H/D cells work as narrow-band rejection filters for the H/D Lyman-alpha line, respectively, when the H or D atoms are produced at a heated filament inside the cells. The absorption profiles of the cells were successfully measured with a high-resolution vacuum ultraviolet spectrometer with a wavelength resolution of 6.6 x 10(-4) nm. The derived optical thickness was found to be ~7 and ~14 for the hydrogen and deuterium cells, respectively. It was also found that the derived temperature of atomic gas ranges between the temperature of the cell wall and that of the heated filament, and it increases with increasing filament temperature. The measured profiles showed that the absorption efficiencies of the developed absorption cells are sufficient to observe the D/H ratios of the Martian atmosphere. PMID:18253198

  8. SCATTERING POLARIZATION OF HYDROGEN LINES IN WEAKLY MAGNETIZED STELLAR ATMOSPHERES. I. FORMULATION AND APPLICATION TO ISOTHERMAL MODELS

    SciTech Connect

    Stepan, Jiri; Trujillo Bueno, Javier E-mail: jtb@iac.es

    2011-05-10

    Although the spectral lines of hydrogen contain valuable information on the physical properties of a variety of astrophysical plasmas, including the upper solar chromosphere, relatively little is known about their scattering polarization signals, whose modification via the Hanle effect may be exploited for magnetic field diagnostics. Here we report on a basic theoretical investigation of the linear polarization produced by scattering processes and the Hanle effect in Ly{alpha}, Ly{beta}, and H{alpha} taking into account multilevel radiative transfer effects in an isothermal stellar atmosphere model, the fine-structure of the hydrogen levels, as well as the impact of collisions with electrons and protons. The main aim of this first paper is to elucidate the key physical mechanisms that control the emergent fractional linear polarization in the three lines, as well as its sensitivity to the perturbers' density and to the strength and structure of microstructured and deterministic magnetic fields. To this end, we apply an efficient radiative transfer code we have developed for performing numerical simulations of the Hanle effect in multilevel systems with overlapping line transitions. For low-density plasmas, such as that of the upper solar chromosphere, collisional depolarization is caused mainly by collisional transitions between the fine-structure levels of the n = 3 level, so that it is virtually insignificant for Ly{alpha} but important for Ly{beta} and H{alpha}. We show the impact of the Hanle effect on the three lines taking into account the radiative transfer coupling between the different hydrogen line transitions. For example, we demonstrate that the linear polarization profile of the H{alpha} line is sensitive to the presence of magnetic field gradients in the line core formation region, and that in solar-like chromospheres selective absorption of polarization components does not play any significant role in the emergent scattering polarization.

  9. Distribution of Atomic Hydrogen in the Upper Atmosphere: Assessment of Absolute Densities and Variations in the light of Recent Observations

    NASA Astrophysics Data System (ADS)

    Bishop, J.

    2002-12-01

    Knowledge of atomic hydrogen densities ([H](z)) in the upper atmosphere is important both for understanding mesospheric-lower thermospheric (MLT) chemistry and for realistic modeling of geocoronal interactions with ionized populations (e.g., plasmasphere, ring current). Work culminating in the 1970's failed to achieve consistent determinations of the distribution of atomic hydrogen; because of this, the relevance of [H](z) determinations in other areas of aeronomic research has remained unacknowledged. Extensive independent sets of optical data, coupled with improved solar Lyman line series irradiances and corrections of assumptions used in the earlier data analyses, however, now enable us to resolve the older inconsistencies and pursue determination of quantities of genuine interest: thermospheric atomic hydrogen vertical fluxes, characteristics of the satellite atom component in the geocorona, etc. These data sets include: Wisconsin Hα\\ Mapper (WHAM) Fabry-Perot data from Kitt Peak Observatory, providing ~ \\ 40,000\\ spectra of geocoronal and galactic Balmer~α intensities beginning in 1997; very high resolution Fabry-Perot data from Pine Bluff Observatory (Wisconsin) of both Balmer~α\\ and Balmer~β\\ intensities and line profiles from 2000-2001; FUSE EUV measurements of Lyman line series intensities from 1999 and 2000 (excluding Lyman~α); MiniSat1/EURD EUV spectrometer measurements of Lyman line series intensities (excluding Lyman~α) from 1997 to 2001; and IMAGE/GEO Lyman~α\\ intensity data from geocoronal positions (satellite apogees ~ 7~R E). In this presentation, modeling analyses of representative data subsets will be discussed, focusing on results relevant to broader aeronomy topics.

  10. Statistically advanced, self-similar, radial probability density functions of atmospheric and under-expanded hydrogen jets

    NASA Astrophysics Data System (ADS)

    Ruggles, Adam J.

    2015-11-01

    This paper presents improved statistical insight regarding the self-similar scalar mixing process of atmospheric hydrogen jets and the downstream region of under-expanded hydrogen jets. Quantitative planar laser Rayleigh scattering imaging is used to probe both jets. The self-similarity of statistical moments up to the sixth order (beyond the literature established second order) is documented in both cases. This is achieved using a novel self-similar normalization method that facilitated a degree of statistical convergence that is typically limited to continuous, point-based measurements. This demonstrates that image-based measurements of a limited number of samples can be used for self-similar scalar mixing studies. Both jets exhibit the same radial trends of these moments demonstrating that advanced atmospheric self-similarity can be applied in the analysis of under-expanded jets. Self-similar histograms away from the centerline are shown to be the combination of two distributions. The first is attributed to turbulent mixing. The second, a symmetric Poisson-type distribution centered on zero mass fraction, progressively becomes the dominant and eventually sole distribution at the edge of the jet. This distribution is attributed to shot noise-affected pure air measurements, rather than a diffusive superlayer at the jet boundary. This conclusion is reached after a rigorous measurement uncertainty analysis and inspection of pure air data collected with each hydrogen data set. A threshold based upon the measurement noise analysis is used to separate the turbulent and pure air data, and thusly estimate intermittency. Beta-distributions (four parameters) are used to accurately represent the turbulent distribution moments. This combination of measured intermittency and four-parameter beta-distributions constitutes a new, simple approach to model scalar mixing. Comparisons between global moments from the data and moments calculated using the proposed model show excellent

  11. USING POLYMERIC HYDROGEN GETTERS TO PREVENT COMBUSTIBLE ATMOSPHERES DURING INTERIM SAFE STORAGE OF PLUTONIUM OXIDE

    SciTech Connect

    Woodsmall, T

    2007-05-24

    Nuclear Materials Management (NMM) of WSRC has recently installed the capability to perform both non-destructive and destructive examination of 3013 containers of Pu oxide in accordance with DOE-STD-3013. The containers will be opened and the oxide will be sampled for analysis. The remaining bulk oxide must then be safely stored in a non-3013-compliant configuration. Available processing equipment and controls cannot prevent the oxide from adsorbing moisture during this process. Subsequent radiolysis of moisture during storage may generate combustible quantities of gases while waiting final processing, and satisfying DOE Interim Safe Storage Criteria (ISSC) would require that storage containers be vented at impractical frequencies. With support from an independent National Laboratory, WSRC/NMM has demonstrated that a commercial hydrogen getter material will effectively prevent the accumulation of combustible gas concentrations. A project overview, including storage requirements and strategies, as well as getter technology, current test results, and anticipated future developments will be addressed.

  12. Absolute integrated intensities of vapor-phase hydrogen peroxide (H202) in the mid-infrared at atmospheric pressure

    SciTech Connect

    Johnson, Timothy J.; Sams, Robert L.; Burton, Sarah D.; Blake, Thomas A.

    2009-09-01

    We report quantitative broadband infrared spectra of vapor-phase hydrogen peroxide (H2O2) with all spectra pressure broadened to atmospheric pressure. The spectra were generated by flowing a concentrated solution (83 weight%) of H2O2 into a gently heated disseminator and diluting with a flow of pure nitrogen carrier gas. The water vapor lines were subtracted from the resulting spectra to yield the spectrum of pure H2O2. Comparison with previous results for the ν6 band strength (including hot bands) compares favorably with the results of Klee et al. [(1999) J. Mol. Spectr. 195, 154] as well as HITRAN. The present results are 433 and 467 cm-2 atm-1 (±8% and ±3% at 298 and 323 K, respectively) for the band strength, matching well the Klee value (S = 467 cm-2 atm-1 at 296 K) for the integrated band. Other bands in the 520-7500 cm-1 interval and their potential for atmospheric monitoring are discussed.

  13. Hydrogen Atom Collision Processes in Cool Stellar Atmospheres: Effects on Spectral Line Strengths and Measured Chemical Abundances in Old Stars

    NASA Astrophysics Data System (ADS)

    Barklem, Paul S.

    2012-12-01

    The precise measurement of the chemical composition of stars is a fundamental problem relevant to many areas of astrophysics. State-of-the-art approaches attempt to unite accurate descriptions of microphysics, non-local thermodynamic equilibrium (non-LTE) line formation and 3D hydrodynamical model atmospheres. In this paper I review progress in understanding inelastic collisions of hydrogen atoms with other species and their influence on spectral line formation and derived abundances in stellar atmospheres. These collisions are a major source of uncertainty in non-LTE modelling of spectral lines and abundance determinations, especially for old, metal-poor stars, which are unique tracers of the early evolution of our galaxy. Full quantum scattering calculations of direct excitation processes X(nl) + H leftrightarrow X(n'l') + H and charge transfer processes X(nl) + H leftrightarrow X+ + H- have been done for Li, Na and Mg [1,2,3] based on detailed quantum chemical data, e.g. [4]. Rate coefficients have been calculated and applied to non-LTE modelling of spectral lines in stellar atmospheres [5,6,7,8,9]. In all cases we find that charge transfer processes from the first excited S-state are very important, and the processes affect measured abundances for Li, Na and Mg in some stars by as much as 60%. Effects vary with stellar parameters (e.g. temperature, luminosity, metal content) and so these processes are important not only for accurate absolute abundances, but also for relative abundances among dissimilar stars.

  14. The spatial distribution of molecular Hydrogen in the lunar atmosphere-New results

    NASA Astrophysics Data System (ADS)

    Thampi, Smitha V.; Sridharan, R.; Das, Tirtha Pratim; Ahmed, S. M.; Kamalakar, J. A.; Bhardwaj, Anil

    2015-02-01

    The measurements carried out by Chandra's Altitudinal Composition Explorer (CHACE) onboard the Moon Impact Probe (MIP) of Chandrayaan I mission is used to obtain information on the 2-D distribution of the lunar atmospheric H2 by a novel approach that makes use of the basic fact that the Moon has a Surface Boundary Exosphere (SBE).These are the 'first' daytime in situ measurements of lunar H2 covering the 20°S to 88°S latitude region centered ~14°E longitude. A critical examination of the observed spatial features of the surface number density of H2 vis-à-vis the surface topography delineated from the Lunar Laser Ranging Instrument (LLRI) in the main orbiter Chandrayaan-I, indicates that that lunar surface process may be important in introducing small scale variations in the H2 number density. Another constituent which exhibited spatial variation in the observed partial pressure is 40Ar and it was hypothesized that it is indicative of the spatial heterogeneity in the radiogenic activity of the Lunar interior (Sridharan et al., 2013a). The absolute number density at the surface and also the latitude/altitude variation of the densities that are reported for the first time, highlight the complexities of the sunlit lunar atmosphere.

  15. Atmospheric Physics and Earth Observations: Observations of Lyman-agr Emissions of Hydrogen and Deuterium.

    PubMed

    Bertaux, J L; Goutail, F; Kockarts, G

    1984-07-13

    A spectrophotometer was flown on Spacelab 1 to study various mechanisms of Lyman-alpha emission in the upper atmosphere. The use of absorption cells filled with H(2) and D(2) gases allowed us to discriminate a number of weak Lyman-alpha emissions heretofore masked by the strong H geocoronal emission due to resonance scattering of solar photons. Preliminary results are presented on three topics: the first optical detection of the deuterium Lyman-alpha emission at 110 kilometers, with an intensity of 330 rayleighs indicating an eddy diffusion coefficient of 1.3 x 10(6) square centimeters per second; auroral proton precipitations seen on both the night and the day side; and an emission located above 250 kilometers of altitude, interpreted as the result of charge exchange of magnetospheric protons with geocoronal atoms. PMID:17837930

  16. Termites: a potentially large source of atmospheric methane, carbon dioxide, and molecular hydrogen

    SciTech Connect

    Zimmerman, P.R.; Greenberg, J.P.; Wandiga, S.O.; Crutzen, P.J.

    1982-11-01

    Termites are emitting large quantities of CH/sub 4/, CO/sub 2/, and H/sub 2/ into the atmosphere, especially in cleared tropical forest areas. Researchers estimate that these annual global emissions could amount to 0.3 trillion lb of CH/sub 4/, 11 trillion lb of CO/sub 2/ (more than twice the net global input from fossil-fuel combustion), and 0.4 trillion lb of H/sub 2/. However, they stress that because of many uncertainties, the acutal production of these gases could vary by a factor of two; i.e., methane production could range from 0.2 to 0.7 trillion lb. Occurring on about two-thirds of the earth's

  17. New optical paper sensor for in situ measurement of hydrogen sulphide in waters and atmospheres.

    PubMed

    Pla-Tolós, J; Moliner-Martínez, Y; Verdú-Andrés, J; Casanova-Chafer, J; Molins-Legua, C; Campíns-Falcó, P

    2016-08-15

    A novel and low-cost colorimetric sensor for the determination of hydrogen sulphide in environmental samples has been developed. This sensor is based on the immobilization of the reagent N,N-Dimethyl-p-phenylenediamine and FeCl3 in paper support, in which the H2S is adsorbed in order to give rise to the formation of methylene blue as reaction product. The sensor has been applied to determine H2S in water and air samples. Two different sampling systems for H2S caption from the air have been assayed: active and passive sampling. The analytical properties of the different systems have been obtained and compared. The analytical signals, corresponding to the methylene blue, have been obtained measuring the absorbance by conventional reflectance diffuse or using different algorithms for quantifying color intensity. The results obtained with both measurement procedures were comparable, with a detection limit of 1.11 and 1.12mLm(-3) for air samples (active and passive), and 0.5mgL(-1) for water samples. The developed sensor provides good accuracy and precision (RSD<12%) and simplifies significantly the analytical measurements because it avoids the need of preparing derivatization reagents, sample handling and allows in situ measurements. The reaction product obtained is highly stable in this support and no provide any blank signal. Under the optimal conditions, the proposed method exhibit excellent visual sensitivity for the naked eye procedure, making the detection of H2S possible. PMID:27260438

  18. The Atmospheric Distribution of Molecular Hydrogen (H2) and Related Species During HIPPO and Other Recent Airborne Missions

    NASA Astrophysics Data System (ADS)

    Hintsa, E. J.; Moore, F. L.; Dutton, G. S.; Hall, B. D.; Nance, J. D.; Hurst, D. F.; Novelli, P. C.; Elkins, J. W.; Daube, B.; Kort, E. A.; Pittman, J. V.; Santoni, G. W.; Wofsy, S. C.; Jaegle, L.

    2012-12-01

    focus here is on the distribution of molecular hydrogen (H2), which has a diverse set of atmospheric and terrestrial sources, and a sink term that is dominated by soil uptake. The data show a slight maximum in the southern hemisphere and much greater variability with altitude in the northern hemisphere, broadly consistent with previous studies. Results from the GEOS-Chem model will be presented to allow greater insight into the distribution of H2 and related molecules. Tracer-tracer correlation plots of H2 with methane and CO will also be used to examine the details of the H2 distribution. HIPPO results show a local maximum in H2 at northern hemisphere midlatitudes in spring and early summer, and persistent low values of hydrogen at high northern latitudes long after the soil sink should have decreased with the onset of winter.

  19. Strong Hydrogen Bonded Molecular Interactions between Atmospheric Diamines and Sulfuric Acid.

    PubMed

    Elm, Jonas; Jen, Coty N; Kurtén, Theo; Vehkamäki, Hanna

    2016-05-26

    We investigate the molecular interaction between methyl-substituted N,N,N',N'-ethylenediamines, propane-1,3-diamine, butane-1,4-diamine, and sulfuric acid using computational methods. Molecular structure of the diamines and their dimer clusters with sulfuric acid is studied using three density functional theory methods (PW91, M06-2X, and ωB97X-D) with the 6-31++G(d,p) basis set. A high level explicitly correlated CCSD(T)-F12a/VDZ-F12 method is used to obtain accurate binding energies. The reaction Gibbs free energies are evaluated and compared with values for reactions involving ammonia and atmospherically relevant monoamines (methylamine, dimethylamine, and trimethylamine). We find that the complex formation between sulfuric acid and the studied diamines provides similar or more favorable reaction free energies than dimethylamine. Diamines that contain one or more secondary amino groups are found to stabilize sulfuric acid complexes more efficiently. Elongating the carbon backbone from ethylenediamine to propane-1,3-diamine or butane-1,4-diamine further stabilizes the complex formation with sulfuric acid by up to 4.3 kcal/mol. Dimethyl-substituted butane-1,4-diamine yields a staggering formation free energy of -19.1 kcal/mol for the clustering with sulfuric acid, indicating that such diamines could potentially be a key species in the initial step in the formation of new particles. For studying larger clusters consisting of a diamine molecule with up to four sulfuric acid molecules, we benchmark and utilize a domain local pair natural orbital coupled cluster (DLPNO-CCSD(T)) method. We find that a single diamine is capable of efficiently stabilizing sulfuric acid clusters with up to four acid molecules, whereas monoamines such as dimethylamine are capable of stabilizing at most 2-3 sulfuric acid molecules. PMID:27128188

  20. Model estimates of inelastic calcium-hydrogen collision data for non-LTE stellar atmospheres modeling

    NASA Astrophysics Data System (ADS)

    Belyaev, A. K.; Yakovleva, S. A.; Guitou, M.; Mitrushchenkov, A. O.; Spielfiedel, A.; Feautrier, N.

    2016-03-01

    Aims: Inelastic processes in low-energy Ca + H and Ca+ + H- collisions are treated for the states from the ground state up to the ionic state with the aim to provide rate coefficients needed for non-LTE modeling of Ca in cool stellar atmospheres. Methods: The electronic molecular structure was determined using a recently proposed model approach that is based on an asymptotic method. Nonadiabatic nuclear dynamics were treated by means of multichannel formulas, based on the Landau-Zener model for nonadiabatic transition probabilities. Results: The cross sections and rate coefficients for inelastic processes in Ca + H and Ca+ + H- collisions were calculated for all transitions between 17 low-lying covalent states plus the ionic state. It is shown that the highest rate coefficient values correspond to the excitation, de-excitation, ion-pair formation, and mutual neutralization processes involving the Ca(4s5s 1,3S) and the ionic Ca+ + H- states. The next group with the second highest rate coefficients includes the processes involving the Ca(4s5p 1,3P), Ca(4s4d 1,3D), and Ca(4s4p 1P) states. The processes from these two groups are likely to be important for non-LTE modeling. Tables 2-11 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A114

  1. Surface modification due to atmospheric pressure plasma treatment during film growth of silicon dioxide like and amorphous hydrogenated carbon material

    NASA Astrophysics Data System (ADS)

    Ruegner, Katja; Reuter, Ruediger; von Keudell, Achim; Benedikt, Jan

    2014-10-01

    Plasma deposition of silicon dioxide (SiO2) or amorphous hydrogenated carbon (a-C:H) at atmospheric pressure is a promising tool for industrial applications. SiO2 is used as scratch resistant layers, as protection against corrosion or as gas diffusion barrier layers. a-C:H is of special interest due to its optical, electrical, biocompatible and mechanical properties, which are tunable, depending on the bonding state of carbon. Besides the deposition of material, atmospheric pressure plasma jets (APPJ) can be used to modify the surface of the deposited films during their growth. Deposition and the treatment are realized in the same chamber, were both jets face a rotating substrate. Therefore, deposition and treatment of the same trace can be performed in an alternating manner. Further, in-situ FTIR is applied. For the deposition an APPJ with two parallel electrodes is used, operating with either He/HMDSO in the case of SiO2 deposition or He/C2H2 in the case of a-C:H deposition. For the treatment either the APPJ or a coaxial jet with different gas mixtures is used. For the deposition of SiO2-like films the treatment with a He/O2, a He/N2, and an Ar plasma during the film growth have shown significant changes in the film structure. The influence of treatments on a-C:H film is currently under investigation. The project is supported by the German Research Foundation (DFG) in the research group FOR 1123.

  2. Diamondoid synthesis in atmospheric pressure adamantane-argon-methane-hydrogen mixtures using a continuous flow plasma microreactor

    NASA Astrophysics Data System (ADS)

    Stauss, Sven; Ishii, Chikako; Pai, David Z.; Urabe, Keiichiro; Terashima, Kazuo

    2014-06-01

    Due to their small size, low-power consumption and potential for integration with other devices, microplasmas have been used increasingly for the synthesis of nanomaterials. Here, we have investigated the possibility of using dielectric barrier discharges generated in continuous flow glass microreactors for the synthesis of diamondoids, at temperatures of 300 and 320 K, and applied voltages of 3.2-4.3 kVp-p, at a frequency of 10 kHz. The microplasmas were generated in gas mixtures containing argon, methane, hydrogen and adamantane, which was used as a precursor and seed. The plasmas were monitored by optical emission spectroscopy measurements and the synthesized products were characterized by gas chromatography—mass spectrometry (GC-MS). Depending on the gas composition, the optical emission spectra contained CH and C2 bands of varying intensities. The GC-MS measurements revealed that diamantane can be synthesized by microplasmas generated at atmospheric pressure, and that the yields highly depend on the gas composition and the presence of carbon sources.

  3. Method for the determination of lignin content of a sample by flash pyrolysis in an atmosphere of hydrogen or helium and method therefor

    NASA Technical Reports Server (NTRS)

    Shakkottai, Parthasarathy (Inventor); Kwack, Eug Y. (Inventor); Lawson, Daniel D. (Inventor)

    1991-01-01

    The lignin content of wood, paper pulp or other material containing lignin (such as filter paper soaked in black liquor) is more readily determined by flash pyrolysis of the sample at approximately 550.degree. C. in a reducing atmosphere of hydrogen or in an inert atmosphere of helium followed by a rapid analysis of the product gas by a mass spectrometer. The heated pyrolysis unit as fabricated comprises a small platinum cup welded to an electrically-heated stainless steel ribbon with control means for programmed short duration (1.5 sec, approximately) heating and means for continuous flow of hydrogen or helium. The pyrolysis products enter an electron-ionization mode mass spectrometer for spectral evaluation. Lignin content is obtained from certain ratios of integrated ion currents of many mass spectral lines, the ratios being linearly related to the Kappa number of Klason lignin.

  4. TiO2-Coated Transparent Conductive Oxide (SnO2:F) Films Prepared by Atmospheric Pressure Chemical Vapor Deposition with High Durability against Atomic Hydrogen

    NASA Astrophysics Data System (ADS)

    Kambe, Mika; Sato, Kazuo; Kobayashi, Daisuke; Kurokawa, Yasuyoshi; Miyajima, Shinsuke; Fukawa, Makoto; Taneda, Naoki; Yamada, Akira; Konagai, Makoto

    2006-03-01

    The durability of textured transparent conductive oxide (TCO) thin films against atomic hydrogen was investigated. An ultrathin TiO2 layer of 2 nm thickness was deposited on textured fluorine-doped tin oxide (SnO2:F) films, successively by atmospheric pressure chemical vapor deposition (AP-CVD). TCO films with a TiO2 layer showed a higher optical transmittance and a lower resistivity after exposure to atomic hydrogen excited by very high frequency (VHF) plasma, while TCO films without a TiO2 layer showed a lower optical transmittance and a higher resistivity after the exposure. These TCO films were characterized by X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS) before and after the exposure to atomic hydrogen.

  5. Atmospheric Pressure Plasma CVD of Amorphous Hydrogenated Silicon Carbonitride (a-SiCN:H) Films Using Triethylsilane and Nitrogen

    SciTech Connect

    Srinivasan Guruvenket; Steven Andrie; Mark Simon; Kyle W. Johnson; Robert A. Sailer

    2011-10-04

    Amorphous hydrogenated silicon carbonitride (a-SiCN:H) thin films are synthesized by atmospheric pressure plasma enhanced chemical vapor (AP-PECVD) deposition using the Surfx Atomflow{trademark} 250D APPJ source with triethylsilane (HSiEt{sub 3}, TES) and nitrogen as the precursor and the reactive gases, respectively. The effect of the substrate temperature (T{sub s}) on the growth characteristics and the properties of a-SiCN:H films was evaluated. The properties of the films were investigated via scanning electron microscopy (SEM), atomic force microscopy (AFM) for surface morphological analyses, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) for chemical and compositional analyses; spectroscopic ellipsometry for optical properties and thickness determination and nanoindentation to determine the mechanical properties of the a-SiCN:H films. Films deposited at low T{sub s} depict organic like features, while the films deposited at high T{sub s} depict ceramic like features. FTIR and XPS studies reveal that an increases in T{sub s} helps in the elimination of organic moieties and incorporation of nitrogen in the film. Films deposited at T{sub s} of 425 C have an index of refraction (n) of 1.84 and hardness (H) of 14.8 GPa. A decrease in the deposition rate between T{sub s} of 25 and 250 C and increase in deposition rate between T{sub s} of 250 and 425 C indicate that the growth of a-SiCN:H films at lower T{sub s} are surface reaction controlled, while at high temperatures film growth is mass-transport controlled. Based on the experimental results, a potential route for film growth is proposed.

  6. High-efficiency tooth bleaching using non-thermal atmospheric pressure plasma with low concentration of hydrogen peroxide

    PubMed Central

    NAM, Seoul Hee; LEE, Hyun Woo; CHO, Soo Hyun; LEE, Jae Koo; JEON, Young Chan; KIM, Gyoo Cheon

    2013-01-01

    Light-activated tooth bleaching with a high hydrogen peroxide (HP; H2O2) concentration has risks and the actual role of the light source is doubtful. The use of conventional light might result in an increase in the temperature and cause thermal damage to the health of the tooth tissue. Objective: This study investigated the efficacy of tooth bleaching using non-thermal atmospheric pressure plasma (NAPP) with 15% carbamide peroxide (CP; CH6N2O3) including 5.4% HP, as compared with conventional light sources. Material and Methods: Forty human teeth were randomly divided into four groups: Group I (CP+NAPP), Group II (CP+plasma arc lamp; PAC), Group III (CP+diode laser), and Group IV (CP alone). Color changes (ΔE ) of the tooth and tooth surface temperatures were measured. Data were evaluated by one-way analysis of variance (ANOVA) and post-hoc Tukey's tests. Results: Group I showed the highest bleaching efficacy, with a ΔE value of 1.92-, 2.61 and 2.97-fold greater than those of Groups II, III and IV, respectively (P<0.05). The tooth surface temperature was maintained around 37ºC in Group I, but it reached 43ºC in Groups II and III. Conclusions: The NAPP has a greater capability for effective tooth bleaching than conventional light sources with a low concentration of HP without causing thermal damage. Tooth bleaching using NAPP can become a major technique for in-office bleaching in the near future. PMID:23857658

  7. Safe venting of hydrogen

    SciTech Connect

    Stewart, W.F.; Dewart, J.M.; Edeskuty, F.J.

    1990-01-01

    The disposal of hydrogen is often required in the operation of an experimental facility that contains hydrogen. Whether the vented hydrogen can be discharged to the atmosphere safely depends upon a number of factors such as the flow rate and atmospheric conditions. Calculations have been made that predict the distance a combustible mixture can extend from the point of release under some specified atmospheric conditions. Also the quantity of hydrogen in the combustible cloud is estimated. These results can be helpful in deciding of the hydrogen can be released directly to the atmosphere, or if it must be intentionally ignited. 15 refs., 5 figs., 2 tabs.

  8. Atmospheric-Biospheric Interactions of Ambient Hydrogen Peroxide: Climatology at MT. Mitchell, N.C., and Transport Into Needles of Red Spruce

    NASA Astrophysics Data System (ADS)

    Claiborn, Candis Sue

    Hydrogen peroxide is an important atmospheric photo-oxidant whose ambient concentrations are enhanced by solar radiation, humidity, and low levels of nitrogen oxides, conditions which are observed in the mountainous regions of the southeastern United States. In this work we investigated the role of exposure to atmospheric hydrogen peroxide in the decline of the red spruce forests at Mt. Mitchell. The climatology of atmospheric hydrogen peroxide at this site was investigated in field studies conducted during the growing seasons (May through September) of 1987 and 1988. A second generation exposure chamber was designed and constructed for studying the interactions between reactive gases and plant species. The uptake of gas-phase hydrogen peroxide by whole spruce saplings was measured in this continuously -stirred tank reactor (CSTR)-type chamber. The results of these experiments were interpreted using a mathematical model of the spruce needle and the spruce stomatal zone which was based on the fundamental equations for multicomponent gas diffusion. Gas-phase hydrogen peroxide concentrations at Mt. Mitchell averaged 0.8 and 0.2 ppb in the summer and fall, respectively, and were found to range from the detection limit (~0.1 ppb) to over 4 ppb, making these values comparable to those reported in the literature for similar, remote sites. Cloud water concentrations were found to be comparable to, or higher than, concentrations reported in the literature, and ranged from 0.2 to 219 muM/L (mean 38 muM/L) and from 1.9 to 55 muM/L (mean 17 muM/L) during the summer and fall, respectively. When exposed during uptake experiments to gaseous hydrogen peroxide concentrations in the range of those observed at Mt. Mitchell, the calculated deposition velocity in the chamber was 0.1 and 0.09 cm s^ {-1} for daytime and nighttime exposures, respectively. We hypothesize, from the results of these experiments, that hydrogen peroxide uptake by spruce was not affected by stomatal opening

  9. Analyses of hydrogen in quartz and in sapphire using depth profiling by ERDA at atmospheric pressure: Comparison with resonant NRA and SIMS

    NASA Astrophysics Data System (ADS)

    Reiche, Ina; Castaing, Jacques; Calligaro, Thomas; Salomon, Joseph; Aucouturier, Marc; Reinholz, Uwe; Weise, Hans-Peter

    2006-08-01

    Hydrogen is present in anhydrous materials as a result of their synthesis and of their environment during conservation. IBA provides techniques to measure H concentration depth profiles allowing to identify various aspects of the materials including the history of objects such as gemstones used in cultural heritage. A newly established ERDA set-up, using an external microbeam of alpha particles, has been developed to study hydrated near-surface layers in quartz and sapphire by non-destructive H depth profiling in different atmospheres. The samples were also analysed using resonant NRA and SIMS.

  10. Etching of graphene in a Hydrogen-rich Atmosphere towards the Formation of Hydrocarbons in Circumstellar Clouds

    PubMed Central

    Martínez, José I.; Martín-Gago, José A.; Cernicharo, José; de Andres, Pedro L.

    2015-01-01

    We describe a mechanism that explains the formation of hydrocarbons and hydrocarbyls from hydrogenated graphene/graphite; hard C–C bonds are weakened and broken by the synergistic effect of chemisorbed hydrogen and high temperature vibrations. Total energies, optimized structures, and transition states are obtained from Density Functional Theory simulations. These values have been used to determine the Boltzman probability for a thermal fluctuation to overcome the kinetic barriers, yielding the time scale for an event to occur. This mechanism can be used to rationalize the possible routes for the creation of small hydrocarbons and hydrocarbyls from etched graphene/graphite in stellar regions. PMID:26709358

  11. The Jovian Atmospheres

    NASA Technical Reports Server (NTRS)

    Allison, Michael (Editor); Travis, Larry D. (Editor)

    1986-01-01

    A conference on the atmosphere of Jupiter produced papers in the areas of thermal and ortho-para hydrogen structure, clouds and chemistry, atmospheric structure, global dynamics, synoptic features and processes, atmospheric dynamics, and future spaceflight opportunities. A session on the atmospheres of Uranus and Neptune was included, and the atmosphere of Saturn was discussed in several papers.

  12. Estimation of the Hydrogen local traffic source and soil uptake using atmospheric in-situ measurements at Gif-sur-Yvette (Paris region)

    NASA Astrophysics Data System (ADS)

    Yver, C.; Schmidt, M.; Ramonet, M.

    2009-04-01

    Molecular Hydrogen (H2) is one of the most abundant trace gases in the atmosphere with a mean ratio of 530 ppb. Its possible use in the future energy chain would increase its mixing ratio through leakage and influence the lifetime and mixing ratio of some greenhouse gases such as methane. However uncertainties on its budget are still large. A better understanding of the hydrogen cycle and of its budget is then essential to provide a better estimation of its impact on other trace gases. In 2006, a new gas chromatograph with reduction gas detector (PP1, Peak Laboratories, LLC, California, USA) was optimized to measure H2 and CO, and coupled with an Agilent gas chromatograph, which already measures CO2, CH4, N2O and SF6 in the frame of RAMCES greenhouse gases monitoring network at LSCE. Since June 2006 semi-continuous measurements of tropospheric molecular hydrogen have been performed at Gif-sur-Yvette, a suburban sampling site in France, 25 km south west of Paris. Here we present data analysis of nearly 3 years in-situ measurements at Gif-sur-Yvette. From these data we have estimated the local traffic source and soil sink. The traffic source is calculated from the H2/CO ratio during typical situation with strong correlation and large concentration variation. The soil uptake is calculated using the radon-tracer method during night time inversions with anti-correlation of H2 and Radon.

  13. Performance of carbon-based hot frit substrates. 2, Coating performance studies in hydrogen at atmospheric pressure

    SciTech Connect

    Barletta, R.; Vanier, P.; Adams, J.; Svandrlik, J.; Powell, J.R.

    1993-07-01

    Erosion tests were conducted on coated graphite and 2D, 3D carbon- carbons in 1 atm hydrogen at high temperatures. Refractory NbC, TaC coatings were used. It was found that the most effective combination of coating and substrate was TaC deposited by chemical vapor reaction method on AXF-5QI graphite.

  14. Influence of solvents on the conversion of aniline in a hydrogen atmosphere in the presence of catalysts

    SciTech Connect

    Mailyubaev, B.T.; Ualikhanova, A.

    1994-04-10

    A study is made of the influence of solvents on the conversion of aniline in the presence of catalysts. The course of hydrogenation of aniline is shown to depend on the chemical state of the metal on the catalyst surface and the nature of the solvent used.

  15. Phosphidoboratabenzene-rhodium(i) complexes as precatalysts for the hydrogenation of alkenes at room temperature and atmospheric pressure.

    PubMed

    Perez, Viridiana; Audet, Pierre; Bi, Wenhua; Fontaine, Frédéric-Georges

    2016-02-01

    The di-tert-butylphosphido-boratabenzene ligand (DTBB) reacts with [(C2H4)2RhCl]2 yielding the dimeric species [(C2H4)Rh(DTBB)]2 (1). This species was fully characterized by multinuclear NMR and X-ray crystallography. Complex 1 readily dissociates ethylene in solution and upon exposure to 1 atm of H2 is capable of carrying out the hydrogenation of ethylene. The characterization of two Rh-H species by multinuclear NMR spectroscopy is provided. The reactivity of 1 towards the catalytic hydrogenation of alkenes and alkynes at room temperature and 1 atm of H2 is reported and compared to the activity of Wilkinson's catalyst under the same reaction conditions. PMID:26530277

  16. Analysis of hydrogen peroxide in Los Angeles atmosphere. Hydrogen peroxide analyses during the Carbonaceous-Species Methods Comparison Study at Citrus College on August 11-21, 1986. Final report

    SciTech Connect

    Kaplan, I.R.; Sakugawa, H.

    1987-11-10

    A novel method for the capture of hydrogen peroxide was used in the analyses of gas-phase peroxides in the Los Angeles atmosphere. The method employed the freezing of hydrogen peroxide and water vapor in air, passing through a glass trap cooled by dry ice. The method has the advantage of simplicity of operation, low cost of deployment and little or no artifact formation due to prevention of ozone reaction with organic constituents in the air or on glass surfaces. The range of values were from 0.07-0.90 ppb with maxima during 1200-1600 hrs and minima during 2000-2400 or 2400-0800 hrs. Only total peroxide content was determined in all the samples except two, due to the relatively low concentration of gaseous peroxide. In two samples, H/sub 2/O/sub 2/ was discriminated from organic peroxide by catalase. The results showed greater than 95% of total peroxide was H/sub 2/O/sub 2/ in both samples.

  17. The reaction of atomic hydrogen with germane - Temperature dependence of the rate constant and implications for germane photochemistry in the atmospheres of Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Nava, David F.; Payne, Walter A.; Marston, George; Stief, Louis J.

    1993-01-01

    Studies of the formation and loss processes for GeH4 are required in order to provide data to help determine the major chemical form in which germanium exists in the atmospheres of Jupiter and Saturn. The reaction of hydrogen atoms with germane is one of the most important of these reactions. The absolute rate constant for this reaction as a function of temperature and pressure is studied. Flash photolysis of dilute mixtures of GeH4 in argon, combined with time-resolved detection of H atoms via Lyman alpha resonance fluorescence, is employed to measure the reaction rate. The reaction is shown to be moderately rapid, independent of total pressure, but possessing a positive temperature dependence.

  18. The reaction of atomic hydrogen with germane - Temperature dependence of the rate constant and implications for germane photochemistry in the atmospheres of Jupiter and Saturn

    NASA Astrophysics Data System (ADS)

    Nava, D. F.; Payne, W. A.; Marston, G.; Stief, L. J.

    1993-03-01

    Studies of the formation and loss processes for GeH4 are required in order to provide data to help determine the major chemical form in which germanium exists in the atmospheres of Jupiter and Saturn. The reaction of hydrogen atoms with germane is one of the most important of these reactions. The absolute rate constant for this reaction as a function of temperature and pressure is studied. Flash photolysis of dilute mixtures of GeH4 in argon, combined with time-resolved detection of H atoms via Lyman alpha resonance fluorescence, is employed to measure the reaction rate. The reaction is shown to be moderately rapid, independent of total pressure, but possessing a positive temperature dependence.

  19. Growth process of hydrogenated amorphous carbon films synthesized by atmospheric pressure plasma enhanced CVD using nitrogen and helium as a dilution gas

    NASA Astrophysics Data System (ADS)

    Mori, Takanori; Sakurai, Takachika; Sato, Taiki; Shirakura, Akira; Suzuki, Tetsuya

    2016-04-01

    Hydrogenated amorphous carbon films with various thicknesses were synthesized by dielectric barrier discharge-based plasma deposition under atmospheric pressure diluted with nitrogen (N2) and helium (He) at various pulse frequencies. The C2H2/N2 film showed cauliflower-like-particles that grew bigger with the increase in film’s thickness. At 5 kHz, the film with a thickness of 2.7 µm and smooth surface was synthesized. On the other hand, the films synthesized from C2H2/He had a smooth surface and was densely packed with domed particles. The domed particles extended with the increase in the film thickness, enabling it to grow successfully to 37 µm with a smooth surface.

  20. Analyse spectroscopique d'etoiles naines blanches riches en hydrogene (DA): vers des modeles d'atmosphere ameliores sans parametres libres

    NASA Astrophysics Data System (ADS)

    Tremblay, Pier-Emmanuel

    2011-01-01

    The goal of this thesis is to refine and to understand better the spectroscopic method, which compares optical spectra of hydrogen-atmosphere white dwarfs (DA) with synthetic spectra to determine the atmospheric parameters (effective temperature and surface gravity). Our approach rests mainly on the development of improved model spectra, which come themselves from DA model atmospheres. We present a new grid of DA synthetic spectra with the first consistent implementation of the non-ideal gas theory of Hummer & Mihalas and the unified theory of Stark broadening from Vidal, Cooper & Smith. This allows for an adequate treatment of the quenching effects in Balmer lines, without the need of a free parameter. We show that these improved spectra predict surface gravities that are much more stable as a function of the effective temperature. We then study the long-standing problem that surface gravities in cool DA stars are significantly higher than those found in hotter DA white dwarfs. The hypothesis of Bergeron et al., according to which the atmospheres are contaminated by small amounts of helium, is constrained with observations. Using high-resolution spectra collected at the Keck in Hawaii, we find superior limits on the helium abundances in the atmospheres that are nearly 10 times lower than those required to sustain the Bergeron et al. scenario. The grid of spectra calculated in this work is then applied to a new spectroscopic analysis of the DA in the SDSS. Our careful analysis allows us to define a cleaner sample and to identify a large number of double degenerates. We find that a cutoff at a signal-to-noise ratio ≳ 15 optimizes the size and quality of the sample for computing the average mass, for which we find a value of 0.613 M⊙ . Finally, eight new 3D white dwarf models with a radiative-hydrodynamics treatment of the convection are presented. We also calculated models with the same physics, except for a treatment of the convection with the standard mixing

  1. The atmospheric oxidation of dimethyl, diethyl, and diisopropyl ethers. The role of the intramolecular hydrogen shift in peroxy radicals.

    PubMed

    Wang, Sainan; Wang, Liming

    2016-03-21

    The atmospheric oxidation mechanisms of dimethyl ether (DME), diethyl ether (DEE) and diisopropyl ether (DiPE) are studied by using quantum chemistry and unimolecular reaction theory (RRKM-ME) calculations. For the peroxy radical CH3OCH2O2˙ from DME, a barrier height of ∼ 85 kJ mol(-1) is found for its intramolecular H-shift to ˙CH2OCH2OOH, which can recombine rapidly with the atmospheric O2. RRKM-ME calculations obtain an effective rate of ∼ 0.1 s(-1) at 298 K for the formation of ˙O2CH2OCH2OOH. For similar radicals in DEE and DiPE, effective rates are 1.6 s(-1) and 1.1 s(-1), respectively. In the atmosphere, these unimolecular reactions are fast enough to compete with the bimolecular reactions with NO and/or HO2, especially when [NO] is low. The fates of radicals after the H-shifts are also examined here. Several subsequent reactions are found to recycle OH radicals. New mechanisms are proposed on the basis of present calculations and are consistent with previous experimental results. In the atmosphere, the routes via H-shifts represent an auto-oxidation of these ethers with no involvement of NOx and therefore no O3 formation, and also a self-cleaning mechanism of organic compounds due to recycling of OH radicals. Some of the end products are highly oxidized with multifunctional groups and high O : C ratios, suggesting their low volatility and potential contribution to secondary organic aerosols. PMID:26907474

  2. Prebiotic synthesis in atmospheres containing CH4, CO, and CO2. II. Hydrogen cyanide, formaldehyde and ammonia.

    PubMed

    Schlesinger, G; Miller, S L

    1983-01-01

    The electric discharge synthesis of HCN, H2CO, NH3 and urea has been investigated using various mixtures of CH4, CO, CO2, N2, NH3, H2O, and H2. HCN and H2CO were each synthesized in yields as high as 10% from CH4 as a carbon source. Similar yields were obtained from CO when H2/CO greater than 1.0 and from CO2 when H2/CO2 greater than 2.0. At H2/CO2 less than 1.0 the yields fall off drastically. Good yields of NH3 (0.7 to 5%) and fair yields of urea (0.02 to 0.63%) based on nitrogen were also obtained. The directly synthesized NH3 together with the NH3 obtained from the hydrolysis of HCN, nitriles and urea could have been a major source of ammonia in the atmosphere and oceans of the primitive earth. These results show that prebiotic syntheses from HCN and H2CO to give products such as purines and sugars and some amino acids could have occurred in primitive atmospheres containing CO and CO2 provided the H2/CO and H2/CO2 ratios were greater than about 1.0. Methane containing atmospheres give comparable quantities of HCN and H2CO, and are superior in the synthesis of amino acids. PMID:6315963

  3. Synthesis and investigation of reaction mechanisms of diamondoids obtained by dielectric barrier discharge microplasma reactors operated in adamantane - argon - methane - hydrogen mixtures at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Stauss, Sven; Ishii, Chikako; Pai, David Z.; Terashima, Kazuo

    2013-09-01

    Diamondoids, sp3 hybridized molecules consisting of a cage-like carbon framework with hydrogen terminations, hold promise for many applications: biotechnology, medicine, and opto- and nanoelectronics. So far, diamondoids consisting of more than four cage units have been synthesized by electric discharge and pulsed laser plasmas in supercritical fluids, but the generation of plasmas in high-pressure media is not straightforward. Here we present an alternative, continuous flow process, where diamondoids are synthesized by dielectric barrier discharges inside microreactors. The plasmas were generated at peak-to-peak voltages of 3 - 4 kV at a frequency of 10 kHz, in Ar (96 - 100%-vol) - methane (0 - 4%-vol) - hydrogen (0 - 4%-vol) mixtures, at atmospheric pressure and flow rates of 2 - 20 sccm. As a precursor we used the first diamondoid, adamantane, whose density was controlled by adjusting the reactor temperature in the range from 293 to 323 K. Gas chromatography - mass spectrometry analysis indicated the synthesis of the second diamondoid, diamantane, and the presence of alkylated adamantane derivatives suggests a stepwise reaction mechanism. We will also discuss the influence of the plasma gas composition and precursor density on the diamondoid synthesis. Grant No. 21110002, MEXT, Japan.

  4. Interaction of hydrogen chloride with alumina. [atmospheric effluent concentrations and interaction of solid rocket propellants used in space shuttle

    NASA Technical Reports Server (NTRS)

    Bailey, R. R.; Wightman, J. P.

    1978-01-01

    The influence of temperature, pressure, and outgas conditions on the absorption of hydrogen chloride and water vapor on both alpha and gamma alumina was studied. Characterization of the adsorbents was performed using X-ray powder diffraction, scanning electron microscopy (SEM), low temperature nitrogen adsorption desorption measurements, BET nitrogen surface area measurements and electron spectroscopy for chemical analysis (ESCA). Water vapor adsorption isotherms at 30, 40, and 50 C were measured on alpha and gamma alumina after outgassing at 80, 200, and 400 C. Both outgas temperature and adsorption temperature influenced the adsorption of water vapor on the aluminas. The water vapor adsorption was completely reversible. Alpha alumina absorbed more water per unit area than gamma alumina. Differences in the adsorption capacity for water vapor of the two aluminas were explained on the basis of ideal surface models of alpha and gamma alumina. Isosteric heats of adsorption for water vapor on the aluminas were determined over a limited range of surface coverage.

  5. Optimization and application of atmospheric pressure chemical and photoionization hydrogen-deuterium exchange mass spectrometry for speciation of oxygen-containing compounds.

    PubMed

    Acter, Thamina; Kim, Donghwi; Ahmed, Arif; Jin, Jang Mi; Yim, Un Hyuk; Shim, Won Joon; Kim, Young Hwan; Kim, Sunghwan

    2016-05-01

    This paper presents a detailed investigation of the feasibility of optimized positive and negative atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) and atmospheric pressure photoionization (APPI) MS coupled to hydrogen-deuterium exchange (HDX) for structural assignment of diverse oxygen-containing compounds. The important parameters for optimization of HDX MS were characterized. The optimized techniques employed in the positive and negative modes showed satisfactory HDX product ions for the model compounds when dichloromethane and toluene were employed as a co-solvent in APCI- and APPI-HDX, respectively. The evaluation of the mass spectra obtained from 38 oxygen-containing compounds demonstrated that the extent of the HDX of the ions was structure-dependent. The combination of information provided by different ionization techniques could be used for better speciation of oxygen-containing compounds. For example, (+) APPI-HDX is sensitive to compounds with alcohol, ketone, or aldehyde substituents, while (-) APPI-HDX is sensitive to compounds with carboxylic functional groups. In addition, the compounds with alcohol can be distinguished from other compounds by the presence of exchanged peaks. The combined information was applied to study chemical compositions of degraded oils. The HDX pattern, double bond equivalent (DBE) distribution, and previously reported oxidation products were combined to predict structures of the compounds produced from oxidation of oil. Overall, this study shows that APCI- and APPI-HDX MS are useful experimental techniques that can be applied for the structural analysis of oxygen-containing compounds. PMID:26898203

  6. Accelerated formation of sodium depletion layer on soda lime glass surface by corona discharge treatment in hydrogen atmosphere

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Keiga; Ikeda, Hiroshi; Sakai, Daisuke; Funatsu, Shiro; Uraji, Keiichiro; Yamamoto, Kiyoshi; Suzuki, Toshio; Harada, Kenji; Nishii, Junji

    2014-05-01

    Formation of a sodium depletion layer on a soda lime glass surface was accelerated efficiently using a corona discharge treatment in H2 atmosphere. One origin of such acceleration was the preferential generation of H+ with a larger mobility at an anode needle end with a lower applied voltage than that in air. The second origin was the applied voltage across the glass plate during the corona discharge treatment, which was estimated theoretically as 2.7 times higher than that in air. These two effects doubled the depletion layer thickness compared with that in air.

  7. CVD synthesis of mono- and few-layer graphene using alcohols at low hydrogen concentration and atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Campos-Delgado, Jessica; Botello-Méndez, Andrés R.; Algara-Siller, Gerardo; Hackens, Benoit; Pardoen, Thomas; Kaiser, Ute; Dresselhaus, Mildred S.; Charlier, Jean-Christophe; Raskin, Jean-Pierre

    2013-10-01

    An original and easy route to produce mono-, bi- and tri-layer graphene is proposed using the chemical vapor deposition technique. The synthesis is carried out at atmospheric pressure using liquid precursors, copper as catalyst, and a single gas injection line consisting of a very diluted mixture of H2 in Argon (H2: 5%). Two different alcohols are investigated as possible sources of carbon: 2-phenylethanol and ethanol. The characterization of the samples with SEM, TEM and Raman spectroscopy confirms the presence of graphene on top of copper, and yields a detailed picture of the structure of the produced graphene layers.

  8. The continuous measurement of hydrogen chloride in the ambient atmosphere using the dual isotope infrared absorption technique

    NASA Technical Reports Server (NTRS)

    Williams, K. G.

    1974-01-01

    The results of a program to develop a prototype gas filter correlation NDIR analyzer capable of providing the required HCl measurement capability, while maintaining an adequate rejection of any other gases anticipated in the atmosphere are presented. Examples of the performance of the prototype analyzer are presented which show an rms noise equivalent concentration of 0.06 ppm of HCl was achieved while maintaining an electronically determined 10% to 90% time response to gas samples of about 2 seconds. No measureable response was observed to CO2, CO, and H2O while maintaining an adequate rejection of the hydrocarbons, for example CH4 and n-hexane. The experiments were performed which demonstrate that the span stability of the HCl gas filter correlation analyzer is unaffected by the presence of water vapor and which support the belief that the incorporation of a relatively open-volume, multiple path sample cell into the instrument would enable ground station as well as airborne measurements of trace quantities of HCl in the ambient atmosphere to be performed.

  9. Hydrogen Cyanide Production due to Mid-Size Impacts in a Redox-Neutral N2-Rich Atmosphere

    NASA Astrophysics Data System (ADS)

    Kurosawa, Kosuke; Sugita, Seiji; Ishibashi, Ko; Hasegawa, Sunao; Sekine, Yasuhito; Ogawa, Nanako O.; Kadono, Toshihiko; Ohno, Sohsuke; Ohkouchi, Naohiko; Nagaoka, Yoichi; Matsui, Takafumi

    2013-06-01

    Cyanide compounds are amongst the most important molecules of the origin of life. Here, we demonstrate the importance of mid-size (0.1-1 km in diameter) hence frequent meteoritic impacts to the cyanide inventory on the early Earth. Subsequent aerodynamic ablation and chemical reactions with the ambient atmosphere after oblique impacts were investigated by both impact and laser experiments. A polycarbonate projectile and graphite were used as laboratory analogs of meteoritic organic matter. Spectroscopic observations of impact-generated ablation vapors show that laser irradiation to graphite within an N2-rich gas can produce a thermodynamic environment similar to that produced by oblique impacts. Thus, laser ablation was used to investigate the final chemical products after this aerodynamic process. We found that a significant fraction (>0.1 mol%) of the vaporized carbon is converted to HCN and cyanide condensates, even when the ambient gas contains as much as a few hundred mbar of CO2. As such, the column density of cyanides after carbon-rich meteoritic impacts with diameters of 600 m would reach ~10 mol/m2 over ~102 km2 under early Earth conditions. Such a temporally and spatially concentrated supply of cyanides may have played an important role in the origin of life.

  10. Climatic effects of atmospheric transport and transformation of hydrogenous species. Progress report, July 1, 1980-June 30, 1981

    SciTech Connect

    Oestlund, H.G.; Mason, A.S.

    1981-01-01

    The atmospheric sampling for tritium as HTO and HT has been continued at the stations at Baring Head Lighthouse, New Zealand, and in Fairbanks, Alaska, and Miami, Florida. In addition, tritium bound to hydrocarbons has also been sampled in Miami. All HT sources are in the Northern Hemisphere; when the global burden of tritium in the form of HTO and HT, was estimated, it was found that the variations between Fairbanks, Alaska, and Miami, Florida, were quite erratic and warranted at least one more northern station. A station was therefore established at Oregon State University's Marine Sciences Center, at Newport, Oregon, on the Pacific Ocean. The station was established on January 15, 1981 and is now functioning without problems. Tabulated results from all four stations are presented. The global inventory of tritium gas was about 1.3 kg of tritium in the mid-70s. It has been steadily decreasing, and the present value, June 1981 is approximately 700 g. This development is attributed to virtual cessation of the reprocessing of nuclear fuel elements and possibly better precautions taken by various nuclear installations handling tritium in gaseous form. (JGB)

  11. Kinetic measurements of the reactivity of hydrogen peroxide and ozone towards small atmospherically relevant aldehydes, ketones and organic acids in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Schöne, L.; Herrmann, H.

    2014-05-01

    Free radical reactions are an important degradation process for organic compounds within the aqueous atmospheric environment. Nevertheless, non-radical oxidants such as hydrogen peroxide and ozone also contribute to the degradation and conversion of these substances (Tilgner and Herrmann, 2010). In this work, kinetic investigations of non-radical reactions were conducted using UV / Vis spectroscopy (dual-beam spectrophotometer and stopped flow technique) and a capillary electrophoresis system applying pseudo-first order kinetics to reactions of glyoxal, methylglyoxal, glycolaldehyde, glyoxylic, pyruvic and glycolic acid as well as methacrolein (MACR) and methyl vinyl ketone (MVK) with H2O2 and ozone at 298 K. The measurements indicate rather small rate constants at room temperature of k2nd < 3 M-1 s-1 (except for the unsaturated compounds exposed to ozone). Compared to radical reaction rate constants the values are about 10 orders of magnitude smaller (kOH • ~109 M-1 s-1). However, when considering the much larger non-radical oxidant concentrations compared to radical concentrations in urban cloud droplets, calculated first-order conversion rate constants change the picture towards H2O2 reactions becoming more important, especially when compared to the nitrate radical. For some reactions mechanistic suggestions are also given.

  12. Kinetic measurements on the reactivity of hydrogen peroxide and ozone towards small atmospherically relevant aldehydes, ketones and organic acids in aqueous solution

    NASA Astrophysics Data System (ADS)

    Schöne, L.; Herrmann, H.

    2013-10-01

    Within the aqueous atmospheric environment free radical reactions are an important degradation process for organic compounds. Nevertheless, non-radical oxidants like hydrogen peroxide and ozone also contribute to the degradation and conversion of this substance group (Tilgner und Herrmann, 2010). In this work kinetic investigations of non-radical reactions were conducted using UV/Vis spectroscopy (dual-beam spectrophotometer and Stopped Flow technique) and a capillary electrophoresis system applying pseudo-first order kinetics of glyoxal, methylglyoxal, glycolaldehyde, glyoxylic, pyruvic and glycolic acids as well as methacrolein (MACR) and methyl vinyl ketone (MVK) towards H2O2 and ozone. The measurements indicate rather small rate constants at room temperature of k2nd < 3 M-1 s-1 (except for the unsaturated compounds exposed to ozone). Compared to radical reaction rate constants the values are about 10 orders of magnitude smaller (kOH· ~ 109 M-1 s-1). However, when considering the much larger non-radical oxidant concentrations compared to radical concentrations in urban cloud droplets, calculated turnovers change the picture to more important H2O2 reactions especially when compared to the nitrate radical. For some reactions also mechanistic suggestions are given.

  13. The a 3Σg+ - b 3Σu+ Continuum Emission from Electron Impact of Molecular Hydrogen in Saturn's Atmosphere

    NASA Astrophysics Data System (ADS)

    Hein, J. D.; Johnson, P. V.; Liu, X.; Malone, C. P.; Khakoo, M. A.

    2014-12-01

    Shemansky et al. (2009, Planetary and Space Science 57: 1659-1670) have reported observations of hydrogen atoms flowing out of the top of Saturn's sunlit thermosphere in a confined, distinct plume of ballistic and escaping orbits, and a continuous distribution of H atoms from the top of Saturn's atmosphere to at least 45 Saturn radii (RS) in the satellite orbital plane and to 25 RS azimuthally above and below the plane. These observations have revealed the importance of the excitation of H2 by low energy electrons. H2 is efficiently excited to the triplet states by low energy electrons, and all triplet excitations result in the dissociation of H2 and the production of hot H atoms. Because of this, the electron impact excitation of H2 is an important energy deposition mechanism in the upper atmospheres of Saturn and other giant planets. The a 3Σg+ - b 3Σu continuum transition, which dominates all other H2 transitions in the 168-190 nm region, provides a unique spectral window through which the triplet transition can be observed with the Cassini spacecraft. The excitation and emission cross sections of the a 3Σg+ state and other triplet states are required for the extraction of the triplet emission and excitation rates from the apparent emission rate measured by the spacecraft. These emission and excitation rates, in turn, help to determine the energy deposition rate by electron impact excitation. Unfortunately, large discrepancies exist between published measurements of the a 3Σg+ - b 3Σu continuum transition. In order to begin to address this issue, we have recently revisited the problem by measuring electron impact induced a 3Σg+ - b 3Σu emission cross sections. We have also measured direct excitation cross sections of the triplet a 3Σg+ state. Using these, we are able to partition the excitation function into its direct and cascade components. As stated above, these results will enable improved understanding of phenomena observed in Saturn's atmosphere

  14. Oxidation resistant organic hydrogen getters

    DOEpatents

    Shepodd, Timothy J.; Buffleben, George M.

    2008-09-09

    A composition for removing hydrogen from an atmosphere, comprising a mixture of a polyphenyl ether and a hydrogenation catalyst, preferably a precious metal catalyst, and most preferably Pt. This composition is stable in the presence of oxygen, will not polymerize or degrade upon exposure to temperatures in excess of 200.degree. C., or prolonged exposure to temperatures in the range of 100-300.degree. C. Moreover, these novel hydrogen getter materials can be used to efficiently removing hydrogen from mixtures of hydrogen/inert gas (e.g., He, Ar, N.sub.2), hydrogen/ammonia atmospheres, such as may be encountered in heat exchangers, and hydrogen/carbon dioxide atmospheres. Water vapor and common atmospheric gases have no adverse effect on the ability of these getter materials to absorb hydrogen.

  15. Measurement of atmospheric hydrogen peroxide and organic peroxides in Beijing before and during the 2008 Olympic Games: Chemical and physical factors influencing their concentrations

    NASA Astrophysics Data System (ADS)

    He, S. Z.; Chen, Z. M.; Zhang, X.; Zhao, Y.; Huang, D. M.; Zhao, J. N.; Zhu, T.; Hu, M.; Zeng, L. M.

    2010-09-01

    For the 2008 Beijing Olympic Games full-scale control (FSC) of atmospheric pollution was implemented to improve the air quality from 20 July to 20 September 2008, resulting in a significant decrease in the emission of pollutants in urban Beijing, especially vehicular emissions. The combination of reduced emissions and weather condition changes provided us with a unique opportunity to investigate urban atmospheric chemistry. Hydrogen peroxide (H2O2) and organic peroxides play significant roles in atmospheric processes, such as the cycling of HOx radicals and the formation of secondary sulfate aerosols and secondary organic aerosols. We measured atmospheric H2O2 and organic peroxides in urban Beijing, at the Peking University campus, from 12 July to 30 September, before and during the FSC. The major peroxides observed were H2O2, methyl hydroperoxide (MHP), and peroxyacetic acid (PAA), having maximal mixing ratios of 2.34, 0.95, and 0.17 ppbv (parts per billion by volume), respectively. Other organic peroxides were detected occasionally, such as bis-hydroxymethyl hydroperoxide, hydroxymethyl hydroperoxide, ethyl hydroperoxide, and 1-hydroxyethyl hydroperoxide. On sunny days the concentrations of H2O2, MHP, and PAA exhibited pronounced diurnal variations, with a peak in the afternoon (1500-1900) and, occasionally, a second peak in the evening (2000-0200). The night peaks can be attributed to local night production from the ozonolysis of alkenes, coupled with the reaction between NO3 radicals and organic compounds. Sunny-day weather dominated during 16-26 July, and we found that the concentrations of H2O2, MHP, and PAA increased strikingly on 22-26 July, compared with the concentrations during 16-19 July. This effect was mainly attributed to the NOx (NO and NO2) decline because of the FSC, due to (i) the suppressing effect of NO and NO2 on the production of peroxides and (ii) the indirect effect of reduced NOx on the concentration of peroxides via O3 production in the

  16. Effects of natural and anthropogenic CH4 sources on variations of atmospheric CH4 over western Siberia identified by its carbon and hydrogen stable isotopes

    NASA Astrophysics Data System (ADS)

    Umezawa, T.; Machida, T.; Aoki, S.; Nakazawa, T.

    2010-12-01

    Western Siberia is thought to be important for the global CH4 budget due to the presence of large natural and anthropogenic CH4 sources. We have conducted aircraft observations of CH4 concentration at altitudes of 0.5-7 km over the region once a month since 1993. Deviations of the CH4 concentration from the best-fit curves obtained at the respective altitudes indicated that the lowest layer below 2 km was generally influenced by the local sources. In order to examine effects of the sources on the observed CH4 variations, measurements of carbon and hydrogen stable isotopic ratios of atmospheric CH4 (δ13CH4 and δD-CH4) at altitudes of 1 and 2 km were also made during 2005-2009. In most observation flights, the CH4 concentration was higher at 1 km than that at 2 km with lower δ13CH4 and δD-CH4 values. These vertical gradients, which were pronounced in summer, imply the presence of strong CH4 sources at the ground surface with low δ13CH4 and δD-CH4 values. δ13CH4 at 1 km showed its seasonal minimum in late summer, while the CH4 concentration and δD-CH4 did not show such clear seasonality, because they were masked by large variability. By inspecting relationships between the CH4 concentration and δ13CH4 (δD-CH4) (Miller/Tans plot), we examined the CH4 sources influencing on atmospheric CH4 variations in various timescales. δ13CH4 and δD-CH4 values of the CH4 source in winter (December-April) were estimated to be -41.2±1.8‰ and -187±18‰, respectively, while those in summer (June-October) to be -65.0±2.5‰ and -282±25‰. Since these isotopic values for respective seasons were consistent with those of CH4 originated from fossil and biogenic sources, fossil fuel and wetlands would be the primary CH4 sources in winter and summer, respectively. It was also indicated from various Miller/Tans plots that fossil source brought relatively short-term variations of atmospheric CH4 while wetlands did long-term variations, which might be explained by spot

  17. Hydrogen Sulfide Sequestration and Storage in Geothermal System: New Mitigation Strategy to Reduce H2S from the Atmosphere and Detect its Mineralization with Multiple Sulfur Isotopic Systematics

    NASA Astrophysics Data System (ADS)

    Marieni, C.; Stefansson, A.; Gudbrandsson, S.; Gunnarsson, I.; Aradottir, E. S.; Gunnarsson Robin, J.; Ono, S.

    2015-12-01

    Hydrogen sulfide (H2S) is one of the major components in geothermal fluids and is commonly emitted into the atmosphere from geothermal power plants causing potential environmental problems. Among several mitigation methods proposed to reduce the H2S emissions, is H2S sequestration into geothermal systems. Reykjavík Energy is undertaking a pilot project at Hellisheidi geothermal system (SW Iceland) called Sulfix project where H2S is being injected into the geothermal reservoir for permanent sequestration into pyrite. The SulFix project started its operation in June 2014: the soluble geothermal gases are dissolved in geothermal waste water, and injected at 8 bars into the high temperature reservoir (>200˚C) at 750 m below the wellhead. The reactions involving sulfur in the geothermal reservoir may be traced using sulfur fluid chemistry and multiple sulfur isotope systematics (32S, 33S, 34S and 36S), including mixing between the reservoir geothermal fluid and the injection fluid, sulfide mineralization and oxidation of sulfide to sulfate. In this study we investigated the multiple sulfur isotope systematics upon sulfide mineralization under geothermal conditions. High temperature flow through experiments were carried out in basaltic glass at 200-250°C and ~5 mmol/kg H2S to study the fluid-rock interaction. The results indicate that the sulfide mineralization occurs rapidly under geothermal conditions, highlighting the leaching rate of iron from the basaltic glass as the mineralization rate determining factor. Moreover, the formation of sulfide may be traced using the δ34S-Δ33S relationship in the fluids and pyrite formation - for example to determine if non-reactive mixing between the injection fluids and reservoir fluids occurs at Hellisheidi. The experimental results have been further supported by geochemical modeling involving multiple sulfur isotope fractionation between aqueous sulfide species and rocks upon basalt dissolution and secondary pyrite formation.

  18. The microbial-kill characteristics of saturated steam plus 1,000 to 10,000 ppm hydrogen peroxide at atmospheric pressure.

    PubMed

    Pflug, Irving J; Melgaard, Hans L; Schaffer, Shawn M; Lysfjord, Jack P

    2008-01-01

    This is the report of a project carried out to determine the microbial-kill characteristics of saturated steam plus hydrogen peroxide (H2O2) using a specially-constructed test apparatus. Spores on stainless-steel planchets were inserted into a flowing gaseous atmosphere of steam plus H2O2 for a timed exposure to the lethal agent. The specially-designed test apparatus and its operating parameters are described. Geobacillus stearothermophilus (former name, Bacillus stearothermophilus) spore-death rates were evaluated in several spore-planchet handling modes. Enumeration microbial recovery methods were used. The data were analyzed using survivor-curve methods; D-values were calculated using the initial number of spores per planchet and the number of spores surviving the process. Extensive tests were carried out using Geobacillus stearothermophilus spores; limited tests were carried out using Bacillus smithii ATCC 51232 (former name, Bacillus coagulans), Bacillus macerans, and Bacillus subtilis, subtilis ATCC 35021 spores (former name, Bacillus subtilis, CCC 5230, Kerns 15U). For G. stearothermophilus spores subjected to steam plus H2O2 and recovered using the 2B procedure (planchets deposited in sterile, 100-mL bottles containing 50.0 mL of buffer immediately after they were subjected to the steam-H2O2 condition; 11 experiments), the mean D-value was 0.48 min at 2,500 ppm and 0.22 min at 7,500 ppm. The application of steam plus H2O2 to the sterilization of barrier isolator enclosures is discussed. PMID:18540535

  19. The photochemistry of planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Dalgarno, A.

    1988-01-01

    Recent theoretical and observational investigations of photochemical processes in the atmospheres of the planets and their satellites are reviewed. Particular attention is given to the CO2-dominated atmospheres of Mars and Venus, the hydrogen-dominated atmospheres of the Jovian planets, the SO2 atmosphere of Io, and the massive atmospheres of Titan and Triton. The principal reaction paths involved are listed and briefly characterized, and numerical data on atmospheric compositions are given in tables.

  20. Process for hydrogenating coal and coal solvents

    DOEpatents

    Tarrer, Arthur R.; Shridharani, Ketan G.

    1983-01-01

    A novel process is described for the hydrogenation of coal by the hydrogenation of a solvent for the coal in which the hydrogenation of the coal solvent is conducted in the presence of a solvent hydrogenation catalyst of increased activity, wherein the hydrogenation catalyst is produced by reacting ferric oxide with hydrogen sulfide at a temperature range of 260.degree. C. to 315.degree. C. in an inert atmosphere to produce an iron sulfide hydrogenation catalyst for the solvent. Optimally, the reaction temperature is 275.degree. C. Alternately, the reaction can be conducted in a hydrogen atmosphere at 350.degree. C.

  1. Hydrogen separation process

    DOEpatents

    Mundschau, Michael; Xie, Xiaobing; Evenson, IV, Carl; Grimmer, Paul; Wright, Harold

    2011-05-24

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  2. Seasonal cycles of atmospheric methane and its carbon and hydrogen isotopic ratios in the lower and upper troposphere of the western Pacific region

    NASA Astrophysics Data System (ADS)

    Umezawa, T.; Aoki, S.; Nakazawa, T.; Machida, T.; Matsueda, H.; Sawa, Y.; Ishijima, K.; Patra, P. K.

    2009-12-01

    Although carbon and hydrogen isotopic ratios (δ13C and δD) of CH4 provide useful information about its sources and sinks, systematic measurements were quite limited. Tohoku University group and NIES group have conducted air-sampling programs by using commercial container ships sailing between Japan and New Zealand and by using commercial airliners flying between Australia and Japan, respectively. Using air samples collected by the programs, systematic measurements of δ13C and δD of atmospheric CH4 as well as CH4 concentration ([CH4]) have been made since 2006. Here, we report their spatial and temporal variations in the lower and upper troposphere (LT and UT). In the LT of the northern hemisphere (NH), the seasonal cycle of [CH4] showed the maximum in winter and the minimum in summer. δ13C varied seasonally almost negatively correlating with the [CH4], and the seasonality of δD showed much more significant negative correlation with the [CH4]. It was also found that CH4 sources with seasonally varying strength, such as wetlands with high emissions in late summer, play an important role in the atmospheric CH4 variations. In the tropics, a seasonally-dependent air exchange between the NH and the southern hemisphere (SH) was found to characterize the seasonal CH4 cycle. When the NH and SH air arrived, high and low [CH4] were observed, accompanied by low and high δ13C and δD values, respectively. In the LT of the SH, the seasonal maximum and minimum of the [CH4] appeared in austral winter and summer, respectively. The seasonal CH4 cycle was mainly ascribed to the seasonality in the CH4+OH reaction, but δ13C and δD showed rather complicated seasonality with larger amplitudes than expected from the CH4+OH reaction alone, suggesting additional contribution of a CH4+Cl reaction in the marine boundary layer. In the UT of the NH, the seasonal maximum and minimum of the [CH4] appeared in summer and winter-spring, respectively, with low and high values of δ13C and

  3. Biological hydrogen photoproduction

    SciTech Connect

    Nemoto, Y.

    1995-09-01

    Following are the major accomplishments of the 6th year`s study of biological hydrogen photoproduction which were supported by DOE/NREL. (1) We have been characterizing a biological hydrogen production system using synchronously growing aerobically nitrogen-fixing unicellular cyanobacterium, Synechococcus sp. Miami BG 043511. So far it was necessary to irradiate the cells to produce hydrogen. Under darkness they did not produce hydrogen. However, we found that, if the cells are incubated with oxygen, they produce hydrogen under the dark. Under 80% argon + 20% oxygen condition, the hydrogen production activity under the dark was about one third of that under the light + argon condition. (2) Also it was necessary so far to incubate the cells under argon atmosphere to produce hydrogen in this system. Argon treatment is very expensive and should be avoided in an actual hydrogen production system. We found that, if the cells are incubated at a high cell density and in a container with minimum headspace, it is not necessary to use argon for the hydrogen production. (3) Calcium ion was found to play an important role in the mechanisms of protection of nitrogenase from external oxygen. This will be a clue to understand the reason why the hydrogen production is so resistant to oxygen in this strain. (4) In this strain, sulfide can be used as electron donor for the hydrogen production. This result shows that waste water can be used for the hydrogen production system using this strain.

  4. Carbon and hydrogen isotope composition and C-14 concentration in methane from sources and from the atmosphere: Implications for a global methane budget

    NASA Technical Reports Server (NTRS)

    Wahlen, Martin

    1994-01-01

    The topics covered include the following: biogenic methane studies; forest soil methane uptake; rice field methane sources; atmospheric measurements; stratospheric samples; Antarctica; California; and Germany.

  5. Structure and magnetic properties of Ge99.04Mn0.96 thin film prepared by thermal evaporation of Mn doped GeO2 ceramic film under hydrogen atmosphere

    NASA Astrophysics Data System (ADS)

    Jing, Chengbin; Guo, Hong; Bai, Wei; Hu, Zhigao; Yang, Jing; Yang, Pingxiong; Chu, Junhao; Liu, Aiyun; Lin, Fangting

    2013-12-01

    Ge99.04Mn0.96 thin film was fabricated by thermal evaporation of Mn doped GeO2 ceramic film under hydrogen atmosphere. Secondary phases were not detected by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) analyses. The film is p type. Room-temperature ferromagnetism was detected in the film. The ferromagnetic behavior may arise from alignment of the bound magnetic polarons (BMP) mediated by the localized holes in the system as well as ultra small secondary phases unable to be detected by XRD and HRTEM analyses.

  6. IN SITU ACCRETION OF HYDROGEN-RICH ATMOSPHERES ON SHORT-PERIOD SUPER-EARTHS: IMPLICATIONS FOR THE KEPLER-11 PLANETS

    SciTech Connect

    Ikoma, M.; Hori, Y. E-mail: yasunori.hori@nao.ac.jp

    2012-07-01

    Motivated by recent discoveries of low-density super-Earths with short orbital periods, we have investigated in situ accretion of H-He atmospheres on rocky bodies embedded in dissipating warm disks, by simulating quasi-static evolution of atmospheres that connect to the ambient disk. We have found that the atmospheric evolution has two distinctly different outcomes, depending on the rocky body's mass: while the atmospheres on massive rocky bodies undergo runaway disk-gas accretion, those on light rocky bodies undergo significant erosion during disk dispersal. In the atmospheric erosion, the heat content of the rocky body that was previously neglected plays an important role. We have also realized that the atmospheric mass is rather sensitive to disk temperature in the mass range of interest in this study. Our theory is applied to recently detected super-Earths orbiting Kepler-11 to examine the possibility that the planets are rock-dominated ones with relatively thick H-He atmospheres. The application suggests that the in situ formation of the relatively thick H-He atmospheres inferred by structure modeling is possible only under restricted conditions, namely, relatively slow disk dissipation and/or cool environments. This study demonstrates that low-density super-Earths provide important clues to understanding of planetary accretion and disk evolution.

  7. Hydrogen environment embrittlement of metals

    NASA Technical Reports Server (NTRS)

    Jewett, R. P.; Walter, R. J.; Chandler, W. T.; Frohmberg, R. P.

    1973-01-01

    Hydrogen environment embrittlement refers to metals stressed while exposed to a hydrogen atmosphere. Tested in air, even after exposure to hydrogen under pressure, this effect is not observed on similar specimens. Much high purity hydrogen is prepared by evaporation of liquid hydrogen, and thus has low levels for potential impurities which could otherwise inhibit or poison the absorbent reactions that are involved. High strength steels and nickel-base allows are rated as showing extreme embrittlement; aluminum alloys and the austenitic stainless steels, as well as copper, have negligible susceptibility to this phenomenon. The cracking that occurs appears to be a surface phenomenon, is unlike that of internal hydrogen embrittlement.

  8. Novel strategy to mitigate cathode catalyst degradation during air/air startup cycling via the atmospheric resistive switching mechanism of a hydrogen anode with a platinum catalyst supported on tantalum-doped titanium dioxide

    NASA Astrophysics Data System (ADS)

    Shintani, Haruhiko; Kojima, Yuya; Kakinuma, Katsuyoshi; Watanabe, Masahiro; Uchida, Makoto

    2015-10-01

    We propose a new strategy for alleviating the reverse current phenomenon using a unique "atmospheric resistive switching mechanism" (ARSM) of a metal oxide semiconductor support, such that the electrical resistivity changes depending on the gas atmosphere. The membrane-electrode assembly (MEA) using Ta-doped TiO2-supported platinum (Pt/Ta-TiO2) as the anode catalyst showed approximately one order of magnitude greater resistance in air than in hydrogen. The overpotential of the hydrogen oxidation reaction was negligible up to at least 1.5 A cm-2. The losses of electrochemically active surface area and carbon corrosion of the cathode catalyst during air/air startup cycling were significantly suppressed by the use of the Pt/Ta-TiO2 anode. The decrease in the degradation is attributed to a reduction of the reverse current due to a low oxygen reduction reaction rate at the anode, which showed high resistivity in air. These results demonstrate the effectiveness of the ARSM in mitigating cathode catalyst degradation during air/air startup cycling.

  9. Historical Doses from Tritiated Water and Tritiated Hydrogen Gas Released to the Atmosphere from Lawrence Livermore National Laboratory (LLNL). Part 2. LLNL Annual Site-specific Data, 1953 - 2003

    SciTech Connect

    Peterson, S R

    2005-03-07

    It is planned to use the tritium dose model, DCART (Doses from Chronic Atmospheric Releases of Tritium), to reconstruct dose to the hypothetical maximally exposed individual from annual routine releases of tritiated water (HTO) and tritiated hydrogen gas (HT) from all Lawrence Livermore National Laboratory (LLNL) facilities and from the Sandia National (SNL) Laboratory's Tritium Research Laboratory over the last fifty years. DCART has been described in Part 1 of ''Historical Doses From Tritiated Water And Tritiated Hydrogen Gas Released To The Atmosphere from Lawrence Livermore National Laboratory (LLNL)'' (UCRL-TR-205083). This report (Part 2) summarizes information about annual routine releases of tritium from LLNL (and SNL) since 1953. Historical records were used to derive facility-specific annual data (e.g., source terms, dilution factors, ambient air concentrations, meteorological data, including absolute humidity and rainfall, etc.) and their associated uncertainty distributions. These data will be used as input to DCART to calculate annual dose for each year of LLNL operations. Sources of information are carefully referenced, and assumptions are documented. Confidence on all data post-1974 is quite high. Prior to that, further adjustment to the estimated uncertainty may have to be made if more information comes to light.

  10. HYDROGEN SEPARATION MEMBRANES

    SciTech Connect

    Donald P. McCollor; John P. Kay

    1999-08-01

    A likely membrane for future testing of high-temperature hydrogen separation from a gasification product stream was targeted as an inorganic analog of a dense-metal membrane, where the hydrogen would dissolve into and diffuse through the membrane structure. An amorphous membrane such as zinc sulfide appeared to be promising. Previously, ZnS film coating tests had been performed using an electron-beam vacuum coating instrument, with zinc films successfully applied to glass substrates. The coatings appeared relatively stable in air and in a simple simulated gasification atmosphere at elevated temperature. Because the electron-beam coating instrument suffered irreparable breakdown, several alternative methods were tested in an effort to produce a nitrogen-impermeable, hydrogen-permeable membrane on porous sintered steel substrates. None of the preparation methods proved successful in sealing the porous substrate against nitrogen gas. To provide a nitrogen-impermeable ZnS material to test for hydrogen permeability, two ZnS infrared sample windows were purchased. These relatively thick ''membranes'' did not show measurable permeation of hydrogen, either due to lack of absorption or a negligible permeation rate due to their thickness. To determine if hydrogen was indeed adsorbed, thermogravimetric and differential thermal analyses tests were performed on samples of ZnS powder. A significant uptake of hydrogen gas occurred, corresponding to a maximum of 1 mole H{sub 2} per 1 mole ZnS at a temperature of 175 C. The hydrogen remained in the material at ambient temperature in a hydrogen atmosphere, but approximately 50% would be removed in argon. Reheating in a hydrogen atmosphere resulted in no additional hydrogen uptake. Differential scanning calorimetry indicated that the hydrogen uptake was probably due to the formation of a zinc-sulfur-hydrogen species resulting in the formation of hydrogen sulfide. The zinc sulfide was found to be unstable above approximately 200 C

  11. Efficient, solvent-free hydrogenation of α-angelica lactone catalysed by Ru/C at atmospheric pressure and room temperature.

    PubMed

    Al-Shaal, Mohammad G; Hausoul, Peter J C; Palkovits, Regina

    2014-09-14

    The hydrogenation of α-angelica lactone was investigated over Ru/C. A mild protocol was developed, which resulted in full conversion and 96% selectivity toward γ-valerolactone. The reaction network was investigated and α-angelica lactone was employed in the one-pot conversion into 2-methyltetrahydrofuran, demonstrating its superiority as a platform molecule in potential biorefinery schemes. PMID:25027166

  12. Hydrogen production

    NASA Technical Reports Server (NTRS)

    England, C.; Chirivella, J. E.; Fujita, T.; Jeffe, R. E.; Lawson, D.; Manvi, R.

    1975-01-01

    The state of hydrogen production technology is evaluated. Specific areas discussed include: hydrogen production fossil fuels; coal gasification processes; electrolysis of water; thermochemical production of hydrogen; production of hydrogen by solar energy; and biological production of hydrogen. Supply options are considered along with costs of hydrogen production.

  13. Polymer system for gettering hydrogen

    DOEpatents

    Shepodd, Timothy Jon; Whinnery, LeRoy L.

    2000-01-01

    A novel composition comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen.

  14. Polymer formulations for gettering hydrogen

    DOEpatents

    Shepodd, Timothy Jon; Whinnery, LeRoy L.

    1998-11-17

    A novel composition comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen.

  15. Polymer formulations for gettering hydrogen

    DOEpatents

    Shepodd, T.J.; Whinnery, L.L.

    1998-11-17

    A novel composition is described comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen. 1 fig.

  16. Organic chemistry in the atmosphere. [laboratory modeling of Titan atmosphere

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1974-01-01

    The existence of an at least moderately complex organic chemistry on Titan is stipulated based on clear evidence of methane, and at least presumptive evidence of hydrogen in its atmosphere. The ratio of methane to hydrogen is the highest of any atmosphere in the solar system. Irradiation of hydrogen/methane mixtures produces aromatic and aliphatic hydrocarbons. A very reasonable hypothesis assumes that the red cloud cover of Titan is made of organic chemicals. Two-carbon hydrocarbons experimentally produced from irradiated mixtures of methane, ammonia, water, and hydrogen bear out the possible organic chemistry of the Titanian environment.

  17. Method for direct production of carbon disulfide and hydrogen from hydrocarbons and hydrogen sulfide feedstock

    SciTech Connect

    Miao, Frank Q.; Erekson, Erek James

    1998-12-01

    A method for converting hydrocarbons and hydrogen sulfide to carbon disulfide and hydrogen is provided comprising contacting the hydrocarbons and hydrogen sulfide to a bi-functional catalyst residing in a controlled atmosphere for a time and at a temperature sufficient to produce carbon disulfide and hydrogen. Also provided is a catalyst for converting carbon sulfides and hydrogen sulfides to gasoline range hydrocarbons comprising a mixture containing a zeolite catalyst and a hydrogenating catalyst.

  18. Method for absorbing hydrogen using an oxidation resisant organic hydrogen getter

    DOEpatents

    Shepodd, Timothy J.; Buffleben, George M.

    2009-02-03

    A composition for removing hydrogen from an atmosphere, comprising a mixture of a polyphenyl ether and a hydrogenation catalyst, preferably a precious metal catalyst, and most preferably platinum, is disclosed. This composition is stable in the presence of oxygen, will not polymerize or degrade upon exposure to temperatures in excess of 200.degree. C., or prolonged exposure to temperatures in the range of 100-300.degree. C. Moreover, these novel hydrogen getter materials can be used to efficiently remove hydrogen from mixtures of hydrogen/inert gas (e.g., He, Ar, N.sub.2), hydrogen/ammonia atmospheres, such as may be encountered in heat exchangers, and hydrogen/carbon dioxide atmospheres. Water vapor and common atmospheric gases have no adverse effect on the ability of these getter materials to absorb hydrogen.

  19. Complex hydrides for hydrogen storage

    DOEpatents

    Zidan, Ragaiy

    2006-08-22

    A hydrogen storage material and process of forming the material is provided in which complex hydrides are combined under conditions of elevated temperatures and/or elevated temperature and pressure with a titanium metal such as titanium butoxide. The resulting fused product exhibits hydrogen desorption kinetics having a first hydrogen release point which occurs at normal atmospheres and at a temperature between 50.degree. C. and 90.degree. C.

  20. Molecular hydrogen (H2) emissions and their isotopic signatures (H/D) from a motor vehicle: implications on atmospheric H2

    NASA Astrophysics Data System (ADS)

    Vollmer, M. K.; Walter, S.; Bond, S. W.; Soltic, P.; Röckmann, T.

    2010-02-01

    Molecular hydrogen (H2), its isotopic signature (deuterium/hydrogen, δD), carbon monoxide (CO) and other compounds were studied in the exhaust of a passenger car engine fuelled with gasoline or methane and run under variable air-fuel ratios and operating modes. H2 and CO concentrations were largely reduced downstream of the three-way catalytic converter (TWC) compared to levels upstream, and showed a strong dependence on the air-fuel ratio (expressed as lambda, λ). The isotopic composition of H2 ranged from δD=-140‰ to δD=-195‰ upstream of the TWC but these values decreased to -270‰ to -370‰ after passing through the TWC. Post-TWC δD values for the fuel-rich range showed a strong dependence on TWC temperature with more negative δD for lower temperatures. These effects are attributed to a rapid temperature-dependent H-D isotope equilibration between H2 and water (H2O). In addition, post TWC δD in H2 showed a strong dependence on the fraction of removed H2, suggesting isotopic enrichment during catalytic removal of H2 with enrichment factors (ɛ) ranging from -39.8‰ to -15.5‰ depending on the operating mode. Our results imply that there may be considerable variability in real-world δD emissions from vehicle exhaust, which may mainly depend on TWC technology and exhaust temperature regime. This variability is suggestive of a δD from traffic that varies over time, by season, and by geographical location. An earlier-derived integrated pure (end-member) δD from anthropogenic activities of -270‰ (Rahn et al., 2002) can be explained as a mixture of mainly vehicle emissions from cold starts and fully functional TWCs, but enhanced δD values by >50‰ are likely for regions where TWC technology is not fully implemented. Our results also suggest that a full hydrogen isotope analysis on fuel and exhaust gas may greatly aid at understanding process-level reactions in the exhaust gas, in particular in the TWC.

  1. Molecular hydrogen (H2) emissions and their isotopic signatures (H/D) from a motor vehicle: implications on atmospheric H2

    NASA Astrophysics Data System (ADS)

    Vollmer, M. K.; Walter, S.; Bond, S. W.; Soltic, P.; Röckmann, T.

    2010-06-01

    Molecular hydrogen (H2), its isotopic signature (deuterium/hydrogen, δD), carbon monoxide (CO), and other compounds were studied in the exhaust of a passenger car engine fuelled with gasoline or methane and run under variable air-fuel ratios and operating modes. H2 and CO concentrations were largely reduced downstream of the three-way catalytic converter (TWC) compared to levels upstream, and showed a strong dependence on the air-fuel ratio (expressed as lambda, λ). The isotopic composition of H2 ranged from δD = -140‰ to δD = -195‰ upstream of the TWC but these values decreased to -270‰ to -370‰ after passing through the TWC. Post-TWC δD values for the fuel-rich range showed a strong dependence on TWC temperature with more negative δD for lower temperatures. These effects are attributed to a rapid temperature-dependent H-D isotope equilibration between H2 and water (H2O). In addition, post TWC δD in H2 showed a strong dependence on the fraction of removed H2, suggesting isotopic enrichment during catalytic removal of H2 with enrichment factors (ɛ) ranging from -39.8‰ to -15.5‰ depending on the operating mode. Our results imply that there may be considerable variability in real-world δD emissions from vehicle exhaust, which may mainly depend on TWC technology and exhaust temperature regime. This variability is suggestive of a δD from traffic that varies over time, by season, and by geographical location. An earlier-derived integrated pure (end-member) δD from anthropogenic activities of -270‰ (Rahn et al., 2002) can be explained as a mixture of mainly vehicle emissions from cold starts and fully functional TWCs, but enhanced δD values by >50‰ are likely for regions where TWC technology is not fully implemented. Our results also suggest that a full hydrogen isotope analysis on fuel and exhaust gas may greatly aid at understanding process-level reactions in the exhaust gas, in particular in the TWC.

  2. Hydrogen sensor

    DOEpatents

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  3. Supported palladium catalysts for the reduction of sodium bicarbonate to sodium formate in aqueous solution at room temperature and one atmosphere of hydrogen

    SciTech Connect

    Stalder, C.J.; Chao, S.; Summers, D.P.; Wrighton, M.S.

    1983-10-05

    The reduction has been effected by using a variety of Pd (palladium)-based catalysts. The typical procedure was to suspend 0.25 g of catalyst in 25 cc of an aqueous solution of sodium bicarbonate purged slowly with hydrogen gas. The sodium formate concentration was followed by withdrawing aliquots for formate determination by /sup 13/C, /sup H/NMR. The reduction may be quite rapid; an initial rate of reduction after 1 h reaction produces a turnover rate of 35 formate anions produced/ palladium atom/h. All forms of Pd used appear to be active. The overall results indicate that carbon dioxide may be reduced at room temperature near its thermodynamic potential. 2 figures, 1 table.

  4. Historical Doses from Tritiated Water and Tritiated Hydrogen Gas Relesed to the Atmosphere from Lawrence Livermore National Laboratory (LLNL) Part 1. Description of Tritium Dose Model (DCART) for Chronic Releases from LLNL

    SciTech Connect

    Peterson, S

    2004-06-30

    DCART (Doses from Chronic Atmospheric Releases of Tritium) is a spreadsheet model developed at Lawrence Livermore National Laboratory (LLNL) that calculates doses from inhalation of tritiated hydrogen gas (HT), inhalation and skin absorption of tritiated water (HTO), and ingestion of HTO and organically bound tritium (OBT) to adult, child (age 10), and infant (age 6 months to 1 year) from routine atmospheric releases of HT and HTO. DCART is a deterministic model that, when coupled to the risk assessment software Crystal Ball{reg_sign}, predicts doses with a 95th percentile confidence interval. The equations used by DCART are described and all distributions on parameter values are presented. DCART has been tested against the results of other models and several sets of observations in the Tritium Working Group of the International Atomic Energy Agency's Biosphere Modeling and Assessment Programme. The version of DCART described here has been modified to include parameter values and distributions specific to conditions at LLNL. In future work, DCART will be used to reconstruct dose to the hypothetical maximally exposed individual from annual routine releases of HTO and HT from all LLNL facilities and from the Sandia National Laboratory's Tritium Research Laboratory over the last fifty years.

  5. Historical Doses from Tritiated Water and Tritiated Hydrogen Gas Released to the Atmosphere from Lawrence Livermore National Laboratory (LLNL) Part 1. Description of Tritium Dose Model (DCART) for Routine Releases from LLNL

    SciTech Connect

    Peterson, S R

    2006-09-27

    DCART (Doses from Chronic Atmospheric Releases of Tritium) is a spreadsheet model developed at Lawrence Livermore National Laboratory (LLNL) that calculates doses from inhalation of tritiated hydrogen gas (HT), inhalation and skin absorption of tritiated water (HTO), and ingestion of HTO and organically bound tritium (OBT) to adult, child (age 10), and infant (age 6 months to 1 year) from routine atmospheric releases of HT and HTO. DCART is a deterministic model that, when coupled to the risk assessment software Crystal Ball{reg_sign}, predicts doses with a 95% confidence interval. The equations used by DCART are described and all distributions on parameter values are presented. DCART has been tested against the results of other models and several sets of observations in the Tritium Working Groups of the International Atomic Energy Agency's programs, Biosphere Modeling and Assessment and Environmental Modeling for Radiation Safety. The version of DCART described here has been modified to include parameter values and distributions specific to conditions at LLNL. In future work, DCART will be used to reconstruct dose to the hypothetical maximally exposed individual from annual routine releases of HTO and HT from all LLNL facilities and from the Sandia National Laboratory's Tritium Research Laboratory over the last fifty years.

  6. Hydrogenation apparatus

    DOEpatents

    Friedman, Joseph [Encino, CA; Oberg, Carl L [Canoga Park, CA; Russell, Larry H [Agoura, CA

    1981-01-01

    Hydrogenation reaction apparatus comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1100.degree. to 1900.degree. C., while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products.

  7. Historical Doses from Tritiated Water and Tritiated Hydrogen Gas Released to the Atmosphere from Lawrence Livermore National Laboratory (LLNL). Part 3. Routine Releases, 1973 - 2005

    SciTech Connect

    Peterson, S

    2007-08-15

    Annual mean concentrations of tritium in air moisture, calculated from data obtained from an air tritium sampler near the LLNL Discovery Center, were compared with annual mean air moisture concentrations predicted from atmospheric releases of tritium for the years 1973 through 2005. The 95% confidence intervals on the predictions and observations usually overlapped. When the distributions of predictions and observations were different, predictions were higher. Using both the observed and predicted air concentrations as input to the tritium dose model, DCART, annual doses to a hypothetical adult, child (age 10) and infant (age 6 months to 1 year) assumed to be living at LLNL's Discovery Center were calculated. Although the doses based on predicted air concentrations tended to be higher, they were nevertheless indistinguishable from doses based on observed air concentrations when uncertainties were taken into account. Annual doses, calculated by DCART and based on observed and predicted air concentrations, were compared with historical tritium doses reported annually by LLNL. Although the historical doses were calculated using various assumptions over the years, their agreement with the DCART predictions is remarkable. The Discovery Center was not the location of the site-wide maximally exposed individual (SWMEI) from 1974 through 1978. However, doses at the location of the SW-MEI for those years were indistinguishable from those at the Discovery Center when uncertainties were taken into account. The upper confidence limits for all doses were always well below the current regulatory limit for dose to a member of the public (100 {micro}Sv or 10 mrem per year) from atmospheric releases (40 CFR Part 61, Subpart H). Based on observed air concentrations, the 97.5% confidence limit on the cumulative dose to the hypothetical person born in 1973 and living through 2005 at the Discovery Center was 150 {micro}Sv (15 mrem), while that of the hypothetical adult who spent his

  8. Hydrogen-powered flight

    NASA Technical Reports Server (NTRS)

    Smith, Timothy D.

    2005-01-01

    As the Nation moves towards a hydrogen economy the shape of aviation will change dramatically. To accommodate a switch to hydrogen the aircraft designs, propulsion, and power systems will look much different than the systems of today. Hydrogen will enable a number of new aircraft capabilities from high altitude long endurance remotely operated aircraft (HALE ROA) that will fly weeks to months without refueling to clean, zero emissions transport aircraft. Design and development of new hydrogen powered aircraft have a number of challenges which must be addressed before an operational system can become a reality. While the switch to hydrogen will be most outwardly noticeable in the aircraft designs of the future, other significant changes will be occurring in the environment. A switch to hydrogen for aircraft will completely eliminate harmful greenhouse gases such as carbon monoxide (CO), carbon dioxide (CO2), sulfur oxides (SOx), unburnt hydrocarbons and smoke. While these aircraft emissions are a small percentage of the amount produced on a daily basis, their placement in the upper atmosphere make them particularly harmful. Another troublesome gaseous emission from aircraft is nitrogen oxides (NOx) which contribute to ozone depletion in the upper atmosphere. Nitrogen oxide emissions are produced during the combustion process and are primarily a function of combustion temperature and residence time. The introduction of hydrogen to a gas turbine propulsion system will not eliminate NOx emissions; however the wide flammability range will make low NOx producing, lean burning systems feasible. A revolutionary approach to completely eliminating NOx would be to fly all electric aircraft powered by hydrogen air fuel cells. The fuel cells systems would only produce water, which could be captured on board or released in the lower altitudes. Currently fuel cell systems do not have sufficient energy densities for use in large aircraft, but the long term potential of eliminating

  9. Historical Doses from Tritiated Water and Tritiated Hydrogen Gas Released to the Atmosphere from Lawrence Livermore National Laboratory (LLNL). Part 5. Accidental Releases

    SciTech Connect

    Peterson, S

    2007-08-15

    Over the course of fifty-three years, LLNL had six acute releases of tritiated hydrogen gas (HT) and one acute release of tritiated water vapor (HTO) that were too large relative to the annual releases to be included as part of the annual releases from normal operations detailed in Parts 3 and 4 of the Tritium Dose Reconstruction (TDR). Sandia National Laboratories/California (SNL/CA) had one such release of HT and one of HTO. Doses to the maximally exposed individual (MEI) for these accidents have been modeled using an equation derived from the time-dependent tritium model, UFOTRI, and parameter values based on expert judgment. All of these acute releases are described in this report. Doses that could not have been exceeded from the large HT releases of 1965 and 1970 were calculated to be 43 {micro}Sv (4.3 mrem) and 120 {micro}Sv (12 mrem) to an adult, respectively. Two published sets of dose predictions for the accidental HT release in 1970 are compared with the dose predictions of this TDR. The highest predicted dose was for an acute release of HTO in 1954. For this release, the dose that could not have been exceeded was estimated to have been 2 mSv (200 mrem), although, because of the high uncertainty about the predictions, the likely dose may have been as low as 360 {micro}Sv (36 mrem) or less. The estimated maximum exposures from the accidental releases were such that no adverse health effects would be expected. Appendix A lists all accidents and large routine puff releases that have occurred at LLNL and SNL/CA between 1953 and 2005. Appendix B describes the processes unique to tritium that must be modeled after an acute release, some of the time-dependent tritium models being used today, and the results of tests of these models.

  10. Atmospheric Pseudohalogen Chemistry

    NASA Technical Reports Server (NTRS)

    Lary, David John

    2004-01-01

    Hydrogen cyanide is not usually considered in atmospheric chemical models. The paper presents three reasons why hydrogen cyanide is likely to be significant for atmospheric chemistry. Firstly, HCN is a product and marker of biomass burning. Secondly, it is also likely that lightning is producing HCN, and as HCN is sparingly soluble it could be a useful long-lived "smoking gun" marker of lightning activity. Thirdly, the chemical decomposition of HCN leads to the production of small amounts of the cyanide (CN) and NCO radicals. The NCO radical can be photolyzed in the visible portion of the spectrum yielding nitrogen atoms (N). The production of nitrogen atoms is significant as it leads to the titration of total nitrogen from the atmosphere via N+N->N2, where N2 is molecular nitrogen.

  11. Historical Doses from Tritiated Water and Tritiated Hydrogen Gas Released to the Atmosphere from Lawrence Livermore National Laboratory (LLNL). Part 6. Summary

    SciTech Connect

    Peterson, S

    2007-09-05

    Throughout fifty-three years of operations, an estimated 792,000 Ci (29,300 TBq) of tritium have been released to the atmosphere at the Livermore site of Lawrence Livermore National Laboratory (LLNL); about 75% was tritium gas (HT) primarily from the accidental releases of 1965 and 1970. Routine emissions contributed slightly more than 100,000 Ci (3,700 TBq) HT and about 75,000 Ci (2,800 TBq) tritiated water vapor (HTO) to the total. A Tritium Dose Reconstruction was undertaken to estimate both the annual doses to the public for each year of LLNL operations and the doses from the few accidental releases. Some of the dose calculations were new, and the others could be compared with those calculated by LLNL. Annual doses (means and 95% confidence intervals) to the potentially most exposed member of the public were calculated for all years using the same model and the same assumptions. Predicted tritium concentrations in air were compared with observed mean annual concentrations at one location from 1973 onwards. Doses predicted from annual emissions were compared with those reported in the past by LLNL. The highest annual mean dose predicted from routine emissions was 34 {micro}Sv (3.4 mrem) in 1957; its upper confidence limit, based on very conservative assumptions about the speciation of the release, was 370 {micro}Sv (37 mrem). The upper confidence limits for most annual doses were well below the current regulatory limit of 100 {micro}Sv (10 mrem) for dose to the public from release to the atmosphere; the few doses that exceeded this were well below the regulatory limits of the time. Lacking the hourly meteorological data needed to calculate doses from historical accidental releases, ingestion/inhalation dose ratios were derived from a time-dependent accident consequence model that accounts for the complex behavior of tritium in the environment. Ratios were modified to account for only those foods growing at the time of the releases. The highest dose from an

  12. Sulfur and phosphorus distribution between liquid iron and magnesia-saturated slag in molecular hydrogen/water atmosphere relevant to a novel green ironmaking technology

    NASA Astrophysics Data System (ADS)

    Mohassab Ahmed, Mohassab Yousef

    As an integral part of a research project which aimed to develop a novel green ironmaking process, an experimental determination of the sulfur and phosphorus distribution ratios, LS and LP, respectively, between molten iron and CaO-MgO(Saturated)-SiO2-Al 3O3-FeO slag was determined in the temperature range 1550-1650°C. Oxygen partial pressure was controlled by H2/H2O equilibrium in the range of 10-10-10-8 atm. For sulfur distribution, it was found that the trend of the distribution is the same as the previous work done under CO/CO2 atmosphere but LS in this case is 38-44 times less under similar oxygen partial pressure. This might be attributed to the impact of H2 on the distribution. Considering the fact that the input sulfur in the proposed process is approximately 34 times less than the blast furnace process, the proposed process would produce hot metal with approximately the same sulfur content to the hot metal produced by the blast furnace. For phosphorus distribution, LP was 450-1050 times that of the blast furnace. Also considering the amount of phosphorus input in the two processes, it was found that the expected P content in iron in the new process would be approximately three times less than in the blast furnace hot metal. This means that the proposed process will produce hot metal with much lower phosphorus which will minimize the need for dephosphorization in the steelmaking stage.

  13. Historical Doses from Tritiated Water and Tritiated Hydrogen Gas Released to the Atmosphere from Lawrence Livermore National Laboratory (LLNL). Part 2. LLNL Annual Site-specific Data, 1953 - 2005

    SciTech Connect

    Peterson, S

    2007-08-15

    Historical information about tritium released routinely and accidentally from all Livermore Site Lawrence Livermore National Laboratory (LLNL) facilities and from the Tritium Research Laboratory of Sandia National Laboratories/California (SNL/CA) between 1953 through 2005 has been compiled and summarized in this report. Facility-specific data (annual release rates and dilution factors) have been derived from the historical information. These facility-specific data are needed to calculate annual doses to a hypothetical site-wide maximally exposed individual from routine releases of tritiated water (HTO) and tritiated hydrogen gas (HT) to the atmosphere. Doses can also be calculated from observed air tritium concentrations, and mean annual values for one air tritium sampling location are presented. Other historical data relevant to a dose reconstruction (e.g., meteorological data, including absolute humidity and rainfall) are also presented. Sources of information are carefully referenced, and assumptions are documented. Uncertainty distributions have been estimated for all parameter values. Confidence in data post-1974 is high.

  14. Hydrogen Production

    SciTech Connect

    2014-09-01

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produce hydrogen. It includes an overview of research goals as well as “quick facts” about hydrogen energy resources and production technologies.

  15. Color Changing Hydrogen Sensors

    NASA Technical Reports Server (NTRS)

    Roberson, Luke B.; Williams, Martha; Captain, Janine E.; Mohajeri, Nahid; Raissi, Ali

    2015-01-01

    During the Space Shuttle Program, one of the most hazardous operation that occurred was the loading of liquid hydrogen (LH2) during fueling operations of the spacecraft. Due to hydrogen's low explosive limit, any amount leaked could lead to catastrophic event. Hydrogen's chemical properties make it ideal as a rocket fuel; however, the fuel is deemed unsafe for most commercial use because of the inability to easily detect the gas leaking. The increased use of hydrogen over traditional fossil fuels would reduce greenhouse gases and America's dependency on foreign oil. Therefore a technology that would improve safety at NASA and in the commercial sector while creating a new economic sector would have a huge impact to NASA's mission. The Chemochromic Detector for sensing hydrogen gas leakage is a color-changing detector that is useful in any application where it is important to know not only the presence but also the location of the hydrogen gas leak. This technology utilizes a chemochromicpigment and polymer matrix that can be molded or spun into rigid or pliable shapes useable in variable temperature environments including atmospheres of inert gas, hydrogen gas, or mixtures of gases. A change in color of the detector material indicates where gaseous hydrogen leaks are occurring. The irreversible sensor has a dramatic color change from beige to dark grey and remains dark grey after exposure. A reversible pigment changes from white to blue in the presence of hydrogen and reverts back to white in the presence of oxygen. Both versions of the sensor's pigments were comprised of a mixture of a metal oxide substrate and a hydro-chromic compound (i.e., the compound that changed color in the presence of hydrogen) and immediately notified the operator of the presence of low levels of hydrogen. The detector can be used in a variety of formats including paint, tape, caulking, injection molded parts, textiles and fabrics, composites, and films. This technology brings numerous

  16. Hydrogenation apparatus

    DOEpatents

    Friedman, J.; Oberg, C. L.; Russell, L. H.

    1981-06-23

    Hydrogenation reaction apparatus is described comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1,100 to 1,900 C, while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products. 2 figs.

  17. Spontaneous combustion of hydrogen

    NASA Technical Reports Server (NTRS)

    Nusselt, Wilhelm; Pothmann, PH

    1923-01-01

    It is shown by the author's experiments that hydrogen which escapes to the atmosphere through openings in the system may burn spontaneously if it contains dust. Purely thermal reasoning can not account for the combustion. It seems to be rather an electrical ignition. In order to determine whether the cause of the spontaneous ignition was thermo-chemical, thermo-mechanical, or thermo-electrical, the experiments in this paper were performed.

  18. Venus: atmospheric evolution.

    PubMed

    Dayhoff, M O; Eck, R V; Lippincott, E R; Sagan, C

    1967-02-01

    Because of the high temperatures prevailing in the lower atmosphere of Venus, its chemistry is dominated by the tendency toward thermodynamic equilibrium. From the atomic composition deduced spectroscopically, the thermodynamic equilibrium composition of the atmosphere of Venus is computed, and the following conclusions drawn. (i) There can be no free carbon, hydrocarbons, formaldehyde, or any other organic molecule present in more than trace amounts. (ii) The original atomic composition of the atmosphere must have included much larger quantities of hydrogen and a carbon/oxygen ratio atmosphere of Venus are so unique that an evolutionary mechanism involving two independent processes seems necessary, as follows. Water, originally present in large quantities, has been photodissociated in the upper atmosphere, and the resulting atomic hydrogen has been lost in space. The resulting excess oxygen has been very effectively bound to the surface materials. (iv) There must be some weathering process, for example, violent wind erosion, to disturb and expose a sufficient quantity of reduced surface material to react with the oxygen produced by photodissociation. PMID:17737405

  19. Differential atmospheric tritium sampler

    DOEpatents

    Griesbach, Otto A.; Stencel, Joseph R.

    1990-01-01

    An atmospheric tritium sampler is provided which uses a carrier gas comprised of hydrogen gas and a diluting gas, mixed in a nonexplosive concentration. Sample air and carrier gas are drawn into and mixed in a manifold. A regulator meters the carrier gas flow to the manifold. The air sample/carrier gas mixture is pulled through a first moisture trap which adsorbs water from the air sample. The mixture then passes through a combustion chamber where hydrogen gas in the form of H.sub.2 or HT is combusted into water. The manufactured water is transported by the air stream to a second moisture trap where it is adsorbed. The air is then discharged back into the atmosphere by means of a pump.

  20. Differential atmospheric tritium sampler

    DOEpatents

    Griesbach, O.A.; Stencel, J.R.

    1987-10-02

    An atmospheric tritium sampler is provided which uses a carrier gas comprised of hydrogen gas and a diluting gas, mixed in a nonexplosive concentration. Sample air and carrier gas are drawn into and mixed in a manifold. A regulator meters the carrier gas flow to the manifold. The air sample/carrier gas mixture is pulled through a first moisture trap which adsorbs water from the air sample. The moisture then passes through a combustion chamber where hydrogen gas in the form of H/sub 2/ or HT is combusted into water. The manufactured water is transported by the air stream to a second moisture trap where it is adsorbed. The air is then discharged back into the atmosphere by means of a pump.

  1. Hydrogen Generator

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Another spinoff from spacecraft fuel cell technology is the portable hydrogen generator shown. Developed by General Electric Company, it is an aid to safer operation of systems that use hydrogen-for example, gas chromatographs, used in laboratory analysis of gases. or flame ionization detectors used as $ollution monitors. The generator eliminates the need for high-pressure hydrogen storage bottles, which can be a safety hazard, in laboratories, hospitals and industrial plants. The unit supplies high-purity hydrogen by means of an electrochemical process which separates the hydrogen and oxygen in distilled water. The oxygen is vented away and the hydrogen gas is stored within the unit for use as needed. GE's Aircraft Equipment Division is producing about 1,000 of the generators annually.

  2. Hydrogen vibrations in austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Danilkin, S. A.; Delafosse, D.; Fuess, H.; Gavriljuk, V. G.; Ivanov, A.; Magnin, T.; Wipf, H.

    The vibrational modes of hydrogen in fcc Fe-25Cr-20Ni stainless steel with a hydrogen content of 0.33at.% were studied by neutron spectroscopy. Hydrogen doping was performed at 810K in a hydrogen-gas atmosphere of 190bar. Neutron spectra were taken at 2K and 77K with the spectrometer IN1-BeF (ILL, Grenoble). The spectra show the fundamental hydrogen vibration at 130 meV and the second harmonics at 260 meV. The frequencies are higher than in other fcc hydrides. In spite of the cubic symmetry of the octahedral hydrogen positions and the low hydrogen content, the inelastic hydrogen peak has a relatively large width and an asymmetric shape.

  3. Hydrogen Bibliography

    SciTech Connect

    Not Available

    1991-12-01

    The Hydrogen Bibliography is a compilation of research reports that are the result of research funded over the last fifteen years. In addition, other documents have been added. All cited reports are contained in the National Renewable Energy Laboratory (NREL) Hydrogen Program Library.

  4. Synthesis of hydrogen-carbon clathrate material and hydrogen evolution therefrom at moderate temperatures and pressures

    DOEpatents

    Lueking, Angela; Narayanan, Deepa

    2011-03-08

    A process for making a hydrogenated carbon material is provided which includes forming a mixture of a carbon source, particularly a carbonaceous material, and a hydrogen source. The mixture is reacted under reaction conditions such that hydrogen is generated and/or released from the hydrogen source, an amorphous diamond-like carbon is formed, and at least a portion of the generated and/or released hydrogen associates with the amorphous diamond-like carbon, thereby forming a hydrogenated carbon material. A hydrogenated carbon material including a hydrogen carbon clathrate is characterized by evolution of molecular hydrogen at room temperature at atmospheric pressure in particular embodiments of methods and compositions according to the present invention.

  5. Hydrogen energy.

    PubMed

    Edwards, P P; Kuznetsov, V L; David, W I F

    2007-04-15

    The problem of anthropogenically driven climate change and its inextricable link to our global society's present and future energy needs are arguably the greatest challenge facing our planet. Hydrogen is now widely regarded as one key element of a potential energy solution for the twenty-first century, capable of assisting in issues of environmental emissions, sustainability and energy security. Hydrogen has the potential to provide for energy in transportation, distributed heat and power generation and energy storage systems with little or no impact on the environment, both locally and globally. However, any transition from a carbon-based (fossil fuel) energy system to a hydrogen-based economy involves significant scientific, technological and socio-economic barriers. This brief report aims to outline the basis of the growing worldwide interest in hydrogen energy and examines some of the important issues relating to the future development of hydrogen as an energy vector. PMID:17272235

  6. The early atmosphere - A new picture

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1986-01-01

    Over the last few years, discoveries in astronomy, geochemistry, and atmospheric chemistry have resulted in a new picture of how our planet and its atmosphere formed. The traditional view held that the early atmosphere was composed of methane, ammonia, and molecular hydrogen, but the actual composition may have been nitrogen, carbon dioxide, and water vapor. The history leading to the present understanding is discussed and topics covered include: chemical evolution, origin of the atmosphere, atmospheric evolution on earth, Venus, and Mars, and prebiological atmospheric oxygen and the early sun.

  7. Atmospheric Misconceptions.

    ERIC Educational Resources Information Center

    Aron, Robert H.

    1994-01-01

    Presents student survey results (n=708) of misconceptions held regarding the atmosphere. Results indicated a basic lack of understanding concerning atmospheric processes and phenomena. Although misconceptions generally decreased with increasing education, some seemed to be firmly rooted. (PR)

  8. Influence of high pressure hydrogen environment on creep deformation of Mo-Re, Haynes 188, and NARloy-Z alloys

    NASA Technical Reports Server (NTRS)

    Sastry, S. M. L.; Yang, Charles C.; Ouyang, Shewang; Jerina, K. L.; Schwartz, D. S.

    1994-01-01

    The present study focuses on the investigation of the influence of hydrogen on the mechanical properties of three types of alloys at elevated temperatures. The reasons for the consideration of hydrogen effects are the potential use of hydrogen as a coolant in gas-cooled reactors and fuel in advanced hypersonic vehicles. The materials used in hydrogen atmosphere must not be embrittled by hydrogen at ambient temperature and should have good strength in hydrogen atmosphere at elevated temperature. The paucity of information concerning the mechanical performance in hydrogen atmosphere at elevated temperature has been a limiting factor in the selection and design of structural components for operation in hydrogen environment.

  9. Synthesis of Ni/Graphene Nanocomposite for Hydrogen Storage.

    PubMed

    Zhou, Chunyu; Szpunar, Jerzy A; Cui, Xiaoyu

    2016-06-22

    We have designed a Ni-graphene composite for hydrogen storage with Ni nanoparticles of 10 nm in size, uniformly dispersed over a graphene substrate. This system exhibits attractive features like high gravimetric density, ambient conditions, and low activation temperature for hydrogen release. When charged at room temperature and an atmospheric hydrogen pressure of 1 bar, it could yield a hydrogen capacity of 0.14 wt %. When hydrogen pressure increased to 60 bar, the sorbent had a hydrogen gravimetric density of 1.18 wt %. The hydrogen release could occur at an operating temperature below 150 °C and completes at 250 °C. PMID:27248316

  10. Hydrogen: Fueling the Future

    SciTech Connect

    Leisch, Jennifer

    2007-02-27

    As our dependence on foreign oil increases and concerns about global climate change rise, the need to develop sustainable energy technologies is becoming increasingly significant. Worldwide energy consumption is expected to double by the year 2050, as will carbon emissions along with it. This increase in emissions is a product of an ever-increasing demand for energy, and a corresponding rise in the combustion of carbon containing fossil fuels such as coal, petroleum, and natural gas. Undisputable scientific evidence indicates significant changes in the global climate have occurred in recent years. Impacts of climate change and the resulting atmospheric warming are extensive, and know no political or geographic boundaries. These far-reaching effects will be manifested as environmental, economic, socioeconomic, and geopolitical issues. Offsetting the projected increase in fossil energy use with renewable energy production will require large increases in renewable energy systems, as well as the ability to store and transport clean domestic fuels. Storage and transport of electricity generated from intermittent resources such as wind and solar is central to the widespread use of renewable energy technologies. Hydrogen created from water electrolysis is an option for energy storage and transport, and represents a pollution-free source of fuel when generated using renewable electricity. The conversion of chemical to electrical energy using fuel cells provides a high efficiency, carbon-free power source. Hydrogen serves to blur the line between stationary and mobile power applications, as it can be used as both a transportation fuel and for stationary electricity generation, with the possibility of a distributed generation energy infrastructure. Hydrogen and fuel cell technologies will be presented as possible pollution-free solutions to present and future energy concerns. Recent hydrogen-related research at SLAC in hydrogen production, fuel cell catalysis, and hydrogen

  11. Polymer formulations for gettering hydrogen

    DOEpatents

    Shepodd, Timothy J.; Even, Jr., William R.

    2000-01-01

    A novel method for preparing a hydrogenation composition comprising organic polymer molecules having carbon--carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces and particularly from atmospheres within enclosed spaces that contain air, water vapor, oxygen, carbon dioxide or ammonia. The organic polymers molecules containing carbon--carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble noble metal catalyst composition. High molecular weight polymers may be added to the organic polymer/catalyst mixture in order to improve their high temperature performance. The hydrogenation composition is prepared by dispersing the polymers in a suitable solvent, forming thereby a solution suspension, flash-freezing droplets of the solution in a liquid cryogen, freeze-drying the frozen droplets to remove frozen solvent incorporated in the droplets, and recovering the dried powder thus formed.

  12. Chemochromic Hydrogen Sensors

    NASA Technical Reports Server (NTRS)

    Wiggins, Bryan C.

    2007-01-01

    As fossil fuel supplies decline, hydrogen is quickly becoming an increasingly important fuel source. Currently hydrogen is the prime fuel of today's space vehicles (e.g., Space Shuttle) and featured as a fuel for some prototype vehicles such as the BMW seven series model. Hydrogen is a colorless, odorless gas with a 4% lower explosive limit which makes leak detection a priority. In an effort to support the use of hydrogen, a chemochromic (color changing) sensor was developed that is robust, simple to use, and does not require active operation. It can be made into a thin tape which can be conveniently used for leak detection at flanges, valves, or outlets. Chemochromic sensors can be either reversible or irreversible; however, irreversible chemochromic sensors will be analyzed in this report. The irreversible sensor is useful during hazardous operations when personnel cannot be present. To actively monitor leaks, testing of the irreversible sensor against environmental effects was completed and results indicated this material is suitable for outdoor use in the harsh beachside environment of Kennedy Space Center. The experiments in this report will give additional results to the environmental testing by adding solid rocket booster residue as a variable. The primary motivation for these experiments is to prepare the sensors for the launch pad environment at the Kennedy Space Center. In an effort to simulate the atmosphere at the pads before and after launch, the chemochromic sensors are exposed to solid rocket residue under various conditions.

  13. Hydrogen Effect against Hydrogen Embrittlement

    NASA Astrophysics Data System (ADS)

    Murakami, Yukitaka; Kanezaki, Toshihiko; Mine, Yoji

    2010-10-01

    The well-known term “hydrogen embrittlement” (HE) expresses undesirable effects due to hydrogen such as loss of ductility, decreased fracture toughness, and degradation of fatigue properties of metals. However, this article shows, surprisingly, that hydrogen can have an effect against HE. A dramatic phenomenon was found in which charging a supersaturated level of hydrogen into specimens of austenitic stainless steels of types 304 and 316L drastically improved the fatigue crack growth resistance, rather than accelerating fatigue crack growth rates. Although this mysterious phenomenon has not previously been observed in the history of HE research, its mechanism can be understood as an interaction between hydrogen and dislocations. Hydrogen can play two roles in terms of dislocation mobility: pinning (or dragging) and enhancement of mobility. Competition between these two roles determines whether the resulting phenomenon is damaging or, unexpectedly, desirable. This finding will, not only be the crucial key factor to elucidate the mechanism of HE, but also be a trigger to review all existing theories on HE in which hydrogen is regarded as a dangerous culprit.

  14. Modeling leaks from liquid hydrogen storage systems.

    SciTech Connect

    Winters, William Stanley, Jr.

    2009-01-01

    This report documents a series of models for describing intended and unintended discharges from liquid hydrogen storage systems. Typically these systems store hydrogen in the saturated state at approximately five to ten atmospheres. Some of models discussed here are equilibrium-based models that make use of the NIST thermodynamic models to specify the states of multiphase hydrogen and air-hydrogen mixtures. Two types of discharges are considered: slow leaks where hydrogen enters the ambient at atmospheric pressure and fast leaks where the hydrogen flow is usually choked and expands into the ambient through an underexpanded jet. In order to avoid the complexities of supersonic flow, a single Mach disk model is proposed for fast leaks that are choked. The velocity and state of hydrogen downstream of the Mach disk leads to a more tractable subsonic boundary condition. However, the hydrogen temperature exiting all leaks (fast or slow, from saturated liquid or saturated vapor) is approximately 20.4 K. At these temperatures, any entrained air would likely condense or even freeze leading to an air-hydrogen mixture that cannot be characterized by the REFPROP subroutines. For this reason a plug flow entrainment model is proposed to treat a short zone of initial entrainment and heating. The model predicts the quantity of entrained air required to bring the air-hydrogen mixture to a temperature of approximately 65 K at one atmosphere. At this temperature the mixture can be treated as a mixture of ideal gases and is much more amenable to modeling with Gaussian entrainment models and CFD codes. A Gaussian entrainment model is formulated to predict the trajectory and properties of a cold hydrogen jet leaking into ambient air. The model shows that similarity between two jets depends on the densimetric Froude number, density ratio and initial hydrogen concentration.

  15. Atmospheric neutrons

    NASA Technical Reports Server (NTRS)

    Korff, S. A.; Mendell, R. B.; Merker, M.; Light, E. S.; Verschell, H. J.; Sandie, W. S.

    1979-01-01

    Contributions to fast neutron measurements in the atmosphere are outlined. The results of a calculation to determine the production, distribution and final disappearance of atmospheric neutrons over the entire spectrum are presented. An attempt is made to answer questions that relate to processes such as neutron escape from the atmosphere and C-14 production. In addition, since variations of secondary neutrons can be related to variations in the primary radiation, comment on the modulation of both radiation components is made.

  16. Hydrogen sulfide pollution in wastewater treatment facilities

    SciTech Connect

    AlDhowalia, K.H. )

    1987-01-01

    The hydrogen sulfide (H{sub 2}S) found in wastewater collection systems and wastewater treatment facilities results from the bacterial reduction of the sulfate ion (SO{sub 4}). Hydrogen sulfide is a gas that occurs both in the sewer atmosphere and as a dissolved gas in the wastewater. When raw wastewater first enters the wastewater treatment facility by gravity most of the hydrogen sulfide is in the gaseous phase and will escape into the atmosphere at the inlet structures. Also some of the dissolved hydrogen sulfide will be released at points of turbulance such as at drops in flow, flumes, or aeration chambers. Several factors can cause excessive hydrogen sulfide concentrations in a sewerage system. These include septic sewage, long flow times in the sewerage system, high temperatures, flat sewer grades, and poor ventilation. These factors are discussed in this paper.

  17. Pluto's atmosphere

    SciTech Connect

    Elliot, J.L.; Dunham, E.W.; Bosh, A.S.; Slivan, S.M.; Young, L.A.

    1989-01-01

    Airborne CCD photometer observations of Pluto's June 9, 1988 stellar occultation have yielded an occultation lightcurve, probing two regions on the sunrise limb 2000 km apart, which reveals an upper atmosphere overlying an extinction layer with an abrupt upper boundary. The extinction layer may surround the entire planet. Attention is given to a model atmosphere whose occultation lightcurve closely duplicates observations; fits of the model to the immersion and emersion lightcurves exhibit no significant derived atmosphere-structure differences. Assuming a pure methane atmosphere, surface pressures of the order of 3 microbars are consistent with the occultation data. 43 references.

  18. Method of producing hydrogenated amorphous silicon film

    DOEpatents

    Wiesmann, Harold J.

    1980-01-01

    This invention relates to hydrogenated amorphous silicon produced by thermally decomposing silane (SiH.sub.4) or other gases comprising H and Si, from a tungsten or carbon foil heated to a temperature of about 1400.degree.-1600.degree. C., in a vacuum of about 10.sup.-6 to 19.sup.-4 torr, to form a gaseous mixture of atomic hydrogen and atomic silicon, and depositing said gaseos mixture onto a substrate independent of and outside said source of thermal decomposition, to form hydrogenated amorphous silicon. The presence of an ammonia atmosphere in the vacuum chamber enhances the photoconductivity of the hydrogenated amorphous silicon film.

  19. Hydrogen separation membrane on a porous substrate

    DOEpatents

    Song, Sun-Ju; Lee, Tae H.; Chen, Ling; Dorris, Stephen E.; Balachandran, Uthamalingam

    2011-06-14

    A hydrogen permeable membrane is disclosed. The membrane is prepared by forming a mixture of metal oxide powder and ceramic oxide powder and a pore former into an article. The article is dried at elevated temperatures and then sintered in a reducing atmosphere to provide a dense hydrogen permeable portion near the surface of the sintered mixture. The dense hydrogen permeable portion has a higher initial concentration of metal than the remainder of the sintered mixture and is present in the range of from about 20 to about 80 percent by volume of the dense hydrogen permeable portion.

  20. Photovoltaic hydrogen production

    SciTech Connect

    Hiser, H.W.; Memory, S.B.; Veziroglu, T.N.; Padin, J.

    1996-10-01

    This is a new project, which started in June 1995, and involves photovoltaic hydrogen production as a fuel production method for the future. In order to increase the hydrogen yield, it was decided to use hybrid solar collectors to generate D.C. electricity, as well as high temperature steam for input to the electrolyzer. In this way, some of the energy needed to dissociate the water is supplied in the form of heat (or low grade energy), to generate steam, which results in a reduction of electrical energy (or high grade energy) needed. As a result, solar to hydrogen conversion efficiency is increased. In the above stated system, the collector location, the collector tracking sub-system (i.e., orientation/rotation), and the steam temperature have been taken as variables. Five locations selected - in order to consider a variety of latitudes, altitudes, cloud coverage and atmospheric conditions - are Atlanta, Denver, Miami, Phoenix and Salt Lake City. Plain PV and hybrid solar collectors for a stationary south facing system and five different collector rotation systems have been analyzed. Steam temperatures have been varied between 200{degrees}C and 1200{degrees}C. During the first year, solar to hydrogen conversion efficiencies have been considered. The results show that higher steam temperatures, 2 dimensional tracking system, higher elevations and dryer climates causes higher conversion efficiencies. Cost effectiveness of the sub-systems and of the overall system will be analyzed during the second year. Also, initial studies will be made of an advanced high efficiency hybrid solar hydrogen production system.

  1. Storing Hydrogen

    SciTech Connect

    Kim, Hyun Jeong; Karkamkar, Abhijeet J.; Autrey, Thomas; Chupas, Peter; Proffen, Thomas E.

    2010-05-31

    Researchers have been studying mesoporous materials for almost two decades with a view to using them as hosts for small molecules and scaffolds for molding organic compounds into new hybrid materials and nanoparticles. Their use as potential storage systems for large quantities of hydrogen has also been mooted. Such systems that might hold large quantities of hydrogen safely and in a very compact volume would have enormous potential for powering fuel cell vehicles, for instance. A sponge-like form of silicon dioxide, the stuff of sand particles and computer chips, can soak up and store other compounds including hydrogen. Studies carried out at the XOR/BESSRC 11-ID-B beamline at the APS have revealed that the nanoscopic properties of the hydrogenrich compound ammonia borane help it store hydrogen more efficiently than usual. The material may have potential for addressing the storage issues associated with a future hydrogen economy. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  2. POSSIBLE INFLUENCE OF HYDROGEN CONCENTRATION ON MICROBIAL METHANE STABLE HYDROGEN ISOTOPIC COMPOSITION

    EPA Science Inventory

    Factors affecting the stable hydrogen isotopic composition (6D) of important sources of microbial methane to the atmosphere include oxidation, methanogenic precursor (e.g., acetate vs. CO2/H2), and the 6D of the environmental water. ariations in hydrogen gas concentrations or rat...

  3. White dwarf stars with chemically stratified atmospheres

    NASA Technical Reports Server (NTRS)

    Muchmore, D.

    1982-01-01

    Recent observations and theory suggest that some white dwarfs may have chemically stratified atmospheres - thin layers of hydrogen lying above helium-rich envelopes. Models of such atmospheres show that a discontinuous temperature inversion can occur at the boundary between the layers. Model spectra for layered atmospheres at 30,000 K and 50,000 K tend to have smaller decrements at 912 A, 504 A, and 228 A than uniform atmospheres would have. On the basis of their continuous extreme ultraviolet spectra, it is possible to distinguish observationally between uniform and layered atmospheres for hot white dwarfs.

  4. Hydrogen program overview

    SciTech Connect

    Gronich, S.

    1997-12-31

    This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

  5. Atmospheric chemistry

    SciTech Connect

    Sloane, C.S. ); Tesche, T.W. )

    1991-01-01

    This book covers the predictive strength of atmospheric models. The book covers all of the major important atmospheric areas, including large scale models for ozone depletion and global warming, regional scale models for urban smog (ozone and visibility impairment) and acid rain, as well as accompanying models of cloud processes and biofeedbacks.

  6. The Atmosphere.

    ERIC Educational Resources Information Center

    Ingersoll, Andrew P.

    1983-01-01

    The composition and dynamics of the earth's atmosphere are discussed, considering the atmosphere's role in distributing the energy of solar radiation received by the earth. Models of this activity which help to explain climates of the past and predict those of the future are also considered. (JN)

  7. The Summer of Hydrogen

    NASA Technical Reports Server (NTRS)

    Weber, Philip

    2008-01-01

    Ground crew veterans at Kennedy Space Center still talk about what they call "the summer of hydrogen"-the long, frustrating months in 1990 when the shuttle fleet was grounded by an elusive hydrogen leak that foiled our efforts to fill the orbiter's external fuel tank. Columbia (STS-35) was on Launch Pad A for a scheduled May 30 launch when we discovered the hydrogen leak during - tanking. The external fuel tank is loaded through the orbiter. Liquid hydrogen flows through a 17-inch umbilical between the orbiter and the tank. During fueling, we purge the aft fuselage with gaseous nitrogen to reduce the risk of fire, and we have a leak-detection system in the mobile launch platform, which samples (via tygon tubing) the atmosphere in and around the vehicle, drawing it down to a mass spectrometer that analyzes its composition. When we progressed to the stage of tanking where liquid hydrogen flows through the vehicle, the concentration of hydrogen approached four percent-the limit above which it would be dangerously flammable. We had a leak. We did everything we could think of to find it, and the contractor who supplied the flight hardware was there every day, working alongside us. We did tanking tests, which involved instrumenting the suspected leak sources, and cryo-loaded the external tank to try to isolate precisely where the leak originated. We switched out umbilicals; we replaced the seals between the umbilical and the orbiter. We inspected the seals microscopically and found no flaws. We replaced the recirculation pumps, and we found and replaced a damaged teflon seal in a main propulsion system detent cover, which holds the prevalve-the main valve supplying hydrogen to Space Shuttle Main Engine 3 -in the open position. The seal passed leak tests at ambient temperature but leaked when cryogenic temperatures were applied. We added new leak sensors-up to twenty at a time and tried to be methodical in our placements to narrow down the possible sources of the problem

  8. Atmospheric escape, redox evolution, and planetary habitability

    NASA Astrophysics Data System (ADS)

    Catling, D. C.; Zahnle, K. J.

    2011-12-01

    net escape of hydrogen relative to heavier oxygen is the generally accepted explanation for the present oxidation state: Venus and Mars amongst the planets, and Ganymede, Europa, and Rhea amongst bodies with extremely tenuous atmospheres. We also argue that hydrogen escape was the key factor for oxidizing the Earth and facilitating the increase of photosynthetically-produced oxygen in the Proterozoic atmosphere. Our view about the primacy of hydrogen escape with regard to the Earth's atmospheric oxygenation is perhaps less widely accepted. However, it was inevitable that hydrogen escaped from Earth's early anoxic atmosphere at a significant rate. The result was a very big integrated oxidation consistent with what is observed in the Earth's crust in addition to some export to the mantle. In conclusion, a better understanding of atmospheric escape processes appears critical for understanding the suitability of planets for harboring life from simple to advanced forms.

  9. Survey of Hydrogen Combustion Properties

    NASA Technical Reports Server (NTRS)

    Drell, Isadore L; Belles, Frank E

    1958-01-01

    This literature digest of hydrogen-air combustion fundamentals presents data on flame temperature, burning velocity, quenching distance, flammability limits, ignition energy, flame stability, detonation, spontaneous ignition, and explosion limits. The data are assessed, recommended values are given, and relations among various combustion properties are discussed. New material presented includes: theoretical treatment of variation in spontaneous ignition lag with temperature, pressure, and composition, based on reaction kinetics of hydrogen-air composition range for 0.01 to 100 atmospheres and initial temperatures of 0 degrees to 1400 degrees k.

  10. Lunar atmospheric composition experiment

    NASA Technical Reports Server (NTRS)

    Hoffman, J. H.

    1975-01-01

    Apollo 17 carried a miniature mass spectrometer, called the Lunar Atmospheric Composition Experiment (LACE), to the moon as part of the Apollo Lunar Surface Experiments Package (ALSEP) to study the composition and variations in the lunar atmosphere. The instrument was successfully deployed in the Taurus-Littrow Valley with its entrance aperture oriented upward to intercept and measure the downward flux of gases at the lunar surface. During the ten lunations that the LACE operated, it produced a large base of data on the lunar atmosphere, mainly collected at night time. It was found that thermal escape is the most rapid loss mechanism for hydrogen and helium. For heavier gases, photoionization followed by acceleration through the solar wind electric field accounted for most of the loss. The dominant gases on the moosn were argon and helium, and models formed for their distribution are described in detail. It is concluded that most of the helium in the lunar atmosphere is of solar wind origin, and that there also exist very small amounts of methane, ammonia, and carbon dioxide.

  11. Hydrogen chloride

    Integrated Risk Information System (IRIS)

    Hydrogen chloride ; CASRN 7647 - 01 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogeni

  12. Hydrogen sulfide

    Integrated Risk Information System (IRIS)

    Hydrogen sulfide ; 7783 - 06 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effec

  13. Cryogenic hydrogen-induced air liquefaction technologies

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1990-01-01

    Extensively utilizing a special advanced airbreathing propulsion archives database, as well as direct contacts with individuals who were active in the field in previous years, a technical assessment of cryogenic hydrogen-induced air liquefaction, as a prospective onboard aerospace vehicle process, was performed and documented. The resulting assessment report is summarized. Technical findings are presented relating the status of air liquefaction technology, both as a singular technical area, and also that of a cluster of collateral technical areas including: compact lightweight cryogenic heat exchangers; heat exchanger atmospheric constituents fouling alleviation; para/ortho hydrogen shift conversion catalysts; hydrogen turbine expanders, cryogenic air compressors and liquid air pumps; hydrogen recycling using slush hydrogen as heat sink; liquid hydrogen/liquid air rocket-type combustion devices; air collection and enrichment systems (ACES); and technically related engine concepts.

  14. Metallic Hydrogen

    NASA Astrophysics Data System (ADS)

    Silvera, Isaac; Zaghoo, Mohamed; Salamat, Ashkan

    2015-03-01

    Hydrogen is the simplest and most abundant element in the Universe. At high pressure it is predicted to transform to a metal with remarkable properties: room temperature superconductivity, a metastable metal at ambient conditions, and a revolutionary rocket propellant. Both theory and experiment have been challenged for almost 80 years to determine its condensed matter phase diagram, in particular the insulator-metal transition. Hydrogen is predicted to dissociate to a liquid atomic metal at multi-megabar pressures and T =0 K, or at megabar pressures and very high temperatures. Thus, its predicted phase diagram has a broad field of liquid metallic hydrogen at high pressure, with temperatures ranging from thousands of degrees to zero Kelvin. In a bench top experiment using static compression in a diamond anvil cell and pulsed laser heating, we have conducted measurements on dense hydrogen in the region of 1.1-1.7 Mbar and up to 2200 K. We observe a first-order phase transition in the liquid phase, as well as sharp changes in optical transmission and reflectivity when this phase is entered. The optical signature is that of a metal. The mapping of the phase line of this transition is in excellent agreement with recent theoretical predictions for the long-sought plasma phase transition to metallic hydrogen. Research supported by the NSF, Grant DMR-1308641, the DOE Stockpile Stewardship Academic Alliance Program, Grant DE-FG52-10NA29656, and NASA Earth and Space Science Fellowship Program, Award NNX14AP17H.

  15. Atmospheric tritium

    SciTech Connect

    Oestlund, H.G.; Mason, A.S.

    1980-01-01

    Research progress for the year 1979 to 1980 are reported. Concentrations of tritiated water vapor, tritium gas and tritiated hydrocarbons in the atmosphere at selected sampling points are presented. (ACR)

  16. Atmospheric pollution

    SciTech Connect

    Pickett, E.E.

    1987-01-01

    Atmospheric pollution (AP), its causes, and measures to prevent or reduce it are examined in reviews and reports presented at a workshop held in Damascus, Syria in August 1985. Topics discussed include AP and planning studies, emission sources, pollutant formation and transformation, AP effects on man and vegetation, AP control, atmospheric dispersion mechanisms and modeling, sampling and analysis techniques, air-quality monitoring, and applications. Diagrams, graphs, and tables of numerical data are provided.

  17. Hydrogen environment embrittlement.

    NASA Technical Reports Server (NTRS)

    Gray, H. R.

    1972-01-01

    Hydrogen embrittlement is classified into three types: internal reversible hydrogen embrittlement, hydrogen reaction embrittlement, and hydrogen environment embrittlement. Characteristics of and materials embrittled by these types of hydrogen embrittlement are discussed. Hydrogen environment embrittlement is reviewed in detail. Factors involved in standardizing test methods for detecting the occurrence of and evaluating the severity of hydrogen environment embrittlement are considered. The effects of test technique, hydrogen pressure, purity, strain rate, stress concentration factor, and test temperature are discussed.

  18. Hydrogen scavengers

    SciTech Connect

    Carroll, David W.; Salazar, Kenneth V.; Trkula, Mitchell; Sandoval, Cynthia W.

    2002-01-01

    There has been invented a codeposition process for fabricating hydrogen scavengers. First, a .pi.-bonded allylic organometallic complex is prepared by reacting an allylic transition metal halide with an organic ligand complexed with an alkali metal; and then, in a second step, a vapor of the .pi.-bonded allylic organometallic complex is combined with the vapor of an acetylenic compound, irradiated with UV light, and codeposited on a substrate.

  19. Containment hydrogen removal system for a nuclear power plant

    SciTech Connect

    Callaghan, V.M.; Flynn, E.P.; Pokora, B.M.

    1984-02-07

    A hydrogen removal system (10) separates hydrogen from the containment atmosphere of a nuclear power plant using a hydrogen permeable membrane separator (30). Water vapor is removed by condenser (14) from a gas stream withdrawn from the containment atmosphere. The gas stream is then compressed by compressor (24) and cooled (28,34) to the operating temperature of the hydrogen permeable membrane separator (30). The separator (30) separates the gas stream into a first stream, rich in hydrogen permeate, and a second stream that is hydrogen depleted. The separated hydrogen is passed through a charcoal adsorber (48) to adsorb radioactive particles that have passed through the hydrogen permeable membrane (44). The hydrogen is then flared in gas burner (52) with atmospheric air and the combustion products vented to the plant vent. The hydrogen depleted stream is returned to containment through a regenerative heat exchanger (28) and expander (60). Energy is extracted from the expander (60) to drive the compressor (24) thereby reducing the energy input necessary to drive the compressor (24) and thus reducing the hydrogen removal system (10) power requirements.

  20. Solar flare model atmospheres

    NASA Technical Reports Server (NTRS)

    Hawley, Suzanne L.; Fisher, George H.

    1993-01-01

    Solar flare model atmospheres computed under the assumption of energetic equilibrium in the chromosphere are presented. The models use a static, one-dimensional plane parallel geometry and are designed within a physically self-consistent coronal loop. Assumed flare heating mechanisms include collisions from a flux of non-thermal electrons and x-ray heating of the chromosphere by the corona. The heating by energetic electrons accounts explicitly for variations of the ionized fraction with depth in the atmosphere. X-ray heating of the chromosphere by the corona incorporates a flare loop geometry by approximating distant portions of the loop with a series of point sources, while treating the loop leg closest to the chromospheric footpoint in the plane-parallel approximation. Coronal flare heating leads to increased heat conduction, chromospheric evaporation and subsequent changes in coronal pressure; these effects are included self-consistently in the models. Cooling in the chromosphere is computed in detail for the important optically thick HI, CaII and MgII transitions using the non-LTE prescription in the program MULTI. Hydrogen ionization rates from x-ray photo-ionization and collisional ionization by non-thermal electrons are included explicitly in the rate equations. The models are computed in the 'impulsive' and 'equilibrium' limits, and in a set of intermediate 'evolving' states. The impulsive atmospheres have the density distribution frozen in pre-flare configuration, while the equilibrium models assume the entire atmosphere is in hydrostatic and energetic equilibrium. The evolving atmospheres represent intermediate stages where hydrostatic equilibrium has been established in the chromosphere and corona, but the corona is not yet in energetic equilibrium with the flare heating source. Thus, for example, chromospheric evaporation is still in the process of occurring.

  1. Atmospheric Photochemistry

    NASA Technical Reports Server (NTRS)

    Massey, Harrie; Potter, A. E.

    1961-01-01

    The upper atmosphere offers a vast photochemical laboratory free from solid surfaces, so all reactions take place in the gaseous phase. At 30 km altitude the pressure has fallen to about one-hundredth of that at ground level, and we shall, rather arbitrarily, regard the upper atmosphere as beginning at that height. By a little less than 100 km the pressure has fallen to 10(exp -3) mm Hg and is decreasing by a power of ten for every 15 km increase in altitude. Essentially we are concerned then with the photochemistry of a nitrogen-oxygen mixture under low-pressure conditions in which photo-ionization, as well as photodissociation, plays an important part. Account must also be taken of the presence of rare constituents, such as water vapour and its decomposition products, including particularly hydroxyl, oxides of carbon, methane and, strangely enough, sodium, lithium and calcium. Many curious and unfamiliar reactions occur in the upper atmosphere. Some of them are luminescent, causing the atmosphere to emit a dim light called the airglow. Others, between gaseous ions and neutral molecules, are almost a complete mystery at this time. Similar interesting phenomena must occur in other planetary atmospheres, and they might be predicted if sufficient chemical information were available.

  2. Hydrogen environment embrittlement

    NASA Technical Reports Server (NTRS)

    Gray, H. R.

    1972-01-01

    Hydrogen embrittlement is classified into three types: internal reversible hydrogen embrittlement, hydrogen reaction embrittlement, and hydrogen environment embrittlement. Characteristics of and materials embrittled by these types of hydrogen embrittlement are discussed. Hydrogen environment embrittlement is reviewed in detail. Factors involved in standardizing test methods for detecting the occurrence of and evaluating the severity of hydrogen environment embrittlement are considered. The effect of test technique, hydrogen pressure, purity, strain rate, stress concentration factor, and test temperature are discussed. Additional research is required to determine whether hydrogen environment embrittlement and internal reversible hydrogen embrittlement are similar or distinct types of embrittlement.

  3. Fast Quenching For Hydrogen-Embrittlement Tests

    NASA Technical Reports Server (NTRS)

    Petri, Mark J.; Burkhart, Richard L.; Koncel, Joseph F.

    1990-01-01

    Apparatus exposes hot metal specimens in hydrogen atmospheres to sudden cooling. Heater surrounds pressure vessel initially. On command, heater slides downward on track, exposing vessel. Spray bar falls over vessel and directs high-pressure jets of cold water at it. Developed to evaluate susceptibilities of specimens to embrittlement by hydrogen. Cools specimens by 1,050 degrees F (580 degrees C) in 160 seconds.

  4. Ultraviolet absorption cross sections of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Lin, C. L.; Rohatgi, N. K.; Demore, W. B.

    1978-01-01

    Absorption cross-sections of hydrogen peroxide vapor and of neutral aqueous solutions of hydrogen peroxide were measured in the wavelength range from 195 to 350 nm at 296 K. The spectrophotometric procedure is described, and the reported cross-sections are compared with values obtained by other researchers. Photodissociation coefficients of atmospheric H2O2 were calculated for direct absorption of unscattered solar radiation, and the vertical distributions of these coefficients are shown for various solar zenith angles.

  5. Atmospheric radiation

    SciTech Connect

    Harshvardhan, M.R. )

    1991-01-01

    Studies of atmospheric radiative processes are summarized for the period 1987-1990. Topics discussed include radiation modeling; clouds and radiation; radiative effects in dynamics and climate; radiation budget and aerosol effects; and gaseous absorption, particulate scattering and surface reflection. It is concluded that the key developments of the period are a defining of the radiative forcing to the climate system by trace gases and clouds, the recognition that cloud microphysics and morphology need to be incorporated not only into radiation models but also climate models, and the isolation of a few important unsolved theoretical problems in atmospheric radiation.

  6. Hydrogenation of ethyl 5-cyano-2-oximinovalerate

    SciTech Connect

    Klabunovskii, E.I.; Levitina, E.S.; Kaigorodova, L.N.; Godunova, L.F.; Gogoladze, D.D.; Karpeiskaya, E.I.; Novikova, S.A.

    1987-03-10

    Hydrogenation of ethyl 5-cyano-2-oximinovalerate in acetic anhydride at atmospheric pressure in the presence of strong base leads to a quantitative yield of the ethyl ester of ..cap alpha..,eta-diacetyllysine. Selective reduction of the cyano and oximino groups in ethyl 5-cyano-2-oximinovalerate has been shown in the presence of powdered Ni, Cu-Ni, and LaNi/sub 5/H/sub 6.6/ catalysts. Hydrogenation of ethyl 5-cyano-2-oximinovalerate on Raney Ni at atmospheric pressure in dioxan with addition of acetic anhydride leads to a 50% yield of diacetyllysine.

  7. Hydrogen detector

    DOEpatents

    Kanegae, Naomichi; Ikemoto, Ichiro

    1980-01-01

    A hydrogen detector of the type in which the interior of the detector is partitioned by a metal membrane into a fluid section and a vacuum section. Two units of the metal membrane are provided and vacuum pipes are provided independently in connection to the respective units of the metal membrane. One of the vacuum pipes is connected to a vacuum gauge for static equilibrium operation while the other vacuum pipe is connected to an ion pump or a set of an ion pump and a vacuum gauge both designed for dynamic equilibrium operation.

  8. Hydrogen: the future energy carrier.

    PubMed

    Züttel, Andreas; Remhof, Arndt; Borgschulte, Andreas; Friedrichs, Oliver

    2010-07-28

    Since the beginning of the twenty-first century the limitations of the fossil age with regard to the continuing growth of energy demand, the peaking mining rate of oil, the growing impact of CO2 emissions on the environment and the dependency of the economy in the industrialized world on the availability of fossil fuels became very obvious. A major change in the energy economy from fossil energy carriers to renewable energy fluxes is necessary. The main challenge is to efficiently convert renewable energy into electricity and the storage of electricity or the production of a synthetic fuel. Hydrogen is produced from water by electricity through an electrolyser. The storage of hydrogen in its molecular or atomic form is a materials challenge. Some hydrides are known to exhibit a hydrogen density comparable to oil; however, these hydrides require a sophisticated storage system. The system energy density is significantly smaller than the energy density of fossil fuels. An interesting alternative to the direct storage of hydrogen are synthetic hydrocarbons produced from hydrogen and CO2 extracted from the atmosphere. They are CO2 neutral and stored like fossil fuels. Conventional combustion engines and turbines can be used in order to convert the stored energy into work and heat. PMID:20566514

  9. Atmospheric humidity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water vapor plays a critical role in earth's atmosphere. It helps to maintain a habitable surface temperature through absorption of outgoing longwave radiation, and it transfers trmendous amounts of energy from the tropics toward the poles by absorbing latent heat during evaporation and subsequently...

  10. Atmospheric Waves

    NASA Technical Reports Server (NTRS)

    2007-01-01

    With its Multispectral Visible Imaging Camera (MVIC), half of the Ralph instrument, New Horizons captured several pictures of mesoscale gravity waves in Jupiter's equatorial atmosphere. Buoyancy waves of this type are seen frequently on Earth - for example, they can be caused when air flows over a mountain and a regular cloud pattern forms downstream. In Jupiter's case there are no mountains, but if conditions in the atmosphere are just right, it is possible to form long trains of these small waves. The source of the wave excitation seems to lie deep in Jupiter's atmosphere, below the visible cloud layers at depths corresponding to pressures 10 times that at Earth's surface. The New Horizons measurements showed that the waves move about 100 meters per second faster than surrounding clouds; this is about 25% of the speed of sound on Earth and is much greater than current models of these waves predict. Scientists can 'read' the speed and patterns these waves to learn more about activity and stability in the atmospheric layers below.

  11. Process for recovering evolved hydrogen enriched with at least one heavy hydrogen isotope

    DOEpatents

    Tanaka, John; Reilly, Jr., James J.

    1978-01-01

    This invention relates to a separation means and method for enriching a hydrogen atmosphere with at least one heavy hydrogen isotope by using a solid titaniun alloy hydride. To this end, the titanium alloy hydride containing at least one metal selected from the group consisting of vanadium, chromium, manganese, molybdenum, iron, cobalt and nickel is contacted with a circulating gaseous flow of hydrogen containing at least one heavy hydrogen isotope at a temperature in the range of -20.degree. to +40.degree. C and at a pressure above the dissociation pressure of the hydrided alloy selectively to concentrate at least one of the isotopes of hydrogen in the hydrided metal alloy. The contacting is continued until equilibrium is reached, and then the gaseous flow is isolated while the temperature and pressure of the enriched hydride remain undisturbed selectively to isolate the hydride. Thereafter, the enriched hydrogen is selectively recovered in accordance with the separation factor (S.F.) of the alloy hydride employed.

  12. Development of an electrochemical hydrogen separator

    SciTech Connect

    Abens, S.; Fruchtman, J.; Kush, A.

    1992-01-01

    The electrochemical hydrogen separator (EHS), under development at ERC, has several attractive features: The operating temperature (150[degree]C--200[degree]C) is higher than those associated with the currently available devices and is compatible with the low temperature shift reactors. The EHS can operate at atmospheric as well as elevated pressures and the product H[sub 2] is available at the feed stream pressure. High hydrogen recovery factor: 90% H[sub 2] recovery from feed streams containing less than 10% hydrogen is feasible. High hydrogen purity: The product H[sub 2] purity is >99% (dry basis) and is virtually independent of H[sub 2] concentration in the feed gas. The process is continuous. Low energy cost: Depending upon the operating conditions, the energy requirement varies between 2 to 6 kWh/1000 SCF of recovered hydrogen.

  13. Development of an electrochemical hydrogen separator

    SciTech Connect

    Abens, S.; Fruchtman, J.; Kush, A.

    1992-11-01

    The electrochemical hydrogen separator (EHS), under development at ERC, has several attractive features: The operating temperature (150{degree}C--200{degree}C) is higher than those associated with the currently available devices and is compatible with the low temperature shift reactors. The EHS can operate at atmospheric as well as elevated pressures and the product H{sub 2} is available at the feed stream pressure. High hydrogen recovery factor: 90% H{sub 2} recovery from feed streams containing less than 10% hydrogen is feasible. High hydrogen purity: The product H{sub 2} purity is >99% (dry basis) and is virtually independent of H{sub 2} concentration in the feed gas. The process is continuous. Low energy cost: Depending upon the operating conditions, the energy requirement varies between 2 to 6 kWh/1000 SCF of recovered hydrogen.

  14. Fatigue of stainless steel in hydrogen

    NASA Astrophysics Data System (ADS)

    Schuster, G.; Altstetter, C.

    1983-10-01

    The fatigue crack growth rates of two austenitic stainless steel alloys, AISI 301 and 302, were compared in air, argon, and hydrogen environments at atmospheric pressure and room temperature. Under the stresses at the crack tip the austenite in type 301 steel transformed martensitically to a’ to a greater extent than in type 302 steel. The steels were also tested in the cold worked condition under hydrogen or argon. Hydrogen was found to have a deleterious effect on both steels, but the effect was stronger in the unstable than in the stable alloy. Cold work decreased fatigue crack growth rates in argon and hydrogen, but the decrease was less marked in hydrogen than in argon. Metallographic, fractographic, and microhardness surveys in the vicinity of the fatigue crack were used to try to understand the reasons for the observed fatigue behavior.

  15. Hydrogen iodide decomposition

    DOEpatents

    O'Keefe, Dennis R.; Norman, John H.

    1983-01-01

    Liquid hydrogen iodide is decomposed to form hydrogen and iodine in the presence of water using a soluble catalyst. Decomposition is carried out at a temperature between about 350.degree. K. and about 525.degree. K. and at a corresponding pressure between about 25 and about 300 atmospheres in the presence of an aqueous solution which acts as a carrier for the homogeneous catalyst. Various halides of the platinum group metals, particularly Pd, Rh and Pt, are used, particularly the chlorides and iodides which exhibit good solubility. After separation of the H.sub.2, the stream from the decomposer is countercurrently extracted with nearly dry HI to remove I.sub.2. The wet phase contains most of the catalyst and is recycled directly to the decomposition step. The catalyst in the remaining almost dry HI-I.sub.2 phase is then extracted into a wet phase which is also recycled. The catalyst-free HI-I.sub.2 phase is finally distilled to separate the HI and I.sub.2. The HI is recycled to the reactor; the I.sub.2 is returned to a reactor operating in accordance with the Bunsen equation to create more HI.

  16. Mechanochemical hydrogenation of coal

    DOEpatents

    Yang, Ralph T.; Smol, Robert; Farber, Gerald; Naphtali, Leonard M.

    1981-01-01

    Hydrogenation of coal is improved through the use of a mechanical force to reduce the size of the particulate coal simultaneously with the introduction of gaseous hydrogen, or other hydrogen donor composition. Such hydrogen in the presence of elemental tin during this one-step size reduction-hydrogenation further improves the yield of the liquid hydrocarbon product.

  17. Ozone in the free atmosphere

    NASA Technical Reports Server (NTRS)

    Whitten, R. C. (Editor); Prasad, S. S. (Editor)

    1985-01-01

    The present book provides a summary of the state of scientific knowledge of stratospheric and free tropospheric ozone as it exists at the beginning of 1983. Ozone photochemistry in the stratosphere is discussed, taking into account fundamental molecular properties, the absorption spectrum of ozone, photodissociation, ozone formation and destruction in the upper atmosphere, the photochemistry of odd-hydrogen, the photochemistry of odd-nitrogen, the photochemistry of odd-chlorine, and photochemistry-temperature coupling. The observed distribution of atmospheric ozone and its variations are considered along with ozone transport, ozone in the troposphere, stratospheric ozone perturbations, and climatic and biological effects. Attention is given to the techniques of observing atmospheric ozone, horizontal-vertical ozone transport and conservative quantities, measurements of tropospheric ozone, the tropospheric ozone budget, ozone models, natural ozone variations, and anthropogenic ozone perturbations.

  18. Atmospheric Dynamics

    NASA Astrophysics Data System (ADS)

    Green, John

    2004-12-01

    In his book, John Green presents a unique personal insight into the fundamentals of fluid mechanics and atmospheric dynamics. Generations of students have benefited from his lectures, and this book, many years in the making, is the result of his wide teaching and research experience. The theory of fluid flow has developed to such an extent that very complex mathematics and models are currently used to describe it, but many of the fundamental results follow from relatively simple considerations: these classic principles are derived here in a novel, distinctive, and at times even idiosyncratic, way. The book is an introduction to fluid mechanics in the atmosphere for students and researchers that are already familiar with the subject, but who wish to extend their knowledge and philosophy beyond the currently popular development of conventional undergraduate instruction.

  19. Atmospheric Constraints on the Evolution of Metabolism

    NASA Astrophysics Data System (ADS)

    Walker, James C. G.

    1980-06-01

    Earth's early history may have been characterized by coevolution of microbial metabolism and atmospheric composition. Metabolic developments affected the composition of the atmosphere and the resultant changes in the atmosphere stimulated the evolution of new metabolic capabilities. The first organisms were presumably fermenting heterotrophs, exploiting organic molecules abiotically synthesized. These organisms multiplied, developing new biosynthetic capabilities to overcome deficiencies in the abiotic supply of particular compounds, until their growth was limited by the energy source provided by abiotic synthesis of fermentable organic compounds. Further growth required a new energy source, which may have been the chemical energy represented by the mixture of carbon dioxide and hydrogen in the primitive atmosphere. Chemotrophic organisms resembling methane bacteria may have evolved to exploit this source. They would have flourished, along with the heterotrophs that fed on them, until they had decreased the level of atmospheric hydrogen to the point where further extraction of chemical energy from the atmosphere was not possible. Once again, the expansion of life was limited by the availability of energy. The origin of bacterial photosynthesis overcame the second energy crisis. Photosynthetic bacteria could exploit the abundant energy of sunlight while using atmospheric hydrogen and reduced compounds derived from it only as electron donors. Life flourished again, drawing atmospheric hydrogen (replenished only by volcanoes) down to levels so low as to limit even bacterial photosynthesis. Before the full potential of photosynthesis could be exploited the evolution of the metabolic apparatus to process an electron donor of unlimited abundance was necessary. This donor, of course, was water, and the new metabolic process was algal photosynthesis. The oxygen released changed the world from anaerobic to aerobic and made possible the last great advance in energy

  20. Atmospheric neutrinos

    NASA Astrophysics Data System (ADS)

    Gaisser, Thomas K.

    2016-05-01

    In view of the observation by IceCube of high-energy astrophysical neutrinos, it is important to quantify the uncertainty in the background of atmospheric neutrinos. There are two sources of uncertainty, the imperfect knowledge of the spectrum and composition of the primary cosmic rays that produce the neutrinos and the limited understanding of hadron production, including charm, at high energy. This paper is an overview of both aspects.

  1. Atmospheric Aerosols

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Lawless, James G. (Technical Monitor)

    1994-01-01

    Aerosols, defined as particles and droplets suspended in air, are always present in the atmosphere. They are part of the earth-atmosphere climate system, because they interact with both incoming solar and outgoing terrestrial radiation. They do this directly through scattering and absorption, and indirectly through effects on clouds. Submicrometer aerosols usually predominate in terms of number of particles per unit volume of air. They have dimensions close to the wavelengths of visible light, and thus scatter radiation from the sun very effectively. They are produced in the atmosphere by chemical reactions of sulfur-, nitrogen- and carbon-containing gases of both natural and anthropogenic origins. Light absorption is dominated by particles containing elemental carbon (soot), produced by incomplete combustion of fossil fuels and by biomass burning. Light-scattering dominates globally, although absorption can be significant at high latitudes, particularly over highly reflective snow- or ice-covered surfaces. Other aerosol substances that may be locally important are those from volcanic eruptions, wildfires and windblown dust.

  2. Hydrogen peroxide poisoning

    MedlinePlus

    ... peroxide is used in these products: Hydrogen peroxide Hair bleach Some contact lens cleaners Note: Household hydrogen peroxide ... it contains 97% water and 3% hydrogen peroxide. Hair bleaches are stronger. They usually have a concentration of ...

  3. Hydrogen storage on high-surface-area carbon monoliths for Adsorb hydrogen Gas Vehicle

    NASA Astrophysics Data System (ADS)

    Soo, Yuchoong; Pfeifer, Peter

    2014-03-01

    Carbon briquetting can increase hydrogen volumetric storage capacity by reducing the useless void volume resulting in a better packing density. It is a robust and efficient space-filling form for an adsorbed hydrogen gas vehicle storage tank. To optimize hydrogen storage capacity, we studied three fabrication process parameters: carbon-to-binder ratio, compaction temperature, and pyrolysis atmosphere. We found that carbon-to-binder ratio and pyrolysis atmosphere have influences on gravimetric excess adsorption. Compaction temperature has large influences on gravimetric and volumetric storage capacity. We have been able to optimize these parameters for high hydrogen storage. All monolith uptakes (up to 260 bar) were measured by a custom-built, volumetric, reservoir-type instrument.

  4. Hydrogen Permeation Barrier Coatings

    SciTech Connect

    Henager, Charles H.

    2008-01-01

    Gaseous hydrogen, H2, has many physical properties that allow it to move rapidly into and through materials, which causes problems in keeping hydrogen from materials that are sensitive to hydrogen-induced degradation. Hydrogen molecules are the smallest diatomic molecules, with a molecular radius of about 37 x 10-12 m and the hydrogen atom is smaller still. Since it is small and light it is easily transported within materials by diffusion processes. The process of hydrogen entering and transporting through a materials is generally known as permeation and this section reviews the development of hydrogen permeation barriers and barrier coatings for the upcoming hydrogen economy.

  5. Hydrogen embrittlement in nickel-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Gross, Sidney

    1989-01-01

    It was long known that many strong metals can become weakened and brittle as the result of the accumulation of hydrogen within the metal. When the metal is stretched, it does not show normal ductile properties, but fractures prematurely. This problem can occur as the result of a hydrogen evolution reaction such as corrosion or electroplating, or due to hydrogen in the environment at the metal surface. High strength alloys such as steels are especially susceptible to hydrogen embrittlement. Nickel-hydrogen cells commonly use Inconel 718 alloy for the pressure container, and this also is susceptible to hydrogen embrittlement. Metals differ in their susceptibility to embrittlement. Hydrogen embrittlement in nickel-hydrogen cells is analyzed and the reasons why it may or may not occur are discussed. Although Inconel 718 can display hydrogen embrittlement, experience has not identified any problem with nickel-hydrogen cells. No hydrogen embrittlement problem is expected with the 718 alloy pressure container used in nickel-hydrogen cells.

  6. An electrochemical calibration unit for hydrogen analysers.

    PubMed

    Merzlikin, Sergiy V; Mingers, Andrea M; Kurz, Daniel; Hassel, Achim Walter

    2014-07-01

    Determination of hydrogen in solids such as high strength steels or other metals in the ppb or ppm range requires hot-extraction or melt-extraction. Calibration of commercially available hydrogen analysers is performed either by certified reference materials CRMs, often having limited availability and reliability or by gas dosing for which the determined value significantly depends on atmospheric pressure and the construction of the gas dosing valve. The sharp and sudden appearance of very high gas concentrations from gas dosing is very different from real effusion transients and is therefore another source of errors. To overcome these limitations, an electrochemical calibration method for hydrogen analysers was developed and employed in this work. Exactly quantifiable, faradaic amounts of hydrogen can be produced in an electrochemical reaction and detected by the hydrogen analyser. The amount of hydrogen is exactly known from the transferred charge in the reaction following Faradays law; and the current time program determines the apparent hydrogen effusion transient. Random effusion transient shaping becomes possible to fully comply with real samples. Evolution time and current were varied for determining a quantitative relationship. The device was used to produce either diprotium (H2) or dideuterium (D2) from the corresponding electrolytes. The functional principle is electrochemical in nature and thus an automation is straightforward, can be easily implemented at an affordable price of 1-5% of the hydrogen analysers price. PMID:24840442

  7. Atmospheric science

    NASA Technical Reports Server (NTRS)

    Hamill, Patrick; Ackerman, Thomas; Clarke, Antony; Goodman, Jindra; Levin, Zev; Tomasko, Martin; Toon, O. Brian; Whitten, Robert

    1987-01-01

    The following types of experiments for a proposed Space Station Microgravity Particle Research Facility are described: (1) growth of liquid water drop populations; (2) coalescence; (3) drop breakup; (4) breakup of freezing drops; (5) ice nucleation for large aerosols or bacteria; (6) scavenging of gases, for example, SO2 oxidation; (7) phoretic forces, i.e., thermophoresis versus diffusiophoresis; (8) Rayleigh bursting of drops; (9) charge separation due to collisions of rimed and unrimed ice; (10) charged drop dynamics; (11) growth of particles in other planetary atmospheres; and (12) freezing and liquid-liquid evaporation. The required capabilities and desired hardware for the facility are detailed.

  8. Hydrogen cryofuel in internal combustion engines

    SciTech Connect

    Peschka, W.

    1994-12-31

    The main reason to support hydrogen as a fuel lies in the foreseeable problems regarding the CO{sub 2} pollution of the Earth`s atmosphere due to the unrestrained use of fossil energy. While combustion of currently used, or feasible hydrocarbon fuels releases about the same amount of CO{sub 2} per amount of heat produced, even hydrocarbon fuels with a greater hydrogen content do not lead to substantial improvement in this regard. Hydrogen represents the only practical, technically feasible, carbon free fuel. Cryogenic characteristics of hydrogen such as high density and a considerable cooling effect favor the fuel injection, the mixing process and thus the combustion process. In addition to the preferred use of liquid hydrogen due to its range per tank filling and low amount of mass for storage in the vehicle, the cryogenic characteristics of hydrogen provide significant advantages. In addition to engine operation with external mixture formation, considerable success was made with internal mixture formation with injection of cryogenic high pressure hydrogen. Only pressurization of cryogenic hydrogen can be accomplished without investing a considerable amount of engine power. Hybrid mixture formation, a proper combination of external and internal mixture formation with suitably pressurized cryogenic hydrogen, is very attractive with respect to power and torque flow as well as other positive characteristics under steady and intermittent operating conditions. The state of the art technology of liquid hydrogen represents a suitable base for large scale demonstration projects now. Additional aims of more intense R&D work relate to internal mixture formation and improved engine roadability as well as utility vehicle application including trucks and buses. With respect to fuel costs there will be an increased demand in developing hydrogen production free from CO{sub 2} emissions even from fossil energy sources such as crude oil or natural gas.

  9. Hydrogen Annealing Of Single-Crystal Superalloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Schaeffer, John C.; Murphy, Wendy

    1995-01-01

    Annealing at temperature equal to or greater than 2,200 degrees F in atmosphere of hydrogen found to increase ability of single-crystal superalloys to resist oxidation when subsequently exposed to oxidizing atmospheres at temperatures almost as high. Supperalloys in question are principal constituents of hot-stage airfoils (blades) in aircraft and ground-based turbine engines; also used in other high-temperature applications like chemical-processing plants, coal-gasification plants, petrochemical refineries, and boilers. Hydrogen anneal provides resistance to oxidation without decreasing fatigue strength and without need for coating or reactive sulfur-gettering constituents. In comparison with coating, hydrogen annealing costs less. Benefits extend to stainless steels, nickel/chromium, and nickel-base alloys, subject to same scale-adhesion and oxidation-resistance considerations, except that scale is chromia instead of alumina.

  10. Hydrogen permeation, diffusion and solubility in IN-100 and Waspaloy

    NASA Technical Reports Server (NTRS)

    Khan, A. S.; Peterson, D. T.

    1990-01-01

    An attempt has been made to determine the permeation rate of hydrogen in IN-100 and Waspaloy by determining the evolution rate of hydrogen from a closed capsule of the test materials. Enclosed vanadium hydride was the source of hydrogen in the capsule. The presentation discusses the treatment of data and assesses the validity of the techniques in permeation measurement. In addition to permeation experiments, the solubility and diffusion of hydrogen in IN-100 and Waspaloy were also determined. For hydrogen diffusion in Waspaloy, Delta H was 38.5 kJ and D(0) was 0.0026 sq cm/sec. For IN-100, Delta H was 68.2 kJ and D(0) was 0.059 sq cm /sec. Both IN-100 and Waspaloy exhibited limited solubility of hydrogen at pressures up to 340 atmospheres hydrogen.

  11. Vanadium diaphragm electrode serves as hydrogen diffuser in lithium hydride cell

    NASA Technical Reports Server (NTRS)

    Crouthamel, C. E.; Heinrich, R. R.; Johnson, C. E.

    1967-01-01

    Lithium hydride cell uses vanadium diaphragm electrode as a hydrogen diffuser. Vanadium is high in hydrogen gas solubility and permeability, is least sensitive to adverse surface effects, maintains good mechanical strength in hydrogen atmospheres, and appears to be compatible with all alkali-halide electrolytes and lithium metals.

  12. Chemistry and evolution of Titan's atmosphere

    NASA Technical Reports Server (NTRS)

    Strobel, D. F.

    1982-01-01

    The chemistry and evolution of Titan's atmosphere are reviewed, in light of the scientific findings from the Voyager mission. It is argued that the present N2 atmosphere may be Titan's initial atmosphere, rather than one photochemically derived from an original NH3 atmosphere. The escape rate of hydrogen from Titan is controlled by photochemical production from hydrocarbons. CH4 is irreversibly converted to less hydrogen-rich hydrocarbons, which over geologic time accumulate on the surface to a layer thickness of about 0.5 km. Magnetospheric electrons interacting with Titan's exosphere may dissociate enough N2 into hot, escaping N atoms to remove about 0.2 of Titan's present atmosphere over geologic time. The energy dissipation of magnetospheric electrons exceeds solar EUV energy deposition in Titan's atmosphere by an order of magnitude, and is the principal driver of nitrogen photochemistry. The environmental conditions in Titan's upper atmosphere are favorable to building up complex molecules, particularly in the north polar cap region.

  13. Composition for absorbing hydrogen

    DOEpatents

    Heung, L.K.; Wicks, G.G.; Enz, G.L.

    1995-05-02

    A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  14. An independent hydrogen source

    SciTech Connect

    Kobzenko, G.F.; Chubenko, M.V.; Kobzenko, N.S.; Senkevich, A.I.; Shkola, A.A.

    1985-10-01

    Descriptions are given of the design and operation of an independent hydrogen source used in purifying and storing hydrogen. If LaNi/sub 5/ or TiFe is used as the sorbent, one can store about 500 liter of chemically bound hydrogen in a vessel of 0.9 liter. Molecular purification of the desorbed hydrogen is used. The IHS is a safe hydrogen source, since the hydrogen is trapped in the sorbent in the chemically bound state and in equilibrium with LaNi/sub 5/Hx at room temperature. If necessary, the IHS can serve as a compressor and provide higher hydrogen pressures. The device is compact and transportable.

  15. Composition for absorbing hydrogen

    DOEpatents

    Heung, Leung K.; Wicks, George G.; Enz, Glenn L.

    1995-01-01

    A hydrogen absorbing composition. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  16. Thermodynamic properties of hydrogen-helium plasmas.

    NASA Technical Reports Server (NTRS)

    Nelson, H. F.

    1972-01-01

    Calculation of the thermodynamic properties of an atomic hydrogen-helium plasma for postulated conditions present in a stagnation shock layer of a spacecraft entering the atmosphere of Jupiter. These properties can be used to evaluate transport properties, to calculate convective heating, and to investigate nonequilibrium behavior. The calculations have been made for temperatures from 10,000 to 100,000 K, densities of 10 to the minus 7th and .00001 g cu cm, and three plasma compositions: pure hydrogen, 50% hydrogen/50% helium, and pure helium. The shock layer plasma consists of electrons, protons, atomic hydrogen, atomic helium, singly ionized helium, and doubly atomized helium. The thermodynamic properties which have been investigated are: pressure, average molecular weight, internal energy, enthalpy, entropy, specific heat, and isentropic speed of sound. A consistent model was used for the reduction of the ionization potential in the calculation of the partition functions.

  17. Extended atmospheres of outer planet satellites and comets

    NASA Technical Reports Server (NTRS)

    Smyth, W. H.; Combi, M. R.

    1985-01-01

    Model analysis of the extended atmospheres of outer planet satellites and comets are discussed. Understanding the neutral hydrogen distribution in the Saturn system concentrated on assessing the spatial dependence of the lifetime of hydrogen atoms and on obtaining appropriately sorted Lyman ALPHA data from the Voyager 1 UVS instrument. Progress in the area of the extended cometary atmospheres included analysis of Pioneer Venus Layman alpha observations of Comet P/Encke with the fully refined hydrogen cloud model, development of the basic carbon and oxygen models, and planning for the Pioneer Venus UVS observations of Comets P/Giacobini-Zinner and P/Halley.

  18. Atmosphere Analyzer

    NASA Technical Reports Server (NTRS)

    1982-01-01

    California Measurements, Inc.'s model PC-2 Aerosol Particle Analyzer is produced in both airborne and ground-use versions. Originating from NASA technology, it is a quick and accurate method of detecting minute amounts of mass loadings on a quartz crystal -- offers utility as highly sensitive detector of fine particles suspended in air. When combined with suitable air delivery system, it provides immediate information on the size distribution and mass concentrations of aerosols. William Chiang, obtained a NASA license for multiple crystal oscillator technology, and initially developed a particle analyzer for NASA use with Langley Research Center assistance. Later his company produced the modified PC-2 for commercial applications Brunswick Corporation uses the device for atmospheric research and in studies of smoke particles in Fires. PC-2 is used by pharmaceutical and chemical companies in research on inhalation toxicology and environmental health. Also useful in testing various filters for safety masks and nuclear installations.

  19. Atmospheric Propagation

    NASA Technical Reports Server (NTRS)

    Embleton, Tony F. W.; Daigle, Gilles A.

    1991-01-01

    Reviewed here is the current state of knowledge with respect to each basic mechanism of sound propagation in the atmosphere and how each mechanism changes the spectral or temporal characteristics of the sound received at a distance from the source. Some of the basic processes affecting sound wave propagation which are present in any situation are discussed. They are geometrical spreading, molecular absorption, and turbulent scattering. In geometrical spreading, sound levels decrease with increasing distance from the source; there is no frequency dependence. In molecular absorption, sound energy is converted into heat as the sound wave propagates through the air; there is a strong dependence on frequency. In turbulent scattering, local variations in wind velocity and temperature induce fluctuations in phase and amplitude of the sound waves as they propagate through an inhomogeneous medium; there is a moderate dependence on frequency.

  20. Hydrogen Escape from early Earth and Mars

    NASA Astrophysics Data System (ADS)

    Zugger, M. E.; Ramirez, R. M.; Kasting, J. F.

    2012-12-01

    A controversy regarding hydrodynamic escape rates arose when Tian et al. (2005) published transonic escape rates for an atmosphere composed of pure H2. Tian et al. concluded that the hydrogen escape rate from early Earth would have been a factor of 20 or more slower than the diffusion limit, even if the solar EUV (extreme ultraviolet) flux was enhanced by a factor of 5 relative to today. This conclusion was challenged by Catling (2006), who pointed out that solar EUV fluxes could have been much higher than this so that plenty of energy should have been available to power escape. This controversy has remained unresolved to date. Hydrogen escape from early Mars is also of interest. As discussed in this session in a complementary paper by Ramirez et al., collision-induced absorption by molecular hydrogen could have helped to warm early Mars, perhaps explaining the formation of valleys and valley networks. Ramirez et al. have shown that a mixture of 90% CO2 and 10% H2 is capable raising early Mars' surface temperature above the freezing point of water, for surface pressures exceeding ~3 bar. However, we need to understand whether H2 mixing ratios of 10% are physically plausible. The H2 partial pressure in Mars' early atmosphere would have been determined by the balance between volcanic outgassing and escape to space. The 10% mixing ratio is high compared to the value of ~10-3 typically assumed for early Earth. But Mars' early atmosphere may have been more reduced than Earth's (Wadwha, 2001); if the hydrogen escape rate on Mars was also slower than on Earth, then additional increases in atmospheric hydrogen concentration are possible. To answer these questions about the early atmospheres of Earth and Mars, we have modified an existing model of hydrodynamic escape, developed by F. Tian, J. Kasting, and others, to converge for atmospheres with a wide range of hydrogen mixing ratios. The model finds subsonic solutions to the hydrodynamic equations; these can be shown to

  1. Rayleigh scattering in the atmospheres of hot stars

    NASA Astrophysics Data System (ADS)

    Fišák, J.; Krtička, J.; Munzar, D.; Kubát, J.

    2016-05-01

    Context. Rayleigh scattering is a result of an interaction of photons with bound electrons. Rayleigh scattering is mostly neglected in calculations of hot star model atmospheres because most of the hydrogen atoms are ionized and the heavier elements have a lower abundance than hydrogen. In atmospheres of some chemically peculiar stars, helium overabundant regions containing singly ionized helium are present and Rayleigh scattering can be a significant opacity source. Aims: We evaluate the contribution of Rayleigh scattering by neutral hydrogen and singly ionized helium in the atmospheres of hot stars with solar composition and in the atmospheres of helium overabundant stars. Methods: We computed several series of model atmospheres using the TLUSTY code and emergent fluxes using the SYNSPEC code. These models describe atmospheres of main sequence B-type stars with different helium abundance. We used an existing grid of models for atmospheres with solar chemical composition and we calculated an additional grid for helium-rich stars with N(He)/N(H) = 10. Results: Rayleigh scattering by neutral hydrogen can be neglected in atmospheres of hot stars, while Rayleigh scattering by singly ionized helium can be a non-negligible opacity source in some hot stars, especially in helium-rich stars.

  2. Hydrogen Embrittlement Understood

    NASA Astrophysics Data System (ADS)

    Robertson, Ian M.; Sofronis, P.; Nagao, A.; Martin, M. L.; Wang, S.; Gross, D. W.; Nygren, K. E.

    2015-06-01

    The connection between hydrogen-enhanced plasticity and the hydrogen-induced fracture mechanism and pathway is established through examination of the evolved microstructural state immediately beneath fracture surfaces including voids, "quasi-cleavage," and intergranular surfaces. This leads to a new understanding of hydrogen embrittlement in which hydrogen-enhanced plasticity processes accelerate the evolution of the microstructure, which establishes not only local high concentrations of hydrogen but also a local stress state. Together, these factors establish the fracture mechanism and pathway.

  3. Energetic particle influences in Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Aplin, Karen; Harrison, R. Giles; Nicoll, Keri; Rycroft, Michael; Briggs, Aaron

    2016-04-01

    Energetic particles from outer space, known as galactic cosmic rays, constantly ionise the entire atmosphere. During strong solar storms, solar energetic particles can also reach the troposphere and enhance ionisation. Atmospheric ionisation generates cluster ions. These facilitate current flow in the global electric circuit, which arises from charge separation in thunderstorms driven by meteorological processes. Energetic particles, whether solar or galactic in origin, may influence the troposphere and stratosphere through a range of different mechanisms, each probably contributing a small amount. Some of the suggested processes potentially acting over a wide spatial area in the troposphere include enhanced scavenging of charged aerosol particles, modification of droplet or droplet-droplet behavior by charging, and the direct absorption of infra-red radiation by the bending and stretching of hydrogen bonds inside atmospheric cluster-ions. As well as reviewing the proposed mechanisms by which energetic particles modulate atmospheric properties, we will also discuss new instrumentation for measurement of energetic particles in the atmosphere.

  4. Deviations from LTE in a stellar atmosphere

    NASA Technical Reports Server (NTRS)

    Kalkofen, W.; Klein, R. I.; Stein, R. F.

    1979-01-01

    Deviations for LTE are investigated in an atmosphere of hydrogen atoms with one bound level, satisfying the equations of radiative, hydrostatic, and statistical equilibrium. The departure coefficient and the kinetic temperature as functions of the frequency dependence of the radiative cross section are studied analytically and numerically. Near the outer boundary of the atmosphere, the departure coefficient is smaller than unity when the radiative cross section grows with frequency faster than with the square of frequency; it exceeds unity otherwise. Far from the boundary the departure coefficient tends to exceed unity for any frequency dependence of the radiative cross section. Overpopulation always implies that the kinetic temperature in the statistical-equilibrium atmosphere is higher than the temperature in the corresponding LTE atmosphere. Upper and lower bounds on the kinetic temperature are given for an atmosphere with deviations from LTE only in the optically shallow layers when the emergent intensity can be described by a radiation temperature.

  5. Validation Testing of Hydrogen Generation Technology

    SciTech Connect

    Smith, Barton; Toops, Todd J

    2007-12-01

    This report describes the results of testing performed by ORNL for Photech Energies, Inc. The objective of the testing was to evaluate the efficacy of Photech's hydrogen generation reactor technology, which produces gaseous hydrogen through electrolysis. Photech provided several prototypes of their proprietary reactor for testing and the ancillary equipment, such as power supplies and electrolyte solutions, required for proper operation of the reactors. ORNL measured the production of hydrogen gas (volumetric flow of hydrogen at atmospheric pressure) as a function of input power and analyzed the composition of the output stream to determine the purity of the hydrogen content. ORNL attempted measurements on two basic versions of the prototype reactors-one version had a clear plastic outer cylinder, while another version had a stainless steel outer cylinder-but was only able to complete measurements on reactors in the plastic version. The problem observed in the stainless steel reactors was that in these reactors most of the hydrogen was produced near the anodes along with oxygen and the mixed gases made it impossible to determine the amount of hydrogen produced. In the plastic reactors the production of hydrogen gas increased monotonically with input power, and the flow rates increased faster at low input powers than they did at higher input powers. The maximum flow rate from the cathode port measured during the tests was 0.85 LPM at an input power of about 1100 W, an electrolyte concentration of 20%. The composition of the flow from the cathode port was primarily hydrogen and water vapor, with some oxygen and trace amounts of carbon dioxide. An operational mode that occurs briefly during certain operating conditions, and is characterized by flashes of light and violent bubbling near the cathode, might be attributable to the combustion of hydrogen and oxygen in the electrolyte solution.

  6. A Few Facts about Hydrogen [and] Hydrogen Bibliography.

    ERIC Educational Resources Information Center

    Hinds, H. Roger

    Divided into two sections, this publication presents facts about and the characteristics of hydrogen and a bibliography on hydrogen. The first section lists nine facts on what hydrogen is, four on where hydrogen is found, nine on how hydrogen is used, nine on how hydrogen can be used, and 14 on how hydrogen is made. Also included are nine…

  7. Electrochemical Hydrogen Compressor

    SciTech Connect

    David P. Bloomfield; Brian S. MacKenzie

    2006-05-01

    The Electrochemical Hydrogen Compressor EHC was evaluated against DOE applications for compressing hydrogen at automobile filling stations, in future hydrogen pipelines and as a commercial replacement for conventional diaphragm hydrogen compressors. It was also evaluated as a modular replacement for the compressors used in petrochemical refineries. If the EHC can be made inexpensive, reliable and long lived then it can satisfy all these applications save pipelines where the requirements for platinum catalyst exceeds the annual world production. The research performed did not completely investigate Molybdenum as a hydrogen anode or cathode, it did show that photoetched 316 stainless steel is inadequate for an EHC. It also showed that: molybdenum bipolar plates, photochemical etching processes, and Gortex Teflon seals are too costly for a commercial EHC. The use of carbon paper in combination with a perforated thin metal electrode demonstrated adequate anode support strength, but is suspect in promoting galvanic corrosion. The nature of the corrosion mechanisms are not well understood, but locally high potentials within the unit cell package are probably involved. The program produced a design with an extraordinary high cell pitch, and a very low part count. This is one of the promising aspects of the redesigned EHC. The development and successful demonstration of the hydraulic cathode is also important. The problem of corrosion resistant metal bipolar plates is vital to the development of an inexpensive, commercial PEM fuel cell. Our research suggests that there is more to the corrosion process in fuel cells and electrochemical compressors than simple, steady state, galvanic stability. It is an important area for scientific investigation. The experiments and analysis conducted lead to several recommended future research directions. First, we need a better understanding of the corrosion mechanisms involved. The diagnosis of experimental cells with titration to

  8. Helium Atmospheres on Warm Neptune- and Sub-Neptune-sized Exoplanets and Applications to GJ 436b

    NASA Astrophysics Data System (ADS)

    Hu, Renyu; Seager, Sara; Yung, Yuk L.

    2015-07-01

    Warm Neptune- and sub-Neptune-sized exoplanets in orbits smaller than Mercury’s are thought to have experienced extensive atmospheric evolution. Here we propose that a potential outcome of this atmospheric evolution is the formation of helium-dominated atmospheres. The hydrodynamic escape rates of Neptune- and sub-Neptune-sized exoplanets are comparable to the diffusion-limited escape rate of hydrogen, and therefore the escape is heavily affected by diffusive separation between hydrogen and helium. A helium atmosphere can thus be formed—from a primordial hydrogen-helium atmosphere—via atmospheric hydrodynamic escape from the planet. The helium atmosphere has very different abundances of major carbon and oxygen species from those of a hydrogen atmosphere, leading to distinctive transmission and thermal emission spectral features. In particular, the hypothesis of a helium-dominated atmosphere can explain the thermal emission spectrum of GJ 436b, a warm Neptune-sized exoplanet, while also being consistent with the transmission spectrum. This model atmosphere contains trace amounts of hydrogen, carbon, and oxygen, with the predominance of CO over CH4 as the main form of carbon. With our atmospheric evolution model, we find that if the mass of the initial atmosphere envelope is 10-3 planetary mass, hydrodynamic escape can reduce the hydrogen abundance in the atmosphere by several orders of magnitude in ˜10 billion years. Observations of exoplanet transits may thus detect signatures of helium atmospheres and probe the evolutionary history of small exoplanets.

  9. Evolution of the Earth's Atmosphere.

    PubMed

    Rasool, S I

    1967-09-22

    We living things are a late outgrowth of the metabolism of our Galaxy. The carbon that enters so importantly into our composition was cooked in the remote past in a dying star. From it at lower temperatures nitrogen and oxygen were formed. These, our indispensable elements, were spewed out into space in the exhalations of red giants and such stellar catastrophes as supernovae, there to be mixed with hydrogen, to form eventually the substance of the sun and planets, and ourselves. The waters of ancient seas set the pattern of ions in our blood. The ancient atmospheres molded our metabolism. PMID:17819549

  10. Hydrodynamical Modeling of Hydrogen Escape from Rocky Planets

    NASA Astrophysics Data System (ADS)

    Barringer, Daniel; Zugger, M.; Kasting, J.

    2013-01-01

    Hydrogen escape affects both the composition of primitive atmospheres of terrestrial planets and the planet’s state of oxidation. On Mars, hydrogen escape played a critical role in how long the planet remained in a warm wet state amenable to life. For both solar and extrasolar planets, hydrogen-rich atmospheres are better candidates for originating life by way of Miller-Urey-type prebiotic synthesis. However, calculating the rate of atmospheric hydrogen escape is difficult, for a number of reasons. First, the escape can be controlled either by diffusion through the homopause or by conditions in the upper atmosphere, whichever is slower. Second, both thermal and non-thermal escape mechanisms are typically important. Third, thermal escape itself can be subdivided into Jeans escape (thin upper atmosphere), and hydrodynamic escape, and hydrodynamic escape can be further subdivided into transonic escape and slower subsonic escape, depending on whether the exobase occurs above or below the sonic point. Additionally, the rate of escape for real terrestrial planet atmospheres, which are not 100% hydrogen, depends upon the concentration of infrared coolants, and upon heating and photochemistry driven largely by extreme ultraviolet (EUV) radiation. We have modified an existing 1-D model of hydrodynamic escape (F. Tian et al., JGR, 2008) to work in the high- hydrogen regime. Calculations are underway to determine hydrogen escape rates as a function of atmospheric H2 mixing ratio and the solar EUV flux. We will compare these rates with the estimated upper limit on the escape rate based on diffusion. Initial results for early Earth and Mars will later be extended to rocky exoplanets.

  11. Hydrogen nanobubble at normal hydrogen electrode

    NASA Astrophysics Data System (ADS)

    Nakabayashi, S.; Shinozaki, R.; Senda, Y.; Yoshikawa, H. Y.

    2013-05-01

    Electrochemically formed hydrogen nanobubbles at a platinum rotating disk electrode (RDE) were detected by re-oxidation charge. The dissolution time course of the hydrogen nanobubbles was measured by AFM tapping topography under open-circuit conditions at stationary platinum and gold single-crystal electrodes. The bubble dissolution at platinum was much faster than that at gold because two types of diffusion, bulk and surface diffusion, proceeded at the platinum surface, whereas surface diffusion was prohibited at the gold electrode. These findings indicated that the electrochemical reaction of normal hydrogen electrode partly proceeded heterogeneously on the three-phase boundary around the hydrogen nanobubble.

  12. Atmospheric electricity

    NASA Technical Reports Server (NTRS)

    1987-01-01

    In the last three years the focus was on the information contained in the lightning measurement, which is independent of other meteorological measurements that can be made from space. The characteristics of lightning activity in mesoscale convective systems were quantified. A strong relationship was found between lightning activity and surface rainfall. It is shown that lightning provides a precursor signature for wet microbursts (the strong downdrafts that produce windshears hazardous to aircraft) and that the lightning signature is a direct consequence of storm evolution. The Universities Space Research Association (USRA) collaborated with NASA scientists in the preliminary analysis and scientific justification for the design and deployment of an optical instrument which can detect lightning from geostationary orbit. Science proposals for the NASA mesoscale science program and for the Tethered Satellite System were reviewed. The weather forecasting research and unmanned space vehicles. Software was written to ingest and analyze the lightning ground strike data on the MSFC McIDAS system. The capabilities which were developed have a wide application to a number of problems associated with the operational impacts of electrical discharge within the atmosphere.

  13. Viscosity and thermal conductivity of model Jupiter atmospheres

    NASA Technical Reports Server (NTRS)

    Hansen, C. F.

    1979-01-01

    The viscosity and thermal conductivity coefficient are estimated for three models of the atmosphere of Jupiter: a heavy model consisting of 22% helium and 78% hydrogen, a nominal model consisting of 11% helium and 89% hydrogen, and a light model consisting of pure hydrogen. The effect of trace elements is neglected. Linearized approximations are used for the transport coefficients of the mixtures; these are found to be in almost constant ratio to the values for pure hydrogen, independent of temperature. Short Basic language programs for computing the coefficients are listed.

  14. Effect of γ-ray irradiation on the sorption of hydrogen by nanoporous carbon materials

    NASA Astrophysics Data System (ADS)

    Dolbin, A. V.; Manzhelii, V. G.; Esel'son, V. B.; Gavrilko, V. G.; Vinnikov, N. A.; Basnukaeva, R. M.; Khlistyuck, M. V.; Maletskii, V. P.; Nikolaev, V. G.; Kudriachenko, E. V.; Uvarova, I. Yu.; Tripachko, N. A.; Koda, V. Yu.

    2015-04-01

    The effects of radiation exposure in a hydrogen atmosphere on hydrogen sorption by a synthetic porous carbon nanosorbent, SCN (spherical carbonite saturated). The exposure was created by γ-rays from cobalt-60 (photon energy 1.2 MeV, irradiation dose 4.8 × 107 rad) in a normal hydrogen atmosphere at a pressure of 1 atm and a temperature of 300 K. The processes of hydrogen sorption-desorption by SCN samples before and after irradiation were studied in a temperature interval of 15-1173 K. It was found that the irradiation of SCN in a hydrogen atmosphere significantly increased the amount hydrogen sorbed in the sample. We conducted a comparison with the results of earlier studies investigating the influence of irradiation on the sorption of hydrogen by single-walled carbon nanotubes. The amount of physically sorbed hydrogen in the synthetic SCN sorbent that was irradiated in the hydrogen atmosphere, is four times greater than the amount of hydrogen that was physically sorbed by the single-walled carbon nanotubes that were irradiated under similar conditions. At a temperature below 25 K, the hydrogen diffusion in the SCN was almost temperature independent for the porous subsystem with the highest diffusion coefficients, which is typical for cases when the tunnel diffusion mechanism dominates the thermodynamic mechanism.

  15. Hydrogen energy systems studies

    SciTech Connect

    Ogden, J.M.; Kreutz, T.G.; Steinbugler, M.

    1996-10-01

    In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

  16. The PHOCUS Project: Atmospheric Composition

    NASA Astrophysics Data System (ADS)

    Hedin, J.; Gumbel, J.; Khaplanov, M.

    2012-12-01

    On the morning of July 21, 2011, the PHOCUS sounding rocket was launched from Esrange, Sweden, into strong noctilucent clouds (NLC) and polar mesosphere summer echoes (PMSE). The aim of the PHOCUS project (Particles, Hydrogen and Oxygen Chemistry in the Upper Summer mesosphere) is to study mesospheric particles (ice and meteoric smoke) and their interaction with their neutral and charged environment. Interactions of interest comprise the charging and nucleation of particles, the relationship between meteoric smoke and ice, and the influence of these particles on gas-phase chemistry. Here we will describe the optical measurements of the atmospheric composition and present first results including comparison to the other simultaneous measurements. The atmospheric composition was probed by a set of optical instruments from Stockholm University. The idea behind the instrument setup was to combine the advantages of the sensitive resonance fluorescence with well-calibrated airglow photometry. The set of instruments consisted of two resonance fluorescence probes (each containing a lamp and a detector), one for atomic oxygen and one for atomic hydrogen, and two IR photometers for O2 and OH dayglow emissions in the near IR. The O2 IR Atmospheric system at 1.27 μm is related to the photolysis of O3, which during the day is in steady state with O and a retrieval of O is possible. The OH Meinel emission is produced by the reaction between mesospheric O3 and H, and H concentrations can be deduced by combining information from both photometers. Unfortunately, some of these measurements were corrupted by instrument problems or payload glow. O3 and O profiles will be presented and compared to the simultaneous measurements of ice and meteoric smoke particles, water vapour and the state of the background neutral and charged atmosphere.

  17. Electrochemical Measurement of Atmospheric Corrosion

    NASA Technical Reports Server (NTRS)

    DeArmond, Anna H.; Davis, Dennis D.; Beeson, Harold D.

    1999-01-01

    Corrosion of Shuttle thruster components in atmospheres containing high concentrations of nitrogen tetroxide (NTO) and water is an important issue in ground operations of bipropellant systems in humid locations. Measurements of the corrosivities of NTO-containing atmospheres and the responses of different materials to these atmospheres have been accomplished using an electrochemical sensor. The sensor is composed of alternating aluminum/titanium strips separated by thin insulating layers. Under high humidity conditions a thin film of water covers the surface of the sensor. Added NTO vapor reacts with the water film to form a conductive medium and establishes a galvanic cell. The current from this cell can be integrated with respect to time and related to the corrosion activity. The surface layer formed from humid air/NTO reacts in the same way as an aqueous solution of nitric acid. Nitric acid is generally considered an important agent in NTO corrosion situations. The aluminum/titanium sensor is unresponsive to dry air, responds slightly to humid air (> 75% RH), and responds strongly to the combination of humid air and NTO. The sensor response is a power function (n = 2) of the NTO concentration. The sensor does not respond to NTO in dry air. The response of other materials in this type of sensor is related to position of the material in a galvanic series in aqueous nitric acid. The concept and operation of this electrochemical corrosion measurement is being applied to other corrosive atmospheric contaminants such as hydrogen chloride, hydrogen fluoride, sulfur dioxide, and acidic aerosols.

  18. Concentration of Hydrogen Peroxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2006-01-01

    Methods for concentrating hydrogen peroxide solutions have been described. The methods utilize a polymeric membrane separating a hydrogen peroxide solution from a sweep gas or permeate. The membrane is selective to the permeability of water over the permeability of hydrogen peroxide, thereby facilitating the concentration of the hydrogen peroxide solution through the transport of water through the membrane to the permeate. By utilizing methods in accordance with the invention, hydrogen peroxide solutions of up to 85% by volume or higher may be generated at a point of use without storing substantial quantities of the highly concentrated solutions and without requiring temperatures that would produce explosive mixtures of hydrogen peroxide vapors.

  19. Heated-Atmosphere Airship for the Titan Environment: Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Heller, R. S.; Landis, G. A.; Hepp, A. F.; Colozza, A. J.

    2012-01-01

    Future exploration of Saturn's moon Titan can be carried out by airships. Several lighter-than-atmosphere gas airships and passive drifting heated-atmosphere balloon designs have been studied, but a heated-atmosphere airship could combine the best characteristics of both. This work analyses the thermal design of such a heated-atmosphere vehicle, and compares the result with a lighter-than-atmosphere (hydrogen) airship design. A design tool was created to enable iteration through different design parameters of a heated-atmosphere airship (diameter, number of layers, and insulating gas pocket thicknesses) and evaluate the feasibility of the resulting airship. A baseline heated-atmosphere airship was designed to have a diameter of 6 m (outer diameter of 6.2 m), three-layers of material, and an insulating gas pocket thickness of 0.05 m between each layer. The heated-atmosphere airship has a mass of 161.9 kg. A similar mission making use of a hydrogen-filled airship would require a diameter of 4.3 m and a mass of about 200 kg. For a long-duration mission, the heated-atmosphere airship appears better suited. However, for a mission lifetime under 180 days, the less complex hydrogen airship would likely be a better option.

  20. Hydrogen storage via polyhydride complexes

    SciTech Connect

    Jensen, C.M.; Zidan, R.A.

    1998-08-01

    The reversible dehydrogenation of NaAlH{sub 4} is catalyzed in toluene slurries of the NaAlH{sub 4} containing the pincer complex, IrH{sub 4} {l_brace}C{sub 6}H{sub 3}-2,6-(CH{sub 2}PBu{sup t}{sub 2}){sub 2}{r_brace}. The rates of the pincer complex catalyzed dehydrogenation are about five times greater those previously found for NaAlH{sub 4} that was doped with titanium through a wet chemistry method. Homogenization of NaAlH{sub 4} with 2 mole % Ti(OBu{sup n}){sub 4} under an atmosphere of argon produces a novel titanium containing material. TPD measurements show that the dehydrogenation of this material occurs about 30 C lower than that previously found for wet titanium doped NaAlH{sub 4}. In further contrast to wet doped NaAlH{sub 4}, the dehydrogenation kinetics and hydrogen capacity of the novel material are undiminished over several dehydriding/hydriding cycles. Rehydrogenation of the titanium doped material occurs readily at 170 C under 150 atm of hydrogen. TPD measurements show that about 80% of the original hydrogen content (4.2 wt%) can be restored under these conditions.

  1. White dwarf stars with carbon atmospheres.

    PubMed

    Dufour, P; Liebert, J; Fontaine, G; Behara, N

    2007-11-22

    White dwarfs represent the endpoint of stellar evolution for stars with initial masses between approximately 0.07 and 8-10, where is the mass of the Sun (more massive stars end their life as either black holes or neutron stars). The theory of stellar evolution predicts that the majority of white dwarfs have a core made of carbon and oxygen, which itself is surrounded by a helium layer and, for approximately 80 per cent of known white dwarfs, by an additional hydrogen layer. All white dwarfs therefore have been traditionally found to belong to one of two categories: those with a hydrogen-rich atmosphere (the DA spectral type) and those with a helium-rich atmosphere (the non-DAs). Here we report the discovery of several white dwarfs with atmospheres primarily composed of carbon, with little or no trace of hydrogen or helium. Our analysis shows that the atmospheric parameters found for these stars do not fit satisfactorily in any of the currently known theories of post-asymptotic giant branch evolution, although these objects might be the cooler counterpart of the unique and extensively studied PG 1159 star H1504+65 (refs 4-7). These stars, together with H1504+65, might accordingly form a new evolutionary sequence that follows the asymptotic giant branch. PMID:18033290

  2. Hydrogen transport membranes

    DOEpatents

    Mundschau, Michael V.

    2005-05-31

    Composite hydrogen transport membranes, which are used for extraction of hydrogen from gas mixtures are provided. Methods are described for supporting metals and metal alloys which have high hydrogen permeability, but which are either too thin to be self supporting, too weak to resist differential pressures across the membrane, or which become embrittled by hydrogen. Support materials are chosen to be lattice matched to the metals and metal alloys. Preferred metals with high permeability for hydrogen include vanadium, niobium, tantalum, zirconium, palladium, and alloys thereof. Hydrogen-permeable membranes include those in which the pores of a porous support matrix are blocked by hydrogen-permeable metals and metal alloys, those in which the pores of a porous metal matrix are blocked with materials which make the membrane impervious to gases other than hydrogen, and cermets fabricated by sintering powders of metals with powders of lattice-matched ceramic.

  3. Hydrogen production by Cyanobacteria

    PubMed Central

    Dutta, Debajyoti; De, Debojyoti; Chaudhuri, Surabhi; Bhattacharya, Sanjoy K

    2005-01-01

    The limited fossil fuel prompts the prospecting of various unconventional energy sources to take over the traditional fossil fuel energy source. In this respect the use of hydrogen gas is an attractive alternate source. Attributed by its numerous advantages including those of environmentally clean, efficiency and renew ability, hydrogen gas is considered to be one of the most desired alternate. Cyanobacteria are highly promising microorganism for hydrogen production. In comparison to the traditional ways of hydrogen production (chemical, photoelectrical), Cyanobacterial hydrogen production is commercially viable. This review highlights the basic biology of cynobacterial hydrogen production, strains involved, large-scale hydrogen production and its future prospects. While integrating the existing knowledge and technology, much future improvement and progress is to be done before hydrogen is accepted as a commercial primary energy source. PMID:16371161

  4. Supply options. [hydrogen market

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The use of captive hydrogen (produced and consumed on site) and merchant hydrogen (externally supplied) is considered. A low-merchant-captive ratio market and a high-merchant-captive ratio market are described and compared.

  5. Cryogenic hydrogen-induced air-liquefaction technologies

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1990-01-01

    Extensive use of a special advanced airbreathing propulsion archives data base, as well as direct contacts with individuals who were active in the field in previous years, a technical assessment of cryogenic hydrogen induced air liquefaction, as a prospective onboard aerospace vehicle process, was performed and documented in 1986. The resulting assessment report is summarized. Technical findings relating the status of air liquefaction technology are presented both as a singular technical area, and also as that of a cluster of collateral technical areas including: Compact lightweight cryogenic heat exchangers; Heat exchanger atmospheric constituents fouling alleviation; Para/ortho hydrogen shift conversion catalysts; Hydrogen turbine expanders, cryogenic air compressors and liquid air pumps; Hydrogen recycling using slush hydrogen as heat sinks; Liquid hydrogen/liquid air rocket type combustion devices; Air Collection and Enrichment System (ACES); and Technically related engine concepts.

  6. Lichnost' i ee formirovanie v detskom vozraste: psihologiceskoe issledovanie (Personality and Its Development in Childhood: A Psychological Investigation).

    ERIC Educational Resources Information Center

    Bozovic, L. I.

    This document is an English-language abstract (approximately 1,500 words) of a three-part volume on the psychology of child personality development. In part one, the author shows that psychology is one of the most important scientific disciplines on which education is based, particularly because of its contribution to the scientific planning of…

  7. Hydrogen Technologies Safety Guide

    SciTech Connect

    Rivkin, C.; Burgess, R.; Buttner, W.

    2015-01-01

    The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

  8. Solar hydrogen generator

    NASA Technical Reports Server (NTRS)

    Sebacher, D. I.; Sabol, A. P. (Inventor)

    1977-01-01

    An apparatus, using solar energy to manufacture hydrogen by dissociating water molecules into hydrogen and oxygen molecules is described. Solar energy is concentrated on a globe containing water thereby heating the water to its dissociation temperature. The globe is pervious to hydrogen molecules permitting them to pass through the globe while being essentially impervious to oxygen molecules. The hydrogen molecules are collected after passing through the globe and the oxygen molecules are removed from the globe.

  9. Sensitive hydrogen leak detector

    DOEpatents

    Myneni, G.R.

    1999-08-03

    A sensitive hydrogen leak detector system is described which uses passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor. 1 fig.

  10. Flash hydrogenation of coal

    DOEpatents

    Manowitz, Bernard; Steinberg, Meyer; Sheehan, Thomas V.; Winsche, Warren E.; Raseman, Chad J.

    1976-01-01

    A process for the hydrogenation of coal comprising the contacting of powdered coal with hydrogen in a rotating fluidized bed reactor. A rotating fluidized bed reactor suitable for use in this process is also disclosed. The coal residence time in the reactor is limited to less than 5 seconds while the hydrogen contact time is not in excess of 0.2 seconds.

  11. Liquid metal hydrogen barriers

    DOEpatents

    Grover, George M.; Frank, Thurman G.; Keddy, Edward S.

    1976-01-01

    Hydrogen barriers which comprise liquid metals in which the solubility of hydrogen is low and which have good thermal conductivities at operating temperatures of interest. Such barriers are useful in nuclear fuel elements containing a metal hydride moderator which has a substantial hydrogen dissociation pressure at reactor operating temperatures.

  12. Sensitive hydrogen leak detector

    DOEpatents

    Myneni, Ganapati Rao

    1999-01-01

    A sensitive hydrogen leak detector system using passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor.

  13. Hydrogen from coal

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Hydrogen production from coal by hydrogasification is described. The process involves the solubilization of coal to form coal liquids, which are hydrogasified to produce synthetic pipeline gas; steam reforming this synthetic gas by a nuclear heat source produces hydrogen. A description is given of the hydrogen plant, its performance, and its effect on the environment.

  14. Purification of Hydrogen

    DOEpatents

    Newton, A S

    1950-12-05

    Disclosed is a process for purifying hydrogen containing various gaseous impurities by passing the hydrogen over a large surface of uranium metal at a temperature above the decomposition temperature of uranium hydride, and below the decomposition temperature of the compounds formed by the combination of the uranium with the impurities in the hydrogen.

  15. Activation of erbium films for hydrogen storage

    SciTech Connect

    Brumbach, Michael T.; Ohlhausen, James A.; Zavadil, Kevin R.; Snow, Clark S.; Woicik, Joseph C.

    2011-06-01

    Hydriding of metals can be routinely performed at high temperature in a rich hydrogen atmosphere. Prior to the hydrogen loading process, a thermal activation procedure is required to promote facile hydrogen sorption into the metal. Despite the wide spread utilization of this activation procedure, little is known about the chemical and electronic changes that occur during activation and how this thermal pretreatment leads to increased rates of hydrogen uptake. This study utilized variable kinetic energy X-ray photoelectron spectroscopy to interrogate the changes during in situ thermal annealing of erbium films, with results confirmed by time-of-flight secondary ion mass spectrometry and low energy ion scattering. Activation can be identified by a large increase in photoemission between the valence band edge and the Fermi level and appears to occur over a two stage process. The first stage involves desorption of contaminants and recrystallization of the oxide, initially impeding hydrogen loading. Further heating overcomes the first stage and leads to degradation of the passive surface oxide leading to a bulk film more accessible for hydrogen loading.

  16. Activatino of Erbium Films for Hydrogen Storage

    SciTech Connect

    M Brumbach; j Ohlhausen; K Zavadil; C Snow; J Woicik

    2011-12-31

    Hydriding of metals can be routinely performed at high temperature in a rich hydrogen atmosphere. Prior to the hydrogen loading process, a thermal activation procedure is required to promote facile hydrogen sorption into the metal. Despite the wide spread utilization of this activation procedure, little is known about the chemical and electronic changes that occur during activation and how this thermal pretreatment leads to increased rates of hydrogen uptake. This study utilized variable kinetic energy X-ray photoelectron spectroscopy to interrogate the changes during in situ thermal annealing of erbium films, with results confirmed by time-of-flight secondary ion mass spectrometry and low energy ion scattering. Activation can be identified by a large increase in photoemission between the valence band edge and the Fermi level and appears to occur over a two stage process. The first stage involves desorption of contaminants and recrystallization of the oxide, initially impeding hydrogen loading. Further heating overcomes the first stage and leads to degradation of the passive surface oxide leading to a bulk film more accessible for hydrogen loading.

  17. The chemistry of Venus' atmosphere

    NASA Technical Reports Server (NTRS)

    Sze, N. D.; Smith, W. H.

    1978-01-01

    A model for the Venus atmosphere involving photochemistry of oxygen, hydrogen, chlorine and sulfur species is presented. Sulfur reaction schemes and hydrogen and chlorine reaction schemes were included. The impact of sulfur on the oxygen budget and the subsequent production of H2SO4 molecules for the Venus cloud deck were explored. A major new reaction scheme for production of H2SO4 molecules involving sulfur and oxygen chemistry was established shown to dominate over the odd hydrogen scheme proposed earlier. The efficiency of the scheme in formation of H2SO4 is only about 50%, with the remaining sulfur residing in SO2 molecules. The calculated downward flux of H2SO4 may be sufficient to maintain a steady state sulfuric acid cloud if the resident time of H2SO4 droplets in the cloud is as long as a few years. If however, the resident time is half a year or shorter, additional chemistry capable of more efficient conversion of SO2 to SO3 is required.

  18. Mars Molniya Orbit Atmospheric Resource Mining

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P.; Braun, Robert D.; Sibille, Laurent; Sforzo, Brandon; Gonyea, Keir; Ali, Hisham

    2016-01-01

    This NIAC (NASA Advanced Innovative Concepts) work will focus on Mars and will build on previous efforts at analyzing atmospheric mining at Earth and the outer solar system. Spacecraft systems concepts will be evaluated and traded, to assess feasibility. However the study will primarily examine the architecture and associated missions to explore the closure, constraints and critical parameters through sensitivity studies. The Mars atmosphere consists of 95.5 percent CO2 gas which can be converted to methane fuel (CH4) and Oxidizer (O2) for chemical rocket propulsion, if hydrogen is transported from electrolyzed water on the Mars surface or from Earth. By using a highly elliptical Mars Molniya style orbit, the CO2 atmosphere can be scooped, ram-compressed and stored while the spacecraft dips into the Mars atmosphere at periapsis. Successive orbits result in additional scooping of CO2 gas, which also serves to aerobrake the spacecraft, resulting in a decaying Molniya orbit.

  19. Atmospheric evolution of the terrestrial planets

    NASA Astrophysics Data System (ADS)

    Hunten, D. M.

    1993-02-01

    The major atmospheric gases on Earth, Venus, and Mars were probably CO2, H2O, and N2. Most of the Earth's CO2 is tied up in minerals such as limestone, and Venus has lost most of its H2O, leaving the CO2 in the atmosphere. Much of Mars' atmosphere may have been eroded in impacts by large meteoroids early in solar-system history. Noble gases are very underabundant everywhere, and must have been lost during an early period: they were probably dragged along during rapid loss of massive amounts of hydrogen. The tenuous atmospheres of Mercury and the moon have lifetimes of a few days or less and must be continuously replenished from internal or external sources.

  20. An in situ tensile test apparatus for polymers in high pressure hydrogen

    NASA Astrophysics Data System (ADS)

    Alvine, K. J.; Kafentzis, T. A.; Pitman, S. G.; Johnson, K. I.; Skorski, D.; Tucker, J. C.; Roosendaal, T. J.; Dahl, M. E.

    2014-10-01

    Degradation of material properties by high-pressure hydrogen is an important factor in determining the safety and reliability of materials used in high-pressure hydrogen storage and delivery. Hydrogen damage mechanisms have a time dependence that is linked to hydrogen outgassing after exposure to the hydrogen atmosphere that makes ex situ measurements of mechanical properties problematic. Designing in situ measurement instruments for high-pressure hydrogen is challenging due to known hydrogen incompatibility with many metals and standard high-power motor materials such as Nd. Here we detail the design and operation of a solenoid based in situ tensile tester under high-pressure hydrogen environments up to 42 MPa (6000 psi). Modulus data from high-density polyethylene samples tested under high-pressure hydrogen at 35 MPa (5000 psi) are also reported as compared to baseline measurements taken in air.

  1. An In-situ Tensile Test Apparatus for Polymers in High Pressure Hydrogen

    SciTech Connect

    Alvine, Kyle J.; Kafentzis, Tyler A.; Pitman, Stan G.; Johnson, Kenneth I.; Skorski, Daniel C.; Tucker, Joseph C.; Roosendaal, Timothy J.; Dahl, Michael E.

    2014-10-10

    Degradation of material properties by high-pressure hydrogen is an important factor in determining the safety and reliability of materials used in high-pressure hydrogen storage and delivery. Hydrogen damage mechanisms have a time dependence that is linked to hydrogen outgassing after exposure to the hydrogen atmosphere that makes ex-situ measurements of mechanical properties problematic. Designing in-situ measurement instruments for high-pressure hydrogen is challenging due to known hydrogen incompatibility with many metals and standard high-power motor materials like Nd. Here we detail the design and operation of a solenoid based in-situ tensile tester under high-pressure hydrogen environments up to 5,000 psi. Modulus data from high-density polyethylene (HDPE) samples tested under high-pressure hydrogen are also reported as compared to baseline measurements taken in air.

  2. An in situ tensile test apparatus for polymers in high pressure hydrogen

    SciTech Connect

    Alvine, K. J. Kafentzis, T. A.; Pitman, S. G.; Johnson, K. I.; Skorski, D.; Tucker, J. C.; Roosendaal, T. J.; Dahl, M. E.

    2014-10-15

    Degradation of material properties by high-pressure hydrogen is an important factor in determining the safety and reliability of materials used in high-pressure hydrogen storage and delivery. Hydrogen damage mechanisms have a time dependence that is linked to hydrogen outgassing after exposure to the hydrogen atmosphere that makes ex situ measurements of mechanical properties problematic. Designing in situ measurement instruments for high-pressure hydrogen is challenging due to known hydrogen incompatibility with many metals and standard high-power motor materials such as Nd. Here we detail the design and operation of a solenoid based in situ tensile tester under high-pressure hydrogen environments up to 42 MPa (6000 psi). Modulus data from high-density polyethylene samples tested under high-pressure hydrogen at 35 MPa (5000 psi) are also reported as compared to baseline measurements taken in air.

  3. Hydrogen gas sensor based on palladium and yttrium alloy ultrathin film

    NASA Astrophysics Data System (ADS)

    Yi, Liu; You-ping, Chen; Han, Song; Gang, Zhang

    2012-12-01

    Compared with the other hydrogen sensors, optical fiber hydrogen sensors based on thin films exhibits inherent safety, small volume, immunity to electromagnetic interference, and distributed remote sensing capability, but slower response characteristics. To improve response and recovery rate of the sensors, a novel reflection-type optical fiber hydrogen gas sensor with a 10 nm palladium and yttrium alloy thin film is fabricated. The alloy thin film shows a good hydrogen sensing property for hydrogen-containing atmosphere and a complete restorability for dry air at room temperature. The variation in response value of the sensor linearly increases with increased natural logarithm of hydrogen concentration (ln[H2]). The shortest response time and recovery response time to 4% hydrogen are 6 and 8 s, respectively. The hydrogen sensors based on Pd0.91Y0.09 alloy ultrathin film have potential applications in hydrogen detection and measurement.

  4. Complex hydrogen diffusion in forsterite

    NASA Astrophysics Data System (ADS)

    Padron-Navarta, J.

    2013-12-01

    The singular geodynamic and chemical evolution of the Earth seems to be dictated by the influence of 'water' (more specifically hydrogen structurally bonded to oxygen forming hydroxyl groups, OH-) on the physical properties of the nominally minerals of the Earth's mantle. In the most abundant upper mantle phase, olivine, the presence of hydrogen has been shown to significantly modify the timescale of chemical diffusion, plastic deformation, electrical conductivity and the attenuation of seismic waves. In olivine there are four different hydrogen substitution mechanisms, associated with Mg vacancies, Si vacancies, trivalent cations and titanium substitution, hereafter referred to as H[Mg], H[Si], H[triv] and H[Ti] respectively. It seems possible that hydrogen diffusion rates vary with the type of defect. We addressed this hypothesis by an experimental investigation of the dehydroxylation of synthetic forsterite with two contrasting hydrous defect populations: (1) Ti4+-doped forsterite with H[Si], and H[Ti] dominant and H[Mg] and H[triv] subsidiary; and (2) MgO-buffered forsterite with only H[Si] hydrous defects. The experiments were conducted by annealing the hydroxylated forsterites at atmospheric pressure and 1073 to 1273 K, with OH- contents monitored at intervals by room-temperature FTIR spectroscopy. For the Ti4+-doped forsterite, four stages were observed during dehydoxylation. Firstly, the small amounts of H[Mg] and H[triv] disappear very quickly. Secondly, Ti is removed from the forsterite lattice by precipitation of a new phase; thirdly, the dehydroxylation of H[Ti] as monitored by the 3525 cm-1 peak proceeds at the same rate as H[Si] monitored by the 3613 cm-1 peak; and fourthly, once H[Ti] reaches zero, the dehydroxylation of H[Si] slows drastically, to rates that are unobservable in the duration of our experiments (1073-1273 K). Whereas the rates of loss of H[Mg] and H[triv] are in agreement with previous measurements of bulk hydrogen diffusion in

  5. Nanoplasmonic hydrogen sensing

    NASA Astrophysics Data System (ADS)

    Wadell, Carl; Syrenova, Svetlana; Langhammer, Christoph

    2014-09-01

    In this review we discuss the evolution of surface plasmon resonance and localized surface plasmon resonance based hydrogen sensors. We put particular focus on how they are used to study metal-hydrogen interactions at the nanoscale, both at the ensemble and the single nanoparticle level. Such efforts are motivated by a fundamental interest in understanding the role of nanosizing on metal hydride formation processes. However, nanoplasmonic hydrogen sensors are not only of academic interest but may also find more practical use as all-optical gas detectors in industrial and medical applications, as well in a future hydrogen economy, where hydrogen is used as a carbon free energy carrier.

  6. Process and apparatus for coal hydrogenation

    DOEpatents

    Ruether, John A.; Simpson, Theodore B.

    1991-01-01

    In a coal liquefaction process an aqueous slurry of coal is prepared containing a dissolved liquefaction catalyst. A small quantity of oil is added to the slurry and then coal-oil agglomerates are prepared by agitation of the slurry at atmospheric pressure. The resulting mixture is drained of excess water and dried at atmospheric pressure leaving catalyst deposited on the agglomerates. The agglomerates then are fed to an extrusion device where they are formed into a continuous ribbon of extrudate and fed into a hydrogenation reactor at elevated pressure and temperature. The catalytic hydrogenation converts the extrudate primarily to liquid hydrocarbons in the reactor. The liquid drained in recovering the agglomerates is recycled.

  7. Observation of the Venusian nightside hydrogen corona by SPICAV/VEX

    NASA Astrophysics Data System (ADS)

    Chaufray, Jean-Yves; Leblanc, Francois; Bertaux, Jean-Loup; Quemerais, Eric; Sulis, Sophia

    Atomic hydrogen in the upper atmosphere of Venus is produced by chemical reactions involving hydrogen bearing molecules such as H2O. Due to its low mass, atomic hydrogen can reach high altitudes and become the dominant species in the Venusian exosphere. In the Venusian upper atmosphere, ions-neutral interactions could produce the non-thermal hydrogen population that has been observed by numerous past missions and confirmed recently by Venus Express missions at dayside. Observations of the nightside Venusian hydrogen corona have been performed in October 2011 by SPICAV-UV on Venus Express. Both disk and limb have been observed. With these observations,we also measured the hydrogen content at nightside by absorption of the interplanetary emission. This second method provides us an absolute measurement of the hydrogen content independent on the absolute calibration of the instrument. Results from both emission and absorption will be presented.

  8. Observation of the Venusian nightside hydrogen corona by SPICAV/VEX

    NASA Astrophysics Data System (ADS)

    Chaufray, Jean-Yves; Bertaux, Jean-Loup; Quemerais, Eric; Sulis, Sophia; Leblanc, Francois

    2014-05-01

    Atomic hydrogen in the upper atmosphere of Venus is produced by chemical reactions involving hydrogen bearing molecules such as H2O. Due to its low mass, atomic hydrogen can reach high altitudes and become the dominant species in the Venusian exosphere. In the Venusian upper atmosphere, ions - neutral interactions could produce the non-thermal hydrogen population that has been observed by numerous past missions and confirmed recently by Venus Express missions at dayside. Observations of the nightside Venusian hydrogen corona have been performed in October 2011 by SPICAV-UV on Venus Express. Both disk and limb have been observed. With these observations, we also measured the hydrogen content at nightside by absorption of the interplanetary emission. This second method provides us an absolute measurement of the hydrogen content independent on the absolute calibration of the instrument. Results from both emission and absorption will be presented.

  9. Safety aspects of large-scale combustion of hydrogen

    SciTech Connect

    Edeskuty, F.J.; Haugh, J.J.; Thompson, R.T.

    1986-01-01

    Recent hydrogen-safety investigations have studied the possible large-scale effects from phenomena such as the accumulation of combustible hydrogen-air mixtures in large, confined volumes. Of particular interest are safe methods for the disposal of the hydrogen and the pressures which can arise from its confined combustion. Consequently, tests of the confined combustion of hydrogen-air mixtures were conducted in a 2100 m/sup 3/ volume. These tests show that continuous combustion, as the hydrogen is generated, is a safe method for its disposal. It also has been seen that, for hydrogen concentrations up to 13 vol %, it is possible to predict maximum pressures that can occur upon ignition of premixed hydrogen-air atmospheres. In addition information has been obtained concerning the survivability of the equipment that is needed to recover from an accident involving hydrogen combustion. An accident that involved the inadvertent mixing of hydrogen and oxygen gases in a tube trailer gave evidence that under the proper conditions hydrogen combustion can transit to a detonation. If detonation occurs the pressures which can be experienced are much higher although short in duration.

  10. Thermospheric hydrogen response to increases in greenhouse gases

    NASA Astrophysics Data System (ADS)

    Nossal, S. M.; Qian, L.; Solomon, S. C.; Burns, A. G.; Wang, W.

    2016-04-01

    We investigated thermospheric hydrogen response to increase in greenhouse gases and the dependence of this response to solar activity, using a global mean version of the National Center for Atmospheric Research Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model. We separately doubled carbon dioxide (CO2) and methane (CH4) to study the influence of temperature and changes to source species for hydrogen. Our results indicate that both CO2 cooling and CH4 changes to the source species for hydrogen lead to predicted increases in the upper thermospheric hydrogen density. At 400 km, hydrogen increases ~30% under solar maximum and ~25% under solar minimum responding to doubling of CH4, indicating that hydrogen response to the source variation due to CH4 increase is relatively independent of solar activity. On the other hand, hydrogen response to doubling of CO2 highly depends on solar activity. At 400 km, doubling of CO2 results in an ~7% hydrogen increase at solar maximum, whereas it is ~25% at solar minimum. Consequently, at solar maximum, the predicted ~40% increase in atomic hydrogen in the upper thermosphere is primarily due to the source variation as a result of doubling of CH4, whereas at solar minimum, both cooling due to doubling of CO2 and the source variation due to doubling of CH4 have commensurate effects, resulting in an approximate 50% increase in the modeled upper thermospheric hydrogen.

  11. Hydrogen Diffusion through Multiple Packaging Layers

    SciTech Connect

    McAllister, J.; Mohiuddin, A.

    2010-05-05

    For this scenario, hydrogen is generated in a container that is eventually stored within a drum or some type of long range storage container. When preparing for long-term storage, the hydrogen container (HC) is placed in a plastic bag (PB1). The PB1 is then placed inside an inner drum (ID). The ID is placed inside a plastic bag (PB2) which is then placed within an outer drum (OD). One or more ODs are then storage is a large container (LC). Filtered vents or vent holes are located on all the container barriers to prevent pressurization and allow gases to flow in and out of the HC. The LC is vented to the atmosphere with four vent paths for this example. The source of hydrogen generation for this study is not important. Any source that generates hydrogen in elemental form (i.e., H{sub 2}) is a candidate for the purposes of this generic evaluation. The released hydrogen accumulates inside the waste packaging. Depending on the permeability of the packaging layers, some of the accumulated hydrogen may diffuse out of the packaging layers and into the space surrounding the drums. Since the drums are confined in the LC, the hydrogen accumulates in the LC as it did inside the drums if venting of the LC does not occur. If accumulation in the LC is allowed without venting, the confinement is eventually breached or the hydrogen is consumed by reaction with other chemical species. One possible reaction is combustion with oxygen. Such a reaction can be explosive, and from this possibility arises the safety concern.

  12. Innovative Balloon Buoyancy Techniques for Atmospheric Exploration

    NASA Technical Reports Server (NTRS)

    Jones, J.

    2000-01-01

    Until quite recently, the only practical means to control balloon buoyancy, and thus altitude, required consuming large amounts of fuel or the limited venting of helium balloons and/or dropping of ballast. With recent discoveries at JPL, novel long-life, balloon buoyancy techniques have been discovered that for the first time allow balloons to float in the primarily hydrogen atmospheres of Jupiter, Saturn, Uranus, and Neptune (using ambient fill-gas), and by using renewable energy sources, allow multiple controlled landings on Venus (using atmospheric temperature differences), Mars (solar heat), Titan (RTG heat), and Earth (planet radiant heat).

  13. New IR observations of Titan and potential of in-situ atmospheric analysis of the outer planets

    NASA Technical Reports Server (NTRS)

    Owen, T.

    1974-01-01

    Ground based telescopic observations of Titan and outer planet atmospheres are evaluated for their abundances and an effort is made to deduce the various hydrogen-to-carbon ratios. Jupiter and Saturn atmospheres seem to have roughly solar abundances as far as hydrogen and methane are concerned; for Uranus, Titan and Neptune these ratios are way down.

  14. Hydrogen Storage in the Carbon Dioxide - Formic Acid Cycle.

    PubMed

    Fink, Cornel; Montandon-Clerc, Mickael; Laurenczy, Gabor

    2015-01-01

    This year Mankind will release about 39 Gt carbon dioxide into the earth's atmosphere, where it acts as a greenhouse gas. The chemical transformation of carbon dioxide into useful products becomes increasingly important, as the CO(2) concentration in the atmosphere has reached 400 ppm. One approach to contribute to the decrease of this hazardous emission is to recycle CO(2), for example reducing it to formic acid. The hydrogenation of CO(2) can be achieved with a series of catalysts under basic and acidic conditions, in wide variety of solvents. To realize a hydrogen-based charge-discharge device ('hydrogen battery'), one also needs efficient catalysts for the reverse reaction, the dehydrogenation of formic acid. Despite of the fact that the overwhelming majority of these reactions are carried out using precious metals-based catalysts (mainly Ru), we review here developments for catalytic hydrogen evolution from formic acid with iron-based complexes. PMID:26842324

  15. Hydrogen storage methods.

    PubMed

    Züttel, Andreas

    2004-04-01

    Hydrogen exhibits the highest heating value per mass of all chemical fuels. Furthermore, hydrogen is regenerative and environmentally friendly. There are two reasons why hydrogen is not the major fuel of today's energy consumption. First of all, hydrogen is just an energy carrier. And, although it is the most abundant element in the universe, it has to be produced, since on earth it only occurs in the form of water and hydrocarbons. This implies that we have to pay for the energy, which results in a difficult economic dilemma because ever since the industrial revolution we have become used to consuming energy for free. The second difficulty with hydrogen as an energy carrier is its low critical temperature of 33 K (i.e. hydrogen is a gas at ambient temperature). For mobile and in many cases also for stationary applications the volumetric and gravimetric density of hydrogen in a storage material is crucial. Hydrogen can be stored using six different methods and phenomena: (1) high-pressure gas cylinders (up to 800 bar), (2) liquid hydrogen in cryogenic tanks (at 21 K), (3) adsorbed hydrogen on materials with a large specific surface area (at T<100 K), (4) absorbed on interstitial sites in a host metal (at ambient pressure and temperature), (5) chemically bonded in covalent and ionic compounds (at ambient pressure), or (6) through oxidation of reactive metals, e.g. Li, Na, Mg, Al, Zn with water. The most common storage systems are high-pressure gas cylinders with a maximum pressure of 20 MPa (200 bar). New lightweight composite cylinders have been developed which are able to withstand pressures up to 80 MPa (800 bar) and therefore the hydrogen gas can reach a volumetric density of 36 kg.m(-3), approximately half as much as in its liquid state. Liquid hydrogen is stored in cryogenic tanks at 21.2 K and ambient pressure. Due to the low critical temperature of hydrogen (33 K), liquid hydrogen can only be stored in open systems. The volumetric density of liquid hydrogen

  16. Renewable hydrogen production for fossil fuel processing

    SciTech Connect

    Greenbaum, E.; Lee, J.W.; Tevault, C.V.

    1995-06-01

    In the fundamental biological process of photosynthesis, atmospheric carbon dioxide is reduced to carbohydrate using water as the source of electrons with simultaneous evolution of molecular oxygen: H{sub 2}O + CO{sub 2} + light {yields} O{sub 2} + (CH{sub 2}O). It is well established that two light reactions, Photosystems I and II (PSI and PSII) working in series, are required to perform oxygenic photosynthesis. Experimental data supporting the two-light reaction model are based on the quantum requirement for complete photosynthesis, spectroscopy, and direct biochemical analysis. Some algae also have the capability to evolve molecular hydrogen in a reaction energized by the light reactions of photosynthesis. This process, now known as biophotolysis, can use water as the electron donor and lead to simultaneous evolution of molecular hydrogen and oxygen. In green algae, hydrogen evolution requires prior incubation under anaerobic conditions. Atmospheric oxygen inhibits hydrogen evolution and also represses the synthesis of hydrogenase enzyme. CO{sub 2} fixation competes with proton reduction for electrons relased from the photosystems. Interest in biophotolysis arises from both the questions that it raises concerning photosynthesis and its potential practical application as a process for converting solar energy to a non-carbon-based fuel. Prior data supported the requirement for both Photosystem I and Photosystem II in spanning the energy gap necessary for biophotolysis of water to oxygen and hydrogen. In this paper we report the at PSII alone is capable of driving sustained simultaneous photoevolution of molecular hydrogen and oxygen in an anaerobically adapted PSI-deficient strain of Chlamydomonas reinhardtii, mutant B4, and that CO{sub 2} competes as an electron acceptor.

  17. Hydrogen Filling Station

    SciTech Connect

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen

  18. Potential environmental impact of a hydrogen economy on the stratosphere.

    PubMed

    Tromp, Tracey K; Shia, Run-Lie; Allen, Mark; Eiler, John M; Yung, Y L

    2003-06-13

    The widespread use of hydrogen fuel cells could have hitherto unknown environmental impacts due to unintended emissions of molecular hydrogen, including an increase in the abundance of water vapor in the stratosphere (plausibly by as much as approximately 1 part per million by volume). This would cause stratospheric cooling, enhancement of the heterogeneous chemistry that destroys ozone, an increase in noctilucent clouds, and changes in tropospheric chemistry and atmosphere-biosphere interactions. PMID:12805546

  19. Prediction and assignment of the FIR spectrum of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Helminger, P.; Messer, J. K.; De Lucia, F. C.; Bowman, W. C.

    1984-01-01

    Millimeter and submillimeter microwave studies are used to predict and assign the FIR rotational-torsional spectrum of hydrogen peroxide. Special attention is given to the strong Q-branch features that have recently been used by Traub and Chance to place an upper limit on the atmospheric abundance of hydrogen peroxide. In addition, 67 new transitions are reported in the 400-1000 GHz region.

  20. Greenhouse models of the atmosphere of Titan.

    NASA Technical Reports Server (NTRS)

    Pollack, J. B.

    1973-01-01

    The greenhouse effect is calculated for a series of Titanian atmosphere models with different proportions of methane, hydrogen, helium, and ammonia. A computer program is used in temperature-structure calculations based on radiative-convective thermal transfer considerations. A brightness temperature spectrum is derived for Titan and is compared with available observational data. It is concluded that the greenhouse effect on Titan is generated by pressure-induced transitions of methane and hydrogen. The helium-to-hydrogen ratio is found to have a maximum of about 1.5. The surface pressure is estimated to be at least 0.4 atm, with a daytime temperature of about 155 K at the surface. The presence of methane clouds in the upper troposphere is indicated. The clouds have a significant optical depth in the visible, but not in the thermal, infrared.

  1. The upper atmosphere of Uranus

    NASA Technical Reports Server (NTRS)

    Strobel, Darrell F.; Yelle, Roger V.; Shemansky, Donald E.; Atreya, Sushil K.

    1991-01-01

    Voyager measurements of the upper atmosphere of Uranus are analyzed and developed. The upper atmosphere of Uranus is predominantly H2, with at most 10 percent He by volume, and the dominant constituent of the exosphere is H. The thermosphere is warm, with an asymptotic isothermal temperature of about 800 K. Atomic hydrogen at this temperature forms an extensive thermal corona and creates gas drag that severely limits the lifetime of small ring particles. The upper atmosphere emits copious amounts of UV radiation from pressures greater than 0.01 microbar. The depth of this emission level imposes a powerful constraint on permissible emission mechanisms. Electron excitation from a thin layer near the exobase appears to violate this constraint. Solar fluorescence is consistent with the observed trend in solar zenith-angle variation of the emissions and is absent from the night side of the planet. On Uranus, it accounts for the observed Lyman beta to H2 bands intensity ratio and an important fraction of the observed intensity (about 55 percent).

  2. Acetylene fuel from atmospheric CO2 on Mars

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Linne, Diane L.

    1992-01-01

    The Mars mission scenario proposed by Baker and Zubrin (1990) intended for an unmanned preliminary mission is extended to maximize the total impulse of fuel produced with a minimum mass of hydrogen from Earth. The hydrogen along with atmospheric carbon dioxide is processed into methane and oxygen by the exothermic reaction in an atmospheric processing module. Use of simple chemical reactions to produce acetylene/oxygen rocket fuel on Mars from hydrogen makes it possible to produce an amount of fuel that is nearly 100 times the mass of hydrogen brought from earth. If such a process produces the return propellant for a manned Mars mission, the required mission mass in LEO is significantly reduced over a system using all earth-derived propellants.

  3. Hydrogen energy systems studies

    SciTech Connect

    Ogden, J.M.; Steinbugler, M.; Kreutz, T.

    1998-08-01

    In this progress report (covering the period May 1997--May 1998), the authors summarize results from ongoing technical and economic assessments of hydrogen energy systems. Generally, the goal of their research is to illuminate possible pathways leading from present hydrogen markets and technologies toward wide scale use of hydrogen as an energy carrier, highlighting important technologies for RD and D. Over the past year they worked on three projects. From May 1997--November 1997, the authors completed an assessment of hydrogen as a fuel for fuel cell vehicles, as compared to methanol and gasoline. Two other studies were begun in November 1997 and are scheduled for completion in September 1998. The authors are carrying out an assessment of potential supplies and demands for hydrogen energy in the New York City/New Jersey area. The goal of this study is to provide useful data and suggest possible implementation strategies for the New York City/ New Jersey area, as the Hydrogen Program plans demonstrations of hydrogen vehicles and refueling infrastructure. The authors are assessing the implications of CO{sub 2} sequestration for hydrogen energy systems. The goals of this work are (a) to understand the implications of CO{sub 2} sequestration for hydrogen energy system design; (b) to understand the conditions under which CO{sub 2} sequestration might become economically viable; and (c) to understand design issues for future low-CO{sub 2} emitting hydrogen energy systems based on fossil fuels.

  4. Hydrogen interactions with metals

    NASA Technical Reports Server (NTRS)

    Mclellan, R. B.; Harkins, C. G.

    1975-01-01

    Review of the literature on the nature and extent of hydrogen interactions with metals and the role of hydrogen in metal failure. The classification of hydrogen-containing systems is discussed, including such categories as covalent hydrides, volatile hydrides, polymeric hydrides, and transition metal hydride complexes. The use of electronegativity as a correlating parameter in determining hydride type is evaluated. A detailed study is made of the thermodynamics of metal-hydrogen systems, touching upon such aspects as hydrogen solubility, the positions occupied by hydrogen atoms within the solvent metal lattice, the derivation of thermodynamic functions of solid solutions from solubility data, and the construction of statistical models for hydrogen-metal solutions. A number of theories of hydrogen-metal bonding are reviewed, including the rigid-band model, the screened-proton model, and an approach employing the augmented plane wave method to solve the one-electron energy band problem. Finally, the mechanism of hydrogen embrittlement is investigated on the basis of literature data concerning stress effects and the kinetics of hydrogen transport to critical sites.

  5. Ultrafine hydrogen storage powders

    DOEpatents

    Anderson, Iver E.; Ellis, Timothy W.; Pecharsky, Vitalij K.; Ting, Jason; Terpstra, Robert; Bowman, Robert C.; Witham, Charles K.; Fultz, Brent T.; Bugga, Ratnakumar V.

    2000-06-13

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  6. Atmospheric ultraviolet remote sensing

    NASA Astrophysics Data System (ADS)

    Huffman, Robert E.

    Techniques and applications of the ultraviolet wavelength region are examined. The topics addressed include: radiometry, sensors, space operations, the earth's atmosphere, solar photoabsorption, photon cross sections, airglow, aurora, scattering and fluorescence, atmospheric ultraviolet backgrounds, radiance and transmission codes, ozone and lower atmospheric composition, upper atmospheric composition and density, global auroral imaging, and ionospheric electron density.

  7. Analysis of hydrogen isotope mixtures

    DOEpatents

    Villa-Aleman, Eliel

    1994-01-01

    An apparatus and method for determining the concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.

  8. Fiber optic hydrogen sensor

    NASA Astrophysics Data System (ADS)

    Jung, Chuck C.; Saaski, Elric W.; McCrae, David A.

    1998-09-01

    This paper describes a novel fiber optic-based hydrogen sensor. The sensor consists of a thin-film etalon, constructed on the distal end of a fiber optic. The exterior mirror of the etalon is palladium or a palladium-alloy, which undergoes an optical change upon exposure to hydrogen. Data is presented on fiber optic sensors constructed with palladium and several alloys of palladium. The linearity of the optical response of these sensors to hydrogen is examined. Etalons made with pure palladium are found to be desirable for sensing low concentrations of hydrogen, or for one-time exposure to high concentrations of hydrogen. Etalons made from palladium alloys are found to be more desirable in applications were repeated cycling in high concentrations of hydrogen occurs.

  9. The atomic hydrogen cloud in the saturnian system

    NASA Astrophysics Data System (ADS)

    Tseng, W.-L.; Johnson, R. E.; Ip, W.-H.

    2013-09-01

    The importance of Titan's H torus shaped by solar radiation pressure and of hydrogen atoms flowing out of Saturn's atmosphere in forming the broad hydrogen cloud in Saturn's magnetosphere is still debated. Since the Saturnian system also contains a water product torus which originates from the Enceladus plumes, the icy ring particles, and the inner icy satellites, as well as Titan's H2 torus, we have carried out a global investigation of the atomic hydrogen cloud taking into account all sources. We show that the velocity and angle distributions of the hot H ejected from Saturn's atmosphere following electron-impact dissociation of H2 are modified by collisions with the ambient atmospheric H2 and H. This in turn affects the morphology of the escaping hydrogen from Saturn, as does the morphology of the ionospheric electron distribution. Although an exact agreement with the Cassini observations is not obtained, our simulations show that H directly escaping from Titan is the dominant contributor in the outer magnetosphere. Of the total number of H observed by Cassini from 1 to 5RS, ∼5.7×1034, our simulations suggest ∼20% is from dissociation in the Enceladus torus, ∼5-10% is from dissociation of H2 in the atmosphere of the main rings, and ∼50% is from Titan's H torus, implying that ∼20% comes from Saturn atmosphere.

  10. Hydrogen powered bus

    ScienceCinema

    None

    2013-11-22

    Take a ride on a new type of bus, fueled by hydrogen. These hydrogen taxis are part of a Department of Energy-funded deployment of hydrogen powered vehicles and fueling infrastructure at nine federal facilities across the country to demonstrate this market-ready advanced technology. Produced and leased by Ford Motor Company , they consist of one 12- passenger bus and one nine-passenger bus. More information at: http://go.usa.gov/Tgr

  11. National hydrogen energy roadmap

    SciTech Connect

    None, None

    2002-11-01

    This report was unveiled by Energy Secretary Spencer Abraham in November 2002 and provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy development. Based on the results of the government-industry National Hydrogen Energy Roadmap Workshop, held in Washington, DC on April 2-3, 2002, it displays the development of a roadmap for America's clean energy future and outlines the key barriers and needs to achieve the hydrogen vision goals defined in

  12. HYDROGEN ISOTOPE TARGETS

    DOEpatents

    Ashley, R.W.

    1958-08-12

    The design of targets for use in the investigation of nuclear reactions of hydrogen isotopes by bombardment with accelerated particles is described. The target con struction eomprises a backing disc of a metal selected from the group consisting of molybdenunn and tungsten, a eoating of condensed titaniunn on the dise, and a hydrogen isotope selected from the group consisting of deuterium and tritium absorbed in the coatiag. The proeess for preparing these hydrogen isotope targets is described.

  13. Hydrogen rich gas generator

    NASA Technical Reports Server (NTRS)

    Houseman, J. (Inventor)

    1976-01-01

    A process and apparatus is described for producing a hydrogen rich gas by introducing a liquid hydrocarbon fuel in the form of a spray into a partial oxidation region and mixing with a mixture of steam and air that is preheated by indirect heat exchange with the formed hydrogen rich gas, igniting the hydrocarbon fuel spray mixed with the preheated mixture of steam and air within the partial oxidation region to form a hydrogen rich gas.

  14. Hydrogen energy systems studies

    SciTech Connect

    Ogden, J.M.; Steinbugler, M.; Dennis, E.

    1995-09-01

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  15. HYDROGEN GREENHOUSE PLANETS BEYOND THE HABITABLE ZONE

    SciTech Connect

    Pierrehumbert, Raymond; Gaidos, Eric E-mail: gaidos@hawaii.edu

    2011-06-10

    We show that collision-induced absorption allows molecular hydrogen to act as an incondensible greenhouse gas and that bars or tens of bars of primordial H{sub 2}-He mixtures can maintain surface temperatures above the freezing point of water well beyond the 'classical' habitable zone defined for CO{sub 2} greenhouse atmospheres. Using a one-dimensional radiative-convective model, we find that 40 bars of pure H{sub 2} on a three Earth-mass planet can maintain a surface temperature of 280 K out to 1.5 AU from an early-type M dwarf star and 10 AU from a G-type star. Neglecting the effects of clouds and of gaseous absorbers besides H{sub 2}, the flux at the surface would be sufficient for photosynthesis by cyanobacteria (in the G star case) or anoxygenic phototrophs (in the M star case). We argue that primordial atmospheres of one to several hundred bars of H{sub 2}-He are possible and use a model of hydrogen escape to show that such atmospheres are likely to persist further than 1.5 AU from M stars, and 2 AU from G stars, assuming these planets have protecting magnetic fields. We predict that the microlensing planet OGLE-05-390Lb could have retained an H{sub 2}-He atmosphere and be habitable at {approx}2.6 AU from its host M star.

  16. Hydrogen Halides on Jupiter and Saturn

    NASA Astrophysics Data System (ADS)

    Showman, Adam P.

    2001-07-01

    The quest to detect gaseous HCl, HBr, and HF in the atmospheres of Jupiter and Saturn has led to a tentative detection of 1 ppb HCl near Saturn's cloud deck. The detection is puzzling because, while these hydrogen halides may be present several scale heights below the clouds, they are expected to react with ammonia to form solid ammonium halide salts in the upper troposphere. I show that the loss timescale for condensation of gaseous hydrogen halides onto particles is ˜10 3-10 5 s for realistic cloud densities and particle sizes, which is much less than the ˜10 8 s residence time of upper tropospheric air. The hydrogen halides can only survive transport up to the cloud layer if less than 1 in 10 6 of their collisions with particle surfaces leads to condensation, which is unlikely. Even in the absence of foreign particles, homogeneous nucleation would probably prevent supersaturations in excess of a few hundred, which is ˜10 20-10 40 times too low to explain the observation. These calculations therefore suggest that hydrogen halides cannot exist at part-per-billion levels in the upper troposphere. The interplanetary source of halogens is also too low to produce detectable quantities of hydrogen halides except perhaps at pressures less than 1 mbar. A possible detection of chlorine by the Galileo probe at pressures exceeding 9 bars on Jupiter may be consistent with the equilibrium abundance of gaseous HCl or NH 4Cl.

  17. Evaluation of a hydrogen sensor for nuclear reactor containment monitoring

    SciTech Connect

    Hoffheins, B.S.; McKnight, T.E.; Lauf, R.J.; Smith, R.R.; James, R.E.

    1997-02-01

    Measurement of hydrogen concentration in containment atmospheres in nuclear plants is a key safety capability. Current technologies require extensive sampling systems and subsequent maintenance and calibration costs can be very expensive. A new hydrogen sensor has been developed that is small and potentially inexpensive to install and maintain. Its size and low power requirement make it suitable in distributed systems for pinpointing hydrogen buildup. This paper will address the first phase of a testing program conducted to evaluate this sensor for operation in reactor containments.

  18. Triple redundant hydrogen sensor with in situ calibration

    NASA Technical Reports Server (NTRS)

    Lantz, J. B.; Powell, J. D.; Schubert, F. H.; Koszenski, E. P.

    1980-01-01

    To meet sensing and calibration needs, an in situ calibration technique was developed. It is based on electrolytic generation of a hydrogen/air atmosphere within a hydrogen sensor. The hydrogen is generated from water vapor in the air, and being electrical in nature, the in situ calibration can be performed completely automatically in remote locations. Triply redundant sensor elements are integrated within a single, compact housing, and digital logic provides inter-sensor comparisons to warn of and identify malfunctioning sensor elements. An evaluation of this concept is presented.

  19. Optimized hydrogen piston engines

    SciTech Connect

    Smith, J.R.

    1994-05-10

    Hydrogen piston engines can be simultaneously optimized for improved thermal efficiency and for extremely low emissions. Using these engines in constant-speed, constant-load systems such as series hybrid-electric automobiles or home cogeneration systems can result in significantly improved energy efficiency. For the same electrical energy produced, the emissions from such engines can be comparable to those from natural gas-fired steam power plants. These hydrogen-fueled high-efficiency, low-emission (HELE) engines are a mechanical equivalent of hydrogen fuel cells. HELE engines could facilitate the transition to a hydrogen fuel cell economy using near-term technology.

  20. Hydrogen ion microlithography

    DOEpatents

    Tsuo, Y. Simon; Deb, Satyen K.

    1990-01-01

    Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing.

  1. Hydrogen ion microlithography

    DOEpatents

    Tsuo, Y.S.; Deb, S.K.

    1990-10-02

    Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing. 6 figs.

  2. Hydrogen Gets Onboard

    SciTech Connect

    Gutowski, Maciej S.; Autrey, Thomas

    2006-03-01

    In this brief review we update progress in research efforts for on-board hydrogen storage for fuel cell powered vehicles. In addition to economic targets, the technological challenges are bounded by volumetric and gravimetric constraints. Specifically, an amoiunt of 4 kg of H2, required to propel a highly fuel efficient automobile for 500 kilometers, must fit into the space of a conventional gasoline tank. The volumetric constraints rule out compressed and liquefied H2 and teach us that hydrogen must be stored as a solid material, either by physi-sorption to high surface area materials or chemically bond (covalent or ionic) to light weight elements. Hydrogen stored on high surface area materials is weakly bound and general requires low temperatures to stabilize the hydrogen. On the other end, hydrogen covalently bound to light metals requires high temperatures to release the hydrogen. One interesting alterative is chemical hydrogen storage (CHS). CHS covers a broad range of materials but is defined as a process whereby the hydrogen is released by a chemical reaction. The reaction could be induced by hydrolysis, a reaction with water, or by thermolysis, heating to moderate temperatures to release hydrogen. The spent material can then be reprocessed or regenerated off-board. Battelle operates the Pacific Northwest National Laboratory for the US Department of Energy.

  3. Sustainable hydrogen production

    SciTech Connect

    Block, D.L.; Linkous, C.; Muradov, N.

    1996-01-01

    This report describes the Sustainable Hydrogen Production research conducted at the Florida Solar Energy Center (FSEC) for the past year. The report presents the work done on the following four tasks: Task 1--production of hydrogen by photovoltaic-powered electrolysis; Task 2--solar photocatalytic hydrogen production from water using a dual-bed photosystem; Task 3--development of solid electrolytes for water electrolysis at intermediate temperatures; and Task 4--production of hydrogen by thermocatalytic cracking of natural gas. For each task, this report presents a summary, introduction/description of project, and results.

  4. Thin film hydrogen sensor

    DOEpatents

    Lauf, Robert J.; Hoffheins, Barbara S.; Fleming, Pamela H.

    1994-01-01

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

  5. Hydrogen Safety Knowledge Tools

    SciTech Connect

    Fassbender, Linda L.

    2011-01-31

    With hydrogen gaining acceptance as an energy carrier for fuel cell vehicles and stationary fuel cell applications, a new community of hydrogen users is emerging and continues to grow. With this growth has come the need to spread the word about safe practices for handling, storing, and using hydrogen. Like all energy forms, hydrogen can be used safely through proper procedures and engineering techniques. However, hydrogen involves a degree of risk that must be respected, and the importance of avoiding complacency or haste in the safe conduct and performance of projects involving hydrogen cannot be overstated. To encourage and promote the safe use of hydrogen, Pacific Northwest National Laboratory (PNNL) has developed and continues to enhance two software tools in support of the U.S. Department of Energy's Fuel Cell Technologies Program: the Hydrogen Safety Best Practices online manual (www.H2BestPractices.org) and the Hydrogen Incident Reporting and Lessons Learned database (www.H2Incidents.org).

  6. Electrical conductivity of condensed molecular hydrogen in the giant planets

    NASA Technical Reports Server (NTRS)

    Smoluchowski, R.

    1972-01-01

    Theoretical interpretation of several phenomena concerning Jupiter and Saturn depends upon the electrical conductivity of molecular hydrogen which, according to present models, forms the outermost layer of both planets. The layer starts at the transition pressure between the metallic and the molecular form of hydrogen, that is around 1 Mbar, and extends to the outside limits of the atmosphere. Whether at the highest pressures (and temperatures) this layer is a solid or a dense fluid is not certain. In any case, the fluid is in supercritical condition so that there is only a gradual transition from dense liquid to a gaseous form. The two theories which require specific values of the conductivity of the condensed molecular hydrogen are those pertaining to the generation of a magnetic field in the liquid hydrogen rather than in the deep metallic interior (HIDE, 1967), and those concerned with the electromagnetic coupling and exchange of angular momentum between the liquid core and the solid molecular hydrogen mantle.

  7. Effect of process variables on photosynthetic algal hydrogen production.

    PubMed

    Hahn, John J; Ghirardi, Maria L; Jacoby, William A

    2004-01-01

    Chlamydomonas reinhardtii is a green alga that can use the sun's energy to split water into O(2) and H(2). This is accomplished by means of a two-phase cycle, an aerobic growth phase followed by an anaerobic hydrogen production phase. The effects of process variables on hydrogen production are examined here. These variables include cell concentration, light intensity, and reactor design parameters that affect light transport and mixing. An optimum cell concentration and light intensity are identified, and two reactor designs are compared. The maximum hydrogen production observed in this study was 0.29 mL of hydrogen per milliliter of suspension. This was measured at atmospheric pressure during a 96 h production cycle. This corresponds to an average hydrogen production rate of 0.12 mmol/mL.h. PMID:15176910

  8. Hydrogen Adsorption in Zeolite Studied with Sievert and Thermogravimetric Methods

    NASA Astrophysics Data System (ADS)

    Lesnicenoks, P.; Sivars, A.; Grinberga, L.; Kleperis, J.

    2012-08-01

    Natural clinoptilolite (mixture from clinoptilolite, quartz and muscovite) is activated with palladium and tested for hydrogen adsorption capability at temperatures RT - 200°C. Thermogravimetric and volumetric methods showed that zeolite activated with palladium (1.25%wt) shows markedly high hydrogen adsorption capacity - up to 3 wt%. Lower amount of adsorbed hydrogen (~1.5 wt%) was found for raw zeolite and activated with higher amount of palladium sample. Hypothesis is proposed that the heating of zeolite in argon atmosphere forms and activates the pore structure in zeolite material, where hydrogen encapsulation (trapping) is believed to occur when cooling down to room temperature. An effect of catalyst (Pd) on hydrogen sorption capability is explained by spillover phenomena were less-porous fractions of natural clinoptilolite sample (quartz and muscovite) are involved.

  9. Materials for the scavanging of hydrogen at high temperatures

    DOEpatents

    Shepodd, Timothy J.; Phillip, Bradley L.

    1997-01-01

    A hydrogen getter composition comprising a double or triple bonded hydrocarbon with a high melting point useful for removing hydrogen gas, to partial pressures below 0.01 torr, from enclosed spaces and particularly from vessels used for transporting or containing fluids at elevated temperatures. The hydrogen getter compositions disclosed herein and their reaction products will neither melt nor char at temperatures in excess of 100.degree. C. They possess significant advantages over conventional hydrogen getters, namely low risk of fire or explosion, no requirement for high temperature activation or operation, the ability to absorb hydrogen even in the presence of contaminants such as water, water vapor, common atmospheric gases and oil mists and are designed to be disposed within the confines of the apparatus. These getter materials can be mixed with binders, such as fluropolymers, which permit the getter material to be fabricated into useful shapes and/or impart desirable properties such as water repellency or impermeability to various gases.

  10. Materials for the scavanging of hydrogen at high temperatures

    DOEpatents

    Shepodd, Timothy J.; Phillip, Bradley L.

    1997-01-01

    A hydrogen getter composition comprising a double or triple bonded hydrocarbon with a high melting point useful for removing hydrogen gas, to partial pressures below 0.01 torr, from enclosed spaces and particularly from vessels used for transporting or containing fluids at elevated temperatures. The hydrogen getter compostions disclosed herein and their reaction products will neither melt nor char at temperatures in excess of 100C. They possess significant advantages over conventional hydrogen getters, namely low risk of fire or explosion, no requirement for high temperature activation or operation, the ability to absorb hydrogen even in the presence of contaminants such as water, water vapor, common atmospheric gases and oil mists and are designed to be disposed within the confines of the apparatus. These getter materials can be mixed with binders, such as fluropolymers, which permit the getter material to be fabricated into useful shapes and/or impart desirable properties such as water repellency or impermeability to various gases.

  11. YMgGa as a hydrogen storage compound

    SciTech Connect

    Sahlberg, Martin; Zlotea, Claudia; Moretto, Pietro; Andersson, Yvonne

    2009-07-15

    The hydrogen absorption and desorption properties of the recently found ternary phase YMgGa have been studied. This compound absorbs 2.2 wt% hydrogen during the first cycle, but only 1.1 wt% can be stored reversibly for the following cycles under the applied pressure and temperature conditions. Hydrogen absorption and desorption properties were investigated by measuring the thermal desorption spectra and the pressure-composition isotherms while the crystal structure was determined using X-ray diffraction (XRD). The compound absorbs hydrogen at pressures above 0.2 MPa and 250 deg. C by decomposing into YH{sub 3} and MgGa. This reaction is reversed when heating the hydride in a He atmosphere; hydrogen is released and the YMgGa phase is partially recovered together with YGa{sub 2} and YH{sub 2}. The reformation of YMgGa occurs at temperatures below 450 deg. C on the expenses of hydrogen desorption from YH{sub 2}. This is not expected under these temperature conditions as YH{sub 2} normally does not desorb hydrogen below 800 deg. C. - Graphical abstract: Hydrogen absorption in YMgGa studied by in situ powder X-ray diffraction. The hydrogen absorption and desorption properties were investigated by thermal desorption spectra and pressure-composition isotherms.

  12. Reduced hydrogen embrittlement susceptibility in platinum implanted high strength steel

    NASA Astrophysics Data System (ADS)

    Cowie, J. G.; Lowder, L. J.; Culbertson, R. J.; Kosik, W. E.; Brown, R.

    1991-07-01

    High strength steels suffer from a high susceptibility to hydrogen embrittlement in a corrosive atmosphere, a factor which limits their usefulness. A good catalyst, such as platinum, present on the surface of the steel may lead to a low value of hydrogen overvoltage, thereby reducing the accumulation and subsequent diffusion of atomic hydrogen into the metal. In the present study, platinum was implanted into high strength electroslag remelted (ESR) 4340 steel specimens to a dose of 10 16 atoms/cm 2. Both Pt-implanted and unimplanted specimens were rate charged with hydrogen. The relative concentration of diffusible hydrogen was determined using an electrochemical measurement device known as a Barnacle Electrode. The specimens implanted with platinum exhibited less diffusible hydrogen than the unimplanted steel. Slow strain rate notched-tensile tests, in an aqueous solution of 3.5 wt.% NaCI, were performed in order to evaluate the effect of hydrogen on strength and ductility. The Pt-implanted specimens were able to sustain significantly higher loads before fracture than their unimplanted counterparts. Scanning electron microscopy (SEM) verified the presence of brittle cracking typical of hydrogen embrittlement type failures. Degradation of mechanical properties due to hydrogen embrittlement was thus significantly reduced. This suggested that both the electrochemical and catalytic properties of the Pt-implanted surface were responsible for the improvement in properties.

  13. Hydrogen from biomass: state of the art and research challenges

    SciTech Connect

    Milne, Thomas A; Elam, Carolyn C; Evans, Robert J

    2002-02-01

    The report was prepared for the International Energy Agency (IEA) Agreement on the Production and Utilization of Hydrogen, Task 16, Hydrogen from Carbon-Containing Materials. Hydrogen's share in the energy market is increasing with the implementation of fuel cell systems and the growing demand for zero-emission fuels. Hydrogen production will need to keep pace with this growing market. In the near term, increased production will likely be met by conventional technologies, such as natural gas reforming. In these processes, the carbon is converted to CO2 and released to the atmosphere. However, with the growing concern about global climate change, alternatives to the atmospheric release of CO2 are being investigated. Sequestration of the CO2 is an option that could provide a viable near-term solution. Reducing the demand on fossil resources remains a significant concern for many nations. Renewable-based processes like solar- or wind-driven electrolysis and photobiological water splitting hold great promise for clean hydrogen production; however, advances must still be made before these technologies can be economically competitive. For the near-and mid-term, generating hydrogen from biomass may be the more practical and viable, renewable and potentially carbon-neutral (or even carbon-negative in conjunction with sequestration) option. Recently, the IEA Hydrogen Agreement launched a new task to bring together international experts to investigate some of these near- and mid-term options for producing hydrogen with reduced environmental impacts. This review of the state of the art of hydrogen production from biomass was prepared to facilitate in the planning of work that should be done to achieve the goal of near-term hydrogen energy systems. The relevant technologies that convert biomass to hydrogen, with emphasis on thermochemical routes are described. In evaluating the viability of the conversion routes, each must be put in the context of the availability of

  14. The investigation of hydrogenation influence on structure changes of zirconium with nickel layer

    NASA Astrophysics Data System (ADS)

    Kudiiarov, V. N.; Bordulev, Yu S.; Laptev, R. S.; Pushilina, N. S.; Kashkarov, E. B.; Syrtanov, M. S.

    2016-06-01

    The results of experimental investigation of hydrogenation influence on structure changes of zirconium alloy (Zr-1%Nb) with thin nickel layer have presented in this work. Nickel layer was formed by magnetron sputter deposition. Hydrogenation was carried out at gas atmosphere at constant temperature. Different hydrogen concentrations were obtained by varying time of hydrogenation. Defect and phase structure was studied by means of X-ray diffraction, glow discharge optical emission spectroscopy, positron lifetime and Doppler broadening spectroscopies. New experimental data about the evolution of the positron annihilation parameters depending on hydrogen concentration in Zr-1Nb alloy with nickel layer was obtained.

  15. Solubility of hydrogen sulfide in n-methylpyrrolidone

    SciTech Connect

    Yarym-Agaev, N.L.; Matvienko, V.G.; Povalyaeva, N.V.

    1980-01-01

    The solubility of hydrogen sulfide in N-methylpyrrolidone was investigated over wide ranges of temperature and pressure. The dynamic variant of the gravimetric method was used at hydrogen sulfide pressures equal to or below atmospheric, and the static variant at higher pressures. In the dynamic variant of the gravimetric method hydrogen sulfide is passed through a known amount of solvent until saturation is reached, and the amount of gas dissolved is found from the weight increase. This method is particularly convenient in studies of highly soluble gases when the solvent has a low vapor pressure. If the vapor pressure of the solvent exceeded this value a correction for entrainment of solvent vapor by undissolved gas was applied. The study showed that the solubility of hydrogen sulfide in N-methylpyrrolidone rose steeply with increase of pressure and decrease of temperature and that it can be used as an effective absorbent of hydrogen sulfide in highly sulfurous natural gas. Since the solubility of hydrogen sulfide under atmospheric pressure is fairly high even at elevated temperatures, effective regeneration of N-methylpyrrolidone is possible by a combination of heating and blowing with an inert gas or by application of vacuum for removal of the hydrogen sulfide.

  16. Earth’s Earliest Atmospheres

    PubMed Central

    Zahnle, Kevin; Schaefer, Laura; Fegley, Bruce

    2010-01-01

    Earth is the one known example of an inhabited planet and to current knowledge the likeliest site of the one known origin of life. Here we discuss the origin of Earth’s atmosphere and ocean and some of the environmental conditions of the early Earth as they may relate to the origin of life. A key punctuating event in the narrative is the Moon-forming impact, partly because it made Earth for a short time absolutely uninhabitable, and partly because it sets the boundary conditions for Earth’s subsequent evolution. If life began on Earth, as opposed to having migrated here, it would have done so after the Moon-forming impact. What took place before the Moon formed determined the bulk properties of the Earth and probably determined the overall compositions and sizes of its atmospheres and oceans. What took place afterward animated these materials. One interesting consequence of the Moon-forming impact is that the mantle is devolatized, so that the volatiles subsequently fell out in a kind of condensation sequence. This ensures that the volatiles were concentrated toward the surface so that, for example, the oceans were likely salty from the start. We also point out that an atmosphere generated by impact degassing would tend to have a composition reflective of the impacting bodies (rather than the mantle), and these are almost without exception strongly reducing and volatile-rich. A consequence is that, although CO- or methane-rich atmospheres are not necessarily stable as steady states, they are quite likely to have existed as long-lived transients, many times. With CO comes abundant chemical energy in a metastable package, and with methane comes hydrogen cyanide and ammonia as important albeit less abundant gases. PMID:20573713

  17. Wide-range hydrogen sensing with Nb-doped TiO2 nanotubes.

    PubMed

    Liu, Hegang; Ding, Dongyan; Ning, Congqin; Li, Zhaohui

    2012-01-13

    Anatase-type titania nanotubes doped with Nb element were fabricated through an anodization of Ti35Nb alloy substrate and further annealing at 450 °C. Hydrogen sensitivity of the Nb-doped TiO(2) nanotubes at room temperature was investigated through exposure of the nanotube samples to different hydrogen atmospheres. At room temperature, the Nb-doped nanotubes demonstrated a good sensitivity for wide-range detection of both dilute and high-concentration hydrogen atmospheres ranging from 50 ppm to 2% H(2). The Nb-doped nanotubes also presented remarkable reversibility and repeatability as well as a quick response to the hydrogen atmosphere. The Nb-doped titania nanotubes have great advantages as robust and wide-range hydrogen sensors operating at room temperature. PMID:22156054

  18. Combination moisture and hydrogen getter

    DOEpatents

    Harrah, L.A.; Mead, K.E.; Smith, H.M.

    1983-09-20

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (1) a solid acetylenic compound and (2) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the resultant hydrogen.

  19. Combination moisture and hydrogen getter

    DOEpatents

    Not Available

    1982-04-29

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (i) a solid acetylenic compound and (ii) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the reusltant hydrogen.

  20. Combination moisture and hydrogen getter

    DOEpatents

    Harrah, Larry A.; Mead, Keith E.; Smith, Henry M.

    1983-01-01

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (i) a solid acetylenic compound and (ii) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the resultant hydrogen.

  1. Enhancing hydrogen spillover and storage

    DOEpatents

    Yang, Ralph T; Li, Yingwei; Lachawiec, Jr., Anthony J

    2013-02-12

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonication as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  2. Enhancing hydrogen spillover and storage

    DOEpatents

    Yang, Ralph T.; Li, Yingwel; Lachawiec, Jr., Anthony J.

    2011-05-31

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonification as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  3. Determination of the hydrogen isotopic composition of bone collagen and correction for hydrogen exchange

    SciTech Connect

    Cormie, A.B.; Schwarcz, H.P. ); Gray, J. )

    1994-01-01

    The hydrogen isotopic measurement ([delta]D) of the non-exchangeable hydrogens in herbivore bone collagen has potential for paleoclimate research. The authors have developed the methodology for extracting the hydrogen from collagen for isotopic analysis and correcting the [delta]D results for hydrogen exchange. Preparations of whole bone powders, demineralized bone, or gelatin extracts from fresh bone samples all give reliable [delta]D results and have isotopic results, yields, and proportions of exchangeable hydrogens consistent with that expected for collagen. Gelatin extraction for removal of contaminants remains a valuable option for the study of fossil bone samples. Vacuum preheating under good vacuum at 150[degrees]C for two days for whole bone powders and at 100[degrees]C for one day for gelatins is an important step to remove all adsorbed water before samples are oxidized for isotopic analysis. Of the remaining hydrogens released following oxidation, 20.5% in whole bone powders and 23.1% in gelatin extracts exchange with laboratory atmospheric water vapor within 48 hours. The [delta]D results can be corrected for this exchange and for minor effects of sample preparation by using a calibration bone standard to determine the [delta]D value of laboratory water vapor.

  4. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    DOEpatents

    Hindin, Saul G.; Roberts, George W.

    1980-08-12

    A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst.

  5. Hydrogenated graphene and hydrogenated silicene: computational insights.

    PubMed

    Nguyen, Manh-Thuong; Phong, Pham Nam; Tuyen, Nguyen Duc

    2015-06-01

    Density functional calculations are performed to study the energetic, structural, and electronic properties of graphene and silicene functionalized with hydrogen. Our calculations predict that H atoms bind much more strongly to silicene than to graphene. The adsorbed H atoms tend to cooperatively stabilize each other leading to a two-dimensional nucleation and growth mechanism. The different structural and electronic modifications induced by H in fully functionalized graphene and silicene (known as graphane and silicane) are also explained. Finally, the electronic properties of defective graphane with multiple hydrogen vacancies are investigated. Engineering the vacancies in graphane offers a way to modify the electronic properties of this material. PMID:25820304

  6. Atmospheric Mining in the Outer Solar System:. [Aerial Vehicle Reconnaissance and Exploration Options

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    2014-01-01

    Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and hydrogen can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and hydrogen (deuterium, etc.) were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. Additional supporting analyses were conducted to illuminate vehicle sizing and orbital transportation issues. While capturing 3He, large amounts of hydrogen and 4He are produced. With these two additional gases, the potential for fueling small and large fleets of additional exploration and exploitation vehicles exists. Additional aerospacecraft or other aerial vehicles (UAVs, balloons, rockets, etc.) could fly through the outer planet atmospheres, for global weather observations, localized storm or other disturbance investigations, wind speed measurements, polar observations, etc. Deep-diving aircraft (built with the strength to withstand many atmospheres of pressure) powered by the excess hydrogen or helium 4 may be designed to probe the higher density regions of the gas giants. Outer planet atmospheric properties, atmospheric storm data, and mission planning for future outer planet UAVs are presented.

  7. A white dwarf with an oxygen atmosphere.

    PubMed

    Kepler, S O; Koester, Detlev; Ourique, Gustavo

    2016-04-01

    Stars born with masses below around 10 solar masses end their lives as white dwarf stars. Their atmospheres are dominated by the lightest elements because gravitational diffusion brings the lightest element to the surface. We report the discovery of a white dwarf with an atmosphere completely dominated by oxygen, SDSS J124043.01+671034.68. After oxygen, the next most abundant elements in its atmosphere are neon and magnesium, but these are lower by a factor of ≥25 by number. The fact that no hydrogen or helium are observed is surprising. Oxygen, neon, and magnesium are the products of carbon burning, which occurs in stars at the high-mass end of pre-white dwarf formation. This star, a possible oxygen-neon white dwarf, will provide a rare observational test of the evolutionary paths toward white dwarfs. PMID:27034367

  8. Detection of HCN in Pluto's atmosphere

    NASA Astrophysics Data System (ADS)

    Lellouch, Emmanuel; Gurwell, Mark; Butler, Bryan; Moullet, Arielle; Moreno, Raphael; Bockelée-Morvan, Dominique; Biver, Nicolas; Fouchet, Thierry; Lis, Darek; Stern, Alan; Young, Leslie; Young, Eliot; Weaver, Hal; Boissier, Jeremie; Stansberry, John

    2015-11-01

    We report on the first detection of hydrogen cyanide in Pluto's atmosphere, obtained with the ALMA interferometer. ALMA observations of the HCN(4-3) line at 354.505 GHz were conducted on June 12.2 and June 13.15, 2015 at ~0.3" spatial resolution, separating Pluto from Charon, with a 234 kHz spectral sampling. The HCN line was detected on both dates, with a ~100 mJy contrast and a ~0.75 MHz FWHM linewidth. The narrow linewidth and the absence of Lorentzian wings indicate that most of the HCN resides in Pluto's upper atmosphere. As on Titan, HCN is an expected photochemical product in a N2-CH4 atmosphere. Data interpretation in terms of the HCN abundance/vertical distribution and comparison with photochemical models will be presented.

  9. Evolution of the atmosphere and oceans.

    PubMed

    Holland, H D; Lazar, B; McCaffrey, M

    1986-03-01

    The residence times of most constituents of the atmosphere and oceans are small fractions of the age of the Earth and, in general, their rate of output has been nearly equal to their rate of input. We are disturbing a number of these dynamic equilibria quite severely. The mineralogy of marine evaporites rules out drastic changes in the composition of sea water during the last 900 Myr. The chemistry of soils formed more than 1,000 Myr ago suggests that the atmosphere then contained significantly more CO2 and less O2 than at present. Hydrogen peroxide may well have been the principal oxidant and formaldehyde the main reductant in rain water between 3,000 and 1,000 Myr ago. Major changes in atmospheric chemistry since that time are almost certainly related to the evolution of the biosphere. PMID:11540871

  10. A white dwarf with an oxygen atmosphere

    NASA Astrophysics Data System (ADS)

    Kepler, S. O.; Koester, Detlev; Ourique, Gustavo

    2016-04-01

    Stars born with masses below around 10 solar masses end their lives as white dwarf stars. Their atmospheres are dominated by the lightest elements because gravitational diffusion brings the lightest element to the surface. We report the discovery of a white dwarf with an atmosphere completely dominated by oxygen, SDSS J124043.01+671034.68. After oxygen, the next most abundant elements in its atmosphere are neon and magnesium, but these are lower by a factor of ≥25 by number. The fact that no hydrogen or helium are observed is surprising. Oxygen, neon, and magnesium are the products of carbon burning, which occurs in stars at the high-mass end of pre-white dwarf formation. This star, a possible oxygen-neon white dwarf, will provide a rare observational test of the evolutionary paths toward white dwarfs.

  11. D/H Fractionation in the Atmosphere-Ground Ice System on Mars

    NASA Astrophysics Data System (ADS)

    Ellehøj, M. D.; Johnsen, S. J.; Madsen, M. B.

    2009-03-01

    The solid-vapor fractionation processes of Deuterium/Hydrogen (D/H) in the ground ice-atmosphere system on Mars are investigated through experiments and modeling. Preliminary results mainly from the experimental work are presented.

  12. Atmospheric Mining in the Outer Solar System: Resource Capturing, Storage, and Utilization

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2014-01-01

    Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as helium 3 and hydrogen can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and hydrogen (deuterium, etc.) were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate for hydrogen helium 4 and helium 3, storage options, and different methods of direct use of the captured gases. Additional supporting analyses were conducted to illuminate vehicle sizing and orbital transportation issues.

  13. Atmospheric Mining in the Outer Solar System: Resource Capturing, Storage, and Utilization

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2012-01-01

    Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and hydrogen can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and hydrogen (deuterium, etc.) were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate for hydrogen helium 4 and helium 3, storage options, and different methods of direct use of the captured gases. Additional supporting analyses were conducted to illuminate vehicle sizing and orbital transportation issues.

  14. Membrane for hydrogen recovery from streams containing hydrogen sulfide

    DOEpatents

    Agarwal, Pradeep K.

    2007-01-16

    A membrane for hydrogen recovery from streams containing hydrogen sulfide is provided. The membrane comprises a substrate, a hydrogen permeable first membrane layer deposited on the substrate, and a second membrane layer deposited on the first layer. The second layer contains sulfides of transition metals and positioned on the on a feed side of the hydrogen sulfide stream. The present invention also includes a method for the direct decomposition of hydrogen sulfide to hydrogen and sulfur.

  15. Hydrogen evolution reaction catalyst

    DOEpatents

    Subbaraman, Ram; Stamenkovic, Vojislav; Markovic, Nenad; Tripkovic, Dusan

    2016-02-09

    Systems and methods for a hydrogen evolution reaction catalyst are provided. Electrode material includes a plurality of clusters. The electrode exhibits bifunctionality with respect to the hydrogen evolution reaction. The electrode with clusters exhibits improved performance with respect to the intrinsic material of the electrode absent the clusters.

  16. Thick film hydrogen sensor

    DOEpatents

    Hoffheins, Barbara S.; Lauf, Robert J.

    1995-01-01

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

  17. Thick film hydrogen sensor

    DOEpatents

    Hoffheins, B.S.; Lauf, R.J.

    1995-09-19

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors. 8 figs.

  18. Towards a Hydrogen Economy

    SciTech Connect

    Sherif, S.A.; Barbir, Frano; Veziroglu, T.N.

    2005-07-01

    From electrolysis and thermolysis to production from biomass, hydrogen production methods are falling into place. So is storage, via all modes of gaseous, liquid, slush, and metal hydride systems. But proponents need to address the perception that hydrogen poses a severe safety risk, since the evidence suggests its risks are of the same order of magnitude as gasoline or natural gas.

  19. Hydrogen permeation through metals

    SciTech Connect

    Huhn, D.K.

    1985-01-01

    The permeation of hydrogen through metals was studied both theoretically and experimentally. Gas phase permeation experiments with nickel, iron, and iron-titanium alloys were done at low temperatures, 270 to 343 K, and high temperatures, 751 to 384 K, with hydrogen pressures ranging from 10/sup 3/ to 10/sup 5/ Pa. Experiments at low temperatures used an electrochemical cell to detect the permeating hydrogen, deuterium, or hydrogen-deuterium flux. At high temperatures a vacuum system equipped with a mass spectrometer measured the permeating hydrogen flux. The permeability and diffusivity of hydrogen through nickel membranes, 10/sup -4/ to 10/sup -5/ m in thickness, was measured in the temperature range of 580 to 270 K. The experimental results did not exhibit postulated surface effects; however, trapping of hydrogen was observed with a trap density of 2.5 x 10/sup 23/ sites/m/sup 3/ and a binding energy of 33 kJ/mole. The permeability of hydrogen through iron-titanium alloys increased with titanium concentration with a maximum increase of approximately 10% for a Fe-3.04 wt% Ti alloy compared to pure iron. High temperature diffusivity measurements showed a small decrease in diffusivity with titanium concentration; therefore, the solubility increased.

  20. Hydrogen in amorphous silicon

    SciTech Connect

    Peercy, P. S.

    1980-01-01

    The structural aspects of amorphous silicon and the role of hydrogen in this structure are reviewed with emphasis on ion implantation studies. In amorphous silicon produced by Si ion implantation of crystalline silicon, the material reconstructs into a metastable amorphous structure which has optical and electrical properties qualitatively similar to the corresponding properties in high-purity evaporated amorphous silicon. Hydrogen studies further indicate that these structures will accomodate less than or equal to 5 at.% hydrogen and this hydrogen is bonded predominantly in a monohydride (SiH/sub 1/) site. Larger hydrogen concentrations than this can be achieved under certain conditions, but the excess hydrogen may be attributed to defects and voids in the material. Similarly, glow discharge or sputter deposited amorphous silicon has more desirable electrical and optical properties when the material is prepared with low hydrogen concentration and monohydride bonding. Results of structural studies and hydrogen incorporation in amorphous silicon were discussed relative to the different models proposed for amorphous silicon.

  1. Equilibrium and Disequilibrium Chemistry in Evolved Exoplanet Atmospheres

    NASA Astrophysics Data System (ADS)

    Hu, Renyu

    2015-11-01

    It has been found that sub-Neptune-sized planets, although not existing in our Solar System, are ubiquitous in our interstellar neighborhood. This revelation is profound because, due to their special sizes and proximity to their host stars, Neptune- and sub-Neptune-sized exoplanets may have highly evolved atmospheres. I will discuss helium-dominated atmospheres as one of the outcomes of extensive atmospheric evolution on warm Neptune- and sub-Neptune-sized exoplanets. Due to depleted hydrogen abundance, the dominant carbon and oxygen species may not be methane or water on these evolved planets. Equilibrium and disequilibrium chemistry models are used to compute the molecular compositions of the atmospheres and their spectral features. Applications to GJ 436 b and other Neptune- and sub-Neptune-sized exoplanets will be discussed. As the observations to obtain the spectra of these planets continue to flourish, we will have the opportunity to study unconventional atmospheric chemical processes and test atmosphere evolution theories

  2. Equilibrium and Disequilibrium Chemistry in Evolved Exoplanet Atmospheres

    NASA Astrophysics Data System (ADS)

    Hu, Renyu

    2015-12-01

    It has been found that sub-Neptune-sized planets, although not existing in our Solar System, are ubiquitous in our interstellar neighborhood. This revelation is profound because, due to their special sizes and proximity to their host stars, Neptune- and sub-Neptune-sized exoplanets may have highly evolved atmospheres. I will discuss helium-dominated atmospheres as one of the outcomes of extensive atmospheric evolution on warm Neptune- and sub-Neptune-sized exoplanets. Due to depleted hydrogen abundance, the dominant carbon and oxygen species may not be methane or water on these evolved planets. Equilibrium and disequilibrium chemistry models are used to compute the molecular compositions of the atmospheres and their spectral features. Applications to GJ 436 b and other Neptune- and sub-Neptune-sized exoplanets will be discussed. As the observations to obtain the spectra of these planets continue to flourish, we will have the opportunity to study unconventional atmospheric chemical processes and test atmosphere evolution theories

  3. Hydrogen utilization and alternatives

    NASA Technical Reports Server (NTRS)

    Manvi, R.; Caputo, R.; Fujita, T.

    1975-01-01

    The historical uses of hydrogen are described along with potential new uses which could develop as a result of the diminishing supply of conventional fossil fuels such as natural gas. A perspective view of hydrogen, both as a chemical feedstock and as a fuel, is necessary to understand its relationship to the overall national energy projections. These projections, which show energy usage in terms of use sectors, forms of energy, and sources of energy, do not specifically identify hydrogen as a component of the energy system. By superimposing the traditional roles upon the new opportunities for hydrogen on the energy projections, the role of hydrogen and future projections is developed within the context of the national energy projections. Use, supply, and other factors affecting application are interrelated and are discussed.

  4. Hydrogen Fuel Quality

    SciTech Connect

    Rockward, Tommy

    2012-07-16

    For the past 6 years, open discussions and/or meetings have been held and are still on-going with OEM, Hydrogen Suppliers, other test facilities from the North America Team and International collaborators regarding experimental results, fuel clean-up cost, modeling, and analytical techniques to help determine levels of constituents for the development of an international standard for hydrogen fuel quality (ISO TC197 WG-12). Significant progress has been made. The process for the fuel standard is entering final stages as a result of the technical accomplishments. The objectives are to: (1) Determine the allowable levels of hydrogen fuel contaminants in support of the development of science-based international standards for hydrogen fuel quality (ISO TC197 WG-12); and (2) Validate the ASTM test method for determining low levels of non-hydrogen constituents.

  5. Challenges in hydrogen storage

    NASA Astrophysics Data System (ADS)

    Schüth, F.

    2009-09-01

    Hydrogen is one possible medium for energy storage and transportation in an era beyond oil. Hydrogen appears to be especially promising in connection with electricity generation in polymer electrolyte membrane (PEM) fuel cells in cars. However, before such technologies can be implemented on a larger scale, satisfactory solutions for on-board storage of hydrogen are required. This is a difficult task due to the low volumetric and gravimetric storage density on a systems level which can be achieved so far. Possibilities include cryogenic storage as liquid hydrogen, high pressure storage at 70 MPa, (cryo)adsorptive storage, or various chemical methods of binding and releasing hydrogen. This survey discusses the different options and the associated advantages and disadvantages.

  6. Hydrogen Peroxide Concentrator

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F.

    2007-01-01

    A relatively simple and economical process and apparatus for concentrating hydrogen peroxide from aqueous solution at the point of use have been invented. The heart of the apparatus is a vessel comprising an outer shell containing tubular membranes made of a polymer that is significantly more permeable by water than by hydrogen peroxide. The aqueous solution of hydrogen peroxide to be concentrated is fed through the interstitial spaces between the tubular membranes. An initially dry sweep gas is pumped through the interiors of the tubular membranes. Water diffuses through the membranes and is carried away as water vapor mixed into the sweep gas. Because of the removal of water, the hydrogen peroxide solution flowing from the vessel at the outlet end is more concentrated than that fed into the vessel at the inlet end. The sweep gas can be air, nitrogen, or any other gas that can be conveniently supplied in dry form and does not react chemically with hydrogen peroxide.

  7. Mass fractionation of noble gases in diffusion-limited hydrodynamic hydrogen escape.

    PubMed

    Zahnle, K; Kasting, J F; Pollack, J B

    1990-01-01

    Mass fractionation by hydrodynamic hydrogen escape is a promising mechanism for explaining the observed elemental and isotopic abundance patterns in terrestrial planet atmospheres. Previous work has considered only pure hydrogen winds. Here, the theory of mass fractionation by hydrogen escape is extended to atmospheres in which hydrogen is not the only major constituent. Analytical solutions are derived for cases in which all relevant atmospheric constituents escape; both analytical and numerical solutions are obtained for cases in which important heavy constituents are retained. In either case the fractionation patterns that result can differ significantly from those produced by pure hydrogen winds. Three applications of the theory are discussed: (1) The observed fractionation of terrestrial atmospheric neon with respect to mantle neon can be explained as a by-product of diffusion-limited hydrogen escape from a steam atmosphere toward the end of accretion. (2) The anomalously high Martian (SNC) 38Ar/36Ar ratio is attributed to hydrodynamic fractionation by a vigorously escaping, nearly pure hydrogen wind. (3) It is possible that the present high Martian D/H ratio was established during the same hydrodynamic escape phase that fractionated argon, but the predicted degree of D/H enrichment is sensitive to other, less well constrained parameters. PMID:11538474

  8. Stellar atmospheric structural patterns

    NASA Technical Reports Server (NTRS)

    Thomas, R. N.

    1983-01-01

    The thermodynamics of stellar atmospheres is discussed. Particular attention is given to the relation between theoretical modeling and empirical evidence. The characteristics of distinctive atmospheric regions and their radical structures are discussed.

  9. Our shared atmosphere

    EPA Science Inventory

    Our atmosphere is a precious and fascinating resource, providing air to breath, shielding us from harmful ultraviolet radiation (UV), and maintaining a comfortable climate. Since the industrial revolution, people have significantly altered the composition of the atmosphere throu...

  10. Earth's changeable atmosphere

    NASA Astrophysics Data System (ADS)

    2016-06-01

    Billions of years ago, high atmospheric greenhouse gas concentrations were vital to life's tenuous foothold on Earth. Despite new constraints, the composition and evolution of Earth's early atmosphere remains hazy.

  11. The Atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Hansen, J. E. (Editor)

    1975-01-01

    Topics considered at the conference included the dynamics, structure, chemistry, and evolution of the Venus atmosphere, as well as cloud physics and motion. Infrared, ultraviolet, and radio occultation methods of analysis are discussed, and atmospheric models are described.

  12. Spectroscopy in the study of planetary atmospheres - Abundances from the visible region

    NASA Technical Reports Server (NTRS)

    Lutz, B. L.

    1978-01-01

    Spectrophotometric studies of three molecular constituents - hydrogen, methane, and ammonia - identified in the visible region of the spectra of the outer planets are reviewed. The history of quadrupole line observations for hydrogen molecules and the significance of the HD molecule for the dipole spectrum are considered. Approaches to quantitative estimates of methane concentration in planetary atmospheres are explained, and the detection of ammonia in the atmospheres of Jupiter and Saturn is described.

  13. Products of binary complex compounds thermolysis: Catalysts for hydrogen peroxide decomposition

    NASA Astrophysics Data System (ADS)

    Domonov, D. P.; Pechenyuk, S. I.; Gosteva, A. N.

    2014-06-01

    Samples are obtained via the thermolysis of binary complex compounds in a hydrogen atmosphere. Their catalytic activity in hydrogen peroxide decomposition is studied. The values of the rate constants and activation energies for the catalytic reaction are estimated. The correlation between catalytic activity, composition, specific surface area ( S sp), and particle size of the samples is analyzed.

  14. Adsorption of hydrogen chloride on microcrystalline silica. [solid rocket propellant exhaust

    NASA Technical Reports Server (NTRS)

    Kang, Y.; Wightman, J. P.

    1979-01-01

    The interaction of hydrogen chloride with quartz was studied to determine the extent to which silica can irreversibly remove hydrogen chloride from the atmosphere. Adsorption isotherms were measured at 30 C for hydrogen chloride on silica outgassed between 100 C and 400 C. Readsorption isotherms were also measured. The silica surface was characterized further by infrared spectroscopy, electron spectroscopy for chemical analysis, scanning electron microscopy, and immersional calorimetry. Ground debris samples obtained from the Kennedy Space Center, were likewise examined.

  15. Hydrogen halide cleaning of powder metallurgy nickel-20 chromium-3 thoria.

    NASA Technical Reports Server (NTRS)

    Herbell, T. P.

    1972-01-01

    The Cr2O3 content of powder metallurgy nickel-20 chromium-3 thoria was reduced with atmospheres consisting of hydrogen plus hydrogen chloride (HCl) or hydrogen bromide (HBr). The nonthoria oxygen content or 'oxygen excess' was reduced from an initial amount of greater than 50,000 ppm to less than 100 ppm. Low temperatures were effective, but lowest oxygen levels were achieved with the highest cleaning temperature of 1200 C.

  16. Atmospheric Nitrogen Fluorescence Yield

    NASA Technical Reports Server (NTRS)

    Adams, J. H., Jr.; Christl, M. J.; Fountain, W. F.; Gregory, J. C.; Martens, K. U.; Sokolsky, Pierre; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Several existing and planned experiments estimate the energies of ultra-high energy cosmic rays from air showers using the atmospheric nitrogen fluorescence. The nitrogen fluorescence yield from air shower electrons depends on the atmospheric composition. We will discuss the uncertainties in the fluorescence yield form electrons in the real atmosphere and describe a concept for a small balloon payload to measure the atmospheric fluorescence yield as a function of attitude.

  17. Hydrogen Data Book from the Hydrogen Analysis Resource Center

    DOE Data Explorer

    The Hydrogen Data Book contains a wide range of factual information on hydrogen and fuel cells (e.g., hydrogen properties, hydrogen production and delivery data, and information on fuel cells and fuel cell vehicles), and it also provides other data that might be useful in analyses of hydrogen infrastructure in the United States (e.g., demographic data and data on energy supply and/or infrastructure). ItÆs made available from the Hydrogen Analysis Resource Center along with a wealth of related information. The related information includes guidelines for DOE Hydrogen Program Analysis, various calculator tools, a hydrogen glossary, related websites, and analysis tools relevant to hydrogen and fuel cells. [From http://hydrogen.pnl.gov/cocoon/morf/hydrogen

  18. Measuring Hydrogen Concentrations in Metals

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1985-01-01

    Commercial corrosion-measurement system adapted to electrochemical determination of hydrogen concentrations in metals. New technique based on diffusion of hydrogen through foil specimen of metal. In sample holder, hydrogen produced on one side of foil, either by corrosion reaction or by cathodic current. Hydrogen diffused through foil removed on other side by constant anode potential, which leads to oxidation of hydrogen to water. Anode current is measure of concentration of hydrogen diffusing through foil. System used to study hydrogen uptake, hydrogen elimination by baking, effect of heat treatment, and effect of electroplating on high-strength steels.

  19. The Atmospheric Tides Middle Atmosphere Program (ATMAP)

    NASA Technical Reports Server (NTRS)

    Forbes, J. M.

    1989-01-01

    Atmospheric tides, oscillations in meteorological fields occurring at subharmonics of a solar or lunar day, comprise a major component of middle atmosphere global dynamics. The purpose of the 1982 to 1986 Atmospheric Tides Atmosphere Program (ATMAP) was to foster an interaction between experimentalists, data analysts, and theoreticians and modelers, in order to better understand the physical mechanisms governing tides and their relationships to other scales of motion, and to thereby explain features of observed tidal structures in the mesosphere and lower thermosphere. The ATMAP consisted of seven observational campaigns, five workshops and a climatological study. A historical perspective is provided along with a summary of major results, conclusions, and recommendations for future study which have emerged from the ATMAP.

  20. Local time variations of the Venusian hydrogen corona

    NASA Astrophysics Data System (ADS)

    Chaufray, J.-Y.; Bertaux, J.-L.; Quémerais, E.; Sulis, S.; Leblanc, F.

    2014-04-01

    Atomic hydrogen in the upper atmosphere of Venus is produced by chemical reactions involving hydrogen bearing molecules such as H2O. Due to its low mass, atomic hydrogen can reach high altitudes and become the dominant species in the Venusian exosphere. The density of atomic hydrogen retrieved by Pioneer Venus Orbiter from H+ measurement of the ion mass spectrometer indicated large diurnal variation of the hydrogen content with a peak of density near 4:00 local time (1). The large dayside/nightside ratio ~ 1000 was attributed to the wind system induced from temperature contrast. First dayside observations of the atomic hydrogen Lymanalpha resonant line performed by the UV spectrometer SPICAV (2) aboard Venus Express suggested a lower ratio ~ 30 between morning side and evening side (3). In this presentation, we will present several recent observations of the Venusian hydrogen corona obtained by SPICAV at different local times at nightside to investigate more accurately the diurnal variations of the Venusian hydrogen corona.

  1. Response of Thermospheric Hydrogen to Solar Variability and Greenhouse Gases

    NASA Astrophysics Data System (ADS)

    Nossal, S. M.; Qian, L.; Solomon, S. C.; Burns, A. G.; Wang, W.; Mierkiewicz, E. J.; Roesler, F. L.; Woodward, R. C., Jr.

    2015-12-01

    Geocoronal hydrogen forms the upper boundary of the Earth's HOx chemisty and is a byproduct of methane and water vapor below. We will discuss observational and modeling studies of the upper atmospheric hydrogen response to the solar cycle and increases in greenhouse gases. The Wisconsin Northern hemisphere hydrogen airglow data set spans over two solar cycles. These data show a statistically significant solar cycle variation and a possible increase in intensity between successive solar maximum periods. We will discuss these data in the context of recent modeling studies with a single-column version of the Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model. We investigate mechanisms associated with the solar cycle and greenhouse gas forcing of hydrogen by separately doubling carbon dioxide and methane, as well as doubling both together. These simulations indicate that carbon dioxide cooling, as well as methane changes to the source species for hydrogen, both lead to predicted increases in the upper thermospheric hydrogen density and that the response of hydrogen to greenhouse gases depends on the phase of the solar cycle. However, the effect of greenhouse gas doubling is not as large as the modeled solar cycle variability of thermospheric hydrogen. I will discuss results from these simulations and comparisons to observations.

  2. Aniline adsorption, hydrogenation, and hydrogenolysis on the Ni(100) surface

    SciTech Connect

    Huang, S.X.; Gland, J.L.; Fischer, D.A.

    1996-06-13

    The bonding and reactions of adsorbed aniline have been characterized on the Ni(100) surface both in hydrogen and in vacuum with a combination of surface spectroscopies. The structure of adsorbed aniline and derived intermediates has been characterized by near-edge X-ray absorption fine structure (NEXAFS) and X-ray photoemission spectroscopy (XPS). The dominant surface reactions have been studied using temperature-programmed reaction spectroscopy (TPRS) and in-situ temperature-programmed fluorescence yield near- edge spectroscopy (TP FYNES). Competition between hydrogenation, hydrogenolysis, and dehydrogenation of aniline in the 300-400 K temperature range depends markedly on hydrogen pressures in the vacuum to 0.01 Torr range. In the absence of external hydrogen, dehydrogenation dominates with increasing temperature. Both hydrogenation and hydrogenolysis of aniline-derived surface intermediates are enhanced dramatically by hydrogen atmospheres. For aniline coverages up to 1 monolayer, hydrogenolysis to form benzene at 475 K is dominant over a broad hydrogen pressure range (> 10{sup -6} Torr). Ultrasoft X-ray absorption spectra above the carbon K edge of the aniline-derived surface intermediates reveal that the precursor for hydrogenolysis is a hydrogenated aniline-derived species indistinguishable from cyclohexylamine. 34 refs., 12 figs., 2 tabs.

  3. Strength of plasma coating and effect of a plasma coating on hydrogen entry

    NASA Astrophysics Data System (ADS)

    Nishiguchi, Hiroshi; Ohshima, Tamiko; Kawasaki, Hiroharu; Fukuda, Takayuki

    2016-01-01

    The strength of a plasma coating and the effect of the plasma coating on hydrogen entry were investigated to establish a method that provides a base material with highly resistant to hydrogen entry and embrittlement. Aluminum alloy A6061, which is highly resistant to hydrogen gas atmosphere, was employed as the coating material (300 W, 17 h, ∼40 µm thickness). Two types of specimen prepared by the hydrogen-charging method were adopted: the coated and uncoated specimens were (1) immersed in 20 mass % ammonium thiocyanate aqueous solution at 313 K for 48 h, or (2) exposed to hydrogen gas atmosphere at 100 MPa and 270 °C for 200 h. Hydrogen content measurements revealed that the A6061 plasma coating is highly resistant to hydrogen entry in corrosive environments. The coating reduced hydrogen entry by ∼50% during exposure to hydrogen gas atmosphere at 100 MPa and 270 °C. Moreover, the plasma coating method was found to be applicable in the elastic deformation region of the base material.

  4. Photoelectrochemical hydrogen production

    SciTech Connect

    Rocheleau, R.; Misra, A.; Miller, E.

    1998-08-01

    A significant component of the US DOE Hydrogen Program is the development of a practical technology for the direct production of hydrogen using a renewable source of energy. High efficiency photoelectrochemical systems to produce hydrogen directly from water using sunlight as the energy source represent one of the technologies identified by DOE to meet this mission. Reactor modeling and experiments conducted at UH provide strong evidence that direct solar-to-hydrogen conversion efficiency greater than 10% can be expected using photoelectrodes fabricated from low-cost, multijunction (MJ) amorphous silicon solar cells. Solar-to-hydrogen conversion efficiencies as high as 7.8% have been achieved using a 10.3% efficient MJ amorphous silicon solar cell. Higher efficiency can be expected with the use of higher efficiency solar cells, further improvement of the thin film oxidation and reduction catalysts, and optimization of the solar cell for hydrogen production rather than electricity production. Hydrogen and oxygen catalysts developed under this project are very stable, exhibiting no measurable degradation in KOH after over 13,000 hours of operation. Additional research is needed to fully optimize the transparent, conducting coatings which will be needed for large area integrated arrays. To date, the best protection has been afforded by wide bandgap amorphous silicon carbide films.

  5. SEARCHING FOR HYDROGEN IN TYPE Ib SUPERNOVAE

    SciTech Connect

    James, Spencer; Baron, E.

    2010-08-01

    We present synthetic spectral fits of the typical Type Ib SN 1999dn and the hydrogen-rich Ib SN 2000H using the generalized non-local thermodynamic equilibrium stellar atmospheres code PHOENIX. We fit model spectra to five epochs of SN 1999dn ranging from 10 days pre-maximum light to 17 days post-maximum light and to the two earliest epochs of SN 2000H available, maximum light and six days post-maximum. Our goal is to investigate the possibility of hydrogen in Type Ib supernovae (SNe Ib), specifically a feature around 6200 A which has previously been attributed to high-velocity H{alpha}. In earlier work on SN 1999dn we found the most plausible alternative to H{alpha} to be a blend of Si II and Fe II lines which can be adjusted to fit by increasing the metallicity. Our models are simple; they assume a power-law density profile with radius, homologous expansion, and solar compositions. The helium core is produced by 'burning' 4H{yields}He in order to conserve the nucleon number. For models with hydrogen the outer skin of the model consists of a shell of solar composition. The hydrogen mass of the standard solar composition shell is M{sub H} {approx}< 10{sup -3} M{sub sun} in SN 1999dn and M{sub H} {approx}< 0.2 M{sub sun} for SN 2000H. Our models fit the observed spectra reasonably well, successfully reproducing most features including the characteristic He I absorptions. The hydrogen feature in SN 1999dn is clear, but much more pronounced in SN 2000H. We discuss a possible evolutionary scenario that accounts for the dichotomy in the hydrogen shell mass between these two SNe.

  6. Understanding Microbial Contributions to Planetary Atmosphere

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.

    2000-01-01

    Should our search of distant, extrasolar planetary atmospheres encounter evidence of life, that evidence will most likely be the gaseous products of microorganisms. Our biosphere was exclusively microbial for over 80 percent of its history and, even today, microbes strongly influence atmospheric composition. Life's greatest environmental impact arises from its capacity for harvesting energy and creating organic matter. Microorganisms catalyze the equilibration of C, S and transition metal species at temperatures where such reactions can be very slow in the absence of life. Sunlight has been harvested through photosynthesis to create enormous energy reservoirs that exist in the form of coexisting reservoirs of reduced, organic C and S stored in Earth's crust, and highly oxidized species (oxygen, sulfate and ferric iron) stored in the crust, oceans and atmosphere. Our civilization taps that storehouse of energy by burning fossil fuels. As astrobiologists, we identify the chemical consequences of distant biospheres as expressed in the atmospheres of their planets. Our approach must recognize that planets, biospheres and atmospheres evolve and change. For example, a tectonically more active early Earth hosted a thermophilic, non-photosynthetic biosphere and a mildly reducing, carbon dioxide-rich and oxygen-poor atmosphere. Microorganisms acquired energy by consuming hydrogen and sulfide and producing a broad array of reduced C and S gases, most notably, methane. Later, diverse types of bacterial photosynthesis developed that enhanced productivity but were incapable of splitting water to produce oxygen. Later, but still prior to 2.6 billion years ago, oxygenic photosynthesis developed. We can expect to encounter distant biospheres that represent various stages of evolution and that coexist with atmospheres ranging from mildly reducing to oxidizing compositions. Accordinaly, we must be prepared to interpret a broad range of atmospheric compositions, all containing

  7. Nonisothermal Pluto atmosphere models

    SciTech Connect

    Hubbard, W.B.; Yelle, R.V.; Lunine, J.I. )

    1990-03-01

    The present thermal profile calculation for a Pluto atmosphere model characterized by a high number fraction of CH4 molecules encompasses atmospheric heating by solar UV flux absorption and conductive transport cooling to the surface of Pluto. The stellar occultation curve predicted for an atmosphere of several-microbar surface pressures (which entail the existence of a substantial temperature gradient close to the surface) agrees with observations and implies that the normal and tangential optical depth of the atmosphere is almost negligible. The minimum period for atmospheric methane depletion is calculated to be 30 years. 29 refs.

  8. Chemochromic Hydrogen Leak Detectors

    NASA Technical Reports Server (NTRS)

    Roberson, Luke; Captain, Janine; Williams, Martha; Smith, Trent; Tate, LaNetra; Raissi, Ali; Mohajeri, Nahid; Muradov, Nazim; Bokerman, Gary

    2009-01-01

    At NASA, hydrogen safety is a key concern for space shuttle processing. Leaks of any level must be quickly recognized and addressed due to hydrogen s lower explosion limit. Chemo - chromic devices have been developed to detect hydrogen gas in several embodiments. Because hydrogen is odorless and colorless and poses an explosion hazard, there is an emerging need for sensors to quickly and accurately detect low levels of leaking hydrogen in fuel cells and other advanced energy- generating systems in which hydrogen is used as fuel. The device incorporates a chemo - chromic pigment into a base polymer. The article can reversibly or irreversibly change color upon exposure to hydrogen. The irreversible pigment changes color from a light beige to a dark gray. The sensitivity of the pigment can be tailored to its application by altering its exposure to gas through the incorporation of one or more additives or polymer matrix. Furthermore, through the incorporation of insulating additives, the chemochromic sensor can operate at cryogenic temperatures as low as 78 K. A chemochromic detector of this type can be manufactured into any feasible polymer part including injection molded plastic parts, fiber-spun textiles, or extruded tapes. The detectors are simple, inexpensive, portable, and do not require an external power source. The chemochromic detectors were installed and removed easily at the KSC launch pad without need for special expertise. These detectors may require an external monitor such as the human eye, camera, or electronic detector; however, they could be left in place, unmonitored, and examined later for color change to determine whether there had been exposure to hydrogen. In one type of envisioned application, chemochromic detectors would be fabricated as outer layers (e.g., casings or coatings) on high-pressure hydrogen storage tanks and other components of hydrogen-handling systems to provide visible indications of hydrogen leaks caused by fatigue failures or

  9. Chromatographic hydrogen isotope separation

    DOEpatents

    Aldridge, F.T.

    Intermetallic compounds with the CaCu/sub 5/ type of crystal structure, particularly LaNiCo/sub 4/ and CaNi/sub 5/, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation column. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale multi-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen cn produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  10. Chromatographic hydrogen isotope separation

    DOEpatents

    Aldridge, Frederick T.

    1981-01-01

    Intermetallic compounds with the CaCu.sub.5 type of crystal structure, particularly LaNiCo.sub.4 and CaNi.sub.5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  11. Biological hydrogen production

    SciTech Connect

    Benemann, J.R.

    1995-11-01

    Biological hydrogen production can be accomplished by either thermochemical (gasification) conversion of woody biomass and agricultural residues or by microbiological processes that yield hydrogen gas from organic wastes or water. Biomass gasification is a well established technology; however, the synthesis gas produced, a mixture of CO and H{sub 2}, requires a shift reaction to convert the CO to H{sub 2}. Microbiological processes can carry out this reaction more efficiently than conventional catalysts, and may be more appropriate for the relatively small-scale of biomass gasification processes. Development of a microbial shift reaction may be a near-term practical application of microbial hydrogen production.

  12. Extremely weak hydrogen flames

    SciTech Connect

    Lecoustre, V.R.; Sunderland, P.B.; Chao, B.H.; Axelbaum, R.L.

    2010-11-15

    Hydrogen jet diffusion flames were observed near their quenching limits. These involved downward laminar flow of hydrogen from a stainless steel hypodermic tube with an inside diameter of 0.15 mm. Near their quenching limits these flames had hydrogen flow rates of 3.9 and 2.1 {mu}g/s in air and oxygen, respectively. Assuming complete combustion, the associated heat release rates are 0.46 and 0.25 W. To the authors' knowledge, these are the weakest self-sustaining steady flames ever observed. (author)

  13. Atomic hydrogen on Mars - Measurements at solar minimum

    NASA Technical Reports Server (NTRS)

    Levine, J. S.; Mcdougal, D. S.; Anderson, D. E., Jr.; Barker, E. S.

    1978-01-01

    The Copernicus Orbiting Astronomical Observatory was used to obtain measurements of Mars Lyman-alpha (1215.671-angstrom) emission at the solar minimum, which has resulted in the first information on atomic hydrogen concentrations in the upper atmosphere of Mars at the solar minimum. The Copernicus measurements, coupled with the Viking in situ measurements of the temperature (170 plus or minus 30 K) of the upper atmosphere of Mars, indicate that the atomic hydrogen number density at the exobase of Mars (250 kilometers) is about 60 times greater than that deduced from Mariner 6 and 7 Lyman-alpha measurements obtained during a period of high solar activity. The Copernicus results are consistent with Hunten's hypothesis of the diffusion-limited escape of atomic hydrogen from Mars.

  14. A strong seasonal dependence in the Martian hydrogen exosphere

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Dolon; Clarke, John T.; Bertaux, Jean-Loup; Chaufray, Jean-Yves; Mayyasi, Majd

    2015-10-01

    Hubble Space Telescope and Mars Express observed unexpected rapid changes in the Martian hydrogen exosphere involving a decrease in scattered Lyman α intensity in fall 2007 (solar longitude, Ls = 331°-345°). These changes detected were speculated to be a combination of seasonal variation and/or dust storms and lower atmospheric dynamics. Here we present Hubble Space Telescope observations of Mars in 2014 over a broad range of heliocentric distances and seasons (Ls = 138°-232°) which indicate a factor of ~3.5 change in Martian Lyman α brightness associated with a factor of ~5.4 variation of hydrogen escape flux in the absence of global dust storms and significant solar variability. We thus conclude that seasonal effects have a strong influence on the hydrogen exosphere, which in turn has major implications for the processes that control water supply to the Martian upper atmosphere and the history of water escape from Mars.

  15. Thermospheric hydrogen - The long-term solar influence

    NASA Technical Reports Server (NTRS)

    Breig, E. L.; Sanatani, S.; Hanson, W. B.

    1985-01-01

    Atmospheric Explorer C and E satellite data are employed for a long-term analysis of the behavior of thermospheric hydrogen with respect to the 11 yr solar cycle. The data covered the period 1974-79 (increasing solar activity) and comprised in situ ionospheric (F region) and neutral atmospheric data. The data were analyzed statistically to characterize low latitude hydrogen behavior, e.g., the diurnal variation and mean concentration over the 5 yr data sampling period. Both the mean and daily maximum/minimum ratio (DMMR) varied with the solar F index. The escaping flux of H ions became a contant around 1000 K. Increasing thermospheric temperatures lowered the DMMR value. However, the DMMR values calculated were consistently large enough to require inclusion of neutral winds and/or diurnal variations in charge exchange fluxes moving in and out of the plasmasphere in any model for thermospheric hydrogen behavior.

  16. Fourteen Years of Atomic Hydrogen from SABER

    NASA Astrophysics Data System (ADS)

    Hunt, L. A.; Mlynczak, M. G.

    2015-12-01

    We present results for atomic hydrogen in the mesopause region (80-100 km) derived from measurements made by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the TIMED satellite. SABER has been measuring the vertical distribution of infrared radiation emitted by various atmospheric gases for nearly 14 years, providing important information about chemical species, including atomic oxygen, atomic hydrogen, ozone and hydroxyl; temperature; and the radiation budget in the upper atmosphere. The methodology for the derivation of daytime and nighttime concentrations and volume mixing ratios will be presented. Zonal mean and global average daytime and nighttime concentrations of H, which demonstrate excellent agreement between 87 and 95 km, have been calculated and the results are compared with observations from the Solar Mesosphere Explorer (SME) satellite made nearly 30 years ago. Variability over the course of the SABER mission will be shown, including the apparent inverse dependence on the solar cycle, which stems from the temperature dependence of various reaction rate coefficients for H photochemistry. Results for H near solar max will be compared for Solar Cycles 23 and 24.

  17. MAVEN Imaging UV Spectrograph Results on the Mars Atmosphere and Atmospheric Escape

    NASA Astrophysics Data System (ADS)

    Chaffin, Michael; Schneider, Nick; McClintock, Bill; Stewart, Ian; Deighan, Justin; Jain, Sonal; Clarke, John; Holsclaw, Greg; Montmessin, Franck; Lefevre, Franck; Chaufray, Jean-Yves; Stiepen, Arnaud; Crismani, Matteo; Mayyasi, Majd; Evans, Scott; Stevens, Mike; Yelle, Roger; Jakosky, Bruce

    2016-04-01

    The Imaging Ultraviolet Spectrograph (IUVS) is one of nine science instruments aboard the Mars Atmosphere and Volatile and EvolutioN (MAVEN) spacecraft, whose payload is dedicated to exploring the upper atmosphere of Mars and understanding the magnitude and drivers of Mars' atmospheric escape rate. IUVS uses ultraviolet light to investigate the lower and upper atmosphere and ionosphere of Mars. The instrument is among the most powerful spectrographs sent to another planet, with several key capabilities: (1) separate Far-UV & Mid-UV channels for stray light control, (2) a high resolution echelle mode to resolve deuterium and hydrogen emission, (3) internal instrument pointing and scanning capabilities to allow complete mapping and nearly continuous operation, and (4) optimization for airglow studies. IUVS, along with other MAVEN instruments, obtains a comprehensive picture of the current state of the Mars upper atmosphere and ionosphere and the processes that control atmospheric escape. We present an overview of selected IUVS results, including (1) the discovery of diffuse aurora at Mars, and its contrast with previously detected discrete aurora localized near crustal magnetic fields; (2) widespread detection of mesospheric clouds; (3) Significant seasonal and short-timescale variability in thermospheric composition; (4) Global ozone maps spanning six months of seasonal evolution; and (5) mapping of the Mars H and O coronas, deriving the escape rates of H and O and their variability. This last is of particular importance for understanding the long term evolution of Mars and its atmosphere, with the observed preset escape of H potentially capable of removing a large fraction of Mars' initial water inventory, and the differential escape of O relative to H potentially providing a net source of oxidizing power to the atmosphere and planet at present, in contrast with a photochemical theory that predicts stoichiometrically balanced escape. The atmospheric and escape

  18. The columbium-hydrogen system and hydrogen embrittlement of columbium

    NASA Technical Reports Server (NTRS)

    Walter, R. J.

    1970-01-01

    Columbium specimens are charged uniformly with hydrogen allowing accurate measurement of the hydrogen content by a procedure involving the removal of hydrogen from flowing argon at 2000 degrees F. Hydrogen content effects on the ductile-to-transition temperature are determined for temperatures between 200 and 600 degrees F.

  19. Operations and maintenance manual, atmospheric contaminant sensor, revision B

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The sensor is a mass spectrometer system which continuously monitors the atmospheric constituents of hydrogen, water vapor, nitrogen, oxygen, and carbon dioxide, and monitors the Freons on a demand sampling basis. The manual provides a system description, operational procedures, and maintenance and troubleshooting instructions. Circuit diagrams are included.

  20. Operations and Maintenance Manual, Atmospheric Contaminant Sensor, Revision B.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The sensor is a mass spectrometer system which continuously monitors the atmospheric constituents of hydrogen, water vapor, nitrogen, oxygen, and carbon dioxide, and monitors the Freons on a demand sampling basis. The manual provides a system description, operational procedures, and maintenance and troubleshooting instructions. Circuit diagrams…

  1. Electrolytic synthesis of ammonia in molten salts under atmospheric pressure.

    PubMed

    Murakami, Tsuyoshi; Nishikiori, Tokujiro; Nohira, Toshiyuki; Ito, Yasuhiko

    2003-01-15

    Ammonia was successfully synthesized by using a new electrochemical reaction with high current efficiency at atmospheric pressure and at lower temperatures than the Haber-Bosch process. In this method, nitride ion (N3-), which is produced by the reduction from nitrogen gas at the cathode, is anodically oxidized and reacts with hydrogen to produce ammonia at the anode. PMID:12517136

  2. Evidence for supersonic turbulence in the upper atmosphere of Jupiter.

    PubMed

    Emerich, C; Jaffel, L B; Clarke, J T; Prangé, R; Gladstone, G R; Sommeria, J; Ballester, G

    1996-08-23

    Spectra of the hydrogen Lyman alpha (Ly-alpha) emission line profiles of the jovian dayglow, obtained by the Goddard High Resolution Spectrograph on the Hubble Space Telescope, appear complex and variable on time scales of a few minutes. Dramatic changes occur in the Ly-alpha bulge region at low latitudes, where the line profiles exhibit structures that correspond to supersonic velocities of the order of several to tens of kilometers per second. This behavior, unexpected in a planetary atmosphere, is evidence for the particularly stormy jovian upper atmosphere, not unlike a star's atmosphere. PMID:8688090

  3. Fractionation of the Early Terrestrial Atmospheres: Dynamical Escape

    NASA Technical Reports Server (NTRS)

    Hartle, Richard E.

    2002-01-01

    Hydrodynamic escape may have played a significant role in the early fractionation of the atmospheres of the terrestrial planets. This possibility has been demonstrated in the last two decades by numerous models that show radial, transonic flow of hydrogen can occur in the presence of sufficient solar EUV Hydrodynamic escape may have played a significant role in the early fractionation of the atmospheres of the terrestrial planets. This possibility has been demonstrated in the last two decades by numerous models that show radial, transonic flow of hydrogen can occur in the presence of sufficient solar EUV flux, thought to exist in the first 500 My. The models show that the larger the solar flux the greater the mass of the fractionating species, which are accelerated to escape speeds by the hydrogen wind through drag processes. As the atmospheres evolve and the solar EUV flux wanes, the maximum mass of flowing gas constituents decreases until all gases become static. We show that fractionation can continue beyond this point when non-radial flow and dynamically enhanced Jeans escape are considered. For example, the early terrestrial atmospheres are thought to have had large hydrogen contents, resulting in exobase altitudes of a planetary radius or more. In this case, rotational speeds at the exobases of Earth and Mars would be large enough so that light constituents would "spin" off and fractionate, especially at equatorial latitudes. Also, in the presence of transonic flow of hydrogen only, non-radial expansion throws heavier gases to high altitudes in the exosphere, accompanied by strong bulk speeds at the exobase, which results in enhanced thermal escape fluxes and fractionation. flux, thought to exist in the first 500 My. The models show that the larger the solar flux the greater the mass of the fractionating species, which are accelerated to escape speeds by the hydrogen wind through drag processes. As the atmospheres evolve and the solar EUV flux wanes, the

  4. Hydrogen storage compositions

    DOEpatents

    Li, Wen; Vajo, John J.; Cumberland, Robert W.; Liu, Ping

    2011-04-19

    Compositions for hydrogen storage and methods of making such compositions employ an alloy that exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The composition includes a ternary alloy including magnesium, boron and a metal and a metal hydride. The ternary alloy and the metal hydride are present in an amount sufficient to render the composition capable of hydrogen storage. The molar ratio of the metal to magnesium and boron in the alloy is such that the alloy exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The hydrogen storage composition is prepared by combining magnesium, boron and a metal to prepare a ternary alloy and combining the ternary alloy with a metal hydride to form the hydrogen storage composition.

  5. Photoelectrochemical hydrogen production

    SciTech Connect

    Rocheleau, R.E.; Miller, E.; Misra, A.

    1996-10-01

    The large-scale production of hydrogen utilizing energy provided by a renewable source to split water is one of the most ambitious long-term goals of the U.S. Department of Energy`s Hydrogen Program. One promising option to meet this goal is direct photoelectrolysis in which light absorbed by semiconductor-based photoelectrodes produces electrical power internally to split water into hydrogen and oxygen. Under this program, direct solar-to-chemical conversion efficiencies as high as 7.8 % have been demonstrated using low-cost, amorphous-silicon-based photoelectrodes. Detailed loss analysis models indicate that solar-to-chemical conversion greater than 10% can be achieved with amorphous-silicon-based structures optimized for hydrogen production. In this report, the authors describe the continuing progress in the development of thin-film catalytic/protective coatings, results of outdoor testing, and efforts to develop high efficiency, stable prototype systems.

  6. Hydrogen chloride test set

    NASA Technical Reports Server (NTRS)

    Workman, G. L.

    1976-01-01

    Detector uses tertiary amine, which makes reaction fairly specific for relatively small highly polarized hydrogen chloride molecule. Reaction is monitored by any microbalance capable of measuring extremely small mass differences in real time.

  7. Hydrogen in titanium alloys

    SciTech Connect

    Wille, G W; Davis, J W

    1981-04-01

    The titanium alloys that offer properties worthy of consideration for fusion reactors are Ti-6Al-4V, Ti-6Al-2Sn-4Zr-2Mo-Si (Ti-6242S) and Ti-5Al-6Sn-2Zr-1Mo-Si (Ti-5621S). The Ti-6242S and Ti-5621S are being considered because of their high creep resistance at elevated temperatures of 500/sup 0/C. Also, irradiation tests on these alloys have shown irradiation creep properties comparable to 20% cold worked 316 stainless steel. These alloys would be susceptible to slow strain rate embrittlement if sufficient hydrogen concentrations are obtained. Concentrations greater than 250 to 500 wppm hydrogen and temperatures lower than 100 to 150/sup 0/C are approximate threshold conditions for detrimental effects on tensile properties. Indications are that at the elevated temperature - low hydrogen pressure conditions of the reactors, there would be negligible hydrogen embrittlement.

  8. Hydrogen on the rise

    NASA Astrophysics Data System (ADS)

    2016-08-01

    Using hydrogen as an energy carrier has long been discussed as a route to a greener future, and although headway has been less significant than many hoped, recent developments point to tangible progress.

  9. Fiber optic hydrogen sensor

    SciTech Connect

    Butler, M.A.; Sanchez, R.; Dulleck, G.R.

    1996-05-01

    This report covers the development of fiber optic hydrogen and temperature sensors for monitoring dissolved hydrogen gas in transformer oil. The concentration of hydrogen gas is a measure of the corona and spark discharge within the transformer and reflects the state of health of the transformer. Key features of the instrument include use of palladium alloys to enhance hydrogen sensitivity, a microprocessor controlled instrument with RS-232, liquid crystal readout, and 4-20 ma. current loop interfaces. Calibration data for both sensors can be down loaded to the instrument through the RS-232 interface. This project was supported by the Technology Transfer Initiative in collaboration with J. W. Harley, Inc. through the mechanism of a cooperative research and development agreement (CRADA).

  10. Hydrogen-fueled engine

    NASA Technical Reports Server (NTRS)

    Laumann, E. A.; Reynolds, R. K. (Inventor)

    1978-01-01

    A hydrogen-oxygen fueled internal combustion engine is described, which utilizes an inert gas, such as argon, as a working fluid to increase the efficiency of the engine, eliminate pollution, and facilitate operation of a closed cycle energy system. In a system where sunlight or other intermittent energy source is available to separate hydrogen and oxygen from water, the oxygen and inert gas are taken into a diesel engine into which hydrogen is injected and ignited. The exhaust is cooled so that it contains only water and the inert gas. The inert gas in the exhaust is returned to the engine for use with fresh oxygen, while the water in the exhaust is returned to the intermittent energy source for reconversion to hydrogen and oxygen.

  11. Florida Hydrogen Initiative

    SciTech Connect

    Block, David L

    2013-06-30

    The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety monitoring

  12. The Hydrogen Economy

    NASA Astrophysics Data System (ADS)

    Crabtree, George W.; Dresselhaus, Mildred S.; Buchanan, Michelle V.

    2004-12-01

    If the fuel cell is to become the modern steam engine, basic research must provide breakthroughs in understanding, materials, and design to make a hydrogen-based energy system a vibrant and competitive force.

  13. Germanium detector passivated with hydrogenated amorphous germanium

    DOEpatents

    Hansen, William L.; Haller, Eugene E.

    1986-01-01

    Passivation of predominantly crystalline semiconductor devices (12) is provided for by a surface coating (21) of sputtered hydrogenated amorphous semiconductor material. Passivation of a radiation detector germanium diode, for example, is realized by sputtering a coating (21) of amorphous germanium onto the etched and quenched diode surface (11) in a low pressure atmosphere of hydrogen and argon. Unlike prior germanium diode semiconductor devices (12), which must be maintained in vacuum at cryogenic temperatures to avoid deterioration, a diode processed in the described manner may be stored in air at room temperature or otherwise exposed to a variety of environmental conditions. The coating (21) compensates for pre-existing undesirable surface states as well as protecting the semiconductor device (12) against future impregnation with impurities.

  14. Thermal cracking with hydrogen donor diluent

    SciTech Connect

    Derbyshire, F.; Varghese, P.; Whitehurst, D.D.

    1983-07-26

    An improved hydrogen donor for hydrogen donor diluent cracking is provided by extraction with naphtha from the cracked product and hydrogenation by hydrogen transfer from a lower boiling hydrogen donor such as tetralin.

  15. The Galileo probe mass spectrometer: composition of Jupiter's atmosphere

    NASA Technical Reports Server (NTRS)

    Niemann, H. B.; Atreya, S. K.; Carignan, G. R.; Donahue, T. M.; Haberman, J. A.; Harpold, D. N.; Hartle, R. E.; Hunten, D. M.; Kasprzak, W. T.; Mahaffy, P. R.; Owen, T. C.; Spencer, N. W.; Way, S. H.

    1996-01-01

    The composition of the jovian atmosphere from 0.5 to 21 bars along the descent trajectory was determined by a quadrupole mass spectrometer on the Galileo probe. The mixing ratio of He (helium) to H2 (hydrogen), 0.156, is close to the solar ratio. The abundances of methane, water, argon, neon, and hydrogen sulfide were measured; krypton and xenon were detected. As measured in the jovian atmosphere, the amount of carbon is 2.9 times the solar abundance relative to H2, the amount of sulfur is greater than the solar abundance, and the amount of oxygen is much less than the solar abundance. The neon abundance compared with that of hydrogen is about an order of magnitude less than the solar abundance. Isotopic ratios of carbon and the noble gases are consistent with solar values. The measured ratio of deuterium to hydrogen (D/H) of (5 +/- 2) x 10(-5) indicates that this ratio is greater in solar-system hydrogen than in local interstellar hydrogen, and the 3He/4He ratio of (1.1 +/- 0.2) x 10(-4) provides a new value for protosolar (solar nebula) helium isotopes. Together, the D/H and 3He/4He ratios are consistent with conversion in the sun of protosolar deuterium to present-day 3He.

  16. The hydrogen issue.

    PubMed

    Armaroli, Nicola; Balzani, Vincenzo

    2011-01-17

    Hydrogen is often proposed as the fuel of the future, but the transformation from the present fossil fuel economy to a hydrogen economy will need the solution of numerous complex scientific and technological issues, which will require several decades to be accomplished. Hydrogen is not an alternative fuel, but an energy carrier that has to be produced by using energy, starting from hydrogen-rich compounds. Production from gasoline or natural gas does not offer any advantage over the direct use of such fuels. Production from coal by gasification techniques with capture and sequestration of CO₂ could be an interim solution. Water splitting by artificial photosynthesis, photobiological methods based on algae, and high temperatures obtained by nuclear or concentrated solar power plants are promising approaches, but still far from practical applications. In the next decades, the development of the hydrogen economy will most likely rely on water electrolysis by using enormous amounts of electric power, which in its turn has to be generated. Producing electricity by burning fossil fuels, of course, cannot be a rational solution. Hydroelectric power can give but a very modest contribution. Therefore, it will be necessary to generate large amounts of electric power by nuclear energy of by renewable energies. A hydrogen economy based on nuclear electricity would imply the construction of thousands of fission reactors, thereby magnifying all the problems related to the use of nuclear energy (e.g., safe disposal of radioactive waste, nuclear proliferation, plant decommissioning, uranium shortage). In principle, wind, photovoltaic, and concentrated solar power have the potential to produce enormous amounts of electric power, but, except for wind, such technologies are too underdeveloped and expensive to tackle such a big task in a short period of time. A full development of a hydrogen economy needs also improvement in hydrogen storage, transportation and distribution

  17. Photochemical instability of the ancient Martian atmosphere

    NASA Astrophysics Data System (ADS)

    Zahnle, Kevin; Haberle, Robert M.; Catling, David C.; Kasting, James F.

    2008-11-01

    We develop a 1-D steady state photochemical model of the modern Martian atmosphere and apply it to possible Martian atmospheres present and past. A unique feature of our model is that the major current sink of oxygen is dry deposition (surface reactions) of highly reactive, oxidized molecules (chiefly H2O2), rather than oxygen escape to space. Another difference is that we allow hydrogen to escape to space at the diffusion limit, which gives H escape fluxes ~70% higher than in other models. What results is a model with one free parameter: a dry deposition velocity to describe the surface sink of reactive molecules. An effective global average deposition velocity of 0.02 cm s-1 for H2O2 and O3 gives a good match to the observed abundances of O2, CO, and H2, the three abundant photochemical trace gases. We then apply our model to Martian atmospheres with different amounts of CO2, H2O, and solar forcing. We find that thick, cold, dry CO2 atmospheres are photochemically unstable with respect to conversion to CO. This may be pertinent to ancient Mars when the Sun was faint and O escape rates were likely high, for which the tipping point is computed to be ~10 mbar of CO2. The possible photochemical instability of cold thick CO2 atmospheres, and the high likelihood that CO was abundant even if CO2 were stable, has broad implications for early Mars.

  18. Pionic hydrogen and deuterium

    NASA Astrophysics Data System (ADS)

    Gotta, Detlev; Amaro, F. D.; Anagnostopoulos, D. F.; Bühler, P.; Gorke, H.; Covita, D. S.; Fuhrmann, H.; Gruber, A.; Hennebach, M.; Hirtl, A.; Ishiwatari, T.; Indelicato, P.; Le Bigot, E.-O.; Marton, J.; Nekipelov, M.; dos Santos, J. M. F.; Schlesser, S.; Schmid, Ph.; Simons, L. M.; Strauch, Th.; Trassinelli, M.; Veloso, J. F. C. A.; Zmeskal, J.

    The ground-state level shifts and broadenings of the hydrogen isotopes caused by the strong interaction have been redetermined by using a high-resolution crystal spectrometer. An additional measurement of muonic hydrogen reveals properties of the de-excitation cascade of such electrically neutral exotic atoms, in particular Coulomb de-excitation, the understanding of which is essential for the analysis of the hadronic-atom data.

  19. Pionic hydrogen and deuterium

    NASA Astrophysics Data System (ADS)

    Gotta, Detlev; Amaro, F. D.; Anagnostopoulos, D. F.; Bühler, P.; Gorke, H.; Covita, D. S.; Fuhrmann, H.; Gruber, A.; Hennebach, M.; Hirtl, A.; Ishiwatari, T.; Indelicato, P.; Le Bigot, E.-O.; Marton, J.; Nekipelov, M.; dos Santos, J. M. F.; Schlesser, S.; Schmid, Ph.; Simons, L. M.; Strauch, Th.; Trassinelli, M.; Veloso, J. F. C. A.; Zmeskal, J.

    2012-05-01

    The ground-state level shifts and broadenings of the hydrogen isotopes caused by the strong interaction have been redetermined by using a high-resolution crystal spectrometer. An additional measurement of muonic hydrogen reveals properties of the de-excitation cascade of such electrically neutral exotic atoms, in particular Coulomb de-excitation, the understanding of which is essential for the analysis of the hadronic-atom data.

  20. Hydrogen recovery process

    DOEpatents

    Baker, Richard W.; Lokhandwala, Kaaeid A.; He, Zhenjie; Pinnau, Ingo

    2000-01-01

    A treatment process for a hydrogen-containing off-gas stream from a refinery, petrochemical plant or the like. The process includes three separation steps: condensation, membrane separation and hydrocarbon fraction separation. The membrane separation step is characterized in that it is carried out under conditions at which the membrane exhibits a selectivity in favor of methane over hydrogen of at least about 2.5.

  1. Cryogenic hydrogen release research.

    SciTech Connect

    LaFleur, Angela Christine

    2015-12-01

    The objective of this project was to devolop a plan for modifying the Turbulent Combustion Laboratory (TCL) with the necessary infrastructure to produce a cold (near liquid temperature) hydrogen jet. The necessary infrastructure has been specified and laboratory modifications are currently underway. Once complete, experiments from this platform will be used to develop and validate models that inform codes and standards which specify protection criteria for unintended releases from liquid hydrogen storage, transport, and delivery infrastructure.

  2. Lokiarchaeon is hydrogen dependent.

    PubMed

    Sousa, Filipa L; Neukirchen, Sinje; Allen, John F; Lane, Nick; Martin, William F

    2016-01-01

    The nature of the host that acquired the mitochondrion at the eukaryote origin is an important microbial evolutionary issue. Modern phylogenetics indicates that the host was an archaeon. The metagenome sequence of Candidatus Lokiarchaeon has identified it as being the closest relative of the host yet known. Here, we report comparative genomic evidence indicating that Lokiarchaeon is hydrogen dependent, as one theory for the eukaryote origin-the hydrogen hypothesis-predicts for the host lineage. PMID:27572645

  3. Advanced Hydrogen Liquefaction Process

    SciTech Connect

    Schwartz, Joseph; Kromer, Brian; Neu, Ben; Jankowiak, Jerome; Barrett, Philip; Drnevich, Raymond

    2011-09-28

    The project identified and quantified ways to reduce the cost of hydrogen liquefaction, and reduce the cost of hydrogen distribution. The goal was to reduce the power consumption by 20% and then to reduce the capital cost. Optimizing the process, improving process equipment, and improving ortho-para conversion significantly reduced the power consumption of liquefaction, but by less than 20%. Because the efficiency improvement was less than the target, the program was stopped before the capital cost was addressed. These efficiency improvements could provide a benefit to the public to improve the design of future hydrogen liquefiers. The project increased the understanding of hydrogen liquefaction by modeling different processes and thoroughly examining ortho-para separation and conversion. The process modeling provided a benefit to the public because the project incorporated para hydrogen into the process modeling software, so liquefaction processes can be modeled more accurately than using only normal hydrogen. Adding catalyst to the first heat exchanger, a simple method to reduce liquefaction power, was identified, analyzed, and quantified. The demonstrated performance of ortho-para separation is sufficient for at least one identified process concept to show reduced power cost when compared to hydrogen liquefaction processes using conventional ortho-para conversion. The impact of improved ortho-para conversion can be significant because ortho para conversion uses about 20-25% of the total liquefaction power, but performance improvement is necessary to realize a substantial benefit. Most of the energy used in liquefaction is for gas compression. Improvements in hydrogen compression will have a significant impact on overall liquefier efficiency. Improvements to turbines, heat exchangers, and other process equipment will have less impact.

  4. Purdue Hydrogen Systems Laboratory

    SciTech Connect

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts

  5. Hydrogen in hot subdwarfs formed by double helium white dwarf mergers

    NASA Astrophysics Data System (ADS)

    Hall, Philip D.; Jeffery, C. Simon

    2016-09-01

    Isolated hot subdwarfs might be formed by the merging of two helium-core white dwarfs. Before merging, helium-core white dwarfs have hydrogen-rich envelopes and some of this hydrogen may survive the merger. We calculate the mass of hydrogen that is present at the start of such mergers and, with the assumption that hydrogen is mixed throughout the disrupted white dwarf in the merger process, estimate how much can survive. We find a hydrogen mass of up to about 2 × 10-3 M⊙ in merger remnants. We make model merger remnants that include the hydrogen mass appropriate to their total mass and compare their atmospheric parameters with a sample of apparently isolated hot subdwarfs, hydrogen-rich sdBs. The majority of these stars can be explained as the remnants of double helium white dwarf mergers.

  6. A rapid decrease of the hydrogen corona of Mars

    NASA Astrophysics Data System (ADS)

    Clarke, J. T.; Bertaux, J.-L.; Chaufray, J.-Y.; Gladstone, G. R.; Quemerais, E.; Wilson, J. K.; Bhattacharyya, D.

    2014-11-01

    Mars is believed to have lost much of its surface water 3.5 billion years ago, but the amounts that escaped into space and remain frozen in the crust today are not well known. Hydrogen atoms in the extended martian atmosphere, some of which escape the planet's gravity, can be imaged through scattered solar UV radiation. Hubble Space Telescope (HST) images of the ultraviolet H Ly α emission now indicate that the coronal H density steadily decreased by a factor of roughly 40% over 4 weeks, a far greater variation than had been expected. The leading candidate cause is a decrease in the source rate of water molecules from the lower atmosphere, consistent with seasonal changes and a recent global dust storm. This implies that the rate of escape of martian hydrogen (and thereby water) into space is strongly dependent on the lower atmospheric water content and distribution.

  7. Hydrogen Delivery Technical Team Roadmap

    SciTech Connect

    2013-06-01

    The mission of the Hydrogen Delivery Technical Team (HDTT) is to enable the development of hydrogen delivery technologies, which will allow for fuel cell competitiveness with gasoline and hybrid technologies by achieving an as-produced, delivered, and dispensed hydrogen cost of $2-$4 per gallon of gasoline equivalent of hydrogen.

  8. Hydrogen Distribution and Delivery Infrastructure

    SciTech Connect

    2008-11-01

    This 2-page fact sheet provides a brief introduction to hydrogen delivery technologies. Intended for a non-technical audience, it explains how hydrogen is transported and delivered today, the challenges to delivering hydrogen for use as a widespread energy carrier, and the research goals for hydrogen delivery.

  9. Nanostructured materials for hydrogen storage

    DOEpatents

    Williamson, Andrew J.; Reboredo, Fernando A.

    2007-12-04

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  10. Electrochemical hydrogen Storage Systems

    SciTech Connect

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the

  11. STME Hydrogen Mixer Study

    NASA Technical Reports Server (NTRS)

    Blumenthal, Rob; Kim, Dongmoon; Bache, George

    1992-01-01

    The hydrogen mixer for the Space Transportation Main Engine is used to mix cold hydrogen bypass flow with warm hydrogen coolant chamber gas, which is then fed to the injectors. It is very important to have a uniform fuel temperature at the injectors in order to minimize mixture ratio problems due to the fuel density variations. In addition, the fuel at the injector has certain total pressure requirements. In order to achieve these objectives, the hydrogen mixer must provide a thoroughly mixed fluid with a minimum pressure loss. The AEROVISC computational fluid dynamics (CFD) code was used to analyze the STME hydrogen mixer, and proved to be an effective tool in optimizing the mixer design. AEROVISC, which solves the Reynolds Stress-Averaged Navier-Stokes equations in primitive variable form, was used to assess the effectiveness of different mixer designs. Through a parametric study of mixer design variables, an optimal design was selected which minimized mixed fuel temperature variation and fuel mixer pressure loss. The use of CFD in the design process of the STME hydrogen mixer was effective in achieving an optimal mixer design while reducing the amount of hardware testing.

  12. Examining hydrogen transitions.

    SciTech Connect

    Plotkin, S. E.; Energy Systems

    2007-03-01

    This report describes the results of an effort to identify key analytic issues associated with modeling a transition to hydrogen as a fuel for light duty vehicles, and using insights gained from this effort to suggest ways to improve ongoing modeling efforts. The study reported on here examined multiple hydrogen scenarios reported in the literature, identified modeling issues associated with those scenario analyses, and examined three DOE-sponsored hydrogen transition models in the context of those modeling issues. The three hydrogen transition models are HyTrans (contractor: Oak Ridge National Laboratory), MARKAL/DOE* (Brookhaven National Laboratory), and NEMS-H2 (OnLocation, Inc). The goals of these models are (1) to help DOE improve its R&D effort by identifying key technology and other roadblocks to a transition and testing its technical program goals to determine whether they are likely to lead to the market success of hydrogen technologies, (2) to evaluate alternative policies to promote a transition, and (3) to estimate the costs and benefits of alternative pathways to hydrogen development.

  13. Outer satellite atmospheres: Their nature and planetary interactions. [atmospheric models for Amalthea, Ganymede, Callisto, and Titan are presented

    NASA Technical Reports Server (NTRS)

    Smyth, W. H.

    1978-01-01

    Results show that Amalthea is likely to form a tightly-bound partial toroidal-shaped hydrogen cloud about its planet, while Ganymede, Callisto and Titan may have rather large, complete and nearly symmetric toroidal-shaped clouds. The toroidal cloud for Amalthea compares favorably with spacecraft data of Pioneer 10 for a satellite escape flux of order 10 to the 11th power atoms/sq cm/sec. Model results for Ganymede, Callisto and Titan suggest that these extended hydrogen atmospheres are likely to be detected by the Voyager spacecrafts and that Titan's cloud might also be detected by the Pioneer 11 spacecraft. Ions created because of atoms lost through ionization processes from these four extended hydrogen atmospheres and from the sodium cloud of Io are discussed.

  14. Hydrogen transport through stainless steel under plasma irradiation

    NASA Astrophysics Data System (ADS)

    Airapetov, A. A.; Begrambekov, L. B.; Kaplevsky, A. S.; Sadovskiy, Ya A.

    2016-01-01

    The paper presents the results of investigation of gas exchange through stainless steel surface of the plasma chamber under irradiation with hydrogen atoms in oxygen atmosphere or oxygen contaminated hydrogen plasma. Dependence of this process on various irradiation parameters, such as the metal temperature, energy of irradiating ions, gas composition of plasma are studied. It is shown, that desorption from stainless steel is activated with the increase of the plasma chamber walls temperature and energy of irradiating ions. Hydrogen release occurs also under irradiation of the walls by helium and argon plasmas added with oxygen, however the amount of released hydrogen is several times lower than in the case of irradiation with oxygen contaminated deuterium plasma.

  15. Shuttle Gaseous Hydrogen Venting Risk from Flow Control Valve Failure

    NASA Technical Reports Server (NTRS)

    Drummond, J. Philip; Baurle, Robert A.; Gafney, Richard L.; Norris, Andrew T.; Pellett, Gerald L.; Rock, Kenneth E.

    2009-01-01

    This paper describes a series of studies to assess the potential risk associated with the failure of one of three gaseous hydrogen flow control valves in the orbiter's main propulsion system during the launch of Shuttle Endeavour (STS-126) in November 2008. The studies focused on critical issues associated with the possibility of combustion resulting from release of gaseous hydrogen from the external tank into the atmosphere during assent. The Shuttle Program currently assumes hydrogen venting from the external tank will result in a critical failure. The current effort was conducted to increase understanding of the risk associated with venting hydrogen given the flow control valve failure scenarios being considered in the Integrated In-Flight Anomaly Investigation being conducted by NASA.

  16. Sputtering and heating of Titan's upper atmosphere.

    PubMed

    Johnson, Robert E

    2009-02-28

    Titan is an important endpoint for understanding atmospheric evolution. Prior to Cassini's arrival at Saturn, modelling based on Voyager data indicated that the hydrogen escape rate was large (1-3x1028amus-1), but the escape rates for carbon and nitrogen species were relatively small (5x1026amus-1) and dominated by atmospheric sputtering. Recent analysis of the structure of Titan's thermosphere and corona attained from the Ion and Neutral Mass Spectrometer and the Huygens Atmospheric Structure Instrument on Cassini have led to substantially larger estimates of the loss rate for heavy species (0.3-5x1028amus-1). At the largest rate suggested, a mass that is a significant fraction of the present atmosphere would have been lost to space in 4Gyr; hence, understanding the nature of the processes driving escape is critical. The recent estimates of neutral escape are reviewed here, with particular emphasis on plasma-induced sputtering and heating. Whereas the loss of hydrogen is clearly indicated by the altitude dependence of the H2 density, three different one-dimensional models were used to estimate the heavy-molecule loss rate using the Cassini data for atmospheric density versus altitude. The solar heating rate and the nitrogen density profile versus altitude were used in a fluid dynamic model to extract an average net upward flux below the exobase; the diffusion of methane through nitrogen was described below the exobase using a model that allowed for outward flow; and the coronal structure above the exobase was simulated by presuming that the observed atmospheric structure was due to solar- and plasma-induced hot particle production. In the latter, it was hypothesized that hot recoils from photochemistry or plasma-ion-induced heating were required. In the other two models, the upward flow extracted is driven by heat conduction from below, which is assumed to continue to act above the nominal exobase, producing a process referred to as 'slow hydrodynamic' escape

  17. Hydrogen Generation Via Sodium Borohydride

    NASA Astrophysics Data System (ADS)

    Mohring, Richard M.; Wu, Ying

    2003-07-01

    Along with the technological challenges associated with developing fuel cells and hydrogen burning engines, a major issue that must be addressed to ensure the ultimate success of a hydrogen economy is the ability to store and transport hydrogen effectively. Millennium Cell has developed and patented a proprietary system for storing and generating hydrogen gas called Hydrogen on Demand™. The system releases the hydrogen stored in fuel solutions of sodium borohydride as needed through an easily controllable catalytic process. The fuel itself is water-based, rich in hydrogen content, and non-flammable. It can be stored in plastic containers under no pressure. After the hydrogen from the fuel is consumed, the remaining product, sodium metaborate (chemically similar to borax), can be recycled back into fresh fuel. In this paper, an overview of the Hydrogen on Demand™ technology is presented along with data showing the performance characteristics of practical hydrogen generation systems. A brief discussion of sodium borohydride regeneration chemistry is also provided.

  18. The production of trace gases by photochemistry and lightning in the early atmosphere

    NASA Technical Reports Server (NTRS)

    Levine, J. S.; Tennille, G. M.; Towe, K. M.; Khanna, R. K.

    1986-01-01

    Recent atmospheric calculation suggest that the prebiological atmosphere was most probably composed of nitrogen, carbon dioxide, and water vapor, resulting from volatile outgassing, as opposed to the older view of a strongly reducing early atmosphere composed of methane, ammonia, and hydrogen. Photochemical calculations indicate that methane would have been readily destroyed via reaction with the hydroxyl radical produced from water vapor and that ammonia would have been readily lost via photolysis and rainout. The rapid loss of methane and ammonia, coupled with the absence of a significant source of these gases, suggest that atmospheric methane and ammonia were very short lived, if they were present at all. An early atmosphere of N2, CO2, and H2O is stable and leads to the chemical production of a number of atmospheric species of biological significance, including oxygen, ozone, carbon monoxide, formaldehyde, and hydrogen cyanide. Using a photochemical model of the early atmosphere, the chemical productionof these species over a wide range of atmospheric parameters were investigated. These calculations indicate that early atmospheric levels of O3 were significantly below the levels needed to provide UV shielding. The fate of volcanically emitted sulfur species, e.g., sulfur dioxide and hydrogen sulfide, was investigated in the early atmosphere to assess their UV shielding properties. The photochemical calculations show that these species were of insufficient levels, due in part to their short photochemical lifetimes, to provide UV shielding.

  19. Improved Hydrogen Gas Getters for TRU Waste -- Final Report

    SciTech Connect

    Mark Stone; Michael Benson; Christopher Orme; Thomas Luther; Eric Peterson

    2005-09-01

    Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage containers. For that reason, the Nuclear Regulatory Commission limits the flammable gas (hydrogen) concentration in the Transuranic Package Transporter-II (TRUPACT-II) containers to 5 vol% of hydrogen in air, which is the lower explosion limit. Consequently, a method is needed to prevent the build up of hydrogen to 5 vol% during the storage and transport of the TRUPACT-II containers (up to 60 days). One promising option is the use of hydrogen getters. These materials scavenge hydrogen from the gas phase and irreversibly bind it in the solid phase. One proven getter is a material called 1,4-bis (phenylethynyl) benzene, or DEB, characterized by the presence of carbon-carbon triple bonds. Carbon may, in the presence of suitable precious metal catalysts such as palladium, irreversibly react with and bind hydrogen. In the presence of oxygen, the precious metal may also eliminate hydrogen by catalyzing the formation of water. This reaction is called catalytic recombination. DEB has the needed binding rate and capacity for hydrogen that potentially could be generated in the TRUPACT II. Phases 1 and 2 of this project showed that uncoated DEB performed satisfactorily in lab scale tests. Based upon these results, Phase 3, the final project phase, included larger scale testing. Test vessels were scaled to replicate the ratio between void space in the inner containment vessel of a TRUPACT-II container and a payload of seven 55-gallon drums. The tests were run with an atmosphere of air for 63.9 days at ambient temperature (15-27°C) and a scaled hydrogen generation rate of 2.60E-07 moles per second (0.35 cc/min). A second type of getter known as VEI, a proprietary polymer hydrogen getter characterized by carbon-carbon double bonds, was also tested in Phase 3. Hydrogen was successfully “gettered” by both getter systems. Hydrogen concentrations remained below 5 vol% (in

  20. Infrared photometry and spectrophotometry of Titan. [for atmospheric brightness temperature model

    NASA Technical Reports Server (NTRS)

    Morrison, D.

    1974-01-01

    The wide variation in infrared brightness temperature of Titan is explained in terms of a greenhouse effect. Radiometric observations in the infrared and microwave frequencies indicate an alternate hot atmospheric model. Methane, ammonia, hydrogen atoms, and nitrogen atoms are suggested as main constituents for the Titan atmosphere.