Sample records for hydrogen infrastructure networks

  1. Modeling Hydrogen Refueling Infrastructure to Support Passenger Vehicles

    DOE PAGES

    Muratori, Matteo; Bush, Brian; Hunter, Chad; ...

    2018-05-07

    The year 2014 marked hydrogen fuel cell electric vehicles (FCEVs) first becoming commercially available in California, where significant investments are being made to promote the adoption of alternative transportation fuels. A refueling infrastructure network that guarantees adequate coverage and expands in line with vehicle sales is required for FCEVs to be successfully adopted by private customers. In this article, we provide an overview of modelling methodologies used to project hydrogen refueling infrastructure requirements to support FCEV adoption, and we describe, in detail, the National Renewable Energy Laboratory's scenario evaluation and regionalization analysis (SERA) model. As an example, we use SERAmore » to explore two alternative scenarios of FCEV adoption: one in which FCEV deployment is limited to California and several major cities in the United States; and one in which FCEVs reach widespread adoption, becoming a major option as passenger vehicles across the entire country. Such scenarios can provide guidance and insights for efforts required to deploy the infrastructure supporting transition toward different levels of hydrogen use as a transportation fuel for passenger vehicles in the United States.« less

  2. Modeling Hydrogen Refueling Infrastructure to Support Passenger Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muratori, Matteo; Bush, Brian; Hunter, Chad

    The year 2014 marked hydrogen fuel cell electric vehicles (FCEVs) first becoming commercially available in California, where significant investments are being made to promote the adoption of alternative transportation fuels. A refueling infrastructure network that guarantees adequate coverage and expands in line with vehicle sales is required for FCEVs to be successfully adopted by private customers. In this article, we provide an overview of modelling methodologies used to project hydrogen refueling infrastructure requirements to support FCEV adoption, and we describe, in detail, the National Renewable Energy Laboratory's scenario evaluation and regionalization analysis (SERA) model. As an example, we use SERAmore » to explore two alternative scenarios of FCEV adoption: one in which FCEV deployment is limited to California and several major cities in the United States; and one in which FCEVs reach widespread adoption, becoming a major option as passenger vehicles across the entire country. Such scenarios can provide guidance and insights for efforts required to deploy the infrastructure supporting transition toward different levels of hydrogen use as a transportation fuel for passenger vehicles in the United States.« less

  3. Hydrogen Infrastructure Testing and Research Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2017-04-10

    Learn about the Hydrogen Infrastructure Testing and Research Facility (HITRF), where NREL researchers are working on vehicle and hydrogen infrastructure projects that aim to enable more rapid inclusion of fuel cell and hydrogen technologies in the market to meet consumer and national goals for emissions reduction, performance, and energy security. As part of NREL’s Energy Systems Integration Facility (ESIF), the HITRF is designed for collaboration with a wide range of hydrogen, fuel cell, and transportation stakeholders.

  4. California Hydrogen Infrastructure Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heydorn, Edward C

    2013-03-12

    Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a real-world retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation's hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The projectmore » also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling

  5. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stottler, Gary

    General Motors, LLC and energy partner Shell Hydrogen, LLC, deployed a system of hydrogen fuel cell electric vehicles integrated with a hydrogen fueling station infrastructure to operate under real world conditions as part of the U.S. Department of Energy's Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project. This technical report documents the performance and describes the learnings from progressive generations of vehicle fuel cell system technology and multiple approaches to hydrogen generation and delivery for vehicle fueling.

  6. Controlled Hydrogen Fleet and Infrastructure Demonstration Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Scott Staley

    2010-03-31

    This program was undertaken in response to the US Department of Energy Solicitation DE-PS30-03GO93010, resulting in this Cooperative Agreement with the Ford Motor Company and BP to demonstrate and evaluate hydrogen fuel cell vehicles and required fueling infrastructure. Ford initially placed 18 hydrogen fuel cell vehicles (FCV) in three geographic regions of the US (Sacramento, CA; Orlando, FL; and southeast Michigan). Subsequently, 8 advanced technology vehicles were developed and evaluated by the Ford engineering team in Michigan. BP is Ford's principal partner and co-applicant on this project and provided the hydrogen infrastructure to support the fuel cell vehicles. BP ultimatelymore » provided three new fueling stations. The Ford-BP program consists of two overlapping phases. The deliverables of this project, combined with those of other industry consortia, are to be used to provide critical input to hydrogen economy commercialization decisions by 2015. The program's goal is to support industry efforts of the US President's Hydrogen Fuel Initiative in developing a path to a hydrogen economy. This program was designed to seek complete systems solutions to address hydrogen infrastructure and vehicle development, and possible synergies between hydrogen fuel electricity generation and transportation applications. This project, in support of that national goal, was designed to gain real world experience with Hydrogen powered Fuel Cell Vehicles (H2FCV) 'on the road' used in everyday activities, and further, to begin the development of the required supporting H2 infrastructure. Implementation of a new hydrogen vehicle technology is, as expected, complex because of the need for parallel introduction of a viable, available fuel delivery system and sufficient numbers of vehicles to buy fuel to justify expansion of the fueling infrastructure. Viability of the fuel structure means widespread, affordable hydrogen which can return a reasonable profit to the fuel provider

  7. Complex Networks and Critical Infrastructures

    NASA Astrophysics Data System (ADS)

    Setola, Roberto; de Porcellinis, Stefano

    The term “Critical Infrastructures” indicates all those technological infrastructures such as: electric grids, telecommunication networks, railways, healthcare systems, financial circuits, etc. that are more and more relevant for the welfare of our countries. Each one of these infrastructures is a complex, highly non-linear, geographically dispersed cluster of systems, that interact with their human owners, operators, users and with the other infrastructures. Their augmented relevance and the actual political and technological scenarios, which have increased their exposition to accidental failure and deliberate attacks, demand for different and innovative protection strategies (generally indicate as CIP - Critical Infrastructure Protection). To this end it is mandatory to understand the mechanisms that regulate the dynamic of these infrastructures. In this framework, an interesting approach is those provided by the complex networks. In this paper we illustrate some results achieved considering structural and functional properties of the corresponding topological networks both when each infrastructure is assumed as an autonomous system and when we take into account also the dependencies existing among the different infrastructures.

  8. Polymers for hydrogen infrastructure and vehicle fuel systems :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barth, Rachel Reina; Simmons, Kevin L.; San Marchi, Christopher W.

    2013-10-01

    This document addresses polymer materials for use in hydrogen service. Section 1 summarizes the applications of polymers in hydrogen infrastructure and vehicle fuel systems and identifies polymers used in these applications. Section 2 reviews the properties of polymer materials exposed to hydrogen and/or high-pressure environments, using information obtained from published, peer-reviewed literature. The effect of high pressure on physical and mechanical properties of polymers is emphasized in this section along with a summary of hydrogen transport through polymers. Section 3 identifies areas in which fuller characterization is needed in order to assess material suitability for hydrogen service.

  9. Reliable Communication Models in Interdependent Critical Infrastructure Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sangkeun; Chinthavali, Supriya; Shankar, Mallikarjun

    Modern critical infrastructure networks are becoming increasingly interdependent where the failures in one network may cascade to other dependent networks, causing severe widespread national-scale failures. A number of previous efforts have been made to analyze the resiliency and robustness of interdependent networks based on different models. However, communication network, which plays an important role in today's infrastructures to detect and handle failures, has attracted little attention in the interdependency studies, and no previous models have captured enough practical features in the critical infrastructure networks. In this paper, we study the interdependencies between communication network and other kinds of critical infrastructuremore » networks with an aim to identify vulnerable components and design resilient communication networks. We propose several interdependency models that systematically capture various features and dynamics of failures spreading in critical infrastructure networks. We also discuss several research challenges in building reliable communication solutions to handle failures in these models.« less

  10. Recovery of infrastructure networks after localised attacks.

    PubMed

    Hu, Fuyu; Yeung, Chi Ho; Yang, Saini; Wang, Weiping; Zeng, An

    2016-04-14

    The stability of infrastructure network is always a critical issue studied by researchers in different fields. A lot of works have been devoted to reveal the robustness of the infrastructure networks against random and malicious attacks. However, real attack scenarios such as earthquakes and typhoons are instead localised attacks which are investigated only recently. Unlike previous studies, we examine in this paper the resilience of infrastructure networks by focusing on the recovery process from localised attacks. We introduce various preferential repair strategies and found that they facilitate and improve network recovery compared to that of random repairs, especially when population size is uneven at different locations. Moreover, our strategic repair methods show similar effectiveness as the greedy repair. The validations are conducted on simulated networks, and on real networks with real disasters. Our method is meaningful in practice as it can largely enhance network resilience and contribute to network risk reduction.

  11. Co-location and Self-Similar Topologies of Urban Infrastructure Networks

    NASA Astrophysics Data System (ADS)

    Klinkhamer, Christopher; Zhan, Xianyuan; Ukkusuri, Satish; Elisabeth, Krueger; Paik, Kyungrock; Rao, Suresh

    2016-04-01

    The co-location of urban infrastructure is too obvious to be easily ignored. For reasons of practicality, reliability, and eminent domain, the spatial locations of many urban infrastructure networks, including drainage, sanitary sewers, and road networks, are well correlated. However, important questions dealing with correlations in the network topologies of differing infrastructure types remain unanswered. Here, we have extracted randomly distributed, nested subnets from the urban drainage, sanitary sewer, and road networks in two distinctly different cities: Amman, Jordan; and Indianapolis, USA. Network analyses were performed for each randomly chosen subnet (location and size), using a dual-mapping approach (Hierarchical Intersection Continuity Negotiation). Topological metrics for each infrastructure type were calculated and compared for all subnets in a given city. Despite large differences in the climate, governance, and populace of the two cities, and functional properties of the different infrastructure types, these infrastructure networks are shown to be highly spatially homogenous. Furthermore, strong correlations are found between topological metrics of differing types of surface and subsurface infrastructure networks. Also, the network topologies of each infrastructure type for both cities are shown to exhibit self-similar characteristics (i.e., power law node-degree distributions, [p(k) = ak-γ]. These findings can be used to assist city planners and engineers either expanding or retrofitting existing infrastructure, or in the case of developing countries, building new cities from the ground up. In addition, the self-similar nature of these infrastructure networks holds significant implications for the vulnerability of these critical infrastructure networks to external hazards and ways in which network resilience can be improved.

  12. Recovery of infrastructure networks after localised attacks

    PubMed Central

    Hu, Fuyu; Yeung, Chi Ho; Yang, Saini; Wang, Weiping; Zeng, An

    2016-01-01

    The stability of infrastructure network is always a critical issue studied by researchers in different fields. A lot of works have been devoted to reveal the robustness of the infrastructure networks against random and malicious attacks. However, real attack scenarios such as earthquakes and typhoons are instead localised attacks which are investigated only recently. Unlike previous studies, we examine in this paper the resilience of infrastructure networks by focusing on the recovery process from localised attacks. We introduce various preferential repair strategies and found that they facilitate and improve network recovery compared to that of random repairs, especially when population size is uneven at different locations. Moreover, our strategic repair methods show similar effectiveness as the greedy repair. The validations are conducted on simulated networks, and on real networks with real disasters. Our method is meaningful in practice as it can largely enhance network resilience and contribute to network risk reduction. PMID:27075559

  13. The TENCompetence Infrastructure: A Learning Network Implementation

    NASA Astrophysics Data System (ADS)

    Vogten, Hubert; Martens, Harrie; Lemmers, Ruud

    The TENCompetence project developed a first release of a Learning Network infrastructure to support individuals, groups and organisations in professional competence development. This infrastructure Learning Network infrastructure was released as open source to the community thereby allowing users and organisations to use and contribute to this development as they see fit. The infrastructure consists of client applications providing the user experience and server components that provide the services to these clients. These services implement the domain model (Koper 2006) by provisioning the entities of the domain model (see also Sect. 18.4) and henceforth will be referenced as domain entity services.

  14. [Life cycle assessment of the infrastructure for hydrogen sources of fuel cell vehicles].

    PubMed

    Feng, Wen; Wang, Shujuan; Ni, Weidou; Chen, Changhe

    2003-05-01

    In order to promote the application of life cycle assessment and provide references for China to make the project of infrastructure for hydrogen sources of fuel cell vehicles in the near future, 10 feasible plans of infrastructure for hydrogen sources of fuel cell vehicles were designed according to the current technologies of producing, storing and transporting hydrogen. Then life cycle assessment was used as a tool to evaluate the environmental performances of the 10 plans. The standard indexes of classified environmental impacts of every plan were gotten and sensitivity analysis for several parameters were carried out. The results showed that the best plan was that hydrogen will be produced by natural gas steam reforming in central factory, then transported to refuelling stations through pipelines, and filled to fuel cell vehicles using hydrogen gas at last.

  15. Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development

    Science.gov Websites

    market. As the market expands, fueling infrastructure and vehicle rollout will need to grow together Locations by State More Hydrogen Data | All Maps & Data Publications 2016 Vehicle Technologies Market Report State of the States: Fuel Cells in America 2016, 7th Edition 2014 Fuel Cell Technologies Market

  16. Wireless intelligent network: infrastructure before services?

    NASA Astrophysics Data System (ADS)

    Chu, Narisa N.

    1996-01-01

    The Wireless Intelligent Network (WIN) intends to take advantage of the Advanced Intelligent Network (AIN) concepts and products developed from wireline communications. However, progress of the AIN deployment has been slow due to the many barriers that exist in the traditional wireline carriers' deployment procedures and infrastructure. The success of AIN has not been truly demonstrated. The AIN objectives and directions are applicable to the wireless industry although the plans and implementations could be significantly different. This paper points out WIN characteristics in architecture, flexibility, deployment, and value to customers. In order to succeed, the technology driven AIN concept has to be reinforced by the market driven WIN services. An infrastructure suitable for the WIN will contain elements that are foreign to the wireline network. The deployment process is expected to seed with the revenue generated services. Standardization will be achieved by simplifying and incorporating the IS-41C, AIN, and Intelligent Network CS-1 recommendations. Integration of the existing and future systems impose the biggest challenge of all. Service creation has to be complemented with service deployment process which heavily impact the carriers' infrastructure. WIN deployment will likely start from an Intelligent Peripheral, a Service Control Point and migrate to a Service Node when sufficient triggers are implemented in the mobile switch for distributed call control. The struggle to move forward will not be based on technology, but rather on the impact to existing infrastructure.

  17. Network and computing infrastructure for scientific applications in Georgia

    NASA Astrophysics Data System (ADS)

    Kvatadze, R.; Modebadze, Z.

    2016-09-01

    Status of network and computing infrastructure and available services for research and education community of Georgia are presented. Research and Educational Networking Association - GRENA provides the following network services: Internet connectivity, network services, cyber security, technical support, etc. Computing resources used by the research teams are located at GRENA and at major state universities. GE-01-GRENA site is included in European Grid infrastructure. Paper also contains information about programs of Learning Center and research and development projects in which GRENA is participating.

  18. Modeling the resilience of critical infrastructure: the role of network dependencies

    PubMed Central

    Guidotti, Roberto; Chmielewski, Hana; Unnikrishnan, Vipin; Gardoni, Paolo; McAllister, Therese; van de Lindt, John

    2017-01-01

    Water and wastewater network, electric power network, transportation network, communication network, and information technology network are among the critical infrastructure in our communities; their disruption during and after hazard events greatly affects communities’ well-being, economic security, social welfare, and public health. In addition, a disruption in one network may cause disruption to other networks and lead to their reduced functionality. This paper presents a unified theoretical methodology for the modeling of dependent/interdependent infrastructure networks and incorporates it in a six-step probabilistic procedure to assess their resilience. Both the methodology and the procedure are general, can be applied to any infrastructure network and hazard, and can model different types of dependencies between networks. As an illustration, the paper models the direct effects of seismic events on the functionality of a potable water distribution network and the cascading effects of the damage of the electric power network (EPN) on the potable water distribution network (WN). The results quantify the loss of functionality and delay in the recovery process due to dependency of the WN on the EPN. The results show the importance of capturing the dependency between networks in modeling the resilience of critical infrastructure. PMID:28825037

  19. Modeling the resilience of critical infrastructure: the role of network dependencies.

    PubMed

    Guidotti, Roberto; Chmielewski, Hana; Unnikrishnan, Vipin; Gardoni, Paolo; McAllister, Therese; van de Lindt, John

    2016-01-01

    Water and wastewater network, electric power network, transportation network, communication network, and information technology network are among the critical infrastructure in our communities; their disruption during and after hazard events greatly affects communities' well-being, economic security, social welfare, and public health. In addition, a disruption in one network may cause disruption to other networks and lead to their reduced functionality. This paper presents a unified theoretical methodology for the modeling of dependent/interdependent infrastructure networks and incorporates it in a six-step probabilistic procedure to assess their resilience. Both the methodology and the procedure are general, can be applied to any infrastructure network and hazard, and can model different types of dependencies between networks. As an illustration, the paper models the direct effects of seismic events on the functionality of a potable water distribution network and the cascading effects of the damage of the electric power network (EPN) on the potable water distribution network (WN). The results quantify the loss of functionality and delay in the recovery process due to dependency of the WN on the EPN. The results show the importance of capturing the dependency between networks in modeling the resilience of critical infrastructure.

  20. Determining air quality and greenhouse gas impacts of hydrogen infrastructure and fuel cell vehicles.

    PubMed

    Stephens-Romero, Shane; Carreras-Sospedra, Marc; Brouwer, Jacob; Dabdub, Donald; Samuelsen, Scott

    2009-12-01

    Adoption of hydrogen infrastructure and hydrogen fuel cell vehicles (HFCVs) to replace gasoline internal combustion engine (ICE) vehicles has been proposed as a strategy to reduce criteria pollutant and greenhouse gas (GHG) emissions from the transportation sector and transition to fuel independence. However, it is uncertain (1) to what degree the reduction in criteria pollutants will impact urban air quality, and (2) how the reductions in pollutant emissions and concomitant urban air quality impacts compare to ultralow emission gasoline-powered vehicles projected for a future year (e.g., 2060). To address these questions, the present study introduces a "spatially and temporally resolved energy and environment tool" (STREET) to characterize the pollutant and GHG emissions associated with a comprehensive hydrogen supply infrastructure and HFCVs at a high level of geographic and temporal resolution. To demonstrate the utility of STREET, two spatially and temporally resolved scenarios for hydrogen infrastructure are evaluated in a prototypical urban airshed (the South Coast Air Basin of California) using geographic information systems (GIS) data. The well-to-wheels (WTW) GHG emissions are quantified and the air quality is established using a detailed atmospheric chemistry and transport model followed by a comparison to a future gasoline scenario comprised of advanced ICE vehicles. One hydrogen scenario includes more renewable primary energy sources for hydrogen generation and the other includes more fossil fuel sources. The two scenarios encompass a variety of hydrogen generation, distribution, and fueling strategies. GHG emissions reductions range from 61 to 68% for both hydrogen scenarios in parallel with substantial improvements in urban air quality (e.g., reductions of 10 ppb in peak 8-h-averaged ozone and 6 mug/m(3) in 24-h-averaged particulate matter concentrations, particularly in regions of the airshed where concentrations are highest for the gasoline scenario).

  1. Editorial [Special issue on software defined networks and infrastructures, network function virtualisation, autonomous systems and network management

    DOE PAGES

    Biswas, Amitava; Liu, Chen; Monga, Inder; ...

    2016-01-01

    For last few years, there has been a tremendous growth in data traffic due to high adoption rate of mobile devices and cloud computing. Internet of things (IoT) will stimulate even further growth. This is increasing scale and complexity of telecom/internet service provider (SP) and enterprise data centre (DC) compute and network infrastructures. As a result, managing these large network-compute converged infrastructures is becoming complex and cumbersome. To cope up, network and DC operators are trying to automate network and system operations, administrations and management (OAM) functions. OAM includes all non-functional mechanisms which keep the network running.

  2. Webinar November 18: An Overview of the Hydrogen Fueling Infrastructure

    Science.gov Websites

    Research and Station Technology (H2FIRST) Project | News | NREL Webinar November 18: An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project Webinar ) Project November 12, 2014 The Energy Department will present a live webinar entitled "An Overview of

  3. Network Interdependency Modeling for Risk Assessment on Built Infrastructure Systems

    DTIC Science & Technology

    2013-10-01

    does begin to address infrastructure decay as a source of risk comes from the Department of Homeland Security (DHS). In 2009, the DHS Science and...network of connected edges and nodes. The National Research Council (2005) reported that the study of networks as a science and applications of...principles from this science are still in its early stages. As modern infrastructures have become more interlinked, knowledge of an infrastructure’s network

  4. In Situ High Pressure Hydrogen Tribological Testing of Common Polymer Materials Used in the Hydrogen Delivery Infrastructure.

    PubMed

    Duranty, Edward R; Roosendaal, Timothy J; Pitman, Stan G; Tucker, Joseph C; Owsley, Stanley L; Suter, Jonathan D; Alvine, Kyle James

    2018-03-31

    High pressure hydrogen gas is known to adversely affect metallic components of compressors, valves, hoses, and actuators. However, relatively little is known about the effects of high pressure hydrogen on the polymer sealing and barrier materials also found within these components. More study is required in order to determine the compatibility of common polymer materials found in the components of the hydrogen fuel delivery infrastructure with high pressure hydrogen. As a result, it is important to consider the changes in physical properties such as friction and wear in situ while the polymer is exposed to high pressure hydrogen. In this protocol, we present a method for testing the friction and wear properties of ethylene propylene diene monomer (EPDM) elastomer samples in a 28 MPa high pressure hydrogen environment using a custom-built in situ pin-on-flat linear reciprocating tribometer. Representative results from this testing are presented which indicate that the coefficient of friction between the EPDM sample coupon and steel counter surface is increased in high pressure hydrogen as compared to the coefficient of friction similarly measured in ambient air.

  5. Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence.

    PubMed

    Korkali, Mert; Veneman, Jason G; Tivnan, Brian F; Bagrow, James P; Hines, Paul D H

    2017-03-20

    Increased interconnection between critical infrastructure networks, such as electric power and communications systems, has important implications for infrastructure reliability and security. Others have shown that increased coupling between networks that are vulnerable to internetwork cascading failures can increase vulnerability. However, the mechanisms of cascading in these models differ from those in real systems and such models disregard new functions enabled by coupling, such as intelligent control during a cascade. This paper compares the robustness of simple topological network models to models that more accurately reflect the dynamics of cascading in a particular case of coupled infrastructures. First, we compare a topological contagion model to a power grid model. Second, we compare a percolation model of internetwork cascading to three models of interdependent power-communication systems. In both comparisons, the more detailed models suggest substantially different conclusions, relative to the simpler topological models. In all but the most extreme case, our model of a "smart" power network coupled to a communication system suggests that increased power-communication coupling decreases vulnerability, in contrast to the percolation model. Together, these results suggest that robustness can be enhanced by interconnecting networks with complementary capabilities if modes of internetwork failure propagation are constrained.

  6. Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence

    NASA Astrophysics Data System (ADS)

    Korkali, Mert; Veneman, Jason G.; Tivnan, Brian F.; Bagrow, James P.; Hines, Paul D. H.

    2017-03-01

    Increased interconnection between critical infrastructure networks, such as electric power and communications systems, has important implications for infrastructure reliability and security. Others have shown that increased coupling between networks that are vulnerable to internetwork cascading failures can increase vulnerability. However, the mechanisms of cascading in these models differ from those in real systems and such models disregard new functions enabled by coupling, such as intelligent control during a cascade. This paper compares the robustness of simple topological network models to models that more accurately reflect the dynamics of cascading in a particular case of coupled infrastructures. First, we compare a topological contagion model to a power grid model. Second, we compare a percolation model of internetwork cascading to three models of interdependent power-communication systems. In both comparisons, the more detailed models suggest substantially different conclusions, relative to the simpler topological models. In all but the most extreme case, our model of a “smart” power network coupled to a communication system suggests that increased power-communication coupling decreases vulnerability, in contrast to the percolation model. Together, these results suggest that robustness can be enhanced by interconnecting networks with complementary capabilities if modes of internetwork failure propagation are constrained.

  7. Neural Network Based Intrusion Detection System for Critical Infrastructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd Vollmer; Ondrej Linda; Milos Manic

    2009-07-01

    Resiliency and security in control systems such as SCADA and Nuclear plant’s in today’s world of hackers and malware are a relevant concern. Computer systems used within critical infrastructures to control physical functions are not immune to the threat of cyber attacks and may be potentially vulnerable. Tailoring an intrusion detection system to the specifics of critical infrastructures can significantly improve the security of such systems. The IDS-NNM – Intrusion Detection System using Neural Network based Modeling, is presented in this paper. The main contributions of this work are: 1) the use and analyses of real network data (data recordedmore » from an existing critical infrastructure); 2) the development of a specific window based feature extraction technique; 3) the construction of training dataset using randomly generated intrusion vectors; 4) the use of a combination of two neural network learning algorithms – the Error-Back Propagation and Levenberg-Marquardt, for normal behavior modeling. The presented algorithm was evaluated on previously unseen network data. The IDS-NNM algorithm proved to be capable of capturing all intrusion attempts presented in the network communication while not generating any false alerts.« less

  8. Robustness and Recovery of Lifeline Infrastructure and Ecosystem Networks

    NASA Astrophysics Data System (ADS)

    Bhatia, U.; Ganguly, A. R.

    2015-12-01

    Disruptive events, both natural and man-made, can have widespread impacts on both natural systems and lifeline infrastructure networks leading to the loss of biodiversity and essential functionality, respectively. Projected sea-level rise and climate change can further increase the frequency and severity of large-scale floods on urban-coastal megacities. Nevertheless, Failure in infrastructure systems can trigger cascading impacts on dependent ecosystems, and vice-versa. An important consideration in the behavior of the isolated networks and inter-connected networks following disruptive events is their resilience, or the ability of the network to "bounce back" to a pre-disaster state. Conventional risk analysis and subsequent risk management frameworks have focused on identifying the components' vulnerability and strengthening of the isolated components to withstand these disruptions. But high interconnectedness of these systems, and evolving nature of hazards, particularly in the context of climate extremes, make the component level analysis unrealistic. In this study, we discuss the complex network-based resilience framework to understand fragility and recovery strategies for infrastructure systems impacted by climate-related hazards. We extend the proposed framework to assess the response of ecological networks to multiple species loss and design the restoration management framework to identify the most efficient restoration sequence of species, which can potentially lead to disproportionate gains in biodiversity.

  9. Texas Hydrogen Highway Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase - Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hitchcock, David

    The Texas Hydrogen Highway project has showcased a hydrogen fuel cell transit bus and hydrogen fueling infrastructure that was designed and built through previous support from various public and private sector entities. The aim of this project has been to increase awareness among transit agencies and other public entities on these transportation technologies, and to place such technologies into commercial applications, such as a public transit agency. The initial project concept developed in 2004 was to show that a skid-mounted, fully-integrated, factory-built and tested hydrogen fueling station could be used to simplify the design, and lower the cost of fuelingmore » infrastructure for fuel cell vehicles. The approach was to design, engineer, build, and test the integrated fueling station at the factory then install it at a site that offered educational and technical resources and provide an opportunity to showcase both the fueling station and advanced hydrogen vehicles. The two primary technology components include: Hydrogen Fueling Station: The hydrogen fueling infrastructure was designed and built by Gas Technology Institute primarily through a funding grant from the Texas Commission on Environmental Quality. It includes hydrogen production, clean-up, compression, storage, and dispensing. The station consists of a steam methane reformer, gas clean-up system, gas compressor and 48 kilograms of hydrogen storage capacity for dispensing at 5000 psig. The station is skid-mounted for easy installation and can be relocated if needed. It includes a dispenser that is designed to provide temperaturecompensated fills using a control algorithm. The total station daily capacity is approximately 50 kilograms. Fuel Cell Bus: The transit passenger bus built by Ebus, a company located in Downey, CA, was commissioned and acquired by GTI prior to this project. It is a fuel cell plug-in hybrid electric vehicle which is ADA compliant, has air conditioning sufficient for Texas

  10. Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence

    PubMed Central

    Korkali, Mert; Veneman, Jason G.; Tivnan, Brian F.; Bagrow, James P.; Hines, Paul D. H.

    2017-01-01

    Increased interconnection between critical infrastructure networks, such as electric power and communications systems, has important implications for infrastructure reliability and security. Others have shown that increased coupling between networks that are vulnerable to internetwork cascading failures can increase vulnerability. However, the mechanisms of cascading in these models differ from those in real systems and such models disregard new functions enabled by coupling, such as intelligent control during a cascade. This paper compares the robustness of simple topological network models to models that more accurately reflect the dynamics of cascading in a particular case of coupled infrastructures. First, we compare a topological contagion model to a power grid model. Second, we compare a percolation model of internetwork cascading to three models of interdependent power-communication systems. In both comparisons, the more detailed models suggest substantially different conclusions, relative to the simpler topological models. In all but the most extreme case, our model of a “smart” power network coupled to a communication system suggests that increased power-communication coupling decreases vulnerability, in contrast to the percolation model. Together, these results suggest that robustness can be enhanced by interconnecting networks with complementary capabilities if modes of internetwork failure propagation are constrained. PMID:28317835

  11. A model for simulating adaptive, dynamic flows on networks: Application to petroleum infrastructure

    DOE PAGES

    Corbet, Thomas F.; Beyeler, Walt; Wilson, Michael L.; ...

    2017-10-03

    Simulation models can greatly improve decisions meant to control the consequences of disruptions to critical infrastructures. We describe a dynamic flow model on networks purposed to inform analyses by those concerned about consequences of disruptions to infrastructures and to help policy makers design robust mitigations. We conceptualize the adaptive responses of infrastructure networks to perturbations as market transactions and business decisions of operators. We approximate commodity flows in these networks by a diffusion equation, with nonlinearities introduced to model capacity limits. To illustrate the behavior and scalability of the model, we show its application first on two simple networks, thenmore » on petroleum infrastructure in the United States, where we analyze the effects of a hypothesized earthquake.« less

  12. A model for simulating adaptive, dynamic flows on networks: Application to petroleum infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corbet, Thomas F.; Beyeler, Walt; Wilson, Michael L.

    Simulation models can greatly improve decisions meant to control the consequences of disruptions to critical infrastructures. We describe a dynamic flow model on networks purposed to inform analyses by those concerned about consequences of disruptions to infrastructures and to help policy makers design robust mitigations. We conceptualize the adaptive responses of infrastructure networks to perturbations as market transactions and business decisions of operators. We approximate commodity flows in these networks by a diffusion equation, with nonlinearities introduced to model capacity limits. To illustrate the behavior and scalability of the model, we show its application first on two simple networks, thenmore » on petroleum infrastructure in the United States, where we analyze the effects of a hypothesized earthquake.« less

  13. A comparison of hydrogen, methanol and gasoline as fuels for fuel cell vehicles: implications for vehicle design and infrastructure development

    NASA Astrophysics Data System (ADS)

    Ogden, Joan M.; Steinbugler, Margaret M.; Kreutz, Thomas G.

    All fuel cells currently being developed for near term use in electric vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, or hydrocarbon fuels derived from crude oil (e.g., gasoline, diesel, or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, we present modeling results comparing three leading options for fuel storage onboard fuel cell vehicles: (a) compressed gas hydrogen storage, (b) onboard steam reforming of methanol, (c) onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. We have developed a fuel cell vehicle model, including detailed models of onboard fuel processors. This allows us to compare the vehicle performance, fuel economy, weight, and cost for various vehicle parameters, fuel storage choices and driving cycles. The infrastructure requirements are also compared for gaseous hydrogen, methanol and gasoline, including the added costs of fuel production, storage, distribution and refueling stations. The delivered fuel cost, total lifecycle cost of transportation, and capital cost of infrastructure development are estimated for each alternative. Considering both vehicle and infrastructure issues, possible fuel strategies leading to the commercialization of fuel cell vehicles are discussed.

  14. Time-Varying, Multi-Scale Adaptive System Reliability Analysis of Lifeline Infrastructure Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gearhart, Jared Lee; Kurtz, Nolan Scot

    2014-09-01

    The majority of current societal and economic needs world-wide are met by the existing networked, civil infrastructure. Because the cost of managing such infrastructure is high and increases with time, risk-informed decision making is essential for those with management responsibilities for these systems. To address such concerns, a methodology that accounts for new information, deterioration, component models, component importance, group importance, network reliability, hierarchical structure organization, and efficiency concerns has been developed. This methodology analyzes the use of new information through the lens of adaptive Importance Sampling for structural reliability problems. Deterioration, multi-scale bridge models, and time-variant component importance aremore » investigated for a specific network. Furthermore, both bridge and pipeline networks are studied for group and component importance, as well as for hierarchical structures in the context of specific networks. Efficiency is the primary driver throughout this study. With this risk-informed approach, those responsible for management can address deteriorating infrastructure networks in an organized manner.« less

  15. Explorations Around "Graceful Failure" in Transportation Infrastructure: Lessons Learned By the Infrastructure and Climate Network (ICNet)

    NASA Astrophysics Data System (ADS)

    Jacobs, J. M.; Thomas, N.; Mo, W.; Kirshen, P. H.; Douglas, E. M.; Daniel, J.; Bell, E.; Friess, L.; Mallick, R.; Kartez, J.; Hayhoe, K.; Croope, S.

    2014-12-01

    Recent events have demonstrated that the United States' transportation infrastructure is highly vulnerable to extreme weather events which will likely increase in the future. In light of the 60% shortfall of the $900 billion investment needed over the next five years to maintain this aging infrastructure, hardening of all infrastructures is unlikely. Alternative strategies are needed to ensure that critical aspects of the transportation network are maintained during climate extremes. Preliminary concepts around multi-tier service expectations of bridges and roads with reference to network capacity will be presented. Drawing from recent flooding events across the U.S., specific examples for roads/pavement will be used to illustrate impacts, disruptions, and trade-offs between performance during events and subsequent damage. This talk will also address policy and cultural norms within the civil engineering practice that will likely challenge the application of graceful failure pathways during extreme events.

  16. Rapid Sampling of Hydrogen Bond Networks for Computational Protein Design.

    PubMed

    Maguire, Jack B; Boyken, Scott E; Baker, David; Kuhlman, Brian

    2018-05-08

    Hydrogen bond networks play a critical role in determining the stability and specificity of biomolecular complexes, and the ability to design such networks is important for engineering novel structures, interactions, and enzymes. One key feature of hydrogen bond networks that makes them difficult to rationally engineer is that they are highly cooperative and are not energetically favorable until the hydrogen bonding potential has been satisfied for all buried polar groups in the network. Existing computational methods for protein design are ill-equipped for creating these highly cooperative networks because they rely on energy functions and sampling strategies that are focused on pairwise interactions. To enable the design of complex hydrogen bond networks, we have developed a new sampling protocol in the molecular modeling program Rosetta that explicitly searches for sets of amino acid mutations that can form self-contained hydrogen bond networks. For a given set of designable residues, the protocol often identifies many alternative sets of mutations/networks, and we show that it can readily be applied to large sets of residues at protein-protein interfaces or in the interior of proteins. The protocol builds on a recently developed method in Rosetta for designing hydrogen bond networks that has been experimentally validated for small symmetric systems but was not extensible to many larger protein structures and complexes. The sampling protocol we describe here not only recapitulates previously validated designs with performance improvements but also yields viable hydrogen bond networks for cases where the previous method fails, such as the design of large, asymmetric interfaces relevant to engineering protein-based therapeutics.

  17. Safety and operations of hydrogen fuel infrastructure in northern climates : a collaborative complex systems approach.

    DOT National Transportation Integrated Search

    2010-10-07

    "This project examined the safety and operation of hydrogen (H2) fueling system infrastructure in : northern climates. A multidisciplinary team lead by the University of Vermont (UVM), : combined with investigators from Zhejiang and Tsinghua Universi...

  18. Alternative transportation fuels: Infrastructure requirements and environmental impacts for ethanol and hydrogen

    NASA Astrophysics Data System (ADS)

    Wakeley, Heather L.

    Alternative fuels could replace a significant portion of the 140 billion gallons of annual US gasoline use. Considerable attention is being paid to processes and technologies for producing alternative fuels, but an enormous investment in new infrastructure will be needed to have substantial impact on the demand for petroleum. The economics of production, distribution, and use, along with environmental impacts of these fuels, will determine the success or failure of a transition away from US petroleum dependence. This dissertation evaluates infrastructure requirements for ethanol and hydrogen as alternative fuels. It begins with an economic case study for ethanol and hydrogen in Iowa. A large-scale linear optimization model is developed to estimate average transportation distances and costs for nationwide ethanol production and distribution systems. Environmental impacts of transportation in the ethanol life cycle are calculated using the Economic Input-Output Life Cycle Assessment (EIO-LCA) model. An EIO-LCA Hybrid method is developed to evaluate impacts of future fuel production technologies. This method is used to estimate emissions for hydrogen production and distribution pathways. Results from the ethanol analyses indicate that the ethanol transportation cost component is significant and is the most variable. Costs for ethanol sold in the Midwest, near primary production centers, are estimated to be comparable to or lower than gasoline costs. Along with a wide range of transportation costs, environmental impacts for ethanol range over three orders of magnitude, depending on the transport required. As a result, intensive ethanol use should be encouraged near ethanol production areas. Fossil fuels are likely to remain the primary feedstock sources for hydrogen production in the near- and mid-term. Costs and environmental impacts of hydrogen produced from natural gas and transported by pipeline are comparable to gasoline. However, capital costs are prohibitive and

  19. Anti-social networking: crowdsourcing and the cyber defence of national critical infrastructures.

    PubMed

    Johnson, Chris W

    2014-01-01

    We identify four roles that social networking plays in the 'attribution problem', which obscures whether or not cyber-attacks were state-sponsored. First, social networks motivate individuals to participate in Distributed Denial of Service attacks by providing malware and identifying potential targets. Second, attackers use an individual's social network to focus attacks, through spear phishing. Recipients are more likely to open infected attachments when they come from a trusted source. Third, social networking infrastructures create disposable architectures to coordinate attacks through command and control servers. The ubiquitous nature of these architectures makes it difficult to determine who owns and operates the servers. Finally, governments recruit anti-social criminal networks to launch attacks on third-party infrastructures using botnets. The closing sections identify a roadmap to increase resilience against the 'dark side' of social networking.

  20. Status and Prospects of the Global Automotive Fuel Cell Industry and Plans for Deployment of Fuel Cell Vehicles and Hydrogen Refueling Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, David L; Duleep, Gopal

    2013-06-01

    Automobile manufacturers leading the development of mass-market fuel cell vehicles (FCVs) were interviewed in Japan, Korea, Germany and the United States. There is general agreement that the performance of FCVs with respect to durability, cold start, packaging, acceleration, refueling time and range has progressed to the point where vehicles that could be brought to market in 2015 will satisfy customer expectations. However, cost and the lack of refueling infrastructure remain significant barriers. Costs have been dramatically reduced over the past decade, yet are still about twice what appears to be needed for sustainable market success. While all four countries havemore » plans for the early deployment of hydrogen refueling infrastructure, the roles of government, industry and the public in creating a viable hydrogen refueling infrastructure remain unresolved. The existence of an adequate refueling infrastructure and supporting government policies are likely to be the critical factors that determine when and where hydrogen FCVs are brought to market.« less

  1. A centralized informatics infrastructure for the National Institute on Drug Abuse Clinical Trials Network.

    PubMed

    Pan, Jeng-Jong; Nahm, Meredith; Wakim, Paul; Cushing, Carol; Poole, Lori; Tai, Betty; Pieper, Carl F

    2009-02-01

    Clinical trial networks (CTNs) were created to provide a sustaining infrastructure for the conduct of multisite clinical trials. As such, they must withstand changes in membership. Centralization of infrastructure including knowledge management, portfolio management, information management, process automation, work policies, and procedures in clinical research networks facilitates consistency and ultimately research. In 2005, the National Institute on Drug Abuse (NIDA) CTN transitioned from a distributed data management model to a centralized informatics infrastructure to support the network's trial activities and administration. We describe the centralized informatics infrastructure and discuss our challenges to inform others considering such an endeavor. During the migration of a clinical trial network from a decentralized to a centralized data center model, descriptive data were captured and are presented here to assess the impact of centralization. We present the framework for the informatics infrastructure and evaluative metrics. The network has decreased the time from last patient-last visit to database lock from an average of 7.6 months to 2.8 months. The average database error rate decreased from 0.8% to 0.2%, with a corresponding decrease in the interquartile range from 0.04%-1.0% before centralization to 0.01-0.27% after centralization. Centralization has provided the CTN with integrated trial status reporting and the first standards-based public data share. A preliminary cost-benefit analysis showed a 50% reduction in data management cost per study participant over the life of a trial. A single clinical trial network comprising addiction researchers and community treatment programs was assessed. The findings may not be applicable to other research settings. The identified informatics components provide the information and infrastructure needed for our clinical trial network. Post centralization data management operations are more efficient and less

  2. MmWave Vehicle-to-Infrastructure Communication :Analysis of Urban Microcellular Networks

    DOT National Transportation Integrated Search

    2017-05-01

    Vehicle-to-infrastructure (V2I) communication may provide high data rates to vehicles via millimeterwave (mmWave) microcellular networks. This report uses stochastic geometry to analyze the coverage of urban mmWave microcellular networks. Prior work ...

  3. Body area network--a key infrastructure element for patient-centered telemedicine.

    PubMed

    Norgall, Thomas; Schmidt, Robert; von der Grün, Thomas

    2004-01-01

    The Body Area Network (BAN) extends the range of existing wireless network technologies by an ultra-low range, ultra-low power network solution optimised for long-term or continuous healthcare applications. It enables wireless radio communication between several miniaturised, intelligent Body Sensor (or actor) Units (BSU) and a single Body Central Unit (BCU) worn at the human body. A separate wireless transmission link from the BCU to a network access point--using different technology--provides for online access to BAN components via usual network infrastructure. The BAN network protocol maintains dynamic ad-hoc network configuration scenarios and co-existence of multiple networks.BAN is expected to become a basic infrastructure element for electronic health services: By integrating patient-attached sensors and mobile actor units, distributed information and data processing systems, the range of medical workflow can be extended to include applications like wireless multi-parameter patient monitoring and therapy support. Beyond clinical use and professional disease management environments, private personal health assistance scenarios (without financial reimbursement by health agencies / insurance companies) enable a wide range of applications and services in future pervasive computing and networking environments.

  4. Scalable Architecture for Federated Translational Inquiries Network (SAFTINet) Technology Infrastructure for a Distributed Data Network.

    PubMed

    Schilling, Lisa M; Kwan, Bethany M; Drolshagen, Charles T; Hosokawa, Patrick W; Brandt, Elias; Pace, Wilson D; Uhrich, Christopher; Kamerick, Michael; Bunting, Aidan; Payne, Philip R O; Stephens, William E; George, Joseph M; Vance, Mark; Giacomini, Kelli; Braddy, Jason; Green, Mika K; Kahn, Michael G

    2013-01-01

    Distributed Data Networks (DDNs) offer infrastructure solutions for sharing electronic health data from across disparate data sources to support comparative effectiveness research. Data sharing mechanisms must address technical and governance concerns stemming from network security and data disclosure laws and best practices, such as HIPAA. The Scalable Architecture for Federated Translational Inquiries Network (SAFTINet) deploys TRIAD grid technology, a common data model, detailed technical documentation, and custom software for data harmonization to facilitate data sharing in collaboration with stakeholders in the care of safety net populations. Data sharing partners host TRIAD grid nodes containing harmonized clinical data within their internal or hosted network environments. Authorized users can use a central web-based query system to request analytic data sets. SAFTINet DDN infrastructure achieved a number of data sharing objectives, including scalable and sustainable systems for ensuring harmonized data structures and terminologies and secure distributed queries. Initial implementation challenges were resolved through iterative discussions, development and implementation of technical documentation, governance, and technology solutions.

  5. Networking of Icelandic Earth Infrastructures - Natural laboratories and Volcano Supersites

    NASA Astrophysics Data System (ADS)

    Vogfjörd, K. S.; Sigmundsson, F.; Hjaltadóttir, S.; Björnsson, H.; Arason, Ø.; Hreinsdóttir, S.; Kjartansson, E.; Sigbjörnsson, R.; Halldórsson, B.; Valsson, G.

    2012-04-01

    The back-bone of Icelandic geoscientific research infrastructure is the country's permanent monitoring networks, which have been built up to monitor seismic and volcanic hazard and deformation of the Earth's surface. The networks are mainly focussed around the plate boundary in Iceland, particularly the two seismic zones, where earthquakes of up to M7.3 have occurred in centuries past, and the rift zones with over 30 active volcanic systems where a large number of powerful eruptions have occurred, including highly explosive ones. The main observational systems are seismic, strong motion, GPS and bore-hole strain networks, with the addition of more recent systems like hydrological stations, permanent and portable radars, ash-particle counters and gas monitoring systems. Most of the networks are owned by a handful of Icelandic institutions, but some are operated in collaboration with international institutions and universities. The networks have been in operation for years to decades and have recorded large volumes of research quality data. The main Icelandic infrastructures will be networked in the European Plate Observing System (EPOS). The plate boundary in the South Iceland seismic zone (SISZ) with its book-shelf tectonics and repeating major earthquakes sequences of up to M7 events, has the potential to be defined a natural laboratory within EPOS. Work towards integrating multidisciplinary data and technologies from the monitoring infrastructures in the SISZ with other fault regions has started in the FP7 project NERA, under the heading of Networking of Near-Fault Observatories. The purpose is to make research-quality data from near-fault observatories available to the research community, as well as to promote transfer of knowledge and techical know-how between the different observatories of Europe, in order to create a network of fault-monitoring networks. The seismic and strong-motion systems in the SISZ are also, to some degree, being networked nationally to

  6. Assessing urban strategies for reducing the impacts of extreme weather on infrastructure networks.

    PubMed

    Pregnolato, Maria; Ford, Alistair; Robson, Craig; Glenis, Vassilis; Barr, Stuart; Dawson, Richard

    2016-05-01

    Critical infrastructure networks, including transport, are crucial to the social and economic function of urban areas but are at increasing risk from natural hazards. Minimizing disruption to these networks should form part of a strategy to increase urban resilience. A framework for assessing the disruption from flood events to transport systems is presented that couples a high-resolution urban flood model with transport modelling and network analytics to assess the impacts of extreme rainfall events, and to quantify the resilience value of different adaptation options. A case study in Newcastle upon Tyne in the UK shows that both green roof infrastructure and traditional engineering interventions such as culverts or flood walls can reduce transport disruption from flooding. The magnitude of these benefits depends on the flood event and adaptation strategy, but for the scenarios considered here 3-22% improvements in city-wide travel times are achieved. The network metric of betweenness centrality, weighted by travel time, is shown to provide a rapid approach to identify and prioritize the most critical locations for flood risk management intervention. Protecting just the top ranked critical location from flooding provides an 11% reduction in person delays. A city-wide deployment of green roofs achieves a 26% reduction, and although key routes still flood, the benefits of this strategy are more evenly distributed across the transport network as flood depths are reduced across the model domain. Both options should form part of an urban flood risk management strategy, but this method can be used to optimize investment and target limited resources at critical locations, enabling green infrastructure strategies to be gradually implemented over the longer term to provide city-wide benefits. This framework provides a means of prioritizing limited financial resources to improve resilience. This is particularly important as flood management investments must typically exceed

  7. Assessing urban strategies for reducing the impacts of extreme weather on infrastructure networks

    PubMed Central

    Pregnolato, Maria; Ford, Alistair; Robson, Craig; Glenis, Vassilis; Barr, Stuart; Dawson, Richard

    2016-01-01

    Critical infrastructure networks, including transport, are crucial to the social and economic function of urban areas but are at increasing risk from natural hazards. Minimizing disruption to these networks should form part of a strategy to increase urban resilience. A framework for assessing the disruption from flood events to transport systems is presented that couples a high-resolution urban flood model with transport modelling and network analytics to assess the impacts of extreme rainfall events, and to quantify the resilience value of different adaptation options. A case study in Newcastle upon Tyne in the UK shows that both green roof infrastructure and traditional engineering interventions such as culverts or flood walls can reduce transport disruption from flooding. The magnitude of these benefits depends on the flood event and adaptation strategy, but for the scenarios considered here 3–22% improvements in city-wide travel times are achieved. The network metric of betweenness centrality, weighted by travel time, is shown to provide a rapid approach to identify and prioritize the most critical locations for flood risk management intervention. Protecting just the top ranked critical location from flooding provides an 11% reduction in person delays. A city-wide deployment of green roofs achieves a 26% reduction, and although key routes still flood, the benefits of this strategy are more evenly distributed across the transport network as flood depths are reduced across the model domain. Both options should form part of an urban flood risk management strategy, but this method can be used to optimize investment and target limited resources at critical locations, enabling green infrastructure strategies to be gradually implemented over the longer term to provide city-wide benefits. This framework provides a means of prioritizing limited financial resources to improve resilience. This is particularly important as flood management investments must typically

  8. Final Environmental Assessment for Wide Area Coverage Construct Land Mobile Network Communications Infrastructure Malmstrom Air Force Base, Montana

    DTIC Science & Technology

    2008-02-01

    FINAL ENVIRONMENTAL ASSESSMENT February 2008 Malmstrom ® AFB WIDE AREA COVERAGE CONSTRUCT LAND MOBILE NETWORK COMMUNICATIONS INFRASTRUCTURE...Wide Area Coverage Construct Land Mobile Network Communications Infrastructure Malmstrom Air Force Base, Montana 5a. CONTRACT NUMBER 5b. GRANT...SIGNIFICANT IMPACT WIDE AREA COVERAGE CONSTRUCT LAND MOBILE NETWORK COMMUNICATIONS INFRASTRUCTURE MALMSTROM AIR FORCE BASE, MONTANA The

  9. A tensegrity model for hydrogen bond networks in proteins.

    PubMed

    Bywater, Robert P

    2017-05-01

    Hydrogen-bonding networks in proteins considered as structural tensile elements are in balance separately from any other stabilising interactions that may be in operation. The hydrogen bond arrangement in the network is reminiscent of tensegrity structures in architecture and sculpture. Tensegrity has been discussed before in cells and tissues and in proteins. In contrast to previous work only hydrogen bonds are studied here. The other interactions within proteins are either much stronger - covalent bonds connecting the atoms in the molecular skeleton or weaker forces like the so-called hydrophobic interactions. It has been demonstrated that the latter operate independently from hydrogen bonds. Each category of interaction must, if the protein is to have a stable structure, balance out. The hypothesis here is that the entire hydrogen bond network is in balance without any compensating contributions from other types of interaction. For sidechain-sidechain, sidechain-backbone and backbone-backbone hydrogen bonds in proteins, tensegrity balance ("closure") is required over the entire length of the polypeptide chain that defines individually folding units in globular proteins ("domains") as well as within the repeating elements in fibrous proteins that consist of extended chain structures. There is no closure to be found in extended structures that do not have repeating elements. This suggests an explanation as to why globular domains, as well as the repeat units in fibrous proteins, have to have a defined number of residues. Apart from networks of sidechain-sidechain hydrogen bonds there are certain key points at which this closure is achieved in the sidechain-backbone hydrogen bonds and these are associated with demarcation points at the start or end of stretches of secondary structure. Together, these three categories of hydrogen bond achieve the closure that is necessary for the stability of globular protein domains as well as repeating elements in fibrous proteins.

  10. A European perspective--the European clinical research infrastructures network.

    PubMed

    Demotes-Mainard, J; Kubiak, C

    2011-11-01

    Evaluating research outcomes requires multinational cooperation in clinical research for optimization of treatment strategies and comparative effectiveness research, leading to evidence-based practice and healthcare cost containment. The European Clinical Research Infrastructures Network (ECRIN) is a distributed ESFRI (European Strategy Forum on Research Infrastructures) roadmap pan-European infrastructure designed to support multinational clinical research, making Europe a single area for clinical studies, taking advantage of its population size to access patients, and unlocking latent scientific potential. Servicing multinational trials started during its preparatory phase, and ECRIN will now apply for an ERIC (European Research Infrastructures Consortium) status by 2011. By creating a single area for clinical research in Europe, this achievement will contribute to the implementation of the Europe flagship initiative 2020 'Innovation Union', whose objectives include defragmentation of the research and education capacity, tackling the major societal challenges starting with the area of healthy ageing, and removing barriers to bring ideas to the market.

  11. Scalable Architecture for Federated Translational Inquiries Network (SAFTINet) Technology Infrastructure for a Distributed Data Network

    PubMed Central

    Schilling, Lisa M.; Kwan, Bethany M.; Drolshagen, Charles T.; Hosokawa, Patrick W.; Brandt, Elias; Pace, Wilson D.; Uhrich, Christopher; Kamerick, Michael; Bunting, Aidan; Payne, Philip R.O.; Stephens, William E.; George, Joseph M.; Vance, Mark; Giacomini, Kelli; Braddy, Jason; Green, Mika K.; Kahn, Michael G.

    2013-01-01

    Introduction: Distributed Data Networks (DDNs) offer infrastructure solutions for sharing electronic health data from across disparate data sources to support comparative effectiveness research. Data sharing mechanisms must address technical and governance concerns stemming from network security and data disclosure laws and best practices, such as HIPAA. Methods: The Scalable Architecture for Federated Translational Inquiries Network (SAFTINet) deploys TRIAD grid technology, a common data model, detailed technical documentation, and custom software for data harmonization to facilitate data sharing in collaboration with stakeholders in the care of safety net populations. Data sharing partners host TRIAD grid nodes containing harmonized clinical data within their internal or hosted network environments. Authorized users can use a central web-based query system to request analytic data sets. Discussion: SAFTINet DDN infrastructure achieved a number of data sharing objectives, including scalable and sustainable systems for ensuring harmonized data structures and terminologies and secure distributed queries. Initial implementation challenges were resolved through iterative discussions, development and implementation of technical documentation, governance, and technology solutions. PMID:25848567

  12. Hydrogen Infrastructure Testing and Research Facility Animation | Hydrogen

    Science.gov Websites

    at full pressure. This system provides hydrogen to fill fuel cell forklifts and feeds the high pressure compressor. View Photos High Pressure Storage The high pressure hydrogen storage system consists full pressure. This system provides hydrogen to high pressure research projects and for fuel cell

  13. Architecture for Cognitive Networking within NASAs Future Space Communications Infrastructure

    NASA Technical Reports Server (NTRS)

    Clark, Gilbert J., III; Eddy, Wesley M.; Johnson, Sandra K.; Barnes, James; Brooks, David

    2016-01-01

    Future space mission concepts and designs pose many networking challenges for command, telemetry, and science data applications with diverse end-to-end data delivery needs. For future end-to-end architecture designs, a key challenge is meeting expected application quality of service requirements for multiple simultaneous mission data flows with options to use diverse onboard local data buses, commercial ground networks, and multiple satellite relay constellations in LEO, MEO, GEO, or even deep space relay links. Effectively utilizing a complex network topology requires orchestration and direction that spans the many discrete, individually addressable computer systems, which cause them to act in concert to achieve the overall network goals. The system must be intelligent enough to not only function under nominal conditions, but also adapt to unexpected situations, and reorganize or adapt to perform roles not originally intended for the system or explicitly programmed. This paper describes architecture features of cognitive networking within the future NASA space communications infrastructure, and interacting with the legacy systems and infrastructure in the meantime. The paper begins by discussing the need for increased automation, including inter-system collaboration. This discussion motivates the features of an architecture including cognitive networking for future missions and relays, interoperating with both existing endpoint-based networking models and emerging information-centric models. From this basis, we discuss progress on a proof-of-concept implementation of this architecture as a cognitive networking on-orbit application on the SCaN Testbed attached to the International Space Station.

  14. Cyber-physical networking for wireless mesh infrastructures

    NASA Astrophysics Data System (ADS)

    Mannweiler, C.; Lottermann, C.; Klein, A.; Schneider, J.; Schotten, H. D.

    2012-09-01

    This paper presents a novel approach for cyber-physical network control. "Cyber-physical" refers to the inclusion of different parameters and information sources, ranging from physical sensors (e.g. energy, temperature, light) to conventional network information (bandwidth, delay, jitter, etc.) to logical data providers (inference systems, user profiles, spectrum usage databases). For a consistent processing, collected data is represented in a uniform way, analyzed, and provided to dedicated network management functions and network services, both internally and, through an according API, to third party services. Specifically, in this work, we outline the design of sophisticated energy management functionalities for a hybrid wireless mesh network (WLAN for both backhaul traffic and access, GSM for access only), disposing of autonomous energy supply, in this case solar power. Energy consumption is optimized under the presumption of fluctuating power availability and considerable storage constraints, thus influencing, among others, handover and routing decisions. Moreover, advanced situation-aware auto-configuration and self-adaptation mechanisms are introduced for an autonomous operation of the network. The overall objective is to deploy a robust wireless access and backbone infrastructure with minimal operational cost and effective, cyber-physical control mechanisms, especially dedicated for rural or developing regions.

  15. Network Computing Infrastructure to Share Tools and Data in Global Nuclear Energy Partnership

    NASA Astrophysics Data System (ADS)

    Kim, Guehee; Suzuki, Yoshio; Teshima, Naoya

    CCSE/JAEA (Center for Computational Science and e-Systems/Japan Atomic Energy Agency) integrated a prototype system of a network computing infrastructure for sharing tools and data to support the U.S. and Japan collaboration in GNEP (Global Nuclear Energy Partnership). We focused on three technical issues to apply our information process infrastructure, which are accessibility, security, and usability. In designing the prototype system, we integrated and improved both network and Web technologies. For the accessibility issue, we adopted SSL-VPN (Security Socket Layer-Virtual Private Network) technology for the access beyond firewalls. For the security issue, we developed an authentication gateway based on the PKI (Public Key Infrastructure) authentication mechanism to strengthen the security. Also, we set fine access control policy to shared tools and data and used shared key based encryption method to protect tools and data against leakage to third parties. For the usability issue, we chose Web browsers as user interface and developed Web application to provide functions to support sharing tools and data. By using WebDAV (Web-based Distributed Authoring and Versioning) function, users can manipulate shared tools and data through the Windows-like folder environment. We implemented the prototype system in Grid infrastructure for atomic energy research: AEGIS (Atomic Energy Grid Infrastructure) developed by CCSE/JAEA. The prototype system was applied for the trial use in the first period of GNEP.

  16. Toward Information Infrastructure Studies: Ways of Knowing in a Networked Environment

    NASA Astrophysics Data System (ADS)

    Bowker, Geoffrey C.; Baker, Karen; Millerand, Florence; Ribes, David

    This article presents Information Infrastructure Studies, a research area that takes up some core issues in digital information and organization research. Infrastructure Studies simultaneously addresses the technical, social, and organizational aspects of the development, usage, and maintenance of infrastructures in local communities as well as global arenas. While infrastructure is understood as a broad category referring to a variety of pervasive, enabling network resources such as railroad lines, plumbing and pipes, electrical power plants and wires, this article focuses on information infrastructure, such as computational services and help desks, or federating activities such as scientific data repositories and archives spanning the multiple disciplines needed to address such issues as climate warming and the biodiversity crisis. These are elements associated with the internet and, frequently today, associated with cyberinfrastructure or e-science endeavors. We argue that a theoretical understanding of infrastructure provides the context for needed dialogue between design, use, and sustainability of internet-based infrastructure services. This article outlines a research area and outlines overarching themes of Infrastructure Studies. Part one of the paper presents definitions for infrastructure and cyberinfrastructure, reviewing salient previous work. Part two portrays key ideas from infrastructure studies (knowledge work, social and political values, new forms of sociality, etc.). In closing, the character of the field today is considered.

  17. European network infrastructures of observatories for terrestrial Global Change research

    NASA Astrophysics Data System (ADS)

    Vereecken, H.; Bogena, H.; Lehning, M.

    2009-04-01

    The earth's climate is significantly changing (e.g. IPCC, 2007) and thus directly affecting the terrestrial systems. The number and intensity hydrological extremes, such as floods and droughts, are continually increasing, resulting in major economical and social impacts. Furthermore, the land cover in Europe has been modified fundamentally by conversions for agriculture, forest and for other purposes such as industrialisation and urbanisation. Additionally, water resources are more than ever used for human development, especially as a key resource for agricultural and industrial activities. As a special case, the mountains of the world are of significant importance in terms of water resources supply, biodiversity, economy, agriculture, traffic and recreation but particularly vulnerable to environmental change. The Alps are unique because of the pronounced small scale variability they contain, the high population density they support and their central position in Europe. The Alps build a single coherent physical and natural environment, artificially cut by national borders. The scientific community and governmental bodies have responded to these environmental changes by performing dedicated experiments and by establishing environmental research networks to monitor, analyse and predict the impact of Global Change on different terrestrial systems of the Earths' environment. Several European network infrastructures for terrestrial Global Change research are presently immerging or upgrading, such as ICOS, ANAEE, LifeWatch or LTER-Europe. However, the strongest existing networks are still operating on a regional or national level and the historical growth of such networks resulted in a very heterogeneous landscape of observation networks. We propose therefore the establishment of two complementary networks: The NetwOrk of Hydrological observAtories, NOHA. NOHA aims to promote the sustainable management of water resources in Europe, to support the prediction of

  18. Facilities | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    integration research. Photo of the Hydrogen Infrastructure Testing and Research Facility building, with hydrogen fueling station and fuel cell vehicles. Hydrogen Infrastructure Testing and Research Facility The Hydrogen Infrastructure Testing and Research Facility (HITRF) at the ESIF combines electrolyzers, a

  19. Blending Hydrogen into Natural Gas Pipeline Networks. A Review of Key Issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melaina, M. W.; Antonia, O.; Penev, M.

    2013-03-01

    This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipelines. Blending hydrogen into the existing natural gas pipeline network has also been proposed as a means of increasing the output of renewable energy systems such as large wind farms.

  20. Effective Utilization of Resources and Infrastructure for a Spaceport Network Architecture

    NASA Technical Reports Server (NTRS)

    Gill, Tracy; Larson, Wiley; Mueller, Robert; Roberson, Luke

    2012-01-01

    Providing routine, affordable access to a variety of orbital and deep space destinations requires an intricate network of ground, planetary surface, and space-based spaceports like those on Earth (land and sea), in various Earth orbits, and on other extraterrestrial surfaces. Advancements in technology and international collaboration are critical to establish a spaceport network that satisfies the requirements for private and government research, exploration, and commercial objectives. Technologies, interfaces, assembly techniques, and protocols must be adapted to enable mission critical capabilities and interoperability throughout the spaceport network. The conceptual space mission architecture must address the full range of required spaceport services, from managing propellants for a variety of spacecraft to governance structure. In order to accomplish affordability and sustainability goals, the network architecture must consider deriving propellants from in situ planetary resources to the maximum extent possible. Water on the Moon and Mars, Mars' atmospheric CO2, and O2 extracted from lunar regolith are examples of in situ resources that could be used to generate propellants for various spacecraft, orbital stages and trajectories, and the commodities to support habitation and human operations at these destinations. The ability to use in-space fuel depots containing in situ derived propellants would drastically reduce the mass required to launch long-duration or deep space missions from Earth's gravity well. Advances in transformative technologies and common capabilities, interfaces, umbilicals, commodities, protocols, and agreements will facilitate a cost-effective, safe, reliable infrastructure for a versatile network of Earth- and extraterrestrial spaceports. Defining a common infrastructure on Earth, planetary surfaces, and in space, as well as deriving propellants from in situ planetary resources to construct in-space propellant depots to serve the spaceport

  1. Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korkali, Mert; Veneman, Jason G.; Tivnan, Brian F.

    Increased coupling between critical infrastructure networks, such as power and communication systems, has important implications for the reliability and security of these systems. To understand the effects of power-communication coupling, several researchers have studied models of interdependent networks and reported that increased coupling can increase vulnerability. However, these conclusions come largely from models that have substantially different mechanisms of cascading failure, relative to those found in actual power and communication networks, and that do not capture the benefits of connecting systems with complementary capabilities. In order to understand the importance of these details, this paper compares network vulnerability in simplemore » topological models and in models that more accurately capture the dynamics of cascading in power systems. First, we compare a simple model of topological contagion to a model of cascading in power systems and find that the power grid model shows a higher level of vulnerability, relative to the contagion model. Second, we compare a percolation model of topological cascading in coupled networks to three different models of power networks coupled to communication systems. Again, the more accurate models suggest very different conclusions than the percolation model. In all but the most extreme case, the physics-based power grid models indicate that increased power-communication coupling decreases vulnerability. This is opposite from what one would conclude from the percolation model, in which zero coupling is optimal. Only in an extreme case, in which communication failures immediately cause grid failures, did we find that increased coupling can be harmful. Together, these results suggest design strategies for reducing the risk of cascades in interdependent infrastructure systems.« less

  2. Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence

    DOE PAGES

    Korkali, Mert; Veneman, Jason G.; Tivnan, Brian F.; ...

    2017-03-20

    Increased coupling between critical infrastructure networks, such as power and communication systems, has important implications for the reliability and security of these systems. To understand the effects of power-communication coupling, several researchers have studied models of interdependent networks and reported that increased coupling can increase vulnerability. However, these conclusions come largely from models that have substantially different mechanisms of cascading failure, relative to those found in actual power and communication networks, and that do not capture the benefits of connecting systems with complementary capabilities. In order to understand the importance of these details, this paper compares network vulnerability in simplemore » topological models and in models that more accurately capture the dynamics of cascading in power systems. First, we compare a simple model of topological contagion to a model of cascading in power systems and find that the power grid model shows a higher level of vulnerability, relative to the contagion model. Second, we compare a percolation model of topological cascading in coupled networks to three different models of power networks coupled to communication systems. Again, the more accurate models suggest very different conclusions than the percolation model. In all but the most extreme case, the physics-based power grid models indicate that increased power-communication coupling decreases vulnerability. This is opposite from what one would conclude from the percolation model, in which zero coupling is optimal. Only in an extreme case, in which communication failures immediately cause grid failures, did we find that increased coupling can be harmful. Together, these results suggest design strategies for reducing the risk of cascades in interdependent infrastructure systems.« less

  3. IP Infrastructure Geolocation

    DTIC Science & Technology

    2015-03-01

    unlimited 13. ABSTRACT (maximum 200 words) Physical network maps are important to critical infrastructure defense and planning. Current state-of...the-art network infrastructure geolocation relies on Domain Name System (DNS) inferences. However, not only is using the DNS relatively inaccurate for...INTENTIONALLY LEFT BLANK iv ABSTRACT Physical network maps are important to critical infrastructure defense and planning. Cur- rent state-of-the-art

  4. Health care network communications infrastructure: an engineering design for the Military Health Service System.

    PubMed

    Hoffman, P; Kline, E; George, L; Price, K; Clark, M; Walasin, R

    1995-01-01

    The Military Health Service System (MHSS) provides health care for the Department of Defense (DOD). This system operates on an annual budget of $15 Billion, supports 127 medical treatment facilities (MTFs) and 500 clinics, and provides support to 8.7 million beneficiaries worldwide. To support these facilities and their patients, the MHSS uses more than 125 different networked automated medical systems. These systems rely on a heterogeneous telecommunications infrastructure for data communications. With the support of the Defense Medical Information Management (DMIM) Program Office, our goal was to identify the network requirements for DMIM migration and target systems and design a communications infrastructure to support all systems with an integrated network. This work used tools from Business Process Reengineering (BPR) and applied it to communications infrastructure design for the first time. The methodology and results are applicable to any health care enterprise, military or civilian.

  5. Health care network communications infrastructure: an engineering design for the Military Health Service System.

    PubMed Central

    Hoffman, P.; Kline, E.; George, L.; Price, K.; Clark, M.; Walasin, R.

    1995-01-01

    The Military Health Service System (MHSS) provides health care for the Department of Defense (DOD). This system operates on an annual budget of $15 Billion, supports 127 medical treatment facilities (MTFs) and 500 clinics, and provides support to 8.7 million beneficiaries worldwide. To support these facilities and their patients, the MHSS uses more than 125 different networked automated medical systems. These systems rely on a heterogeneous telecommunications infrastructure for data communications. With the support of the Defense Medical Information Management (DMIM) Program Office, our goal was to identify the network requirements for DMIM migration and target systems and design a communications infrastructure to support all systems with an integrated network. This work used tools from Business Process Reengineering (BPR) and applied it to communications infrastructure design for the first time. The methodology and results are applicable to any health care enterprise, military or civilian. PMID:8563346

  6. Building research infrastructure in community health centers: a Community Health Applied Research Network (CHARN) report.

    PubMed

    Likumahuwa, Sonja; Song, Hui; Singal, Robbie; Weir, Rosy Chang; Crane, Heidi; Muench, John; Sim, Shao-Chee; DeVoe, Jennifer E

    2013-01-01

    This article introduces the Community Health Applied Research Network (CHARN), a practice-based research network of community health centers (CHCs). Established by the Health Resources and Services Administration in 2010, CHARN is a network of 4 community research nodes, each with multiple affiliated CHCs and an academic center. The four nodes (18 individual CHCs and 4 academic partners in 9 states) are supported by a data coordinating center. Here we provide case studies detailing how CHARN is building research infrastructure and capacity in CHCs, with a particular focus on how community practice-academic partnerships were facilitated by the CHARN structure. The examples provided by the CHARN nodes include many of the building blocks of research capacity: communication capacity and "matchmaking" between providers and researchers; technology transfer; research methods tailored to community practice settings; and community institutional review board infrastructure to enable community oversight. We draw lessons learned from these case studies that we hope will serve as examples for other networks, with special relevance for community-based networks seeking to build research infrastructure in primary care settings.

  7. Building Research Infrastructure in Community Health Centers: A Community Health Applied Research Network (CHARN) Report

    PubMed Central

    Likumahuwa, Sonja; Song, Hui; Singal, Robbie; Weir, Rosy Chang; Crane, Heidi; Muench, John; Sim, Shao-Chee; DeVoe, Jennifer E.

    2015-01-01

    This article introduces the Community Health Applied Research Network (CHARN), a practice-based research network of community health centers (CHCs). Established by the Health Resources and Services Administration in 2010, CHARN is a network of 4 community research nodes, each with multiple affiliated CHCs and an academic center. The four nodes (18 individual CHCs and 4 academic partners in 9 states) are supported by a data coordinating center. Here we provide case studies detailing how CHARN is building research infrastructure and capacity in CHCs, with a particular focus on how community practice-academic partnerships were facilitated by the CHARN structure. The examples provided by the CHARN nodes include many of the building blocks of research capacity: communication capacity and “matchmaking” between providers and researchers; technology transfer; research methods tailored to community practice settings; and community institutional review board infrastructure to enable community oversight. We draw lessons learned from these case studies that we hope will serve as examples for other networks, with special relevance for community-based networks seeking to build research infrastructure in primary care settings. PMID:24004710

  8. Persistent homology analysis of ion aggregations and hydrogen-bonding networks.

    PubMed

    Xia, Kelin

    2018-05-16

    Despite the great advancement of experimental tools and theoretical models, a quantitative characterization of the microscopic structures of ion aggregates and their associated water hydrogen-bonding networks still remains a challenging problem. In this paper, a newly-invented mathematical method called persistent homology is introduced, for the first time, to quantitatively analyze the intrinsic topological properties of ion aggregation systems and hydrogen-bonding networks. The two most distinguishable properties of persistent homology analysis of assembly systems are as follows. First, it does not require a predefined bond length to construct the ion or hydrogen-bonding network. Persistent homology results are determined by the morphological structure of the data only. Second, it can directly measure the size of circles or holes in ion aggregates and hydrogen-bonding networks. To validate our model, we consider two well-studied systems, i.e., NaCl and KSCN solutions, generated from molecular dynamics simulations. They are believed to represent two morphological types of aggregation, i.e., local clusters and extended ion networks. It has been found that the two aggregation types have distinguishable topological features and can be characterized by our topological model very well. Further, we construct two types of networks, i.e., O-networks and H2O-networks, for analyzing the topological properties of hydrogen-bonding networks. It is found that for both models, KSCN systems demonstrate much more dramatic variations in their local circle structures with a concentration increase. A consistent increase of large-sized local circle structures is observed and the sizes of these circles become more and more diverse. In contrast, NaCl systems show no obvious increase of large-sized circles. Instead a consistent decline of the average size of the circle structures is observed and the sizes of these circles become more and more uniform with a concentration increase. As far

  9. Sensing Models and Sensor Network Architectures for Transport Infrastructure Monitoring in Smart Cities

    NASA Astrophysics Data System (ADS)

    Simonis, Ingo

    2015-04-01

    Transport infrastructure monitoring and analysis is one of the focus areas in the context of smart cities. With the growing number of people moving into densely populated urban metro areas, precise tracking of moving people and goods is the basis for profound decision-making and future planning. With the goal of defining optimal extensions and modifications to existing transport infrastructures, multi-modal transport has to be monitored and analysed. This process is performed on the basis of sensor networks that combine a variety of sensor models, types, and deployments within the area of interest. Multi-generation networks, consisting of a number of sensor types and versions, are causing further challenges for the integration and processing of sensor observations. These challenges are not getting any smaller with the development of the Internet of Things, which brings promising opportunities, but is currently stuck in a type of protocol war between big industry players from both the hardware and network infrastructure domain. In this paper, we will highlight how the OGC suite of standards, with the Sensor Web standards developed by the Sensor Web Enablement Initiative together with the latest developments by the Sensor Web for Internet of Things community can be applied to the monitoring and improvement of transport infrastructures. Sensor Web standards have been applied in the past to pure technical domains, but need to be broadened now in order to meet new challenges. Only cross domain approaches will allow to develop satisfying transport infrastructure approaches that take into account requirements coming form a variety of sectors such as tourism, administration, transport industry, emergency services, or private people. The goal is the development of interoperable components that can be easily integrated within data infrastructures and follow well defined information models to allow robust processing.

  10. Network information attacks on the control systems of power facilities belonging to the critical infrastructure

    NASA Astrophysics Data System (ADS)

    Loginov, E. L.; Raikov, A. N.

    2015-04-01

    The most large-scale accidents occurred as a consequence of network information attacks on the control systems of power facilities belonging to the United States' critical infrastructure are analyzed in the context of possibilities available in modern decision support systems. Trends in the development of technologies for inflicting damage to smart grids are formulated. A volume matrix of parameters characterizing attacks on facilities is constructed. A model describing the performance of a critical infrastructure's control system after an attack is developed. The recently adopted measures and legislation acts aimed at achieving more efficient protection of critical infrastructure are considered. Approaches to cognitive modeling and networked expertise of intricate situations for supporting the decision-making process, and to setting up a system of indicators for anticipatory monitoring of critical infrastructure are proposed.

  11. Hydrogen adsorption and desorption with 3D silicon nanotube-network and film-network structures: Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Li, Ming; Huang, Xiaobo; Kang, Zhan

    2015-08-01

    Hydrogen is clean, sustainable, and renewable, thus is viewed as promising energy carrier. However, its industrial utilization is greatly hampered by the lack of effective hydrogen storage and release method. Carbon nanotubes (CNTs) were viewed as one of the potential hydrogen containers, but it has been proved that pure CNTs cannot attain the desired target capacity of hydrogen storage. In this paper, we present a numerical study on the material-driven and structure-driven hydrogen adsorption of 3D silicon networks and propose a deformation-driven hydrogen desorption approach based on molecular simulations. Two types of 3D nanostructures, silicon nanotube-network (Si-NN) and silicon film-network (Si-FN), are first investigated in terms of hydrogen adsorption and desorption capacity with grand canonical Monte Carlo simulations. It is revealed that the hydrogen storage capacity is determined by the lithium doping ratio and geometrical parameters, and the maximum hydrogen uptake can be achieved by a 3D nanostructure with optimal configuration and doping ratio obtained through design optimization technique. For hydrogen desorption, a mechanical-deformation-driven-hydrogen-release approach is proposed. Compared with temperature/pressure change-induced hydrogen desorption method, the proposed approach is so effective that nearly complete hydrogen desorption can be achieved by Si-FN nanostructures under sufficient compression but without structural failure observed. The approach is also reversible since the mechanical deformation in Si-FN nanostructures can be elastically recovered, which suggests a good reusability. This study may shed light on the mechanism of hydrogen adsorption and desorption and thus provide useful guidance toward engineering design of microstructural hydrogen (or other gas) adsorption materials.

  12. Nano-scale hydrogen-bond network improves the durability of greener cements

    PubMed Central

    Jacobsen, Johan; Rodrigues, Michelle Santos; Telling, Mark T. F.; Beraldo, Antonio Ludovico; Santos, Sérgio Francisco; Aldridge, Laurence P.; Bordallo, Heloisa N.

    2013-01-01

    More than ever before, the world's increasing need for new infrastructure demands the construction of efficient, sustainable and durable buildings, requiring minimal climate-changing gas-generation in their production. Maintenance-free “greener” building materials made from blended cements have advantages over ordinary Portland cements, as they are cheaper, generate less carbon dioxide and are more durable. The key for the improved performance of blends (which substitute fine amorphous silicates for cement) is related to their resistance to water penetration. The mechanism of this water resistance is of great environmental and economical impact but is not yet understood due to the complexity of the cement's hydration reactions. Using neutron spectroscopy, we studied a blend where cement was replaced by ash from sugar cane residuals originating from agricultural waste. Our findings demonstrate that the development of a distinctive hydrogen bond network at the nano-scale is the key to the performance of these greener materials. PMID:24036676

  13. Body Area Network BAN--a key infrastructure element for patient-centered medical applications.

    PubMed

    Schmidt, Robert; Norgall, Thomas; Mörsdorf, Joachim; Bernhard, Josef; von der Grün, Thomas

    2002-01-01

    The Body Area Network (BAN) concept enables wireless communication between several miniaturized, intelligent Body Sensor (or actor) Units (BSU) and a single Body Central Unit (BCU) worn at the human body. A separate wireless transmission link from the BCU to a network access point--using different technology--provides for online access to BAN data via usual network infrastructure. BAN is expected to become a basic infrastructure element for service-based electronic health assistance: By integrating patient-attached sensors and control of mobile dedicated actor units, the range of medical workflow can be extended by wireless patient monitoring and therapy support. Beyond clinical use, professional disease management environments, and private personal health assistance scenarios (without financial reimbursement by health agencies/insurance companies), BAN enables a wide range of health care applications and related services.

  14. Advanced European Network of E-Infrastructures for Astronomy with the SKA

    NASA Astrophysics Data System (ADS)

    Massardi, Marcella

    2017-11-01

    Here, I present the AENEAS (Advanced European Network of E-infrastructures for Astronomy with the SKA) project has been funded in the Horizon 2020 Work Programme call "Research and Innovation Actions for International Co-operation on high-end e-infrastructure requirements" supporting the Square Kilometre Array (SKA). INAF is contributing to all the AENEAS working packages and leading the WP5 - Access and Knowledge Creation (WP leader M. Massardi IRA-ARC), participants from IRA (Brand, Nanni, Venturi) ,OACT(Becciani, Costa, Umana), OATS (Smareglia, Knapic, Taffoni)

  15. A systems approach to risk reduction of transportation infrastructure networks subject to multiple hazards : final report, December 31, 2008.

    DOT National Transportation Integrated Search

    2008-12-31

    Integrity, robustness, reliability, and resiliency of infrastructure networks are vital to the economy, : security and well-being of any country. Faced with threats caused by natural and man-made hazards, : transportation infrastructure network manag...

  16. Interoperability and security in wireless body area network infrastructures.

    PubMed

    Warren, Steve; Lebak, Jeffrey; Yao, Jianchu; Creekmore, Jonathan; Milenkovic, Aleksandar; Jovanov, Emil

    2005-01-01

    Wireless body area networks (WBANs) and their supporting information infrastructures offer unprecedented opportunities to monitor state of health without constraining the activities of a wearer. These mobile point-of-care systems are now realizable due to the convergence of technologies such as low-power wireless communication standards, plug-and-play device buses, off-the-shelf development kits for low-power microcontrollers, handheld computers, electronic medical records, and the Internet. To increase acceptance of personal monitoring technology while lowering equipment cost, advances must be made in interoperability (at both the system and device levels) and security. This paper presents an overview of WBAN infrastructure work in these areas currently underway in the Medical Component Design Laboratory at Kansas State University (KSU) and at the University of Alabama in Huntsville (UAH). KSU efforts include the development of wearable health status monitoring systems that utilize ISO/IEEE 11073, Bluetooth, Health Level 7, and OpenEMed. WBAN efforts at UAH include the development of wearable activity and health monitors that incorporate ZigBee-compliant wireless sensor platforms with hardware-level encryption and the TinyOS development environment. WBAN infrastructures are complex, requiring many functional support elements. To realize these infrastructures through collaborative efforts, organizations such as KSU and UAH must define and utilize standard interfaces, nomenclature, and security approaches.

  17. Hydrogen Infrastructure Testing and Research Facility | Hydrogen and Fuel

    Science.gov Websites

    stations, enabling NREL to validate current industry standards and methods for hydrogen fueling as well as the HITRF to: Develop, quantify performance of, and improve renewable hydrogen production methods

  18. Hydration dynamics of a lipid membrane: Hydrogen bond networks and lipid-lipid associations

    NASA Astrophysics Data System (ADS)

    Srivastava, Abhinav; Debnath, Ananya

    2018-03-01

    Dynamics of hydration layers of a dimyristoylphosphatidylcholine (DMPC) bilayer are investigated using an all atom molecular dynamics simulation. Based upon the geometric criteria, continuously residing interface water molecules which form hydrogen bonds solely among themselves and then concertedly hydrogen bonded to carbonyl, phosphate, and glycerol head groups of DMPC are identified. The interface water hydrogen bonded to lipids shows slower relaxation rates for translational and rotational dynamics compared to that of the bulk water and is found to follow sub-diffusive and non-diffusive behaviors, respectively. The mean square displacements and the reorientational auto-correlation functions are slowest for the interfacial waters hydrogen bonded to the carbonyl oxygen since these are buried deep in the hydrophobic core among all interfacial water studied. The intermittent hydrogen bond auto-correlation functions are calculated, which allows breaking and reformations of the hydrogen bonds. The auto-correlation functions for interfacial hydrogen bonded networks develop humps during a transition from cage-like motion to eventual power law behavior of t-3/2. The asymptotic t-3/2 behavior indicates translational diffusion dictated dynamics during hydrogen bond breaking and formation irrespective of the nature of the chemical confinement. Employing reactive flux correlation analysis, the forward rate constant of hydrogen bond breaking and formation is calculated which is used to obtain Gibbs energy of activation of the hydrogen bond breaking. The relaxation rates of the networks buried in the hydrophobic core are slower than the networks near the lipid-water interface which is again slower than bulk due to the higher Gibbs energy of activation. Since hydrogen bond breakage follows a translational diffusion dictated mechanism, chemically confined hydrogen bond networks need an activation energy to diffuse through water depleted hydrophobic environments. Our calculations

  19. Restoration of services in disrupted infrastructure systems: A network science approach.

    PubMed

    Ulusan, Aybike; Ergun, Ozlem

    2018-01-01

    Due to the ubiquitous nature of disruptive extreme events, functionality of the critical infrastructure systems (CIS) is constantly at risk. In case of a disruption, in order to minimize the negative impact to the society, service networks operating on the CIS should be restored as quickly as possible. In this paper, we introduce a novel network science inspired measure to quantify the criticality of components within a disrupted service network and develop a restoration heuristic (Cent-Restore) that prioritizes restoration efforts based on this measure. As an illustrative case study, we consider a road network blocked by debris in the aftermath of a natural disaster. The debris obstructs the flow of relief aid and search-and-rescue teams between critical facilities and disaster sites, debilitating the emergency service network. In this context, the problem is defined as finding a schedule to clear the roads with the limited resources. First, we develop a mixed-integer programming model for the problem. Then we validate the efficiency and accuracy of the Cent-Restore heuristic on randomly generated instances by comparing it to the model. Furthermore, we use Cent-Restore to recommend real-time restoration plans for disrupted road networks of Boston and Manhattan and analyze the performance of the plans over time through resilience curves. We compare Cent-Restore to the current restoration guidelines proposed by FEMA and other strategies that prioritize the restoration efforts based on different measures. As a result we confirm the importance of including specific post-disruption attributes of the networks to create effective restoration strategies. Moreover, we explore the relationship between a service network's resilience and its topological and operational characteristics under different disruption scenarios. The methods and insights provided in this work can be extended to other disrupted large-scale critical infrastructure systems in which the ultimate goal is

  20. Quantifying the Digital Divide: A Scientific Overview of Network Connectivity and Grid Infrastructure in South Asian Countries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Shahryar Muhammad; /SLAC /NUST, Rawalpindi; Cottrell, R.Les

    2007-10-30

    The future of Computing in High Energy Physics (HEP) applications depends on both the Network and Grid infrastructure. South Asian countries such as India and Pakistan are making significant progress by building clusters as well as improving their network infrastructure However to facilitate the use of these resources, they need to manage the issues of network connectivity to be among the leading participants in Computing for HEP experiments. In this paper we classify the connectivity for academic and research institutions of South Asia. The quantitative measurements are carried out using the PingER methodology; an approach that induces minimal ICMP trafficmore » to gather active end-to-end network statistics. The PingER project has been measuring the Internet performance for the last decade. Currently the measurement infrastructure comprises of over 700 hosts in more than 130 countries which collectively represents approximately 99% of the world's Internet-connected population. Thus, we are well positioned to characterize the world's connectivity. Here we present the current state of the National Research and Educational Networks (NRENs) and Grid Infrastructure in the South Asian countries and identify the areas of concern. We also present comparisons between South Asia and other developing as well as developed regions. We show that there is a strong correlation between the Network performance and several Human Development indices.« less

  1. Smart Valley Infrastructure.

    ERIC Educational Resources Information Center

    Maule, R. William

    1994-01-01

    Discusses prototype information infrastructure projects in northern California's Silicon Valley. The strategies of the public and private telecommunications carriers vying for backbone services and industries developing end-user infrastructure technologies via office networks, set-top box networks, Internet multimedia, and "smart homes"…

  2. Fieldservers and Sensor Service Grid as Real-time Monitoring Infrastructure for Ubiquitous Sensor Networks

    PubMed Central

    Honda, Kiyoshi; Shrestha, Aadit; Witayangkurn, Apichon; Chinnachodteeranun, Rassarin; Shimamura, Hiroshi

    2009-01-01

    The fieldserver is an Internet based observation robot that can provide an outdoor solution for monitoring environmental parameters in real-time. The data from its sensors can be collected to a central server infrastructure and published on the Internet. The information from the sensor network will contribute to monitoring and modeling on various environmental issues in Asia, including agriculture, food, pollution, disaster, climate change etc. An initiative called Sensor Asia is developing an infrastructure called Sensor Service Grid (SSG), which integrates fieldservers and Web GIS to realize easy and low cost installation and operation of ubiquitous field sensor networks. PMID:22574018

  3. Alternative Fuels Data Center: Hydrogen Fueling Stations

    Science.gov Websites

    will bring station costs down. Hydrogen infrastructure is also developing for buses, medium- and heavy . Infrastructure Development Learn about developing hydrogen fueling infrastructure. Maps & Data U.S

  4. Hydrogen Fueling Infrastructure Analysis | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    (retail and non-retail combined) Retail stations only Publications The following publications provide more Hydrogen Station Composite Data Products: All Stations (Retail and Non-Retail Combined), Data through ) Next Generation Hydrogen Station Composite Data Products: All Stations (Retail and Non-Retail Combined

  5. SITRUS: Semantic Infrastructure for Wireless Sensor Networks

    PubMed Central

    Bispo, Kalil A.; Rosa, Nelson S.; Cunha, Paulo R. F.

    2015-01-01

    Wireless sensor networks (WSNs) are made up of nodes with limited resources, such as processing, bandwidth, memory and, most importantly, energy. For this reason, it is essential that WSNs always work to reduce the power consumption as much as possible in order to maximize its lifetime. In this context, this paper presents SITRUS (semantic infrastructure for wireless sensor networks), which aims to reduce the power consumption of WSN nodes using ontologies. SITRUS consists of two major parts: a message-oriented middleware responsible for both an oriented message communication service and a reconfiguration service; and a semantic information processing module whose purpose is to generate a semantic database that provides the basis to decide whether a WSN node needs to be reconfigurated or not. In order to evaluate the proposed solution, we carried out an experimental evaluation to assess the power consumption and memory usage of WSN applications built atop SITRUS. PMID:26528974

  6. [Scale effect of Nanjing urban green infrastructure network pattern and connectivity analysis.

    PubMed

    Yu, Ya Ping; Yin, Hai Wei; Kong, Fan Hua; Wang, Jing Jing; Xu, Wen Bin

    2016-07-01

    Based on ArcGIS, Erdas, GuidosToolbox, Conefor and other software platforms, using morphological spatial pattern analysis (MSPA) and landscape connectivity analysis methods, this paper quantitatively analysed the scale effect, edge effect and distance effect of the Nanjing urban green infrastructure network pattern in 2013 by setting different pixel sizes (P) and edge widths in MSPA analysis, and setting different dispersal distance thresholds in landscape connectivity analysis. The results showed that the type of landscape acquired based on the MSPA had a clear scale effect and edge effect, and scale effects only slightly affected landscape types, whereas edge effects were more obvious. Different dispersal distances had a great impact on the landscape connectivity, 2 km or 2.5 km dispersal distance was a critical threshold for Nanjing. When selecting the pixel size 30 m of the input data and the edge wide 30 m used in the morphological model, we could get more detailed landscape information of Nanjing UGI network. Based on MSPA and landscape connectivity, analysis of the scale effect, edge effect, and distance effect on the landscape types of the urban green infrastructure (UGI) network was helpful for selecting the appropriate size, edge width, and dispersal distance when developing these networks, and for better understanding the spatial pattern of UGI networks and the effects of scale and distance on the ecology of a UGI network. This would facilitate a more scientifically valid set of design parameters for UGI network spatiotemporal pattern analysis. The results of this study provided an important reference for Nanjing UGI networks and a basis for the analysis of the spatial and temporal patterns of medium-scale UGI landscape networks in other regions.

  7. Fuel Cell and Hydrogen Technology Validation | Hydrogen and Fuel Cells |

    Science.gov Websites

    NREL Fuel Cell and Hydrogen Technology Validation Fuel Cell and Hydrogen Technology Validation The NREL technology validation team works on validating hydrogen fuel cell electric vehicles; hydrogen fueling infrastructure; hydrogen system components; and fuel cell use in early market applications such as

  8. The development of network infrastructure in rural areas and problems in applying IT to the medical field.

    PubMed

    Ooe, Yosuke; Anamizu, Hiromitsu; Tatsumi, Haruyuki; Tanaka, Hiroshi

    2008-07-01

    The financial condition of the Japanese health insurance system is said to be compounded with the aging of the population. The government argues that the application of IT and networking is required in order to streamline health care services while avoiding its collapse. The Internet environment has been furnished with broadband connection and multimedia in the span of one year or shorter, and is becoming more and more convenient. It is true that the Internet is now a part of Tokyo's infrastructure along with electricity and water supply, as it is the center of politics. However, in local cities, development of the Internet environment is still insufficient. In order to use the network as a common infrastructure at health care facilities, we need to be aware of this digital divide. This study investigated the development status of network infrastructure in regional cities.

  9. Retail Infrastructure Costs Comparison for Hydrogen and Electricity for Light-Duty Vehicles: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melaina, M.; Sun, Y.; Bush, B.

    2014-08-01

    Both hydrogen and plug-in electric vehicles offer significant social benefits to enhance energy security and reduce criteria and greenhouse gas emissions from the transportation sector. However, the rollout of electric vehicle supply equipment (EVSE) and hydrogen retail stations (HRS) requires substantial investments with high risks due to many uncertainties. We compare retail infrastructure costs on a common basis - cost per mile, assuming fueling service to 10% of all light-duty vehicles in a typical 1.5 million person city in 2025. Our analysis considers three HRS sizes, four distinct types of EVSE and two distinct EVSE scenarios. EVSE station costs, includingmore » equipment and installation, are assumed to be 15% less than today's costs. We find that levelized retail capital costs per mile are essentially indistinguishable given the uncertainty and variability around input assumptions. Total fuel costs per mile for battery electric vehicle (BEV) and plug-in hybrid vehicle (PHEV) are, respectively, 21% lower and 13% lower than that for hydrogen fuel cell electric vehicle (FCEV) under the home-dominant scenario. Including fuel economies and vehicle costs makes FCEVs and BEVs comparable in terms of costs per mile, and PHEVs are about 10% less than FCEVs and BEVs. To account for geographic variability in energy prices and hydrogen delivery costs, we use the Scenario Evaluation, Regionalization and Analysis (SERA) model and confirm the aforementioned estimate of cost per mile, nationally averaged, but see a 15% variability in regional costs of FCEVs and a 5% variability in regional costs for BEVs.« less

  10. Optimizing Virtual Network Functions Placement in Virtual Data Center Infrastructure Using Machine Learning

    NASA Astrophysics Data System (ADS)

    Bolodurina, I. P.; Parfenov, D. I.

    2018-01-01

    We have elaborated a neural network model of virtual network flow identification based on the statistical properties of flows circulating in the network of the data center and characteristics that describe the content of packets transmitted through network objects. This enabled us to establish the optimal set of attributes to identify virtual network functions. We have established an algorithm for optimizing the placement of virtual data functions using the data obtained in our research. Our approach uses a hybrid method of visualization using virtual machines and containers, which enables to reduce the infrastructure load and the response time in the network of the virtual data center. The algorithmic solution is based on neural networks, which enables to scale it at any number of the network function copies.

  11. Hydrogen adsorption and desorption with 3D silicon nanotube-network and film-network structures: Monte Carlo simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ming; Kang, Zhan, E-mail: zhankang@dlut.edu.cn; Huang, Xiaobo

    2015-08-28

    Hydrogen is clean, sustainable, and renewable, thus is viewed as promising energy carrier. However, its industrial utilization is greatly hampered by the lack of effective hydrogen storage and release method. Carbon nanotubes (CNTs) were viewed as one of the potential hydrogen containers, but it has been proved that pure CNTs cannot attain the desired target capacity of hydrogen storage. In this paper, we present a numerical study on the material-driven and structure-driven hydrogen adsorption of 3D silicon networks and propose a deformation-driven hydrogen desorption approach based on molecular simulations. Two types of 3D nanostructures, silicon nanotube-network (Si-NN) and silicon film-networkmore » (Si-FN), are first investigated in terms of hydrogen adsorption and desorption capacity with grand canonical Monte Carlo simulations. It is revealed that the hydrogen storage capacity is determined by the lithium doping ratio and geometrical parameters, and the maximum hydrogen uptake can be achieved by a 3D nanostructure with optimal configuration and doping ratio obtained through design optimization technique. For hydrogen desorption, a mechanical-deformation-driven-hydrogen-release approach is proposed. Compared with temperature/pressure change-induced hydrogen desorption method, the proposed approach is so effective that nearly complete hydrogen desorption can be achieved by Si-FN nanostructures under sufficient compression but without structural failure observed. The approach is also reversible since the mechanical deformation in Si-FN nanostructures can be elastically recovered, which suggests a good reusability. This study may shed light on the mechanism of hydrogen adsorption and desorption and thus provide useful guidance toward engineering design of microstructural hydrogen (or other gas) adsorption materials.« less

  12. Restoration of services in disrupted infrastructure systems: A network science approach

    PubMed Central

    Ergun, Ozlem

    2018-01-01

    Due to the ubiquitous nature of disruptive extreme events, functionality of the critical infrastructure systems (CIS) is constantly at risk. In case of a disruption, in order to minimize the negative impact to the society, service networks operating on the CIS should be restored as quickly as possible. In this paper, we introduce a novel network science inspired measure to quantify the criticality of components within a disrupted service network and develop a restoration heuristic (Cent-Restore) that prioritizes restoration efforts based on this measure. As an illustrative case study, we consider a road network blocked by debris in the aftermath of a natural disaster. The debris obstructs the flow of relief aid and search-and-rescue teams between critical facilities and disaster sites, debilitating the emergency service network. In this context, the problem is defined as finding a schedule to clear the roads with the limited resources. First, we develop a mixed-integer programming model for the problem. Then we validate the efficiency and accuracy of the Cent-Restore heuristic on randomly generated instances by comparing it to the model. Furthermore, we use Cent-Restore to recommend real-time restoration plans for disrupted road networks of Boston and Manhattan and analyze the performance of the plans over time through resilience curves. We compare Cent-Restore to the current restoration guidelines proposed by FEMA and other strategies that prioritize the restoration efforts based on different measures. As a result we confirm the importance of including specific post-disruption attributes of the networks to create effective restoration strategies. Moreover, we explore the relationship between a service network’s resilience and its topological and operational characteristics under different disruption scenarios. The methods and insights provided in this work can be extended to other disrupted large-scale critical infrastructure systems in which the ultimate goal

  13. A novel critical infrastructure resilience assessment approach using dynamic Bayesian networks

    NASA Astrophysics Data System (ADS)

    Cai, Baoping; Xie, Min; Liu, Yonghong; Liu, Yiliu; Ji, Renjie; Feng, Qiang

    2017-10-01

    The word resilience originally originates from the Latin word "resiliere", which means to "bounce back". The concept has been used in various fields, such as ecology, economics, psychology, and society, with different definitions. In the field of critical infrastructure, although some resilience metrics are proposed, they are totally different from each other, which are determined by the performances of the objects of evaluation. Here we bridge the gap by developing a universal critical infrastructure resilience metric from the perspective of reliability engineering. A dynamic Bayesian networks-based assessment approach is proposed to calculate the resilience value. A series, parallel and voting system is used to demonstrate the application of the developed resilience metric and assessment approach.

  14. Networking for large-scale science: infrastructure, provisioning, transport and application mapping

    NASA Astrophysics Data System (ADS)

    Rao, Nageswara S.; Carter, Steven M.; Wu, Qishi; Wing, William R.; Zhu, Mengxia; Mezzacappa, Anthony; Veeraraghavan, Malathi; Blondin, John M.

    2005-01-01

    Large-scale science computations and experiments require unprecedented network capabilities in the form of large bandwidth and dynamically stable connections to support data transfers, interactive visualizations, and monitoring and steering operations. A number of component technologies dealing with the infrastructure, provisioning, transport and application mappings must be developed and/or optimized to achieve these capabilities. We present a brief account of the following technologies that contribute toward achieving these network capabilities: (a) DOE UltraScienceNet and NSF CHEETAH network testbeds that provide on-demand and scheduled dedicated network connections; (b) experimental results on transport protocols that achieve close to 100% utilization on dedicated 1Gbps wide-area channels; (c) a scheme for optimally mapping a visualization pipeline onto a network to minimize the end-to-end delays; and (d) interconnect configuration and protocols that provides multiple Gbps flows from Cray X1 to external hosts.

  15. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, Puneet; Casey, Dan

    This report summarizes the work conducted under U.S. Department of Energy (US DOE) contract DE-FC36-04GO14286 by Chevron Technology Ventures (CTV, a division of Chevron U.S.A., Inc.), Hyundai Motor Company (HMC), and UTC Power (UTCP, a United Technologies company) to validate hydrogen (H2) infrastructure technology and fuel cell hybrid vehicles. Chevron established hydrogen filling stations at fleet operator sites using multiple technologies for on-site hydrogen generation, storage, and dispensing. CTV constructed five demonstration stations to support a vehicle fleet of 33 fuel cell passenger vehicles, eight internal combustion engine (ICE) vehicles, three fuel cell transit busses, and eight internal combustion enginemore » shuttle busses. Stations were operated between 2005 and 2010. HMC introduced 33 fuel cell hybrid electric vehicles (FCHEV) in the course of the project. Generation I included 17 vehicles that used UTCP fuel cell power plants and operated at 350 bar. Generation II included 16 vehicles that had upgraded UTC fuel cell power plants and demonstrated options such as the use of super-capacitors and operation at 700 bar. All 33 vehicles used the Hyundai Tucson sports utility vehicle (SUV) platform. Fleet operators demonstrated commercial operation of the vehicles in three climate zones (hot, moderate, and cold) and for various driving patterns. Fleet operators were Southern California Edison (SCE), AC Transit (of Oakland, California), Hyundai America Technical Center Inc. (HATCI), and the U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC, in a site agreement with Selfridge Army National Guard Base in Selfridge, Michigan).« less

  16. Data interoperabilty between European Environmental Research Infrastructures and their contribution to global data networks

    NASA Astrophysics Data System (ADS)

    Kutsch, W. L.; Zhao, Z.; Hardisty, A.; Hellström, M.; Chin, Y.; Magagna, B.; Asmi, A.; Papale, D.; Pfeil, B.; Atkinson, M.

    2017-12-01

    Environmental Research Infrastructures (ENVRIs) are expected to become important pillars not only for supporting their own scientific communities, but also a) for inter-disciplinary research and b) for the European Earth Observation Program Copernicus as a contribution to the Global Earth Observation System of Systems (GEOSS) or global thematic data networks. As such, it is very important that data-related activities of the ENVRIs will be well integrated. This requires common policies, models and e-infrastructure to optimise technological implementation, define workflows, and ensure coordination, harmonisation, integration and interoperability of data, applications and other services. The key is interoperating common metadata systems (utilising a richer metadata model as the `switchboard' for interoperation with formal syntax and declared semantics). The metadata characterises data, services, users and ICT resources (including sensors and detectors). The European Cluster Project ENVRIplus has developed a reference model (ENVRI RM) for common data infrastructure architecture to promote interoperability among ENVRIs. The presentation will provide an overview of recent progress and give examples for the integration of ENVRI data in global integration networks.

  17. Resilience in social insect infrastructure systems

    PubMed Central

    2016-01-01

    Both human and insect societies depend on complex and highly coordinated infrastructure systems, such as communication networks, supply chains and transportation networks. Like human-designed infrastructure systems, those of social insects are regularly subject to disruptions such as natural disasters, blockages or breaks in the transportation network, fluctuations in supply and/or demand, outbreaks of disease and loss of individuals. Unlike human-designed systems, there is no deliberate planning or centralized control system; rather, individual insects make simple decisions based on local information. How do these highly decentralized, leaderless systems deal with disruption? What factors make a social insect system resilient, and which factors lead to its collapse? In this review, we bring together literature on resilience in three key social insect infrastructure systems: transportation networks, supply chains and communication networks. We describe how systems differentially invest in three pathways to resilience: resistance, redirection or reconstruction. We suggest that investment in particular resistance pathways is related to the severity and frequency of disturbance. In the final section, we lay out a prospectus for future research. Human infrastructure networks are rapidly becoming decentralized and interconnected; indeed, more like social insect infrastructures. Human infrastructure management might therefore learn from social insect researchers, who can in turn make use of the mature analytical and simulation tools developed for the study of human infrastructure resilience. PMID:26962030

  18. Resilience in social insect infrastructure systems.

    PubMed

    Middleton, Eliza J T; Latty, Tanya

    2016-03-01

    Both human and insect societies depend on complex and highly coordinated infrastructure systems, such as communication networks, supply chains and transportation networks. Like human-designed infrastructure systems, those of social insects are regularly subject to disruptions such as natural disasters, blockages or breaks in the transportation network, fluctuations in supply and/or demand, outbreaks of disease and loss of individuals. Unlike human-designed systems, there is no deliberate planning or centralized control system; rather, individual insects make simple decisions based on local information. How do these highly decentralized, leaderless systems deal with disruption? What factors make a social insect system resilient, and which factors lead to its collapse? In this review, we bring together literature on resilience in three key social insect infrastructure systems: transportation networks, supply chains and communication networks. We describe how systems differentially invest in three pathways to resilience: resistance, redirection or reconstruction. We suggest that investment in particular resistance pathways is related to the severity and frequency of disturbance. In the final section, we lay out a prospectus for future research. Human infrastructure networks are rapidly becoming decentralized and interconnected; indeed, more like social insect infrastructures. Human infrastructure management might therefore learn from social insect researchers, who can in turn make use of the mature analytical and simulation tools developed for the study of human infrastructure resilience. © 2016 The Author(s).

  19. De novo design of protein homo-oligomers with modular hydrogen bond network-mediated specificity

    PubMed Central

    Boyken, Scott E.; Chen, Zibo; Groves, Benjamin; Langan, Robert A.; Oberdorfer, Gustav; Ford, Alex; Gilmore, Jason; Xu, Chunfu; DiMaio, Frank; Pereira, Jose Henrique; Sankaran, Banumathi; Seelig, Georg; Zwart, Peter H.; Baker, David

    2017-01-01

    In nature, structural specificity in DNA and proteins is encoded quite differently: in DNA, specificity arises from modular hydrogen bonds in the core of the double helix, whereas in proteins, specificity arises largely from buried hydrophobic packing complemented by irregular peripheral polar interactions. Here we describe a general approach for designing a wide range of protein homo-oligomers with specificity determined by modular arrays of central hydrogen bond networks. We use the approach to design dimers, trimers, and tetramers consisting of two concentric rings of helices, including previously not seen triangular, square, and supercoiled topologies. X-ray crystallography confirms that the structures overall, and the hydrogen bond networks in particular, are nearly identical to the design models, and the networks confer interaction specificity in vivo. The ability to design extensive hydrogen bond networks with atomic accuracy is a milestone for protein design and enables the programming of protein interaction specificity for a broad range of synthetic biology applications. PMID:27151862

  20. ENES the European Network for Earth System modelling and its infrastructure projects IS-ENES

    NASA Astrophysics Data System (ADS)

    Guglielmo, Francesca; Joussaume, Sylvie; Parinet, Marie

    2016-04-01

    The scientific community working on climate modelling is organized within the European Network for Earth System modelling (ENES). In the past decade, several European university departments, research centres, meteorological services, computer centres, and industrial partners engaged in the creation of ENES with the purpose of working together and cooperating towards the further development of the network, by signing a Memorandum of Understanding. As of 2015, the consortium counts 47 partners. The climate modelling community, and thus ENES, faces challenges which are both science-driven, i.e. analysing of the full complexity of the Earth System to improve our understanding and prediction of climate changes, and have multi-faceted societal implications, as a better representation of climate change on regional scales leads to improved understanding and prediction of impacts and to the development and provision of climate services. ENES, promoting and endorsing projects and initiatives, helps in developing and evaluating of state-of-the-art climate and Earth system models, facilitates model inter-comparison studies, encourages exchanges of software and model results, and fosters the use of high performance computing facilities dedicated to high-resolution multi-model experiments. ENES brings together public and private partners, integrates countries underrepresented in climate modelling studies, and reaches out to different user communities, thus enhancing European expertise and competitiveness. In this need of sophisticated models, world-class, high-performance computers, and state-of-the-art software solutions to make efficient use of models, data and hardware, a key role is played by the constitution and maintenance of a solid infrastructure, developing and providing services to the different user communities. ENES has investigated the infrastructural needs and has received funding from the EU FP7 program for the IS-ENES (InfraStructure for ENES) phase I and II

  1. Efficient room temperature hydrogen sensor based on UV-activated ZnO nano-network

    NASA Astrophysics Data System (ADS)

    Kumar, Mohit; Kumar, Rahul; Rajamani, Saravanan; Ranwa, Sapana; Fanetti, Mattia; Valant, Matjaz; Kumar, Mahesh

    2017-09-01

    Room temperature hydrogen sensors were fabricated from Au embedded ZnO nano-networks using a 30 mW GaN ultraviolet LED. The Au-decorated ZnO nano-networks were deposited on a SiO2/Si substrate by a chemical vapour deposition process. X-ray diffraction (XRD) spectrum analysis revealed a hexagonal wurtzite structure of ZnO and presence of Au. The ZnO nanoparticles were interconnected, forming nano-network structures. Au nanoparticles were uniformly distributed on ZnO surfaces, as confirmed by FESEM imaging. Interdigitated electrodes (IDEs) were fabricated on the ZnO nano-networks using optical lithography. Sensor performances were measured with and without UV illumination, at room temperate, with concentrations of hydrogen varying from 5 ppm to 1%. The sensor response was found to be ˜21.5% under UV illumination and 0% without UV at room temperature for low hydrogen concentration of 5 ppm. The UV-photoactivated mode enhanced the adsorption of photo-induced O- and O2- ions, and the d-band electron transition from the Au nanoparticles to ZnO—which increased the chemisorbed reaction between hydrogen and oxygen. The sensor response was also measured at 150 °C (without UV illumination) and found to be ˜18% at 5 ppm. Energy efficient low cost hydrogen sensors can be designed and fabricated with the combination of GaN UV LEDs and ZnO nanostructures.

  2. Hydrogen Infrastructure Testing and Research Facility | Energy Systems

    Science.gov Websites

    hydrogen production through renewable electrolysis, fuel cell manufacturing and testing, high-pressure system provides hydrogen to fill fuel cell forklifts and feeds the high pressure compressor. View Photos High Pressure Storage The high pressure hydrogen storage system consists of four Type II hydrogen tanks

  3. Infrastructure for Integration of Legacy Electrical Equipment into a Smart-Grid Using Wireless Sensor Networks.

    PubMed

    de Araújo, Paulo Régis C; Filho, Raimir Holanda; Rodrigues, Joel J P C; Oliveira, João P C M; Braga, Stephanie A

    2018-04-24

    At present, the standardisation of electrical equipment communications is on the rise. In particular, manufacturers are releasing equipment for the smart grid endowed with communication protocols such as DNP3, IEC 61850, and MODBUS. However, there are legacy equipment operating in the electricity distribution network that cannot communicate using any of these protocols. Thus, we propose an infrastructure to allow the integration of legacy electrical equipment to smart grids by using wireless sensor networks (WSNs). In this infrastructure, each legacy electrical device is connected to a sensor node, and the sink node runs a middleware that enables the integration of this device into a smart grid based on suitable communication protocols. This middleware performs tasks such as the translation of messages between the power substation control centre (PSCC) and electrical equipment in the smart grid. Moreover, the infrastructure satisfies certain requirements for communication between the electrical equipment and the PSCC, such as enhanced security, short response time, and automatic configuration. The paper’s contributions include a solution that enables electrical companies to integrate their legacy equipment into smart-grid networks relying on any of the above mentioned communication protocols. This integration will reduce the costs related to the modernisation of power substations.

  4. Infrastructure for Integration of Legacy Electrical Equipment into a Smart-Grid Using Wireless Sensor Networks

    PubMed Central

    de Araújo, Paulo Régis C.; Filho, Raimir Holanda; Oliveira, João P. C. M.; Braga, Stephanie A.

    2018-01-01

    At present, the standardisation of electrical equipment communications is on the rise. In particular, manufacturers are releasing equipment for the smart grid endowed with communication protocols such as DNP3, IEC 61850, and MODBUS. However, there are legacy equipment operating in the electricity distribution network that cannot communicate using any of these protocols. Thus, we propose an infrastructure to allow the integration of legacy electrical equipment to smart grids by using wireless sensor networks (WSNs). In this infrastructure, each legacy electrical device is connected to a sensor node, and the sink node runs a middleware that enables the integration of this device into a smart grid based on suitable communication protocols. This middleware performs tasks such as the translation of messages between the power substation control centre (PSCC) and electrical equipment in the smart grid. Moreover, the infrastructure satisfies certain requirements for communication between the electrical equipment and the PSCC, such as enhanced security, short response time, and automatic configuration. The paper’s contributions include a solution that enables electrical companies to integrate their legacy equipment into smart-grid networks relying on any of the above mentioned communication protocols. This integration will reduce the costs related to the modernisation of power substations. PMID:29695099

  5. Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melaina, M. W.; Antonia, O.; Penev, M.

    2013-03-01

    The United States has 11 distinct natural gas pipeline corridors: five originate in the Southwest, four deliver natural gas from Canada, and two extend from the Rocky Mountain region. This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipelines.

  6. Infrastructure sensing.

    PubMed

    Soga, Kenichi; Schooling, Jennifer

    2016-08-06

    Design, construction, maintenance and upgrading of civil engineering infrastructure requires fresh thinking to minimize use of materials, energy and labour. This can only be achieved by understanding the performance of the infrastructure, both during its construction and throughout its design life, through innovative monitoring. Advances in sensor systems offer intriguing possibilities to radically alter methods of condition assessment and monitoring of infrastructure. In this paper, it is hypothesized that the future of infrastructure relies on smarter information; the rich information obtained from embedded sensors within infrastructure will act as a catalyst for new design, construction, operation and maintenance processes for integrated infrastructure systems linked directly with user behaviour patterns. Some examples of emerging sensor technologies for infrastructure sensing are given. They include distributed fibre-optics sensors, computer vision, wireless sensor networks, low-power micro-electromechanical systems, energy harvesting and citizens as sensors.

  7. Wireless Infrastructure M2M Network For Distributed Power Grid Monitoring

    PubMed Central

    Gharavi, Hamid; Hu, Bin

    2018-01-01

    With the massive integration of distributed renewable energy sources (RESs) into the power system, the demand for timely and reliable network quality monitoring, control, and fault analysis is rapidly growing. Following the successful deployment of Phasor Measurement Units (PMUs) in transmission systems for power monitoring, a new opportunity to utilize PMU measurement data for power quality assessment in distribution grid systems is emerging. The main problem however, is that a distribution grid system does not normally have the support of an infrastructure network. Therefore, the main objective in this paper is to develop a Machine-to-Machine (M2M) communication network that can support wide ranging sensory data, including high rate synchrophasor data for real-time communication. In particular, we evaluate the suitability of the emerging IEEE 802.11ah standard by exploiting its important features, such as classifying the power grid sensory data into different categories according to their traffic characteristics. For performance evaluation we use our hardware in the loop grid communication network testbed to access the performance of the network. PMID:29503505

  8. Wireless Infrastructure M2M Network For Distributed Power Grid Monitoring.

    PubMed

    Gharavi, Hamid; Hu, Bin

    2017-01-01

    With the massive integration of distributed renewable energy sources (RESs) into the power system, the demand for timely and reliable network quality monitoring, control, and fault analysis is rapidly growing. Following the successful deployment of Phasor Measurement Units (PMUs) in transmission systems for power monitoring, a new opportunity to utilize PMU measurement data for power quality assessment in distribution grid systems is emerging. The main problem however, is that a distribution grid system does not normally have the support of an infrastructure network. Therefore, the main objective in this paper is to develop a Machine-to-Machine (M2M) communication network that can support wide ranging sensory data, including high rate synchrophasor data for real-time communication. In particular, we evaluate the suitability of the emerging IEEE 802.11ah standard by exploiting its important features, such as classifying the power grid sensory data into different categories according to their traffic characteristics. For performance evaluation we use our hardware in the loop grid communication network testbed to access the performance of the network.

  9. HBNG: Graph theory based visualization of hydrogen bond networks in protein structures.

    PubMed

    Tiwari, Abhishek; Tiwari, Vivek

    2007-07-09

    HBNG is a graph theory based tool for visualization of hydrogen bond network in 2D. Digraphs generated by HBNG facilitate visualization of cooperativity and anticooperativity chains and rings in protein structures. HBNG takes hydrogen bonds list files (output from HBAT, HBEXPLORE, HBPLUS and STRIDE) as input and generates a DOT language script and constructs digraphs using freeware AT and T Graphviz tool. HBNG is useful in the enumeration of favorable topologies of hydrogen bond networks in protein structures and determining the effect of cooperativity and anticooperativity on protein stability and folding. HBNG can be applied to protein structure comparison and in the identification of secondary structural regions in protein structures. Program is available from the authors for non-commercial purposes.

  10. Local Infrastructures for School Networking: Current Models and Prospects. Technical Report No. 22.

    ERIC Educational Resources Information Center

    Newman, Denis; And Others

    This paper identifies a paradigm shift that must take place in school networking. The ultimate goal is to retool the schools with a local technical infrastructure that gives teachers and students immediate access to communication systems and information resources, thereby supporting the implementation of advances in pedagogy and educational…

  11. The child and adolescent psychiatry trials network (CAPTN): infrastructure development and lessons learned

    PubMed Central

    Shapiro, Mark; Silva, Susan G; Compton, Scott; Chrisman, Allan; DeVeaugh-Geiss, Joseph; Breland-Noble, Alfiee; Kondo, Douglas; Kirchner, Jerry; March, John S

    2009-01-01

    Background In 2003, the National Institute of Mental Health funded the Child and Adolescent Psychiatry Trials Network (CAPTN) under the Advanced Center for Services and Intervention Research (ACSIR) mechanism. At the time, CAPTN was believed to be both a highly innovative undertaking and a highly speculative one. One reviewer even suggested that CAPTN was "unlikely to succeed, but would be a valuable learning experience for the field." Objective To describe valuable lessons learned in building a clinical research network in pediatric psychiatry, including innovations intended to decrease barriers to research participation. Methods The CAPTN Team has completed construction of the CAPTN network infrastructure, conducted a large, multi-center psychometric study of a novel adverse event reporting tool, and initiated a large antidepressant safety registry and linked pharmacogenomic study focused on severe adverse events. Specific challenges overcome included establishing structures for network organization and governance; recruiting over 150 active CAPTN participants and 15 child psychiatry training programs; developing and implementing procedures for site contracts, regulatory compliance, indemnification and malpractice coverage, human subjects protection training and IRB approval; and constructing an innovative electronic casa report form (eCRF) running on a web-based electronic data capture system; and, finally, establishing procedures for audit trail oversight requirements put forward by, among others, the Food and Drug Administration (FDA). Conclusion Given stable funding for network construction and maintenance, our experience demonstrates that judicious use of web-based technologies for profiling investigators, investigator training, and capturing clinical trials data, when coupled to innovative approaches to network governance, data management and site management, can reduce the costs and burden and improve the feasibility of incorporating clinical research into

  12. Infrastructure sensing

    PubMed Central

    Soga, Kenichi; Schooling, Jennifer

    2016-01-01

    Design, construction, maintenance and upgrading of civil engineering infrastructure requires fresh thinking to minimize use of materials, energy and labour. This can only be achieved by understanding the performance of the infrastructure, both during its construction and throughout its design life, through innovative monitoring. Advances in sensor systems offer intriguing possibilities to radically alter methods of condition assessment and monitoring of infrastructure. In this paper, it is hypothesized that the future of infrastructure relies on smarter information; the rich information obtained from embedded sensors within infrastructure will act as a catalyst for new design, construction, operation and maintenance processes for integrated infrastructure systems linked directly with user behaviour patterns. Some examples of emerging sensor technologies for infrastructure sensing are given. They include distributed fibre-optics sensors, computer vision, wireless sensor networks, low-power micro-electromechanical systems, energy harvesting and citizens as sensors. PMID:27499845

  13. The framework for simulation of bioinspired security mechanisms against network infrastructure attacks.

    PubMed

    Shorov, Andrey; Kotenko, Igor

    2014-01-01

    The paper outlines a bioinspired approach named "network nervous system" and methods of simulation of infrastructure attacks and protection mechanisms based on this approach. The protection mechanisms based on this approach consist of distributed procedures of information collection and processing, which coordinate the activities of the main devices of a computer network, identify attacks, and determine necessary countermeasures. Attacks and protection mechanisms are specified as structural models using a set-theoretic approach. An environment for simulation of protection mechanisms based on the biological metaphor is considered; the experiments demonstrating the effectiveness of the protection mechanisms are described.

  14. The Framework for Simulation of Bioinspired Security Mechanisms against Network Infrastructure Attacks

    PubMed Central

    Kotenko, Igor

    2014-01-01

    The paper outlines a bioinspired approach named “network nervous system" and methods of simulation of infrastructure attacks and protection mechanisms based on this approach. The protection mechanisms based on this approach consist of distributed prosedures of information collection and processing, which coordinate the activities of the main devices of a computer network, identify attacks, and determine nessesary countermeasures. Attacks and protection mechanisms are specified as structural models using a set-theoretic approach. An environment for simulation of protection mechanisms based on the biological metaphor is considered; the experiments demonstrating the effectiveness of the protection mechanisms are described. PMID:25254229

  15. Optimization Study of Hydrogen Gas Adsorption on Zig-zag Single-walled Carbon Nanotubes: The Artificial Neural Network Analysis

    NASA Astrophysics Data System (ADS)

    Nasruddin; Lestari, M.; Supriyadi; Sholahudin

    2018-03-01

    The use of hydrogen gas in fuel cell technology has a huge opportunity to be applied in upcoming vehicle technology. One of the most important problems in fuel cell technology is the hydrogen storage. The adsorption of hydrogen in carbon-based materials attracts a lot of attention because of its reliability. This study investigated the adsorption of hydrogen gas in Single-walled Carbon Nano Tubes (SWCNT) with chilarity of (0, 12), (0, 15), and (0, 18) to find the optimum chilarity. Artificial Neural Networks (ANN) can be used to predict the hydrogen storage capacity at different pressure and temperature conditions appropriately, using simulated series of data. The Artificial Neural Network is modeled as a predictor of the hydrogen adsorption capacity which provides solutions to some deficiencies in molecular dynamics (MD) simulations. In a previous study, ANN configurations have been developed for 77k, 233k, and 298k temperatures in hydrogen gas storage. To prepare this prediction, ANN is modeled to find out the configurations that exist in the set of training and validation of specified data selection, the distance between data, and the number of neurons that produce the smallest error. This configuration is needed to make an accurate artificial neural network. The configuration of neural network was then applied to this research. The neural network analysis results show that the best configuration of artificial neural network in hydrogen storage is at 233K temperature i.e. on SWCNT with chilarity of (0.12).

  16. Low-Cost, Robust, Threat-aware Wireless Sensor Network for Assuring the Nation's Energy Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlos H. Rentel

    2007-03-31

    The objective of this project was to create a low-cost, robust anticipatory wireless sensor network (A-WSN) to ensure the security and reliability of the United States energy infrastructure. This document highlights Eaton Corporation's plan to bring these technologies to market.

  17. Core network infrastructure supporting the VLT at ESO Paranal in Chile

    NASA Astrophysics Data System (ADS)

    Reay, Harold

    2000-06-01

    In October 1997 a number of projects were started at ESO's Paranal Observatory at Cerro Paranal in Chile to upgrade the communications infrastructure in place at the time. The planned upgrades were to internal systems such as computer data networks and telephone installations and also data links connecting Paranal to other ESO sites. This paper details the installation work carried out on the Paranal Core Network (PCN) during the period of October 1997 to December 1999. These installations were to provide both short term solutions to the requirement for reliable high bandwidth network connectivity between Paranal and ESO HQ in Garching, Germany in time for UTI (Antu) first light and perhaps more importantly, to provide the core systems necessary for a site moving towards operational status. This paper explains the reasons for using particular cable types, network topology, and fiber backbone design and implementation. We explain why it was decided to install the PCN in two distinct stages and how equipment used in temporary installations was re-used in the Very Large Telescope networks. Finally we describe the tools used to monitor network and satellite link performance and will discuss whether network backbone bandwidth meets the expected utilization and how this bandwidth can easily be increased in the future should there be a requirement.

  18. Hydrogen Fuel Cell Electric Vehicle Learning Demonstration | Hydrogen and

    Science.gov Websites

    Fuel Cells | NREL Fuel Cell Electric Vehicle Learning Demonstration Hydrogen Fuel Cell Electric Vehicle Learning Demonstration Initiated in 2004, DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project-later dubbed the Fuel Cell Electric Vehicle (FCEV) Learning Demonstration

  19. Quantifying the benefits of urban forest systems as a component of the green infrastructure stormwater treatment network

    Treesearch

    Eric Kuehler; Jon Hathaway; Andrew Tirpak

    2017-01-01

    The use of green infrastructure for reducing stormwater runoff is increasingly common. One under‐studied component of the green infrastructure network is the urban forest system. Trees can play an important role as the “first line of defense” for restoring more natural hydrologic regimes in urban watersheds by intercepting rainfall, delaying runoff, infiltrating, and...

  20. Environmental Monitoring using Measurements from Cellular Network Infrastructure

    NASA Astrophysics Data System (ADS)

    David, N.; Gao, O. H.

    2015-12-01

    atmospheric phenomena using current and future planned frequencies of cellular network infrastructure will be introduced.

  1. Onset of hydrogen bonded collective network of water in 1,4-dioxane.

    PubMed

    Luong, Trung Quan; Verma, Pramod Kumar; Mitra, Rajib Kumar; Havenith, Martina

    2011-12-22

    We have studied the evolution of water hydrogen bonded collective network dynamics in mixtures of 1,4-dioxane (Dx) as the mole fraction of water (X(w)) increases from 0.005 to 0.54. The inter- and intramolecular vibrations of water have been observed using terahertz time domain spectroscopy (THz-TDS) in the frequency range 0.4-1.4 THz (13-47 cm(-1)) and Fourier transform infrared (FTIR) spectroscopy in the far-infrared (30-650 cm(-1)) and mid-infrared (3000-3700 cm(-1)) regions. These results have been correlated with the reactivity of water in these mixtures as determined by kinetic studies of the solvolysis reaction of benzoyl chloride (BzCl). Our studies show an onset of intermolecular hydrogen bonded water network dynamics beyond X(w) ≥ 0.1. At the same concentration, we observe a rapid increase of the rate constant of solvolysis of BzCl in water-Dx mixtures. Our results establish a correlation between the onset of collective hydrogen bonded network with the solvation dynamics and the activity of clustered water.

  2. Tourism infrastructure development prioritization in Sabang Island using analytic network process methods

    NASA Astrophysics Data System (ADS)

    Rani, Hafnidar A.; Afifuddin, Moch.; Akbar, Herry

    2017-11-01

    Indonesia has been widely known as an archipelago country, with its geographical location is at the equator, which make this country as a tropical country. It has the topography of diverse islands which consist of lakes, mountains, and one of countries which have the longest coastline. This condition cause Indonesia has various beautiful tourism objects and become the attraction to the international tourists to come. Indonesia still has the other islands which are as beautiful as Bali Island offering different beauties. One of them is an island located in the most western island of Indonesia, which becomes the zero point of the country. It is Sabang Island in Aceh Province. Sabang Island is the small volcanic island located in the most western island of Sumatra. Infrastructure becomes the basic device in supporting this tourism aspect, which the buildings and service institutions play the important role in appropriate managing of economic and community needs. The problem in this study is how to determine the priority of tourism infrastructure development in Sabang Island. The objective of this study is to determine the priority rank of tourism infrastructure development and the priority rank of the potential investment in Sabang Island to be developed. The ranking results of the Analytic Network Process (ANP) calculations of tourism locations/zones and tourism supporting infrastructure found that Teupin Layeu and Gapang, and Rubiah Island have the highest priority to be developed in the hotel/accommodation infrastructure which scores are 0.02589 and 0.02120. Then followed by parking infrastructure in Teupin Layeu and access road to Km 0 which became as the main priority determined by Sabang government which scores are 0.01750 and 0.01618.

  3. Modeling complexity in engineered infrastructure system: Water distribution network as an example

    NASA Astrophysics Data System (ADS)

    Zeng, Fang; Li, Xiang; Li, Ke

    2017-02-01

    The complex topology and adaptive behavior of infrastructure systems are driven by both self-organization of the demand and rigid engineering solutions. Therefore, engineering complex systems requires a method balancing holism and reductionism. To model the growth of water distribution networks, a complex network model was developed following the combination of local optimization rules and engineering considerations. The demand node generation is dynamic and follows the scaling law of urban growth. The proposed model can generate a water distribution network (WDN) similar to reported real-world WDNs on some structural properties. Comparison with different modeling approaches indicates that a realistic demand node distribution and co-evolvement of demand node and network are important for the simulation of real complex networks. The simulation results indicate that the efficiency of water distribution networks is exponentially affected by the urban growth pattern. On the contrary, the improvement of efficiency by engineering optimization is limited and relatively insignificant. The redundancy and robustness, on another aspect, can be significantly improved through engineering methods.

  4. Architecture for Cognitive Networking within NASA's Future Space Communications Infrastructure

    NASA Technical Reports Server (NTRS)

    Clark, Gilbert; Eddy, Wesley M.; Johnson, Sandra K.; Barnes, James; Brooks, David

    2016-01-01

    Future space mission concepts and designs pose many networking challenges for command, telemetry, and science data applications with diverse end-to-end data delivery needs. For future end-to-end architecture designs, a key challenge is meeting expected application quality of service requirements for multiple simultaneous mission data flows with options to use diverse onboard local data buses, commercial ground networks, and multiple satellite relay constellations in LEO, GEO, MEO, or even deep space relay links. Effectively utilizing a complex network topology requires orchestration and direction that spans the many discrete, individually addressable computer systems, which cause them to act in concert to achieve the overall network goals. The system must be intelligent enough to not only function under nominal conditions, but also adapt to unexpected situations, and reorganize or adapt to perform roles not originally intended for the system or explicitly programmed. This paper describes an architecture enabling the development and deployment of cognitive networking capabilities into the envisioned future NASA space communications infrastructure. We begin by discussing the need for increased automation, including inter-system discovery and collaboration. This discussion frames the requirements for an architecture supporting cognitive networking for future missions and relays, including both existing endpoint-based networking models and emerging information-centric models. From this basis, we discuss progress on a proof-of-concept implementation of this architecture, and results of implementation and initial testing of a cognitive networking on-orbit application on the SCaN Testbed attached to the International Space Station.

  5. Towards a unified description of the hydrogen bond network of liquid water: A dynamics based approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozkanlar, Abdullah, E-mail: abdullah.ozkanlar@wsu.edu; Zhou, Tiecheng; Clark, Aurora E., E-mail: auclark@wsu.edu

    2014-12-07

    The definition of a hydrogen bond (H-bond) is intimately related to the topological and dynamic properties of the hydrogen bond network within liquid water. The development of a universal H-bond definition for water is an active area of research as it would remove many ambiguities in the network properties that derive from the fixed definition employed to assign whether a water dimer is hydrogen bonded. This work investigates the impact that an electronic-structure based definition, an energetic, and a geometric definition of the H-bond has upon both topological and dynamic network behavior of simulated water. In each definition, the usemore » of a cutoff (either geometric or energetic) to assign the presence of a H-bond leads to the formation of transiently bonded or broken dimers, which have been quantified within the simulation data. The relative concentration of transient species, and their duration, results in two of the three definitions sharing similarities in either topological or dynamic features (H-bond distribution, H-bond lifetime, etc.), however no two definitions exhibit similar behavior for both classes of network properties. In fact, two networks with similar local network topology (as indicated by similar average H-bonds) can have dramatically different global network topology (as indicated by the defect state distributions) and altered H-bond lifetimes. A dynamics based correction scheme is then used to remove artificially transient H-bonds and to repair artificially broken bonds within the network such that the corrected network exhibits the same structural and dynamic properties for two H-bond definitions (the properties of the third definition being significantly improved). The algorithm described represents a significant step forward in the development of a unified hydrogen bond network whose properties are independent of the original hydrogen bond definition that is employed.« less

  6. Equipment Management for Sensor Networks: Linking Physical Infrastructure and Actions to Observational Data

    NASA Astrophysics Data System (ADS)

    Jones, A. S.; Horsburgh, J. S.; Matos, M.; Caraballo, J.

    2015-12-01

    Networks conducting long term monitoring using in situ sensors need the functionality to track physical equipment as well as deployments, calibrations, and other actions related to site and equipment maintenance. The observational data being generated by sensors are enhanced if direct linkages to equipment details and actions can be made. This type of information is typically recorded in field notebooks or in static files, which are rarely linked to observations in a way that could be used to interpret results. However, the record of field activities is often relevant to analysis or post-processing of the observational data. We have developed an underlying database schema and deployed a web interface for recording and retrieving information on physical infrastructure and related actions for observational networks. The database schema for equipment was designed as an extension to the Observations Data Model 2 (ODM2), a community-developed information model for spatially discrete, feature based earth observations. The core entities of ODM2 describe location, observed variable, and timing of observations, and the equipment extension contains entities to provide additional metadata specific to the inventory of physical infrastructure and associated actions. The schema is implemented in a relational database system for storage and management with an associated web interface. We designed the web-based tools for technicians to enter and query information on the physical equipment and actions such as site visits, equipment deployments, maintenance, and calibrations. These tools were implemented for the iUTAH (innovative Urban Transitions and Aridregion Hydrosustainability) ecohydrologic observatory, and we anticipate that they will be useful for similar large-scale monitoring networks desiring to link observing infrastructure to observational data to increase the quality of sensor-based data products.

  7. Joint optimization of logistics infrastructure investments and subsidies in a regional logistics network with CO 2 emission reduction targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Dezhi; Zhan, Qingwen; Chen, Yuche

    This study proposes an optimization model that simultaneously incorporates the selection of logistics infrastructure investments and subsidies for green transport modes to achieve specific CO 2 emission targets in a regional logistics network. The proposed model is formulated as a bi-level formulation, in which the upper level determines the optimal selection of logistics infrastructure investments and subsidies for green transport modes such that the benefit-cost ratio of the entire logistics system is maximized. The lower level describes the selected service routes of logistics users. A genetic and Frank-Wolfe hybrid algorithm is introduced to solve the proposed model. The proposed modelmore » is applied to the regional logistics network of Changsha City, China. Findings show that using the joint scheme of the selection of logistics infrastructure investments and green subsidies is more effective than using them solely. In conclusion, carbon emission reduction targets can significantly affect logistics infrastructure investments and subsidy levels.« less

  8. Joint optimization of logistics infrastructure investments and subsidies in a regional logistics network with CO 2 emission reduction targets

    DOE PAGES

    Zhang, Dezhi; Zhan, Qingwen; Chen, Yuche; ...

    2016-03-14

    This study proposes an optimization model that simultaneously incorporates the selection of logistics infrastructure investments and subsidies for green transport modes to achieve specific CO 2 emission targets in a regional logistics network. The proposed model is formulated as a bi-level formulation, in which the upper level determines the optimal selection of logistics infrastructure investments and subsidies for green transport modes such that the benefit-cost ratio of the entire logistics system is maximized. The lower level describes the selected service routes of logistics users. A genetic and Frank-Wolfe hybrid algorithm is introduced to solve the proposed model. The proposed modelmore » is applied to the regional logistics network of Changsha City, China. Findings show that using the joint scheme of the selection of logistics infrastructure investments and green subsidies is more effective than using them solely. In conclusion, carbon emission reduction targets can significantly affect logistics infrastructure investments and subsidy levels.« less

  9. [ECRIN (European clinical research infrastructures network), a pan-European infrastructure for clinical research].

    PubMed

    Demotes-Mainard, Jacques

    2010-12-01

    Clinical research plays a key role both in the development of innovative health products and in the optimisation of medical strategies, leading to evidence-based practice and healthcare cost containment. ECRIN is a distributed ESFRI-roadmap pan-European infrastructure designed to support multinational clinical research, making Europe a single area for clinical studies, taking advantage of its population size to access patients, and unlocking latent scientific providing services to multinational. Servicing of multinational trials started during the preparatory phase, and ECRIN has applied for ERIC status in 2011. In parallel, ECRIN has also proposed an FP7 integrating activity project to further develop, upgrade and expand the ECRIN infrastructure built up during the past FP6 and FP7 projects, facilitating an efficient organization of clinical research in Europe, with ECRIN developing generic tools and providing generic services for multinational studies, and supporting the construction of pan-European disease-oriented networks that will in turn act as ECRIN users. This organization will improve Europe's attractiveness for industry trials, boost its scientific competitiveness, and result in better healthcare for European citizens. The three medical areas supported in this project (rare diseases, medical devices, and nutrition) will serve as pilots for other biomedical research fields. By creating a single area for clinical research in Europe, this structure will contribute to the implementation of the Europe flagship initiative 2020 'Innovation Union', whose objectives include defragmentation of research and educational capacities, tackling the major societal challenges (starting with healthy aging), and removing barriers to bringing ideas to the market.

  10. Liquid Organic Hydrogen Carriers (LOHCs): Toward a Hydrogen-free Hydrogen Economy.

    PubMed

    Preuster, Patrick; Papp, Christian; Wasserscheid, Peter

    2017-01-17

    The need to drastically reduce CO 2 emissions will lead to the transformation of our current, carbon-based energy system to a more sustainable, renewable-based one. In this process, hydrogen will gain increasing importance as secondary energy vector. Energy storage requirements on the TWh scale (to bridge extended times of low wind and sun harvest) and global logistics of renewable energy equivalents will create additional driving forces toward a future hydrogen economy. However, the nature of hydrogen requires dedicated infrastructures, and this has prevented so far the introduction of elemental hydrogen into the energy sector to a large extent. Recent scientific and technological progress in handling hydrogen in chemically bound form as liquid organic hydrogen carrier (LOHC) supports the technological vision that a future hydrogen economy may work without handling large amounts of elemental hydrogen. LOHC systems are composed of pairs of hydrogen-lean and hydrogen-rich organic compounds that store hydrogen by repeated catalytic hydrogenation and dehydrogenation cycles. While hydrogen handling in the form of LOHCs allows for using the existing infrastructure for fuels, it also builds on the existing public confidence in dealing with liquid energy carriers. In contrast to hydrogen storage by hydrogenation of gases, such as CO 2 or N 2 , hydrogen release from LOHC systems produces pure hydrogen after condensation of the high-boiling carrier compounds. This Account highlights the current state-of-the-art in hydrogen storage using LOHC systems. It first introduces fundamental aspects of a future hydrogen economy and derives therefrom requirements for suitable LOHC compounds. Molecular structures that have been successfully applied in the literature are presented, and their property profiles are discussed. Fundamental and applied aspects of the involved hydrogenation and dehydrogenation catalysis are discussed, characteristic differences for the catalytic conversion of

  11. Property relationships of the physical infrastructure and the traffic flow networks

    NASA Astrophysics Data System (ADS)

    Zhou, Ta; Zou, Sheng-Rong; He, Da-Ren

    2010-03-01

    We studied both empirically and analytically the correlation between the degrees or the clustering coefficients, respectively, of the networks in the physical infrastructure and the traffic flow layers in three Chinese transportation systems. The systems are bus transportation systems in Beijing and Hangzhou, and the railway system in the mainland. It is found that the correlation between the degrees obey a linear function; while the correlation between the clustering coefficients obey a power law. A possible dynamic explanation on the rules is presented.

  12. NREL's Hydrogen Fueling Infrastructure Research: Year in Review | News |

    Science.gov Websites

    ) joins others across the United States to celebrate National Hydrogen and Fuel Cell Day on Oct. 8-10.08-a NREL joined the Colorado hydrogen community for a National Hydrogen and Fuel Cell Day event at the governor proclaiming Oct. 8, 2016, as Hydrogen and Fuel Cell Day in Colorado, and the adoption of a new

  13. Inferences on hydrogen bond networks in water from isopermitive frequency investigations.

    PubMed

    Geethu, P M; Ranganathan, Venketesh T; Satapathy, Dillip K Kumar

    2018-06-26

    Intermolecular hydrogen bonds play a crucial role in determining the unique characteristics of liquid water. We present low-frequency (1 Hz - 40 MHz) dielectric spectroscopic investigations on water in the presence and absence of added solutes at different temperatures from 10°C to 60°C. The intersection points of temperature dependent permittivity contours at the vicinity of isopermitive frequency (IPF) in water are recorded and its properties are presumed to be related to the extent of hydrogen bond networks in water. IPF is defined as the frequency at which the relative permittivity of water is almost independent of temperature. The set of intersection points of temperature dependent permittivity contours at the vicinity of IPF are characterized by the mean (M<sub>IPF</sub>) and root-mean-square deviation/standard deviation (σ<sub>IPF</sub> ) associated with IPF. The tunability of M<sub>IPF</sub> by the addition of NaCl salt emphasizes the strong correlation between the concentration of ions in water and the M<sub>IPF</sub> . The σ<sub>IPF</sub> is surmised to be related to the orientational correlations of water dipoles as well as to the intermolecular hydrogen bond networks in water. Further, alterations in σ<sub>IPF</sub> is observed with the addition of kosmotropic and chaotropic solutes into water and are thought to arise due to the restructuring of hydrogen bond networks in water in presence of added solutes. Notably, the solute induced reconfiguration of hydrogen bond networks in water or often-discussed structure making/breaking effects of the added solutes in water can be inferred, albeit qualitatively, by examining the M<sub>IPF</sub> and σ<sub>IPF</sub>. Further, the Gaussian deconvoluted OH-stretching modes present in the Raman Spectra of water and aqueous solutions of IPA and DMF strongly endorses the structural rearrangements occurring in water in

  14. Practice-Based Research Network Infrastructure Design for Institutional Review Board Risk Assessment and Generalizability of Clinical Results.

    PubMed

    Curro, Frederick; Thompson, Van P; Naftolin, Frederick; Grill, Ashley; Vena, Don; Terracio, Louis; Hashimoto, Mariko; Buchholz, Matthew; McKinstry, Andrea; Cannon, Diane; Alfano, Vincent; Gooden, Thalia; Vernillo, Anthony; Czeisler, Elan

    2013-01-01

    Data from clinical studies generated by Practice Based Research Networks should be generalizable to the profession. For nationally representative data a broad recruitment of practitioners may pose added risks to IRB's. Infrastructure must assure data integrity while minimizing risk to assure that the clinical results are generalizable. The PEARL Network is an interdisciplinary dental/medical PBRN conducting a broad range of clinical studies. The infrastructure is designed to support the principles of Good Clinical Practice (GCP) and create a data audit trail to ensure data integrity for generalizability. As the PBRN concept becomes of greater interest, membership may expand beyond the local community, and the issue of geography versus risk management becomes of concern to the IRB. The PEARL Network describes how it resolves many of the issues related to recruiting on a National basis while maintaining study compliance to ensure patient safety and minimize risk to the IRB.

  15. Quantum delocalization of protons in the hydrogen-bond network of an enzyme active site.

    PubMed

    Wang, Lu; Fried, Stephen D; Boxer, Steven G; Markland, Thomas E

    2014-12-30

    Enzymes use protein architectures to create highly specialized structural motifs that can greatly enhance the rates of complex chemical transformations. Here, we use experiments, combined with ab initio simulations that exactly include nuclear quantum effects, to show that a triad of strongly hydrogen-bonded tyrosine residues within the active site of the enzyme ketosteroid isomerase (KSI) facilitates quantum proton delocalization. This delocalization dramatically stabilizes the deprotonation of an active-site tyrosine residue, resulting in a very large isotope effect on its acidity. When an intermediate analog is docked, it is incorporated into the hydrogen-bond network, giving rise to extended quantum proton delocalization in the active site. These results shed light on the role of nuclear quantum effects in the hydrogen-bond network that stabilizes the reactive intermediate of KSI, and the behavior of protons in biological systems containing strong hydrogen bonds.

  16. The Other Infrastructure: Distance Education's Digital Plant.

    ERIC Educational Resources Information Center

    Boettcher, Judith V.; Kumar, M. S. Vijay

    2000-01-01

    Suggests a new infrastructure--the digital plant--for supporting flexible Web campus environments. Describes four categories which make up the infrastructure: personal communication tools and applications; network of networks for the Web campus; dedicated servers and software applications; software applications and services from external…

  17. Quantum delocalization of protons in the hydrogen-bond network of an enzyme active site

    PubMed Central

    Wang, Lu; Fried, Stephen D.; Boxer, Steven G.; Markland, Thomas E.

    2014-01-01

    Enzymes use protein architectures to create highly specialized structural motifs that can greatly enhance the rates of complex chemical transformations. Here, we use experiments, combined with ab initio simulations that exactly include nuclear quantum effects, to show that a triad of strongly hydrogen-bonded tyrosine residues within the active site of the enzyme ketosteroid isomerase (KSI) facilitates quantum proton delocalization. This delocalization dramatically stabilizes the deprotonation of an active-site tyrosine residue, resulting in a very large isotope effect on its acidity. When an intermediate analog is docked, it is incorporated into the hydrogen-bond network, giving rise to extended quantum proton delocalization in the active site. These results shed light on the role of nuclear quantum effects in the hydrogen-bond network that stabilizes the reactive intermediate of KSI, and the behavior of protons in biological systems containing strong hydrogen bonds. PMID:25503367

  18. Overview of NASA communications infrastructure

    NASA Technical Reports Server (NTRS)

    Arnold, Ray J.; Fuechsel, Charles

    1991-01-01

    The infrastructure of NASA communications systems for effecting coordination across NASA offices and with the national and international research and technological communities is discussed. The offices and networks of the communication system include the Office of Space Science and Applications (OSSA), which manages all NASA missions, and the Office of Space Operations, which furnishes communication support through the NASCOM, the mission critical communications support network, and the Program Support Communications network. The NASA Science Internet was established by OSSA to centrally manage, develop, and operate an integrated computer network service dedicated to NASA's space science and application research. Planned for the future is the National Research and Education Network, which will provide communications infrastructure to enhance science resources at a national level.

  19. Hydrogen Infrastructure Testing and Research Facility Video (Text Version)

    Science.gov Websites

    grid integration, continuous code improvement, fuel cell vehicle operation, and renewable hydrogen stations. NRELs research on hydrogen safety provides guidance for safe operation, handling, and use of standards and testing fuel cell and hydrogen components for operation and safety. Building on NRELs Wind-to

  20. Integration in primary community care networks (PCCNs): examination of governance, clinical, marketing, financial, and information infrastructures in a national demonstration project in Taiwan

    PubMed Central

    Lin, Blossom Yen-Ju

    2007-01-01

    Background Taiwan's primary community care network (PCCN) demonstration project, funded by the Bureau of National Health Insurance on March 2003, was established to discourage hospital shopping behavior of people and drive the traditional fragmented health care providers into cooperate care models. Between 2003 and 2005, 268 PCCNs were established. This study profiled the individual members in the PCCNs to study the nature and extent to which their network infrastructures have been integrated among the members (clinics and hospitals) within individual PCCNs. Methods The thorough questionnaire items, covering the network working infrastructures – governance, clinical, marketing, financial, and information integration in PCCNs, were developed with validity and reliability confirmed. One thousand five hundred and fifty-seven clinics that had belonged to PCCNs for more than one year, based on the 2003–2005 Taiwan Primary Community Care Network List, were surveyed by mail. Nine hundred and twenty-eight clinic members responded to the surveys giving a 59.6 % response rate. Results Overall, the PCCNs' members had higher involvement in the governance infrastructure, which was usually viewed as the most important for establishment of core values in PCCNs' organization design and management at the early integration stage. In addition, it found that there existed a higher extent of integration of clinical, marketing, and information infrastructures among the hospital-clinic member relationship than those among clinic members within individual PCCNs. The financial infrastructure was shown the least integrated relative to other functional infrastructures at the early stage of PCCN formation. Conclusion There was still room for better integrated partnerships, as evidenced by the great variety of relationships and differences in extent of integration in this study. In addition to provide how the network members have done for their initial work at the early stage of network

  1. Integration in primary community care networks (PCCNs): examination of governance, clinical, marketing, financial, and information infrastructures in a national demonstration project in Taiwan.

    PubMed

    Lin, Blossom Yen-Ju

    2007-06-19

    Taiwan's primary community care network (PCCN) demonstration project, funded by the Bureau of National Health Insurance on March 2003, was established to discourage hospital shopping behavior of people and drive the traditional fragmented health care providers into cooperate care models. Between 2003 and 2005, 268 PCCNs were established. This study profiled the individual members in the PCCNs to study the nature and extent to which their network infrastructures have been integrated among the members (clinics and hospitals) within individual PCCNs. The thorough questionnaire items, covering the network working infrastructures--governance, clinical, marketing, financial, and information integration in PCCNs, were developed with validity and reliability confirmed. One thousand five hundred and fifty-seven clinics that had belonged to PCCNs for more than one year, based on the 2003-2005 Taiwan Primary Community Care Network List, were surveyed by mail. Nine hundred and twenty-eight clinic members responded to the surveys giving a 59.6 % response rate. Overall, the PCCNs' members had higher involvement in the governance infrastructure, which was usually viewed as the most important for establishment of core values in PCCNs' organization design and management at the early integration stage. In addition, it found that there existed a higher extent of integration of clinical, marketing, and information infrastructures among the hospital-clinic member relationship than those among clinic members within individual PCCNs. The financial infrastructure was shown the least integrated relative to other functional infrastructures at the early stage of PCCN formation. There was still room for better integrated partnerships, as evidenced by the great variety of relationships and differences in extent of integration in this study. In addition to provide how the network members have done for their initial work at the early stage of network forming in this study, the detailed surveyed

  2. A network-based framework for assessing infrastructure resilience: a case study of the London metro system.

    PubMed

    Chopra, Shauhrat S; Dillon, Trent; Bilec, Melissa M; Khanna, Vikas

    2016-05-01

    Modern society is increasingly dependent on the stability of a complex system of interdependent infrastructure sectors. It is imperative to build resilience of large-scale infrastructures like metro systems for addressing the threat of natural disasters and man-made attacks in urban areas. Analysis is needed to ensure that these systems are capable of withstanding and containing unexpected perturbations, and develop heuristic strategies for guiding the design of more resilient networks in the future. We present a comprehensive, multi-pronged framework that analyses information on network topology, spatial organization and passenger flow to understand the resilience of the London metro system. Topology of the London metro system is not fault tolerant in terms of maintaining connectivity at the periphery of the network since it does not exhibit small-world properties. The passenger strength distribution follows a power law, suggesting that while the London metro system is robust to random failures, it is vulnerable to disruptions on a few critical stations. The analysis further identifies particular sources of structural and functional vulnerabilities that need to be mitigated for improving the resilience of the London metro network. The insights from our framework provide useful strategies to build resilience for both existing and upcoming metro systems. © 2016 The Author(s).

  3. A hybrid method for protection against threats to a network infrastructure for an electronic warfare management system

    NASA Astrophysics Data System (ADS)

    Byłak, Michał; RóŻański, Grzegorz

    2017-04-01

    The article presents the concept of ensuring the security of network information infrastructure for the management of Electronic Warfare (EW) systems. The concept takes into account the reactive and proactive tools against threats. An overview of the methods used to support the safety of IT networks and information sources about threats is presented. Integration of mechanisms that allow for effective intrusion detection and rapid response to threats in a network has been proposed. The architecture of the research environment is also presented.

  4. Hydrogen powered bus

    ScienceCinema

    Glass, Bob; Mathis, Mike; Cochran, Ron; Garback, John

    2018-06-08

    Take a ride on a new type of bus, fueled by hydrogen. These hydrogen taxis are part of a Department of Energy-funded deployment of hydrogen powered vehicles and fueling infrastructure at nine federal facilities across the country to demonstrate this market-ready advanced technology. Produced and leased by Ford Motor Company , they consist of one 12- passenger bus and one nine-passenger bus. More information at: http://go.usa.gov/Tgr

  5. Hydrogen Infrastructure Testing and Research Facility Animation (Text

    Science.gov Websites

    . Medium pressure hydrogen is stored in tanks and then fed to the high pressure compressor. High pressure hydrogen is stored in tanks and then fed to either high pressure research projects in ESIF or to the the high pressure compressor. The medium pressure storage photo gallery includes two photos of medium

  6. A Data Scheduling and Management Infrastructure for the TEAM Network

    NASA Astrophysics Data System (ADS)

    Andelman, S.; Baru, C.; Chandra, S.; Fegraus, E.; Lin, K.; Unwin, R.

    2009-04-01

    currently partnering with the San Diego Super Computer Center to build the data management infrastructure. Data collected from the three core protocols as well as others are currently made available through the TEAM Network portal, which provides the content management framework, the data scheduling and management framework, an administrative framework to implement and manage TEAM sites, collaborative tools and a number of tools and applications utilizing Google Map and Google Earth products. A critical element of the TEAM Network data management infrastructure is to make the data publicly available in as close to real-time as possible (the TEAM Network Data Use Policy: http://www.teamnetwork.org/en/data/policy). This requires two essential tasks to be accomplished, 1) A data collection schedule has to be planned, proposed and approved for a given TEAM site. This is a challenging process since TEAM sites are geographically distributed across the tropics and hence have different seasons where they schedule field sampling for the different TEAM protocols. Capturing this information and ensuring that TEAM sites follow the outlined legal contract is key to the data collection process and 2) A stream-lined and efficient information management system to ensure data collected from the field meet the minimum data standards (i.e. are of the highest scientific quality) and are securely transferred, archived, processed and be rapidly made publicaly available, as a finished consumable product via the TEAM Network portal. The TEAM Network is achieving these goals by implementing an end-to-end framework consisting of the Sampling Scheduler application and the Data Management Framework. Sampling Scheduler The Sampling Scheduler is a project management, calendar based portal application that will allow scientists at a TEAM site to schedule field sampling for each of the TEAM protocols implemented at that site. The sampling scheduler addresses the specific requirements established in the

  7. Fluctuating hydrogen-bond networks govern anomalous electron transfer kinetics in a blue copper protein.

    PubMed

    Kretchmer, Joshua S; Boekelheide, Nicholas; Warren, Jeffrey J; Winkler, Jay R; Gray, Harry B; Miller, Thomas F

    2018-06-12

    We combine experimental and computational methods to address the anomalous kinetics of long-range electron transfer (ET) in mutants of Pseudomonas aeruginosa azurin. ET rates and driving forces for wild type (WT) and three N47X mutants (X = L, S, and D) of Ru(2,2'-bipyridine) 2 (imidazole)(His83) azurin are reported. An enhanced ET rate for the N47L mutant suggests either an increase of the donor-acceptor (DA) electronic coupling or a decrease in the reorganization energy for the reaction. The underlying atomistic features are investigated using a recently developed nonadiabatic molecular dynamics method to simulate ET in each of the azurin mutants, revealing unexpected aspects of DA electronic coupling. In particular, WT azurin and all studied mutants exhibit more DA compression during ET (>2 Å) than previously recognized. Moreover, it is found that DA compression involves an extended network of hydrogen bonds, the fluctuations of which gate the ET reaction, such that DA compression is facilitated by transiently rupturing hydrogen bonds. It is found that the N47L mutant intrinsically disrupts this hydrogen-bond network, enabling particularly facile DA compression. This work, which reveals the surprisingly fluctional nature of ET in azurin, suggests that hydrogen-bond networks can modulate the efficiency of long-range biological ET. Copyright © 2018 the Author(s). Published by PNAS.

  8. Develop Improved Materials to Support the Hydrogen Economy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Michael C. Martin

    The Edison Materials Technology Center (EMTEC) solicited and funded hydrogen infrastructure related projects that have a near term potential for commercialization. The subject technology of each project is related to the US Department of Energy hydrogen economy goals as outlined in the multi-year plan titled, 'Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan.' Preference was given to cross cutting materials development projects that might lead to the establishment of manufacturing capability and job creation. The Edison Materials Technology Center (EMTEC) used the US Department of Energy hydrogen economy goals to find and fund projects withmore » near term commercialization potential. An RFP process aligned with this plan required performance based objectives with go/no-go technology based milestones. Protocols established for this program consisted of a RFP solicitation process, white papers and proposals with peer technology and commercialization review (including DoE), EMTEC project negotiation and definition and DoE cost share approval. Our RFP approach specified proposals/projects for hydrogen production, hydrogen storage or hydrogen infrastructure processing which may include sensor, separator, compression, maintenance, or delivery technologies. EMTEC was especially alert for projects in the appropriate subject area that have cross cutting materials technology with near term manufacturing and commercialization opportunities.« less

  9. Green infrastructure development at European Union's eastern border: Effects of road infrastructure and forest habitat loss.

    PubMed

    Angelstam, Per; Khaulyak, Olha; Yamelynets, Taras; Mozgeris, Gintautas; Naumov, Vladimir; Chmielewski, Tadeusz J; Elbakidze, Marine; Manton, Michael; Prots, Bohdan; Valasiuk, Sviataslau

    2017-05-15

    The functionality of forest patches and networks as green infrastructure may be affected negatively both by expanding road networks and forestry intensification. We assessed the effects of (1) the current and planned road infrastructure, and (2) forest loss and gain, on the remaining large forest landscape massifs as green infrastructure at the EU's eastern border region in post-socialistic transition. First, habitat patch and network functionality in 1996-98 was assessed using habitat suitability index modelling. Second, we made expert interviews about road development with planners in 10 administrative regions in Poland, Belarus and Ukraine. Third, forest loss and gain inside the forest massifs, and gain outside them during the period 2001-14 were measured. This EU cross-border region hosts four remaining forest massifs as regional green infrastructure hotspots. While Poland's road network is developing fast in terms of new freeways, city bypasses and upgrades of road quality, in Belarus and Ukraine the focus is on maintenance of existing roads, and no new corridors. We conclude that economic support from the EU, and thus rapid development of roads in Poland, is likely to reduce the permeability for wildlife of the urban and agricultural matrix around existing forest massifs. However, the four identified forest massifs themselves, forming the forest landscape green infrastructure at the EU's east border, were little affected by road development plans. In contrast, forest loss inside massifs was high, especially in Ukraine. Only in Poland forest loss was balanced by gain. Forest gain outside forest massifs was low. To conclude, pro-active and collaborative spatial planning across different sectors and countries is needed to secure functional forest green infrastructure as base for biodiversity conservation and human well-being. Copyright © 2017. Published by Elsevier Ltd.

  10. Variations of the Hydrogen Bonding and of the Hydrogen Bonded Network in Ethanol-Water Mixtures on Cooling.

    PubMed

    Pothoczki, Szilvia; Pusztai, Laszlo; Bako, Imre

    2018-06-12

    Molecular dynamics computer simulations have been conducted for ethanol-water liquid mixtures in the water-rich side of the composition range, with 10, 20 and 30 mol % of the alcohol, at temperatures between room temperature and the experimental freezing point of the given mixture. All-atom type (OPLS) interatomic potentials have been assumed for ethanol, in combination with two kinds of rigid water models (SPC/E and TIP4P/2005). Both combinations have provided excellent reproductions of the experimental X-ray total structure factors at each temperature; this yielded a strong basis for further structural analyses. Beyond partial radial distribution functions, various descriptors of hydrogen bonded assemblies, as well as of the hydrogen bonded network have been determined. A clear tendency was observed towards that an increasing proportion of water molecules participate in hydrogen bonding with exactly 2 donor- and 2 acceptor sites as temperature decreases. Concerning larger assemblies held together by hydrogen bonding, the main focus was put on the properties of cyclic entities: it was found that, similarly to methanol-water mixtures, the number of hydrogen bonded rings has increased with lowering temperature. However, for ethanol-water mixtures the dominance of not the six-, but of the five-fold rings could be observed.

  11. Energy Department Announces New Tools for Hydrogen Fueling Infrastructure

    Science.gov Websites

    state of the art in contamination detection and identifies the technical requirements for implementing a hydrogen contaminant detection device at a station. H2USA's Hydrogen Fueling Station Working Group and

  12. Hydrogen sulfide emission in sewer networks: a two-phase modeling approach to the sulfur cycle.

    PubMed

    Yongsiri, C; Vollertsen, J; Hvitved-Jacobsen, T

    2004-01-01

    Wherever transport of anaerobic wastewater occurs, potential problems associated with hydrogen sulfide in relation to odor nuisance, health risk and corrosion exist. Improved understanding of prediction of hydrogen sulfide emission into the sewer atmosphere is needed for better evaluation of such problems in sewer networks. A two-phase model for emission of hydrogen sulfide along stretches of gravity sewers is presented to estimate the occurrence of both sulfide in the water phase and hydrogen sulfide in the sewer atmosphere. The model takes into account air-water mass transfer of hydrogen sulfide and interactions with other processes in the sulfur cycle. Various emission scenarios are simulated to illustrate the release characteristics of hydrogen sulfide.

  13. Restructuring the crystalline cellulose hydrogen bond network enhances its depolymerization rate

    Treesearch

    Shishir P.S. Chundawat; Giovanni Bellesia; Nirmal Uppugundla; Leonardo da Costa Sousa; Dahai Gao; Albert M. Cheh; Umesh P. Agarwal; Christopher M. Bianchetti; George N. Phillips; Paul Langan; Venkatesh Balan; S. Gnanakaran; Bruce E. Dale

    2011-01-01

    Conversion of lignocellulose to biofuels is partly inefficient due to the deleterious impact of cellulose crystallinity on enzymatic saccharification. We demonstrate how the synergistic activity of cellulases was enhanced by altering the hydrogen bond network within crystalline cellulose fibrils. We provide a molecular-scale explanation of these phenomena through...

  14. Effects of spatial configuration of imperviousness and green infrastructure networks on hydrologic response in a residential sewershed

    NASA Astrophysics Data System (ADS)

    Lim, Theodore C.; Welty, Claire

    2017-09-01

    Green infrastructure (GI) is an approach to stormwater management that promotes natural processes of infiltration and evapotranspiration, reducing surface runoff to conventional stormwater drainage infrastructure. As more urban areas incorporate GI into their stormwater management plans, greater understanding is needed on the effects of spatial configuration of GI networks on hydrological performance, especially in the context of potential subsurface and lateral interactions between distributed facilities. In this research, we apply a three-dimensional, coupled surface-subsurface, land-atmosphere model, ParFlow.CLM, to a residential urban sewershed in Washington DC that was retrofitted with a network of GI installations between 2009 and 2015. The model was used to test nine additional GI and imperviousness spatial network configurations for the site and was compared with monitored pipe-flow data. Results from the simulations show that GI located in higher flow-accumulation areas of the site intercepted more surface runoff, even during wetter and multiday events. However, a comparison of the differences between scenarios and levels of variation and noise in monitored data suggests that the differences would only be detectable between the most and least optimal GI/imperviousness configurations.

  15. 75 FR 75611 - Critical Infrastructure Protection Month, 2010

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-03

    ... Part IV The President Proclamation 8607--Critical Infrastructure Protection Month, 2010..., 2010 Critical Infrastructure Protection Month, 2010 By the President of the United States of America A Proclamation During Critical Infrastructure Protection Month, we highlight the vast network of systems and...

  16. Polish Geophysical Solid Earth Infrastructure Contributing to EPOS

    NASA Astrophysics Data System (ADS)

    Debski, W.; Mutke, G.; Suchcicki, J.; Jozwiak, W.; Wiejacz, P.; Trojanowski, J.

    2012-04-01

    In this poster we present the current state of the main polish solid-earth-orientated infrastructures and shortly described history of their development, current state, and some plans for their future development. The presen- tation concentrates only on the classical infrastructure leaving aside for the while the the geodetic-orientated infrastructure, like GPS network and the GPS processing data centers, gravimetric infrastructure and others of this type. Polish broadband seismic infrastructure consists of 7 permanent broadband stations incorporated into the VEBSN initiative running at the polish territory and one operated in collaboration with NORSAR is settled at the Hornsund (Svalbard) polish polar station. All stations are equipped with STS-2 seismometers and polish MK-6 seismic stations providing 120 dB dynamics 100Hz sampling and data transmission in a real time to processing center. Besides this permanent broadband seismic network (PLSN) the Central Institute of Mining is running the permanent regional, short period network at the Upper Silesia area dedicated to the detailed monitoring of seismicity induced by the black coal mining activity in this area. The network consists of As the mining activity is the main source of seismicity in Poland also all mines are running underground short period networks, like for example Rudna-Polkowice copper mine seismic network consisting of 64 underground located short period seimometers. In that area, especially around the Zelazny Most: the huge post-floating artificial lake the, IGF PAS is running the local seismic array consisting of 4 short period seismometers. Besides these permanent network IGF PAN is running the portable seismic network for detailed mapping a possible natural seismic activity in selected regions of Poland. Important contribution to classical geophysical observation in the electro-magnetic field are provided by three permanent geomagnetic observatories (one at Hornsund) and supporting set of 10

  17. Investing in Alternative Fuel Infrastructure: Insights for California from Stakeholder Interviews: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melaina, Marc; Muratori, Matteo; McLaren, Joyce

    Increased interest in the use of alternative transportation fuels, such as natural gas, hydrogen, and electricity, is being driven by heightened concern about the climate impacts of gasoline and diesel emissions and our dependence on finite oil resources. A key barrier to widespread adoption of low- and zero-emission passenger vehicles is the availability of refueling infrastructure. Recalling the 'chicken and egg' conundrum, limited adoption of alternative fuel vehicles increases the perceived risk of investments in refueling infrastructure, while lack of refueling infrastructure inhibits vehicle adoption. In this paper, we present the results of a study of the perceived risks andmore » barriers to investment in alternative fuels infrastructure, based on interviews with industry experts and stakeholders. We cover barriers to infrastructure development for three alternative fuels for passenger vehicles: compressed natural gas, hydrogen, and electricity. As an early-mover in zero emission passenger vehicles, California provides the early market experience necessary to map the alternative fuel infrastructure business space. Results and insights identified in this study can be used to inform investment decisions, formulate incentive programs, and guide deployment plans for alternative fueling infrastructure in the U.S. and elsewhere.« less

  18. Space-Based Information Infrastructure Architecture for Broadband Services

    NASA Technical Reports Server (NTRS)

    Price, Kent M.; Inukai, Tom; Razdan, Rajendev; Lazeav, Yvonne M.

    1996-01-01

    This study addressed four tasks: (1) identify satellite-addressable information infrastructure markets; (2) perform network analysis for space-based information infrastructure; (3) develop conceptual architectures; and (4) economic assessment of architectures. The report concludes that satellites will have a major role in the national and global information infrastructure, requiring seamless integration between terrestrial and satellite networks. The proposed LEO, MEO, and GEO satellite systems have satellite characteristics that vary widely. They include delay, delay variations, poorer link quality and beam/satellite handover. The barriers against seamless interoperability between satellite and terrestrial networks are discussed. These barriers are the lack of compatible parameters, standards and protocols, which are presently being evaluated and reduced.

  19. URBAN-NET: A Network-based Infrastructure Monitoring and Analysis System for Emergency Management and Public Safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sangkeun; Chen, Liangzhe; Duan, Sisi

    Abstract Critical Infrastructures (CIs) such as energy, water, and transportation are complex networks that are crucial for sustaining day-to-day commodity flows vital to national security, economic stability, and public safety. The nature of these CIs is such that failures caused by an extreme weather event or a man-made incident can trigger widespread cascading failures, sending ripple effects at regional or even national scales. To minimize such effects, it is critical for emergency responders to identify existing or potential vulnerabilities within CIs during such stressor events in a systematic and quantifiable manner and take appropriate mitigating actions. We present here amore » novel critical infrastructure monitoring and analysis system named URBAN-NET. The system includes a software stack and tools for monitoring CIs, pre-processing data, interconnecting multiple CI datasets as a heterogeneous network, identifying vulnerabilities through graph-based topological analysis, and predicting consequences based on what-if simulations along with visualization. As a proof-of-concept, we present several case studies to show the capabilities of our system. We also discuss remaining challenges and future work.« less

  20. 2010 Annual Progress Report DOE Hydrogen Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    This report summarizes the hydrogen and fuel cell R&D activities and accomplishments in FY2009 for the DOE Hydrogen Program, including the Hydrogen, Fuel Cells, and Infrastructure Technologies Program and hydrogen-related work in the Offices of Science; Fossil Energy; and Nuclear Energy, Science, and Technology. It includes reports on all of the research projects funded by the DOE Hydrogen Program between October 2009 and September 2010.

  1. Vulnerability of network of networks

    NASA Astrophysics Data System (ADS)

    Havlin, S.; Kenett, D. Y.; Bashan, A.; Gao, J.; Stanley, H. E.

    2014-10-01

    Our dependence on networks - be they infrastructure, economic, social or others - leaves us prone to crises caused by the vulnerabilities of these networks. There is a great need to develop new methods to protect infrastructure networks and prevent cascade of failures (especially in cases of coupled networks). Terrorist attacks on transportation networks have traumatized modern societies. With a single blast, it has become possible to paralyze airline traffic, electric power supply, ground transportation or Internet communication. How, and at which cost can one restructure the network such that it will become more robust against malicious attacks? The gradual increase in attacks on the networks society depends on - Internet, mobile phone, transportation, air travel, banking, etc. - emphasize the need to develop new strategies to protect and defend these crucial networks of communication and infrastructure networks. One example is the threat of liquid explosives a few years ago, which completely shut down air travel for days, and has created extreme changes in regulations. Such threats and dangers warrant the need for new tools and strategies to defend critical infrastructure. In this paper we review recent advances in the theoretical understanding of the vulnerabilities of interdependent networks with and without spatial embedding, attack strategies and their affect on such networks of networks as well as recently developed strategies to optimize and repair failures caused by such attacks.

  2. Florida Hydrogen Initiative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Block, David L

    2013-06-30

    The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuelmore » Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety

  3. Effect of hydrogen peroxide on the three-dimensional polymer network in composites.

    PubMed

    Durner, Jürgen; Stojanovic, Marija; Urcan, Ebru; Spahl, Werner; Haertel, Ursula; Hickel, Reinhard; Reichl, Franx-Xaver

    2011-06-01

    Less data are available about the effects of hydrogen peroxide on the three-dimensional polymer network of polymerized composites. Therefore the study was performed to test the effects of hydrogen peroxide on the three-dimensional polymer network in composites. Polymerized specimens from Tetric Flow®, Tetric Ceram® and Filtek™ Supreme XT were bleached with Opalescence® PF 15% for 5h or PF 35% for 0.5h, respectively, and then stored in methanol for 1d and 7d. Controls were unbleached specimens. The eluates were analyzed by gas chromatography/mass spectrometry. More methacrylic acid (MAA), bisphenol-A (BPA), ethoxylated bisphenol-A-dimethacrylate (BisEMA), hydroquinone monomethyl ether (HQME), 1,10-decanediol dimethacrylate (DDDMA) and/or triethylene glycol dimethacrylate (TEGDMA) were eluted from bleached specimens compared with non bleached controls (1d). The highest DDDMA amount of 419.8 μmol/l was found in the eluates after 7d in Tetric Flow® specimens treated with PF 15. The highest HQME amount of 159.6 μmol/l was found in eluates from Tetric Ceram® specimens treated with PF after 7d. The highest TEGDMA amount of 178.7 μmol/l was found in eluates from Filtek™ Supreme XT specimens treated with PF 35 after 7d. Bleaching with hydrogen peroxide has an effect on the three-dimensional polymer network in polymerized composites leading to an increase in the release of unpolymerized monomers, additives and unspecific oxidative products. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. Optimizing End-to-End Big Data Transfers over Terabits Network Infrastructure

    DOE PAGES

    Kim, Youngjae; Atchley, Scott; Vallee, Geoffroy R.; ...

    2016-04-05

    While future terabit networks hold the promise of significantly improving big-data motion among geographically distributed data centers, significant challenges must be overcome even on today's 100 gigabit networks to realize end-to-end performance. Multiple bottlenecks exist along the end-to-end path from source to sink, for instance, the data storage infrastructure at both the source and sink and its interplay with the wide-area network are increasingly the bottleneck to achieving high performance. In this study, we identify the issues that lead to congestion on the path of an end-to-end data transfer in the terabit network environment, and we present a new bulkmore » data movement framework for terabit networks, called LADS. LADS exploits the underlying storage layout at each endpoint to maximize throughput without negatively impacting the performance of shared storage resources for other users. LADS also uses the Common Communication Interface (CCI) in lieu of the sockets interface to benefit from hardware-level zero-copy, and operating system bypass capabilities when available. It can further improve data transfer performance under congestion on the end systems using buffering at the source using flash storage. With our evaluations, we show that LADS can avoid congested storage elements within the shared storage resource, improving input/output bandwidth, and data transfer rates across the high speed networks. We also investigate the performance degradation problems of LADS due to I/O contention on the parallel file system (PFS), when multiple LADS tools share the PFS. We design and evaluate a meta-scheduler to coordinate multiple I/O streams while sharing the PFS, to minimize the I/O contention on the PFS. Finally, with our evaluations, we observe that LADS with meta-scheduling can further improve the performance by up to 14 percent relative to LADS without meta-scheduling.« less

  5. Optimizing End-to-End Big Data Transfers over Terabits Network Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Youngjae; Atchley, Scott; Vallee, Geoffroy R.

    While future terabit networks hold the promise of significantly improving big-data motion among geographically distributed data centers, significant challenges must be overcome even on today's 100 gigabit networks to realize end-to-end performance. Multiple bottlenecks exist along the end-to-end path from source to sink, for instance, the data storage infrastructure at both the source and sink and its interplay with the wide-area network are increasingly the bottleneck to achieving high performance. In this study, we identify the issues that lead to congestion on the path of an end-to-end data transfer in the terabit network environment, and we present a new bulkmore » data movement framework for terabit networks, called LADS. LADS exploits the underlying storage layout at each endpoint to maximize throughput without negatively impacting the performance of shared storage resources for other users. LADS also uses the Common Communication Interface (CCI) in lieu of the sockets interface to benefit from hardware-level zero-copy, and operating system bypass capabilities when available. It can further improve data transfer performance under congestion on the end systems using buffering at the source using flash storage. With our evaluations, we show that LADS can avoid congested storage elements within the shared storage resource, improving input/output bandwidth, and data transfer rates across the high speed networks. We also investigate the performance degradation problems of LADS due to I/O contention on the parallel file system (PFS), when multiple LADS tools share the PFS. We design and evaluate a meta-scheduler to coordinate multiple I/O streams while sharing the PFS, to minimize the I/O contention on the PFS. Finally, with our evaluations, we observe that LADS with meta-scheduling can further improve the performance by up to 14 percent relative to LADS without meta-scheduling.« less

  6. Optimal condition sampling of infrastructure networks.

    DOT National Transportation Integrated Search

    2009-10-15

    Transportation infrastructure systems consist of spatially extensive and longlived sets of interconnected : facilities. Over the past two decades, several new nondestructive inspection technologies have been : developed and applied in collectin...

  7. Biogas and Hydrogen Systems Market Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milbrandt, Anelia; Bush, Brian; Melaina, Marc

    2016-03-31

    This analysis provides an overview of the market for biogas-derived hydrogen and its use in transportation applications. It examines the current hydrogen production technologies from biogas, capacity and production, infrastructure, potential and demand, as well as key market areas. It also estimates the production cost of hydrogen from biogas and provides supply curves at a national level and at point source.

  8. Human initiated cascading failures in societal infrastructures.

    PubMed

    Barrett, Chris; Channakeshava, Karthik; Huang, Fei; Kim, Junwhan; Marathe, Achla; Marathe, Madhav V; Pei, Guanhong; Saha, Sudip; Subbiah, Balaaji S P; Vullikanti, Anil Kumar S

    2012-01-01

    In this paper, we conduct a systematic study of human-initiated cascading failures in three critical inter-dependent societal infrastructures due to behavioral adaptations in response to a crisis. We focus on three closely coupled socio-technical networks here: (i) cellular and mesh networks, (ii) transportation networks and (iii) mobile call networks. In crises, changes in individual behaviors lead to altered travel, activity and calling patterns, which influence the transport network and the loads on wireless networks. The interaction between these systems and their co-evolution poses significant technical challenges for representing and reasoning about these systems. In contrast to system dynamics models for studying these interacting infrastructures, we develop interaction-based models in which individuals and infrastructure elements are represented in detail and are placed in a common geographic coordinate system. Using the detailed representation, we study the impact of a chemical plume that has been released in a densely populated urban region. Authorities order evacuation of the affected area, and this leads to individual behavioral adaptation wherein individuals drop their scheduled activities and drive to home or pre-specified evacuation shelters as appropriate. They also revise their calling behavior to communicate and coordinate among family members. These two behavioral adaptations cause flash-congestion in the urban transport network and the wireless network. The problem is exacerbated with a few, already occurring, road closures. We analyze how extended periods of unanticipated road congestion can result in failure of infrastructures, starting with the servicing base stations in the congested area. A sensitivity analysis on the compliance rate of evacuees shows non-intuitive effect on the spatial distribution of people and on the loading of the base stations. For example, an evacuation compliance rate of 70% results in higher number of overloaded

  9. Human Initiated Cascading Failures in Societal Infrastructures

    PubMed Central

    Barrett, Chris; Channakeshava, Karthik; Huang, Fei; Kim, Junwhan; Marathe, Achla; Marathe, Madhav V.; Pei, Guanhong; Saha, Sudip; Subbiah, Balaaji S. P.; Vullikanti, Anil Kumar S.

    2012-01-01

    In this paper, we conduct a systematic study of human-initiated cascading failures in three critical inter-dependent societal infrastructures due to behavioral adaptations in response to a crisis. We focus on three closely coupled socio-technical networks here: (i) cellular and mesh networks, (ii) transportation networks and (iii) mobile call networks. In crises, changes in individual behaviors lead to altered travel, activity and calling patterns, which influence the transport network and the loads on wireless networks. The interaction between these systems and their co-evolution poses significant technical challenges for representing and reasoning about these systems. In contrast to system dynamics models for studying these interacting infrastructures, we develop interaction-based models in which individuals and infrastructure elements are represented in detail and are placed in a common geographic coordinate system. Using the detailed representation, we study the impact of a chemical plume that has been released in a densely populated urban region. Authorities order evacuation of the affected area, and this leads to individual behavioral adaptation wherein individuals drop their scheduled activities and drive to home or pre-specified evacuation shelters as appropriate. They also revise their calling behavior to communicate and coordinate among family members. These two behavioral adaptations cause flash-congestion in the urban transport network and the wireless network. The problem is exacerbated with a few, already occurring, road closures. We analyze how extended periods of unanticipated road congestion can result in failure of infrastructures, starting with the servicing base stations in the congested area. A sensitivity analysis on the compliance rate of evacuees shows non-intuitive effect on the spatial distribution of people and on the loading of the base stations. For example, an evacuation compliance rate of 70% results in higher number of overloaded

  10. Bioengineering and Coordination of Regulatory Networks and Intracellular Complexes to Maximize Hydrogen Production by Phototrophic Microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tabita, F. Robert

    2013-07-30

    In this study, the Principal Investigator, F.R. Tabita has teamed up with J. C. Liao from UCLA. This project's main goal is to manipulate regulatory networks in phototrophic bacteria to affect and maximize the production of large amounts of hydrogen gas under conditions where wild-type organisms are constrained by inherent regulatory mechanisms from allowing this to occur. Unrestrained production of hydrogen has been achieved and this will allow for the potential utilization of waste materials as a feed stock to support hydrogen production. By further understanding the means by which regulatory networks interact, this study will seek to maximize themore » ability of currently available “unrestrained” organisms to produce hydrogen. The organisms to be utilized in this study, phototrophic microorganisms, in particular nonsulfur purple (NSP) bacteria, catalyze many significant processes including the assimilation of carbon dioxide into organic carbon, nitrogen fixation, sulfur oxidation, aromatic acid degradation, and hydrogen oxidation/evolution. Moreover, due to their great metabolic versatility, such organisms highly regulate these processes in the cell and since virtually all such capabilities are dispensable, excellent experimental systems to study aspects of molecular control and biochemistry/physiology are available.« less

  11. Defense strategies for cloud computing multi-site server infrastructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Nageswara S.; Ma, Chris Y. T.; He, Fei

    We consider cloud computing server infrastructures for big data applications, which consist of multiple server sites connected over a wide-area network. The sites house a number of servers, network elements and local-area connections, and the wide-area network plays a critical, asymmetric role of providing vital connectivity between them. We model this infrastructure as a system of systems, wherein the sites and wide-area network are represented by their cyber and physical components. These components can be disabled by cyber and physical attacks, and also can be protected against them using component reinforcements. The effects of attacks propagate within the systems, andmore » also beyond them via the wide-area network.We characterize these effects using correlations at two levels using: (a) aggregate failure correlation function that specifies the infrastructure failure probability given the failure of an individual site or network, and (b) first-order differential conditions on system survival probabilities that characterize the component-level correlations within individual systems. We formulate a game between an attacker and a provider using utility functions composed of survival probability and cost terms. At Nash Equilibrium, we derive expressions for the expected capacity of the infrastructure given by the number of operational servers connected to the network for sum-form, product-form and composite utility functions.« less

  12. Developing a data infrastructure for a learning health system: the PORTAL network

    PubMed Central

    McGlynn, Elizabeth A; Lieu, Tracy A; Durham, Mary L; Bauck, Alan; Laws, Reesa; Go, Alan S; Chen, Jersey; Feigelson, Heather Spencer; Corley, Douglas A; Young, Deborah Rohm; Nelson, Andrew F; Davidson, Arthur J; Morales, Leo S; Kahn, Michael G

    2014-01-01

    The Kaiser Permanente & Strategic Partners Patient Outcomes Research To Advance Learning (PORTAL) network engages four healthcare delivery systems (Kaiser Permanente, Group Health Cooperative, HealthPartners, and Denver Health) and their affiliated research centers to create a new national network infrastructure that builds on existing relationships among these institutions. PORTAL is enhancing its current capabilities by expanding the scope of the common data model, paying particular attention to incorporating patient-reported data more systematically, implementing new multi-site data governance procedures, and integrating the PCORnet PopMedNet platform across our research centers. PORTAL is partnering with clinical research and patient experts to create cohorts of patients with a common diagnosis (colorectal cancer), a rare diagnosis (adolescents and adults with severe congenital heart disease), and adults who are overweight or obese, including those with pre-diabetes or diabetes, to conduct large-scale observational comparative effectiveness research and pragmatic clinical trials across diverse clinical care settings. PMID:24821738

  13. Network Randomization and Dynamic Defense for Critical Infrastructure Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavez, Adrian R.; Martin, Mitchell Tyler; Hamlet, Jason

    2015-04-01

    Critical Infrastructure control systems continue to foster predictable communication paths, static configurations, and unpatched systems that allow easy access to our nation's most critical assets. This makes them attractive targets for cyber intrusion. We seek to address these attack vectors by automatically randomizing network settings, randomizing applications on the end devices themselves, and dynamically defending these systems against active attacks. Applying these protective measures will convert control systems into moving targets that proactively defend themselves against attack. Sandia National Laboratories has led this effort by gathering operational and technical requirements from Tennessee Valley Authority (TVA) and performing research and developmentmore » to create a proof-of-concept solution. Our proof-of-concept has been tested in a laboratory environment with over 300 nodes. The vision of this project is to enhance control system security by converting existing control systems into moving targets and building these security measures into future systems while meeting the unique constraints that control systems face.« less

  14. Secure Infrastructure-Less Network (SINET)

    DTIC Science & Technology

    2017-06-01

    Protocol CNSA Commercial National Security Algorithm COMSEC Communications Security COTS Commercial off the Shelf CSfC Commercial Solutions for...ABSTRACT (maximum 200 words) Military leaders and first responders desire the familiarity of commercial -off-the-shelf lightweight mobile devices while...since they lack reliable or secure communication infrastructure. Routine and simple mobile information-sharing tasks become a challenge over the

  15. Powering the Network: The Forgotten Infrastructure.

    ERIC Educational Resources Information Center

    Learn, Larry L., Ed.

    1995-01-01

    Discusses systems that power the telecommunications infrastructure. Highlights include power for central telephone company offices; private branch exchange systems; power interruptions and power irregularities; uninterruptible power systems; problems in the systems; and photovoltaic systems. (LRW)

  16. MFC Communications Infrastructure Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Cannon; Terry Barney; Gary Cook

    2012-01-01

    Unprecedented growth of required telecommunications services and telecommunications applications change the way the INL does business today. High speed connectivity compiled with a high demand for telephony and network services requires a robust communications infrastructure.   The current state of the MFC communication infrastructure limits growth opportunities of current and future communication infrastructure services. This limitation is largely due to equipment capacity issues, aging cabling infrastructure (external/internal fiber and copper cable) and inadequate space for telecommunication equipment. While some communication infrastructure improvements have been implemented over time projects, it has been completed without a clear overall plan and technology standard.more »   This document identifies critical deficiencies with the current state of the communication infrastructure in operation at the MFC facilities and provides an analysis to identify needs and deficiencies to be addressed in order to achieve target architectural standards as defined in STD-170. The intent of STD-170 is to provide a robust, flexible, long-term solution to make communications capabilities align with the INL mission and fit the various programmatic growth and expansion needs.« less

  17. Infrared spectroscopy of phenol-(H2O)(n>10): structural strains in hydrogen bond networks of neutral water clusters.

    PubMed

    Mizuse, Kenta; Hamashima, Toru; Fujii, Asuka

    2009-11-05

    To investigate hydrogen bond network structures of tens of water molecules, we report infrared spectra of moderately size (n)-selected phenol-(H2O)n (approximately 10 < or = n < or = approximately 50), which have essentially the same network structures as (H2O)(n+1). The phenyl group in phenol-(H2O)(n) allows us to apply photoionization-based size selection and infrared-ultraviolet double resonance spectroscopy. The spectra show a clear low-frequency shift of the free OH stretching band with increasing n. Detailed analyses with density functional theory calculations indicate that this shift is accounted for by the hydrogen bond network development from highly strained ones in the small (n < approximately 10) clusters to more relaxed ones in the larger clusters, in addition to the cooperativity of hydrogen bonds.

  18. Mechanism of conformational coupling in SecA: Key role of hydrogen-bonding networks and water interactions.

    PubMed

    Milenkovic, Stefan; Bondar, Ana-Nicoleta

    2016-02-01

    SecA uses the energy yielded by the binding and hydrolysis of adenosine triphosphate (ATP) to push secretory pre-proteins across the plasma membrane in bacteria. Hydrolysis of ATP occurs at the nucleotide-binding site, which contains the conserved carboxylate groups of the DEAD-box helicases. Although crystal structures provide valuable snapshots of SecA along its reaction cycle, the mechanism that ensures conformational coupling between the nucleotide-binding site and the other domains of SecA remains unclear. The observation that SecA contains numerous hydrogen-bonding groups raises important questions about the role of hydrogen-bonding networks and hydrogen-bond dynamics in long-distance conformational couplings. To address these questions, we explored the molecular dynamics of SecA from three different organisms, with and without bound nucleotide, in water. By computing two-dimensional hydrogen-bonding maps we identify networks of hydrogen bonds that connect the nucleotide-binding site to remote regions of the protein, and sites in the protein that respond to specific perturbations. We find that the nucleotide-binding site of ADP-bound SecA has a preferred geometry whereby the first two carboxylates of the DEAD motif bridge via hydrogen-bonding water. Simulations of a mutant with perturbed ATP hydrolysis highlight the water-bridged geometry as a key structural element of the reaction path. Copyright © 2015. Published by Elsevier B.V.

  19. Infrastructure Commons in Economic Perspective

    NASA Astrophysics Data System (ADS)

    Frischmann, Brett M.

    This chapter briefly summarizes a theory (developed in substantial detail elsewhere)1 that explains why there are strong economic arguments for managing and sustaining infrastructure resources in an openly accessible manner. This theory facilitates a better understanding of two related issues: how society benefits from infrastructure resources and how decisions about how to manage or govern infrastructure resources affect a wide variety of public and private interests. The key insights from this analysis are that infrastructure resources generate value as inputs into a wide range of productive processes and that the outputs from these processes are often public goods and nonmarket goods that generate positive externalities that benefit society as a whole. Managing such resources in an openly accessible manner may be socially desirable from an economic perspective because doing so facilitates these downstream productive activities. For example, managing the Internet infrastructure in an openly accessible manner facilitates active citizen involvement in the production and sharing of many different public and nonmarket goods. Over the last decade, this has led to increased opportunities for a wide range of citizens to engage in entrepreneurship, political discourse, social network formation, and community building, among many other activities. The chapter applies these insights to the network neutrality debate and suggests how the debate might be reframed to better account for the wide range of private and public interests at stake.

  20. A National Strategy to Develop Pragmatic Clinical Trials Infrastructure

    PubMed Central

    Guise, Jeanne‐Marie; Dolor, Rowena J.; Meissner, Paul; Tunis, Sean; Krishnan, Jerry A.; Pace, Wilson D.; Saltz, Joel; Hersh, William R.; Michener, Lloyd; Carey, Timothy S.

    2014-01-01

    Abstract An important challenge in comparative effectiveness research is the lack of infrastructure to support pragmatic clinical trials, which compare interventions in usual practice settings and subjects. These trials present challenges that differ from those of classical efficacy trials, which are conducted under ideal circumstances, in patients selected for their suitability, and with highly controlled protocols. In 2012, we launched a 1‐year learning network to identify high‐priority pragmatic clinical trials and to deploy research infrastructure through the NIH Clinical and Translational Science Awards Consortium that could be used to launch and sustain them. The network and infrastructure were initiated as a learning ground and shared resource for investigators and communities interested in developing pragmatic clinical trials. We followed a three‐stage process of developing the network, prioritizing proposed trials, and implementing learning exercises that culminated in a 1‐day network meeting at the end of the year. The year‐long project resulted in five recommendations related to developing the network, enhancing community engagement, addressing regulatory challenges, advancing information technology, and developing research methods. The recommendations can be implemented within 24 months and are designed to lead toward a sustained national infrastructure for pragmatic trials. PMID:24472114

  1. Sorption of CO 2 in a hydrogen-bonded diamondoid network of sulfonylcalix[4]arene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinnwell, Michael A.; Atwood, Jerry L.; Thallapally, Praveen K.

    An organic material, p-tert-butyltetrasulfonylcalix[4]arene, self-assembles via hydrogen bonding to form a diamondoid supramolecular network. Possessing discrete, zero-dimensional (0D) microcavities, the thiacalixarene derivative adsorbs CO2 at high pressures

  2. SEE-GRID eInfrastructure for Regional eScience

    NASA Astrophysics Data System (ADS)

    Prnjat, Ognjen; Balaz, Antun; Vudragovic, Dusan; Liabotis, Ioannis; Sener, Cevat; Marovic, Branko; Kozlovszky, Miklos; Neagu, Gabriel

    In the past 6 years, a number of targeted initiatives, funded by the European Commission via its information society and RTD programmes and Greek infrastructure development actions, have articulated a successful regional development actions in South East Europe that can be used as a role model for other international developments. The SEEREN (South-East European Research and Education Networking initiative) project, through its two phases, established the SEE segment of the pan-European G ´EANT network and successfully connected the research and scientific communities in the region. Currently, the SEE-LIGHT project is working towards establishing a dark-fiber backbone that will interconnect most national Research and Education networks in the region. On the distributed computing and storage provisioning i.e. Grid plane, the SEE-GRID (South-East European GRID e-Infrastructure Development) project, similarly through its two phases, has established a strong human network in the area of scientific computing and has set up a powerful regional Grid infrastructure, and attracted a number of applications from different fields from countries throughout the South-East Europe. The current SEEGRID-SCI project, ending in April 2010, empowers the regional user communities from fields of meteorology, seismology and environmental protection in common use and sharing of the regional e-Infrastructure. Current technical initiatives in formulation are focusing on a set of coordinated actions in the area of HPC and application fields making use of HPC initiatives. Finally, the current SEERA-EI project brings together policy makers - programme managers from 10 countries in the region. The project aims to establish a communication platform between programme managers, pave the way towards common e-Infrastructure strategy and vision, and implement concrete actions for common funding of electronic infrastructures on the regional level. The regional vision on establishing an e-Infrastructure

  3. Application of social network analysis in the assessment of organization infrastructure for service delivery: a three district case study from post-conflict northern Uganda

    PubMed Central

    Ssengooba, Freddie; Kawooya, Vincent; Namakula, Justine; Fustukian, Suzanne

    2017-01-01

    Abstract In post-conflict settings, service coverage indices are unlikely to be sustained if health systems are built on weak and unstable inter-organization networks—here referred to as infrastructure. The objective of this study was to assess the inter-organization infrastructure that supports the provision of selected health services in the reconstruction phase after conflict in northern Uganda. Applied social network analysis was used to establish the structure, size and function among organizations supporting the provision of (1) HIV treatment, (2) maternal delivery services and (3) workforce strengthening. Overall, 87 organizations were identified from 48 respondent organizations in the three post-conflict districts in northern Uganda. A two-stage snowball approach was used starting with service provider organizations in each district. Data included a list of organizations and their key attributes related to the provision of each service for the year 2012–13. The findings show that inter-organization networks are mostly focused on HIV treatment and least for workforce strengthening. The networks for HIV treatment and maternal services were about 3–4 times denser relative to the network for workforce strengthening. The network for HIV treatment accounted for 69–81% of the aggregated network in Gulu and Kitgum districts. In contrast, the network for workforce strengthening contributed the least (6% and 10%) in these two districts. Likewise, the networks supporting a young district (Amuru) was under invested with few organizations and sparse connections. Overall, organizations exhibited a broad range of functional roles in supporting HIV treatment compared to other services in the study. Basic information about the inter-organization setup (infrastructure)—can contribute to knowledge for building organization networks in more equitable ways. More connected organizations can be leveraged for faster communication and resource flow to boost the delivery

  4. Fast Rotational Diffusion of Water Molecules in a 2D Hydrogen Bond Network at Cryogenic Temperatures

    NASA Astrophysics Data System (ADS)

    Prisk, T. R.; Hoffmann, C.; Kolesnikov, A. I.; Mamontov, E.; Podlesnyak, A. A.; Wang, X.; Kent, P. R. C.; Anovitz, L. M.

    2018-05-01

    Individual water molecules or small clusters of water molecules contained within microporous minerals present an extreme case of confinement where the local structure of hydrogen bond networks are dramatically altered from bulk water. In the zinc silicate hemimorphite, the water molecules form a two-dimensional hydrogen bond network with hydroxyl groups in the crystal framework. Here, we present a combined experimental and theoretical study of the structure and dynamics of water molecules within this network. The water molecules undergo a continuous phase transition in their orientational configuration analogous to a two-dimensional Ising model. The incoherent dynamic structure factor reveals two thermally activated relaxation processes, one on a subpicosecond timescale and another on a 10-100 ps timescale, between 70 and 130 K. The slow process is an in-plane reorientation of the water molecule involving the breaking of hydrogen bonds with a framework that, despite the low temperatures involved, is analogous to rotational diffusion of water molecules in the bulk liquid. The fast process is a localized motion of the water molecule with no apparent analogs among known bulk or confined phases of water.

  5. Fast Rotational Diffusion of Water Molecules in a 2D Hydrogen Bond Network at Cryogenic Temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prisk, Timothy; Hoffmann, Christina; Kolesnikov, Alexander I.

    Individual water molecules or small clusters of water molecules contained within microporous minerals present an extreme case of confinement where the local structure of hydrogen bond networks are dramatically altered from bulk water. In the zinc silicate hemimorphite, the water molecules form a two-dimensional hydrogen bond network with hydroxyl groups in the crystal framework. Here in this paper, we present a combined experimental and theoretical study of the structure and dynamics of water molecules within this network. The water molecules undergo a continuous phase transition in their orientational configuration analogous to a two-dimensional Ising model. The incoherent dynamic structure factormore » reveals two thermally activated relaxation processes, one on a subpicosecond timescale and another on a 10–100 ps timescale, between 70 and 130 K. The slow process is an in-plane reorientation of the water molecule involving the breaking of hydrogen bonds with a framework that, despite the low temperatures involved, is analogous to rotational diffusion of water molecules in the bulk liquid. The fast process is a localized motion of the water molecule with no apparent analogs among known bulk or confined phases of water.« less

  6. Fast Rotational Diffusion of Water Molecules in a 2D Hydrogen Bond Network at Cryogenic Temperatures

    DOE PAGES

    Prisk, Timothy; Hoffmann, Christina; Kolesnikov, Alexander I.; ...

    2018-05-09

    Individual water molecules or small clusters of water molecules contained within microporous minerals present an extreme case of confinement where the local structure of hydrogen bond networks are dramatically altered from bulk water. In the zinc silicate hemimorphite, the water molecules form a two-dimensional hydrogen bond network with hydroxyl groups in the crystal framework. Here in this paper, we present a combined experimental and theoretical study of the structure and dynamics of water molecules within this network. The water molecules undergo a continuous phase transition in their orientational configuration analogous to a two-dimensional Ising model. The incoherent dynamic structure factormore » reveals two thermally activated relaxation processes, one on a subpicosecond timescale and another on a 10–100 ps timescale, between 70 and 130 K. The slow process is an in-plane reorientation of the water molecule involving the breaking of hydrogen bonds with a framework that, despite the low temperatures involved, is analogous to rotational diffusion of water molecules in the bulk liquid. The fast process is a localized motion of the water molecule with no apparent analogs among known bulk or confined phases of water.« less

  7. An authentication infrastructure for today and tomorrow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engert, D.E.

    1996-06-01

    The Open Software Foundation`s Distributed Computing Environment (OSF/DCE) was originally designed to provide a secure environment for distributed applications. By combining it with Kerberos Version 5 from MIT, it can be extended to provide network security as well. This combination can be used to build both an inter and intra organizational infrastructure while providing single sign-on for the user with overall improved security. The ESnet community of the Department of Energy is building just such an infrastructure. ESnet has modified these systems to improve their interoperability, while encouraging the developers to incorporate these changes and work more closely together tomore » continue to improve the interoperability. The success of this infrastructure depends on its flexibility to meet the needs of many applications and network security requirements. The open nature of Kerberos, combined with the vendor support of OSF/DCE, provides the infrastructure for today and tomorrow.« less

  8. The Component Model of Infrastructure: A Practical Approach to Understanding Public Health Program Infrastructure

    PubMed Central

    Snyder, Kimberly; Rieker, Patricia P.

    2014-01-01

    Functioning program infrastructure is necessary for achieving public health outcomes. It is what supports program capacity, implementation, and sustainability. The public health program infrastructure model presented in this article is grounded in data from a broader evaluation of 18 state tobacco control programs and previous work. The newly developed Component Model of Infrastructure (CMI) addresses the limitations of a previous model and contains 5 core components (multilevel leadership, managed resources, engaged data, responsive plans and planning, networked partnerships) and 3 supporting components (strategic understanding, operations, contextual influences). The CMI is a practical, implementation-focused model applicable across public health programs, enabling linkages to capacity, sustainability, and outcome measurement. PMID:24922125

  9. The Navajo Learning Network and the NASA Life Sciences/AFOSR Infrastructure Development Project

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The NSF-funded Navajo Learning Network project, with help from NASA Life Sciences and AFOSR, enabled Dine College to take a giant leap forward technologically - in a way that could never had been possible had these projects been managed separately. The combination of these and other efforts created a network of over 500 computers located at ten sites across the Navajo reservation. Additionally, the college was able to install a modern telephone system which shares network data, and purchase a new higher education management system. The NASA Life Sciences funds further allowed the college library system to go online and become available to the entire campus community. NSF, NASA and AFOSR are committed to improving minority access to higher education opportunities and promoting faculty development and undergraduate research through infrastructure support and development. This project has begun to address critical inequalities in access to science, mathematics, engineering and technology for Navajo students and educators. As a result, Navajo K-12 education has been bolstered and Dine College will therefore better prepare students to transfer successfully to four-year institutions. Due to the integration of the NSF and NASA/AFOSR components of the project, a unified project report is appropriate.

  10. Developing a data infrastructure for a learning health system: the PORTAL network.

    PubMed

    McGlynn, Elizabeth A; Lieu, Tracy A; Durham, Mary L; Bauck, Alan; Laws, Reesa; Go, Alan S; Chen, Jersey; Feigelson, Heather Spencer; Corley, Douglas A; Young, Deborah Rohm; Nelson, Andrew F; Davidson, Arthur J; Morales, Leo S; Kahn, Michael G

    2014-01-01

    The Kaiser Permanente & Strategic Partners Patient Outcomes Research To Advance Learning (PORTAL) network engages four healthcare delivery systems (Kaiser Permanente, Group Health Cooperative, HealthPartners, and Denver Health) and their affiliated research centers to create a new national network infrastructure that builds on existing relationships among these institutions. PORTAL is enhancing its current capabilities by expanding the scope of the common data model, paying particular attention to incorporating patient-reported data more systematically, implementing new multi-site data governance procedures, and integrating the PCORnet PopMedNet platform across our research centers. PORTAL is partnering with clinical research and patient experts to create cohorts of patients with a common diagnosis (colorectal cancer), a rare diagnosis (adolescents and adults with severe congenital heart disease), and adults who are overweight or obese, including those with pre-diabetes or diabetes, to conduct large-scale observational comparative effectiveness research and pragmatic clinical trials across diverse clinical care settings. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  11. The National Information Infrastructure: Agenda for Action.

    ERIC Educational Resources Information Center

    Department of Commerce, Washington, DC. Information Infrastructure Task Force.

    The National Information Infrastructure (NII) is planned as a web of communications networks, computers, databases, and consumer electronics that will put vast amounts of information at the users' fingertips. Private sector firms are beginning to develop this infrastructure, but essential roles remain for the Federal Government. The National…

  12. Assessing the Climate Resilience of Transport Infrastructure Investments in Tanzania

    NASA Astrophysics Data System (ADS)

    Hall, J. W.; Pant, R.; Koks, E.; Thacker, S.; Russell, T.

    2017-12-01

    Whilst there is an urgent need for infrastructure investment in developing countries, there is a risk that poorly planned and built infrastructure will introduce new vulnerabilities. As climate change increases the magnitudes and frequency of natural hazard events, incidence of disruptive infrastructure failures are likely to become more frequent. Therefore, it is important that infrastructure planning and investment is underpinned by climate risk assessment that can inform adaptation planning. Tanzania's rapid economic growth is placing considerable strain on the country's transportation infrastructure (roads, railways, shipping and aviation); especially at the port of Dar es Salaam and its linking transport corridors. A growing number of natural hazard events, in particular flooding, are impacting the reliability of this already over-used network. Here we report on new methodology to analyse vulnerabilities and risks due to failures of key locations in the intermodal transport network of Tanzania, including strategic connectivity to neighboring countries. To perform the national-scale risk analysis we will utilize a system-of-systems methodology. The main components of this general risk assessment, when applied to transportation systems, include: (1) Assembling data on: spatially coherent extreme hazards and intermodal transportation networks; (2) Intersecting hazards with transport network models to initiate failure conditions that trigger failure propagation across interdependent networks; (3) Quantifying failure outcomes in terms of social impacts (customers/passengers disrupted) and/or macroeconomic consequences (across multiple sectors); and (4) Simulating, testing and collecting multiple failure scenarios to perform an exhaustive risk assessment in terms of probabilities and consequences. The methodology is being used to pinpoint vulnerability and reduce climate risks to transport infrastructure investments.

  13. NREL, Sandia Team to Improve Hydrogen Fueling Infrastructure | News | NREL

    Science.gov Websites

    hydrogen fuel cell vehicle owners have a positive fueling experience as fuel cell electric vehicles are to pave the way toward more widespread deployment of hydrogen fuel cell electric vehicles. The goals out what's working and what needs improvement is a key next step for fuel cell vehicle deployment

  14. Application of social network analysis in the assessment of organization infrastructure for service delivery: a three district case study from post-conflict northern Uganda.

    PubMed

    Ssengooba, Freddie; Kawooya, Vincent; Namakula, Justine; Fustukian, Suzanne

    2017-10-01

    In post-conflict settings, service coverage indices are unlikely to be sustained if health systems are built on weak and unstable inter-organization networks-here referred to as infrastructure. The objective of this study was to assess the inter-organization infrastructure that supports the provision of selected health services in the reconstruction phase after conflict in northern Uganda. Applied social network analysis was used to establish the structure, size and function among organizations supporting the provision of (1) HIV treatment, (2) maternal delivery services and (3) workforce strengthening. Overall, 87 organizations were identified from 48 respondent organizations in the three post-conflict districts in northern Uganda. A two-stage snowball approach was used starting with service provider organizations in each district. Data included a list of organizations and their key attributes related to the provision of each service for the year 2012-13. The findings show that inter-organization networks are mostly focused on HIV treatment and least for workforce strengthening. The networks for HIV treatment and maternal services were about 3-4 times denser relative to the network for workforce strengthening. The network for HIV treatment accounted for 69-81% of the aggregated network in Gulu and Kitgum districts. In contrast, the network for workforce strengthening contributed the least (6% and 10%) in these two districts. Likewise, the networks supporting a young district (Amuru) was under invested with few organizations and sparse connections. Overall, organizations exhibited a broad range of functional roles in supporting HIV treatment compared to other services in the study. Basic information about the inter-organization setup (infrastructure)-can contribute to knowledge for building organization networks in more equitable ways. More connected organizations can be leveraged for faster communication and resource flow to boost the delivery of health services

  15. Hierarchical lattice models of hydrogen-bond networks in water

    NASA Astrophysics Data System (ADS)

    Dandekar, Rahul; Hassanali, Ali A.

    2018-06-01

    We develop a graph-based model of the hydrogen-bond network in water, with a view toward quantitatively modeling the molecular-level correlational structure of the network. The networks formed are studied by the constructing the model on two infinite-dimensional lattices. Our models are built bottom up, based on microscopic information coming from atomistic simulations, and we show that the predictions of the model are consistent with known results from ab initio simulations of liquid water. We show that simple entropic models can predict the correlations and clustering of local-coordination defects around tetrahedral waters observed in the atomistic simulations. We also find that orientational correlations between bonds are longer ranged than density correlations, determine the directional correlations within closed loops, and show that the patterns of water wires within these structures are also consistent with previous atomistic simulations. Our models show the existence of density and compressibility anomalies, as seen in the real liquid, and the phase diagram of these models is consistent with the singularity-free scenario previously proposed by Sastry and coworkers [Phys. Rev. E 53, 6144 (1996), 10.1103/PhysRevE.53.6144].

  16. EVermont Renewable Hydrogen Production and Transportation Fueling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garabedian, Harold T.

    2008-03-30

    A great deal of research funding is being devoted to the use of hydrogen for transportation fuel, particularly in the development of fuel cell vehicles. When this research bears fruit in the form of consumer-ready vehicles, will the fueling infrastructure be ready? Will the required fueling systems work in cold climates as well as they do in warm areas? Will we be sure that production of hydrogen as the energy carrier of choice for our transit system is the most energy efficient and environmentally friendly option? Will consumers understand this fuel and how to handle it? Those are questions addressedmore » by the EVermont Wind to Wheels Hydrogen Project: Sustainable Transportation. The hydrogen fueling infrastructure consists of three primary subcomponents: a hydrogen generator (electrolyzer), a compression and storage system, and a dispenser. The generated fuel is then used to provide transportation as a motor fuel. EVermont Inc., started in 1993 by then governor Howard Dean, is a public-private partnership of entities interested in documenting and advancing the performance of advanced technology vehicles that are sustainable and less burdensome on the environment, especially in areas of cold climates, hilly terrain and with rural settlement patterns. EVermont has developed a demonstration wind powered hydrogen fuel producing filling system that uses electrolysis, compression to 5000 psi and a hydrogen burning vehicle that functions reliably in cold climates. And that fuel is then used to meet transportation needs in a hybrid electric vehicle whose internal combustion engine has been converted to operate on hydrogen Sponsored by the DOE EERE Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program, the purpose of the project is to test the viability of sustainably produced hydrogen for use as a transportation fuel in a cold climate with hilly terrain and rural settlement patterns. Specifically, the project addresses the challenge of building a

  17. Systems Analysis | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    risks. Analysts also develop least-cost scenarios for hydrogen infrastructure rollout in support of the opportunities for multi-sector integration using hydrogen systems as well as the capability and cost associated with the H2USA public-private collaboration. Publications The following technical reports

  18. Options for refuelling hydrogen fuel cell vehicles in Italy

    NASA Astrophysics Data System (ADS)

    Mercuri, R.; Bauen, A.; Hart, D.

    Hydrogen fuel cell vehicle (H 2 FCV) trials are taking place in a number of cities around the world. In Italy, Milan and Turin are the first to have demonstration projects involving hydrogen-fuelled vehicles, in part to satisfy increasing consumer demand for improved environmental performance. The Italian transport plan specifically highlights the potential for FCVs to enter into the marketplace from around 2005. A scenario for FCV penetration into Italy, developed using projected costs for FCV and hydrogen fuel, suggests that by 2015, 2 million Italian cars could be powered by fuel cells. By 2030, 60% of the parc could be FCVs. To develop an infrastructure to supply these vehicles, a variety of options is considered. Large-scale steam reforming, on-site reforming and electrolysis options are analysed, with hydrogen delivered both in liquid and gaseous form. Assuming mature technologies, with over 10,000 units produced, on-site steam reforming provides the most economic hydrogen supply to the consumer, at US 2.6/kg. However, in the early stages of the infrastructure development there is a clear opportunity for on-site electrolysis and for production of hydrogen at centralised facilities, with delivery in the form of liquid hydrogen. This enables additional flexibility, as the hydrogen may also be used for fuel refining or for local power generation. In the current Italian context, energy companies could have a significant role to play in developing a hydrogen infrastructure. The use of hydrogen FCVs can substantially reduce emissions of regulated pollutants and greenhouse gases. Using externality costs for regulated pollutants, it is estimated that the use of hydrogen fuel cell buses in place of 5% of diesel buses in Milan could avoid US 2 million per year in health costs. The addition of even very low externality costs to fuel prices makes the use of untaxed hydrogen in buses and cars, which is slightly more expensive for the motorist than untaxed gasoline or

  19. Environmental and Health Benefits and Risks of a Global Hydrogen Economy

    NASA Astrophysics Data System (ADS)

    Dubey, M.; Horowitz, L. W.; Rahn, T. A.; Kinnison, D. E.

    2003-12-01

    Rapid development in hydrogen fuel-cell technologies will create a strong impetus for a massive hydrogen supply and distribution infrastructure in the coming decades. Hydrogen provides an efficient energy carrier that promises to enhance urban and regional air quality that will benefit human health. It could also reduce risks of climate change if large-scale hydrogen production by renewable or nuclear energy sources becomes viable. While it is well known that the byproduct of energy produced from hydrogen is water vapor, it is not well known that the storage and transfer of hydrogen is inevitably accompanied by measurable leakage of hydrogen. Unintended consequences of hydrogen leakage include reduction in global oxidative capacity, changes in tropospheric ozone, and increase in stratospheric water that would exacerbate halogen induced ozone losses as well as impact the earth's radiation budget and climate. Stratospheric ozone depletion would increase exposure to harmful ultraviolet radiation and increased risk to melanoma. We construct plausible global hydrogen energy use and leak scenarios and assess their impacts using global 3-D simulations by the Model for Ozone And Related Trace species (MOZART). The hydrogen fluxes and photochemistry in our model successfully reproduce the contemporary hydrogen cycle as observed by a network of remote global stations. Our intent is to determine environmentally tolerable leak rates and also facilitate a gradual phasing in of a hydrogen economy over the next several decades as the elimination of the use of halocarbons gradually reduces halogen induced stratospheric ozone loss rates. We stress that the future evolution of microbial soil sink of hydrogen that determines its current lifetime (about 2 years) is the principal source of uncertainty in our assessment. We propose global monitoring of hydrogen and its deuterium content to define a baseline and track its budget to responsibly prepare for a global hydrogen economy.

  20. Making Infrastructure Visible: A Case Study of Home Networking

    ERIC Educational Resources Information Center

    Chetty, Marshini

    2011-01-01

    Technological infrastructure is often taken for granted in our day to day lives until it breaks down, usually because it invisibly supports tasks otherwise. Previous work in HCI has focused on how people react and deal with breaks in infrastructure as well as how to help people to fix or exploit these breaks. However, few have sought to understand…

  1. Modeling, Simulation and Analysis of Public Key Infrastructure

    NASA Technical Reports Server (NTRS)

    Liu, Yuan-Kwei; Tuey, Richard; Ma, Paul (Technical Monitor)

    1998-01-01

    Security is an essential part of network communication. The advances in cryptography have provided solutions to many of the network security requirements. Public Key Infrastructure (PKI) is the foundation of the cryptography applications. The main objective of this research is to design a model to simulate a reliable, scalable, manageable, and high-performance public key infrastructure. We build a model to simulate the NASA public key infrastructure by using SimProcess and MatLab Software. The simulation is from top level all the way down to the computation needed for encryption, decryption, digital signature, and secure web server. The application of secure web server could be utilized in wireless communications. The results of the simulation are analyzed and confirmed by using queueing theory.

  2. 802.11 Wireless Infrastructure To Enhance Medical Response to Disasters

    PubMed Central

    Arisoylu, Mustafa; Mishra, Rajesh; Rao, Ramesh; Lenert, Leslie A.

    2005-01-01

    802.11 (WiFi) is a well established network communications protocol that has wide applicability in civil infrastructure. This paper describes research that explores the design of 802.11 networks enhanced to support data communications in disaster environments. The focus of these efforts is to create network infrastructure to support operations by Metropolitan Medical Response System (MMRS) units and Federally-sponsored regional teams that respond to mass casualty events caused by a terrorist attack with chemical, biological, nuclear or radiological weapons or by a hazardous materials spill. In this paper, we describe an advanced WiFi-based network architecture designed to meet the needs of MMRS operations. This architecture combines a Wireless Distribution Systems for peer-to-peer multihop connectivity between access points with flexible and shared access to multiple cellular backhauls for robust connectivity to the Internet. The architecture offers a high bandwidth data communications infrastructure that can penetrate into buildings and structures while also supporting commercial off-the-shelf end-user equipment such as PDAs. It is self-configuring and is self-healing in the event of a loss of a portion of the infrastructure. Testing of prototype units is ongoing. PMID:16778990

  3. The Czech National Grid Infrastructure

    NASA Astrophysics Data System (ADS)

    Chudoba, J.; Křenková, I.; Mulač, M.; Ruda, M.; Sitera, J.

    2017-10-01

    The Czech National Grid Infrastructure is operated by MetaCentrum, a CESNET department responsible for coordinating and managing activities related to distributed computing. CESNET as the Czech National Research and Education Network (NREN) provides many e-infrastructure services, which are used by 94% of the scientific and research community in the Czech Republic. Computing and storage resources owned by different organizations are connected by fast enough network to provide transparent access to all resources. We describe in more detail the computing infrastructure, which is based on several different technologies and covers grid, cloud and map-reduce environment. While the largest part of CPUs is still accessible via distributed torque servers, providing environment for long batch jobs, part of infrastructure is available via standard EGI tools in EGI, subset of NGI resources is provided into EGI FedCloud environment with cloud interface and there is also Hadoop cluster provided by the same e-infrastructure.A broad spectrum of computing servers is offered; users can choose from standard 2 CPU servers to large SMP machines with up to 6 TB of RAM or servers with GPU cards. Different groups have different priorities on various resources, resource owners can even have an exclusive access. The software is distributed via AFS. Storage servers offering up to tens of terabytes of disk space to individual users are connected via NFS4 on top of GPFS and access to long term HSM storage with peta-byte capacity is also provided. Overview of available resources and recent statistics of usage will be given.

  4. Noise-tolerant inverse analysis models for nondestructive evaluation of transportation infrastructure systems using neural networks

    NASA Astrophysics Data System (ADS)

    Ceylan, Halil; Gopalakrishnan, Kasthurirangan; Birkan Bayrak, Mustafa; Guclu, Alper

    2013-09-01

    The need to rapidly and cost-effectively evaluate the present condition of pavement infrastructure is a critical issue concerning the deterioration of ageing transportation infrastructure all around the world. Nondestructive testing (NDT) and evaluation methods are well-suited for characterising materials and determining structural integrity of pavement systems. The falling weight deflectometer (FWD) is a NDT equipment used to assess the structural condition of highway and airfield pavement systems and to determine the moduli of pavement layers. This involves static or dynamic inverse analysis (referred to as backcalculation) of FWD deflection profiles in the pavement surface under a simulated truck load. The main objective of this study was to employ biologically inspired computational systems to develop robust pavement layer moduli backcalculation algorithms that can tolerate noise or inaccuracies in the FWD deflection data collected in the field. Artificial neural systems, also known as artificial neural networks (ANNs), are valuable computational intelligence tools that are increasingly being used to solve resource-intensive complex engineering problems. Unlike the linear elastic layered theory commonly used in pavement layer backcalculation, non-linear unbound aggregate base and subgrade soil response models were used in an axisymmetric finite element structural analysis programme to generate synthetic database for training and testing the ANN models. In order to develop more robust networks that can tolerate the noisy or inaccurate pavement deflection patterns in the NDT data, several network architectures were trained with varying levels of noise in them. The trained ANN models were capable of rapidly predicting the pavement layer moduli and critical pavement responses (tensile strains at the bottom of the asphalt concrete layer, compressive strains on top of the subgrade layer and the deviator stresses on top of the subgrade layer), and also pavement

  5. Frontiers, Opportunities and Challenges for a Hydrogen Economy

    NASA Astrophysics Data System (ADS)

    Turner, John

    2015-03-01

    Energy carriers are the staple for powering the society we live in. Coal, oil, natural gas, gasoline and diesel all carry energy in chemical bonds, used in almost all areas of our civilization. But these carriers have a limited-use lifetime on this planet. They are finite, contribute to climate change and carry significant geopolitical issues. If mankind is to maintain and grow our societies, new energy carriers must be developed and deployed into our energy infrastructure. Hydrogen is the simplest of all the energy carriers and when refined from water using renewable energies like solar and wind, represents a sustainable energy carrier, viable for millennia to come. This talk with discuss the challenges for sustainable production of hydrogen, along with the promise and possible pathways for implementing hydrogen into our energy infrastructure.

  6. Characterization of the hydrogen-bond network of water around sucrose and trehalose: Microwave and terahertz spectroscopic study

    NASA Astrophysics Data System (ADS)

    Shiraga, Keiichiro; Adachi, Aya; Nakamura, Masahito; Tajima, Takuro; Ajito, Katsuhiro; Ogawa, Yuichi

    2017-03-01

    Modification of the water hydrogen bond network imposed by disaccharides is known to serve as a bioprotective agent in living organisms, though its comprehensive understanding is still yet to be reached. In this study, aiming to characterize the dynamical slowing down and destructuring effect of disaccharides, we performed broadband dielectric spectroscopy, ranging from 0.5 GHz to 12 THz, of sucrose and trehalose aqueous solutions. The destructuring effect was examined in two ways (the hydrogen bond fragmentation and disordering) and our result showed that both sucrose and trehalose exhibit an obvious destructuring effect with a similar strength, by fragmenting hydrogen bonds and distorting the tetrahedral-like structure of water. This observation strongly supports a chaotropic (structure-breaking) aspect of disaccharides on the water structure. At the same time, hydration water was found to exhibit slower dynamics and a greater reorientational cooperativity than bulk water because of the strengthened hydrogen bonds. These results lead to the conclusion that strong disaccharide-water hydrogen bonds structurally incompatible with native water-water bonds lead to the rigid but destructured hydrogen bond network around disaccharides. Another important finding in this study is that the greater dynamical slowing down of trehalose was found compared with that of sucrose, at variance with the destructuring effect where no solute dependent difference was observed. This discovery suggests that the exceptionally greater bioprotective impact especially of trehalose among disaccharides is mainly associated with the dynamical slowing down (rather than the destructuring effect).

  7. Hydrogen Research for Spaceport and Space-Based Applications: Hydrogen Production, Storage, and Transport. Part 3

    NASA Technical Reports Server (NTRS)

    Anderson, Tim; Balaban, Canan

    2008-01-01

    The activities presented are a broad based approach to advancing key hydrogen related technologies in areas such as fuel cells, hydrogen production, and distributed sensors for hydrogen-leak detection, laser instrumentation for hydrogen-leak detection, and cryogenic transport and storage. Presented are the results from research projects, education and outreach activities, system and trade studies. The work will aid in advancing the state-of-the-art for several critical technologies related to the implementation of a hydrogen infrastructure. Activities conducted are relevant to a number of propulsion and power systems for terrestrial, aeronautics and aerospace applications. Hydrogen storage and in-space hydrogen transport research focused on developing and verifying design concepts for efficient, safe, lightweight liquid hydrogen cryogenic storage systems. Research into hydrogen production had a specific goal of further advancing proton conducting membrane technology in the laboratory at a larger scale. System and process trade studies evaluated the proton conducting membrane technology, specifically, scale-up issues.

  8. Resilience of networks formed of interdependent modular networks

    NASA Astrophysics Data System (ADS)

    Shekhtman, Louis M.; Shai, Saray; Havlin, Shlomo

    2015-12-01

    Many infrastructure networks have a modular structure and are also interdependent with other infrastructures. While significant research has explored the resilience of interdependent networks, there has been no analysis of the effects of modularity. Here we develop a theoretical framework for attacks on interdependent modular networks and support our results through simulations. We focus, for simplicity, on the case where each network has the same number of communities and the dependency links are restricted to be between pairs of communities of different networks. This is particularly realistic for modeling infrastructure across cities. Each city has its own infrastructures and different infrastructures are dependent only within the city. However, each infrastructure is connected within and between cities. For example, a power grid will connect many cities as will a communication network, yet a power station and communication tower that are interdependent will likely be in the same city. It has previously been shown that single networks are very susceptible to the failure of the interconnected nodes (between communities) (Shai et al 2014 arXiv:1404.4748) and that attacks on these nodes are even more crippling than attacks based on betweenness (da Cunha et al 2015 arXiv:1502.00353). In our example of cities these nodes have long range links which are more likely to fail. For both treelike and looplike interdependent modular networks we find distinct regimes depending on the number of modules, m. (i) In the case where there are fewer modules with strong intraconnections, the system first separates into modules in an abrupt first-order transition and then each module undergoes a second percolation transition. (ii) When there are more modules with many interconnections between them, the system undergoes a single transition. Overall, we find that modular structure can significantly influence the type of transitions observed in interdependent networks and should be

  9. Acoustic emission safety monitoring of intermodal transportation infrastructure.

    DOT National Transportation Integrated Search

    2015-09-01

    Safety and integrity of the national transportation infrastructure are of paramount importance and highway bridges are critical components of the highway system network. This network provides an immense contribution to the industry productivity and e...

  10. Structure and energetics of hydrogen-bonded networks of methanol on close packed transition metal surfaces

    NASA Astrophysics Data System (ADS)

    Murphy, Colin J.; Carrasco, Javier; Lawton, Timothy J.; Liriano, Melissa L.; Baber, Ashleigh E.; Lewis, Emily A.; Michaelides, Angelos; Sykes, E. Charles H.

    2014-07-01

    Methanol is a versatile chemical feedstock, fuel source, and energy storage material. Many reactions involving methanol are catalyzed by transition metal surfaces, on which hydrogen-bonded methanol overlayers form. As with water, the structure of these overlayers is expected to depend on a delicate balance of hydrogen bonding and adsorbate-substrate bonding. In contrast to water, however, relatively little is known about the structures methanol overlayers form and how these vary from one substrate to another. To address this issue, herein we analyze the hydrogen bonded networks that methanol forms as a function of coverage on three catalytically important surfaces, Au(111), Cu(111), and Pt(111), using a combination of scanning tunneling microscopy and density functional theory. We investigate the effect of intermolecular interactions, surface coverage, and adsorption energies on molecular assembly and compare the results to more widely studied water networks on the same surfaces. Two main factors are shown to direct the structure of methanol on the surfaces studied: the surface coverage and the competition between the methanol-methanol and methanol-surface interactions. Additionally, we report a new chiral form of buckled hexamer formed by surface bound methanol that maximizes the interactions between methanol monomers by sacrificing interactions with the surface. These results serve as a direct comparison of interaction strength, assembly, and chirality of methanol networks on Au(111), Cu(111), and Pt(111) which are catalytically relevant for methanol oxidation, steam reforming, and direct methanol fuel cells.

  11. Common solutions for power, communication and robustness in operations of large measurement networks within Research Infrastructures

    NASA Astrophysics Data System (ADS)

    Huber, Robert; Beranzoli, Laura; Fiebig, Markus; Gilbert, Olivier; Laj, Paolo; Mazzola, Mauro; Paris, Jean-Daniel; Pedersen, Helle; Stocker, Markus; Vitale, Vito; Waldmann, Christoph

    2017-04-01

    European Environmental Research Infrastructures (RI) frequently comprise in situ observatories from large-scale networks of platforms or sites to local networks of various sensors. Network operation is usually a cumbersome aspect of these RIs facing specific technological problems related to operations in remote areas, maintenance of the network, transmission of observation values, etc.. Robust inter-connection within and across these networks is still at infancy level and the burden increases with remoteness of the station, harshness of environmental conditions, and unavailability of classic communication systems, which is a common feature here. Despite existing RIs having developed ad-hoc solutions to overcome specific problems and innovative technologies becoming available, no common approach yet exists. Within the European project ENVRIplus, a dedicated work package aims to stimulate common network operation technologies and approaches in terms of power supply and storage, robustness, and data transmission. Major objectives of this task are to review existing technologies and RI requirements, propose innovative solutions and evaluate the standardization potential prior to wider deployment across networks. Focus areas within these efforts are: improving energy production and storage units, testing robustness of RI equipment towards extreme conditions as well as methodologies for robust data transmission. We will introduce current project activities which are coordinated at various levels including the engineering as well as the data management perspective, and explain how environmental RIs can benefit from the developments.

  12. Towards Resilient Critical Infrastructures: Application of Type-2 Fuzzy Logic in Embedded Network Security Cyber Sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ondrej Linda; Todd Vollmer; Jim Alves-Foss

    2011-08-01

    Resiliency and cyber security of modern critical infrastructures is becoming increasingly important with the growing number of threats in the cyber-environment. This paper proposes an extension to a previously developed fuzzy logic based anomaly detection network security cyber sensor via incorporating Type-2 Fuzzy Logic (T2 FL). In general, fuzzy logic provides a framework for system modeling in linguistic form capable of coping with imprecise and vague meanings of words. T2 FL is an extension of Type-1 FL which proved to be successful in modeling and minimizing the effects of various kinds of dynamic uncertainties. In this paper, T2 FL providesmore » a basis for robust anomaly detection and cyber security state awareness. In addition, the proposed algorithm was specifically developed to comply with the constrained computational requirements of low-cost embedded network security cyber sensors. The performance of the system was evaluated on a set of network data recorded from an experimental cyber-security test-bed.« less

  13. Benefits and Challenges of Linking Green Infrastructure and Highway Planning in the United States

    NASA Astrophysics Data System (ADS)

    Marcucci, Daniel J.; Jordan, Lauren M.

    2013-01-01

    Landscape-level green infrastructure creates a network of natural and semi-natural areas that protects and enhances ecosystem services, regenerative capacities, and ecological dynamism over long timeframes. It can also enhance quality of life and certain economic activity. Highways create a network for moving goods and services efficiently, enabling commerce, and improving mobility. A fundamentally profound conflict exists between transportation planning and green infrastructure planning because they both seek to create connected, functioning networks across the same landscapes and regions, but transportation networks, especially in the form of highways, fragment and disconnect green infrastructure networks. A key opportunity has emerged in the United States during the last ten years with the promotion of measures to link transportation and environmental concerns. In this article we examined the potential benefits and challenges of linking landscape-level green infrastructure planning and implementation with integrated transportation planning and highway project development in the United States policy context. This was done by establishing a conceptual model that identified logical flow lines from planning to implementation as well as the potential interconnectors between green infrastructure and highway infrastructure. We analyzed the relationship of these activities through literature review, policy analysis, and a case study of a suburban Maryland, USA landscape. We found that regionally developed and adopted green infrastructure plans can be instrumental in creating more responsive regional transportation plans and streamlining the project environmental review process while enabling better outcomes by enabling more targeted mitigation. In order for benefits to occur, however, landscape-scale green infrastructure assessments and plans must be in place before integrated transportation planning and highway project development occurs. It is in the transportation

  14. Benefits and challenges of linking green infrastructure and highway planning in the United States.

    PubMed

    Marcucci, Daniel J; Jordan, Lauren M

    2013-01-01

    Landscape-level green infrastructure creates a network of natural and semi-natural areas that protects and enhances ecosystem services, regenerative capacities, and ecological dynamism over long timeframes. It can also enhance quality of life and certain economic activity. Highways create a network for moving goods and services efficiently, enabling commerce, and improving mobility. A fundamentally profound conflict exists between transportation planning and green infrastructure planning because they both seek to create connected, functioning networks across the same landscapes and regions, but transportation networks, especially in the form of highways, fragment and disconnect green infrastructure networks. A key opportunity has emerged in the United States during the last ten years with the promotion of measures to link transportation and environmental concerns. In this article we examined the potential benefits and challenges of linking landscape-level green infrastructure planning and implementation with integrated transportation planning and highway project development in the United States policy context. This was done by establishing a conceptual model that identified logical flow lines from planning to implementation as well as the potential interconnectors between green infrastructure and highway infrastructure. We analyzed the relationship of these activities through literature review, policy analysis, and a case study of a suburban Maryland, USA landscape. We found that regionally developed and adopted green infrastructure plans can be instrumental in creating more responsive regional transportation plans and streamlining the project environmental review process while enabling better outcomes by enabling more targeted mitigation. In order for benefits to occur, however, landscape-scale green infrastructure assessments and plans must be in place before integrated transportation planning and highway project development occurs. It is in the transportation

  15. PKI security in large-scale healthcare networks.

    PubMed

    Mantas, Georgios; Lymberopoulos, Dimitrios; Komninos, Nikos

    2012-06-01

    During the past few years a lot of PKI (Public Key Infrastructures) infrastructures have been proposed for healthcare networks in order to ensure secure communication services and exchange of data among healthcare professionals. However, there is a plethora of challenges in these healthcare PKI infrastructures. Especially, there are a lot of challenges for PKI infrastructures deployed over large-scale healthcare networks. In this paper, we propose a PKI infrastructure to ensure security in a large-scale Internet-based healthcare network connecting a wide spectrum of healthcare units geographically distributed within a wide region. Furthermore, the proposed PKI infrastructure facilitates the trust issues that arise in a large-scale healthcare network including multi-domain PKI infrastructures.

  16. Highly sensitive hydrogen detection of catalyst-free ZnO nanorod networks suspended by lithography-assisted growth.

    PubMed

    Huh, Junghwan; Park, Jonghyurk; Kim, Gyu Tae; Park, Jeong Young

    2011-02-25

    We have successfully demonstrated a ZnO nanorod-based 3D nanostructure to show a high sensitivity and very fast response/recovery to hydrogen gas. ZnO nanorods have been synthesized selectively over the pre-defined area at relatively low temperature using a simple self-catalytic solution process assisted by a lithographic method. The conductance of the ZnO nanorod device varies significantly as the concentration of the hydrogen is changed without any additive metal catalyst, revealing a high sensitivity to hydrogen gas. Its superior performance can be explained by the porous structure of its three-dimensional network and the enhanced surface reaction of the hydrogen molecules with the oxygen defects resulting from a high surface-to-volume ratio. It was found that the change of conductance follows a power law depending on the hydrogen concentration. A Langmuir isotherm following an ideal power law and a cross-over behavior of the activation energy with respect to hydrogen concentration were observed. This is a very novel and intriguing phenomenon on nanostructured materials, which suggests competitive surface reactions in ZnO nanorod gas sensors.

  17. Metadata and network API aspects of a framework for storing and retrieving civil infrastructure monitoring data

    NASA Astrophysics Data System (ADS)

    Wong, John-Michael; Stojadinovic, Bozidar

    2005-05-01

    A framework has been defined for storing and retrieving civil infrastructure monitoring data over a network. The framework consists of two primary components: metadata and network communications. The metadata component provides the descriptions and data definitions necessary for cataloging and searching monitoring data. The communications component provides Java classes for remotely accessing the data. Packages of Enterprise JavaBeans and data handling utility classes are written to use the underlying metadata information to build real-time monitoring applications. The utility of the framework was evaluated using wireless accelerometers on a shaking table earthquake simulation test of a reinforced concrete bridge column. The NEESgrid data and metadata repository services were used as a backend storage implementation. A web interface was created to demonstrate the utility of the data model and provides an example health monitoring application.

  18. People at risk - nexus critical infrastructure and society

    NASA Astrophysics Data System (ADS)

    Heiser, Micha; Thaler, Thomas; Fuchs, Sven

    2016-04-01

    Strategic infrastructure networks include the highly complex and interconnected systems that are so vital to a city or state that any sudden disruption can result in debilitating impacts on human life, the economy and the society as a whole. Recently, various studies have applied complex network-based models to study the performance and vulnerability of infrastructure systems under various types of attacks and hazards - a major part of them is, particularly after the 9/11 incident, related to terrorism attacks. Here, vulnerability is generally defined as the performance drop of an infrastructure system under a given disruptive event. The performance can be measured by different metrics, which correspond to various levels of resilience. In this paper, we will address vulnerability and exposure of critical infrastructure in the Eastern Alps. The Federal State Tyrol is an international transport route and an essential component of the north-south transport connectivity in Europe. Any interruption of the transport flow leads to incommensurable consequences in terms of indirect losses, since the system does not feature redundant elements at comparable economic efficiency. Natural hazard processes such as floods, debris flows, rock falls and avalanches, endanger this infrastructure line, such as large flood events in 2005 or 2012, rock falls 2014, which had strong impacts to the critical infrastructure, such as disruption of the railway lines (in 2005 and 2012), highways and motorways (in 2014). The aim of this paper is to present how critical infrastructures as well as communities and societies are vulnerable and can be resilient against natural hazard risks and the relative cascading effects to different compartments (industrial, infrastructural, societal, institutional, cultural, etc.), which is the dominant by the type of hazard (avalanches, torrential flooding, debris flow, rock falls). Specific themes will be addressed in various case studies to allow cross

  19. Assessing needs and assets for building a regional network infrastructure to reduce cancer related health disparities.

    PubMed

    Wells, Kristen J; Lima, Diana S; Meade, Cathy D; Muñoz-Antonia, Teresita; Scarinci, Isabel; McGuire, Allison; Gwede, Clement K; Pledger, W Jack; Partridge, Edward; Lipscomb, Joseph; Matthews, Roland; Matta, Jaime; Flores, Idhaliz; Weiner, Roy; Turner, Timothy; Miele, Lucio; Wiese, Thomas E; Fouad, Mona; Moreno, Carlos S; Lacey, Michelle; Christie, Debra W; Price-Haywood, Eboni G; Quinn, Gwendolyn P; Coppola, Domenico; Sodeke, Stephen O; Green, B Lee; Lichtveld, Maureen Y

    2014-06-01

    Significant cancer health disparities exist in the United States and Puerto Rico. While numerous initiatives have been implemented to reduce cancer disparities, regional coordination of these efforts between institutions is often limited. To address cancer health disparities nation-wide, a series of regional transdisciplinary networks through the Geographic Management Program (GMaP) and the Minority Biospecimen/Biobanking Geographic Management Program (BMaP) were established in six regions across the country. This paper describes the development of the Region 3 GMaP/BMaP network composed of over 100 investigators from nine institutions in five Southeastern states and Puerto Rico to develop a state-of-the-art network for cancer health disparities research and training. We describe a series of partnership activities that led to the formation of the infrastructure for this network, recount the participatory processes utilized to develop and implement a needs and assets assessment and implementation plan, and describe our approach to data collection. Completion, by all nine institutions, of the needs and assets assessment resulted in several beneficial outcomes for Region 3 GMaP/BMaP. This network entails ongoing commitment from the institutions and institutional leaders, continuous participatory and engagement activities, and effective coordination and communication centered on team science goals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Assessing Needs and Assets for Building a Regional Network Infrastructure to Reduce Cancer Related Health Disparities

    PubMed Central

    Wells, Kristen J.; Lima, Diana S.; Meade, Cathy D.; Muñoz-Antonia, Teresita; Scarinci, Isabel; McGuire, Allison; Gwede, Clement K.; Pledger, W. Jack; Partridge, Edward; Lipscomb, Joseph; Matthews, Roland; Matta, Jaime; Flores, Idhaliz; Weiner, Roy; Turner, Timothy; Miele, Lucio; Wiese, Thomas E.; Fouad, Mona; Moreno, Carlos S.; Lacey, Michelle; Christie, Debra W.; Price-Haywood, Eboni G.; Quinn, Gwendolyn P.; Coppola, Domenico; Sodeke, Stephen O.; Green, B. Lee; Lichtveld, Maureen Y.

    2015-01-01

    Significant cancer health disparities exist in the United States and Puerto Rico. While numerous initiatives have been implemented to reduce cancer disparities, regional coordination of these efforts between institutions is often limited. To address cancer health disparities nationwide, a series of regional transdisciplinary networks through the Geographic Management Program (GMaP) and the Minority Biospecimen/Biobanking Geographic Management Program (BMaP) were established in six regions across the country. This paper describes the development of the Region 3 GMaP/BMaP network composed of over 100 investigators from nine institutions in five Southeastern states and Puerto Rico to develop a state-of-the-art network for cancer health disparities research and training. We describe a series of partnership activities that led to the formation of the infrastructure for this network, recount the participatory processes utilized to develop and implement a needs and assets assessment and implementation plan, and describe our approach to data collection. Completion, by all nine institutions, of the needs and assets assessment resulted in several beneficial outcomes for Region 3 GMaP/BMaP. This network entails ongoing commitment from the institutions and institutional leaders, continuous participatory and engagement activities, and effective coordination and communication centered on team science goals. PMID:24486917

  1. Geographic Hotspots of Critical National Infrastructure.

    PubMed

    Thacker, Scott; Barr, Stuart; Pant, Raghav; Hall, Jim W; Alderson, David

    2017-12-01

    Failure of critical national infrastructures can result in major disruptions to society and the economy. Understanding the criticality of individual assets and the geographic areas in which they are located is essential for targeting investments to reduce risks and enhance system resilience. Within this study we provide new insights into the criticality of real-life critical infrastructure networks by integrating high-resolution data on infrastructure location, connectivity, interdependence, and usage. We propose a metric of infrastructure criticality in terms of the number of users who may be directly or indirectly disrupted by the failure of physically interdependent infrastructures. Kernel density estimation is used to integrate spatially discrete criticality values associated with individual infrastructure assets, producing a continuous surface from which statistically significant infrastructure criticality hotspots are identified. We develop a comprehensive and unique national-scale demonstration for England and Wales that utilizes previously unavailable data from the energy, transport, water, waste, and digital communications sectors. The testing of 200,000 failure scenarios identifies that hotspots are typically located around the periphery of urban areas where there are large facilities upon which many users depend or where several critical infrastructures are concentrated in one location. © 2017 Society for Risk Analysis.

  2. A Federal Response: The President's Critical Infrastructure Protection Board.

    ERIC Educational Resources Information Center

    Schmidt, Howard

    2002-01-01

    Outlines the U.S. Critical Infrastructure Protection Board's purpose, budget, principles, and priorities. Describes the board's role in coordinating all federal activities related to protection of information systems and networks supporting critical infrastructures. Also discusses its responsibility in creating a policy and road map for government…

  3. Converged Infrastructure for Emerging Regions - A Research Agenda

    NASA Astrophysics Data System (ADS)

    Chevrollier, Nicolas; Zidbeck, Juha; Ntlatlapa, Ntsibane; Simsek, Burak; Marikar, Achim

    In remote parts of Africa, the lack of energy supply, of wired infrastructure, of trained personnel and the limitation in OPEX and CAPEX impose stringent requirements on the network building blocks that support the communication infrastructure. Consequently, in this promising but untapped market, the research aims at designing and implementing energy-efficient, robust, reliable and affordable wide heterogeneous wireless mesh networks to connect geographically very large areas in a challenged environment. This paper proposes a solution that is aimed at enhancing the usability of Internet services in the harsh target environment and especially how the end-users experience the reliability of these services.

  4. Tough stimuli-responsive supramolecular hydrogels with hydrogen-bonding network junctions.

    PubMed

    Guo, Mingyu; Pitet, Louis M; Wyss, Hans M; Vos, Matthijn; Dankers, Patricia Y W; Meijer, E W

    2014-05-14

    Hydrogels were prepared with physical cross-links comprising 2-ureido-4[1H]-pyrimidinone (UPy) hydrogen-bonding units within the backbone of segmented amphiphilic macromolecules having hydrophilic poly(ethylene glycol) (PEG). The bulk materials adopt nanoscopic physical cross-links composed of UPy-UPy dimers embedded in segregated hydrophobic domains dispersed within the PEG matrix as comfirmed by cryo-electron microscopy. The amphiphilic network was swollen with high weight fractions of water (w(H2O) ≈ 0.8) owing to the high PEG weight fraction within the pristine polymers (w(PEG) ≈ 0.9). Two different PEG chain lengths were investigated and illustrate the corresponding consequences of cross-link density on mechanical properties. The resulting hydrogels exhibited high strength and resilience upon deformation, consistent with a microphase separated network, in which the UPy-UPy interactions were adequately shielded within hydrophobic nanoscale pockets that maintain the network despite extensive water content. The cumulative result is a series of tough hydrogels with tunable mechanical properties and tractable synthetic preparation and processing. Furthermore, the melting transition of PEG in the dry polymer was shown to be an effective stimulus for shape memory behavior.

  5. Interactions among human behavior, social networks, and societal infrastructures: A Case Study in Computational Epidemiology

    NASA Astrophysics Data System (ADS)

    Barrett, Christopher L.; Bisset, Keith; Chen, Jiangzhuo; Eubank, Stephen; Lewis, Bryan; Kumar, V. S. Anil; Marathe, Madhav V.; Mortveit, Henning S.

    Human behavior, social networks, and the civil infrastructures are closely intertwined. Understanding their co-evolution is critical for designing public policies and decision support for disaster planning. For example, human behaviors and day to day activities of individuals create dense social interactions that are characteristic of modern urban societies. These dense social networks provide a perfect fabric for fast, uncontrolled disease propagation. Conversely, people’s behavior in response to public policies and their perception of how the crisis is unfolding as a result of disease outbreak can dramatically alter the normally stable social interactions. Effective planning and response strategies must take these complicated interactions into account. In this chapter, we describe a computer simulation based approach to study these issues using public health and computational epidemiology as an illustrative example. We also formulate game-theoretic and stochastic optimization problems that capture many of the problems that we study empirically.

  6. Sensor Network Infrastructure for a Home Care Monitoring System

    PubMed Central

    Palumbo, Filippo; Ullberg, Jonas; Štimec, Ales; Furfari, Francesco; Karlsson, Lars; Coradeschi, Silvia

    2014-01-01

    This paper presents the sensor network infrastructure for a home care system that allows long-term monitoring of physiological data and everyday activities. The aim of the proposed system is to allow the elderly to live longer in their home without compromising safety and ensuring the detection of health problems. The system offers the possibility of a virtual visit via a teleoperated robot. During the visit, physiological data and activities occurring during a period of time can be discussed. These data are collected from physiological sensors (e.g., temperature, blood pressure, glucose) and environmental sensors (e.g., motion, bed/chair occupancy, electrical usage). The system can also give alarms if sudden problems occur, like a fall, and warnings based on more long-term trends, such as the deterioration of health being detected. It has been implemented and tested in a test environment and has been deployed in six real homes for a year-long evaluation. The key contribution of the paper is the presentation of an implemented system for ambient assisted living (AAL) tested in a real environment, combining the acquisition of sensor data, a flexible and adaptable middleware compliant with the OSGistandard and a context recognition application. The system has been developed in a European project called GiraffPlus. PMID:24573309

  7. Sensor network infrastructure for a home care monitoring system.

    PubMed

    Palumbo, Filippo; Ullberg, Jonas; Stimec, Ales; Furfari, Francesco; Karlsson, Lars; Coradeschi, Silvia

    2014-02-25

    This paper presents the sensor network infrastructure for a home care system that allows long-term monitoring of physiological data and everyday activities. The aim of the proposed system is to allow the elderly to live longer in their home without compromising safety and ensuring the detection of health problems. The system offers the possibility of a virtual visit via a teleoperated robot. During the visit, physiological data and activities occurring during a period of time can be discussed. These data are collected from physiological sensors (e.g., temperature, blood pressure, glucose) and environmental sensors (e.g., motion, bed/chair occupancy, electrical usage). The system can also give alarms if sudden problems occur, like a fall, and warnings based on more long-term trends, such as the deterioration of health being detected. It has been implemented and tested in a test environment and has been deployed in six real homes for a year-long evaluation. The key contribution of the paper is the presentation of an implemented system for ambient assisted living (AAL) tested in a real environment, combining the acquisition of sensor data, a flexible and adaptable middleware compliant with the OSGistandard and a context recognition application. The system has been developed in a European project called GiraffPlus.

  8. Oklahoma's transportation infrastructure : inventory and impacts.

    DOT National Transportation Integrated Search

    2009-10-01

    This project comprehensively analyzed Oklahomas transportation infrastructure and its impact on the states economy via network analysis techniques that are widely used in and outside geography. The focus was on the context, connectivity, and co...

  9. Critical Infrastructure Protection II, The International Federation for Information Processing, Volume 290.

    NASA Astrophysics Data System (ADS)

    Papa, Mauricio; Shenoi, Sujeet

    The information infrastructure -- comprising computers, embedded devices, networks and software systems -- is vital to day-to-day operations in every sector: information and telecommunications, banking and finance, energy, chemicals and hazardous materials, agriculture, food, water, public health, emergency services, transportation, postal and shipping, government and defense. Global business and industry, governments, indeed society itself, cannot function effectively if major components of the critical information infrastructure are degraded, disabled or destroyed. Critical Infrastructure Protection II describes original research results and innovative applications in the interdisciplinary field of critical infrastructure protection. Also, it highlights the importance of weaving science, technology and policy in crafting sophisticated, yet practical, solutions that will help secure information, computer and network assets in the various critical infrastructure sectors. Areas of coverage include: - Themes and Issues - Infrastructure Security - Control Systems Security - Security Strategies - Infrastructure Interdependencies - Infrastructure Modeling and Simulation This book is the second volume in the annual series produced by the International Federation for Information Processing (IFIP) Working Group 11.10 on Critical Infrastructure Protection, an international community of scientists, engineers, practitioners and policy makers dedicated to advancing research, development and implementation efforts focused on infrastructure protection. The book contains a selection of twenty edited papers from the Second Annual IFIP WG 11.10 International Conference on Critical Infrastructure Protection held at George Mason University, Arlington, Virginia, USA in the spring of 2008.

  10. FY 2005 Annual Progress Report for the DOE Hydrogen Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    In cooperation with industry, academia, national laboratories, and other government agencies, the Department of Energy's Hydrogen Program is advancing the state of hydrogen and fuel cell technologies in support of the President's Hydrogen Fuel Initiative. The initiative seeks to develop hydrogen, fuel cell, and infrastructure technologies needed to make it practical and cost-effective for Americans to choose to use fuel cell vehicles by 2020. Significant progress was made in fiscal year 2005 toward that goal.

  11. NREL Driving Research on Hydrogen Fuel Cells | News | NREL

    Science.gov Websites

    embrittlement and to reduce the high capital costs of installing completely independent infrastructure. Lowering carbon. The high-pressure hydrogen gas cylinders on board release just enough hydrogen through the stack make containers, but without some of the added chemicals. NREL is examining which chemicals can be

  12. Research Networking Systems: The State of Adoption at Institutions Aiming to Augment Translational Research Infrastructure

    PubMed Central

    Obeid, Jihad S; Johnson, Layne M; Stallings, Sarah; Eichmann, David

    2015-01-01

    Fostering collaborations across multiple disciplines within and across institutional boundaries is becoming increasingly important with the growing emphasis on translational research. As a result, Research Networking Systems that facilitate discovery of potential collaborators have received significant attention by institutions aiming to augment their research infrastructure. We have conducted a survey to assess the state of adoption of these new tools at the Clinical and Translational Science Award (CTSA) funded institutions. Survey results demonstrate that most CTSA funded institutions have either already adopted or were planning to adopt one of several available research networking systems. Moreover a good number of these institutions have exposed or plan to expose the data on research expertise using linked open data, an established approach to semantic web services. Preliminary exploration of these publically-available data shows promising utility in assessing cross-institutional collaborations. Further adoption of these technologies and analysis of the data are needed, however, before their impact on cross-institutional collaboration in research can be appreciated and measured. PMID:26491707

  13. Research Networking Systems: The State of Adoption at Institutions Aiming to Augment Translational Research Infrastructure.

    PubMed

    Obeid, Jihad S; Johnson, Layne M; Stallings, Sarah; Eichmann, David

    Fostering collaborations across multiple disciplines within and across institutional boundaries is becoming increasingly important with the growing emphasis on translational research. As a result, Research Networking Systems that facilitate discovery of potential collaborators have received significant attention by institutions aiming to augment their research infrastructure. We have conducted a survey to assess the state of adoption of these new tools at the Clinical and Translational Science Award (CTSA) funded institutions. Survey results demonstrate that most CTSA funded institutions have either already adopted or were planning to adopt one of several available research networking systems. Moreover a good number of these institutions have exposed or plan to expose the data on research expertise using linked open data, an established approach to semantic web services. Preliminary exploration of these publically-available data shows promising utility in assessing cross-institutional collaborations. Further adoption of these technologies and analysis of the data are needed, however, before their impact on cross-institutional collaboration in research can be appreciated and measured.

  14. Using Wireless Sensor Networks and Trains as Data Mules to Monitor Slab Track Infrastructures.

    PubMed

    Cañete, Eduardo; Chen, Jaime; Díaz, Manuel; Llopis, Luis; Reyna, Ana; Rubio, Bartolomé

    2015-06-26

    Recently, slab track systems have arisen as a safer and more sustainable option for high speed railway infrastructures, compared to traditional ballasted tracks. Integrating Wireless Sensor Networks within these infrastructures can provide structural health related data that can be used to evaluate their degradation and to not only detect failures but also to predict them. The design of such systems has to deal with a scenario of large areas with inaccessible zones, where neither Internet coverage nor electricity supply is guaranteed. In this paper we propose a monitoring system for slab track systems that measures vibrations and displacements in the track. Collected data is transmitted to passing trains, which are used as data mules to upload the information to a remote control center. On arrival at the station, the data is stored in a database, which is queried by an application in order to detect and predict failures. In this paper, different communication architectures are designed and tested to select the most suitable system meeting such requirements as efficiency, low cost and data accuracy. In addition, to ensure communication between the sensing devices and the train, the communication system must take into account parameters such as train speed, antenna coverage, band and frequency.

  15. Using Wireless Sensor Networks and Trains as Data Mules to Monitor Slab Track Infrastructures

    PubMed Central

    Cañete, Eduardo; Chen, Jaime; Díaz, Manuel; Llopis, Luis; Reyna, Ana; Rubio, Bartolomé

    2015-01-01

    Recently, slab track systems have arisen as a safer and more sustainable option for high speed railway infrastructures, compared to traditional ballasted tracks. Integrating Wireless Sensor Networks within these infrastructures can provide structural health related data that can be used to evaluate their degradation and to not only detect failures but also to predict them. The design of such systems has to deal with a scenario of large areas with inaccessible zones, where neither Internet coverage nor electricity supply is guaranteed. In this paper we propose a monitoring system for slab track systems that measures vibrations and displacements in the track. Collected data is transmitted to passing trains, which are used as data mules to upload the information to a remote control center. On arrival at the station, the data is stored in a database, which is queried by an application in order to detect and predict failures. In this paper, different communication architectures are designed and tested to select the most suitable system meeting such requirements as efficiency, low cost and data accuracy. In addition, to ensure communication between the sensing devices and the train, the communication system must take into account parameters such as train speed, antenna coverage, band and frequency. PMID:26131668

  16. Hydrogen and Storage Initiatives at the NASA JSC White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    Maes, Miguel; Woods, Stephen S.

    2006-01-01

    NASA WSTF Hydrogen Activities: a) Aerospace Test; b) System Certification & Verification; c) Component, System, & Facility Hazard Assessment; d) Safety Training Technical Transfer: a) Development of Voluntary Consensus Standards and Practices; b) Support of National Hydrogen Infrastructure Development.

  17. NASA Hydrogen Research for Spaceport and Space Based Applications

    NASA Technical Reports Server (NTRS)

    Anderson, Tim

    2006-01-01

    The activities presented are a broad based approach to advancing key hydrogen related technologies in areas such as hydrogen production, distributed sensors for hydrogen-leak detection, laser instrumentation for hydrogen-leak detection, and cryogenic transport and storage. Presented are the results form 15 research projects, education, and outreach activities, system and trade studies, and project management. The work will aid in advancing the state-of-the-art for several critical technologies related to the implementation of a hydrogen infrastructure. Activities conducted are relevant to a number of propulsion and power systems for terrestrial, aeronautics, and aerospace applications.

  18. The construction of a public key infrastructure for healthcare information networks in Japan.

    PubMed

    Sakamoto, N

    2001-01-01

    The digital signature is a key technology in the forthcoming Internet society for electronic healthcare as well as for electronic commerce. Efficient exchanges of authorized information with a digital signature in healthcare information networks require a construction of a public key infrastructure (PKI). In order to introduce a PKI to healthcare information networks in Japan, we proposed a development of a user authentication system based on a PKI for user management, user authentication and privilege management of healthcare information systems. In this paper, we describe the design of the user authentication system and its implementation. The user authentication system provides a certification authority service and a privilege management service while it is comprised of a user authentication client and user authentication serves. It is designed on a basis of an X.509 PKI and is implemented with using OpenSSL and OpenLDAP. It was incorporated into the financial information management system for the national university hospitals and has been successfully working for about one year. The hospitals plan to use it as a user authentication method for their whole healthcare information systems. One implementation of the system is free to the national university hospitals with permission of the Japanese Ministry of Education, Culture, Sports, Science and Technology. Another implementation is open to the other healthcare institutes by support of the Medical Information System Development Center (MEDIS-DC). We are moving forward to a nation-wide construction of a PKI for healthcare information networks based on it.

  19. Dependable Emergency-Response Networking Based on Retaskable Network Infrastructures

    DTIC Science & Technology

    2008-04-01

    a Focus Group for the National Reliability and Interoperability Council (NRIC VII), which has helped to suggest a list of possible types of agents...APR 2008 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Dependable Emergency-Response Networking Based on Retaskable Network...of his network op- timization algorithms. We would like to thank the TCIP Center team for their feed- back on this work. This work was supported in

  20. The stability of cellulose: a statistical perspective from a coarse-grained model of hydrogen-bond networks.

    PubMed

    Shen, Tongye; Gnanakaran, S

    2009-04-22

    A critical roadblock to the production of biofuels from lignocellulosic biomass is the efficient degradation of crystalline microfibrils of cellulose to glucose. A microscopic understanding of how different physical conditions affect the overall stability of the crystalline structure of microfibrils could facilitate the design of more effective protocols for their degradation. One of the essential physical interactions that stabilizes microfibrils is a network of hydrogen (H) bonds: both intrachain H-bonds between neighboring monomers of a single cellulose polymer chain and interchain H-bonds between adjacent chains. We construct a statistical mechanical model of cellulose assembly at the resolution of explicit hydrogen-bond networks. Using the transfer matrix method, the partition function and the subsequent statistical properties are evaluated. With the help of this lattice-based model, we capture the plasticity of the H-bond network in cellulose due to frustration and redundancy in the placement of H-bonds. This plasticity is responsible for the stability of cellulose over a wide range of temperatures. Stable intrachain and interchain H-bonds are identified as a function of temperature that could possibly be manipulated toward rational destruction of crystalline cellulose.

  1. A Comparison of Techniques for Optimal Infrastructure Restoration

    DTIC Science & Technology

    2014-12-01

    to solve incremental network design problems. Álvarez et al. (2014) use a continuous MILP to solve the supply chain network infras- tructure problem...S. Long, T. Shoberg, S. Corns. 2014. A mathe- matical model for supply chain network infrastructure restoration. Y. Guan, H. Liao, eds., Proceedings...Links . . . . . . . . . . . . . . . . . 36 A.5 Use Supply from a Particular Node . . . . . . . . . . . . . . . . . 37 A.6 High Demand with High Building

  2. Simulating economic effects of disruptions in the telecommunications infrastructure.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, Roger Gary; Barton, Dianne Catherine; Reinert, Rhonda K.

    2004-01-01

    CommAspen is a new agent-based model for simulating the interdependent effects of market decisions and disruptions in the telecommunications infrastructure on other critical infrastructures in the U.S. economy such as banking and finance, and electric power. CommAspen extends and modifies the capabilities of Aspen-EE, an agent-based model previously developed by Sandia National Laboratories to analyze the interdependencies between the electric power system and other critical infrastructures. CommAspen has been tested on a series of scenarios in which the communications network has been disrupted, due to congestion and outages. Analysis of the scenario results indicates that communications networks simulated by themore » model behave as their counterparts do in the real world. Results also show that the model could be used to analyze the economic impact of communications congestion and outages.« less

  3. Hydrogen Research for Spaceport and Space-Based Applications: Hydrogen Sensors and Systems. Part 2

    NASA Technical Reports Server (NTRS)

    Anderson, Tim; Balaban, Canan

    2008-01-01

    The activities presented are a broad based approach to advancing key hydrogen related technologies in areas such as fuel cells, hydrogen production, and distributed sensors for hydrogen-leak detection, laser instrumentation for hydrogen-leak detection, and cryogenic transport and storage. Presented are the results from research projects, education and outreach activities, system and trade studies. The work will aid in advancing the state-of-the-art for several critical technologies related to the implementation of a hydrogen infrastructure. Activities conducted are relevant to a number of propulsion and power systems for terrestrial, aeronautics and aerospace applications. Sensor systems research was focused on hydrogen leak detection and smart sensors with adaptive feedback control for fuel cells. The goal was to integrate multifunction smart sensors, low-power high-efficiency wireless circuits, energy harvesting devices, and power management circuits in one module. Activities were focused on testing and demonstrating sensors in a realistic environment while also bringing them closer to production and commercial viability for eventual use in the actual operating environment.

  4. Hydrogen Analysis with the Sandia ParaChoice Model.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levinson, Rebecca Sobel; West, Todd H.

    2017-07-01

    In the coming decades, light-duty vehicle options and their supporting infrastructure must undergo significant transformations to achieve aggressive national targets for reducing petroleum consumption and lowering greenhouse gas emissions. FCEVs, battery and hybrid electric vehicles, and biofuels are among the promising advanced technology options. This project examines the market penetration of FCEVs in a range of market segments, and in different energy, technology, and policy futures. Analyses are conducted in the context of varying hydrogen production and distribution pathways, as well as public infrastructure availability, fuel (gasoline, ethanol, hydrogen) and electricity costs, vehicle costs and fuel economies to better understandmore » under what conditions, and for which market segments, FCEVs can best compete with battery electric and other alternative fuel vehicles.« less

  5. SunLine Test Drives Hydrogen Bus

    DOT National Transportation Integrated Search

    2003-08-01

    SunLine collaborated with the U.S. Department of Energys (DOE) Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program on the evaluation of the 30-foot hybrid fuel cell bus that was developed by ThunderPower LLC, a joint venture by Tho...

  6. Neuron-Inspired Interpenetrative Network Composed of Cobalt-Phosphorus-Derived Nanoparticles Embedded within Porous Carbon Nanotubes for Efficient Hydrogen Production.

    PubMed

    Shen, Juanxia; Yang, Zhi; Ge, Mengzhan; Li, Ping; Nie, Huagui; Cai, Qiran; Gu, Cancan; Yang, Keqin; Huang, Shaoming

    2016-07-13

    The ongoing search for cheap and efficient hydrogen evolution reaction (HER) electrocatalysts to replace currently used catalysts based on Pt or its alloys has been considered as an prevalent strategy to produce renewable and clean hydrogen energy. Herein, inspired by the neuron structure in biological systems, we demonstrate a novel fabrication strategy via a simple two-step method for the synthesis of a neuronlike interpenetrative nanocomposite network of Co-P embedded in porous carbon nanotubes (NIN-Co-P/PCNTs). It is found that the interpenetrative network provides a natural transport path to accelerate the hydrogen production process. The embedded-type structure improves the utilization ratio of Co-P and the hollow, tubelike, and porous structure of PCNTs further promote charge and reactant transport. These factors allow the as-prepared NIN-Co-P/PCNTs to achieve a onset potential low to 43 mV, a Tafel slope as small as 40 mV/decade, an excellent stability, and a high turnover frequency value of 3.2 s(-1) at η = 0.2 V in acidic conditions. These encouraging properties derived from the neuronlike interpenetrative network structure might offer new inspiration for the preparation of more nanocomposites for applications in other catalytic and optoelectronic field.

  7. Polyaniline nanowires-gold nanoparticles hybrid network based chemiresistive hydrogen sulfide sensor

    NASA Astrophysics Data System (ADS)

    Shirsat, Mahendra D.; Bangar, Mangesh A.; Deshusses, Marc A.; Myung, Nosang V.; Mulchandani, Ashok

    2009-02-01

    We report a sensitive, selective, and fast responding room temperature chemiresistive sensor for hydrogen sulfide detection and quantification using polyaniline nanowires-gold nanoparticles hybrid network. The sensor was fabricated by facile electrochemical technique. Initially, polyaniline nanowires with a diameter of 250-320 nm bridging the gap between a pair of microfabricated gold electrodes were synthesized using templateless electrochemical polymerization using a two step galvanostatic technique. Polyaniline nanowires were then electrochemically functionalized with gold nanoparticles using cyclic voltammetry technique. These chemiresistive sensors show an excellent limit of detection (0.1 ppb), wide dynamic range (0.1-100 ppb), and very good selectivity and reproducibility.

  8. Enhancing infrastructure resilience through business continuity planning.

    PubMed

    Fisher, Ronald; Norman, Michael; Klett, Mary

    2017-01-01

    Critical infrastructure is crucial to the functionality and wellbeing of the world around us. It is a complex network that works together to create an efficient society. The core components of critical infrastructure are dependent on one another to function at their full potential. Organisations face unprecedented environmental risks such as increased reliance on information technology and telecommunications, increased infrastructure interdependencies and globalisation. Successful organisations should integrate the components of cyber-physical and infrastructure interdependencies into a holistic risk framework. Physical security plans, cyber security plans and business continuity plans can help mitigate environmental risks. Cyber security plans are becoming the most crucial to have, yet are the least commonly found in organisations. As the reliance on cyber continues to grow, it is imperative that organisations update their business continuity and emergency preparedness activities to include this.

  9. Privacy and the National Information Infrastructure.

    ERIC Educational Resources Information Center

    Rotenberg, Marc

    1994-01-01

    Explains the work of Computer Professionals for Social Responsibility regarding privacy issues in the use of electronic networks; recommends principles that should be adopted for a National Information Infrastructure privacy code; discusses the need for public education; and suggests pertinent legislative proposals. (LRW)

  10. The history of infrastructures and the future of cyberinfrastructure in the Earth system sciences

    NASA Astrophysics Data System (ADS)

    Edwards, P. N.

    2012-12-01

    Infrastructures display similar historical patterns of inception, development, growth and decay. They typically begin as centralized systems which later proliferate into competing variants. Users' desire for seamless functionality tends eventually to push these variants toward interoperability, usually through "gateway" technologies that link incompatible systems into networks. Another stage is reached when these networks are linked to others, as in the cases of container transport (connecting trucking, rail, and shipping) or the Internet. End stages of infrastructure development include "splintering" (specialized service tiering) and decay, as newer infrastructures displace older ones. Temporal patterns are also visible in historical infrastructure development. This presentation, by a historian of science and technology, describes these patterns through examples of both physical and digital infrastructures, focusing on the global weather forecast infrastructure since the 19th century. It then investigates how some of these patterns might apply to the future of cyberinfrastructure for the Earth system sciences.

  11. Romanian contribution to research infrastructure database for EPOS

    NASA Astrophysics Data System (ADS)

    Ionescu, Constantin; Craiu, Andreea; Tataru, Dragos; Balan, Stefan; Muntean, Alexandra; Nastase, Eduard; Oaie, Gheorghe; Asimopolos, Laurentiu; Panaiotu, Cristian

    2014-05-01

    European Plate Observation System - EPOS is a long-term plan to facilitate integrated use of data, models and facilities from mainly distributed existing, but also new, research infrastructures for solid Earth Science. In EPOS Preparatory Phase were integrated the national Research Infrastructures at pan European level in order to create the EPOS distributed research infrastructures, structure in which, at the present time, Romania participates by means of the earth science research infrastructures of the national interest declared on the National Roadmap. The mission of EPOS is to build an efficient and comprehensive multidisciplinary research platform for solid Earth Sciences in Europe and to allow the scientific community to study the same phenomena from different points of view, in different time periods and spatial scales (laboratory and field experiments). At national scale, research and monitoring infrastructures have gathered a vast amount of geological and geophysical data, which have been used by research networks to underpin our understanding of the Earth. EPOS promotes the creation of comprehensive national and regional consortia, as well as the organization of collective actions. To serve the EPOS goals, in Romania a group of National Research Institutes, together with their infrastructures, gathered in an EPOS National Consortium, as follows: 1. National Institute for Earth Physics - Seismic, strong motion, GPS and Geomagnetic network and Experimental Laboratory; 2. National Institute of Marine Geology and Geoecology - Marine Research infrastructure and Euxinus integrated regional Black Sea observation and early-warning system; 3. Geological Institute of Romania - Surlari National Geomagnetic Observatory and National lithoteque (the latter as part of the National Museum of Geology) 4. University of Bucharest - Paleomagnetic Laboratory After national dissemination of EPOS initiative other Research Institutes and companies from the potential

  12. Optical network democratization.

    PubMed

    Nejabati, Reza; Peng, Shuping; Simeonidou, Dimitra

    2016-03-06

    The current Internet infrastructure is not able to support independent evolution and innovation at physical and network layer functionalities, protocols and services, while at same time supporting the increasing bandwidth demands of evolving and heterogeneous applications. This paper addresses this problem by proposing a completely democratized optical network infrastructure. It introduces the novel concepts of the optical white box and bare metal optical switch as key technology enablers for democratizing optical networks. These are programmable optical switches whose hardware is loosely connected internally and is completely separated from their control software. To alleviate their complexity, a multi-dimensional abstraction mechanism using software-defined network technology is proposed. It creates a universal model of the proposed switches without exposing their technological details. It also enables a conventional network programmer to develop network applications for control of the optical network without specific technical knowledge of the physical layer. Furthermore, a novel optical network virtualization mechanism is proposed, enabling the composition and operation of multiple coexisting and application-specific virtual optical networks sharing the same physical infrastructure. Finally, the optical white box and the abstraction mechanism are experimentally evaluated, while the virtualization mechanism is evaluated with simulation. © 2016 The Author(s).

  13. Network testbed creation and validation

    DOEpatents

    Thai, Tan Q.; Urias, Vincent; Van Leeuwen, Brian P.; Watts, Kristopher K.; Sweeney, Andrew John

    2017-03-21

    Embodiments of network testbed creation and validation processes are described herein. A "network testbed" is a replicated environment used to validate a target network or an aspect of its design. Embodiments describe a network testbed that comprises virtual testbed nodes executed via a plurality of physical infrastructure nodes. The virtual testbed nodes utilize these hardware resources as a network "fabric," thereby enabling rapid configuration and reconfiguration of the virtual testbed nodes without requiring reconfiguration of the physical infrastructure nodes. Thus, in contrast to prior art solutions which require a tester manually build an emulated environment of physically connected network devices, embodiments receive or derive a target network description and build out a replica of this description using virtual testbed nodes executed via the physical infrastructure nodes. This process allows for the creation of very large (e.g., tens of thousands of network elements) and/or very topologically complex test networks.

  14. Future Naval Use of COTS Networking Infrastructure

    DTIC Science & Technology

    2009-07-01

    user to benefit from Google’s vast databases and computational resources. Obviously, the ability to harness the full power of the Cloud could be... Computing Impact Findings Action Items Take-Aways Appendices: Pages 54-68 A. Terms of Reference Document B. Sample Definitions of Cloud ...and definition of Cloud Computing . While Cloud Computing is developing in many variations – including Infrastructure as a Service (IaaS), Platform as

  15. Low-Cost, Robust, Threat-Aware Wireless Sensor Network for Assuring the Nation's Energy Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carols H. Rentel

    2007-03-31

    Eaton, in partnership with Oak Ridge National Laboratory and the Electric Power Research Institute (EPRI) has completed a project that applies a combination of wireless sensor network (WSN) technology, anticipatory theory, and a near-term value proposition based on diagnostics and process uptime to ensure the security and reliability of critical electrical power infrastructure. Representatives of several Eaton business units have been engaged to ensure a viable commercialization plan. Tennessee Valley Authority (TVA), American Electric Power (AEP), PEPCO, and Commonwealth Edison were recruited as partners to confirm and refine the requirements definition from the perspective of the utilities that actually operatemore » the facilities to be protected. Those utilities have cooperated with on-site field tests as the project proceeds. Accomplishments of this project included: (1) the design, modeling, and simulation of the anticipatory wireless sensor network (A-WSN) that will be used to gather field information for the anticipatory application, (2) the design and implementation of hardware and software prototypes for laboratory and field experimentation, (3) stack and application integration, (4) develop installation and test plan, and (5) refinement of the commercialization plan.« less

  16. Effective hydrogen generator testing for on-site small engine

    NASA Astrophysics Data System (ADS)

    Chaiwongsa, Praitoon; Pornsuwancharoen, Nithiroth; Yupapin, Preecha P.

    2009-07-01

    We propose a new concept of hydrogen generator testing for on-site small engine. In general, there is a trade-off between simpler vehicle design and infrastructure issues, for instance, liquid fuels such as gasoline and methanol for small engine use. In this article we compare the hydrogen gases combination the gasoline between normal systems (gasoline only) for small engine. The advantage of the hydrogen combines gasoline for small engine saving the gasoline 25%. Furthermore, the new concept of hydrogen combination for diesel engine, bio-diesel engine, liquid petroleum gas (LPG), natural gas vehicle (NGV), which is discussed in details.

  17. National Infrastructure Protection Plan

    DTIC Science & Technology

    2006-01-01

    effective and efficient CI/KR protection; and • Provide a system for continuous measurement and improvement of CI/KR...information- based core processes, a top-down system -, network-, or function- based approach may be more appropri- ate. A bottom-up approach normally... e - commerce , e -mail, and R&D systems . • Control Systems : Cyber systems used within many infrastructure and industries to monitor and

  18. Devising Mobile Sensing and Actuation Infrastructure with Drones.

    PubMed

    Bae, Mungyu; Yoo, Seungho; Jung, Jongtack; Park, Seongjoon; Kim, Kangho; Kim, Joon Yeop Lee; Kim, Hwangnam

    2018-02-19

    Vast applications and services have been enabled as the number of mobile or sensing devices with communication capabilities has grown. However, managing the devices, integrating networks or combining services across different networks has become a new problem since each network is not directly connected via back-end core networks or servers. The issue is and has been discussed especially in wireless sensor and actuator networks (WSAN). In such systems, sensors and actuators are tightly coupled, so when an independent WSAN needs to collaborate with other networks, it is difficult to adequately combine them into an integrated infrastructure. In this paper, we propose drone-as-a-gateway (DaaG), which uses drones as mobile gateways to interconnect isolated networks or combine independent services. Our system contains features that focus on the service being provided in the order of importance, different from an adaptive simple mobile sink system or delay-tolerant system. Our simulation results have shown that the proposed system is able to activate actuators in the order of importance of the service, which uses separate sensors' data, and it consumes almost the same time in comparison with other path-planning algorithms. Moreover, we have implemented DaaG and presented results in a field test to show that it can enable large-scale on-demand deployment of sensing and actuation infrastructure or the Internet of Things (IoT).

  19. Devising Mobile Sensing and Actuation Infrastructure with Drones

    PubMed Central

    Jung, Jongtack; Park, Seongjoon; Kim, Kangho; Lee, Joon Yeop

    2018-01-01

    Vast applications and services have been enabled as the number of mobile or sensing devices with communication capabilities has grown. However, managing the devices, integrating networks or combining services across different networks has become a new problem since each network is not directly connected via back-end core networks or servers. The issue is and has been discussed especially in wireless sensor and actuator networks (WSAN). In such systems, sensors and actuators are tightly coupled, so when an independent WSAN needs to collaborate with other networks, it is difficult to adequately combine them into an integrated infrastructure. In this paper, we propose drone-as-a-gateway (DaaG), which uses drones as mobile gateways to interconnect isolated networks or combine independent services. Our system contains features that focus on the service being provided in the order of importance, different from an adaptive simple mobile sink system or delay-tolerant system. Our simulation results have shown that the proposed system is able to activate actuators in the order of importance of the service, which uses separate sensors’ data, and it consumes almost the same time in comparison with other path-planning algorithms. Moreover, we have implemented DaaG and presented results in a field test to show that it can enable large-scale on-demand deployment of sensing and actuation infrastructure or the Internet of Things (IoT). PMID:29463064

  20. Evaluation of hydrogen bond networks in cellulose Iβ and II crystals using density functional theory and Car-Parrinello molecular dynamics.

    PubMed

    Hayakawa, Daichi; Nishiyama, Yoshiharu; Mazeau, Karim; Ueda, Kazuyoshi

    2017-09-08

    Crystal models of cellulose Iβ and II, which contain various hydrogen bonding (HB) networks, were analyzed using density functional theory and Car-Parrinello molecular dynamics (CPMD) simulations. From the CPMD trajectories, the power spectra of the velocity correlation functions of hydroxyl groups involved in hydrogen bonds were calculated. For the Iβ allomorph, HB network A, which is dominant according to the neutron diffraction data, was stable, and the power spectrum represented the essential features of the experimental IR spectra. In contrast, network B, which is a minor structure, was unstable because its hydroxymethyl groups reoriented during the CPMD simulation, yielding a different crystal structure to that determined by experiments. For the II allomorph, a HB network A is proposed based on diffraction data, whereas molecular modeling identifies an alternative network B. Our simulations showed that the interaction energies of the cellulose II (B) model are slightly more favorable than model II(A). However, the evaluation of the free energy should be waited for the accurate determination from the energy point of view. For the IR calculation, cellulose II (B) model reproduces the spectra better than model II (A). Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Development of Affordable, Low-Carbon Hydrogen Supplies at an Industrial Scale

    ERIC Educational Resources Information Center

    Roddy, Dermot J.

    2008-01-01

    An existing industrial hydrogen generation and distribution infrastructure is described, and a number of large-scale investment projects are outlined. All of these projects have the potential to generate significant volumes of low-cost, low-carbon hydrogen. The technologies concerned range from gasification of coal with carbon capture and storage…

  2. Multi Infrastructure Control and Optimization Toolkit, Resilient Design Module (MICOT-RDT), version 2.X

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bent, Russell; Nagarajan, Harsha; Yamangil, Emre

    2016-06-24

    MICOT is a tool for optimizing and controlling infrastructure systems. In includes modules for optimizing the operations of an infrastructure structure (for example optimal dispatch), designing infrastructure systems, restoring infrastructures systems, resiliency, preparing for natural disasters, interdicting networks, state estimation, sensor placement, and simulation of infrastructure systems. It implements algorithms developed at LANL that have been published in the academic community. This is a release of the of resilient design module of the MICOT.

  3. A technological infrastructure to sustain Internetworked Enterprises

    NASA Astrophysics Data System (ADS)

    La Mattina, Ernesto; Savarino, Vincenzo; Vicari, Claudia; Storelli, Davide; Bianchini, Devis

    In the Web 3.0 scenario, where information and services are connected by means of their semantics, organizations can improve their competitive advantage by publishing their business and service descriptions. In this scenario, Semantic Peer to Peer (P2P) can play a key role in defining dynamic and highly reconfigurable infrastructures. Organizations can share knowledge and services, using this infrastructure to move towards value networks, an emerging organizational model characterized by fluid boundaries and complex relationships. This chapter collects and defines the technological requirements and architecture of a modular and multi-Layer Peer to Peer infrastructure for SOA-based applications. This technological infrastructure, based on the combination of Semantic Web and P2P technologies, is intended to sustain Internetworked Enterprise configurations, defining a distributed registry and enabling more expressive queries and efficient routing mechanisms. The following sections focus on the overall architecture, while describing the layers that form it.

  4. Network testbed creation and validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thai, Tan Q.; Urias, Vincent; Van Leeuwen, Brian P.

    Embodiments of network testbed creation and validation processes are described herein. A "network testbed" is a replicated environment used to validate a target network or an aspect of its design. Embodiments describe a network testbed that comprises virtual testbed nodes executed via a plurality of physical infrastructure nodes. The virtual testbed nodes utilize these hardware resources as a network "fabric," thereby enabling rapid configuration and reconfiguration of the virtual testbed nodes without requiring reconfiguration of the physical infrastructure nodes. Thus, in contrast to prior art solutions which require a tester manually build an emulated environment of physically connected network devices,more » embodiments receive or derive a target network description and build out a replica of this description using virtual testbed nodes executed via the physical infrastructure nodes. This process allows for the creation of very large (e.g., tens of thousands of network elements) and/or very topologically complex test networks.« less

  5. Design of neural network model-based controller in a fed-batch microbial electrolysis cell reactor for bio-hydrogen gas production

    NASA Astrophysics Data System (ADS)

    Azwar; Hussain, M. A.; Abdul-Wahab, A. K.; Zanil, M. F.; Mukhlishien

    2018-03-01

    One of major challenge in bio-hydrogen production process by using MEC process is nonlinear and highly complex system. This is mainly due to the presence of microbial interactions and highly complex phenomena in the system. Its complexity makes MEC system difficult to operate and control under optimal conditions. Thus, precise control is required for the MEC reactor, so that the amount of current required to produce hydrogen gas can be controlled according to the composition of the substrate in the reactor. In this work, two schemes for controlling the current and voltage of MEC were evaluated. The controllers evaluated are PID and Inverse neural network (NN) controller. The comparative study has been carried out under optimal condition for the production of bio-hydrogen gas wherein the controller output is based on the correlation of optimal current and voltage to the MEC. Various simulation tests involving multiple set-point changes and disturbances rejection have been evaluated and the performances of both controllers are discussed. The neural network-based controller results in fast response time and less overshoots while the offset effects are minimal. In conclusion, the Inverse neural network (NN)-based controllers provide better control performance for the MEC system compared to the PID controller.

  6. Reaping Environmental Benefits of a Global Hydrogen Economy: How Large, Fow Soon, and at What Risks?

    NASA Astrophysics Data System (ADS)

    Dubey, M. K.; Horowitz, L. W.; Rahn, T. A.; Kinnison, D. E.

    2004-12-01

    The Western world has taken an aggressive posture to transition to a global hydrogen economy. While numerous technical challenges need to be addressed to achieve this it is timely to examine the environmental benefits and risks of this transition. Hydrogen provides an efficient energy carrier that promises to enhance urban and regional air quality that will benefit human health. It could also reduce risks of climate change if large-scale hydrogen production by renewable or nuclear energy sources becomes viable. While it is well known that the byproduct of energy produced from hydrogen is water vapor, it is not well known that the storage and transfer of hydrogen is inevitably accompanied by measurable leakage of hydrogen. Unintended consequences of hydrogen leakage include reduction in global oxidative capacity, changes in tropospheric ozone, and increase in stratospheric water that would exacerbate halogen induced ozone losses as well as impact the earth's radiation budget and climate. We construct plausible global hydrogen energy use and leak scenarios and assess their impacts using global 3-D simulations by the Model for Ozone And Related Trace species (MOZART). The hydrogen fluxes and photochemistry in our model successfully reproduce the contemporary hydrogen cycle as observed by a network of remote global stations. Our intent is to determine environmentally tolerable leak rates and also facilitate a gradual phasing in of a hydrogen economy over the next several decades as the elimination of the use of halocarbons gradually reduces halogen induced stratospheric ozone loss rates. We stress that the leak rates in global hydrogen infrastructure and the future evolution of microbial soil sink of hydrogen that determines its current lifetime (about 2 years) are principal sources of uncertainty in our assessment.

  7. The National Information Infrastructure: Agenda for Action.

    ERIC Educational Resources Information Center

    Microcomputers for Information Management, 1995

    1995-01-01

    Discusses the National Information Infrastructure and the role of the government. Topics include private sector investment; universal service; technological innovation; user orientation; information security and network reliability; management of the radio frequency spectrum; intellectual property rights; coordination with other levels of…

  8. Room temperature synthesis of heptazine-based microporous polymer networks as photocatalysts for hydrogen evolution.

    PubMed

    Kailasam, Kamalakannan; Schmidt, Johannes; Bildirir, Hakan; Zhang, Guigang; Blechert, Siegfried; Wang, Xinchen; Thomas, Arne

    2013-06-25

    Two emerging material classes are combined in this work, namely polymeric carbon nitrides and microporous polymer networks. The former, polymeric carbon nitrides, are composed of amine-bridged heptazine moieties and showed interesting performance as a metal-free photocatalyst. These materials have, however, to be prepared at high temperatures, making control of their chemical structure difficult. The latter, microporous polymer networks have received increasing interest due to their high surface area, giving rise to interesting applications in gas storage or catalysis. Here, the central building block of carbon nitrides, a functionalized heptazine as monomer, and tecton are used to create microporous polymer networks. The resulting heptazine-based microporous polymers show high porosity, while their chemical structure resembles the ones of carbon nitrides. The polymers show activity for the photocatalytic production of hydrogen from water, even under visible light illumination. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Optimal condition sampling for a network of infrastructure facilities.

    DOT National Transportation Integrated Search

    2011-12-31

    In response to the developments in inspection technologies, infrastructure decision-making methods evolved whereby the optimum combination of inspection decisions on the one hand and maintenance and rehabilitation decisions on the other are determine...

  10. Missouri S&T hydrogen transportation test bed equipment & construction.

    DOT National Transportation Integrated Search

    2010-08-01

    Investments through the National University Transportation Center at Missouri University of Science and Technology have really scored on the Centers mission areas and particularly Transition-state fuel vehicle infrastructure leading to a hydrogen ...

  11. Usage of Wireless Sensor Networks in a service based spatial data infrastructure for Landslide Monitoring and Early Warning

    NASA Astrophysics Data System (ADS)

    Arnhardt, C.; Fernandez-Steeger, T. M.; Walter, K.; Kallash, A.; Niemeyer, F.; Azzam, R.; Bill, R.

    2007-12-01

    The joint project Sensor based Landslide Early Warning System (SLEWS) aims at a systematic development of a prototyping alarm- and early warning system for the detection of mass movements by application of an ad hoc wireless sensor network (WSN). Next to the development of suitable sensor setups, sensor fusion and network fusion are applied to enhance data quality and reduce false alarm rates. Of special interest is the data retrieval, processing and visualization in GI-Systems. Therefore a suitable serviced based Spatial Data Infrastructure (SDI) will be developed with respect to existing and upcoming Open Geospatial Consortium (OGC) standards.The application of WSN provides a cheap and easy to set up solution for special monitoring and data gathering in large areas. Measurement data from different low-cost transducers for deformation observation (acceleration, displacement, tilting) is collected by distributed sensor nodes (motes), which interact separately and connect each other in a self-organizing manner. Data are collected and aggregated at the beacon (transmission station) and further operations like data pre-processing and compression can be performed. The WSN concept provides next to energy efficiency, miniaturization, real-time monitoring and remote operation, but also new monitoring strategies like sensor and network fusion. Since not only single sensors can be integrated at single motes either cross-validation or redundant sensor setups are possible to enhance data quality. The planned monitoring and information system will include a mobile infrastructure (information technologies and communication components) as well as methods and models to estimate surface deformation parameters (positioning systems). The measurements result in heterogeneous observation sets that have to be integrated in a common adjustment and filtering approach. Reliable real-time information will be obtained using a range of sensor input and algorithms, from which early warnings

  12. Analysis of CERN computing infrastructure and monitoring data

    NASA Astrophysics Data System (ADS)

    Nieke, C.; Lassnig, M.; Menichetti, L.; Motesnitsalis, E.; Duellmann, D.

    2015-12-01

    Optimizing a computing infrastructure on the scale of LHC requires a quantitative understanding of a complex network of many different resources and services. For this purpose the CERN IT department and the LHC experiments are collecting a large multitude of logs and performance probes, which are already successfully used for short-term analysis (e.g. operational dashboards) within each group. The IT analytics working group has been created with the goal to bring data sources from different services and on different abstraction levels together and to implement a suitable infrastructure for mid- to long-term statistical analysis. It further provides a forum for joint optimization across single service boundaries and the exchange of analysis methods and tools. To simplify access to the collected data, we implemented an automated repository for cleaned and aggregated data sources based on the Hadoop ecosystem. This contribution describes some of the challenges encountered, such as dealing with heterogeneous data formats, selecting an efficient storage format for map reduce and external access, and will describe the repository user interface. Using this infrastructure we were able to quantitatively analyze the relationship between CPU/wall fraction, latency/throughput constraints of network and disk and the effective job throughput. In this contribution we will first describe the design of the shared analysis infrastructure and then present a summary of first analysis results from the combined data sources.

  13. Direct evidence that an extended hydrogen-bonding network influences activation of pyridoxal 5'-phosphate in aspartate aminotransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dajnowicz, Steven; Parks, Jerry M.; Hu, Xiche

    We used pyridoxal 5'-phosphate (PLP) is a fundamental, multifunctional enzyme cofactor to catalyze a wide variety of chemical reactions involved in amino acid metabolism. PLP-dependent enzymes optimize specific chemical reactions by modulating the electronic states of PLP through distinct active site environments. In aspartate aminotransferase (AAT), an extended hydrogen bond network is coupled to the pyridinyl nitrogen of the PLP, influencing the electrophilicity of the cofactor. This network, which involves residues Asp-222, His-143, Thr-139, His-189, and structural waters, is located at the edge of PLP opposite the reactive Schiff base. We demonstrate that this hydrogen bond network directly influences themore » protonation state of the pyridine nitrogen of PLP, which affects the rates of catalysis. We analyzed perturbations caused by single- and double-mutant variants using steady-state kinetics, high resolution X-ray crystallography, and quantum chemical calculations. Protonation of the pyridinyl nitrogen to form a pyridinium cation induces electronic delocalization in the PLP, which correlates with the enhancement in catalytic rate in AAT. Therefore, PLP activation is controlled by the proximity of the pyridinyl nitrogen to the hydrogen bond microenvironment. Quantum chemical calculations indicate that Asp-222, which is directly coupled to the pyridinyl nitrogen, increases the pKa of the pyridine nitrogen and stabilizes the pyridinium cation. His-143 and His-189 also increase the pKa of the pyridine nitrogen but, more significantly, influence the position of the proton that resides between Asp-222 and the pyridinyl nitrogen. Our findings indicate that the second shell residues directly enhance the rate of catalysis in AAT.« less

  14. Direct evidence that an extended hydrogen-bonding network influences activation of pyridoxal 5'-phosphate in aspartate aminotransferase

    DOE PAGES

    Dajnowicz, Steven; Parks, Jerry M.; Hu, Xiche; ...

    2017-02-23

    We used pyridoxal 5'-phosphate (PLP) is a fundamental, multifunctional enzyme cofactor to catalyze a wide variety of chemical reactions involved in amino acid metabolism. PLP-dependent enzymes optimize specific chemical reactions by modulating the electronic states of PLP through distinct active site environments. In aspartate aminotransferase (AAT), an extended hydrogen bond network is coupled to the pyridinyl nitrogen of the PLP, influencing the electrophilicity of the cofactor. This network, which involves residues Asp-222, His-143, Thr-139, His-189, and structural waters, is located at the edge of PLP opposite the reactive Schiff base. We demonstrate that this hydrogen bond network directly influences themore » protonation state of the pyridine nitrogen of PLP, which affects the rates of catalysis. We analyzed perturbations caused by single- and double-mutant variants using steady-state kinetics, high resolution X-ray crystallography, and quantum chemical calculations. Protonation of the pyridinyl nitrogen to form a pyridinium cation induces electronic delocalization in the PLP, which correlates with the enhancement in catalytic rate in AAT. Therefore, PLP activation is controlled by the proximity of the pyridinyl nitrogen to the hydrogen bond microenvironment. Quantum chemical calculations indicate that Asp-222, which is directly coupled to the pyridinyl nitrogen, increases the pKa of the pyridine nitrogen and stabilizes the pyridinium cation. His-143 and His-189 also increase the pKa of the pyridine nitrogen but, more significantly, influence the position of the proton that resides between Asp-222 and the pyridinyl nitrogen. Our findings indicate that the second shell residues directly enhance the rate of catalysis in AAT.« less

  15. Arrays of Regenerated Fiber Bragg Gratings in Non-Hydrogen-Loaded Photosensitive Fibers for High-Temperature Sensor Networks

    PubMed Central

    Lindner, Eric; Chojetztki, Christoph; Brueckner, Sven; Becker, Martin; Rothhardt, Manfred; Vlekken, Johan; Bartelt, Hartmut

    2009-01-01

    We report about the possibility of using regenerated fiber Bragg gratings generated in photosensitive fibers without applying hydrogen loading for high temperature sensor networks. We use a thermally induced regenerative process which leads to a secondary increase in grating reflectivity. This refractive index modification has shown to become more stable after the regeneration up to temperatures of 600 °C. With the use of an interferometric writing technique, it is possible also to generate arrays of regenerated fiber Bragg gratings for sensor networks. PMID:22408510

  16. Defense of Cyber Infrastructures Against Cyber-Physical Attacks Using Game-Theoretic Models

    DOE PAGES

    Rao, Nageswara S. V.; Poole, Stephen W.; Ma, Chris Y. T.; ...

    2015-04-06

    The operation of cyber infrastructures relies on both cyber and physical components, which are subject to incidental and intentional degradations of different kinds. Within the context of network and computing infrastructures, we study the strategic interactions between an attacker and a defender using game-theoretic models that take into account both cyber and physical components. The attacker and defender optimize their individual utilities expressed as sums of cost and system terms. First, we consider a Boolean attack-defense model, wherein the cyber and physical sub-infrastructures may be attacked and reinforced as individual units. Second, we consider a component attack-defense model wherein theirmore » components may be attacked and defended, and the infrastructure requires minimum numbers of both to function. We show that the Nash equilibrium under uniform costs in both cases is computable in polynomial time, and it provides high-level deterministic conditions for the infrastructure survival. When probabilities of successful attack and defense, and of incidental failures are incorporated into the models, the results favor the attacker but otherwise remain qualitatively similar. This approach has been motivated and validated by our experiences with UltraScience Net infrastructure, which was built to support high-performance network experiments. In conclusion, the analytical results, however, are more general, and we apply them to simplified models of cloud and high-performance computing infrastructures.« less

  17. Defense of Cyber Infrastructures Against Cyber-Physical Attacks Using Game-Theoretic Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Nageswara S. V.; Poole, Stephen W.; Ma, Chris Y. T.

    The operation of cyber infrastructures relies on both cyber and physical components, which are subject to incidental and intentional degradations of different kinds. Within the context of network and computing infrastructures, we study the strategic interactions between an attacker and a defender using game-theoretic models that take into account both cyber and physical components. The attacker and defender optimize their individual utilities expressed as sums of cost and system terms. First, we consider a Boolean attack-defense model, wherein the cyber and physical sub-infrastructures may be attacked and reinforced as individual units. Second, we consider a component attack-defense model wherein theirmore » components may be attacked and defended, and the infrastructure requires minimum numbers of both to function. We show that the Nash equilibrium under uniform costs in both cases is computable in polynomial time, and it provides high-level deterministic conditions for the infrastructure survival. When probabilities of successful attack and defense, and of incidental failures are incorporated into the models, the results favor the attacker but otherwise remain qualitatively similar. This approach has been motivated and validated by our experiences with UltraScience Net infrastructure, which was built to support high-performance network experiments. In conclusion, the analytical results, however, are more general, and we apply them to simplified models of cloud and high-performance computing infrastructures.« less

  18. Cyber threat model for tactical radio networks

    NASA Astrophysics Data System (ADS)

    Kurdziel, Michael T.

    2014-05-01

    The shift to a full information-centric paradigm in the battlefield has allowed ConOps to be developed that are only possible using modern network communications systems. Securing these Tactical Networks without impacting their capabilities has been a challenge. Tactical networks with fixed infrastructure have similar vulnerabilities to their commercial counterparts (although they need to be secure against adversaries with greater capabilities, resources and motivation). However, networks with mobile infrastructure components and Mobile Ad hoc Networks (MANets) have additional unique vulnerabilities that must be considered. It is useful to examine Tactical Network based ConOps and use them to construct a threat model and baseline cyber security requirements for Tactical Networks with fixed infrastructure, mobile infrastructure and/or ad hoc modes of operation. This paper will present an introduction to threat model assessment. A definition and detailed discussion of a Tactical Network threat model is also presented. Finally, the model is used to derive baseline requirements that can be used to design or evaluate a cyber security solution that can be scaled and adapted to the needs of specific deployments.

  19. Utilizing Semantic Big Data for realizing a National-scale Infrastructure Vulnerability Analysis System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chinthavali, Supriya; Shankar, Mallikarjun

    Critical Infrastructure systems(CIs) such as energy, water, transportation and communication are highly interconnected and mutually dependent in complex ways. Robust modeling of CIs interconnections is crucial to identify vulnerabilities in the CIs. We present here a national-scale Infrastructure Vulnerability Analysis System (IVAS) vision leveraging Se- mantic Big Data (SBD) tools, Big Data, and Geographical Information Systems (GIS) tools. We survey existing ap- proaches on vulnerability analysis of critical infrastructures and discuss relevant systems and tools aligned with our vi- sion. Next, we present a generic system architecture and discuss challenges including: (1) Constructing and manag- ing a CI network-of-networks graph,more » (2) Performing analytic operations at scale, and (3) Interactive visualization of ana- lytic output to generate meaningful insights. We argue that this architecture acts as a baseline to realize a national-scale network based vulnerability analysis system.« less

  20. OOI CyberInfrastructure - Next Generation Oceanographic Research

    NASA Astrophysics Data System (ADS)

    Farcas, C.; Fox, P.; Arrott, M.; Farcas, E.; Klacansky, I.; Krueger, I.; Meisinger, M.; Orcutt, J.

    2008-12-01

    Software has become a key enabling technology for scientific discovery, observation, modeling, and exploitation of natural phenomena. New value emerges from the integration of individual subsystems into networked federations of capabilities exposed to the scientific community. Such data-intensive interoperability networks are crucial for future scientific collaborative research, as they open up new ways of fusing data from different sources and across various domains, and analysis on wide geographic areas. The recently established NSF OOI program, through its CyberInfrastructure component addresses this challenge by providing broad access from sensor networks for data acquisition up to computational grids for massive computations and binding infrastructure facilitating policy management and governance of the emerging system-of-scientific-systems. We provide insight into the integration core of this effort, namely, a hierarchic service-oriented architecture for a robust, performant, and maintainable implementation. We first discuss the relationship between data management and CI crosscutting concerns such as identity management, policy and governance, which define the organizational contexts for data access and usage. Next, we detail critical services including data ingestion, transformation, preservation, inventory, and presentation. To address interoperability issues between data represented in various formats we employ a semantic framework derived from the Earth System Grid technology, a canonical representation for scientific data based on DAP/OPeNDAP, and related data publishers such as ERDDAP. Finally, we briefly present the underlying transport based on a messaging infrastructure over the AMQP protocol, and the preservation based on a distributed file system through SDSC iRODS.

  1. Disaster protection of transport infrastructure and mobility using flood risk modeling and geospatial visualization.

    DOT National Transportation Integrated Search

    2015-05-01

    infrastructure networks are essential to sustain our economy, society and quality of life. Natural disasters cost lives, infrastructure destruction, and economic losses. In 2013 over 28 million people were displaced worldwide by natural disasters wit...

  2. Cyber-Critical Infrastructure Protection Using Real-Time Payload-Based Anomaly Detection

    NASA Astrophysics Data System (ADS)

    Düssel, Patrick; Gehl, Christian; Laskov, Pavel; Bußer, Jens-Uwe; Störmann, Christof; Kästner, Jan

    With an increasing demand of inter-connectivity and protocol standardization modern cyber-critical infrastructures are exposed to a multitude of serious threats that may give rise to severe damage for life and assets without the implementation of proper safeguards. Thus, we propose a method that is capable to reliably detect unknown, exploit-based attacks on cyber-critical infrastructures carried out over the network. We illustrate the effectiveness of the proposed method by conducting experiments on network traffic that can be found in modern industrial control systems. Moreover, we provide results of a throughput measuring which demonstrate the real-time capabilities of our system.

  3. An infrastructure with a unified control plane to integrate IP into optical metro networks to provide flexible and intelligent bandwidth on demand for cloud computing

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Hall, Trevor

    2012-12-01

    The Internet is entering an era of cloud computing to provide more cost effective, eco-friendly and reliable services to consumer and business users and the nature of the Internet traffic will undertake a fundamental transformation. Consequently, the current Internet will no longer suffice for serving cloud traffic in metro areas. This work proposes an infrastructure with a unified control plane that integrates simple packet aggregation technology with optical express through the interoperation between IP routers and electrical traffic controllers in optical metro networks. The proposed infrastructure provides flexible, intelligent, and eco-friendly bandwidth on demand for cloud computing in metro areas.

  4. Network-Friendly Gossiping

    NASA Astrophysics Data System (ADS)

    Serbu, Sabina; Rivière, Étienne; Felber, Pascal

    The emergence of large-scale distributed applications based on many-to-many communication models, e.g., broadcast and decentralized group communication, has an important impact on the underlying layers, notably the Internet routing infrastructure. To make an effective use of network resources, protocols should both limit the stress (amount of messages) on each infrastructure entity like routers and links, and balance as much as possible the load in the network. Most protocols use application-level metrics such as delays to improve efficiency of content dissemination or routing, but the extend to which such application-centric optimizations help reduce and balance the load imposed to the infrastructure is unclear. In this paper, we elaborate on the design of such network-friendly protocols and associated metrics. More specifically, we investigate random-based gossip dissemination. We propose and evaluate different ways of making this representative protocol network-friendly while keeping its desirable properties (robustness and low delays). Simulations of the proposed methods using synthetic and real network topologies convey and compare their abilities to reduce and balance the load while keeping good performance.

  5. Next generation information communication infrastructure and case studies for future power systems

    NASA Astrophysics Data System (ADS)

    Qiu, Bin

    As power industry enters the new century, powerful driving forces, uncertainties and new functions are compelling electric utilities to make dramatic changes in their information communication infrastructure. Expanding network services such as real time measurement and monitoring are also driving the need for more bandwidth in the communication network. These needs will grow further as new remote real-time protection and control applications become more feasible and pervasive. This dissertation addresses two main issues for the future power system information infrastructure: communication network infrastructure and associated power system applications. Optical networks no doubt will become the predominant data transmission media for next generation power system communication. The rapid development of fiber optic network technology poses new challenges in the areas of topology design, network management and real time applications. Based on advanced fiber optic technologies, an all-fiber network is investigated and proposed. The study will cover the system architecture and data exchange protocol aspects. High bandwidth, robust optical networks could provide great opportunities to the power system for better service and efficient operation. In the dissertation, different applications are investigated. One of the typical applications is the SCADA information accessing system. An Internet-based application for the substation automation system will be presented. VLSI (Very Large Scale Integration) technology is also used for one-line diagrams auto-generation. High transition rate and low latency optical network is especially suitable for power system real time control. In the dissertation, a new local area network based Load Shedding Controller (LSC) for isolated power system will be presented. By using PMU (Phasor Measurement Unit) and fiber optic network, an AGE (Area Generation Error) based accurate wide area load shedding scheme will also be proposed. The objective

  6. Infrastructure Redesign and Instructional Reform in Mathematics: Formal Structure and Teacher Leadership

    ERIC Educational Resources Information Center

    Hopkins, Megan; Spillane, James P.; Jakopovic, Paula; Heaton, Ruth M.

    2013-01-01

    Designing infrastructures to support instruction remains a challenge in educational reform. This article reports on a study of one school system's efforts to redesign its infrastructure for mathematics instruction by promoting teacher leadership. Using social network and interview data from 12 elementary schools, we explore how the district's…

  7. Hydrogen-Bonded Network and Water Dynamics in the D-channel of Cytochrome c Oxidase.

    PubMed

    Ghane, Tahereh; Gorriz, Rene F; Wrzalek, Sandro; Volkenandt, Senta; Dalatieh, Ferand; Reidelbach, Marco; Imhof, Petra

    2018-02-12

    Proton transfer in cytochrome c oxidase (CcO) from the cellular inside to the binuclear redox centre as well as proton pumping through the membrane takes place through proton entrance via two distinct pathways, the D- and K-channel. Both channels show a dependence of their hydration level on the protonation states of their key residues, K362 for the K-channel, and E286 or D132 for the D-channel. In the oxidative half of CcO's catalytic cycle the D-channel is the proton-conducting path. For this channel, an interplay of protonation state of the D-channel residues with the water and hydrogen-bond dynamics has been observed in molecular dynamics simulations of the CcO protein, embedded in a lipid bi-layer, modelled in different protonation states. Protonation of residue E286 at the end of the D-channel results in a hydrogen-bonded network pointing from E286 to N139, that is against proton transport, and favouring N139 conformations which correspond to a closed asparagine gate (formed by residues N121 and N139). Consequently, the hydration level is lower than with unprotonated E286. In those models, the Asn gate is predominantly open, allowing water molecules to pass and thus increase the hydration level. The hydrogen-bonded network in these states exhibits longer life times of the Asn residues with water than other models and shows the D-channel to be traversable from the entrance, D132, to exit, E286. The D-channel can thus be regarded as auto-regulated with respect to proton transport, allowing proton passage only when required, that is the proton is located at the lower part of the D-channel (D132 to Asn gate) and not at the exit (E286).

  8. Hydrogen Fuel Cell Analysis: Lessons Learned from Stationary Power Generation Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott E. Grasman; John W. Sheffield; Fatih Dogan

    2010-04-30

    This study considered opportunities for hydrogen in stationary applications in order to make recommendations related to RD&D strategies that incorporate lessons learned and best practices from relevant national and international stationary power efforts, as well as cost and environmental modeling of pathways. The study analyzed the different strategies utilized in power generation systems and identified the different challenges and opportunities for producing and using hydrogen as an energy carrier. Specific objectives included both a synopsis/critical analysis of lessons learned from previous stationary power programs and recommendations for a strategy for hydrogen infrastructure deployment. This strategy incorporates all hydrogen pathways andmore » a combination of distributed power generating stations, and provides an overview of stationary power markets, benefits of hydrogen-based stationary power systems, and competitive and technological challenges. The motivation for this project was to identify the lessons learned from prior stationary power programs, including the most significant obstacles, how these obstacles have been approached, outcomes of the programs, and how this information can be used by the Hydrogen, Fuel Cells & Infrastructure Technologies Program to meet program objectives primarily related to hydrogen pathway technologies (production, storage, and delivery) and implementation of fuel cell technologies for distributed stationary power. In addition, the lessons learned address environmental and safety concerns, including codes and standards, and education of key stakeholders.« less

  9. Renewable Hydrogen Carrier - Carbohydrate: Constructing the Carbon-Neutral Carbohydrate Economy

    DTIC Science & Technology

    2011-01-31

    temperature. High fructose corn syrup , low-cost sucrose replacement, is made by stabilized glucose isomerase, which can work at ~60 °C for even about two...sustainable production, high -density storage, costly infrastructure, to eliminating safety concern. The use of renewable carbohydrate as a high -density...100% selectivity of enzymes, modest reaction conditions, and high -purity of generated hydrogen, carbohydrate is a promising hydrogen carrier for end

  10. Advanced Decentralized Water/Energy Network Design for Sustainable Infrastructure

    EPA Science Inventory

    In order to provide a water infrastructure that is more sustainable into and beyond the 21st century, drinking water distribution systems and wastewater collection systems must account for our diminishing water supply, increasing demands, climate change, energy cost and availabil...

  11. Climate Science's Globally Distributed Infrastructure

    NASA Astrophysics Data System (ADS)

    Williams, D. N.

    2016-12-01

    The Earth System Grid Federation (ESGF) is primarily funded by the Department of Energy's (DOE's) Office of Science (the Office of Biological and Environmental Research [BER] Climate Data Informatics Program and the Office of Advanced Scientific Computing Research Next Generation Network for Science Program), the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA), and the National Science Foundation (NSF), the European Infrastructure for the European Network for Earth System Modeling (IS-ENES), and the Australian National University (ANU). Support also comes from other U.S. federal and international agencies. The federation works across multiple worldwide data centers and spans seven international network organizations to provide users with the ability to access, analyze, and visualize data using a globally federated collection of networks, computers, and software. Its architecture employs a series of geographically distributed peer nodes that are independently administered and united by common federation protocols and application programming interfaces (APIs). The full ESGF infrastructure has now been adopted by multiple Earth science projects and allows access to petabytes of geophysical data, including the Coupled Model Intercomparison Project (CMIP; output used by the Intergovernmental Panel on Climate Change assessment reports), multiple model intercomparison projects (MIPs; endorsed by the World Climate Research Programme [WCRP]), and the Accelerated Climate Modeling for Energy (ACME; ESGF is included in the overarching ACME workflow process to store model output). ESGF is a successful example of integration of disparate open-source technologies into a cohesive functional system that serves the needs the global climate science community. Data served by ESGF includes not only model output but also observational data from satellites and instruments, reanalysis, and generated images.

  12. Process for manufacture of thick film hydrogen sensors

    DOEpatents

    Perdieu, Louisa H.

    2000-09-09

    A thick film process for producing hydrogen sensors capable of sensing down to a one percent concentration of hydrogen in carrier gasses such as argon, nitrogen, and air. The sensor is also suitable to detect hydrogen gas while immersed in transformer oil. The sensor includes a palladium resistance network thick film printed on a substrate, a portion of which network is coated with a protective hydrogen barrier. The process utilizes a sequence of printing of the requisite materials on a non-conductive substrate with firing temperatures at each step which are less than or equal to the temperature at the previous step.

  13. Quality of service provision assessment in the healthcare information and telecommunications infrastructures.

    PubMed

    Babulak, Eduard

    2006-01-01

    The continuous increase in the complexity and the heterogeneity of corporate and healthcare telecommunications infrastructures will require new assessment methods of quality of service (QoS) provision that are capable of addressing all engineering and social issues with much faster speeds. Speed and accessibility to any information at any time from anywhere will create global communications infrastructures with great performance bottlenecks that may put in danger human lives, power supplies, national economy and security. Regardless of the technology supporting the information flows, the final verdict on the QoS is made by the end user. The users' perception of telecommunications' network infrastructure QoS provision is critical to the successful business management operation of any organization. As a result, it is essential to assess the QoS Provision in the light of user's perception. This article presents a cost effective methodology to assess the user's perception of quality of service provision utilizing the existing Staffordshire University Network (SUN) by adding a component of measurement to the existing model presented by Walker. This paper presents the real examples of CISCO Networking Solutions for Health Care givers and offers a cost effective approach to assess the QoS provision within the campus network, which could be easily adapted to any health care organization or campus network in the world.

  14. Linear infrastructure impacts on landscape hydrology.

    PubMed

    Raiter, Keren G; Prober, Suzanne M; Possingham, Hugh P; Westcott, Fiona; Hobbs, Richard J

    2018-01-15

    The extent of roads and other forms of linear infrastructure is burgeoning worldwide, but their impacts are inadequately understood and thus poorly mitigated. Previous studies have identified many potential impacts, including alterations to the hydrological functions and soil processes upon which ecosystems depend. However, these impacts have seldom been quantified at a regional level, particularly in arid and semi-arid systems where the gap in knowledge is the greatest, and impacts potentially the most severe. To explore the effects of extensive track, road, and rail networks on surface hydrology at a regional level we assessed over 1000 km of linear infrastructure, including approx. 300 locations where ephemeral streams crossed linear infrastructure, in the largely intact landscapes of Australia's Great Western Woodlands. We found a high level of association between linear infrastructure and altered surface hydrology, with erosion and pooling 5 and 6 times as likely to occur on-road than off-road on average (1.06 erosional and 0.69 pooling features km -1 on vehicle tracks, compared with 0.22 and 0.12 km -1 , off-road, respectively). Erosion severity was greater in the presence of tracks, and 98% of crossings of ephemeral streamlines showed some evidence of impact on water movement (flow impedance (62%); diversion of flows (73%); flow concentration (76%); and/or channel initiation (31%)). Infrastructure type, pastoral land use, culvert presence, soil clay content and erodibility, mean annual rainfall, rainfall erosivity, topography and bare soil cover influenced the frequency and severity of these impacts. We conclude that linear infrastructure frequently affects ephemeral stream flows and intercepts natural overland and near-surface flows, artificially changing site-scale moisture regimes, with some parts of the landscape becoming abnormally wet and other parts becoming water-starved. In addition, linear infrastructure frequently triggers or exacerbates erosion

  15. Policy Model of Sustainable Infrastructure Development (Case Study : Bandarlampung City, Indonesia)

    NASA Astrophysics Data System (ADS)

    Persada, C.; Sitorus, S. R. P.; Marimin; Djakapermana, R. D.

    2018-03-01

    Infrastructure development does not only affect the economic aspect, but also social and environmental, those are the main dimensions of sustainable development. Many aspects and actors involved in urban infrastructure development requires a comprehensive and integrated policy towards sustainability. Therefore, it is necessary to formulate an infrastructure development policy that considers various dimensions of sustainable development. The main objective of this research is to formulate policy of sustainable infrastructure development. In this research, urban infrastructure covers transportation, water systems (drinking water, storm water, wastewater), green open spaces and solid waste. This research was conducted in Bandarlampung City. This study use a comprehensive modeling, namely the Multi Dimensional Scaling (MDS) with Rapid Appraisal of Infrastructure (Rapinfra), it uses of Analytic Network Process (ANP) and it uses system dynamics model. The findings of the MDS analysis showed that the status of Bandarlampung City infrastructure sustainability is less sustainable. The ANP analysis produces 8 main indicators of the most influential in the development of sustainable infrastructure. The system dynamics model offered 4 scenarios of sustainable urban infrastructure policy model. The best scenario was implemented into 3 policies consist of: the integrated infrastructure management, the population control, and the local economy development.

  16. A spatial model for a stream networks of Citarik River with the environmental variables: potential of hydrogen (PH) and temperature

    NASA Astrophysics Data System (ADS)

    Bachrudin, A.; Mohamed, N. B.; Supian, S.; Sukono; Hidayat, Y.

    2018-03-01

    Application of existing geostatistical theory of stream networks provides a number of interesting and challenging problems. Most of statistical tools in the traditional geostatistics have been based on a Euclidean distance such as autocovariance functions, but for stream data is not permissible since it deals with a stream distance. To overcome this autocovariance developed a model based on the distance the flow with using convolution kernel approach (moving average construction). Spatial model for a stream networks is widely used to monitor environmental on a river networks. In a case study of a river in province of West Java, the objective of this paper is to analyze a capability of a predictive on two environmental variables, potential of hydrogen (PH) and temperature using ordinary kriging. Several the empirical results show: (1) The best fit of autocovariance functions for temperature and potential hydrogen (ph) of Citarik River is linear which also yields the smallest root mean squared prediction error (RMSPE), (2) the spatial correlation values between the locations on upstream and on downstream of Citarik river exhibit decreasingly

  17. Defense of Cyber Infrastructures Against Cyber-Physical Attacks Using Game-Theoretic Models.

    PubMed

    Rao, Nageswara S V; Poole, Stephen W; Ma, Chris Y T; He, Fei; Zhuang, Jun; Yau, David K Y

    2016-04-01

    The operation of cyber infrastructures relies on both cyber and physical components, which are subject to incidental and intentional degradations of different kinds. Within the context of network and computing infrastructures, we study the strategic interactions between an attacker and a defender using game-theoretic models that take into account both cyber and physical components. The attacker and defender optimize their individual utilities, expressed as sums of cost and system terms. First, we consider a Boolean attack-defense model, wherein the cyber and physical subinfrastructures may be attacked and reinforced as individual units. Second, we consider a component attack-defense model wherein their components may be attacked and defended, and the infrastructure requires minimum numbers of both to function. We show that the Nash equilibrium under uniform costs in both cases is computable in polynomial time, and it provides high-level deterministic conditions for the infrastructure survival. When probabilities of successful attack and defense, and of incidental failures, are incorporated into the models, the results favor the attacker but otherwise remain qualitatively similar. This approach has been motivated and validated by our experiences with UltraScience Net infrastructure, which was built to support high-performance network experiments. The analytical results, however, are more general, and we apply them to simplified models of cloud and high-performance computing infrastructures. © 2015 Society for Risk Analysis.

  18. Water Molecules and Hydrogen-Bonded Networks in Bacteriorhodopsin—Molecular Dynamics Simulations of the Ground State and the M-Intermediate

    PubMed Central

    Grudinin, Sergei; Büldt, Georg; Gordeliy, Valentin; Baumgaertner, Artur

    2005-01-01

    Protein crystallography provides the structure of a protein, averaged over all elementary cells during data collection time. Thus, it has only a limited access to diffusive processes. This article demonstrates how molecular dynamics simulations can elucidate structure-function relationships in bacteriorhodopsin (bR) involving water molecules. The spatial distribution of water molecules and their corresponding hydrogen-bonded networks inside bR in its ground state (G) and late M intermediate conformations were investigated by molecular dynamics simulations. The simulations reveal a much higher average number of internal water molecules per monomer (28 in the G and 36 in the M) than observed in crystal structures (18 and 22, respectively). We found nine water molecules trapped and 19 diffusive inside the G-monomer, and 13 trapped and 23 diffusive inside the M-monomer. The exchange of a set of diffusive internal water molecules follows an exponential decay with a 1/e time in the order of 340 ps for the G state and 460 ps for the M state. The average residence time of a diffusive water molecule inside the protein is ∼95 ps for the G state and 110 ps for the M state. We have used the Grotthuss model to describe the possible proton transport through the hydrogen-bonded networks inside the protein, which is built up in the picosecond-to-nanosecond time domains. Comparing the water distribution and hydrogen-bonded networks of the two different states, we suggest possible pathways for proton hopping and water movement inside bR. PMID:15731388

  19. A new algorithm for grid-based hydrologic analysis by incorporating stormwater infrastructure

    NASA Astrophysics Data System (ADS)

    Choi, Yosoon; Yi, Huiuk; Park, Hyeong-Dong

    2011-08-01

    We developed a new algorithm, the Adaptive Stormwater Infrastructure (ASI) algorithm, to incorporate ancillary data sets related to stormwater infrastructure into the grid-based hydrologic analysis. The algorithm simultaneously considers the effects of the surface stormwater collector network (e.g., diversions, roadside ditches, and canals) and underground stormwater conveyance systems (e.g., waterway tunnels, collector pipes, and culverts). The surface drainage flows controlled by the surface runoff collector network are superimposed onto the flow directions derived from a DEM. After examining the connections between inlets and outfalls in the underground stormwater conveyance system, the flow accumulation and delineation of watersheds are calculated based on recursive computations. Application of the algorithm to the Sangdong tailings dam in Korea revealed superior performance to that of a conventional D8 single-flow algorithm in terms of providing reasonable hydrologic information on watersheds with stormwater infrastructure.

  20. Hydrogen energy systems studies. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogden, J.M.; Kreutz, T.; Kartha, S.

    1996-08-13

    The results of previous studies suggest that the use of hydrogen from natural gas might be an important first step toward a hydrogen economy based on renewables. Because of infrastructure considerations (the difficulty and cost of storing, transmitting and distributing hydrogen), hydrogen produced from natural gas at the end-user`s site could be a key feature in the early development of hydrogen energy systems. In the first chapter of this report, the authors assess the technical and economic prospects for small scale technologies for producing hydrogen from natural gas (steam reformers, autothermal reformers and partial oxidation systems), addressing the following questions:more » (1) What are the performance, cost and emissions of small scale steam reformer technology now on the market? How does this compare to partial oxidation and autothermal systems? (2) How do the performance and cost of reformer technologies depend on scale? What critical technologies limit cost and performance of small scale hydrogen production systems? What are the prospects for potential cost reductions and performance improvements as these technologies advance? (3) How would reductions in the reformer capital cost impact the delivered cost of hydrogen transportation fuel? In the second chapter of this report the authors estimate the potential demand for hydrogen transportation fuel in Southern California.« less

  1. Security-Oriented and Load-Balancing Wireless Data Routing Game in the Integration of Advanced Metering Infrastructure Network in Smart Grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Fulin; Cao, Yang; Zhang, Jun Jason

    Ensuring flexible and reliable data routing is indispensable for the integration of Advanced Metering Infrastructure (AMI) networks, we propose a secure-oriented and load-balancing wireless data routing scheme. A novel utility function is designed based on security routing scheme. Then, we model the interactive security-oriented routing strategy among meter data concentrators or smart grid meters as a mixed-strategy network formation game. Finally, such problem results in a stable probabilistic routing scheme with proposed distributed learning algorithm. One contributions is that we studied that different types of applications affect the routing selection strategy and the strategy tendency. Another contributions is that themore » chosen strategy of our mixed routing can adaptively to converge to a new mixed strategy Nash equilibrium (MSNE) during the learning process in the smart grid.« less

  2. Crosstalk-aware virtual network embedding over inter-datacenter optical networks with few-mode fibers

    NASA Astrophysics Data System (ADS)

    Huang, Haibin; Guo, Bingli; Li, Xin; Yin, Shan; Zhou, Yu; Huang, Shanguo

    2017-12-01

    Virtualization of datacenter (DC) infrastructures enables infrastructure providers (InPs) to provide novel services like virtual networks (VNs). Furthermore, optical networks have been employed to connect the metro-scale geographically distributed DCs. The synergistic virtualization of the DC infrastructures and optical networks enables the efficient VN service over inter-DC optical networks (inter-DCONs). While the capacity of the used standard single-mode fiber (SSMF) is limited by their nonlinear characteristics. Thus, mode-division multiplexing (MDM) technology based on few-mode fibers (FMFs) could be employed to increase the capacity of optical networks. Whereas, modal crosstalk (XT) introduced by optical fibers and components deployed in the MDM optical networks impacts the performance of VN embedding (VNE) over inter-DCONs with FMFs. In this paper, we propose a XT-aware VNE mechanism over inter-DCONs with FMFs. The impact of XT is considered throughout the VNE procedures. The simulation results show that the proposed XT-aware VNE can achieves better performances of blocking probability and spectrum utilization compared to conventional VNE mechanisms.

  3. Green Infrastructure, Groundwater and the Sustainable City

    NASA Astrophysics Data System (ADS)

    Band, L. E.

    2014-12-01

    The management of water is among the most important attributes of urbanization. Provision of sufficient quantities and quality of freshwater, treatment and disposal of wastewater and flood protection are critical for urban sustainability. Over the last century, two major shifts in water management paradigms have occurred, the first to improve public health with the provision of infrastructure for centralized sanitary effluent collection and treatment, and the rapid drainage and routing of stormwater. A current shift in paradigm is now occurring in response to the unintended consequences of sanitary and stormwater management, which have degraded downstream water bodies and shifted flood hazard downstream. Current infrastructure is being designed and implemented to retain, rather than rapidly drain, stormwater, with a focus on infiltration based methods. In urban areas, this amounts to a shift in hydrologic behavior to depression focused recharge. While stormwater is defined as surface flow resulting from developed areas, an integrated hydrologic systems approach to urban water management requires treatment of the full critical zone. In urban areas this extends from the top of the vegetation and building canopy, to a subsurface depth including natural soils, fill, saprolite and bedrock. In addition to matric and network flow in fracture systems, an urban "karst" includes multiple generations of current and past infrastructure, which has developed extensive subsurface pipe networks for supply and drainage, enhancing surface/groundwater flows and exchange. In this presentation, Band will discuss the need to focus on the urban critical zone, and the development and adaptation of new modeling and analytical approaches to understand and plan green infrastructure based on surface/groundwater/ecosystem interactions, and implications for the restoration and new design of cities.

  4. Supramolecular hydrogen-bonding network in 1-(diaminomethylene)thiouron-1-ium 4-hydroxybenzenesulfonate crystal

    NASA Astrophysics Data System (ADS)

    Perpétuo, Genivaldo J.; Gonçalves, Rafael S.; Janczak, Jan

    2015-09-01

    The single crystals of 1-(diaminomethylene)thiouron-1-ium 4-hydroxybenzenesulfonate were grown using a solution growth technique. The compound crystallises in the centrosymmetric P21/c space group of the monoclinic system. The conformation of the 1-(diaminomethylene)thiouron-1-ium cation is not strictly planar, but twisted. Both arms of the cation are oppositely rotated by 8.5(1)° around the Csbnd N bonds involving the central N atom. The arrangement of oppositely charged components, i.e. 1-(diaminomethylene)thiouron-1-ium cations and 4-hydroxybenzenesulfonate anions in the crystal is mainly determined by ionic and hydrogen-bonding interactions forming supramolecular network. The possible hydrogen-bonding interactions between cation and anion units were analysed on the basis of molecular orbital calculations. The obtained deuterated analogue crystallises similar as H-compound in the monoclinic system (P21/c) with quite similar lattice parameters. The compound was also characterised by the FT-IR and Raman spectroscopies. The characteristic bands of the functional and skeletal groups of the protiated and deuterated analogue of 1-(diaminomethylene)thiouron-1-ium 4-hydroxybenzenesulfonate are discussed.

  5. Distributed Data Networks That Support Public Health Information Needs.

    PubMed

    Tabano, David C; Cole, Elizabeth; Holve, Erin; Davidson, Arthur J

    Data networks, consisting of pooled electronic health data assets from health care providers serving different patient populations, promote data sharing, population and disease monitoring, and methods to assess interventions. Better understanding of data networks, and their capacity to support public health objectives, will help foster partnerships, expand resources, and grow learning health systems. We conducted semistructured interviews with 16 key informants across the United States, identified as network stakeholders based on their respective experience in advancing health information technology and network functionality. Key informants were asked about their experience with and infrastructure used to develop data networks, including each network's utility to identify and characterize populations, usage, and sustainability. Among 11 identified data networks representing hundreds of thousands of patients, key informants described aggregated health care clinical data contributing to population health measures. Key informant interview responses were thematically grouped to illustrate how networks support public health, including (1) infrastructure and information sharing; (2) population health measures; and (3) network sustainability. Collaboration between clinical data networks and public health entities presents an opportunity to leverage infrastructure investments to support public health. Data networks can provide resources to enhance population health information and infrastructure.

  6. Sensor4PRI: A Sensor Platform for the Protection of Railway Infrastructures

    PubMed Central

    Cañete, Eduardo; Chen, Jaime; Díaz, Manuel; Llopis, Luis; Rubio, Bartolomé

    2015-01-01

    Wireless Sensor Networks constitute pervasive and distributed computing systems and are potentially one of the most important technologies of this century. They have been specifically identified as a good candidate to become an integral part of the protection of critical infrastructures. In this paper we focus on railway infrastructure protection and we present the details of a sensor platform designed to be integrated into a slab track system in order to carry out both installation and maintenance monitoring activities. In the installation phase, the platform helps operators to install the slab tracks in the right position. In the maintenance phase, the platform collects information about the structural health and behavior of the infrastructure when a train travels along it and relays the readings to a base station. The base station uses trains as data mules to upload the information to the internet. The use of a train as a data mule is especially suitable for collecting information from remote or inaccessible places which do not have a direct connection to the internet and require less network infrastructure. The overall aim of the system is to deploy a permanent economically viable monitoring system to improve the safety of railway infrastructures. PMID:25734648

  7. A network-based drug repositioning infrastructure for precision cancer medicine through targeting significantly mutated genes in the human cancer genomes.

    PubMed

    Cheng, Feixiong; Zhao, Junfei; Fooksa, Michaela; Zhao, Zhongming

    2016-07-01

    Development of computational approaches and tools to effectively integrate multidomain data is urgently needed for the development of newly targeted cancer therapeutics. We proposed an integrative network-based infrastructure to identify new druggable targets and anticancer indications for existing drugs through targeting significantly mutated genes (SMGs) discovered in the human cancer genomes. The underlying assumption is that a drug would have a high potential for anticancer indication if its up-/down-regulated genes from the Connectivity Map tended to be SMGs or their neighbors in the human protein interaction network. We assembled and curated 693 SMGs in 29 cancer types and found 121 proteins currently targeted by known anticancer or noncancer (repurposed) drugs. We found that the approved or experimental cancer drugs could potentially target these SMGs in 33.3% of the mutated cancer samples, and this number increased to 68.0% by drug repositioning through surveying exome-sequencing data in approximately 5000 normal-tumor pairs from The Cancer Genome Atlas. Furthermore, we identified 284 potential new indications connecting 28 cancer types and 48 existing drugs (adjusted P < .05), with a 66.7% success rate validated by literature data. Several existing drugs (e.g., niclosamide, valproic acid, captopril, and resveratrol) were predicted to have potential indications for multiple cancer types. Finally, we used integrative analysis to showcase a potential mechanism-of-action for resveratrol in breast and lung cancer treatment whereby it targets several SMGs (ARNTL, ASPM, CTTN, EIF4G1, FOXP1, and STIP1). In summary, we demonstrated that our integrative network-based infrastructure is a promising strategy to identify potential druggable targets and uncover new indications for existing drugs to speed up molecularly targeted cancer therapeutics. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All

  8. Tracking the Evolution of Infrastructure Systems and Mass Responses Using Publically Available Data

    PubMed Central

    Guan, Xiangyang; Chen, Cynthia; Work, Dan

    2016-01-01

    Networks can evolve even on a short-term basis. This phenomenon is well understood by network scientists, but receive little attention in empirical literature involving real-world networks. On one hand, this is due to the deceitfully fixed topology of some networks such as many physical infrastructures, whose evolution is often deemed unlikely to occur in short term; on the other hand, the lack of data prohibits scientists from studying subjects such as social networks that seem likely to evolve on a short-term basis. We show that both networks—the infrastructure network and social network—are able to demonstrate evolutionary dynamics at the system level even in the short-term, characterized by shifting between different phases as predicted in network science. We develop a methodology of tracking the evolutionary dynamics of the two networks by incorporating flows and the microstructure of networks such as motifs. This approach is applied to the human interaction network and two transportation networks (subway and taxi) in the context of Hurricane Sandy, using publically available Twitter data and transportation data. Our result shows that significant changes in the system-level structure of networks can be detected on a continuous basis. This result provides a promising channel for real-time tracking in the future. PMID:27907061

  9. A Simple and Accurate Network for Hydrogen and Carbon Chemistry in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Gong, Munan; Ostriker, Eve C.; Wolfire, Mark G.

    2017-07-01

    Chemistry plays an important role in the interstellar medium (ISM), regulating the heating and cooling of the gas and determining abundances of molecular species that trace gas properties in observations. Although solving the time-dependent equations is necessary for accurate abundances and temperature in the dynamic ISM, a full chemical network is too computationally expensive to incorporate into numerical simulations. In this paper, we propose a new simplified chemical network for hydrogen and carbon chemistry in the atomic and molecular ISM. We compare results from our chemical network in detail with results from a full photodissociation region (PDR) code, and also with the Nelson & Langer (NL99) network previously adopted in the simulation literature. We show that our chemical network gives similar results to the PDR code in the equilibrium abundances of all species over a wide range of densities, temperature, and metallicities, whereas the NL99 network shows significant disagreement. Applying our network to 1D models, we find that the CO-dominated regime delimits the coldest gas and that the corresponding temperature tracks the cosmic-ray ionization rate in molecular clouds. We provide a simple fit for the locus of CO-dominated regions as a function of gas density and column. We also compare with observations of diffuse and translucent clouds. We find that the CO, {{CH}}x, and {{OH}}x abundances are consistent with equilibrium predictions for densities n=100{--}1000 {{cm}}-3, but the predicted equilibrium C abundance is higher than that seen in observations, signaling the potential importance of non-equilibrium/dynamical effects.

  10. Hydrogen-based electrochemical energy storage

    DOEpatents

    Simpson, Lin Jay

    2013-08-06

    An energy storage device (100) providing high storage densities via hydrogen storage. The device (100) includes a counter electrode (110), a storage electrode (130), and an ion conducting membrane (120) positioned between the counter electrode (110) and the storage electrode (130). The counter electrode (110) is formed of one or more materials with an affinity for hydrogen and includes an exchange matrix for elements/materials selected from the non-noble materials that have an affinity for hydrogen. The storage electrode (130) is loaded with hydrogen such as atomic or mono-hydrogen that is adsorbed by a hydrogen storage material such that the hydrogen (132, 134) may be stored with low chemical bonding. The hydrogen storage material is typically formed of a lightweight material such as carbon or boron with a network of passage-ways or intercalants for storing and conducting mono-hydrogen, protons, or the like. The hydrogen storage material may store at least ten percent by weight hydrogen (132, 134) at ambient temperature and pressure.

  11. Infrastructure Joint Venture Projects in Malaysia: A Preliminary Study

    NASA Astrophysics Data System (ADS)

    Romeli, Norsyakilah; Muhamad Halil, Faridah; Ismail, Faridah; Sufian Hasim, Muhammad

    2018-03-01

    As many developed country practise, the function of the infrastructure is to connect the each region of Malaysia holistically and infrastructure is an investment network projects such as transportation water and sewerage, power, communication and irrigations system. Hence, a billions allocations of government income reserved for the sake of the infrastructure development. Towards a successful infrastructure development, a joint venture approach has been promotes by 2016 in one of the government thrust in Construction Industry Transformation Plan which encourage the internationalisation among contractors. However, there is depletion in information on the actual practise of the infrastructure joint venture projects in Malaysia. Therefore, this study attempt to explore the real application of the joint venture in Malaysian infrastructure projects. Using the questionnaire survey, a set of survey question distributed to the targeted respondents. The survey contained three section which the sections are respondent details, organizations background and project capital in infrastructure joint venture project. The results recorded and analyse using SPSS software. The contractors stated that they have implemented the joint venture practice with mostly the client with the usual construction period of the infrastructure project are more than 5 years. Other than that, the study indicates that there are problems in the joint venture project in the perspective of the project capital and the railway infrastructure should be given a highlights in future study due to its high significant in term of cost and technical issues.

  12. Making Network Markets in Education: The Development of Data Infrastructure in Australian Schooling

    ERIC Educational Resources Information Center

    Sellar, Sam

    2017-01-01

    This paper examines the development of data infrastructure in Australian schooling with a specific focus on interoperability standards that help to make new markets for education data. The conceptual framework combines insights from studies of infrastructure, economic markets and digital data. The case of the Australian National Schools…

  13. Assessing large-scale wildlife responses to human infrastructure development

    PubMed Central

    Torres, Aurora; Jaeger, Jochen A. G.; Alonso, Juan Carlos

    2016-01-01

    Habitat loss and deterioration represent the main threats to wildlife species, and are closely linked to the expansion of roads and human settlements. Unfortunately, large-scale effects of these structures remain generally overlooked. Here, we analyzed the European transportation infrastructure network and found that 50% of the continent is within 1.5 km of transportation infrastructure. We present a method for assessing the impacts from infrastructure on wildlife, based on functional response curves describing density reductions in birds and mammals (e.g., road-effect zones), and apply it to Spain as a case study. The imprint of infrastructure extends over most of the country (55.5% in the case of birds and 97.9% for mammals), with moderate declines predicted for birds (22.6% of individuals) and severe declines predicted for mammals (46.6%). Despite certain limitations, we suggest the approach proposed is widely applicable to the evaluation of effects of planned infrastructure developments under multiple scenarios, and propose an internationally coordinated strategy to update and improve it in the future. PMID:27402749

  14. Assessing large-scale wildlife responses to human infrastructure development.

    PubMed

    Torres, Aurora; Jaeger, Jochen A G; Alonso, Juan Carlos

    2016-07-26

    Habitat loss and deterioration represent the main threats to wildlife species, and are closely linked to the expansion of roads and human settlements. Unfortunately, large-scale effects of these structures remain generally overlooked. Here, we analyzed the European transportation infrastructure network and found that 50% of the continent is within 1.5 km of transportation infrastructure. We present a method for assessing the impacts from infrastructure on wildlife, based on functional response curves describing density reductions in birds and mammals (e.g., road-effect zones), and apply it to Spain as a case study. The imprint of infrastructure extends over most of the country (55.5% in the case of birds and 97.9% for mammals), with moderate declines predicted for birds (22.6% of individuals) and severe declines predicted for mammals (46.6%). Despite certain limitations, we suggest the approach proposed is widely applicable to the evaluation of effects of planned infrastructure developments under multiple scenarios, and propose an internationally coordinated strategy to update and improve it in the future.

  15. Virtualization in network and servers infrastructure to support dynamic system reconfiguration in ALMA

    NASA Astrophysics Data System (ADS)

    Shen, Tzu-Chiang; Ovando, Nicolás.; Bartsch, Marcelo; Simmond, Max; Vélez, Gastón; Robles, Manuel; Soto, Rubén.; Ibsen, Jorge; Saldias, Christian

    2012-09-01

    ALMA is the first astronomical project being constructed and operated under industrial approach due to the huge amount of elements involved. In order to achieve the maximum through put during the engineering and scientific commissioning phase, several production lines have been established to work in parallel. This decision required modification in the original system architecture in which all the elements are controlled and operated within a unique Standard Test Environment (STE). The advance in the network industry and together with the maturity of virtualization paradigm allows us to provide a solution which can replicate the STE infrastructure without changing their network address definition. This is only possible with Virtual Routing and Forwarding (VRF) and Virtual LAN (VLAN) concepts. The solution allows dynamic reconfiguration of antennas and other hardware across the production lines with minimum time and zero human intervention in the cabling. We also push the virtualization even further, classical rack mount servers are being replaced and consolidated by blade servers. On top of them virtualized server are centrally administrated with VMWare ESX. Hardware costs and system administration effort will be reduced considerably. This mechanism has been established and operated successfully during the last two years. This experience gave us confident to propose a solution to divide the main operation array into subarrays using the same concept which will introduce huge flexibility and efficiency for ALMA operation and eventually may simplify the complexity of ALMA core observing software since there will be no need to deal with subarrays complexity at software level.

  16. Accelerator infrastructure in Europe: EuCARD 2011

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2011-10-01

    The paper presents a digest of the research results in the domain of accelerator science and technology in Europe, shown during the annual meeting of the EuCARD - European Coordination of Accelerator Research and Development. The conference concerns building of the research infrastructure, including in this advanced photonic and electronic systems for servicing large high energy physics experiments. There are debated a few basic groups of such systems like: measurement - control networks of large geometrical extent, multichannel systems for large amounts of metrological data acquisition, precision photonic networks of reference time, frequency and phase distribution.

  17. National Plug-In Electric Vehicle Infrastructure Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Eric W.; Rames, Clement L.; Muratori, Matteo

    This document describes a study conducted by the National Renewable Energy Laboratory quantifying the charging station infrastructure required to serve the growing U.S. fleet of plug-in electric vehicles (PEVs). PEV sales, which include plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs), have surged recently. Most PEV charging occurs at home, but widespread PEV adoption will require the development of a national network of non-residential charging stations. Installation of these stations strategically would maximize the economic viability of early stations while enabling efficient network growth as the PEV market matures. This document describes what effective co-evolution of the PEVmore » fleet and charging infrastructure might look like under a range of scenarios. To develop the roadmap, NREL analyzed PEV charging requirements along interstate corridors and within urban and rural communities. The results suggest that a few hundred corridor fast-charging stations could enable long-distance BEV travel between U.S. cities. Compared to interstate corridors, urban and rural communities are expected to have significantly larger charging infrastructure requirements. About 8,000 fast-charging stations would be required to provide a minimum level of coverage nationwide. In an expanding PEV market, the total number of non-residential charging outlets or 'plugs' required to meet demand ranges from around 100,000 to more than 1.2 million. Understanding what drives this large range in capacity requirements is critical. For example, whether consumers prefer long-range or short-range PEVs has a larger effect on plug requirements than does the total number of PEVs on the road. The relative success of PHEVs versus BEVs also has a major impact, as does the number of PHEVs that charge away from home. This study shows how important it is to understand consumer preferences and driving behaviors when planning charging networks.« less

  18. National Plug-In Electric Vehicle Infrastructure Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muratori, Matteo; Rames, Clement L; Srinivasa Raghavan, Sesha

    This presentation describes a study conducted by the National Renewable Energy Laboratory quantifying the charging station infrastructure required to serve the growing U.S. fleet of plug-in electric vehicles (PEVs). PEV sales, which include plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs), have surged recently. Most PEV charging occurs at home, but widespread PEV adoption will require the development of a national network of non-residential charging stations. Installation of these stations strategically would maximize the economic viability of early stations while enabling efficient network growth as the PEV market matures. This document describes what effective co-evolution of the PEVmore » fleet and charging infrastructure might look like under a range of scenarios. To develop the roadmap, NREL analyzed PEV charging requirements along interstate corridors and within urban and rural communities. The results suggest that a few hundred corridor fast-charging stations could enable long-distance BEV travel between U.S. cities. Compared to interstate corridors, urban and rural communities are expected to have significantly larger charging infrastructure requirements. About 8,000 fast-charging stations would be required to provide a minimum level of coverage nationwide. In an expanding PEV market, the total number of non-residential charging outlets or 'plugs' required to meet demand ranges from around 100,000 to more than 1.2 million. Understanding what drives this large range in capacity requirements is critical. For example, whether consumers prefer long-range or short-range PEVs has a larger effect on plug requirements than does the total number of PEVs on the road. The relative success of PHEVs versus BEVs also has a major impact, as does the number of PHEVs that charge away from home. This study shows how important it is to understand consumer preferences and driving behaviors when planning charging networks.« less

  19. Disruption of Hydrogen-Bonding Network Eliminates Water Anomalies Normally Observed on Cooling to Its Calorimetric Glass Transition

    DOE PAGES

    Borreguero, Jose M.; Mamontov, Eugene

    2017-04-11

    Here, the calorimetric glass-transition temperature of water is 136 K, but extrapolation of thermodynamic and relaxation properties of water from ambient temperature to below its homogeneous nucleation temperature T H = 235 K predicts divergence at T S = 228 K. The “no-man’s land” between the T H and glassy water crystallization temperature of 150 K, which is encountered on warming up from the vitrified state, precludes a straightforward reconciliation of the two incompatible temperature dependences of water properties, above 235 K and below 150 K. The addition of lithium chloride to water allows bypassing both T H and Tmore » S on cooling, resulting in the dynamics with no features except the calorimetric glass transition, still at 136 K. We show that lithium chloride prevents hydrogen-bonding network completion in water on cooling, as manifested, in particular, in changing microscopic diffusion mechanism of the water molecules. Thus thermodynamic and relaxation peculiarities exhibited by pure water on cooling to its glass transition, such as the existence of the T H and T S, must be associated specifically with the hydrogen-bonding network.« less

  20. Defense Strategies for Asymmetric Networked Systems with Discrete Components.

    PubMed

    Rao, Nageswara S V; Ma, Chris Y T; Hausken, Kjell; He, Fei; Yau, David K Y; Zhuang, Jun

    2018-05-03

    We consider infrastructures consisting of a network of systems, each composed of discrete components. The network provides the vital connectivity between the systems and hence plays a critical, asymmetric role in the infrastructure operations. The individual components of the systems can be attacked by cyber and physical means and can be appropriately reinforced to withstand these attacks. We formulate the problem of ensuring the infrastructure performance as a game between an attacker and a provider, who choose the numbers of the components of the systems and network to attack and reinforce, respectively. The costs and benefits of attacks and reinforcements are characterized using the sum-form, product-form and composite utility functions, each composed of a survival probability term and a component cost term. We present a two-level characterization of the correlations within the infrastructure: (i) the aggregate failure correlation function specifies the infrastructure failure probability given the failure of an individual system or network, and (ii) the survival probabilities of the systems and network satisfy first-order differential conditions that capture the component-level correlations using multiplier functions. We derive Nash equilibrium conditions that provide expressions for individual system survival probabilities and also the expected infrastructure capacity specified by the total number of operational components. We apply these results to derive and analyze defense strategies for distributed cloud computing infrastructures using cyber-physical models.

  1. Defense Strategies for Asymmetric Networked Systems with Discrete Components

    PubMed Central

    Rao, Nageswara S. V.; Ma, Chris Y. T.; Hausken, Kjell; He, Fei; Yau, David K. Y.

    2018-01-01

    We consider infrastructures consisting of a network of systems, each composed of discrete components. The network provides the vital connectivity between the systems and hence plays a critical, asymmetric role in the infrastructure operations. The individual components of the systems can be attacked by cyber and physical means and can be appropriately reinforced to withstand these attacks. We formulate the problem of ensuring the infrastructure performance as a game between an attacker and a provider, who choose the numbers of the components of the systems and network to attack and reinforce, respectively. The costs and benefits of attacks and reinforcements are characterized using the sum-form, product-form and composite utility functions, each composed of a survival probability term and a component cost term. We present a two-level characterization of the correlations within the infrastructure: (i) the aggregate failure correlation function specifies the infrastructure failure probability given the failure of an individual system or network, and (ii) the survival probabilities of the systems and network satisfy first-order differential conditions that capture the component-level correlations using multiplier functions. We derive Nash equilibrium conditions that provide expressions for individual system survival probabilities and also the expected infrastructure capacity specified by the total number of operational components. We apply these results to derive and analyze defense strategies for distributed cloud computing infrastructures using cyber-physical models. PMID:29751588

  2. Cycling infrastructure for reducing cycling injuries in cyclists.

    PubMed

    Mulvaney, Caroline A; Smith, Sherie; Watson, Michael C; Parkin, John; Coupland, Carol; Miller, Philip; Kendrick, Denise; McClintock, Hugh

    2015-12-10

    abstracts of papers obtained from searches to determine eligibility. Two review authors extracted data from the included trials and assessed the risk of bias. We carried out a meta-analysis using the random-effects model where at least three studies reported the same intervention and outcome. Where there were sufficient studies, as a secondary analysis we accounted for changes in cyclist exposure in the calculation of the rate ratios. We rated the quality of the evidence as 'high', 'moderate', 'low' or 'very low' according to the GRADE approach for the installation of cycle routes and networks. We identified 21 studies for inclusion in the review: 20 controlled before-after (CBA) studies and one interrupted time series (ITS) study. These evaluated a range of infrastructure including cycle lanes, advanced stop lines, use of colour, cycle tracks, cycle paths, management of the road network, speed management, cycle routes and networks, roundabout design and packages of measures. No studies reported medically-attended or self-reported injuries. There was no evidence that cycle lanes reduce the rate of cycle collisions (rate ratio 1.21, 95% CI 0.70 to 2.08). Taking into account cycle flow, there was no difference in collisions for cyclists using cycle routes and networks compared with cyclists not using cycle routes and networks (RR 0.40, 95% CI 0.15 to 1.05). There was statistically significant heterogeneity between the studies (I² = 75%, Chi² = 8.00 df = 2, P = 0.02) for the analysis adjusted for cycle flow. We judged the quality of the evidence regarding cycle routes and networks as very low and we are very uncertain about the estimate. These analyses are based on findings from CBA studies.From data presented narratively, the use of 20 mph speed restrictions in urban areas may be effective at reducing cyclist collisions. Redesigning specific parts of cycle routes that may be particularly busy or complex in terms of traffic movement may be beneficial to cyclists in terms of

  3. Editors' Choice—Field Trials Testing of Mixed Potential Electrochemical Hydrogen Safety Sensors at Commercial California Hydrogen Filling Stations

    DOE PAGES

    Brosha, Eric Lanich; Romero, Christopher Jesse; Poppe, Daniel; ...

    2017-10-27

    Hydrogen safety sensors must meet specific performance requirements, mandated by the U.S. Department of Energy, for hydrogen fueling station monitoring. Here, we describe the long-term performance of two zirconia-based mixed potential electrochemical hydrogen gas sensors, developed specifically with a high sensitivity to hydrogen, low cross-sensitivity, and fast response time. Over a two-year period, sensors with tin-doped indium oxide and strontium doped lanthanum chromite electrodes were deployed at two stations in four field trials tests conducted in Los Angeles. The sensors documented the existence of hydrogen plumes ranging in concentration from 100 to as high as 2700 ppm in the areamore » surrounding the dispenser, consistent with depressurization from 700 bar following vehicle refueling. As expected, the hydrogen concentration reported by the mixed potential sensors was influenced by wind direction. Baseline stability testing at a Chino, CA station showed no measureable baseline drift throughout 206 days of uninterrupted data acquisition. The high baseline stability, excellent correlation with logged fueling/depressurization events, and absence of false alarms suggest that the zirconia-based mixed potential sensor platform is a good candidate for protecting hydrogen infrastructure where frequent calibrations or sensor replacement to reduce the false alarm frequency have been shown to be cost prohibitive.« less

  4. Editors' Choice—Field Trials Testing of Mixed Potential Electrochemical Hydrogen Safety Sensors at Commercial California Hydrogen Filling Stations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brosha, Eric Lanich; Romero, Christopher Jesse; Poppe, Daniel

    Hydrogen safety sensors must meet specific performance requirements, mandated by the U.S. Department of Energy, for hydrogen fueling station monitoring. Here, we describe the long-term performance of two zirconia-based mixed potential electrochemical hydrogen gas sensors, developed specifically with a high sensitivity to hydrogen, low cross-sensitivity, and fast response time. Over a two-year period, sensors with tin-doped indium oxide and strontium doped lanthanum chromite electrodes were deployed at two stations in four field trials tests conducted in Los Angeles. The sensors documented the existence of hydrogen plumes ranging in concentration from 100 to as high as 2700 ppm in the areamore » surrounding the dispenser, consistent with depressurization from 700 bar following vehicle refueling. As expected, the hydrogen concentration reported by the mixed potential sensors was influenced by wind direction. Baseline stability testing at a Chino, CA station showed no measureable baseline drift throughout 206 days of uninterrupted data acquisition. The high baseline stability, excellent correlation with logged fueling/depressurization events, and absence of false alarms suggest that the zirconia-based mixed potential sensor platform is a good candidate for protecting hydrogen infrastructure where frequent calibrations or sensor replacement to reduce the false alarm frequency have been shown to be cost prohibitive.« less

  5. Two-Dimensional Nanoporous Networks Formed by Liquid-to-Solid Transfer of Hydrogen-Bonded Macrocycles Built from DNA Bases.

    PubMed

    Bilbao, Nerea; Destoop, Iris; De Feyter, Steven; González-Rodríguez, David

    2016-01-11

    We present an approach that makes use of DNA base pairing to produce hydrogen-bonded macrocycles whose supramolecular structure can be transferred from solution to a solid substrate. A hierarchical assembly process ultimately leads to two-dimensional nanostructured porous networks that are able to host size-complementary guests. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Crowdsourcing Physical Network Topology Mapping With Net.Tagger

    DTIC Science & Technology

    2016-03-01

    backend server infrastructure . This in- cludes a full security audit, better web services handling, and integration with the OSM stack and dataset to...a novel approach to network infrastructure mapping that combines smartphone apps with crowdsourced collection to gather data for offline aggregation...and analysis. The project aims to build a map of physical network infrastructure such as fiber-optic cables, facilities, and access points. The

  7. Hydrogen Generation Via Fuel Reforming

    NASA Astrophysics Data System (ADS)

    Krebs, John F.

    2003-07-01

    Reforming is the conversion of a hydrocarbon based fuel to a gas mixture that contains hydrogen. The H2 that is produced by reforming can then be used to produce electricity via fuel cells. The realization of H2-based power generation, via reforming, is facilitated by the existence of the liquid fuel and natural gas distribution infrastructures. Coupling these same infrastructures with more portable reforming technology facilitates the realization of fuel cell powered vehicles. The reformer is the first component in a fuel processor. Contaminants in the H2-enriched product stream, such as carbon monoxide (CO) and hydrogen sulfide (H2S), can significantly degrade the performance of current polymer electrolyte membrane fuel cells (PEMFC's). Removal of such contaminants requires extensive processing of the H2-rich product stream prior to utilization by the fuel cell to generate electricity. The remaining components of the fuel processor remove the contaminants in the H2 product stream. For transportation applications the entire fuel processing system must be as small and lightweight as possible to achieve desirable performance requirements. Current efforts at Argonne National Laboratory are focused on catalyst development and reactor engineering of the autothermal processing train for transportation applications.

  8. Interdependent Network Recovery Games.

    PubMed

    Smith, Andrew M; González, Andrés D; Dueñas-Osorio, Leonardo; D'Souza, Raissa M

    2017-10-30

    Recovery of interdependent infrastructure networks in the presence of catastrophic failure is crucial to the economy and welfare of society. Recently, centralized methods have been developed to address optimal resource allocation in postdisaster recovery scenarios of interdependent infrastructure systems that minimize total cost. In real-world systems, however, multiple independent, possibly noncooperative, utility network controllers are responsible for making recovery decisions, resulting in suboptimal decentralized processes. With the goal of minimizing recovery cost, a best-case decentralized model allows controllers to develop a full recovery plan and negotiate until all parties are satisfied (an equilibrium is reached). Such a model is computationally intensive for planning and negotiating, and time is a crucial resource in postdisaster recovery scenarios. Furthermore, in this work, we prove this best-case decentralized negotiation process could continue indefinitely under certain conditions. Accounting for network controllers' urgency in repairing their system, we propose an ad hoc sequential game-theoretic model of interdependent infrastructure network recovery represented as a discrete time noncooperative game between network controllers that is guaranteed to converge to an equilibrium. We further reduce the computation time needed to find a solution by applying a best-response heuristic and prove bounds on ε-Nash equilibrium, where ε depends on problem inputs. We compare best-case and ad hoc models on an empirical interdependent infrastructure network in the presence of simulated earthquakes to demonstrate the extent of the tradeoff between optimality and computational efficiency. Our method provides a foundation for modeling sociotechnical systems in a way that mirrors restoration processes in practice. © 2017 Society for Risk Analysis.

  9. Large scale silver nanowires network fabricated by MeV hydrogen (H+) ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Honey, S.; Naseem, S.; Ishaq, A.; Maaza, M.; Bhatti, M. T.; Wan, D.

    2016-04-01

    A random two-dimensional large scale nano-network of silver nanowires (Ag-NWs) is fabricated by MeV hydrogen (H+) ion beam irradiation. Ag-NWs are irradiated under H+ ion beam at different ion fluences at room temperature. The Ag-NW network is fabricated by H+ ion beam-induced welding of Ag-NWs at intersecting positions. H+ ion beam induced welding is confirmed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Moreover, the structure of Ag NWs remains stable under H+ ion beam, and networks are optically transparent. Morphology also remains stable under H+ ion beam irradiation. No slicings or cuttings of Ag-NWs are observed under MeV H+ ion beam irradiation. The results exhibit that the formation of Ag-NW network proceeds through three steps: ion beam induced thermal spikes lead to the local heating of Ag-NWs, the formation of simple junctions on small scale, and the formation of a large scale network. This observation is useful for using Ag-NWs based devices in upper space where protons are abandoned in an energy range from MeV to GeV. This high-quality Ag-NW network can also be used as a transparent electrode for optoelectronics devices. Project supported by the National Research Foundation of South Africa (NRF), the French Centre National pour la Recherche Scientifique, iThemba-LABS, the UNESCO-UNISA Africa Chair in Nanosciences & Nanotechnology, the Third World Academy of Science (TWAS), Organization of Women in Science for the Developing World (OWSDW), the Abdus Salam ICTP via the Nanosciences African Network (NANOAFNET), and the Higher Education Commission (HEC) of Pakistan.

  10. Game-theoretic strategies for asymmetric networked systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Nageswara S.; Ma, Chris Y. T.; Hausken, Kjell

    Abstract—We consider an infrastructure consisting of a network of systems each composed of discrete components that can be reinforced at a certain cost to guard against attacks. The network provides the vital connectivity between systems, and hence plays a critical, asymmetric role in the infrastructure operations. We characterize the system-level correlations using the aggregate failure correlation function that specifies the infrastructure failure probability given the failure of an individual system or network. The survival probabilities of systems and network satisfy first-order differential conditions that capture the component-level correlations. We formulate the problem of ensuring the infrastructure survival as a gamemore » between anattacker and a provider, using the sum-form and product-form utility functions, each composed of a survival probability term and a cost term. We derive Nash Equilibrium conditions which provide expressions for individual system survival probabilities, and also the expected capacity specified by the total number of operational components. These expressions differ only in a single term for the sum-form and product-form utilities, despite their significant differences.We apply these results to simplified models of distributed cloud computing infrastructures.« less

  11. The cost of getting CCS wrong: Uncertainty, infrastructure design, and stranded CO 2

    DOE PAGES

    Middleton, Richard Stephen; Yaw, Sean Patrick

    2018-01-11

    Carbon capture, and storage (CCS) infrastructure will require industry—such as fossil-fuel power, ethanol production, and oil and gas extraction—to make massive investment in infrastructure. The cost of getting these investments wrong will be substantial and will impact the success of CCS technology. Multiple factors can and will impact the success of commercial-scale CCS, including significant uncertainties regarding capture, transport, and injection-storage decisions. Uncertainties throughout the CCS supply chain include policy, technology, engineering performance, economics, and market forces. In particular, large uncertainties exist for the injection and storage of CO 2. Even taking into account upfront investment in site characterization, themore » final performance of the storage phase is largely unknown until commercial-scale injection has started. We explore and quantify the impact of getting CCS infrastructure decisions wrong based on uncertain injection rates and uncertain CO 2 storage capacities using a case study managing CO 2 emissions from the Canadian oil sands industry in Alberta. We use SimCCS, a widely used CCS infrastructure design framework, to develop multiple CCS infrastructure scenarios. Each scenario consists of a CCS infrastructure network that connects CO 2 sources (oil sands extraction and processing) with CO 2 storage reservoirs (acid gas storage reservoirs) using a dedicated CO 2 pipeline network. Each scenario is analyzed under a range of uncertain storage estimates and infrastructure performance is assessed and quantified in terms of cost to build additional infrastructure to store all CO 2. We also include the role of stranded CO 2, CO 2 that a source was expecting to but cannot capture due substandard performance in the transport and storage infrastructure. Results show that the cost of getting the original infrastructure design wrong are significant and that comprehensive planning will be required to ensure that CCS becomes a

  12. The cost of getting CCS wrong: Uncertainty, infrastructure design, and stranded CO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Middleton, Richard Stephen; Yaw, Sean Patrick

    Carbon capture, and storage (CCS) infrastructure will require industry—such as fossil-fuel power, ethanol production, and oil and gas extraction—to make massive investment in infrastructure. The cost of getting these investments wrong will be substantial and will impact the success of CCS technology. Multiple factors can and will impact the success of commercial-scale CCS, including significant uncertainties regarding capture, transport, and injection-storage decisions. Uncertainties throughout the CCS supply chain include policy, technology, engineering performance, economics, and market forces. In particular, large uncertainties exist for the injection and storage of CO 2. Even taking into account upfront investment in site characterization, themore » final performance of the storage phase is largely unknown until commercial-scale injection has started. We explore and quantify the impact of getting CCS infrastructure decisions wrong based on uncertain injection rates and uncertain CO 2 storage capacities using a case study managing CO 2 emissions from the Canadian oil sands industry in Alberta. We use SimCCS, a widely used CCS infrastructure design framework, to develop multiple CCS infrastructure scenarios. Each scenario consists of a CCS infrastructure network that connects CO 2 sources (oil sands extraction and processing) with CO 2 storage reservoirs (acid gas storage reservoirs) using a dedicated CO 2 pipeline network. Each scenario is analyzed under a range of uncertain storage estimates and infrastructure performance is assessed and quantified in terms of cost to build additional infrastructure to store all CO 2. We also include the role of stranded CO 2, CO 2 that a source was expecting to but cannot capture due substandard performance in the transport and storage infrastructure. Results show that the cost of getting the original infrastructure design wrong are significant and that comprehensive planning will be required to ensure that CCS becomes a

  13. Development of Bioinformatics Infrastructure for Genomics Research.

    PubMed

    Mulder, Nicola J; Adebiyi, Ezekiel; Adebiyi, Marion; Adeyemi, Seun; Ahmed, Azza; Ahmed, Rehab; Akanle, Bola; Alibi, Mohamed; Armstrong, Don L; Aron, Shaun; Ashano, Efejiro; Baichoo, Shakuntala; Benkahla, Alia; Brown, David K; Chimusa, Emile R; Fadlelmola, Faisal M; Falola, Dare; Fatumo, Segun; Ghedira, Kais; Ghouila, Amel; Hazelhurst, Scott; Isewon, Itunuoluwa; Jung, Segun; Kassim, Samar Kamal; Kayondo, Jonathan K; Mbiyavanga, Mamana; Meintjes, Ayton; Mohammed, Somia; Mosaku, Abayomi; Moussa, Ahmed; Muhammd, Mustafa; Mungloo-Dilmohamud, Zahra; Nashiru, Oyekanmi; Odia, Trust; Okafor, Adaobi; Oladipo, Olaleye; Osamor, Victor; Oyelade, Jellili; Sadki, Khalid; Salifu, Samson Pandam; Soyemi, Jumoke; Panji, Sumir; Radouani, Fouzia; Souiai, Oussama; Tastan Bishop, Özlem

    2017-06-01

    Although pockets of bioinformatics excellence have developed in Africa, generally, large-scale genomic data analysis has been limited by the availability of expertise and infrastructure. H3ABioNet, a pan-African bioinformatics network, was established to build capacity specifically to enable H3Africa (Human Heredity and Health in Africa) researchers to analyze their data in Africa. Since the inception of the H3Africa initiative, H3ABioNet's role has evolved in response to changing needs from the consortium and the African bioinformatics community. H3ABioNet set out to develop core bioinformatics infrastructure and capacity for genomics research in various aspects of data collection, transfer, storage, and analysis. Various resources have been developed to address genomic data management and analysis needs of H3Africa researchers and other scientific communities on the continent. NetMap was developed and used to build an accurate picture of network performance within Africa and between Africa and the rest of the world, and Globus Online has been rolled out to facilitate data transfer. A participant recruitment database was developed to monitor participant enrollment, and data is being harmonized through the use of ontologies and controlled vocabularies. The standardized metadata will be integrated to provide a search facility for H3Africa data and biospecimens. Because H3Africa projects are generating large-scale genomic data, facilities for analysis and interpretation are critical. H3ABioNet is implementing several data analysis platforms that provide a large range of bioinformatics tools or workflows, such as Galaxy, the Job Management System, and eBiokits. A set of reproducible, portable, and cloud-scalable pipelines to support the multiple H3Africa data types are also being developed and dockerized to enable execution on multiple computing infrastructures. In addition, new tools have been developed for analysis of the uniquely divergent African data and for

  14. A modular (almost) automatic set-up for elastic multi-tenants cloud (micro)infrastructures

    NASA Astrophysics Data System (ADS)

    Amoroso, A.; Astorino, F.; Bagnasco, S.; Balashov, N. A.; Bianchi, F.; Destefanis, M.; Lusso, S.; Maggiora, M.; Pellegrino, J.; Yan, L.; Yan, T.; Zhang, X.; Zhao, X.

    2017-10-01

    An auto-installing tool on an usb drive can allow for a quick and easy automatic deployment of OpenNebula-based cloud infrastructures remotely managed by a central VMDIRAC instance. A single team, in the main site of an HEP Collaboration or elsewhere, can manage and run a relatively large network of federated (micro-)cloud infrastructures, making an highly dynamic and elastic use of computing resources. Exploiting such an approach can lead to modular systems of cloud-bursting infrastructures addressing complex real-life scenarios.

  15. A Cloud-based Infrastructure and Architecture for Environmental System Research

    NASA Astrophysics Data System (ADS)

    Wang, D.; Wei, Y.; Shankar, M.; Quigley, J.; Wilson, B. E.

    2016-12-01

    The present availability of high-capacity networks, low-cost computers and storage devices, and the widespread adoption of hardware virtualization and service-oriented architecture provide a great opportunity to enable data and computing infrastructure sharing between closely related research activities. By taking advantage of these approaches, along with the world-class high computing and data infrastructure located at Oak Ridge National Laboratory, a cloud-based infrastructure and architecture has been developed to efficiently deliver essential data and informatics service and utilities to the environmental system research community, and will provide unique capabilities that allows terrestrial ecosystem research projects to share their software utilities (tools), data and even data submission workflow in a straightforward fashion. The infrastructure will minimize large disruptions from current project-based data submission workflows for better acceptances from existing projects, since many ecosystem research projects already have their own requirements or preferences for data submission and collection. The infrastructure will eliminate scalability problems with current project silos by provide unified data services and infrastructure. The Infrastructure consists of two key components (1) a collection of configurable virtual computing environments and user management systems that expedite data submission and collection from environmental system research community, and (2) scalable data management services and system, originated and development by ORNL data centers.

  16. Pervasive monitoring--an intelligent sensor pod approach for standardised measurement infrastructures.

    PubMed

    Resch, Bernd; Mittlboeck, Manfred; Lippautz, Michael

    2010-01-01

    Geo-sensor networks have traditionally been built up in closed monolithic systems, thus limiting trans-domain usage of real-time measurements. This paper presents the technical infrastructure of a standardised embedded sensing device, which has been developed in the course of the Live Geography approach. The sensor pod implements data provision standards of the Sensor Web Enablement initiative, including an event-based alerting mechanism and location-aware Complex Event Processing functionality for detection of threshold transgression and quality assurance. The goal of this research is that the resultant highly flexible sensing architecture will bring sensor network applications one step further towards the realisation of the vision of a "digital skin for planet earth". The developed infrastructure can potentially have far-reaching impacts on sensor-based monitoring systems through the deployment of ubiquitous and fine-grained sensor networks. This in turn allows for the straight-forward use of live sensor data in existing spatial decision support systems to enable better-informed decision-making.

  17. Pervasive Monitoring—An Intelligent Sensor Pod Approach for Standardised Measurement Infrastructures

    PubMed Central

    Resch, Bernd; Mittlboeck, Manfred; Lippautz, Michael

    2010-01-01

    Geo-sensor networks have traditionally been built up in closed monolithic systems, thus limiting trans-domain usage of real-time measurements. This paper presents the technical infrastructure of a standardised embedded sensing device, which has been developed in the course of the Live Geography approach. The sensor pod implements data provision standards of the Sensor Web Enablement initiative, including an event-based alerting mechanism and location-aware Complex Event Processing functionality for detection of threshold transgression and quality assurance. The goal of this research is that the resultant highly flexible sensing architecture will bring sensor network applications one step further towards the realisation of the vision of a “digital skin for planet earth”. The developed infrastructure can potentially have far-reaching impacts on sensor-based monitoring systems through the deployment of ubiquitous and fine-grained sensor networks. This in turn allows for the straight-forward use of live sensor data in existing spatial decision support systems to enable better-informed decision-making. PMID:22163537

  18. Quantifying the conservation gains from shared access to linear infrastructure.

    PubMed

    Runge, Claire A; Tulloch, Ayesha I T; Gordon, Ascelin; Rhodes, Jonathan R

    2017-12-01

    The proliferation of linear infrastructure such as roads and railways is a major global driver of cumulative biodiversity loss. One strategy for reducing habitat loss associated with development is to encourage linear infrastructure providers and users to share infrastructure networks. We quantified the reductions in biodiversity impact and capital costs under linear infrastructure sharing of a range of potential mine to port transportation links for 47 mine locations operated by 28 separate companies in the Upper Spencer Gulf Region of South Australia. We mapped transport links based on least-cost pathways for different levels of linear-infrastructure sharing and used expert-elicited impacts of linear infrastructure to estimate the consequences for biodiversity. Capital costs were calculated based on estimates of construction costs, compensation payments, and transaction costs. We evaluated proposed mine-port links by comparing biodiversity impacts and capital costs across 3 scenarios: an independent scenario, where no infrastructure is shared; a restricted-access scenario, where the largest mining companies share infrastructure but exclude smaller mining companies from sharing; and a shared scenario where all mining companies share linear infrastructure. Fully shared development of linear infrastructure reduced overall biodiversity impacts by 76% and reduced capital costs by 64% compared with the independent scenario. However, there was considerable variation among companies. Our restricted-access scenario showed only modest biodiversity benefits relative to the independent scenario, indicating that reductions are likely to be limited if the dominant mining companies restrict access to infrastructure, which often occurs without policies that promote sharing of infrastructure. Our research helps illuminate the circumstances under which infrastructure sharing can minimize the biodiversity impacts of development. © 2017 The Authors. Conservation Biology published

  19. Invisible transportation infrastructure technology to mitigate energy and environment.

    PubMed

    Hossain, Md Faruque

    2017-01-01

    Traditional transportation infrastructure built by heat trapping products and the transportation vehiles run by fossil fuel, both causing deadly climate change. Thus, a new technology of invisible Flying Transportation system has been proposed to mitigate energy and environmental crisis caused by traditional infrastructure system. Underground Maglev system has been modeled to be constructed for all transportation systems to run the vehicle smoothly just over two feet over the earth surface by propulsive and impulsive force at flying stage. A wind energy modeling has also been added to meet the vehicle's energy demand when it runs on a non-maglev area. Naturally, all maglev infrastructures network to be covered by evergreen herb except pedestrian walkways to absorb CO 2 , ambient heat, and moisture (vapor) from the surrounding environment to make it cool. The research revealed that the vehicle will not require any energy since it will run by superconducting electromagnetic force while it runs on a maglev infrastructure area and directed by wind energy while it runs on non-maglev area. The proposed maglev transportation infrastructure technology will indeed be an innovative discovery in modern engineering science which will reduce fossil fuel energy consumption and climate change dramatically.

  20. A General Purpose High Performance Linux Installation Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wachsmann, Alf

    2002-06-17

    With more and more and larger and larger Linux clusters, the question arises how to install them. This paper addresses this question by proposing a solution using only standard software components. This installation infrastructure scales well for a large number of nodes. It is also usable for installing desktop machines or diskless Linux clients, thus, is not designed for cluster installations in particular but is, nevertheless, highly performant. The infrastructure proposed uses PXE as the network boot component on the nodes. It uses DHCP and TFTP servers to get IP addresses and a bootloader to all nodes. It then usesmore » kickstart to install Red Hat Linux over NFS. We have implemented this installation infrastructure at SLAC with our given server hardware and installed a 256 node cluster in 30 minutes. This paper presents the measurements from this installation and discusses the bottlenecks in our installation.« less

  1. Infrastructure of electronic information management

    USGS Publications Warehouse

    Twitchell, G.D.

    2004-01-01

    The information technology infrastructure of an organization, whether it is a private, non-profit, federal, or academic institution, is key to delivering timely and high-quality products and services to its customers and stakeholders. With the evolution of the Internet and the World Wide Web, resources that were once "centralized" in nature are now distributed across the organization in various locations and often remote regions of the country. This presents tremendous challenges to the information technology managers, users, and CEOs of large world-wide corporations who wish to exchange information or get access to resources in today's global marketplace. Several tools and technologies have been developed over recent years that play critical roles in ensuring that the proper information infrastructure exists within the organization to facilitate this global information marketplace Such tools and technologies as JAVA, Proxy Servers, Virtual Private Networks (VPN), multi-platform database management solutions, high-speed telecommunication technologies (ATM, ISDN, etc.), mass storage devices, and firewall technologies most often determine the organization's success through effective and efficient information infrastructure practices. This session will address several of these technologies and provide options related to those that may exist and can be readily applied within Eastern Europe. ?? 2004 - IOS Press and the authors. All rights reserved.

  2. New EVSE Analytical Tools/Models: Electric Vehicle Infrastructure Projection Tool (EVI-Pro)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Eric W; Rames, Clement L; Muratori, Matteo

    This presentation addresses the fundamental question of how much charging infrastructure is needed in the United States to support PEVs. It complements ongoing EVSE initiatives by providing a comprehensive analysis of national PEV charging infrastructure requirements. The result is a quantitative estimate for a U.S. network of non-residential (public and workplace) EVSE that would be needed to support broader PEV adoption. The analysis provides guidance to public and private stakeholders who are seeking to provide nationwide charging coverage, improve the EVSE business case by maximizing station utilization, and promote effective use of private/public infrastructure investments.

  3. Hydrogen Bond Networks and Hydrophobic Effects in the Amyloid β30-35 Chain in Water: A Molecular Dynamics Study.

    PubMed

    Jong, KwangHyok; Grisanti, Luca; Hassanali, Ali

    2017-07-24

    We have studied the conformational landscape of the C-terminal fragment of the amyloid protein Aβ 30-35 in water using well-tempered metadynamics simulations and found that it resembles an intrinsically disordered protein. The conformational fluctuations of the protein are facilitated by a collective reorganization of both protein and water hydrogen bond networks, combined with electrostatic interactions between termini as well as hydrophobic interactions of the side chains. The stabilization of hydrophobic interactions in one of the conformers involves a collective collapse of the side chains along with a squeeze-out of water sandwiched between them. The charged N- and C-termini play a critical role in stabilizing different types of protein conformations, including those involving contact-ion salt bridges as well as solvent-mediated interactions of the termini and the amide backbone. We have examined this by probing the distribution of directed water wires forming the hydrogen bond network enveloping the polypeptide. Water wires and their fluctuations form an integral part of structural signature of the protein conformation.

  4. EIA application in China's expressway infrastructure: clarifying the decision-making hierarchy.

    PubMed

    Zhou, Kai-Yi; Sheate, William R

    2011-06-01

    China's EIA Law came into effect in 2003 and formally requires road transport infrastructure development actions to be subject to Environmental Impact Assessment (EIA). EIAs (including project EIA and plan EIA, or strategic environmental impact assessment, SEA) have been being widely applied in the expressway infrastructure planning field. Among those applications, SEA is applied to provincial level expressway network (PLEI) plans, and project EIA is applied to expressway infrastructure development 'projects' under PLEI plans. Three case studies (one expressway project EIA and two PLEI plan SEAs) were examined to understand currently how EIAs are applied to expressway infrastructure development planning. Through the studies, a number of problems that significantly influence the quality of EIA application in the field were identified. The reasons causing those problems are analyzed and possible solutions are suggested aimed at enhancing EIA practice, helping deliver better decision-making and ultimately improving the environmental performance of expressway infrastructure. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. H2FIRST: A partnership to advance hydrogen fueling station technology driving an optimal consumer experience.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moen, Christopher D.; Dedrick, Daniel E.; Pratt, Joseph William

    2014-03-01

    The US Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) Office of Fuel Cell Technologies Office (FCTO) is establishing the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) partnership, led by the National Renewable Energy Laboratory (NREL) and Sandia National Laboratories (SNL). FCTO is establishing this partnership and the associated capabilities in support of H2USA, the public/private partnership launched in 2013. The H2FIRST partnership provides the research and technology acceleration support to enable the widespread deployment of hydrogen infrastructure for the robust fueling of light-duty fuel cell electric vehicles (FCEV). H2FIRST will focus on improving private-sector economics, safety,more » availability and reliability, and consumer confidence for hydrogen fueling. This whitepaper outlines the goals, scope, activities associated with the H2FIRST partnership.« less

  6. INcreasing Security and Protection through Infrastructure REsilience: The INSPIRE Project

    NASA Astrophysics Data System (ADS)

    D'Antonio, Salvatore; Romano, Luigi; Khelil, Abdelmajid; Suri, Neeraj

    The INSPIRE project aims at enhancing the European potential in the field of security by ensuring the protection of critical information infrastructures through (a) the identification of their vulnerabilities and (b) the development of innovative techniques for securing networked process control systems. To increase the resilience of such systems INSPIRE will develop traffic engineering algorithms, diagnostic processes and self-reconfigurable architectures along with recovery techniques. Hence, the core idea of the INSPIRE project is to protect critical information infrastructures by appropriately configuring, managing, and securing the communication network which interconnects the distributed control systems. A working prototype will be implemented as a final demonstrator of selected scenarios. Controls/Communication Experts will support project partners in the validation and demonstration activities. INSPIRE will also contribute to standardization process in order to foster multi-operator interoperability and coordinated strategies for securing lifeline systems.

  7. Scalable Collaborative Infrastructure for a Learning Healthcare System (SCILHS): Architecture

    PubMed Central

    Mandl, Kenneth D; Kohane, Isaac S; McFadden, Douglas; Weber, Griffin M; Natter, Marc; Mandel, Joshua; Schneeweiss, Sebastian; Weiler, Sarah; Klann, Jeffrey G; Bickel, Jonathan; Adams, William G; Ge, Yaorong; Zhou, Xiaobo; Perkins, James; Marsolo, Keith; Bernstam, Elmer; Showalter, John; Quarshie, Alexander; Ofili, Elizabeth; Hripcsak, George; Murphy, Shawn N

    2014-01-01

    We describe the architecture of the Patient Centered Outcomes Research Institute (PCORI) funded Scalable Collaborative Infrastructure for a Learning Healthcare System (SCILHS, http://www.SCILHS.org) clinical data research network, which leverages the $48 billion dollar federal investment in health information technology (IT) to enable a queryable semantic data model across 10 health systems covering more than 8 million patients, plugging universally into the point of care, generating evidence and discovery, and thereby enabling clinician and patient participation in research during the patient encounter. Central to the success of SCILHS is development of innovative ‘apps’ to improve PCOR research methods and capacitate point of care functions such as consent, enrollment, randomization, and outreach for patient-reported outcomes. SCILHS adapts and extends an existing national research network formed on an advanced IT infrastructure built with open source, free, modular components. PMID:24821734

  8. An integrated MEMS infrastructure for fuel processing: hydrogen generation and separation for portable power generation

    NASA Astrophysics Data System (ADS)

    Varady, M. J.; McLeod, L.; Meacham, J. M.; Degertekin, F. L.; Fedorov, A. G.

    2007-09-01

    Portable fuel cells are an enabling technology for high efficiency and ultra-high density distributed power generation, which is essential for many terrestrial and aerospace applications. A key element of fuel cell power sources is the fuel processor, which should have the capability to efficiently reform liquid fuels and produce high purity hydrogen that is consumed by the fuel cells. To this end, we are reporting on the development of two novel MEMS hydrogen generators with improved functionality achieved through an innovative process organization and system integration approach that exploits the advantages of transport and catalysis on the micro/nano scale. One fuel processor design utilizes transient, reverse-flow operation of an autothermal MEMS microreactor with an intimately integrated, micromachined ultrasonic fuel atomizer and a Pd/Ag membrane for in situ hydrogen separation from the product stream. The other design features a simpler, more compact planar structure with the atomized fuel ejected directly onto the catalyst layer, which is coupled to an integrated hydrogen selective membrane.

  9. A cyber infrastructure for the SKA Telescope Manager

    NASA Astrophysics Data System (ADS)

    Barbosa, Domingos; Barraca, João. P.; Carvalho, Bruno; Maia, Dalmiro; Gupta, Yashwant; Natarajan, Swaminathan; Le Roux, Gerhard; Swart, Paul

    2016-07-01

    The Square Kilometre Array Telescope Manager (SKA TM) will be responsible for assisting the SKA Operations and Observation Management, carrying out System diagnosis and collecting Monitoring and Control data from the SKA subsystems and components. To provide adequate compute resources, scalability, operation continuity and high availability, as well as strict Quality of Service, the TM cyber-infrastructure (embodied in the Local Infrastructure - LINFRA) consists of COTS hardware and infrastructural software (for example: server monitoring software, host operating system, virtualization software, device firmware), providing a specially tailored Infrastructure as a Service (IaaS) and Platform as a Service (PaaS) solution. The TM infrastructure provides services in the form of computational power, software defined networking, power, storage abstractions, and high level, state of the art IaaS and PaaS management interfaces. This cyber platform will be tailored to each of the two SKA Phase 1 telescopes (SKA_MID in South Africa and SKA_LOW in Australia) instances, each presenting different computational and storage infrastructures and conditioned by location. This cyber platform will provide a compute model enabling TM to manage the deployment and execution of its multiple components (observation scheduler, proposal submission tools, MandC components, Forensic tools and several Databases, etc). In this sense, the TM LINFRA is primarily focused towards the provision of isolated instances, mostly resorting to virtualization technologies, while defaulting to bare hardware if specifically required due to performance, security, availability, or other requirement.

  10. Advanced Optical Burst Switched Network Concepts

    NASA Astrophysics Data System (ADS)

    Nejabati, Reza; Aracil, Javier; Castoldi, Piero; de Leenheer, Marc; Simeonidou, Dimitra; Valcarenghi, Luca; Zervas, Georgios; Wu, Jian

    In recent years, as the bandwidth and the speed of networks have increased significantly, a new generation of network-based applications using the concept of distributed computing and collaborative services is emerging (e.g., Grid computing applications). The use of the available fiber and DWDM infrastructure for these applications is a logical choice offering huge amounts of cheap bandwidth and ensuring global reach of computing resources [230]. Currently, there is a great deal of interest in deploying optical circuit (wavelength) switched network infrastructure for distributed computing applications that require long-lived wavelength paths and address the specific needs of a small number of well-known users. Typical users are particle physicists who, due to their international collaborations and experiments, generate enormous amounts of data (Petabytes per year). These users require a network infrastructures that can support processing and analysis of large datasets through globally distributed computing resources [230]. However, providing wavelength granularity bandwidth services is not an efficient and scalable solution for applications and services that address a wider base of user communities with different traffic profiles and connectivity requirements. Examples of such applications may be: scientific collaboration in smaller scale (e.g., bioinformatics, environmental research), distributed virtual laboratories (e.g., remote instrumentation), e-health, national security and defense, personalized learning environments and digital libraries, evolving broadband user services (i.e., high resolution home video editing, real-time rendering, high definition interactive TV). As a specific example, in e-health services and in particular mammography applications due to the size and quantity of images produced by remote mammography, stringent network requirements are necessary. Initial calculations have shown that for 100 patients to be screened remotely, the network

  11. Hydrogen fuel dispensing station for transportation vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, S.P.N.; Richmond, A.A.

    1995-07-01

    A technical and economic assessment is being conducted of a hydrogen fuel dispensing station to develop an understanding of the infrastructure requirements for supplying hydrogen fuel for mobile applications. The study includes a process design of a conceptual small-scale, stand-alone, grassroots fuel dispensing facility (similar to the present-day gasoline stations) producing hydrogen by steam reforming of natural gas. Other hydrogen production processes (such as partial oxidation of hydrocarbons and water electrolysis) were reviewed to determine their suitability for manufacturing the hydrogen. The study includes an assessment of the environmental and other regulatory permitting requirements likely to be imposed on amore » hydrogen fuel dispensing station for transportation vehicles. The assessment concludes that a dispensing station designed to produce 0.75 million standard cubic feet of fuel grade (99.99%+ purity) hydrogen will meet the fuel needs of 300 light-duty vehicles per day. Preliminary economics place the total capital investment (in 1994 US dollars) for the dispensing station at $4.5 million and the annual operating costs at around $1 million. A discounted cash-flow analysis indicates that the fuel hydrogen product price (excluding taxes) to range between $1.37 to $2.31 per pound of hydrogen, depending upon the natural gas price, the plant financing scenario, and the rate of return on equity capital. A report on the assessment is due in June 1995. This paper presents a summary of the current status of the assessment.« less

  12. Convergence, Competition, Cooperation: The Report of the Governor's Blue Ribbon Telecommunications Infrastructure Task Force. Volume One.

    ERIC Educational Resources Information Center

    Wisconsin Governor's Office, Madison.

    This report by the Blue Ribbon Task Force on Wisconsin's Telecommunications Infrastructure considers infrastructure to be the common network that connects individual residences, businesses, and agencies, rather than the individual systems and equipment themselves. The task force recognizes that advances in telecommunications technologies and…

  13. Hydrogen enhances strength and ductility of an equiatomic high-entropy alloy.

    PubMed

    Luo, Hong; Li, Zhiming; Raabe, Dierk

    2017-08-29

    Metals are key materials for modern manufacturing and infrastructures as well as transpot and energy solutions owing to their strength and formability. These properties can severely deteriorate when they contain hydrogen, leading to unpredictable failure, an effect called hydrogen embrittlement. Here we report that hydrogen in an equiatomic CoCrFeMnNi high-entropy alloy (HEA) leads not to catastrophic weakening, but instead increases both, its strength and ductility. While HEAs originally aimed at entropy-driven phase stabilization, hydrogen blending acts opposite as it reduces phase stability. This effect, quantified by the alloy's stacking fault energy, enables nanotwinning which increases the material's work-hardening. These results turn a bane into a boon: hydrogen does not generally act as a harmful impurity, but can be utilized for tuning beneficial hardening mechanisms. This opens new pathways for the design of strong, ductile, and hydrogen tolerant materials.

  14. Hydrogen aircraft technology

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.

    1991-01-01

    A comprehensive evaluation is conducted of the technology development status, economics, commercial feasibility, and infrastructural requirements of LH2-fueled aircraft, with additional consideration of hydrogen production, liquefaction, and cryostorage methods. Attention is given to the effects of LH2 fuel cryotank accommodation on the configurations of prospective commercial transports and military airlifters, SSTs, and HSTs, as well as to the use of the plentiful heatsink capacity of LH2 for innovative propulsion cycles' performance maximization. State-of-the-art materials and structural design principles for integral cryotank implementation are noted, as are airport requirements and safety and environmental considerations.

  15. Decentralized Online Social Networks

    NASA Astrophysics Data System (ADS)

    Datta, Anwitaman; Buchegger, Sonja; Vu, Le-Hung; Strufe, Thorsten; Rzadca, Krzysztof

    Current Online social networks (OSN) are web services run on logically centralized infrastructure. Large OSN sites use content distribution networks and thus distribute some of the load by caching for performance reasons, nevertheless there is a central repository for user and application data. This centralized nature of OSNs has several drawbacks including scalability, privacy, dependence on a provider, need for being online for every transaction, and a lack of locality. There have thus been several efforts toward decentralizing OSNs while retaining the functionalities offered by centralized OSNs. A decentralized online social network (DOSN) is a distributed system for social networking with no or limited dependency on any dedicated central infrastructure. In this chapter we explore the various motivations of a decentralized approach to online social networking, discuss several concrete proposals and types of DOSN as well as challenges and opportunities associated with decentralization.

  16. Infrastructure resources for clinical research in amyotrophic lateral sclerosis.

    PubMed

    Sherman, Alexander V; Gubitz, Amelie K; Al-Chalabi, Ammar; Bedlack, Richard; Berry, James; Conwit, Robin; Harris, Brent T; Horton, D Kevin; Kaufmann, Petra; Leitner, Melanie L; Miller, Robert; Shefner, Jeremy; Vonsattel, Jean Paul; Mitsumoto, Hiroshi

    2013-05-01

    Clinical trial networks, shared clinical databases, and human biospecimen repositories are examples of infrastructure resources aimed at enhancing and expediting clinical and/or patient oriented research to uncover the etiology and pathogenesis of amyotrophic lateral sclerosis (ALS), a rapidly progressive neurodegenerative disease that leads to the paralysis of voluntary muscles. The current status of such infrastructure resources, as well as opportunities and impediments, were discussed at the second Tarrytown ALS meeting held in September 2011. The discussion focused on resources developed and maintained by ALS clinics and centers in North America and Europe, various clinical trial networks, U.S. government federal agencies including the National Institutes of Health (NIH), the Agency for Toxic Substances and Disease Registry (ATSDR) and the Centers for Disease Control and Prevention (CDC), and several voluntary disease organizations that support ALS research activities. Key recommendations included 1) the establishment of shared databases among individual ALS clinics to enhance the coordination of resources and data analyses; 2) the expansion of quality-controlled human biospecimen banks; and 3) the adoption of uniform data standards, such as the recently developed Common Data Elements (CDEs) for ALS clinical research. The value of clinical trial networks such as the Northeast ALS (NEALS) Consortium and the Western ALS (WALS) Consortium was recognized, and strategies to further enhance and complement these networks and their research resources were discussed.

  17. The effect of the flexibility of hydrogen bonding network on low-frequency motions of amino acids. Evidence from Terahertz spectroscopy and DFT calculations

    NASA Astrophysics Data System (ADS)

    Li, Yin; Lukács, András; Bordács, Sándor; Móczár, János; Nyitrai, Miklós; Hebling, János

    2018-02-01

    Low-frequency modes of L-Asp and L-Asn were studied in the range from 0.1 to 3.0 THz using time-domain Terahertz spectroscopy and density functional theory calculation. The results show that PBE-D2 shows more success than BLYP-D2 in prediction of THz absorption spectra. To compare their low-frequency modes, we adopted ;vibrational character ID strips; proposed by Schmuttenmaer and coworkers [Journal of Physical Chemistry B, 117, 10444(2013)]. We found that the most intense THz absorption peaks of two compounds both involve severe distortion of their hydrogen bonding networks. Due to less rigid hydrogen bonding network in L-Asp, the side chain (carboxyl group) of L-Asp exhibits larger motions than that (carboxamide group) of L-Asn in low-frequency modes.

  18. Use of certain alternative fuels in road transport in Poland

    NASA Astrophysics Data System (ADS)

    Gis, W.; Pielecha, J.; Waśkiewicz, J.; Gis, M.; Menes, M.

    2016-09-01

    The development of biomethane and hydrogen technology in the road transport in the EU countries is recommended, among the others, in the Directive of the European Parliament and of the Council 2014/94/EU of 22 October 2014. Under the provisions of the said Directive, it is recommended to EU countries to use biomethane and progressively ensure accessibility to hydrogen cars on their territories, and above all to ensure the possibility of driving hydrogen vehicles between the member States. The territorial accessibility for biomethane vehicles is determined by the availability of biomethane refuelling infrastructure in the first place in cities and then on the road network distances recommended in this directive. The territorial accessibility for hydrogen vehicles is determined by the availability of hydrogen refuelling infrastructure, in the first place along the TEN-T network. The article presents the possibilities of using these alternative fuels in Poland, presenting some of the results of research and analysis in this area.

  19. Nanostructure, hydrogen bonding and rheology in choline chloride deep eutectic solvents as a function of the hydrogen bond donor.

    PubMed

    Stefanovic, Ryan; Ludwig, Michael; Webber, Grant B; Atkin, Rob; Page, Alister J

    2017-01-25

    Deep eutectic solvents (DESs) are a mixture of a salt and a molecular hydrogen bond donor, which form a eutectic liquid with a depressed melting point. Quantum mechanical molecular dynamics (QM/MD) simulations have been used to probe the 1 : 2 choline chloride-urea (ChCl : U), choline chloride-ethylene glycol (ChCl : EG) and choline chloride-glycerol (ChCl : Gly) DESs. DES nanostructure and interactions between the ions is used to rationalise differences in DES eutectic point temperatures and viscosity. Simulations show that the structure of the bulk hydrogen bond donor is largely preserved for hydroxyl based hydrogen bond donors (ChCl:Gly and ChCl:EG), resulting in a smaller melting point depression. By contrast, ChCl:U exhibits a well-established hydrogen bond network between the salt and hydrogen bond donor, leading to a larger melting point depression. This extensive hydrogen bond network in ChCl:U also leads to substantially higher viscosity, compared to ChCl:EG and ChCl:Gly. Of the two hydroxyl based DESs, ChCl:Gly also exhibits a higher viscosity than ChCl:EG. This is attributed to the over-saturation of hydrogen bond donor groups in the ChCl:Gly bulk, which leads to more extensive hydrogen bond donor self-interaction and hence higher cohesive forces within the bulk liquid.

  20. Infrastructure for collaborative science and societal applications in the Columbia River estuary

    NASA Astrophysics Data System (ADS)

    Baptista, António M.; Seaton, Charles; Wilkin, Michael P.; Riseman, Sarah F.; Needoba, Joseph A.; Maier, David; Turner, Paul J.; Kärnä, Tuomas; Lopez, Jesse E.; Herfort, Lydie; Megler, V. M.; McNeil, Craig; Crump, Byron C.; Peterson, Tawnya D.; Spitz, Yvette H.; Simon, Holly M.

    2015-12-01

    To meet societal needs, modern estuarine science needs to be interdisciplinary and collaborative, combine discovery with hypotheses testing, and be responsive to issues facing both regional and global stakeholders. Such an approach is best conducted with the benefit of data-rich environments, where information from sensors and models is openly accessible within convenient timeframes. Here, we introduce the operational infrastructure of one such data-rich environment, a collaboratory created to support (a) interdisciplinary research in the Columbia River estuary by the multi-institutional team of investigators of the Science and Technology Center for Coastal Margin Observation & Prediction and (b) the integration of scientific knowledge into regional decision making. Core components of the operational infrastructure are an observation network, a modeling system and a cyber-infrastructure, each of which is described. The observation network is anchored on an extensive array of long-term stations, many of them interdisciplinary, and is complemented by on-demand deployment of temporary stations and mobile platforms, often in coordinated field campaigns. The modeling system is based on finiteelement unstructured-grid codes and includes operational and process-oriented simulations of circulation, sediments and ecosystem processes. The flow of information is managed through a dedicated cyber-infrastructure, conversant with regional and national observing systems.

  1. Putting the Information Infrastructure to Work. Report of the Information Infrastructure Task Force Committee on Applications and Technology. NIST Special Publication 857.

    ERIC Educational Resources Information Center

    National Inst. of Standards and Technology, Gaithersburg, MD.

    An interconnection of computer networks, telecommunications services, and applications, the National Information Infrastructure (NII) can open up new vistas and profoundly change much of American life. This report explores some of the opportunities and obstacles to the use of the NII by people and organizations. The goal is to express how…

  2. 78 FR 73202 - Review and Revision of the National Critical Infrastructure Security and Resilience (NCISR...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-05

    ...This Request for Information (RFI) notice informs the public that the Department of Homeland Security's (DHS) Science and Technology Directorate (S&T) is currently developing a National Critical Infrastructure Security and Resilience Research and Development Plan (NCISR R&D Plan) to conform to the requirements of Presidential Policy Directive 21, Critical Infrastructure Security and Resilience. As part of a comprehensive national review process, DHS solicits public comment on issues or language in the NCISR R&D Plan that need to be included. Critical infrastructure includes both cyber and physical components, systems, and networks for the sixteen established ``critical infrastructures''.

  3. Rotational Spectra of Hydrogen Bonded Networks of Amino Alcohols

    NASA Astrophysics Data System (ADS)

    Zhang, Di; Zwier, Timothy S.

    2014-06-01

    The rotational spectra of several different amino alcohols including D/L-allo-threoninol, 2-amino-1,3-propanediol and 1,3-diamino-2-propanol over the 6.5-18.5 GHz range have been investigated under jet-cooled conditions using chirped-pulsed Fourier transform microwave spectroscopy. Despite the small size of these molecules, a great variety of conformations have been observed in the molecular expansion. While the NH2 group is typically thought of as a H-bond acceptor, it often acts both as acceptor and donor in forming H-bonded networks. With three adjacent H-bonding substituents (a combination of OH and NH2 groups), many different hydrogen bonding patterns are possible, including H-bonded chains and H-bonded cycles. Since many of these structures differ primarily by the relative orientation of the H-atoms, the analysis of these rotational spectra are challenging. Only through an exhaustive conformational search and the comparison with the experimental rotational constants, nuclear quadrupolar splittings, and line strengths are we able to understand the complex nature of these interactions. The ways in which the presence and number of NH2 groups affects the relative energies, and distorts the structures will be explored.

  4. First field trial of Virtual Network Operator oriented network on demand (NoD) service provisioning over software defined multi-vendor OTN networks

    NASA Astrophysics Data System (ADS)

    Li, Yajie; Zhao, Yongli; Zhang, Jie; Yu, Xiaosong; Chen, Haoran; Zhu, Ruijie; Zhou, Quanwei; Yu, Chenbei; Cui, Rui

    2017-01-01

    A Virtual Network Operator (VNO) is a provider and reseller of network services from other telecommunications suppliers. These network providers are categorized as virtual because they do not own the underlying telecommunication infrastructure. In terms of business operation, VNO can provide customers with personalized services by leasing network infrastructure from traditional network providers. The unique business modes of VNO lead to the emergence of network on demand (NoD) services. The conventional network provisioning involves a series of manual operation and configuration, which leads to high cost in time. Considering the advantages of Software Defined Networking (SDN), this paper proposes a novel NoD service provisioning solution to satisfy the private network need of VNOs. The solution is first verified in the real software defined multi-domain optical networks with multi-vendor OTN equipment. With the proposed solution, NoD service can be deployed via online web portals in near-real time. It reinvents the customer experience and redefines how network services are delivered to customers via an online self-service portal. Ultimately, this means a customer will be able to simply go online, click a few buttons and have new services almost instantaneously.

  5. Assessing the risk posed by natural hazards to infrastructures

    NASA Astrophysics Data System (ADS)

    Eidsvig, Unni; Kristensen, Krister; Vidar Vangelsten, Bjørn

    2015-04-01

    The modern society is increasingly dependent on infrastructures to maintain its function, and disruption in one of the infrastructure systems may have severe consequences. The Norwegian municipalities have, according to legislation, a duty to carry out a risk and vulnerability analysis and plan and prepare for emergencies in a short- and long term perspective. Vulnerability analysis of the infrastructures and their interdependencies is an important part of this analysis. This paper proposes a model for assessing the risk posed by natural hazards to infrastructures. The model prescribes a three level analysis with increasing level of detail, moving from qualitative to quantitative analysis. This paper focuses on the second level, which consists of a semi-quantitative analysis. The purpose of this analysis is to perform a screening of the scenarios of natural hazards threatening the infrastructures identified in the level 1 analysis and investigate the need for further analyses, i.e. level 3 quantitative analyses. The proposed level 2 analysis considers the frequency of the natural hazard, different aspects of vulnerability including the physical vulnerability of the infrastructure itself and the societal dependency on the infrastructure. An indicator-based approach is applied, ranking the indicators on a relative scale. The proposed indicators characterize the robustness of the infrastructure, the importance of the infrastructure as well as interdependencies between society and infrastructure affecting the potential for cascading effects. Each indicator is ranked on a 1-5 scale based on pre-defined ranking criteria. The aggregated risk estimate is a combination of the semi-quantitative vulnerability indicators, as well as quantitative estimates of the frequency of the natural hazard and the number of users of the infrastructure. Case studies for two Norwegian municipalities are presented, where risk to primary road, water supply and power network threatened by storm

  6. Complex Dynamics of the Power Transmission Grid (and other Critical Infrastructures)

    NASA Astrophysics Data System (ADS)

    Newman, David

    2015-03-01

    Our modern societies depend crucially on a web of complex critical infrastructures such as power transmission networks, communication systems, transportation networks and many others. These infrastructure systems display a great number of the characteristic properties of complex systems. Important among these characteristics, they exhibit infrequent large cascading failures that often obey a power law distribution in their probability versus size. This power law behavior suggests that conventional risk analysis does not apply to these systems. It is thought that much of this behavior comes from the dynamical evolution of the system as it ages, is repaired, upgraded, and as the operational rules evolve with human decision making playing an important role in the dynamics. In this talk, infrastructure systems as complex dynamical systems will be introduced and some of their properties explored. The majority of the talk will then be focused on the electric power transmission grid though many of the results can be easily applied to other infrastructures. General properties of the grid will be discussed and results from a dynamical complex systems power transmission model will be compared with real world data. Then we will look at a variety of uses of this type of model. As examples, we will discuss the impact of size and network homogeneity on the grid robustness, the change in risk of failure as generation mix (more distributed vs centralized for example) changes, as well as the effect of operational changes such as the changing the operational risk aversion or grid upgrade strategies. One of the important outcomes from this work is the realization that ``improvements'' in the system components and operational efficiency do not always improve the system robustness, and can in fact greatly increase the risk, when measured as a risk of large failure.

  7. Mesoscale carbon sequestration site screening and CCS infrastructure analysis.

    PubMed

    Keating, Gordon N; Middleton, Richard S; Stauffer, Philip H; Viswanathan, Hari S; Letellier, Bruce C; Pasqualini, Donatella; Pawar, Rajesh J; Wolfsberg, Andrew V

    2011-01-01

    We explore carbon capture and sequestration (CCS) at the meso-scale, a level of study between regional carbon accounting and highly detailed reservoir models for individual sites. We develop an approach to CO(2) sequestration site screening for industries or energy development policies that involves identification of appropriate sequestration basin, analysis of geologic formations, definition of surface sites, design of infrastructure, and analysis of CO(2) transport and storage costs. Our case study involves carbon management for potential oil shale development in the Piceance-Uinta Basin, CO and UT. This study uses new capabilities of the CO(2)-PENS model for site screening, including reservoir capacity, injectivity, and cost calculations for simple reservoirs at multiple sites. We couple this with a model of optimized source-sink-network infrastructure (SimCCS) to design pipeline networks and minimize CCS cost for a given industry or region. The CLEAR(uff) dynamical assessment model calculates the CO(2) source term for various oil production levels. Nine sites in a 13,300 km(2) area have the capacity to store 6.5 GtCO(2), corresponding to shale-oil production of 1.3 Mbbl/day for 50 years (about 1/4 of U.S. crude oil production). Our results highlight the complex, nonlinear relationship between the spatial deployment of CCS infrastructure and the oil-shale production rate.

  8. Comparative study of thermochemical processes for hydrogen production from biomass fuels.

    PubMed

    Biagini, Enrico; Masoni, Lorenzo; Tognotti, Leonardo

    2010-08-01

    Different thermochemical configurations (gasification, combustion, electrolysis and syngas separation) are studied for producing hydrogen from biomass fuels. The aim is to provide data for the production unit and the following optimization of the "hydrogen chain" (from energy source selection to hydrogen utilization) in the frame of the Italian project "Filiera Idrogeno". The project focuses on a regional scale (Tuscany, Italy), renewable energies and automotive hydrogen. Decentred and small production plants are required to solve the logistic problems of biomass supply and meet the limited hydrogen infrastructures. Different options (gasification with air, oxygen or steam/oxygen mixtures, combustion, electrolysis) and conditions (varying the ratios of biomass and gas input) are studied by developing process models with uniform hypothesis to compare the results. Results obtained in this work concern the operating parameters, process efficiencies, material and energetic needs and are fundamental to optimize the entire hydrogen chain. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. The dependence of educational infrastructure on clinical infrastructure.

    PubMed Central

    Cimino, C.

    1998-01-01

    The Albert Einstein College of Medicine needed to assess the growth of its infrastructure for educational computing as a first step to determining if student needs were being met. Included in computing infrastructure are space, equipment, software, and computing services. The infrastructure was assessed by reviewing purchasing and support logs for a six year period from 1992 to 1998. This included equipment, software, and e-mail accounts provided to students and to faculty for educational purposes. Student space has grown at a constant rate (averaging 14% increase each year respectively). Student equipment on campus has grown by a constant amount each year (average 8.3 computers each year). Student infrastructure off campus and educational support of faculty has not kept pace. It has either declined or remained level over the six year period. The availability of electronic mail clearly demonstrates this with accounts being used by 99% of students, 78% of Basic Science Course Leaders, 38% of Clerkship Directors, 18% of Clerkship Site Directors, and 8% of Clinical Elective Directors. The collection of the initial descriptive infrastructure data has revealed problems that may generalize to other medical schools. The discrepancy between infrastructure available to students and faculty on campus and students and faculty off campus creates a setting where students perceive a paradoxical declining support for computer use as they progress through medical school. While clinical infrastructure may be growing, it is at the expense of educational infrastructure at affiliate hospitals. PMID:9929262

  10. The Construction of Infrastructure for Library's Digital Document Telecommunications.

    ERIC Educational Resources Information Center

    Changxing, Ying; Zuzao, Lin

    This paper discusses the construction of the infrastructure for libraries' digital document telecommunications. The first section describes the topologies of the library LAN (Local Area Network) cabling system, including the main characteristics of the LAN and three classical topologies typically used with LANs, i.e., the bus, star, and ring…

  11. Enhancing the Anti-Solvatochromic Two-Photon Fluorescence for Cirrhosis Imaging by Forming a Hydrogen-Bond Network.

    PubMed

    Ren, Tian-Bing; Xu, Wang; Zhang, Qian-Ling; Zhang, Xing-Xing; Wen, Si-Yu; Yi, Hai-Bo; Yuan, Lin; Zhang, Xiao-Bing

    2018-06-18

    Two-photon imaging is an emerging tool for biomedical research and clinical diagnostics. Electron donor-acceptor (D-A) type molecules are the most widely employed two-photon scaffolds. However, current D-A type fluorophores suffer from solvatochromic quenching in aqueous biological samples. To address this issue, we devised a novel class of D-A type green fluorescent protein (GFP) chromophore analogues that form a hydrogen-bond network in water to improve the two-photon efficiency. Our design results in two-photon chalcone (TPC) dyes with 0.80 quantum yield and large two-photon action cross section (210 GM) in water. This strategy to form hydrogen bonds can be generalized to design two-photon materials with anti-solvatochromic fluorescence. To demonstrate the improved in vivo imaging, we designed a sulfide probe based on TPC dyes and monitored endogenous H 2 S generation and scavenging in the cirrhotic rat liver for the first time. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Combined Molecular Dynamics, Atoms in Molecules, and IR Studies of the Bulk Monofluoroethanol and Bulk Ethanol To Understand the Role of Organic Fluorine in the Hydrogen Bond Network.

    PubMed

    Biswas, Biswajit; Mondal, Saptarsi; Singh, Prashant Chandra

    2017-02-16

    The presence of the fluorocarbon group in fluorinated alcohols makes them an important class of molecules that have diverse applications in the field of separation techniques, synthetic chemistry, polymer industry, and biology. In this paper, we have performed the density function theory calculation along with atom in molecule analysis, molecular dynamics simulation, and IR measurements of bulk monofluoroethanol (MFE) and compared them with the data for bulk ethanol (ETH) to understand the effect of the fluorocarbon group in the structure and the hydrogen bond network of bulk MFE. It has been found that the intramolecular O-H···F hydrogen bond is almost absent in bulk MFE. Molecular dynamics simulation and density function theory calculation along with atom in molecule analysis clearly depict that in the case of bulk MFE, a significant amount of intermolecular O-H···F and C-H···F hydrogen bonds are present along with the intermolecular O-H···O hydrogen bond. The presence of intermolecular O-H···F and C-H···F hydrogen bonds causes the difference in the IR spectrum of bulk MFE as compared to bulk ETH. This study clearly depicts that the organic fluorine (fluorocarbon) of MFE acts as a hydrogen bond acceptor and plays a significant role in the structure and hydrogen bond network of bulk MFE through the formation of weak O-H···F as well C-H···F hydrogen bonds, which may be one of the important reasons behind the unique behavior of the fluoroethanols.

  13. Medical image informatics infrastructure design and applications.

    PubMed

    Huang, H K; Wong, S T; Pietka, E

    1997-01-01

    Picture archiving and communication systems (PACS) is a system integration of multimodality images and health information systems designed for improving the operation of a radiology department. As it evolves, PACS becomes a hospital image document management system with a voluminous image and related data file repository. A medical image informatics infrastructure can be designed to take advantage of existing data, providing PACS with add-on value for health care service, research, and education. A medical image informatics infrastructure (MIII) consists of the following components: medical images and associated data (including PACS database), image processing, data/knowledge base management, visualization, graphic user interface, communication networking, and application oriented software. This paper describes these components and their logical connection, and illustrates some applications based on the concept of the MIII.

  14. Evaluating the Benefits of Adaptation of Critical Infrastructures to Hydrometeorological Risks.

    PubMed

    Thacker, Scott; Kelly, Scott; Pant, Raghav; Hall, Jim W

    2018-01-01

    Infrastructure adaptation measures provide a practical way to reduce the risk from extreme hydrometeorological hazards, such as floods and windstorms. The benefit of adapting infrastructure assets is evaluated as the reduction in risk relative to the "do nothing" case. However, evaluating the full benefits of risk reduction is challenging because of the complexity of the systems, the scarcity of data, and the uncertainty of future climatic changes. We address this challenge by integrating methods from the study of climate adaptation, infrastructure systems, and complex networks. In doing so, we outline an infrastructure risk assessment that incorporates interdependence, user demands, and potential failure-related economic losses. Individual infrastructure assets are intersected with probabilistic hazard maps to calculate expected annual damages. Protection measure costs are integrated to calculate risk reduction and associated discounted benefits, which are used to explore the business case for investment in adaptation. A demonstration of the methodology is provided for flood protection of major electricity substations in England and Wales. We conclude that the ongoing adaptation program for major electricity assets is highly cost beneficial. © 2017 Society for Risk Analysis.

  15. Transport Traffic Analysis for Abusive Infrastructure Characterization

    DTIC Science & Technology

    2012-12-14

    Introduction Abusive traffic abounds on the Internet, in the form of email, malware, vulnerability scanners, worms, denial-of-service, drive-by-downloads, scam ...insight is two-fold. First, attackers have a basic requirement to source large amounts of data, be it denial-of-service, scam -hosting, spam, or other...the network core. This paper explores the power of transport-layer traffic analysis to detect and characterize scam hosting infrastructure, including

  16. An open, component-based information infrastructure for integrated health information networks.

    PubMed

    Tsiknakis, Manolis; Katehakis, Dimitrios G; Orphanoudakis, Stelios C

    2002-12-18

    A fundamental requirement for achieving continuity of care is the seamless sharing of multimedia clinical information. Different technological approaches can be adopted for enabling the communication and sharing of health record segments. In the context of the emerging global information society, the creation of and access to the integrated electronic health record (I-EHR) of a citizen has been assigned high priority in many countries. This requirement is complementary to an overall requirement for the creation of a health information infrastructure (HII) to support the provision of a variety of health telematics and e-health services. In developing a regional or national HII, the components or building blocks that make up the overall information system ought to be defined and an appropriate component architecture specified. This paper discusses current international priorities and trends in developing the HII. It presents technological challenges and alternative approaches towards the creation of an I-EHR, being the aggregation of health data created during all interactions of an individual with the healthcare system. It also presents results from an ongoing Research and Development (R&D) effort towards the implementation of the HII in HYGEIAnet, the regional health information network of Crete, Greece, using a component-based software engineering approach. Critical design decisions and related trade-offs, involved in the process of component specification and development, are also discussed and the current state of development of an I-EHR service is presented. Finally, Human Computer Interaction (HCI) and security issues, which are important for the deployment and use of any I-EHR service, are considered.

  17. Resilience of Adapting Networks: Results from a Stylized Infrastructure Model.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beyeler, Walter E.; Vugrin, Eric D.; Forden, Geoffrey Ethan

    2015-01-01

    Adaptation is believed to be a source of resilience in systems. It has been difficult to measure the contribution of adaptation to resilience, unlike other resilience mechanisms such as restoration and recovery. One difficulty comes from treating adaptation as a deus ex machina that is interjected after a disruption. This provides no basis for bounding possible adaptive responses. We can bracket the possible effects of adaptation when we recognize that it occurs continuously, and is in part responsible for the current system’s properties. In this way the dynamics of the system’s pre-disruption structure provides information about post-disruption adaptive reaction. Seenmore » as an ongoing process, adaptation has been argued to produce “robust-yet-fragile” systems. Such systems perform well under historical stresses but become committed to specific features of those stresses in a way that makes them vulnerable to system-level collapse when those features change. In effect adaptation lessens the cost of disruptions within a certain historical range, at the expense of increased cost from disruptions outside that range. Historical adaptive responses leave a signature in the structure of the system. Studies of ecological networks have suggested structural metrics that pick out systemic resilience in the underlying ecosystems. If these metrics are generally reliable indicators of resilience they provide another strategy for gaging adaptive resilience. To progress in understanding how the process of adaptation and the property of resilience interrelate in infrastructure systems, we pose some specific questions: Does adaptation confer resilience?; Does it confer resilience to novel shocks as well, or does it tune the system to fragility?; Can structural features predict resilience to novel shocks?; Are there policies or constraints on the adaptive process that improve resilience?.« less

  18. Global information infrastructure.

    PubMed

    Lindberg, D A

    1994-01-01

    The High Performance Computing and Communications Program (HPCC) is a multiagency federal initiative under the leadership of the White House Office of Science and Technology Policy, established by the High Performance Computing Act of 1991. It has been assigned a critical role in supporting the international collaboration essential to science and to health care. Goals of the HPCC are to extend USA leadership in high performance computing and networking technologies; to improve technology transfer for economic competitiveness, education, and national security; and to provide a key part of the foundation for the National Information Infrastructure. The first component of the National Institutes of Health to participate in the HPCC, the National Library of Medicine (NLM), recently issued a solicitation for proposals to address a range of issues, from privacy to 'testbed' networks, 'virtual reality,' and more. These efforts will build upon the NLM's extensive outreach program and other initiatives, including the Unified Medical Language System (UMLS), MEDLARS, and Grateful Med. New Internet search tools are emerging, such as Gopher and 'Knowbots'. Medicine will succeed in developing future intelligent agents to assist in utilizing computer networks. Our ability to serve patients is so often restricted by lack of information and knowledge at the time and place of medical decision-making. The new technologies, properly employed, will also greatly enhance our ability to serve the patient.

  19. The physical therapy clinical research network (PTClinResNet): methods, efficacy, and benefits of a rehabilitation research network.

    PubMed

    Winstein, Carolee; Pate, Patricia; Ge, Tingting; Ervin, Carolyn; Baurley, James; Sullivan, Katherine J; Underwood, Samantha J; Fowler, Eileen G; Mulroy, Sara; Brown, David A; Kulig, Kornelia; Gordon, James; Azen, Stanley P

    2008-11-01

    This article describes the vision, methods, and implementation strategies used in building the infrastructure for PTClinResNet, a clinical research network designed to assess outcomes for health-related mobility associated with evidence-based physical therapy interventions across and within four different disability groups. Specific aims were to (1) create the infrastructure necessary to develop and sustain clinical trials research in rehabilitation, (2) generate evidence to evaluate the efficacy of resistance exercise-based physical interventions designed to improve muscle performance and movement skills, and (3) provide education and training opportunities for present and future clinician-researchers and for the rehabilitation community at-large in its support of evidence-based practice. We present the network's infrastructure, development, and several examples that highlight the benefits of a clinical research network. We suggest that the network structure is ideal for building research capacity and fostering multisite, multiinvestigator clinical research projects designed to generate evidence for the efficacy of rehabilitation interventions.

  20. Storage, transmission and distribution of hydrogen

    NASA Technical Reports Server (NTRS)

    Kelley, J. H.; Hagler, R., Jr.

    1979-01-01

    Current practices and future requirements for the storage, transmission and distribution of hydrogen are reviewed in order to identify inadequacies to be corrected before hydrogen can achieve its full potential as a substitute for fossil fuels. Consideration is given to the storage of hydrogen in underground solution-mined salt caverns, portable high-pressure containers and dewars, pressure vessels and aquifers and as metal hydrides, hydrogen transmission in evacuated double-walled insulated containers and by pipeline, and distribution by truck and internal distribution networks. Areas for the improvement of these techniques are indicated, and these technological deficiencies, including materials development, low-cost storage and transmission methods, low-cost, long-life metal hydrides and novel methods for hydrogen storage, are presented as challenges for research and development.

  1. Fixed Access Network Sharing

    NASA Astrophysics Data System (ADS)

    Cornaglia, Bruno; Young, Gavin; Marchetta, Antonio

    2015-12-01

    Fixed broadband network deployments are moving inexorably to the use of Next Generation Access (NGA) technologies and architectures. These NGA deployments involve building fiber infrastructure increasingly closer to the customer in order to increase the proportion of fiber on the customer's access connection (Fibre-To-The-Home/Building/Door/Cabinet… i.e. FTTx). This increases the speed of services that can be sold and will be increasingly required to meet the demands of new generations of video services as we evolve from HDTV to "Ultra-HD TV" with 4k and 8k lines of video resolution. However, building fiber access networks is a costly endeavor. It requires significant capital in order to cover any significant geographic coverage. Hence many companies are forming partnerships and joint-ventures in order to share the NGA network construction costs. One form of such a partnership involves two companies agreeing to each build to cover a certain geographic area and then "cross-selling" NGA products to each other in order to access customers within their partner's footprint (NGA coverage area). This is tantamount to a bi-lateral wholesale partnership. The concept of Fixed Access Network Sharing (FANS) is to address the possibility of sharing infrastructure with a high degree of flexibility for all network operators involved. By providing greater configuration control over the NGA network infrastructure, the service provider has a greater ability to define the network and hence to define their product capabilities at the active layer. This gives the service provider partners greater product development autonomy plus the ability to differentiate from each other at the active network layer.

  2. Effects of landscape-based green infrastructure on stormwater ...

    EPA Pesticide Factsheets

    The development of impervious surfaces in urban and suburban catchments affects their hydrological behavior by decreasing infiltration, increasing peak hydrograph response following rainfall events, and ultimately increasing the total volume of water and mass of pollutants reaching streams. These changes have deleterious effects on downstream surface waters. Consequently, strategies to mitigate these impacts are now components of contemporary urban development and stormwater management. This study evaluates the effectiveness of landscape green infrastructure (GI) in reducing stormwater runoff volumes and controlling peak flows in four subdivision-scale suburban catchments (1.88 – 12.97 acres) in Montgomery County, MD, USA. Stormwater flow rates during runoff events were measured in five minute intervals at each catchment outlet. One catchment was built with GI vegetated swales on all parcels with the goal of intercepting, conveying, and infiltrating stormwater before it enters the sewer network. The remaining catchments were constructed with traditional gray infrastructure and “end-of-pipe” best management practices (BMPs) that treat stormwater before entering streams. This study compared characteristics of rainfall-runoff events at the green and gray infrastructure sites to understand their effects on suburban hydrology. The landscape GI strategy generally reduced rainfall-runoff ratios compared to gray infrastructure because of increased infiltration, ul

  3. Integrated network capacity analysis for freight railroads.

    DOT National Transportation Integrated Search

    2016-02-23

    Rail network capacity analysis should consider all network infrastructures in an integrated way, with the challenges of the nonlinear relationships at each network element, a link or a node, and complexity of the interaction between various network e...

  4. Simulating Impacts of Disruptions to Liquid Fuels Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Michael; Corbet, Thomas F.; Baker, Arnold B.

    This report presents a methodology for estimating the impacts of events that damage or disrupt liquid fuels infrastructure. The impact of a disruption depends on which components of the infrastructure are damaged, the time required for repairs, and the position of the disrupted components in the fuels supply network. Impacts are estimated for seven stressing events in regions of the United States, which were selected to represent a range of disruption types. For most of these events the analysis is carried out using the National Transportation Fuels Model (NTFM) to simulate the system-level liquid fuels sector response. Results are presentedmore » for each event, and a brief cross comparison of event simulation results is provided.« less

  5. Branch Campus Librarianship with Minimal Infrastructure: Rewards and Challenges

    ERIC Educational Resources Information Center

    Knickman, Elena; Walton, Kerry

    2014-01-01

    Delaware County Community College provides library services to its branch campus community members by stationing a librarian at a campus 5 to 20 hours each week, without any more library infrastructure than an Internet-enabled computer on the school network. Faculty and students have reacted favorably to the increased presence of librarians.…

  6. Increasing the resilience and security of the United States' power infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Happenny, Sean F.

    2015-08-01

    The United States' power infrastructure is aging, underfunded, and vulnerable to cyber attack. Emerging smart grid technologies may take some of the burden off of existing systems and make the grid as a whole more efficient, reliable, and secure. The Pacific Northwest National Laboratory (PNNL) is funding research into several aspects of smart grid technology and grid security, creating a software simulation tool that will allow researchers to test power infrastructure control and distribution paradigms by utilizing different smart grid technologies to determine how the grid and these technologies react under different circumstances. Understanding how these systems behave in real-worldmore » conditions will lead to new ways to make our power infrastructure more resilient and secure. Demonstrating security in embedded systems is another research area PNNL is tackling. Many of the systems controlling the U.S. critical infrastructure, such as the power grid, lack integrated security and the aging networks protecting them are becoming easier to attack.« less

  7. The computing and data infrastructure to interconnect EEE stations

    NASA Astrophysics Data System (ADS)

    Noferini, F.; EEE Collaboration

    2016-07-01

    The Extreme Energy Event (EEE) experiment is devoted to the search of high energy cosmic rays through a network of telescopes installed in about 50 high schools distributed throughout the Italian territory. This project requires a peculiar data management infrastructure to collect data registered in stations very far from each other and to allow a coordinated analysis. Such an infrastructure is realized at INFN-CNAF, which operates a Cloud facility based on the OpenStack opensource Cloud framework and provides Infrastructure as a Service (IaaS) for its users. In 2014 EEE started to use it for collecting, monitoring and reconstructing the data acquired in all the EEE stations. For the synchronization between the stations and the INFN-CNAF infrastructure we used BitTorrent Sync, a free peer-to-peer software designed to optimize data syncronization between distributed nodes. All data folders are syncronized with the central repository in real time to allow an immediate reconstruction of the data and their publication in a monitoring webpage. We present the architecture and the functionalities of this data management system that provides a flexible environment for the specific needs of the EEE project.

  8. TRANSVAC research infrastructure - Results and lessons learned from the European network of vaccine research and development.

    PubMed

    Geels, Mark J; Thøgersen, Regitze L; Guzman, Carlos A; Ho, Mei Mei; Verreck, Frank; Collin, Nicolas; Robertson, James S; McConkey, Samuel J; Kaufmann, Stefan H E; Leroy, Odile

    2015-10-05

    TRANSVAC was a collaborative infrastructure project aimed at enhancing European translational vaccine research and training. The objective of this four year project (2009-2013), funded under the European Commission's (EC) seventh framework programme (FP7), was to support European collaboration in the vaccine field, principally through the provision of transnational access (TNA) to critical vaccine research and development (R&D) infrastructures, as well as by improving and harmonising the services provided by these infrastructures through joint research activities (JRA). The project successfully provided all available services to advance 29 projects and, through engaging all vaccine stakeholders, successfully laid down the blueprint for the implementation of a permanent research infrastructure for early vaccine R&D in Europe. Copyright © 2015. Published by Elsevier Ltd.

  9. Hydrogen-related defects in hydrogenated amorphous semiconductors

    NASA Astrophysics Data System (ADS)

    Jin, Shu; Ley, Lothar

    1991-07-01

    One of the key steps in the formation of glow-discharge-deposited (GD) a-Si:H or a-Ge:H films by plasma deposition from the gas phase is the elimination of excess hydrogen from the growth surface which is necessary for the cross linking of the Si or Ge network and the reduction of the defect density associated with the hydrogen-rich surface layer. The high defect density (~1018 cm-3) in a growing surface layer can, depending on preparation conditions, be either reduced (to ~1016 cm-3) or be trapped in the bulk upon subsequent growth, as evidenced by a great deal of data. However, little is known about its origin and implication. We have investigated the change in electronic structure related with this process using UHV-evaporated a-Ge as a model system, subjected to thermal hydrogenation, plasma hydrogenation, and various annealing cycles. The density of occupied states in the pseudogap of the a-Ge(:H) surface (probing depth ~50 Å) was determined with total-yield photoelectron spectroscopy. In this way, effects of thermal annealing, hydrogenation, and ion bombarding on the near-surface defect density could be studied. We identify in room-temperature (RT) hydrogenated a-Ge:H another defect at about Ev+0.45 eV in addition to the dangling-bond defect. This defect exists at the initial stage of hydrogen incorporation, decreases upon ~250 °C annealing, and is restored upon RT rehydrogenation. Therefore we suspect that this defect is hydrogen induced and concomitant with the formation of unexpected bondings [both multiply bonded XHx (X=Si or Ge and x=2 and 3) and polyhydride (XH2)n configurations] favored at RT hydrogenation. As a possible candidate we suggest the Ge-H-Ge three-center bond in which one electron is placed in a nonbonding orbital that gives rise to the paramagnetic state in the gap of a-Ge:H observed here. This defect also accounts for the large defect density at the growing surface in the optimized plasma chemical-vapor-deposition process, where the

  10. Network Systems Administration Needs Assessment.

    ERIC Educational Resources Information Center

    Lexington Community Coll., KY. Office of Institutional Research.

    In spring 1996, Lexington Community College (LCC) in Kentucky, conducted a survey to gather information on employment trends and educational needs in the field of network systems administration (NSA). NSA duties involve the installation and administration of network operating systems, applications software, and networking infrastructure;…

  11. Feasibility analysis of a hydrogen backup power system for Russian telecom market

    NASA Astrophysics Data System (ADS)

    Borzenko, V. I.; Dunikov, D. O.

    2017-11-01

    We performed feasibility analysis of 10 kW hydrogen backup power system (H2BS) consisting of a water electrolyzer, a metal hydride hydrogen storage and a fuel cell. Capital investments in H2BS are mostly determined by the costs of the PEM electrolyzer, the fuel cell and solid state hydrogen storage materials, for single unit or small series manufacture the cost of AB5-type intermetallic compound can reach 50% of total system cost. Today the capital investments in H2BS are 3 times higher than in conventional lead-acid system of the same capacity. Wide distribution of fuel cell hydrogen vehicles, development of hydrogen infrastructure, and mass production of hydrogen power systems will for sure lower capital investments in fuel cell backup power. Operational expenditures for H2BS is only 15% from the expenditures for lead acid systems, and after 4-5 years of exploitation the total cost of ownership will become lower than for batteries.

  12. Managing a tier-2 computer centre with a private cloud infrastructure

    NASA Astrophysics Data System (ADS)

    Bagnasco, Stefano; Berzano, Dario; Brunetti, Riccardo; Lusso, Stefano; Vallero, Sara

    2014-06-01

    In a typical scientific computing centre, several applications coexist and share a single physical infrastructure. An underlying Private Cloud infrastructure eases the management and maintenance of such heterogeneous applications (such as multipurpose or application-specific batch farms, Grid sites, interactive data analysis facilities and others), allowing dynamic allocation resources to any application. Furthermore, the maintenance of large deployments of complex and rapidly evolving middleware and application software is eased by the use of virtual images and contextualization techniques. Such infrastructures are being deployed in some large centres (see e.g. the CERN Agile Infrastructure project), but with several open-source tools reaching maturity this is becoming viable also for smaller sites. In this contribution we describe the Private Cloud infrastructure at the INFN-Torino Computer Centre, that hosts a full-fledged WLCG Tier-2 centre, an Interactive Analysis Facility for the ALICE experiment at the CERN LHC and several smaller scientific computing applications. The private cloud building blocks include the OpenNebula software stack, the GlusterFS filesystem and the OpenWRT Linux distribution (used for network virtualization); a future integration into a federated higher-level infrastructure is made possible by exposing commonly used APIs like EC2 and OCCI.

  13. The Importance of Biodiversity E-infrastructures for Megadiverse Countries.

    PubMed

    Canhos, Dora A L; Sousa-Baena, Mariane S; de Souza, Sidnei; Maia, Leonor C; Stehmann, João R; Canhos, Vanderlei P; De Giovanni, Renato; Bonacelli, Maria B M; Los, Wouter; Peterson, A Townsend

    2015-07-01

    Addressing the challenges of biodiversity conservation and sustainable development requires global cooperation, support structures, and new governance models to integrate diverse initiatives and achieve massive, open exchange of data, tools, and technology. The traditional paradigm of sharing scientific knowledge through publications is not sufficient to meet contemporary demands that require not only the results but also data, knowledge, and skills to analyze the data. E-infrastructures are key in facilitating access to data and providing the framework for collaboration. Here we discuss the importance of e-infrastructures of public interest and the lack of long-term funding policies. We present the example of Brazil's speciesLink network, an e-infrastructure that provides free and open access to biodiversity primary data and associated tools. SpeciesLink currently integrates 382 datasets from 135 national institutions and 13 institutions from abroad, openly sharing ~7.4 million records, 94% of which are associated to voucher specimens. Just as important as the data is the network of data providers and users. In 2014, more than 95% of its users were from Brazil, demonstrating the importance of local e-infrastructures in enabling and promoting local use of biodiversity data and knowledge. From the outset, speciesLink has been sustained through project-based funding, normally public grants for 2-4-year periods. In between projects, there are short-term crises in trying to keep the system operational, a fact that has also been observed in global biodiversity portals, as well as in social and physical sciences platforms and even in computing services portals. In the last decade, the open access movement propelled the development of many web platforms for sharing data. Adequate policies unfortunately did not follow the same tempo, and now many initiatives may perish.

  14. The Importance of Biodiversity E-infrastructures for Megadiverse Countries

    PubMed Central

    Canhos, Dora A. L.; Sousa-Baena, Mariane S.; de Souza, Sidnei; Maia, Leonor C.; Stehmann, João R.; Canhos, Vanderlei P.; De Giovanni, Renato; Bonacelli, Maria B. M.; Los, Wouter; Peterson, A. Townsend

    2015-01-01

    Addressing the challenges of biodiversity conservation and sustainable development requires global cooperation, support structures, and new governance models to integrate diverse initiatives and achieve massive, open exchange of data, tools, and technology. The traditional paradigm of sharing scientific knowledge through publications is not sufficient to meet contemporary demands that require not only the results but also data, knowledge, and skills to analyze the data. E-infrastructures are key in facilitating access to data and providing the framework for collaboration. Here we discuss the importance of e-infrastructures of public interest and the lack of long-term funding policies. We present the example of Brazil’s speciesLink network, an e-infrastructure that provides free and open access to biodiversity primary data and associated tools. SpeciesLink currently integrates 382 datasets from 135 national institutions and 13 institutions from abroad, openly sharing ~7.4 million records, 94% of which are associated to voucher specimens. Just as important as the data is the network of data providers and users. In 2014, more than 95% of its users were from Brazil, demonstrating the importance of local e-infrastructures in enabling and promoting local use of biodiversity data and knowledge. From the outset, speciesLink has been sustained through project-based funding, normally public grants for 2–4-year periods. In between projects, there are short-term crises in trying to keep the system operational, a fact that has also been observed in global biodiversity portals, as well as in social and physical sciences platforms and even in computing services portals. In the last decade, the open access movement propelled the development of many web platforms for sharing data. Adequate policies unfortunately did not follow the same tempo, and now many initiatives may perish. PMID:26204382

  15. Software defined networking (SDN) over space division multiplexing (SDM) optical networks: features, benefits and experimental demonstration.

    PubMed

    Amaya, N; Yan, S; Channegowda, M; Rofoee, B R; Shu, Y; Rashidi, M; Ou, Y; Hugues-Salas, E; Zervas, G; Nejabati, R; Simeonidou, D; Puttnam, B J; Klaus, W; Sakaguchi, J; Miyazawa, T; Awaji, Y; Harai, H; Wada, N

    2014-02-10

    We present results from the first demonstration of a fully integrated SDN-controlled bandwidth-flexible and programmable SDM optical network utilizing sliceable self-homodyne spatial superchannels to support dynamic bandwidth and QoT provisioning, infrastructure slicing and isolation. Results show that SDN is a suitable control plane solution for the high-capacity flexible SDM network. It is able to provision end-to-end bandwidth and QoT requests according to user requirements, considering the unique characteristics of the underlying SDM infrastructure.

  16. Security Engineering and Educational Initiatives for Critical Information Infrastructures

    DTIC Science & Technology

    2013-06-01

    standard for cryptographic protection of SCADA communications. The United Kingdom’s National Infrastructure Security Co-ordination Centre (NISCC...has released a good practice guide on firewall deployment for SCADA systems and process control networks [17]. Meanwhile, National Institute for ...report. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 18 The SCADA gateway collects the data gathered by sensors, translates them from

  17. A modeling framework for investment planning in interdependent infrastructures in multi-hazard environments.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Nathanael J. K.; Gearhart, Jared Lee; Jones, Dean A.

    Currently, much of protection planning is conducted separately for each infrastructure and hazard. Limited funding requires a balance of expenditures between terrorism and natural hazards based on potential impacts. This report documents the results of a Laboratory Directed Research & Development (LDRD) project that created a modeling framework for investment planning in interdependent infrastructures focused on multiple hazards, including terrorism. To develop this framework, three modeling elements were integrated: natural hazards, terrorism, and interdependent infrastructures. For natural hazards, a methodology was created for specifying events consistent with regional hazards. For terrorism, we modeled the terrorists actions based on assumptions regardingmore » their knowledge, goals, and target identification strategy. For infrastructures, we focused on predicting post-event performance due to specific terrorist attacks and natural hazard events, tempered by appropriate infrastructure investments. We demonstrate the utility of this framework with various examples, including protection of electric power, roadway, and hospital networks.« less

  18. Investigating Elevated Concentrations of Hydrogen in the LAX region

    NASA Astrophysics Data System (ADS)

    Rund, P.; Hughes, S.; Blake, D. R.

    2017-12-01

    The growing interest in hydrogen (H2) fuel cell vehicles has created a need to study the atmospheric H2 budget. While there is resounding agreement that hydrogen would escape into the atmosphere due to fuel transport/storage processes, there is disagreement over the amount that would be leaked in a hydrogen fuel economy. Leakage rate estimates range from 2% to 10% for total hydrogen production and transport. A hydrogen based energy infrastructure seems a viable clean alternative to oil because, theoretically, the only waste products are H2O and heat. However, hydrogen leads to the formation of water vapor, polar stratospheric clouds, and a decrease in stratospheric temperatures, which contribute to the depletion of stratospheric ozone. Whole air samples (WAS) collected aboard the NASA Sherpa C-23 during the Student Airborne Research Program (SARP) showed elevated concentrations of hydrogen near LAX (950 ± 110 ppbv) compared to global average concentrations of 560 ± 20 ppbv. Trace gas analysis along with wind trajectories obtained with the NOAA HySPLIT models indicate that the source of elevated mixing ratios was leakage from H2 fuel stations in the surrounding areas. Correlation and ratio analyses eliminate the potential for common photochemical sources of H2 in the LAX area. This project could elucidate new and potential factors that contribute to the global atmospheric hydrogen budget.

  19. Defense strategies for asymmetric networked systems under composite utilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Nageswara S.; Ma, Chris Y. T.; Hausken, Kjell

    We consider an infrastructure of networked systems with discrete components that can be reinforced at certain costs to guard against attacks. The communications network plays a critical, asymmetric role of providing the vital connectivity between the systems. We characterize the correlations within this infrastructure at two levels using (a) aggregate failure correlation function that specifies the infrastructure failure probability giventhe failure of an individual system or network, and (b) first order differential conditions on system survival probabilities that characterize component-level correlations. We formulate an infrastructure survival game between an attacker and a provider, who attacks and reinforces individual components, respectively.more » They use the composite utility functions composed of a survival probability term and a cost term, and the previously studiedsum-form and product-form utility functions are their special cases. At Nash Equilibrium, we derive expressions for individual system survival probabilities and the expected total number of operational components. We apply and discuss these estimates for a simplified model of distributed cloud computing infrastructure« less

  20. Water Hydrogen-Bonding Network Structure and Dynamics at Phospholipid Multibilayer Surface: Femtosecond Mid-IR Pump-Probe Spectroscopy.

    PubMed

    Kundu, Achintya; Błasiak, Bartosz; Lim, Joon-Hyung; Kwak, Kyungwon; Cho, Minhaeng

    2016-03-03

    The water hydrogen-bonding network at a lipid bilayer surface is crucial to understanding membrane structures and its functional activities. With a phospholipid multibilayer mimicking a biological membrane, we study the temperature dependence of water hydrogen-bonding structure, distribution, and dynamics at a lipid multibilayer surface using femtosecond mid-IR pump-probe spectroscopy. We observe two distinguished vibrational lifetime components. The fast component (0.6 ps) is associated with water interacting with a phosphate part, whereas the slow component (1.9 ps) is with bulk-like choline-associated water. With increasing temperature, the vibrational lifetime of phosphate-associated water remains constant though its relative fraction dramatically increases. The OD stretch vibrational lifetime of choline-bound water slows down in a sigmoidal fashion with respect to temperature, indicating a noticeable change of the water environment upon the phase transition. The water structure and dynamics are thus shown to be in quantitative correlation with the structural change of liquid multibilayer upon the gel-to-liquid crystal phase transition.

  1. On the nature of hydrogen bonding between the phosphatidylcholine head group and water and dimethylsulfoxide

    NASA Astrophysics Data System (ADS)

    Dabkowska, Aleksandra P.; Lawrence, M. Jayne; McLain, Sylvia E.; Lorenz, Christian D.

    2013-01-01

    Molecular dynamics simulations are used to provide a detailed investigation of the hydrogen bond networks around the phosphatidylcholine (PC) head group in 1,2-dipropionyl-sn-glycero-3-phosphocholine in pure water, 10 mol.% and 30 mol.% dimethylsulfoxide (DMSO)-water solutions. Specifically, it is observed that DMSO replaces those water molecules that are within the first solvation shell of the choline, phosphate and ester groups of the PC head group, but are not hydrogen-bonded to the group. The effect of the presence of DMSO on the hydrogen bond network around the PC head groups of the lipid changes with the concentration of DMSO. In comparison to the hydrogen bond network observed in the pure water system, the number of hydrogen-bonded chains of solvent molecules increases slightly for the 10 mol.% DMSO system, while, in the 30 mol.% DMSO system, the number of hydrogen-bonded chains of solvent molecules decreases.

  2. Celestial data routing network

    NASA Astrophysics Data System (ADS)

    Bordetsky, Alex

    2000-11-01

    Imagine that information processing human-machine network is threatened in a particular part of the world. Suppose that an anticipated threat of physical attacks could lead to disruption of telecommunications network management infrastructure and access capabilities for small geographically distributed groups engaged in collaborative operations. Suppose that small group of astronauts are exploring the solar planet and need to quickly configure orbital information network to support their collaborative work and local communications. The critical need in both scenarios would be a set of low-cost means of small team celestial networking. To the geographically distributed mobile collaborating groups such means would allow to maintain collaborative multipoint work, set up orbital local area network, and provide orbital intranet communications. This would be accomplished by dynamically assembling the network enabling infrastructure of the small satellite based router, satellite based Codec, and set of satellite based intelligent management agents. Cooperating single function pico satellites, acting as agents and personal switching devices together would represent self-organizing intelligent orbital network of cooperating mobile management nodes. Cooperative behavior of the pico satellite based agents would be achieved by comprising a small orbital artificial neural network capable of learning and restructing the networking resources in response to the anticipated threat.

  3. Current and future flood risk to railway infrastructure in Europe

    NASA Astrophysics Data System (ADS)

    Bubeck, Philip; Kellermann, Patric; Alfieri, Lorenzo; Feyen, Luc; Dillenardt, Lisa; Thieken, Annegret H.

    2017-04-01

    Railway infrastructure plays an important role in the transportation of freight and passengers across the European Union. According to Eurostat, more than four billion passenger-kilometres were travelled on national and international railway lines of the EU28 in 2014. To further strengthen transport infrastructure in Europe, the European Commission will invest another € 24.05 billion in the transnational transport network until 2020 as part of its new transport infrastructure policy (TEN-T), including railway infrastructure. Floods pose a significant risk to infrastructure elements. Damage data of recent flood events in Europe show that infrastructure losses can make up a considerable share of overall losses. For example, damage to state and municipal infrastructure in the federal state of Saxony (Germany) accounted for nearly 60% of overall losses during the large-scale event in June 2013. Especially in mountainous areas with little usable space available, roads and railway lines often follow floodplains or are located along steep and unsteady slopes. In Austria, for instance, the flood of 2013 caused € 75 million of direct damage to railway infrastructure. Despite the importance of railway infrastructure and its exposure to flooding, assessments of potential damage and risk (i.e. probability * damage) are still in its infancy compared with other sectors, such as the residential or industrial sector. Infrastructure-specific assessments at the regional scale are largely lacking. Regional assessment of potential damage to railway infrastructure has been hampered by a lack of infrastructure-specific damage models and data availability. The few available regional approaches have used damage models that assess damage to various infrastructure elements (e.g. roads, railway, airports and harbours) using one aggregated damage function and cost estimate. Moreover, infrastructure elements are often considerably underrepresented in regional land cover data, such as

  4. Utilizing an integrated infrastructure for outcomes research: a systematic review.

    PubMed

    Dixon, Brian E; Whipple, Elizabeth C; Lajiness, John M; Murray, Michael D

    2016-03-01

    To explore the ability of an integrated health information infrastructure to support outcomes research. A systematic review of articles published from 1983 to 2012 by Regenstrief Institute investigators using data from an integrated electronic health record infrastructure involving multiple provider organisations was performed. Articles were independently assessed and classified by study design, disease and other metadata including bibliometrics. A total of 190 articles were identified. Diseases included cognitive, (16) cardiovascular, (16) infectious, (15) chronic illness (14) and cancer (12). Publications grew steadily (26 in the first decade vs. 100 in the last) as did the number of investigators (from 15 in 1983 to 62 in 2012). The proportion of articles involving non-Regenstrief authors also expanded from 54% in the first decade to 72% in the last decade. During this period, the infrastructure grew from a single health system into a health information exchange network covering more than 6 million patients. Analysis of journal and article metrics reveals high impact for clinical trials and comparative effectiveness research studies that utilised data available in the integrated infrastructure. Integrated information infrastructures support growth in high quality observational studies and diverse collaboration consistent with the goals for the learning health system. More recent publications demonstrate growing external collaborations facilitated by greater access to the infrastructure and improved opportunities to study broader disease and health outcomes. Integrated information infrastructures can stimulate learning from electronic data captured during routine clinical care but require time and collaboration to reach full potential. © 2015 Health Libraries Group.

  5. Wireless Security Within Hastily Formed Networks

    DTIC Science & Technology

    2006-09-01

    WLAN DEVICES (STEP ONE) ............34 1. Personal Firewalls..............................................................................34 2. Anti ...includes client devices , access points, network infrastructure, network management, and delivery of mobility services to maintain network security and...Technology Special Publication 800-48, Wireless Network Security, 802.11, Bluetooth , and Handheld Devices . Available at http://csrc.nist.gov

  6. Innovative neuro-fuzzy system of smart transport infrastructure for road traffic safety

    NASA Astrophysics Data System (ADS)

    Beinarovica, Anna; Gorobetz, Mikhail; Levchenkov, Anatoly

    2017-09-01

    The proposed study describes applying of neural network and fuzzy logic in transport control for safety improvement by evaluation of accidents’ risk by intelligent infrastructure devices. Risk evaluation is made by following multiple-criteria: danger, changeability and influence of changes for risk increasing. Neuro-fuzzy algorithms are described and proposed for task solution. The novelty of the proposed system is proved by deep analysis of known studies in the field. The structure of neuro-fuzzy system for risk evaluation and mathematical model is described in the paper. The simulation model of the intelligent devices for transport infrastructure is proposed to simulate different situations, assess the risks and propose the possible actions for infrastructure or vehicles to minimize the risk of possible accidents.

  7. Helix Nebula: Enabling federation of existing data infrastructures and data services to an overarching cross-domain e-infrastructure

    NASA Astrophysics Data System (ADS)

    Lengert, Wolfgang; Farres, Jordi; Lanari, Riccardo; Casu, Francesco; Manunta, Michele; Lassalle-Balier, Gerard

    2014-05-01

    so called "Supersite Exploitation Platform" (SSEP) provides scientists an overarching federated e-infrastructure with a very fast access to (i) large volume of data (EO/non-space data), (ii) computing resources (e.g. hybrid cloud/grid), (iii) processing software (e.g. toolboxes, RTMs, retrieval baselines, visualization routines), and (iv) general platform capabilities (e.g. user management and access control, accounting, information portal, collaborative tools, social networks etc.). In this federation each data provider remains in full control of the implementation of its data policy. This presentation outlines the Architecture (technical and services) supporting very heterogeneous science domains as well as the procedures for new-comers to join the Helix Nebula Market Place. Ref.1 http://cds.cern.ch/record/1374172/files/CERN-OPEN-2011-036.pdf

  8. New Geodetic Infrastructure for Australia: The NCRIS / AuScope Geospatial Component

    NASA Astrophysics Data System (ADS)

    Tregoning, P.; Watson, C. S.; Coleman, R.; Johnston, G.; Lovell, J.; Dickey, J.; Featherstone, W. E.; Rizos, C.; Higgins, M.; Priebbenow, R.

    2009-12-01

    In November 2006, the Australian Federal Government announced AUS15.8M in funding for geospatial research infrastructure through the National Collaborative Research Infrastructure Strategy (NCRIS). Funded within a broader capability area titled ‘Structure and Evolution of the Australian Continent’, NCRIS has provided a significant investment across Earth imaging, geochemistry, numerical simulation and modelling, the development of a virtual core library, and geospatial infrastructure. Known collectively as AuScope (www.auscope.org.au), this capability area has brought together Australian’s leading Earth scientists to decide upon the most pressing scientific issues and infrastructure needs for studying Earth systems and their impact on the Australian continent. Importantly and at the same time, the investment in geospatial infrastructure offers the opportunity to raise Australian geodetic science capability to the highest international level into the future. The geospatial component of AuScope builds onto the AUS15.8M of direct funding through the NCRIS process with significant in-kind and co-investment from universities and State/Territory and Federal government departments. The infrastructure to be acquired includes an FG5 absolute gravimeter, three gPhone relative gravimeters, three 12.1 m radio telescopes for geodetic VLBI, a continent-wide network of continuously operating geodetic quality GNSS receivers, a trial of a mobile SLR system and access to updated cluster computing facilities. We present an overview of the AuScope geospatial capability, review the current status of the infrastructure procurement and discuss some examples of the scientific research that will utilise the new geospatial infrastructure.

  9. Quantifying habitat impacts of natural gas infrastructure to facilitate biodiversity offsetting.

    PubMed

    Jones, Isabel L; Bull, Joseph W; Milner-Gulland, Eleanor J; Esipov, Alexander V; Suttle, Kenwyn B

    2014-01-01

    Habitat degradation through anthropogenic development is a key driver of biodiversity loss. One way to compensate losses is "biodiversity offsetting" (wherein biodiversity impacted is "replaced" through restoration elsewhere). A challenge in implementing offsets, which has received scant attention in the literature, is the accurate determination of residual biodiversity losses. We explore this challenge for offsetting gas extraction in the Ustyurt Plateau, Uzbekistan. Our goal was to determine the landscape extent of habitat impacts, particularly how the footprint of "linear" infrastructure (i.e. roads, pipelines), often disregarded in compensation calculations, compares with "hub" infrastructure (i.e. extraction facilities). We measured vegetation cover and plant species richness using the line-intercept method, along transects running from infrastructure/control sites outward for 500 m, accounting for wind direction to identify dust deposition impacts. Findings from 24 transects were extrapolated to the broader plateau by mapping total landscape infrastructure network using GPS data and satellite imagery. Vegetation cover and species richness were significantly lower at development sites than controls. These differences disappeared within 25 m of the edge of the area physically occupied by infrastructure. The current habitat footprint of gas infrastructure is 220 ± 19 km(2) across the Ustyurt (total ∼ 100,000 km(2)), 37 ± 6% of which is linear infrastructure. Vegetation impacts diminish rapidly with increasing distance from infrastructure, and localized dust deposition does not conspicuously extend the disturbance footprint. Habitat losses from gas extraction infrastructure cover 0.2% of the study area, but this reflects directly eliminated vegetation only. Impacts upon fauna pose a more difficult determination, as these require accounting for behavioral and demographic responses to disturbance by elusive mammals, including threatened species. This study

  10. Lowering Entry Barriers for Multidisciplinary Cyber(e)-Infrastructures

    NASA Astrophysics Data System (ADS)

    Nativi, S.

    2012-04-01

    Multidisciplinarity is more and more important to study the Earth System and address Global Changes. To achieve that, multidisciplinary cyber(e)-infrastructures are an important instrument. In the last years, several European, US and international initiatives have been started to carry out multidisciplinary infrastructures, including: the Spatial Information in the European Community (INSPIRE), the Global Monitoring for Environment and Security (GMES), the Data Observation Network for Earth (DataOne), and the Global Earth Observation System of Systems (GEOSS). The majority of these initiatives are developing service-based digital infrastructures asking scientific Communities (i.e. disciplinary Users and data Producers) to implement a set of standards for information interoperability. For scientific Communities, this has represented an entry barrier which has proved to be high, in several cases. In fact, both data Producers and Users do not seem to be willing to invest precious resources to become expert on interoperability solutions -on the contrary, they are focused on developing disciplinary and thematic capacities. Therefore, an important research topic is lowering entry barriers for joining multidisciplinary cyber(e)-Infrastructures. This presentation will introduce a new approach to achieve multidisciplinary interoperability underpinning multidisciplinary infrastructures and lowering the present entry barriers for both Users and data Producers. This is called the Brokering approach: it extends the service-based paradigm by introducing a new a Brokering layer or cloud which is in charge of managing all the interoperability complexity (e.g. data discovery, access, and use) thus easing Users' and Producers' burden. This approach was successfully experimented in the framework of several European FP7 Projects and in GEOSS.

  11. Review of EuCARD project on accelerator infrastructure in Europe

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2013-01-01

    The aim of big infrastructural and research programs (like pan-European Framework Programs) and individual projects realized inside these programs in Europe is to structure the European Research Area - ERA in this way as to be competitive with the leaders of the world. One of this projects in EuCARD (European Coordination of Accelerator Research and Development) with the aim to structure and modernize accelerator, (including accelerators for big free electron laser machines) research infrastructure. This article presents the periodic development of EuCARD which took place between the annual meeting, April 2012 in Warsaw and SC meeting in Uppsala, December 2012. The background of all these efforts are achievements of the LHC machine and associated detectors in the race for new physics. The LHC machine works in the regime of p-p, Pb-p, Pb-Pb (protons and lead ions). Recently, a discovery by the LHC of Higgs like boson, has started vivid debates on the further potential of this machine and the future. The periodic EuCARD conference, workshop and meetings concern building of the research infrastructure, including in this advanced photonic and electronic systems for servicing large high energy physics experiments. There are debated a few basic groups of such systems like: measurement - control networks of large geometrical extent, multichannel systems for large amounts of metrological data acquisition, precision photonic networks of reference time, frequency and phase distribution. The aim of the discussion is not only summarize the current status but make plans and prepare practically to building new infrastructures. Accelerator science and technology is one of a key enablers of the developments in the particle physic, photon physics and also applications in medicine and industry. Accelerator technology is intensely developed in all developed nations and regions of the world. The EuCARD project contains a lot of subjects related directly and indirectly to photon

  12. Cloud computing can simplify HIT infrastructure management.

    PubMed

    Glaser, John

    2011-08-01

    Software as a Service (SaaS), built on cloud computing technology, is emerging as the forerunner in IT infrastructure because it helps healthcare providers reduce capital investments. Cloud computing leads to predictable, monthly, fixed operating expenses for hospital IT staff. Outsourced cloud computing facilities are state-of-the-art data centers boasting some of the most sophisticated networking equipment on the market. The SaaS model helps hospitals safeguard against technology obsolescence, minimizes maintenance requirements, and simplifies management.

  13. Development Model for Research Infrastructures

    NASA Astrophysics Data System (ADS)

    Wächter, Joachim; Hammitzsch, Martin; Kerschke, Dorit; Lauterjung, Jörn

    2015-04-01

    Research infrastructures (RIs) are platforms integrating facilities, resources and services used by the research communities to conduct research and foster innovation. RIs include scientific equipment, e.g., sensor platforms, satellites or other instruments, but also scientific data, sample repositories or archives. E-infrastructures on the other hand provide the technological substratum and middleware to interlink distributed RI components with computing systems and communication networks. The resulting platforms provide the foundation for the design and implementation of RIs and play an increasing role in the advancement and exploitation of knowledge and technology. RIs are regarded as essential to achieve and maintain excellence in research and innovation crucial for the European Research Area (ERA). The implementation of RIs has to be considered as a long-term, complex development process often over a period of 10 or more years. The ongoing construction of Spatial Data Infrastructures (SDIs) provides a good example for the general complexity of infrastructure development processes especially in system-of-systems environments. A set of directives issued by the European Commission provided a framework of guidelines for the implementation processes addressing the relevant content and the encoding of data as well as the standards for service interfaces and the integration of these services into networks. Additionally, a time schedule for the overall construction process has been specified. As a result this process advances with a strong participation of member states and responsible organisations. Today, SDIs provide the operational basis for new digital business processes in both national and local authorities. Currently, the development of integrated RIs in Earth and Environmental Sciences is characterised by the following properties: • A high number of parallel activities on European and national levels with numerous institutes and organisations participating

  14. Big Data Analytics for Disaster Preparedness and Response of Mobile Communication Infrastructure during Natural Hazards

    NASA Astrophysics Data System (ADS)

    Zhong, L.; Takano, K.; Ji, Y.; Yamada, S.

    2015-12-01

    The disruption of telecommunications is one of the most critical disasters during natural hazards. As the rapid expanding of mobile communications, the mobile communication infrastructure plays a very fundamental role in the disaster response and recovery activities. For this reason, its disruption will lead to loss of life and property, due to information delays and errors. Therefore, disaster preparedness and response of mobile communication infrastructure itself is quite important. In many cases of experienced disasters, the disruption of mobile communication networks is usually caused by the network congestion and afterward long-term power outage. In order to reduce this disruption, the knowledge of communication demands during disasters is necessary. And big data analytics will provide a very promising way to predict the communication demands by analyzing the big amount of operational data of mobile users in a large-scale mobile network. Under the US-Japan collaborative project on 'Big Data and Disaster Research (BDD)' supported by the Japan Science and Technology Agency (JST) and National Science Foundation (NSF), we are going to investigate the application of big data techniques in the disaster preparedness and response of mobile communication infrastructure. Specifically, in this research, we have considered to exploit the big amount of operational information of mobile users for predicting the communications needs in different time and locations. By incorporating with other data such as shake distribution of an estimated major earthquake and the power outage map, we are able to provide the prediction information of stranded people who are difficult to confirm safety or ask for help due to network disruption. In addition, this result could further facilitate the network operators to assess the vulnerability of their infrastructure and make suitable decision for the disaster preparedness and response. In this presentation, we are going to introduce the

  15. A Comprehensive and Cost-Effective Computer Infrastructure for K-12 Schools

    NASA Technical Reports Server (NTRS)

    Warren, G. P.; Seaton, J. M.

    1996-01-01

    Since 1993, NASA Langley Research Center has been developing and implementing a low-cost Internet connection model, including system architecture, training, and support, to provide Internet access for an entire network of computers. This infrastructure allows local area networks which exceed 50 machines per school to independently access the complete functionality of the Internet by connecting to a central site, using state-of-the-art commercial modem technology, through a single standard telephone line. By locating high-cost resources at this central site and sharing these resources and their costs among the school districts throughout a region, a practical, efficient, and affordable infrastructure for providing scale-able Internet connectivity has been developed. As the demand for faster Internet access grows, the model has a simple expansion path that eliminates the need to replace major system components and re-train personnel. Observations of optical Internet usage within an environment, particularly school classrooms, have shown that after an initial period of 'surfing,' the Internet traffic becomes repetitive. By automatically storing requested Internet information on a high-capacity networked disk drive at the local site (network based disk caching), then updating this information only when it changes, well over 80 percent of the Internet traffic that leaves a location can be eliminated by retrieving the information from the local disk cache.

  16. To connect or not to connect? Modelling the optimal degree of centralisation for wastewater infrastructures.

    PubMed

    Eggimann, Sven; Truffer, Bernhard; Maurer, Max

    2015-11-01

    The strong reliance of most utility services on centralised network infrastructures is becoming increasingly challenged by new technological advances in decentralised alternatives. However, not enough effort has been made to develop planning tools designed to address the implications of these new opportunities and to determine the optimal degree of centralisation of these infrastructures. We introduce a planning tool for sustainable network infrastructure planning (SNIP), a two-step techno-economic heuristic modelling approach based on shortest path-finding and hierarchical-agglomerative clustering algorithms to determine the optimal degree of centralisation in the field of wastewater management. This SNIP model optimises the distribution of wastewater treatment plants and the sewer network outlay relative to several cost and sewer-design parameters. Moreover, it allows us to construct alternative optimal wastewater system designs taking into account topography, economies of scale as well as the full size range of wastewater treatment plants. We quantify and confirm that the optimal degree of centralisation decreases with increasing terrain complexity and settlement dispersion while showing that the effect of the latter exceeds that of topography. Case study results for a Swiss community indicate that the calculated optimal degree of centralisation is substantially lower than the current level. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Network structure of subway passenger flows

    NASA Astrophysics Data System (ADS)

    Xu, Q.; Mao, B. H.; Bai, Y.

    2016-03-01

    The results of transportation infrastructure network analyses have been used to analyze complex networks in a topological context. However, most modeling approaches, including those based on complex network theory, do not fully account for real-life traffic patterns and may provide an incomplete view of network functions. This study utilizes trip data obtained from the Beijing Subway System to characterize individual passenger movement patterns. A directed weighted passenger flow network was constructed from the subway infrastructure network topology by incorporating trip data. The passenger flow networks exhibit several properties that can be characterized by power-law distributions based on flow size, and log-logistic distributions based on the fraction of boarding and departing passengers. The study also characterizes the temporal patterns of in-transit and waiting passengers and provides a hierarchical clustering structure for passenger flows. This hierarchical flow organization varies in the spatial domain. Ten cluster groups were identified, indicating a hierarchical urban polycentric structure composed of large concentrated flows at urban activity centers. These empirical findings provide insights regarding urban human mobility patterns within a large subway network.

  18. Services and the National Information Infrastructure. Report of the Information Infrastructure Task Force Committee on Applications and Technology, Technology Policy Working Group. Draft for Public Comment.

    ERIC Educational Resources Information Center

    Office of Science and Technology Policy, Washington, DC.

    In this report, the National Information Infrastructure (NII) services issue is addressed, and activities to advance the development of NII services are recommended. The NII is envisioned to grow into a seamless web of communications networks, computers, databases, and consumer electronics that will put vast amounts of information at users'…

  19. The hydrogen value chain: applying the automotive role model of the hydrogen economy in the aerospace sector to increase performance and reduce costs

    NASA Astrophysics Data System (ADS)

    Frischauf, Norbert; Acosta-Iborra, Beatriz; Harskamp, Frederik; Moretto, Pietro; Malkow, Thomas; Honselaar, Michel; Steen, Marc; Hovland, Scott; Hufenbach, Bernhard; Schautz, Max; Wittig, Manfred; Soucek, Alexander

    2013-07-01

    Hydrogen will assume a key role in Europe's effort to adopt its energy dependent society to satisfy its needs without releasing vast amounts of greenhouse gases. The paradigm shift is so paramount that one speaks of the "Hydrogen Economy", as the energy in this new and ecological type of economy is to be distributed by hydrogen. However, H2 is not a primary energy source but rather an energy carrier, a means of storing, transporting and distributing energy, which has to be generated by other means. Various H2 storage methods are possible; however industries' favourite is the storage of gaseous hydrogen in high pressure tanks. The biggest promoter of this storage methodology is the automotive industry, which is currently preparing for the generation change from the fossil fuel internal combustion engines to hydrogen based fuel cells. The current roadmaps foresee a market roll-out by 2015, when the hydrogen supply infrastructure is expected to have reached a critical mass. The hydrogen economy is about to take off as being demonstrated by various national mobility strategies, which foresee several millions of electric cars driving on the road in 2020. Fuel cell cars are only one type of "electric car", battery electric as well as hybrid cars - all featuring electric drive trains - are the others. Which type of technology is chosen for a specific application depends primarily on the involved energy storage and power requirements. These considerations are very similar to the ones in the aerospace sector, which had introduced the fuel cell already in the 1960s. The automotive sector followed only recently, but has succeeded in moving forward the technology to a level, where the aerospace sector is starting considering to spin-in terrestrial hydrogen technologies into its technology portfolio. Target areas are again high power/high energy applications like aviation, manned spaceflight and exploration missions, as well as future generation high power telecommunication

  20. Design of a Mobile Agent-Based Adaptive Communication Middleware for Federations of Critical Infrastructure Simulations

    NASA Astrophysics Data System (ADS)

    Görbil, Gökçe; Gelenbe, Erol

    The simulation of critical infrastructures (CI) can involve the use of diverse domain specific simulators that run on geographically distant sites. These diverse simulators must then be coordinated to run concurrently in order to evaluate the performance of critical infrastructures which influence each other, especially in emergency or resource-critical situations. We therefore describe the design of an adaptive communication middleware that provides reliable and real-time one-to-one and group communications for federations of CI simulators over a wide-area network (WAN). The proposed middleware is composed of mobile agent-based peer-to-peer (P2P) overlays, called virtual networks (VNets), to enable resilient, adaptive and real-time communications over unreliable and dynamic physical networks (PNets). The autonomous software agents comprising the communication middleware monitor their performance and the underlying PNet, and dynamically adapt the P2P overlay and migrate over the PNet in order to optimize communications according to the requirements of the federation and the current conditions of the PNet. Reliable communications is provided via redundancy within the communication middleware and intelligent migration of agents over the PNet. The proposed middleware integrates security methods in order to protect the communication infrastructure against attacks and provide privacy and anonymity to the participants of the federation. Experiments with an initial version of the communication middleware over a real-life networking testbed show that promising improvements can be obtained for unicast and group communications via the agent migration capability of our middleware.

  1. Data distribution service-based interoperability framework for smart grid testbed infrastructure

    DOE PAGES

    Youssef, Tarek A.; Elsayed, Ahmed T.; Mohammed, Osama A.

    2016-03-02

    This study presents the design and implementation of a communication and control infrastructure for smart grid operation. The proposed infrastructure enhances the reliability of the measurements and control network. The advantages of utilizing the data-centric over message-centric communication approach are discussed in the context of smart grid applications. The data distribution service (DDS) is used to implement a data-centric common data bus for the smart grid. This common data bus improves the communication reliability, enabling distributed control and smart load management. These enhancements are achieved by avoiding a single point of failure while enabling peer-to-peer communication and an automatic discoverymore » feature for dynamic participating nodes. The infrastructure and ideas presented in this paper were implemented and tested on the smart grid testbed. A toolbox and application programing interface for the testbed infrastructure are developed in order to facilitate interoperability and remote access to the testbed. This interface allows control, monitoring, and performing of experiments remotely. Furthermore, it could be used to integrate multidisciplinary testbeds to study complex cyber-physical systems (CPS).« less

  2. A Quantitative Risk Assessment Model Involving Frequency and Threat Degree under Line-of-Business Services for Infrastructure of Emerging Sensor Networks.

    PubMed

    Jing, Xu; Hu, Hanwen; Yang, Huijun; Au, Man Ho; Li, Shuqin; Xiong, Naixue; Imran, Muhammad; Vasilakos, Athanasios V

    2017-03-21

    The prospect of Line-of-Business Services (LoBSs) for infrastructure of Emerging Sensor Networks (ESNs) is exciting. Access control remains a top challenge in this scenario as the service provider's server contains a lot of valuable resources. LoBSs' users are very diverse as they may come from a wide range of locations with vastly different characteristics. Cost of joining could be low and in many cases, intruders are eligible users conducting malicious actions. As a result, user access should be adjusted dynamically. Assessing LoBSs' risk dynamically based on both frequency and threat degree of malicious operations is therefore necessary. In this paper, we proposed a Quantitative Risk Assessment Model (QRAM) involving frequency and threat degree based on value at risk. To quantify the threat degree as an elementary intrusion effort, we amend the influence coefficient of risk indexes in the network security situation assessment model. To quantify threat frequency as intrusion trace effort, we make use of multiple behavior information fusion. Under the influence of intrusion trace, we adapt the historical simulation method of value at risk to dynamically access LoBSs' risk. Simulation based on existing data is used to select appropriate parameters for QRAM. Our simulation results show that the duration influence on elementary intrusion effort is reasonable when the normalized parameter is 1000. Likewise, the time window of intrusion trace and the weight between objective risk and subjective risk can be set to 10 s and 0.5, respectively. While our focus is to develop QRAM for assessing the risk of LoBSs for infrastructure of ESNs dynamically involving frequency and threat degree, we believe it is also appropriate for other scenarios in cloud computing.

  3. A Quantitative Risk Assessment Model Involving Frequency and Threat Degree under Line-of-Business Services for Infrastructure of Emerging Sensor Networks

    PubMed Central

    Jing, Xu; Hu, Hanwen; Yang, Huijun; Au, Man Ho; Li, Shuqin; Xiong, Naixue; Imran, Muhammad; Vasilakos, Athanasios V.

    2017-01-01

    The prospect of Line-of-Business Services (LoBSs) for infrastructure of Emerging Sensor Networks (ESNs) is exciting. Access control remains a top challenge in this scenario as the service provider’s server contains a lot of valuable resources. LoBSs’ users are very diverse as they may come from a wide range of locations with vastly different characteristics. Cost of joining could be low and in many cases, intruders are eligible users conducting malicious actions. As a result, user access should be adjusted dynamically. Assessing LoBSs’ risk dynamically based on both frequency and threat degree of malicious operations is therefore necessary. In this paper, we proposed a Quantitative Risk Assessment Model (QRAM) involving frequency and threat degree based on value at risk. To quantify the threat degree as an elementary intrusion effort, we amend the influence coefficient of risk indexes in the network security situation assessment model. To quantify threat frequency as intrusion trace effort, we make use of multiple behavior information fusion. Under the influence of intrusion trace, we adapt the historical simulation method of value at risk to dynamically access LoBSs’ risk. Simulation based on existing data is used to select appropriate parameters for QRAM. Our simulation results show that the duration influence on elementary intrusion effort is reasonable when the normalized parameter is 1000. Likewise, the time window of intrusion trace and the weight between objective risk and subjective risk can be set to 10 s and 0.5, respectively. While our focus is to develop QRAM for assessing the risk of LoBSs for infrastructure of ESNs dynamically involving frequency and threat degree, we believe it is also appropriate for other scenarios in cloud computing. PMID:28335569

  4. Scalable Collaborative Infrastructure for a Learning Healthcare System (SCILHS): architecture.

    PubMed

    Mandl, Kenneth D; Kohane, Isaac S; McFadden, Douglas; Weber, Griffin M; Natter, Marc; Mandel, Joshua; Schneeweiss, Sebastian; Weiler, Sarah; Klann, Jeffrey G; Bickel, Jonathan; Adams, William G; Ge, Yaorong; Zhou, Xiaobo; Perkins, James; Marsolo, Keith; Bernstam, Elmer; Showalter, John; Quarshie, Alexander; Ofili, Elizabeth; Hripcsak, George; Murphy, Shawn N

    2014-01-01

    We describe the architecture of the Patient Centered Outcomes Research Institute (PCORI) funded Scalable Collaborative Infrastructure for a Learning Healthcare System (SCILHS, http://www.SCILHS.org) clinical data research network, which leverages the $48 billion dollar federal investment in health information technology (IT) to enable a queryable semantic data model across 10 health systems covering more than 8 million patients, plugging universally into the point of care, generating evidence and discovery, and thereby enabling clinician and patient participation in research during the patient encounter. Central to the success of SCILHS is development of innovative 'apps' to improve PCOR research methods and capacitate point of care functions such as consent, enrollment, randomization, and outreach for patient-reported outcomes. SCILHS adapts and extends an existing national research network formed on an advanced IT infrastructure built with open source, free, modular components. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  5. A prototype Infrastructure for Cloud-based distributed services in High Availability over WAN

    NASA Astrophysics Data System (ADS)

    Bulfon, C.; Carlino, G.; De Salvo, A.; Doria, A.; Graziosi, C.; Pardi, S.; Sanchez, A.; Carboni, M.; Bolletta, P.; Puccio, L.; Capone, V.; Merola, L.

    2015-12-01

    In this work we present the architectural and performance studies concerning a prototype of a distributed Tier2 infrastructure for HEP, instantiated between the two Italian sites of INFN-Romal and INFN-Napoli. The network infrastructure is based on a Layer-2 geographical link, provided by the Italian NREN (GARR), directly connecting the two remote LANs of the named sites. By exploiting the possibilities offered by the new distributed file systems, a shared storage area with synchronous copy has been set up. The computing infrastructure, based on an OpenStack facility, is using a set of distributed Hypervisors installed in both sites. The main parameter to be taken into account when managing two remote sites with a single framework is the effect of the latency, due to the distance and the end-to-end service overhead. In order to understand the capabilities and limits of our setup, the impact of latency has been investigated by means of a set of stress tests, including data I/O throughput, metadata access performance evaluation and network occupancy, during the life cycle of a Virtual Machine. A set of resilience tests has also been performed, in order to verify the stability of the system on the event of hardware or software faults. The results of this work show that the reliability and robustness of the chosen architecture are effective enough to build a production system and to provide common services. This prototype can also be extended to multiple sites with small changes of the network topology, thus creating a National Network of Cloud-based distributed services, in HA over WAN.

  6. The hydrogen-bond network of water supports propagating optical phonon-like modes

    DOE PAGES

    Elton, Daniel C.; Fernández-Serra, Marivi

    2016-01-04

    The local structure of liquid water as a function of temperature is a source of intense research. This structure is intimately linked to the dynamics of water molecules, which can be measured using Raman and infrared spectroscopies. The assignment of spectral peaks depends on whether they are collective modes or single-molecule motions. Vibrational modes in liquids are usually considered to be associated to the motions of single molecules or small clusters. Using molecular dynamics simulations, here we find dispersive optical phonon-like modes in the librational and OH-stretching bands. We argue that on subpicosecond time scales these modes propagate through water’smore » hydrogen-bond network over distances of up to 2 nm. In the long wavelength limit these optical modes exhibit longitudinal–transverse splitting, indicating the presence of coherent long-range dipole–dipole interactions, as in ice. Lastly, our results indicate the dynamics of liquid water have more similarities to ice than previously thought.« less

  7. The hydrogen-bond network of water supports propagating optical phonon-like modes.

    PubMed

    Elton, Daniel C; Fernández-Serra, Marivi

    2016-01-04

    The local structure of liquid water as a function of temperature is a source of intense research. This structure is intimately linked to the dynamics of water molecules, which can be measured using Raman and infrared spectroscopies. The assignment of spectral peaks depends on whether they are collective modes or single-molecule motions. Vibrational modes in liquids are usually considered to be associated to the motions of single molecules or small clusters. Using molecular dynamics simulations, here we find dispersive optical phonon-like modes in the librational and OH-stretching bands. We argue that on subpicosecond time scales these modes propagate through water's hydrogen-bond network over distances of up to 2 nm. In the long wavelength limit these optical modes exhibit longitudinal-transverse splitting, indicating the presence of coherent long-range dipole-dipole interactions, as in ice. Our results indicate the dynamics of liquid water have more similarities to ice than previously thought.

  8. Disaster management and mitigation: the telecommunications infrastructure.

    PubMed

    Patricelli, Frédéric; Beakley, James E; Carnevale, Angelo; Tarabochia, Marcello; von Lubitz, Dag K J E

    2009-03-01

    Among the most typical consequences of disasters is the near or complete collapse of terrestrial telecommunications infrastructures (especially the distribution network--the 'last mile') and their concomitant unavailability to the rescuers and the higher echelons of mitigation teams. Even when such damage does not take place, the communications overload/congestion resulting from significantly elevated traffic generated by affected residents can be highly disturbing. The paper proposes innovative remedies to the telecommunications difficulties in disaster struck regions. The offered solutions are network-centric operations-cap able, and can be employed in management of disasters of any magnitude (local to national or international). Their implementation provide ground rescue teams (such as law enforcement, firemen, healthcare personnel, civilian authorities) with tactical connectivity among themselves, and, through the Next Generation Network backbone, ensure the essential bidirectional free flow of information and distribution of Actionable Knowledge among ground units, command/control centres, and civilian and military agencies participating in the rescue effort.

  9. Scalability Issues for Remote Sensing Infrastructure: A Case Study

    PubMed Central

    Liu, Yang; Picard, Sean; Williamson, Carey

    2017-01-01

    For the past decade, a team of University of Calgary researchers has operated a large “sensor Web” to collect, analyze, and share scientific data from remote measurement instruments across northern Canada. This sensor Web receives real-time data streams from over a thousand Internet-connected sensors, with a particular emphasis on environmental data (e.g., space weather, auroral phenomena, atmospheric imaging). Through research collaborations, we had the opportunity to evaluate the performance and scalability of their remote sensing infrastructure. This article reports the lessons learned from our study, which considered both data collection and data dissemination aspects of their system. On the data collection front, we used benchmarking techniques to identify and fix a performance bottleneck in the system’s memory management for TCP data streams, while also improving system efficiency on multi-core architectures. On the data dissemination front, we used passive and active network traffic measurements to identify and reduce excessive network traffic from the Web robots and JavaScript techniques used for data sharing. While our results are from one specific sensor Web system, the lessons learned may apply to other scientific Web sites with remote sensing infrastructure. PMID:28468262

  10. Scalability Issues for Remote Sensing Infrastructure: A Case Study.

    PubMed

    Liu, Yang; Picard, Sean; Williamson, Carey

    2017-04-29

    For the past decade, a team of University of Calgary researchers has operated a large "sensor Web" to collect, analyze, and share scientific data from remote measurement instruments across northern Canada. This sensor Web receives real-time data streams from over a thousand Internet-connected sensors, with a particular emphasis on environmental data (e.g., space weather, auroral phenomena, atmospheric imaging). Through research collaborations, we had the opportunity to evaluate the performance and scalability of their remote sensing infrastructure. This article reports the lessons learned from our study, which considered both data collection and data dissemination aspects of their system. On the data collection front, we used benchmarking techniques to identify and fix a performance bottleneck in the system's memory management for TCP data streams, while also improving system efficiency on multi-core architectures. On the data dissemination front, we used passive and active network traffic measurements to identify and reduce excessive network traffic from the Web robots and JavaScript techniques used for data sharing. While our results are from one specific sensor Web system, the lessons learned may apply to other scientific Web sites with remote sensing infrastructure.

  11. Fast detection and low power hydrogen sensor using edge-oriented vertically aligned 3-D network of MoS2 flakes at room temperature

    NASA Astrophysics Data System (ADS)

    Agrawal, A. V.; Kumar, R.; Venkatesan, S.; Zakhidov, A.; Zhu, Z.; Bao, Jiming; Kumar, Mahesh; Kumar, Mukesh

    2017-08-01

    The increased usage of hydrogen as a next generation clean fuel strongly demands the parallel development of room temperature and low power hydrogen sensors for their safety operation. In this work, we report strong evidence for preferential hydrogen adsorption at edge-sites in an edge oriented vertically aligned 3-D network of MoS2 flakes at room temperature. The vertically aligned edge-oriented MoS2 flakes were synthesised by a modified CVD process on a SiO2/Si substrate and confirmed by Scanning Electron Microscopy. Raman spectroscopy and PL spectroscopy reveal the signature of few-layer MoS2 flakes in the sample. The sensor's performance was tested from room temperature to 150 °C for 1% hydrogen concentration. The device shows a fast response of 14.3 s even at room temperature. The sensitivity of the device strongly depends on temperature and increases from ˜1% to ˜11% as temperature increases. A detail hydrogen sensing mechanism was proposed based on the preferential hydrogen adsorption at MoS2 edge sites. The proposed gas sensing mechanism was verified by depositing ˜2-3 nm of ZnO on top of the MoS2 flakes that partially passivated the edge sites. We found a decrease in the relative response of MoS2-ZnO hybrid structures. This study provides a strong experimental evidence for the role of MoS2 edge-sites in the fast hydrogen sensing and a step closer towards room temperature, low power (0.3 mW), hydrogen sensor development.

  12. A game theory analysis of green infrastructure stormwater management policies

    NASA Astrophysics Data System (ADS)

    William, Reshmina; Garg, Jugal; Stillwell, Ashlynn S.

    2017-09-01

    Green stormwater infrastructure has been demonstrated as an innovative water resources management approach that addresses multiple challenges facing urban environments. However, there is little consensus on what policy strategies can be used to best incentivize green infrastructure adoption by private landowners. Game theory, an analysis framework that has historically been under-utilized within the context of stormwater management, is uniquely suited to address this policy question. We used a cooperative game theory framework to investigate the potential impacts of different policy strategies used to incentivize green infrastructure installation. The results indicate that municipal regulation leads to the greatest reduction in pollutant loading. However, the choice of the "best" regulatory approach will depend on a variety of different factors including politics and financial considerations. Large, downstream agents have a disproportionate share of bargaining power. Results also reveal that policy impacts are highly dependent on agents' spatial position within the stormwater network, leading to important questions of social equity and environmental justice.

  13. Biased Gs versus Gq proteins and β-arrestin signaling in the NK1 receptor determined by interactions in the water hydrogen bond network.

    PubMed

    Valentin-Hansen, Louise; Frimurer, Thomas M; Mokrosinski, Jacek; Holliday, Nicholas D; Schwartz, Thue W

    2015-10-02

    X-ray structures, molecular dynamics simulations, and mutational analysis have previously indicated that an extended water hydrogen bond network between trans-membranes I-III, VI, and VII constitutes an allosteric interface essential for stabilizing different active and inactive helical constellations during the seven-trans-membrane receptor activation. The neurokinin-1 receptor signals efficiently through Gq, Gs, and β-arrestin when stimulated by substance P, but it lacks any sign of constitutive activity. In the water hydrogen bond network the neurokinin-1 has a unique Glu residue instead of the highly conserved AspII:10 (2.50). Here, we find that this GluII:10 occupies the space of a putative allosteric modulating Na(+) ion and makes direct inter-helical interactions in particular with SerIII:15 (3.39) and AsnVII:16 (7.49) of the NPXXY motif. Mutational changes in the interface between GluII:10 and AsnVII:16 created receptors that selectively signaled through the following: 1) Gq only; 2) β-arrestin only; and 3) Gq and β-arrestin but not through Gs. Interestingly, increased constitutive Gs but not Gq signaling was observed by Ala substitution of four out of the six core polar residues of the network, in particular SerIII:15. Three residues were essential for all three signaling pathways, i.e. the water-gating micro-switch residues TrpVI:13 (6.48) of the CWXP motif and TyrVII:20 (7.53) of the NPXXY motif plus the totally conserved AsnI:18 (1.50) stabilizing the kink in trans-membrane VII. It is concluded that the interface between position II:10 (2.50), III:15 (3.39), and VII:16 (7.49) in the center of the water hydrogen bond network constitutes a focal point for fine-tuning seven trans-membrane receptor conformations activating different signal transduction pathways. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Hydrogen Vehicles: Impacts of DOE Technical Targets on Market Acceptance and Societal Benefits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Zhenhong; Dong, Jing; Greene, David L

    2013-01-01

    Hydrogen vehicles (H2V), including H2 internal combustion engine, fuel cell and fuel cell plugin hybrid, could greatly reduce petroleum consumption and greenhouse gas (GHG) emissions in the transportation sector. The U.S. Department of Energy has adopted targets for vehicle component technologies to address key technical barriers towidespread commercialization of H2Vs. This study estimates the market acceptance of H2Vs and the resulting societal benefits and subsidy in 41 scenarios that reflect a wide range of progress in meeting these technical targets. Important results include: (1) H2Vs could reach 20e70% market shares by 2050, depending on progress in achieving the technical targets.Withmore » a basic hydrogen infrastructure (w5% hydrogen availability), the H2V market share is estimated to be 2e8%. Fuel cell and hydrogen costs are the most important factors affecting the long-term market shares of H2Vs. (2) Meeting all technical targets on time could result in about an 80% cut in petroleumuse and a 62% (or 72% with aggressive electricity de-carbonization) reduction in GHG in 2050. (3) The required hydrogen infrastructure subsidy is estimated to range from $22 to $47 billion and the vehicle subsidy from $4 to $17 billion. (4) Long-term H2V market shares, societal benefits and hydrogen subsidies appear to be highly robust against delay in one target, if all other targets are met on time. R&D diversification could provide insurance for greater societal benefits. (5) Both H2Vs and plug-in electric vehicles could exceed 50% market shares by 2050, if all targets are met on time. The overlapping technology, the fuel cell plug-in hybrid electric vehicle, appears attractive both in the short and long runs, but for different reasons.« less

  15. How to Purchase, Set Up, & Safeguard a CD-ROM Network.

    ERIC Educational Resources Information Center

    Almquist, Arne J.

    1996-01-01

    Presents an overview of the hardware and software required to network CD-ROMs in schools. Topics include network infrastructures, networking software, file server-based systems, CD-ROM servers, vendors of network components, workstations, network utilities, and network management. (LRW)

  16. A national-scale authentication infrastructure.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, R.; Engert, D.; Foster, I.

    2000-12-01

    Today, individuals and institutions in science and industry are increasingly forming virtual organizations to pool resources and tackle a common goal. Participants in virtual organizations commonly need to share resources such as data archives, computer cycles, and networks - resources usually available only with restrictions based on the requested resource's nature and the user's identity. Thus, any sharing mechanism must have the ability to authenticate the user's identity and determine if the user is authorized to request the resource. Virtual organizations tend to be fluid, however, so authentication mechanisms must be flexible and lightweight, allowing administrators to quickly establish andmore » change resource-sharing arrangements. However, because virtual organizations complement rather than replace existing institutions, sharing mechanisms cannot change local policies and must allow individual institutions to maintain control over their own resources. Our group has created and deployed an authentication and authorization infrastructure that meets these requirements: the Grid Security Infrastructure. GSI offers secure single sign-ons and preserves site control over access policies and local security. It provides its own versions of common applications, such as FTP and remote login, and a programming interface for creating secure applications.« less

  17. Open source system OpenVPN in a function of Virtual Private Network

    NASA Astrophysics Data System (ADS)

    Skendzic, A.; Kovacic, B.

    2017-05-01

    Using of Virtual Private Networks (VPN) can establish high security level in network communication. VPN technology enables high security networking using distributed or public network infrastructure. VPN uses different security and managing rules inside networks. It can be set up using different communication channels like Internet or separate ISP communication infrastructure. VPN private network makes security communication channel over public network between two endpoints (computers). OpenVPN is an open source software product under GNU General Public License (GPL) that can be used to establish VPN communication between two computers inside business local network over public communication infrastructure. It uses special security protocols and 256-bit Encryption and it is capable of traversing network address translators (NATs) and firewalls. It allows computers to authenticate each other using a pre-shared secret key, certificates or username and password. This work gives review of VPN technology with a special accent on OpenVPN. This paper will also give comparison and financial benefits of using open source VPN software in business environment.

  18. Integrating Network Management for Cloud Computing Services

    DTIC Science & Technology

    2015-06-01

    abstraction and system design. In this dissertation, we make three major contributions. We rst propose to consolidate the tra c and infrastructure management...abstraction and system design. In this dissertation, we make three major contributions. We first propose to consolidate the traffic and infrastructure ...1.3.1 Safe Datacenter Traffic/ Infrastructure Management . . . . . . 9 1.3.2 End-host/Network Cooperative Traffic Management . . . . . . 10 1.3.3 Direct

  19. SIOS: A regional cooperation of international research infrastructures as a building block for an Arctic observing system

    NASA Astrophysics Data System (ADS)

    Holmen, K. J.; Lønne, O. J.

    2016-12-01

    The Svalbard Integrated Earth Observing System (SIOS) is a regional response to the Earth System Science (ESS) challenges posed by the Amsterdam Declaration on Global Change. SIOS is intended to develop and implement methods for how observational networks in the Arctic are to be designed in order to address such issues in a regional scale. SIOS builds on the extensive observation capacity and research installations already in place by many international institutions and will provide upgraded and relevant Observing Systems and Research Facilities of world class in and around Svalbard. It is a distributed research infrastructure set up to provide a regional observational system for long term measurements under a joint framework. As one of the large scale research infrastructure initiatives on the ESFRI roadmap (European Strategy Forum on Research Infrastructures), SIOS is now being implemented. The new research infrastructure organization, the SIOS Knowledge Center (SIOS-KC), is instrumental in developing methods and solutions for setting up its regional contribution to a systematically constructed Arctic observational network useful for global change studies. We will discuss cross-disciplinary research experiences some case studies and lessons learned so far. SIOS aims to provide an effective, easily accessible data management system which makes use of existing data handling systems in the thematic fields covered by SIOS. SIOS will, implement a data policy which matches the ambitions that are set for the new European research infrastructures, but at the same time be flexible enough to consider `historical' legacies. Given the substantial international presence in the Svalbard archipelago and the pan-Arctic nature of the issue, there is an opportunity to build SIOS further into a wider regional network and pan-Arctic context, ideally under the umbrella of the Sustaining Arctic Observing Networks (SAON) initiative. It is necessary to anchor SIOS strongly in a European

  20. The Federal Government and Information Technology Standards: Building the National Information Infrastructure.

    ERIC Educational Resources Information Center

    Radack, Shirley M.

    1994-01-01

    Examines the role of the National Institute of Standards and Technology (NIST) in the development of the National Information Infrastructure (NII). Highlights include the standards process; voluntary standards; Open Systems Interconnection problems; Internet Protocol Suite; consortia; government's role; and network security. (16 references) (LRW)

  1. Emergency navigation without an infrastructure.

    PubMed

    Gelenbe, Erol; Bi, Huibo

    2014-08-18

    Emergency navigation systems for buildings and other built environments, such as sport arenas or shopping centres, typically rely on simple sensor networks to detect emergencies and, then, provide automatic signs to direct the evacuees. The major drawbacks of such static wireless sensor network (WSN)-based emergency navigation systems are the very limited computing capacity, which makes adaptivity very difficult, and the restricted battery power, due to the low cost of sensor nodes for unattended operation. If static wireless sensor networks and cloud-computing can be integrated, then intensive computations that are needed to determine optimal evacuation routes in the presence of time-varying hazards can be offloaded to the cloud, but the disadvantages of limited battery life-time at the client side, as well as the high likelihood of system malfunction during an emergency still remain. By making use of the powerful sensing ability of smart phones, which are increasingly ubiquitous, this paper presents a cloud-enabled indoor emergency navigation framework to direct evacuees in a coordinated fashion and to improve the reliability and resilience for both communication and localization. By combining social potential fields (SPF) and a cognitive packet network (CPN)-based algorithm, evacuees are guided to exits in dynamic loose clusters. Rather than relying on a conventional telecommunications infrastructure, we suggest an ad hoc cognitive packet network (AHCPN)-based protocol to adaptively search optimal communication routes between portable devices and the network egress nodes that provide access to cloud servers, in a manner that spares the remaining battery power of smart phones and minimizes the time latency. Experimental results through detailed simulations indicate that smart human motion and smart network management can increase the survival rate of evacuees and reduce the number of drained smart phones in an evacuation process.

  2. Emergency Navigation without an Infrastructure

    PubMed Central

    Gelenbe, Erol; Bi, Huibo

    2014-01-01

    Emergency navigation systems for buildings and other built environments, such as sport arenas or shopping centres, typically rely on simple sensor networks to detect emergencies and, then, provide automatic signs to direct the evacuees. The major drawbacks of such static wireless sensor network (WSN)-based emergency navigation systems are the very limited computing capacity, which makes adaptivity very difficult, and the restricted battery power, due to the low cost of sensor nodes for unattended operation. If static wireless sensor networks and cloud-computing can be integrated, then intensive computations that are needed to determine optimal evacuation routes in the presence of time-varying hazards can be offloaded to the cloud, but the disadvantages of limited battery life-time at the client side, as well as the high likelihood of system malfunction during an emergency still remain. By making use of the powerful sensing ability of smart phones, which are increasingly ubiquitous, this paper presents a cloud-enabled indoor emergency navigation framework to direct evacuees in a coordinated fashion and to improve the reliability and resilience for both communication and localization. By combining social potential fields (SPF) and a cognitive packet network (CPN)-based algorithm, evacuees are guided to exits in dynamic loose clusters. Rather than relying on a conventional telecommunications infrastructure, we suggest an ad hoc cognitive packet network (AHCPN)-based protocol to adaptively search optimal communication routes between portable devices and the network egress nodes that provide access to cloud servers, in a manner that spares the remaining battery power of smart phones and minimizes the time latency. Experimental results through detailed simulations indicate that smart human motion and smart network management can increase the survival rate of evacuees and reduce the number of drained smart phones in an evacuation process. PMID:25196014

  3. Assessing the risk posed by natural hazards to infrastructures

    NASA Astrophysics Data System (ADS)

    Eidsvig, Unni Marie K.; Kristensen, Krister; Vidar Vangelsten, Bjørn

    2017-03-01

    the infrastructure. Case studies for two Norwegian municipalities are presented for demonstration purposes, where risk posed by adverse weather and natural hazards to primary road, water supply and power networks is assessed. The application examples show that the proposed model provides a useful tool for screening of potential undesirable events, contributing to a targeted reduction of the risk.

  4. Are We Ready for Mass Fatality Incidents? Preparedness of the US Mass Fatality Infrastructure.

    PubMed

    Merrill, Jacqueline A; Orr, Mark; Chen, Daniel Y; Zhi, Qi; Gershon, Robyn R

    2016-02-01

    To assess the preparedness of the US mass fatality infrastructure, we developed and tested metrics for 3 components of preparedness: organizational, operational, and resource sharing networks. In 2014, data were collected from 5 response sectors: medical examiners and coroners, the death care industry, health departments, faith-based organizations, and offices of emergency management. Scores were calculated within and across sectors and a weighted score was developed for the infrastructure. A total of 879 respondents reported highly variable organizational capabilities: 15% had responded to a mass fatality incident (MFI); 42% reported staff trained for an MFI, but only 27% for an MFI involving hazardous contaminants. Respondents estimated that 75% of their staff would be willing and able to respond, but only 53% if contaminants were involved. Most perceived their organization as somewhat prepared, but 13% indicated "not at all." Operational capability scores ranged from 33% (death care industry) to 77% (offices of emergency management). Network capability analysis found that only 42% of possible reciprocal relationships between resource-sharing partners were present. The cross-sector composite score was 51%; that is, half the key capabilities for preparedness were in place. The sectors in the US mass fatality infrastructure report suboptimal capability to respond. National leadership is needed to ensure sector-specific and infrastructure-wide preparedness for a large-scale MFI.

  5. Cooperative Roles of Charge Transfer and Dispersion Terms in Hydrogen-Bonded Networks of (H2O)n, n = 6, 11, and 16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwata, Suehiro; Bandyopadhyay, Pradipta; Xantheas, Sotiris S.

    The perturbation expansion based on the locally-projected molecular orbital (LPMO PT) was applied to the study of the hydrogenbonded networks of water clusters with up to 16 molecules. Utilizing the local nature of the occupied and excited MOs on each monomer, the chargetransfer and dispersion terms are evaluated for every pair of molecules. The two terms are strongly correlated with each other for the hydrogen-bonded pairs. The strength of the hydrogen bonds in the clusters is further classified by the types of the hydrogen donor and acceptor water molecules. The relative energies evaluated with th LPMO PT among the isomersmore » of (H2O)6, (H2O)11, and (H2O)16 agree very well with those obtained from CCSD(T) calculations with large basis sets. The binding energy of the LPMO PT is approximately free of the basis set superposition errors caused both by the orbital basis inconsistency and by the configuration basis inconsistency.« less

  6. Integrating Subjective Trust into Networked Infrastructures

    DTIC Science & Technology

    2009-04-22

    architectural framework for hexperimenting wit trust. • Use of semantic technologies incorporated into h b id b d t t t ta y r - ase rus managemen ...Language for Operation PI Persistent Identifier PILOW P i t t Id tifi T blers s en en er a es PINL Persistent Identifier Networking Layer SBIR Small...Investigate and propose an architecture to determine/measure and convey th t t l l f th i l t ie rus eve o e var ous e emen s n a distributed or

  7. Sampling Approaches for Multi-Domain Internet Performance Measurement Infrastructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calyam, Prasad

    2014-09-15

    The next-generation of high-performance networks being developed in DOE communities are critical for supporting current and emerging data-intensive science applications. The goal of this project is to investigate multi-domain network status sampling techniques and tools to measure/analyze performance, and thereby provide “network awareness” to end-users and network operators in DOE communities. We leverage the infrastructure and datasets available through perfSONAR, which is a multi-domain measurement framework that has been widely deployed in high-performance computing and networking communities; the DOE community is a core developer and the largest adopter of perfSONAR. Our investigations include development of semantic scheduling algorithms, measurement federationmore » policies, and tools to sample multi-domain and multi-layer network status within perfSONAR deployments. We validate our algorithms and policies with end-to-end measurement analysis tools for various monitoring objectives such as network weather forecasting, anomaly detection, and fault-diagnosis. In addition, we develop a multi-domain architecture for an enterprise-specific perfSONAR deployment that can implement monitoring-objective based sampling and that adheres to any domain-specific measurement policies.« less

  8. High-throughput neuroimaging-genetics computational infrastructure

    PubMed Central

    Dinov, Ivo D.; Petrosyan, Petros; Liu, Zhizhong; Eggert, Paul; Hobel, Sam; Vespa, Paul; Woo Moon, Seok; Van Horn, John D.; Franco, Joseph; Toga, Arthur W.

    2014-01-01

    Many contemporary neuroscientific investigations face significant challenges in terms of data management, computational processing, data mining, and results interpretation. These four pillars define the core infrastructure necessary to plan, organize, orchestrate, validate, and disseminate novel scientific methods, computational resources, and translational healthcare findings. Data management includes protocols for data acquisition, archival, query, transfer, retrieval, and aggregation. Computational processing involves the necessary software, hardware, and networking infrastructure required to handle large amounts of heterogeneous neuroimaging, genetics, clinical, and phenotypic data and meta-data. Data mining refers to the process of automatically extracting data features, characteristics and associations, which are not readily visible by human exploration of the raw dataset. Result interpretation includes scientific visualization, community validation of findings and reproducible findings. In this manuscript we describe the novel high-throughput neuroimaging-genetics computational infrastructure available at the Institute for Neuroimaging and Informatics (INI) and the Laboratory of Neuro Imaging (LONI) at University of Southern California (USC). INI and LONI include ultra-high-field and standard-field MRI brain scanners along with an imaging-genetics database for storing the complete provenance of the raw and derived data and meta-data. In addition, the institute provides a large number of software tools for image and shape analysis, mathematical modeling, genomic sequence processing, and scientific visualization. A unique feature of this architecture is the Pipeline environment, which integrates the data management, processing, transfer, and visualization. Through its client-server architecture, the Pipeline environment provides a graphical user interface for designing, executing, monitoring validating, and disseminating of complex protocols that utilize

  9. Atmospheric Hydrogen (H2) Concentrations from the CSIRO GASLAB Flask Sampling Network (1992 - 2001)

    DOE Data Explorer

    Steele, L. P. [Commonwealth Scientific and Industrial Research Organization (CSIRO), Atmospheric Research, Aspendale, Victoria, Australia; Krummel, P. B. [Commonwealth Scientific and Industrial Research Organization (CSIRO), Atmospheric Research, Aspendale, Victoria, Australia; Langenfelds, R. L. [Commonwealth Scientific and Industrial Research Organization (CSIRO), Atmospheric Research, Aspendale, Victoria, Australia

    2003-01-01

    Air samples from nine sites were collected from the CSIRO GASLAB Flask Sampling Network for the purpose of monitoring the atmospheric hydrogen (H2) concentrations. The listed data were obtained from flask air samples returned to the CSIRO GASLAB for analysis. Typical sample storage times ranged from days to weeks for some sites (e.g., Cape Grim) to as much as one year for Macquarie Island and the Antarctic sites. Experiments carried out to test for any change in sample H22 mixing ratio during storage have shown no consistent and systematic drift in these flask types over test periods of several months to years (Cooper et al., 1999). An annual cycle of H2 is evident, reflecting the seasonal nature of some of the major sources and sinks (Novelli et al., 1999).

  10. Uganda's National Transmission Backbone Infrastructure Project: Technical Challenges and the Way Forward

    NASA Astrophysics Data System (ADS)

    Bulega, T.; Kyeyune, A.; Onek, P.; Sseguya, R.; Mbabazi, D.; Katwiremu, E.

    2011-10-01

    Several publications have identified technical challenges facing Uganda's National Transmission Backbone Infrastructure project. This research addresses the technical limitations of the National Transmission Backbone Infrastructure project, evaluates the goals of the project, and compares the results against the technical capability of the backbone. The findings of the study indicate a bandwidth deficit, which will be addressed by using dense wave division multiplexing repeaters, leasing bandwidth from private companies. Microwave links for redundancy, a Network Operation Center for operation and maintenance, and deployment of wireless interoperability for microwave access as a last-mile solution are also suggested.

  11. Communications infrastructure requirements for telemedicine/telehealth in the context of planning for and responding to natural disasters: Considering the need for shared regional networks

    NASA Technical Reports Server (NTRS)

    Scott, John Carver

    1991-01-01

    During the course of recent years the frequency and magnitude of major disasters - of natural, technological, or ecological origin - have made the world community dramatically aware of the immense losses of human life and economic resources that are caused regularly by such calamities. Particularly hard hit are developing countries, for whom the magnitude of disasters frequently outstrips the ability of the society to cope with them. In many cases this situation can be prevented, and the recent trend in disaster management has been to emphasize the importance of preparedness and mitigation as a means of prevention. In cases of disaster, a system is needed to respond to relief requirements, particularly the delivery of medical care. There is no generic telecommunications infrastructure appropriate for the variety of applications in medical care and disaster management. The need to integrate telemedicine/telehealth into shared regional disaster management telecommunications networks is discussed. Focus is on the development of infrastructure designed to serve the needs of disaster prone regions of the developing world.

  12. Security Shift in Future Network Architectures

    DTIC Science & Technology

    2010-11-01

    RTO-MP-IST-091 2 - 1 Security Shift in Future Network Architectures Tim Hartog, M.Sc Information Security Dept. TNO Information and...current practice military communication infrastructures are deployed as stand-alone networked information systems. Network -Enabled Capabilities (NEC) and...information architects and security specialists about the separation of network and information security, the consequences of this shift and our view

  13. Organizational Strategies for Critical Transportation Infrastructure: Characteristics of Urban Resilience. The Case of Montreal.

    NASA Astrophysics Data System (ADS)

    Beauregard, Stéphane; Therrien, Marie-Christine; Normandin, Julie-Maude

    2010-05-01

    Organizational Strategies for Critical Transportation Infrastructure: Characteristics of Urban Resilience. The Case of Montreal. Stéphane Beauregard M.Sc. Candidate École nationale d'administration publique Julie-Maude Normandin Ph.D. Candidate École nationale d'administration publique Marie-Christine Therrien Professor École nationale d'administration publique The proposed paper presents preliminary results on the resilience of organizations managing critical infrastructure in the Metropolitan Montreal area (Canada). A resilient city is characterized by a network of infrastructures and individuals capable of maintaining their activities in spite of a disturbance (Godschalk, 2002). Critical infrastructures provide essential services for the functioning of society. In a crisis situation, the interruption or a decrease in performance of critical infrastructures could have important impacts on the population. They are also vulnerable to accidents and cascading effects because on their complexity and tight interdependence (Perrow, 1984). For these reasons, protection and security of the essential assets and networks are one of the objectives of organizations and governments. But prevention and recovery are two endpoints of a continuum which include also intermediate concerns: ensuring organizational robustness or failing with elegance rather than catastrophically. This continuum also includes organizational resilience (or system), or the ability to recover quickly after an interruption has occurred. Wildavsky (1988) proposes that anticipation strategies work better against known problems while resilience strategies focus on unknown problems. Anticipation policies can unnecessarily immobilize investments against risks, while resilience strategies include the potential for a certain sacrifice in the interests of a more long-term survival and adaptation to changing threats. In addition, a too large confidence in anticipation strategies can bring loss of capacity of an

  14. Enhanced networked server management with random remote backups

    NASA Astrophysics Data System (ADS)

    Kim, Song-Kyoo

    2003-08-01

    In this paper, the model is focused on available server management in network environments. The (remote) backup servers are hooked up by VPN (Virtual Private Network) and replace broken main severs immediately. A virtual private network (VPN) is a way to use a public network infrastructure and hooks up long-distance servers within a single network infrastructure. The servers can be represent as "machines" and then the system deals with main unreliable and random auxiliary spare (remote backup) machines. When the system performs a mandatory routine maintenance, auxiliary machines are being used for backups during idle periods. Unlike other existing models, the availability of auxiliary machines is changed for each activation in this enhanced model. Analytically tractable results are obtained by using several mathematical techniques and the results are demonstrated in the framework of optimized networked server allocation problems.

  15. Green Infrastructure

    EPA Pesticide Factsheets

    To promote the benefits of green infrastructure, help communities overcome barriers to using GI, and encourage the use of GI to create sustainable and resilient water infrastructure that improves water quality and supports and revitalizes communities.

  16. Metal phosphonate coordination networks and frameworks as precursors of electrocatalysts for the hydrogen and oxygen evolution reactions

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; El-Refaei, Sayed M.; Russo, Patrícia A.; Pinna, Nicola

    2018-05-01

    The hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) play key roles in the conversion of energy derived from renewable energy sources into chemical energy. Efficient, robust, and inexpensive electrocatalysts are necessary for driving these reactions at high rates at low overpotentials and minimize energetic losses. Recently, electrocatalysts derived from hybrid metal phosphonate compounds have shown high activity for the HER or OER. We review here the utilization of metal phosphonate coordination networks and metal-organic frameworks as precursors/templates for transition-metal phosphides, phosphates, or oxyhydroxides generated in situ in alkaline solutions, and their electrocatalytic performance in HER or OER.

  17. Distributed telemedicine for the National Information Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forslund, D.W.; Lee, Seong H.; Reverbel, F.C.

    1997-08-01

    TeleMed is an advanced system that provides a distributed multimedia electronic medical record available over a wide area network. It uses object-based computing, distributed data repositories, advanced graphical user interfaces, and visualization tools along with innovative concept extraction of image information for storing and accessing medical records developed in a separate project from 1994-5. In 1996, we began the transition to Java, extended the infrastructure, and worked to begin deploying TeleMed-like technologies throughout the nation. Other applications are mentioned.

  18. Distributed data networks: a blueprint for Big Data sharing and healthcare analytics.

    PubMed

    Popovic, Jennifer R

    2017-01-01

    This paper defines the attributes of distributed data networks and outlines the data and analytic infrastructure needed to build and maintain a successful network. We use examples from one successful implementation of a large-scale, multisite, healthcare-related distributed data network, the U.S. Food and Drug Administration-sponsored Sentinel Initiative. Analytic infrastructure-development concepts are discussed from the perspective of promoting six pillars of analytic infrastructure: consistency, reusability, flexibility, scalability, transparency, and reproducibility. This paper also introduces one use case for machine learning algorithm development to fully utilize and advance the portfolio of population health analytics, particularly those using multisite administrative data sources. © 2016 New York Academy of Sciences.

  19. Final report for the Integrated and Robust Security Infrastructure (IRSI) laboratory directed research and development project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchinson, R.L.; Hamilton, V.A.; Istrail, G.G.

    1997-11-01

    This report describes the results of a Sandia-funded laboratory-directed research and development project titled {open_quotes}Integrated and Robust Security Infrastructure{close_quotes} (IRSI). IRSI was to provide a broad range of commercial-grade security services to any software application. IRSI has two primary goals: application transparency and manageable public key infrastructure. IRSI must provide its security services to any application without the need to modify the application to invoke the security services. Public key mechanisms are well suited for a network with many end users and systems. There are many issues that make it difficult to deploy and manage a public key infrastructure. IRSImore » addressed some of these issues to create a more manageable public key infrastructure.« less

  20. Incorporating Human Movement Behavior into the Analysis of Spatially Distributed Infrastructure.

    PubMed

    Wu, Lihua; Leung, Henry; Jiang, Hao; Zheng, Hong; Ma, Li

    2016-01-01

    For the first time in human history, the majority of the world's population resides in urban areas. Therefore, city managers are faced with new challenges related to the efficiency, equity and quality of the supply of resources, such as water, food and energy. Infrastructure in a city can be viewed as service points providing resources. These service points function together as a spatially collaborative system to serve an increasing population. To study the spatial collaboration among service points, we propose a shared network according to human's collective movement and resource usage based on data usage detail records (UDRs) from the cellular network in a city in western China. This network is shown to be not scale-free, but exhibits an interesting triangular property governed by two types of nodes with very different link patterns. Surprisingly, this feature is consistent with the urban-rural dualistic context of the city. Another feature of the shared network is that it consists of several spatially separated communities that characterize local people's active zones but do not completely overlap with administrative areas. According to these features, we propose the incorporation of human movement into infrastructure classification. The presence of well-defined spatially separated clusters confirms the effectiveness of this approach. In this paper, our findings reveal the spatial structure inside a city, and the proposed approach provides a new perspective on integrating human movement into the study of a spatially distributed system.

  1. Astronomy: On the Bleeding Edge of Scholarly Infrastructure

    NASA Astrophysics Data System (ADS)

    Borgman, Christine; Sands, A.; Wynholds, L. A.

    2013-01-01

    The infrastructure for scholarship has moved online, making data, articles, papers, journals, catalogs, and other scholarly resources nodes in a deeply interconnected network. Astronomy has led the way on several fronts, developing tools such as ADS to provide unified access to astronomical publications and reaching agreement on a common data file formats such as FITS. Astronomy also was among the first fields to establish open access to substantial amounts of observational data. We report on the first three years of a long-term research project to study knowledge infrastructures in astronomy, funded by the NSF and the Alfred P. Sloan Foundation. Early findings indicate that the availability and use of networked technologies for integrating scholarly resources varies widely within astronomy. Substantial differences arise in the management of data between ground-based and space-based missions and between subfields of astronomy, for example. While large databases such as SDSS and MAST are essential resources for many researchers, much pointed, ground-based observational data exist only on local servers, with minimal curation. Some astronomy data are easily discoverable and usable, but many are not. International coordination activities such as IVOA and distributed access to high-level data products servers such as SIMBAD and NED are enabling further integration of published data. Astronomers are tackling yet more challenges in new forms of publishing data, algorithms, visualizations, and in assuring interoperability with parallel infrastructure efforts in related fields. New issues include data citation, attribution, and provenance. Substantial concerns remain for the long term discoverability, accessibility, usability, and curation of astronomy data and other scholarly resources. The presentation will outline these challenges, how they are being addressed by astronomy and related fields, and identify concerns and accomplishments expressed by the astronomers we have

  2. Hydrogen Energy Storage and Power-to-Gas: Establishing Criteria for Successful Business Cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichman, Joshua; Melaina, Marc

    As the electric sector evolves and increasing amounts of variable generation are installed on the system, there are greater needs for system flexibility, sufficient capacity and greater concern for overgeneration. As a result there is growing interest in exploring the role of energy storage and demand response technologies to support grid needs. Hydrogen is a versatile feedstock that can be used in a variety of applications including chemical and industrial processes, as well as a transportation fuel and heating fuel. Traditionally, hydrogen technologies focus on providing services to a single sector; however, participating in multiple sectors has the potential tomore » provide benefits to each sector and increase the revenue for hydrogen technologies. The goal of this work is to explore promising system configurations for hydrogen systems and the conditions that will make for successful business cases in a renewable, low-carbon future. Current electricity market data, electric and gas infrastructure data and credit and incentive information are used to perform a techno-economic analysis to identify promising criteria and locations for successful hydrogen energy storage and power-to-gas projects. Infrastructure data will be assessed using geographic information system applications. An operation optimization model is used to co-optimizes participation in energy and ancillary service markets as well as the sale of hydrogen. From previous work we recognize the great opportunity that energy storage and power-to-gas but there is a lack of information about the economic favorability of such systems. This work explores criteria for selecting locations and compares the system cost and potential revenue to establish competitiveness for a variety of equipment configurations. Hydrogen technologies offer unique system flexibility that can enable interactions between multiple energy sectors including electric, transport, heating fuel and industrial. Previous research

  3. Quantifying habitat impacts of natural gas infrastructure to facilitate biodiversity offsetting

    PubMed Central

    Jones, Isabel L; Bull, Joseph W; Milner-Gulland, Eleanor J; Esipov, Alexander V; Suttle, Kenwyn B

    2014-01-01

    Habitat degradation through anthropogenic development is a key driver of biodiversity loss. One way to compensate losses is “biodiversity offsetting” (wherein biodiversity impacted is “replaced” through restoration elsewhere). A challenge in implementing offsets, which has received scant attention in the literature, is the accurate determination of residual biodiversity losses. We explore this challenge for offsetting gas extraction in the Ustyurt Plateau, Uzbekistan. Our goal was to determine the landscape extent of habitat impacts, particularly how the footprint of “linear” infrastructure (i.e. roads, pipelines), often disregarded in compensation calculations, compares with “hub” infrastructure (i.e. extraction facilities). We measured vegetation cover and plant species richness using the line-intercept method, along transects running from infrastructure/control sites outward for 500 m, accounting for wind direction to identify dust deposition impacts. Findings from 24 transects were extrapolated to the broader plateau by mapping total landscape infrastructure network using GPS data and satellite imagery. Vegetation cover and species richness were significantly lower at development sites than controls. These differences disappeared within 25 m of the edge of the area physically occupied by infrastructure. The current habitat footprint of gas infrastructure is 220 ± 19 km2 across the Ustyurt (total ∼ 100,000 km2), 37 ± 6% of which is linear infrastructure. Vegetation impacts diminish rapidly with increasing distance from infrastructure, and localized dust deposition does not conspicuously extend the disturbance footprint. Habitat losses from gas extraction infrastructure cover 0.2% of the study area, but this reflects directly eliminated vegetation only. Impacts upon fauna pose a more difficult determination, as these require accounting for behavioral and demographic responses to disturbance by elusive mammals, including threatened species

  4. Bicycling for transportation and health: the role of infrastructure.

    PubMed

    Dill, Jennifer

    2009-01-01

    This paper aims to provide insight on whether bicycling for everyday travel can help US adults meet the recommended levels of physical activity and what role public infrastructure may play in encouraging this activity. The study collected data on bicycling behavior from 166 regular cyclists in the Portland, Oregon metropolitan area using global positioning system (GPS) devices. Sixty percent of the cyclists rode for more than 150 minutes per week during the study and nearly all of the bicycling was for utilitarian purposes, not exercise. A disproportionate share of the bicycling occurred on streets with bicycle lanes, separate paths, or bicycle boulevards. The data support the need for well-connected neighborhood streets and a network of bicycle-specific infrastructure to encourage more bicycling among adults. This can be accomplished through comprehensive planning, regulation, and funding.

  5. Using crowdsourcing to prioritize bicycle network improvements : final report.

    DOT National Transportation Integrated Search

    2016-04-01

    Effort to improve the bicycle route network using crowdsourced data is a powerful means : of incorporating citizens in infrastructure improvement decisions, which will improve : livability by maximizing the benefit of the bicycle infrastructure fundi...

  6. Integrated Renewable Hydrogen Utility System (IRHUS) business plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-03-01

    This business plan is for a proposed legal entity named IRHUS, Inc. which is to be formed as a subsidiary of Energy Partners, L.C. (EP) of West Palm Beach, Florida. EP is a research and development company specializing in hydrogen proton exchange membrane (PEM) fuel cells and systems. A fuel cell is an engine with no moving parts that takes in hydrogen and produces electricity. The purpose of IRHUS, Inc. is to develop and manufacture a self-sufficient energy system based on the fuel cell and other new technology that produces hydrogen and electricity. The product is called the Integrated renewablemore » Hydrogen utility System (IRHUS). IRHUS, Inc. plans to start limited production of the IRHUS in 2002. The IRHUS is a unique product with an innovative concept in that it provides continuous electrical power in places with no electrical infrastructure, i.e., in remote and island locations. The IRHUS is a zero emissions, self-sufficient, hydrogen fuel generation system that produces electricity on a continuous basis by combining any renewable power source with hydrogen technology. Current plans are to produce a 10 kilowatt IRHUS MP (medium power). Future plans are to design and manufacture IRHUS models to provide power for a variety of power ranges for identified attractive market segments. The technological components of the IRHUS include an electrolyzer, hydrogen and oxygen storage subsystems, fuel cell system, and power control system. The IRHUS product is to be integrated with a variety of renewable energy technologies. 5 figs., 10 tabs.« less

  7. Network of Research Infrastructures for European Seismology (NERIES)-Web Portal Developments for Interactive Access to Earthquake Data on a European Scale

    NASA Astrophysics Data System (ADS)

    Spinuso, A.; Trani, L.; Rives, S.; Thomy, P.; Euchner, F.; Schorlemmer, D.; Saul, J.; Heinloo, A.; Bossu, R.; van Eck, T.

    2009-04-01

    The Network of Research Infrastructures for European Seismology (NERIES) is European Commission (EC) project whose focus is networking together seismological observatories and research institutes into one integrated European infrastructure that provides access to data and data products for research. Seismological institutes and organizations in European and Mediterranean countries maintain large, geographically distributed data archives, therefore this scenario suggested a design approach based on the concept of an internet service oriented architecture (SOA) to establish a cyberinfrastructure for distributed and heterogeneous data streams and services. Moreover, one of the goals of NERIES is to design and develop a Web portal that acts as the uppermost layer of the infrastructure and provides rendering capabilities for the underlying sets of data The Web services that are currently being designed and implemented will deliver data that has been adopted to appropriate formats. The parametric information about a seismic event is delivered using a seismology-specific Extensible mark-up Language(XML) format called QuakeML (https://quake.ethz.ch/quakeml), which has been formalized and implemented in coordination with global earthquake-information agencies. Uniform Resource Identifiers (URIs) are used to assign identifiers to (1) seismic-event parameters described by QuakeML, and (2) generic resources, for example, authorities, locations providers, location methods, software adopted, and so on, described by use of a data model constructed with the resource description framework (RDF) and accessible as a service. The European-Mediterranean Seismological Center (EMSC) has implemented a unique event identifier (UNID) that will create the seismic event URI used by the QuakeML data model. Access to data such as broadband waveform, accelerometric data and stations inventories will be also provided through a set of Web services that will wrap the middleware used by the

  8. Network of Research Infrastructures for European Seismology (NERIES) - Web Portal Developments for Interactive Access to Earthquake Data on a European Scale

    NASA Astrophysics Data System (ADS)

    Spinuso, A.; Trani, L.; Rives, S.; Thomy, P.; Euchner, F.; Schorlemmer, D.; Saul, J.; Heinloo, A.; Bossu, R.; van Eck, T.

    2008-12-01

    The Network of Research Infrastructures for European Seismology (NERIES) is European Commission (EC) project whose focus is networking together seismological observatories and research institutes into one integrated European infrastructure that provides access to data and data products for research. Seismological institutes and organizations in European and Mediterranean countries maintain large, geographically distributed data archives, therefore this scenario suggested a design approach based on the concept of an internet service oriented architecture (SOA) to establish a cyberinfrastructure for distributed and heterogeneous data streams and services. Moreover, one of the goals of NERIES is to design and develop a Web portal that acts as the uppermost layer of the infrastructure and provides rendering capabilities for the underlying sets of data The Web services that are currently being designed and implemented will deliver data that has been adopted to appropriate formats. The parametric information about a seismic event is delivered using a seismology- specific Extensible mark-up Language(XML) format called QuakeML (https://quake.ethz.ch/quakeml), which has been formalized and implemented in coordination with global earthquake-information agencies. Uniform Resource Identifiers (URIs) are used to assign identifiers to (1) seismic-event parameters described by QuakeML, and (2) generic resources, for example, authorities, locations providers, location methods, software adopted, and so on, described by use of a data model constructed with the resource description framework (RDF) and accessible as a service. The European-Mediterranean Seismological Center (EMSC) has implemented a unique event identifier (UNID) that will create the seismic event URI used by the QuakeML data model. Access to data such as broadband waveform, accelerometric data and stations inventories will be also provided through a set of Web services that will wrap the middleware used by the

  9. Optical stabilization for time transfer infrastructure

    NASA Astrophysics Data System (ADS)

    Vojtech, Josef; Altmann, Michal; Skoda, Pavel; Horvath, Tomas; Slapak, Martin; Smotlacha, Vladimir; Havlis, Ondrej; Munster, Petr; Radil, Jan; Kundrat, Jan; Altmannova, Lada; Velc, Radek; Hula, Miloslav; Vohnout, Rudolf

    2017-08-01

    In this paper, we propose and present verification of all-optical methods for stabilization of the end-to-end delay of an optical fiber link. These methods are verified for deployment within infrastructure for accurate time and stable frequency distribution, based on sharing of fibers with research and educational network carrying live data traffic. Methods range from path length control, through temperature conditioning method to transmit wavelength control. Attention is given to achieve continuous control for relatively broad range of delays. We summarize design rules for delay stabilization based on the character and the total delay jitter.

  10. Generic patterns in the evolution of urban water networks: Evidence from a large Asian city

    NASA Astrophysics Data System (ADS)

    Krueger, Elisabeth; Klinkhamer, Christopher; Urich, Christian; Zhan, Xianyuan; Rao, P. Suresh C.

    2017-03-01

    We examine high-resolution urban infrastructure data using every pipe for the water distribution network (WDN) and sanitary sewer network (SSN) in a large Asian city (≈4 million residents) to explore the structure as well as the spatial and temporal evolution of these infrastructure networks. Network data were spatially disaggregated into multiple subnets to examine intracity topological differences for functional zones of the WDN and SSN, and time-stamped SSN data were examined to understand network evolution over several decades as the city expanded. Graphs were generated using a dual-mapping technique (Hierarchical Intersection Continuity Negotiation), which emphasizes the functional attributes of these networks. Network graphs for WDNs and SSNs are characterized by several network topological metrics, and a double Pareto (power-law) model approximates the node-degree distributions of both water infrastructure networks (WDN and SSN), across spatial and hierarchical scales relevant to urban settings, and throughout their temporal evolution over several decades. These results indicate that generic mechanisms govern the networks' evolution, similar to those of scale-free networks found in nature. Deviations from the general topological patterns are indicative of (1) incomplete establishment of network hierarchies and functional network evolution, (2) capacity for growth (expansion) or densification (e.g., in-fill), and (3) likely network vulnerabilities. We discuss the implications of our findings for the (re-)design of urban infrastructure networks to enhance their resilience to external and internal threats.

  11. Ignition and flame characteristics of cryogenic hydrogen releases

    DOE PAGES

    Panda, Pratikash P.; Hecht, Ethan S.

    2017-01-01

    In this work, under-expanded cryogenic hydrogen jets were investigated experimentally for their ignition and flame characteristics. The test facility described herein, was designed and constructed to release hydrogen at a constant temperature and pressure, to study the dispersion and thermo-physical properties of cryogenic hydrogen releases and flames. In this study, a non-intrusive laser spark focused on the jet axis was used to measure the maximum ignition distance. The radiative power emitted by the corresponding jet flames was also measured for a range of release scenarios from 37 K to 295 K, 2–6 bar abs through nozzles with diameters from 0.75more » to 1.25 mm. The maximum ignition distance scales linearly with the effective jet diameter (which scales as the square root of the stagnant fluid density). A 1-dimensional (stream-wise) cryogenic hydrogen release model developed previously at Sandia National Laboratories (although this model is not yet validated for cryogenic hydrogen) was exercised to predict that the mean mole fraction at the maximum ignition distance is approximately 0.14, and is not dependent on the release conditions. The flame length and width were extracted from visible and infra-red flame images for several test cases. The flame length and width both scale as the square root of jet exit Reynolds number, as reported in the literature for flames from atmospheric temperature hydrogen. As shown in previous studies for ignited atmospheric temperature hydrogen, the radiative power from the jet flames of cold hydrogen scales as a logarithmic function of the global flame residence time. The radiative heat flux from jet flames of cold hydrogen is higher than the jet flames of atmospheric temperature hydrogen, for a given mass flow rate, due to the lower choked flow velocity of low-temperature hydrogen. Lastly, this study provides critical information with regard to the development of models to inform the safety codes and standards of hydrogen

  12. Oxygen- and Lithium-Doped Hybrid Boron-Nitride/Carbon Networks for Hydrogen Storage.

    PubMed

    Shayeganfar, Farzaneh; Shahsavari, Rouzbeh

    2016-12-20

    Hydrogen storage capacities have been studied on newly designed three-dimensional pillared boron nitride (PBN) and pillared graphene boron nitride (PGBN). We propose these novel materials based on the covalent connection of BNNTs and graphene sheets, which enhance the surface and free volume for storage within the nanomaterial and increase the gravimetric and volumetric hydrogen uptake capacities. Density functional theory and molecular dynamics simulations show that these lithium- and oxygen-doped pillared structures have improved gravimetric and volumetric hydrogen capacities at room temperature, with values on the order of 9.1-11.6 wt % and 40-60 g/L. Our findings demonstrate that the gravimetric uptake of oxygen- and lithium-doped PBN and PGBN has significantly enhanced the hydrogen sorption and desorption. Calculations for O-doped PGBN yield gravimetric hydrogen uptake capacities greater than 11.6 wt % at room temperature. This increased value is attributed to the pillared morphology, which improves the mechanical properties and increases porosity, as well as the high binding energy between oxygen and GBN. Our results suggest that hybrid carbon/BNNT nanostructures are an excellent candidate for hydrogen storage, owing to the combination of the electron mobility of graphene and the polarized nature of BN at heterojunctions, which enhances the uptake capacity, providing ample opportunities to further tune this hybrid material for efficient hydrogen storage.

  13. Measuring Road Network Vulnerability with Sensitivity Analysis

    PubMed Central

    Jun-qiang, Leng; Long-hai, Yang; Liu, Wei-yi; Zhao, Lin

    2017-01-01

    This paper focuses on the development of a method for road network vulnerability analysis, from the perspective of capacity degradation, which seeks to identify the critical infrastructures in the road network and the operational performance of the whole traffic system. This research involves defining the traffic utility index and modeling vulnerability of road segment, route, OD (Origin Destination) pair and road network. Meanwhile, sensitivity analysis method is utilized to calculate the change of traffic utility index due to capacity degradation. This method, compared to traditional traffic assignment, can improve calculation efficiency and make the application of vulnerability analysis to large actual road network possible. Finally, all the above models and calculation method is applied to actual road network evaluation to verify its efficiency and utility. This approach can be used as a decision-supporting tool for evaluating the performance of road network and identifying critical infrastructures in transportation planning and management, especially in the resource allocation for mitigation and recovery. PMID:28125706

  14. Research-informed design, management and maintenance of infrastructure slopes: development of a multi-scalar approach

    NASA Astrophysics Data System (ADS)

    Glendinning, S.; Helm, P. R.; Rouainia, M.; Stirling, R. A.; Asquith, J. D.; Hughes, P. N.; Toll, D. G.; Clarke, D.; Powrie, W.; Smethurst, J.; Hughes, D.; Harley, R.; Karim, R.; Dixon, N.; Crosby, C.; Chambers, J.; Dijkstra, T.; Gunn, D.; Briggs, K.; Muddle, D.

    2015-09-01

    The UK's transport infrastructure is one of the most heavily used in the world. The performance of these networks is critically dependent on the performance of cutting and embankment slopes which make up £20B of the £60B asset value of major highway infrastructure alone. The rail network in particular is also one of the oldest in the world: many of these slopes are suffering high incidents of instability (increasing with time). This paper describes the development of a fundamental understanding of earthwork material and system behaviour, through the systematic integration of research across a range of spatial and temporal scales. Spatially these range from microscopic studies of soil fabric, through elemental materials behaviour to whole slope modelling and monitoring and scaling up to transport networks. Temporally, historical and current weather event sequences are being used to understand and model soil deterioration processes, and climate change scenarios to examine their potential effects on slope performance in futures up to and including the 2080s. The outputs of this research are being mapped onto the different spatial and temporal scales of infrastructure slope asset management to inform the design of new slopes through to changing the way in which investment is made into aging assets. The aim ultimately is to help create a more reliable, cost effective, safer and more resilient transport system.

  15. A data protection scheme for medical research networks. Review after five years of operation.

    PubMed

    Helbing, K; Demiroglu, S Y; Rakebrandt, F; Pommerening, K; Rienhoff, O; Sax, U

    2010-01-01

    The data protection requirements matured in parallel to new clinical tests generating more personal data since the 1960s. About ten years ago it was recognized that a generic data protection scheme for medical research networks is required, which reinforces patient rights but also allows economically feasible medical research compared to "hand-carved" individual solutions. To give recommendations for more efficient IT infrastructures for medical research networks in compliance with data protection requirements. The IT infrastructures of three medical research networks were reviewed with respect to the relevant data management modules. Recommendations are derived to increase cost efficiency in research networks assessing the consequences of a service provider approach without lowering the data protection level. The existing data protection schemes are very complex. Smaller research networks cannot afford the implementation of such schemes. Larger networks struggle to keep them sustainable. Due to a modular redesign in the medical research network community, a new approach offers opportunities for an efficient sustainable IT infrastructure involving a service provider concept. For standard components 70-80% of the costs could be cut down, for open source components about 37% over a three-year period. Future research networks should switch to a service-oriented approach to achieve a sustainable, cost-efficient IT infrastructure.

  16. Lessons learned: Infrastructure development and financial management for large, publicly funded, international trials.

    PubMed

    Larson, Gregg S; Carey, Cate; Grarup, Jesper; Hudson, Fleur; Sachi, Karen; Vjecha, Michael J; Gordin, Fred

    2016-04-01

    Randomized clinical trials are widely recognized as essential to address worldwide clinical and public health research questions. However, their size and duration can overwhelm available public and private resources. To remain competitive in international research settings, advocates and practitioners of clinical trials must implement practices that reduce their cost. We identify approaches and practices for large, publicly funded, international trials that reduce cost without compromising data integrity and recommend an approach to cost reporting that permits comparison of clinical trials. We describe the organizational and financial characteristics of The International Network for Strategic Initiatives in Global HIV Trials, an infectious disease research network that conducts multiple, large, long-term, international trials, and examine challenges associated with simple and streamlined governance and an infrastructure and financial management model that is based on performance, transparency, and accountability. It is possible to reduce costs of participants' follow-up and not compromise clinical trial quality or integrity. The International Network for Strategic Initiatives in Global HIV Trials network has successfully completed three large HIV trials using cost-efficient practices that have not adversely affected investigator enthusiasm, accrual rates, loss-to-follow-up, adherence to the protocol, and completion of data collection. This experience is relevant to the conduct of large, publicly funded trials in other disease areas, particularly trials dependent on international collaborations. New approaches, or creative adaption of traditional clinical trial infrastructure and financial management tools, can render large, international clinical trials more cost-efficient by emphasizing structural simplicity, minimal up-front costs, payments for performance, and uniform algorithms and fees-for-service, irrespective of location. However, challenges remain. They

  17. Population as a proxy for infrastructure in the determination of event response and recovery resource allocations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stamber, Kevin L.; Unis, Carl J.; Shirah, Donald N.

    Research into modeling of the quantification and prioritization of resources used in the recovery of lifeline critical infrastructure following disruptive incidents, such as hurricanes and earthquakes, has shown several factors to be important. Among these are population density and infrastructure density, event effects on infrastructure, and existence of an emergency response plan. The social sciences literature has a long history of correlating the population density and infrastructure density at a national scale, at a country-to-country level, mainly focused on transportation networks. This effort examines whether these correlations can be repeated at smaller geographic scales, for a variety of infrastructure types,more » so as to be able to use population data as a proxy for infrastructure data where infrastructure data is either incomplete or insufficiently granular. Using the best data available, this effort shows that strong correlations between infrastructure density for multiple types of infrastructure (e.g. miles of roads, hospital beds, miles of electric power transmission lines, and number of petroleum terminals) and population density do exist at known geographic boundaries (e.g. counties, service area boundaries) with exceptions that are explainable within the social sciences literature. Furthermore, the correlations identified provide a useful basis for ongoing research into the larger resource utilization problem.« less

  18. Population as a proxy for infrastructure in the determination of event response and recovery resource allocations

    DOE PAGES

    Stamber, Kevin L.; Unis, Carl J.; Shirah, Donald N.; ...

    2016-04-01

    Research into modeling of the quantification and prioritization of resources used in the recovery of lifeline critical infrastructure following disruptive incidents, such as hurricanes and earthquakes, has shown several factors to be important. Among these are population density and infrastructure density, event effects on infrastructure, and existence of an emergency response plan. The social sciences literature has a long history of correlating the population density and infrastructure density at a national scale, at a country-to-country level, mainly focused on transportation networks. This effort examines whether these correlations can be repeated at smaller geographic scales, for a variety of infrastructure types,more » so as to be able to use population data as a proxy for infrastructure data where infrastructure data is either incomplete or insufficiently granular. Using the best data available, this effort shows that strong correlations between infrastructure density for multiple types of infrastructure (e.g. miles of roads, hospital beds, miles of electric power transmission lines, and number of petroleum terminals) and population density do exist at known geographic boundaries (e.g. counties, service area boundaries) with exceptions that are explainable within the social sciences literature. Furthermore, the correlations identified provide a useful basis for ongoing research into the larger resource utilization problem.« less

  19. Cascading failure in scale-free networks with tunable clustering

    NASA Astrophysics Data System (ADS)

    Zhang, Xue-Jun; Gu, Bo; Guan, Xiang-Min; Zhu, Yan-Bo; Lv, Ren-Li

    2016-02-01

    Cascading failure is ubiquitous in many networked infrastructure systems, such as power grids, Internet and air transportation systems. In this paper, we extend the cascading failure model to a scale-free network with tunable clustering and focus on the effect of clustering coefficient on system robustness. It is found that the network robustness undergoes a nonmonotonic transition with the increment of clustering coefficient: both highly and lowly clustered networks are fragile under the intentional attack, and the network with moderate clustering coefficient can better resist the spread of cascading. We then provide an extensive explanation for this constructive phenomenon via the microscopic point of view and quantitative analysis. Our work can be useful to the design and optimization of infrastructure systems.

  20. Can Sensors Solve the Deterioration Problems of Public Infrastructure?

    NASA Astrophysics Data System (ADS)

    Miki, Chitoshi

    2014-11-01

    Various deteriorations are detected in public infrastructures, such as bridges, viaducts, piers and tunnels and caused fatal accidents in some cases. The possibility of the applications of health monitoring by using sensors is the issues of this lecture. The inspection and diagnosis are essential in the maintenance works which include appropriate rehabilitations and replacements. The introduction of monitoring system may improve accuracy and efficiency of inspection and diagnosis. This seems to be innovation of maintenance, old structures may change smart structures by the installation of nerve network and brain, specifically. Cost- benefit viewpoint is also important point, because of public infrastructures. The modes of deterioration are fatigue, corrosion, and delayed fracture in steel, and carbonization and alkali aggregate reaction in concrete. These are like adult disease in human bodies. The developments of Infrastructures in Japan were concentrated in the 1960th and 1970th. These ages are approaching 50 and deterioration due to aging has been progress gradually. The attacks of earthquakes are also a major issue. Actually, these infrastructures have been supporting economic and social activities in Japan and the deterioration of public infrastructure has become social problems. How to secure the same level of safety and security for all public infrastructures is the challenge we face now. The targets of monitoring are external disturbances such as traffic loads, earthquakes, winds, temperature, responses against external disturbances, and the changes of performances. In the monitoring of infrastructures, 3W1H(WHAT, WHERE, WHEN and HOW) are essential, that is what kind of data are necessary, where sensors place, when data are collected, and how to collect and process data. The required performances of sensors are accuracy, stability for long time. In the case of long term monitoring, the durability of systems needs more than five years, because the interval

  1. Hydrogen-enriched fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roser, R.

    1998-08-01

    NRG Technologies, Inc. is attempting to develop hardware and infrastructure that will allow mixtures of hydrogen and conventional fuels to become viable alternatives to conventional fuels alone. This commercialization can be successful if the authors are able to achieve exhaust emission levels of less than 0.03 g/kw-hr NOx and CO; and 0.15 g/kw-hr NMHC at full engine power without the use of exhaust catalysts. The major barriers to achieving these goals are that the lean burn regimes required to meet exhaust emissions goals reduce engine output substantially and tend to exhibit higher-than-normal total hydrocarbon emissions. Also, hydrogen addition to conventionalmore » fuels increases fuel cost, and reduces both vehicle range and engine output power. Maintaining low emissions during transient driving cycles has not been demonstrated. A three year test plan has been developed to perform the investigations into the issues described above. During this initial year of funding research has progressed in the following areas: (a) a cost effective single-cylinder research platform was constructed; (b) exhaust gas speciation was performed to characterize the nature of hydrocarbon emissions from hydrogen-enriched natural gas fuels; (c) three H{sub 2}/CH{sub 4} fuel compositions were analyzed using spark timing and equivalence ratio sweeping procedures and finally; (d) a full size pick-up truck platform was converted to run on HCNG fuels. The testing performed in year one of the three year plan represents a baseline from which to assess options for overcoming the stated barriers to success.« less

  2. Neural Plasticity and Memory: Is Memory Encoded in Hydrogen Bonding Patterns?

    PubMed

    Amtul, Zareen; Rahman, Atta-Ur

    2016-02-01

    Current models of memory storage recognize posttranslational modification vital for short-term and mRNA translation for long-lasting information storage. However, at the molecular level things are quite vague. A comprehensive review of the molecular basis of short and long-lasting synaptic plasticity literature leads us to propose that the hydrogen bonding pattern at the molecular level may be a permissive, vital step of memory storage. Therefore, we propose that the pattern of hydrogen bonding network of biomolecules (glycoproteins and/or DNA template, for instance) at the synapse is the critical edifying mechanism essential for short- and long-term memories. A novel aspect of this model is that nonrandom impulsive (or unplanned) synaptic activity functions as a synchronized positive-feedback rehearsal mechanism by revising the configurations of the hydrogen bonding network by tweaking the earlier tailored hydrogen bonds. This process may also maintain the elasticity of the related synapses involved in memory storage, a characteristic needed for such networks to alter intricacy and revise endlessly. The primary purpose of this review is to stimulate the efforts to elaborate the mechanism of neuronal connectivity both at molecular and chemical levels. © The Author(s) 2014.

  3. Improving linear transport infrastructure efficiency by automated learning and optimised predictive maintenance techniques (INFRALERT)

    NASA Astrophysics Data System (ADS)

    Jiménez-Redondo, Noemi; Calle-Cordón, Alvaro; Kandler, Ute; Simroth, Axel; Morales, Francisco J.; Reyes, Antonio; Odelius, Johan; Thaduri, Aditya; Morgado, Joao; Duarte, Emmanuele

    2017-09-01

    The on-going H2020 project INFRALERT aims to increase rail and road infrastructure capacity in the current framework of increased transportation demand by developing and deploying solutions to optimise maintenance interventions planning. It includes two real pilots for road and railways infrastructure. INFRALERT develops an ICT platform (the expert-based Infrastructure Management System, eIMS) which follows a modular approach including several expert-based toolkits. This paper presents the methodologies and preliminary results of the toolkits for i) nowcasting and forecasting of asset condition, ii) alert generation, iii) RAMS & LCC analysis and iv) decision support. The results of these toolkits in a meshed road network in Portugal under the jurisdiction of Infraestruturas de Portugal (IP) are presented showing the capabilities of the approaches.

  4. Using Social Network Analysis to Evaluate Community Capacity Building of a Regional Community Cancer Network

    ERIC Educational Resources Information Center

    Luque, John; Tyson, Dinorah Martinez; Lee, Ji-Hyun; Gwede, Clement; Vadaparampil, Susan; Noel-Thomas, Shalewa; Meade, Cathy

    2010-01-01

    The Tampa Bay Community Cancer Network (TBCCN) is one of 25 Community Network Programs funded by the National Cancer Institute's (NCI's) Center to Reduce Cancer Health Disparities with the objectives to create a collaborative infrastructure of academic and community based organizations and to develop effective and sustainable interventions to…

  5. Reconstructing a hydrogen-driven microbial metabolic network in Opalinus Clay rock.

    PubMed

    Bagnoud, Alexandre; Chourey, Karuna; Hettich, Robert L; de Bruijn, Ino; Andersson, Anders F; Leupin, Olivier X; Schwyn, Bernhard; Bernier-Latmani, Rizlan

    2016-10-14

    The Opalinus Clay formation will host geological nuclear waste repositories in Switzerland. It is expected that gas pressure will build-up due to hydrogen production from steel corrosion, jeopardizing the integrity of the engineered barriers. In an in situ experiment located in the Mont Terri Underground Rock Laboratory, we demonstrate that hydrogen is consumed by microorganisms, fuelling a microbial community. Metagenomic binning and metaproteomic analysis of this deep subsurface community reveals a carbon cycle driven by autotrophic hydrogen oxidizers belonging to novel genera. Necromass is then processed by fermenters, followed by complete oxidation to carbon dioxide by heterotrophic sulfate-reducing bacteria, which closes the cycle. This microbial metabolic web can be integrated in the design of geological repositories to reduce pressure build-up. This study shows that Opalinus Clay harbours the potential for chemolithoautotrophic-based system, and provides a model of microbial carbon cycle in deep subsurface environments where hydrogen and sulfate are present.

  6. Reconstructing a hydrogen-driven microbial metabolic network in Opalinus Clay rock

    PubMed Central

    Bagnoud, Alexandre; Chourey, Karuna; Hettich, Robert L.; de Bruijn, Ino; Andersson, Anders F.; Leupin, Olivier X.; Schwyn, Bernhard; Bernier-Latmani, Rizlan

    2016-01-01

    The Opalinus Clay formation will host geological nuclear waste repositories in Switzerland. It is expected that gas pressure will build-up due to hydrogen production from steel corrosion, jeopardizing the integrity of the engineered barriers. In an in situ experiment located in the Mont Terri Underground Rock Laboratory, we demonstrate that hydrogen is consumed by microorganisms, fuelling a microbial community. Metagenomic binning and metaproteomic analysis of this deep subsurface community reveals a carbon cycle driven by autotrophic hydrogen oxidizers belonging to novel genera. Necromass is then processed by fermenters, followed by complete oxidation to carbon dioxide by heterotrophic sulfate-reducing bacteria, which closes the cycle. This microbial metabolic web can be integrated in the design of geological repositories to reduce pressure build-up. This study shows that Opalinus Clay harbours the potential for chemolithoautotrophic-based system, and provides a model of microbial carbon cycle in deep subsurface environments where hydrogen and sulfate are present. PMID:27739431

  7. Infrastructural requirements for local implementation of safety policies: the discordance between top-down and bottom-up systems of action.

    PubMed

    Timpka, Toomas; Nordqvist, Cecilia; Lindqvist, Kent

    2009-03-09

    Safety promotion is planned and practised not only by public health organizations, but also by other welfare state agencies, private companies and non-governmental organizations. The term 'infrastructure' originally denoted the underlying resources needed for warfare, e.g. roads, industries, and an industrial workforce. Today, 'infrastructure' refers to the physical elements, organizations and people needed to run projects in different societal arenas. The aim of this study was to examine associations between infrastructure and local implementation of safety policies in injury prevention and safety promotion programs. Qualitative data on municipalities in Sweden designated as Safe Communities were collected from focus group interviews with municipal politicians and administrators, as well as from policy documents, and materials published on the Internet. Actor network theory was used to identify weaknesses in the present infrastructure and determine strategies that can be used to resolve these. The weakness identification analysis revealed that the factual infrastructure available for effectuating national strategies varied between safety areas and approaches, basically reflecting differences between bureaucratic and network-based organizational models. At the local level, a contradiction between safety promotion and the existence of quasi-markets for local public service providers was found to predispose for a poor local infrastructure diminishing the interest in integrated inter-agency activities. The weakness resolution analysis showed that development of an adequate infrastructure for safety promotion would require adjustment of the legal framework regulating injury data exchange, and would also require rational financial models for multi-party investments in local infrastructures. We found that the "silo" structure of government organization and assignment of resources was a barrier to collaborative action for safety at a community level. It may therefore be

  8. Quantum metropolitan optical network based on wavelength division multiplexing.

    PubMed

    Ciurana, A; Martínez-Mateo, J; Peev, M; Poppe, A; Walenta, N; Zbinden, H; Martín, V

    2014-01-27

    Quantum Key Distribution (QKD) is maturing quickly. However, the current approaches to its application in optical networks make it an expensive technology. QKD networks deployed to date are designed as a collection of point-to-point, dedicated QKD links where non-neighboring nodes communicate using the trusted repeater paradigm. We propose a novel optical network model in which QKD systems share the communication infrastructure by wavelength multiplexing their quantum and classical signals. The routing is done using optical components within a metropolitan area which allows for a dynamically any-to-any communication scheme. Moreover, it resembles a commercial telecom network, takes advantage of existing infrastructure and utilizes commercial components, allowing for an easy, cost-effective and reliable deployment.

  9. Implementation of a health data-sharing infrastructure across diverse primary care organizations.

    PubMed

    Cole, Allison M; Stephens, Kari A; Keppel, Gina A; Lin, Ching-Ping; Baldwin, Laura-Mae

    2014-01-01

    Practice-based research networks bring together academic researchers and primary care clinicians to conduct research that improves health outcomes in real-world settings. The Washington, Wyoming, Alaska, Montana, and Idaho region Practice and Research Network implemented a health data-sharing infrastructure across 9 clinics in 3 primary care organizations. Following implementation, we identified challenges and solutions. Challenges included working with diverse primary care organizations, adoption of health information data-sharing technology in a rapidly changing local and national landscape, and limited resources for implementation. Overarching solutions included working with a multidisciplinary academic implementation team, maintaining flexibility, and starting with an established network for primary care organizations. Approaches outlined may generalize to similar initiatives and facilitate adoption of health data sharing in other practice-based research networks.

  10. Regional collaboration in transport infrastructure provision : the case of Denver's FasTracks rail transit program.

    DOT National Transportation Integrated Search

    2011-06-01

    Cities across the United States are grappling with a looming transportation crisis as a : result of ever-increasing passenger and freight transport demands and overburdened : networks of aging infrastructure. All levels of government, but particularl...

  11. Report of the Interagency Optical Network Testbeds Workshop 2, NASA Ames Research Center, September 12-14, 2005

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The Optical Network Testbeds Workshop 2 (ONT2), held on September 12-14, 2005, was cosponsored by the Department of Energy Office of Science (DOE/SC) and the National Aeronautics and Space Administration (NASA), in cooperation with the Joint Engineering Team (JET) of the Federal Networking and Information Technology Research and Development (NITRD) Program's Large Scale Networking (LSN) Coordinating Group. The ONT2 workshop was a follow-on to an August 2004 Workshop on Optical Network Testbeds (ONT1). ONT1 recommended actions by the Federal agencies to assure timely development and implementation of optical networking technologies and infrastructure. Hosted by the NASA Ames Research Center in Mountain View, California, the ONT2 workshop brought together representatives of the U.S. advanced research and education (R&E) networks, regional optical networks (RONs), service providers, international networking organizations, and senior engineering and R&D managers from Federal agencies and national research laboratories. Its purpose was to develop a common vision of the optical network technologies, services, infrastructure, and organizations needed to enable widespread use of optical networks; recommend activities for transitioning the optical networking research community and its current infrastructure to leading-edge optical networks over the next three to five years; and present information enabling commercial network infrastructure providers to plan for and use leading-edge optical network services in that time frame.

  12. The Emerging Infrastructure of Autonomous Astronomy

    NASA Astrophysics Data System (ADS)

    Seaman, R.; Allan, A.; Axelrod, T.; Cook, K.; White, R.; Williams, R.

    2007-10-01

    Advances in the understanding of cosmic processes demand that sky transient events be confronted with statistical techniques honed on static phenomena. Time domain data sets require vast surveys such as LSST {http://www.lsst.org/lsst_home.shtml} and Pan-STARRS {http://www.pan-starrs.ifa.hawaii.edu}. A new autonomous infrastructure must close the loop from the scheduling of survey observations, through data archiving and pipeline processing, to the publication of transient event alerts and automated follow-up, and to the easy analysis of resulting data. The IVOA VOEvent {http://voevent.org} working group leads efforts to characterize sky transient alerts published through VOEventNet {http://voeventnet.org}. The Heterogeneous Telescope Networks (HTN {http://www.telescope-networks.org}) consortium are observatories and robotic telescope projects seeking interoperability with a long-term goal of creating an e-market for telescope time. Two projects relying on VOEvent and HTN are eSTAR {http://www.estar.org.uk} and the Thinking Telescope {http://www.thinkingtelescopes.lanl.gov} Project.

  13. Using high-performance networks to enable computational aerosciences applications

    NASA Technical Reports Server (NTRS)

    Johnson, Marjory J.

    1992-01-01

    One component of the U.S. Federal High Performance Computing and Communications Program (HPCCP) is the establishment of a gigabit network to provide a communications infrastructure for researchers across the nation. This gigabit network will provide new services and capabilities, in addition to increased bandwidth, to enable future applications. An understanding of these applications is necessary to guide the development of the gigabit network and other high-performance networks of the future. In this paper we focus on computational aerosciences applications run remotely using the Numerical Aerodynamic Simulation (NAS) facility located at NASA Ames Research Center. We characterize these applications in terms of network-related parameters and relate user experiences that reveal limitations imposed by the current wide-area networking infrastructure. Then we investigate how the development of a nationwide gigabit network would enable users of the NAS facility to work in new, more productive ways.

  14. HBonanza: A Computer Algorithm for Molecular-Dynamics-Trajectory Hydrogen-Bond Analysis

    PubMed Central

    Durrant, Jacob D.; McCammon, J. Andrew

    2011-01-01

    In the current work, we present a hydrogen-bond analysis of 2,673 ligand-receptor complexes that suggests the total number of hydrogen bonds formed between a ligand and its protein receptor is a poor predictor of ligand potency; furthermore, even that poor prediction does not suggest a statistically significant correlation between hydrogen-bond formation and potency. While we are not the first to suggest that hydrogen bonds on average do not generally contribute to ligand binding affinities, this additional evidence is nevertheless interesting. The primary role of hydrogen bonds may instead be to ensure specificity, to correctly position the ligand within the active site, and to hold the protein active site in a ligand-friendly conformation. We also present a new computer program called HBonanza (hydrogen-bond analyzer) that aids the analysis and visualization of hydrogen-bond networks. HBonanza, which can be used to analyze single structures or the many structures of a molecular dynamics trajectory, is open source and python implemented, making it easily editable, customizable, and platform independent. Unlike many other freely available hydrogen-bond analysis tools, HBonanza provides not only a text-based table describing the hydrogen-bond network, but also a Tcl script to facilitate visualization in VMD, a popular molecular visualization program. Visualization in other programs is also possible. A copy of HBonanza can be obtained free of charge from http://www.nbcr.net/hbonanza. PMID:21880522

  15. 2008 Defense Industrial Base Critical Infrastructure Protection Conference (DIB-CBIP)

    DTIC Science & Technology

    2008-04-09

    a cloak -and- dagger thing. It’s about computer architecture and the soundness of electronic systems." Joel Brenner, ODNI Counterintelligence Office...to support advanced network exploitation and launch attacks on the informational and physical elements of our cyber infrastructure. In order to...entities and is vulnerable to attacks and manipulation. Operations in the cyber domain have the ability to impact operations in other war-fighting

  16. Implementation status of the extreme light infrastructure - nuclear physics (ELI-NP) project

    NASA Astrophysics Data System (ADS)

    Gales, S.; Zamfir, N. V.

    2015-02-01

    The Project Extreme Light Infrastructure (ELI) is part of the European Strategic Forum for Research Infrastructures (ESFRI) Roadmap. ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for Nuclear Physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10 PW lasers and a Compton back-scattering high-brilliance and intense gamma beam, a marriage of laser and accelerator technology at the frontier of knowledge. In the present paper, the technical description of the facility, the present status of the project as well as the science, applications and future perspectives will be discussed.

  17. Parallel digital forensics infrastructure.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liebrock, Lorie M.; Duggan, David Patrick

    2009-10-01

    This report documents the architecture and implementation of a Parallel Digital Forensics infrastructure. This infrastructure is necessary for supporting the design, implementation, and testing of new classes of parallel digital forensics tools. Digital Forensics has become extremely difficult with data sets of one terabyte and larger. The only way to overcome the processing time of these large sets is to identify and develop new parallel algorithms for performing the analysis. To support algorithm research, a flexible base infrastructure is required. A candidate architecture for this base infrastructure was designed, instantiated, and tested by this project, in collaboration with New Mexicomore » Tech. Previous infrastructures were not designed and built specifically for the development and testing of parallel algorithms. With the size of forensics data sets only expected to increase significantly, this type of infrastructure support is necessary for continued research in parallel digital forensics. This report documents the implementation of the parallel digital forensics (PDF) infrastructure architecture and implementation.« less

  18. Study on transport infrastructure as mechanism of long-term urban planning strategies

    NASA Astrophysics Data System (ADS)

    Popova, Olga; Martynov, Kirill; Khusnutdinov, Rinat

    2017-10-01

    In this article, the authors carry out the research of the transport infrastructure. The authors have developed an algorithm for quality assessment of transport networks and connectivity of urban development areas. The results of the research are presented on the example of several central city quarters of Arkhangelsk city. The analysis was carried out by clustering objects (separate quarters of the Arkhangelsk city) using of SOM in comparable groups with a high level of similarity of characteristics inside each group. The result of clustering was 5 clusters with different levels of transport infrastructure. The novelty of the study is to justification for advantages of applying structural analysis for qualitative ranking of areas. The advantage of the proposed methodology is that it gives the opportunity both to compare the transport infrastructure quality of different city quarters and to determine the strategy for its development with a list of specific activities.

  19. Application of Hydrogen Peroxide as an Innovative Method of Treatment for Legionella Control in a Hospital Water Network.

    PubMed

    Casini, Beatrice; Aquino, Francesco; Totaro, Michele; Miccoli, Mario; Galli, Irio; Manfredini, Laura; Giustarini, Carlo; Costa, Anna Laura; Tuvo, Benedetta; Valentini, Paola; Privitera, Gaetano; Baggiani, Angelo

    2017-04-17

    To evaluate the effectiveness of hydrogen peroxide (HP) use as a disinfectant in the hospital water network for the control of Legionella spp. colonization. Following the detection of high levels of Legionella contamination in a 136-bed general hospital water network, an HP treatment of the hot water supply (25 mg/L) was adopted. During a period of 34 months, the effectiveness of HP on Legionella colonization was assessed. Legionella was isolated in accordance with ISO-11731 and identification was carried out by sequencing of the mip gene. Before HP treatment, L. pneumophila sg 2-15 was isolated in all sites with a mean count of 9950 ± 8279 cfu/L. After one-month of HP treatment, we observed the disappearance of L. pneumophila 2-15, however other Legionella species previously not seen were found; Legionella pneumophila 1 was isolated in one out of four sampling sites (2000 cfu/L) and other non- pneumophila species were present in all sites (mean load 3000 ± 2887 cfu/L). Starting from September 2013, HP treatment was modified by adding food-grade polyphosphates, and in the following months, we observed a progressive reduction of the mean load of all species ( p < 0.05), resulting in substantial disappearance of Legionella colonization. Hydrogen peroxide demonstrated good efficacy in controlling Legionella . Although in the initial phases of treatment it appeared unable to eliminate all Legionella species, by maintaining HP levels at 25 mg/L and adding food-grade polyphosphates, a progressive and complete control of colonization was obtained.

  20. 7 CFR 1738.212 - Network design.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 11 2012-01-01 2012-01-01 false Network design. 1738.212 Section 1738.212 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE... the proposed network infrastructure; (4) A description of measurable service metrics and target...