Science.gov

Sample records for hydrogen induced c-c

  1. Hydrogen induced C-C, C-N, and C-S bond activation on Pt and Ni surfaces

    SciTech Connect

    Gland, J.L.

    1992-01-01

    The work has focussed on hydrogen induced bond activation in adsorbed organic molecules and intermediates containin C-S and C-N and C-C bonds on Ni(100), Ni(111), and Pt(111) surfaces. Fluorescence Yield Near Edge Spectroscopy (FYNES) above the carbon K edge was used for adsorbed organic reactants and in-situ kinetic studies of bond activation. Results indicate that the activation is enhanced on Ni relative to Pt. Methylthiolate and methylamine adsorbed on Pt(111) were studied.

  2. Hydrogen induced C-C, C-N, and C-S bond activation on Pt and Ni surfaces

    SciTech Connect

    Gland, J.L.

    1992-12-01

    The work has focussed on hydrogen induced bond activation in adsorbed organic molecules and intermediates containin C-S and C-N and C-C bonds on Ni(100), Ni(111), and Pt(111) surfaces. Fluorescence Yield Near Edge Spectroscopy (FYNES) above the carbon K edge was used for adsorbed organic reactants and in-situ kinetic studies of bond activation. Results indicate that the activation is enhanced on Ni relative to Pt. Methylthiolate and methylamine adsorbed on Pt(111) were studied.

  3. Influence of sulfur addition and S-induced wall catalytic effect on C-C bond cleavage and aromatics hydrogenation

    SciTech Connect

    Schmidt, E.; Song, C.; Schobert, H.H.

    1995-12-31

    Catalytic hydrocracking of 4-(-1-naphthylmethyl)bibenzyl NMBB predominately yielded naphthalene and 4-methylbibenzyl. Sulfur addition to most catalyst precursors lead to substantially higher catalyst activity and subsequently higher conversion. In order to clarify the effect of sulfur alone on model compound conversion, NMBB was treated with sulfur in concentrations of 1.2 to 3.4 wt%, corresponding to conditions present in catalytic runs with sulfur. It was found that increasing sulfur concentrations leads to higher NMBB conversion. Furthermore, sulfur had a permanent influence on the reactor walls. It reacted with the transition metals in the steel to form a microscopic black iron sulfide layer on the surface, which could not be removed mechanically. The {open_quotes}non catalytic{close_quotes} runs after experiments with added sulfur yielded higher conversion than normal runs with new reactors. This {open_quotes}wall catalytic effect{close_quotes} can be reduced by treating sulfided reactors with hydrochloric acid for a short period of time and subsequent immersing into a base bath over night. These results demonstrate the significant influence of sulfur addition and S-induced residual wall-effect on C-C bond cleavage and hydrogenation of aromatics in batch reactors.

  4. Influence of sulfur addition and S-induced wall catalytic effects on C-C bond cleavage and aromatics hydrogenation

    SciTech Connect

    Schmidt, E.; Song, Chunshan; Schobert, H.H.

    1995-12-31

    Catalytic hydrocracking of 4-(1-naphthylmethyl)bibenzyl, designated as NMBB, predominately yielded naphthalene and 4-methylbibenzyl. Sulfur addition to most catalyst precursors lead to substantially higher catalyst activity and subsequently higher conversion. NMBB was also treated with sulfur alone in the absence of catalysts in concentrations of 1.2 to 3.4 wt, corresponding to conditions present in catalytic runs with added sulfur to precursors. It was found that increasing sulfur concentrations lead to higher NMBB conversion. Furthermore, sulfur had a permanent influence on the reactor walls. It reacted with the transition metals in the stainless steel to form a microscopic black iron sulfide layer on the surface, which could not be removed mechanically. The {open_quotes}non-catalytic{close_quotes} runs which were done after experiments with added sulfur yielded higher conversions than normal runs done in new reactors. This {open_quotes}wall catalytic effect{close_quotes} can be reduced by treating sulfided reactors with hydrochloric acid for a short period of time and subsequent immersing into a base bath overnight. These results demonstrate the significant influence of sulfur addition and S-induced residual wall-effect on C-C bond cleavage and hydrogenation of aromatics in batch reactors.

  5. Formation of C-C Bonds via Iridium-Catalyzed Hydrogenation and Transfer Hydrogenation.

    PubMed

    Bower, John F; Krische, Michael J

    2011-01-01

    The formation of C-C bonds via catalytic hydrogenation and transfer hydrogenation enables carbonyl and imine addition in the absence of stoichiometric organometallic reagents. In this review, iridium-catalyzed C-C bond-forming hydrogenations and transfer hydrogenations are surveyed. These processes encompass selective, atom-economic methods for the vinylation and allylation of carbonyl compounds and imines. Notably, under transfer hydrogenation conditions, alcohol dehydrogenation drives reductive generation of organoiridium nucleophiles, enabling carbonyl addition from the aldehyde or alcohol oxidation level. In the latter case, hydrogen exchange between alcohols and π-unsaturated reactants generates electrophile-nucleophile pairs en route to products of hydro-hydroxyalkylation, representing a direct method for the functionalization of carbinol C-H bonds. PMID:21822399

  6. Formation of C-C Bonds via Iridium-Catalyzed Hydrogenation and Transfer Hydrogenation

    NASA Astrophysics Data System (ADS)

    Bower, John F.; Krische, Michael J.

    The formation of C-C bonds via catalytic hydrogenation and transfer hydrogenation enables carbonyl and imine addition in the absence of stoichiometric organometallic reagents. In this review, iridium-catalyzed C-C bond-forming hydrogenations and transfer hydrogenations are surveyed. These processes encompass selective, atom-economic methods for the vinylation and allylation of carbonyl compounds and imines. Notably, under transfer hydrogenation conditions, alcohol dehydrogenation drives reductive generation of organoiridium nucleophiles, enabling carbonyl addition from the aldehyde or alcohol oxidation level. In the latter case, hydrogen exchange between alcohols and π-unsaturated reactants generates electrophile-nucleophile pairs en route to products of hydro-hydroxyalkylation, representing a direct method for the functionalization of carbinol C-H bonds.

  7. Unlocking Hydrogenation for C-C Bond Formation: A Brief Overview of Enantioselective Methods

    PubMed Central

    Hassan, Abbas; Krische, Michael J.

    2011-01-01

    Hydrogenation of π-unsaturated reactants in the presence of carbonyl compounds or imines promotes reductive C-C coupling, providing a byproduct-free alternative to stoichiometric organometallic reagents in an ever-increasing range of C=X (X = O, NR) additions. Under transfer hydrogenation conditions, hydrogen exchange between alcohols and π-unsaturated reactants triggers generation of electrophile-nucleophile pairs, enabling carbonyl addition directly from the alcohol oxidation level, bypassing discrete alcohol oxidation and generation of stoichiometric byproducts. PMID:22125398

  8. Formation of C-C bonds via ruthenium-catalyzed transfer hydrogenation().

    PubMed

    Moran, Joseph; Krische, Michael J

    2012-01-01

    Ruthenium-catalyzed transfer hydrogenation of diverse π-unsaturated reactants in the presence of aldehydes provides products of carbonyl addition. Dehydrogenation of primary alcohols in the presence of the same π-unsaturated reactants provides identical products of carbonyl addition. In this way, carbonyl addition is achieved from the alcohol or aldehyde oxidation level in the absence of stoichiometric organometallic reagents or metallic reductants. In this account, the discovery of ruthenium-catalyzed C-C bond-forming transfer hydrogenations and the recent development of diastereo- and enantioselective variants are discussed. PMID:23430602

  9. Laser-induced fluorescence of cyclohexadienyl (c-C{sub 6}H{sub 7}) radical in the gas phase

    SciTech Connect

    Imamura, Takashi; Zhang Weijun; Horiuchi, Hiroaki; Hiratsuka, Hiroshi; Kudo, Takako; Obi, Kinichi

    2004-10-08

    A laser-induced fluorescence spectrum was observed in the 500-560 nm region when a mixture of 1,4-cyclohexadiene and oxalyl chloride was photolyzed at 193 nm. The observed excitation spectrum was assigned to the A-tilde {sup 2}A{sub 2}<-X-tilde {sup 2}B{sub 1} transition of the cyclohexadienyl radical c-C{sub 6}H{sub 7}, produced by abstraction of a hydrogen atom from 1,4-cyclohexadiene by Cl atoms. The origin of the A-tilde<-X-tilde transition of c-C{sub 6}H{sub 7} was at 18 207 cm-1. From measurements of the dispersed fluorescence spectra and ab initio calculations, the frequencies of several vibrational modes in both the ground and excited states of c-C{sub 6}H{sub 7} were determined: {nu}{sub 5}(C-H in-plane bend)=1571, {nu}{sub 8}(C-Hin-plane bend)=1174, {nu}{sub 10}(C-C-C in-plane bend)=981, {nu}{sub 12}(C-C-C in-plane bend)=559, {nu}{sub 16}(C-C-C out-of-plane bend)=375, and {nu}{sub 33}(C-C-C in-plane bend)=600 cm{sup -1} for the ground state and {nu}{sub 8}=1118, {nu}{sub 10}=967, {nu}{sub 12}=502, {nu}{sub 16}=172, and {nu}{sub 33}=536 cm{sup -1} for the excited states.

  10. Ruthenium-Catalyzed Transfer Hydrogenation for C-C Bond Formation: Hydrohydroxyalkylation and Hydroaminoalkylation via Reactant Redox Pairs.

    PubMed

    Perez, Felix; Oda, Susumu; Geary, Laina M; Krische, Michael J

    2016-06-01

    Merging the chemistry of transfer hydrogenation and carbonyl or imine addition, a broad new family of redox-neutral or reductive hydrohydroxyalkylations and hydroaminomethylations have been developed. In these processes, hydrogen redistribution between alcohols and π-unsaturated reactants is accompanied by C-C bond formation, enabling direct conversion of lower alcohols to higher alcohols. Similarly, hydrogen redistribution between amines to π-unsaturated reactants results in direct conversion of lower amines to higher amines. Alternatively, equivalent products of hydrohydroxyalkylation and hydroaminomethylation may be generated through the reaction of carbonyl compounds or imines with π-unsaturated reactants under the conditions of 2-propanol-mediated reductive coupling. Finally, using vicinally dioxygenated reactants, that is, diol, ketols, or diones, successive transfer hydrogenative coupling occurs to generate 2 C-C bonds, resulting in products of formal [4+2] cycloaddition. PMID:27573275

  11. The use of ultrasmall iron(0) nanoparticles as catalysts for the selective hydrogenation of unsaturated C-C bonds.

    PubMed

    Kelsen, Vinciane; Wendt, Bianca; Werkmeister, Svenja; Junge, Kathrin; Beller, Matthias; Chaudret, Bruno

    2013-04-28

    The performance of well-defined ultrasmall iron(0) nanoparticles (NPs) as catalysts for the selective hydrogenation of unsaturated C-C and C=X bonds is reported. Monodisperse iron nanoparticles of about 2 nm size are synthesized by the decomposition of {Fe(N[Si(CH3)3]2)2}2 under dihydrogen. They are found to be active for the hydrogenation of various alkenes and alkynes under mild conditions and weakly active for C=O bond hydrogenation. PMID:23505625

  12. Light Induced C-C Coupling of 2-Chlorobenzazoles with Carbamates, Alcohols, and Ethers.

    PubMed

    Lipp, Alexander; Lahm, Günther; Opatz, Till

    2016-06-01

    A light induced, transition-metal-free C-C coupling reaction of 2-chlorobenzazoles with aliphatic carbamates, alcohols, and ethers is presented. Inexpensive reagents, namely sodium acetate, benzophenone, water, and acetonitrile, are employed in a simple reaction protocol using a cheap and widely available 25 W energy saving UV-A lamp at ambient temperature. PMID:27128627

  13. Hydrogen Induced C-C, C-N, & C-S Bond Activation on Pt & Ni Surfaces

    SciTech Connect

    Gland, J. L.

    2004-07-29

    The primary reactions investigated were chosen based on their importance in fuel and chemical production as well as in environmental remediation, and include reactions for hydrodesulfurization (HDS), hydrodenitrogenation (HDN), carbon-carbon hydrogenolysis, and hydrocarbon oxidation.

  14. [Hydrogen induced C-C, C-N, and C-S bond activities on Pi and Ni surfaces]: Summary

    SciTech Connect

    Gland, J.L.

    1994-12-31

    This document summarizes research applied to chemical bond activation studies. Topics summarized include: Carbon nitrogen bonds experimentation with aniline on Ni(111), Mi(100), and Pt(111) surfaces; carbon sulfur bonds experimentation with methanethiol, phenylthiol, and dimethyl disulfide on Pt(111) and Ni(111) surfaces; carbon-carbon bonds experimentation on Ni(100), Ni(111) and Pt(111) surfaces; and in-situ fluorescence yield near edge spectroscopy.

  15. NAD(P)H-Independent Asymmetric C=C Bond Reduction Catalyzed by Ene Reductases by Using Artificial Co-substrates as the Hydrogen Donor

    PubMed Central

    Winkler, Christoph K; Clay, Dorina; Entner, Marcello; Plank, Markus; Faber, Kurt

    2014-01-01

    To develop a nicotinamide-independent single flavoenzyme system for the asymmetric bioreduction of C=C bonds, four types of hydrogen donor, encompassing more than 50 candidates, were investigated. Six highly potent, cheap, and commercially available co-substrates were identified that (under the optimized conditions) resulted in conversions and enantioselectivities comparable with, or even superior to, those obtained with traditional two-enzyme nicotinamide adenine dinucleotide phosphate (NAD(P)H)-recycling systems. PMID:24382795

  16. Radiation-induced hydrogen transfer in metals

    NASA Astrophysics Data System (ADS)

    Tyurin, Yu I.; Vlasov, V. A.; Dolgov, A. S.

    2015-11-01

    The paper presents processes of hydrogen (deuterium) diffusion and release from hydrogen-saturated condensed matters in atomic, molecular and ionized states under the influence of the electron beam and X-ray radiation in the pre-threshold region. The dependence is described between the hydrogen isotope release intensity and the current density and the electron beam energy affecting sample, hydrogen concentration in the material volume and time of radiation exposure to the sample. The energy distribution of the emitted positive ions of hydrogen isotopes is investigated herein. Mechanisms of radiation-induced hydrogen transfer in condensed matters are suggested.

  17. Alkyne-aldehyde reductive C-C coupling through ruthenium-catalyzed transfer hydrogenation: direct regio- and stereoselective carbonyl vinylation to form trisubstituted allylic alcohols in the absence of premetallated reagents.

    PubMed

    Leung, Joyce C; Patman, Ryan L; Sam, Brannon; Krische, Michael J

    2011-10-24

    Nonsymmetric 1,2-disubstituted alkynes engage in reductive coupling to a variety of aldehydes under the conditions of ruthenium-catalyzed transfer hydrogenation by employing formic acid as the terminal reductant and delivering the products of carbonyl vinylation with good to excellent levels of regioselectivity and with complete control of olefin stereochemistry. As revealed in an assessment of the ruthenium counterion, iodide plays an essential role in directing the regioselectivity of C-C bond formation. Isotopic labeling studies corroborate reversible catalytic propargyl C-H oxidative addition in advance of the C-C coupling, and demonstrate that the C-C coupling products do not experience reversible dehydrogenation by way of enone intermediates. This transfer hydrogenation protocol enables carbonyl vinylation in the absence of stoichiometric metallic reagents. PMID:21953608

  18. Surfactant-induced hydrogen production in cyanobacteria

    SciTech Connect

    Famiglietti, M.; Luisi, P.L. ); Hochkoeppler, A. . Dept. di Biologia)

    1993-10-01

    Addition of Tween 85 to aqueous suspensions of Anabaena variabilis induced photosynthetic evolution of hydrogen over a time span of several weeks: as much as 148 nmol H[sub 2]/h [center dot] mg dry weight was produced in the first week by a suspension containing 4.2 mg dry weight of cells and 77 mM Tween 85. The chemical structure of Tween 85 was a necessary prerequisite for inducing hydrogen production, as compounds such as Tween 20, 60, and 80 had a quite different effect. There was a coupling between photosynthetic oxygen evolution and hydrogen evolution: Hydrogen evolution started to be effective only when oxygen evolution subdued. The presence of heterocysts in A. variabilis was also required for the Tween-induced hydrogen production. Based on these observations, possible mechanisms for the photosynthetic effect of Tween 85 are advanced and discussed.

  19. The Catalytic Conversion of C1-Cn Hydrocarbons to Olefins and Hydrogen: Microwave-Assisted C-C and C-H Bond Activation

    SciTech Connect

    Tanner, Dennis D.; Kandanarachchi, Pramod; Ding, Qizhu; Shao, Huawu; Vizitiu, Despina; Franz, James A.

    2001-01-17

    The gas phase carbon catalyzed microwave promoted conversion of methane to ethylene, ethane and acetylene and hydrogen is reported. A selection of C1-C4 hydrocarbons, hexadecane, and a cyclic hydrocarbon, cyclodecane, were also subjected to microwave conversion, resulting primarily in a-olefins, ethylene and hydrogen. For methane conversion, the products are reminiscent of those found in methane pyrolysis. Microwave induced cleavage of the liquid hydrocarbons provides conditions for the stabilization, by rapid thermal quenching in ambient temperature liquid reagent, of products such as terminal olefins that would be labile under conventional (thermal bath) pyrolysis reaction conditions. The reactions of long chain acyclic and cyclic hydrocarbons involve high temperatures in the region of the spark leading to a cascade of unimolecular scission reactions from initially formed biradicals from cycloalkanes or radical pairs from linear alkanes, largely to the exclusion of intermolecular radical-radical and radical-molecule reactions. The observed products are discussed in terms of the thermochemistry and dynamics of high temperature unimolecular biradical and radical decomposition reactions, and mechanisms involving reactive surface metal sites. The reaction rates of alkanes were found to increase with the molecular weight of the reactants. Mechanistic pathways consistent with these results are discussed.

  20. Cryogenic hydrogen-induced air liquefaction technologies

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1990-01-01

    Extensively utilizing a special advanced airbreathing propulsion archives database, as well as direct contacts with individuals who were active in the field in previous years, a technical assessment of cryogenic hydrogen-induced air liquefaction, as a prospective onboard aerospace vehicle process, was performed and documented. The resulting assessment report is summarized. Technical findings are presented relating the status of air liquefaction technology, both as a singular technical area, and also that of a cluster of collateral technical areas including: compact lightweight cryogenic heat exchangers; heat exchanger atmospheric constituents fouling alleviation; para/ortho hydrogen shift conversion catalysts; hydrogen turbine expanders, cryogenic air compressors and liquid air pumps; hydrogen recycling using slush hydrogen as heat sink; liquid hydrogen/liquid air rocket-type combustion devices; air collection and enrichment systems (ACES); and technically related engine concepts.

  1. Fuel cells: Hydrogen induced insulation

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Shao, Zongping

    2016-06-01

    Coupling high ionic and low electronic conductivity in the electrolyte of low-temperature solid-oxide fuel cells remains a challenge. Now, the electronic conductivity of a perovskite electrolyte, which has high proton conductivity, is shown to be heavily suppressed when exposed to hydrogen, leading to high fuel cell performance.

  2. Fatigue-induced Orosomucoid 1 Acts on C-C Chemokine Receptor Type 5 to Enhance Muscle Endurance

    PubMed Central

    Lei, Hong; Sun, Yang; Luo, Zhumin; Yourek, Gregory; Gui, Huan; Yang, Yili; Su, Ding-Feng; Liu, Xia

    2016-01-01

    Understanding and managing fatigue is a significant challenge in clinic and society. In attempting to explore how the body responds to and regulates fatigue, we found in rodent fatigue models that orosomucoid 1 (ORM1) was significantly increased in multiple tissues, including blood and muscle. Interestingly, administration of exogenous ORM1 increased muscle glycogen and enhanced muscle endurance, whereas ORM1 deficiency resulted in a significant decrease of muscle endurance both in vivo and in vitro, which could largely be restored by exogenous ORM1. Further studies demonstrated that ORM1 can bind to C-C chemokine receptor type 5 (CCR5) on muscle cells and deletion of the receptor abolished the effect of ORM1. Thus, fatigue upregulates the level of ORM1, which in turn functions as an anti-fatigue protein to enhance muscle endurance via the CCR5 pathway. Modulation of the level of ORM1 and CCR5 signaling could be a novel strategy for the management of fatigue. PMID:26740279

  3. Hydrogen-induced cracking of drip shield

    SciTech Connect

    Lu, S C

    1999-08-01

    A simple and conservative model has been developed to evaluate the effects of hydrogen-induced cracking on the drip shield. The basic premise of the model is that failure will occur once the hydrogen content exceeds a certain limit or critical value, HC. This model is very conservative because it assumes that, once the environmental and material conditions can support that particular corrosion process, failure will be effectively instantaneous. In the description of the HIC model presented in Section 6.1, extensive evidence has been provided to support a qualitative assessment of Ti-7 as an excellent choice of material for the drip shield with regard to degradation caused by hydrogen-induced cracking. LTCTF test data observed at LLNL, although unqualified, provides additional indication beyond a qualitative level that hydrogen concentration appears to be low in titanium materials. Quantitative evaluation based on the HIC model described in Section 6.1 indicates that the hydrogen concentration does not exceed the critical value. It is concluded that drip shield material (Ti-7) is able to sustain the effects of hydrogen-induced cracking.

  4. Dipolar induced para-hydrogen-induced polarization.

    PubMed

    Buntkowsky, Gerd; Gutmann, Torsten; Petrova, Marina V; Ivanov, Konstantin L; Bommerich, Ute; Plaumann, Markus; Bernarding, Johannes

    2014-01-01

    Analytical expressions for the signal enhancement in solid-state PHIP NMR spectroscopy mediated by homonuclear dipolar interactions and single pulse or spin-echo excitation are developed and simulated numerically. It is shown that an efficient enhancement of the proton NMR signal in solid-state NMR studies of chemisorbed hydrogen on surfaces is possible. Employing typical reaction efficacy, enhancement-factors of ca. 30-40 can be expected both under ALTADENA and under PASADENA conditions. This result has important consequences for the practical application of the method, since it potentially allows the design of an in-situ flow setup, where the para-hydrogen is adsorbed and desorbed from catalyst surfaces inside the NMR magnet. PMID:25218522

  5. Visible Light-Induced Radical Rearrangement to Construct C-C Bonds via an Intramolecular Aryl Migration/Desulfonylation Process.

    PubMed

    Li, Yuyuan; Hu, Bei; Dong, Wuheng; Xie, Xiaomin; Wan, Jun; Zhang, Zhaoguo

    2016-08-19

    A highly efficient intramolecular selective aryl migration/desulfonylation of 2-bromo-N-aryl-N-(arenesulfonyl)amide via visible light-induced photoredox catalysis has been accomplished. This approach allows for the construction of a variety of multisubstituted N,2-diarylacetamide under mild reaction conditions. PMID:27351977

  6. 7α-Hydroxycholesterol induces inflammation by enhancing production of chemokine (C-C motif) ligand 2.

    PubMed

    Kim, Sun-Mi; Kim, Bo-Young; Son, Yonghae; Jung, Young-Suk; Eo, Seong-Kug; Park, Young Chul; Kim, Koanhoi

    2015-11-27

    We investigated pro-inflammatory activity of 7-oxygenated cholesterol derivatives present in atherosclerotic lesions. Treatment of THP-1 monocyte/macrophage with 7α-hydroxycholesterol (7αOHChol) resulted in increased gene transcription of CCL2 and production of its corresponding protein. The conditioned medium isolated from THP-1 cells treated with 7αOHChol enhanced migration of monocytic cells, and migration was inhibited in the presence of CCL2-neutralizing antibody. In contrast, 7β-hydroxycholesterol (7βOHChol) or 7-ketocholesterol (7K) did not induce expression of CCL2, and the conditioned medium isolated from THP-1 cells exposed to 7βOHChol or 7K did not affect migration of monocytic cells. 7αOHChol also enhanced production of MMP-9. Inhibition of MEK or PI3K resulted in significantly attenuated expression of CCL2, along with that of MMP-9, induced by 7αOHChol. We propose that elevated concentration of a certain type of 7-oxygenated cholesterol derivative, like 7αOHChol, leads to inflammation via upregulation of CCL2 and MMP-9 in macrophages in the artery, thereby promoting progression of atherosclerosis, and the ERK and the PI3K pathways are involved in the process. PMID:26474699

  7. Ruthenium(0) Catalyzed Endiyne-α-Ketol [4+2] Cycloaddition: Convergent Assembly of Type II Polyketide Substructures via C-C Bond Forming Transfer Hydrogenation

    PubMed Central

    Saxena, Aakarsh; Perez, Felix; Krische, Michael J.

    2015-01-01

    Upon exposure of 3,4-benzannulated 1,5-diynes (benzo-endiynes) to α-ketols (α-hydroxyketones) in the presence of ruthenium(0) catalysts derived from Ru3(CO)12 and RuPhos or CyJohnPhos, successive redox-triggered C-C coupling occurs to generate products of [4+2] cycloaddition. The proposed catalytic mechanism involves consecutive alkyne-carbonyl oxidative couplings to form transient oxaruthana-cycles that suffer α-ketol mediated transfer hydrogenolysis. This process provides a new, convergent means of assembling Type II polyketide substructures. PMID:25938947

  8. Sequential 1,4-/1,2-Addition of Lithium(trimethylsilyl)diazomethane onto Cyclic Enones to Induce C-C Fragmentation and N-Li Insertion.

    PubMed

    O'Connor, Matthew J; Sun, Chunrui; Guan, Xinyu; Sabbasani, Venkata R; Lee, Daesung

    2016-02-01

    α,β-Unsaturated ketones generally undergo addition reactions with nucleophiles with a preference for either 1,2- or 1,4-addition, but rarely both. However, the right combination of reagents allows for consecutive 1,4- and 1,2-additions to occur: Cyclic α,β-unsaturated ketones undergo double additions with lithium(trimethylsilyl)diazomethane, effectively generating various molecular frameworks with complexity and diversity. Owing to the sequential generation of several intermediates of multifaceted reactivity, including diazoalkane derivatives and alkylidene carbenes, it is possible to induce novel Grob-type C-C fragmentations, alkylidene carbene mediated Li-N insertions, and dipolar cycloadditions by controlling the reaction parameters. PMID:26694997

  9. Ruthenium catalyzed C-C bond formation via transfer hydrogenation: branch-selective reductive coupling of allenes to paraformaldehyde and higher aldehydes.

    PubMed

    Ngai, Ming-Yu; Skucas, Eduardas; Krische, Michael J

    2008-07-01

    Under the conditions of ruthenium-catalyzed transfer hydrogenation employing 2-propanol as the terminal reductant, 1,1-disubstituted allenes 1a- h engage in reductive coupling to paraformaldehyde to furnish homoallylic alcohols 2a- h. Under identical transfer hydrogenation conditions, 1,1-disubstituted allenes engage in reductive coupling to aldehydes 3a- f to furnish homoallylic alcohols 4a- n. In all cases, reductive coupling occurs with branched regioselectivity to deliver homoallylic alcohols bearing all-carbon quaternary centers. PMID:18533665

  10. CO hydrogenation, deoxygenation, and C-C coupling promoted by ((silox)/sub 2/TaH/sub 2/)/sub 2/

    SciTech Connect

    Toreki, R.; LaPointe, R.E.; Wolczanski, P.T.

    1987-11-25

    The Fischer-Tropsch (F-T) reaction considered a potential solution to future energy concerns, has commanded the attention of researchers in both heterogeneous and homogeneous catalysis for the past 15 years. The most widely accepted mechanism for this conversion of synthesis gas (CO/H/sub 2/) to hydrocarbons and oxygenates incorporates three crucial steps: (1) CO is deoxygenated, presumably via dissociative adsorption; (2) H-transfer to surface carbides or CO/sub ads/ produces surface methylene groups, (3) C-C bond formation occurs through oligomerization of (CH/sub 2/)/sub ads/. Various organometallic species model the individual steps, yet fall short of corroborating the entire sequence. Reported herein is the carbonylation of ((silox)/sub 2/TaH/sub 2/)/sub 2/ (silox = t-Bu/sub 3/SiO/sup -/) and successive reactions which encompass the critical transformations of the F-T pathway.

  11. MRP4 Modulation of the Guanylate Cyclase-C/cGMP Pathway: Effects on Linaclotide-Induced Electrolyte Secretion and cGMP Efflux.

    PubMed

    Tchernychev, Boris; Ge, Pei; Kessler, Marco M; Solinga, Robert M; Wachtel, Derek; Tobin, Jenny V; Thomas, Sara R; Lunte, Craig E; Fretzen, Angelika; Hannig, Gerhard; Bryant, Alexander P; Kurtz, Caroline B; Currie, Mark G; Silos-Santiago, Inmaculada

    2015-10-01

    MRP4 mediates the efflux of cGMP and cAMP and acts as an important regulator of these secondary messengers, thereby affecting signaling events mediated by cGMP and cAMP. Immunofluorescence staining showed high MRP4 expression localized predominantly in the apical membrane of rat colonic epithelium. In vitro studies were performed using a rat colonic mucosal layer mounted in an Ussing chamber. Linaclotide activation of the guanylate cyclase-C (GC-C)/cGMP pathway induced a concentration-dependent increase in transepithelial ion current [short-circuit current (Isc)] across rat colonic mucosa (EC50: 9.2 nM). Pretreatment of colonic mucosa with the specific MRP4 inhibitor MK571 potentiated linaclotide-induced electrolyte secretion and augmented linaclotide-stimulated intracellular cGMP accumulation. Notably, pretreatment with the phosphodiesterase 5 inhibitor sildenafil increased basal Isc, but had no amplifying effect on linaclotide-induced Isc. MRP4 inhibition selectively affected the activation phase, but not the deactivation phase, of linaclotide. In contrast, incubation with a GC-C/Fc chimera binding to linaclotide abrogated linaclotide-induced Isc, returning to baseline. Furthermore, linaclotide activation of GC-C induced cGMP secretion from the apical and basolateral membranes of colonic epithelium. MRP4 inhibition blocked cGMP efflux from the apical membrane, but not the basolateral membrane. These data reveal a novel, previously unrecognized mechanism that functionally couples GC-C-induced luminal electrolyte transport and cGMP secretion to spatially restricted, compartmentalized regulation by MRP4 at the apical membrane of intestinal epithelium. These findings have important implications for gastrointestinal disorders with symptoms associated with dysregulated fluid homeostasis, such as irritable bowel syndrome with constipation, chronic idiopathic constipation, and secretory diarrhea. PMID:26216942

  12. Mild and Selective Catalytic Hydrogenation of the C=C Bond in α,β-Unsaturated Carbonyl Compounds Using Supported Palladium Nanoparticles.

    PubMed

    Nagendiran, Anuja; Pascanu, Vlad; Bermejo Gómez, Antonio; González Miera, Greco; Tai, Cheuk-Wai; Verho, Oscar; Martín-Matute, Belén; Bäckvall, Jan-E

    2016-05-17

    Chemoselective reduction of the C=C bond in a variety of α,β-unsaturated carbonyl compounds using supported palladium nanoparticles is reported. Three different heterogeneous catalysts were compared using 1 atm of H2 : 1) nano-Pd on a metal-organic framework (MOF: Pd(0) -MIL-101-NH2 (Cr)), 2) nano-Pd on a siliceous mesocellular foam (MCF: Pd(0) -AmP-MCF), and 3) commercially available palladium on carbon (Pd/C). Initial studies showed that the Pd@MOF and Pd@MCF nanocatalysts were superior in activity and selectivity compared to commercial Pd/C. Both Pd(0) -MIL-101-NH2 (Cr) and Pd(0) -AmP-MCF were capable of delivering the desired products in very short reaction times (10-90 min) with low loadings of Pd (0.5-1 mol %). Additionally, the two catalytic systems exhibited high recyclability and very low levels of metal leaching. PMID:27111403

  13. Urinary chemokine (C-C motif) ligand 2 (monocyte chemotactic protein-1) as a tubular injury marker for early detection of cisplatin-induced nephrotoxicity

    PubMed Central

    Nishihara, Kumiko; Masuda, Satohiro; Shinke, Haruka; Ozawa, Aiko; Ichimura, Takaharu; Yonezawa, Atsushi; Nakagawa, Shunsaku; Inui, Ken-ichi; Bonventre, Joseph V.; Matsubara, Kazuo

    2014-01-01

    Because of the difficulty in detecting segment-specific response in the kidney, we investigated the molecular events underlying acute kidney injury in the proximal tubules of rats with cisplatin (cis-diamminedichloroplatinum II)-induced nephrotoxicity. Microarray analysis revealed that mRNA levels of several cytokines and chemokines, such as interleukin-1beta, chemokine (C-C motif) ligand (CCL) 2, CCL20, chemokine (C-X-C motif) ligand (CXCL) 1, and CXCL10 were significantly increased after cisplatin treatment in both isolated proximal tubules and whole kidney. Interestingly, tubular CCL2 mRNA levels increased soon after cisplatin administration, whereas CCL2 mRNA levels in whole kidney first decreased and then increased. Levels of both CCL2 and kidney injury molecule-1 (KIM-1) in the whole kidney increased after cisplatin administration. Immunofluorescence analysis revealed CCL2 changes in the proximal tubular cells initially and then in the medullary interstitium. Urinary CCL2 excretion significantly increased approximately 3-fold compared with controls the day after cisplatin administration (5 mg/kg), when no changes were observed plasma creatinine and blood urea nitrogen levels. Urinary levels of KIM-1 also increased 3-fold after cisplatin administration. In addition, urinary CCL2 rather than KIM-1 increased in chronic renal failure rats after administration of low-dose cisplatin (2 mg/kg), suggesting that urinary CCL2 was selective for cisplatin-induced nephrotoxicity in renal impairment. These results indicated that the increase in cytokine and chemokine expression in renal epithelial cells might be responsible for kidney deterioration in cisplatin-induced nephrotoxicity, and that urinary CCL2 is associated with tubular injury and serves as a sensitive and noninvasive marker for the early detection of cisplatin-induced tubular injury. PMID:23291264

  14. Hydrogen Induced Damage in Pipeline Steels

    NASA Astrophysics Data System (ADS)

    Angus, Garrett R.

    The hydrogen induced cracking (HIC) resistance of several grades of plate steels was investigated using electrolytic hydrogen charging. HIC generated by electrolytic charging was also compared to the industrial standard test for HIC, the NACE standard TM0284. The electrolytic charging (EC) apparatus was designed to optimize the reproducibility of the HIC results and the robustness of the components during long charging times. A characterization study on the EC apparatus was undertaken. Alterations to applied current density and charging time were conducted on a highly susceptible plate steel, 100XF, to assess HIC damage as a function of charging conditions. Intermediate current densities of 10 to 15 mA/cm2 produced the greatest extent of cracking without significant corrosion related surface damage. The hydrogen charging time did not greatly affect the extent and depth of cracking for test times between 24 to 48 hours. Thus, for subsequent experiments, the applied current density was set to 15 mA/cm2 and the charging time was set to 24 hours. Plate steel grades X52, X60, X70, and 100XF were prestrained in tension to various levels and then electrolytically charged with hydrogen or tested with the NACE standard TM0284 test (solution A) saturated with H2S(g) to induce HIC. Prestrain was introduced to assess its impact on HIC. Hydrogen damage was quantified with the crack ratios defined in the NACE Standard TM0284. The results from the EC and NACE methods were very comparable to one, with respect to the magnitude of cracking and the trends between alloy and pre-strain conditions observed. Both methods showed that HIC substantially increased for the high strength 100XF steel compared to the lower strength alloys. This is consistent with NACE recommendations for HIC resistance steels, which suggests that alloy strength should be less than 116 ksi (800 MPa) or 248 HV (22 HRC). The HIC results were largely independent of the pre-strain levels imposed within the

  15. Hydrogen-Induced Plastic Deformation in ZnO

    NASA Astrophysics Data System (ADS)

    Lukáč, F.; Čížek, J.; Vlček, M.; Procházka, I.; Anwand, W.; Brauer, G.; Traeger, F.; Rogalla, D.; Becker, H.-W.

    In the present work hydrothermally grown ZnO single crystals covered with Pd over-layer were electrochemically loaded with hydrogen and the influence of hydrogen on ZnO micro structure was investigated by positron annihilation spectroscopy (PAS). Nuclear reaction analysis (NRA) was employed for determination of depth profile of hydrogen concentration in the sample. NRA measurements confirmed that a substantial amount of hydrogen was introduced into ZnO by electrochemical charging. The bulk hydrogen concentration in ZnO determined by NRA agrees well with the concentration estimated from the transported charge using the Faraday's law. Moreover, a subsurface region with enhanced hydrogen concentration was found in the loaded crystals. Slow positron implantation spectroscopy (SPIS) investigations of hydrogen-loaded crystal revealed enhanced concentration of defects in the subsurface region. This testifies hydrogen-induced plastic deformation of the loaded crystal. Absorbed hydrogen causes a significant lattice expansion. At low hydrogen concentrations this expansion is accommodated by elastic straining, but at higher concentrations hydrogen-induced stress exceeds the yield stress in ZnO and plastic deformation of the loaded crystal takes place. Enhanced hydrogen concentration detected in the subsurface region by NRA is, therefore, due to excess hydrogen trapped at open volume defects introduced by plastic deformation. Moreover, it was found that hydrogen-induced plastic deformation in the subsurface layer leads to typical surface modification: formation of hexagonal shape pyramids on the surface due to hydrogen-induced slip in the [0001] direction.

  16. Formation and collision-induced dissociation of adduct ions [matrix + C]+ (C = Li, Na, Cs and NH4) produced under fast atom bombardment conditions

    NASA Astrophysics Data System (ADS)

    Takayama, Mitsuo

    1994-09-01

    The formation of adduct ions of matrices B with organic/metallic cations C+, [B + C]+ (C = Li, Na, Cs and NH4), under fast atom bombardment (FAB) conditions has been examined. The cation affinity (CA) for various matrix materials, glycerol, thioglycerol, dithiothreitol, m-nitrobenzylalcohol and diethanolamine, was evaluated from the positive-ion FAB mass spectra obtained for the salts LiCl, NaCl, CsCl or NH4Cl added to matrix B. The order of the CA of matrices for relatively small cations Li+ and Na+ was in accordance with that of the proton affinity (PA) of the matrices used. The collision-induced dissociation (CID) spectra of [B + H]+ and [B + C]+ ions have been obtained. The PA differences between matrix B and ammonia (NH3) molecules were roughly estimated from the CID spectra of [B + NH4]+ ions. The CID spectra of [B + C]+ ions, which have different dissociation windows from [B + H]+ ions, were analyzed by proposing multidentate-binding structures of the adduct ions. Some dissociations of [B + C]+ ions could be explained by charge-remote fragmentations. The results obtained suggest that the binding energy for the coordination complex (B...C+) can be evaluated from the CID patterns.

  17. Hydrogen-Induced Cracking of the Drip Shield

    SciTech Connect

    F. Hua

    2004-09-07

    Hydrogen-induced cracking is characterized by the decreased ductility and fracture toughness of a material due to the absorption of atomic hydrogen in the metal crystal lattice. Corrosion is the source of hydrogen generation. For the current design of the engineered barrier without backfill, hydrogen-induced cracking may be a concern because the titanium drip shield can be galvanically coupled to rock bolts (or wire mesh), which may fall onto the drip shield, thereby creating conditions for hydrogen production by electrochemical reaction. The purpose of this report is to analyze whether the drip shield will fail by hydrogen-induced cracking under repository conditions within 10,000 years after emplacement. Hydrogen-induced cracking is a scenario of premature failure of the drip shield. This report develops a realistic model to assess the form of hydrogen-induced cracking degradation of the drip shield under the hydrogen-induced cracking. The scope of this work covers the evaluation of hydrogen absorbed due to general corrosion and galvanic coupling to less noble metals (e.g., Stainless Steel Type 316 and carbon steels) under the repository conditions during the 10,000-year regulatory period after emplacement and whether the absorbed hydrogen content will exceed the critical hydrogen concentration value, above which the hydrogen-induced cracking is assumed to occur. This report also provides the basis for excluding the features, events, and processes (FEPs) related to hydrogen-induced cracking of the drip shield with particular emphasis on FEP 2.1.03.04.OB, hydride cracking of drip shields (DTN: M00407SEPFEPLA.000 [DIRS 170760]). This report is prepared according to ''Technical Work Plan (TWP) for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 169944]).

  18. Synthesis of seco-B-ring bryostatin analogue WN-1 via C-C bond-forming hydrogenation: critical contribution of the B-ring in determining bryostatin-like and phorbol 12-myristate 13-acetate-like properties.

    PubMed

    Andrews, Ian P; Ketcham, John M; Blumberg, Peter M; Kedei, Noemi; Lewin, Nancy E; Peach, Megan L; Krische, Michael J

    2014-09-24

    The seco-B-ring bryostatin analogue, macrodiolide WN-1, was prepared in 17 steps (longest linear sequence) and 30 total steps with three bonds formed via hydrogen-mediated C-C coupling. This synthetic route features a palladium-catalyzed alkoxycarbonylation of a C2-symmetric diol to form the C9-deoxygenated bryostatin A-ring. WN-1 binds to PKCα (Ki = 16.1 nM) and inhibits the growth of multiple leukemia cell lines. Although structural features of the WN-1 A-ring and C-ring are shared by analogues that display bryostatin-like behavior, WN-1 displays PMA-like behavior in U937 cell attachment and proliferation assays, as well as in K562 and MV-4-11 proliferation assays. Molecular modeling studies suggest the pattern of internal hydrogen bonds evident in bryostatin 1 is preserved in WN-1, and that upon docking WN-1 into the crystal structure of the C1b domain of PKCδ, the binding mode of bryostatin 1 is reproduced. The collective data emphasize the critical contribution of the B-ring to the function of the upper portion of the molecule in conferring a bryostatin-like pattern of biological activity. PMID:25207655

  19. Hydrogen induced plastic deformation of stainless steel

    SciTech Connect

    Gadgil, V.J.; Keim, E.G.; Geijselaers, H.J.M.

    1998-12-31

    Hydrogen can influence the behavior of materials significantly. The effects of hydrogen are specially pronounced in high fugacities of hydrogen which can occur at the surface of steels in contact with certain aqueous environments. In this investigation the effect of high fugacity hydrogen on the surface of stainless steel was investigated using electrochemical cathodic charging. Microhardness was measured on the cross section. Transmission electron microscopy was used to investigate the dislocation substructure just below the surface. Computer simulation using finite element method was carried out to estimate the extent and severity of the deformation. The significance of the results are discussed in relation to the loss of ductility due to hydrogen.

  20. Ether complexes of tungsten with two different binding modes: An O-bound ether and an {eta}{sup 2}-(C=C) vinyl ether. Evidence for C-H...O hydrogen bonding of vinylic C-H groups

    SciTech Connect

    Song, J.S.; Szalda, D.J.; Bullock, R.M.

    1996-11-13

    The reaction of PhCH(OCH{sup 3}){sup 2} with Cp(CO){sup 3}WH and HOTf gives [Cp(CO){sup 3}W(PhCH{sup 2}OCH{sup 3})]{sup +}OTf{sup -}. The structure of this benzyl methyl ether complex was determined by single crystal X-ray diffraction and was shown to have the ether bonded to tungsten through the oxygen. This compound was isolated as a kinetic product of the reaction; it decomposes in solution by releasing free PhCH{sup 2}OCH{sup 3} and forming Cp(CO){sup 3}WOTf. An analog with the BAr`{sup 4}{sup -} counterion [Ar` = 3, 5-bis(trifluoromethyl)phenyl] is more stable. The reaction of the vinyl acetal CH{sup 2}=CHCH(OEt){sup 2} with Cp(CO){sup 3}WH and HOTf produces [Cp(CO){sup 3}W({eta}{sup 2}-EtOCH=CHCH{sup 3})]{sup +} OTf{sup -}, in which the ether is bonded to tungsten through the C=C bond of the vinyl ether. The crystal structure of this compound shows that the W-C(OEt) distance (2.69(3) A) is significantly longer than the W-C(CH{sup 3}) distance (2.37(3) A). There are weak C-H...O hydrogen bonds between both vinyl CH`s and oxygens of the triflate counterions. Evidence is presented that some of these weak hydrogen bonds are maintained in CD{sup 2}Cl{sup 2} solution but not in CD{sup 3}CN. 44 refs., 4 figs., 3 tabs.

  1. A Tungsten Complex with a Bidentate, Hemilabile N-Heterocyclic Carbene Ligand, Facile Displacement of the Weakly Bound W-(C=C) Bond, and the Vulnerability of the NHC Ligand Towards Catalyst Deactivation During Ketone Hydrogenation

    SciTech Connect

    Wu,F.; Dioumaev, V.; Szalda, D.; Hanson, J.; Bullock, R.

    2007-01-01

    The initial reaction observed between the N-heterocyclic carbene IMes (IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene) and molybdenum and tungsten hydride complexes CpM(CO){sub 2}(PPh{sub 3})H (M = Mo, W) is deprotonation of the metal hydride by IMes, giving [(IMes)H]{sup +}[CpM(CO){sub 2}(PPh{sub 3})]{sup -}. At longer reaction times and higher temperatures, the reaction of IMes with CpM(CO){sub 2}(PR{sub 3})H (M = Mo, W; R = Me, Ph) produces CpM(CO){sub 2}(IMes)H. Hydride transfer from CpW(CO)2(IMes)H to Ph{sub 3}C{sub +}B(C{sub 6}F{sub 5}){sub 4}{sup -} gives CpW(CO){sub 2}(IMes){sup +}B(C{sub 6}F{sub 5}){sub 4}{sup -}, which was crystallographically characterized using X-ray radiation from a synchrotron. The IMes is bonded as a bidentate ligand, through the carbon of the carbene as well as forming a weak bond from the metal to a C=C bond of one mesityl ring. The weakly bound C=C ligand is hemilabile, being readily displaced by H{sub 2}, THF, ketones, or alcohols. Reaction of CpW(CO){sub 2}(IMes){sup +} with H{sub 2} gives the dihydride complex [CpW(CO){sub 2}(IMes)(H){sub 2}]{sup +}. Addition of Et{sub 2}CH-OH to CpW(CO){sub 2}(IMes){sup +}B(C{sub 6}F{sub 5}){sub 4}{sup -} gives the alcohol complex [CpW(CO){sub 2}(IMes)(Et{sub 2}CH-OH)]{sup +}[B(C{sub 6}F{sub 5}){sub 4}]{sup -}, which was characterized by crystallography and exhibits no evidence for hydrogen bonding of the bound OH group. Addition of H{sub 2} to the ketone complex [CpW(CO){sub 2}(IMes)(Et{sub 2}C=O)]{sup +}[B(C{sub 6}F{sub 5}){sub 4}]{sup -} produces an equilibrium with the dihydride [CpW(CO){sub 2}(IMes)(H){sub 2}]{sup +} (K{sub eq} = 1.1 x 10{sup 3} at 25 {sup o}C). The tungsten ketone complex [CpW(CO){sub 2}(IMes)(Et{sub 2}C=O)]{sup +}[B(C{sub 6}F{sub 5}){sub 4}]{sup -}- serves as a modest catalyst for hydrogenation of Et{sub 2}C=O to Et{sub 2}CH-OH in neat ketone solvent. Decomposition of the catalyst produces [H(IMes)]{sup +}B(C{sub 6}F{sub 5}){sub 4}{sup -}, indicating that these

  2. Cryogenic hydrogen-induced air-liquefaction technologies

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1990-01-01

    Extensive use of a special advanced airbreathing propulsion archives data base, as well as direct contacts with individuals who were active in the field in previous years, a technical assessment of cryogenic hydrogen induced air liquefaction, as a prospective onboard aerospace vehicle process, was performed and documented in 1986. The resulting assessment report is summarized. Technical findings relating the status of air liquefaction technology are presented both as a singular technical area, and also as that of a cluster of collateral technical areas including: Compact lightweight cryogenic heat exchangers; Heat exchanger atmospheric constituents fouling alleviation; Para/ortho hydrogen shift conversion catalysts; Hydrogen turbine expanders, cryogenic air compressors and liquid air pumps; Hydrogen recycling using slush hydrogen as heat sinks; Liquid hydrogen/liquid air rocket type combustion devices; Air Collection and Enrichment System (ACES); and Technically related engine concepts.

  3. Charge induced enhancement of adsorption for hydrogen storage materials

    NASA Astrophysics Data System (ADS)

    Sun, Xiang

    2009-12-01

    . Direct measurement of the amount of hydrogen adsorption was also carried out with porous nickel oxides and magnesium oxides using the piezoelectric material PMN-PT as the charge supplier due to the pressure. The adsorption enhancement from the PMN-PT generated charges is obvious at hydrogen pressure between 0 and 60 bars, where the hydrogen uptake is increased at about 35% for nickel oxide and 25% for magnesium oxide. Computer simulation reveals that under the external electric field, the electron cloud of hydrogen molecules is pulled over to the adsorbent site and can overlap with the adsorbent electrons, which in turn enhances the adsorption energy. Experiments were also carried out to examine the effects of hydrogen spillover with charge induced enhancement. The results show that the overall storage capacity in nickel oxide increased remarkably by a factor of 4.

  4. Superplastic deformation induced by cyclic hydrogen charging

    SciTech Connect

    Choe, Heeman; Schuh, Christopher A.; Dunand, David C.

    2008-05-15

    Deformation under the combined action of external stress and cyclic hydrogen charging/discharging is studied in a model material, titanium. Cyclic charging with hydrogen is carried out at 860 deg. C, which repeatedly triggers the transformation between hydrogen-lean {alpha}-Ti and hydrogen-rich {beta}-Ti. Due to bias from the externally applied tensile stress, the internal mismatch strains produced by this isothermal {alpha}-{beta} transformation accumulate preferentially along the loading axis. These strain increments are linearly proportional to the applied stress, i.e., flow is ideally Newtonian, at small stress levels (below {approx}2 MPa). Therefore, after multiple chemical cycles, a tensile engineering strain of 100% is achieved without fracture, with an average strain rate of 10{sup -5} s{sup -1}, which demonstrates for the first time that superplastic elongations can be achieved by chemical cycling. The effect of hydrogen partial pressure, cycle time, and external stress on the value of the superplastic strain increments is experimentally measured and discussed in light of a diffusional phase transformation model. Special attention is paid to understanding the two contributions to the internal mismatch strains from the phase transformation and lattice swelling.

  5. Nanodiamond for hydrogen storage: temperature-dependent hydrogenation and charge-induced dehydrogenation.

    PubMed

    Lai, Lin; Barnard, Amanda S

    2012-02-21

    Carbon-based hydrogen storage materials are one of hottest research topics in materials science. Although the majority of studies focus on highly porous loosely bound systems, these systems have various limitations including use at elevated temperature. Here we propose, based on computer simulations, that diamond nanoparticles may provide a new promising high temperature candidate with a moderate storage capacity, but good potential for recyclability. The hydrogenation of nanodiamonds is found to be easily achieved, in agreement with experiments, though we find the stability of hydrogenation is dependent on the morphology of nanodiamonds and surrounding environment. Hydrogenation is thermodynamically favourable even at high temperature in pure hydrogen, ammonia, and methane gas reservoirs, whereas water vapour can help to reduce the energy barrier for desorption. The greatest challenge in using this material is the breaking of the strong covalent C-H bonds, and we have identified that the spontaneous release of atomic hydrogen may be achieved through charging of hydrogenated nanodiamonds. If the degree of induced charge is properly controlled, the integrity of the host nanodiamond is maintained, which indicates that an efficient and recyclable approach for hydrogen release may be possible. PMID:22089370

  6. Hydrogen Effects in Prestrained Transformation Induced Plasticity Steel

    NASA Astrophysics Data System (ADS)

    Ronevich, J. A.; De Cooman, B. C.; Speer, J. G.; De Moor, E.; Matlock, D. K.

    2012-07-01

    Thermal desorption analysis (TDA) was performed on laboratory heat-treated transformation induced plasticity (TRIP) steel with 14.5 pct retained austenite (RA), ultimate tensile strength (UTS) of 880 MPa, and elongation to failure of 33 pct. Samples were tensile prestrained 5 pct at 253 K (-20 °C), 296 K (23 °C), and 375 K (102 °C) to generate different amounts of deformation-induced martensite, 10.5, 5.5, and 0.5 pct, respectively, prior to cathodically charging to a hydrogen content of 1 to 2 ppm. TDA was performed on charged samples to determine the location and strength of hydrogen trapping sites. TDA results suggest that dislocations were the main trapping sites in prestrained TRIP steel. The TDA peak intensity increased with prestrain, suggesting that the quantity of hydrogen trap sites increased with deformation. Tensile tests were performed on the four hydrogen-charged TRIP steel conditions. As confirmed with transmission electron microscope images, samples with more homogeneous dislocation distributions ( i.e., prestrained at 375 K (102 °C)) exhibited greater resistance to hydrogen embrittlement than samples that included a high dislocation density adjacent to the formations of strain-induced martensite ( i.e., samples prestrained at 253 K (-20 °C) and 296 K (23 °C)).

  7. Mechanism of vacancy formation induced by hydrogen in tungsten

    SciTech Connect

    Liu, Yi-Nan; Ahlgren, T.; Bukonte, L.; Nordlund, K.; Shu, Xiaolin; Yu, Yi; Lu, Guang-Hong; Li, Xiao-Chun

    2013-12-15

    We report a hydrogen induced vacancy formation mechanism in tungsten based on classical molecular dynamics simulations. We demonstrate the vacancy formation in tungsten due to the presence of hydrogen associated directly with a stable hexagonal self-interstitial cluster as well as a linear crowdion. The stability of different self-interstitial structures has been further studied and it is particularly shown that hydrogen plays a crucial role in determining the configuration of SIAs, in which the hexagonal cluster structure is preferred. Energetic analysis has been carried out to prove that the formation of SIA clusters facilitates the formation of vacancies. Such a mechanism contributes to the understanding of the early stage of the hydrogen blistering in tungsten under a fusion reactor environment.

  8. Ultraviolet-induced birefringence in hydrogen-loaded optical fiber

    SciTech Connect

    Canning, J.; Deyerl, H.J.; Soerensen, H.R.; Kristensen, M.

    2005-03-01

    A precision phase-shifting approach to fabricate various phase-shifted gratings using different combinations of polarized ultraviolet (UV) light is demonstrated. In doing so, the difference between s- and p-polarized light reported by others is confirmed. However, we reveal added complexity for the role of hydrogen and deuterium in the UV-induced process. Previous arguments for the origins are systematically ruled out by reviewing existing literature. We note that the birefringence is made up of at least two components with different thermal stabilities, one consistent simply with molecular hydrogen being present in the system. Overall the birefringence, by deduction, is associated with anisotropy in hydrogen reactions within the fiber. As a result they lead, through known mechanisms of dilation in glass, to anisotropic stress relaxation that can be annealed out, with or without hydrogen remaining, at low temperatures close to 125 deg. C.

  9. Moisture-Induced Alumina Scale Spallation: The Hydrogen Factor

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2010-01-01

    For some time the oxidation community has been concerned with interfacial spallation of protective alumina scales, not just upon immediate cool down, but as a time-delayed phenomenon. Moisture-induced delayed spallation (MIDS) and desktop spallation (DTS) of thermal barrier coatings (TBCs) refer to this process. It is most apparent for relatively adherent alumina scales that have survived initial cool down in a dry environment, have built up considerable thickness and strain energy, and have been somewhat damaged, such as by cyclic oxidation cracking. Indeed, a "sensitive zone" can be described that maximizes the observed effect as a function of all the relevant factors. Moisture has been postulated to serve as a source of interfacial hydrogen embrittlement. Hydrogen is derived from reaction with aluminum in the alloy at an exposed interface. The purpose of this monograph is to trace the close analogy of this phenomenon to other hydrogen-induced effects, such as embrittlement of aluminides and blistering of alloys and anodic alumina films. A formalized, top-down, logic-tree structure is presented as a guide to this discussion. A theoretical basis for interfacial weakening by hydrogen is first cited, as are demonstrations of hydrogen detection as a reaction product or interfacial species. Further support is provided by critical experiments that recreate the moisture effect, but by isolating hydrogen from other potential causative factors. These experiments include tests in H 2-containing atmospheres or cathodic hydrogen charging. Accordingly, they strongly indicate that interfacial hydrogen, derived from moisture, is the key chemical species accounting for delayed alumina scale spallation.

  10. Helium-ion-induced release of hydrogen from graphite

    SciTech Connect

    Langley, R.A.

    1987-01-01

    The ion-induced release of hydrogen from AXF-5Q graphite was studied for 350-eV helium ions. The hydrogen was implanted into the graphite with a low energy (approx.200 eV) and to a high fluence. This achieved a thin (approx.10-nm), saturated near-surface region. The release of hydrogen was measured as a function of helium fluence. A model that includes ion-induced detrapping, retrapping, and surface recombination was used to analyze the experimental data. A value of (1.65 +- 0.2) x 10/sup -16/ cm/sup 2/ was obtained from the detrapping cross section, and a value of (0.5 to 4) x 10/sup -14/ cm/sup 4//atoms was obtained for the recombination coefficient. 11 refs., 4 figs.

  11. Moisture-Induced Alumina Scale Spallation: The Hydrogen Factor

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2009-01-01

    For some time our community has been concerned with interfacial spallation of protective alumina scales, not just upon immediate cooldown, but as a time-delayed phenomenon. Moisture-induced delayed spallation (MIDS) and desktop spallation (DTS) of TBC's refer to this process. It is most apparent for relatively adherent alumina scales that have survived cool down in a dry environment, built up considerable thickness and strain energy, and have been somewhat damaged, such as by cyclic oxidation cracking. Indeed, a "sweet zone" can be defined that maximizes the observed effect as a function of all the relevant factors. Moisture has been postulated to serve as a source of interfacial hydrogen embrittlement derived from reaction with aluminum in the alloy at an exposed interface. The purpose of this monograph is to trace the close analogy of this phenomenon to other hydrogen effects, such as embrittlement of aluminides and blistering of alloys and anodic alumina films. A formalized, top-down, logic tree structure is presented as a guide to this discussion. A theoretical basis for interfacial weakening by hydrogen is first cited, as are demonstrations of hydrogen as a reaction product or detected interfacial species. Further support is provided by critical experiments that produce the same moisture effect, but by isolating hydrogen from other potential causative factors. These experiments include tests in H2-containing atmospheres or cathodic hydrogen charging.

  12. On Modeling Hydrogen-Induced Crack Propagation Under Sustained Load

    NASA Astrophysics Data System (ADS)

    Dadfarnia, Mohsen; Somerday, Brian p.; Schembri, Philip E.; Sofronis, Petros; Foulk, James W.; Nibur, Kevin A.; Balch, Dorian K.

    2014-08-01

    The failure of hydrogen containment components is generally associated with subcritical cracking. Understanding subcritical crack growth behavior and its dependence on material and environmental variables can lead to methods for designing structural components in a hydrogen environment and will be beneficial in developing materials resistant to hydrogen embrittlement. In order to identify the issues underlying crack propagation and arrest, we present a model for hydrogen-induced stress-controlled crack propagation under sustained loading. The model is based on the assumptions that (I) hydrogen reduces the material fracture strength and (II) crack propagation takes place when the opening stress over the characteristic distance ahead of a crack tip is greater than the local fracture strength. The model is used in a finite-element simulation of crack propagation coupled with simultaneous hydrogen diffusion in a model material through nodal release. The numerical simulations show that the same physics, i.e., diffusion-controlled crack propagation, can explain the existence of both stages I and II in the velocity versus stress intensity factor ( V- K) curve.

  13. UV-induced synthesis of hydrogen peroxide

    SciTech Connect

    Murphy, T.M.; Huerta, A.J. )

    1989-04-01

    Suspension-cultured rose cells irradiated with UV (254 mm, 558 J m{sup {minus}2}) showed a transient efflux of K{sup +}, and a production of H{sub 2}O{sub 2} measured by chemiluminescence of luminol in the presence of peroxidase. The peak concentration of H{sub 2}O{sub 2}, attained at about 60-90 min after irradiation, was 2-5 uM. The addition of superoxide dismutase to irradiated cells stimulated luminscence, suggesting that the H{sub 2}O{sub 2} came at least in part from superoxide that was present in the extracellular medium. Treatments that inhibited the UV-induced efflux of K{sup +} also inhibited the appearance of H{sub 2}O{sub 2}, though the converse was not always true, suggesting that K{sup +} efflux was necessary for H{sub 2}O{sub 2} synthesis, but not vice-versa. H{sub 2}O{sub 2} in the extracellular space is required for lignin synthesis in many plant tissues. Phenolic compounds, the other substrates for lignin, are induced by UV. We suggest that the UV-stimulated production of H{sub 2}O{sub 2} is part of a coordinated induction of lignin synthesis.

  14. Induced absorption and annihilation in hadronic hydrogen atoms

    NASA Astrophysics Data System (ADS)

    Pomerantsev, Vladimir N.; Popov, Vladimir P.

    The induced absorption or annihilation in the collisions of the hydrogen hadronic atoms in the excited states with ordinary hydrogen have been described in a unified manner with the elastic scattering, Stark transitions, and Coulomb de-excitation in the framework of a close-coupling approach including both the open and closed channels corresponding to both the stationary and non-stationary states of hadronic atom. The general features of the induced absorption cross sections have been studied in a wide range of the complex energy-shift values. The total and differential cross sections of all processes have been calculated for π - p, K - p, and bar p p atoms with the principal quantum numbers n = 2 - 8 and kinetic energy from 0.001 eV up to 100 eV.

  15. Induced absorption and annihilation in hadronic hydrogen atoms

    NASA Astrophysics Data System (ADS)

    Pomerantsev, Vladimir N.; Popov, Vladimir P.

    2012-05-01

    The induced absorption or annihilation in the collisions of the hydrogen hadronic atoms in the excited states with ordinary hydrogen have been described in a unified manner with the elastic scattering, Stark transitions, and Coulomb de-excitation in the framework of a close-coupling approach including both the open and closed channels corresponding to both the stationary and non-stationary states of hadronic atom. The general features of the induced absorption cross sections have been studied in a wide range of the complex energy-shift values. The total and differential cross sections of all processes have been calculated for π - p, K - p, and bar p p atoms with the principal quantum numbers n = 2 - 8 and kinetic energy from 0.001 eV up to 100 eV.

  16. Hydrogen peroxide-induced apoptosis in human gingival fibroblasts.

    PubMed

    Gutiérrez-Venegas, Gloria; Guadarrama-Solís, Adriana; Muñoz-Seca, Carmen; Arreguín-Cano, Juan Antonio

    2015-01-01

    In the process of bleaching vital, discolored teeth, low concentrations of hydrogen peroxide (H2O2) are effective alternatives to heat-activated 30% H2O2. However, interest has been expressed in the assessment of pathological effects of long-term exposure to bleaching agents such as irritation and ulceration of the gingival or other soft tissues. The aim of the present study was to determine the effect of hydrogen peroxide on apoptosis in human gingival fibroblasts (HGF). Cytochrome c, Bcl-2, Bax, Bid and caspase-3 protein expression were detected by Western blotting. HGF cell apoptosis induced by H2O2 was both dose and time dependent. The addition of H2O2 resulted in the release of cytochrome c to the cytosol, and an increase of Caspase-3 cleavage. Data suggest that oxidative stress-induced apoptosis in HGF is intrinsic pathway involved the release of apoptotic signal from mitochondria. PMID:26884825

  17. Hydrogen peroxide-induced apoptosis in human gingival fibroblasts

    PubMed Central

    Gutiérrez-Venegas, Gloria; Guadarrama-Solís, Adriana; Muñoz-Seca, Carmen; Arreguín-Cano, Juan Antonio

    2015-01-01

    In the process of bleaching vital, discolored teeth, low concentrations of hydrogen peroxide (H2O2) are effective alternatives to heat-activated 30% H2O2. However, interest has been expressed in the assessment of pathological effects of long-term exposure to bleaching agents such as irritation and ulceration of the gingival or other soft tissues. The aim of the present study was to determine the effect of hydrogen peroxide on apoptosis in human gingival fibroblasts (HGF). Cytochrome c, Bcl-2, Bax, Bid and caspase-3 protein expression were detected by Western blotting. HGF cell apoptosis induced by H2O2 was both dose and time dependent. The addition of H2O2 resulted in the release of cytochrome c to the cytosol, and an increase of Caspase-3 cleavage. Data suggest that oxidative stress-induced apoptosis in HGF is intrinsic pathway involved the release of apoptotic signal from mitochondria. PMID:26884825

  18. Testing of DLR C/C-SiC and C/C for HIFiRE 8 Scramjet Combustor

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Capriotti, Diego P.; Reimer, Thomas; Kutemeyer, Marius; Smart, Michael K.

    2014-01-01

    Ceramic Matrix Composites (CMCs) have been proposed for use as lightweight hot structures in scramjet combustors. Previous studies have calculated significant weight savings by utilizing CMCs (active and passive) versus actively cooled metallic scramjet structures. Both a carbon/carbon (C/C) and a carbon/carbon-silicon carbide (C/C-SiC) material fabricated by DLR (Stuttgart, Germany) are being considered for use in a passively cooled combustor design for Hypersonic International Flight Research Experimentation (HIFiRE) 8, a joint Australia / Air Force Research Laboratory hypersonic flight program, expected to fly at Mach 7 for approximately 30 sec, at a dynamic pressure of 55 kilopascals. Flat panels of the DLR C/C and C/C-SiC materials were installed downstream of a hydrogen-fueled, dual-mode scramjet combustor and tested for several minutes at conditions simulating flight at Mach 5 and Mach 6. Gaseous hydrogen fuel was used to fuel the scramjet combustor. The test panels were instrumented with embedded Type K and Type S thermocouples. Zirconia felt insulation was used during some of the tests to reduce heat loss from the back surface and thus increase the heated surface temperature of the C/C-SiC panel approximately 177 C (350 F). The final C/C-SiC panel was tested for three cycles totaling over 135 sec at Mach 6 enthalpy. Slightly more erosion was observed on the C/C panel than the C/C-SiC panels, but both material systems demonstrated acceptable recession performance for the HIFiRE 8 flight.

  19. Vascular Stem/Progenitor Cell Migration Induced by Smooth Muscle Cell-Derived Chemokine (C-C Motif) Ligand 2 and Chemokine (C-X-C motif) Ligand 1 Contributes to Neointima Formation.

    PubMed

    Yu, Baoqi; Wong, Mei Mei; Potter, Claire M F; Simpson, Russell M L; Karamariti, Eirini; Zhang, Zhongyi; Zeng, Lingfang; Warren, Derek; Hu, Yanhua; Wang, Wen; Xu, Qingbo

    2016-09-01

    Recent studies have shown that Sca-1(+) (stem cell antigen-1) stem/progenitor cells within blood vessel walls may contribute to neointima formation, but the mechanism behind their recruitment has not been explored. In this work Sca-1(+) progenitor cells were cultivated from mouse vein graft tissue and found to exhibit increased migration when cocultured with smooth muscle cells (SMCs) or when treated with SMC-derived conditioned medium. This migration was associated with elevated levels of chemokines, CCL2 (chemokine (C-C motif) ligand 2) and CXCL1 (chemokine (C-X-C motif) ligand 1), and their corresponding receptors on Sca-1(+) progenitors, CCR2 (chemokine (C-C motif) receptor 2) and CXCR2 (chemokine (C-X-C motif) receptor 2), which were also upregulated following SMC conditioned medium treatment. Knockdown of either receptor in Sca-1(+) progenitors significantly inhibited cell migration. The GTPases Cdc42 and Rac1 were activated by both CCL2 and CXCL1 stimulation and p38 phosphorylation was increased. However, only Rac1 inhibition significantly reduced migration and p38 phosphorylation. After Sca-1(+) progenitors labeled with green fluorescent protein (GFP) were applied to the adventitial side of wire-injured mouse femoral arteries, a large proportion of GFP-Sca-1(+) -cells were observed in neointimal lesions, and a marked increase in neointimal lesion formation was seen 1 week post-operation. Interestingly, Sca-1(+) progenitor migration from the adventitia to the neointima was abrogated and neointima formation diminished in a wire injury model using CCL2(-/-) mice. These findings suggest vascular stem/progenitor cell migration from the adventitia to the neointima can be induced by SMC release of chemokines which act via CCR2/Rac1/p38 and CXCR2/Rac1/p38 signaling pathways. Stem Cells 2016;34:2368-2380. PMID:27300479

  20. Hydrogen saline prevents selenite-induced cataract in rats

    PubMed Central

    Yang, Chun-xiao; Ding, Tian-bing

    2013-01-01

    Purpose The aim of this study was to investigate the potential antioxidative effect and mechanism for the protective effects of hydrogen saline on selenite-induced cataract in rats. Methods Sprague-Dawley rat pups were divided into the following groups: control (Group A), selenite induced (Group B), and selenite plus hydrogen saline treated (Group C). Rat pups in Groups B and C received a single subcutaneous injection of sodium selenite (25 μmol/kg bodyweight) on postnatal day 12. Group C also received an intraperitoneal injection of H2 saline (5 ml/kg bodyweight) daily from postnatal day 8 to postnatal day 17. The development of cataract was assessed weekly by slit-lamp examination for 2 weeks. After sacrifice, extricated lenses were analyzed for activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione S-transferase, levels of malondialdehyde, reduced glutathione (GSH), and total sulfhydryl contents. Results The magnitude of lens opacification in Group B was significantly higher than in Group A (p<0.05), while Group C had less opacification than Group B (p<0.05). Compared with Group B, the mean activities of the antioxidant enzymes superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione S-transferase, levels of GSH, and total sulfhydryl contents were higher, whereas the level of malondialdehyde was lower following treatment with hydrogen saline(p<0.05). Conclusions This is an initial report showing that hydrogen saline can prevent selenite-induced cataract in rats. It acts via maintaining antioxidant enzymes and GSH, protecting the sulfhydryl group, and inhibiting lipid peroxidation. PMID:23922487

  1. Gamma radiation induces hydrogen absorption by copper in water

    PubMed Central

    Lousada, Cláudio M.; Soroka, Inna L.; Yagodzinskyy, Yuriy; Tarakina, Nadezda V.; Todoshchenko, Olga; Hänninen, Hannu; Korzhavyi, Pavel A.; Jonsson, Mats

    2016-01-01

    One of the most intricate issues of nuclear power is the long-term safety of repositories for radioactive waste. These repositories can have an impact on future generations for a period of time orders of magnitude longer than any known civilization. Several countries have considered copper as an outer corrosion barrier for canisters containing spent nuclear fuel. Among the many processes that must be considered in the safety assessments, radiation induced processes constitute a key-component. Here we show that copper metal immersed in water uptakes considerable amounts of hydrogen when exposed to γ-radiation. Additionally we show that the amount of hydrogen absorbed by copper depends on the total dose of radiation. At a dose of 69 kGy the uptake of hydrogen by metallic copper is 7 orders of magnitude higher than when the absorption is driven by H2(g) at a pressure of 1 atm in a non-irradiated dry system. Moreover, irradiation of copper in water causes corrosion of the metal and the formation of a variety of surface cavities, nanoparticle deposits, and islands of needle-shaped crystals. Hence, radiation enhanced uptake of hydrogen by spent nuclear fuel encapsulating materials should be taken into account in the safety assessments of nuclear waste repositories. PMID:27086752

  2. Gamma radiation induces hydrogen absorption by copper in water

    NASA Astrophysics Data System (ADS)

    Lousada, Cláudio M.; Soroka, Inna L.; Yagodzinskyy, Yuriy; Tarakina, Nadezda V.; Todoshchenko, Olga; Hänninen, Hannu; Korzhavyi, Pavel A.; Jonsson, Mats

    2016-04-01

    One of the most intricate issues of nuclear power is the long-term safety of repositories for radioactive waste. These repositories can have an impact on future generations for a period of time orders of magnitude longer than any known civilization. Several countries have considered copper as an outer corrosion barrier for canisters containing spent nuclear fuel. Among the many processes that must be considered in the safety assessments, radiation induced processes constitute a key-component. Here we show that copper metal immersed in water uptakes considerable amounts of hydrogen when exposed to γ-radiation. Additionally we show that the amount of hydrogen absorbed by copper depends on the total dose of radiation. At a dose of 69 kGy the uptake of hydrogen by metallic copper is 7 orders of magnitude higher than when the absorption is driven by H2(g) at a pressure of 1 atm in a non-irradiated dry system. Moreover, irradiation of copper in water causes corrosion of the metal and the formation of a variety of surface cavities, nanoparticle deposits, and islands of needle-shaped crystals. Hence, radiation enhanced uptake of hydrogen by spent nuclear fuel encapsulating materials should be taken into account in the safety assessments of nuclear waste repositories.

  3. Gamma radiation induces hydrogen absorption by copper in water.

    PubMed

    Lousada, Cláudio M; Soroka, Inna L; Yagodzinskyy, Yuriy; Tarakina, Nadezda V; Todoshchenko, Olga; Hänninen, Hannu; Korzhavyi, Pavel A; Jonsson, Mats

    2016-01-01

    One of the most intricate issues of nuclear power is the long-term safety of repositories for radioactive waste. These repositories can have an impact on future generations for a period of time orders of magnitude longer than any known civilization. Several countries have considered copper as an outer corrosion barrier for canisters containing spent nuclear fuel. Among the many processes that must be considered in the safety assessments, radiation induced processes constitute a key-component. Here we show that copper metal immersed in water uptakes considerable amounts of hydrogen when exposed to γ-radiation. Additionally we show that the amount of hydrogen absorbed by copper depends on the total dose of radiation. At a dose of 69 kGy the uptake of hydrogen by metallic copper is 7 orders of magnitude higher than when the absorption is driven by H2(g) at a pressure of 1 atm in a non-irradiated dry system. Moreover, irradiation of copper in water causes corrosion of the metal and the formation of a variety of surface cavities, nanoparticle deposits, and islands of needle-shaped crystals. Hence, radiation enhanced uptake of hydrogen by spent nuclear fuel encapsulating materials should be taken into account in the safety assessments of nuclear waste repositories. PMID:27086752

  4. Para-hydrogen induced polarization in heterogeneous hydrogenationreactions

    SciTech Connect

    Koptyug, Igor V.; Kovtunov, Kirill; Burt, Scott R.; Anwar, M.Sabieh; Hilty, Christian; Han, Song-I; Pines, Alexander; Sagdeev, Renad Z.

    2007-01-31

    We demonstrate the creation and observation ofpara-hydrogen-induced polarization in heterogeneous hydrogenationreactions. Wilkinson's catalyst, RhCl(PPh3)3, supported on eithermodified silica gel or a polymer, is shown to hydrogenate styrene intoethylbenzene and to produce enhanced spin polarizations, observed throughNMR, when the reaction was performed with H2 gas enriched in the paraspinisomer. Furthermore, gaseous phase para-hydrogenation of propylene topropane with two catalysts, the Wilkinson's catalyst supported onmodified silica gel and Rh(cod)(sulfos) (cod = cycloocta-1,5-diene;sulfos) - O3S(C6H4)CH2C(CH2PPh2)3) supported on silica gel, demonstratesheterogeneous catalytic conversion resulting in large spin polarizations.These experiments serve as a direct verification of the mechanism ofheterogeneous hydrogenation reactions involving immobilized metalcomplexes and can be potentially developed into a practical tool forproducing catalyst-free fluids with highly polarized nuclear spins for abroad range of hyperpolarized NMR and MRI applications.

  5. Thermally induced recrystallization of textured hydrogenated nanocrystalline silicon

    NASA Astrophysics Data System (ADS)

    Fugallo, Giorgia; Mattoni, Alessandro

    2014-01-01

    By an analysis of the local crystallinity based on model potential molecular dynamics simulations we investigated the effect of dissolved hydrogen on the thermally induced recrystallization of nanocrystalline silicon. By using the Kolmogorov-Johnson-Mehl-Avrami theory to analyze the atomistic data, we find that the recrystallization rate decreases exponentially with the hydrogen contamination. At low concentration, the kinetics is moderately affected by the H atoms that tend to migrate to the boundaries increasing their effective interface. At higher H content, we find an increasing number of SimHn hydrides that affect the crystalline order of the material and severely impede recrystallization. The analysis based on crystallinity is supported by the atomic scale study of the recrystallization mechanism, here identified as an inverted bond-switching process, and by the ability of hydrates to pin the amorphous-crystalline boundaries.

  6. Feasibility and induced effects of subsurface porous media hydrogen storage

    NASA Astrophysics Data System (ADS)

    Tilmann Pfeiffer, Wolf; Li, Dedong; Wang, Bo; Bauer, Sebastian

    2015-04-01

    Fluctuations in energy production from renewable sources like wind or solar power can lead to shortages in energy supply which can be mitigated using energy storage concepts. Underground storage of hydrogen in porous sandstone formations could be a storage option for large amounts of energy over long storage cycles. However, this use of the subsurface requires an analysis of possible interactions with other uses of the subsurface such as geothermal energy storage or groundwater abstraction. This study aims at quantifying the feasibility of porous media hydrogen storage to provide stored energy on a timescale of several days to weeks as well as possible impacts on the subsurface. The hypothetical storage site is based on an anticlinal structure located in Schleswig-Holstein, northern Germany. The storage is injected and extracted using five wells completed in a partially eroded, heterogeneous sandstone layer in the top of the structure at a depth of about 500 m. The storage formation was parameterized based on a local facies model with intrinsic permeabilities of 250-2500 mD and porosities of 35-40%. Storage initialization and subsequent storage cycles, each consisting of a hydrogen injection and extraction, were numerically simulated. The simulation results indicate the general feasibility of this hydrogen storage concept. The simulated sandstone formation is able to provide an average of around 1480 t of hydrogen per week (1830 TJ) which is about 5% of the total weekly energy production or about 10% of the weekly energy consumption of Schleswig-Holstein with the hydrogen production rate being the limiting factor of the overall performance. Induced hydraulic effects are a result of the induced overpressure within the storage formation. Propagation of the pressure signal does not strongly depend on the formation heterogeneity and thus shows approximately radial characteristics with one bar pressure change in distances of about 5 km from the injection wells. Thermal

  7. Light-induced metastable structural changes in hydrogenated amorphous silicon

    SciTech Connect

    Fritzsche, H.

    1996-09-01

    Light-induced defects (LID) in hydrogenated amorphous silicon (a-Si:H) and its alloys limit the ultimate efficiency of solar panels made with these materials. This paper reviews a variety of attempts to find the origin of and to eliminate the processes that give rise to LIDs. These attempts include novel deposition processes and the reduction of impurities. Material improvements achieved over the past decade are associated more with the material`s microstructure than with eliminating LIDs. We conclude that metastable LIDs are a natural by-product of structural changes which are generally associated with non-radiative electron-hole recombination in amorphous semiconductors.

  8. Iminopropadienones RN=C=C=C=O and bisiminopropadienes RN=C=C=C=NR: Matrix infrared spectra and anharmonic frequency calculations

    NASA Astrophysics Data System (ADS)

    Bégué, Didier; Baraille, Isabelle; Andersen, Heidi Gade; Wentrup, Curt

    2013-10-01

    Methyliminopropadienone MeN=C=C=C=O 1a was generated by flash vacuum thermolysis from four different precursors and isolated in solid argon. The matrix-isolation infrared spectrum is dominated by unusually strong anharmonic effects resulting in complex fine structure of the absorptions due to the NCCCO moiety in the 2200 cm-1 region. Doubling and tripling of the corresponding absorption bands are observed for phenyliminopropadienone PhN=C=C=C=O 1b and bis(phenylimino)propadiene PhN=C=C=C=NPh 9, respectively. Anharmonic vibrational frequency calculations allow the identification of a number of overtones and combination bands as the cause of the splittings for each molecule. This method constitutes an important tool for the characterization of reactive intermediates and unusual molecules by matrix-isolation infrared spectroscopy.

  9. Hydrogen peroxide induces apoptosis via a mitochondrial pathway in chondrocytes

    NASA Astrophysics Data System (ADS)

    Zhuang, Cai-ping; Liang, Qian; Wang, Xiao-ping; Chen, Tong-sheng

    2012-03-01

    The degenerative joint disease such as osteoarthritis (OA) is closely associated with the death of chondrocytes in apoptosis fashion. Hydrogen peroxide (H2O2), higher expression following acute damage in OA patients, has been shown to be up-regulated during apoptosis in a bulk of experimental models. This study was aimed to explore the mechanism of H2O2-induced rabbit chondrocytes apoptosis. Articular cartilage was biopsied from the joints of 6 weeks old New Zealand rabbits. Cell Counting Kit (CCK-8) assay was used to assess the inhibitory effect of H2O2 on cell viability. H2O2 treatment induced a remarkable reduction of cell viability. We used flow cytometry to assess the form of cell death with Annexin-V/PI double staining, and found that H2O2 treatment induced apoptosis in a dose-and time-dependent manner. Exposure of chondrocytes to 1.5 mM of H2O2 for 2 h induced a burst apoptosis that can be alleviated by N-acetyl cysteine (NAC) pretreatment, an anti-oxidant amino-acid derivative. Loss of mitochondria membrane potential (▵Ψm) was evaluated using confocal microscopy imaging and flow cytometry (FCM). H2O2 treatment induced a marked reduction of ▵Ψm, and the abrupt disappearance of ▵Ψm occurred within 5 minutes. These results indicate that H2O2 induces a rapid apoptosis via a mitochondrial pathway in rabbit chondrocytes.

  10. Effect of ethanol on hydrogen peroxide-induced AMPK phosphorylation

    PubMed Central

    Liangpunsakul, Suthat; Wou, Sung-Eun; Zeng, Yan; Ross, Ruth A.; Jayaram, Hiremagalur N.; Crabb, David W.

    2008-01-01

    AMP-activated protein kinase (AMPK) responds to oxidative stress. Previous work has shown that ethanol treatment of cultured hepatoma cells and of mice inhibited the activity of AMPK and reduced the amount of AMPK protein. Ethanol generates oxidative stress in the liver. Since AMPK is activated by reactive oxygen species, it seems paradoxical that ethanol would inhibit AMPK in the hepatoma cells. In an attempt to understand the mechanism whereby ethanol inhibits AMPK, we studied the effect of ethanol on AMPK activation by exogenous hydrogen peroxide. The effects of ethanol, hydrogen peroxide, and inhibitors of protein phosphatase 2A (PP2A) [either okadaic acid or PP2A small interference RNA (siRNA)] on AMPK phosphorylation and activity were examined in rat hepatoma cells (H4IIEC3) and HeLa cells. In H4IIEC3 cells, hydrogen peroxide (H2O2, 1 mM) transiently increased the level of phospho-AMPK to 1.5-fold over control (P < 0.05). Similar findings were observed in HeLa cells, which do not express the upstream AMPK kinase, LKB1. H2O2 markedly increased the phosphorylation of LKB1 in H4IIEC3 cells. Ethanol significantly inhibited the phosphorylation of PKC-ζ, LKB1, and AMPK caused by exposure to H2O2. This inhibitory effect of ethanol required its metabolism. More importantly, the inhibitory effects of ethanol on H2O2-induced AMPK phosphorylation were attenuated by the presence of the PP2A inhibitor, okadaic acid, or PP2A siRNA. The inhibitory effect of ethanol on AMPK phosphorylation is exerted through the inhibition of PKC-ζ and LKB1 phosphorylation and the activation of PP2A. PMID:18832448

  11. Suppression of hydrogen diffusion at the hydrogen-induced platelets in p-type Czochralski silicon

    SciTech Connect

    Huang, Y.L.; Ma, Y.; Job, R.; Fahrner, W.R.

    2005-03-28

    Hydrogen diffusion in p-type Czochralski silicon is investigated by combined Raman spectroscope, scanning electron microscope, and spreading resistance probe measurements. Exposure of silicon wafers to rf hydrogen plasma results in the formation of platelets. The increase of hydrogenation duration leads to the growth of the platelets and the reduction of the hydrogen diffusivity. The large platelets grow faster than the small ones. The growth of the platelets is based on the capture of hydrogen. The dependence of the hydrogen diffusivity upon the average size of the platelets suggests that the indiffusion of hydrogen is suppressed by the platelets.

  12. Corrosion induced by cathodic hydrogen in 2205 duplex stainless steel

    NASA Astrophysics Data System (ADS)

    Michalska, J.

    2011-05-01

    In this work new results about the influence of cathodic hydrogen on passivity and corrosion resistance of 2205 duplex stainless steel are described. The results were discussed by taking into account hydrogen charged samples and without hydrogen. The corrosion resistance to pitting was qualified with the polarization curves. The conclusion is that, hydrogen deteriorated the passive film stability and corrosion resistance to pitting of 2205 duplex stainless steel. The presence of hydrogen in passive films increases corrosion current density and decreases the potential of the film breakdown. It was also found that degree of susceptibility to hydrogen action was dependent on the hydrogen charging conditions.

  13. Hydrogen retention in tungsten materials studied by Laser Induced Desorption

    NASA Astrophysics Data System (ADS)

    Zlobinski, M.; Philipps, V.; Schweer, B.; Huber, A.; Reinhart, M.; Möller, S.; Sergienko, G.; Samm, U.; 't Hoen, M. H. J.; Manhard, A.; Schmid, K.; Textor Team

    2013-07-01

    Development of methods to characterise the first wall in ITER and future fusion devices without removal of wall tiles is important to support safety assessments for tritium retention and dust production and to understand plasma wall processes in general. Laser based techniques are presently under investigation to provide these requirements, among which Laser Induced Desorption Spectroscopy (LIDS) is proposed to measure the deuterium and tritium load of the plasma facing surfaces by thermal desorption and spectroscopic detection of the desorbed fuel in the edge of the fusion plasma. The method relies on its capability to desorb the hydrogen isotopes in a laser heated spot. The application of LID on bulk tungsten targets exposed to a wide range of deuterium fluxes, fluences and impact energies under different surface temperatures is investigated in this paper. The results are compared with Thermal Desorption Spectrometry (TDS), Nuclear Reaction Analysis (NRA) and a diffusion model.

  14. Light-induced metastability in pure and hydrogenated amorphous silicon

    NASA Astrophysics Data System (ADS)

    Queen, D. R.; Liu, X.; Karel, J.; Wang, Q.; Crandall, R. S.; Metcalf, T. H.; Hellman, F.

    2015-10-01

    Light soaking is found to increase the specific heat C and internal friction Q-1 of pure (a-Si) and hydrogenated (a-Si:H) amorphous silicon. At the lowest temperatures, the increases in C and Q-1 are consistent with an increased density of two-level systems (TLS). The light-induced increase in C persists to room temperature. Neither the sound velocity nor shear modulus change with light soaking indicating that the Debye specific heat is unchanged which suggests that light soaking creates localized vibrational modes in addition to TLS. The increase can be reversibly added and removed by light soaking and annealing, respectively, suggesting that it is related to the Staebler-Wronski effect (SWE), even in a-Si without H, and involves a reversible nanoscale structural rearrangement that is facilitated by, but does not require, H to occur.

  15. HYDROGEN EFFECTS ON STRAIN-INDUCED MARTENSITE FORMATION IN TYPE 304L STAINLESS STEEL

    SciTech Connect

    Morgan, M; Ps Lam, P

    2008-12-11

    Unstable austenitic stainless steels undergo a strain-induced martensite transformation. The effect of hydrogen on this transformation is not well understood. Some researchers believe that hydrogen makes the transformation to martensite more difficult because hydrogen is an austenite stabilizer. Others believe that hydrogen has little or no effect at all on the transformation and claim that the transformation is simply a function of strain and temperature. Still other researchers believe that hydrogen should increase the ability of the metal to transform due to hydrogen-enhanced dislocation mobility and slip planarity. While the role of hydrogen on the martensite transformation is still debated, it has been experimentally verified that this transformation does occur in hydrogen-charged materials. What is the effect of strain-induced martensite on hydrogen embrittlement? Martensite near crack-tips or other highly strained regions could provide much higher hydrogen diffusivity and allow for quicker hydrogen concentration. Martensite may be more intrinsically brittle than austenite and has been shown to be severely embrittled by hydrogen. However, it does not appear to be a necessary condition for embrittlement since Type 21-6-9 stainless steel is more stable than Type 304L stainless steel but susceptible to hydrogen embrittlement. In this study, the effect of hydrogen on strain-induced martensite formation in Type 304L stainless steel was investigated by monitoring the formation of martensite during tensile tests of as-received and hydrogen-charged samples and metallographically examining specimens from interrupted tensile tests after increasing levels of strain. The effect of hydrogen on the fracture mechanisms was also studied by examining the fracture features of as-received and hydrogen-charged specimens and relating them to the stress-strain behavior.

  16. 98. Catalog HHistory 1, C.C.C., 19 Tree Planting, Negative No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    98. Catalog H-History 1, C.C.C., 19 Tree Planting, Negative No. P 474c (Photographer and date unknown) TRANSPLANTING TREE. - Skyline Drive, From Front Royal, VA to Rockfish Gap, VA , Luray, Page County, VA

  17. Hydrogen Embrittlement Susceptibility and Hydrogen-Induced Additive Stress of 7050 Aluminum Alloy Under Various Aging States

    NASA Astrophysics Data System (ADS)

    Qi, W. J.; Song, R. G.; Qi, X.; Li, H.; Wang, Z. X.; Wang, C.; Jin, J. R.

    2015-09-01

    Hydrogen embrittlement susceptibility of 7050 aluminum alloy under various aging states has been investigated by means of cathodic hydrogen permeation, slow strain rate test, hydrogen determinator, x-ray diffraction, and scanning electron microscope, and effect of hydrogen on atomic binding force of charged alloy has been calculated by free electron theory in this paper. Simultaneously, hydrogen-induced additive stress (σad) of 7050 aluminum alloy hydrogen charged with different current densities under various aging states have been investigated by flowing stress differential method. The results showed that hydrogen concentration of examined alloy increased with increasing charging time or current density under the same aging state. Hydrogen segregation occurred at grain boundaries which enlarged the crystal lattice constant, meanwhile, it reduced the average bonding energy and interatomic bonding force of the grain boundary atoms, thus resulting in hydrogen embrittlement; moreover, σad of 7050 aluminum alloy increased linearly with increasing hydrogen concentration under the same aging state, i.e., under aged: σad = -1.61 + 9.93 × 105 C H, peak aged: σad = -1.55 + 9.67 × 105 C H, over aged: σad = -0.16 + 9.35 × 105 C H, correspondingly, σad increased the susceptibility to hydrogen embrittlement ( I HE) further. Under the same charging condition, aging states had a great influence on σad and I HE, the under-aged state alloy was of the highest, the over-aged state alloy was of the lowest, and peak-aged was in the middle.

  18. Role of the monocyte chemoattractant protein-1/C-C chemokine receptor 2 signaling pathway in transient receptor potential vanilloid type 1 ablation-induced renal injury in salt-sensitive hypertension.

    PubMed

    Wang, Youping; Zhu, Mingjun; Xu, Hui; Cui, Lin; Liu, Weihong; Wang, Xiaoxiao; Shen, Si; Wang, Donna H

    2015-09-01

    Our recent studies indicate that the transient receptor potential vanilloid type 1 (TRPV1) channel may act as a potential regulator of monocyte/macrophage recruitment to reduce renal injury in salt-sensitive hypertension. This study tests the hypothesis that deletion of TRPV1 exaggerates salt-sensitive hypertension-induced renal injury due to enhanced inflammatory responses via monocyte chemoattractant protein-1 (MCP-1)/C-C chemokine receptor 2 (CCR2)-dependent pathways. Wild type (WT) and TRPV1-null mutant (TRPV1(-/-)) mice were subjected to uninephrectomy and deoxycorticosterone acetate (DOCA)-salt treatment for four weeks with or without the selective CCR2 antagonist, RS504393. DOCA-salt treatment increased systolic blood pressure (SBP) to the same degree in both strains, but increased urinary excretion of albumin and 8-isoprostane and decreased creatinine clearance with greater magnitude in TRPV1(-/-) mice compared to WT mice. DOCA-salt treatment also caused renal glomerulosclerosis, tubulointerstitial injury, collagen deposition, monocyte/macrophage infiltration, proinflammatory cytokine and chemokine production, and NF-κB activation in greater degree in TRPV1(-/-) mice compared to WT mice. Blockade of the CCR2 with RS504393 (4 mg/kg/day) had no effect on SBP in DOCA-salt-treated WT or TRPV1(-/-) mice compared to their respective controls. However, treatment with RS504393 ameliorated renal dysfunction and morphological damage, and prevented the increase in monocyte/macrophage infiltration, cytokine/chemokine production, and NF-κB activity in both DOCA-salt hypertensive strains with a greater effect in DOCA-salt-treated TRPV1(-/-) mice compared to DOCA-salt-treated WT mice. No differences in CCR2 protein expression in kidney were found between DOCA-salt-treated WT and TRPV1(-/-) mice with or without RS504393 treatment. Our studies for the first time indicate that deletion of TRPV1 aggravated renal injury in salt-sensitive hypertension via enhancing MCP-1

  19. Laser-induced separation of hydrogen isotopes in the liquid phase

    DOEpatents

    Freund, Samuel M.; Maier, II, William B.; Beattie, Willard H.; Holland, Redus F.

    1980-01-01

    Hydrogen isotope separation is achieved by either (a) dissolving a hydrogen-bearing feedstock compound in a liquid solvent, or (b) liquefying a hydrogen-bearing feedstock compound, the liquid phase thus resulting being kept at a temperature at which spectral features of the feedstock relating to a particular hydrogen isotope are resolved, i.e., a clear-cut isotope shift is delineated, irradiating the liquid phase with monochromatic radiation of a wavelength which at least preferentially excites those molecules of the feedstock containing a first hydrogen isotope, inducing photochemical reaction in the excited molecules, and separating the reaction product containing the first isotope from the liquid phase.

  20. Effect of Strain-Induced Martensite on Tensile Properties and Hydrogen Embrittlement of 304 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Kim, Young Suk; Bak, Sang Hwan; Kim, Sung Soo

    2016-01-01

    Room temperature tensile tests have been conducted at different strain rates ranging from 2 × 10-6 to 1 × 10-2/s on hydrogen-free and hydrogen-charged 304 stainless steel (SS). Using a ferritescope and neutron diffraction, the amount of strain-induced martensite (SIM) has been in situ measured at the center region of the gage section of the tensile specimens or ex situ measured on the fractured tensile specimens. The ductility, tensile stress, hardness, and the amount of SIM increase with decreasing strain rate in hydrogen-free 304 SS and decrease in hydrogen-charged one. Specifically, SIM that forms during tensile tests is beneficial in increasing the ductility, strain hardening, and tensile stress of 304 SS, irrespective of the presence of hydrogen. A correlation of the tensile properties of hydrogen-free and hydrogen-charged 304 SS and the amount of SIM shows that hydrogen suppresses the formation of SIM in hydrogen-charged 304 SS, leading to a ductility loss and localized brittle fracture. Consequently, we demonstrate that hydrogen embrittlement of 304 SS is related to hydrogen-suppressed formation of SIM, corresponding to the disordered phase, according to our proposition. Compelling evidence is provided by the observations of the increased lattice expansion of martensite with decreasing strain rate in hydrogen-free 304 SS and its lattice contraction in hydrogen-charged one.

  1. Hydrogen peroxide induced responses of cat tracheal smooth muscle cells

    PubMed Central

    Bauer, V; Oike, M; Tanaka, H; Inoue, R; Ito, Y

    1997-01-01

    The effects of hydrogen peroxide H2O2 (10−6 and 10−3 M) on membrane potential, membrane currents, intracellular calcium concentration, resting muscle tone and contractions elicited by electrical field stimulation (EFS) and carbachol were examined in cat tracheal strips and isolated smooth muscle cells. H2O2 (10−4 and 10−5 M) enhanced the amplitude of contractions and excitatory junction potentials (e.j.p.) evoked by EFS without changing muscle tone and resting membrane potential of the tracheal smooth muscle, and enhanced the contraction induced by carbachol (10−8 M). At an increased concentration (10−3 M), H2O2 elevated resting muscle tone and marginally hyperpolarized the membrane in the majority of the cells. In 51 out of 56 cells examined, H2O2 (10−6–10−3 M) elicited an outward current at a holding potential of −40 mV and enhanced the frequency of the spontaneous transient outward current (STOC). In 20 cells the outward current was preceded by a small inward current. In the other cells, H2O2 elicited only an inward current or did not affect the background current. In Ca2+ free solution the action of H2O2 on the resting muscle tone, STOCs, background current and on the current induced by ramp depolarization was significantly reduced. H2O2 (10−4 M) increased the intracellular ionized calcium concentration both in the absence and presence of external Ca2+. However, the effect developed faster and was of a higher amplitude in the presence of external Ca2+. These results suggest that H2O2 increases intracellular Ca2+, with a subsequent augmentation of stimulation-evoked contractions, and enhances Ca2+ and voltage-sensitive potassium conductance. PMID:9222542

  2. Hydrogen Peroxide-Induced Akt Phosphorylation Regulates Bax Activation

    PubMed Central

    Sadidi, Mahdieh; Lentz, Stephen I.; Feldman, Eva L.

    2009-01-01

    Reactive oxygen species such as hydrogen peroxide (H2O2) are involved in many cellular processes that positively and negatively regulate cell fate. H2O2, acting as an intracellular messenger, activates phosphatidylinositol-3 kinase (PI3K) and its downstream target Akt, and promotes cell survival. The aim of the current study was to understand the mechanism by which PI3K/Akt signaling promotes survival in SH-SY5Y neuroblastoma cells. We demonstrate that PI3K/Akt mediates phosphorylation of the pro-apoptotic Bcl-2 family member Bax. This phosphorylation suppresses apoptosis and promotes cell survival. Increased survival in the presence of H2O2 was blocked by LY294002, an inhibitor of PI3K activation. LY294002 prevented Bax phosphorylation and resulted in Bax translocation to the mitochondria, cytochrome c release, caspase-3 activation, and cell death. Collectively, these findings reveal a mechanism by which H2O2-induced activation of PI3K/Akt influences posttranslational modification of Bax and inactivate a key component of the cell death machinery. PMID:19278624

  3. Hydrogen Peroxide Produced by Oral Streptococci Induces Macrophage Cell Death

    PubMed Central

    Okahashi, Nobuo; Nakata, Masanobu; Sumitomo, Tomoko; Terao, Yutaka; Kawabata, Shigetada

    2013-01-01

    Hydrogen peroxide (H2O2) produced by members of the mitis group of oral streptococci plays important roles in microbial communities such as oral biofilms. Although the cytotoxicity of H2O2 has been widely recognized, the effects of H2O2 produced by oral streptococci on host defense systems remain unknown. In the present study, we investigated the effect of H2O2 produced by Streptococcus oralis on human macrophage cell death. Infection by S. oralis was found to stimulate cell death of a THP-1 human macrophage cell line at multiplicities of infection greater than 100. Catalase, an enzyme that catalyzes the decomposition of H2O2, inhibited the cytotoxic effect of S. oralis. S. oralis deletion mutants lacking the spxB gene, which encodes pyruvate oxidase, and are therefore deficient in H2O2 production, showed reduced cytotoxicity toward THP-1 macrophages. Furthermore, H2O2 alone was capable of inducing cell death. The cytotoxic effect seemed to be independent of inflammatory responses, because H2O2 was not a potent stimulator of tumor necrosis factor-α production in macrophages. These results indicate that streptococcal H2O2 plays a role as a cytotoxin, and is implicated in the cell death of infected human macrophages. PMID:23658745

  4. Novel Pressure-Induced Interactions in Silane-Hydrogen

    SciTech Connect

    Strobel, T.; Somayazulu, M; Hemley, R

    2009-01-01

    We report novel molecular compound formation from silane-hydrogen mixtures with intermolecular interactions unprecedented for hydrogen-rich solids. A complex H2 vibron spectrum with anticorrelated pressure-frequency dependencies and a striking H-D exchange below 10 GPa reveal strong and unusual attractive interactions between SiH4 and H2 and molecular bond destabilization at remarkably low pressure. The unique features of the observed SiH4(H2)2 compound suggest a new range of accessible pressure-driven intermolecular interactions for hydrogen-bearing simple molecular systems and a new approach to perturb the hydrogen covalent bond.

  5. Mapping the Globe with C & C Technologies

    NASA Astrophysics Data System (ADS)

    Kleiner, A. A.

    2001-12-01

    C & C Technologies is an international survey and mapping company with an entrepreneurial spirit that is evident throughout. C & C was recently awarded the MTS (Marine Technology Society) ROV Committee Corporate Excellence Award in recognition of their pioneering spirit displayed by the introduction of the HUGIN 3000 Autonomous Underwater Vehicle (AUV) to the offshore industry. This presentation will outline the wide variety of global mapping projects that C & C has performed for government, private sector, and academia. These include high-resolution mapping of Cater Lake, the Panama Canal, Antarctica, Lake Tahoe, and the HUGIN 3000ś discovery of the German submarine U-166 in 5000 feet of water in the Gulf of Mexico. Adacemic disciplines required to support these technical challenges will be characterized and job opportunities in this emerging field will be addressed.

  6. Applications of light-induced electron-transfer and hydrogen-abstraction processes: photoelectrochemical production of hydrogen from reducing radicals

    SciTech Connect

    Chandrasekaran, K.; Whitten, D.G.

    1980-07-16

    A study of several photoprocesses which generate reducing radicals in similar photoelectrochemical cells was reported. Coupling of a light-induced reaction to produce a photocurrent concurrent with hydrogen generation in a second compartment can occur for a number of electron transfers and hydrogen abstractions in what appears to be a fairly general process. Irradiation of the RuL/sub 3//sup +2//Et/sub 3/N: photoanode compartment leads to production of a photocurrent together with generation of hydrogen at the cathode. A rather different type of reaction that also results in formation of two reducing radicals as primary photoproducts if the photoreduction of ketones and H-heteroaromatics by alcohols and other hydrogen atom donors. Irradiation of benzophenone/2-propanol/MV/sup +2/ solutions in the photoanode compartment (intensity 1.4 x 10/sup -8/ einstein/s) leads to a buildup of moderate levels of MV/sup +/ and to a steady photocurrent of 320 ..mu..A. The MV/sup +/ is oxidized at the anode of the photolyzed compartment with concomitant reduction of H/sup +/ in the cathode compartment. There was no decrease in benzophenone concentration over moderate periods of irradiation, and a steady production of hydrogen in the cathode compartment was observed. The photocurrent produced was linear with the square of absorbed light intensity. The quantum efficiency at the above-indicated intensity is 22%; quantitative analysis of the hydrogen produced gives good agreement with this value. 1 figure, 1 table. (DP)

  7. Recombination-induced athermal migration of hydrogen and deuterium in SiC

    SciTech Connect

    Koshka, Yaroslav; Krishnan, Bharat

    2005-02-01

    The phenomenon of recombination-induced formation of hydrogen-defect complexes in epitaxial silicon carbide (SiC) was further investigated on p-type samples treated in deuterium plasma. Qualitatively similar effects were observed for hydrogen and deuterium. The formation of hydrogen-related (deuterium-related) defects would depend on the temperature of the sample during plasma treatment, with lower process temperatures causing only incorporation of hydrogen (deuterium) near the surface without any significant formation of electrically or optically active hydrogen-related or deuterium-related defects in the epilayer. Higher process temperatures normally produced more efficient formation of new centers, including passivation of acceptors in SiC. In all cases, prolonged excitation of the hydrogenated (deuterated) samples with above-bandgap light at reduced temperatures caused recombination-induced formation of a few different defect centers. A confirmation of the long-range athermal migration of hydrogen from the surface into the bulk of the sample was obtained. It has been established that it is the recombination-induced migration of hydrogen that is responsible for the formation of hydrogen-related defect centers under optical excitation.

  8. Molecular Hydrogen Therapy Ameliorates Organ Damage Induced by Sepsis.

    PubMed

    Zheng, Yijun; Zhu, Duming

    2016-01-01

    Since it was proposed in 2007, molecular hydrogen therapy has been widely concerned and researched. Many animal experiments were carried out in a variety of disease fields, such as cerebral infarction, ischemia reperfusion injury, Parkinson syndrome, type 2 diabetes mellitus, metabolic syndrome, chronic kidney disease, radiation injury, chronic hepatitis, rheumatoid arthritis, stress ulcer, acute sports injuries, mitochondrial and inflammatory disease, and acute erythema skin disease and other pathological processes or diseases. Molecular hydrogen therapy is pointed out as there is protective effect for sepsis patients, too. The impact of molecular hydrogen therapy against sepsis is shown from the aspects of basic vital signs, organ functions (brain, lung, liver, kidney, small intestine, etc.), survival rate, and so forth. Molecular hydrogen therapy is able to significantly reduce the release of inflammatory factors and oxidative stress injury. Thereby it can reduce damage of various organ functions from sepsis and improve survival rate. Molecular hydrogen therapy is a prospective method against sepsis. PMID:27413421

  9. The threshold stress intensity for hydrogen-induced crack growth

    NASA Astrophysics Data System (ADS)

    Akhurst, K. N.; Baker, T. J.

    1981-06-01

    The crack growth rates and threshold stress intensities, K TH, for a 3 1/2 NiCrMoV steel (0.2 pct proof stress 1200 MPa) have been measured in a hydrogen environment at various temperatures and hydrogen pressures. Fractographic evidence and the observation of alternating fast and slow crack growth near K TH suggests that the crack advances by the repeated nucleation of microcracks at microstructural features ahead of the main crack. Transient crack growth is observed following load increases just below K TH. Using the idea, from unstable cleavage fracture theory, that for fracture a critical stress must be exceeded over a critical distance ahead of the crack, and assuming that this critical stress is reduced in proportion to the local hydrogen concentration (in equilibrium with the external hydrogen at K TH), a theoretical dependence of K TH on hydrogen pressure is derived which compares well with the experimental evidence.

  10. Molecular Hydrogen Therapy Ameliorates Organ Damage Induced by Sepsis

    PubMed Central

    Zheng, Yijun; Zhu, Duming

    2016-01-01

    Since it was proposed in 2007, molecular hydrogen therapy has been widely concerned and researched. Many animal experiments were carried out in a variety of disease fields, such as cerebral infarction, ischemia reperfusion injury, Parkinson syndrome, type 2 diabetes mellitus, metabolic syndrome, chronic kidney disease, radiation injury, chronic hepatitis, rheumatoid arthritis, stress ulcer, acute sports injuries, mitochondrial and inflammatory disease, and acute erythema skin disease and other pathological processes or diseases. Molecular hydrogen therapy is pointed out as there is protective effect for sepsis patients, too. The impact of molecular hydrogen therapy against sepsis is shown from the aspects of basic vital signs, organ functions (brain, lung, liver, kidney, small intestine, etc.), survival rate, and so forth. Molecular hydrogen therapy is able to significantly reduce the release of inflammatory factors and oxidative stress injury. Thereby it can reduce damage of various organ functions from sepsis and improve survival rate. Molecular hydrogen therapy is a prospective method against sepsis. PMID:27413421

  11. Is Hydrogen Sulfide-Induced Suspended Animation General Anesthesia?

    PubMed Central

    Li, Rosie Q.; McKinstry, Andrew R.; Moore, Jason T.; Caltagarone, Breanna M.; Eckenhoff, Maryellen F.; Eckenhoff, Roderic G.

    2012-01-01

    Hydrogen sulfide (H2S) depresses mitochondrial function and thereby metabolic rates in mice, purportedly resulting in a state of “suspended animation.” Volatile anesthetics also depress mitochondrial function, an effect that may contribute to their anesthetic properties. In this study, we ask whether H2S has general anesthetic properties, and by extension, whether mitochondrial effects underlie the state of anesthesia. We compared loss of righting reflex, electroencephalography, and electromyography in mice exposed to metabolically equipotent concentrations of halothane, isoflurane, sevoflurane, and H2S. We also studied combinations of H2S and anesthetics to assess additivity. Finally, the long-term effects of H2S were assessed by using the Morris water maze behavioral testing 2 to 3 weeks after exposures. Exposure to H2S decreases O2 consumption, CO2 production, and body temperature similarly to that of the general anesthetics, but fails to produce a loss of righting reflex or muscle atonia at metabolically equivalent concentrations. When combined, H2S antagonizes the metabolic effects of isoflurane, but potentiates the isoflurane-induced loss of righting reflex. We found no effect of prior H2S exposure on memory or learning. H2S (250 ppm), not itself lethal, produced delayed lethality when combined with subanesthetic concentrations of isoflurane. H2S cannot be considered a general anesthetic, despite similar metabolic suppression. Metabolic suppression, presumably via mitochondrial actions, is not sufficient to account for the hypnotic or immobilizing components of the anesthetic state. Combinations of H2S and isoflurane can be lethal, suggesting extreme care in the combination of these gases in clinical situations. PMID:22414854

  12. 102. Catalog HHistory 1, C.C.C., 34 Landscaping, Negative No. 6040a ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    102. Catalog H-History 1, C.C.C., 34 Landscaping, Negative No. 6040a (Photographer and date unknown) BEAUTIFICATION PROGRAM STARTED AS SOON AS GRADING ALONG THE DRIVE WAS COMPLETED. CCC CAMP 3 SHOWN PLANTING LAUREL. - Skyline Drive, From Front Royal, VA to Rockfish Gap, VA , Luray, Page County, VA

  13. Light-induced long-range hydrogen motion in a-Si:H at room temperature

    NASA Astrophysics Data System (ADS)

    Cheong, Hyeonsik M.; Lee, S.-H.; Nelson, B. P.; Mascarenhas, A.; Deb, S. K.

    2001-03-01

    We demonstrate that one can detect minuscule amounts of hydrogen diffusion out of a-Si:H under illumination at room temperature, by monitoring the changes in the Raman spectrum of a-WO3 as a function of illumination. The Staebler-Wronski effect, the light-induce creation of metastable defects in hydrogenated amorphous silicon (a-Si:H), has been one of the major problems that has limited the performance of solar cells based on this material. The recently suggested ¡®hydrogen collision model¡¯ can explain many aspects of the Staebler-Wronski effect, but assumes that the photogenerated mobile hydrogen atoms can move a long distance at room temperature. However, light-induced hydrogen motion in a-Si:H has not been experimentally observed at room temperature. We utilized the high sensitivity of the Raman spectrum of electrochromic a-WO3 to hydrogen insertion to probe the long-range motion of hydrogen at room temperature. We deposited a thin (200 nm) layer of a-WO3 on top of a-Si:H, and under illumination, a change in the Raman spectrum was detected. By comparing the Raman signal changes with those for control experiments where hydrogen is electrochemically inserted into a-WO_3, we can estimate semiquantitatively the amount of hydrogen that diffuses out of the a-Si:H layer.

  14. Structural instability of the diamond C(111) surface induced by hydrogen chemisorption

    NASA Astrophysics Data System (ADS)

    Su, C.; Lin, J.-C.

    1998-12-01

    The low energy electron diffraction technique was used to study the hydrogen chemisorption induced structural instability on the diamond C(111) surface. From the quantitative analysis of diffraction spots intensity on the as-dosed, partially desorbed, and annealed hydrogenated C(111) surfaces, the correlation between the (1×1)↔(2×1) phase transformation, hydrogen coverage, and surface temperature is shown. Thermal treatment with partial hydrogen desorption on the fully hydrogenated C(111) surface induces a (1×1)-(2×1) reconstruction with the observable half-order spots intensity (I1/2) emerging only after heating the substrate to 1270 K. Conversely, thermal annealing of the partially hydrogenated C(111) surface without desorbing H causes the size shrinking of the (2×1) domains as well as the relaxation of the hydrogenated domains. The temperature effect of I1/2 summarized from both thermal studies reveals that the (2×1) domain instability originated from the relaxation of the hydrogenated domains at elevated temperatures. In addition, the H chemisorption behavior on C(111) at different surface temperatures suggests that the terrace edges could be the preferential sites for the initial H adsorption and the growth of the hydrogenated domains might predominantly start from the terrace boundaries at a surface temperature as low as 125 K. The present study also allows us to tentatively propose that there might exist a low-temperature chemisorption state in addition to the hydrogenated metastable state as suggested by the sum-frequency generation spectroscopy and theoretical studies. A possible mechanism for the hydrogen chemisorption induced structural transformation is also discussed.

  15. Testing of DLR C/C-SiC for HIFiRE 8 Scramjet Combustor

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Capriotti, Diego P.; Reimer, Thomas; Kutemeyer, Marius; Smart, Michael

    2013-01-01

    Ceramic Matrix Composites (CMCs) have been proposed for hot structures in scramjet combustors. Previous studies have calculated significant weight savings by utilizing CMCs (active and passive) versus actively cooled metallic scramjet structures. Both a C/C and a C/C-SiC material system fabricated by DLR (Stuttgart, Germany) are being considered for use in a passively cooled combustor design for HIFiRE 8, a joint Australia / AFRL hypersonic flight program, expected to fly at Mach 7 for approximately 30 sec, at a dynamic pressure of 55 kPa. Flat panels of the DLR C/C and the C/C-SiC were tested in the NASA Langley Direct Connect Rig (DCR) at Mach 5 and Mach 6 enthalpy for several minutes. Gaseous hydrogen fuel was used to fuel the scramjet combustor. The test panels were instrumented with embedded Type K and Type S thermocouples. Zirconia felt insulation was used in some of the tests to increase the surface temperature of the C/C-SiC panel for approximately 350degF. The final C/C-SiC panel was tested for 3 cycles totaling over 135 sec at Mach 6 enthalpy. Slightly more erosion was observed on the C/C panel than the C/C-SiC panels, but both material systems demonstrated acceptable recession performance for the HIFiRE 8 flight.

  16. Lichen symbiosis: nature's high yielding machines for induced hydrogen production.

    PubMed

    Papazi, Aikaterini; Kastanaki, Elizabeth; Pirintsos, Stergios; Kotzabasis, Kiriakos

    2015-01-01

    Hydrogen is a promising future energy source. Although the ability of green algae to produce hydrogen has long been recognized (since 1939) and several biotechnological applications have been attempted, the greatest obstacle, being the O2-sensitivity of the hydrogenase enzyme, has not yet been overcome. In the present contribution, 75 years after the first report on algal hydrogen production, taking advantage of a natural mechanism of oxygen balance, we demonstrate high hydrogen yields by lichens. Lichens have been selected as the ideal organisms in nature for hydrogen production, since they consist of a mycobiont and a photobiont in symbiosis. It has been hypothesized that the mycobiont's and photobiont's consumption of oxygen (increase of COX and AOX proteins of mitochondrial respiratory pathways and PTOX protein of chrolorespiration) establishes the required anoxic conditions for the activation of the phycobiont's hydrogenase in a closed system. Our results clearly supported the above hypothesis, showing that lichens have the ability to activate appropriate bioenergetic pathways depending on the specific incubation conditions. Under light conditions, they successfully use the PSII-dependent and the PSII-independent pathways (decrease of D1 protein and parallel increase of PSaA protein) to transfer electrons to hydrogenase, while under dark conditions, lichens use the PFOR enzyme and the dark fermentative pathway to supply electrons to hydrogenase. These advantages of lichen symbiosis in combination with their ability to survive in extreme environments (while in a dry state) constitute them as unique and valuable hydrogen producing natural factories and pave the way for future biotechnological applications. PMID:25826211

  17. Lichen Symbiosis: Nature's High Yielding Machines for Induced Hydrogen Production

    PubMed Central

    Papazi, Aikaterini; Kastanaki, Elizabeth; Pirintsos, Stergios; Kotzabasis, Kiriakos

    2015-01-01

    Hydrogen is a promising future energy source. Although the ability of green algae to produce hydrogen has long been recognized (since 1939) and several biotechnological applications have been attempted, the greatest obstacle, being the O2-sensitivity of the hydrogenase enzyme, has not yet been overcome. In the present contribution, 75 years after the first report on algal hydrogen production, taking advantage of a natural mechanism of oxygen balance, we demonstrate high hydrogen yields by lichens. Lichens have been selected as the ideal organisms in nature for hydrogen production, since they consist of a mycobiont and a photobiont in symbiosis. It has been hypothesized that the mycobiont’s and photobiont’s consumption of oxygen (increase of COX and AOX proteins of mitochondrial respiratory pathways and PTOX protein of chrolorespiration) establishes the required anoxic conditions for the activation of the phycobiont’s hydrogenase in a closed system. Our results clearly supported the above hypothesis, showing that lichens have the ability to activate appropriate bioenergetic pathways depending on the specific incubation conditions. Under light conditions, they successfully use the PSII-dependent and the PSII-independent pathways (decrease of D1 protein and parallel increase of PSaA protein) to transfer electrons to hydrogenase, while under dark conditions, lichens use the PFOR enzyme and the dark fermentative pathway to supply electrons to hydrogenase. These advantages of lichen symbiosis in combination with their ability to survive in extreme environments (while in a dry state) constitute them as unique and valuable hydrogen producing natural factories and pave the way for future biotechnological applications. PMID:25826211

  18. Carbon Sources for Yeast Growth as a Precondition of Hydrogen Peroxide Induced Hormetic Phenotype

    PubMed Central

    Vasylkovska, Ruslana; Petriv, Natalia; Semchyshyn, Halyna

    2015-01-01

    Hormesis is a phenomenon of particular interest in biology, medicine, pharmacology, and toxicology. In this study, we investigated the relationship between H2O2-induced hormetic response in S. cerevisiae and carbon sources in yeast growth medium. In general, our data indicate that (i) hydrogen peroxide induces hormesis in a concentration-dependent manner; (ii) the effect of hydrogen peroxide on yeast reproductive ability depends on the type of carbon substrate in growth medium; and (iii) metabolic and growth rates as well as catalase activity play an important role in H2O2-induced hormetic response in yeast. PMID:26843865

  19. Carbon Sources for Yeast Growth as a Precondition of Hydrogen Peroxide Induced Hormetic Phenotype.

    PubMed

    Vasylkovska, Ruslana; Petriv, Natalia; Semchyshyn, Halyna

    2015-01-01

    Hormesis is a phenomenon of particular interest in biology, medicine, pharmacology, and toxicology. In this study, we investigated the relationship between H2O2-induced hormetic response in S. cerevisiae and carbon sources in yeast growth medium. In general, our data indicate that (i) hydrogen peroxide induces hormesis in a concentration-dependent manner; (ii) the effect of hydrogen peroxide on yeast reproductive ability depends on the type of carbon substrate in growth medium; and (iii) metabolic and growth rates as well as catalase activity play an important role in H2O2-induced hormetic response in yeast. PMID:26843865

  20. Microscopic thermal characterization of C/C and C/C-SiC composites

    NASA Astrophysics Data System (ADS)

    Jumel, J.; Krapez, J. C.; Lepoutre, F.; Enguehard, F.; Rochais, D.; Neuer, G.; Cataldi, M.

    2002-05-01

    To measure the thermal properties of C/C and C/C-SiC composites constituents, photoreflectance microscopy is used. Specific methods are developed to cope with experimental artefacts (material semi-transparency, convolution effects), so as with fibers and matrix specificities (strong thermal anisotropy, geometric effects…). Experimental results are presented demonstrating the interest of photoreflectance microscopy for a quantitative determination of the microscopic thermal properties of these complex graphite materials.

  1. Oral intake of hydrogen-rich water ameliorated chlorpyrifos-induced neurotoxicity in rats

    SciTech Connect

    Wang, Tingting; Zhao, Ling; Liu, Mengyu; Xie, Fei; Ma, Xuemei Zhao, Pengxiang; Liu, Yunqi; Li, Jiala; Wang, Minglian; Yang, Zhaona; Zhang, Yutong

    2014-10-01

    Chronic exposure to low-levels of organophosphate (OP) compounds, such as chlorpyrifos (CPF), induces oxidative stress and could be related to neurological disorders. Hydrogen has been identified as a novel antioxidant which could selectively scavenge hydroxyl radicals. We explore whether intake of hydrogen-rich water (HRW) can protect Wistar rats from CPF-induced neurotoxicity. Rats were gavaged daily with 6.75 mg/kg body weight (1/20 LD{sub 50}) of CPF and given HRW by oral intake. Nissl staining and electron microscopy results indicated that HRW intake had protective effects on the CPF-induced damage of hippocampal neurons and neuronal mitochondria. Immunostaining results showed that the increased glial fibrillary acidic protein (GFAP) expression in astrocytes induced by CPF exposure can be ameliorated by HRW intake. Moreover, HRW intake also attenuated CPF-induced oxidative stress as evidenced by enhanced level of MDA, accompanied by an increase in GSH level and SOD and CAT activity. Acetylcholinesterase (AChE) activity tests showed significant decrease in brain AChE activity after CPF exposure, and this effect can be ameliorated by HRW intake. An in vitro study demonstrated that AChE activity was more intense in HRW than in normal water with or without chlorpyrifos-oxon (CPO), the metabolically-activated form of CPF. These observations suggest that HRW intake can protect rats from CPF-induced neurotoxicity, and the protective effects of hydrogen may be mediated by regulating the oxidant and antioxidant status of rats. Furthermore, this work defines a novel mechanism of biological activity of hydrogen by directly increasing the AChE activity. - Highlights: • Hydrogen molecules protect rats from CPF-induced damage of hippocampal neurons. • The increased GFAP expression induced by CPF can also be ameliorated by hydrogen. • Hydrogen molecules attenuated the increase in CPF-induced oxidative stress. • Hydrogen molecules attenuated AChE inhibition in vivo

  2. Hydrogenation-induced edge magnetization in armchair MoS2 nanoribbon and electric field effects

    NASA Astrophysics Data System (ADS)

    Ouyang, Fangping; Yang, Zhixiong; Ni, Xiang; Wu, Nannan; Chen, Yu; Xiong, Xiang

    2014-02-01

    We performed density functional theory study on the electronic and magnetic properties of armchair MoS2 nanoribbons (AMoS2NR) with different edge hydrogenation. Although bare and fully passivated AMoS2NRs are nonmagnetic semiconductors, it was found that hydrogenation in certain patterns can induce localized ferromagnetic edge state in AMoS2NRs and make AMoS2NRs become antiferromagnetic semiconductors or ferromagnetic semiconductors. Electric field effects on the bandgap and magnetic moment of AMoS2NRs were investigated. Partial edge hydrogenation can change a small-sized AMoS2NR from semiconductor to metal or semimetal under a moderate transverse electric field. Since the rate of edge hydrogenation can be controlled experimentally via the temperature, pressure and concentration of H2, our results suggest edge hydrogenation is a useful method to engineer the band structure of AMoS2NRs.

  3. Hydrogen-induced effects on the CVD growth of high-quality graphene structures.

    PubMed

    Zhang, Xianfeng; Ning, Jing; Li, Xianglong; Wang, Bin; Hao, Long; Liang, Minghui; Jin, Meihua; Zhi, Linjie

    2013-09-21

    In this work, the hydrogen-induced effects on the CVD growth of high-quality graphene have been systematically studied by regulating the growth parameters mainly related to hydrogen. Experimental results demonstrate that under a high hydrogen flow rate, the competitive etching effect during the growth process is more prominent and even shows macroscopic selectivity. Based on these understandings, the hexagonal graphene domains with diverse edge modalities are controllably synthesized on a large scale by elaborately managing the competitive etching effect of hydrogen that existed during the formation of graphene. This study not only contributes to the understanding of the mechanism of CVD growth, especially the effects of hydrogen used in the system, but also provides a facile method to synthesize high-quality graphene structures with trimmed edge morphologies. PMID:23715011

  4. Cryogenic hydrogen-induced air-liquefaction technologies for combined-cycle propulsion applications

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1992-01-01

    Given here is a technical assessment of the realization of cryogenic hydrogen induced air liquefaction technologies in a prospective onboard aerospace vehicle process setting. The technical findings related to the status of air liquefaction technologies are reviewed. Compact lightweight cryogenic heat exchangers, heat exchanger atmospheric constituent fouling alleviation measures, para/ortho-hydrogen shift-conversion catalysts, cryogenic air compressors and liquid air pumps, hydrogen recycling using slush hydrogen as a heat sink, liquid hydrogen/liquid air rocket-type combustion devices, and technically related engine concepts are discussed. Much of the LACE work is related to aerospaceplane propulsion concepts that were developed in the 1960's. Emphasis is placed on the Liquid Air Cycle Engine (LACE).

  5. Tolerance of pentose utilising yeast to hydrogen peroxide-induced oxidative stress

    PubMed Central

    2014-01-01

    Background Bioethanol fermentations follow traditional beverage fermentations where the yeast is exposed to adverse conditions such as oxidative stress. Lignocellulosic bioethanol fermentations involve the conversion of pentose and hexose sugars into ethanol. Environmental stress conditions such as osmotic stress and ethanol stress may affect the fermentation performance; however, oxidative stress as a consequence of metabolic output can also occur. However, the effect of oxidative stress on yeast with pentose utilising capabilities has yet to be investigated. Results Assaying for the effect of hydrogen peroxide-induced oxidative stress on Candida, Pichia and Scheffersomyces spp. has demonstrated that these yeast tolerate hydrogen peroxide-induced oxidative stress in a manner consistent with that demonstrated by Saccharomyces cerevisiae. Pichia guillermondii appears to be more tolerant to hydrogen peroxide-induced oxidative stress when compared to Candida shehatae, Candida succiphila or Scheffersomyces stipitis. Conclusions Sensitivity to hydrogen peroxide-induced oxidative stress increased in the presence of minimal media; however, addition of amino acids and nucleobases was observed to increase tolerance. In particular adenine increased tolerance and methionine reduced tolerance to hydrogen peroxide-induced oxidative stress. PMID:24636079

  6. Study of fibroblast gene expression in response to oxidative stress induced by hydrogen peroxide or UVA with skin aging.

    PubMed

    Hazane-Puch, Florence; Bonnet, Mathilde; Valenti, Kita; Schnebert, Sylvianne; Kurfurst, Robin; Favier, Alain; Sauvaigo, Sylvie

    2010-01-01

    The skin aging process, implying oxidative stress, is associated with specific gene expression. Ultraviolet A (UVA) and hydrogen peroxide (H(2)O(2)) both generate reactive oxygen species (ROS) making them relevant in the study of skin cell responses to oxidative stresses. To investigate transcript expression associated with chronological skin aging and its modulation by two oxidative stresses, cDNA micro-arrays, composed of a set of 81 expressed sequence tag (EST) clones, were used to probe the patterns of transcript expression in human fibroblasts of five young (< 21 years-old) and five older (> 50 years-old) healthy females at basal levels and 24 h after exposure to UVA (7 J/cm2) and H(2)O(2) (20 mM). At the basal state, 22% of total genes were up-regulated in the older group. Although both stresses led to the same cell mortality, H(2)O(2) induced a stronger modulation of gene expression than UVA, with 19.5% of transcripts up-regulated versus 4%. The aging process affected the response to H(2)O(2) and even though cells from old donors presented higher basal levels of transcripts they were not able to regulate them in response to the stress. Interestingly, UVA had a specific strong inhibitory effect on the expression of chemokine (C-C) motif ligand 2 (CCL2) transcript, suggesting a possible mechanism for its anti-inflammatory and immunoregulatory roles. PMID:20299309

  7. Hydrogen decoration of radiation damage induced defect structures

    SciTech Connect

    Kirnstötter, S.; Faccinelli, M.; Hadley, P.; Schustereder, W.; Laven, J. G.; Schulze, H.-J.

    2014-02-21

    The defect complexes that are formed when protons with energies in the MeV-range were implanted into high-purity silicon were investigated. After implantation, the samples were annealed at 400 °C or 450 °C for times ranging between 15 minutes and 30 hours. The resistivity of the samples was then analyzed by Spreading Resistance Profiling (SRP). The resistivity shows minima where there is a high carrier concentration and it is possible to extract the carrier concentration from the resistivity data. Initially, there is a large peak in the carrier concentration at the implantation depth where most of the hydrogen is concentrated. For longer anneals, this peak widens as the hydrogen diffuses away from the implantation depth. Following the changes in resistivity as a function of annealing time allows us to characterize the diffusion of hydrogen through these samples. Differences in the diffusion were observed depending on whether the silicon was grown by the magnetic Czochralski (m:Cz) method or the Float zone (Fz) method.

  8. The diurnal and solar cycle variation of the charge exchange induced hydrogen escape flux

    NASA Technical Reports Server (NTRS)

    Maher, L. J.; Tinsley, B. A.

    1978-01-01

    On the basis of ion temperature and density data at specific points and times in June 1969 provided by the OGO 6 satellite, and altitude profiles of the ion and electron temperature and concentration provided by the Arecibo radar facility over the period February 1972-April 1974, the diurnal and solar cycle variation of the charge-exchange-induced hydrogen escape flux was investigated. It was calculated that for low to moderate solar activity at Arecibo, the diurnal ratio of the maximum-to-minimum charge-exchange-induced hydrogen escape flux was approximately 6 with a peak around noon and a minimum somewhere between 0100 and 0300 h LT. This study of a limited amount of OGO 6 and Arecibo data seems to indicate that the charge-exchange-induced hydrogen escape flux increases as the F(10.7) flux increases for low to moderate solar activity.

  9. Hydrogenation induced structure and property changes in GdGa

    NASA Astrophysics Data System (ADS)

    Nedumkandathil, Reji; Kranak, Verina F.; Johansson, Robert; Ångström, Jonas; Balmes, Oliver; Andersson, Mikael S.; Nordblad, Per; Scheicher, Ralph H.; Sahlberg, Martin; Häussermann, Ulrich

    2016-07-01

    Hydrides GdGaHx were obtained by exposing the Zintl phase GdGa with the CrB structure to a hydrogen atmosphere at pressures from 1.5 to 50 bar and temperatures from 50 to 500 °C. Structural analysis by powder X-ray diffraction suggests that conditions with hydrogen pressures in a range between 15 and 50 bar and temperatures below 500 °C afford a uniform hydride phase with the NdGaH1.66 structure (Cmcm, a=3.9867(7) Å, b=12.024(2) Å, c=4.1009(6) Å) which hosts H in two distinct positions, H1 and H2. H1 is coordinated in a tetrahedral fashion by Gd atoms, whereas H2 atoms are inserted between Ga atoms. The assignment of the NdGaH1.66 structure is corroborated by first principles DFT calculations. Modeling of phase and structure stability as a function of composition resulted in excellent agreement with experimental lattice parameters when x=1.66 and revealed the presence of five-atom moieties Ga-H2-Ga-H2-Ga in GdGaH1.66. From in situ powder X-ray diffraction using synchrotron radiation it was established that hydrogenation at temperatures above 200 °C affords a hydride with x≈1.3, which is stable up to 500 °C, and that additional H absorption, yielding GdGaH1.66, takes place at lower temperatures. Consequently, GdGaH1.66 desorbs H above T=200 °C. Without the presence of hydrogen, hydrides GdGaHx decompose at temperatures above 300 °C into GdH2 and an unidentified Gd-Ga intermetallics. Thus the hydrogenation of GdGa is not reversible. From magnetic measurements the Curie-Weiss constant and effective magnetic moment of GdGaH1.66 were obtained. The former indicates antiferromagnetic interactions, the latter attains a value of ~8 μB which is typical for compounds containing Gd3+ions.

  10. Origin of the photo-induced changes in hydrogenated amorphous silicon

    NASA Astrophysics Data System (ADS)

    Adler, D.

    1983-07-01

    The electronic properties of hydrogenated amorphous silicon films are discussed in detail. Particular attention is paid to the changes induced by photogeneration of excess free carriers. Previous models which have been proposed to account for such effects are classified and criticized. An alternative explanation, which is based on the unique electronic structure of hydrogenated amorphous silicon, is proposed and analyzed. In this model, no new defects are created by the light, but rather the photo-induced effects follow from a metastable trapping of the excess free carriers at charged spinless defects which are present at equilibrium.

  11. Hydrogen-rich saline attenuates chemotherapy-induced ovarian injury via regulation of oxidative stress

    PubMed Central

    MENG, XIAOYIN; CHEN, HONGGUANG; WANG, GUOLIN; YU, YONGHAO; XIE, KELIANG

    2015-01-01

    Hydrogen has been reported to exert a therapeutic effect in several diseases due to its antioxidative, anti-inflammatory and anti-apoptotic properties. The aim of the present study was to investigate whether hydrogen-rich saline treatment could attenuate ovarian damage induced by cisplatin. A total of 240 adult, virgin, female Sprague Dawley rats, weighing 180–220 g, were randomly divided into four groups (n=60 per group): Control (Con), control + hydrogen-rich saline (Con + H2), cisplatin-induced ovarian injury (OI) and cisplatin-induced ovarian injury + hydrogen-rich saline (OI + H2). Cisplatin was diluted in saline immediately before use. In the OI and OI + H2 groups, the rats were administered a dose of cisplatin on the 1st and 7th days. The rats in the Con + H2 and OI + H2 groups were intraperitoneally injected with hydrogen-rich saline (10ml/kg body weight) once a day over a 2-week period. On the 14th, 28th and 42nd days (T1, T2 and T3) after the cisplatin injection, femoral vein blood was collected. At the end of the experiment, ovarian homogenates were prepared, and the samples were used for estrogen (E2), follicle-stimulating hormone (FSH), superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) examination. In addition, rats (n=10 per group) were sacrificed for bilateral ovary removal; one was fixed in formalin for follicle-counting analysis, while the other was used for nuclear factor erythroid 2-related factor 2 (Nrf2) detection by western blotting. Hydrogen-rich saline attenuated the FSH release, elevated the level of E2, improved the development of follicles, and reduced the damage to the ovarian cortex at T1, T2 and T3 in the OI + H2 rats. Cisplatin induced oxidative stress by increasing the levels of oxidation products and attenuating the activity of antioxidant enzyme, which could be reversed by hydrogen-rich saline treatment. Furthermore, hydrogen-rich saline regulated the Nrf2 protein expression in rats with ovarian damage. In

  12. Mushroom extract protects against hydrogen peroxide-induced toxicity in hepatic and neuronal human cultured cells.

    PubMed

    Guizani, Nejib; Waly, Mostafa I

    2012-11-15

    Hydrogen peroxide is an oxidative stress agent that is associated with depletion of intracellular glutathione and inhibition of antioxidant enzymes in different cell lines. Consumption of antioxidant-rich foods reduces cellular oxidative stress and its related health problems. This study aimed to assess the antioxidant properties of mushroom, Agaricus bisporous cultivar extract, against hydrogen peroxide induced oxidative stress in cultured human hepatic (HepG2) and neuronal (SH-SY5Y) cells. In this study, hydrogen peroxide caused significant oxidative stress in HepG2 and SH-SY5Y cells as demonstrated by glutathione depletion, impairment of total antioxidant capacity and inhibition of antioxidant enzymes (glutathione peroxidase, catalase and superoxide dismutase). Agaricusbisporous extract ameliorated the observed hydrogen peroxide-induced oxidative cellular insult as indicated by restoring the activity of glutathione and the assayed antioxidant enzymes to control levels. The results suggest that mushroom extract as antioxidant properties and protects against the oxidative stress induced by hydrogen peroxide-in cultured human hepatic and neuronal cells. PMID:24261122

  13. Quantitative observations of hydrogen-induced, slow crack growth in a low alloy steel

    NASA Technical Reports Server (NTRS)

    Nelson, H. G.; Williams, D. P.

    1973-01-01

    Hydrogen-induced slow crack growth, da/dt, was studied in AISI-SAE 4130 low alloy steel in gaseous hydrogen and distilled water environments as a function of applied stress intensity, K, at various temperatures, hydrogen pressures, and alloy strength levels. At low values of K, da/dt was found to exhibit a strong exponential K dependence (Stage 1 growth) in both hydrogen and water. At intermediate values of K, da/dt exhibited a small but finite K dependence (Stage 2), with the Stage 2 slope being greater in hydrogen than in water. In hydrogen, at a constant K, (da/dt) sub 2 varied inversely with alloy strength level and varied essentially in the same complex manner with temperature and hydrogen pressure as noted previously. The results of this study provide support for most of the qualitative predictions of the lattice decohesion theory as recently modified by Oriani. The lack of quantitative agreement between data and theory and the inability of theory to explain the observed pressure dependence of slow crack growth are mentioned and possible rationalizations to account for these differences are presented.

  14. Hydrogen Induced Stress Cracking of Materials Under Cathodic Protection

    NASA Astrophysics Data System (ADS)

    LaCoursiere, Marissa P.

    Hydrogen embrittlement of AISI 4340, InconelRTM 718, Alloy 686 and Alloy 59 was studied using slow strain rate tests of both smooth and notched cylindrical specimens. Two heat treatments of the AISI 4340 material were used as a standard for two levels of yield strength: 1479 MPa, and 1140 MPa. A subset of the 1140 MPa AISI 4340 material also underwent plasma nitriding. The InconelRTM 718 material was hardened following AMS 5663M to obtain a yield strength of 1091 MPa. The Alloy 686 material was obtained in the Grade 3 condition with a minimum yield strength of 1034 MPa. The Alloy 59 material was obtained with a cold worked condition similar to the Alloy 686 and with a minimum yield strength of 1034 MPa. Ninety-nine specimens were tested, including smooth cylindrical tensile test specimens and smooth and notched cylindrical slow strain rate tensile tests specimens. Testing included specimens that had been precharged with hydrogen in 3.5% NaCl at 50°C for 2 weeks (AISI 4340), 4 weeks (InconelRTM 718, Alloy 686, Alloy 59) and 16 weeks (InconelRTM 718, Alloy 686, Alloy 59) using a potentiostat to deliver a cathodic potential of -1100 mV vs. SCE. The strain rate over the gauge section for the smooth specimens and in the notch root for the notched specimens was 1 x 10-6 /s. It was found that the AISI 4340 was highly embrittled in simulated ocean water when compared to the nickel based superalloys. The higher strength AISI 4340 showed much more embrittlement, as expected. Testing of the AISI 4340 at both 20°C and 4°C showed that the temperature had no effect on the hydrogen embrittlement response. The InconelRTM 718 was highly embrittled when precharged, although it only showed low levels of embrittlement when unprecharged. Both the Alloy 686 and Alloy 59 showed minimal embrittlement in all conditions. Therefore, for the materials examined, the use of Alloy 686 and Alloy 59 for components in salt water environments when under a cathodic potential of -1100 mV vs. SCE is

  15. Molecular Hydrogen Reduces LPS-Induced Neuroinflammation and Promotes Recovery from Sickness Behaviour in Mice

    PubMed Central

    Spulber, Stefan; Edoff, Karin; Hong, Lie; Morisawa, Shinkatsu; Shirahata, Sanetaka; Ceccatelli, Sandra

    2012-01-01

    Molecular hydrogen has been shown to have neuroprotective effects in mouse models of acute neurodegeneration. The effect was suggested to be mediated by its free-radical scavenger properties. However, it has been shown recently that molecular hydrogen alters gene expression and protein phosphorylation. The aim of this study was to test whether chronic ad libitum consumption of molecular hydrogen-enriched electrochemically reduced water (H-ERW) improves the outcome of lipopolysaccharide (LPS)-induced neuroinflammation. Seven days after the initiation of H-ERW treatment, C57Bl/6 mice received a single injection of LPS (0.33 mg/kg i.p.) or an equivalent volume of vehicle. The LPS-induced sickness behaviour was assessed 2 h after the injection, and recovery was assessed by monitoring the spontaneous locomotor activity in the homecage for 72 h after the administration of LPS. The mice were killed in the acute or recovery phase, and the expression of pro- and antiinflammatory cytokines in the hippocampus was assessed by real-time PCR. We found that molecular hydrogen reduces the LPS-induced sickness behaviour and promotes recovery. These effects are associated with a shift towards anti-inflammatory gene expression profile at baseline (downregulation of TNF- α and upregulation of IL-10). In addition, molecular hydrogen increases the amplitude, but shortens the duration and promotes the extinction of neuroinflammation. Consistently, molecular hydrogen modulates the activation and gene expression in a similar fashion in immortalized murine microglia (BV-2 cell line), suggesting that the effects observed in vivo may involve the modulation of microglial activation. Taken together, our data point to the regulation of cytokine expression being an additional critical mechanism underlying the beneficial effects of molecular hydrogen. PMID:22860058

  16. Laser-induced plasma spectroscopy of hydrogen Balmer series in laboratory air.

    PubMed

    Swafford, Lauren D; Parigger, Christian G

    2014-01-01

    Stark-broadened emission profiles for the hydrogen alpha and beta Balmer series lines in plasma are measured to characterize electron density and temperature. Plasma is generated using a typical laser-induced breakdown spectroscopy (LIBS) arrangement that employs a focused Q-switched neodymium-doped yttrium aluminum garnet (Nd : YAG) laser, operating at the fundamental wavelength of 1064 nm. The temporal evolution of the hydrogen Balmer series lines is explored using LIBS. Spectra from the plasma are measured following laser-induced optical breakdown in laboratory air. The electron density is primarily inferred from the Stark-broadened experimental data collected at various time delays. Due to the presence of nitrogen and oxygen in air, the hydrogen alpha and beta lines become clearly discernible from background radiation for time delays of 0.4 and 1.4 μs, respectively. PMID:25226255

  17. Hydrogenation-induced atomic stripes on the 2 H -MoS2 surface

    NASA Astrophysics Data System (ADS)

    Han, Sang Wook; Yun, Won Seok; Lee, J. D.; Hwang, Y. H.; Baik, J.; Shin, H. J.; Lee, Wang G.; Park, Young S.; Kim, Kwang S.

    2015-12-01

    We report that the hydrogenation of a single crystal 2 H -MoS2 induces a novel-intermediate phase between 2H and 1T phases on its surface, i.e., the large-area, uniform, robust, and surface array of atomic stripes through the intralayer atomic-plane gliding. The total energy calculations confirm that the hydrogenation-induced atomic stripes are energetically most stable on the MoS2 surface between the semiconducting 2H and metallic 1T phase. Furthermore, the electronic states associated with the hydrogen ions, which is bonded to sulfur anions on both sides of the MoS2 surface layer, appear in the vicinity of the Fermi level (EF) and reduces the band gap. This is promising in developing the monolayer-based field-effect transistor or vanishing the Schottky barrier for practical applications.

  18. Structure dependent hydrogen induced etching features of graphene crystals

    NASA Astrophysics Data System (ADS)

    Thangaraja, Amutha; Shinde, Sachin M.; Kalita, Golap; Papon, Remi; Sharma, Subash; Vishwakarma, Riteshkumar; Sharma, Kamal P.; Tanemura, Masaki

    2015-06-01

    H2 induced etching of graphene is of significant interest to understand graphene growth process as well as to fabricate nanoribbons and various other structures. Here, we demonstrate the structure dependent H2 induced etching behavior of graphene crystals. We synthesized graphene crystals on electro-polished Cu foil by an atmospheric pressure chemical vapor deposition process, where some of the crystals showed hexagonal shaped snowflake-dendritic morphology. Significant differences in H2 induced etching behavior were observed for the snowflake-dendritic and regular graphene crystals by annealing in a gas mixture of H2 and Ar. The regular graphene crystals were etched anisotropically creating hexagonal holes with pronounced edges, while etching of all the dendritic crystals occurred from the branches of lobs creating symmetrical fractal structures. The etching behavior provides important clue of graphene nucleation and growth as well as their selective etching to fabricate well-defined structures for nanoelectronics.

  19. Shock-induced polarized hydrogen emission lines in omicron Ceti

    NASA Astrophysics Data System (ADS)

    Fabas, N.; Lèbre, A.; Gillet, D.

    2012-05-01

    Hydrogen emission lines in Mira variable stars are a well-known phenomenon whose origin has been established as related to the propagation of radiative hypersonic shock waves throughout the stellar atmosphere. A polarimetric observation by McLean and Coyne [1] made on omicron Ceti (the prototype of Mira variable stars) has revealed the existence of linear polarization signatures associated with Balmer emission lines. However, the polarizing mechanism has never been properly explained so far. The study presented here is the first of its kind since it displays the results of a spectropolarimetric survey of omicron Ceti in the Balmer lines. The survey was made with the NARVAL spectropolarimeter (Telescope Bernard Lyot, France) in full Stokes mode. We did not just confirm the appearance of this polarization but we also and above all showed the temporal variation of the linear polarization in the lines. We conclude that the polarizing mechanism is definitely intrinsic to the shock wave propagation throughout the stellar atmosphere of Mira and give some leads about the nature of this mechanism.

  20. Pneumococcal Hydrogen Peroxide–Induced Stress Signaling Regulates Inflammatory Genes

    PubMed Central

    Loose, Maria; Hudel, Martina; Zimmer, Klaus-Peter; Garcia, Ernesto; Hammerschmidt, Sven; Lucas, Rudolf; Chakraborty, Trinad; Pillich, Helena

    2015-01-01

    Microbial infections can induce aberrant responses in cellular stress pathways, leading to translational attenuation, metabolic restriction, and activation of oxidative stress, with detrimental effects on cell survival. Here we show that infection of human airway epithelial cells with Streptococcus pneumoniae leads to induction of endoplasmic reticulum (ER) and oxidative stress, activation of mitogen-associated protein kinase (MAPK) signaling pathways, and regulation of their respective target genes. We identify pneumococcal H2O2 as the causative agent for these responses, as both catalase-treated and pyruvate oxidase-deficient bacteria lacked these activities. Pneumococcal H2O2 induced nuclear NF-κB translocation and transcription of proinflammatory cytokines. Inhibition of translational arrest and ER stress by salubrinal or of MAPK signaling pathways attenuate cytokine transcription. These results provide strong evidence for the notion that inhibition of translation is an important host pathway in monitoring harmful pathogen-associated activities, thereby enabling differentiation between pathogenic and nonpathogenic bacteria. PMID:25183769

  1. Hydrogen Balmer Series Self-Absorption Measurement in Laser-Induced Air Plasma

    NASA Astrophysics Data System (ADS)

    Gautam, Ghaneshwar; Parigger, Christian

    2015-05-01

    In experimental studies of laser-induced plasma, we use focused Nd:YAG laser radiation to generate optical breakdown in laboratory air. A Czerny-Turner type spectrometer and an ICCD camera are utilized to record spatially and temporally resolved spectra. Time-resolved spectroscopy methods are employed to record plasma dynamics for various time delays in the range of 0.300 microsecond to typically 10 microsecond after plasma initiation. Early plasma emission spectra reveal hydrogen alpha and ionized nitrogen lines for time delays larger than 0.3 microsecond, the hydrogen beta line emerges from the free-electron background radiation later in the plasma decay for time delays in excess of 1 microsecond. The self-absorption analyses include comparisons of recorded data without and with the use of a doubling mirror. The extent of self-absorption of the hydrogen Balmer series is investigated for various time delays from plasma generation. There are indications of self-absorption of hydrogen alpha by comparison with ionized nitrogen lines at a time delay of 0.3 microsecond. For subsequent time delays, self-absorption effects on line-widths are hardly noticeable, despite the fact of the apparent line-shape distortions. Of interest are comparisons of inferred electron densities from hydrogen alpha and hydrogen beta lines as the plasma decays, including assessments of spatial variation of electron density.

  2. Hydrogen-induced defects in austenite and ferrite of a duplex steel.

    PubMed

    Głowacka, A; Swiatnicki, W A; Jezierska, E

    2006-09-01

    The influence of hydrogen on the microstructure of two types of austeno-ferritic duplex stainless steel (Cr26-Ni6 model steel and Cr22-Ni5-Mo3 commercial steel), each of them after two thermo-mechanical treatments, was investigated. The aim of this study was to reveal microstructural changes appearing during the hydrogen charging and particularly to clarify the occurrence of phase transformations induced by hydrogen. The specific microstructural changes in the ferrite (alpha) and austenite (gamma) of both types of steel were observed. A strong increase of dislocation density was noticed in the alpha phase. In the case of model steel, longer hydrogen charging times led to significant ferrite grain refinement. In the commercial steel, the strips and twin plates appeared in the ferrite after hydrogenation. The appearance of stacking faults was revealed in the gamma phase. The martensite laths appeared in austenite after longer hydrogenation times. It seems that the microstructural changes gave rise to the formation of microcracks in the alpha and gamma phases as well as on the alpha/gamma interphase boundaries. PMID:17059551

  3. Hydrogen-Induced Cracking Assessment in Pipeline Steels Through Permeation and Crystallographic Texture Measurements

    NASA Astrophysics Data System (ADS)

    Mohtadi-Bonab, M. A.; Karimdadashi, R.; Eskandari, M.; Szpunar, J. A.

    2016-05-01

    Electrochemical hydrogen charging and permeation techniques were used to characterize hydrogen distribution, trapping, and diffusion in X60 and X60 sour service (X60SS) pipeline steels. The results obtained contribute to better understanding of hydrogen-induced cracking (HIC). SEM observations illustrated that all HIC cracks were formed at the center of cross section in the X60 steel after 3-h hydrogen charging and length of cracks increased with charging time. No HIC cracks were recorded at the cross section of X60SS steel after the same charging for different durations. Hydrogen permeation tests showed that the density of reversible hydrogen traps was lower at the center of cross section in the X60SS steel compared to the X60 one, and this is considered as one of the main reasons for high resistance of X60SS steel to HIC. EBSD orientation imaging results proved that the accumulation of <111>||ND-oriented grains at the center of the cross section in the X60SS steel was high. This is also considered as another reason for higher resistance of this steel to HIC. Finally, the center segregation zone with higher hardness value in the X60 steel was more pronounced than in the X60SS steel which made the X60 steel susceptible to HIC cracking.

  4. Hydrogen-rich saline ameliorates the severity of L-arginine-induced acute pancreatitis in rats

    SciTech Connect

    Chen, Han; Sun, Yan Ping; Li, Yang; Liu, Wen Wu; Xiang, Hong Gang; Fan, Lie Ying; Sun, Qiang; Xu, Xin Yun; Cai, Jian Mei; Ruan, Can Ping; Su, Ning; Yan, Rong Lin; Sun, Xue Jun; Wang, Qiang

    2010-03-05

    Molecular hydrogen, which reacts with the hydroxyl radical, has been considered as a novel antioxidant. Here, we evaluated the protective effects of hydrogen-rich saline on the L-arginine (L-Arg)-induced acute pancreatitis (AP). AP was induced in Sprague-Dawley rats by giving two intraperitoneal injections of L-Arg, each at concentrations of 250 mg/100 g body weight, with an interval of 1 h. Hydrogen-rich saline (>0.6 mM, 6 ml/kg) or saline (6 ml/kg) was administered, respectively, via tail vein 15 min after each L-Arg administration. Severity of AP was assessed by analysis of serum amylase activity, pancreatic water content and histology. Samples of pancreas were taken for measuring malondialdehyde and myeloperoxidase. Apoptosis in pancreatic acinar cell was determined with terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling technique (TUNEL). Expression of proliferating cell nuclear antigen (PCNA) and nuclear factor kappa B (NF-{kappa}B) were detected with immunohistochemistry. Hydrogen-rich saline treatment significantly attenuated the severity of L-Arg-induced AP by ameliorating the increased serum amylase activity, inhibiting neutrophil infiltration, lipid oxidation and pancreatic tissue edema. Moreover, hydrogen-rich saline treatment could promote acinar cell proliferation, inhibit apoptosis and NF-{kappa}B activation. These results indicate that hydrogen treatment has a protective effect against AP, and the effect is possibly due to its ability to inhibit oxidative stress, apoptosis, NF-{kappa}B activation and to promote acinar cell proliferation.

  5. Toxin-induced pore formation is hindered by intermolecular hydrogen bonding in sphingomyelin bilayers.

    PubMed

    García-Linares, Sara; Palacios-Ortega, Juan; Yasuda, Tomokazu; Åstrand, Mia; Gavilanes, José G; Martínez-del-Pozo, Álvaro; Slotte, J Peter

    2016-06-01

    Sticholysin I and II (StnI and StnII) are pore-forming toxins that use sphingomyelin (SM) for membrane binding. We examined how hydrogen bonding among membrane SMs affected the StnI- and StnII-induced pore formation process, resulting in bilayer permeabilization. We compared toxin-induced permeabilization in bilayers containing either SM or dihydro-SM (lacking the trans Δ(4) double bond of the long-chain base), since their hydrogen-bonding properties are known to differ greatly. We observed that whereas both StnI and StnII formed pores in unilamellar vesicles containing palmitoyl-SM or oleoyl-SM, the toxins failed to similarly form pores in vesicles prepared from dihydro-PSM or dihydro-OSM. In supported bilayers containing OSM, StnII bound efficiently, as determined by surface plasmon resonance. However, StnII binding to supported bilayers prepared from dihydro-OSM was very low under similar experimental conditions. The association of the positively charged StnII (at pH7.0) with unilamellar vesicles prepared from OSM led to a concentration-dependent increase in vesicle charge, as determined from zeta-potential measurements. With dihydro-OSM vesicles, a similar response was not observed. Benzyl alcohol, which is a small hydrogen-bonding compound with affinity to lipid bilayer interfaces, strongly facilitated StnII-induced pore formation in dihydro-OSM bilayers, suggesting that hydrogen bonding in the interfacial region originally prevented StnII from membrane binding and pore formation. We conclude that interfacial hydrogen bonding was able to affect the membrane association of StnI- and StnII, and hence their pore forming capacity. Our results suggest that other types of protein interactions in bilayers may also be affected by hydrogen-bonding origination from SMs. PMID:26975250

  6. Prompt repair of hydrogen peroxide-induced DNA lesions prevents catastrophic chromosomal fragmentation.

    PubMed

    Mahaseth, Tulip; Kuzminov, Andrei

    2016-05-01

    Iron-dependent oxidative DNA damage in vivo by hydrogen peroxide (H2O2, HP) induces copious single-strand(ss)-breaks and base modifications. HP also causes infrequent double-strand DNA breaks, whose relationship to the cell killing is unclear. Since hydrogen peroxide only fragments chromosomes in growing cells, these double-strand breaks were thought to represent replication forks collapsed at direct or excision ss-breaks and to be fully reparable. We have recently reported that hydrogen peroxide kills Escherichia coli by inducing catastrophic chromosome fragmentation, while cyanide (CN) potentiates both the killing and fragmentation. Remarkably, the extreme density of CN+HP-induced chromosomal double-strand breaks makes involvement of replication forks unlikely. Here we show that this massive fragmentation is further amplified by inactivation of ss-break repair or base-excision repair, suggesting that unrepaired primary DNA lesions are directly converted into double-strand breaks. Indeed, blocking DNA replication lowers CN+HP-induced fragmentation only ∼2-fold, without affecting the survival. Once cyanide is removed, recombinational repair in E. coli can mend several double-strand breaks, but cannot mend ∼100 breaks spread over the entire chromosome. Therefore, double-strand breaks induced by oxidative damage happen at the sites of unrepaired primary one-strand DNA lesions, are independent of replication and are highly lethal, supporting the model of clustered ss-breaks at the sites of stable DNA-iron complexes. PMID:27078578

  7. Novel Atomic Rearrangement in the Pb Monolayer on Si(111) surfaces Induced by Atomic Hydrogen Adsorption.

    NASA Astrophysics Data System (ADS)

    Fang, Chung-Kai; Hwang, Ing-Shouh; Chang, Shih-Hsin; Chen, Lih-Juann; Tsong, Tien-Tzou

    2006-03-01

    Using a scanning tunneling microscopy, we have observed interesting hydrogen-adsorption induced atomic rearrangements on Pb/Si(111) system at room temperature. A hexagonal ring-like pattern with decaying intensity is formed around the hydrogen-induced point defect. Moreover, interference-like patterns can be seen in the region among the H-induced point defects. The detailed pattern depends on the relative position of defects. With certain relative positions, a new superstructure of hexagonal cells can be seen. The phase boundaries are found to either enhance or suppress the formation of the hexagonal ring-like pattern. We believe that the intricate interplay between atomic displacement and electronic structure causes the formation of the patterns. [Ref] : I. S. Hwang, S. H. Chang, C. K. Fang, L. J. Chen, and T. T. Tsong, Phys. Rev. Lett. 94, 045505 (2005)

  8. Moisture-Induced Spallation and Interfacial Hydrogen Embrittlement of Alumina Scales

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2005-01-01

    Thermal expansion mismatch stresses and interfacial sulfur activity are the major factors producing primary Al2O3 scale spallation on high temperature alloys. However, moisture-induced delayed spallation appears as a secondary, but often dramatic, illustration of an additional mechanistic detail. A historical review of delayed failure of alumina scales and TBC s on superalloys is presented herein. Similarities with metallic phenomena suggest that hydrogen embrittlement from ambient humidity, resulting from the reaction Al+3H2O=Al(OH)3+3H(+)+3e(-), is the operative mechanism. This proposal was tested by standard cathodic hydrogen charging in 1N H2SO4, applied to Rene N5 pre-oxidized at 1150 C for 1000 1-hr cycles, and monitored by weight change, induced current, and microstructure. Here cathodic polarization at -2.0 V abruptly stripped mature Al2O3 scales at the oxide-metal interface. Anodic polarization at +2.0 V, however, produced alloy dissolution. Finally, with no applied voltage, the electrolyte alone produced neither scale spallation nor alloy dissolution. These experiments thus highlight the detrimental effects of hydrogen charging on alumina scale adhesion. It is proposed that interfacial hydrogen embrittlement is produced by moist air and is the root cause of both moisture-induced, delayed scale spallation and desktop TBC failures.

  9. Reduction of hydrogen peroxide-induced erythrocyte damage by Carica papaya leaf extract

    PubMed Central

    Okoko, Tebekeme; Ere, Diepreye

    2012-01-01

    Objective To investigate the in vitro antioxidant potential of Carica papaya (C. papaya) leaf extract and its effect on hydrogen peroxide-induced erythrocyte damage assessed by haemolysis and lipid peroxidation. Methods Hydroxyl radical scavenging activities, hydrogen ion scavenging activity, metal chelating activity, and the ferrous ion reducing ability were assessed as antioxidant indices. In the other experiment, human erythrocytes were treated with hydrogen peroxide to induce erythrocyte damage. The extract (at various concentrations) was subsequently incubated with the erythrocytes and later analysed for haemolysis and lipid peroxidation as indices for erythrocyte damage. Results Preliminary investigation of the extract showed that the leaf possessed significant antioxidant and free radical scavenging abilities using in vitro models in a concentration dependent manner (P<0.05). The extract also reduced hydrogen peroxide induced erythrocyte haemolysis and lipid peroxidation significantly when compared with ascorbic acid (P<0.05). The IC50 values were 7.33 mg/mL and 1.58 mg/mL for inhibition of haemolysis and lipid peroxidation, respectively. In all cases, ascorbic acid (the reference antioxidant) possessed higher activity than the extract. Conclusions The findings show that C. papaya leaves possess significant bioactive potential which is attributed to the phytochemicals which act in synergy. Thus, the leaves can be exploited for pharmaceutical and nutritional purposes. PMID:23569948

  10. Moisture-Induced Delayed Spallation and Interfacial Hydrogen Embrittlement of Alumina Scales

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2008-01-01

    While interfacial sulfur is the primary chemical factor affecting Al2O3 scale adhesion, moisture-induced delayed spallation appears as a secondary, but impressive, mechanistic detail. Similarities with bulk metallic phenomena suggest that hydrogen embrittlement from ambient humidity, resulting from the reaction Al(sub alloy)+3(H2O)(sub air) = Al(OH)(-) (sub 3) +3H(+) may be the operative mechanism. This proposal was tested on pre-oxidized Rene N5 by standard cathodic hydrogen charging in 1N H2SO4, as monitored by weight change, induced current, and microstructure. Cathodic polarization at -2.0 V abruptly stripped mature Al2O3 scales at the oxide-metal interface. Anodic polarization at +2.0 V, however, produced alloy dissolution. Finally, with no applied voltage, the acid electrolyte produced neither scale spallation nor alloy dissolution. Thus, hydrogen charging was detrimental to alumina scale adhesion. Moisture-induced interfacial hydrogen embrittlement is concluded to be the cause of delayed scale spallation and desktop thermal barrier coating failures.

  11. Moisture-induced delayed spallation and interfacial hydrogen embrittlement of alumina scales

    NASA Astrophysics Data System (ADS)

    Smialek, James L.

    2006-01-01

    While interfacial sulfuris the primary chemical factor affecting Al2O3 scale adhesion, moisture-induced delayed spallation appears as a secondary, but impressive, mechanistic detail. Similarities with bulk metallic phenomena suggest that hydrogen embrittlement from ambient humidity, resulting from the reaction Alalloy+3(H2O)air=Al(OH)- 3+3H+ may be the operative mechanism. This proposal was tested on pre-oxidized René N5 by standard cathodic hydrogen charging in 1N H2SO4, as monitored by weight change, induced current, and microstructure. Cathodic polarization at -2.0 V abruptly stripped mature Al2O3 scales at the oxide-metal interface. Anodic polarization at +2.0V, however, produced alloy dissolution. Finally, with no applied voltage, the acid electrolyte produced neither scale spallation nor alloy dissolution. Thus, hydrogen charging was detrimental to alumina scale adhesion. Moisture-induced interfacial hydrogen embrittlement is concluded to be the cause of delayed scale spallation and desktop thermal barrier coating failures.

  12. Purified Si film formation from metallurgical-grade Si by hydrogen plasma induced chemical transport

    NASA Astrophysics Data System (ADS)

    Ohmi, Hiromasa; Goto, Akihiro; Kamada, Daiki; Hamaoka, Yoshinori; Kakiuchi, Hiroaki; Yasutake, Kiyoshi

    2009-11-01

    Purified Si film is prepared directly from metallurgical-grade Si (MG-Si) by using hydrogen plasma induced chemical transport at subatmospheric pressure. The purification mechanism is based on the different hydrogenation behaviors of the various impurity elements in MG-Si. The prepared Si films clearly had fewer typical metal impurities (Fe, Al, Ti, Cr, Mn, etc.) than those in the MG-Si. In particular, the Fe concentration was drastically reduced from 6900 mass ppm to less than 0.1 mass ppm by one time chemical transport. Furthermore, metal impurity concentrations were further reduced by repeating chemical transport deposition.

  13. Autyomatic Differentiation of C/C++

    SciTech Connect

    Beata Winnicka, Boyana Norris

    2005-11-14

    Automatic differentiation (AD) tools mechanize the process of developing code for the computation of derivatives. AD avoids the inaccuracies inherent in numerical approximations. Furthermore, sophisticated AD algoirthms can often produce c ode that is more reliable and more efficient than code written by an expert programmer. ADIC is the first and only AD tool for C and C++ based on compiler technology. This compiler foundation makes possible analyses and optimizations not available in toos based on operator overloading. The earliest implementations of ADIC included support for ANSI C applications, ADIC 2.0 lverages EDG, a commercial C/C++ parser, to provide robust C++ differentiation support. Modern AD tools, including ADIC are implemented in a modular way, aiming to isolate language-dependent program analyses and semantic transformations. The component design leads to much higher implementation quality because the different components can be implemented by experts in each of the different domains involved. For example, a compiler expert can focus on parsing, canonicalizing, and unparising C and C++, while an expert in graph theory and algorithms can produce new differentiation modules without having to worry about the complexity of parsing and generating C++ code. Thsi separation of concerns was achieved through the use of language-independent program analysis interfaces (in collaboration with researcgers at Rice University) and a language-independent XML representation of the computational portions of programs (XAIF). In addition to improved robustness and faster development times, this design naturally enables the reuse of program analysis algorithms and differentiation modules in compiler-based AD tools for other languages. In fact, the analysis and differention components are used in both ADIC and the Open AD Fortran front-end (based on Rice's Open64 compiler.

  14. Autyomatic Differentiation of C/C++

    Energy Science and Technology Software Center (ESTSC)

    2005-11-14

    Automatic differentiation (AD) tools mechanize the process of developing code for the computation of derivatives. AD avoids the inaccuracies inherent in numerical approximations. Furthermore, sophisticated AD algoirthms can often produce c ode that is more reliable and more efficient than code written by an expert programmer. ADIC is the first and only AD tool for C and C++ based on compiler technology. This compiler foundation makes possible analyses and optimizations not available in toos basedmore » on operator overloading. The earliest implementations of ADIC included support for ANSI C applications, ADIC 2.0 lverages EDG, a commercial C/C++ parser, to provide robust C++ differentiation support. Modern AD tools, including ADIC are implemented in a modular way, aiming to isolate language-dependent program analyses and semantic transformations. The component design leads to much higher implementation quality because the different components can be implemented by experts in each of the different domains involved. For example, a compiler expert can focus on parsing, canonicalizing, and unparising C and C++, while an expert in graph theory and algorithms can produce new differentiation modules without having to worry about the complexity of parsing and generating C++ code. Thsi separation of concerns was achieved through the use of language-independent program analysis interfaces (in collaboration with researcgers at Rice University) and a language-independent XML representation of the computational portions of programs (XAIF). In addition to improved robustness and faster development times, this design naturally enables the reuse of program analysis algorithms and differentiation modules in compiler-based AD tools for other languages. In fact, the analysis and differention components are used in both ADIC and the Open AD Fortran front-end (based on Rice's Open64 compiler.« less

  15. Fractographic analysis of gaseous hydrogen induced cracking in 18Ni maraging steel

    NASA Technical Reports Server (NTRS)

    Gangloff, R. P.; Wei, R. P.

    1978-01-01

    Electron microscope fractographic analysis supplemented an extensive study of the kinetics of gaseous hydrogen assisted cracking in 18Ni maraging steel. Temperature determined the crack path morphology in each steel which, in turn, was directly related to the temperature dependence of the crack growth rate. Crack growth in the low temperature regime proceeded along prior austenite grain boundaries. Increasing the temperature above a critical value produced a continuously increasing proportion of transgranular quasi-cleavage associated with lath martensite boundaries. The amount of transgranular cracking was qualitatively correlated with the degree of temperature-induced deviation from Arrhenius behavior. Fractographic observations are interpreted in terms of hypothesized mechanisms for gaseous hydrogen embrittlement. It is concluded that hydrogen segregation to prior austenite and lath martensite boundaries must be considered as a significant factor in developing mechanisms for gaseous embrittlement of high strength steels.

  16. Hydrogen peroxide induces lysosomal protease alterations in PC12 cells.

    PubMed

    Lee, Daniel C; Mason, Ceceile W; Goodman, Carl B; Holder, Maurice S; Kirksey, Otis W; Womble, Tracy A; Severs, Walter B; Palm, Donald E

    2007-09-01

    Alterations in lysosomal proteases have been implicated in many neurodegenerative diseases. The current study demonstrates a concentration-dependent decrease in PC12 cell viability and transient changes in cystatin C (CYSC), cathepsin B (CATB), cathepsin D (CATD) and caspase-3 following exposure to H2O2. Furthermore, activation of CATD occurred following exposure to H2O2 and cysteine protease suppression, while inhibition of CATD with pepstatin A significantly improved cell viability. Additionally, significant PARP cleavage, suggestive of caspase-3-like activity, was observed following H2O2 exposure, while inhibition of caspase-3 significantly increased cell viability compared to H2O2 administration alone. Collectively, our data suggest that H2O2 induced cell death is regulated at least in part by caspase-3 and CATD. Furthermore, cysteine protease suppression increases CATD expression and activity. These studies provide insight for alternate pathways and potential therapeutic targets of cell death associated with oxidative stress and lysosomal protease alterations. PMID:17440810

  17. Modeling Hydrogen-Induced Cracking of Titanium Alloys in Nuclear Waste Repository Environments

    SciTech Connect

    F. Hua; K. Mon; P. Pasupathi; G. Gordon

    2004-09-08

    This paper reviews the current understanding of hydrogen-induced cracking (HIC) of Ti Grade 7 and other relevant titanium alloys within the context of the current waste package design for the repository environmental conditions anticipated within the Yucca Mountain repository. The review concentrates on corrosion processes possible in the aqueous environments expected within this site. A brief background discussion of the relevant properties of titanium alloys, the hydrogen absorption process, and the properties of passive film on titanium alloys is presented as the basis for the subsequent discussion of model developments. The key corrosion processes that could occur are addressed individually. Subsequently, the expected corrosion performance of these alloys under the specific environmental conditions anticipated at Yucca Mountain is considered. It can be concluded that, based on the conservative modeling approaches adopted, hydrogen-induced cracking of titanium alloys will not occur under nuclear waste repository conditions since there will not be sufficient hydrogen in the alloy after 10,000 years of emplacement.

  18. Collision-induced vibrational absorption in molecular hydrogens

    SciTech Connect

    Reddy, S.P.

    1993-05-01

    Collision induced absorption (CIA) spectra of the first overtone bands of H{sub 2}, D{sub 2}, and HD have been recorded for gas densities up to 500 amagat at 77-300 K. Analyses of these spectra reveal that (1) contrary to the observations in the fundamental bands, the contribution of the isotropic overlap interaction to the first overtone bands is negligible, (2) the squares of the matrix elements B{sub 32}(R)/ea{sub o} [= {lambda}{sub 32} exp(-(R-{sigma})/{rho}{sub 32}) + 3 (R/a{sub o}){sup -4}] where the subscripts 3 and 2 represent L and {lambda}, respectively, account for the absorption intensity of the bands and (3) the mixed term, 2,3 {lambda}{sub 32} exp (-(R-{sigma})/{rho}{sub 32}) <{vert_bar}Q{vert_bar}> <{alpha}> (R/a){sup -4}, gives a negative contribution. In the CIA spectra of H{sub 2} in its second overtone region recorded at 77, 201 and 298 K for gas densities up to 1000 amagat, a dip in the Q branch with characteristic Q{sub p} and Q{sub R} components has been observed. The analysis of the absorption profiles reveals, in addition to the previously known effects, the occurrence of the triple-collision transitions of H{sub 2} of the type Q{sub 1}(J) + Q{sub 1}(J) + Q{sub 1}(J) for the first time. From the profile analysis the absorption coefficient of these transitions is obtained.

  19. Hydrogen-induced crack nucleation in tensile testing of EUROFER 97 and ODS-EUROFER steels at elevated temperature

    NASA Astrophysics Data System (ADS)

    Malitckii, Evgenii; Yagodzinskyy, Yuriy; Hänninen, Hannu

    2015-11-01

    The effect of continuous hydrogen charging on tensile properties of EUROFER 97 and ODS-EUROFER steels was studied at room and elevated temperatures of 100 °C and 300 °C. The hydrogen effect decreases with increase of the temperature for ODS-EUROFER steel, while susceptibility to hydrogen of EUROFER 97 steel remains approximately the same at all testing temperatures. Continuous hydrogen charging results in a reduction of the grain boundary cohesion of the EUROFER 97 and ODS-EUROFER steels tested at RT. With increase of the testing temperature up to 300 °C EUROFER 97 steel exhibits relatively high amount of micro-cracks which agglomerate in sub-micrometer size cracks, while the hydrogen-induced intergranular crack nucleation in ODS-EUROFER steel is effectively suppressed. Possible mechanism of the hydrogen-induced crack nucleation and propagation under applied external stress is discussed.

  20. Electromagnetically induced transparency in a spherical quantum dot with hydrogenic impurity in the external magnetic field

    NASA Astrophysics Data System (ADS)

    Pavlović, Vladan; Stevanović, Ljiljana

    2016-04-01

    In this paper we analyzed the realization of the electromagnetically induced transparency (EIT) effect in the spherical quantum dot with on-center hydrogenic impurity under the influence of the external magnetic field. Three energy levels of hydrogen impurity 1s0, 2p-1, and 3d-2, together with the probe and control laser fields, which induce σ- transitions between the given states, form a ladder configuration. Optical Bloch equations for such a system are solved in a stationary regime. Dependence of the susceptibility for such a system on the Rabi frequency of the control field, intensity of the external magnetic field, detuning of the control field, and decay rates coefficients are then discussed in detail. Finally, the explanation in dressed state picture is given.

  1. Gettering of copper to hydrogen-induced cavities in multicrystalline silicon

    SciTech Connect

    Kinomura, A.; Horino, Y.; Nakano, Y.; Williams, J.S.

    2005-09-15

    The gettering properties of hydrogen-induced cavities have been examined for Cu impurity atoms inherent in multicrystalline Si. Initial areal densities of Cu atoms in the multicrystalline samples were in the range of (3-5)x10{sup 13} cm{sup -2}, below the level that would provide a complete monolayer coverage of the internal surfaces of the cavities. Samples were first implanted with hydrogen and then annealed at 750 or 850 deg. C for 1 h to form cavities and induce subsequent gettering. Neutron activation analysis with chemical etching of the samples indicated that more than 90% of Cu atoms could be removed from the entire wafer by cavity gettering for both of the annealing temperatures.

  2. Hydrogen-Induced Cold Cracking in High-Frequency Induction Welded Steel Tubes

    NASA Astrophysics Data System (ADS)

    Banerjee, Kumkum

    2016-04-01

    Detailed investigation was carried out on 0.4C steel tubes used for the telescopic front fork of two-wheelers to establish the root cause for the occurrence of transverse cracks at the weld heat-affected zone of the tubes. Fractographic and microstructural observations provide evidences of delayed hydrogen-induced cracking. The beneficial microstructure for avoiding the transverse cracks was found to be the bainitic-martensitic, while martensitic structure was noted to be deleterious.

  3. Hydrogen cycling-induced phase segregation in AB{sub 5}-type intermetallics

    SciTech Connect

    Mordkovich, V.Z.

    1998-12-31

    A study of hydrogen cycling-induced phase segregation in AB{sub 5}-type intermetallics is presented. Influence of temperature for the alloy compositions YNi{sub 4}Al, LaNi{sub 5}, Ce{sub 0.5}La{sub 0.5}Ni{sub 5} and Ce{sub 0.7}La{sub 0.3}Ni{sub 5} is shown. Morphology of the nanostructured particles formed is studied and discussed.

  4. Simultaneous laser-induced fluorescence and Raman imaging inside a hydrogen engine.

    PubMed

    Engel, Sascha Ronald; Koch, Peter; Braeuer, Andreas; Leipertz, Alfred

    2009-12-10

    We report on the simultaneous and two-dimensional measurement of laser-induced fluorescence (LIF) and Raman scattering (Ramanography) applied inside a hydrogen internal combustion (IC) engine. Two different LIF tracer molecules, triethylamine (TEA) and trimethylamine (TMA), were used for the LIF experiments. The LIF and Raman results were found to be in very good agreement. The simultaneous application of Ramanography and LIF imaging indicated that TMA is the more suitable LIF tracer molecule, compared to TEA. PMID:20011004

  5. Concentration studies of collision-induced fundamental absorption of hydrogen dissolved in liquid neon.

    PubMed

    Herrebout, W A; van der Veken, B J; Kouzov, A P

    2012-08-28

    We report further and more detailed results of our recent investigation [W. A. Herrebout, B. J. van der Veken, and A. P. Kouzov, Phys. Rev. Lett. 101, 093001 (2008)] on the collision-induced fundamental absorption by hydrogen dissolved in liquid neon (T ≈ 25 K). The band shapes were studied in a wide range of concentrations (0.003-0.05 mole fractions) as well as for different ortho/para ratios and at much higher level of accuracy and resolution than before. Due to almost unhindered rotation of the hydrogen molecule and low temperature, an unprecedently rich frequency-domain picture produced by different terms of the interaction-induced polarization was observed. While some of them are conspicuous via fast intracell motion of a light guest (H(2)), others--induced by the electrostatic field of the guest--give rise to lines whose shapes are imprinted by fluctuations of the nearest surrounding. Strong motional narrowing observed on the guest-guest induced lines shows up in their Lorentzian shapes which are signatures of microscopic-scale diffusion. Near-Lorentzian peaks were also detected at the tops of the diffuse lines induced by isolated guests. Their formation may be associated with a long-living defect (vacancy) emerging in the vicinity of the polarization inductor. Altogether, our results give the first unambiguous spectroscopic evidence on the diffusional evolution of isolated binary interactions that emerge in dense chaotic media. PMID:22938252

  6. EVALUATION OF RADIOLYSIS INDUCED HYDROGEN GENERATION IN DOT 6M DRUMS FROM INTEC

    SciTech Connect

    Vinson, D

    2007-06-18

    bags and/or bottles that will be subject to radiolytically induced hydrogen gas generation due to decomposition of the polymers. Conservative values for hydrogen gas generation rates and rates of pressure increase within the drums have been determined based upon a number of inputs and assumptions. The results are that hydrogen will be produced at a rate of 1.93-cm{sup 3}/yr and 1.50-cm{sup 3}/yr, respectively for drums No.3031 and No.3598. Projected molecular hydrogen concentrations at 2020 have been calculated to remain below the lower flammability limit of 4% molecular hydrogen by volume in air.

  7. A Hydrogen-Induced Decohesion Model for Treating Cold Dwell Fatigue in Titanium-Based Alloys

    NASA Astrophysics Data System (ADS)

    Chan, Kwai S.; Moody, Jonathan

    2016-05-01

    Cold dwell fatigue in near-alpha Ti alloys is a time-dependent fracture process at ambient temperature that involves fatigue in the presence of creep to produce cracking on low-energy fracture ( e.g., cleavage) facets in hard alpha grains. In this article, cold dwell fatigue is treated as a hydrogen-induced decohesion process by using a nonlinear cohesive stress-strain relation to describe the decrease in the cohesive strength with increasing local hydrogen contents. It is postulated that during cold dwell fatigue, time-dependent deformation occurs by < a> slip that results in dislocation pileups in soft alpha grains. The stress and dilatational fields of the dislocation pileups assist the transport of internal hydrogen atoms from soft grains to neighboring hard grains. The accumulation of internal hydrogen atoms at the trap sites leads to decohesion along crystallographic planes, which can be slip or hydride habit planes. The decohesion model is applied to treat cold dwell fatigue in Ti-6Al-4V with a basal-transverse texture by modeling the effects of hydrogen-induced decohesion on the stress-fatigue life ( S- N f) response, the time-dependent crack growth response (d a/d t), and the fracture toughness ( K c) as functions of grain orientation. A probabilistic time-dependent fatigue crack growth analysis is then performed to assess the influence of microtexture on the dwell fatigue life of a Ti-6Al-4V ring disk subjected to a long-duration hold at the peak stress of the loading cycle. The results of the probabilistic life computations indicate that dwell fatigue resistance in Ti-6Al-4V may be improved and the risk of disk fracture may be reduced significantly by controlling the microtexture or reducing the size and volume fraction of hard alpha grains in the microstructure.

  8. Cationic mononuclear ruthenium carboxylates as catalyst prototypes for self-induced hydrogenation of carboxylic acids

    PubMed Central

    Naruto, Masayuki; Saito, Susumu

    2015-01-01

    Carboxylic acids are ubiquitous in bio-renewable and petrochemical sources of carbon. Hydrogenation of carboxylic acids to yield alcohols produces water as the only byproduct, and thus represents a possible next generation, sustainable method for the production of these alternative energy carriers/platform chemicals on a large scale. Reported herein are molecular insights into cationic mononuclear ruthenium carboxylates ([Ru(OCOR)]+) as prototypical catalysts for the hydrogenation of carboxylic acids. The substrate-derived coordinated carboxylate was found to function initially as a proton acceptor for the heterolytic cleavage of dihydrogen, and subsequently also as an acceptor for the hydride from [Ru–H]+, which was generated in the first step (self-induced catalysis). The hydrogenation proceeded selectively and at high levels of functional group tolerance, a feature that is challenging to achieve with existing heterogeneous/homogeneous catalyst systems. These fundamental insights are expected to significantly benefit the future development of metal carboxylate-catalysed hydrogenation processes of bio-renewable resources. PMID:26314266

  9. Fluctuations of electrical and mechanical properties of diamond induced by interstitial hydrogen

    NASA Astrophysics Data System (ADS)

    Zhuang, Chun-Qiang; Liu, Lei

    2015-01-01

    While experimental evidence demonstrates that the presence of hydrogen (H) impurities in diamond films plays a significant role in determining their physical properties, the small radius of the H atom makes detecting such impurities quite a challenging task. In the present work, first-principles calculations were employed to provide an insight into the effects of the interstitial hydrogen on the electrical and mechanical properties of diamond crystals at the atomic level. The migrated pathways of the interstitial hydrogen are dictated by energetic considerations. Some new electronic states are formed near the Fermi level. The interstitial hydrogen markedly narrows the bandgap of the diamond and weakens the diamond crystal. The obvious decrement of the critical strain clearly implies the presence of an H-induced embrittlement effect. Project supported by the Project of Construction of Innovative Teams and Teacher Career Development for Universities and Colleges under Beijing Municipality, China (Grant No. IDHT20140504), the National Natural Science Foundation of China (Grant No. 51402009), and the Foundation for Young Scholars of Beijing University of Technology, China.

  10. Nitric oxide is required for hydrogen gas-induced adventitious root formation in cucumber.

    PubMed

    Zhu, Yongchao; Liao, Weibiao; Wang, Meng; Niu, Lijuan; Xu, Qingqing; Jin, Xin

    2016-05-20

    Hydrogen gas (H2) is involved in plant development and stress responses. Cucumber explants were used to study whether nitric oxide (NO) is involved in H2-induced adventitious root development. The results revealed that 50% and 100% hydrogen-rich water (HRW) apparently promoted the development of adventitious root in cucumber. While, the responses of HRW-induced adventitious rooting were blocked by a specific NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO), NO synthase (NOS) enzyme inhibitor N(G)-nitro-l-arginine methylester hydrochloride (l-NAME) and nitrate reductase (NR) inhibitor NaN3. HRW also increased NO content and NOS and NR activity both in a dose- and time-dependent fashion. Moreover, molecular evidence showed that HRW up-regulated NR genes expression in explants. The results indicate the importance of NOS and NR enzymes, which might be responsible for NO production in explants during H2-induced root organogenesis. Additionally, peroxidase (POD) and indoleacetic acid oxidase (IAAO) activity was significantly decreased in the explants treated with HRW, while HRW treatment significantly increased polyphenol oxidase (PPO) activity. In addition, cPTIO, l-NAME and NaN3 inhibited the actions of HRW on the activity of these enzymes. Together, NO may be involved in H2-induced adventitious rooting, and NO may be acting downstream in plant H2 signaling cascade. PMID:27010347

  11. Observation of the Hydrogen Migration in the Cation-Induced Fragmentation of the Pyridine Molecules.

    PubMed

    Wasowicz, Tomasz J; Pranszke, Bogusław

    2016-02-25

    The ability to selectively control chemical reactions related to biology, combustion, and catalysis has recently attracted much attention. In particular, the hydrogen atom relocation may be used to manipulate bond-breaking and new bond-forming processes and may hold promise for far-reaching applications. Thus, the hydrogen atom migration preceding fragmentation of the gas-phase pyridine molecules by the H(+), H2(+), He(+), He(2+), and O(+) impact has been studied experimentally in the energy range of 5-2000 eV using collision-induced luminescence spectroscopy. Formation of the excited NH(A(3)Π) radicals was observed among the atomic and diatomic fragments. The structure of the pyridine molecule is lacking of the NH group, therefore observation of its A(3)Π → X(3)Σ(-) emission bands is an evidence of the hydrogen atom relocation prior to the cation-induced fragmentation. The NH(A(3)Π) emission yields indicate that formation of the NH radicals depends on the type of selected projectile and can be controlled by tuning its velocity. The plausible collisional mechanisms as well as fragmentation channels for NH formation in pyridine are discussed. PMID:26837458

  12. Iron prochelator BSIH protects retinal pigment epithelial cells against cell death induced by hydrogen peroxide.

    PubMed

    Charkoudian, Louise K; Dentchev, Tzvete; Lukinova, Nina; Wolkow, Natalie; Dunaief, Joshua L; Franz, Katherine J

    2008-12-01

    Dysregulation of localized iron homeostasis is implicated in several degenerative diseases, including Parkinson's, Alzheimer's, and age-related macular degeneration, wherein iron-mediated oxidative stress is hypothesized to contribute to cell death. Inhibiting toxic iron without altering normal metal-dependent processes presents significant challenges for standard small molecule chelating agents. We previously introduced BSIH (isonicotinic acid [2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-benzylidene]-hydrazide) prochelators that are converted by hydrogen peroxide into SIH (salicylaldehyde isonicotinoyl hydrazone) chelating agents that inhibit iron-catalyzed hydroxyl radical generation. Here, we show that BSIH protects a cultured cell model for retinal pigment epithelium against cell death induced by hydrogen peroxide. BSIH is more stable than SIH in cell culture medium and is more protective during long-term experiments. Repetitive exposure of cells to BSIH is nontoxic, whereas SIH and desferrioxamine induce cell death after repeated exposure. Combined, our results indicate that cell protection by BSIH involves iron sequestration that occurs only when the cells are stressed by hydrogen peroxide. These findings suggest that prochelators discriminate toxic iron from healthy iron and are promising candidates for neuro- and retinal protection. PMID:18835041

  13. Multiple Dirac Points and Hydrogenation-Induced Magnetism of Germanene Layer on Al (111) Surface.

    PubMed

    Liu, G; Liu, S B; Xu, B; Ouyang, C Y; Song, H Y; Guan, S; Yang, Shengyuan A

    2015-12-17

    A continuous germanene layer grown on the Al (111) surface has recently been achieved in experiment. In this work, we investigate its structural, electronic, and hydrogenation-induced properties through first-principles calculations. We find that despite having a different lattice structure from its free-standing form, germanene on Al (111) still possesses Dirac points at high-symmetry K and K' points. More importantly, there exist another three pairs of Dirac points on the K(K')-M high-symmetry lines, which have highly anisotropic dispersions due to the reduced symmetry. These massless Dirac Fermions become massive when spin-orbit coupling is included. Hydrogenation of the germanene layer strongly affects its structural and electronic properties. Particularly, when not fully hydrogenated, ferromagnetism can be induced due to unpaired local orbitals from the unsaturated Ge atoms. Remarkably, we discover that the one-side semihydrogenated germanene turns out to be a two-dimensional half-semimetal, representing a novel state of matter that is simultaneously a half-metal and a semimetal. PMID:26606861

  14. Hydrogen induced fracture characteristics of single crystal nickel-based superalloys

    NASA Technical Reports Server (NTRS)

    Chen, Po-Shou; Wilcox, Roy C.

    1990-01-01

    A stereoscopic method for use with x ray energy dispersive spectroscopy of rough surfaces was adapted and applied to the fracture surfaces single crystals of PWA 1480E to permit rapid orientation determinations of small cleavage planes. The method uses a mathematical treatment of stereo pair photomicrographs to measure the angle between the electron beam and the surface normal. One reference crystal orientation corresponding to the electron beam direction (crystal growth direction) is required to perform this trace analysis. The microstructure of PWA 1480E was characterized before fracture analysis was performed. The fracture behavior of single crystals of the PWA 1480E nickel-based superalloy was studied. The hydrogen-induced fracture behavior of single crystals of the PWA 1480E nickel-based superalloy was also studied. In order to understand the temperature dependence of hydrogen-induced embrittlement, notched single crystals with three different crystal growth orientations near zone axes (100), (110), and (111) were tensile tested at 871 C (1600 F) in both helium and hydrogen atmospheres at 34 MPa. Results and conclusions are given.

  15. The kinetic and mechanical aspects of hydrogen-induced failure in metals. Ph.D. Thesis, 1971

    NASA Technical Reports Server (NTRS)

    Nelson, H. G.

    1972-01-01

    Premature hydrogen-induced failure observed to occur in many metal systems involves three stages of fracture: (1) crack initiation, (2) stable slow crack growth, and (3) unstable rapid crack growth. The presence of hydrogen at some critical location on the metal surface or within the metal lattice was shown to influence one or both of the first two stages of brittle fracture but has a negligible effect on the unstable rapid crack growth stage. The relative influence of the applied parameters of time, temperature, etc., on the propensity of a metal to exhibit hydrogen induced premature failure was investigated.

  16. Investigation of stress-induced (100) platelet formation and surface exfoliation in plasma hydrogenated Si

    SciTech Connect

    Di Zengfeng; Wang Yongqiang; Nastasi, Michael; Rossi, Francois; Lee, Jung-Kun; Shao, Lin; Thompson, Phillip E.

    2007-12-10

    We have studied the mechanisms underlying stress-induced platelet formation during plasma hydrogenation. The stress is purposely introduced by a buried SiGe stained layer in a Si substrate. During plasma hydrogenation, diffusing H is trapped in the region of the SiGe layer and H platelets are formed. The platelet orientation is controlled by the in-plane compressive stress, which favors nucleation and growth of platelets in the plane of stress and parallel to the substrate surface, and ultimately leads to controlled fracture along the SiGe layer. Also, the Si/SiGe/Si structure is found to be more efficient in utilizing H for platelet formation and growth compared to H ion implanted Si because there are fewer defects to trap H (e.g., V{sub n}H{sub m} and I{sub n}H{sub m}); therefore, the total H dose needed for layer exfoliation is greatly reduced.

  17. Pressure-Induced Phase Transition in Hydrogen-Bonded Supramolecular Structure: Guanidinium Nitrate

    SciTech Connect

    Wang, Run; Li, Shourui; Wang, Kai; Duan, Defang; Tang, Lingyun; Cui, Tian; Liu, Bingbing; Cui, Qiliang; Liu, Jing; Zou, Bo; Zou, Guangtian

    2010-08-04

    In situ Raman scattering and synchrotron X-ray diffraction have been used to investigate the effects of high pressure on the structural stability of guanidinium nitrate (C(NH{sub 2}){sub 3}{sup +} {center_dot} NO{sub 3}{sup -}, GN), a representative two-dimensional supramolecular architecture of hydrogen-bonded rosette network. This study has confirmed a structural phase transition observed by Raman scattering and X-ray diffraction at {approx}1 GPa and identified it as a space group change from C2 to P2{sub 1}. The high-pressure phase remained stable up to 22 GPa. We discussed the pressure-induced changes in N-H stretching vibration in Raman spectra and proposed that this phase transition is due to the rearrangements of the hydrogen-bonding networks.

  18. A tunable azine covalent organic framework platform for visible light-induced hydrogen generation

    NASA Astrophysics Data System (ADS)

    Vyas, Vijay S.; Haase, Frederik; Stegbauer, Linus; Savasci, Gökcen; Podjaski, Filip; Ochsenfeld, Christian; Lotsch, Bettina V.

    2015-09-01

    Hydrogen evolution from photocatalytic reduction of water holds promise as a sustainable source of carbon-free energy. Covalent organic frameworks (COFs) present an interesting new class of photoactive materials, which combine three key features relevant to the photocatalytic process, namely crystallinity, porosity and tunability. Here we synthesize a series of water- and photostable 2D azine-linked COFs from hydrazine and triphenylarene aldehydes with varying number of nitrogen atoms. The electronic and steric variations in the precursors are transferred to the resulting frameworks, thus leading to a progressively enhanced light-induced hydrogen evolution with increasing nitrogen content in the frameworks. Our results demonstrate that by the rational design of COFs on a molecular level, it is possible to precisely adjust their structural and optoelectronic properties, thus resulting in enhanced photocatalytic activities. This is expected to spur further interest in these photofunctional frameworks where rational supramolecular engineering may lead to new material applications.

  19. Hydrogen-induced changes of the microscopic structure of microcrystalline silicon

    SciTech Connect

    Kaiser, I.; Nickel, N.H.; Fuhs, W.; Pilz, W.

    1998-12-31

    Microcrystalline silicon samples were exposed to an electron cyclotron resonance (ECR) hydrogen plasma at various exposure times and substrate temperatures. Before and after each post-hydrogenation treatment the crystalline fraction, X{sub c}, was determined from Raman backscattering spectra. The results reveal that the change of X{sub c} strongly depends on the structural composition of the starting material. Amorphous samples exhibit an increase of X{sub c} while for {micro}c-Si specimens the X{sub c} decreases. The decrease of X{sub c} is enhanced for specimens with a high initial crystalline fraction. The same plasma treatment of Si-wafers did not lead to amorphization. The authors conclude that the presence of lattice strain is required to observe a H-induced decrease of X{sub c}.

  20. A tunable azine covalent organic framework platform for visible light-induced hydrogen generation

    PubMed Central

    Vyas, Vijay S.; Haase, Frederik; Stegbauer, Linus; Savasci, Gökcen; Podjaski, Filip; Ochsenfeld, Christian; Lotsch, Bettina V.

    2015-01-01

    Hydrogen evolution from photocatalytic reduction of water holds promise as a sustainable source of carbon-free energy. Covalent organic frameworks (COFs) present an interesting new class of photoactive materials, which combine three key features relevant to the photocatalytic process, namely crystallinity, porosity and tunability. Here we synthesize a series of water- and photostable 2D azine-linked COFs from hydrazine and triphenylarene aldehydes with varying number of nitrogen atoms. The electronic and steric variations in the precursors are transferred to the resulting frameworks, thus leading to a progressively enhanced light-induced hydrogen evolution with increasing nitrogen content in the frameworks. Our results demonstrate that by the rational design of COFs on a molecular level, it is possible to precisely adjust their structural and optoelectronic properties, thus resulting in enhanced photocatalytic activities. This is expected to spur further interest in these photofunctional frameworks where rational supramolecular engineering may lead to new material applications. PMID:26419805

  1. A tunable azine covalent organic framework platform for visible light-induced hydrogen generation.

    PubMed

    Vyas, Vijay S; Haase, Frederik; Stegbauer, Linus; Savasci, Gökcen; Podjaski, Filip; Ochsenfeld, Christian; Lotsch, Bettina V

    2015-01-01

    Hydrogen evolution from photocatalytic reduction of water holds promise as a sustainable source of carbon-free energy. Covalent organic frameworks (COFs) present an interesting new class of photoactive materials, which combine three key features relevant to the photocatalytic process, namely crystallinity, porosity and tunability. Here we synthesize a series of water- and photostable 2D azine-linked COFs from hydrazine and triphenylarene aldehydes with varying number of nitrogen atoms. The electronic and steric variations in the precursors are transferred to the resulting frameworks, thus leading to a progressively enhanced light-induced hydrogen evolution with increasing nitrogen content in the frameworks. Our results demonstrate that by the rational design of COFs on a molecular level, it is possible to precisely adjust their structural and optoelectronic properties, thus resulting in enhanced photocatalytic activities. This is expected to spur further interest in these photofunctional frameworks where rational supramolecular engineering may lead to new material applications. PMID:26419805

  2. Understanding Rotation about a C=C Double Bond

    ERIC Educational Resources Information Center

    Barrows, Susan E.; Eberlein, Thomas H.

    2005-01-01

    The study focuses on the process and energetic cost of twisting around a C=C double bond and provides instructors with a simple vehicle for rectifying the common misrepresentation of C=C double bonds as rigid and inflexible. Discussions of cis and trans isomers of cycloalkenes are a good entry point for introducing students to the idea of a…

  3. Proline dehydrogenase is essential for proline protection against hydrogen peroxide induced cell death

    PubMed Central

    Natarajan, Sathish Kumar; Zhu, Weidong; Liang, Xinwen; Zhang, Lu; Demers, Andrew J.; Zimmerman, Matthew C.; Simpson, Melanie A.; Becker, Donald F.

    2012-01-01

    Proline metabolism has an underlying role in apoptotic signaling that impacts tumorigenesis. Proline is oxidized to glutamate in the mitochondria with the rate limiting step catalyzed by proline dehydrogenase (PRODH). PRODH expression is inducible by p53 leading to increased proline oxidation, reactive oxygen species (ROS) formation, and induction of apoptosis. Paradoxical to its role in apoptosis, proline also protects cells against oxidative stress. Here we explore the mechanism of proline protection against hydrogen peroxide stress in melanoma WM35 cells. Treatment of WM35 cells with proline significantly increased cell viability, diminished oxidative damage of cellular lipids and proteins, and retained ATP and NADPH levels after exposure to hydrogen peroxide. Inhibition or siRNA-mediated knockdown of PRODH abolished proline protection against oxidative stress whereas knockdown of Δ1-pyrroline-5-carboxylate reductase, a key enzyme in proline biosynthesis, had no impact on proline protection. Potential linkages between proline metabolism and signaling pathways were explored. The combined inhibition of the mammalian target of rapamycin complex 1 (mTORC1) and mTORC2 eliminated proline protection. A significant increase in Akt activation was observed in proline treated cells after hydrogen peroxide stress along with a corresponding increase in the phosphorylation of the fork head transcription factor class O3a (FoxO3a). The role of PRODH in proline mediated protection was validated in the prostate carcinoma cell line, PC3. Knockdown of PRODH in PC3 cells attenuated phosphorylated levels of Akt and FoxO3a and decreased cell survival during hydrogen peroxide stress. The results provide evidence that PRODH is essential in proline protection against hydrogen peroxide mediated cell death and that proline/PRODH helps activate Akt in cancer cells. PMID:22796327

  4. Oxygen and Hydrogen-Induced Surface Reconstruction of Molybdenum and Other Metals

    NASA Astrophysics Data System (ADS)

    Meyer, Joseph A.

    1990-01-01

    In this thesis results are presented for oxygen chemisorption on Mo(100), W(100), and Cu(100), hydrogen adsorption on Mo (100) and co-adsorption of hydrogen and oxygen on Mo(100). In all cases it was found that the adsorbate causes structural rearrangement of the substrate. This was most drastic for the case of oxygen adsorption. New electron energy loss spectroscopy (EELS) results for the O/Mo(100) system indicate that the substrate undergoes a transformation from its original body centered cubic structure to the nearly hexagonal structure of MoO _2 upon increasing oxygen adsorption. Scanning tunneling microscopy was performed for the first time on W(100). The results show that the oxygen causes the removal of every other row of tungsten, and that the rate determining step for the formation of the missing rows is surface diffusion. Oxygen is known to cause the formation on 1-D chains on Cu(100). Monte -Carlo simulations were performed here to extract effective adsorbate-adsorbate interaction energies. When hydrogen is adsorbed on Mo(100) the system can achieve a lower energy state if the hydrogen collectively acts to modify the substrate reconstruction. For some coverages this leads to island formation. To obtain information on the energy gained upon island formation isobars were measured for this system. The binding energy difference between the islands and the dilute phase was surprisingly small, possible reasons for this are discussed. It was also found that finite size effects play a role in the shape of the isobars. The adsorption of water and the co-adsorption of hydrogen and oxygen were studied with EELS and LEED (low energy electron diffraction). For room temperature adsorption of water the molecule completely dissociates. For low coverages islands of the pure elements are then formed, due to the energy gained upon adsorbate induced reconstruction. For low temperature water adsorption it was found that O-H and H_2O molecules are stable on the surface.

  5. Photo-induced hydrogen exchange reaction between methanol and glyoxal: formation of hydroxyketene.

    PubMed

    Mielke, Zofia; Mucha, Małgorzata; Bil, Andrzej; Golec, Barbara; Coussan, Stephane; Roubin, Pascale

    2008-08-25

    We study the structure and photochemistry of the glyoxal-methanol system (G-MeOH) by means of FTIR matrix isolation spectroscopy and ab initio calculations. The FTIR spectra show that the non-hydrogen-bonded complex, G-MeOH-1, is present in an inert environment of solid argon. MP2/aug-cc-pVDZ calculations indicate that G-MeOH-1 is the most stable complex among the five optimized structures. The interaction energy partitioned according to the symmetry-adapted perturbation theory (SAPT) scheme demonstrates that the dispersion energy gives a larger contribution to the stabilization of a non-hydrogen-bonded G-MeOH-1 complex than compared to the hydrogen-bonded ones. The irradiation of G-MeOH-1 with the filtered output of a mercury lamp (lambda>370 nm) leads to its photo-conversion into the hydroxyketene-methanol complex HK-MeOH-1. The identity of HK-MeOH-1 is confirmed by both FTIR spectroscopy and MP2/aug-cc-pVDZ calculations. An experiment with deuterated methanol (CH(3)OD) evidences that hydroxyketene is formed in a photo-induced hydrogen exchange reaction between glyoxal and methanol. The pathway for the photo-conversion of G-MeOH-1 to HK-MeOH-1 is studied by a coupled-cluster method [CR-CC(2,3)]. The calculations confirm our experimental findings that the reaction proceeds via hydrogen atom exchange between the OH group of methanol and CH group of glyoxal. PMID:18613199

  6. Impact-induced devolatilization and hydrogen isotopic fractionation of serpentine: Implications for planetary accretion

    NASA Technical Reports Server (NTRS)

    Tyburczy, James A.; Krishnamurthy, R. V.; Epstein, Samuel; Ahrens, Thomas J.

    1988-01-01

    Impact-induced devolatilization of porous serpentine was investigated using two independent experimental methods, the gas recovery and the solid recovery method, each yielding nearly identical results. For shock pressures near incipient devolatilization, the hydrogen isotopic composition of the evolved H2O is very close to that of the starting material. For shock pressures at which up to 12 percent impact-induced devolatilization occurs, the bulk evolved gas is significantly lower in deuterium than the starting material. There is also significant reduction of H2O to H2 in gases recovered at these higher shock pressures, probably caused by reaction of evolved H2O with the metal gas recovery fixture. Gaseous H2O-H2 isotopic fractionation suggests high temperature isotopic equilibrium between the gaseous species, indicating initiation of devolatilization at sites of greater than average energy deposition. Bulk gas-residual solid isotopic fractionations indicate nonequilibrium, kinetic control of gas-solid isotopic ratios. Impact-induced hydrogen isotopic fractionation of hydrous silicates during accretion can strongly affect the long-term planetary isotopic ratios of planetary bodies, leaving the interiors enriched in deuterium. Depending on the model used for extrapolation of the isotopic fractionation to devolatilization fractions greater than those investigated experimentally can result from this process.

  7. Temperature dependencies of hydrogen-induced blistering of thin film multilayers

    SciTech Connect

    Kuznetsov, A. S.; Gleeson, M. A.; Bijkerk, F.

    2014-05-07

    We report on the influence of sample temperature on the development of hydrogen-induced blisters in Mo/Si thin-film multilayers. In general, the areal number density of blisters decreases with increasing exposure temperature, whereas individual blister size increases with exposure temperatures up to ∼200 °C but decreases thereafter. Comparison as a function of sample temperature is made between exposures to a flux containing both hydrogen ions and neutrals and one containing only neutrals. In the case of the neutral-only flux, blistering is observed for exposure temperatures ≥90 °C. The inclusion of ions promotes blister formation at <90 °C, while retarding their growth at higher temperatures. In general, ion-induced effects become less evident with increasing exposure temperature. At 200 °C, the main effect discernable is reduced blister size as compared with the equivalent neutral-only exposure. The temperature during exposure is a much stronger determinant of the blistering outcome than either pre- or post-annealing of the sample. The trends observed for neutral-only exposures are attributed to competing effects of defect density thermal equilibration and H-atom induced modification of the Si layers. Energetic ions modify the blistering via (temperature dependent) enhancement of H-mobility and re-crystallization of amorphous Si.

  8. Hydrogen Sulfide Mitigates Kidney Injury in High Fat Diet-Induced Obese Mice

    PubMed Central

    Wu, Dongdong; Gao, Biao; Li, Mengling; Yao, Ling; Wang, Shuaiwei; Chen, Mingliang; Li, Hui; Ma, Chunyan

    2016-01-01

    Obesity is prevalent worldwide and is a major risk factor for the development and progression of kidney disease. Hydrogen sulfide (H2S) plays an important role in renal physiological and pathophysiological processes. However, whether H2S is able to mitigate kidney injury induced by obesity in mice remains unclear. In this study, we demonstrated that H2S significantly reduced the accumulation of lipids in the kidneys of high fat diet- (HFD-) induced obese mice. The results of hematoxylin and eosin, periodic acid-Schiff, and Masson's trichrome staining showed that H2S ameliorated the kidney structure, decreased the extent of interstitial injury, and reduced the degree of kidney fibrosis in HFD-induced obese mice. We found that H2S decreased the expression levels of tumor necrosis factor-α, interleukin- (IL-) 6, and monocyte chemoattractant protein-1 but increased the expression level of IL-10. Furthermore, H2S treatment decreased the protein expression of p50, p65, and p-p65 in the kidney of HFD-induced obese mice. In conclusion, H2S is able to mitigate renal injury in HFD-induced obese mice through the reduction of kidney inflammation by downregulating the expression of nuclear factor-kappa B. H2S or its releasing compounds may serve as a potential therapeutic molecule for obesity-induced kidney injury. PMID:27413418

  9. Hydrogen Sulfide Mitigates Kidney Injury in High Fat Diet-Induced Obese Mice.

    PubMed

    Wu, Dongdong; Gao, Biao; Li, Mengling; Yao, Ling; Wang, Shuaiwei; Chen, Mingliang; Li, Hui; Ma, Chunyan; Ji, Ailing; Li, Yanzhang

    2016-01-01

    Obesity is prevalent worldwide and is a major risk factor for the development and progression of kidney disease. Hydrogen sulfide (H2S) plays an important role in renal physiological and pathophysiological processes. However, whether H2S is able to mitigate kidney injury induced by obesity in mice remains unclear. In this study, we demonstrated that H2S significantly reduced the accumulation of lipids in the kidneys of high fat diet- (HFD-) induced obese mice. The results of hematoxylin and eosin, periodic acid-Schiff, and Masson's trichrome staining showed that H2S ameliorated the kidney structure, decreased the extent of interstitial injury, and reduced the degree of kidney fibrosis in HFD-induced obese mice. We found that H2S decreased the expression levels of tumor necrosis factor-α, interleukin- (IL-) 6, and monocyte chemoattractant protein-1 but increased the expression level of IL-10. Furthermore, H2S treatment decreased the protein expression of p50, p65, and p-p65 in the kidney of HFD-induced obese mice. In conclusion, H2S is able to mitigate renal injury in HFD-induced obese mice through the reduction of kidney inflammation by downregulating the expression of nuclear factor-kappa B. H2S or its releasing compounds may serve as a potential therapeutic molecule for obesity-induced kidney injury. PMID:27413418

  10. (2+1) laser-induced fluorescence of spin-polarized hydrogen atoms.

    PubMed

    Bougas, Lykourgos; Sofikitis, Dimitris; Everest, Michael A; Alexander, Andrew J; Rakitzis, T Peter

    2010-11-01

    We report the measurement of the spin polarization of hydrogen (SPH) atoms by (2+1) laser-induced fluorescence, produced via the photodissociation of thermal HBr molecules with circularly polarized 193 nm light. This scheme, which involves two-photon laser excitation at 205 nm and fluorescence at 656 nm, offers an experimentally simpler polarization-detection method than the previously reported vacuum ultraviolet detection scheme, allowing the detection of SPH atoms to be performed more straightforwardly, from the photodissociation of a wide range of molecules and from a variety of collision experiments. PMID:21054033

  11. Phase with pressure-induced shuttlewise deformation in dense solid atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Ishikawa, Takahiro; Nagara, Hitose; Oda, Tatsuki; Suzuki, Naoshi; Shimizu, Katsuya

    2014-09-01

    A phase which shows pressure-induced shuttlewise structural deformation between orthorhombic Fddd and tetragonal I41/amd structures has been predicted in solid atomic hydrogen by means of the first-principles calculations, including harmonic zero-point energy contributions of proton motions. The Fddd structure is formed by shear distortion from the I41/amd structure, and the angle specifying the distortion changes with pressure in the range 84-96∘ around 90∘, which corresponds to I41/amd. In the shuttlewise deforming phase, the electron-phonon interaction is enhanced owing to phonon softenings, which brings about superconductivity at elevated temperatures.

  12. Stark broadening corrections to laser-induced fluorescence temperature measurements in a hydrogen arcjet plume.

    PubMed

    Storm, P V; Cappelli, M A

    1996-08-20

    Laser-induced fluorescence of the H(α) transition of atomic hydrogen has previously been performed in the plume of a hydrogen arcjet thruster. Measurements of plasma velocity and temperature, based on the Doppler shift and broadening of the H(α) line shape, were previously published [Appl. Opt. 32, 6117 (1993)]. In that paper the Stark broadening of the H(α) transition was estimated from static-ion calculations performed in the early 1970's and found to be negligible in comparison with the Doppler broadening. However, more recent dynamic-ion calculations have shown the Stark broadening to be considerably larger than was previously assumed, resulting in inaccurate temperature measurements. We present a reanalysis of the fluorescence data, taking into account the improved Stark broadening calculations. The correct atomic hydrogen translation temperature and electron number density are obtained from the Doppler and Stark broadening components of the measured line shape. The results indicate a substantial drop in temperature from those previously reported. PMID:21102917

  13. Pressure-induced chemistry in a nitrogen-hydrogen host-guest structure.

    PubMed

    Spaulding, Dylan K; Weck, Gunnar; Loubeyre, Paul; Datchi, Fréderic; Dumas, Paul; Hanfland, Michael

    2014-01-01

    New topochemistry in simple molecular systems can be explored at high pressure. Here we examine the binary nitrogen/hydrogen system using Raman spectroscopy, synchrotron X-ray diffraction, synchrotron infrared microspectroscopy and visual observation. We find a eutectic-type binary phase diagram with two stable high-pressure van der Waals compounds, which we identify as (N2)6(H2)7 and N2(H2)2. The former represents a new type of van der Waals host-guest compound in which hydrogen molecules are contained within channels in a nitrogen lattice. This compound shows evidence for a gradual, pressure-induced change in bonding from van der Waals to ionic interactions near 50 GPa, forming an amorphous dinitrogen network containing ionized ammonia in a room-temperature analogue of the Haber-Bosch process. Hydrazine is recovered on decompression. The nitrogen-hydrogen system demonstrates the potential for new pressure-driven chemistry in high-pressure structures and the promise of tailoring molecular interactions for materials synthesis. PMID:25484135

  14. Pressure-induced chemistry in a nitrogen-hydrogen host-guest structure

    NASA Astrophysics Data System (ADS)

    Spaulding, Dylan K.; Weck, Gunnar; Loubeyre, Paul; Datchi, Fréderic; Dumas, Paul; Hanfland, Michael

    2014-12-01

    New topochemistry in simple molecular systems can be explored at high pressure. Here we examine the binary nitrogen/hydrogen system using Raman spectroscopy, synchrotron X-ray diffraction, synchrotron infrared microspectroscopy and visual observation. We find a eutectic-type binary phase diagram with two stable high-pressure van der Waals compounds, which we identify as (N2)6(H2)7 and N2(H2)2. The former represents a new type of van der Waals host-guest compound in which hydrogen molecules are contained within channels in a nitrogen lattice. This compound shows evidence for a gradual, pressure-induced change in bonding from van der Waals to ionic interactions near 50 GPa, forming an amorphous dinitrogen network containing ionized ammonia in a room-temperature analogue of the Haber-Bosch process. Hydrazine is recovered on decompression. The nitrogen-hydrogen system demonstrates the potential for new pressure-driven chemistry in high-pressure structures and the promise of tailoring molecular interactions for materials synthesis.

  15. Inhibition of hydrogen peroxide induced injuring on human skin fibroblast by Ulva prolifera polysaccharide.

    PubMed

    Cai, Chuner; Guo, Ziye; Yang, Yayun; Geng, Zhonglei; Tang, Langlang; Zhao, Minglin; Qiu, Yuyan; Chen, Yifan; He, Peimin

    2016-10-01

    Ulva prolifera can protect human skin fibroblast from being injured by hydrogen peroxide. This work studied the composition of Ulva prolifera polysaccharide and identified its physicochemical properties. The results showed that the cell proliferation of 0.5mg/mL crude polysaccharide was 154.4% of that in negative control group. Moreover, ROS detection indices, including DCFH-DA, GSH-PX, MDA and CAT, indicated that crude polysaccharide could improve cellular ability to scavenge free radical and decrease the injury on human skin fibroblast by hydrogen peroxide. In purified polysaccharide, the activity of fraction P1-1 was the highest, with 174.6% of that in negative control group. The average molecular weight of P1-1 was 137kD with 18.0% of sulfate content. This work showed the inhibition of hydrogen peroxide induced injuries on human skin fibroblast by Ulva prolifera polysaccharide, which may further evaluate the application of U. prolifera on cosmetics. PMID:27211299

  16. Shock-induced polarized hydrogen emission lines in the Mira star o Ceti

    NASA Astrophysics Data System (ADS)

    Fabas, N.; Lèbre, A.; Gillet, D.

    2011-11-01

    Context. In the spectra of variable pulsating stars, especially Mira stars, the detection of intense hydrogen emission lines has been explained by the presence of a radiative and hypersonic shock wave, periodically propagating throughout the stellar atmosphere. Previous observation of the Mira star o Ceti around one of its brightest maximum light led to the detection of a strong level of linear polarization associated to Balmer emissions, although the origin of this phenomenon is not fully explained yet. Aims: With the help of spectropolarimetry, we propose to investigate the nature of shock waves propagating throughout the stellar atmosphere and present, for o Ceti (the prototype of Mira stars), a full observational study of hydrogen emission lines formed in the radiative region of such a shock. Methods: Using the instrument NARVAL mounted on the Télescope Bernard Lyot (TBL) in Pic du Midi Observatory (France), we performed a spectropolarimetric monitoring of o Ceti during three consecutive pulsation cycles. For this survey, the four Stokes parameters (I for intensity, Q and U for linear polarization, and V for circular polarization) were systematically collected, with a particular emphasis on the maxima of luminosity, i.e. when a radiative shock wave is supposed to emerge from the photosphere and starts to propagate outward. Results: On hydrogen Balmer lines, over a large part of the luminosity cycle, we report clear detection of polarimetric structures in Q and U Stokes spectra (and also in V Stokes spectra but to a lesser extent). We report a temporal evolution of these spectropolarimetric signatures, which appear strongly correlated to the presence of an intense shock wave responsible for the hydrogen emission lines. We establish that the hydrogen lines are polarized by a physical process inherent to the mechanism responsible for the emission line formation: the shock wave itself. Two mechanisms are thus considered: a global one that implies a polarization

  17. Guard cell hydrogen peroxide and nitric oxide mediate elevated CO2 -induced stomatal movement in tomato.

    PubMed

    Shi, Kai; Li, Xin; Zhang, Huan; Zhang, Guanqun; Liu, Yaru; Zhou, Yanhong; Xia, Xiaojian; Chen, Zhixiang; Yu, Jingquan

    2015-10-01

    Climate change as a consequence of increasing atmospheric CO2 influences plant photosynthesis and transpiration. Although the involvement of stomata in plant responses to elevated CO2 has been well established, the underlying mechanism of elevated CO2 -induced stomatal movement remains largely unknown. We used diverse techniques, including laser scanning confocal microscopy, transmission electron microscopy, biochemical methodologies and gene silencing to investigate the signaling pathway for elevated CO2 -induced stomatal movement in tomato (Solanum lycopersicum). Elevated CO2 -induced stomatal closure was dependent on the production of RESPIRATORY BURST OXIDASE 1 (RBOH1)-mediated hydrogen peroxide (H2 O2 ) and NITRATE REDUCTASE (NR)-mediated nitric oxide (NO) in guard cells in an abscisic acid (ABA)-independent manner. Silencing of OPEN STOMATA 1 (OST1) compromised the elevated CO2 -induced accumulation of H2 O2 and NO, upregulation of SLOW ANION CHANNEL ASSOCIATED 1 (SLAC1) gene expression and reduction of stomatal aperture, whereas silencing of RBOH1 or NR had no effects on the expression of OST1. Our results demonstrate that as critical signaling molecules, RBOH1-dependent H2 O2 and NR-dependent NO act downstream of OST1 that regulate SLAC1 expression and elevated CO2 -induced stomatal movement. This information is crucial to deepen the understanding of CO2 signaling pathway in guard cells. PMID:26308648

  18. Novel hydrogen sulfide-releasing compound, S-propargyl-cysteine, prevents STZ-induced diabetic nephropathy.

    PubMed

    Qian, Xin; Li, Xinghui; Ma, Fenfen; Luo, Shanshan; Ge, Ruowen; Zhu, Yizhun

    2016-05-13

    In this work, we demonstrated for the first time that S-propargyl-cysteine (SPRC, also named as ZYZ-802), a novel hydrogen sulfide (H2S)-releasing compound, had renoprotective effects on streptozotocin (STZ)-induced diabetic kidney injury. SPRC treatment significantly reduced the level of creatinine, kidney to body weight ratio and in particular, markedly decreased 24-h urine microalbuminuria excretion. SPRC suppressed the mRNA expression of fibronectin and type IV collagen. In vitro, SPRC inhibited mesangial cells over-proliferation and hypertrophy induced by high glucose. Additionally, SPRC attenuated inflammation in diabetic kidneys. SPRC also reduced transforming growth factor β1 (TGF-β1) signaling and expression of phosphorylated Smad3 (p-Smad3) pathway. Moreover, SPRC inhibited phosphorylation of ERK, p38 protein. Taken together, SPRC was demonstrated to be a potential therapeutic candidate to suppress diabetic nephropathy. PMID:27055593

  19. Hypersonic shock-induced combustion in a hydrogen-air system

    SciTech Connect

    Ahuja, J.K.; Tiwari, S.N.; Singh, D.J.

    1995-01-01

    A numerical study was carried out to investigate the shock-induced combustion in premixed hydrogen-air mixture. The calculations have been carried out for Mach 5.11 and 6.46. The Mach 5.11 case was found to be unsteady with periodic oscillations. The frequency of oscillations was calculated and was found to be in good agreement with the experimentally observed frequency. The Mach 6.46 case was found to be of a very high frequency and very low-amplitude phenomena. Thus it can be considered as macroscopically stable. This supports the existing view that it is possible to stabilize the shock-induced combustion phenomena with sufficient level of overdrive. 16 refs.

  20. Infrared spectroscopy of sub-surface defects induced by remote hydrogen plasma exposure of silicon (100)

    SciTech Connect

    Lamb, H.H.; Bedge, S.G.; Wan, Z.

    1998-12-31

    Infrared multiple internal reflection (MIR) spectroscopy was used to investigate the local chemical bonding in sub-surface defects induced by remote hydrogen plasma exposure (RHPE) of Si(100) wafers. Exposure of very lightly doped n-type Si ([P] = 5 {times} 10{sup 13} cm{sup {minus}3}) to a remote hydrogen plasma for 2 min at 200 C results in the formation of Si monohydride species. An intense narrow band at 2078 cm{sup {minus}1} (FWHM = 7 cm{sup {minus}1}) and a small shoulder at 2065 cm{sup {minus}1} are observed. The data are consistent with monohydride termination of Si{l_brace}111{r_brace} platelet defects with a weak interaction between H atoms on opposing internal surfaces. In contrast, platelet nucleation at 200 C followed by growth at 300 C selectively generates Si dihydride species, as evidenced by a single broad infrared band at 2109 cm{sup {minus}1}. The P concentration was found to have a marked influence on the areal density and chemical bonding of sub-surface hydrogen. The MIR spectrum of lightly doped Si ([P] = 2 {times} 10{sup 14} cm{sup {minus}3}) after RHPE at 200 C contains broad peaks at 2078 and 2130 cm{sup {minus}1} consistent with Si monohydride and trihydride species. The authors infer that hydrogen saturates broken bonds along Si{l_brace}111{r_brace} Type 1 glide planes (one bond per Si atom) and along Si{l_brace}111{r_brace} Type II glide planes (three bonds per Si atom). The Si-H peak area indicates a H areal density {approximately}2 times higher than in very lightly doped Si.

  1. AN EVALUATION OF HYDROGEN INDUCED CRACKING SUSCEPTIBILITY OF TITANIUM ALLOYS IN US HIGH-LEVEL NUCLEAR WASTE REPOSITORY ENVIRONMENTS

    SciTech Connect

    G. De; K. Mon; G. Gordon; D. Shoesmith; F. Hua

    2006-02-21

    This paper evaluates hydrogen-induced cracking (HIC) susceptibility of titanium alloys in environments anticipated in the Yucca Mountain nuclear waste repository with particular emphasis on the. effect of the oxide passive film on the hydrogen absorption process of titanium alloys being evaluated. The titanium alloys considered in this review include Ti 2, 5 , 7, 9, 11, 12, 16, 17, 18, 24 and 29. In general, the concentration of hydrogen in a titanium alloy can increase due to absorption of atomic hydrogen produced from passive general corrosion of that alloy or galvanic coupling of it to a less noble metal. It is concluded that under the exposure conditions anticipated in the Yucca Mountain repository, the HIC of titanium drip shield will not occur because there will not be sufficient hydrogen in the metal even after 10,000 years of emplacement. Due to the conservatisms adopted in the current evaluation, this assessment is considered very conservative.

  2. Layer-by-layer immobilized catalase on electrospun nanofibrous mats protects against oxidative stress induced by hydrogen peroxide.

    PubMed

    Huang, Rong; Deng, Hongbing; Cai, Tongjian; Zhan, Yingfei; Wang, Xiankai; Chen, Xuanxuan; Ji, Ailing; Lil, Xueyong

    2014-07-01

    Catalase, a kind of redox enzyme and generally recognized as an efficient agent for protecting cells against hydrogen peroxide (H2O2)-induced cytotoxicity. The immobilization of catalase was accomplished by depositing the positively charged chitosan and the negatively charged catalase on electrospun cellulose nanofibrous mats through electrospining and layer-by-layer (LBL) techniques. The morphology obtained from Field emission scanning electron microscopy (FE-SEM) indicated that more orderly arranged three-dimension (3D) structure and roughness formed with increasing the number of coating bilayers. Besides, the enzyme-immobilized nanofibrous mats were found with high enzyme loading and activity, moreover, X-ray photoelectron spectroscopy (XPS) results further demonstrated the successful immobilization of chitosan and catalase on cellulose nanofibers support. Furthermore, we evaluated the cytotoxicity induced by hydrogen peroxide in the Human umbilical vascular endothelial cells with or without pretreatment of nanofibrous mats by MTT assay, LDH activity and Flow cytometric evaluation, and confirmed the pronounced hydrogen peroxide-induced toxicity, but pretreatment of immobilized catalase reduced the cytotoxicity and protected cells against hydrogen peroxide-induced cytotoxic effects which were further demonstrated by scanning electron microscopy (SEM) and Transmission Electron Microscopy (TEM) images. The data pointed toward a role of catalase-immobilized nanofibrous mats in protecting cells against hydrogen peroxide-induced cellular damage and their potential application in biomedical field. PMID:24804555

  3. Resveratrol attenuated hydrogen peroxide-induced myocardial apoptosis by autophagic flux

    PubMed Central

    Huang, Chih-Yang; Ting, Wei-Jen; Huang, Chih-Yang; Yang, Jing-Yi; Lin, Wan-Teng

    2016-01-01

    Background Resveratrol is a Sirt-1-specific activator, which also exerts cardioprotective effects that regulate redox signalling during oxidative stress and autophagy during cardiovascular disease (CVD). Objective This study investigated the protective effects of resveratrol against hydrogen peroxide-induced damage in cardiomyocytes. Design In this article, hydrogen peroxide-induced autophagy and apoptosis in H9c2 cardiomyoblasts were studied at an increasing concentration from 0 to 100 µM. Results Resveratrol pretreatment with concentrations of 10, 20, and 50 µM inhibits autophagic apoptosis by increasing p-Akt and Bcl-2 protein levels in H9c2 cells. Interestingly, resveratrol treatment activates the Beclin-1, LC3, p62, and the lysosome-associated protein LAMP2a within 24 h of administration. Conclusions These results suggest that resveratrol-regulated autophagy may play a role in degrading damaged organelles in H9c2 cells rather than causing apoptosis, and this may be a possible mechanism by which resveratrol protects the heart during CVD. PMID:27211317

  4. 7. Historic American Buildings Survey, C. C. Adams, Photographer August ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Historic American Buildings Survey, C. C. Adams, Photographer August 1931, SEED PACKING ROOM, Gift of New York State Department of Education. - Shaker North Family Washhouse (first), Shaker Road, New Lebanon, Columbia County, NY

  5. Design of an electrochemical probe for monitoring susceptibility of steel in pickling to hydrogen-induced cracking

    SciTech Connect

    Cheng, Y.F.; Du, Y.L. . Corrosion Science Lab.)

    1993-09-01

    The relationship between the measured signals (hydrogen [H] permeating rate) of an electrochemical H sensor and the strength/embrittlement of plain carbon steel in acid solution as defined by slow strain rate tensile tests and scanning electron microscopy was studied. Critical parameters and criteria for hydrogen-induced cracking (HIC) reported may be useful in software design of an electrochemical probe for inspecting and monitoring the HIC susceptibility of steel in pickling.

  6. White-light emission from solid carbon in aqueous solution during hydrogen generation induced by nanosecond laser pulse irradiation

    NASA Astrophysics Data System (ADS)

    Akimoto, Ikuko; Yamamoto, Shota; Maeda, Kosuke

    2016-07-01

    We previously discovered a novel method of hydrogen generation from high-grade charcoal in an aqueous solution using nanosecond laser pulse irradiation. In this paper, white-light emission during this reaction is reported: A broad spectrum over the visible range is observed above a threshold excitation energy density. The white-light emission is a simultaneous product of the hydrogen generation reaction and is attributed to blackbody radiation in accordance with Planck's Law at a temperature above 3800 K. Consequently, we propose that hydrogen generation induced by laser irradiation proceeds similarly to classical coal gasification, which features reactions at high pressure and high temperature.

  7. Hydrogen bond-induced vibronic mode mixing in benzoic acid dimer: a laser-induced fluorescence study.

    PubMed

    Nandi, Chayan K; Chakraborty, Tapas

    2004-05-01

    Laser-induced dispersed fluorescence spectra of benzoic acid dimer in the cold environment of supersonic jet expansion have been reinvestigated with improved spectral resolution of measurements. The spectra are analyzed with the aid of the normal mode vibrations of the dimer calculated by the ab initio quantum chemistry method at the DFT/B3LYP/6-311+G(*) (*) level of theory. The analysis reveals that the low-frequency intermolecular hydrogen bond modes are mixed extensively with the carboxyl as well as aromatic ring vibrations upon electronic excitation. The mode mixing is manifested as the complete loss of mirror symmetry relation between the fluorescence excitation and dispersed fluorescence spectra of the S(1) origin, and appearance of large number of cross-sequence transitions when the DF spectra are measured by exciting the low-energy vibrations near the S(1) origin. The cross-sequence bands are found in all the cases to be the combinations of two nontotally symmetric fundamentals consisting of one of the intermolecular hydrogen bond modes and the other from the aromatic ring and carboxyl group vibrations. The implications of this mode mixing on the excited state dynamics of the dimer are discussed. PMID:15267778

  8. Role of mitochondrial hydrogen peroxide induced by intermittent hypoxia in airway epithelial wound repair in vitro.

    PubMed

    Hamada, Satoshi; Sato, Atsuyasu; Hara-Chikuma, Mariko; Satooka, Hiroki; Hasegawa, Koichi; Tanimura, Kazuya; Tanizawa, Kiminobu; Inouchi, Morito; Handa, Tomohiro; Oga, Toru; Muro, Shigeo; Mishima, Michiaki; Chin, Kazuo

    2016-05-15

    The airway epithelium acts as a frontline barrier against various environmental insults and its repair process after airway injury is critical for the lung homeostasis restoration. Recently, the role of intracellular reactive oxygen species (ROS) as transcription-independent damage signaling has been highlighted in the wound repair process. Both conditions of continuous hypoxia and intermittent hypoxia (IH) induce ROS. Although IH is important in clinical settings, the roles of IH-induced ROS in the airway repair process have not been investigated. In this study, we firstly showed that IH induced mitochondrial hydrogen peroxide (H2O2) production and significantly decreased bronchial epithelial cell migration, prevented by catalase treatment in a wound scratch assay. RhoA activity was higher during repair process in the IH condition compared to in the normoxic condition, resulting in the cellular morphological changes shown by immunofluorescence staining: round cells, reduced central stress fiber numbers, pronounced cortical actin filament distributions, and punctate focal adhesions. These phenotypes were replicated by exogenous H2O2 treatment under the normoxic condition. Our findings confirmed the transcription-independent role of IH-induced intracellular ROS in the bronchial epithelial cell repair process and might have significant implications for impaired bronchial epithelial cell regeneration. PMID:27093911

  9. Hydrogen sulfide: A novel nephroprotectant against cisplatin-induced renal toxicity.

    PubMed

    Dugbartey, George J; Bouma, Hjalmar R; Lobb, Ian; Sener, Alp

    2016-07-01

    Cisplatin is a potent chemotherapeutic agent for the treatment of various solid-organ cancers. However, a plethora of evidence indicates that nephrotoxicity is a major side effect of cisplatin therapy. While the antineoplastic action of cisplatin is due to formation of cisplatin-DNA cross-links, which damage rapidly dividing cancer cells upon binding to DNA, its nephrotoxic effect results from metabolic conversion of cisplatin into a nephrotoxin and production of reactive oxygen species, causing oxidative stress leading to renal tissue injury and potentially, kidney failure. Despite therapeutic targets in several pre-clinical and clinical studies, there is still incomplete protection against cisplatin-induced nephrotoxicity. Hydrogen sulfide (H2S), the third discovered gasotransmitter next to nitric oxide and carbon monoxide, has recently been identified in several in vitro and in vivo studies to possess specific antioxidant, anti-inflammatory and anti-apoptotic properties that modulate several pathogenic pathways involved in cisplatin-induced nephrotoxicity. The current article reviews the molecular mechanisms underlying cisplatin-induced nephrotoxicity and displays recent findings in the H2S field that could disrupt such mechanisms to ameliorate cisplatin-induced renal injury. PMID:27095538

  10. Hydrogen sulfide ameliorates cardiovascular dysfunction induced by cecal ligation and puncture in rats.

    PubMed

    Abdelrahman, R S; El-Awady, M S; Nader, M A; Ammar, E M

    2015-10-01

    Hydrogen sulfide (H2S) is an endogenously produced gaseous messenger that participates in regulation of cardiovascular functions. This study evaluates the possible protective effect of H2S in cardiovascular dysfunction induced by cecal ligation and puncture (CLP) in rats. After 24 h of induction of CLP, heart rate (HR), mortality, cardiac and inflammation biomarkers (creatine kinase-MB (CK-MB) isozyme, cardiac troponin I (cTnI), C-reactive protein (CRP), and lactate dehydrogenase (LDH)), in vitro vascular reactivity, histopathological examination, and oxidative biomarkers (malondialdehyde (MDA), reduced glutathione (GSH), and superoxide dismutase (SOD)) were determined. CLP induced elevations in HR, mortality, serum CK-MB, cTnI, CRP, and LDH, in addition to impaired aortic contraction to potassium chloride and phenylephrine and relaxation to acetylcholine without affecting sodium nitroprusside responses. Moreover, CLP increased cardiac and aortic MDA and decreased SOD, without affecting GSH and caused a marked subserosal and interstitial inflammation in endocardium. Sodium hydrosulfide, but not the irreversible inhibitor of H2S synthesis dl-propargyl glycine, protected against CLP-induced changes in HR, mortality, cardiac and inflammatory biomarkers, oxidative stress, and myocardium histopathological changes without affecting vascular dysfunction. Our results confirm that H2S can attenuate CLP-induced cardiac, but not vascular, dysfunction possibly through its anti-inflammatory and antioxidant effects. PMID:25791320

  11. Sodium hydrogen exchanger as a mediator of hydrostatic edema induced intestinal contractile dysfunction

    PubMed Central

    Uray, Karen S.; Shah, Shinil K.; Radhakrishnan, Ravi S.; Jimenez, Fernando; Walker, Peter A.; Stewart, Randolph H.; Laine, Glen A.; Cox, Charles S.

    2010-01-01

    Background Resuscitation-induced intestinal edema is associated with early and profound mechanical changes in intestinal tissue. We hypothesize that the sodium hydrogen exchanger (NHE), a mechano-responsive ion channel, is a mediator of edema-induced intestinal contractile dysfunction. Methods An animal model of hydrostatic intestinal edema was utilized for all experiments. NHE isoforms 1-3 mRNA and protein were evaluated. Subsequently, the effects of NHE inhibition (with 5-(N-ethyl-N-isopropyl) amiloride (EIPA)) on wet to dry ratios, signal transduction and activator of transcription (STAT)-3, intestinal smooth muscle myosin light chain (MLC) phosphorylation, intestinal contractile activity, and intestinal transit were measured. Results NHE1-3 mRNA and protein levels were significantly increased in the small intestinal mucosa with the induction of intestinal edema. Administration of EIPA, an NHE inhibitor, attenuated validated markers of intestinal contractile dysfunction induced by edema as measured by decreased STAT-3 activation, increased MLC phosphorylation, improved intestinal contractile activity, and enhanced intestinal transit. Conclusion The mechano-responsive ion channel NHE may mediate edema-induced intestinal contractile dysfunction, possibly via a STAT-3 related mechanism. PMID:20553904

  12. Hydrogen sulfide prevents Abeta-induced neuronal apoptosis by attenuating mitochondrial translocation of PTEN.

    PubMed

    Cui, Weigang; Zhang, Yinghua; Yang, Chenxi; Sun, Yiyuan; Zhang, Min; Wang, Songtao

    2016-06-14

    Neuronal cell apoptosis is an important pathological change in Alzheimer's disease (AD). Hydrogen sulfide (H(2)S) is known to be a novel gaseous signaling molecule and a cytoprotectant in many diseases including AD. However, the molecular mechanism of the antiapoptosis activity of H(2)S in AD is not yet fully understood. The aim of the present study is to evaluate the inhibitory effects of H(2)S on Abeta (Aβ)-induced apoptosis and the molecular mechanisms underlying primary neuron cells. Our results showed that sodium hydrosulfide (NaHS), a donor of H(2)S, significantly ameliorated Aβ-induced cell apoptosis. NaHS also reversed the Aβ-induced translocation of the phosphatase and tensin homologs deleted on chromosome 10 (PTEN) from the cytosol to the mitochondria. Furthermore, H(2)S increased the level of p-AKT/AKT significantly. Interestingly, the antiapoptosis effects of H(2)S were blocked down by specific PI3K/AKT inhibitor wortmannin. In conclusion, these data indicate that H(2)S inhibits Aβ-induced neuronal apoptosis by attenuating mitochondrial translocation of PTEN and that activation of PI3K/AKT signaling pathway plays a critical role in H(2)S-mediated neuronal protection. Our findings provide a novel route into the molecular mechanisms of neuronal apoptosis in AD. PMID:27026591

  13. Protection of Bovine Mammary Epithelial Cells from Hydrogen Peroxide-Induced Oxidative Cell Damage by Resveratrol

    PubMed Central

    Jin, Xiaolu; Wang, Kai; Liu, Hongyun; Hu, Fuliang; Zhao, Fengqi; Liu, Jianxin

    2016-01-01

    The mammary epithelial cells (MECs) of high-producing dairy cows are likely to be subject to oxidative stress (OS) due to the intensive cell metabolism. The objectives of this study were to investigate the cytoprotective effects of resveratrol against hydrogen peroxide- (H2O2-) induced OS in cultured bovine MECs (MAC-T). Pretreatment of MAC-T cells with resveratrol could rescue the decrease in cell viability and resulted in lower intracellular reactive oxygen species (ROS) accumulation after H2O2 exposure. Resveratrol helped MAC-T cells to prevent H2O2-induced endoplasmic reticulum stress and mitochondria-related cell apoptosis. Moreover, resveratrol induced mRNA expression of multiple antioxidant defense genes in MAC-T cells under normal/oxidative conditions. Nuclear factor erythroid 2-related factor 2 (Nrf2) was required for the cytoprotective effects on MAC-T cells by resveratrol, as knockdown of Nrf2 significantly abolished resveratrol-induced cytoprotective effects against OS. In addition, by using selective inhibitors, we further confirmed that the induction of Nrf2 by resveratrol was mediated through the prolonged activation of PI3K/Akt and ERK/MAPK pathways but negatively regulated by p38/MAPK pathway. Overall, resveratrol has beneficial effects on bovine MECs redox balance and may be potentially used as a therapeutic medicine against oxidative insult in lactating animals. PMID:26962394

  14. Calpain-1 is required for hydrogen peroxide-induced myotube atrophy.

    PubMed

    McClung, J M; Judge, A R; Talbert, E E; Powers, S K

    2009-02-01

    Recent reports suggest numerous roles for cysteine proteases in the progression of skeletal muscle atrophy due to disuse or disease. Nonetheless, a specific requirement for these proteases in the progression of skeletal muscle atrophy has not been demonstrated. Therefore, this investigation determined whether calpains or caspase-3 is required for oxidant-induced C2C12 myotube atrophy. We demonstrate that exposure to hydrogen peroxide (25 microM H2O2) induces myotube oxidative damage and atrophy, with no evidence of cell death. Twenty-four hours of exposure to H2O2 significantly reduced both myotube diameter and the abundance of numerous proteins, including myosin (-81%), alpha-actinin (-40%), desmin (-79%), talin (-37%), and troponin I (-80%). Myotube atrophy was also characterized by increased cleavage of the cysteine protease substrate alphaII-spectrin following 4 h and 24 h of H2O2 treatment. This degradation was blocked by administration of the protease inhibitor leupeptin (10 microM). Using small interfering RNA transfection of mature myotubes against the specific proteases calpain-1, calpain-2, and caspase-3, we demonstrated that calpain-1 is required for H2O2-induced myotube atrophy. Collectively, our data provide the first evidence for an absolute requirement for calpain-1 in the development of skeletal muscle myotube atrophy in response to oxidant-induced cellular stress. PMID:19109522

  15. Benzene-Induced Uncoupling of Naphthalene Dioxygenase Activity and Enzyme Inactivation by Production of Hydrogen Peroxide

    PubMed Central

    Lee, Kyoung

    1999-01-01

    Naphthalene dioxygenase (NDO) is a multicomponent enzyme system that oxidizes naphthalene to (+)-cis-(1R,2S)-1,2-dihydroxy-1,2-dihydronaphthalene with consumption of O2 and two electrons from NAD(P)H. In the presence of benzene, NADH oxidation and O2 utilization were partially uncoupled from substrate oxidation. Approximately 40 to 50% of the consumed O2 was detected as hydrogen peroxide. The rate of benzene-dependent O2 consumption decreased with time, but it was partially increased by the addition of catalase in the course of the O2 consumption by NDO. Detailed experiments showed that the total amount of O2 consumed and the rate of benzene-induced O2 consumption increased in the presence of hydrogen peroxide-scavenging agents, and further addition of the terminal oxygenase component (ISPNAP) of NDO. Kinetic studies showed that ISPNAP was irreversibly inactivated in the reaction that contained benzene, but the inactivation was relieved to a high degree in the presence of catalase and partially relieved in the presence of 0.1 mM ferrous ion. Benzene- and naphthalene-reacted ISPNAP gave almost identical visible absorption spectra. In addition, hydrogen peroxide added at a range of 0.1 to 0.6 mM to the reaction mixtures inactivated the reduced ISPNAP containing mononuclear iron. These results show that hydrogen peroxide released during the uncoupling reaction acts both as an inhibitor of benzene-dependent O2 consumption and as an inactivator of ISPNAP. It is proposed that the irreversible inactivation of ISPNAP occurs by a Fenton-type reaction which forms a strong oxidizing agent, hydroxyl radicals (·OH), from the reaction of hydrogen peroxide with ferrous mononuclear iron at the active site. Furthermore, when [14C]benzene was used as the substrate, cis-benzene 1,2-dihydrodiol formed by NDO was detected. This result shows that NDO also couples a trace amount of benzene to both O2 consumption and NADH oxidation. PMID:10217759

  16. The study on space-flight induced DNA damage in Arabidopsis thaliana and the protective effect of hydrogen

    NASA Astrophysics Data System (ADS)

    Sun, Qiao; Liu, Min; Zhao, Hui

    2016-07-01

    Ionizing radiation (IR) is a known mutagen responsible for causing DNA strand breaks in all living organisms. Strand breaks thus created can be repaired by different mechanisms, including homologous recombination (HR), one of the key mechanisms maintaining genome stability. Here, we used previously generated Arabidopsis thaliana, transgenic for homologous recombination reporter system, in which homologous recombination frequency(HRF) was used as mutagenic end points. Based on the system, effect of DNA damage by space-flight during the Shenzhou-9 mission was investigated and the results showed that 13 days space-flight exposure of seedlings induced a significant increase in HRF compared with its ground-base three-dimensional clinostat controls and ground 1g controls. We also observed three-dimensional clinostat induced a significant increase in HRF compared with ground 1g controls. Molecular hydrogen (H2) has antioxidant activities by selectively reducing hydroxylradical ( •OH) and peroxynitrite(ONOO-), so we investigated the effect of hydrogen on IR-induced HRF. Treatment with hydrogen-rich water dramatically reduced the HR frequency induced by exposure of seedlings to 0 to 80 Gy 60Co radiation , suggesting that hydrogen represents a potentially novel preventative strategy for radiation-induced DNA damage in plants.

  17. Auxin-induced hydrogen sulfide generation is involved in lateral root formation in tomato.

    PubMed

    Fang, Tao; Cao, Zeyu; Li, Jiale; Shen, Wenbiao; Huang, Liqin

    2014-03-01

    Similar to auxin, hydrogen sulfide (H2S), mainly produced by l-cysteine desulfhydrase (DES; EC 4.4.1.1) in plants, could induce lateral root formation. The objective of this study was to test whether H2S is also involved in auxin-induced lateral root development in tomato (Solanum lycopersicum L.) seedlings. We observed that auxin depletion-induced down-regulation of transcripts of SlDES1, decreased DES activity and endogenous H2S contents, and the inhibition of lateral root formation were rescued by sodium hydrosulfide (NaHS, an H2S donor). However, No additive effects were observed when naphthalene acetic acid (NAA) was co-treated with NaHS (lower than 10 mM) in the induction of lateral root formation. Subsequent work revealed that a treatment with NAA or NaHS could simultaneously induce transcripts of SlDES1, DES activity and endogenous H2S contents, and thereafter the stimulation of lateral root formation. It was further confirmed that H2S or HS(-), not the other sulfur-containing components derived from NaHS, was attributed to the stimulative action. The inhibition of lateral root formation and decreased of H2S metabolism caused by an H2S scavenger hypotaurine (HT) were reversed by NaHS, but not NAA. Molecular evidence revealed that both NaHS- or NAA-induced modulation of some cell cycle regulatory genes, including the up-regulation of SlCDKA;1, SlCYCA2;1, together with simultaneous down-regulation of SlKRP2, were differentially reversed by HT pretreatment. To summarize, above results clearly suggested that H2S might, at least partially, act as a downstream component of auxin signaling to trigger lateral root formation. PMID:24463534

  18. Hydrogen Sulfide Inhibits Transforming Growth Factor-β1-Induced EMT via Wnt/Catenin Pathway

    PubMed Central

    Tao, Jie; Lan, Zhen; Hei, Hongya; Tian, Lulu; Pan, Wanma; Wang, Li; Zhang, Xuemei

    2016-01-01

    Hydrogen sulfide (H2S) has anti-fibrotic potential in lung, kidney and other organs. The exogenous H2S is released from sodium hydrosulfide (NaHS) and can influence the renal fibrosis by blocking the differentiation of quiescent renal fibroblasts to myofibroblasts. But whether H2S affects renal epithelial-to-mesenchymal transition (EMT) and the underlying mechanisms remain unknown. Our study is aimed at investigating the in vitro effects of H2S on transforming growth factor-β1 (TGF-β1)-induced EMT in renal tubular epithelial cells (HK-2 cells) and the associated mechanisms. The induced EMT is assessed by Western blotting analysis on the expressions of α-SMA, E-cadherin and fibronectin. HK-2 cells were treated with NaHS before incubating with TGF-β1 to investigate its effect on EMT and the related molecular mechanism. Results demonstrated that NaHS decreased the expression of α-SMA and fibronectin, and increased the expression of E-cadherin. NaHS reduced the expression of TGF-β receptor type I (TβR I) and TGF-β receptor type II (TβR II). In addition, NaHS attenuated TGF-β1-induced increase of β-catenin expression and ERK phosphorylation. Moreover, it inhibited the TGF-β1-induced nuclear translocation of ββ-catenin. These effects of NaHS on fibronectin, E-cadherin and TβR I were abolished by the ERK inhibitor U0126 or β-catenin inhibitor XAV939, or β-catenin siRNA interference. We get the conclusion that NaHS attenuated TGF-β1-induced EMT in HK-2 cells through both ERK-dependent and β-catenin-dependent pathways. PMID:26760502

  19. Di-hydrogen contact induced lattice instabilities and structural dynamics in complex hydride perovskites.

    PubMed

    Schouwink, P; Hagemann, H; Embs, J P; D'Anna, V; Černý, R

    2015-07-01

    The structural phase transitions occurring in a series of perovskite-type complex hydrides based on the tetrahydroborate anion BH4(-) are investigated by means of in situ synchrotron x-ray powder diffraction, vibrational spectroscopy, thermal methods and ab initio calculations in the solid state. Structural dynamics of the BH4 anion are followed with quasi-elastic neutron scattering. We show that unexpected temperature-induced lattice instabilities in perovskite-type ACa(BH4)3 (A = K, Rb, Cs) have their origin in close hydridic di-hydrogen contacts. The rich lattice dynamics lead to coupling between internal B-H vibrations and phonons, resulting in distortions in the high-temperature polymorph that are identical in symmetry to well-known instabilities in oxide perovskites, generally condensing at lower temperatures. It is found that anion-substitution BH4(-) <-> (X = Halide) can relax distortions in ACa(BH4)3 by eliminating coulomb repulsive H(-)···H(-) effects. The interesting nature of phase transition in ACa(BH4)3 enters an unexplored field of weak interactions in ceramic-like host lattices and is the principal motivation for this study. Close di-hydrogen contacts suggest new concepts to tailor crystal symmetries in complex hydride perovskites in the future. PMID:26076047

  20. A comprehensive analysis of hydrogen peroxide-induced gene expression in tobacco

    PubMed Central

    Vandenabeele, Steven; Van Der Kelen, Katrien; Dat, James; Gadjev, Ilya; Boonefaes, Tom; Morsa, Stijn; Rottiers, Pieter; Slooten, Luit; Van Montagu, Marc; Zabeau, Marc; Inzé, Dirk; Van Breusegem, Frank

    2003-01-01

    Hydrogen peroxide plays a central role in launching the defense response during stress in plants. To establish a molecular profile provoked by a sustained increase in hydrogen peroxide levels, catalase-deficient tobacco plants (CAT1AS) were exposed to high light (HL) intensities over a detailed time course. The expression kinetics of >14,000 genes were monitored by using transcript profiling technology based on cDNA-amplified fragment length polymorphism. Clustering and sequence analysis of 713 differentially expressed transcript fragments revealed a transcriptional response that mimicked that reported during both biotic and abiotic stresses, including the up-regulation of genes involved in the hypersensitive response, vesicular transport, posttranscriptional processes, biosynthesis of ethylene and jasmonic acid, proteolysis, mitochondrial metabolism, and cell death, and was accompanied by a very rapid up-regulation of several signal transduction components. Expression profiling corroborated by functional experiments showed that HL induced photoinhibition in CAT1AS plants and that a short-term HL exposure of CAT1AS plants triggered an increased tolerance against a subsequent severe oxidative stress. PMID:14671332

  1. Raman spectra from Symmetric Hydrogen Bonds in Water by High-intensity Laser-induced Breakdown

    PubMed Central

    Men, Zhiwei; Fang, Wenhui; Li, Dongfei; Li, Zhanlong; Sun, Chenglin

    2014-01-01

    Raman spectra of ice VII and X were investigated using strong plasma shockwave generated by laser-induced breakdown (LIB) in liquid water. Simultaneously, the occurrence of the hydrogen emission lines of 656 nm (Hα), 486 nm (Hβ), 434 nm (Hγ) and 410 nm (Hδ) was observed. At 5 × 1012 W/cm2 optical power density, the O-H symmetric stretching, translational and librational modes of ice VII and a single peak at 785 cm−1 appeared in the spectra. The band was assigned to the Raman-active O-O mode of the monomolecular phase, which was the symmetric hydrogen bond of cuprite ice X. The spectra indicated that ice VII and X structure were formed, as the trajectory of the strong plasma shockwave passes through the stable Pressure-Temperature range of ice VII and X. The shockwave temperature and pressure were calculated by the Grüneisen model. PMID:24709652

  2. Energetic multifunctionalized nitraminopyrazoles and their ionic derivatives: ternary hydrogen-bond induced high energy density materials.

    PubMed

    Yin, Ping; Parrish, Damon A; Shreeve, Jean'ne M

    2015-04-15

    Diverse functionalization was introduced into the pyrazole framework giving rise to a new family of ternary hydrogen-bond induced high energy density materials. By incorporating extended cationic interactions, nitramine-based ionic derivatives exhibit good energetic performance and enhanced molecular stability. Performance parameters including heats of formation and detonation properties were calculated by using Gaussian 03 and EXPLO5 v6.01 programs, respectively. It is noteworthy to find that 5-nitramino-3,4-dinitropyrazole, 4, has a remarkable measured density of 1.97 g cm(-3) at 298 K, which is consistent with its crystal density (2.032 g cm(-3), 150 K), and ranks highest among azole-based CHNO compounds. Energetic evaluation indicates that, in addition to the molecular compound 4, some ionic derivatives, 9, 11, 12, 17, 19, and 22, also have high densities (1.83-1.97 g cm(-3)), excellent detonation pressures and velocities (P, 35.6-41.6 GPa; vD, 8880-9430 m s(-1)), as well as acceptable impact and friction sensitivities (IS, 4-30 J; FS, 40-240 N). These attractive features highlight the application potential of nitramino hydrogen-bonded interactions in the design of advanced energetic materials. PMID:25807076

  3. The Binary Collision-Induced Second Overtone Band of Gaseous Hydrogen: Modelling and Laboratory Measurements

    NASA Technical Reports Server (NTRS)

    Brodbeck, C.; Bouanich, J.-P.; Nguyen, Van Thanh; Borysow, Aleksandra

    1999-01-01

    Collision-induced absorption (CIA) is the major source of the infrared opacity of dense planetary atmospheres which are composed of nonpolar molecules. Knowledge of CIA absorption spectra of H2-H2 pairs is important for modelling the atmospheres of planets and cold stars that are mainly composed of hydrogen. The spectra of hydrogen in the region of the second overtone at 0.8 microns have been recorded at temperatures of 298 and 77.5 K for gas densities ranging from 100 to 800 amagats. By extrapolation to zero density of the absorption coefficient measured every 10 cm(exp -1) in the spectral range from 11100 to 13800 cm(exp -1), we have determined the binary absorption coefficient. These extrapolated measurements are compared with calculations based on a model that was obtained by using simple computer codes and lineshape profiles. In view of the very weak absorption of the second overtone band, we find the agreement between results of the model and experiment to be reasonable.

  4. Internal friction and gas desorption of {C}/{C} composites

    NASA Astrophysics Data System (ADS)

    Serizawa, H.; Sato, S.; Kohyama, A.

    1994-09-01

    {C}/{C} composites are the most promising candidates as high heat flux component materials, where temperature dependence of mechanical properties and gas desorption behavior at elevated temperature are important properties. At the beginning, the newly developed internal friction measurement apparatus, which enables the accurate measurement of dynamic elastic properties up to 1373 K along with the measurement of gas desorption behavior, was used. The materials studied were unidirectional (UD) {C}/{C} composites reinforced with mesophase pitch-based carbon fibers, which were heat treated at temperatures ranging from 1473 to 2773 K which produced a variety of graphitized microstructures. Two-dimensional (2D) {C}/{C} composites reinfored with flat woven fabrics of PAN type carbon fibers were also studied. These materials were heat treated at 1873 K. From the temperature spectrum of internal friction of 2D {C}/{C} composites, these internal friction peaks were detected and were related to gas desorption. Also the temperature dependence of Young's modulus of UD {C}/{C} composites, negative and positive dependence of Young's modulus were observed reflecting microstructure changes resulting from the heat treatments.

  5. Deacetylation of the tumor suppressor protein PML regulates hydrogen peroxide-induced cell death

    PubMed Central

    Guan, D; Lim, J H; Peng, L; Liu, Y; Lam, M; Seto, E; Kao, H-Y

    2014-01-01

    The promyelocytic leukemia protein (PML) is a tumor suppressor that is expressed at a low level in various cancers. Although post-translational modifications including SUMOylation, phosphorylation, and ubiquitination have been found to regulate the stability or activity of PML, little is known about the role of its acetylation in the control of cell survival. Here we demonstrate that acetylation of lysine 487 (K487) and SUMO1 conjugation of K490 at PML protein are mutually exclusive. We found that hydrogen peroxide (H2O2) promotes PML deacetylation and identified SIRT1 and SIRT5 as PML deacetylases. Both SIRT1 and SIRT5 are required for H2O2-mediated deacetylation of PML and accumulation of nuclear PML protein in HeLa cells. Knockdown of SIRT1 reduces the number of H2O2-induced PML-nuclear bodies (NBs) and increases the survival of HeLa cells. Ectopic expression of wild-type PML but not the K487R mutant rescues H2O2-induced cell death in SIRT1 knockdown cells. Furthermore, ectopic expression of wild-type SIRT5 but not a catalytic defective mutant can also restore H2O2-induced cell death in SIRT1 knockdown cells. Taken together, our findings reveal a novel regulatory mechanism in which SIRT1/SIRT5-mediated PML deacetylation plays a role in the regulation of cancer cell survival. PMID:25032863

  6. Hydrogen sulfide modulates cadmium-induced physiological and biochemical responses to alleviate cadmium toxicity in rice.

    PubMed

    Mostofa, Mohammad Golam; Rahman, Anisur; Ansary, Md Mesbah Uddin; Watanabe, Ayaka; Fujita, Masayuki; Tran, Lam-Son Phan

    2015-01-01

    We investigated the physiological and biochemical mechanisms by which H2S mitigates the cadmium stress in rice. Results revealed that cadmium exposure resulted in growth inhibition and biomass reduction, which is correlated with the increased uptake of cadmium and depletion of the photosynthetic pigments, leaf water contents, essential minerals, water-soluble proteins, and enzymatic and non-enzymatic antioxidants. Excessive cadmium also potentiated its toxicity by inducing oxidative stress, as evidenced by increased levels of superoxide, hydrogen peroxide, methylglyoxal and malondialdehyde. However, elevating endogenous H2S level improved physiological and biochemical attributes, which was clearly observed in the growth and phenotypes of H2S-treated rice plants under cadmium stress. H2S reduced cadmium-induced oxidative stress, particularly by enhancing redox status and the activities of reactive oxygen species and methylglyoxal detoxifying enzymes. Notably, H2S maintained cadmium and mineral homeostases in roots and leaves of cadmium-stressed plants. By contrast, adding H2S-scavenger hypotaurine abolished the beneficial effect of H2S, further strengthening the clear role of H2S in alleviating cadmium toxicity in rice. Collectively, our findings provide an insight into H2S-induced protective mechanisms of rice exposed to cadmium stress, thus proposing H2S as a potential candidate for managing toxicity of cadmium, and perhaps other heavy metals, in rice and other crops. PMID:26361343

  7. Hydrogen Sulfide Delays LPS-Induced Preterm Birth in Mice via Anti-Inflammatory Pathways

    PubMed Central

    Liu, Weina; Xu, Chen; You, Xingji; Olson, David M.; Chemtob, Sylvain; Gao, Lu; Ni, Xin

    2016-01-01

    A major cause of preterm labor in pregnant women is intra-amniotic infection, which is mediated by an inflammatory process. Hydrogen sulfide (H2S), a gaseous transmitter, has been implicated to be involved in inflammatory responses. We sought to investigate whether H2S affects infectious preterm birth using the mouse model of lipopolysaccharides (LPS)-induced preterm birth. Administration of LPS at 0.4 mg/kg with two injections intraperitoneally (i.p.) on gestational day 14.5 induced preterm labor. LPS significantly increased leukocyte infiltration in uterus, stimulated the expression of pro-inflammatory cytokines interleukin 1β (IL-1β), IL-6, tumor necrosis factor α (TNF-α), CCL2 and CXCL15 in myometrium. Administration of NaHS (i.p.) delayed the onset of labor induced by LPS in a dose-dependent manner. NaHS prevented leukocyte infiltration into intrauterine tissues and inhibited the production of pro-inflammatory cytokines in myometrium and decreased the levels of these cytokines in maternal circulation. H2S also decreased LPS-activated extracellular signal-regulated kinase (ERK) 1/2/ nuclear factor (NF)-κB signaling pathways in myometrium. This study provides new in vivo evidence for the roles of H2S in attenuating inflammation, and a potential novel therapeutic strategy for infection-related preterm labor. PMID:27035826

  8. Hydrogen sulfide modulates cadmium-induced physiological and biochemical responses to alleviate cadmium toxicity in rice

    PubMed Central

    Mostofa, Mohammad Golam; Rahman, Anisur; Ansary, Md. Mesbah Uddin; Watanabe, Ayaka; Fujita, Masayuki; Phan Tran, Lam-Son

    2015-01-01

    We investigated the physiological and biochemical mechanisms by which H2S mitigates the cadmium stress in rice. Results revealed that cadmium exposure resulted in growth inhibition and biomass reduction, which is correlated with the increased uptake of cadmium and depletion of the photosynthetic pigments, leaf water contents, essential minerals, water-soluble proteins, and enzymatic and non-enzymatic antioxidants. Excessive cadmium also potentiated its toxicity by inducing oxidative stress, as evidenced by increased levels of superoxide, hydrogen peroxide, methylglyoxal and malondialdehyde. However, elevating endogenous H2S level improved physiological and biochemical attributes, which was clearly observed in the growth and phenotypes of H2S-treated rice plants under cadmium stress. H2S reduced cadmium-induced oxidative stress, particularly by enhancing redox status and the activities of reactive oxygen species and methylglyoxal detoxifying enzymes. Notably, H2S maintained cadmium and mineral homeostases in roots and leaves of cadmium-stressed plants. By contrast, adding H2S-scavenger hypotaurine abolished the beneficial effect of H2S, further strengthening the clear role of H2S in alleviating cadmium toxicity in rice. Collectively, our findings provide an insight into H2S-induced protective mechanisms of rice exposed to cadmium stress, thus proposing H2S as a potential candidate for managing toxicity of cadmium, and perhaps other heavy metals, in rice and other crops. PMID:26361343

  9. Hydrogen peroxide derived from marine peroxy sesquiterpenoids induces apoptosis in HCT116 human colon cancer cells.

    PubMed

    Miyazato, Haruna; Taira, Junsei; Ueda, Katsuhiro

    2016-10-01

    In this study, the isolates of the peroxy sesquiterpenoids (1-3) from the Okinawan soft coral, Sinularia sp., indicated cytotoxicity in HCT116 colon cancer cells. The apoptotic cells with a nuclear condensation were detected in the presence of these compounds, then the caspase 3/7 activity was induced, indicating that the compounds have a potential antitumor activity by apoptosis-induction. The cells treated with these compounds were generated reactive oxygen species (ROS), indicating that the ROS is related to the induction of apoptosis. The ROS production reduced in the presence of catalase or trolox, indicating that hydrogen peroxide (H2O2) is generated through a certain free radical reaction derived from the compound. In fact, the accumulation of intracellular H2O2 was also confirmed in the presence of these compounds. Based on all the results, this study proposed the apoptosis-inducing mechanism due to the compounds that the H2O2 produced involving free radical reactions derived from cleavage of the end or hydro-peroxide in the molecule induced cell death. PMID:27575468

  10. Hydrogen Sulfide Induced Carbon Dioxide Activation by Metal-Free Dual Catalysis.

    PubMed

    Kumar, Manoj; Francisco, Joseph S

    2016-03-18

    The role of metal free dual catalysis in the hydrogen sulfide (H2S)-induced activation of carbon dioxide (CO2) and subsequent decomposition of resulting monothiolcarbonic acid in the gas phase has been explored. The results suggest that substituted amines and monocarboxylic type organic or inorganic acids via dual activation mechanisms promote both activation and decomposition reactions, implying that the judicious selection of a dual catalyst is crucial to the efficient C-S bond formation via CO2 activation. Considering that our results also suggest a new mechanism for the formation of carbonyl sulfide from CO2 and H2S, these new insights may help in better understanding the coupling between the carbon and sulfur cycles in the atmospheres of Earth and Venus. PMID:26781129

  11. A Hypothesis: Hydrogen Sulfide Might Be Neuroprotective against Subarachnoid Hemorrhage Induced Brain Injury

    PubMed Central

    Yu, Yong-Peng; Chi, Xiang-Lin; Liu, Li-Jun

    2014-01-01

    Gases such as nitric oxide (NO) and carbon monoxide (CO) play important roles both in normal physiology and in disease. Recent studies have shown that hydrogen sulfide (H2S) protects neurons against oxidative stress and ischemia-reperfusion injury and attenuates lipopolysaccharides (LPS) induced neuroinflammation in microglia, exhibiting anti-inflammatory and antiapoptotic activities. The gas H2S is emerging as a novel regulator of important physiologic functions such as arterial diameter, blood flow, and leukocyte adhesion. It has been known that multiple factors, including oxidative stress, free radicals, and neuronal nitric oxide synthesis as well as abnormal inflammatory responses, are involved in the mechanism underlying the brain injury after subarachnoid hemorrhage (SAH). Based on the multiple physiologic functions of H2S, we speculate that it might be a promising, effective, and specific therapy for brain injury after SAH. PMID:24707204

  12. Hydrogen-induced program threshold voltage degradation analysis in SONOS wafer

    NASA Astrophysics Data System (ADS)

    Lin, Qing; Zhao, Crystal; Sheng, Nan

    2016-02-01

    This paper studies the hydrogen-induced program state threshold voltage degradation in SONOS wafers, which ultimately impacts wafer sort test yield. During wafer sort step, all individual integrated circuits noted as die are tested for functional defects by applying special test patterns to them. The proportion between the passing die (good die) and the non-passing die (bad die) is sort yield. The different N2/H2 ratio in IMD1 alloy process yields differently at flash checkerboard test. And the SIMS curves were also obtained to depict the distribution profile of H+ in SONOS ONO stack structure. It is found that, the H+ accumulated in the interface between the Tunnel oxide and Si layer, contributes the charge loss in Oxynitride layer, which leads to the program threshold voltage degradation and even fall below lower specification limit, and then impacts the sort yield of SONOS wafers.

  13. Mechanical wounding-induced laticifer differentiation in rubber tree: An indicative role of dehydration, hydrogen peroxide, and jasmonates.

    PubMed

    Tian, Wei-Min; Yang, Shu-Guang; Shi, Min-Jing; Zhang, Shi-Xin; Wu, Ji-Lin

    2015-06-15

    The secondary laticifer in the secondary phloem of rubber tree are a specific tissue differentiating from vascular cambia. The number of the secondary laticifers is closely related to the rubber productivity of Hevea. Factors involved in the mechanical wounding-induced laticifer differentiation were analyzed by using paraffin section, gas chromatography-mass spectrometry (GC-MS), and Northern-blot techniques. Dehydration of the wounded bark tissues triggered a burst of hydrogen peroxide, abscisic acid, and jasmonates and up-regulated the expression of HbAOSa, which was associated with the secondary laticifer differentiation strictly limited to the wounded area. Application of exogenous hydrogen peroxide, methyl jasmonate, and polyethylene glycol 6000 (PEG6000) could induce the secondary laticifer differentiation, respectively. Moreover, 6-Benzylaminopurine, a synthetic cytokinin, enhanced the methyl jasmonate-induced secondary laticifer differentiation. However, the dehydration-induced secondary laticifer differentiation was inhibited by exogenous abscisic acid. Diphenyleneiodonium chloride (DPI), a specific inhibitor of NADPH oxidase, was effective in inhibiting the accumulation of hydrogen peroxide as well as of jasmonates upon dehydration. It blocked the dehydration-induced but not the methyl jasmonate-induced secondary laticifer differentiation. The results suggested a stress signal pathway mediating the wound-induced secondary laticifer differentiation in rubber tree. PMID:26070085

  14. Protective effect of hydrogen-rich saline against radiation-induced immune dysfunction

    PubMed Central

    Zhao, Sanhu; Yang, Yanyong; Liu, Wen; Xuan, Zhiqiang; Wu, Shouming; Yu, Shunfei; Mei, Ke; Huang, Yijuan; Zhang, Pei; Cai, Jianming; Ni, Jin; Zhao, Yaoxian

    2014-01-01

    Recent studies showed that hydrogen can be used as an effective radioprotective agent through scavenging free radicals. This study was undertaken to evaluate the radioprotective effects of hydrogen on immune system in mice. H2 was dissolved in physiological saline using an apparatus produced by our department. Spleen index and histological analysis were used to evaluate the splenic structural damage. Spleen superoxide dismutase, GSH, MDA were measured to appraise the antioxidant capacity and a DCF assay for the measurement of radical oxygen species. Cell apoptosis was evaluated by an Annexin V-FITC and propidium iodide staining method as well as the apoptotic proteins such as Bcl-2, Bax, caspase-3 and c-caspase-3. CD4+ and CD8+ T cells subtypes were detected by flow cytometry with FITC-labelled antimouse CD4 and PE antimouse CD8 staining. Real-time PCR was utilized to determine the CD4+ T cell subtypes and related cytokines. Our study demonstrated that pre-treatment with H2 could increase the spleen index and attenuate the radiation damage on splenic structure. Radical oxygen species level was also reduced by H2 treatment. H2 also inhibited radiation-induced apoptosis in splenocytes and down-regulated pro-apoptotic proteins in living mice. Radiation-induced imbalance of T cells was attenuated by H2. Finally, we found that H2 could regulate the polarization of CD4+ T cells and the level of related cytokines. This study suggests H2 as an effective radioprotective agent on immune system by scavenging reactive oxygen species. PMID:24618260

  15. Hydrogen-induced cold cracking in heat-affected zone of low-carbon high-strength steel

    NASA Astrophysics Data System (ADS)

    Lan, Liangyun; Kong, Xiangwei; Hu, Zhiyong; Qiu, Chunlin

    2014-12-01

    The Y-groove cracking test by submerged arc welding was employed to study the susceptibility of a low-carbon high-strength steel to hydrogen-induced cold cracking (HICC). The morphology of hydrogen cracks was observed using an electron probe microscope. The results showed that the heat-affected zone (HAZ) has a higher susceptibility to HICC than the weld metal and that increasing heat input can improve the HICC resistance of the weldment. The intergranular microcracking is the main HICC mode at the lowest heat input condition, accompanied with some transgranular microcracks attached to complex inclusions. In combination with phase transformation behaviour in sub-zones, the effect of the phase transformation sequence is proposed to try to illustrate the fact that the fine-grained HAZ has higher probability of hydrogen cracking than the coarse-grained HAZ owing to the occurrence of hydrogen enrichment in the fine-grained HAZ after the transformation.

  16. Alkali metal mediated C-C bond coupling reaction

    NASA Astrophysics Data System (ADS)

    Tachikawa, Hiroto

    2015-02-01

    Metal catalyzed carbon-carbon (C-C) bond formation is one of the important reactions in pharmacy and in organic chemistry. In the present study, the electron and hole capture dynamics of a lithium-benzene sandwich complex, expressed by Li(Bz)2, have been investigated by means of direct ab-initio molecular dynamics method. Following the electron capture of Li(Bz)2, the structure of [Li(Bz)2]- was drastically changed: Bz-Bz parallel form was rapidly fluctuated as a function of time, and a new C-C single bond was formed in the C1-C1' position of Bz-Bz interaction system. In the hole capture, the intermolecular vibration between Bz-Bz rings was only enhanced. The mechanism of C-C bond formation in the electron capture was discussed on the basis of theoretical results.

  17. Evaluation of Heat-affected Zone Hydrogen-induced Cracking in High-strength Steels

    NASA Astrophysics Data System (ADS)

    Yue, Xin

    Shipbuilding is heavily reliant on welding as a primary fabrication technique. Any high performance naval steel must also possess good weldability. It is therefore of great practical importance to conduct weldability testing of naval steels. Among various weldability issues of high-strength steels, hydrogen-induced cracking (HIC) in the heat-affected zone (HAZ) following welding is one of the biggest concerns. As a result, in the present work, research was conducted to study the HAZ HIC susceptibility of several naval steels. Since the coarse-grained heat-affected zone (CGHAZ) is generally known to be the most susceptible to HIC in the HAZ region, the continuous cooling transformation (CCT) behavior of the CGHAZ of naval steels HSLA-65, HSLA-100, and HY-100 was investigated. The CGHAZ microstructure over a range of cooling rates was characterized, and corresponding CCT diagrams were constructed. It was found that depending on the cooling rate, martensite, bainite, ferrite and pearlite can form in the CGHAZ of HSLA-65. For HSLA-100 and HY-100, only martensite and bainite formed over the range of cooling rates that were simulated. The constructed CCT diagrams can be used as a reference to select welding parameters to avoid the formation of high-hardness martensite in the CGHAZ, in order to ensure resistance to hydrogen-induced cracking. Implant testing was conducted on the naval steels to evaluate their susceptibility to HAZ HIC. Stress vs. time to failure curves were plotted, and the lower critical stress (LCS), normalized critical stress ratio (NCSR) and embrittlement index (EI) for each steel were determined, which were used to quantitatively compare HIC susceptibility. The CGHAZ microstructure of the naval steels was characterized, and the HIC fracture behavior was studied. Intergranular (IG), quasi-cleavage (QC) and microvoid coalescence (MVC) fracture modes were found to occur in sequence during the crack initiation and propagation process. This was

  18. Detection of Interstellar Ethylene Oxide (c-C2H4O)

    NASA Astrophysics Data System (ADS)

    Dickens, J. E.; Irvine, W. M.; Ohishi, M.; Ikeda, M.; Ishikawa, S.; Nummelin, A.; Hjalmarson, A.

    1997-01-01

    We report the identification of 10 transitions which support the detection of the small cyclic molecule ethylene oxide (c-C2H40) in SgrB2(N). Although one of these transitions is severely blended, such that an accurate intensity and linewidth could not be determined, and two other lines are only marginally detected, we have done gaussian fits to the remaining 7 lines and have performed a rotation diagram analysis. Our results indicate a rotation temperature, Trot = 18 K, and a molecular column density, N(c-C2H40) = 3.3 x 1014cm-2, corresponding to a fractional abundance relative to molecular hydrogen of order 6 x 10exp -11). This is a factor of more than 200 higher than the abundance for this molecule suggested by the "new standard" chemistry model of Lee, Bettens, & Herbst (1996). This result suggests that grain chemistry might play an effective role in the production Of c-C2H40. No transitions of this molecule were detected in either SgrB2(M) or SgrB2(NW).

  19. Detection of Interstellar Ethylene Oxide (c-C2H4O)

    NASA Astrophysics Data System (ADS)

    Dickens, J. E.; Irvine, W. M.; Ohishi, M.; Ikeda, M.; Ishikawa, S.; Nummelin, A.; Hjalmarson, Å.

    1997-11-01

    We report the identification of 10 transitions that support the detection of the small cyclic molecule ethylene oxide (c-C2H4O) in Sgr B2N. Although one of these transitions is severely blended, so that an accurate intensity and line width could not be determined, and two other lines are only marginally detected, we have done Gaussian fits to the remaining seven lines and have performed a rotation diagram analysis. Our results indicate a rotation temperature Trot = 18 K and a molecular column density N(c-C2H4O) = 3.3 × 1014 cm-2, corresponding to a fractional abundance relative to molecular hydrogen of order 6 × 10-11. This is a factor of more than 200 higher than the abundance for this molecule suggested by the ``new standard'' chemistry model of Lee, Bettens, & Herbst. This result suggests that grain chemistry might play an effective role in the production of c-C2H4O. No transitions of this molecule were detected in either Sgr B2M or Sgr B2NW.

  20. Detection of interstellar ethylene oxide (c-C2H4O).

    PubMed

    Dickens, J E; Irvine, W M; Ohishi, M; Ikeda, M; Ishikawa, S; Nummelin, A; Hjalmarson, A

    1997-11-10

    We report the identification of 10 transitions that support the detection of the small cyclic molecule ethylene oxide (c-C2H4O) in Sgr B2N. Although one of these transitions is severely blended, so that an accurate intensity and line width could not be determined, and two other lines are only marginally detected, we have done Gaussian fits to the remaining seven lines and have performed a rotation diagram analysis. Our results indicate a rotation temperature T(rot) = 18 K and a molecular column density N(c-C2H4O) = 3.3 x 10(14) cm-2, corresponding to a fractional abundance relative to molecular hydrogen of order 6 x 10(-11). This is a factor of more than 200 higher than the abundance for this molecule suggested by the "new standard" chemistry model of Lee, Bettens, & Herbst. This result suggests that grain chemistry might play an effective role in the production of c-C2H4O. No transitions of this molecule were detected in either Sgr B2M or Sgr B2NW. PMID:11541726

  1. Hydrogen peroxide inducible clone-5 mediates reactive oxygen species signaling for hepatocellular carcinoma progression.

    PubMed

    Wu, Jia-Ru; Hu, Chi-Tan; You, Ren-In; Pan, Siou-Mei; Cheng, Chuan-Chu; Lee, Ming-Che; Wu, Chao-Chuan; Chang, Yao-Jen; Lin, Shu-Chuan; Chen, Chang-Shan; Lin, Teng-Yi; Wu, Wen-Sheng

    2015-10-20

    One of the signaling components involved in hepatocellular carcinoma (HCC) progression is the focal adhesion adaptor paxillin. Hydrogen peroxide inducible clone-5 (Hic-5), one of the paralogs of paxillin, exhibits many biological functions distinct from paxillin, but may cooperate with paxillin to trigger tumor progression. Screening of Hic-5 in 145 surgical HCCs demonstrated overexpression of Hic-5 correlated well with intra- and extra-hepatic metastasis. Hic-5 highly expressed in the patient derived HCCs with high motility such as HCC329 and HCC353 but not in the HCCs with low motility such as HCC340. Blockade of Hic-5 expression prevented constitutive migration of HCC329 and HCC353 and HGF-induced cell migration of HCC340. HCC329Hic-5(-), HCC353Hic-5(-), HCC372Hic-5(-), the HCCs stably depleted of Hic-5, exhibited reduced motility compared with each HCC expressing Scramble shRNA. Moreover, intra/extrahepatic metastasis of HCC329Hic-5(-) in SCID mice greatly decreased compared with HCC329Scramble. On the other hand, ectopic Hic-5 expression in HCC340 promoted its progression. Constitutive and HGF-induced Hic-5 expression in HCCs were suppressed by the reactive oxygen species (ROS) scavengers catalase and dithiotheritol and c-Jun N-terminal kinase (JNK) inhibitor SP600125. On the contrary, depletion of Hic-5 blocked constitutive and HGF-induced ROS generation and JNK phosphorylation in HCCs. Also, ectopic expression of Hic-5 enhanced ROS generation and JNK phosphorylation. These highlighted that Hic-5 plays a central role in the positive feedback ROS-JNK signal cascade. Finally, the Chinese herbal derived anti-HCC peptide LZ-8 suppressed constitutive Hic-5 expression and JNK phosphorylation. In conclusion, Hic-5 mediates ROS-JNK signaling and may serve as a therapeutic target for prevention of HCC progression. PMID:26416447

  2. Protective effect of oat bran extracts on human dermal fibroblast injury induced by hydrogen peroxide.

    PubMed

    Feng, Bing; Ma, Lai-ji; Yao, Jin-jing; Fang, Yun; Mei, Yan-ai; Wei, Shao-min

    2013-02-01

    Oat contains different components that possess antioxidant properties; no study to date has addressed the antioxidant effect of the extract of oat bran on the cellular level. Therefore, the present study focuses on the investigation of the protective effect of oat bran extract by enzymatic hydrolysates on human dermal fibroblast injury induced by hydrogen peroxide (H(2)O(2)). Kjeldahl determination, phenol-sulfuric acid method, and high-performance liquid chromatography (HPLC) analysis indicated that the enzymatic products of oat bran contain a protein amount of 71.93%, of which 97.43% are peptides with a molecular range from 438.56 to 1301.01 Da. Assays for 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity indicate that oat peptide-rich extract has a direct and concentration-dependent antioxidant activity. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) colorimetric assay and the TdT-mediated digoxigenin-dUTP nick-end labeling (TUNEL) assay for apoptosis showed that administration of H(2)O(2) in human dermal fibroblasts caused cell damage and apoptosis. Pre-incubation of human dermal fibroblasts with the Oatp for 24 h markedly inhibited human dermal fibroblast injury induced by H(2)O(2), but application oat peptides with H(2)O(2) at same time did not. Pre-treatment of human dermal fibroblasts with Oatp significantly reversed the H(2)O(2)-induced decrease of superoxide dismutase (SOD) and the inhibition of malondialdehyde (MDA). The results demonstrate that oat peptides possess antioxidant activity and are effective against H(2)O(2)-induced human dermal fibroblast injury by the enhanced activity of SOD and decrease in MDA level. Our results suggest that oat bran will have the potential to be further explored as an antioxidant functional food in the prevention of aging-related skin injury. PMID:23365008

  3. Protective effects of hydrogen-rich saline against N-methyl-N-nitrosourea-induced photoreceptor degeneration.

    PubMed

    Chen, Tao; Tao, Ye; Yan, Weiming; Yang, Guoqing; Chen, Xuemin; Cao, Ruidan; Zhang, Lei; Xue, Junhui; Zhang, Zuoming

    2016-07-01

    The N-methyl-N-nitrosourea (MNU)-treated rat is typically used as an animal model of chemically-induced retinitis pigmentosa (RP). Reactive oxygen species (ROS) have been recognized as the crucial contributor to the retinal photoreceptor apoptosis seen in MNU-treated rats. In the present study, we explored the therapeutic effects of hydrogen-rich saline (HRS), a selective ROS scavenger, on MNU-induced photoreceptor degeneration. Intraperitoneal (IP) administration of HRS ameliorated MNU-induced photoreceptor degeneration in terms of morphology and function: Sharply decreased thickness of the retinal outer nuclear layer (ONL) and flattened photopic and scotopic electroretinogram (ERG) waveforms, typically seen in response to MNU treatment, were substantially rescued in rats cotreated with MNU and HRS (MNU + HRS). Moreover, the terminal deoxyuridine triphosphate nick-end labeling (TUNEL) assay revealed a smaller number of apoptotic photoreceptors in the MNU + HRS group compared that in the MNU group. Compared to MNU-treated rats, retinal malondialdehyde (MDA) content in MNU + HRS rats significantly decreased while superoxide dismutase (SOD) activity significantly increased. Morphological and multi-electrode array (MEA) analyses revealed more efficient preservation of the architecture and field potential waveforms in particularly the peripheral regions of the retinas within the MNU + HRS group, compared to that in the MNU group. However, this enhanced protection of structure and function in the peripheral retina is unlikely the result of site-dependent variation in the efficacy of HRS; rather, it is most likely due to reduced susceptibility of peripheral photoreceptors to MNU-induced degeneration. Inner retinal neuron function in the MNU + HRS rats was better preserved, with fewer apoptotic photoreceptors in the ONL. Collectively, these results support the rationale for future clinical evaluation of HRS as a therapeutic agent for human RP. PMID:27215478

  4. Protective effect of oat bran extracts on human dermal fibroblast injury induced by hydrogen peroxide

    PubMed Central

    Feng, Bing; Ma, Lai-ji; Yao, Jin-jing; Fang, Yun; Mei, Yan-ai; Wei, Shao-min

    2013-01-01

    Oat contains different components that possess antioxidant properties; no study to date has addressed the antioxidant effect of the extract of oat bran on the cellular level. Therefore, the present study focuses on the investigation of the protective effect of oat bran extract by enzymatic hydrolysates on human dermal fibroblast injury induced by hydrogen peroxide (H2O2). Kjeldahl determination, phenol-sulfuric acid method, and high-performance liquid chromatography (HPLC) analysis indicated that the enzymatic products of oat bran contain a protein amount of 71.93%, of which 97.43% are peptides with a molecular range from 438.56 to 1 301.01 Da. Assays for 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity indicate that oat peptide-rich extract has a direct and concentration-dependent antioxidant activity. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) colorimetric assay and the TdT-mediated digoxigenin-dUTP nick-end labeling (TUNEL) assay for apoptosis showed that administration of H2O2 in human dermal fibroblasts caused cell damage and apoptosis. Pre-incubation of human dermal fibroblasts with the Oatp for 24 h markedly inhibited human dermal fibroblast injury induced by H2O2, but application oat peptides with H2O2 at same time did not. Pre-treatment of human dermal fibroblasts with Oatp significantly reversed the H2O2-induced decrease of superoxide dismutase (SOD) and the inhibition of malondialdehyde (MDA). The results demonstrate that oat peptides possess antioxidant activity and are effective against H2O2-induced human dermal fibroblast injury by the enhanced activity of SOD and decrease in MDA level. Our results suggest that oat bran will have the potential to be further explored as an antioxidant functional food in the prevention of aging-related skin injury. PMID:23365008

  5. The influence of the EUV spectrum on plasma induced by EUV radiation in argon and hydrogen gas

    NASA Astrophysics Data System (ADS)

    van der Horst, R. M.; Osorio, E. A.; Banine, V. Y.; Beckers, J.

    2016-02-01

    Plasmas induced by EUV radiation are scarcely investigated, although they are unique since they are created without any discharge. These plasmas are also of interest from an applicational point of view, since they are related to the lifetime of optics in EUV lithography tools. In order to assess this impact, it is essential to characterize and understand EUV-induced plasma. In this contribution the influence of the background gas (argon and hydrogen) in the lithography tool and the spectrum of the illumination source on the electron density of EUV-induced plasma is investigated using microwave cavity resonance spectroscopy. The experimental results showed that out-of-band radiation (>20 nm) is the main contributor to EUV-induced plasma in both argon and hydrogen. In hydrogen, this contribution is relatively more important than in argon due to the stronger wavelength dependence of the photoionization cross section of hydrogen than of argon. Furthermore, the production of electrons by out-of-band radiation lasts longer than the production by in-band radiation (10-20 nm) due to the longer temporal width of out-of-band radiation. Finally, the obtained results correspond reasonably well with estimates from a simplified absorption model.

  6. Annealing-induced alloy formation in Pd/Fe bilayers on Si(1 1 1) for hydrogen sensing

    NASA Astrophysics Data System (ADS)

    Mudinepalli, Venkata Ramana; Tsai, Cheng-Jui; Chuang, Ying-Chin; Chang, Po-Chun; Plusnin, N.; Lin, Wen-Chin

    2016-03-01

    The bilayers of Pd and Fe with different thickness and relative positions were grown on Si(1 1 1)-7 × 7 surface at room temperature. For the investigation of the thermal annealing induced inter-diffusion and the corresponding magnetic behavior, Auger electron spectroscopy (AES) measurement was carried out after various annealing processes, including the variation of annealing duration and temperature. With the annealing temperature of 300-500 K, the Pd/Fe bilayers were stable. Slight Si segregated into the thin film at around 700 K. Above 700 K, more serious Si segregation occurred and most of the Pd/Fe bilayer was mixed with Si, forming a silicide layer. 700-800 K annealing also induced change of Pd/Fe AES ratio, indicating the inter-diffusion between Pd and Fe layers. To overcome the unavoidable silicide formation induced magnetic dead layer, a relative thick Fe film of 20 ML capped with 1.5 ML Pd was chosen for the investigation of magnetism. The magnetic coercivity (Hc) increased by 2-3 times with the annealing temperature up to 740 K. Obvious hydrogenation effect was observed in 710 K-annealed sample; the in-plane Hc increased by more than 10% when the hydrogen pressure was above 200 mbar. After further annealing at 740-800 K, the hydrogenation effect on Hc became nearly unobservable. The annealing induced Pd-rich magnetic interface is supposed to dominate the hydrogenation effect on magnetism.

  7. Regulating energy transfer of excited carriers and the case for excitation-induced hydrogen dissociation on hydrogenated graphene

    SciTech Connect

    Bang, Junhyeok; Meng, Sheng; Sun, Yi-Yang; West, Damien; Wang, Zhiguo; Gao, Fei; Zhang, Shengbai

    2013-01-15

    Understanding and controlling of excited carrier dynamics is of fundamental and practical importance, particularly in photochemistry and solar energy applications. However, theory of energy relaxation of excited carriers is still in its early stage. Here, using ab-initio molecular dynamics (MD) coupled with time-dependent density functional theory, we show a coverage-dependent energy transfer of photoexcited carriers in hydrogenated graphene, giving rise to distinctively different ion dynamics. Graphene with sparsely populated H is difficult to dissociate due to inefficient transfer of the excitation energy into kinetic energy of the H. In contrast, H can easily desorb from fully hydrogenated graphane. The key is to bring down the H antibonding state to the conduction band minimum as the band gap increases. These results can be contrasted to those of standard ground-state MD which predicts H in the sparse case should be much less stable than that in fully hydrogenated graphane. Our findings thus signify the importance of carrying out explicit electronic dynamics in excited-state simulations.

  8. Regulating energy transfer of excited carriers and the case for excitation-induced hydrogen dissociation on hydrogenated graphene

    PubMed Central

    Bang, Junhyeok; Meng, Sheng; Sun, Yi-Yang; West, Damien; Wang, Zhiguo; Gao, Fei; Zhang, S. B.

    2013-01-01

    Understanding and controlling of excited carrier dynamics is of fundamental and practical importance, particularly in photochemistry and solar energy applications. However, theory of energy relaxation of excited carriers is still in its early stage. Here, using ab initio molecular dynamics (MD) coupled with time-dependent density functional theory, we show a coverage-dependent energy transfer of photoexcited carriers in hydrogenated graphene, giving rise to distinctively different ion dynamics. Graphene with sparsely populated H is difficult to dissociate due to inefficient transfer of the excitation energy into kinetic energy of the H. In contrast, H can easily desorb from fully hydrogenated graphane. The key is to bring down the H antibonding state to the conduction band minimum as the band gap increases. These results can be contrasted to those of standard ground-state MD that predict H in the sparse case should be much less stable than that in fully hydrogenated graphane. Our findings thus signify the importance of carrying out explicit electronic dynamics in excited-state simulations. PMID:23277576

  9. Effects of hydrogen atoms on surface conductivity of diamond film

    SciTech Connect

    Liu, Fengbin Cui, Yan; Qu, Min; Di, Jiejian

    2015-04-15

    To investigate the effects of surface chemisorbed hydrogen atoms and hydrogen atoms in the subsurface region of diamond on surface conductivity, models of hydrogen atoms chemisorbed on diamond with (100) orientation and various concentrations of hydrogen atoms in the subsurface layer of the diamond were built. By using the first-principles method based on density functional theory, the equilibrium geometries and densities of states of the models were studied. The results showed that the surface chemisorbed hydrogen alone could not induce high surface conductivity. In addition, isolated hydrogen atoms in the subsurface layer of the diamond prefer to exist at the bond centre site of the C-C bond. However, such a structure would induce deep localized states, which could not improve the surface conductivity. When the hydrogen concentration increases, the C-H-C-H structure and C-3H{sub bc}-C structure in the subsurface region are more stable than other configurations. The former is not beneficial to the increase of the surface conductivity. However, the latter would induce strong surface states near the Fermi level, which would give rise to high surface conductivity. Thus, a high concentration of subsurface hydrogen atoms in diamond would make significant contributions to surface conductivity.

  10. Exploring the electron density in plasma induced by EUV radiation: I. Experimental study in hydrogen

    NASA Astrophysics Data System (ADS)

    van der Horst, R. M.; Beckers, J.; Osorio, E. A.; Astakhov, D. I.; Goedheer, W. J.; Lee, C. J.; Ivanov, V. V.; Krivtsum, V. M.; Koshelev, K. N.; Lopaev, D. V.; Bijkerk, F.; Banine, V. Y.

    2016-04-01

    Plasmas induced by EUV radiation are unique since they are created without the need of any discharge. Moreover, it is essential to characterize these plasmas to understand and predict their long term impact on highly delicate optics in EUV lithography tools. In this paper we study plasmas induced by 13.5 nm EUV radiation in hydrogen gas. The electron density is measured temporally resolved using a non-invasive technique known as microwave cavity resonance spectroscopy. The influence of the EUV pulse energy and gas pressure on the temporal evolution of the electron density has been explored over a parameter range relevant for industry. Our experimental results show that the maximum electron density is in the order of 1014 m-3 and depends linearly on the EUV pulse energy. Furthermore, the maximum electron density depends quadratically on the pressure; the linear term is caused by photoionization and the quadratic term by subsequent electron impact ionization. The decay of the plasma is governed by ambipolar diffusion and, hence, becomes slower at elevated pressures. Similarities and differences of the same processes in argon are highlighted in this paper.

  11. Effect of vitamin C administration on hydrogen peroxide-induced cytotoxicity in periodontal ligament cells.

    PubMed

    Wu, Wenlei; Yang, Nanfei; Feng, Xiujing; Sun, Tingzhe; Shen, Pingping; Sun, Weibin

    2015-01-01

    Periodontitis is a disease, which is associated with chronic inflammation and leads to significant destruction of periodontal tissues. Periodontal ligament cells (PDLCs) constitute the largest cell population in PDL tissues and a considerable body of evidence has demonstrated an association between oxidative stress and the progression of periodontitis. However, the effects on PDLCs exposed to hydrogen peroxide (H2O2) and the molecular mechanisms by which H2O2 affects periodontitis remain to be elucidated. In the present study, the potential cytotoxic effect of H2O2 and the antioxidative function of vitamin C (Vc) in PDLCs were investigated. The results demonstrated that H2O2 treatment decreased the viability of PDLCs. The decreased PDLC viability was primarily induced by apoptosis, which was evidenced by cleaved caspases-3, caspases-9 and poly (ADP-ribose) polymerase. Following optimal Vc addition, the proapoptotic effects of H2O2 were partially antagonized. Taken together, the present study demonstrated that H2O2 primarily induced the apoptosis of PDLCs and that these adverse effects were partially rescued following treatment with Vc. These results revealed how H2O2 promotes the progression of periodontitis and provide an improved understanding of the reversal effect of antioxidant treatment. Therefore, optimal Vc administration may provide a potentially effective technique in periodontal therapy. PMID:25333298

  12. Genetic Targets of Hydrogen Sulfide in Ventilator-Induced Lung Injury – A Microarray Study

    PubMed Central

    Spassov, Sashko; Pfeifer, Dietmar; Strosing, Karl; Ryter, Stefan; Hummel, Matthias; Faller, Simone; Hoetzel, Alexander

    2014-01-01

    Recently, we have shown that inhalation of hydrogen sulfide (H2S) protects against ventilator-induced lung injury (VILI). In the present study, we aimed to determine the underlying molecular mechanisms of H2S-dependent lung protection by analyzing gene expression profiles in mice. C57BL/6 mice were subjected to spontaneous breathing or mechanical ventilation in the absence or presence of H2S (80 parts per million). Gene expression profiles were determined by microarray, sqRT-PCR and Western Blot analyses. The association of Atf3 in protection against VILI was confirmed with a Vivo-Morpholino knockout model. Mechanical ventilation caused a significant lung inflammation and damage that was prevented in the presence of H2S. Mechanical ventilation favoured the expression of genes involved in inflammation, leukocyte activation and chemotaxis. In contrast, ventilation with H2S activated genes involved in extracellular matrix remodelling, angiogenesis, inhibition of apoptosis, and inflammation. Amongst others, H2S administration induced Atf3, an anti-inflammatory and anti-apoptotic regulator. Morpholino mediated reduction of Atf3 resulted in elevated lung injury despite the presence of H2S. In conclusion, lung protection by H2S during mechanical ventilation is associated with down-regulation of genes related to oxidative stress and inflammation and up-regulation of anti-apoptotic and anti-inflammatory genes. Here we show that Atf3 is clearly involved in H2S mediated protection. PMID:25025333

  13. Hydrogen sulfide lowers proliferation and induces protective autophagy in colon epithelial cells.

    PubMed

    Wu, Ya C; Wang, Xiao J; Yu, Le; Chan, Francis K L; Cheng, Alfred S L; Yu, Jun; Sung, Joseph J Y; Wu, William K K; Cho, Chi H

    2012-01-01

    Hydrogen sulfide (H(2)S) is a gaseous bacterial metabolite that reaches high levels in the large intestine. In the present study, the effect of H(2)S on the proliferation of normal and cancerous colon epithelial cells was investigated. An immortalized colon epithelial cell line (YAMC) and a panel of colon cancer cell lines (HT-29, SW1116, HCT116) were exposed to H(2)S at concentrations similar to those found in the human colon. H(2)S inhibited normal and cancerous colon epithelial cell proliferation as measured by MTT assay. The anti-mitogenic effect of H(2)S was accompanied by G(1)-phase cell cycle arrest and the induction of the cyclin-dependent kinase inhibitor p21(Cip). Moreover, exposure to H(2)S led to features characteristic of autophagy, including increased formation of LC3B(+) autophagic vacuoles and acidic vesicular organelles as determined by immunofluorescence and acridine orange staining, respectively. Abolition of autophagy by RNA interference targeting Vps34 or Atg7 enhanced the anti-proliferative effect of H(2)S. Further mechanistic investigation revealed that H(2)S stimulated the phosphorylation of AMP-activated protein kinase (AMPK) and inhibited the phosphorylation of mammalian target of rapamycin (mTOR) and S6 kinase. Inhibition of AMPK significantly reversed H(2)S-induced autophagy and inhibition of cell proliferation. Collectively, we demonstrate that H(2)S inhibits colon epithelial cell proliferation and induces protective autophagy via the AMPK pathway. PMID:22679478

  14. Is Hydrogen Peroxide a Suitable Apoptosis Inducer for All Cell Types?

    PubMed Central

    Xiang, Jinmei; Wan, Chunyun; Guo, Rui

    2016-01-01

    Hydrogen peroxide is currently the most widely used apoptosis inducer due to its broad cytotoxic efficacy against nearly all cell types. However, equivalent cytotoxicity is achieved over a wide range of doses, although the reasons for this differential sensitivity are not always clear. In this study, three kinds of cells, the 293T cell line, primary fibroblasts, and terminally differentiated myocardial cells, were treated with a wide range of H2O2 doses. Times to apoptosis initiation and end were measured cytochemically and the changes in expression of caspase-9, P53, NF-κB, and RIP were determined by RT-PCR. The 293T cell line was the most sensitive to H2O2, undergoing necroptosis and/or apoptosis at all concentrations from 0.1 to 1.6 mM. At > 0.4 mM, H2O2 also caused necroptosis in primary cells. At < 0.4 mM, however, primary cells exhibited classic signs of apoptosis, although they tended to survive for 36 hours in < 0.2 mM H2O2. Thus, H2O2 is a broadly effective apoptosis inducer, but the dose range differs by cell type. For cell lines, a low dose is required and the exposure time must be reduced compared to primary cells to avoid cell death primarily by necroptosis or necrosis. PMID:27595106

  15. The Gas Leakage Analysis in C/C Composites

    NASA Astrophysics Data System (ADS)

    Nishiyama, Yuichi; Hatta, Hiroshi; Bando, Takamasa; Sugibayashi, Toshio

    Gas leakage through carbon fiber reinforcement carbon composites, C/Cs, was discussed so as to apply C/Cs to heat exchangers in an engine system for a future space-plane. Since C/Cs include many cracks and pores, gas easily leaks through C/Cs. To predict and to prevent the gas flow through a C/C, leakage rate was measured as a function of pressure and gas flow path was identified by micro-observation of the C/C. Then, several analytical models were examined to clarify principal mechanism yielding gas flow resistance. It was found that laminar flow models gave far small flow resistance compared with experimental results, but a model based on adiabatic expansion and compression flow, used for gas leak through labyrinth seals, resulted in reasonable agreement. Finally, Si impregnation in a C/C was examined to minimize the gas leakage. This treatment was shown to be an excellent measure to reduce the gas leakage through C/C.

  16. Hydrogen sulfide attenuates ferric chloride-induced arterial thrombosis in rats.

    PubMed

    Qin, Yi-Ren; You, Shou-Jiang; Zhang, Yan; Li, Qian; Wang, Xian-Hui; Wang, Fen; Hu, Li-Fang; Liu, Chun-Feng

    2016-06-01

    Hydrogen sulfide (H2S) is a novel gaseous transmitter, regulating a multitude of biological processes in the cardiovascular and other systems. However, it remains unclear whether it exerts any effect on arterial thrombosis. In this study, we examined the effect of H2S on ferric chloride (FeCl3)-induced thrombosis in the rat common carotid artery (CCA). The results revealed a decrease of the H2S-producing enzyme cystathionine γ-lyase (CSE) expression and H2S production that persisted until 48 h after FeCl3 application. Intriguingly, administration with NaHS at appropriate regimen reduced the thrombus formation and enhanced the blood flow, accompanied with the alleviation of CSE and CD31 downregulation, and endothelial cell apoptosis in the rat CCA following FeCl3 application. Moreover, the antithrombotic effect of H2S was also observed in Rose Bengal photochemical model in which the development of thrombosis is contributed by oxidative injury to the endothelium. The in vitro study demonstrated that the mRNA and protein expression of CSE, as well as H2S production, was decreased in hydrogen peroxide (H2O2)-treated endothelial cells. Exogenous supplement of NaHS and CSE overexpression consistently alleviated the increase of cleaved caspase-3 and endothelial cell damage caused by H2O2. Taken together, our findings suggest that endogenous H2S generation in the endothelium may be impaired during arterial thrombosis and that modulation of H2S, either exogenous supplement or boost of endogenous production, may become a potential venue for arterial thrombosis therapy. PMID:26982248

  17. Hydrogen Sulfide Attenuates Neurodegeneration and Neurovascular Dysfunction Induced by Intracerebral Administered Homocysteine in Mice

    PubMed Central

    Kamat, Pradip K.; Kalani, Anuradha; Givvimani, Srikanth; Sathnur, PB; Tyagi, Suresh C.; Tyagi, Neetu

    2014-01-01

    High levels of homocysteine (Hcy), known as hyperhomocysteinemia (HHcy) are associated with neurovascular diseases. H2S, a metabolite of Hcy, has a potent anti-oxidant and anti-inflammatory activity; however, the effect of H2S has not been explored in Hcy (IC) induced neurodegeneration and neurovascular dysfunction in mice. Therefore, the present study was designed to explore the neuroprotective role of H2S on Hcy induced neurodegeneration and neurovascular dysfunction. To test this hypothesis we employed wild type (WT) males ages 8–10 weeks, WT+ artificial cerebrospinal fluid (aCSF), WT+ Hcy (0.5μmol/μl) intracerebral injection (I.C., one time only prior to NaHS treatment), WT+Hcy +NaHS (sodium hydrogen sulfide, precursor of H2S, 30 μmol/kg, body weight). NaHS was injected intra-peritoneally (I.P.) once daily for the period of 7 days after the Hcy (IC) injection. Hcy treatment significantly increased MDA, nitrite level, acetylcholinestrase activity, TNFα, IL1β, GFAP, iNOS, eNOS and decreased glutathione level indicating oxidative-nitrosative stress and neuroinflammation as compared to control and aCSF treated groups. Further, increased expression of NSE, S100B and decreased expression of (PSD95, SAP97) synaptic protein indicated neurodegeneration. Brain sections of Hcy treated mice showed damage in the cortical area and periventricular cells. TUNEL positive cells and Fluro Jade-C staining indicated apoptosis and neurodegeneration. The increased expression of MMP9, MMP2 and decreased expression of TIMP-1, TIMP-2, tight junction proteins (ZO1, Occuldin) in Hcy treated group indicate neurovascular remodeling. Interestingly, NaHS treatment significantly attenuated Hcy induced oxidative stress, memory deficit, neurodegeneration, neuroinflammation and cerebrovascular remodeling. The results indicate that H2S is effective in providing protection against neurodegeneration and neurovascular dysfunction. PMID:23912038

  18. Blackbody-induced decay, excitation and ionization rates for Rydberg states in hydrogen and helium atoms

    NASA Astrophysics Data System (ADS)

    Glukhov, I. L.; Nekipelov, E. A.; Ovsiannikov, V. D.

    2010-06-01

    New features of the blackbody-induced radiation processes on Rydberg atoms were discovered on the basis of numerical data for the blackbody-induced decay Pdnl(T), excitation Penl(T) and ionization Pionnl(T) rates of nS, nP and nD Rydberg states calculated together with the spontaneous decay rates Pspnl in neutral hydrogen, and singlet and triplet helium atoms for some values of the principal quantum number n from 10 to 500 at temperatures from T = 100 K to 2000 K. The fractional rates Rd(e, ion)nl(T) = Pnld(e, ion)(T)/Pspnl equal to the ratio of the induced decay (excitation, ionization) rates to the rate of spontaneous decay were determined as functions of T and n in every series of states with a given angular momentum l = 0, 1, 2. The calculated data reveal an essential difference between the asymptotic dependence of the ionization rate Pionnl(T) and the rates of decay and excitation Pd(e)nl(T)~T/n2. The departures appear in each Rydberg series for n > 100 and introduce appreciable corrections to the formula of Cooke and Gallagher. Two different approximation formulae are proposed on the basis of the numerical data, one for Rd(e)nl(T) and another one for Rionnl(T), which reproduce the calculated values in wide ranges of principal quantum number from n = 10 to 1000 and temperatures between T = 100 K and T = 2000 K with an accuracy of 2% or better. Modified Fues' model potential approach was used for calculating matrix elements of bound-bound and bound-free radiation transitions in helium.

  19. Streptococcus oralis Induces Lysosomal Impairment of Macrophages via Bacterial Hydrogen Peroxide.

    PubMed

    Okahashi, Nobuo; Nakata, Masanobu; Kuwata, Hirotaka; Kawabata, Shigetada

    2016-07-01

    Streptococcus oralis, an oral commensal, belongs to the mitis group of streptococci and occasionally causes opportunistic infections, such as bacterial endocarditis and bacteremia. Recently, we found that the hydrogen peroxide (H2O2) produced by S. oralis is sufficient to kill human monocytes and epithelial cells, implying that streptococcal H2O2 is a cytotoxin. In the present study, we investigated whether streptococcal H2O2 impacts lysosomes, organelles of the intracellular digestive system, in relation to cell death. S. oralis infection induced the death of RAW 264 macrophages in an H2O2-dependent manner, which was exemplified by the fact that exogenous H2O2 also induced cell death. Infection with either a mutant lacking spxB, which encodes pyruvate oxidase responsible for H2O2 production, or Streptococcus mutans, which does not produce H2O2, showed less cytotoxicity. Visualization of lysosomes with LysoTracker revealed lysosome deacidification after infection with S. oralis or exposure to H2O2, which was corroborated by acridine orange staining. Similarly, fluorescent labeling of lysosome-associated membrane protein-1 gradually disappeared during infection with S. oralis or exposure to H2O2 The deacidification and the following induction of cell death were inhibited by chelating iron in lysosomes. Moreover, fluorescent staining of cathepsin B indicated lysosomal destruction. However, treatment of infected cells with a specific inhibitor of cathepsin B had negligible effects on cell death; instead, it suppressed the detachment of dead cells from the culture plates. These results suggest that streptococcal H2O2 induces cell death with lysosomal destruction and then the released lysosomal cathepsins contribute to the detachment of the dead cells. PMID:27113357

  20. Simulations of a Liquid Hydrogen Inducer at Low-Flow Off-Design Flow Conditions

    NASA Technical Reports Server (NTRS)

    Hosangadi, A.; Ahuja, V.; Ungewitter, R. J.

    2005-01-01

    The ability to accurately model details of inlet back flow for inducers operating a t low-flow, off-design conditions is evaluated. A sub-scale version of a three-bladed liquid hydrogen inducer tested in water with detailed velocity and pressure measurements is used as a numerical test bed. Under low-flow, off-design conditions the length of the separation zone as well as the swirl velocity magnitude was under predicted with a standard k-E model. When the turbulent viscosity coefficient was reduced good comparison was obtained a t all the flow conditions examined with both the magnitude and shape of the profile matching well with the experimental data taken half a diameter upstream of the leading edge. The velocity profiles and incidence angles a t the leading edge itself were less sensitive to the back flow length predictions indicating that single-phase performance predictions may be well predicted even if the details of flow separation modeled are incorrect. However, for cavitating flow situations the prediction of the correct swirl in the back flow and the pressure depression in the core becomes critical since it leads to vapor formation. The simulations have been performed using the CRUNCH CFD(Registered Trademark) code that has a generalized multi-element unstructured framework and a n advanced multi-phase formulation for cryogenic fluids. The framework has been validated rigorously for predictions of temperature and pressure depression in cryogenic fluid cavities and has also been shown to predict the cavitation breakdown point for inducers a t design conditions.

  1. Hydrogen induced cracking tests of high strength steels and nickel-iron base alloys using the bolt-loaded specimen

    SciTech Connect

    Vigilante, G.N.; Underwood, J.H.; Crayon, D.; Tauscher, S.; Sage, T.; Troiano, E.

    1997-12-31

    Hydrogen induced cracking tests were conducted on high strength steels and nickel-iron base alloys using the constant displacement bolt-loaded compact specimen. The bolt-loaded specimen was subjected to both acid and electrochemical cell environments in order to produce hydrogen. The materials tested were A723, Maraging 200, PH 13-8 Mo, Alloy 718, Alloy 706, and A286, and ranged in yield strength from 760--1400 MPa. The effects of chemical composition, refinement, heat treatment, and strength on hydrogen induced crack growth rates and thresholds were examined. In general, all high strength steels tested exhibited similar crack growth rates and thresholds were examined. In general, all high strength steels tested exhibited similar crack growth rates and threshold levels. In comparison, the nickel-iron base alloys tested exhibited up to three orders of magnitude lower crack growth rates than the high strength steels tested. It is widely known that high strength steels and nickel base alloys exhibit different crack growth rates, in part, because of their different crystal cell structure. In the high strength steels tested, refinement and heat treatment had some effect on hydrogen induced cracking, though strength was the predominant factor influencing susceptibility to cracking. When the yield strength of one of the high strength steels tested was increased moderately, from 1130 MPa to 1275 MPa, the incubation times decreased by over two orders of magnitude, the crack growth rates increased by an order of magnitude, and the threshold stress intensity was slightly lower.

  2. Hydrogen sulfide mitigates homocysteine mediated pathological remodeling by inducing miR-133a in cardiomyocytes

    PubMed Central

    Kesherwani, Varun; Nandi, Shyam S.; Sharawat, Surender K.; Shahshahan, Hamid R.; Mishra, Paras K.

    2015-01-01

    An elevated level of homocysteine called hyperhomocysteinemia (HHcy) is associated with pathological cardiac remodeling. Hydrogen sulfide (H2S) acts as a cardioprotective gas, however the mechanism by which H2S mitigates homocysteine mediated pathological remodeling in cardiomyocytes is unclear. We hypothesized that H2S ameliorates HHcy mediated hypertrophy by inducing cardioprotective miR-133a in cardiomyocytes. To test the hypothesis, HL1 cardiomyocytes were treated with: 1) plain medium (control, CT), 2) 100μM of homocysteine (Hcy), 3) Hcy with 30μM of H2S (Hcy+H2S), and 4) H2S for 24 hour. The levels of hypertrophy markers: c-fos, atrial natriuretic peptide (ANP), and beta-myosin heavy chain (β-MHC), miR-133a and its transcriptional inducer myosin enhancer factor- 2c (MEF2C) were determined by Western blotting, RT-qPCR, and immunofluorescence. The activity of MEF2C was assessed by co-immunoprecipitation of MEF2C with histone deacetylase -1(HDAC1). Our results show that H2S ameliorates homocysteine mediated up regulation of c-fos, ANP and β-MHC, and down regulation of MEF2C and miR-133a. HHcy induces the binding of MEF2C with HDAC1, whereas H2S releases MEF2C from MEF2C-HDAC1 complex causing activation of MEF2C. These findings elicit that HHcy induces cardiac hypertrophy by promoting MEF2C-HDAC1 complex formation that inactivates MEF2C causing suppression of anti-hypertrophy miR-133a in cardiomyocytes. H2S mitigates hypertrophy by inducing miR-133a through activation of MEF2C in HHcy cardiomyocytes. To our knowledge this is a novel mechanism of H2S mediated activation of MEF2C and induction of miR-133a and inhibition of hypertrophy in HHcy cardiomyocytes. PMID:25763715

  3. Induced Circular Dichroism in Phosphine Gold(I) Aryl Acetylide Urea Complexes through Hydrogen-Bonded Chiral Co-Assemblies.

    PubMed

    Dubarle-Offner, Julien; Moussa, Jamal; Amouri, Hani; Jouvelet, Benjamin; Bouteiller, Laurent; Raynal, Matthieu

    2016-03-14

    Phosphine gold(I) aryl acetylide complexes equipped with a central bis(urea) moiety form 1D hydrogen-bonded polymeric assemblies in solution that do not display any optical activity. Chiral co-assemblies are formed by simple addition of an enantiopure (metal-free) complementary monomer. Although exhibiting an intrinsically achiral linear geometry, the gold(I) aryl acetylide fragment is located in the chiral environment displayed by the hydrogen-bonded co-assemblies, as demonstrated by induced circular dichroism (ICD). PMID:26780877

  4. The initial stages of the hydrogen-induced reconstruction of Pd(1 1 0) studied with STM

    NASA Astrophysics Data System (ADS)

    Kralj, Marko; Becker, Conrad; Wandelt, Klaus

    2006-09-01

    The hydrogen-induced reconstruction of the Pd(1 1 0) surface was investigated in situ with scanning tunneling microscopy (STM). Focusing on the initial stages of the restructuring, which ultimately leads to a stable (1 × 2) reconstructed surface, we find an exponential increase of the reconstructed surface area with hydrogen exposure, up to 8 Langmuir, which can be explained by an autocatalytic behavior. Moreover, the steps, especially those running along the [0 0 1] direction, play a distinctive role in the buildup of the (1 × 2) reconstruction.

  5. d-Amino acid oxidase-mediated increase in spinal hydrogen peroxide is mainly responsible for formalin-induced tonic pain

    PubMed Central

    Lu, Jin-Miao; Gong, Nian; Wang, Yan-Chao; Wang, Yong-Xiang

    2012-01-01

    BACKGROUND AND PURPOSE Spinal reactive oxygen species (ROS) are critically involved in chronic pain. d-Amino acid oxidase (DAAO) oxidizes d-amino acids such as d-serine to form the byproduct hydrogen peroxide without producing other ROS. DAAO inhibitors are specifically analgesic in tonic pain, neuropathic pain and cancer pain. This study examined the role of spinal hydrogen peroxide in pain and the mechanism of the analgesic effects of DAAO inhibitors. EXPERIMENTAL APPROACH Formalin-induced pain behaviours and spinal hydrogen peroxide levels were measured in rodents. KEY RESULTS Formalin injected into the paw increased spinal hydrogen peroxide synchronously with enhanced tonic pain; both were effectively prevented by i.t. fluorocitrate, a selective astrocyte metabolic inhibitor. Given systemically, the potent DAAO inhibitor CBIO (5-chloro-benzo[d]isoxazol-3-ol) blocked spinal DAAO enzymatic activity and specifically prevented formalin-induced tonic pain in a dose-dependent manner. Although CBIO maximally inhibited tonic pain by 62%, it completely prevented the increase in spinal hydrogen peroxide. I.t. catalase, an enzyme specific for decomposition of hydrogen peroxide, completely depleted spinal hydrogen peroxide and prevented formalin-induced tonic pain by 65%. Given systemically, the ROS scavenger PBN (phenyl-N-tert-butylnitrone) also inhibited formalin-induced tonic pain and increase in spinal hydrogen peroxide. Formalin-induced tonic pain was potentiated by i.t. exogenous hydrogen peroxide. CBIO did not increase spinal d-serine level, and i.t. d-serine did not alter either formalin-induced tonic pain or CBIO's analgesic effect. CONCLUSIONS AND IMPLICATIONS Spinal hydrogen peroxide is specifically and largely responsible for formalin-induced pain, and DAAO inhibitors produce analgesia by blocking spinal hydrogen peroxide production rather than interacting with spinal d-serine. PMID:21950354

  6. Microstructure and hydrogen induced failure mechanisms in iron-nickel weldments

    NASA Astrophysics Data System (ADS)

    Fenske, Jamey Alan

    A recent series of inexplicable catastrophic failures of specific subsea dissimilar metal Fe-Ni butter welds has illuminated a fundamental lack of understanding of both the microstructure created along the fusion line as well as its impact on the hydrogen susceptibility of these interfaces. In order to remedy this, the present work compares and contrasts the microstructure and hydrogen-induced fracture morphology of AISI 8630-IN 625 and F22-IN 625 dissimilar metal weld interfaces as a function of post-weld heat treatment duration. A variety of techniques were used to study details of both the microstructure and fracture morphology including optical microscopy, scanning electron microscopy, secondary ion mass spectrometry, transmission electron microscopy, electron backscatter diffraction, and energy dispersive x-ray spectroscopy. For both systems, the microstructure along the weld interface consisted of a coarse grain heat-affected zone in the Fe-base metal followed by discontinuous martensitic partially-mixed zones and a continuous partially-mixed zone on the Ni-side of the fusion line. Within the partially mixed zone on the Ni-side there exists a 200 nm-wide transition zone within a 20 mum-wide planar solidification region followed by a cellular dendritic region with Nb-Mo rich carbides decorating the dendrite boundaries. The size, area fraction and composition of the discontinuous PMZ were determined to be controlled by uneven mixing in the liquid weld pool influenced by convection currents produced from the welding procedure. The virgin martensitic microstructure produced in these regions is formed as consequence of a both the local composition and the post-weld heat treatment. The local higher Ni content results in these regions being retransformed into austenite during the post-weld heat treatment and then virgin martensite while cooling to room temperature. Although there were differences in the volume of the discontinuous partially mixed-zones, the major

  7. Direct, Sequential, and Stereoselective Alkynylation of C,C-Dibromophosphaalkenes.

    PubMed

    Shameem, Muhammad A; Esfandiarfard, Keyhan; Öberg, Elisabet; Ott, Sascha; Orthaber, Andreas

    2016-07-18

    The first direct alkynylation of C,C-dibromophosphaalkenes by a reaction with sulfonylacetylenes is reported. Alkynylation proceeds selectively in the trans position relative to the P substituent to afford bromoethynylphosphaalkenes. Owing to the absence of transition metals in the procedure, the previously observed conversion of dibromophosphaalkenes into phosphaalkynes through the phosphorus analog of the Fritsch-Buttenberg-Wiechell rearrangement is thus suppressed. The bromoethynylphosphaalkenes can subsequently be converted to C,C-diacetylenic, cross-conjugated phosphaalkenes by following a Sonogashira coupling protocol in good overall yields. By using the newly described method, full control over the stereochemistry at the P=C double bond is achieved. The substrate scope of this reaction is demonstrated for different dibromophosphaalkenes as well as different sulfonylacetylenes. PMID:27310813

  8. Ag-catalyzed C-H/C-C bond functionalization.

    PubMed

    Zheng, Qing-Zhong; Jiao, Ning

    2016-08-21

    Silver, known and utilized since ancient times, is a coinage metal, which has been widely used for various organic transformations in the past few decades. Currently, the silver-catalyzed reaction is one of the frontier areas in organic chemistry, and the progress of research in this field is very rapid. Compared with other transition metals, silver has long been believed to have low catalytic efficiency, and most commonly, it is used as either a cocatalyst or a Lewis acid. Interestingly, the discovery of Ag-catalysis has been significantly improved in recent years. Especially, Ag(i) has been demonstrated as an important and versatile catalyst for a variety of organic transformations. However, so far, there has been no systematic review on Ag-catalyzed C-H/C-C bond functionalization. In this review, we will focus on the development of Ag-catalyzed C-H/C-C bond functionalization and the corresponding mechanism. PMID:27056573

  9. Dislocation dissociation in some f.c.c. metals

    NASA Technical Reports Server (NTRS)

    Esterling, D. M.

    1980-01-01

    The dissociation of a perfect screw dislocation into a stacking fault in an f.c.c. lattice is modeled by the modified lattice statics. The interatomic potentials are obtained from the work of Esterling and Swaroop and differ substantially from those empirical potentials usually employed in defect simulations. The calculated stacking fault widths for aluminum, copper, and silver are in good agreement with weak beam microscopy results.

  10. Protective effect of hydrogen sulfide against cold restraint stress-induced gastric mucosal injury in rats.

    PubMed

    Aboubakr, Esam M; Taye, Ashraf; El-Moselhy, Mohamed A; Hassan, Magdy K

    2013-12-01

    Hydrogen sulfide (H2S) is an endogenous gaseous mediator plays a potential role in modulating gastric inflammatory responses. However, its putative protective role remains to be defined. The present study aimed to evaluate role of the exogenously released and endogenously synthesized H2S in cold restraint stress (CRS)-induced oxidative gastric damage in rats. Rats were restrained, and maintained at 4 °C for 3 h. The H2S donor, sodium hydrosulfide (NaHS) (60 μmol/kg) was injected intraperitoneally (i.p.) before CRS. Our results revealed that NaHS pretreatment significantly attenuated ulcer index, free and total acid output, and pepsin activity in gastric juice along with decreased gastric mucosal carbonyl content and reactive oxygen species production. This was accompanied by increased gastric juice pH and mucin concentration in addition to restoring the deficits in the gastric reduced glutathione, catalase as well as superoxide dismutase enzyme activities. NaHS pretreatment markedly reduced the serum level of tumor necrosis factor (TNF-α) and myeloperoxidase activity compared to CRS-non-treated. Moreover, NaHS preadministration significantly abrogated the inflammatory and the deleterious responses of gastric mucosa in CRS. The protective effects of H2S were confirmed by gastric histopathological examination. However, pretreatment with the H2S-synthesizing enzyme, cystathionine-gamma-lyase inhibitor, beta-cyano-L-alanine (50 mg/kg, i.p.) reversed the gastroprotection afforded by the endogenous H2S. Collectively, our results suggest that H2S can protect rat gastric mucosa against CRS-induced gastric ulceration possibly through mechanisms that involve anti-oxidant and anti-inflammatory actions alongside enhancement of gastric mucosal barrier and reduction in acid secretory parameters. PMID:23812778