Science.gov

Sample records for hydrogen permeable metals

  1. Hydrogen-permeable composite metal membrane and uses thereof

    DOEpatents

    Edlund, D.J.; Friesen, D.T.

    1993-06-08

    Various hydrogen production and hydrogen sulfide decomposition processes are disclosed that utilize composite metal membranes that contain an intermetallic diffusion barrier separating a hydrogen-permeable base metal and a hydrogen-permeable coating metal. The barrier is a thermally stable inorganic proton conductor.

  2. Tubular hydrogen permeable metal foil membrane and method of fabrication

    DOEpatents

    Paglieri, Stephen N.; Birdsell, Stephen A.; Barbero, Robert S.; Snow, Ronny C.; Smith, Frank M.

    2006-04-04

    A tubular hydrogen permeable metal membrane and fabrication process comprises obtaining a metal alloy foil having two surfaces, coating the surfaces with a metal or metal alloy catalytic layer to produce a hydrogen permeable metal membrane, sizing the membrane into a sheet with two long edges, wrapping the membrane around an elongated expandable rod with the two long edges aligned and overlapping to facilitate welding of the two together, placing the foil wrapped rod into a surrounding fixture housing with the two aligned and overlapping foil edges accessible through an elongated aperture in the surrounding fixture housing, expanding the elongated expandable rod within the surrounding fixture housing to tighten the foil about the expanded rod, welding the two long overlapping foil edges to one another generating a tubular membrane, and removing the tubular membrane from within the surrounding fixture housing and the expandable rod from with the tubular membrane.

  3. Hydrogen Permeability of Mulitphase V-Ti-Ni Metallic Membranes

    SciTech Connect

    Adams, T. M.; Mickalonis, J.

    2005-10-18

    Development of advanced hydrogen separation membranes in support of hydrogen production processes such as coal gasification and as front end gas purifiers for fuel cell based system is paramount to the successful implementation of a national hydrogen economy. Current generation metallic hydrogen separation membranes are based on Pd-alloys. Although the technology has proven successful, at issue is the high cost of palladium. Evaluation of non-noble metal based dense metallic separation membranes is currently receiving national and international attention. The focal point of the reported work was to evaluate a Group 5A-Ta, Nb, V-based alloy with respect to microstructural features and hydrogen permeability. Electrochemical hydrogen permeation testing of the V-Ti-Ni alloy is reported herein and compared to pure Pd measurements recorded as part of this same study. The V-Ti-Ni was demonstrated to have a steady state hydrogen permeation rate an order of magnitude higher than the pure Pd material in testing conducted at 22 C.

  4. Metal/ceramic composites with high hydrogen permeability

    DOEpatents

    Dorris, Stephen E.; Lee, Tae H.; Balachandran, Uthamalingam

    2003-05-27

    A membrane for separating hydrogen from fluids is provided comprising a sintered homogenous mixture of a ceramic composition and a metal. The metal may be palladium, niobium, tantalum, vanadium, or zirconium or a binary mixture of palladium with another metal such as niobium, silver, tantalum, vanadium, or zirconium.

  5. Permeability of precious metals to hydrogen at 2kb total pressure and elevated temperatures.

    USGS Publications Warehouse

    Chou, I.-Ming

    1986-01-01

    Permeabilities of several commonly used precious metals to hydrogen have been measured at 2kb total pressure and between 450o and 812oC by using the double-capsule oxygen buffer technique.- from Author

  6. Review of hydrogen isotope permeability through materials

    SciTech Connect

    Steward, S.A.

    1983-08-15

    This report is the first part of a comprehensive summary of the literature on hydrogen isotope permeability through materials that do not readily form hydrides. While we mainly focus on pure metals with low permeabilities because of their importance to tritium containment, we also give data on higher-permeability materials such as iron, nickel, steels, and glasses.

  7. Reduced hydrogen permeability at high temperatures

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Klopp, W. D.; Misencik, J. A.

    1981-01-01

    CO and CO2 reduce hydrogen loss through iron, nickel, and cobalt based alloy tubes. Method is based on concept that oxide film on metal surface reduces hydrogen permeability through metal; adding CO or CO2 forms oxide films continuously during operation, and hydrogen containment is improved. Innovation enhances prospects for Stirling engine system utilization.

  8. Effect of water on hydrogen permeability

    NASA Technical Reports Server (NTRS)

    Hulligan, David; Tomazic, William A.

    1987-01-01

    Doping of hydrogen with CO and CO2 was developed to reduce hydrogen permeation in Stirling engines by forming a low permeability oxide coating on the inner surface of the heater head tubes. Although doping worked well, under certain circumstances the protective oxide could be chemically reduced by the hydrogen in the engine. Some oxygen is required in the hydrogen to prevent reduction. Eventually, all the oxygen in the hydrogen gas - whatever its source - shows up as water. This is the result of hydrogen reducing the CO, CO2, or the protective inner surface oxides. This water can condense in the engine system under the right conditions. If the concentration of water vapor is reduced to a low enough level, the hydrogen can chemically reduce the oxide coating, resulting in an increase in permeability. This work was done to define the minimum water content required to avoid this reduction in the oxide coating. The results of this testing show that a minimum of approximately 750 ppm water is required to prevent an increase in permeability of CG-27, a high temperature metal alloy selected for Stirling engine heater tubes.

  9. A Cell-Permeable Fluorescent Prochelator Responds to Hydrogen Peroxide and Metal Ions by Decreasing Fluorescence

    PubMed Central

    Hyman, Lynne M.; Franz, Katherine J.

    2011-01-01

    Described here is the development of two boronic ester-based fluorescent prochelators, FloB (2-(6-hydroxy-3-oxo-3H-xanthen-9-yl)-4(5)-[2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-benzylidene-hydrazinocarbonyl]-benzoic acid) and FloB-SI (2-(6-hydroxy-3-oxo-3Hxanthen-9-yl)-4(5)-[2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyloxy)-benzylidene-hydrazinocarbonyl]-benzoic acid) that show a fluorescence response to a variety of transition metal ions only after reaction with H2O2. Both prochelators’ boronic ester masks are oxidized by H2O2 to reveal a fluorescein-tagged metal chelator, FloS (4(5)-(2-hydroxy-benzylidenehydrazinocarbonyl)-2-(6-hydroxy-3-oxo-3H-xanthen-9-yl)-benzoic acid). Chelation of Fe3+ or Cu2+ elicits a 70% decrease in the emission signal of FloS, while Zn2+, Ni2+, and Co2+ produce a more modest fluorescence decrease. The conversion of FloB to FloS proceeds in organic solvents, but hydrolytic decomposition of its hydrazone backbone is observed in aqueous solution. However, FloB-SI oxidizes cleanly with H2O2 within 1 h in aqueous solutions to produce FloS. Fluorescence microscopy studies in HeLa cells with FloB-SI show that the sensor’s fluorescence intensity remains unchanged until incubation with exogenous H2O2, which results in a decreased fluorescent signal. Incubation with a competitive chelator restores the emission response, thus suggesting that FloB-SI can effectively report on a H2O2-induced increase in intracellular labilized metal. PMID:22287796

  10. Metallic Hydrogen

    NASA Astrophysics Data System (ADS)

    Silvera, Isaac; Zaghoo, Mohamed; Salamat, Ashkan

    2015-03-01

    Hydrogen is the simplest and most abundant element in the Universe. At high pressure it is predicted to transform to a metal with remarkable properties: room temperature superconductivity, a metastable metal at ambient conditions, and a revolutionary rocket propellant. Both theory and experiment have been challenged for almost 80 years to determine its condensed matter phase diagram, in particular the insulator-metal transition. Hydrogen is predicted to dissociate to a liquid atomic metal at multi-megabar pressures and T =0 K, or at megabar pressures and very high temperatures. Thus, its predicted phase diagram has a broad field of liquid metallic hydrogen at high pressure, with temperatures ranging from thousands of degrees to zero Kelvin. In a bench top experiment using static compression in a diamond anvil cell and pulsed laser heating, we have conducted measurements on dense hydrogen in the region of 1.1-1.7 Mbar and up to 2200 K. We observe a first-order phase transition in the liquid phase, as well as sharp changes in optical transmission and reflectivity when this phase is entered. The optical signature is that of a metal. The mapping of the phase line of this transition is in excellent agreement with recent theoretical predictions for the long-sought plasma phase transition to metallic hydrogen. Research supported by the NSF, Grant DMR-1308641, the DOE Stockpile Stewardship Academic Alliance Program, Grant DE-FG52-10NA29656, and NASA Earth and Space Science Fellowship Program, Award NNX14AP17H.

  11. Hydrogen permeation through metals

    SciTech Connect

    Huhn, D.K.

    1985-01-01

    The permeation of hydrogen through metals was studied both theoretically and experimentally. Gas phase permeation experiments with nickel, iron, and iron-titanium alloys were done at low temperatures, 270 to 343 K, and high temperatures, 751 to 384 K, with hydrogen pressures ranging from 10/sup 3/ to 10/sup 5/ Pa. Experiments at low temperatures used an electrochemical cell to detect the permeating hydrogen, deuterium, or hydrogen-deuterium flux. At high temperatures a vacuum system equipped with a mass spectrometer measured the permeating hydrogen flux. The permeability and diffusivity of hydrogen through nickel membranes, 10/sup -4/ to 10/sup -5/ m in thickness, was measured in the temperature range of 580 to 270 K. The experimental results did not exhibit postulated surface effects; however, trapping of hydrogen was observed with a trap density of 2.5 x 10/sup 23/ sites/m/sup 3/ and a binding energy of 33 kJ/mole. The permeability of hydrogen through iron-titanium alloys increased with titanium concentration with a maximum increase of approximately 10% for a Fe-3.04 wt% Ti alloy compared to pure iron. High temperature diffusivity measurements showed a small decrease in diffusivity with titanium concentration; therefore, the solubility increased.

  12. System level permeability modeling of porous hydrogen storage materials.

    SciTech Connect

    Kanouff, Michael P.; Dedrick, Daniel E.; Voskuilen, Tyler

    2010-01-01

    A permeability model for hydrogen transport in a porous material is successfully applied to both laboratory-scale and vehicle-scale sodium alanate hydrogen storage systems. The use of a Knudsen number dependent relationship for permeability of the material in conjunction with a constant area fraction channeling model is shown to accurately predict hydrogen flow through the reactors. Generally applicable model parameters were obtained by numerically fitting experimental measurements from reactors of different sizes and aspect ratios. The degree of channeling was experimentally determined from the measurements and found to be 2.08% of total cross-sectional area. Use of this constant area channeling model and the Knudsen dependent Young & Todd permeability model allows for accurate prediction of the hydrogen uptake performance of full-scale sodium alanate and similar metal hydride systems.

  13. Effect of a Nickel-Iron Mixture of Weld Metal on Hydrogen Permeability at Various Temperatures in 316L Stainless Steel

    NASA Astrophysics Data System (ADS)

    Yamazaki, Takahisa; Ikeshoji, Toshi-Taka; Suzumura, Akio; Kobayashi, Daigo; Kamono, Shumpei

    It is important to prevent from hydrogen embrittlement cracking in the heat-affected zone of welded steels. The hydrogen permeation rate for bulk nickel at high temperatures is higher than that of stainless steel, although the reverse is true at low temperatures. Low carbon stainless 316L steel, which contained 12-15% nickel, was selected as the parent material for welding. We have investigated the affect of nickel near the heat-affected zone by measuring the hydrogen permeation at various temperatures. We performed hydrogen permeation tests into the bead on plate specimens using nickel filler. A stationary hydrogen gas flux through the stainless steel specimen was measured by using an orifice and a quadrupole mass spectrometer (QMS). The partial pressure difference for hydrogen that was applied to the specimen was able to be kept constant by maintaining a constant gas flow rate through the orifice in a low- pressure room. An orifice with a 3 mm diameter maintained stationary steady-state hydrogen gas flux from the specimen at 620K, while a 1.2 mm diameter orifice maintained the steady pressure at 520 K. The hydrogen permeability, K was calculated based on the measured steady-state hydrogen gas fluxes at various temperatures. These results plotted as log K versus 1/T (reciprocal temperature) could not be interpolated linearly. The permeability values of the specimen at 570 K and 520 K were less than interpolated ones between the value at 620 K and the value at 520K of the 316 L stainless steel substrate as received.

  14. Liquid metal hydrogen barriers

    DOEpatents

    Grover, George M.; Frank, Thurman G.; Keddy, Edward S.

    1976-01-01

    Hydrogen barriers which comprise liquid metals in which the solubility of hydrogen is low and which have good thermal conductivities at operating temperatures of interest. Such barriers are useful in nuclear fuel elements containing a metal hydride moderator which has a substantial hydrogen dissociation pressure at reactor operating temperatures.

  15. Determination of hydrogen permeability in commercial and modified superalloys

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S.; Peterman, W.

    1983-01-01

    The results of hydrogen permeability measurements on several iron- and cobalt-base alloys as well as on two long-ranged ordered alloys over the range of 705 to 870 C (1300 to 1600 F) are summarized. The test alloys included wrought alloys N-155, IN 800, A-286, 19-9DL, and 19-9DL modifications with aluminum, niobium, and misch metal. In addition, XF-818, CRM-6D, SA-F11, and HS-31 were evaluated. Two wrought long-range ordered alloys, Ni3Al and (Fe,Ni)3(V,Al) were also evaluated. All tests were conducted at 20.7 MPa pressure in either pure and/or 1% CO2-doped H2 for test periods as long as 133 h. Detailed analyses were conducted to determine the relative permeability rankings of these alloys and the effect of doping, exit surface oxidation, specimen design variations, and test duration on permeability coefficient, and permeation activation energies were determined. The two long-range ordered alloys had the lowest permeability coefficients in pure H2 when compared with the eight commercial alloys and their modifications. With CO2 doping, significant decrease in permeability was observed in commercial alloys--no doped tests were conducted with the long-range ordered alloys.

  16. Hydrogen interactions with metals

    NASA Technical Reports Server (NTRS)

    Mclellan, R. B.; Harkins, C. G.

    1975-01-01

    Review of the literature on the nature and extent of hydrogen interactions with metals and the role of hydrogen in metal failure. The classification of hydrogen-containing systems is discussed, including such categories as covalent hydrides, volatile hydrides, polymeric hydrides, and transition metal hydride complexes. The use of electronegativity as a correlating parameter in determining hydride type is evaluated. A detailed study is made of the thermodynamics of metal-hydrogen systems, touching upon such aspects as hydrogen solubility, the positions occupied by hydrogen atoms within the solvent metal lattice, the derivation of thermodynamic functions of solid solutions from solubility data, and the construction of statistical models for hydrogen-metal solutions. A number of theories of hydrogen-metal bonding are reviewed, including the rigid-band model, the screened-proton model, and an approach employing the augmented plane wave method to solve the one-electron energy band problem. Finally, the mechanism of hydrogen embrittlement is investigated on the basis of literature data concerning stress effects and the kinetics of hydrogen transport to critical sites.

  17. The interaction of hydrogen with metal alloys

    NASA Technical Reports Server (NTRS)

    Danford, M. D.; Montano, J. W.

    1991-01-01

    Hydrogen diffusion coefficients were measured for several alloys, and these were determined to be about the same at 25 C for all alloys investigated. The relation of structure, both metallurgical and crystallographic, to the observed hydrogen distribution on charging was investigated, as well as the role of hydride formation in the hydrogen resistance of metal alloys. An attempt was made to correlate the structures and compositions of metal alloys as well as other parameters with the ratios of their notched tensile strengths in hydrogen to that in helium, R(H2/He), which are believed to represent a measure of their hydrogen resistance. Evidence supports the belief that hydrogen permeability and hydrogen resistance are increased by smaller grain sizes for a given alloy composition.

  18. Metastable metallic hydrogen glass

    SciTech Connect

    Nellis, W J

    2001-02-06

    The quest for metallic hydrogen has been going on for over one hundred years. Before hydrogen was first condensed into a liquid in 1898, it was commonly thought that condensed hydrogen would be a metal, like the monatomic alkali metals below hydrogen in the first column of the Periodic Table. Instead, condensed hydrogen turned out to be transparent, like the diatomic insulating halogens in the seventh column of the Periodic Table. Wigner and Huntington predicted in 1935 that solid hydrogen at 0 K would undergo a first-order phase transition from a diatomic to a monatomic crystallographically ordered solid at {approx}25 GPa. This first-order transition would be accompanied by an insulator-metal transition. Though searched for extensively, a first-order transition from an ordered diatomic insulator to a monatomic metal is yet to be observed at pressures up to 120 and 340 GPa using x-ray diffraction and visual inspection, respectively. On the other hand, hydrogen reaches the minimum electrical conductivity of a metal at 140 GPa, 0.6 g/cm{sup 3}, and 3000 K. These conditions were achieved using a shock wave reverberating between two stiff sapphire anvils. The shock wave was generated with a two-stage light-gas gun. This temperature exceeds the calculated melting temperature at 140 GPa by a factor of {approx}2, indicating that this metal is in the disordered fluid phase. The disorder permits hydrogen to become metallic via a Mott transition in the liquid at a much smaller pressure than in the solid, which has an electronic bandgap to the highest pressures reached to date. Thus, by using the finite temperature achieved with shock compression to achieve a disordered melt, metallic hydrogen can be achieved at a much lower pressure in a fluid than in a solid. It is not known how, nor even whether, metallic hydrogen can be quenched from a fluid at high pressures to a disordered solid metallic glass at ambient pressure and temperature. Because metallization occurs by simply

  19. Determination of hydrogen permeability in uncoated and coated superalloys

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S.; Vesely, E. J., Jr.; Hill, V. L.

    1981-01-01

    Hydrogen permeability, diffusivity, and solubility data were obtained for eight wrought and cast high temperature alloys over the range 650 to 815 C. Data were obtained for both uncoated alloys and wrought alloys coated with four commercially available coatings. Activation energies for permeability, diffusivity and solubility were calculated.

  20. Stable catalyst layers for hydrogen permeable composite membranes

    DOEpatents

    Way, J. Douglas; Wolden, Colin A

    2014-01-07

    The present invention provides a hydrogen separation membrane based on nanoporous, composite metal carbide or metal sulfide coated membranes capable of high flux and permselectivity for hydrogen without platinum group metals. The present invention is capable of being operated over a broad temperature range, including at elevated temperatures, while maintaining hydrogen selectivity.

  1. Gas Permeable Chemochromic Compositions for Hydrogen Sensing

    NASA Technical Reports Server (NTRS)

    Bokerman, Gary (Inventor); Mohajeri, Nahid (Inventor); Muradov, Nazim (Inventor); Tabatabaie-Raissi, Ali (Inventor)

    2013-01-01

    A (H2) sensor composition includes a gas permeable matrix material intermixed and encapsulating at least one chemochromic pigment. The chemochromic pigment produces a detectable change in color of the overall sensor composition in the presence of H2 gas. The matrix material provides high H2 permeability, which permits fast permeation of H2 gas. In one embodiment, the chemochromic pigment comprises PdO/TiO2. The sensor can be embodied as a two layer structure with the gas permeable matrix material intermixed with the chemochromic pigment in one layer and a second layer which provides a support or overcoat layer.

  2. Measuring Hydrogen Concentrations in Metals

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1985-01-01

    Commercial corrosion-measurement system adapted to electrochemical determination of hydrogen concentrations in metals. New technique based on diffusion of hydrogen through foil specimen of metal. In sample holder, hydrogen produced on one side of foil, either by corrosion reaction or by cathodic current. Hydrogen diffused through foil removed on other side by constant anode potential, which leads to oxidation of hydrogen to water. Anode current is measure of concentration of hydrogen diffusing through foil. System used to study hydrogen uptake, hydrogen elimination by baking, effect of heat treatment, and effect of electroplating on high-strength steels.

  3. The hydrogen permeability of Pd{sub 4}S

    SciTech Connect

    O'Brien, Casey; Miller, James; Gellman, Andrew; Morreale, Bryan

    2011-04-01

    Hydrogen permeates rapidly through pure Pd membranes, but H{sub 2}S, a common minor component in hydrogen-containing streams, produces a Pd{sub 4}S film on the Pd surface that severely retards hydrogen permeation. Hydrogen still permeates through the bi-layered Pd{sub 4}S/Pd structure, indicating that the Pd{sub 4}S surface is active for H{sub 2} dissociation; the low hydrogen permeability of the Pd4S film is responsible for the decreased rate of hydrogen transport. In this work, the hydrogen permeability of Pd{sub 4}S was determined experimentally in the 623-773 K temperature range. Bi-layered Pd{sub 4}S/Pd foils were produced by exposing pure Pd foils to H{sub 2}S. H{sub 2} fluxes through the bi-layered Pd{sub 4}S/Pd foils were measured during exposure to both pure H{sub 2} and a 1000 ppm H{sub 2}S in H{sub 2} gas mixture. Our results show that H{sub 2}S slows hydrogen permeation through Pd mainly by producing a Pd{sub 4}S film on the Pd surface that is roughly an order-of-magnitude less permeable to hydrogen (k{sub Pd{sub 4}S} = 10{sup −7.5} exp(−0.22 eV/k{sub B}T) molH{sub 2}/m/s/Pa{sup 1/2}) than pure Pd. The presence of H{sub 2}S in the gas stream results in greater inhibition of hydrogen transport than can be explained by the very low permeability of Pd{sub 4}S. H{sub 2}S may block H2 dissociation sites at the Pd{sub 4}S surface.

  4. Metallization of fluid hydrogen

    SciTech Connect

    Nellis, W.J.; Louis, A.A.; Ashcroft, N.W.

    1997-05-14

    The electrical activity of liquid hydrogen has been measured at the high dynamic pressures, and temperatures that can be achieved with a reverberating shock wave. The resulting data are most naturally interpreted in terms of a continuous transition from a semiconducting to a metallic, largely diatomic fluid, the latter at 140 CPa, (ninefold compression) and 3000 K. While the fluid at these conditions resembles common liquid metals by the scale of its resistivity of 500 micro-ohm-cm, it differs by retaining a strong pairing character, and the precise mechanism by which a metallic state might be attained is still a matter of debate. Some evident possibilities include (i) physics of a largely one-body character, such as a band-overlap transition, (ii) physics of a strong-coupling or many-body character,such as a Mott-Hubbard transition, and (iii) process in which structural changes are paramount.

  5. Hydrogen environment embrittlement of metals

    NASA Technical Reports Server (NTRS)

    Jewett, R. P.; Walter, R. J.; Chandler, W. T.; Frohmberg, R. P.

    1973-01-01

    Hydrogen environment embrittlement refers to metals stressed while exposed to a hydrogen atmosphere. Tested in air, even after exposure to hydrogen under pressure, this effect is not observed on similar specimens. Much high purity hydrogen is prepared by evaporation of liquid hydrogen, and thus has low levels for potential impurities which could otherwise inhibit or poison the absorbent reactions that are involved. High strength steels and nickel-base allows are rated as showing extreme embrittlement; aluminum alloys and the austenitic stainless steels, as well as copper, have negligible susceptibility to this phenomenon. The cracking that occurs appears to be a surface phenomenon, is unlike that of internal hydrogen embrittlement.

  6. Metal salt catalysts for enhancing hydrogen spillover

    DOEpatents

    Yang, Ralph T; Wang, Yuhe

    2013-04-23

    A composition for hydrogen storage includes a receptor, a hydrogen dissociating metal doped on the receptor, and a metal salt doped on the receptor. The hydrogen dissociating metal is configured to spill over hydrogen to the receptor, and the metal salt is configured to increase a rate of the spill over of the hydrogen to the receptor.

  7. Effect of water on hydrogen permeability. [Stirling engines

    NASA Technical Reports Server (NTRS)

    Hulligan, D. D.; Tomazic, W. A.

    1984-01-01

    Doping of hydrogen with CO or CO2 was developed to reduce hydrogen permeation in Stirling engines by forming low permeability oxide coatings in the heater tubes. An end product of this process is water - which can condense in the cold parts of the engine system. If the water vapor is reduced to a low enough level, the hydrogen can reduce the oxide coating resulting in increased permeability. The equilibrium level of water (oxygen bearing gas) required to avoid reduction of the oxide coating was investigated. Results at 720 C and 13.8 MPa have shown that: (1) pure hydrogen will reduce the coating; (2) 500 ppm CO (500 ppm water equivalent) does not prevent the reduction; and (3) 500 ppm CO2 (1000 ppm water) appears to be close to the equilibrium level. Further tests are planned to define the equilibrium level more precisely and to extend the data to 820 C and 3.4, 6.9, and 13.8 MPa.

  8. Effects of hydrogen on metals

    NASA Technical Reports Server (NTRS)

    Cataldo, C. E.

    1969-01-01

    Several rules to guide choice of materials, and methods of welding, electroplating, and heat treatment will provide a method for minimizing failures in storage tanks and related hardware. Failures are caused by high-pressure hydrogen effects, the formation of hydrides in titanium, and hydrogen absorption through various metals processing techniques.

  9. Hydrogen in semiconductors and metals

    SciTech Connect

    Nickel, N.H.; Jackson, W.B.; Bowman, R.C.; Leisure, R.G.

    1998-12-31

    Major highlights of the conference include further understanding of the structure of extended hydrogen clusters in semiconductors, switchable optical properties of metal-hydride films, reversible changes in the magnetic coupling in metallic superlattices, and increased lifetime of integrated circuits due to deuterium device passivation. Continued progress has also been achieved in understanding hydrogenation of defects in compound semiconductors and on surfaces. Total energy calculations in semiconductors have progressed sufficiently to predict energetics and vibration frequencies as measured by experiment. Similarly, electronic structure calculations of hydrogen-metal systems provide a deeper understanding of stability, bonding, and phase changes. Various nuclear techniques have been refined to yield important information regarding the concentration and transport of hydrogen in condensed matter. Finally, the interaction of hydrogen to create thermal donors has been used to create deep p-n junctions without the need for deep diffusion of dopants. The volume has been organized along the order of presentation within the conference. Similar methods and subjects have been grouped together. The authors have attempted to keep similar metal and semiconductor papers together in order to further promote cross-fertilization between the fields. Major categories include hydrogen on surfaces, theory and thermodynamics, hydrogen transport phenomena, nuclear characterization techniques, compound semiconductors, metal bulk, devices and applications, bulk silicon, and carbon and carbon-like materials. Separate abstracts were prepared for most papers.

  10. Hydrogen Permeability of Polymer Matrix Composites at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Grenoble, Ray W.; Gates, Thomas S

    2005-01-01

    This paper presents experimental methods and results of an ongoing study of the correlation between damage state and hydrogen gas permeability of laminated composite materials under mechanical strains and thermal loads. A specimen made from IM-7/977-2 composite material has been mechanically cycled at room temperature to induce microcrack damage. Crack density and tensile modulus were observed as functions of number of cycles. Damage development was found to occur most quickly in the off-axis plies near the outside of the laminate. Permeability measurements were made after 170,000 cycles and 430,000 cycles. Leak rate was found to depend on applied mechanical strain, crack density, and test temperature.

  11. Characterization of tungsten films and their hydrogen permeability

    SciTech Connect

    Nemanič, Vincenc Kovač, Janez; Lungu, Cristian; Porosnicu, Corneliu; Zajec, Bojan

    2014-11-01

    Prediction of tritium migration and its retention within fusion reactors is uncertain due to a significant role of the structural disorder that is formed on the surface layer after plasma exposure. Tungsten films deposited by any of the suitable methods are always disordered and contain a high density of hydrogen traps. Experiments on such films with hydrogen isotopes present a suitable complementary method, which improves the picture of the hydrogen interaction with fusion relevant materials. The authors report on the morphology, composition, and structure of tungsten films deposited by the thermionic vacuum arc method on highly permeable Eurofer substrates. Subsequently, hydrogen permeation studies through these films were carried out in a wide pressure range from 20 to 1000 mbars at 400 °C. The final value of the permeation coefficient for four samples after 24 h at 400 °C was between P = 3.2 × 10{sup −14} mol H{sub 2}/(m s Pa{sup 0.5}) and P = 1.1 × 10{sup −15} mol H{sub 2}/(m s Pa{sup 0.5}). From the time evolution of the permeation flux, it was shown that diffusivity was responsible for the difference in the steady fluxes, as solubility was roughly the same. This is confirmed by XRD data taken on these samples.

  12. Hydrogen permeability degradation of Pd-coated Nb-TiNi alloy caused by its interfacial diffusion

    NASA Astrophysics Data System (ADS)

    Ohtsu, Naofumi; Ishikawa, Kazuhiro; Kobori, Yoshihiro

    2016-01-01

    Pd-coated Nb40Ti30Ni30 (Nb-TiNi) is considered a promising material for hydrogen-permeable membranes because of the low usage of Pd metal. This paper reports the degradation of hydrogen permeability occurring during the permeation experiment above 773 K. Surface analysis using X-ray photoelectron spectroscopy revealed that interdiffusion between the Pd coating and the constituent elements of Nb and Ti progressed during the permeation experiment. The diffused Ti was concentrated near the topmost surface and then formed TiO2, which resulted in a decrease in the Pd concentration at the topmost surface. However, the diffused Nb was observed to bind to Pd in the surface and formed a Pd-Nb alloy beneath the topmost surface. We concluded that these changes caused the decline of the hydrogen permeability at high-temperature conditions.

  13. Composite Metal-hydrogen Electrodes for Metal-Hydrogen Batteries

    SciTech Connect

    Ruckman, M W; Wiesmann, H; Strongin, M; Young, K; Fetcenko, M

    1997-04-01

    The purpose of this project is to develop and conduct a feasibility study of metallic thin films (multilayered and alloy composition) produced by advanced sputtering techniques for use as anodes in Ni-metal hydrogen batteries. The anodes could be incorporated in thin film solid state Ni-metal hydrogen batteries that would be deposited as distinct anode, electrolyte and cathode layers in thin film devices. The materials could also be incorporated in secondary consumer batteries (i.e. type AF(4/3 or 4/5)) which use electrodes in the form of tapes. The project was based on pioneering studies of hydrogen uptake by ultra-thin Pd-capped metal-hydrogen ratios exceeding and fast hydrogen charging and Nb films, these studies suggested that materials with those of commercially available metal hydride materials discharging kinetics could be produced. The project initially concentrated on gas phase and electrochemical studies of Pd-capped niobium films in laboratory-scale NiMH cells. This extended the pioneering work to the wet electrochemical environment of NiMH batteries and exploited advanced synchrotron radiation techniques not available during the earlier work to conduct in-situ studies of such materials during hydrogen charging and discharging. Although batteries with fast charging kinetics and hydrogen-metal ratios approaching unity could be fabricated, it was found that oxidation, cracking and corrosion in aqueous solutions made pure Nb films-and multiiayers poor candidates for battery application. The project emphasis shifted to alloy films based on known elemental materials used for NiMH batteries. Although commercial NiMH anode materials contain many metals, it was found that 0.24 µm thick sputtered Zr-Ni films cycled at least 50 times with charging efficiencies exceeding 95% and [H]/[M] ratios of 0.7-1.0. Multilayered or thicker Zr-Ni films could be candidates for a thin film NiMH battery that may have practical applications as an integrated power source for

  14. Hydrogen permeation resistant layers for liquid metal reactors

    SciTech Connect

    McGuire, J.C.

    1980-03-01

    Reviewing the literature in the tritium diffusion field one can readily see a wide divergence in results for both the response of permeation rate to pressure, and the effect of oxide layers on total permeation rates. The basic mechanism of protective oxide layers is discussed. Two coatings which are less hydrogen permeable than the best naturally occurring oxide are described. The work described is part of an HEDL-ANL cooperative research program on Tritium Permeation in Liquid Metal Cooled Reactors. This includes permeation work on hydrogen, deuterium, and tritium with the hydrogen-deuterium research leading to the developments presented.

  15. Metallic Hydrogen and Nano-Tube Magnets

    NASA Technical Reports Server (NTRS)

    Cole, John W.

    2004-01-01

    When hydrogen is subjected to enough pressure the atoms will be pressed into close enough proximity that each electron is no longer bound to a single proton. The research objectives is to find whether metallic hydrogen can be produced and once produced will the metallic hydrogen be metastable and remain in the metallic form when the pressure is released.

  16. Hydrogen Permeability of Incoloy 800H, Inconel 617, and Haynes 230 Alloys

    SciTech Connect

    Pattrick Calderoni

    2010-07-01

    A potential issue in the design of the NGNP reactor and high-temperature components is the permeation of fission generated tritium and hydrogen product from downstream hydrogen generation through high-temperature components. Such permeation can result in the loss of fission-generated tritium to the environment and the potential contamination of the helium coolant by permeation of product hydrogen into the coolant system. The issue will be addressed in the engineering design phase, and requires knowledge of permeation characteristics of the candidate alloys. Of three potential candidates for high-temperature components of the NGNP reactor design, the hydrogen permeability has been documented well only for Incoloy 800H, but at relatively high partial pressures of hydrogen. Hydrogen permeability data have been published for Inconel 617, but only in two literature reports and for partial pressures of hydrogen greater than one atmosphere, far higher than anticipated in the NGNP reactor. The hydrogen permeability of Haynes 230 has not been published. To support engineering design of the NGNP reactor components, the hydrogen permeability of Inconel 617 and Haynes 230 were determined using a measurement system designed and fabricated at the Idaho National Laboratory. The performance of the system was validated using Incoloy 800H as reference material, for which the permeability has been published in several journal articles. The permeability of Incoloy 800H, Inconel 617 and Haynes 230 was measured in the temperature range 650 to 950 °C and at hydrogen partial pressures of 10-3 and 10-2 atm, substantially lower pressures than used in the published reports. The measured hydrogen permeability of Incoloy 800H and Inconel 617 were in good agreement with published values obtained at higher partial pressures of hydrogen. The hydrogen permeability of Inconel 617 and Haynes 230 were similar, about 50% greater than for Incoloy 800H and with similar temperature dependence.

  17. PDTI metal alloy as a hydrogen or hydrocarbon sensitive metal

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W. (Inventor)

    1996-01-01

    A hydrogen sensitive metal alloy contains palladium and titanium to provide a larger change in electrical resistance when exposed to the presence of hydrogen. The alloy can be used for improved hydrogen detection.

  18. Hydrogen permeability of thin condensed Pd-Cu foil: Dependence on temperature and phase composition

    NASA Astrophysics Data System (ADS)

    Ievlev, V. M.; Solntsev, K. A.; Dontsov, A. I.; Maksimenko, A. A.; Kannykin, S. V.

    2016-03-01

    The hydrogen permeability of thin (about 4 μm thick) magnetron-sputtered Pd-Cu foil and structural transformations during temperature cycling (heating-cooling process) are studied. It is found that the hydrogen permeability is maximal when the content of the β-phase is 100%. Upon annealing of Pd-Cu alloy in hydrogen, the temperature range where a regular structure exists expands.

  19. Method for controlled hydrogen charging of metals

    DOEpatents

    Cheng, Bo-Ching; Adamson, Ronald B.

    1984-05-29

    A method for controlling hydrogen charging of hydride forming metals through a window of a superimposed layer of a non-hydriding metal overlying the portion of the hydride forming metals to be charged.

  20. Modeling of hydrogen diffusion in metals

    SciTech Connect

    Yang, K.; Cao, M.Z.; Wan, X.J.; Shi, C.X.

    1989-02-01

    The study of the diffusion of hydrogen in metals is very important to further understand the hydrogen embrittlement of metals. To describe the diffusion of hydrogen in metals the diffusion equation deduced from Fick's law under an ideal condition has been generally used and the effect of hydrogen trapping in metals has been neglected. In the process of hydrogen diffusion through a metal, hydrogen fills the traps continuously and the fraction of the traps filled by hydrogen, which have only little effect on the diffusion of hydrogen, may be different at different places because the distribution of hydrogen concentration may be different at different places. Thus the hydrogen diffusion coefficient in the metal may also be different at different positions, i.e., the diffusion coefficient should be affected by time in a dynamic process of hydrogen diffusion through a metal. But in the previous analyses, the above fact is not considered and the hydrogen diffusion coefficient is generally taken as a constant. In the present paper a new model of hydrogen diffusion in metals in which the effect of time is taken into account is developed.

  1. HYDROGEN IN METALS: Microstructural Aspects

    NASA Astrophysics Data System (ADS)

    Pundt, A.; Kirchheim, R.

    2006-08-01

    Metal-hydrogen (M-H) systems are interesting from both a theoretical and a practical point of view. M-H systems are utilized for energy-storage systems, in sensor applications, and in catalysis. These systems are often exploited as models for studying basic material properties, especially when the size of these systems is small and nonbulk-like contributions become dominant. Surfaces, nanocrystals, vacancy- and dislocation-rich materials, thin films, multilayers, and clusters as systems of major interest are addressed in this review. We show that the hydrogen solubility of M-H systems is strongly affected by the morphology and microstructure of and the stress between regions of different hydrogen concentration. For small-sized systems, surface- or interface-related sites become important and change the overall solubility as well as the phase boundaries of M-H systems. In thin films deposited on stiff substrates, compressive stresses evolve during hydrogen loading because the films are effectively clamped to substrates. These stresses are in the GPa range and strongly depend on microstructure. Nanoparticles even change their crystallographic structure, which results in completely new phases.

  2. Effect of oxide films on hydrogen permeability of candidate Stirling engine heater head tube alloys

    NASA Technical Reports Server (NTRS)

    Schuon, S. R.; Misencik, J. A.

    1981-01-01

    The effect of oxide films developed in situ from CO/CO2 doped hydrogen on high pressure hydrogen permeability at 820 C was studied on N-155, A-286, IN 800, 19-9DL, Nitronic 40, HS-188, and IN 718 tubing in a Stirling materials simulator. The hydrogen permeability decreased with increasing dopant levels of CO or CO2 and corresponding decreases in oxide porosity. Minor reactive alloying elements strongly influenced permeability. At high levels of CO or CO2, a liquid oxide formed on alloys with greater than 50 percent Fe. This caused increased permeability. The oxides formed on the inside tube walls were analyzed and their effective permeabilities were calculated.

  3. Hydrogen Permeability of a Polymer Based Composite Tank Material Under Tetra-Axial Strain

    NASA Technical Reports Server (NTRS)

    Stokes, Eric H.

    2003-01-01

    In order to increase the performance of future expendable and reusable launch vehicles and reduce per-pound payload launch costs, weight reductions have been sought in vehicle components. Historically, the cryogenic propellant tanks for launch vehicles have been constructed from metal. These are some of the largest structural components in the vehicle and contribute significantly to the vehicles total dry weight. A successful replacement material will be conformable, have a high strength to weight ratio, and have a low gas-permeability to the cryogens being stored, i.e., oxygen and hydrogen. Polymer-based composites are likely candidates to fill this role. Polymer and polymer-based composites in general are known to have acceptable gas permeation properties in their as-cured state.1 The use of polymer-based composites for this application has been proposed for some time.2 Some successes have been reported with oxygen3, but other than the DC-XA experience, those with hydrogen have been limited. The primary reason for this has been the small molecular diameter of hydrogen, the lower temperatures of the liquid, and that the composite materials examined to date have all been susceptible to microcrack formation in response to the thermal-mechanical cycles experienced in the use-environment. There have been numerous accounts of composite materials with reported acceptable resistance to the formation of microcracks when exposed to various mechanical and/or thermal cycles. However, virtually all of these studies have employed uniaxial loads and there has been no discussion or empirical evidence pertaining to how these loads relate to the biaxial state of stress in the material in its use environment. Furthermore, many of these studies have suffered from a lack of instrument sensitivity in detecting hydrogen permeability, no standards, insufficient documentation of test conditions, testing of cycled materials in their unload state, and/or false assumptions about the nature

  4. Permeability of hydrogen isotopes through nickel-based alloys

    SciTech Connect

    Edge, E.M.; Mitchell, D.J.

    1983-04-01

    Permeabilities and diffusivities of deuterium in several nickel-based alloys were measured in this investigation. Measurements were made by the gas-phase breakthrough technique in the temperature range 200 to 450/sup 0/C with applied pressures ranging from 1 to 100 kPa. The results were extrapolated to predict the permeabilities (K) of the alloys at room temperature. The alloy with the smallest deuterium permeability is Carpenter 49, for which K = 4.3 x 10/sup -18/ mol s/sup -1/ m/sup -1/ Pa/sup -//sup 1/2/ at 22/sup 0/C. The permeability of deuterium in Kovar or Ceramvar is about 80% greater than that for Carpenter 49. Premeabilities of Inconel 625, Inconel 718, Inconel 750 and Monel K-500 are all equal to about 5 x 10/sup -17/ mol m/sup -1/ s/sup -1/ Pa/sup -//sup 1/2/ at 22/sup 0/C. The validity (from a statistical standpoint) of the extrapolation of the permeabilities to room temperature is considered in detail. Published permeabilities of stainless steels and nickel-iron alloys are also reviewed. The greatest differences in permeabilities among the nickel-based alloys appear to be associated with the tendency for some alloys to form protective oxide layers. Permeabilities of deuterium through laminates containing copper are smaller than for any of the iron-nickel alloys.

  5. Using permeable membranes to produce hydrogen and oxygen from water

    NASA Technical Reports Server (NTRS)

    Sanders, A. P.; Williams, R. J.; Downs, W. R.; Mcbryar, H.

    1975-01-01

    Concept may make it profitable to obtain hydrogen fuel from water. Laboratory tests have demonstrated that method enables decomposition of water several orders of magnitude beyond equilibrium state where only small amounts of free hydrogen are present.

  6. Novel Metallic Membranes for Hydrogen Separation

    SciTech Connect

    Dogan, Omer

    2011-02-27

    To reduce dependence on oil and emission of greenhouse gases, hydrogen is favored as an energy carrier for the near future. Hydrogen can be converted to electrical energy utilizing fuel cells and turbines. One way to produce hydrogen is to gasify coal which is abundant in the U.S. The coal gasification produces syngas from which hydrogen is then separated. Designing metallic alloys for hydrogen separation membranes which will work in a syngas environment poses significant challenges. In this presentation, a review of technical targets, metallic membrane development activities at NETL and challenges that are facing the development of new technologies will be given.

  7. Hydrogen trapping and the interaction of hydrogen with metals

    NASA Technical Reports Server (NTRS)

    Danford, Merlin D.

    1987-01-01

    A method has been developed for the determination of trapped hydrogen in metal alloys, involving the determination of mobile hydrogen using the electrochemical method and the determination of total hydrogen with the fusion method, the difference in hydrogen concentrations being due to trapped hydrogen. It has been found that hydrogen enters body-centered cubic structures through the grain bodies rather than through the grain boundaries. Hydrogen also diffuses much more rapidly in body-centered cubic structures on charging than in face-centered cubic structures, the hydrogen distribution being more uniform in nature. The energy necessary to cause hydrogen embrittlement is postulated to arise from the changes in crystal lattice energies brought about through interaction of hydrogen with atoms in the metal lattice. The total energy change is more negative for body-centered cubic structures, believed to be the cause of a greater tendency toward hydrogen embrittlement. Finally, the agreement of hydrogen concentrations obtained at 25 C by the electrochemical method with those obtained by the fusion method are taken as a strong indication of the power and validity of the electrochemical method.

  8. Novel Composite Hydrogen-Permeable Membranes for Nonthermal Plasma Reactors for the Decomposition of Hydrogen Sulfide

    SciTech Connect

    Morris Argyle; John Ackerman; Suresh Muknahallipatna; Jerry Hamann; Stanislaw Legowski; Gui-Bing Zhao; Sanil John; Ji-Jun Zhang; Linna Wang

    2007-09-30

    The goal of this experimental project was to design and fabricate a reactor and membrane test cell to dissociate hydrogen sulfide (H{sub 2}S) in a nonthermal plasma and to recover hydrogen (H{sub 2}) through a superpermeable multi-layer membrane. Superpermeability of hydrogen atoms (H) has been reported by some researchers using membranes made of Group V transition metals (niobium, tantalum, vanadium, and their alloys), but it was not achieved at the moderate pressure conditions used in this study. However, H{sub 2}S was successfully decomposed at energy efficiencies higher than any other reports for the high H{sub 2}S concentration and moderate pressures (corresponding to high reactor throughputs) used in this study.

  9. METAL HYDRIDE HYDROGEN COMPRESSORS: A REVIEW

    SciTech Connect

    Bowman Jr, Robert C; Yartys, Dr. Volodymyr A.; Lototskyy, Dr. Michael V; Pollet, Dr. B.G.

    2014-01-01

    Metal hydride (MH) thermal sorption compression is an efficient and reliable method allowing a conversion of energy from heat into a compressed hydrogen gas. The most important component of such a thermal engine the metal hydride material itself should possess several material features in order to achieve an efficient performance in the hydrogen compression. Apart from the hydrogen storage characteristics important for every solid H storage material (e.g. gravimetric and volumetric efficiency of H storage, hydrogen sorption kinetics and effective thermal conductivity), the thermodynamics of the metal-hydrogen systems is of primary importance resulting in a temperature dependence of the absorption/desorption pressures). Several specific features should be optimized to govern the performance of the MH-compressors including synchronisation of the pressure plateaus for multi-stage compressors, reduction of slope of the isotherms and hysteresis, increase of cycling stability and life time, together with challenges in system design associated with volume expansion of the metal matrix during the hydrogenation. The present review summarises numerous papers and patent literature dealing with MH hydrogen compression technology. The review considers (a) fundamental aspects of materials development with a focus on structure and phase equilibria in the metal-hydrogen systems suitable for the hydrogen compression; and (b) applied aspects, including their consideration from the applied thermodynamic viewpoint, system design features and performances of the metal hydride compressors and major applications.

  10. Investigation of metal hydride materials as hydrogen reservoirs for metal-hydrogen batteries

    NASA Technical Reports Server (NTRS)

    ONISCHAK

    1976-01-01

    The performance and suitability of various metal hydride materials were examined for use as possible hydrogen storage reservoirs for secondary metal-hydrogen batteries. Lanthanum pentanickel hydride appears as a probable candidate in terms of stable hydrogen supply under feasible thermal conditions. A kinetic model describing the decomposition rate data of the hydride has been developed.

  11. Pore structure and effective permeability of metallic filters

    NASA Astrophysics Data System (ADS)

    Hejtmánek, Vladimír; Veselý, Martin; Čapek, Pavel

    2013-02-01

    The pore structures (microstructures) of two metallic filters were reconstructed using the stochastic reconstruction method based on simulated annealing. The following microstructural descriptors were included in the description of the real microstructures: the two-point probability function, the lineal-path functions for the void or solid phases, i.e. simulated annealing was constrained by all low-order statistical measures that were accessible through the analysis of images of polished sections. An effect of the microstructural descriptors on the course of reconstruction was controlled by modifying two parameters of the reconstruction procedure [1]. Their values resulted from repeated reconstruction of two-dimensional microstructures in such a way that the reference (experimental) and calculated two-point cluster functions deviated negligibly. It was tacitly assumed that the parameters adjusted during two-dimensional reconstruction had the same influence on the formation of the three-dimensional microstructures. Since connectivity of phases is a critical property of the stochastically reconstructed media, clusters of pore and solid voxels were determined using the Hoshen-Kopelman algorithm. It was found that the solid phase formed one large cluster in accordance with the physical feasibility. The void phase created one large cluster and a few small clusters representing the isolated porosity. The percolation properties were further characterised using the local porosity theory [2]. Effective permeability of the replicas was estimated by solving the Stokes equation for creeping flow of an incompressible liquid in pore space. Calculated permeability values matched well their experimental counterparts.

  12. A Surface-Modified Hydrogen-Permeable Palladium-Silver Plate

    NASA Astrophysics Data System (ADS)

    Petriev, I. S.; Frolov, V. Yu.; Bolotin, S. N.; Baryshev, M. G.; Kopytov, G. F.

    2015-12-01

    A composite target is developed for magnetron sputtering of alloys using silver and palladium with different area ratios. A process is proposed for modification of both surfaces of palladium-silver films formed by PVD and electroplating to improve hydrogen permeability of the amorphous palladium layer electrodeposited from a water solution of its salt at the current density exceeding the diffusion current density for these conditions. The modified palladium-silver membrane becomes hydrogen-permeable at room temperature at the overpressure values up to 0.3 MPa.

  13. Hydrogen transport membranes

    DOEpatents

    Mundschau, Michael V.

    2005-05-31

    Composite hydrogen transport membranes, which are used for extraction of hydrogen from gas mixtures are provided. Methods are described for supporting metals and metal alloys which have high hydrogen permeability, but which are either too thin to be self supporting, too weak to resist differential pressures across the membrane, or which become embrittled by hydrogen. Support materials are chosen to be lattice matched to the metals and metal alloys. Preferred metals with high permeability for hydrogen include vanadium, niobium, tantalum, zirconium, palladium, and alloys thereof. Hydrogen-permeable membranes include those in which the pores of a porous support matrix are blocked by hydrogen-permeable metals and metal alloys, those in which the pores of a porous metal matrix are blocked with materials which make the membrane impervious to gases other than hydrogen, and cermets fabricated by sintering powders of metals with powders of lattice-matched ceramic.

  14. On the ground state of metallic hydrogen

    NASA Technical Reports Server (NTRS)

    Chakravarty, S.; Ashcroft, N. W.

    1978-01-01

    A proposed liquid ground state of metallic hydrogen at zero temperature is explored and a variational upper bound to the ground state energy is calculated. The possibility that the metallic hydrogen is a liquid around the metastable point (rs = 1.64) cannot be ruled out. This conclusion crucially hinges on the contribution to the energy arising from the third order in the electron-proton interaction which is shown here to be more significant in the liquid phase than in crystals.

  15. Plasmonic hydrogen sensing with nanostructured metal hydrides.

    PubMed

    Wadell, Carl; Syrenova, Svetlana; Langhammer, Christoph

    2014-12-23

    In this review, we discuss the evolution of localized surface plasmon resonance and surface plasmon resonance hydrogen sensors based on nanostructured metal hydrides, which has accelerated significantly during the past 5 years. We put particular focus on how, conceptually, plasmonic resonances can be used to study metal-hydrogen interactions at the nanoscale, both at the ensemble and at the single-nanoparticle level. Such efforts are motivated by a fundamental interest in understanding the role of nanosizing on metal hydride formation processes in the quest to develop efficient solid-state hydrogen storage materials with fast response times, reasonable thermodynamics, and acceptable long-term stability. Therefore, a brief introduction to the thermodynamics of metal hydride formation is also given. However, plasmonic hydrogen sensors not only are of academic interest as research tool in materials science but also are predicted to find more practical use as all-optical gas detectors in industrial and medical applications, as well as in a future hydrogen economy, where hydrogen is used as a carbon free energy carrier. Therefore, the wide range of different plasmonic hydrogen sensor designs already available is reviewed together with theoretical efforts to understand their fundamentals and optimize their performance in terms of sensitivity. In this context, we also highlight important challenges to be addressed in the future to take plasmonic hydrogen sensors from the laboratory to real applications in devices, including poisoning/deactivation of the active materials, sensor lifetime, and cross-sensitivity toward other gas species. PMID:25427244

  16. Permeability of Molecular Hydrogen and Water Vapor Through Butyl Rubber at Ambient Temperature

    SciTech Connect

    Zeigler, K.

    1992-04-09

    The preparation of the Safety Analysis Report for the 233-H Replacement Tritium Facility (RTF) requires permeation constants of hydrogen isotopes through butyl rubber, to estimate possible worker exposure given a certain level of tritium in the confinement gloveboxes. Literature values of the permeability constants for hydrogen isotopes and water vapor through butyl rubber at ambient temperature (22-25 C) have been converted to common units and are tabulated (Tables I and II). Permeation rates of tritiated species are the same as that of protium species, within experimental error. Thus, molecular protium and normal water vapor data serve to estimate tritium permeation rates. Because of vendor to vendor variability of permeability, especially of water vapor, vendor measurements of water vapor permeability should continue to be used to estimate permeation in SRS processes.

  17. Permeability of Molecular Hydrogen and Water Vapor Through Butyl Rubber at Ambient Temperature

    SciTech Connect

    Clark, Elliot A.

    1992-04-09

    The preparation of the Safety Analysis Report for the 233-H Replacement Tritium Facility (RTF) requires permeation constants of hydrogen isotopes through butyl rubber, to estimate possible worker exposure given a certain level of tritium in the confinement gloveboxes. Literature values of the permeability constants for hydrogen isotopes and water vapor through butyl rubber at ambient temperature (22-25 C) have been converted to common units and are tabulated (Tables I and II). Permeation rates of tritiated species are the same as that of protium species, within experimental error. Thus, molecular protium and normal water vapor data serve to estimate tritium permeation rates. Because of vendor-to-vendor variability of permeability, especially of water vapor, vendor measurements of water vapor permeability should continue to be used to estimate permeation in SRS processes.

  18. Metallic Hydrogen: A Game Changing Rocket Propellant

    NASA Technical Reports Server (NTRS)

    Silvera, Isaac F.

    2016-01-01

    The objective of this research is to produce metallic hydrogen in the laboratory using an innovative approach, and to study its metastability properties. Current theoretical and experimental considerations expect that extremely high pressures of order 4-6 megabar are required to transform molecular hydrogen to the metallic phase. When metallic hydrogen is produced in the laboratory it will be extremely important to determine if it is metastable at modest temperatures, i.e. remains metallic when the pressure is released. Then it could be used as the most powerful chemical rocket fuel that exists and revolutionize rocketry, allowing single-stage rockets to enter orbit and chemically fueled rockets to explore our solar system.

  19. Metastable Metal Hydrides for Hydrogen Storage

    DOE PAGESBeta

    Graetz, Jason

    2012-01-01

    The possibility of using hydrogen as a reliable energy carrier for both stationary and mobile applications has gained renewed interest in recent years due to improvements in high temperature fuel cells and a reduction in hydrogen production costs. However, a number of challenges remain and new media are needed that are capable of safely storing hydrogen with high gravimetric and volumetric densities. Metal hydrides and complex metal hydrides offer some hope of overcoming these challenges; however, many of the high capacity “reversible” hydrides exhibit a large endothermic decomposition enthalpy making it difficult to release the hydrogen at low temperatures. Onmore » the other hand, the metastable hydrides are characterized by a low reaction enthalpy and a decomposition reaction that is thermodynamically favorable under ambient conditions. The rapid, low temperature hydrogen evolution rates that can be achieved with these materials offer much promise for mobile PEM fuel cell applications. However, a critical challenge exists to develop new methods to regenerate these hydrides directly from the reactants and hydrogen gas. This spotlight paper presents an overview of some of the metastable metal hydrides for hydrogen storage and a few new approaches being investigated to address the key challenges associated with these materials.« less

  20. Hydrogen production from methane using oxygen-permeable ceramic membranes

    NASA Astrophysics Data System (ADS)

    Faraji, Sedigheh

    Non-porous ceramic membranes with mixed ionic and electronic conductivity have received significant interest in membrane reactor systems for the conversion of methane and higher hydrocarbons to higher value products like hydrogen. However, hydrogen generation by this method has not yet been commercialized and suffers from low membrane stability, low membrane oxygen flux, high membrane fabrication costs, and high reaction temperature requirements. In this dissertation, hydrogen production from methane on two different types of ceramic membranes (dense SFC and BSCF) has been investigated. The focus of this research was on the effects of different parameters to improve hydrogen production in a membrane reactor. These parameters included operating temperature, type of catalyst, membrane material, membrane thickness, membrane preparation pH, and feed ratio. The role of the membrane in the conversion of methane and the interaction with a Pt/CeZrO2 catalyst has been studied. Pulse studies of reactants and products over physical mixtures of crushed membrane material and catalyst have clearly demonstrated that a synergy exists between the membrane and the catalyst under reaction conditions. The degree of catalyst/membrane interaction strongly impacts the conversion of methane and the catalyst performance. During thermogravimetric analysis, the onset temperature of oxygen release for BSCF was observed to be lower than that for SFC while the amount of oxygen release was significantly greater. Pulse injections of CO2 over crushed membranes at 800°C have shown more CO2 dissociation on the BSCF membrane than the SFC membrane, resulting in higher CO formation on the BSCF membrane. Similar to the CO2 pulses, when CO was injected on the samples at 800°C, CO2 production was higher on BSCF than SFC. It was found that hydrogen consumption on BSCF particles is 24 times higher than that on SFC particles. Furthermore, Raman spectroscopy and temperature programmed desorption studies of

  1. The effect of a tin barrier layer on the permeability of hydrogen through mild steel and ferritic stainless steel

    SciTech Connect

    Bowker, J.; Piercy, G.R.

    1984-11-01

    Experiments were performed to measure the effectiveness of a commercially electroplated tin layer as a barrier to hydrogen, and to see how this altered when the tin layer was converted to FeSn. The authors measured the permeability of hydrogen through AISI 410 ferritic stainless steel and determined the effectiveness of tin as a surface barrier on it. The measured values for the permeability of hydrogen in iron and ferritic stainless steel are shown.

  2. Computer simulation of hydrogen permeability of structural materials through protective coating defect

    NASA Astrophysics Data System (ADS)

    Kostikova, E. K.; Zaika, Yu V.

    2015-12-01

    In the context of problems of hydrogen and thermonuclear power engineering intensive research of the hydrogen isotopes properties is being conducted. Mathematical models help to specify physical-chemical ideas about the interaction of hydrogen isotopes with structural materials, to estimate the limiting factors and to significantly reduce the expenses of experimental research by means of numerical simulation for different parameters and experimental conditions (including extreme ones). Classical diffusion models are often insufficient. The paper is devoted to the models and numerical solution of the boundary-value problems of hydrogen permeability taking into account nonlinear sorption-desorption dynamics on the surface. Algorithms based on difference approximations. The results of computer simulation of the hydrogen flux from a structural material sample are presented.

  3. Final Report: Metal Perhydrides for Hydrogen Storage

    SciTech Connect

    Hwang, J-Y.; Shi, S.; Hackney, S.; Swenson, D.; Hu, Y.

    2011-07-26

    Hydrogen is a promising energy source for the future economy due to its environmental friendliness. One of the important obstacles for the utilization of hydrogen as a fuel source for applications such as fuel cells is the storage of hydrogen. In the infrastructure of the expected hydrogen economy, hydrogen storage is one of the key enabling technologies. Although hydrogen possesses the highest gravimetric energy content (142 KJ/g) of all fuels, its volumetric energy density (8 MJ/L) is very low. It is desired to increase the volumetric energy density of hydrogen in a system to satisfy various applications. Research on hydrogen storage has been pursed for many years. Various storage technologies, including liquefaction, compression, metal hydride, chemical hydride, and adsorption, have been examined. Liquefaction and high pressure compression are not desired due to concerns related to complicated devices, high energy cost and safety. Metal hydrides and chemical hydrides have high gravimetric and volumetric energy densities but encounter issues because high temperature is required for the release of hydrogen, due to the strong bonding of hydrogen in the compounds. Reversibility of hydrogen loading and unloading is another concern. Adsorption of hydrogen on high surface area sorbents such as activated carbon and organic metal frameworks does not have the reversibility problem. But on the other hand, the weak force (primarily the van der Waals force) between hydrogen and the sorbent yields a very small amount of adsorption capacity at ambient temperature. Significant storage capacity can only be achieved at low temperatures such as 77K. The use of liquid nitrogen in a hydrogen storage system is not practical. Perhydrides are proposed as novel hydrogen storage materials that may overcome barriers slowing advances to a hydrogen fuel economy. In conventional hydrides, e.g. metal hydrides, the number of hydrogen atoms equals the total valence of the metal ions. One Li

  4. Abundant Metals Give Precious Hydrogenation Performance

    SciTech Connect

    Bullock, R. Morris

    2013-11-29

    Homogeneous catalysts based on precious (noble) metals have had a profound influence on modern synthetic methods, enabling highly selective synthesis of organic compounds but typically require precious metal catalysts (Ru, Rh, Ir, Pt, and Pd). Increasing efforts have been devoted to the design and discovery of homogeneous catalysts using base metals (e.g., Mn, Fe, Co, Ni, Cu, Mo). Morris et al. report Fe catalysts for asymmetric hydrogenation of C=O bonds. Cobalt catalysts for asymmetric hydrogenation of C=C bonds are described by Chirik et al., and Beller et al. report new nanoscale iron catalysts for synthesis of functionalized anilines through hydrogenation of nitroarenes. The author’s work in this area is supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  5. Noble Metals Would Prevent Hydrogen Embrittlement

    NASA Technical Reports Server (NTRS)

    Paton, N. E.; Frandsen, J. D.

    1987-01-01

    According to proposal, addition of small amounts of noble metals makes iron- and nickel-based alloys less susceptible to embrittlement by hydrogen. Metallurgists demonstrated adding 0.6 to 1.0 percent by weight of Pd or Pt eliminates stress/corrosion cracking in type 4130 steel. Proposal based on assumption that similar levels (0.5 to 1.0 weight percent) of same elements effective against hydrogen embrittlement.

  6. Nanostructures from hydrogen implantation of metals.

    SciTech Connect

    McWatters, Bruce Ray; Causey, Rion A.; DePuit, Ryan J.; Yang, Nancy Y. C.; Ong, Markus D.

    2009-09-01

    This study investigates a pathway to nanoporous structures created by hydrogen implantation in aluminum. Previous experiments for fusion applications have indicated that hydrogen and helium ion implantations are capable of producing bicontinuous nanoporous structures in a variety of metals. This study focuses specifically on hydrogen and helium implantations of aluminum, including complementary experimental results and computational modeling of this system. Experimental results show the evolution of the surface morphology as the hydrogen ion fluence increases from 10{sup 17} cm{sup -2} to 10{sup 18} cm{sup -2}. Implantations of helium at a fluence of 10{sup 18} cm{sup -2} produce porosity on the order of 10 nm. Computational modeling demonstrates the formation of alanes, their desorption, and the resulting etching of aluminum surfaces that likely drives the nanostructures that form in the presence of hydrogen.

  7. The hydrogen permeability of Pd4S

    SciTech Connect

    O’Brien, Casey P.; Gellman, Andrew J.; Morreale, Bryan D.; Miller, James B.

    2011-04-01

    Hydrogen permeates rapidly through pure Pd membranes, but H2S, a common minor component in hydrogencontaining streams, produces a Pd4S film on the Pd surface that severely retards hydrogen permeation. Hydrogen still permeates through the bi-layered Pd4S/Pd structure, indicating that the Pd4S surface is active for H2 dissociation; the low hydrogen permeability of the Pd4S film is responsible for the decreased rate of hydrogen transport. In this work, the hydrogen permeability of Pd4S was determined experimentally in the 623-773 K temperature range. Bi-layered Pd4S/Pd foils were produced by exposing pure Pd foils to H2S. H2 fluxes through the bi-layered Pd4S/Pd foils were measured during exposure to both pure H2 and a 1000 ppm H2S in H2 gas mixture. Our results show that H2S slows hydrogen permeation through Pd mainly by producing a Pd4S film on the Pd surface that is roughly an order-of-magnitude less permeable to hydrogen (kPd4S = 10-7.5 exp(-0.22 eV/kBT)molH2/m/s/Pa-1/2) than pure Pd. The presence of H2S in the gas stream results in greater inhibition of hydrogen transport than can be explained by the very low permeability of Pd4S. H2S may block H2 dissociation sites at the Pd4S surface.

  8. Microporous Metal Organic Materials for Hydrogen Storage

    SciTech Connect

    S. G. Sankar; Jing Li; Karl Johnson

    2008-11-30

    We have examined a number of Metal Organic Framework Materials for their potential in hydrogen storage applications. Results obtained in this study may, in general, be summarized as follows: (1) We have identified a new family of porous metal organic framework materials with the compositions M (bdc) (ted){sub 0.5}, {l_brace}M = Zn or Co, bdc = biphenyl dicarboxylate and ted = triethylene diamine{r_brace} that adsorb large quantities of hydrogen ({approx}4.6 wt%) at 77 K and a hydrogen pressure of 50 atm. The modeling performed on these materials agree reasonably well with the experimental results. (2) In some instances, such as in Y{sub 2}(sdba){sub 3}, even though the modeling predicted the possibility of hydrogen adsorption (although only small quantities, {approx}1.2 wt%, 77 K, 50 atm. hydrogen), our experiments indicate that the sample does not adsorb any hydrogen. This may be related to the fact that the pores are extremely small or may be attributed to the lack of proper activation process. (3) Some samples such as Zn (tbip) (tbip = 5-tert butyl isophthalate) exhibit hysteresis characteristics in hydrogen sorption between adsorption and desorption runs. Modeling studies on this sample show good agreement with the desorption behavior. It is necessary to conduct additional studies to fully understand this behavior. (4) Molecular simulations have demonstrated the need to enhance the solid-fluid potential of interaction in order to achieve much higher adsorption amounts at room temperature. We speculate that this may be accomplished through incorporation of light transition metals, such as titanium and scandium, into the metal organic framework materials.

  9. Impact of Stereospecific Intramolecular Hydrogen Bonding on Cell Permeability and Physicochemical Properties

    PubMed Central

    2014-01-01

    Profiling of eight stereoisomeric T. cruzi growth inhibitors revealed vastly different in vitro properties such as solubility, lipophilicity, pKa, and cell permeability for two sets of four stereoisomers. Using computational chemistry and NMR spectroscopy, we identified the formation of an intramolecular NH→NR3 hydrogen bond in the set of stereoisomers displaying lower solubility, higher lipophilicity, and higher cell permeability. The intramolecular hydrogen bond resulted in a significant pKa difference that accounts for the other structure–property relationships. Application of this knowledge could be of particular value to maintain the delicate balance of size, solubility, and lipophilicity required for cell penetration and oral administration for chemical probes or therapeutics with properties at, or beyond, Lipinski’s rule of 5. PMID:24524242

  10. Process for forming a nickel foil with controlled and predetermined permeability to hydrogen

    DOEpatents

    Engelhaupt, Darell E.

    1981-09-22

    The present invention provides a novel process for forming a nickel foil having a controlled and predetermined hydrogen permeability. This process includes the steps of passing a nickel plating bath through a suitable cation exchange resin to provide a purified nickel plating bath free of copper and gold cations, immersing a nickel anode and a suitable cathode in the purified nickel plating bath containing a selected concentration of an organic sulfonic acid such as a napthalene-trisulfonic acid, electrodepositing a nickel layer having the thickness of a foil onto the cathode, and separating the nickel layer from the cathode to provide a nickel foil. The anode is a readily-corrodible nickel anode. The present invention also provides a novel nickel foil having a greater hydrogen permeability than palladium at room temperature.

  11. Metallic Hydrogen - Potentially a High Energy Rocket Propellant

    NASA Technical Reports Server (NTRS)

    Cole, John; Silvera, Ike

    2007-01-01

    Pure metallic hydrogen is predicted to have a specific impulse (Isp) of 1700 seconds, but the reaction temperature is too high for current engine materials. Diluting metallic hydrogen with liquid hydrogen can reduce the reaction temperature to levels compatible with current material limits and still provide an Isp greater than 900 s. Metallic hydrogen has not yet been produced on earth, but experimental techniques exist that may change this situation. This paper will provide a brief description of metallic hydrogen and the status of experiments that may soon produce detectable quantities of this material in the lab. Also provided are some characteristics for diluted metallic hydrogen engines and launch vehicles.

  12. Metal-Catalysed Transfer Hydrogenation of Ketones.

    PubMed

    Štefane, Bogdan; Požgan, Franc

    2016-04-01

    We highlight recent developments of catalytic transfer hydrogenation of ketones promoted by transition metals, while placing it within its historical context. Since optically active secondary alcohols are important building blocks in fine chemicals synthesis, the focus of this review is devoted to chiral catalyst types which are capable of inducing high stereoselectivities. Ruthenium complexes still represent the largest part of the catalysts, but other metals (e.g. Fe) are rapidly penetrating this field. While homogeneous transfer hydrogenation catalysts in some cases approach enzymatic performance, the interest in heterogeneous catalysts is constantly growing because of their reusability. Despite excellent activity, selectivity and compatibility of metal complexes with a variety of functional groups, no universal catalysts exist. Development of future catalyst systems is directed towards reaching as high as possible activity with low catalyst loadings, using "greener" conditions, and being able to operate under mild conditions and in a highly selective manner for a broad range of substrates. PMID:27573143

  13. Hydrogen Storage in Metal-Organic Frameworks

    SciTech Connect

    Omar M. Yaghi

    2012-04-26

    Conventional storage of large amounts of hydrogen in its molecular form is difficult and expensive because it requires employing either extremely high pressure gas or very low temperature liquid. Because of the importance of hydrogen as a fuel, the DOE has set system targets for hydrogen storage of gravimetric (5.5 wt%) and volumetric (40 g L-1) densities to be achieved by 2015. Given that these are system goals, a practical material will need to have higher capacity when the weight of the tank and associated cooling or regeneration system is considered. The size and weight of these components will vary substantially depending on whether the material operates by a chemisorption or physisorption mechanism. In the latter case, metal-organic frameworks (MOFs) have recently been identified as promising adsorbents for hydrogen storage, although little data is available for their sorption behavior. This grant was focused on the study of MOFs with these specific objectives. (1) To examine the effects of functionalization, catenation, and variation of the metal oxide and organic linkers on the low-pressure hydrogen adsorption properties of MOFs. (2) To develop a strategy for producing MOFs with high surface area and porosity to reduce the dead space and increase the hydrogen storage capacity per unit volume. (3) To functionalize MOFs by post synthetic functionalization with metals to improve the adsorption enthalpy of hydrogen for the room temperature hydrogen storage. This effort demonstrated the importance of open metal sites to improve the adsorption enthalpy by the systematic study, and this is also the origin of the new strategy, which termed isoreticular functionalization and metalation. However, a large pore volume is still a prerequisite feature. Based on our principle to design highly porous MOFs, guest-free MOFs with ultrahigh porosity have been experimentally synthesized. MOF-210, whose BET surface area is 6240 m2 g-1 (the highest among porous solids), takes up

  14. Powered by DFT: Screening methods that accelerate materials development for hydrogen in metals applications.

    PubMed

    Nicholson, Kelly M; Chandrasekhar, Nita; Sholl, David S

    2014-11-18

    CONSPECTUS: Not only is hydrogen critical for current chemical and refining processes, it is also projected to be an important energy carrier for future green energy systems such as fuel cell vehicles. Scientists have examined light metal hydrides for this purpose, which need to have both good thermodynamic properties and fast charging/discharging kinetics. The properties of hydrogen in metals are also important in the development of membranes for hydrogen purification. In this Account, we highlight our recent work aimed at the large scale screening of metal-based systems with either favorable hydrogen capacities and thermodynamics for hydrogen storage in metal hydrides for use in onboard fuel cell vehicles or promising hydrogen permeabilities relative to pure Pd for hydrogen separation from high temperature mixed gas streams using dense metal membranes. Previously, chemists have found that the metal hydrides need to hit a stability sweet spot: if the compound is too stable, it will not release enough hydrogen under low temperatures; if the compound is too unstable, the reaction may not be reversible under practical conditions. Fortunately, we can use DFT-based methods to assess this stability via prediction of thermodynamic properties, equilibrium reaction pathways, and phase diagrams for candidate metal hydride systems with reasonable accuracy using only proposed crystal structures and compositions as inputs. We have efficiently screened millions of mixtures of pure metals, metal hydrides, and alloys to identify promising reaction schemes via the grand canonical linear programming method. Pure Pd and Pd-based membranes have ideal hydrogen selectivities over other gases but suffer shortcomings such as sensitivity to sulfur poisoning and hydrogen embrittlement. Using a combination of detailed DFT, Monte Carlo techniques, and simplified models, we are able to accurately predict hydrogen permeabilities of metal membranes and screen large libraries of candidate alloys

  15. PERMEABILITY, SOLUBILITY, AND INTERACTION OF HYDROGEN IN POLYMERS- AN ASSESSMENT OF MATERIALS FOR HYDROGEN TRANSPORT

    SciTech Connect

    Kane, M

    2008-02-05

    Fiber-reinforced polymer (FRP) piping has been identified as a leading candidate for use in a transport system for the Hydrogen Economy. Understanding the permeation and leakage of hydrogen through the candidate materials is vital to effective materials system selection or design and development of safe and efficient materials for this application. A survey of the literature showed that little data on hydrogen permeation are available and no mechanistically-based models to quantitatively predict permeation behavior have been developed. However, several qualitative trends in gaseous permeation have been identified and simple calculations have been performed to identify leakage rates for polymers of varying crystallinity. Additionally, no plausible mechanism was found for the degradation of polymeric materials in the presence of pure hydrogen. The absence of anticipated degradation is due to lack of interactions between hydrogen and FRP and very low solubility coefficients of hydrogen in polymeric materials. Recommendations are made to address research and testing needs to support successful materials development and use of FRP materials for hydrogen transport and distribution.

  16. Insulator to Metal Transition in Fluid Hydrogen

    SciTech Connect

    Hood, R Q; Galli, G

    2003-06-15

    The authors have investigated the insulator to metal transition (ITM) in fluid hydrogen using first principles simulations. Both density functional and quantum Monte Carlo calculations show that the electronic energy gap of the liquid vanishes at about 9 fold compression and 3000 K. At these conditions the computed conductivity values are characteristic of a poor metal. These findings are consistent with those of recent shock wave experiments but the computed conductivity is larger than the measured value. From the ab-initio results they conclude that the ITM is driven by molecular dissociation rather than disorder and that both temperature and pressure play a key role in determining structural changes in the fluid.

  17. Method for controlling density and permeability of sintered powdered metals

    NASA Technical Reports Server (NTRS)

    Todd, H. H.

    1968-01-01

    Improved, relatively low-cost method has been developed to produce porous metals with predetermined pore size, pore spacing, and density, utilizing powder-metal processes. The method uses angular not spherical tungsten powder.

  18. Ab Initio Simulations of Hydrogen in Crystalline and Amorphous Metal Membranes

    NASA Astrophysics Data System (ADS)

    Huhn, William; Widom, Mike

    2011-03-01

    Solid metallic membranes are used to separate hydrogen from other gases for clean energy applications. In order to create cheaper, more effective membranes for hydrogen separation, it is desirable to model hydrogen transport through the membrane. Amorphous metal membranes in particular have potential for this type of application due to low expense and high theoretical hydrogen capacity. We computationally model hydrogen absorption and transport through materials in order to find materials that can be used to construct effective membranes for hydrogen capture. In this talk, we will obtain hydrogen binding sites and diffusion barriers in order to model the hydrogen diffusion through various nickel-based amorphous alloys and compare them to associated crystalline structures as well as elemental palladium, which is favored for this application despite its high expense. Ab initio methods (specifically the Vienna Ab Initio Simulation Package, VASP) are used to develop the hydrogen binding energy spectrum, from which thermodynamic models can be constructed. Kinetic Monte Carlo methods are used to model the hydrogen transport through the bulk, from which we can obtain the permeability.

  19. Hydrogen Permeability of Palladium Membrane for Steam-Reforming of Bio-Ethanol Using the Membrane Reactor

    NASA Astrophysics Data System (ADS)

    Kinouchi, Kouji; Katoh, Masahiro; Horikawa, Toshihide; Yoshikawa, Takushi; Wada, Mamoru

    A Palladium membrane was prepared by electro-less plating method on porous stainless steel. The catalytic hydrogen production by steam-reforming of biomass-derived ethanol (bio-ethanol) using a Pd membrane was analyzed by comparing it with those for the reaction using reagent ethanol (the reference sample). And the hydrogen permeability of the palladium membrane was investigated using the same palladium membrane (H2/He selectivity = 249, at ΔP = 0.10 MPa, 873 K). As a result, for bio-ethanol, deposited carbon had a negative influence on the hydrogen-permeability of the palladium membrane and hydrogen purity. The sulfur content in the bio-ethanol may have promoted carbon deposition. By using a palladium membrane, it was confirmed that H2 yield (%) was increased. It can be attributed that methane was converted from ethanol and produced more hydrogen by steam reforming, due to the in situ removal of hydrogen from the reaction location.

  20. Supported Molten Metal Membranes for Hydrogen Separation

    SciTech Connect

    Datta, Ravindra; Ma, Yi Hua; Yen, Pei-Shan; Deveau, Nicholas; Fishtik, Ilie; Mardilovich, Ivan

    2013-09-30

    We describe here our results on the feasibility of a novel dense metal membrane for hydrogen separation: Supported Molten Metal Membrane, or SMMM.1 The goal in this work was to develop these new membranes based on supporting thin films of low-melting, non- precious group metals, e.g., tin (Sn), indium (In), gallium (Ga), or their alloys, to provide a flux and selectivity of hydrogen that rivals the conventional but substantially more expensive palladium (Pd) or Pd alloy membranes, which are susceptible to poisoning by the many species in the coal-derived syngas, and further possess inadequate stability and limited operating temperature range. The novelty of the technology presented numerous challenges during the course of this project, however, mainly in the selection of appropriate supports, and in the fabrication of a stable membrane. While the wetting instability of the SMMM remains an issue, we did develop an adequate understanding of the interaction between molten metal films with porous supports that we were able to find appropriate supports. Thus, our preliminary results indicate that the Ga/SiC SMMM at 550 ºC has a permeance that is an order of magnitude higher than that of Pd, and exceeds the 2015 DOE target. To make practical SMM membranes, however, further improving the stability of the molten metal membrane is the next goal. For this, it is important to better understand the change in molten metal surface tension and contact angle as a function of temperature and gas-phase composition. A thermodynamic theory was, thus, developed, that is not only able to explain this change in the liquid-gas surface tension, but also the change in the solid-liquid surface tension as well as the contact angle. This fundamental understanding has allowed us to determine design characteristics to maintain stability in the face of changing gas composition. These designs are being developed. For further progress, it is also important to understand the nature of solution and

  1. Hydrogen production from simulated hot coke oven gas by using oxygen-permeable ceramics

    SciTech Connect

    Hongwei Cheng; Yuwen Zhang; Xionggang Lu; Weizhong Ding; Qian Li

    2009-01-15

    Hydrogen production from simulated hot coke oven gas (HCOG) was investigated in a BaCo{sub 0.7}Fe{sub 0.2}Nb{sub 0.1}O{sub 3-{delta}} (BCFNO) membrane reactor combined with a Ni/Mg(Al)O catalyst by the partial oxidation with toluene as a model tar compound under atmospheric pressure. The reaction results indicated that toluene was completely converted to H{sub 2} and CO in the catalytic reforming of the simulated HCOG in the temperature range from 825 to 875{sup o}C. Both thermodynamically predicated values and experimental data showed that the selective oxidation of toluene took precedence over that of CH{sub 4} in the reforming reaction. At optimized reaction conditions, the dense oxygen-permeable membrane has an oxygen permeation flux around 12.3 mL cm{sup -2} min{sup -1}, and a CH{sub 4} conversion of 86%, a CO{sub 2} conversion of 99%, a H{sub 2} yield of 88%, and a CO yield of 87% have been achieved. When the toluene and methane were reformed, the amount of H{sub 2} in the reaction effluent gas was about 2 times more than that of original H{sub 2} in simulated HCOG. The results reveal that it is feasible for hydrogen production from HCOG by reforming hydrocarbon compounds in a ceramic oxygen-permeable membrane reactor. 27 refs., 10 figs., 3 abs.

  2. Hydrogen sulfide mitigates matrix metalloproteinase-9 activity and neurovascular permeability in hyperhomocysteinemic mice*

    PubMed Central

    Tyagi, Neetu; Givvimani, Srikanth; Qipshidze, Natia; Kundu, Soumi; Kapoor, Shray; Vacek, Jonathan C.; Tyagi, Suresh C.

    2010-01-01

    An elevated level of homocysteine (Hcy), known as hyperhomocysteinmia (HHcy), was associated with neurovascular diseases. At physiological levels, hydrogen sulfide (H2S) protected the neurovascular system. Because Hcy was also a precursor of hydrogen sulfide (H2S), we sought to test whether the H2S protected the brain during HHcy. Cystathionine-β-synthase heterozygous (CBS+/−) and wild type (WT) mice were supplemented with or without NaHS (30 µM/L, H2S donor) in drinking water. Blood flow and cerebral microvascular permeability in pial vessels were measured by intravital microscopy in WT, WT+NaHS, CBS−/+ and CBS−/+ + NaHS treated mice. The brain tissues were analyzed for matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinase (TIMP) by Western blot and RT-PCR. The mRNA levels of CBS and cystathionine gamma lyase (CSE, enzyme responsible for conversion of Hcy to H2S) genes were measured by RT-PCR. The results showed a significant increase in MMP-2, MMP-9, TIMP-3 protein and mRNA in CBS (−/+) mice, while H2S treatment mitigated this increase. Interstitial localization of MMPs was also apparent through Immunohistochemistry. A decrease in protein and mRNA expression of TIMP-4 was observed in CBS (−/+) mice. Microscopy data revealed increase in permeability in CBS (−/+) mice. These effects were ameliorated by H2S and suggested that physiological levels of H2S supplementation may have therapeutic potential against HHcy-induced microvascular permeability, in part, by normalizing the MMP/TIMP ratio in the brain. PMID:19913585

  3. A PERMEABLE REACTIVE BARRIER FOR TREATMENT OF HEAVY METALS: JOURNAL ARTICLE

    EPA Science Inventory

    NRMRL-ADA-00327 Ludwig*, R., McGregor, R.G., Blowes, D.W., Benner, S.G., and Mountjoy, K. A Permeable Reactive Barrier for Treatment of Heavy Metals. Ground Water 40 (1):59-66 (2002) Historical storage of ore concentrate containing sulfid...

  4. Design and synthesis of thin palladium membranes on porous metal substrate for hydrogen extraction

    NASA Astrophysics Data System (ADS)

    Shi, Z.; Szpunar, J. A.; Wu, S.

    2009-05-01

    Membrane separation is regarded nowadays as a preferred method for production of purified hydrogen. Palladium (Pd) is an attractive membrane material due to its ability to dissociate molecular hydrogen into atoms. It is usually deposited on the porous substrate that can provide good mechanical support and reduce the thickness of the membrane for maximizing hydrogen permeability. Pd membrane used for hydrogen separation must be thin enough to increase hydrogen flux and reduce cost while remaining thick enough to retain adhesion, attrition resistance and mechanical integrity during high temperature cycles. In this paper, the progress of electroless deposition of Pd around the pore area at surface of porous stainless steel was recorded and a bridge structure that was formed during the membrane deposition around the pore area of the substrate was illustrated. After that, the porous substrate was modified using micro-or nano-size metal or metal oxide particles in order to reduce pore size in the substrate surface. The experimental results obtained from hydrogen permeation through the Pd membranes having the thickness from 400 nm to 18 μm built on both modified and original porous stainless steel substrates demonstrate that these thin membranes are solid and they can be used at the temperature of 550°C and hydrogen pressure difference of 3.447x105 Pa. The proposed processing will allow optimizing the design and fabrication of thin Pd membranes on different porous substrates for hydrogen separation.

  5. Interaction of hydrogen with impurities in group IVB metals

    NASA Astrophysics Data System (ADS)

    Spiridonova, T. I.; Bakulin, A. V.; Kulkova, S. E.

    2015-10-01

    The energetics of hydrogen bonding with Group IVB metals and the interaction of hydrogen with impurities of 3 d-transition and simple metals (Al, Ga, Si, Ge) have been investigated using the projector-augmented-wave (PAW) method within the framework of the density functional theory (DFT). It has been found that the solubility of hydrogen in Ti, Zr, and Hf increases upon their alloying with metals located in the middle of the 3 d period. The relationship between the interaction energy of hydrogen with impurities, the lattice distortions, and the electronic structure of the studied systems has been analyzed. It has been shown that impurities do not affect the preferred hydrogen sorption positions in titanium but can change these positions in zirconium and hafnium. The influence of impurities and hydrogen on the electronic structure of metals has been examined. The obtained results have demonstrated that, in the studied metals, the interactions of hydrogen with impurities of 3 d-transition and simple metals are determined by different mechanisms: the attraction of hydrogen by transition metal impurities is caused by the size effect, whereas the repulsion of hydrogen by simple metals can be associated with the electronic factors.

  6. Enhanced zero-valent metal permeable wall treatment of contaminated groundwater

    SciTech Connect

    Reinhart, D.R.; Clausen, C.A.; Geiger, C.

    1997-12-31

    On-going research at the University of Central Florida, supported by NASA, is investigating the use of sonicated zero-valent metal permeable treatment walls to remediate chlorinated solvent contaminated groundwater. Use of ultrasound within the treatment wall is proposed to enhance and/or restore the activity of the zero-valent metal. Batch studies designed to evaluate the destruction of chlorinated hydrocarbons using enhanced zero-valent metal reduction found a nearly three-fold increase in reaction rates after ultrasound treatment. Column studies substantiated these results. It is hypothesized that ultrasound serves to remove corrosion products from the iron surface and will prolong the reactive life and efficiency of the permeable treatment wall, thus decreasing long-term costs of wall construction and maintenance.

  7. Hydrogen-environment embrittlement of metals: A study

    NASA Technical Reports Server (NTRS)

    Chandler, W. T.; Frohmber, R. P.; Lewett, R. P.; Mcpherson, W. B.; Walter, R. J.

    1973-01-01

    Study includes extensive tests examining effects of hydrogen environment on different high-strength metals and alloys. Recommendations for preventing metal failure include use of hydrogen-resistant coatings and inhibitors. Study includes references to related investigations and discussion of work in progress.

  8. Technical and economic aspects of hydrogen storage in metal hydrides

    NASA Technical Reports Server (NTRS)

    Schmitt, R.

    1981-01-01

    The recovery of hydrogen from such metal hydrides as LiH, MgH2, TiH2, CaH2 and FeTiH compounds is studied, with the aim of evaluating the viability of the technique for the storage of hydrogen fuel. The pressure-temperature dependence of the reactions, enthalpies of formation, the kinetics of the hydrogen absorption and desorption, and the mechanical and chemical stability of the metal hydrides are taken into account in the evaluation. Economic aspects are considered. Development of portable metal hydride hydrogen storage reservoirs is also mentioned.

  9. Reverse hydrogen spillover on and hydrogenation of supported metal clusters: insights from computational model studies.

    PubMed

    Vayssilov, Georgi N; Petrova, Galina P; Shor, Elena A Ivanova; Nasluzov, Vladimir A; Shor, Alexei M; St Petkov, Petko; Rösch, Notker

    2012-05-01

    "Reverse" spillover of hydrogen from hydroxyl groups of the support onto supported transition metal clusters, forming multiply hydrogenated metal species, is an essential aspect of various catalytic systems which comprise small, highly active transition metal particles on a support with a high surface area. We review and analyze the results of our computational model studies related to reverse hydrogen spillover, interpreting available structural and spectral data for the supported species and examining the relationship between metal-support and metal-hydrogen interactions. On the examples of small clusters of late transition metals, adsorbed in zeolite cavities, we showed with computational model studies that reverse spillover of hydrogen is energetically favorable for late transition metals, except for Au. This preference is crucial for the chemical reactivity of such bifunctional catalytic systems because both functions, of metal species and of acidic sites, are strongly modified, in some cases even suppressed - due to partial oxidation of the metal cluster and the conversion of protons from acidic hydroxyl groups to hydride ligands of the metal moiety. Modeling multiple hydrogen adsorption on metal clusters allowed us to quantify how (i) the support affects the adsorption capacity of the clusters and (ii) structure and oxidation state of the metal moiety changes upon adsorption. In all models of neutral systems we found that the metal atoms are partially positively charged, compensated by a negative charge of the adsorbed hydrogen ligands and of the support. In a case study we demonstrated with calculated thermodynamic parameters how to predict the average hydrogen coverage of the transition metal cluster at a given temperature and hydrogen pressure. PMID:22353996

  10. Noble metal-free hydrogen evolution catalysts for water splitting.

    PubMed

    Zou, Xiaoxin; Zhang, Yu

    2015-08-01

    Sustainable hydrogen production is an essential prerequisite of a future hydrogen economy. Water electrolysis driven by renewable resource-derived electricity and direct solar-to-hydrogen conversion based on photochemical and photoelectrochemical water splitting are promising pathways for sustainable hydrogen production. All these techniques require, among many things, highly active noble metal-free hydrogen evolution catalysts to make the water splitting process more energy-efficient and economical. In this review, we highlight the recent research efforts toward the synthesis of noble metal-free electrocatalysts, especially at the nanoscale, and their catalytic properties for the hydrogen evolution reaction (HER). We review several important kinds of heterogeneous non-precious metal electrocatalysts, including metal sulfides, metal selenides, metal carbides, metal nitrides, metal phosphides, and heteroatom-doped nanocarbons. In the discussion, emphasis is given to the synthetic methods of these HER electrocatalysts, the strategies of performance improvement, and the structure/composition-catalytic activity relationship. We also summarize some important examples showing that non-Pt HER electrocatalysts could serve as efficient cocatalysts for promoting direct solar-to-hydrogen conversion in both photochemical and photoelectrochemical water splitting systems, when combined with suitable semiconductor photocatalysts. PMID:25886650

  11. Novel Composite Hydrogen-Permeable Membranes for Non-Thermal Plasma Reactors for the Decomposition of Hydrogen Sulfide

    SciTech Connect

    Morris D. Argyle; John F. Ackerman; Suresh Muknahallipatna; Jerry C. Hamann; Stanislaw Legowski; Guibing Zhao; Sanil John

    2006-09-30

    The goal of this experimental project is to design and fabricate a reactor and membrane test cell to dissociate hydrogen sulfide (H{sub 2}S) in a non-thermal plasma and recover hydrogen (H{sub 2}) through a superpermeable multi-layer membrane. Superpermeability of hydrogen atoms (H) has been reported by some researchers using membranes made of Group V transition metals (niobium, tantalum, vanadium, and their alloys), although it has yet to be confirmed in this study. Several pulsed corona discharge (PCD) reactors have been fabricated and used to dissociate H{sub 2}S into hydrogen and sulfur. Visual observation shows that the corona is not uniform throughout the reactor. The corona is stronger near the top of the reactor in argon, while nitrogen and mixtures of argon or nitrogen with H{sub 2}S produce stronger coronas near the bottom of the reactor. Both of these effects appear to be explainable base on the different electron collision interactions with monatomic versus polyatomic gases. A series of experiments varying reactor operating parameters, including discharge capacitance, pulse frequency, and discharge voltage were performed while maintaining constant power input to the reactor. At constant reactor power input, low capacitance, high pulse frequency, and high voltage operation appear to provide the highest conversion and the highest energy efficiency for H{sub 2}S decomposition. Reaction rates and energy efficiency per H{sub 2}S molecule increase with increasing flow rate, although overall H{sub 2}S conversion decreases at constant power input. Voltage and current waveform analysis is ongoing to determine the fundamental operating characteristics of the reactors. A metal infiltrated porous ceramic membrane was prepared using vanadium as the metal and an alumina tube. Experiments with this type of membrane are continuing, but the results thus far have been consistent with those obtained in previous project years: plasma driven permeation or superpermeability

  12. Mechanical properties and permeability of hydrogen isotopes through CrNi35WTiAl alloy, containing radiogenic helium

    SciTech Connect

    Maksimkin, I.P.; Yukhimchuk, A.A.; Boitsov, I.Y.; Malkov, I.L.; Musyaev, R.K.; Baurin, A.Y.; Shevnin, E.V.; Vertey, A.V.

    2015-03-15

    The long-term contact of structural materials (SM) with tritium-containing media makes their properties in terms of kinetic permeability of hydrogen isotopes change. This change is the consequence of the defect formation in SM due to the result of {sup 3}He build-up generated by the radioactive decay of tritium dissolved in SM. This paper presents the experimental results concerning the permeability of hydrogen isotopes through CrNi35WTiAl alloy containing {sup 3}He and the impact of the presence of {sup 3}He and H on its mechanical properties. Tensile tests of cylindrical samples containing various concentrations of {sup 3}He (90, 230 and 560 appm) have been performed in inert and hydrogen atmospheres. The build-up of {sup 3}He has been made using the 'helium trick' technique. The maximal decrease in the plastic characteristics of the CrNi35WTiAl alloy occurs in samples with the highest {sup 3}He (560 appm) content at 873 K. The permeability of deuterium through the CrNi35WTiAl alloy in the initial state and that with 560 appm of {sup 3}He content was explored. The presence of this {sup 3}He concentration has shown an increase in deuterium permeability, evidently due to structural changes in the material under the impact of radiogenic helium.

  13. Hydrogenation of coal liquid utilizing a metal carbonyl catalyst

    DOEpatents

    Feder, Harold M.; Rathke, Jerome W.

    1979-01-01

    Coal liquid having a dissolved transition metal, catalyst as a carbonyl complex such as Co.sub.2 (CO.sub.8) is hydrogenated with hydrogen gas or a hydrogen donor. A dissociating solvent contacts the coal liquid during hydrogenation to form an immiscible liquid mixture at a high carbon monoxide pressure. The dissociating solvent, e.g. ethylene glycol, is of moderate coordinating ability, while sufficiently polar to solvate the transition metal as a complex cation along with a transition metal, carbonyl anion in solution at a decreased carbon monoxide pressure. The carbon monoxide pressure is reduced and the liquids are separated to recover the hydrogenated coal liquid as product. The dissociating solvent with the catalyst in ionized form is recycled to the hydrogenation step at the elevated carbon monoxide pressure for reforming the catalyst complex within fresh coal liquid.

  14. Electrical properties of transition metal hydrogen complexes in silicon

    SciTech Connect

    Weber, J.

    1998-12-31

    A summary is given on the electrical properties of transition-metal hydrogen complexes in silicon. Contrary to the general understanding, hydrogen leads not only to passivation of deep defect levels but also creates several new levels in the band gap due to electrically active transition-metal complexes. The author presents detailed data for Pt-H complexes and summarize briefly the results on the transition metals Ti, Co, Ni, Pd, and Ag. The introduction of hydrogen at room temperature by wet chemical etching, followed by specific annealing steps allows us to study the formation of the different complexes. In particular, depth profiles of the defect concentrations give an estimate of the number of hydrogen atoms involved in the complexes. Transition-metals binding up to four hydrogen atoms are identified.

  15. Radiation-induced hydrogen transfer in metals

    NASA Astrophysics Data System (ADS)

    Tyurin, Yu I.; Vlasov, V. A.; Dolgov, A. S.

    2015-11-01

    The paper presents processes of hydrogen (deuterium) diffusion and release from hydrogen-saturated condensed matters in atomic, molecular and ionized states under the influence of the electron beam and X-ray radiation in the pre-threshold region. The dependence is described between the hydrogen isotope release intensity and the current density and the electron beam energy affecting sample, hydrogen concentration in the material volume and time of radiation exposure to the sample. The energy distribution of the emitted positive ions of hydrogen isotopes is investigated herein. Mechanisms of radiation-induced hydrogen transfer in condensed matters are suggested.

  16. Hydrogen Embrittlement of Metals: Atomic hydrogen from a variety of sources reduces the ductility of many metals.

    PubMed

    Rogers, H C

    1968-03-01

    Hydrogen interacts with many metals to reduce their ductility (2) and frequently their strength also. It enters metals in the atomic form, diffusing very rapidly even at normal temperatures. During melting and fabrication, as well as during use, there are various ways in which metals come in contact with hydrogen and absorb it. The absorbed hydrogen may react irreversibly with oxides or carbides in some metals to produce a permanently degraded structure. It may also recombine at internal surfaces of defects of various types to form gaseous molecular hydrogen under pressures sufficiently high to form metal blisters when the recombination occurs near the outer surface. In other metals, brittle hydrides that lower the mechanical properties of the metal are formed. Another type of embrittlement is reversible, depending on the presence of hydrogen in the metal lattice during deformation for its occurrence. Under some conditions the failure may be delayed for long periods. A number of different mechanisms have been postulated to explain reversible embrittlement. According to some theories hydrogen interferes with the processes of plastic deformation in metals, while according to others it enhances the tendency for cracking. PMID:17775040

  17. Effects of high pressure hydrogen on metals

    NASA Technical Reports Server (NTRS)

    Chandler, W. T.; Walter, R. J.

    1970-01-01

    Hydrogen environment embrittlement causes failure of hydrogen storage vessels at and below design pressures of 5000 to 6000 psi. Investigation of thirty-five alloys determines their susceptibility to such embrittlement.

  18. Novel Composite Hydrogen-Permeable Membranes for Non-Thermal Plasma Reactors for the Decomposition of Hydrogen Sulfide

    SciTech Connect

    Morris D. Argyle; John F. Ackerman; Suresh Muknahallipatna; Jerry C. Hamann; Stanislaw Legowski; Guibling Zhao; Ji-Jun Zhang; Sanil John

    2005-10-01

    The goal of this experimental project is to design and fabricate a reactor and membrane test cell to dissociate hydrogen sulfide (H{sub 2}S) in a non-thermal plasma and recover hydrogen (H{sub 2}) through a superpermeable multi-layer membrane. Superpermeability of hydrogen atoms (H) has been reported by some researchers using membranes made of Group V transition metals (niobium, tantalum, vanadium, and their alloys), although it has yet to be confirmed in this study. A pulsed corona discharge (PCD) reactor has been fabricated and used to dissociate H{sub 2}S into hydrogen and sulfur. A nonthermal plasma cannot be produced in pure H{sub 2}S with our reactor geometry, even at discharge voltages of up to 30 kV, because of the high dielectric strength of pure H{sub 2}S ({approx}2.9 times higher than air). Therefore, H{sub 2}S was diluted in another gas with lower breakdown voltage (or dielectric strength). Breakdown voltages of H{sub 2}S in four balance gases (Ar, He, N{sub 2} and H{sub 2}) have been measured at different H{sub 2}S concentrations and pressures. Breakdown voltages are proportional to the partial pressure of H{sub 2}S and the balance gas. H{sub 2}S conversion and the reaction energy efficiency depend on the balance gas and H{sub 2}S inlet concentrations. With increasing H{sub 2}S concentrations, H{sub 2}S conversion initially increases, reaches a maximum, and then decreases. H{sub 2}S conversion in atomic balance gases, such as Ar and He, is more efficient than that in diatomic balance gases, such as N{sub 2} and H{sub 2}. These observations can be explained by the proposed reaction mechanism of H{sub 2}S dissociation in different balance gases. The results show that nonthermal plasmas are effective for dissociating H{sub 2}S into hydrogen and sulfur.

  19. Development and application of techniques for the microstructural characterization of hydrogen permeability in zirconium oxides

    NASA Astrophysics Data System (ADS)

    Glavicic, Michael G.

    Equipment and techniques have been developed for the microstructural characterization of Zirconium Oxide films grown on Zr-2.5%Nb pressure tubes. A thin film texture apparatus was constructed and used to measure the texture and stress present in thin zirconium oxide films. The general techniques developed employ a grazing incidence geometry which allows the texture and stress present in thin films (<1mum) of any type to be examined. In addition, a technique for the quantitative phase analysis of textured ZrO2 films grown on zirconium alloys using pole figure data has also been developed. Moreover, equipment was constructed to determine the relative porosity of oxide films grown on a metal substrate using an electrochemical method that measures the effective non-porous oxide thickness. The described equipment and techniques were then used to characterize a test matrix of specimens whose relative hydrogen pick-up was measured by Differential Scanning Calorimetry. The application of beat treatments to the substrates prior to oxide growth was found to have a pronounced effect upon the sharpness of the oxide texture. A correlation between the degree of sharpness of the oxide texture and hydrogen pick-up and corrosion rate of the substrate was also determined. In addition, based upon the new techniques developed it was determined that the tetragonal phase of the oxide is stress stabilized in a region close to the metal/oxide interface.

  20. High-Pressure Multi-Mbar Conductivity Experiments on Hydrogen: The Quest for Solid Metallic Hydrogen

    SciTech Connect

    Jackson, D

    2007-02-07

    Ultra-dense hydrogen has long been the subject of intense experimental and theoretical research due to the fascinating physics which arises from this supposedly simple system. The properties of ultra-dense hydrogen also have important implications for planetary physics, since the interiors of the giant planets Jupiter and Saturn are believed to consist of cores of dense, metallic hydrogen. Finally, ultra-dense hydrogen is of direct programmatic interest, and multiple-shock compression experiments on hydrogen to the metallic state have stimulated the accelerated development of new hydrogen equation-of-state (EOS) models used for ICF and other applications. The focus of our research has often been described as the ''Holy Grail'' of high-pressure physics research: The metallization of solid hydrogen. Metallic hydrogen has long been considered to be the prototypical system for the study of insulator-to-metal (I-M) transitions. Although metallic hydrogen (Z=1) may superficially appear to be a very simple material, it is in fact an extremely challenging system for theoretical analysis due to the presence of large zero-point atomic motions and the complete absence of any core electrons. Thus, solid metallic hydrogen promises to be a fascinating material. Among its predicted properties is the possibility of being a high temperature superconductor with a critical temperature T{sub c} of the order of {approx} 100K [1]. The successful metallization of solid hydrogen would be a groundbreaking scientific discovery and open up new frontiers in science and possibly technology as well.

  1. Metal dichalcogenides monolayers: novel catalysts for electrochemical hydrogen production.

    PubMed

    Pan, Hui

    2014-01-01

    Catalyst-driven electrolysis of water is considered as a "cleanest" way for hydrogen production. Finding cheap and abundant catalysts is critical to the large-scale implementation of the technology. Two-dimensional metal dichalcogenides nanostructures have attracted increasing attention because of their catalytic performances in water electrolysis. In this work, we systematically investigate the hydrogen evolution reduction of metal dichalcogenides monolayers based on density-functional-theory calculations. We find that metal disulfide monolayers show better catalytic performance on hydrogen production than other metal dichalcogenides. We show that their hydrogen evolution reduction strongly depends on the hydrogen coverage and the catalytic performance reduces with the increment of coverage because of hydrogenation-induced lower conductivity. We further show that the catalytic performance of vanadium disulfide monolayer is comparable to that of Pt at lower hydrogen coverage and the performance at higher coverage can be improved by hybridizing with conducting nanomaterials to enhance conductivity. These metal disulfide monolayers with lower overpotentials may apply to water electrolysis for hydrogen production. PMID:24967679

  2. Metal Dichalcogenides Monolayers: Novel Catalysts for Electrochemical Hydrogen Production

    PubMed Central

    Pan, Hui

    2014-01-01

    Catalyst-driven electrolysis of water is considered as a “cleanest” way for hydrogen production. Finding cheap and abundant catalysts is critical to the large-scale implementation of the technology. Two-dimensional metal dichalcogenides nanostructures have attracted increasing attention because of their catalytic performances in water electrolysis. In this work, we systematically investigate the hydrogen evolution reduction of metal dichalcogenides monolayers based on density-functional-theory calculations. We find that metal disulfide monolayers show better catalytic performance on hydrogen production than other metal dichalcogenides. We show that their hydrogen evolution reduction strongly depends on the hydrogen coverage and the catalytic performance reduces with the increment of coverage because of hydrogenation-induced lower conductivity. We further show that the catalytic performance of vanadium disulfide monolayer is comparable to that of Pt at lower hydrogen coverage and the performance at higher coverage can be improved by hybridizing with conducting nanomaterials to enhance conductivity. These metal disulfide monolayers with lower overpotentials may apply to water electrolysis for hydrogen production. PMID:24967679

  3. High temperature equation of state of metallic hydrogen

    SciTech Connect

    Shvets, V. T.

    2007-04-15

    The equation of state of liquid metallic hydrogen is solved numerically. Investigations are carried out at temperatures from 3000 to 20 000 K and densities from 0.2 to 3 mol/cm{sup 3}, which correspond both to the experimental conditions under which metallic hydrogen is produced on earth and the conditions in the cores of giant planets of the solar system such as Jupiter and Saturn. It is assumed that hydrogen is in an atomic state and all its electrons are collectivized. Perturbation theory in the electron-proton interaction is applied to determine the thermodynamic potentials of metallic hydrogen. The electron subsystem is considered in the randomphase approximation with regard to the exchange interaction and the correlation of electrons in the local-field approximation. The proton-proton interaction is taken into account in the hard-spheres approximation. The thermodynamic characteristics of metallic hydrogen are calculated with regard to the zero-, second-, and third-order perturbation theory terms. The third-order term proves to be rather essential at moderately high temperatures and densities, although it is much smaller than the second-order term. The thermodynamic potentials of metallic hydrogen are monotonically increasing functions of density and temperature. The values of pressure for the temperatures and pressures that are characteristic of the conditions under which metallic hydrogen is produced on earth coincide with the corresponding values reported by the discoverers of metallic hydrogen to a high degree of accuracy. The temperature and density ranges are found in which there exists a liquid phase of metallic hydrogen.

  4. Disposal pathway for tritiated reactive metals and tritiated hydrogen gas

    SciTech Connect

    Antoniazzi, A. B.; Morton, C. S.

    2008-07-15

    Kinectrics and its predecessor company Ontario Hydro Research Div. (a division of Ontario Hydro) had a fully operational tritium laboratory on site since the early 1980's. During those years numerous projects and experiments were undertaken using hydrogen and tritium for the most part. Metals with an affinity for hydrogen are commonly employed as scavengers of hydrogenic gases from process streams or as hydrogen storage mediums. The two most common of these metals used were depleted uranium and a zirconium-iron alloy (SAES St198). The break-up of Ontario Hydro through deregulation activities resulted in the building of a new, smaller, tritium laboratory and the decommissioning of the original tritium laboratory. Decommissioning activities resulted in the need to safely dispose of these reactive metals. Disposal of these metals is not straight forward. For safe, long term, disposal it has been decided to oxidize the metals in a controlled fashion. The oxidized beds, containing the metals, will be sent to a radioactive waste site for long term storage. Options for disposal of tritiated hydrogen gas are presented and discussed. This paper provides a disposal pathway for tritiated reactive metals and hydrogen thereby closing the loop in tritium handling. (authors)

  5. Hydrogen evolution by a metal-free electrocatalyst.

    PubMed

    Zheng, Yao; Jiao, Yan; Zhu, Yihan; Li, Lu Hua; Han, Yu; Chen, Ying; Du, Aijun; Jaroniec, Mietek; Qiao, Shi Zhang

    2014-01-01

    Electrocatalytic reduction of water to molecular hydrogen via the hydrogen evolution reaction may provide a sustainable energy supply for the future, but its commercial application is hampered by the use of precious platinum catalysts. All alternatives to platinum thus far are based on nonprecious metals, and, to our knowledge, there is no report about a catalyst for electrocatalytic hydrogen evolution beyond metals. Here we couple graphitic-carbon nitride with nitrogen-doped graphene to produce a metal-free hybrid catalyst, which shows an unexpected hydrogen evolution reaction activity with comparable overpotential and Tafel slope to some of well-developed metallic catalysts. Experimental observations in combination with density functional theory calculations reveal that its unusual electrocatalytic properties originate from an intrinsic chemical and electronic coupling that synergistically promotes the proton adsorption and reduction kinetics. PMID:24769657

  6. Hydrogen evolution by a metal-free electrocatalyst

    NASA Astrophysics Data System (ADS)

    Zheng, Yao; Jiao, Yan; Zhu, Yihan; Li, Lu Hua; Han, Yu; Chen, Ying; Du, Aijun; Jaroniec, Mietek; Qiao, Shi Zhang

    2014-04-01

    Electrocatalytic reduction of water to molecular hydrogen via the hydrogen evolution reaction may provide a sustainable energy supply for the future, but its commercial application is hampered by the use of precious platinum catalysts. All alternatives to platinum thus far are based on nonprecious metals, and, to our knowledge, there is no report about a catalyst for electrocatalytic hydrogen evolution beyond metals. Here we couple graphitic-carbon nitride with nitrogen-doped graphene to produce a metal-free hybrid catalyst, which shows an unexpected hydrogen evolution reaction activity with comparable overpotential and Tafel slope to some of well-developed metallic catalysts. Experimental observations in combination with density functional theory calculations reveal that its unusual electrocatalytic properties originate from an intrinsic chemical and electronic coupling that synergistically promotes the proton adsorption and reduction kinetics.

  7. NOVEL COMPOSITE HYDROGEN-PERMEABLE MEMBRANES FOR NON-THERMAL PLASMA REACTORS FOR THE DECOMPOSITION OF HYDROGEN SULFIDE

    SciTech Connect

    Morris D. Argyle; John F. Ackerman; Suresh Muknahallipatna; Jerry C. Hamann; Stanislaw Legowski; Ji-Jun Zhang; Guibing Zhao; Robyn J. Alcanzare; Linna Wang; Ovid A. Plumb

    2004-07-01

    The goal of this experimental project is to design and fabricate a reactor and membrane test cell to dissociate hydrogen sulfide (H{sub 2}S) in a non-thermal plasma and recover hydrogen (H{sub 2}) through a superpermeable multi-layer membrane. Superpermeability of hydrogen atoms (H) has been reported by some researchers using membranes made of Group V transition metals (niobium, tantalum, vanadium, and their alloys), although it has yet to be confirmed in this study. Experiments involving methane conversion reactions were conducted with a preliminary pulsed corona discharge reactor design in order to test and improve the reactor and membrane designs using a non-toxic reactant. This report details the direct methane conversion experiments to produce hydrogen, acetylene, and higher hydrocarbons utilizing a co-axial cylinder (CAC) corona discharge reactor, pulsed with a thyratron switch. The reactor was designed to accommodate relatively high flow rates (655 x 10{sup -6} m{sup 3}/s) representing a pilot scale easily converted to commercial scale. Parameters expected to influence methane conversion including pulse frequency, charge voltage, capacitance, residence time, and electrode material were investigated. Conversion, selectivity and energy consumption were measured or estimated. C{sub 2} and C{sub 3} hydrocarbon products were analyzed with a residual gas analyzer (RGA). In order to obtain quantitative results, the complex sample spectra were de-convoluted via a linear least squares method. Methane conversion as high as 51% was achieved. The products are typically 50%-60% acetylene, 20% propane, 10% ethane and ethylene, and 5% propylene. First Law thermodynamic energy efficiencies for the system (electrical and reactor) were estimated to range from 38% to 6%, with the highest efficiencies occurring at short residence time and low power input (low specific energy) where conversion is the lowest (less than 5%). The highest methane conversion of 51% occurred at a

  8. Gas chromatographic separation of hydrogen isotopes using metal hydrides

    SciTech Connect

    Aldridge, F.T.

    1984-05-09

    A study was made of the properties of metal hydrides which may be suitable for use in chromatographic separation of hydrogen isotopes. Sixty-five alloys were measured, with the best having a hydrogen-deuterium separation factor of 1.35 at 60/sup 0/C. Chromatographic columns using these alloys produced deuterium enrichments of up to 3.6 in a single pass, using natural abundance hydrogen as starting material. 25 references, 16 figures, 4 tables.

  9. Electrode formulation to reduce weld metal hydrogen and porosity

    SciTech Connect

    Liu, S.; Olson, D.L.; Ibarra, S.

    1994-12-31

    Residual weld metal hydrogen is a major concern in high strength steel welding, especially when the weld is performed under high cooling rate conditions. In the case of underwater wet welding, weld metal porosity is also of importance because of the water environment. The control of both problems can be achieved by means of pyrochemical reactions in the weld pool. The hydrogen-oxygen reaction and carbon-oxygen reaction are fundamental in the control of residual hydrogen in the weld metal and the amount of gas pores entrapped. A simple model was proposed to estimate weld metal residual hydrogen content by monitoring the weld pool deoxidation reactions. Potent deoxidizers such as aluminum will first react with oxygen in the liquid weld pool, followed by other elements present such as silicon and manganese. Carbon and hydrogen will be the last ones to react with oxygen prior to the iron atoms. The Ellingham-Richardson diagram frequently applied in describing steel and iron making processes was used in the modeling. Following the sequence of deoxidation, the chemical make-up of the gas pores and the amount of each chemical species in the pores could be estimated. Carbon monoxide and hydrogen were determined to be the major components in the weld pores. To minimize the amount of weld metal porosity and residual hydrogen content, specially designed consumables that will control the oxygen potential of the weld pool must be developed.

  10. Exploring metal hydrides using autoclave and multi-anvil hydrogenations

    NASA Astrophysics Data System (ADS)

    Puhakainen, Kati

    Metal hydride materials have been intensively studied for hydrogen storage applications. In addition to potential hydrogen economy applications, metal hydrides offer a wide variety of other interesting properties. For example, hydrogen-dominant materials, which are hydrides with the highest hydrogen content for a particular metal/semimetal composition, are predicted to display high-temperature superconductivity. On the other side of the spectrum are hydrides with small amounts of hydrogen (0.1 - 1 at.%) that are investigated as viable magnetic, thermoelectric or semiconducting materials. Research of metal hydride materials is generally important to gain fundamental understanding of metal-hydrogen interactions in materials. Hydrogenation of Zintl phases, which are defined as compounds between an active metal (alkali, alkaline earth, rare earth) and a p-block metal/semimetal, were attempted by a hot sintering method utilizing an autoclave loaded with gaseous hydrogen (< 9 MPa). Hydride formation competes with oxidative decomposition of a Zintl phase. The oxidative decomposition, which leads to a mixture of binary active metal hydride and p-block element, was observed for investigated aluminum (Al) and gallium (Ga) containing Zintl phases. However, a new phase Li2Al was discovered when Zintl phase precursors were synthesized. Using the single crystal x-ray diffraction (SCXRD), the Li2Al was found to crystallize in an orthorhombic unit cell (Cmcm) with the lattice parameters a = 4.6404(8) Å, b = 9.719(2) Å, and c = 4.4764(8) Å. Increased demand for materials with improved properties necessitates the exploration of alternative synthesis methods. Conventional metal hydride synthesis methods, like ball-milling and autoclave technique, are not responding to the demands of finding new materials. A viable alternative synthesis method is the application of high pressure for the preparation of hydrogen-dominant materials. Extreme pressures in the gigapascal ranges can open

  11. Interactions of Hydrogen Isotopes and Oxides with Metal Tubes

    SciTech Connect

    Glen R. Longhurst

    2008-08-01

    Understanding and accounting for interaction of hydrogen isotopes and their oxides with metal surfaces is important for persons working with tritium systems. Reported data from several investigators have shown that the processes of oxidation, adsorption, absorption, and permeation are all coupled and interactive. A computer model has been developed for predicting the interaction of hydrogen isotopes and their corresponding oxides in a flowing carrier gas stream with the walls of a metallic tube, particularly at low hydrogen concentrations. An experiment has been constructed to validate the predictive model. Predictions from modeling lead to unexpected experiment results.

  12. Interactions of hydrogen isotopes and oxides with metal tubes

    SciTech Connect

    Longhurst, G. R.; Cleaver, J.

    2008-07-15

    Understanding and accounting for interaction of hydrogen isotopes and their oxides with metal surfaces is important for persons working with tritium systems. Reported data from several investigators have shown that the processes of oxidation, adsorption, absorption, and permeation are all coupled and interactive. A computer model has been developed for predicting the interaction of hydrogen isotopes and their corresponding oxides in a flowing carrier gas stream with the walls of a metallic tube, particularly at low hydrogen concentrations. An experiment has been constructed to validate the predictive model. Predictions from modeling lead to unexpected experiment results. (authors)

  13. Determination of the Darcy permeability of porous media including sintered metal plugs

    NASA Technical Reports Server (NTRS)

    Frederking, T. H. K.; Hepler, W. A.; Yuan, S. W. K.; Feng, W. F.

    1986-01-01

    Sintered-metal porous plugs with a normal size of the order of 1-10 microns are used to evaluate the Darcy permeability of laminar flow at very small velocities in laminar fluids. Porous media experiment results and data adduced from the literature are noted to support the Darcy law analog for normal fluid convection in the laminar regime. Low temperature results suggest the importance of collecting room temperature data prior to runs at liquid He(4) temperatures. The characteristic length diagram gives a useful picture of the tolerance range encountered with a particular class of porous media.

  14. Hydrogen separation membrane on a porous substrate

    DOEpatents

    Song, Sun-Ju; Lee, Tae H.; Chen, Ling; Dorris, Stephen E.; Balachandran, Uthamalingam

    2011-06-14

    A hydrogen permeable membrane is disclosed. The membrane is prepared by forming a mixture of metal oxide powder and ceramic oxide powder and a pore former into an article. The article is dried at elevated temperatures and then sintered in a reducing atmosphere to provide a dense hydrogen permeable portion near the surface of the sintered mixture. The dense hydrogen permeable portion has a higher initial concentration of metal than the remainder of the sintered mixture and is present in the range of from about 20 to about 80 percent by volume of the dense hydrogen permeable portion.

  15. Ordered ground states of metallic hydrogen and deuterium

    NASA Technical Reports Server (NTRS)

    Ashcroft, N. W.

    1981-01-01

    The physical attributes of some of the more physically distinct ordered states of metallic hydrogen and metallic deuterium at T = 0 and nearby are discussed. The likelihood of superconductivity in both is considered with respect to the usual coupling via the density fluctuations of the ions.

  16. DEVELOPMENT OF A NON-NOBLE METAL HYDROGEN PURIFICATION SYSTEM

    SciTech Connect

    Korinko, P; Kyle Brinkman, K; Thad Adams, T; George Rawls, G

    2008-11-25

    Development of advanced hydrogen separation membranes in support of hydrogen production processes such as coal gasification and as front end gas purifiers for fuel cell based system is paramount to the successful implementation of a national hydrogen economy. Current generation metallic hydrogen separation membranes are based on Pd-alloys. Although the technology has proven successful, at issue is the high cost of palladium. Evaluation of non-noble metal based dense metallic separation membranes is currently receiving national and international attention. The focus of the reported work was to develop a scaled reactor with a VNi-Ti alloy membrane to replace a production Pd-alloy tube-type purification/diffuser system.

  17. Heat-actuated metal hydride hydrogen compressor testing

    SciTech Connect

    Piraino, M.; Metz, P.D.; Nienke, J.L.; Freitelberg, A.S.; Rahaman, R.S.

    1985-09-01

    Electric utilities use hydrogen for cooling turbine generators. The majority of the utilities purchase the gas from industrial gas markets. On-site electrolytic hydrogen production may prove advantageous both logistically and economically. In order to demonstrate this concept, Public Service Electric and Gas Co. (PSE and G) and EPRI installed an electrolyzer at the Sewaren (NJ) station. To compress the gas, PSE and G purchased a heat-activated metal hydride compressor from Ergenics, Inc. This report describes closed- and open-cycle tests conducted on this metal hydride hydrogen compressor. Test systems, plans, methodologies, and results are presented. A brief discussion evaluates these performance results, addresses some of the practical problems involved with electrolyzer-compressor interface, and compares the costs and benefits of metal hydride versus mechanical hydrogen compression for utility generator cooling.

  18. Production of negative hydrogen ions on metal grids

    SciTech Connect

    Oohara, W.; Maetani, Y.; Takeda, Takashi; Takeda, Toshiaki; Yokoyama, H.; Kawata, K.

    2015-03-15

    Negative hydrogen ions are produced on a nickel grid with positive-ion irradiation. In order to investigate the production mechanism, a copper grid without the chemisorption of hydrogen atoms and positive helium ions without negative ionization are used for comparison. Positive hydrogen ions reflected on the metal surface obtain two electrons from the surface and become negatively ionized. It is found that the production yield of negative ions by desorption ionization of chemisorbed hydrogen atoms seems to be small, and the production is a minor mechanism.

  19. Interaction of hydrogen with transition metal fcc(111) surfaces

    NASA Astrophysics Data System (ADS)

    Löautber, R.; Hennig, D.

    1997-02-01

    The interaction of atomic hydrogen with the fcc(111) surfaces of Pd and Rh was investigated theoretically with an ab initio method, to find out the differences and similiarities between these neighboring metals. At the Rh surface the hcp site of the threefold-coordinated adsorption sites is preferred, while at Pd almost no difference between the hcp and fcc sites was found. For Pd, the occupation of subsurface positions was calculated to be more stable than bulklike positions. The energy gain caused by hydrogen absorption in subsurface positions is only about 100 meV lower than for hydrogen adsorption at the surface. In contrast, for Rh, significant differences between adsorption and absorption were calculated. The diffusion barrier for hydrogen diffusion from surface to subsurface positions was calculated and compared to the diffusion barrier in bulk. The hydrogen-induced work-function changes for the considered 4d transition-metal surfaces were positive for coverage θ=1.

  20. General model of electrochemical hydrogen absorption into metals

    SciTech Connect

    Lasia, A.; Gregoire, D.

    1995-10-01

    A general model for the hydrogen adsorption and hydrogen absorption into metals has been proposed. It includes reactions of hydrogen evolution M+H{sub 2}O+e=MH{sub ads}+OH{sup {minus}}; MH{sub ads}+H{sub 2}O+e=M+H{sub 2}+OH{sup {minus}}; and 2MH{sub ads}+2M+H{sub 2}; hydrogen absorption MH{sub ads}+MH{sub abs}; and hydrogen diffusion into metal. This problem leads to a system of differential equations which was solved using the differential algebraic equations method. Solutions were obtained for constant potential and constant current charging/discharging in the case of semi-infinite and finite length diffusion for planar, spherical, and cylindrical diffusion. Numerical solutions give new information about the reaction mechanism and may be useful in the determination of the kinetics of these processes.

  1. Influence of gaseous hydrogen on metals

    NASA Technical Reports Server (NTRS)

    Walter, R. J.; Chandler, W. T.

    1973-01-01

    Tensile, fracture toughness, threshold stress intensity for sustained-load crack growth, and cyclic and sustained load crack growth rate measurements were performed on a number of alloys in high-pressure hydrogen and helium environments. The results of tensile tests performed in 34.5 MN/m2 (5000 psi) hydrogen indicated that Inconel 625 was considerable embrittled at ambient temperature but was not embrittled at 144 K (-200 F). The tensile properties of AISI 321 stainless steel were slightly reduced at ambient temperature and 144 K (-200 F). The tensile properties of Ti-5Al-2.5 Sn ELI were essentially unaffected by hydrogen at 144 K (-200 F). OFHC copper was not embrittled by hydrogen at ambient temperature or at 144 K (-200 F).

  2. Non-conventional hydrogen bonds: pterins-metal anions.

    PubMed

    Vargas, Rubicelia; Martínez, Ana

    2011-07-28

    In this paper, we present an analysis of the interaction of metal ions (Cu, Ag and Au) with three different pterins (pterin, isoxanthopterin and sepiapterin) to provide insights concerning the formation of conventional and non-conventional H bonds. Density functional theory calculations were performed in order to reveal the optimized structures of pterin molecules, dimers and tetramers compounds, both with and without metal anions (M). The interaction with small metal clusters (M(3)) is also considered. The formation of different systems is characterized in terms of the structural parameters and hydrogen binding energies (HBE). The HBE values for pterin-M systems presented in this study lie between 22 and 60 kcal mol(-1) and can therefore be classified as strong conventional and strong non-conventional hydrogen bonds. The HBE with small metal clusters (pterin-M(3)) are smaller than the HBE with metal atoms. Vertical electron detachment energies (VEDEs) are also reported in order to analyze the influence of the hydrogen bond on electronic properties. A direct correlation between VEDEs and HBE was found for pterin-M and pterin-M(3) complexes; i.e. as the VEDEs increase, the HBE also augment. The only exception is with Ag(3). The main conclusion derived from this study is that the strong non-conventional hydrogen bonds formed between pterins, dimers and tetramers do not affect the formation of conventional hydrogen bonds between pterins but they do influence the VEDEs. PMID:21695329

  3. Modeling of Hydrogen Retention in Metallic Plasma Facing Components

    NASA Astrophysics Data System (ADS)

    Guterl, Jerome; Smirnov, R.

    2012-10-01

    The retention of hydrogen isotopes in the vacuum vessel of the ITER device is a critical plasma wall interaction issue for safety (tritium inventory) and operational reasons (hydrogen recycling). In particular, long-term retention of hydrogen have been observed both in the near-surface region and in the bulk of material in experiments reproducing ITER first wall conditions [1]. In this work, we present a modeling of the long-term hydrogen retention in a plasma exposed metallic walltaking into account processes both at the wall surface (material erosion, hydrogen adsorption, etc.) and in the bulk (hydrogen implantation, creation of trap sites, etc.). Using numerical simulations, the model is applied to analyze retention as a function of various parameters of the wall irradiated by hydrogen plasma for beryllium wall. Depth profiles of retained hydrogen for several ion energies as well as dependencies of retained hydrogen amount on wall temperature are obtained, showing good agreement with experimental data. The role of radiation-induced point-defects in the hydrogen retention as well as other aspects of retention are discussed in application to ITER conditions. [4pt] [1] R.A. Anderl, et al., J. Nucl. Mater. 273 (1999) 1

  4. Permeability control of metal ions using temperature- and pH-sensitive gel membranes

    NASA Astrophysics Data System (ADS)

    Hendri, John; Hiroki, Akihiro; Maekawa, Yasunari; Yoshida, Masaru; Katakai, Ryoichi

    2001-03-01

    Temperature- and pH-sensitive copolymer gels were synthesized by the simultaneously occurring radiation-induced polymerization and self-bridging of acryloyl- L-proline methyl ester (A-ProOMe) with acrylic acid (AAc) in aqueous solutions. The gel swelling behavior and the metal permeation characteristic of its gel membrane were investigated with regard to very slight changes of temperature and pH. The pH threshold of the swelling of a copoly(A-ProOMe/AAc, 70/30 mol%) gel in the range of 5-30°C lay in the region between pH 4.0 and 5.0. The permeability results of metal ions showed that at 40°C the gel membrane blocks the permeation of lithium (Li) and cesium (Cs) ions at pH values lower than 4.75 and 4.60, respectively. The permselectivity ( PLi/Cs value) of the two metal ions at 30°C was also studied and, as a result, its value was obtained to be 1.33 at pH 4.65 and 30°C. This permeation study indicates that the selective metal separation of copoly(A-ProOMe/AAc) gel membranes can be controlled by changing temperature and pH values.

  5. Use of triphenyl phosphate as risk mitigant for metal amide hydrogen storage materials

    DOEpatents

    Cortes-Concepcion, Jose A.; Anton, Donald L.

    2016-04-26

    A process in a resulting product of the process in which a hydrogen storage metal amide is modified by a ball milling process using an additive of TPP. The resulting product provides for a hydrogen storage metal amide having a coating that renders the hydrogen storage metal amide resistant to air, ambient moisture, and liquid water while improving useful hydrogen storage and release kinetics.

  6. The temperature variation of hydrogen diffusion coefficients in metal alloys

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1990-01-01

    Hydrogen diffusion coefficients were measured as a function of temperature for a few metal alloys using an electrochemical evolution technique. Results from these measurements are compared to those obtained by the time-lag method. In all cases, diffusion coefficients obtained by the electrochemical method are larger than those by the time-lag method by an order of magnitude or more. These differences are attributed mainly to hydrogen trapping.

  7. Membrane for hydrogen recovery from streams containing hydrogen sulfide

    DOEpatents

    Agarwal, Pradeep K.

    2007-01-16

    A membrane for hydrogen recovery from streams containing hydrogen sulfide is provided. The membrane comprises a substrate, a hydrogen permeable first membrane layer deposited on the substrate, and a second membrane layer deposited on the first layer. The second layer contains sulfides of transition metals and positioned on the on a feed side of the hydrogen sulfide stream. The present invention also includes a method for the direct decomposition of hydrogen sulfide to hydrogen and sulfur.

  8. Hydrogen evolution from water through metal sulfide reactions.

    PubMed

    Saha, Arjun; Raghavachari, Krishnan

    2013-11-28

    Transition metal sulfides play an important catalytic role in many chemical reactions. In this work, we have conducted a careful computational study of the structures, electronic states, and reactivity of metal sulfide cluster anions M2S(X)(-) (M = Mo and W, X = 4-6) using density functional theory. Detailed structural analysis shows that these metal sulfide anions have ground state isomers with two bridging sulfide bonds, notably different in some cases from the corresponding oxides with the same stoichiometry. The chemical reactivity of these metal sulfide anions with water has also been carried out. After a thorough search on the reactive potential energy surface, we propose several competitive, energetically favorable, reaction pathways that lead to the evolution of hydrogen. Selectivity in the initial water addition and subsequent hydrogen migration are found to be the key steps in all the proposed reaction channels. Initial adsorption of water is most favored involving a terminal metal sulfur bond in Mo2S4(-) isomers whereas the most preferred orientation for water addition involves a bridging metal sulfur bond in the case of W2S4(-) and M2S5(-) isomers. In all the lowest energy H2 elimination steps, the interacting hydrogen atoms involve a metal hydride and a metal hydroxide (or thiol) group. We have also observed a higher energy reaction channel where the interacting hydrogen atoms in the H2 elimination step involve a thiol (-SH) and a hydroxyl (-OH) group. For all the reaction pathways, the Mo sulfide reactions involve a higher barrier than the corresponding W analogues. We observe for both metals that reactions of M2S4(-) and M2S5(-) clusters with water to liberate H2 are exothermic and involve modest free energy barriers. However, the reaction of water with M2S6(-) is highly endothermic with a considerable barrier due to saturation of the local bonding environment. PMID:24289348

  9. Optical hydrogen sensors based on metal-hydrides

    NASA Astrophysics Data System (ADS)

    Slaman, M.; Westerwaal, R.; Schreuders, H.; Dam, B.

    2012-06-01

    For many hydrogen related applications it is preferred to use optical hydrogen sensors above electrical systems. Optical sensors reduce the risk of ignition by spark formation and are less sensitive to electrical interference. Currently palladium and palladium alloys are used for most hydrogen sensors since they are well known for their hydrogen dissociation and absorption properties at relatively low temperatures. The disadvantages of palladium in sensors are the low optical response upon hydrogen loading, the cross sensitivity for oxygen and carbon, the limited detection range and the formation of micro-cracks after some hydrogen absorption/desorption cycles. In contrast to Pd, we find that the use of magnesium or rear earth bases metal-hydrides in optical hydrogen sensors allow tuning of the detection levels over a broad pressure range, while maintaining a high optical response. We demonstrate a stable detection layer for detecting hydrogen below 10% of the lower explosion limit in an oxygen rich environment. This detection layer is deposited at the bare end of a glass fiber as a micro-mirror and is covered with a thin layer of palladium. The palladium layer promotes the hydrogen uptake at room temperature and acts as a hydrogen selective membrane. To protect the sensor for a long time in air a final layer of a hydrophobic fluorine based coating is applied. Such a sensor can be used for example as safety detector in automotive applications. We find that this type of fiber optic hydrogen sensor is also suitable for hydrogen detection in liquids. As example we demonstrate a sensor for detecting a broad range of concentrations in transformer oil. Such a sensor can signal a warning when sparks inside a high voltage power transformer decompose the transformer oil over a long period.

  10. Heat transfer analysis of metal hydrides in metal-hydrogen secondary batteries

    NASA Technical Reports Server (NTRS)

    Onischak, M.; Dharia, D.; Gidaspow, D.

    1976-01-01

    The heat transfer between a metal-hydrogen secondary battery and a hydrogen-storing metal hydride was studied. Temperature profiles of the endothermic metal hydrides and the metal-hydrogen battery were obtained during discharging of the batteries assuming an adiabatic system. Two hydride materials were considered in two physical arrangements within the battery system. In one case the hydride is positioned in a thin annular region about the battery stack; in the other the hydride is held in a tube down the center of the stack. The results show that for a typical 20 ampere-hour battery system with lanthanum pentanickel hydride as the hydrogen reservoir the system could perform successfully.

  11. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, Michael A.; Hallen, Richard T.

    1990-01-01

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately .pi.-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancilliary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H.sub.2 from mixed gas streams such as the produce gas from coal gasification processes.

  12. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, Michael A.; Hallen, Richard T.

    1991-01-01

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately .pi.-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancilliary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H.sub.2 from mixed gas streams such as the product gas from coal gasification processes.

  13. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, M.A.; Hallen, R.T.

    1990-08-28

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately [pi]-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancillary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H[sub 2] from mixed gas streams such as the producer gas from coal gasification processes. 3 figs.

  14. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, M.A.; Hallen, R.T.

    1991-10-15

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately [pi]-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancillary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H[sub 2] from mixed gas streams such as the product gas from coal gasification processes. 3 figures.

  15. Extraction of effective permittivity and permeability of metallic powders in the microwave range

    NASA Astrophysics Data System (ADS)

    Galek, T.; Porath, K.; Burkel, E.; van Rienen, U.

    2010-03-01

    In this work, effective electric permittivity and magnetic permeability of metallic-dielectric mixtures are extracted from electromagnetic full 3D simulation data in the microwave range. The numerical method used here is the finite integration technique with periodic boundary conditions. Simulated mixtures have periodic extend in directions perpendicular to the direction of the plane wave. Thus, it is sufficient to analyze a unit element in order to extract the effective electric and magnetic properties. Using this procedure, the behavior of fine copper powders irradiated by microwaves at a frequency of 2.45 GHz is simulated. Then, the relation between particle size and the mixture's effective properties is studied. By introducing a thin copper oxide or conductive layer it is possible to emulate the effective properties of metallic powder compacts in the early stage of sintering. Thus, this work contributes to improving the insight into the mechanisms of microwave absorption in powders of conductive materials in contrast to non-absorption in bulk metals.

  16. Composite metal-hydrogen electrodes for metal-hydrogen batteries. Final report, October 1, 1993--April 15, 1997

    SciTech Connect

    Ruckman, M.W.; Strongin, M.; Weismann, H.

    1997-04-01

    The purpose of this project is to develop and conduct a feasibility study of metallic thin films (multilayered and alloy composition) produced by advanced sputtering techniques for use as anodes in Ni-metal hydrogen batteries that would be deposited as distinct anode, electrolyte and cathode layers in thin film devices. The materials could also be incorporated in secondary consumer batteries (i.e. type AF(4/3 or 4/5)) which use electrodes in the form of tapes. The project was based on pioneering studies of hydrogen uptake by ultra-thin Pd-capped Nb films, these studies suggested that materials with metal-hydrogen ratios exceeding those of commercially available metal hydride materials and fast hydrogen charging and discharging kinetics could be produced. The project initially concentrated on gas phase and electrochemical studies of Pd-capped niobium films in laboratory-scale NiMH cells. This extended the pioneering work to the wet electrochemical environment of NiMH batteries and exploited advanced synchrotron radiation techniques not available during the earlier work to conduct in-situ studies of such materials during hydrogen charging and discharging. Although batteries with fast charging kinetics and hydrogen-metal ratios approaching unity could be fabricated, it was found that oxidation, cracking and corrosion in aqueous solutions made pure Nb films and multilayers poor candidates for battery application. The project emphasis shifted to alloy films based on known elemental materials used for NiMH batteries. Although commercial NiMH anode materials contain many metals, it was found that 0.24 {mu}m thick sputtered Zr-Ni films cycled at least 50 times with charging efficiencies exceeding 95% and [H]/[M] ratios of 0.7-1.0. Multilayered or thicker Zr-Ni films could be candidates for a thin film NiMH battery that may have practical applications as an integrated power source for modern electronic devices.

  17. HYDROGEN EMBRITTLEMENT OF METALS: A PRIMER FOR THE FAILURE ANALYST

    SciTech Connect

    Louthan, M

    2008-01-31

    Hydrogen reduces the service life of many metallic components. Such reductions may be manifested as blisters, as a decrease in fatigue resistance, as enhanced creep, as the precipitation of a hydride phase and, most commonly, as unexpected, macroscopically brittle failure. This unexpected, brittle fracture is commonly termed hydrogen embrittlement. Frequently, hydrogen embrittlement occurs after the component has been is service for a period of time and much of the resulting fracture surface is distinctly intergranular. Many failures, particularly of high strength steels, are attributed to hydrogen embrittlement simply because the failure analyst sees intergranular fracture in a component that served adequately for a significant period of time. Unfortunately, simply determining that a failure is due to hydrogen embrittlement or some other form of hydrogen induced damage is of no particular help to the customer unless that determination is coupled with recommendations that provide pathways to avoid such damage in future applications. This paper presents qualitative and phenomenological descriptions of the hydrogen damage processes and outlines several metallurgical recommendations that may help reduce the susceptibility of a particular component or system to the various forms of hydrogen damage.

  18. Dependence of hydrogen permeabilities of isotropic graphites on the pore structure

    NASA Astrophysics Data System (ADS)

    Yamawaki, M.; Yamaguchi, K.; Suzuki, Y.; Tanaka, S.

    1991-03-01

    The permeation behavior of molecular hydrogen through isotropic graphites is investigated. The observed dependences of the permeation rate on pressure, specimen thickness, temperature and molecular weight suggest that hydrogen permeates by molecular flow, probably through open pores. A simple pore structure model is developed and is compared with the experimental results. It is revealed that hydrogen permeation through isotropic graphites depends not only on the pore size or the porosity, but also on the pore size distribution and tortuosity.

  19. Detection of hydrogen attack in base metal and weld HAZ

    SciTech Connect

    Birring, A.S.; Elliot, J.; Hsiao, C.P.

    1995-12-01

    Hydrogen attack is known to occur in C-1/2Mo steels operating at high temperature and pressure in the hydrogen environment. The attack occurs in the base metal as well as in the weld heat affected zone (HAZ) of vessels and pipes. Hydrogen attack reduces the strength and toughness of steel and, if left undetected, can lead to component failure. Failures can be avoided by timely application of reliable and sensitive nondestructive techniques. Ultrasonic techniques were developed and applied to detect hydrogen attack in both the base metal and weld HAZ attack. Ultrasonic backscatter and velocity ratio techniques were applied for detection of base metal attack. These techniques are, however, not suitable for detection of HAZ attack. Conventional shear wave examination is currently used for HAZ inspection. This method can detect large cracks but is not sensitive to detect microcracks produced by hydrogen attack. A combination of two techniques was developed for detection of HAZ attack. These techniques are: contact focused angle beam S-wave and pitch-catch L-wave. The first technique focuses the beam using an acoustic lens while the second technique uses the intersection point of the two pitch-catch beam axes to illuminate the HAZ zone. Both the focused and pitch-catch techniques were applied on samples with simulated HAZ attack. The techniques were successful in detecting simulated attack.

  20. Nanoporous, Metal Carbide, Surface Diffusion Membranes for High Temperature Hydrogen Separations

    SciTech Connect

    Way, J.; Wolden, Colin

    2013-09-30

    Colorado School of Mines (CSM) developed high temperature, hydrogen permeable membranes that contain no platinum group metals with the goal of separating hydrogen from gas mixtures representative of gasification of carbon feedstocks such as coal or biomass in order to meet DOE NETL 2015 hydrogen membrane performance targets. We employed a dual synthesis strategy centered on transition metal carbides. In the first approach, novel, high temperature, surface diffusion membranes based on nanoporous Mo{sub 2}C were fabricated on ceramic supports. These were produced in a two step process that consisted of molybdenum oxide deposition followed by thermal carburization. Our best Mo{sub 2}C surface diffusion membrane achieved a pure hydrogen flux of 367 SCFH/ft{sup 2} at a feed pressure of only 20 psig. The highest H{sub 2}/N{sub 2} selectivity obtained with this approach was 4.9. A transport model using “dusty gas” theory was derived to describe the hydrogen transport in the Mo{sub 2}C coated, surface diffusion membranes. The second class of membranes developed were dense metal foils of BCC metals such as vanadium coated with thin (< 60 nm) Mo{sub 2}C catalyst layers. We have fabricated a Mo{sub 2}C/V composite membrane that in pure gas testing delivered a H{sub 2} flux of 238 SCFH/ft{sup 2} at 600 °C and 100 psig, with no detectable He permeance. This exceeds the 2010 DOE Target flux. This flux is 2.8 times that of pure Pd at the same membrane thickness and test conditions and over 79% of the 2015 flux target. In mixed gas testing we achieved a permeate purity of ≥99.99%, satisfying the permeate purity milestone, but the hydrogen permeance was low, ~0.2 SCFH/ft{sup 2}.psi. However, during testing of a Mo{sub 2}C coated Pd alloy membrane with DOE 1 feed gas mixture a hydrogen permeance of >2 SCFH/ft{sup 2}.psi was obtained which was stable during the entire test, meeting the permeance associated with the 2010 DOE target flux. Lastly, the Mo{sub 2}C/V composite

  1. Cascades for hydrogen isotope separation using metal hydrides

    SciTech Connect

    Hill, F.B.; Grzetic, V.

    1982-01-01

    Designs are presented for continuous countercurrent hydrogen isotope separation cascades based on the use of metal hydrides. The cascades are made up of pressure swing adsorption (PSA) or temperature swing adsorption (TSA) stages. The designs were evolved from consideration of previously conducted studies of the separation performance of four types of PSA and TSA processes.

  2. Using Hydrogen Balloons to Display Metal Ion Spectra

    ERIC Educational Resources Information Center

    Maynard, James H.

    2008-01-01

    We have optimized a procedure for igniting hydrogen-filled balloons containing metal salts to obtain the brightest possible flash while minimizing the quantity of airborne combustion products. We report air quality measurements in a lecture hall immediately after the demonstration. While we recommend that this demonstration be done outdoors or in…

  3. Electrocatalytic hydrogenation and deoxygenation of glucose on solid metal electrodes.

    PubMed

    Kwon, Youngkook; Koper, Marc T M

    2013-03-01

    This Full Paper addresses the electrocatalytic hydrogenation of glucose to sorbitol or 2-deoxysorbitol on solid metal electrodes in neutral media. Combining voltammetry and online product analysis with high-performance liquid chromatography (HPLC), provides both qualitative and quantitative information regarding the reaction products as a function of potential. Three groups of catalysts clearly show affinities toward: (1) hydrogen formation [on early transition metals (Ti, V, Cr, Mn, Zr, Nb, Mo, Hf, Ta, We, and Re) and platinum group metals (Ru, Rh, Ir, and Pt)], (2) sorbitol formation [on late transition metals (Fe, Co, Ni, Cu, Pd, Au, and Ag) and Al (sp metal)], and (3) sorbitol and 2-deoxysorbitol formation [on post-transition metals (In, Sn, Sb, Pb, and Bi), as well as Zn and Cd (d metals)]. Ni shows the lowest overpotential for the onset of sorbitol formation (-0.25 V) whereas Pb generates sorbitol with the highest yield (<0.7 mM cm(-2) ). Different from a smooth Pt electrode, a large-surface-area Pt/C electrode hydrogenates glucose to sorbitol from -0.21 V with relatively low current. This emphasizes the importance of the active sites and the surface area of the catalyst. The mechanism to form 2-deoxysorbitol from glucose and/or fructose is discussed according to the observed reaction products. The yield and selectivity of hydrogenated products are highly sensitive to the chemical nature and state of the catalyst surface. PMID:23345067

  4. Treatment of percolate from metal sulfide mine tailings with a permeable reactive barrier of transformed red mud.

    PubMed

    Zijlstra, J J P; Dessì, R; Peretti, R; Zucca, A

    2010-04-01

    Metal sulfide tailings of the Sardinian (Italy) abandoned Baccu Locci arsenic mine show high concentrations of aluminum, arsenic, cadmium, copper, manganese, lead, and zinc in acid percolate (pH = 4) and have been classified as "dangerous waste." This paper shows that the release of toxic metals can be strongly reduced when the tailings are placed on a reactive permeable bed (7 wt %) of porous, alkaline pellets of transformed red mud (TRM). During a laboratory percolation test, two columns with 80 kg of waste, of which one contained a bottom layer of TRM pellets, were each alimented with 600 L of de-ionized water. Comparing pH, electroconductivity, metal, and sulfate concentrations of collected percolate from both columns demonstrates efficient neutralization (pH = 7.4) and removal of metals (80 to 99%) for the column with the permeable reactive bottom layer. PMID:20432649

  5. The metallization and superconductivity of dense hydrogen sulfide

    NASA Astrophysics Data System (ADS)

    Li, Yinwei; Hao, Jian; Liu, Hanyu; Li, Yanling; Ma, Yanming

    2014-05-01

    Hydrogen sulfide (H2S) is a prototype molecular system and a sister molecule of water (H2O). The phase diagram of solid H2S at high pressures remains largely unexplored arising from the challenges in dealing with the pressure-induced weakening of S-H bond and larger atomic core difference between H and S. Metallization is yet achieved for H2O, but it was observed for H2S above 96 GPa. However, the metallic structure of H2S remains elusive, greatly impeding the understanding of its metallicity and the potential superconductivity. We have performed an extensive structural study on solid H2S at pressure ranges of 10-200 GPa through an unbiased structure prediction method based on particle swarm optimization algorithm. Besides the findings of candidate structures for nonmetallic phases IV and V, we are able to establish stable metallic structures violating an earlier proposal of elemental decomposition into sulfur and hydrogen [R. Rousseau, M. Boero, M. Bernasconi, M. Parrinello, and K. Terakura, Phys. Rev. Lett. 85, 1254 (2000)]. Our study unravels a superconductive potential of metallic H2S with an estimated maximal transition temperature of ˜80 K at 160 GPa, higher than those predicted for most archetypal hydrogen-containing compounds (e.g., SiH4, GeH4, etc.).

  6. Metal hydride hydrogen compression: Recent advances and future prospects

    DOE PAGESBeta

    Bowman, Jr., Robert C.; Yartys, Volodymyr A.; Lototskyy, Mykhaylo V.; Linkov, Vladimir; Grant, David; Stuart, Alastair; Eriksen, Jon; Denys, Roman

    2016-03-17

    Metal hydride (MH) thermal sorption compression is one of the more important applications of the metal hydrides. The present paper reviews recent advances in the field based on the analysis of the fundamental principles of this technology. The performances when boosting hydrogen pressure, along with two- and three-step compression units are analyzed. The paper includes also a theoretical modeling of a two-stage compressor aimed at both describing the performance of the experimentally studied systems, but, also, on their optimization and design of more advanced MH compressors. Business developments in the field are reviewed for the Norwegian company HYSTORSYS AS andmore » the South African Institute for Advanced Materials Chemistry. Finally, future prospects are outlined presenting the role of the metal hydride compression in the overall development of the hydrogen driven energy systems. Lastly, the work is based on the analysis of the development of the technology in Europe, USA and South Africa.« less

  7. Replacing precious metals with carbide catalysts for hydrogenation reactions

    SciTech Connect

    Ruijun, Hou; Chen, Jingguang G.; Chang, Kuan; Wang, Tiefeng

    2015-03-03

    Molybdenum carbide (Mo₂C and Ni/Mo₂C) catalysts were compared with Pd/SiO₂ for the hydrogenation of several diene molecules, 1,3- butadiene, 1,3- and 1,4-cyclohexadiene (CHD). Compared to Pd/SiO₂, Mo₂C showed similar hydrogenation rate for 1,3-butadiene and 1,3-CHD and even higher rate for 1,4-CHD, but with significant deactivation rate for 1,3-CHD hydrogenation. However, the hydrogenation activity of Mo₂C could be completely regenerated by H₂ treatment at 723 K for the three molecules. The Ni modified Mo₂C catalysts retained similar activity for 1,3-butadiene hydrogenation with significantly enhanced selectivity for 1-butene production. The 1-butene selectivity increased with increasing Ni loading below 15%. Among the Ni modified Mo₂C catalysts, 8.6%Ni/Mo₂C showed the highest selectivity to 1-butene, which was even higher selectivity than that over Pd/SiO₂. Compared to Pd/SiO₂, both Mo₂C and Ni/Mo₂C showed combined advantages in hydrogenation activity and catalyst cost reduction, demonstrating the potential to use less expensive carbide catalysts to replace precious metals for hydrogenation reactions.

  8. Replacing precious metals with carbide catalysts for hydrogenation reactions

    DOE PAGESBeta

    Ruijun, Hou; Chen, Jingguang G.; Chang, Kuan; Wang, Tiefeng

    2015-03-03

    Molybdenum carbide (Mo₂C and Ni/Mo₂C) catalysts were compared with Pd/SiO₂ for the hydrogenation of several diene molecules, 1,3- butadiene, 1,3- and 1,4-cyclohexadiene (CHD). Compared to Pd/SiO₂, Mo₂C showed similar hydrogenation rate for 1,3-butadiene and 1,3-CHD and even higher rate for 1,4-CHD, but with significant deactivation rate for 1,3-CHD hydrogenation. However, the hydrogenation activity of Mo₂C could be completely regenerated by H₂ treatment at 723 K for the three molecules. The Ni modified Mo₂C catalysts retained similar activity for 1,3-butadiene hydrogenation with significantly enhanced selectivity for 1-butene production. The 1-butene selectivity increased with increasing Ni loading below 15%. Among the Nimore » modified Mo₂C catalysts, 8.6%Ni/Mo₂C showed the highest selectivity to 1-butene, which was even higher selectivity than that over Pd/SiO₂. Compared to Pd/SiO₂, both Mo₂C and Ni/Mo₂C showed combined advantages in hydrogenation activity and catalyst cost reduction, demonstrating the potential to use less expensive carbide catalysts to replace precious metals for hydrogenation reactions.« less

  9. On-board hydrogen storage system using metal hydride

    SciTech Connect

    Heung, L.K.

    1997-07-01

    A hydrogen powered hybrid electric bus has been developed for demonstration in normal city bus service in the City of Augusta, Georgia, USA. The development team, called H2Fuel Bus Team, consists of representatives from government, industry and research institutions. The bus uses hydrogen to fuel an internal combustion engine which drives an electric generator. The generator charges a set of batteries which runs the electric bus. The hydrogen fuel and the hybrid concept combine to achieve the goal of near-zero emission and high fuel efficiency. The hydrogen fuel is stored in a solid form using an on-board metal hydride storage system. The system was designed for a hydrogen capacity of 25 kg. It uses the engine coolant for heat to generate a discharge pressure higher than 6 atm. The operation conditions are temperature from ambient to 70 degrees C, hydrogen discharge rate to 6 kg/hr, and refueling time 1.5 hours. Preliminary tests showed that the performance of the on-board storage system exceeded the design requirements. Long term tests have been planned to begin in 2 months. This paper discusses the design and performance of the on-board hydrogen storage system.

  10. Structural tailoring of hydrogen-bonded poly(acrylic acid)/poly(ethylene oxide) multilayer thin films for reduced gas permeability.

    PubMed

    Xiang, Fangming; Ward, Sarah M; Givens, Tara M; Grunlan, Jaime C

    2015-02-01

    Hydrogen bonded poly(acrylic acid) (PAA)/poly(ethylene oxide) (PEO) layer-by-layer assemblies are highly elastomeric, but more permeable than ionically bonded thin films. In order to expand the use of hydrogen-bonded assemblies to applications that require a better gas barrier, the effect of assembling pH on the oxygen permeability of PAA/PEO multilayer thin films was investigated. Altering the assembling pH leads to significant changes in phase morphology and bonding. The amount of intermolecular hydrogen bonding between PAA and PEO is found to increase with increasing pH due to reduction of COOH dimers between PAA chains. This improved bonding leads to smaller PEO domains and lower gas permeability. Further increasing the pH beyond 2.75 results in higher oxygen permeability due to partial deprotonation of PAA. By setting the assembling pH at 2.75, the negative impacts of COOH dimer formation and PAA ionization on intermolecular hydrogen bonding can be minimized, leading to a 50% reduction in the oxygen permeability of the PAA/PEO thin film. A 20 bilayer coating reduces the oxygen transmission rate of a 1.58 mm natural rubber substrate by 20 ×. These unique nanocoatings provide the opportunity to impart a gas barrier to elastomeric substrates without altering their mechanical behavior. PMID:25519816

  11. Nanoparticulate gellants for metallized gelled liquid hydrogen with aluminum

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan; Starkovich, John; Adams, Scott

    1996-01-01

    Gelled liquid hydrogen was experimentally formulated using sol-gel technology. As a follow-on to work with cryogenic simulants, hydrogen was gelled with an alkoxide material: BTMSE. Initial results demonstrated that gellants with a specific surface area of 1000 m(exp 2)/g could be repeatably fabricated. Gelled hexane and metallized gelled hexane (with 13.8-wt% Al) were produced. Propellant settling testing was conducted for acceleration levels of 2 to 10 times normal gravity and a minimum gellant percentage was determined for stable gelled hexane and metalized gelled hexane. A cryogenic capillary rheometer was also designed, constructed, and used to determine the viscosity of gelled hydrogen. Small volumes of liquid hydrogen were gelled with a 7- to 8-wt% gellant level. The gelled H2 viscosity was 1.5 to 3.7 times that of liquid hydrogen: 0.048 to 0.116 mPa-s versus 0.03 mPa-s for liquid H2 (at 16 K and approximately 1 atm pressure).

  12. Improved metal hydride technology for the storage of hydrogen

    SciTech Connect

    Sapru, K.; Ming, L.; Ramachandran, S.

    1995-09-01

    Low cost, high density storage of hydrogen will remove the most serious barrier to large-scale utilization of hydrogen as a non-polluting, zero-emission fuel. An important challenge for the practical use of Mg-based, high capacity hydrogen storage alloys has been the development of a low-cost, bulk production technique. Two difficulties in preparation of Mg-based alloys are the immiscibility of Mg with many transition metals and the relatively high volatility of Mg compared to many transition metals. These factors preclude the use of conventional induction melting techniques for the Mg-based alloy preparation. A mechanical alloying technique, in which Mg immiscibility and volatility do not present a problem, was developed and shows great promise for production of Mg-based alloys. A number of Mg-based alloys were prepared via modified induction melting and mechanical alloying methods. The alloys were tested for gas phase hydrogen storage properties, composition, structure and morphology. The mechanically alloyed samples are multi-component, multi-phase, highly disordered materials in their as-prepared state. These unoptimized alloys have shown reversible H-storage capacity of more than 5 wt.% hydrogen. After 2000 absorption/desorption cycles, the alloys show no decline in storage capacity or desorption kinetics. The alloys have also demonstrated resistance to CH{sub 4} and CO poisoning in preliminary testing. Upon annealing, with an increase in crystallinity, the H-storage capacity decreases, indicating the importance of disorder.

  13. Composite hydrogen separation element and module

    DOEpatents

    Edlund, D.J.

    1996-03-12

    There are disclosed improvements in multicomponent composite metal membranes useful for the separation of hydrogen, the improvements comprising the provision of a flexible porous intermediate layer between a support layer and a nonporous hydrogen-permeable coating metal layer, and the provision of a textured coating metal layer. 15 figs.

  14. Hydrogen and Materials: Influence of the Hydrogen Environment on the Metallic Materials Behavior

    NASA Astrophysics Data System (ADS)

    Lamani, Emil; Jouinot, Patrice

    2010-01-01

    The materials sensitivity to hydrogen is studied and measured in this work using the disk pressure testing, whose principle is the comparison of the rupture parameters obtained with metallic membranes tested similarly under helium and hydrogen. Such technique allows various studies and reveals parameters that remain not significant with less sensitive methods. This work presents an overview of numerous experimental results concerning the influence of various factors (material and gas composition, mechanical and heat treatments, type of microstructure…) on the hydrogen embrittlement of ferrous and nonferrous alloys. There are shown synergies between such factors, related to physical and metallurgical phenomena and we give some practical considerations, which can be useful for the evaluation of the safety offered by different materials in contact with hydrogen and for searching ways to improve their behavior.

  15. Hydrogen and Materials: Influence of the Hydrogen Environment on the Metallic Materials Behavior

    SciTech Connect

    Lamani, Emil; Jouinot, Patrice

    2010-01-21

    The materials sensitivity to hydrogen is studied and measured in this work using the disk pressure testing, whose principle is the comparison of the rupture parameters obtained with metallic membranes tested similarly under helium and hydrogen. Such technique allows various studies and reveals parameters that remain not significant with less sensitive methods. This work presents an overview of numerous experimental results concerning the influence of various factors (material and gas composition, mechanical and heat treatments, type of microstructure...) on the hydrogen embrittlement of ferrous and nonferrous alloys. There are shown synergies between such factors, related to physical and metallurgical phenomena and we give some practical considerations, which can be useful for the evaluation of the safety offered by different materials in contact with hydrogen and for searching ways to improve their behavior.

  16. Hot Hydrogen Testing of Refractory Metals and Ceramics

    NASA Technical Reports Server (NTRS)

    Zee, Ralph; Chin, Bryan; Cohron, Jon

    1993-01-01

    The objective of this investigation is to develop a technique with which refractory metal carbide samples can be exposed to hydrogen containing gases at high temperatures, and to use various microstructural and analytical techniques to determine the chemical and rate processes involved in hydrogen degradation in these materials. Five types of carbides were examined including WC, NbC, HfC, ZrC, and TaC. The ceramics were purchased and were all monolithic in nature. The temperature range investigated was from 850 to 1600 C with a hydrogen pressure of one atmosphere. Control experiments, in vacuum, were also conducted for comparison so that the net effects due to hydrogen could be isolated. The samples were analyzed prior to and after exposure. Gas samples were collected in selected experiments and analyzed using gas chromography. Characterization of the resulting microstructure after exposure to hydrogen was conducted using optical microscopy, x-ray diffraction, scanning electron microscopy, and weight change. The ceramics were purchased and were all monolithic in nature. It was found that all samples lost weight after exposure, both in hydrogen and vacuum. Results from the microstructure analyses show that the degradation processes are different among the five types of ceramics involved. In addition, the apparent activation energy for the degradation process is a function of temperature even within the same material. This indicates that there are more than one mechanism involved in each material, and that the mechanisms are temperature dependent.

  17. Hydrogen evolution from water through metal sulfide reactions

    SciTech Connect

    Saha, Arjun; Raghavachari, Krishnan

    2013-11-28

    Transition metal sulfides play an important catalytic role in many chemical reactions. In this work, we have conducted a careful computational study of the structures, electronic states, and reactivity of metal sulfide cluster anions M{sub 2}S{sub X}{sup −} (M = Mo and W, X = 4–6) using density functional theory. Detailed structural analysis shows that these metal sulfide anions have ground state isomers with two bridging sulfide bonds, notably different in some cases from the corresponding oxides with the same stoichiometry. The chemical reactivity of these metal sulfide anions with water has also been carried out. After a thorough search on the reactive potential energy surface, we propose several competitive, energetically favorable, reaction pathways that lead to the evolution of hydrogen. Selectivity in the initial water addition and subsequent hydrogen migration are found to be the key steps in all the proposed reaction channels. Initial adsorption of water is most favored involving a terminal metal sulfur bond in Mo{sub 2}S{sub 4}{sup −} isomers whereas the most preferred orientation for water addition involves a bridging metal sulfur bond in the case of W{sub 2}S{sub 4}{sup −} and M{sub 2}S{sub 5}{sup −} isomers. In all the lowest energy H{sub 2} elimination steps, the interacting hydrogen atoms involve a metal hydride and a metal hydroxide (or thiol) group. We have also observed a higher energy reaction channel where the interacting hydrogen atoms in the H{sub 2} elimination step involve a thiol (–SH) and a hydroxyl (–OH) group. For all the reaction pathways, the Mo sulfide reactions involve a higher barrier than the corresponding W analogues. We observe for both metals that reactions of M{sub 2}S{sub 4}{sup −} and M{sub 2}S{sub 5}{sup −} clusters with water to liberate H{sub 2} are exothermic and involve modest free energy barriers. However, the reaction of water with M{sub 2}S{sub 6}{sup −} is highly endothermic with a considerable

  18. Ultra-low percolation threshold in ferrite-metal cofired ceramics brings both high permeability and high permittivity

    PubMed Central

    Wang, Liang; Bai, Yang; Lu, Xuefei; Cao, Jiang-Li; Qiao, Li-Jie

    2015-01-01

    High permeability and high permittivity are hard to be achieved simultaneously, either in single-phased materials or in composite materials, such as ferrite-ferroelectric ceramic composites and ferrite-metal percolative composites. In this work, ultra-low percolation threshold is achieved in NiZnCu ferrite-Ag cofired ceramics, which endows the composite with both high permeability and high permittivity by minimizing the negative effect of nonmagnetic conductive fillers on magnetic properties. The percolation threshold is controlled by the temperature matching between ferrite densification and Ag melting. A thin and long percolative net forms between large ferrite grains under a proper cofiring process, which brings a low percolation threshold of 1.21vol%, more than one order of magnitude lower than the theoretical value of 16vol%. Near the ultra-low threshold, the composite exhibits a high permeability of 585 and a high permittivity of 78. PMID:25557935

  19. CO2 hydrogenation on a metal hydride surface.

    PubMed

    Kato, Shunsuke; Borgschulte, Andreas; Ferri, Davide; Bielmann, Michael; Crivello, Jean-Claude; Wiedenmann, Daniel; Parlinska-Wojtan, Magdalena; Rossbach, Peggy; Lu, Ye; Remhof, Arndt; Züttel, Andreas

    2012-04-28

    The catalytic hydrogenation of CO(2) at the surface of a metal hydride and the corresponding surface segregation were investigated. The surface processes on Mg(2)NiH(4) were analyzed by in situ X-ray photoelectron spectroscopy (XPS) combined with thermal desorption spectroscopy (TDS) and mass spectrometry (MS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). CO(2) hydrogenation on the hydride surface during hydrogen desorption was analyzed by catalytic activity measurement with a flow reactor, a gas chromatograph (GC) and MS. We conclude that for the CO(2) methanation reaction, the dissociation of H(2) molecules at the surface is not the rate controlling step but the dissociative adsorption of CO(2) molecules on the hydride surface. PMID:22433948

  20. Ground-State Structures of Atomic Metallic Hydrogen

    NASA Astrophysics Data System (ADS)

    McMahon, Jeffrey M.; Ceperley, David M.

    2011-04-01

    Ab initio random structure searching using density functional theory is used to determine the ground-state structures of atomic metallic hydrogen from 500 GPa to 5 TPa. Including proton zero-point motion within the harmonic approximation, we estimate that molecular hydrogen dissociates into a monatomic body-centered tetragonal structure near 500 GPa (rs=1.23) that remains stable to 1 TPa (rs=1.11). At higher pressures, hydrogen stabilizes in an …ABCABC… planar structure that is similar to the ground state of lithium, but with a different stacking sequence. With increasing pressure, this structure compresses to the face-centered cubic lattice near 3.5 TPa (rs=0.92).

  1. Hydrogen Peroxide, Signaling in Disguise during Metal Phytotoxicity

    PubMed Central

    Cuypers, Ann; Hendrix, Sophie; Amaral dos Reis, Rafaela; De Smet, Stefanie; Deckers, Jana; Gielen, Heidi; Jozefczak, Marijke; Loix, Christophe; Vercampt, Hanne; Vangronsveld, Jaco; Keunen, Els

    2016-01-01

    Plants exposed to excess metals are challenged by an increased generation of reactive oxygen species (ROS) such as superoxide (O2•-), hydrogen peroxide (H2O2) and the hydroxyl radical (•OH). The mechanisms underlying this oxidative challenge are often dependent on metal-specific properties and might play a role in stress perception, signaling and acclimation. Although ROS were initially considered as toxic compounds causing damage to various cellular structures, their role as signaling molecules became a topic of intense research over the last decade. Hydrogen peroxide in particular is important in signaling because of its relatively low toxicity, long lifespan and its ability to cross cellular membranes. The delicate balance between its production and scavenging by a plethora of enzymatic and metabolic antioxidants is crucial in the onset of diverse signaling cascades that finally lead to plant acclimation to metal stress. In this review, our current knowledge on the dual role of ROS in metal-exposed plants is presented. Evidence for a relationship between H2O2 and plant metal tolerance is provided. Furthermore, emphasis is put on recent advances in understanding cellular damage and downstream signaling responses as a result of metal-induced H2O2 production. Finally, special attention is paid to the interaction between H2O2 and other signaling components such as transcription factors, mitogen-activated protein kinases, phytohormones and regulating systems (e.g. microRNAs). These responses potentially underlie metal-induced senescence in plants. Elucidating the signaling network activated during metal stress is a pivotal step to make progress in applied technologies like phytoremediation of polluted soils. PMID:27199999

  2. Metal-diboride nanotubes as high capacity hydrogen storage media

    SciTech Connect

    Meng, Sheng; Kaxiras, Efthimios; Zhang, Zhenyu

    2007-01-01

    We investigate the potential for hydrogen storage of a new class of nanomaterials, metal-diboride nanotubes. These materials have the merits of high density of binding sites on the tubular surfaces without the adverse effects of metal clustering. Using the TiB2 (8,0) and (5,5) nanotube as prototype examples, we show through first-principles calculations that each Ti atom can host two intact H2 units, leading to a retrievable hydrogen storage capacity of 5.5 wt%. Most strikingly, the binding energies fall in the desirable range of 0.2-0.6 eV per H2 molecule, endowing these structures with the potential for room temperature, near ambient pressure applications.

  3. Metal-free transfer hydrogenation of olefins via dehydrocoupling catalysis

    PubMed Central

    Pérez, Manuel; Caputo, Christopher B.; Dobrovetsky, Roman; Stephan, Douglas W.

    2014-01-01

    A major advance in main-group chemistry in recent years has been the emergence of the reactivity of main-group species that mimics that of transition metal complexes. In this report, the Lewis acidic phosphonium salt [(C6F5)3PF][B(C6F5)4] 1 is shown to catalyze the dehydrocoupling of silanes with amines, thiols, phenols, and carboxylic acids to form the Si-E bond (E = N, S, O) with the liberation of H2 (21 examples). This catalysis, when performed in the presence of a series of olefins, yields the concurrent formation of the products of dehydrocoupling and transfer hydrogenation of the olefin (30 examples). This reactivity provides a strategy for metal-free catalysis of olefin hydrogenations. The mechanisms for both catalytic reactions are proposed and supported by experiment and density functional theory calculations. PMID:25002489

  4. Metallization and electrical conductivity of hydrogen in Jupiter.

    PubMed

    Nellis, W J; Weir, S T; Mitchell, A C

    1996-08-16

    Electrical conductivities of molecular hydrogen in Jupiter were calculated by scaling electrical conductivities measured at shock pressures in the range of 10 to 180 gigapascals (0.1 to 1.8 megabars) and temperatures to 4000 kelvin, representative of conditions inside Jupiter. Jupiter's magnetic field is caused by convective dynamo motion of electrically conducting fluid hydrogen. The data imply that Jupiter should become metallic at 140 gigapascals in the fluid, and the electrical conductivity in the jovian molecular envelope at pressures up to metallization is about an order of magnitude larger than expected previously. The large magnetic field is produced in the molecular envelope closer to the surface than previously thought. PMID:8688072

  5. Direct versus hydrogen assisted CO dissociation on metal surfaces

    NASA Astrophysics Data System (ADS)

    Alfonso, Dominic

    2012-02-01

    We present investigations of the formation of precursor hydrocarbon species relevant to production of liquid hydrocarbons on low index surfaces of various important noble and transition metals. The formation could occur via the so-called carbide mechanism where direct CO dissociation takes place, followed by stepwise hydrogenation of C yielding CHx species. Formation of precursor CHx species could also potentially take place through hydrogenated CO intermediates. First-principles calculations of energetics and barriers of CO conversion to hydrocarbons species were performed using plane-wave periodic density functional theory. Our calculations indicate that the two pathways are generally competitive on transition metals. A microkinetic model, with input thermodynamics and kinetic parameters estimated from electronic structure calculations, has been developed. The two pathways will be further examined using microkinetic approach to determine whether the aforementioned finding holds at realistic conditions.

  6. Silane plus molecular hydrogen as a possible pathway to metallic hydrogen

    PubMed Central

    Yao, Yansun; Klug, Dennis D.

    2010-01-01

    The high-pressure behavior of silane, SiH4, plus molecular hydrogen was investigated using a structural search method and ab initio molecular dynamics to predict the structures and examine the physical origin of the pressure-induced drop in hydrogen intramolecular vibrational (vibron) frequencies. A structural distortion is predicted at 15 GPa from a slightly strained fcc cell to a rhombohedral cell that involves a small volume change. The predicted equation of state and the pressure-induced drop in the hydrogen vibron frequencies reproduces well the experimental data (Strobel TA, Somayazulu M, Hemley RJ (2009) Phys Rev Lett 103:065701). The bond weakening in H2 is induced by intermolecular interactions between the H2 and SiH4 molecules. A significant feature of the high-pressure structures of SiH4(H2)2 is the dynamical behavior of the H2 molecules. It is found that H2 molecules are rotating in this pressure range whereas the SiH4 molecules remain rigid. The detailed nature of the interactions of molecular hydrogen with SiH4 in SiH4(H2)2 is therefore strongly influenced by the dynamical behavior of the H2 molecules in the high-pressure structure. The phase with the calculated structure is predicted to become metallic near 120 GPa, which is significantly lower than the currently suggested pressure for metallization of bulk molecular hydrogen. PMID:21078957

  7. Prospects for obtaining metallic hydrogen with spherical presses

    NASA Technical Reports Server (NTRS)

    Spain, I. L.; Ishizaki, K.; Marchello, J. M.; Paauwe, J.

    1973-01-01

    Description of a split-sphere apparatus modified for use at low temperature and affording a possible method for compressing molecular hydrogen to a pressure in excess of 1 Mbar and for converting it to the metallic state. The construction costs of the apparatus are relatively low and the amount of liquid helium required for low-temperature operation is readily obtainable with modern liquefiers.

  8. Zero-Temperature Structures of Atomic Metallic Hydrogen

    NASA Astrophysics Data System (ADS)

    McMahon, Jeffrey; Ceperley, David

    2011-03-01

    Since the first prediction of an atomic metallic phase of hydrogen by Wigner and Huntington over 75 years ago, there have been many theoretical efforts aimed at determining the crystal structures of the zero-temperature phases. We present results from ab initio random structure searching with density functional theory performed to determine the ground state structures from 500 GPa to 5 TPa. We estimate that molecular hydrogen dissociates into a monatomic body-centered tetragonal structure near 500 GPa (rs = 1.225), which then remains stable to 2.5 TPa (rs = 0.969). At higher pressures, hydrogen stabilizes in an . . . ABCABC . . . planar structure that is remarkably similar to the ground state of lithium, which compresses to the face-centered cubic lattice beyond 5 TPa (rs < 0.86). Our results provide a complete ab initio description of the atomic metallic crystal structures of hydrogen, resolving one of the most fundamental and long outstanding issues concerning the structures of the elements.

  9. Investigation of heat and mass transfer process in metal hydride hydrogen storage reactors, suitable for a solar powered water pump system

    NASA Astrophysics Data System (ADS)

    Coldea, I.; Popeneciu, G.; Lupu, D.; Misan, I.; Blanita, G.; Ardelean, O.

    2012-02-01

    The paper analyzes heat and mass transfer process in metal hydride hydrogen storage systems as key element in the development of a solar powered pump system. Hydrogen storage and compression performance of the developed reactors are investigated according to the type of metal alloys, the metal hydride bed parameters and system operating conditions. To reach the desired goal, some metal hydride from groups AB5 and AB2 were synthesized and characterized using elements substitution for tailoring their properties: reversible hydrogen absorption capacity between the hydrogen absorption and desorption pressures at equilibrium at small temperature differences. For the designed hydrogen storage reactors, a new technical solution which combines the effective increase of the thermal conductivity of MH bed and good permeability to hydrogen gas circulation, was implemented and tested. The results permitted us to develop a heat engine with metal hydride, the main element of the functional model of a heat operated metal hydride based water pumping system using solar energy. This is a free energy system able to deliver water, at a convenience flow and pressure, in remote places without conventional energy access.

  10. Combining Nitrilotriacetic Acid and Permeable Barriers for Enhanced Phytoextraction of Heavy Metals from Municipal Solid Waste Compost by and Reduced Metal Leaching.

    PubMed

    Zhao, Shulan; Jia, Lina; Duo, Lian

    2016-05-01

    Phytoextraction has the potential to remove heavy metals from contaminated soil, and chelants can be used to improve the capabilities of phytoextraction. However, environmentally persistent chelants can cause metal leaching and groundwater pollution. A column experiment was conducted to evaluate the viability of biodegradable nitrilotriacetic acid (NTA) to increase the uptake of heavy metals (Cd, Cr, Ni, Pb, Cu, and Zn) by L. in municipal solid waste (MSW) compost and to evaluate the effect of two permeable barrier materials, bone meal and crab shell, on metal leaching. The application of NTA significantly increased the concentrations and uptake of heavy metals in . The enhancement was more pronounced at higher dosages of NTA. In the 15 mmol kg NTA treatment using a crab shell barrier, the Cr and Ni concentrations in the plant shoots increased by approximately 8- and 10-fold, respectively, relative to the control. However, the addition of NTA also caused significant heavy metal leaching from the MSW compost. Bone meal and crab shell barriers positioned between the compost and the subsoil were effective in preventing metal leaching down through the soil profile by the retention of metals in the barrier. The application of a biodegradable chelant and the use of permeable barriers is a viable form of enhanced phytoextraction to increase the removal of metals and to reduce possible leaching. PMID:27136160

  11. Hydrogen and Dihydrogen Bonds in the Reactions of Metal Hydrides.

    PubMed

    Belkova, Natalia V; Epstein, Lina M; Filippov, Oleg A; Shubina, Elena S

    2016-08-10

    The dihydrogen bond-an interaction between a transition-metal or main-group hydride (M-H) and a protic hydrogen moiety (H-X)-is arguably the most intriguing type of hydrogen bond. It was discovered in the mid-1990s and has been intensively explored since then. Herein, we collate up-to-date experimental and computational studies of the structural, energetic, and spectroscopic parameters and natures of dihydrogen-bonded complexes of the form M-H···H-X, as such species are now known for a wide variety of hydrido compounds. Being a weak interaction, dihydrogen bonding entails the lengthening of the participating bonds as well as their polarization (repolarization) as a result of electron density redistribution. Thus, the formation of a dihydrogen bond allows for the activation of both the MH and XH bonds in one step, facilitating proton transfer and preparing these bonds for further transformations. The implications of dihydrogen bonding in different stoichiometric and catalytic reactions, such as hydrogen exchange, alcoholysis and aminolysis, hydrogen evolution, hydrogenation, and dehydrogenation, are discussed. PMID:27285818

  12. Effect of Hydrogen on Interfacial Structure and Adhesion of Metal/Al_2O_3

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Gang; Scheffler, Matthias

    2001-03-01

    Metal/sapphire interfaces have been intensively studying because of their importance in many technological applications. A large work of adhesion was found for the oxygen-terminated Al_2O_3(0001)/metal interfaces. As well known, the clean oxygen-terminated Al_2O3 surface is not stable even under a high oxygen pressure[1]. The understanding of how the oxygen-terminated interfaces can be formed is limited. Using an ab initio full-potential linearized augmented plane wave method, we investigated the effect of hydrogen on the formation of metal/Al_2O_3(0001) interfaces. Our results reveal that hydrogen plays an important role in the formation of the oxygen-terminated interfaces. Hydrogen impurities greatly decrease the work of adhesion. The behavior of hydrogen in deposition process of ultrathin metal films on sapphire substrates and the possible structures of the ultrathin films are discussed also. [1] Xiao-Gang Wang, Anne Chaka, Matthias Scheffler, Phys. Rev. Lett. 84, 3650 (2000).

  13. Organic substrates as electron donors in permeable reactive barriers for removal of heavy metals from acid mine drainage.

    PubMed

    Kijjanapanich, P; Pakdeerattanamint, K; Lens, P N L; Annachhatre, A P

    2012-12-01

    This research was conducted to select suitable natural organic substrates as potential carbon sources for use as electron donors for biological sulphate reduction in a permeable reactive barrier (PRB). A number of organic substrates were assessed through batch and continuous column experiments under anaerobic conditions with acid mine drainage (AMD) obtained from an abandoned lignite coal mine. To keep the heavy metal concentration at a constant level, the AMD was supplemented with heavy metals whenever necessary. Under anaerobic conditions, sulphate-reducing bacteria (SRB) converted sulphate into sulphide using the organic substrates as electron donors. The sulphide that was generated precipitated heavy metals as metal sulphides. Organic substrates, which yielded the highest sulphate reduction in batch tests, were selected for continuous column experiments which lasted over 200 days. A mixture of pig-farm wastewater treatment sludge, rice husk and coconut husk chips yielded the best heavy metal (Fe, Cu, Zn and Mn) removal efficiencies of over 90%. PMID:23437664

  14. Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts.

    PubMed

    Jeon, Ki-Joon; Moon, Hoi Ri; Ruminski, Anne M; Jiang, Bin; Kisielowski, Christian; Bardhan, Rizia; Urban, Jeffrey J

    2011-04-01

    Hydrogen is a promising alternative energy carrier that can potentially facilitate the transition from fossil fuels to sources of clean energy because of its prominent advantages such as high energy density (142 MJ kg(-1); ref. 1), great variety of potential sources (for example water, biomass, organic matter), light weight, and low environmental impact (water is the sole combustion product). However, there remains a challenge to produce a material capable of simultaneously optimizing two conflicting criteria--absorbing hydrogen strongly enough to form a stable thermodynamic state, but weakly enough to release it on-demand with a small temperature rise. Many materials under development, including metal-organic frameworks, nanoporous polymers, and other carbon-based materials, physisorb only a small amount of hydrogen (typically 1-2 wt%) at room temperature. Metal hydrides were traditionally thought to be unsuitable materials because of their high bond formation enthalpies (for example MgH(2) has a ΔHf~75 kJ mol(-1)), thus requiring unacceptably high release temperatures resulting in low energy efficiency. However, recent theoretical calculations and metal-catalysed thin-film studies have shown that microstructuring of these materials can enhance the kinetics by decreasing diffusion path lengths for hydrogen and decreasing the required thickness of the poorly permeable hydride layer that forms during absorption. Here, we report the synthesis of an air-stable composite material that consists of metallic Mg nanocrystals (NCs) in a gas-barrier polymer matrix that enables both the storage of a high density of hydrogen (up to 6 wt% of Mg, 4 wt% for the composite) and rapid kinetics (loading in <30 min at 200 °C). Moreover, nanostructuring of the Mg provides rapid storage kinetics without using expensive heavy-metal catalysts. PMID:21399630

  15. Predicted energy densitites for nickel-hydrogen and silver-hydrogen cells embodying metallic hydrides for hydrogen storage

    NASA Technical Reports Server (NTRS)

    Easter, R. W.

    1974-01-01

    Simplified design concepts were used to estimate gravimetric and volumetric energy densities for metal hydrogen battery cells for assessing the characteristics of cells containing metal hydrides as compared to gaseous storage cells, and for comparing nickel cathode and silver cathode systems. The silver cathode was found to yield superior energy densities in all cases considered. The inclusion of hydride forming materials yields cells with very high volumetric energy densities that also retain gravimetric energy densities nearly as high as those of gaseous storage cells.

  16. Three Permeable Pavements Performances for Priority Metal Pollutants and Metals associated with Deicing Chemicals from Edison Parking Lot, NJ - abstract

    EPA Science Inventory

    The U.S. Environmental Protection Agency constructed a 4000-m2 parking lot in Edison, New Jersey in 2009. The parking lot is surfaced with three permeable pavements [permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA)]. Samples of each p...

  17. Three Permeable Pavements Performances for Priority Metal Pollutants and Metals Associated with Deicing Chemicals from Edison Parking Lot, NJ

    EPA Science Inventory

    The U.S. Environmental Protection Agency constructed a 4000-m2 parking lot in Edison, New Jersey in 2009. The parking lot is surfaced with three permeable pavements [permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA)]. Samples of each p...

  18. The solubility of hydrogen and deuterium in alloyed, unalloyed and impure plutonium metal

    SciTech Connect

    Richmond, Scott; Bridgewater, Jon S; Ward, John W; Allen, Thomas H

    2010-01-01

    Hydrogen is exothermically absorbed in many transition metals, all rare earths and the actinides. The hydrogen gas adsorbs, dissociates and diffuses into these metals as atomic hydrogen. Absorbed hydrogen is generally detrimental to Pu, altering its properties and greatly enhancing corrosion. Measuring the heat of solution of hydrogen in Pu and its alloys provides significant insight into the thermodynamics driving these changes. Hydrogen is present in all Pu metal unless great care is taken to avoid it. Heats of solution and formation are provided along with evidence for spinodal decomposition.

  19. Photobiotechnology: Algal hydrogen production and photoconductivity of metalized chloroplasts

    SciTech Connect

    Greenbaum, E.

    1991-01-01

    Sustained hydrogen photoevolution from Chlamydomonas reinhardtii and C. moewusii was measured under an anoxic, CO{sub 2}-containing atmosphere. It has been discovered that light intensity and temperature influence the partitioning of reductant between the hydrogen photoevolution pathway and the Calvin cycle. Under low incident light intensity (1-3 W m{sup {minus}2}) or low temperature (approx. O{degrees}C), the flow of photosynthetic reductant to the Calvin cycle was reduced, and reductant was partitioned to the hydrogen pathway as evidenced by sustained H{sub 2} photoevolution. Under saturating light (25 W m{sup {minus}2}) and moderate temperature 20 {plus minus} 5{degrees}C, the Calvin cycle became the absolute sink for reductant with the exception of a burst of H{sub 2} occurring at light on. A novel photobiophysical phenomenon was observed in isolated spinach chloroplasts that were metalized by precipitating colloidal platinum onto the surface of the thylakoid membranes. A two-point irradiation and detection system was constructed in which a continuous beam helium-neon laser ({lambda} = 632.8 nm) was used to irradiate the platinized chloroplasts at varying perpendicular distances from a single linear platinum electrode in pressure contact with the platinized chloroplasts. No external voltage bias was applied to the system. The key objective of the experiments reported in this report was to measure the relative photoconductivity of the chloroplast-metal composite matrix. 46 refs., 1 tab.

  20. Ternary Amides Containing Transition Metals for Hydrogen Storage: A Case Study with Alkali Metal Amidozincates.

    PubMed

    Cao, Hujun; Richter, Theresia M M; Pistidda, Claudio; Chaudhary, Anna-Lisa; Santoru, Antonio; Gizer, Gökhan; Niewa, Rainer; Chen, Ping; Klassen, Thomas; Dornheim, Martin

    2015-11-01

    The alkali metal amidozincates Li4 [Zn(NH2)4](NH2)2 and K2[Zn(NH2)4] were, to the best of our knowledge, studied for the first time as hydrogen storage media. Compared with the LiNH2-2 LiH system, both Li4 [Zn(NH2)4](NH2)2-12 LiH and K2[Zn(NH2)4]-8 LiH systems showed improved rehydrogenation performance, especially K2[Zn(NH2)4]-8 LiH, which can be fully hydrogenated within 30 s at approximately 230 °C. The absorption properties are stable upon cycling. This work shows that ternary amides containing transition metals have great potential as hydrogen storage materials. PMID:26463124

  1. Hydrogen storage characteristics of mechanically alloyed amorphous metals

    SciTech Connect

    Harris, J.H.; Curtin, W.A.; Schultz, L.

    1988-09-01

    The hydrogen storage properties of a series of mechanically alloyed (MA) amorphous Ni/sub 1//sub --//sub x/Zr/sub x/ alloys are studied, using both gas phase and electrochemical techniques, and are compared to H storage of rapidly quenched (RQ) amorphous Ni/sub 1-//sub x/Zr/sub x/. In the MA alloys, hydrogen resides in the Ni/sub 4-//sub n/Zr/sub n/ (n = 4,3,2) tetrahedral interstitial sites, with a maximum hydrogen-to-metal ratio of 1.9(/sup 4//sub n/)x/sup n/(1-x)/sup 4-//sup n/. These features are identical to those of the RQ alloys and indicate that the topological and chemical order of the MA and RQ materials are essentially the same. However, the typical binding energy of hydrogen in a Ni/sub 4-//sub n/Zr/sub n/ site, E/sub n/, is shifted in the MA alloys relative to the RQ alloys and the distribution of binding energies centered on E/sub n/ is significantly broader in the MA samples. Thus, the MA and RQ alloys are not identical and sample annealing does not alter this subtle distinction. The sensitivity of H storage to the presence of chemical order in binary alloys are analyzed theoretically and the data is found to be most consistent with little or no chemical order (random alloys).

  2. Hydrogen storage material and process using graphite additive with metal-doped complex hydrides

    DOEpatents

    Zidan, Ragaiy; Ritter, James A.; Ebner, Armin D.; Wang, Jun; Holland, Charles E.

    2008-06-10

    A hydrogen storage material having improved hydrogen absorbtion and desorption kinetics is provided by adding graphite to a complex hydride such as a metal-doped alanate, i.e., NaAlH.sub.4. The incorporation of graphite into the complex hydride significantly enhances the rate of hydrogen absorbtion and desorption and lowers the desorption temperature needed to release stored hydrogen.

  3. Capture of liquid hydrogen boiloff with metal hydride absorbers

    NASA Technical Reports Server (NTRS)

    Rosso, M. J.; Golben, P. M.

    1984-01-01

    A procedure which uses metal hydrides to capture some of this low pressure (,1 psig) hydrogen for subsequent reliquefaction is described. Of the five normally occurring sources of boil-off vapor the stream associated with the off-loading of liquid tankers during dewar refill was identified as the most cost effective and readily recoverable. The design, fabrication and testing of a proof-of-concept capture device, operating at a rate that is commensurate with the evolution of vapor by the target stream, is described. Liberation of the captured hydrogen gas at pressure .15 psig at normal temperatures (typical liquefier compressor suction pressure) are also demonstrated. A payback time of less than three years is projected.

  4. Metal hydride hydrogen compression: recent advances and future prospects

    NASA Astrophysics Data System (ADS)

    Yartys, Volodymyr A.; Lototskyy, Mykhaylo; Linkov, Vladimir; Grant, David; Stuart, Alastair; Eriksen, Jon; Denys, Roman; Bowman, Robert C.

    2016-04-01

    Metal hydride (MH) thermal sorption compression is one of the more important applications of the MHs. The present paper reviews recent advances in the field based on the analysis of the fundamental principles of this technology. The performances when boosting hydrogen pressure, along with two- and three-step compression units, are analyzed. The paper includes also a theoretical modelling of a two-stage compressor aimed at describing the performance of the experimentally studied systems, their optimization and design of more advanced MH compressors. Business developments in the field are reviewed for the Norwegian company HYSTORSYS AS and the South African Institute for Advanced Materials Chemistry. Finally, future prospects are outlined presenting the role of the MH compression in the overall development of the hydrogen-driven energy systems. The work is based on the analysis of the development of the technology in Europe, USA and South Africa.

  5. The transition to the metallic state in low density hydrogen.

    PubMed

    McMinis, Jeremy; Morales, Miguel A; Ceperley, David M; Kim, Jeongnim

    2015-11-21

    Solid atomic hydrogen is one of the simplest systems to undergo a metal-insulator transition. Near the transition, the electronic degrees of freedom become strongly correlated and their description provides a difficult challenge for theoretical methods. As a result, the order and density of the phase transition are still subject to debate. In this work, we use diffusion quantum Monte Carlo to benchmark the transition between paramagnetic and anti-ferromagnetic body centered cubic atomic hydrogen in its ground state. We locate the density of the transition by computing the equation of state for these two phases and identify the phase transition order by computing the band gap near the phase transition. These benchmark results show that the phase transition is continuous and occurs at a Wigner-Seitz radius of rs = 2.27(3) a0. We compare our results to previously reported density functional theory, Hedin's GW approximation, and dynamical mean field theory results. PMID:26590549

  6. Phase separation of metallic hydrogen-helium alloys

    NASA Technical Reports Server (NTRS)

    Straus, D. M.; Ashcroft, N. W.; Beck, H.

    1976-01-01

    Calculations are presented for the thermodynamic functions and phase separation boundaries of solid metallic hydrogen helium alloys at temperatures between 0 K and 19,000 K and at pressures between 15 and 90 megabars. Expressions for the band structure energy of a randomly disordered alloy (including third order in the electron ion interaction) are derived and evaluated. Short and long range order are included by the quasi-chemical method, and lattice dynamics in the virtual crystal harmonic approximation. We conclude that at temperatures below 4,000 K there is complete phase separation of hydrogen helium alloys, and that a miscibility gap remains at the highest temperatures and pressures considered. The relevance of these results to models of the deep interior of Jupiter is briefly discussed.

  7. Phase separation of metallic hydrogen-helium alloys

    NASA Technical Reports Server (NTRS)

    Straus, D. M.; Ashcroft, N. W.; Beck, H.

    1977-01-01

    Calculations are presented for the thermodynamic functions and phase-separation boundaries of solid metallic hydrogen-helium alloys at temperatures between zero and 19,000 K and at pressures between 15 and 90 Mbar. Expressions for the band-structure energy of a randomly disordered alloy (including third order in the electron-ion interaction) are derived and evaluated. Short- and long-range orders are included by the quasi-chemical method, and lattice dynamics in the virtual-crystal harmonic approximation. It is concluded that at temperatures below 4000 K, there is essentially complete phase separation of hydrogen-helium alloys and that a miscibility gap remains at the highest temperatures and pressures considered. The relevance of these results to models of the deep interior of Jupiter is briefly discussed.

  8. Hydrogen adsorption in an interpenetrated dynamic metal-organic framework.

    PubMed

    Chen, Banglin; Ma, Shengqian; Zapata, Fatima; Lobkovsky, Emil B; Yang, Jun

    2006-07-24

    A metal-organic framework Zn(NDC)(4,4'-Bpe)(0.5).xG [NDC = 2,6-naphthalenedicarboxylate; 4,4'-Bpe = 4,4'-trans-bis(4-pyridyl)ethylene; G = guest molecules] has been synthesized, structurally characterized, and rationalized to be a two-interpenetrated elongated primitive cubic net. Powder X-ray diffraction and adsorption studies reveal the dynamic feature of the framework, which can take up hydrogen of about 2.0 wt % at 77 K and 40 bar and 0.3 wt % at 298 K and 65 bar. PMID:16841969

  9. Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants

    SciTech Connect

    Carl R. Evenson; Harold A. Wright; Adam E. Calihman; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Chandra Ratnasamy; Mahendra Sunkara; Jyothish Thangala; Clive Brereton; Warren Wolfs; James Lockhart

    2005-10-31

    During this quarter composite layered membrane size was scaled-up and tested for permeation performance. Sintering conditions were optimized for a new cermet containing a high permeability metal and seals were developed to allow permeability testing. Theoretical calculations were performed to determine potential sulfur tolerant hydrogen dissociation catalysts. Finally, work was finalized on mechanical and process & control documentation for a hydrogen separation unit.

  10. Thermal method for fabricating a hydrogen separation membrane on a porous substrate

    DOEpatents

    Song, Sun-Ju; Lee, Tae H.; Chen, Ling; Dorris, Stephen E.; Balachandran, Uthamalingam

    2009-10-20

    A thermal method of making a hydrogen permeable composition is disclosed. A mixture of metal oxide powder and ceramic oxide powder and optionally a pore former is formed and pressed to form an article. The article is dried at elevated temperatures and then sintered in a reducing atmosphere to provide a dense hydrogen permeable portion near the surface of the sintered mixture. The dense hydrogen permeable portion has a higher initial concentration of metal than the remainder of the sintered mixture and is present in the range of from about 20 to about 80 percent by volume of the dense hydrogen permeable portion.

  11. Hybrid permeable metal-base transistor with large common-emitter current gain and low operational voltage.

    PubMed

    Feng, Chengang; Yi, Mingdong; Yu, Shunyang; Hümmelgen, Ivo A; Zhang, Tong; Ma, Dongge

    2008-04-01

    We demonstrate the suitability of N,N'-diphenyl-N,N'-bis(1-naphthylphenyl)-1,1'-biphenyl-4,4'-diamine (NPB), an organic semiconductor widely used in organic light-emitting diodes (OLEDs), for high-gain, low operational voltage nanostructured vertical-architecture transistors, which operate as permeable-base transistors. By introducing vanadium oxide (V2O5) between the injecting metal and NPB layer at the transistor emitter, we reduced the emitter operational voltage. The addition of two Ca layers, leading to a Ca/Ag/Ca base, allowed to obtain a large value of common-emitter current gain, but still retaining the permeable-base transistor character. This kind of vertical devices produced by simple technologies offer attractive new possibilities due to the large variety of available molecular semiconductors, opening the possibility of incorporating new functionalities in silicon-based devices. PMID:18572611

  12. Metal-Hydrogen Phase Diagrams in the Vicinity of Melting Temperatures

    SciTech Connect

    Shapovalov, V.I.

    1999-01-06

    Hydrogen-metal interaction phenomena belong to the most exciting challenges of today's physical metallurgy and physics of solids due to the uncommon behavior of hydrogen in condensed media and to the need for understanding hydrogen's strong negative impact on properties of some high-strength steels and.alloys. The paper cites and summarizes research data on fundamental thermodynamic characteristics of hydrogen in some metals that absorb it endothermally at elevated temperatures. For a number of metal-hydrogen systems, information on some phase diagrams previously not available to the English-speaking scientific community is presented.

  13. Hydrogen transport through oxide metal surface under atom and ion irradiation

    NASA Astrophysics Data System (ADS)

    Begrambekov, L.; Dvoychenkova, O.; Evsin, A.; Kaplevsky, A.; Sadovskiy, Ya; Schitov, N.; Vergasov, S.; Yurkov, D.

    2014-11-01

    Both the latest and earlier achieved results on gas exchange processes on metal surfaces (including stainless steel, titanium, zirconium, tungsten with deposited aluminum oxide coating) under hydrogen atom or plasma irradiation with occasional oxygen impurity are presented in the paper. Mechanisms and regularities of these processes are discussed. It is demonstrated that surface oxide layer properties as a diffusion barrier strongly depend on external influence on the surface. In particular, it is revealed that low energy hydrogen ion irradiation could slow down hydrogen desorption from metals. Hydrogen atom or ion irradiation combined with simultaneous oxygen admixture accelerates hydrogen desorption from metals.

  14. Chemically Reversible Reactions of Hydrogen Sulfide with Metal Phthalocyanines

    PubMed Central

    2015-01-01

    Hydrogen sulfide (H2S) is an important signaling molecule that exerts action on various bioinorganic targets. Despite this importance, few studies have investigated the differential reactivity of the physiologically relevant H2S and HS– protonation states with metal complexes. Here we report the distinct reactivity of H2S and HS– with zinc(II) and cobalt(II) phthalocyanine (Pc) complexes and highlight the chemical reversibility and cyclability of each metal. ZnPc reacts with HS–, but not H2S, to generate [ZnPc-SH]−, which can be converted back to ZnPc by protonation. CoPc reacts with HS–, but not H2S, to form [CoIPc]−, which can be reoxidized to CoPc by air. Taken together, these results demonstrate the chemically reversible reaction of HS– with metal phthalocyanine complexes and highlight the importance of H2S protonation state in understanding the reactivity profile of H2S with biologically relevant metal scaffolds. PMID:24785654

  15. Chemically reversible reactions of hydrogen sulfide with metal phthalocyanines.

    PubMed

    Hartle, Matthew D; Sommer, Samantha K; Dietrich, Stephen R; Pluth, Michael D

    2014-08-01

    Hydrogen sulfide (H2S) is an important signaling molecule that exerts action on various bioinorganic targets. Despite this importance, few studies have investigated the differential reactivity of the physiologically relevant H2S and HS(-) protonation states with metal complexes. Here we report the distinct reactivity of H2S and HS(-) with zinc(II) and cobalt(II) phthalocyanine (Pc) complexes and highlight the chemical reversibility and cyclability of each metal. ZnPc reacts with HS(-), but not H2S, to generate [ZnPc-SH](-), which can be converted back to ZnPc by protonation. CoPc reacts with HS(-), but not H2S, to form [Co(I)Pc](-), which can be reoxidized to CoPc by air. Taken together, these results demonstrate the chemically reversible reaction of HS(-) with metal phthalocyanine complexes and highlight the importance of H2S protonation state in understanding the reactivity profile of H2S with biologically relevant metal scaffolds. PMID:24785654

  16. Molecular metal-Oxo catalysts for generating hydrogen from water

    SciTech Connect

    Long, Jeffrey R; Chang, Christopher J; Karunadasa, Hemamala I

    2015-02-24

    A composition of matter suitable for the generation of hydrogen from water is described, the positively charged cation of the composition having the general formula [(PY5W.sub.2)MO].sup.2+, wherein PY5W.sub.2 is (NC.sub.5XYZ)(NC.sub.5H.sub.4).sub.4C.sub.2W.sub.2, M is a transition metal, and W, X, Y, and Z can be H, R, a halide, CF.sub.3, or SiR.sub.3, where R can be an alkyl or aryl group. The two accompanying counter anions, in one embodiment, can be selected from the following Cl.sup.-, I.sup.-, PF.sub.6.sup.-, and CF.sub.3SO.sub.3.sup.-. In embodiments of the invention, water, such as tap water containing electrolyte or straight sea water can be subject to an electric potential of between 1.0 V and 1.4 V relative to the standard hydrogen electrode, which at pH 7 corresponds to an overpotential of 0.6 to 1.0 V, with the result being, among other things, the generation of hydrogen with an optimal turnover frequency of ca. 1.5 million mol H.sub.2/mol catalyst per h.

  17. Performance study of a hydrogen powered metal hydride actuator

    NASA Astrophysics Data System (ADS)

    Mainul Hossain Bhuiya, Md; Kim, Kwang J.

    2016-04-01

    A thermally driven hydrogen powered actuator integrating metal hydride hydrogen storage reactor, which is compact, noiseless, and able to generate smooth actuation, is presented in this article. To test the plausibility of a thermally driven actuator, a conventional piston type actuator was integrated with LaNi5 based hydrogen storage system. Copper encapsulation followed by compaction of particles into pellets, were adopted to improve overall thermal conductivity of the reactor. The operation of the actuator was thoroughly investigated for an array of operating temperature ranges. Temperature swing of the hydride reactor triggering smooth and noiseless actuation over several operating temperature ranges were monitored for quantification of actuator efficiency. Overall, the actuator generated smooth and consistent strokes during repeated cycles of operation. The efficiency of the actuator was found to be as high as 13.36% for operating a temperature range of 20 °C-50 °C. Stress-strain characteristics, actuation hysteresis etc were studied experimentally. Comparison of stress-strain characteristics of the proposed actuator with traditional actuators, artificial muscles and so on was made. The study suggests that design modification and use of high pressure hydride may enhance the performance and broaden the application horizon of the proposed actuator in future.

  18. Hydrogenated - Metal Oxide Nanohybrids: AN Inventiveness Plinth for Sensing Devices

    NASA Astrophysics Data System (ADS)

    Baraneedharan, P.; Ramaprabhu, S.

    Graphene- a two dimensional sheet of sp2 hybridized carbon atoms has been considered as promising materials in sensor design for detection of target molecule. Charge carriers in graphene obey linear dispersion relation and it behaves like mass less relativistic particles which act as base for enhanced electron transport. Thus the electrons move ballistically without scattering giving higher mobility even at room temperature. Further, the presence of oxygen containing functional group and crystal defects assisted via hydrogenation process take vital part in electrochemical adsorption of electro active species and catalyses the same. Though issues with selectivity, stability and sensitivity are limited for several nanostructured metal oxides sensing, the hybrid system started its effective role in design of sensing platform. Thus considering the potential important of hydrogenated graphene -metal oxide systems, a nanohybrid system is developed and its structural, morphological and optical properties were understood using respective characterization tool. Further, the prepared hybrid nanosystem used as a platform for bimolecule detection, where the sensor exhibits higher range of sensitivity and selectivity.

  19. Light metal alanates and amides for reversible hydrogen storage applications

    NASA Astrophysics Data System (ADS)

    Lu, Jun

    conditions of this study. Secondly, our experimental findings in this study also demonstrated the potential of a new type of nitride---binary light metal nitride for hydrogen storage. The reaction of MgH2 with LiNH2 in 1:1 ratio produces 8.1 wt% of hydrogen with the dehydrogenated product being LiMgN. This binary nitride LiMgN can be hydrogenated under 2000 psi hydrogen pressure and 160°C with TiCl3 as catalyst. A reversible 8 wt% H 2 storage capacity has been demonstrated under the conditions used in this study.

  20. Hydrogen-environment embrittlement of metals and its control

    NASA Technical Reports Server (NTRS)

    Chandler, W. T.; Walter, R. J.

    1975-01-01

    Types of hydrogen embrittlement are discussed together with characteristics of hydrogen-environment embrittlement, the degree of hydrogen-environment embrittlement of a wide variety of alloys, the effect of hydrogen environments on various properties, (tension, fatigue, creep and fracture mechanics), and the influence of hydrogen exposure parameters on the degree of embrittlement. Design methods for high-pressure hydrogen service and for prevention of hydrogen-environment embrittlement are also covered.

  1. Stainless Steel Permeability

    SciTech Connect

    Buchenauer, Dean A.; Karnesky, Richard A.

    2015-09-01

    An understanding of the behavior of hydrogen isotopes in materials is critical to predicting tritium transport in structural metals (at high pressure), estimating tritium losses during production (fission environment), and predicting in-vessel inventory for future fusion devices (plasma driven permeation). Current models often assume equilibrium diffusivity and solubility for a class of materials (e.g. stainless steels or aluminum alloys), neglecting trapping effects or, at best, considering a single population of trapping sites. Permeation and trapping studies of the particular castings and forgings enable greater confidence and reduced margins in the models. For FY15, we have continued our investigation of the role of ferrite in permeation for steels of interest to GTS, through measurements of the duplex steel 2507. We also initiated an investigation of the permeability in work hardened materials, to follow up on earlier observations of unusual permeability in a particular region of 304L forgings. Samples were prepared and characterized for ferrite content and coated with palladium to prevent oxidation. Issues with the poor reproducibility of measurements at low permeability were overcome, although the techniques in use are tedious. Funding through TPBAR and GTS were secured for a research grade quadrupole mass spectrometer (QMS) and replacement turbo pumps, which should improve the fidelity and throughput of measurements in FY16.

  2. Surface studies of metals after interaction with hydrogen isotopes

    NASA Astrophysics Data System (ADS)

    Silver, David Samuel

    1998-12-01

    The objective of this research is to characterize surfaces of metals after interaction with hydrogen isotopes. Iron, which does not readily bond with hydrogen, and palladium, which strongly bonds with hydrogen, were studied. Observations of surfaces are used to determine the nature of their metamorphosis due to such exposures. An experimental study of pure iron foil (99.99%) exposed to a hot, dense hydrogen and argon gas mixture in a ballistic compressor yielded evidence for new structural and compositional changes of the metal due to the exposure. Atomic force microscope (AFM) studies demonstrated surfaces to be highly uneven, where height variations were often 2 mum for many micron-sized regions scanned. An iron foil exposed to argon gases alone revealed unique dendritic patterns but negligible height variations for micron-size scans. A cold rolled single crystal palladium cathode was electrolyzed in a solution of Dsb2O and 15% Hsb2SOsb4 by volume for 12 minutes. The cathode bent toward the anode during electrolysis. Examination of both concave and convex surfaces using the scanning electron microscope (SEM), scanning tunneling microscope (STM), and AFM revealed rimmed craters with faceted crystals inside and multi-textured surfaces. Also pairs of cold rolled polycrystalline palladium cathodes underwent electrolysis for six minutes or less, in Dsb2O and Hsb2O solutions, each solution containing 15% Hsb2SOsb4, by volume. Surface morphologies of the heavy water electrolyzed samples revealed asperities, craters, and nodules, and evidence of recrystallization and crystal planes. After 1.5 years, new AFM studies of the same Pd surfaces exposed to heavy water electrolyte exhibited loose, nanometer-sized particles. However, the surfaces of Pd cathodes exposed to light water electrolyte remained nearly identical to morphologies of foils not electrolyzed, and did not change with time. No surface asperities or loose grains were observed on the latter. Secondary ion mass

  3. The effect of tensile stress on hydrogen diffusion in metal alloys

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1992-01-01

    The effect of tensile stress on hydrogen diffusion has been determined for Type 303 stainless steel, A286 CRES, and Waspaloy and IN100 nickel-base alloys. It was found that hydrogen diffusion coefficients are not significantly affected by stress, while the hydrogen permeabilities are greatly affected in Type 303 stainless steel and A286 CRES (iron-based alloys), but are affected little in Waspaloy (nickel-base) and not affected in all in IN100 (nickel base). These observations might be taken as an indication that hydrogen permeabilities are affected by stress in iron-based alloys, but only slightly affected in nickel-based alloys. However, it is too early to make such a generalization based on the study of only these four alloys.

  4. Transport of hydrogen in metals with occupancy dependent trap energies

    SciTech Connect

    Schmid, K. Toussaint, U. von; Schwarz-Selinger, T.

    2014-10-07

    Common diffusion trapping models for modeling hydrogen transport in metals are limited to traps with single de-trapping energies and a saturation occupancy of one. While they are successful in predicting typical mono isotopic ion implantation and thermal degassing experiments, they fail at describing recent experiments on isotope exchange at low temperatures. This paper presents a new modified diffusion trapping model with fill level dependent de-trapping energies that can also explain these new isotope exchange experiments. Density function theory (DFT) calculations predict that even mono vacancies can store between 6 and 12 H atoms with de-trapping energies that depend on the fill level of the mono vacancy. The new fill level dependent diffusion trapping model allows to test these DFT results by bridging the gap in length and time scale between DFT calculations and experiment.

  5. Noble metal ionic sites for catalytic hydrogen combustion: spectroscopic insights.

    PubMed

    Deshpande, Parag A; Madras, Giridhar

    2011-01-14

    A catalytic hydrogen combustion reaction was carried out over noble metal catalysts substituted in ZrO(2) and TiO(2) in ionic form. The catalysts were synthesized by the solution combustion technique. The compounds showed high activity and CO tolerance for the reaction. The activity of Pd and Pt ion substituted TiO(2) was comparable and was higher than Pd and Pt ion substituted ZrO(2). The mechanisms of the reaction over the two supports were proposed by making use of the X-ray photoelectron spectroscopy and FT infrared spectroscopic observations. The reaction over ZrO(2) supported catalysts was proposed to take place by the utilization of the surface hydroxyl groups while the reaction over TiO(2) supported catalysts was hypothesized to be a hybrid mechanism utilizing surface hydroxyl groups and the lattice oxygen. PMID:21060910

  6. Method and Apparatus for the Detection of Hydrogen Using a Metal Alloy

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W. (Inventor)

    1997-01-01

    A hydrogen sensitive metal alloy contains palladium and titanium to provide a larger change in electrical resistance when exposed to the presence of hydrogen. The alloy is deposited on a substrate and a thin film and connected across electrical circuitry to provide a sensor device that can be used for improved sensitivity and accuracy of hydrogen detection.

  7. An electrochemical method for determining hydrogen concentrations in metals and some applications

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1983-01-01

    An electrochemical method was developed for the determination of hydrogen in metals using the EG&G-PARC Model 350A Corrosion Measurement Console. The method was applied to hydrogen uptake, both during electrolysis and electroplating, and to studies of hydrogen elimination and the effect of heat treatment on elimination times. Results from these studies are presented.

  8. The transition to the metallic state in low density hydrogen

    DOE PAGESBeta

    McMinis, Jeremy; Morales, Miguel A.; Ceperley, David M.; Kim, Jeongnim

    2015-11-18

    Solid atomic hydrogen is one of the simplest systems to undergo a metal-insulator transition. Near the transition, the electronic degrees of freedom become strongly correlated and their description provides a difficult challenge for theoretical methods. As a result, the order and density of the phase transition are still subject to debate. In this work we use diffusion quantum Monte Carlo to benchmark the transition between the paramagnetic and anti-ferromagnetic phases of ground state body centered cubic atomic hydrogen. We locate the density of the transition by computing the equation of state for these two phases and identify the phase transitionmore » order by computing the band gap near the phase transition. These benchmark results show that the phase transition is continuous and occurs at a Wigner-Seitz radius of rs = 2.27(3)a0. As a result, we compare our results to previously reported density functional theory, Hedin s GW approximation, and dynamical mean field theory results.« less

  9. The transition to the metallic state in low density hydrogen

    SciTech Connect

    McMinis, Jeremy; Morales, Miguel A.; Ceperley, David M.; Kim, Jeongnim

    2015-11-21

    Solid atomic hydrogen is one of the simplest systems to undergo a metal-insulator transition. Near the transition, the electronic degrees of freedom become strongly correlated and their description provides a difficult challenge for theoretical methods. As a result, the order and density of the phase transition are still subject to debate. In this work, we use diffusion quantum Monte Carlo to benchmark the transition between paramagnetic and anti-ferromagnetic body centered cubic atomic hydrogen in its ground state. We locate the density of the transition by computing the equation of state for these two phases and identify the phase transition order by computing the band gap near the phase transition. These benchmark results show that the phase transition is continuous and occurs at a Wigner-Seitz radius of r{sub s} = 2.27(3) a{sub 0}. We compare our results to previously reported density functional theory, Hedin’s GW approximation, and dynamical mean field theory results.

  10. The transition to the metallic state in low density hydrogen

    SciTech Connect

    McMinis, Jeremy; Morales, Miguel A.; Ceperley, David M.; Kim, Jeongnim

    2015-11-18

    Solid atomic hydrogen is one of the simplest systems to undergo a metal-insulator transition. Near the transition, the electronic degrees of freedom become strongly correlated and their description provides a difficult challenge for theoretical methods. As a result, the order and density of the phase transition are still subject to debate. In this work we use diffusion quantum Monte Carlo to benchmark the transition between the paramagnetic and anti-ferromagnetic phases of ground state body centered cubic atomic hydrogen. We locate the density of the transition by computing the equation of state for these two phases and identify the phase transition order by computing the band gap near the phase transition. These benchmark results show that the phase transition is continuous and occurs at a Wigner-Seitz radius of rs = 2.27(3)a0. As a result, we compare our results to previously reported density functional theory, Hedin s GW approximation, and dynamical mean field theory results.

  11. Hydrogen storage in Pd nanocrystals covered with a metal-organic framework.

    PubMed

    Li, Guangqin; Kobayashi, Hirokazu; Taylor, Jared M; Ikeda, Ryuichi; Kubota, Yoshiki; Kato, Kenichi; Takata, Masaki; Yamamoto, Tomokazu; Toh, Shoichi; Matsumura, Syo; Kitagawa, Hiroshi

    2014-08-01

    Hydrogen is an essential component in many industrial processes. As a result of the recent increase in the development of shale gas, steam reforming of shale gas has received considerable attention as a major source of H2, and the more efficient use of hydrogen is strongly demanded. Palladium is well known as a hydrogen-storage metal and an effective catalyst for reactions related to hydrogen in a variety of industrial processes. Here, we present remarkably enhanced capacity and speed of hydrogen storage in Pd nanocrystals covered with the metal-organic framework (MOF) HKUST-1 (copper(II) 1,3,5-benzenetricarboxylate). The Pd nanocrystals covered with the MOF have twice the storage capacity of the bare Pd nanocrystals. The significantly enhanced hydrogen storage capacity was confirmed by hydrogen pressure-composition isotherms and solid-state deuterium nuclear magnetic resonance measurements. The speed of hydrogen absorption in the Pd nanocrystals is also enhanced by the MOF coating. PMID:25017188

  12. New vistas in the determination of hydrogen in aerospace engine metal alloys

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1986-01-01

    The application of diffusion theory to the analysis of hydrogen desorption data has been studied. From these analyses, important information concerning hydrogen solubilities and the nature of the hydrogen distributions in the metal has been obtained. Two nickel base alloys, Rene' 41 and Waspaloy, and one ferrous alloy, 4340 steel, were studied in this work. For the nickel base alloys, it was found that the hydrogen distributions after electrolytic charging conformed closely to those which would be predicted by diffusion theory. The hydrogen distributions in electrolytically charged 4340 steel, on the other hand, were essentially uniform in nature, which would not be predicted by diffusion theory. Finally, it has been found that the hydrogen desorption is completely explained by the nature of the hydrogen distribution in the metal, and that the 'fast' hydrogen is not due to surface and subsurface hydride formation, as was originally proposed.

  13. Hydrogen storage in Pd nanocrystals covered with a metal-organic framework

    NASA Astrophysics Data System (ADS)

    Li, Guangqin; Kobayashi, Hirokazu; Taylor, Jared M.; Ikeda, Ryuichi; Kubota, Yoshiki; Kato, Kenichi; Takata, Masaki; Yamamoto, Tomokazu; Toh, Shoichi; Matsumura, Syo; Kitagawa, Hiroshi

    2014-08-01

    Hydrogen is an essential component in many industrial processes. As a result of the recent increase in the development of shale gas, steam reforming of shale gas has received considerable attention as a major source of H2, and the more efficient use of hydrogen is strongly demanded. Palladium is well known as a hydrogen-storage metal and an effective catalyst for reactions related to hydrogen in a variety of industrial processes. Here, we present remarkably enhanced capacity and speed of hydrogen storage in Pd nanocrystals covered with the metal-organic framework (MOF) HKUST-1 (copper(II) 1,3,5-benzenetricarboxylate). The Pd nanocrystals covered with the MOF have twice the storage capacity of the bare Pd nanocrystals. The significantly enhanced hydrogen storage capacity was confirmed by hydrogen pressure-composition isotherms and solid-state deuterium nuclear magnetic resonance measurements. The speed of hydrogen absorption in the Pd nanocrystals is also enhanced by the MOF coating.

  14. ACCEPTABILITY ENVELOPE FOR METAL HYDRIDE-BASED HYDROGEN STORAGE SYSTEMS

    SciTech Connect

    Hardy, B.; Corgnale, C.; Tamburello, D.; Garrison, S.; Anton, D.

    2011-07-18

    The design and evaluation of media based hydrogen storage systems requires the use of detailed numerical models and experimental studies, with significant amount of time and monetary investment. Thus a scoping tool, referred to as the Acceptability Envelope, was developed to screen preliminary candidate media and storage vessel designs, identifying the range of chemical, physical and geometrical parameters for the coupled media and storage vessel system that allow it to meet performance targets. The model which underpins the analysis allows simplifying the storage system, thus resulting in one input-one output scheme, by grouping of selected quantities. Two cases have been analyzed and results are presented here. In the first application the DOE technical targets (Year 2010, Year 2015 and Ultimate) are used to determine the range of parameters required for the metal hydride media and storage vessel. In the second case the most promising metal hydrides available are compared, highlighting the potential of storage systems, utilizing them, to achieve 40% of the 2010 DOE technical target. Results show that systems based on Li-Mg media have the best potential to attain these performance targets.

  15. Chemical bonding of hydrogen molecules to transition metal complexes

    SciTech Connect

    Kubas, G.J.

    1990-01-01

    The complex W(CO){sub 3}(PR{sub 3}){sub 2}(H{sub 2}) (CO = carbonyl; PR{sub 3} = organophosphine) was prepared and was found to be a stable crystalline solid under ambient conditions from which the hydrogen can be reversibly removed in vacuum or under an inert atmosphere. The weakly bonded H{sub 2} exchanges easily with D{sub 2}. This complex represents the first stable compound containing intermolecular interaction of a sigma-bond (H-H) with a metal. The primary interaction is reported to be donation of electron density from the H{sub 2} bonding electron pair to a vacant metal d-orbital. A series of complexes of molybdenum of the type Mo(CO)(H{sub 2})(R{sub 2}PCH{sub 2}CH{sub 2}PR{sub 2}){sub 2} were prepared by varying the organophosphine substitutent to demonstrate that it is possible to bond either dihydrogen or dihydride by adjusting the electron-donating properties of the co-ligands. Results of infrared and NMR spectroscopic studies are reported. 20 refs., 5 fig.

  16. Mechanism for high hydrogen storage capacity on metal-coated carbon nanotubes: A first principle analysis

    SciTech Connect

    Lu, Jinlian; Xiao, Hong; Cao, Juexian

    2012-12-15

    The hydrogen adsorption and binding mechanism on metals (Ca, Sc, Ti and V) decorated single walled carbon nanotubes (SWCNTs) are investigated using first principle calculations. Our results show that those metals coated on SWCNTs can uptake over 8 wt% hydrogen molecules with binding energy range -0.2--0.6 eV, promising potential high density hydrogen storage material. The binding mechanism is originated from the electrostatic Coulomb attraction, which is induced by the electric field due to the charge transfer from metal 4s to 3d. Moreover, we found that the interaction between the H{sub 2}-H{sub 2} further lowers the binding energy. - Graphical abstract: Five hydrogen molecules bound to individual Ca decorated (8, 0) SWCNT : a potential hydrogen-storage material. Highlights: Black-Right-Pointing-Pointer Each transition metal atom can adsorb more than four hydrogen molecules. Black-Right-Pointing-Pointer The interation between metal and hydrogen molecule is electrostatic coulomb attraction. Black-Right-Pointing-Pointer The electric field is induced by the charge transfer from metal 4s to metal 3d. Black-Right-Pointing-Pointer The adsorbed hydrogen molecules which form supermolecule can further lower the binding energy.

  17. Chemomechanical Origin of Hydrogen Trapping at Grain Boundaries in fcc Metals

    NASA Astrophysics Data System (ADS)

    Zhou, Xiao; Marchand, Daniel; McDowell, David L.; Zhu, Ting; Song, Jun

    2016-02-01

    Hydrogen embrittlement of metals is widely observed, but its atomistic origins remain little understood and much debated. Combining a unique identification of interstitial sites through polyhedral tessellation and first-principles calculations, we study hydrogen adsorption at grain boundaries in a variety of face-centered cubic metals of Ni, Cu, γ -Fe , and Pd. We discover the chemomechanical origin of the variation of adsorption energetics for interstitial hydrogen at grain boundaries. A general chemomechanical formula is established to provide accurate assessments of hydrogen trapping and segregation energetics at grain boundaries, and it also offers direct explanations for certain experimental observations. The present study deepens our mechanistic understanding of the role of grain boundaries in hydrogen embrittlement and points to a viable path towards predictive microstructure engineering against hydrogen embrittlement in structural metals.

  18. Chemomechanical Origin of Hydrogen Trapping at Grain Boundaries in fcc Metals.

    PubMed

    Zhou, Xiao; Marchand, Daniel; McDowell, David L; Zhu, Ting; Song, Jun

    2016-02-19

    Hydrogen embrittlement of metals is widely observed, but its atomistic origins remain little understood and much debated. Combining a unique identification of interstitial sites through polyhedral tessellation and first-principles calculations, we study hydrogen adsorption at grain boundaries in a variety of face-centered cubic metals of Ni, Cu, γ-Fe, and Pd. We discover the chemomechanical origin of the variation of adsorption energetics for interstitial hydrogen at grain boundaries. A general chemomechanical formula is established to provide accurate assessments of hydrogen trapping and segregation energetics at grain boundaries, and it also offers direct explanations for certain experimental observations. The present study deepens our mechanistic understanding of the role of grain boundaries in hydrogen embrittlement and points to a viable path towards predictive microstructure engineering against hydrogen embrittlement in structural metals. PMID:26943544

  19. Hydrogen absorption induced metal deposition on palladium and palladium-alloy particles

    DOEpatents

    Wang, Jia X.; Adzic, Radoslav R.

    2009-03-24

    The present invention relates to methods for producing metal-coated palladium or palladium-alloy particles. The method includes contacting hydrogen-absorbed palladium or palladium-alloy particles with one or more metal salts to produce a sub-monoatomic or monoatomic metal- or metal-alloy coating on the surface of the hydrogen-absorbed palladium or palladium-alloy particles. The invention also relates to methods for producing catalysts and methods for producing electrical energy using the metal-coated palladium or palladium-alloy particles of the present invention.

  20. Miniaturized metal (metal alloy)/ PdO.sub.x/SiC hydrogen and hydrocarbon gas sensors

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W. (Inventor); Xu, Jennifer C. (Inventor); Lukco, Dorothy (Inventor)

    2011-01-01

    A miniaturized Schottky diode hydrogen and hydrocarbon sensor and the method of making same is disclosed and claimed. The sensor comprises a catalytic metal layer, such as palladium, a silicon carbide substrate layer and a thin barrier layer in between the catalytic and substrate layers made of palladium oxide (PdO.sub.x ). This highly stable device provides sensitive gas detection at temperatures ranging from at least 450 to 600.degree. C. The barrier layer prevents reactions between the catalytic metal layer and the substrate layer. Conventional semiconductor fabrication techniques are used to fabricate the small-sized sensors. The use of a thicker palladium oxide barrier layer for other semiconductor structures such as a capacitor and transistor structures is also disclosed.

  1. Miniaturized Metal (Metal Alloy)/PdO(x)/SiC Hydrogen and Hydrocarbon Gas Sensors

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W. (Inventor); Xu, Jennifer C. (Inventor); Lukco, Dorothy (Inventor)

    2008-01-01

    A miniaturized Schottky diode hydrogen and hydrocarbon sensor and the method of making same is disclosed and claimed. The sensor comprises a catalytic metal layer, such as palladium, a silicon carbide substrate layer and a thin barrier layer in between the catalytic and substrate layers made of palladium oxide (PdO(x)). This highly stable device provides sensitive gas detection at temperatures ranging from at least 450 to 600 C. The barrier layer prevents reactions between the catalytic metal layer and the substrate layer. Conventional semiconductor fabrication techniques are used to fabricate the small-sided sensors. The use of a thicker palladium oxide barrier layer for other semiconductor structures such as a capacitor and transistor structures is also disclosed.

  2. Miniaturized metal (metal alloy)/ PdO.sub.x/SiC hydrogen and hydrocarbon gas sensors

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W. (Inventor); Xu, Jennifer C. (Inventor); Lukco, Dorothy (Inventor)

    2008-01-01

    A miniaturized Schottky diode hydrogen and hydrocarbon sensor and the method of making same is disclosed and claimed. The sensor comprises a catalytic metal layer, such as palladium, a silicon carbide substrate layer and a thin barrier layer in between the catalytic and substrate layers made of palladium oxide (PdO.sub.x). This highly stable device provides sensitive gas detection at temperatures ranging from at least 450 to 600.degree. C. The barrier layer prevents reactions between the catalytic metal layer and the substrate layer. Conventional semiconductor fabrication techniques are used to fabricate the small-sized sensors. The use of a thicker palladium oxide barrier layer for other semiconductor structures such as a capacitor and transistor structures is also disclosed.

  3. In-situ Hydrogen Sorption 2D-ACAR Facility for the Study of Metal Hydrides for Hydrogen Storage

    NASA Astrophysics Data System (ADS)

    Legerstee, W. J.; de Roode, J.; Anastasopol, A.; Falub, C. V.; Eijt, S. W. H.

    We developed a dedicated hydrogen sorption setup coupled to a positron 2D-ACAR (two-dimensional Angular Correlation of Annihilation Radiation) setup employing a 22Na-source, which will enable to collect 2D-ACAR momentum distributions in-situ as a function of temperature, hydrogen pressure and hydrogen content. In parallel, a dedicated glovebox was constructed for handling air-sensitive metal and metal hydride samples, with a special entrance for the 2D-ACAR sample insert. The 2D-ACAR setup was tested in first measurements on a Pd0.75Ag0.25 foil and on a ball-milled MgH2 powder in both the hydrogen loaded and desorbed states. The hydrogen loaded Pd0.75Ag0.25Hx sample was kept under a 1 bar hydrogen pressure to prevent partial desorption during measurements at room temperature. The collected 2D-ACAR distributions of Pd0.75Ag0.25 and Pd0.75Ag0.25Hx showed similar features as observed in previous studies. The broadening of the ACAR distributions observed for the Mg to MgH2 metal-insulator transition was compared in a quantitative manner to ab-initio calculations reported in the literature.

  4. Thickness dependence of hydrogen permeability for Ni-BaCe{sub 0.8}Y{sub 0.2}O{sub 3-{delta}}.

    SciTech Connect

    Song, S.-J.; Moon, J.-H.; Lee, T. H.; Dorris, S. E.; Balachandran, U.; Energy Systems; Chonnam National Univ.

    2008-10-01

    The hydrogen separation properties and thickness dependence of the hydrogen flux for Ni-BCY membranes, containing a proton-conductor (BaCe{sub 0.8}Y{sub 0.2}O{sub 3-{alpha}}, i.e., BCY) and an electron-conductor (Ni metal), were studied as a function of temperature in the thickness range of 0.08-1.16 mm. Feed gas was composed of 3.8% H{sub 2} balanced with He (pH{sub 2}O = 0.03 atm) gas and sweep gas contained 100 ppm hydrogen balanced with nitrogen. The hydrogen permeation flux due to ambipolar diffusion dominates over the entire experimental temperature range, but the hydrogen permeation flux through the Ni-metal increases with temperature due to its endothermic hydrogen solubility. The hydrogen flux through the Ni-BCY membranes is inversely proportional to the thickness, indicating that bulk diffusion is the rate limiting step down to a thickness of 80 {micro}m. For thicker (> 640 {micro}m) membranes, the flux decreases monotonically as the temperature increases up to 900 C, whereas the flux for thinner (< 200 {micro}m) membranes increases as temperature increases up to {approx} 750 C and then remains nearly constant as the temperature is further increased.

  5. Oxidative Dissolution of Nickel Metal in Hydrogenated Hydrothermal Solutions

    SciTech Connect

    Ziemniak, S. E.; Guilmette, P. A.; Turcotte, R. A.; Tunison, H. M.

    2007-03-27

    A platinum-lined, flowing autoclave facility is used to investigate the solubility behavior of metallic nickel in hydrogenated ammonia and sodium hydroxide solutions between 175 and 315 C. The solubility measurements were interpreted by means of an oxidative dissolution reaction followed by a sequence of Ni(II) ion hydrolysis reactions: Ni(s) + 2H+(aq) = Ni2+(aq) + H2(g) and Ni{sup 2+}(aq) + nH{sub 2}O = Ni(OH){sub n}{sup 2-n}(aq) + nH{sup +}(aq) where n = 1 and 2. Gibbs energies associated with these reaction equilibria were determined from a least-squares analysis of the data. The extracted thermochemical properties ({Delta}fG{sup 0}, {Delta}fH{sup 0} and S{sup 0}) for Ni2{sup +}(aq), Ni(OH){sup +}(aq) and Ni(OH){sub 2}(aq) were found to be consistent with those determined in a previous solubility study of NiO/Ni(OH){sub 2} conducted in our laboratory. The thermodynamic basis of the Ni/NiO phase boundary in aqueous solutions is examined to show that Ni(s) is stable relative to NiO(s) in solutions saturated at 25 C with 1 atm H{sub 2} for temperatures below 309 C.

  6. Heat energy from hydrogen-metal nuclear interactions

    SciTech Connect

    Hadjichristos, John; Gluck, Peter

    2013-11-13

    The discovery of the Fleischmann-Pons Effect in 1989, a promise of an abundant, cheap and clean energy source was premature in the sense that theoretical knowledge, relative technologies and the experimental tools necessary for understanding and for scale-up still were not available. Therefore the field, despite efforts and diversification remained quasi-stagnant, the effect (a scientific certainty) being of low intensity leading to mainstream science to reject the phenomenon and not supporting its study. Recently however, the situation has changed, a new paradigm is in statunascendi and the obstacles are systematically removed by innovative approaches. Defkalion, a Greek company (that recently moved in Canada for faster progress) has elaborated an original technology for the Ni-H system [1-3]. It is about the activation of hydrogen and creation of nuclear active nano-cavities in the metal through a multi-stage interaction, materializing some recent breakthrough announcements in nanotechnology, superconductivity, plasma physics, astrophysics and material science. A pre-industrial generator and a novel mass-spectrometry instrumentations were created. Simultaneously, a meta-theory of phenomena was sketched in collaboration with Prof. Y. Kim (Purdue U)

  7. Heat energy from hydrogen-metal nuclear interactions

    NASA Astrophysics Data System (ADS)

    Hadjichristos, John; Gluck, Peter

    2013-11-01

    The discovery of the Fleischmann-Pons Effect in 1989, a promise of an abundant, cheap and clean energy source was premature in the sense that theoretical knowledge, relative technologies and the experimental tools necessary for understanding and for scale-up still were not available. Therefore the field, despite efforts and diversification remained quasi-stagnant, the effect (a scientific certainty) being of low intensity leading to mainstream science to reject the phenomenon and not supporting its study. Recently however, the situation has changed, a new paradigm is in statunascendi and the obstacles are systematically removed by innovative approaches. Defkalion, a Greek company (that recently moved in Canada for faster progress) has elaborated an original technology for the Ni-H system [1-3]. It is about the activation of hydrogen and creation of nuclear active nano-cavities in the metal through a multi-stage interaction, materializing some recent breakthrough announcements in nanotechnology, superconductivity, plasma physics, astrophysics and material science. A pre-industrial generator and a novel mass-spectrometry instrumentations were created. Simultaneously, a meta-theory of phenomena was sketched in collaboration with Prof. Y. Kim (Purdue U).

  8. Design of Hydrogen Storage Alloys/Nanoporous Metals Hybrid Electrodes for Nickel-Metal Hydride Batteries.

    PubMed

    Li, M M; Yang, C C; Wang, C C; Wen, Z; Zhu, Y F; Zhao, M; Li, J C; Zheng, W T; Lian, J S; Jiang, Q

    2016-01-01

    Nickel metal hydride (Ni-MH) batteries have demonstrated key technology advantages for applications in new-energy vehicles, which play an important role in reducing greenhouse gas emissions and the world's dependence on fossil fuels. However, the poor high-rate dischargeability of the negative electrode materials-hydrogen storage alloys (HSAs) limits applications of Ni-MH batteries in high-power fields due to large polarization. Here we design a hybrid electrode by integrating HSAs with a current collector of three-dimensional bicontinuous nanoporous Ni. The electrode shows enhanced high-rate dischargeability with the capacity retention rate reaching 44.6% at a discharge current density of 3000 mA g(-1), which is 2.4 times that of bare HSAs (18.8%). Such a unique hybrid architecture not only enhances charge transfer between nanoporous Ni and HSAs, but also facilitates rapid diffusion of hydrogen atoms in HSAs. The developed HSAs/nanoporous metals hybrid structures exhibit great potential to be candidates as electrodes in high-performance Ni-MH batteries towards applications in new-energy vehicles. PMID:27270184

  9. Design of Hydrogen Storage Alloys/Nanoporous Metals Hybrid Electrodes for Nickel-Metal Hydride Batteries

    PubMed Central

    Li, M. M.; Yang, C. C.; Wang, C. C.; Wen, Z.; Zhu, Y. F.; Zhao, M.; Li, J. C.; Zheng, W. T.; Lian, J. S.; Jiang, Q.

    2016-01-01

    Nickel metal hydride (Ni-MH) batteries have demonstrated key technology advantages for applications in new-energy vehicles, which play an important role in reducing greenhouse gas emissions and the world’s dependence on fossil fuels. However, the poor high-rate dischargeability of the negative electrode materials—hydrogen storage alloys (HSAs) limits applications of Ni-MH batteries in high-power fields due to large polarization. Here we design a hybrid electrode by integrating HSAs with a current collector of three-dimensional bicontinuous nanoporous Ni. The electrode shows enhanced high-rate dischargeability with the capacity retention rate reaching 44.6% at a discharge current density of 3000 mA g−1, which is 2.4 times that of bare HSAs (18.8%). Such a unique hybrid architecture not only enhances charge transfer between nanoporous Ni and HSAs, but also facilitates rapid diffusion of hydrogen atoms in HSAs. The developed HSAs/nanoporous metals hybrid structures exhibit great potential to be candidates as electrodes in high-performance Ni-MH batteries towards applications in new-energy vehicles. PMID:27270184

  10. Design of Hydrogen Storage Alloys/Nanoporous Metals Hybrid Electrodes for Nickel-Metal Hydride Batteries

    NASA Astrophysics Data System (ADS)

    Li, M. M.; Yang, C. C.; Wang, C. C.; Wen, Z.; Zhu, Y. F.; Zhao, M.; Li, J. C.; Zheng, W. T.; Lian, J. S.; Jiang, Q.

    2016-06-01

    Nickel metal hydride (Ni-MH) batteries have demonstrated key technology advantages for applications in new-energy vehicles, which play an important role in reducing greenhouse gas emissions and the world’s dependence on fossil fuels. However, the poor high-rate dischargeability of the negative electrode materials—hydrogen storage alloys (HSAs) limits applications of Ni-MH batteries in high-power fields due to large polarization. Here we design a hybrid electrode by integrating HSAs with a current collector of three-dimensional bicontinuous nanoporous Ni. The electrode shows enhanced high-rate dischargeability with the capacity retention rate reaching 44.6% at a discharge current density of 3000 mA g‑1, which is 2.4 times that of bare HSAs (18.8%). Such a unique hybrid architecture not only enhances charge transfer between nanoporous Ni and HSAs, but also facilitates rapid diffusion of hydrogen atoms in HSAs. The developed HSAs/nanoporous metals hybrid structures exhibit great potential to be candidates as electrodes in high-performance Ni-MH batteries towards applications in new-energy vehicles.

  11. Transition metal activation and functionalization of carbon-hydrogen bonds

    SciTech Connect

    Jones, W.D.

    1992-06-01

    We are investigating the fundamental thermodynamic and kinetic factors that influence carbon-hydrogen bond activation at homogeneous transition metal centers and the conversion of hydrocarbons into functionalized products of potential use to the chemical industry. Advances have been made in both understanding the interactions of hydrocarbons with metals and in the functionalization of hydrocarbons. We have found that RhCl(PR{sub 3}){sub 2}(CNR) complexes can catalyze the insertion of isonitriles into the C-H bonds or arenes upon photolysis. The mechanism of these reactions was found to proceed by way of initial phosphine dissociation, followed by C-H activation and isonitrile insertion. We have also examined reactions of a series of arenes with (C{sub 5}Me{sub 5})Rh(PMe{sub 3})PhH and begun to map out the kinetic and thermodynamic preferences for arene coordination. The effects of resonance, specifically the differences in the Hueckel energies of the bound vs free ligand, are now believed to fully control the C-H activation/{eta}{sup 2}-coordination equilibria. We have begun to examine the reactions of rhodium isonitrile pyrazolylborates for alkane and arene C-H bond activation. A new, labile, carbodiimide precursor has been developed for these studies. We have completed studies of the reactions of (C{sub 5}Me{sub 5})Rh(PMe{sub 3})H{sub 2} with D{sub 2} and PMe{sub 3} that indicate that both {eta}{sup 5} {yields} {eta}{sup 3} ring slippage and metal to ring hydride migration occur more facilely than thermal reductive elimination of H{sub 2}. We have examined the reactions of heterocycles with (C{sub 5}Me{sub 5})Rh(PMe{sub 3})PhH and found that pyrrole and furan undergo C-H or N-H activation. Thiophene, however, undergoes C-S bond oxidative addition, and the mechanism of activation has been shown to proceed through sulfur coordination prior to C-S insertion.

  12. Hydrogen storage in the form of metal hydrides

    NASA Technical Reports Server (NTRS)

    Zwanziger, M. G.; Santana, C. C.; Santos, S. C.

    1984-01-01

    Reversible reactions between hydrogen and such materials as iron/titanium and magnesium/ nickel alloy may provide a means for storing hydrogen fuel. A demonstration model of an iron/titanium hydride storage bed is described. Hydrogen from the hydride storage bed powers a converted gasoline electric generator.

  13. Optimization of neutron tomography for rapid hydrogen concentration inspection of metal castings

    SciTech Connect

    Gibbons, M. R., LLNL

    1998-02-03

    Hydrogen embrittlement describes a group of phenomena leading to the degradation of metal alloy properties. The hydrogen concentration in the alloy can be used as an indicator for the onset of embrittlement. A neutron tomography system has been optimized to perform nondestructive detection of hydrogen concentration in titanium aircraft engine compressor blades. Preprocessing of back projection images and postprocessing of tomographic reconstructions are used to achieve hydrogen concentration sensitivity below 200 ppm weight. This paper emphasizes the postprocessing techniques which allow automated reporting of hydrogen concentration.

  14. Catalytic mechanism of transition-metal compounds on Mg hydrogen sorption reaction.

    PubMed

    Barkhordarian, Gagik; Klassen, Thomas; Bormann, Rüdiger

    2006-06-01

    The catalytic mechanisms of transition-metal compounds during the hydrogen sorption reaction of magnesium-based hydrides were investigated through relevant experiments. Catalytic activity was found to be influenced by four distinct physico-thermodynamic properties of the transition-metal compound: a high number of structural defects, a low stability of the compound, which however has to be high enough to avoid complete reduction of the transition metal under operating conditions, a high valence state of the transition-metal ion within the compound, and a high affinity of the transition-metal ion to hydrogen. On the basis of these results, further optimization of the selection of catalysts for improving sorption properties of magnesium-based hydrides is possible. In addition, utilization of transition-metal compounds as catalysts for other hydrogen storage materials is considered. PMID:16771356

  15. Detecting hydrogen-containing contaminants on metal surfaces

    NASA Technical Reports Server (NTRS)

    Grove, E. L.; Losele, W. A.

    1969-01-01

    Spark emission spectroscopy analyzes surface contamination of metals. This technique controls the quality of surface preparations and is useful in fundamental investigations of surface properties of metals.

  16. Enhanced chitosan beads-supported Fe(0)-nanoparticles for removal of heavy metals from electroplating wastewater in permeable reactive barriers.

    PubMed

    Liu, Tingyi; Yang, Xi; Wang, Zhong-Liang; Yan, Xiaoxing

    2013-11-01

    The removal of heavy metals from electroplating wastewater is a matter of paramount importance due to their high toxicity causing major environmental pollution problems. Nanoscale zero-valent iron (NZVI) became more effective to remove heavy metals from electroplating wastewater when enhanced chitosan (CS) beads were introduced as a support material in permeable reactive barriers (PRBs). The removal rate of Cr (VI) decreased with an increase of pH and initial Cr (VI) concentration. However, the removal rates of Cu (II), Cd (II) and Pb (II) increased with an increase of pH while decreased with an increase of their initial concentrations. The initial concentrations of heavy metals showed an effect on their removal sequence. Scanning electron microscope images showed that CS-NZVI beads enhanced by ethylene glycol diglycidyl ether (EGDE) had a loose and porous surface with a nucleus-shell structure. The pore size of the nucleus ranged from 19.2 to 138.6 μm with an average aperture size of around 58.6 μm. The shell showed a tube structure and electroplating wastewaters may reach NZVI through these tubes. X-ray photoelectron spectroscope (XPS) demonstrated that the reduction of Cr (VI) to Cr (III) was complete in less than 2 h. Cu (II) and Pb (II) were removed via predominant reduction and auxiliary adsorption. However, main adsorption and auxiliary reduction worked for the removal of Cd (II). The removal rate of total Cr, Cu (II), Cd (II) and Pb (II) from actual electroplating wastewater was 89.4%, 98.9%, 94.9% and 99.4%, respectively. The findings revealed that EGDE-CS-NZVI-beads PRBs had the capacity to remediate actual electroplating wastewater and may become an effective and promising technology for in situ remediation of heavy metals. PMID:24075723

  17. Strategies for the improvement of the hydrogen storage properties of metal hydride materials.

    PubMed

    Wu, Hui

    2008-10-24

    Metal hydrides are an important family of materials that can potentially be used for safe, efficient and reversible on-board hydrogen storage. Light-weight metal hydrides in particular have attracted intense interest due to their high hydrogen density. However, most of these hydrides have rather slow absorption kinetics, relatively high thermal stability, and/or problems with the reversibility of hydrogen absorption/desorption cycling. This paper discusses a number of different approaches for the improvement of the hydrogen storage properties of these materials, with emphasis on recent research on tuning the ionic mobility in mixed hydrides. This concept opens a promising pathway to accelerate hydrogenation kinetics, reduce the activation energy for hydrogen release, and minimize deleterious possible by-products often associated with complex hydride systems. PMID:18821548

  18. Characterisation of hydrocarbonaceous overlayers important in metal-catalysed selective hydrogenation reactions

    NASA Astrophysics Data System (ADS)

    Lennon, David; Warringham, Robbie; Guidi, Tatiana; Parker, Stewart F.

    2013-12-01

    The hydrogenation of alkynes to alkenes over supported metal catalysts is an important industrial process and it has been shown that hydrocarbonaceous overlayers are important in controlling selectivity profiles of metal-catalysed hydrogenation reactions. As a model system, we have selected propyne hydrogenation over a commercial Pd(5%)/Al2O3 catalyst. Inelastic neutron scattering studies show that the C-H stretching mode ranges from 2850 to 3063 cm-1, indicating the mostly aliphatic nature of the overlayer and this is supported by the quantification of the carbon and hydrogen on the surface. There is also a population of strongly hydrogen-bonded hydroxyls, their presence would indicate that the overlayer probably contains some oxygen functionality. There is little evidence for any olefinic or aromatic species. This is distinctly different from the hydrogen-poor overlayers that are deposited on Ni/Al2O3 catalysts during methane reforming.

  19. In situ Raman spectroscopy study of metal-enhanced hydrogenation and dehydrogenation of VO2.

    PubMed

    Wu, Hao; Fu, Qiang; Bao, Xinhe

    2016-11-01

    Vanadium dioxide (VO2) has a phase transition from insulator to metal at 340 K, and this transition can be strongly modified by hydrogenation. In this work, two dimensional (2D) VO2 sheets have been grown on Si(1 1 1) surfaces through chemical vapor deposition, and metal (Au, Pt) thin films were deposited on VO2 surfaces by sputtering. The hydrogenation and dehydrogenation of VO2 and metal-decorated VO2 structures in H2 and in air were in situ studied by Raman. We found that hydrogenation and dehydrogenation temperatures have been significantly decreased with the VO2 surface decorated by Au and Pt. The enhanced hydrogenation and dehydrogenation reactions can be attributed to catalytic dissociation of H2 and O2 molecules on metal surfaces and subsequent spillover of dissociated H and O atoms to the oxide surfaces. PMID:27603090

  20. Pd nanoparticles embedded into a metal-organic framework: synthesis, structural characteristics, and hydrogen sorption properties.

    PubMed

    Zlotea, Claudia; Campesi, Renato; Cuevas, Fermin; Leroy, Eric; Dibandjo, Philippe; Volkringer, Christophe; Loiseau, Thierry; Férey, Gérard; Latroche, Michel

    2010-03-10

    The metal-organic framework MIL-100(Al) has been used as a host to synthesize Pd nanoparticles (around 2.0 nm) embedded within the pores of the MIL, showing one of the highest metal contents (10 wt %) without degradation of the porous host. Textural properties of MIL-100(Al) are strongly modified by Pd insertion, leading to significant changes in gas sorption properties. The loss of excess hydrogen storage at low temperature can be correlated with the decrease of the specific surface area and pore volume after Pd impregnation. At room temperature, the hydrogen uptake in the composite MIL-100(Al)/Pd is almost twice that of the pristine material. This can be only partially accounted by Pd hydride formation, and a "spillover" mechanism is expected to take place promoting the dissociation of molecular hydrogen at the surface of the metal nanoparticles and the diffusion of monatomic hydrogen into the porosity of the host metal-organic framework. PMID:20155921

  1. Frequency dispersive complex permittivity and permeability of ferromagnetic metallic granular composite at microwave frequencies

    NASA Astrophysics Data System (ADS)

    Chen, Ping; Liu, Min; Wang, Ling; Poo, Yin; Wu, Rui-xin

    2011-12-01

    We experimentally studied the frequency dependent complex permittivity ε and permeability μ of composite composed of carbonyl iron powder (CIP) and epoxy resin in the frequency range 1-18 GHz. We found that the intrinsic ε and μ of CIP extracted from the measured ε and μ of composites follow the classical Maxwell equations and the Landau-Lifshitz-Gilbert (LLG) equation, respectively. The dependences of ε and μ of composites on the volume fraction of CIP (vfCIP) were investigated using the two-exponent phenomenological percolation equation (TEPPE). We found that the TEPPE can fit the experimental results very well. Comparing the results of percolation parameters derived by experimental data at different frequencies, we show that the TEPPE is frequency independent for the composites at microwave frequencies. The results also show that the ε and μ spectrums of composites with definite vfCIP can be correctly calculated by combining the TEPPE with the theoretical models of intrinsic ε and μ.

  2. Metal Oxide Nanomaterials for Solar Energy to Hydrogen Fuel Conversion

    NASA Astrophysics Data System (ADS)

    Sabio, Erwin Murillo

    Photoactive metal oxide nanomaterials enable full or partial water splitting by reducing water to hydrogen and oxidizing water into oxygen through transfer of photogenerated electrons and holes, respectively, upon absorption of light of certain frequencies. Scanning Transmission Electron Microscopy (STEM) is one of the useful instruments to study these materials through observation of their atomic structures using high resolution imaging and through chemical analyses using complementary analytical techniques. Combinations of z-contrast imaging, selected area electron diffraction (SAED), electron dispersive x-ray spectroscopy (EDX), and electron energy loss spectroscopy (EELS) were used to elucidate the structures of IrO2, H2Ti4O 9, H2K2Nb6O17 and WO 3 photocatalysts. STEM techniques were also employed to observe the reduction of V2O5 nanoribbons into photoactive VO 2 and to monitor the effect of sonication on the size and crystallinity of TBACa2Nb3O10 (TBA = tetrabutylammonium) nano sheets. Aberration-corrected STEM equipped with a fluid stage was utilized to examine water catalysis by TBACa2Nb3O10 in situ under the electron beam. Phenomena associated with calcium niobate catalysis such as photodeposition of Pt and IrO2 co-catalysts and the surface poisoning with Ag particles during water oxidation were observed in real time. Formation of gas bubbles during water reduction was also detected as it occurs using dark field imaging and EELS. Electron microscopy was also employed to probe charge separation and distribution of redox-active sites on photolabeled TBACa2Nb 3O10. The sizes, shapes, and particle densities vary with the precursor concentration and the presence of sacrificial agents. Photogenerated electrons and holes were shown to be accessible throughout the nanosheets, without evidence for spatial charge separation across the sheet. To measure the relative catalytic activities of multiple photocatalysts, a comparative quantum efficiency (QE) study was

  3. Formation of ordered gas-solid structures via solidification in metal-hydrogen systems

    SciTech Connect

    Shapovalov, V.I. |

    1998-12-31

    This work contains theoretical discussions concerning the large amount of previously published experimental data related to gas eutectic transformations in metal-hydrogen systems. Theories of pore nucleation and growth in these gas-solid materials will be presented and related to observed morphologies and structures. This work is intended to be helpful to theorists that work with metal-hydrogen systems, and experimentalists engaged in manufacturing technology development of these ordered gas-solid structures.

  4. Discovery of spontaneous deformation of Pd metal during hydrogen absorption/desorption cycles

    PubMed Central

    Yamazaki, Toshimitsu; Sato, Masaharu; Itoh, Satoshi

    2009-01-01

    A drastic deformation was observed in Pd metal of various shapes after hydrogen absorption and desorption cycles at 150 °C at a gas pressure of 1–5 MPa. All of the phenomena observed indicate that some strong internal force is induced spontaneously during hydrogen absorption/desorption cycles to produce a collective deformation so as to minimize the surface. PMID:19444010

  5. Metal Halogen Battery Construction with Combustion Arrester to Prevent Self Propagation of Hydrogen-Halogen Reactions

    SciTech Connect

    Hammond, M. J.; Kilic, S.

    1983-12-27

    A metal halogen battery construction containing a special reactor means having a combustion arrester device and a reaction initiator device, whereby the reactor means permits controlled recombination of hydrogen gas and halogen gas in the system to form hydrogen halide, which is then dispersed into the store means of the battery.

  6. Optical studies of hydrogen above 200 gigapascals - Evidence for metallization by band overlap

    NASA Technical Reports Server (NTRS)

    Mao, N. K.; Hemley, R. J.

    1989-01-01

    Direct optical observations of solid hydrogen to pressures in the 250-gigapascal range at 77 K are reported. Hydrogen samples appear nearly opaque at the maximum pressures. Measurements of absorption and Raman spectra provide evidence that electronic excitations in the visible region begin at about 200 gigapascals. The optical data are consistent with a band-overlap mechanism of metallization.

  7. Selective hydrogenation of dienic and acetylenic compounds on metal-containing catalysts

    NASA Astrophysics Data System (ADS)

    Stytsenko, V. D.; Mel'nikov, D. P.

    2016-05-01

    Studies on selective hydrogenation of dienic and acetylenic hydrocarbons and their derivatives on metal-containing catalysts are reviewed. The review covers publications over a wide period of time and concentrates on the fundamental principles of catalyst operation. The catalysts modified in the surface layer were shown to be promising for selective hydrogenation.

  8. Highly mobile and reactive state of hydrogen in metal oxide semiconductors at room temperature

    NASA Astrophysics Data System (ADS)

    Chen, Wan Ping; He, Ke Feng; Wang, Yu; Chan, Helen Lai Wah; Yan, Zijie

    2013-11-01

    Hydrogen in metal oxides usually strongly associates with a neighboring oxygen ion through an O-H bond and thus displays a high stability. Here we report a novel state of hydrogen with unusually high mobility and reactivity in metal oxides at room temperature. We show that freshly doped hydrogen in Nb2O5 and WO3 polycrystals via electrochemical hydrogenation can reduce Cu2+ ions into Cu0 if the polycrystals are immersed in a CuSO4 solution, while this would not happen if the hydrogenated polycrystals have been placed in air for several hours before the immersion. Time-dependent studies of electrochemically hydrogenated rutile single crystals reveal two distinct states of hydrogen: one as protons covalently bonded to oxygen ions, while the other one is highly unstable with a lifetime of just a few hours. Observation of this mobile and reactive state of hydrogen will provide new insight into numerous moderate and low temperature interactions between metal oxides and hydrogen.

  9. Hydrogen storage of metal nitride by a mechanochemical reaction.

    PubMed

    Kojima, Yoshitsugu; Kawai, Yasuaki

    2004-10-01

    Metal imides (Li(2)NH, CaNH), a metal amide (LiNH(2)) and metal hydrides (LiH, CaH(2)) were synthesized by ball milling of their respective metal nitrides (Li(3)N, Ca(3)N(2)) in a H(2) atmosphere at 1 MPa and at room temperature. PMID:15467876

  10. A metal-free strategy to release chemisorbed H2 from hydrogenated boron nitride nanotubes.

    PubMed

    Roy, Lisa; Bhunya, Sourav; Paul, Ankan

    2014-11-10

    Chemisorbed hydrogen on boron nitride nanotubes (BNNT) can only be released thermally at very high temperatures above 350 °C. However, no catalyst has been identified that could liberate H2 from hydrogenated BN nanotubes under moderate conditions. Using different density functional methods we predict that the desorption of chemisorbed hydrogen from hydrogenated BN nanotubes can be facilitated catalytically by triflic acid at low free-energy activation barriers and appreciable rates under metal free conditions and mildly elevated temperatures (40-50 °C). Our proposed mechanism shows that the acid is regenerated in the process and can further facilitate similar catalytic release of H2 , thus suggesting all the chemisorbed hydrogen on the surface of the hydrogenated nanotube can be released in the form of H2 . These findings essentially raise hope for the development of a sustainable chemical hydrogen storage strategy in BN nanomaterials. PMID:25132421