Sample records for hydrogen peroxide-induced senescence-like

  1. [Accelerated senescence of fresh-cut Chinese water chestnut tissues in relation to hydrogen peroxide accumulation].

    PubMed

    Peng, Li-Tao; Jiang, Yue-Ming; Yang, Shu-Zhen; Pan, Si-Yi

    2005-10-01

    Accelerated senescence of fresh-cut Chinese water chestnut (CWC) tissues in relation to active oxygen species (AOS) metabolism was investigated. Fresh-cut CWC (2 mm thick) and intact CWC were stored at 4 degrees C in trays wrapped with plastic films. Changes in superoxide anion production rate, activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) were monitored, while contents of hydrogen peroxide, ascorbic acid, MDA as well as electrolyte leakage were measured. Fresh-cutting of CWC induced activities of SOD, CAT and APX to a certain extent (Fig. 2B and Fig. 3), but simultaneously stimulated superoxide anion production markedly (Fig. 2A), enhanced hydrogen peroxide accumulation and accelerated loss in ascorbic acid (Figs. 4 and 5), which resulted in increased lipid peroxidation indicated by malondialdehyde (MDA) content and electrolyte leakage (Fig. 1). Statistics analysis indicated that there was a significantly positive correlation among hydrogen peroxide accumulation, MDA content and electrolyte leakage (Table 1). Histochemical detection with 3, 3'-diaminobenzidine further demonstrated that hydrogen peroxide accumulation increased in fresh-cut CWC during storage (Fig. 5). AOS production rate and activities of SOD, CAT and APX changed little while no obvious hydrogen peroxide accumulation was observed, in intact CWC during storage.

  2. A drug-induced accelerated senescence (DIAS) is a possibility to study aging in time lapse.

    PubMed

    Alili, Lirija; Diekmann, Johanna; Giesen, Melanie; Holtkötter, Olaf; Brenneisen, Peter

    2014-06-01

    Currently, the oxidative stress (or free radical) theory of aging is the most popular explanation of how aging occurs at the molecular level. Accordingly, a stress-induced senescence-like phenotype of human dermal fibroblasts can be induced in vitro by the exposure of human diploid fibroblasts to subcytotoxic concentrations of hydrogen peroxide. However, several biomarkers of replicative senescence e.g. cell cycle arrest and enlarged morphology are abrogated 14 days after treatment, indicating that reactive oxygen species (ROS) rather acts as a trigger for short-term senescence (1-3 days) than being responsible for the maintenance of the senescence-like phenotype. Further, DNA-damaging factors are discussed resulting in a permanent senescent cell type. To induce long-term premature senescence and to understand the molecular alterations occurring during the aging process, we analyzed mitomycin C (MMC) as an alkylating DNA-damaging agent and ROS producer. Human dermal fibroblasts (HDF), used as model for skin aging, were exposed to non-cytotoxic concentrations of MMC and analyzed for potential markers of cellular aging, for example enlarged morphology, activity of senescence-associated-ß-galactosidase, cell cycle arrest, increased ROS production and MMP1-activity, which are well-documented for HDF in replicative senescence. Our data show that mitomycin C treatment results in a drug-induced accelerated senescence (DIAS) with long-term expression of senescence markers, demonstrating that a combination of different susceptibility factors, here ROS and DNA alkylation, are necessary to induce a permanent senescent cell type.

  3. Tolerance of pentose utilising yeast to hydrogen peroxide-induced oxidative stress.

    PubMed

    Spencer, Jennifer; Phister, Trevor G; Smart, Katherine A; Greetham, Darren

    2014-03-17

    Bioethanol fermentations follow traditional beverage fermentations where the yeast is exposed to adverse conditions such as oxidative stress. Lignocellulosic bioethanol fermentations involve the conversion of pentose and hexose sugars into ethanol. Environmental stress conditions such as osmotic stress and ethanol stress may affect the fermentation performance; however, oxidative stress as a consequence of metabolic output can also occur. However, the effect of oxidative stress on yeast with pentose utilising capabilities has yet to be investigated. Assaying for the effect of hydrogen peroxide-induced oxidative stress on Candida, Pichia and Scheffersomyces spp. has demonstrated that these yeast tolerate hydrogen peroxide-induced oxidative stress in a manner consistent with that demonstrated by Saccharomyces cerevisiae. Pichia guillermondii appears to be more tolerant to hydrogen peroxide-induced oxidative stress when compared to Candida shehatae, Candida succiphila or Scheffersomyces stipitis. Sensitivity to hydrogen peroxide-induced oxidative stress increased in the presence of minimal media; however, addition of amino acids and nucleobases was observed to increase tolerance. In particular adenine increased tolerance and methionine reduced tolerance to hydrogen peroxide-induced oxidative stress.

  4. Tolerance of pentose utilising yeast to hydrogen peroxide-induced oxidative stress

    PubMed Central

    2014-01-01

    Background Bioethanol fermentations follow traditional beverage fermentations where the yeast is exposed to adverse conditions such as oxidative stress. Lignocellulosic bioethanol fermentations involve the conversion of pentose and hexose sugars into ethanol. Environmental stress conditions such as osmotic stress and ethanol stress may affect the fermentation performance; however, oxidative stress as a consequence of metabolic output can also occur. However, the effect of oxidative stress on yeast with pentose utilising capabilities has yet to be investigated. Results Assaying for the effect of hydrogen peroxide-induced oxidative stress on Candida, Pichia and Scheffersomyces spp. has demonstrated that these yeast tolerate hydrogen peroxide-induced oxidative stress in a manner consistent with that demonstrated by Saccharomyces cerevisiae. Pichia guillermondii appears to be more tolerant to hydrogen peroxide-induced oxidative stress when compared to Candida shehatae, Candida succiphila or Scheffersomyces stipitis. Conclusions Sensitivity to hydrogen peroxide-induced oxidative stress increased in the presence of minimal media; however, addition of amino acids and nucleobases was observed to increase tolerance. In particular adenine increased tolerance and methionine reduced tolerance to hydrogen peroxide-induced oxidative stress. PMID:24636079

  5. Oxidative stress induces senescence in human mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandl, Anita; Meyer, Matthias; Bechmann, Volker

    Mesenchymal stem cells (MSCs) contribute to tissue repair in vivo and form an attractive cell source for tissue engineering. Their regenerative potential is impaired by cellular senescence. The effects of oxidative stress on MSCs are still unknown. Our studies were to investigate into the proliferation potential, cytological features and the telomere linked stress response system of MSCs, subject to acute or prolonged oxidant challenge with hydrogen peroxide. Telomere length was measured using the telomere restriction fragment assay, gene expression was determined by rtPCR. Sub-lethal doses of oxidative stress reduced proliferation rates and induced senescent-morphological features and senescence-associated {beta}-galactosidase positivity. Prolongedmore » low dose treatment with hydrogen peroxide had no effects on cell proliferation or morphology. Sub-lethal and prolonged low doses of oxidative stress considerably accelerated telomere attrition. Following acute oxidant insult p21 was up-regulated prior to returning to initial levels. TRF1 was significantly reduced, TRF2 showed a slight up-regulation. SIRT1 and XRCC5 were up-regulated after oxidant insult and expression levels increased in aging cells. Compared to fibroblasts and chondrocytes, MSCs showed an increased tolerance to oxidative stress regarding proliferation, telomere biology and gene expression with an impaired stress tolerance in aged cells.« less

  6. Reduction of hydrogen peroxide-induced erythrocyte damage by Carica papaya leaf extract.

    PubMed

    Okoko, Tebekeme; Ere, Diepreye

    2012-06-01

    To investigate the in vitro antioxidant potential of Carica papaya (C. papaya) leaf extract and its effect on hydrogen peroxide-induced erythrocyte damage assessed by haemolysis and lipid peroxidation. Hydroxyl radical scavenging activities, hydrogen ion scavenging activity, metal chelating activity, and the ferrous ion reducing ability were assessed as antioxidant indices. In the other experiment, human erythrocytes were treated with hydrogen peroxide to induce erythrocyte damage. The extract (at various concentrations) was subsequently incubated with the erythrocytes and later analysed for haemolysis and lipid peroxidation as indices for erythrocyte damage. Preliminary investigation of the extract showed that the leaf possessed significant antioxidant and free radical scavenging abilities using in vitro models in a concentration dependent manner (P<0.05). The extract also reduced hydrogen peroxide induced erythrocyte haemolysis and lipid peroxidation significantly when compared with ascorbic acid (P<0.05). The IC50 values were 7.33 mg/mL and 1.58 mg/mL for inhibition of haemolysis and lipid peroxidation, respectively. In all cases, ascorbic acid (the reference antioxidant) possessed higher activity than the extract. The findings show that C. papaya leaves possess significant bioactive potential which is attributed to the phytochemicals which act in synergy. Thus, the leaves can be exploited for pharmaceutical and nutritional purposes.

  7. JAZ7 negatively regulates dark-induced leaf senescence in Arabidopsis

    PubMed Central

    Yu, Juan; Zhang, Yixiang; Di, Chao; Zhang, Qunlian; Zhang, Kang; Wang, Chunchao; You, Qi; Yan, Hong; Dai, Susie Y.; Yuan, Joshua S; Xu, Wenying; Su, Zhen

    2016-01-01

    JASMONATE ZIM-domain (JAZ) proteins play important roles in plant defence and growth by regulating jasmonate signalling. Through data mining, we discovered that the JAZ7 gene was up-regulated in darkness. In the dark, the jaz7 mutant displayed more severe leaf yellowing, quicker chlorophyll degradation, and higher hydrogen peroxide accumulation compared with wild-type (WT) plants. The mutant phenotype of dark-induced leaf senescence could be rescued in the JAZ7-complemented and -overexpression lines. Moreover, the double mutants of jaz7 myc2 and jaz7 coi1 exhibited delayed leaf senescence. We further employed GeneChip analysis to study the molecular mechanism. Some key genes down-regulated in the triple mutant myc2 myc3 myc4 were up-regulated in the jaz7 mutant under darkness. The Gene Ontology terms ‘leaf senescence’ and ‘cell death’ were significantly enriched in the differentially expressed genes. Combining the genetic and transcriptomic analyses together, we proposed a model whereby darkness can induce JAZ7, which might further block MYC2 to suppress dark-induced leaf senescence. In darkness, the mutation of JAZ7 might partially liberate MYC2/MYC3/MYC4 from suppression, leading the MYC proteins to bind to the G-box/G-box-like motifs in the promoters, resulting in the up-regulation of the downstream genes related to indole-glucosinolate biosynthesis, sulphate metabolism, callose deposition, and JA-mediated signalling pathways. In summary, our genetic and transcriptomic studies established the JAZ7 protein as an important regulator in dark-induced leaf senescence. PMID:26547795

  8. Reduction of hydrogen peroxide-induced erythrocyte damage by Carica papaya leaf extract

    PubMed Central

    Okoko, Tebekeme; Ere, Diepreye

    2012-01-01

    Objective To investigate the in vitro antioxidant potential of Carica papaya (C. papaya) leaf extract and its effect on hydrogen peroxide-induced erythrocyte damage assessed by haemolysis and lipid peroxidation. Methods Hydroxyl radical scavenging activities, hydrogen ion scavenging activity, metal chelating activity, and the ferrous ion reducing ability were assessed as antioxidant indices. In the other experiment, human erythrocytes were treated with hydrogen peroxide to induce erythrocyte damage. The extract (at various concentrations) was subsequently incubated with the erythrocytes and later analysed for haemolysis and lipid peroxidation as indices for erythrocyte damage. Results Preliminary investigation of the extract showed that the leaf possessed significant antioxidant and free radical scavenging abilities using in vitro models in a concentration dependent manner (P<0.05). The extract also reduced hydrogen peroxide induced erythrocyte haemolysis and lipid peroxidation significantly when compared with ascorbic acid (P<0.05). The IC50 values were 7.33 mg/mL and 1.58 mg/mL for inhibition of haemolysis and lipid peroxidation, respectively. In all cases, ascorbic acid (the reference antioxidant) possessed higher activity than the extract. Conclusions The findings show that C. papaya leaves possess significant bioactive potential which is attributed to the phytochemicals which act in synergy. Thus, the leaves can be exploited for pharmaceutical and nutritional purposes. PMID:23569948

  9. Caspase activation, hydrogen peroxide production and Akt dephosphorylation occur during stallion sperm senescence.

    PubMed

    Gallardo Bolaños, J M; Balao da Silva, C; Martín Muñoz, P; Plaza Dávila, M; Ezquerra, J; Aparicio, I M; Tapia, J A; Ortega Ferrusola, C; Peña, F J

    2014-08-01

    To investigate the mechanisms inducing sperm death after ejaculation, stallion ejaculates were incubated in BWW media during 6 h at 37°C. At the beginning of the incubation period and after 1, 2, 4 and 6 h sperm motility and kinematics (CASA), mitochondrial membrane potential and membrane permeability and integrity were evaluated (flow cytometry). Also, at the same time intervals, active caspase 3, hydrogen peroxide, superoxide anion (flow cytometry) and Akt phosphorylation (flow cytometry) were evaluated. Major decreases in sperm function occurred after 6 h of incubation, although after 1 h decrease in the percentages of motile and progressive motile sperm occurred. The decrease observed in sperm functionality after 6 h of incubation was accompanied by a significant increase in the production of hydrogen peroxide and the greatest increase in caspase 3 activity. Additionally, the percentage of phosphorylated Akt reached a minimum after 6 h of incubation. These results provide evidences that sperm death during in vitro incubation is largely an apoptotic phenomena, probably stimulated by endogenous production of hydrogen peroxide and the lack of prosurvival factors maintaining Akt in a phosphorylated status. Disclosing molecular mechanisms leading to sperm death may help to develop new strategies for stallion sperm conservation. © 2014 Blackwell Verlag GmbH.

  10. Hydrogen peroxide toxicity induces Ras signaling in human neuroblastoma SH-SY5Y cultured cells.

    PubMed

    Chetsawang, Jirapa; Govitrapong, Piyarat; Chetsawang, Banthit

    2010-01-01

    It has been reported that overproduction of reactive oxygen species occurs after brain injury and mediates neuronal cells degeneration. In the present study, we examined the role of Ras signaling on hydrogen peroxide-induced neuronal cells degeneration in dopaminergic neuroblastoma SH-SY5Y cells. Hydrogen peroxide significantly reduced cell viability in SH-SY5Y cultured cells. An inhibitor of the enzyme that catalyzes the farnesylation of Ras proteins, FTI-277, and a competitive inhibitor of GTP-binding proteins, GDP-beta-S significantly decreased hydrogen peroxide-induced reduction in cell viability in SH-SY5Y cultured cells. The results of this study might indicate that a Ras-dependent signaling pathway plays a role in hydrogen peroxide-induced toxicity in neuronal cells.

  11. Hydrogen Peroxide, Signaling in Disguise during Metal Phytotoxicity

    PubMed Central

    Cuypers, Ann; Hendrix, Sophie; Amaral dos Reis, Rafaela; De Smet, Stefanie; Deckers, Jana; Gielen, Heidi; Jozefczak, Marijke; Loix, Christophe; Vercampt, Hanne; Vangronsveld, Jaco; Keunen, Els

    2016-01-01

    Plants exposed to excess metals are challenged by an increased generation of reactive oxygen species (ROS) such as superoxide (O2•-), hydrogen peroxide (H2O2) and the hydroxyl radical (•OH). The mechanisms underlying this oxidative challenge are often dependent on metal-specific properties and might play a role in stress perception, signaling and acclimation. Although ROS were initially considered as toxic compounds causing damage to various cellular structures, their role as signaling molecules became a topic of intense research over the last decade. Hydrogen peroxide in particular is important in signaling because of its relatively low toxicity, long lifespan and its ability to cross cellular membranes. The delicate balance between its production and scavenging by a plethora of enzymatic and metabolic antioxidants is crucial in the onset of diverse signaling cascades that finally lead to plant acclimation to metal stress. In this review, our current knowledge on the dual role of ROS in metal-exposed plants is presented. Evidence for a relationship between H2O2 and plant metal tolerance is provided. Furthermore, emphasis is put on recent advances in understanding cellular damage and downstream signaling responses as a result of metal-induced H2O2 production. Finally, special attention is paid to the interaction between H2O2 and other signaling components such as transcription factors, mitogen-activated protein kinases, phytohormones and regulating systems (e.g. microRNAs). These responses potentially underlie metal-induced senescence in plants. Elucidating the signaling network activated during metal stress is a pivotal step to make progress in applied technologies like phytoremediation of polluted soils. PMID:27199999

  12. Hydrogen peroxide-induced apoptosis in human gingival fibroblasts

    PubMed Central

    Gutiérrez-Venegas, Gloria; Guadarrama-Solís, Adriana; Muñoz-Seca, Carmen; Arreguín-Cano, Juan Antonio

    2015-01-01

    In the process of bleaching vital, discolored teeth, low concentrations of hydrogen peroxide (H2O2) are effective alternatives to heat-activated 30% H2O2. However, interest has been expressed in the assessment of pathological effects of long-term exposure to bleaching agents such as irritation and ulceration of the gingival or other soft tissues. The aim of the present study was to determine the effect of hydrogen peroxide on apoptosis in human gingival fibroblasts (HGF). Cytochrome c, Bcl-2, Bax, Bid and caspase-3 protein expression were detected by Western blotting. HGF cell apoptosis induced by H2O2 was both dose and time dependent. The addition of H2O2 resulted in the release of cytochrome c to the cytosol, and an increase of Caspase-3 cleavage. Data suggest that oxidative stress-induced apoptosis in HGF is intrinsic pathway involved the release of apoptotic signal from mitochondria. PMID:26884825

  13. Ocular response to hydrogen peroxide.

    PubMed

    Paugh, J R; Brennan, N A; Efron, N

    1988-02-01

    A controlled, randomized, double-masked study was conducted on eight human subjects to determine the threshold level of hydrogen peroxide, which is toxic when introduced into the eye via a high water content (75%; Durasoft 4) hydrogel contact lens. Subjective comfort, conjunctival hyperemia, corneal and conjunctival epithelial staining, and corneal oxygen uptake were assessed in response to 5-min wear of lenses that were presoaked in isotonic saline solutions of physiologic pH containing 0, 25, 50, 100, 200, 400, and 800 parts per million (ppm) hydrogen peroxide. Higher levels of hydrogen peroxide were associated with greater discomfort (p less than 0.05) and increased conjunctival hyperemia (p less than 0.001). The highest level of hydrogen peroxide tested (800 ppm) did not induce significant corneal or conjunctival epithelial staining or alter the corneal aerobic response. We conclude that residual concentrations of hydrogen peroxide in contact lens care systems should not exceed 100 ppm. Practitioners can use these data to estimate the level of residual hydrogen peroxide to which a patient may have been exposed upon lens application after neutralization.

  14. Hydrogen peroxide mechanosynthesis in siloxane-hydrogel contact lenses.

    PubMed

    Tavazzi, Silvia; Ferraro, Lorenzo; Cozza, Federica; Pastori, Valentina; Lecchi, Marzia; Farris, Stefano; Borghesi, Alessandro

    2014-11-26

    Drug-loaded contact lenses are emerging as the preferred treatment method for several ocular diseases, and efforts are being directed to promote extended and controlled delivery. One strategy is based on delivery induced by environmental triggers. One of these triggers can be hydrogen peroxide, since many platforms based on drug-loaded nanoparticles were demonstrated to be hydrogen-peroxide responsive. This is particularly interesting when hydrogen peroxide is the result of a specific pathophysiological condition. Otherwise, an alternative route to induce drug delivery is here proposed, namely the mechano-synthesis. The present work represents the proof-of-concept of the mechanosynthesis of hydrogen peroxide in siloxane-hydrogel contact lenses as a consequence of the cleavage of siloxane bonds at the interface between the polymer and water in aqueous phase. Their spongy morphology makes contact lenses promising systems for mechanical-to-chemical energy conversion, since the amount of hydrogen peroxide is expected to scale with the interfacial area between the polymer and water. The eyelid pressure during wear is sufficient to induce the hydrogen peroxide synthesis with concentrations which are biocompatible and suitable to trigger the drug release through hydrogen-peroxide-responsive platforms. For possible delivery on demand, the integration of piezoelectric polymers in the siloxane-hydrogel contact lenses could be designed, whose mechanical deformation could be induced by an applied wireless-controlled voltage.

  15. Hydrogen peroxide prevents vascular calcification induced ROS production by regulating Nrf-2 pathway.

    PubMed

    Zhang, Wensong; Li, Yi; Ding, Hanlu; Du, Yaqin; Wang, Li

    2016-08-01

    Although vascular calcification in end-stage renal disease (ESRD) represents a ubiquitous human health problem, effective therapies with limited side effects are still lacking, and the precise mechanisms are not fully understood. The Nrf-2/ARE pathway is a pivotal to regulate anti-oxidative responses in vascular calcification upon ESRD. Although Nrf-2 plays a crucial role in atherosclerosis, pulmonary fibrosis, and brain ischemia, the effect of Nrf-2 and oxidative stress on vascular calcification in ESRD patients is still unclear. The aim of this research was to study the protective role of hydrogen peroxide in vascular calcification and the mechanism of Nrf-2 and oxidative stress on vascular calcification. Here we used the rat vascular smooth muscle cell model of β-glycerophosphate-induced calcification resembling vascular calcification in ESRD to investigate the therapeutic effect of 0.01 mM hydrogen peroxide on vascular calcification and further explores the possible underlying mechanisms. Our current report shows the in vitro role of 0.01 mM hydrogen peroxide in protecting against intracellular ROS accumulation upon vascular calcification. Both hydrogen peroxide and sulforaphane pretreatment reduced ROS production, increased the expression of Nrf-2, and decreased the expression of Runx2 following calcification. Our study demonstrates that 0.01 mM hydrogen peroxide can effectively protect rat aortic vascular smooth muscle cells against oxidative stress by preventing vascular calcification induced ROS production through Nrf-2 pathway. These data might define an antioxidant role of hydrogen peroxide in vascular calcification upon ESRD.

  16. Glutamine Deprivation Causes Hydrogen Peroxide-induced Interleukin-8 Expression via Jak1/Stat3 Activation in Gastric Epithelial AGS Cells

    PubMed Central

    Lee, Yun Mi; Kim, Mi Jung; Kim, Youngha; Kim, Hyeyoung

    2015-01-01

    Background: The Janus kinase (Jak)/Signal transducers of activated transcription (Stat) pathway is an upstream signaling pathway for NF-κB activation in Helicobacter pylori-induced interleukin (IL)-8 production in gastric epithelial AGS cells. H. pylori activates NADPH oxidase and produces hydrogen peroxide, which activates Jak1/Stat3 in AGS cells. Therefore, hydrogen peroxide may be critical for IL-8 production via Jak/Stat activation in gastric epithelial cells. Glutamine is depleted during severe injury and stress and contributes to the formation of glutathione (GSH), which is involved in conversion of hydrogen peroxide into water as a cofactor for GSH peroxidase. Methods: We investigated whether glutamine deprivation induces hydrogen peroxide-mediated IL-8 production and whether hydrogen peroxide activates Jak1/Stat3 to induce IL-8 in AGS cells. Cells were cultured in the presence or absence of glutamine or hydrogen peroxide, with or without GSH or a the Jak/Stat specific inhibitor AG490. Results: Glutamine deprivation decreased GSH levels, but increased levels of hydrogen peroxide and IL-8, an effect that was inhibited by treatment with GSH. Hydrogen peroxide induced the activation of Jak1/Stat3 time-dependently. AG490 suppressed hydrogen peroxide- induced activation of Jak1/Stat3 and IL-8 expression in AGS cells, but did not affect levels of reactive oxygen species in AGS cells. Conclusions: In gastric epithelial AGS cells, glutamine deprivation increases hydrogen peroxide levels and IL-8 expression, which may be mediated by Jak1/Stat3 activation. Glutamine supplementation may be beneficial for preventing gastric inflammation by suppressing hydrogen peroxide-mediated Jak1/Stat3 activation and therefore, reducing IL-8 production. Scavenging hydrogen peroxide or targeting Jak1/Stat3 may also prevent oxidant-mediated gastric inflammation. PMID:26473156

  17. Hydrogen Treatment Protects against Cell Death and Senescence Induced by Oxidative Damage.

    PubMed

    Han, A Lum; Park, Seong-Hoon; Park, Mi Sung

    2017-02-28

    Hydrogen has potential for preventive and therapeutic applications as an antioxidant. However, micro- and macroparticles of hydrogen in water disappear easily over time. In order to eliminate reactive oxygen species (ROS) related with the aging process, we used functional water containing nanoparticle hydrogen. Nanoparticle hydrogen does not disappear easily and collapse under water after long periods of time. We used murine embryonic fibroblasts that were isolated from 12.5-day embryos of C57BL/6 mice. We investigated the ability of nanoparticle hydrogen in water to suppress hydroxyurea-induced ROS production, cytotoxicity, and the accumulation of β-galactosidase (an indicator of aging), and promote cell proliferation. The accumulation of β-galactosidase in the cytoplasm and the appearance of abnormal nuclei were inhibited by daily treatment of cells with hydrogen water. When the aging process was accelerated by hydroxyurea-induced oxidative stress, the effect of hydrogen water was even more remarkable. Thus, this study showed the antioxidant and anti-senescence effects of hydrogen water. Nanoparticle hydrogen water is potentially a potent anti-aging agent.

  18. Melatonin protects against clomiphene citrate-induced generation of hydrogen peroxide and morphological apoptotic changes in rat eggs.

    PubMed

    Tripathi, Anima; PremKumar, Karuppanan V; Pandey, Ashutosh N; Khatun, Sabana; Mishra, Surabhi Kirti; Shrivastav, Tulsidas G; Chaube, Shail K

    2011-09-30

    The present study was aimed to determine whether clomiphene citrate-induces generation of hydrogen peroxide in ovary, if so, whether melatonin could scavenge hydrogen peroxide and protect against clomiphene citrate-induced morphological apoptotic changes in rat eggs. For this purpose, forty five sexually immature female rats were given single intramuscular injection of 10 IU pregnant mare's serum gonadotropin for 48 h followed by single injections of 10 IU human chorionic gonadotropin and clomiphene citrate (10 mg/kg bw) with or without melatonin (20 mg/kg bw) for 16 h. The histology of ovary, ovulation rate, hydrogen peroxide concentration and catalase activity in ovary and morphological changes in ovulated eggs were analyzed. Co-administration of clomiphene citrate along with human chorionic gonadotropin significantly increased hydrogen peroxide concentration and inhibited catalase activity in ovary, inhibited ovulation rate and induced egg apoptosis. Supplementation of melatonin reduced hydrogen peroxide concentration and increased catalase activity in the ovary, delayed meiotic cell cycle progression in follicular oocytes as well as in ovulated eggs since extrusion of first polar body was still in progress even after ovulation and protected against clomiphene citrate-induced egg apoptosis. These results clearly suggest that the melatonin reduces oxidative stress by scavenging hydrogen peroxide produced in the ovary after clomiphene citrate treatment, slows down meiotic cell cycle progression in eggs and protects against clomiphene citrate-induced apoptosis in rat eggs. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. The effects of metal ions on the DNA damage induced by hydrogen peroxide.

    PubMed

    Kobayashi, S; Ueda, K; Komano, T

    1990-01-01

    The effects of metal ions on DNA damage induced by hydrogen peroxide were investigated using two methods, agarose-gel electrophoretic analysis of supercoiled DNA and sequencing-gel analysis of single end-labeled DNA fragments of defined sequences. Hydrogen peroxide induced DNA damage when iron or copper ion was present. At least two classes of DNA damage were induced, one being direct DNA-strand cleavage, and the other being base modification labile to hot piperidine. The investigation of the damaged sites and the inhibitory effects of radical scavengers revealed that hydroxyl radical was the species which attacked DNA in the reaction of H2O2/Fe(II). On the other hand, two types of DNA damage were induced by H2O2/Cu(II). Type I damage was predominant and inhibited by potassium iodide, but type II was not. The sites of the base-modification induced by type I damage were similar to those by lipid peroxidation products and by ascorbate in the presence of Cu(II), suggesting the involvement of radical species other than free hydroxyl radical in the damaging reactions.

  20. Small molecular antioxidants effectively protect from PUVA-induced oxidative stress responses underlying fibroblast senescence and photoaging.

    PubMed

    Briganti, Stefania; Wlaschek, Meinhard; Hinrichs, Christina; Bellei, Barbara; Flori, Enrica; Treiber, Nicolai; Iben, Sebastian; Picardo, Mauro; Scharffetter-Kochanek, Karin

    2008-09-01

    Exposure of human fibroblasts to 8-methoxypsoralen plus ultraviolet-A irradiation (PUVA) results in stress-induced cellular senescence in fibroblasts. We here studied the role of the antioxidant defense system in the accumulation of reactive oxygen species (ROS) and the effect of the antioxidants alpha-tocopherol, N-acetylcysteine, and alpha-lipoic acid on PUVA-induced cellular senescence. PUVA treatment induced an immediate and increasing generation of intracellular ROS. Supplementation of PUVA-treated fibroblasts with alpha-tocopherol (alpha-Toc), N-acetylcysteine (NAC), or alpha-lipoic acid (alpha-LA) abrogated the increased ROS generation and rescued fibroblasts from the ROS-dependent changes into the cellular senescence phenotype, such as cytoplasmic enlargement, enhanced expression of senescence-associated-beta-galactosidase and matrix-metalloproteinase-1, hallmarks of photoaging and intrinsic aging. PUVA treatment disrupted the integrity of cellular membranes and impaired homeostasis and function of the cellular antioxidant system with a significant decrease in glutathione and hydrogen peroxide-detoxifying enzymes activities. Supplementation with NAC, alpha-LA, and alpha-Toc counteracted these changes. Our data provide causal evidence that (i) oxidative stress due to an imbalance in the overall cellular antioxidant capacity contributes to the induction and maintenance of the PUVA-induced fibroblast senescence and that (ii) low molecular antioxidants protect effectively against these deleterious alterations.

  1. Exogenous Melatonin Confers Cadmium Tolerance by Counterbalancing the Hydrogen Peroxide Homeostasis in Wheat Seedlings.

    PubMed

    Ni, Jun; Wang, Qiaojian; Shah, Faheem Afzal; Liu, Wenbo; Wang, Dongdong; Huang, Shengwei; Fu, Songling; Wu, Lifang

    2018-03-30

    Melatonin has emerged as a research highlight regarding its important role in regulating plant growth and the adaptation to the environmental stresses. In this study, we investigated how melatonin prevented the cadmium toxicity to wheat seedlings. The results demonstrated that cadmium induced the expression of melatonin biosynthesis-related genes and cause a significant increase of endogenous melatonin level. Melatonin treatment drastically alleviated the cadmium toxicity, resulting in increased plant height, biomass accumulation, and root growth. Cadmium and senescence treatment significantly increased the endogenous level of hydrogen peroxide, which was strictly counterbalanced by melatonin. Furthermore, melatonin treatment caused a significant increase of GSH (reduced glutathione) content and the GSH/GSSG (oxidized glutathione) ratio. The activities of two key antioxidant enzymes, ascorbate peroxidase (APX) and superoxide dismutase (SOD), but not catalase (CAT) and peroxidase (POD), were specifically improved by melatonin. Additionally, melatonin not only promoted the primary root growth, but also drastically enhanced the capacity of the seedling roots to degrade the exogenous hydrogen peroxide. These results suggested that melatonin played a key role in maintaining the hydrogen peroxide homeostasis, via regulation of the antioxidant systems. Conclusively, this study revealed a crucial protective role of melatonin in the regulation of cadmium resistance in wheat.

  2. AMPK activation protects cells from oxidative stress-induced senescence via autophagic flux restoration and intracellular NAD(+) elevation.

    PubMed

    Han, Xiaojuan; Tai, Haoran; Wang, Xiaobo; Wang, Zhe; Zhou, Jiao; Wei, Xiawei; Ding, Yi; Gong, Hui; Mo, Chunfen; Zhang, Jie; Qin, Jianqiong; Ma, Yuanji; Huang, Ning; Xiang, Rong; Xiao, Hengyi

    2016-06-01

    AMPK activation is beneficial for cellular homeostasis and senescence prevention. However, the molecular events involved in AMPK activation are not well defined. In this study, we addressed the mechanism underlying the protective effect of AMPK on oxidative stress-induced senescence. The results showed that AMPK was inactivated in senescent cells. However, pharmacological activation of AMPK by metformin and berberine significantly prevented the development of senescence and, accordingly, inhibition of AMPK by Compound C was accelerated. Importantly, AMPK activation prevented hydrogen peroxide-induced impairment of the autophagic flux in senescent cells, evidenced by the decreased p62 degradation, GFP-RFP-LC3 cancellation, and activity of lysosomal hydrolases. We also found that AMPK activation restored the NAD(+) levels in the senescent cells via a mechanism involving mostly the salvage pathway for NAD(+) synthesis. In addition, the mechanistic relationship of autophagic flux and NAD(+) synthesis and the involvement of mTOR and Sirt1 activities were assessed. In summary, our results suggest that AMPK prevents oxidative stress-induced senescence by improving autophagic flux and NAD(+) homeostasis. This study provides a new insight for exploring the mechanisms of aging, autophagy and NAD(+) homeostasis, and it is also valuable in the development of innovative strategies to combat aging. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  3. Glutathione and antioxidant enzymes serve complementary roles in protecting activated hepatic stellate cells against hydrogen peroxide-induced cell death.

    PubMed

    Dunning, Sandra; Ur Rehman, Atta; Tiebosch, Marjolein H; Hannivoort, Rebekka A; Haijer, Floris W; Woudenberg, Jannes; van den Heuvel, Fiona A J; Buist-Homan, Manon; Faber, Klaas Nico; Moshage, Han

    2013-12-01

    In chronic liver disease, hepatic stellate cells (HSCs) are activated, highly proliferative and produce excessive amounts of extracellular matrix, leading to liver fibrosis. Elevated levels of toxic reactive oxygen species (ROS) produced during chronic liver injury have been implicated in this activation process. Therefore, activated hepatic stellate cells need to harbor highly effective anti-oxidants to protect against the toxic effects of ROS. To investigate the protective mechanisms of activated HSCs against ROS-induced toxicity. Culture-activated rat HSCs were exposed to hydrogen peroxide. Necrosis and apoptosis were determined by Sytox Green or acridine orange staining, respectively. The hydrogen peroxide detoxifying enzymes catalase and glutathione-peroxidase (GPx) were inhibited using 3-amino-1,2,4-triazole and mercaptosuccinic acid, respectively. The anti-oxidant glutathione was depleted by L-buthionine-sulfoximine and repleted with the GSH-analogue GSH-monoethylester (GSH-MEE). Upon activation, HSCs increase their cellular glutathione content and GPx expression, while MnSOD (both at mRNA and protein level) and catalase (at the protein level, but not at the mRNA level) decreased. Hydrogen peroxide did not induce cell death in activated HSCs. Glutathione depletion increased the sensitivity of HSCs to hydrogen peroxide, resulting in 35% and 75% necrotic cells at 0.2 and 1mmol/L hydrogen peroxide, respectively. The sensitizing effect was abolished by GSH-MEE. Inhibition of catalase or GPx significantly increased hydrogen peroxide-induced apoptosis, which was not reversed by GSH-MEE. Activated HSCs have increased ROS-detoxifying capacity compared to quiescent HSCs. Glutathione levels increase during HSC activation and protect against ROS-induced necrosis, whereas hydrogen peroxide-detoxifying enzymes protect against apoptotic cell death. © 2013.

  4. Hydrogen peroxide poisoning.

    PubMed

    Watt, Barbara E; Proudfoot, Alex T; Vale, J Allister

    2004-01-01

    Hydrogen peroxide is an oxidising agent that is used in a number of household products, including general-purpose disinfectants, chlorine-free bleaches, fabric stain removers, contact lens disinfectants and hair dyes, and it is a component of some tooth whitening products. In industry, the principal use of hydrogen peroxide is as a bleaching agent in the manufacture of paper and pulp. Hydrogen peroxide has been employed medicinally for wound irrigation and for the sterilisation of ophthalmic and endoscopic instruments. Hydrogen peroxide causes toxicity via three main mechanisms: corrosive damage, oxygen gas formation and lipid peroxidation. Concentrated hydrogen peroxide is caustic and exposure may result in local tissue damage. Ingestion of concentrated (>35%) hydrogen peroxide can also result in the generation of substantial volumes of oxygen. Where the amount of oxygen evolved exceeds its maximum solubility in blood, venous or arterial gas embolism may occur. The mechanism of CNS damage is thought to be arterial gas embolisation with subsequent brain infarction. Rapid generation of oxygen in closed body cavities can also cause mechanical distension and there is potential for the rupture of the hollow viscus secondary to oxygen liberation. In addition, intravascular foaming following absorption can seriously impede right ventricular output and produce complete loss of cardiac output. Hydrogen peroxide can also exert a direct cytotoxic effect via lipid peroxidation. Ingestion of hydrogen peroxide may cause irritation of the gastrointestinal tract with nausea, vomiting, haematemesis and foaming at the mouth; the foam may obstruct the respiratory tract or result in pulmonary aspiration. Painful gastric distension and belching may be caused by the liberation of large volumes of oxygen in the stomach. Blistering of the mucosae and oropharyngeal burns are common following ingestion of concentrated solutions, and laryngospasm and haemorrhagic gastritis have been

  5. Material-induced Senescence (MIS): Fluidity Induces Senescent Type Cell Death of Lung Cancer Cells via Insulin-Like Growth Factor Binding Protein 5.

    PubMed

    Mano, Sharmy Saimon; Uto, Koichiro; Ebara, Mitsuhiro

    2017-01-01

    Objective: We propose here material-induced senescence (MIS) as a new therapeutic concept that limits cancer progression by stable cell cycle arrest. This study examined for the first time the effect of material fluidity on cellular senescence in lung carcinoma using poly(ε-caprolactone- co -D, L-lactide) (P(CL- co -DLLA)) with tunable elasticity and fluidity. Methods: The fluidity was varied by chemically crosslinking the polymer networks: the crosslinked P(CL- co -DLLA) shows solid-like properties with a stiffness of 260 kPa, while the non-crosslinked polymer exists in a quasi-liquid state with loss and storage moduli of 33 kPa and 11 kPa, respectively. Results: We found that cancer cells growing on the non-crosslinked, fluidic substrate undergo a non-apoptotic form of cell death and the cell cycle was accumulated in a G0/G1 phase. Next, we investigated the expression of biomarkers that are associated with cancer pathways. The cancer cells on the fluidic substrate expressed several biomarkers associated with senescence such as insulin-like growth factor binding protein 5 (IGFBP5). This result indicates that when cancer cells sense fluidity in their surroundings, the cells express IGFBP5, which in turn triggers the expression of tumor suppressor protein 53 and initiates cell cycle arrest at the G1 phase followed by cellular senescence. Furthermore, the cancer cells on the fluidic substrate maintained their epithelial phenotype, suggesting that the cancer cells do not undergo epithelial to mesenchymal transition. Conclusion: By considering these results as the fundamental information for MIS, our system could be applied to induce senescence in treatment-resistant cancers such as metastatic cancer or cancer stem cells.

  6. Hydrogen peroxide kinetics in water radiolysis

    NASA Astrophysics Data System (ADS)

    Iwamatsu, Kazuhiro; Sundin, Sara; LaVerne, Jay A.

    2018-04-01

    The kinetics of the formation and reaction of hydrogen peroxide in the long time γ- radiolysis of water is examined using a combination of experiment with model calculations. Escape yields of hydrogen peroxide on the microsecond time scale are easily measured with added radical scavengers even with substantial amounts of initial added hydrogen peroxide. The γ-radiolysis of aqueous hydrogen peroxide solutions without added radical scavengers reach a steady state limiting concentration of hydrogen peroxide with increasing dose, and that limit is directly proportional to the initial concentration of added hydrogen peroxide. The dose necessary to reach that limiting hydrogen peroxide concentration is also proportional to the initial concentration, but dose rate has a very small effect. The addition of molecular hydrogen to aqueous solutions of hydrogen peroxide leads to a decrease in the high dose limiting hydrogen peroxide concentration that is linear with the initial hydrogen concentration, but the amount of decrease is not stoichiometric. Proton irradiations of solutions with added hydrogen peroxide and hydrogen are more difficult to predict because of the decreased yields of radicals; however, with a substantial increase in dose rate there is a sufficient decrease in radical yields that hydrogen addition has little effect on hydrogen peroxide decay.

  7. Hormetic concentrations of hydrogen peroxide but not ethanol induce cross-adaptation to different stresses in budding yeast.

    PubMed

    Semchyshyn, Halyna M

    2014-01-01

    The biphasic-dose response of microorganisms to hydrogen peroxide is a phenomenon of particular interest in hormesis research. In different animal models, the dose-response curve for ethanol is also nonlinear showing an inhibitory effect at high doses but a stimulatory effect at low doses. In this study, we observed the hormetic-dose response to ethanol in budding yeast S. cerevisiae. Cross-protection is a phenomenon in which exposure to mild stress results in the acquisition of cellular resistance to lethal stress induced by different factors. Since both hydrogen peroxide and ethanol at low concentrations were found to stimulate yeast colony growth, we evaluated the role of one substance in cell cross-adaptation to the other substance as well as some weak organic acid preservatives. This study demonstrates that, unlike ethanol, hydrogen peroxide at hormetic concentrations causes cross-resistance of S. cerevisiae to different stresses. The regulatory protein Yap1 plays an important role in the hormetic effects by low concentrations of either hydrogen peroxide or ethanol, and it is involved in the yeast cross-adaptation by low sublethal doses of hydrogen peroxide.

  8. Effectiveness and adverse effects of the use of apomorphine and 3% hydrogen peroxide solution to induce emesis in dogs.

    PubMed

    Khan, Safdar A; McLean, Mary Kay; Slater, Margaret; Hansen, Steven; Zawistowski, Stephen

    2012-11-01

    To determine the effectiveness and adverse effects of apomorphine and 3% hydrogen peroxide solution used for emesis in dogs. Prospective observational study. 147 dogs that received apomorphine (IV or placed in the conjunctival sac) or 3% hydrogen peroxide solution (PO) to induce emesis after exposure to toxic agents. Data regarding signalment; agent information; type, dose, route, and number of emetic administrations; whether emesis was successful; number of times emesis occurred; percentage of ingested agent recovered; and adverse effects were collected via telephone during American Society for the Prevention of Cruelty to Animals Animal Poison Control Center operations and stored in a database for analysis. Mann-Whitney and Fisher exact tests were used to evaluate emetic success rates. Apomorphine and 3% hydrogen peroxide solution successfully induced emesis in 59 of 63 (94%) and 76 of 84 (90%) of dogs, respectively. Mean time to onset of emesis after the first dose of emetic was 14.5 and 18.6 minutes when hydrogen peroxide (n = 37) and apomorphine (31) were used, respectively, with mean durations of 42 and 27 minutes, respectively. Mean estimates for recovery of ingested agents were 48% for hydrogen peroxide and 52% for apomorphine. Adverse effects were reported in 16 of 112 (14%) dogs for which information was available. 3% hydrogen peroxide solution and apomorphine effectively induced emesis in dogs when used as directed. Emesis occurred within minutes after administration and helped recover substantial amounts of ingested agents. Adverse effects of both emetics were considered mild and self-limiting.

  9. Inhibition of hydrogen peroxide induced injuring on human skin fibroblast by Ulva prolifera polysaccharide.

    PubMed

    Cai, Chuner; Guo, Ziye; Yang, Yayun; Geng, Zhonglei; Tang, Langlang; Zhao, Minglin; Qiu, Yuyan; Chen, Yifan; He, Peimin

    2016-10-01

    Ulva prolifera can protect human skin fibroblast from being injured by hydrogen peroxide. This work studied the composition of Ulva prolifera polysaccharide and identified its physicochemical properties. The results showed that the cell proliferation of 0.5mg/mL crude polysaccharide was 154.4% of that in negative control group. Moreover, ROS detection indices, including DCFH-DA, GSH-PX, MDA and CAT, indicated that crude polysaccharide could improve cellular ability to scavenge free radical and decrease the injury on human skin fibroblast by hydrogen peroxide. In purified polysaccharide, the activity of fraction P1-1 was the highest, with 174.6% of that in negative control group. The average molecular weight of P1-1 was 137kD with 18.0% of sulfate content. This work showed the inhibition of hydrogen peroxide induced injuries on human skin fibroblast by Ulva prolifera polysaccharide, which may further evaluate the application of U. prolifera on cosmetics. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Hydrogen Peroxide as a Sustainable Energy Carrier: Electrocatalytic Production of Hydrogen Peroxide and the Fuel Cell.

    PubMed

    Fukuzumi, Shunichi; Yamada, Yusuke; Karlin, Kenneth D

    2012-11-01

    This review describes homogeneous and heterogeneous catalytic reduction of dioxygen with metal complexes focusing on the catalytic two-electron reduction of dioxygen to produce hydrogen peroxide. Whether two-electron reduction of dioxygen to produce hydrogen peroxide or four-electron O 2 -reduction to produce water occurs depends on the types of metals and ligands that are utilized. Those factors controlling the two processes are discussed in terms of metal-oxygen intermediates involved in the catalysis. Metal complexes acting as catalysts for selective two-electron reduction of oxygen can be utilized as metal complex-modified electrodes in the electrocatalytic reduction to produce hydrogen peroxide. Hydrogen peroxide thus produced can be used as a fuel in a hydrogen peroxide fuel cell. A hydrogen peroxide fuel cell can be operated with a one-compartment structure without a membrane, which is certainly more promising for the development of low-cost fuel cells as compared with two compartment hydrogen fuel cells that require membranes. Hydrogen peroxide is regarded as an environmentally benign energy carrier because it can be produced by the electrocatalytic two-electron reduction of O 2 , which is abundant in air, using solar cells; the hydrogen peroxide thus produced could then be readily stored and then used as needed to generate electricity through the use of hydrogen peroxide fuel cells.

  11. Effect of ethanol on hydrogen peroxide-induced AMPK phosphorylation.

    PubMed

    Liangpunsakul, Suthat; Wou, Sung-Eun; Zeng, Yan; Ross, Ruth A; Jayaram, Hiremagalur N; Crabb, David W

    2008-12-01

    AMP-activated protein kinase (AMPK) responds to oxidative stress. Previous work has shown that ethanol treatment of cultured hepatoma cells and of mice inhibited the activity of AMPK and reduced the amount of AMPK protein. Ethanol generates oxidative stress in the liver. Since AMPK is activated by reactive oxygen species, it seems paradoxical that ethanol would inhibit AMPK in the hepatoma cells. In an attempt to understand the mechanism whereby ethanol inhibits AMPK, we studied the effect of ethanol on AMPK activation by exogenous hydrogen peroxide. The effects of ethanol, hydrogen peroxide, and inhibitors of protein phosphatase 2A (PP2A) [either okadaic acid or PP2A small interference RNA (siRNA)] on AMPK phosphorylation and activity were examined in rat hepatoma cells (H4IIEC3) and HeLa cells. In H4IIEC3 cells, hydrogen peroxide (H(2)O(2), 1 mM) transiently increased the level of phospho-AMPK to 1.5-fold over control (P < 0.05). Similar findings were observed in HeLa cells, which do not express the upstream AMPK kinase, LKB1. H(2)O(2) markedly increased the phosphorylation of LKB1 in H4IIEC3 cells. Ethanol significantly inhibited the phosphorylation of PKC-zeta, LKB1, and AMPK caused by exposure to H(2)O(2). This inhibitory effect of ethanol required its metabolism. More importantly, the inhibitory effects of ethanol on H(2)O(2)-induced AMPK phosphorylation were attenuated by the presence of the PP2A inhibitor, okadaic acid, or PP2A siRNA. The inhibitory effect of ethanol on AMPK phosphorylation is exerted through the inhibition of PKC-zeta and LKB1 phosphorylation and the activation of PP2A.

  12. Specific limb abnormalities induced by hydrogen peroxide in tadpoles of Indian jumping frog, Polypedates maculatus.

    PubMed

    Mahapatra, P K; Mohanty-Hejmadi, P; Chainy, G B

    2001-11-01

    Hydrogen peroxide (H2O2), one of the reactive oxygen intermediates (ROI) and a potential inducer of nuclear transcription factors induces consistent type of abnormal limb development (truncated with bent skeletal elements) in the tadpoles of Indian jumping frog, Polypedates maculatus.

  13. Hydrogen Sulfide Alleviates Postharvest Senescence of Grape by Modulating the Antioxidant Defenses

    PubMed Central

    Ni, Zhi-Jing; Hu, Kang-Di; Song, Chang-Bing; Ma, Run-Hui; Li, Zhi-Rong; Zheng, Ji-Lian; Fu, Liu-Hui

    2016-01-01

    Hydrogen sulfide (H2S) has been identified as an important gaseous signal in plants. Here, we investigated the mechanism of H2S in alleviating postharvest senescence and rotting of Kyoho grape. Exogenous application of H2S released from 1.0 mM NaHS remarkably decreased the rotting and threshing rate of grape berries. H2S application also prevented the weight loss in grape clusters and inhibited the decreases in firmness, soluble solids, and titratable acidity in grape pulp during postharvest storage. The data of chlorophyll and carotenoid content suggested the role of H2S in preventing chlorophyll breakdown and carotenoid accumulation in both grape rachis and pulp. In comparison to water control, exogenous H2S application maintained significantly higher levels of ascorbic acid and flavonoid and total phenolics and reducing sugar and soluble protein in grape pulp. Meanwhile, H2S significantly reduced the accumulation of malondialdehyde (MDA), hydrogen peroxide (H2O2), and superoxide anion (O2 ∙−) in grape pulp. Further investigations showed that H2S enhanced the activities of antioxidant enzymes ascorbate peroxidase (APX) and catalase (CAT) and decreased those of lipoxygenase (LOX) in both grape peels and pulp. In all, we provided strong evidence that H2S effectively alleviated postharvest senescence and rotting of Kyoho grape by modulating antioxidant enzymes and attenuating lipid peroxidation. PMID:27594971

  14. Detection of hydrogen peroxide with graphyne

    NASA Astrophysics Data System (ADS)

    Majidi, R.; Karami, A. R.

    2013-12-01

    The effect of hydrogen peroxide on the electronic properties of graphyne has been investigated to explore the possibility of using graphyne based biosensor. We have used density functional theory to study the electronic properties of γ-graphyne in the presence of different number of hydrogen peroxide. The optimal adsorption position, orientation, and distance of hydrogen peroxide adsorbed on the graphyne sheet have been determined by calculating adsorption energy. It is found that γ-graphyne which is an intrinsic semiconductor becomes an n-type semiconductor due to the presence of hydrogen peroxide. The energy band gap of γ-graphyne is decreased by increasing the number of hydrogen peroxide. The results demonstrate that γ-graphyne is a promising candidate for biosensor application because of its electrical sensitivity to hydrogen peroxide.

  15. Molecular Hydrogen Alleviates Cellular Senescence in Endothelial Cells.

    PubMed

    Hara, Fumihiko; Tatebe, Junko; Watanabe, Ippei; Yamazaki, Junichi; Ikeda, Takanori; Morita, Toshisuke

    2016-08-25

    Substantial evidence indicates that molecular hydrogen (H2) has beneficial vascular effects because of its antioxidant and/or anti-inflammatory effects. Thus, hydrogen-rich water may prove to be an effective anti-aging drink. This study examined the effects of H2on endothelial senescence and clarified the mechanisms involved. Hydrogen-rich medium was produced by a high-purity hydrogen gas generator. Human umbilical vein endothelial cells (HUVECs) were incubated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) for various time periods in normal or hydrogen-rich medium. The baseline H2concentration in hydrogen-rich medium was 0.55±0.07 mmol/L. This concentration gradually decreased, and H2was almost undetectable in medium after 12 h. At 24 h after TCDD exposure, HUVECs treated with TCDD exhibited increased 8OHdG and acetyl-p53 expression, decreased nicotinamide adenine dinucleotide (NAD(+))/NADH ratio, impaired Sirt1 activity, and enhanced senescence-associated β-galactosidase. However, HUVECs incubated in hydrogen-rich medium did not exhibit these TCDD-induced changes accompanying Nrf2 activation, which was observed even after H2was undetectable in the medium. Chrysin, an inhibitor of Nrf2, abolished the protective effects of H2on HUVECs. H2has long-lasting antioxidant and anti-aging effects on vascular endothelial cells through the Nrf2 pathway, even after transient exposure to H2. Hydrogen-rich water may thus be a functional drink that increases longevity. (Circ J 2016; 80: 2037-2046).

  16. 21 CFR 184.1366 - Hydrogen peroxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Hydrogen peroxide. 184.1366 Section 184.1366 Food... Specific Substances Affirmed as GRAS § 184.1366 Hydrogen peroxide. (a) Hydrogen peroxide (H2O2, CAS Reg. No. 7722-84-1) is also referred to as hydrogen dioxide. It is made by the electrolytic oxidation of...

  17. 21 CFR 184.1366 - Hydrogen peroxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Hydrogen peroxide. 184.1366 Section 184.1366 Food... Specific Substances Affirmed as GRAS § 184.1366 Hydrogen peroxide. (a) Hydrogen peroxide (H2O2, CAS Reg. No. 7722-84-1) is also referred to as hydrogen dioxide. It is made by the electrolytic oxidation of...

  18. 21 CFR 184.1366 - Hydrogen peroxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Hydrogen peroxide. 184.1366 Section 184.1366 Food... Specific Substances Affirmed as GRAS § 184.1366 Hydrogen peroxide. (a) Hydrogen peroxide (H2O2, CAS Reg. No. 7722-84-1) is also referred to as hydrogen dioxide. It is made by the electrolytic oxidation of...

  19. The inhibitory effect of 3-amino-1,2,4-triazole on relaxation induced by hydroxylamine and sodium azide but not hydrogen peroxide or glyceryl trinitrate in rat aorta.

    PubMed Central

    Mian, K. B.; Martin, W.

    1995-01-01

    1. In this study we investigated the role of catalase in relaxation induced by hydroxylamine, sodium azide, glyceryl trinitrate and hydrogen peroxide in isolated rings of rat aorta. 2. Hydrogen peroxide (1 microM-1 mM)-induced concentration-dependent relaxation of phenylephrine (PE)-induced tone in endothelium-containing rings. In endothelium-denuded rings, however, higher concentrations (30 microM-1 mM) of hydrogen peroxide were required to produce relaxation. The endothelium-dependent component of hydrogen peroxide-induced relaxation was abolished following pretreatment with N(O)-nitro-L-arginine methyl ester (L-NAME, 30 microM). L-NAME (30 microM) had no effect, however, on hydrogen peroxide-induced relaxation in endothelium-denuded rings. 3. Pretreatment of endothelium-denuded rings with catalase (1000 u ml-1) blocked relaxation induced by hydrogen peroxide (10 microM-1 mM). The ability of catalase to inhibit hydrogen peroxide-induced relaxation was partially blocked following incubation with 3-amino-1,2, 4-triazole (AT, 50 mM) for 30 min and completely blocked at 90 min. 4. Pretreatment of endothelium-denuded rings with methylene blue (MeB, 30 microM) inhibited relaxation induced by hydrogen peroxide (10 microM-1 mM), sodium azide (1-300 nM), hydroxylamine (1-300 nM) and glyceryl trinitrate (1-100 nM) suggesting that each acted by stimulation of soluble guanylate cyclase. 5. Pretreatment of endothelium-denuded rings with AT (1-50 mM, 90 min) to inhibit endogenous catalase blocked relaxation induced by sodium azide (1-300 nM) and hydroxylamine (1-300 nM) but had no effect on relaxation induced by hydrogen peroxide (10 microM-1 mM) or glyceryl trinitrate (1-100 nM). 6. In a cell-free system, incubation of sodium azide (10 microM-3 mM) and hydroxylamine (10 microM-30 mM) but not glyceryl trinitrate (10 microM-1 mM) with catalase (1000 u ml-1) in the presence of hydrogen peroxide (1 mM) led to production of nitrite, a major breakdown product of nitric oxide. AT (1

  20. Electrochemical Hydrogen Peroxide Generator

    NASA Technical Reports Server (NTRS)

    Tennakoon, Charles L. K.; Singh, Waheguru; Anderson, Kelvin C.

    2010-01-01

    Two-electron reduction of oxygen to produce hydrogen peroxide is a much researched topic. Most of the work has been done in the production of hydrogen peroxide in basic media, in order to address the needs of the pulp and paper industry. However, peroxides under alkaline conditions show poor stabilities and are not useful in disinfection applications. There is a need to design electrocatalysts that are stable and provide good current and energy efficiencies to produce hydrogen peroxide under acidic conditions. The innovation focuses on the in situ generation of hydrogen peroxide using an electrochemical cell having a gas diffusion electrode as the cathode (electrode connected to the negative pole of the power supply) and a platinized titanium anode. The cathode and anode compartments are separated by a readily available cation-exchange membrane (Nafion 117). The anode compartment is fed with deionized water. Generation of oxygen is the anode reaction. Protons from the anode compartment are transferred across the cation-exchange membrane to the cathode compartment by electrostatic attraction towards the negatively charged electrode. The cathode compartment is fed with oxygen. Here, hydrogen peroxide is generated by the reduction of oxygen. Water may also be generated in the cathode. A small amount of water is also transported across the membrane along with hydrated protons transported across the membrane. Generally, each proton is hydrated with 3-5 molecules. The process is unique because hydrogen peroxide is formed as a high-purity aqueous solution. Since there are no hazardous chemicals or liquids used in the process, the disinfection product can be applied directly to water, before entering a water filtration unit to disinfect the incoming water and to prevent the build up of heterotrophic bacteria, for example, in carbon based filters. The competitive advantages of this process are: 1. No consumable chemicals are needed in the process. The only raw materials

  1. 21 CFR 178.1005 - Hydrogen peroxide solution.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Hydrogen peroxide solution. 178.1005 Section 178... Growth of Microorganisms § 178.1005 Hydrogen peroxide solution. Hydrogen peroxide solution identified in...)(1) of this section. (a) Identity. For the purpose of this section, hydrogen peroxide solution is an...

  2. 21 CFR 184.1366 - Hydrogen peroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Hydrogen peroxide. 184.1366 Section 184.1366 Food... GRAS § 184.1366 Hydrogen peroxide. (a) Hydrogen peroxide (H2O2, CAS Reg. No. 7722-84-1) is also referred to as hydrogen dioxide. It is made by the electrolytic oxidation of sulfuric acid or a sulfate to...

  3. 21 CFR 582.1366 - Hydrogen peroxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Hydrogen peroxide. 582.1366 Section 582.1366 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1366 Hydrogen peroxide. (a) Product. Hydrogen peroxide. (b) [Reserved] (c) Limitations...

  4. 21 CFR 582.1366 - Hydrogen peroxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Hydrogen peroxide. 582.1366 Section 582.1366 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1366 Hydrogen peroxide. (a) Product. Hydrogen peroxide. (b) [Reserved] (c) Limitations...

  5. 21 CFR 582.1366 - Hydrogen peroxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Hydrogen peroxide. 582.1366 Section 582.1366 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1366 Hydrogen peroxide. (a) Product. Hydrogen peroxide. (b) [Reserved] (c) Limitations...

  6. 21 CFR 582.1366 - Hydrogen peroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Hydrogen peroxide. 582.1366 Section 582.1366 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1366 Hydrogen peroxide. (a) Product. Hydrogen peroxide. (b) [Reserved] (c) Limitations...

  7. 21 CFR 582.1366 - Hydrogen peroxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Hydrogen peroxide. 582.1366 Section 582.1366 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1366 Hydrogen peroxide. (a) Product. Hydrogen peroxide. (b) [Reserved] (c) Limitations...

  8. Coating for components requiring hydrogen peroxide compatibility

    NASA Technical Reports Server (NTRS)

    Yousefiani, Ali (Inventor)

    2010-01-01

    The present invention provides a heretofore-unknown use for zirconium nitride as a hydrogen peroxide compatible protective coating that was discovered to be useful to protect components that catalyze the decomposition of hydrogen peroxide or corrode when exposed to hydrogen peroxide. A zirconium nitride coating of the invention may be applied to a variety of substrates (e.g., metals) using art-recognized techniques, such as plasma vapor deposition. The present invention further provides components and articles of manufacture having hydrogen peroxide compatibility, particularly components for use in aerospace and industrial manufacturing applications. The zirconium nitride barrier coating of the invention provides protection from corrosion by reaction with hydrogen peroxide, as well as prevention of hydrogen peroxide decomposition.

  9. 21 CFR 529.1150 - Hydrogen peroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Hydrogen peroxide. 529.1150 Section 529.1150 Food... DRUGS, FEEDS, AND RELATED PRODUCTS CERTAIN OTHER DOSAGE FORM NEW ANIMAL DRUGS § 529.1150 Hydrogen peroxide. (a) Specifications. Each milliliter of solution contains 396.1 milligrams (mg) hydrogen peroxide...

  10. 21 CFR 529.1150 - Hydrogen peroxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Hydrogen peroxide. 529.1150 Section 529.1150 Food... DRUGS, FEEDS, AND RELATED PRODUCTS CERTAIN OTHER DOSAGE FORM NEW ANIMAL DRUGS § 529.1150 Hydrogen peroxide. (a) Specifications. Each milliliter of solution contains 396.1 milligrams (mg) hydrogen peroxide...

  11. 21 CFR 529.1150 - Hydrogen peroxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Hydrogen peroxide. 529.1150 Section 529.1150 Food... DRUGS, FEEDS, AND RELATED PRODUCTS CERTAIN OTHER DOSAGE FORM NEW ANIMAL DRUGS § 529.1150 Hydrogen peroxide. (a) Specifications. Each milliliter of solution contains 396.1 milligrams (mg) hydrogen peroxide...

  12. 21 CFR 529.1150 - Hydrogen peroxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Hydrogen peroxide. 529.1150 Section 529.1150 Food... DRUGS, FEEDS, AND RELATED PRODUCTS CERTAIN OTHER DOSAGE FORM NEW ANIMAL DRUGS § 529.1150 Hydrogen peroxide. (a) Specifications. Each milliliter of solution contains 396.1 milligrams (mg) hydrogen peroxide...

  13. 21 CFR 529.1150 - Hydrogen peroxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Hydrogen peroxide. 529.1150 Section 529.1150 Food... DRUGS, FEEDS, AND RELATED PRODUCTS CERTAIN OTHER DOSAGE FORM NEW ANIMAL DRUGS § 529.1150 Hydrogen peroxide. (a) Specifications. Each milliliter of solution contains 396.1 milligrams (mg) hydrogen peroxide...

  14. THE PRODUCTION OF HYDROGEN PEROXIDE BY HIGH OXYGEN PRESSURES

    PubMed Central

    Gilbert, Daniel L.; Gerschman, Rebeca; Ruhm, K. Barclay; Price, William E.

    1958-01-01

    Hydrogen peroxide is formed in solutions of glutathione exposed to oxygen. This hydrogen peroxide or its precursors will decrease the viscosity of polymers like desoxyribonucleic acid and sodium alginate. Further knowledge of the mechanism of these chemical effects of oxygen might further the understanding of the biological effects of oxygen. This study deals with the rate of solution of oxygen and with the decomposition of hydrogen peroxide in chemical systems exposed to high oxygen pressures. At 6 atmospheres, the absorption coefficient for oxygen into water was about 1 cm./hour and at 143 atmospheres, it was about 2 cm./hour; the difference probably being due to the modus operandi. The addition of cobalt (II), manganese (II), nickel (II), or zinc ions in glutathione (GSH) solutions exposed to high oxygen pressure decreased the net formation of hydrogen peroxide and also the reduced glutathione remaining in the solution. Studies on hydrogen peroxide decomposition indicated that these ions act probably by accelerating the hydrogen perioxide oxidation of glutathione. The chelating agent, ethylenediaminetetraacetic acid disodium salt, inhibited the oxidation of GSH exposed to high oxygen pressure for 14 hours. However, indication that oxidation still occurred, though at a much slower rate, was found in experiments lasting 10 weeks. Thiourea decomposed hydrogen peroxide very rapidly. When GSH solutions were exposed to high oxygen pressure, there was oxidation of the GSH, which became relatively smaller with increasing concentrations of GSH. PMID:13525677

  15. Mitochondrial peptides modulate mitochondrial function during cellular senescence.

    PubMed

    Kim, Su-Jeong; Mehta, Hemal H; Wan, Junxiang; Kuehnemann, Chisaka; Chen, Jingcheng; Hu, Ji-Fan; Hoffman, Andrew R; Cohen, Pinchas

    2018-06-10

    Cellular senescence is a complex cell fate response that is thought to underlie several age-related pathologies. Despite a loss of proliferative potential, senescent cells are metabolically active and produce energy-consuming effectors, including senescence-associated secretory phenotypes (SASPs). Mitochondria play crucial roles in energy production and cellular signaling, but the key features of mitochondrial physiology and particularly of mitochondria-derived peptides (MDPs), remain underexplored in senescence responses. Here, we used primary human fibroblasts made senescent by replicative exhaustion, doxorubicin or hydrogen peroxide treatment, and examined the number of mitochondria and the levels of mitochondrial respiration, mitochondrial DNA methylation and the mitochondria-encoded peptides humanin, MOTS-c, SHLP2 and SHLP6. Senescent cells showed increased numbers of mitochondria and higher levels of mitochondrial respiration, variable changes in mitochondrial DNA methylation, and elevated levels of humanin and MOTS-c. Humanin and MOTS-c administration modestly increased mitochondrial respiration and selected components of the SASP in doxorubicin-induced senescent cells partially via JAK pathway. Targeting metabolism in senescence cells is an important strategy to reduce SASP production for eliminating the deleterious effects of senescence. These results provide insight into the role of MDPs in mitochondrial energetics and the production of SASP components by senescent cells.

  16. Detection of hydrogen peroxide with chemiluminescent micelles

    PubMed Central

    Lee, Dongwon; Erigala, Venkata R; Dasari, Madhuri; Yu, Junhua; Dickson, Robert M; Murthy, Niren

    2008-01-01

    The overproduction of hydrogen peroxide is implicated in the progress of numerous life-threatening diseases and there is a great need for the development of contrast agents that can detect hydrogen peroxide in vivo. In this communication, we present a new contrast agent for hydrogen peroxide, termed peroxalate micelles, which detect hydrogen peroxide through chemiluminescence, and have the physical/chemical properties needed for in vivo imaging applications. The peroxalate micelles are composed of amphiphilic peroxalate based copolymers and the fluorescent dye rubrene, they have a ‘stealth’ polyethylene glycol (PEG) corona to evade macrophage phagocytosis, and a diameter of 33 nm to enhance extravasation into permeable tissues. The peroxalate micelles can detect nanomolar concentrations of hydrogen peroxide (>50 nM) and thus have the sensitivity needed to detect physiological concentrations of hydrogen peroxide. We anticipate numerous applications of the peroxalate micelles for in vivo imaging of hydrogen peroxide, given their high sensitivity, small size, and biocompatible PEG corona. PMID:19337415

  17. 21 CFR 173.356 - Hydrogen peroxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Hydrogen peroxide. 173.356 Section 173.356 Food... Specific Usage Additives § 173.356 Hydrogen peroxide. Hydrogen peroxide (CAS Reg. No. 7722-84-1) may be....C. 552(a) and 1 CFR part 51. You may obtain copies from the United States Pharmacopeial Convention...

  18. 21 CFR 173.356 - Hydrogen peroxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Hydrogen peroxide. 173.356 Section 173.356 Food... Specific Usage Additives § 173.356 Hydrogen peroxide. Hydrogen peroxide (CAS Reg. No. 7722-84-1) may be....C. 552(a) and 1 CFR part 51. You may obtain copies from the United States Pharmacopeial Convention...

  19. 21 CFR 173.356 - Hydrogen peroxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Hydrogen peroxide. 173.356 Section 173.356 Food... Specific Usage Additives § 173.356 Hydrogen peroxide. Hydrogen peroxide (CAS Reg. No. 7722-84-1) may be....C. 552(a) and 1 CFR part 51. You may obtain copies from the United States Pharmacopeial Convention...

  20. Efficacy, efficiency and safety aspects of hydrogen peroxide vapour and aerosolized hydrogen peroxide room disinfection systems.

    PubMed

    Fu, T Y; Gent, P; Kumar, V

    2012-03-01

    This was a head-to-head comparison of two hydrogen-peroxide-based room decontamination systems. To compare the efficacy, efficiency and safety of hydrogen peroxide vapour (HPV; Clarus R, Bioquell, Andover, U.K.) and aerosolized hydrogen peroxide (aHP; SR2, Sterinis, now supplied as Glosair, Advanced Sterilization Products (ASP), Johnson & Johnson Medical Ltd, Wokingham, U.K.) room disinfection systems. Efficacy was tested using 4- and 6-log Geobacillus stearothermophilus biological indicators (BIs) and in-house prepared test discs containing approximately 10(6) meticillin-resistant Staphylococcus aureus (MRSA), Clostridium difficile and Acinetobacter baumannii. Safety was assessed by detecting leakage of hydrogen peroxide using a hand-held detector. Efficiency was assessed by measuring the level of hydrogen peroxide using a hand-held sensor at three locations inside the room, 2 h after the start of the cycles. HPV generally achieved a 6-log reduction, whereas aHP generally achieved less than a 4-log reduction on the BIs and in-house prepared test discs. Uneven distribution was evident for the aHP system but not the HPV system. Hydrogen peroxide leakage during aHP cycles with the door unsealed, as per the manufacturer's operating manual, exceeded the short-term exposure limit (2 ppm) for more than 2 h. When the door was sealed with tape, as per the HPV system, hydrogen peroxide leakage was <1 ppm for both systems. The mean concentration of hydrogen peroxide in the room 2 h after the cycle started was 1.3 [standard deviation (SD) 0.4] ppm and 2.8 (SD 0.8) ppm for the four HPV and aHP cycles, respectively. None of the readings were <2 ppm for the aHP cycles. The HPV system was safer, faster and more effective for biological inactivation. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  1. Redox-Dependent Calcium-Mediated Signaling Networks that Control the Senescence-Associated Secretory Phenotype

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, Akshaya

    Cellular senescence has evolved as a protective mechanism to arrest growth of cells with oncogenic potential. While senescent cells have lost the ability to divide, they remain metabolically active and adapt a deleterious senescence associated secretory phenotype (SASP) central to the progression of several age-associated disease pathologies. The SASP is mechanistically regulated by the pro-inflammatory cytokine interleukin-1 alpha (IL-1alpha) whose expression and activity is responsive to the senescence associated (SA) oxidant production and the accompanying disruption of calcium (Ca2+) homeostasis. Using primary IMR-90 human fetal lung fibroblasts as a model of replicative senescence, we explored the molecular underpinnings driving Ca2+ dysregulation in senescent cells. We establish that the redox-responsive Transient Receptor Potential TRPC6 channel is compromised due to desensitization owing to SA increases in steady state hydrogen peroxide (H2O2) production. SA dysregulation of Ca2+ is also accompanied by loss of response to H2O2-induced Ca2+ influx that can be rescued with catalase pre-treatments. Senescent cells are also insensitive to Ca2+ entry induced by hyperforin, a specific activator of TRPC6, that can be restored by catalase pre-treatments, further suggesting redox regulation of TRPC6 in senescence. Inhibition of TRPC6 channel activity restores the ability of senescent cells to respond to peroxide-induced Ca2+ in addition to suppressing SASP gene expression. Furthermore, mammalian target of rapamycin (mTOR) signaling regulates SASP by means of modulating TRPC6 channel expression. Together, our findings provide compelling evidence that redox and mTOR-mediated regulation of TRPC6 channel modulate SASP gene expression. Further, the gain-of-function mutation of TRPC6 has pathological implications in several chronic pathologies and renders it a viable target in age-associated diseases.

  2. Hydrogen peroxide stabilization in one-dimensional flow columns

    NASA Astrophysics Data System (ADS)

    Schmidt, Jeremy T.; Ahmad, Mushtaque; Teel, Amy L.; Watts, Richard J.

    2011-09-01

    Rapid hydrogen peroxide decomposition is the primary limitation of catalyzed H 2O 2 propagations in situ chemical oxidation (CHP ISCO) remediation of the subsurface. Two stabilizers of hydrogen peroxide, citrate and phytate, were investigated for their effectiveness in one-dimensional columns of iron oxide-coated and manganese oxide-coated sand. Hydrogen peroxide (5%) with and without 25 mM citrate or phytate was applied to the columns and samples were collected at 8 ports spaced 13 cm apart. Citrate was not an effective stabilizer for hydrogen peroxide in iron-coated sand; however, phytate was highly effective, increasing hydrogen peroxide residuals two orders of magnitude over unstabilized hydrogen peroxide. Both citrate and phytate were effective stabilizers for manganese-coated sand, increasing hydrogen peroxide residuals by four-fold over unstabilized hydrogen peroxide. Phytate and citrate did not degrade and were not retarded in the sand columns; furthermore, the addition of the stabilizers increased column flow rates relative to unstabilized columns. These results demonstrate that citrate and phytate are effective stabilizers of hydrogen peroxide under the dynamic conditions of one-dimensional columns, and suggest that citrate and phytate can be added to hydrogen peroxide before injection to the subsurface as an effective means for increasing the radius of influence of CHP ISCO.

  3. Inactivation of biologically active dna by gamma ray induced superoxide radicals and their dismutation products singlet molecular oxygen and hydrogen peroxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanhemmen, J.J.; Meuling, W.J.A.

    1975-01-01

    The reactivity of gamma ray induced superoxide radicals and dismutation products (singlet molecular oxygen and hydrogen peroxide) with DNA were studied. Superoxide dismutase, which removes superoxide radicals and inhibits the formation of singlet oxygen, protects biologically active DNA (OX174 RF) against inactivation by ionizing radiation. Catalase, which removes hydrogen peroxide, also protects the DNA. Attempts with various chemical sources of singlet oxygen to determine whether this species inactivates DNA did not yield an unequivocal answer. It was concluded that a combination of the protonated form of the superoxide radical and hydrogen peroxide inactivates DNA. (Author) (GRA)

  4. Probing skin interaction with hydrogen peroxide using diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zonios, George; Dimou, Aikaterini; Galaris, Dimitrios

    2008-01-01

    Hydrogen peroxide is an important oxidizing agent in biological systems. In dermatology, it is frequently used as topical antiseptic, it has a haemostatic function, it can cause skin blanching, and it can facilitate skin tanning. In this work, we investigated skin interaction with hydrogen peroxide, non-invasively, using diffuse reflectance spectroscopy. We observed transient changes in the oxyhaemoglobin and deoxyhaemoglobin concentrations as a result of topical application of dilute H2O2 solutions to the skin, with changes in deoxyhaemoglobin concentration being more pronounced. Furthermore, we did not observe any appreciable changes in melanin absorption properties as well as in the skin scattering properties. We also found no evidence for production of oxidized haemoglobin forms. Our observations are consistent with an at least partial decomposition of hydrogen peroxide within the stratum corneum and epidermis, with the resulting oxygen and/or remaining hydrogen peroxide inducing vasoconstriction to dermal blood vessels and increasing haemoglobin oxygen saturation. An assessment of the effects of topical application of hydrogen peroxide to the skin may serve as the basis for the development of non-invasive techniques to measure skin antioxidant capacity and also may shed light onto skin related disorders such as vitiligo.

  5. PED/PEA-15 inhibits hydrogen peroxide-induced apoptosis in Ins-1E pancreatic beta-cells via PLD-1.

    PubMed

    Fiory, Francesca; Parrillo, Luca; Raciti, Gregory Alexander; Zatterale, Federica; Nigro, Cecilia; Mirra, Paola; Falco, Roberta; Ulianich, Luca; Di Jeso, Bruno; Formisano, Pietro; Miele, Claudia; Beguinot, Francesco

    2014-01-01

    The small scaffold protein PED/PEA-15 is involved in several different physiologic and pathologic processes, such as cell proliferation and survival, diabetes and cancer. PED/PEA-15 exerts an anti-apoptotic function due to its ability to interfere with both extrinsic and intrinsic apoptotic pathways in different cell types. Recent evidence shows that mice overexpressing PED/PEA-15 present larger pancreatic islets and increased beta-cells mass. In the present work we investigated PED/PEA-15 role in hydrogen peroxide-induced apoptosis in Ins-1E beta-cells. In pancreatic islets isolated from Tg(PED/PEA-15) mice hydrogen peroxide-induced DNA fragmentation was lower compared to WT islets. TUNEL analysis showed that PED/PEA-15 overexpression increases the viability of Ins-1E beta-cells and enhances their resistance to apoptosis induced by hydrogen peroxide exposure. The activity of caspase-3 and the cleavage of PARP-1 were markedly reduced in Ins-1E cells overexpressing PED/PEA-15 (Ins-1E(PED/PEA-15)). In parallel, we observed a decrease of the mRNA levels of pro-apoptotic genes Bcl-xS and Bad. In contrast, the expression of the anti-apoptotic gene Bcl-xL was enhanced. Accordingly, DNA fragmentation was higher in control cells compared to Ins-1E(PED/PEA-15) cells. Interestingly, the preincubation with propranolol, an inhibitor of the pathway of PLD-1, a known interactor of PED/PEA-15, responsible for its deleterious effects on glucose tolerance, abolishes the antiapoptotic effects of PED/PEA-15 overexpression in Ins-1E beta-cells. The same results have been obtained by inhibiting PED/PEA-15 interaction with PLD-1 in Ins-1E(PED/PEA-15). These results show that PED/PEA-15 overexpression is sufficient to block hydrogen peroxide-induced apoptosis in Ins-1E cells through a PLD-1 mediated mechanism.

  6. Hydrogen peroxide stabilization in one-dimensional flow columns.

    PubMed

    Schmidt, Jeremy T; Ahmad, Mushtaque; Teel, Amy L; Watts, Richard J

    2011-09-25

    Rapid hydrogen peroxide decomposition is the primary limitation of catalyzed H(2)O(2) propagations in situ chemical oxidation (CHP ISCO) remediation of the subsurface. Two stabilizers of hydrogen peroxide, citrate and phytate, were investigated for their effectiveness in one-dimensional columns of iron oxide-coated and manganese oxide-coated sand. Hydrogen peroxide (5%) with and without 25 mM citrate or phytate was applied to the columns and samples were collected at 8 ports spaced 13 cm apart. Citrate was not an effective stabilizer for hydrogen peroxide in iron-coated sand; however, phytate was highly effective, increasing hydrogen peroxide residuals two orders of magnitude over unstabilized hydrogen peroxide. Both citrate and phytate were effective stabilizers for manganese-coated sand, increasing hydrogen peroxide residuals by four-fold over unstabilized hydrogen peroxide. Phytate and citrate did not degrade and were not retarded in the sand columns; furthermore, the addition of the stabilizers increased column flow rates relative to unstabilized columns. These results demonstrate that citrate and phytate are effective stabilizers of hydrogen peroxide under the dynamic conditions of one-dimensional columns, and suggest that citrate and phytate can be added to hydrogen peroxide before injection to the subsurface as an effective means for increasing the radius of influence of CHP ISCO. Copyright © 2011. Published by Elsevier B.V.

  7. 21 CFR 178.1005 - Hydrogen peroxide solution.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Hydrogen peroxide solution. 178.1005 Section 178... SANITIZERS Substances Utilized To Control the Growth of Microorganisms § 178.1005 Hydrogen peroxide solution. Hydrogen peroxide solution identified in this section may be safely used to sterilize polymeric food...

  8. 21 CFR 178.1005 - Hydrogen peroxide solution.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Hydrogen peroxide solution. 178.1005 Section 178... SANITIZERS Substances Utilized To Control the Growth of Microorganisms § 178.1005 Hydrogen peroxide solution. Hydrogen peroxide solution identified in this section may be safely used to sterilize polymeric food...

  9. 21 CFR 178.1005 - Hydrogen peroxide solution.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Hydrogen peroxide solution. 178.1005 Section 178... SANITIZERS Substances Utilized To Control the Growth of Microorganisms § 178.1005 Hydrogen peroxide solution. Hydrogen peroxide solution identified in this section may be safely used to sterilize polymeric food...

  10. 21 CFR 178.1005 - Hydrogen peroxide solution.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Hydrogen peroxide solution. 178.1005 Section 178... SANITIZERS Substances Utilized To Control the Growth of Microorganisms § 178.1005 Hydrogen peroxide solution. Hydrogen peroxide solution identified in this section may be safely used to sterilize polymeric food...

  11. Placebo-controlled clinical trial of use of 10% hydrogen peroxide whitening strips for medication-induced xerostomia.

    PubMed

    Papas, Athena S; Kugel, Gerard; Singh, Mabi; Barker, Matthew L; Gerlach, Robert W

    2009-01-01

    A randomized, double-blind, placebo-controlled clinical trial was conducted to evaluate the effectiveness and safety of peroxide-containing strip-based tooth whitening among subjects with medication-induced hyposalivation. Eligibility for this tooth whitening study was limited to dentate adults taking xerogenic medications with an unstimulated salivary flow < or = 0.2 ml/min. After giving informed consent, 42 subjects were randomized using a 2:1 ratio to 10% hydrogen peroxide whitening strips (Crest Whitestrips Premium) or placebo strips without peroxide. Strips were used for 30 min twice daily for a 14-day period. Usage was unsupervised, and only the maxillary arch was treated. On days 8 and 15, efficacy was assessed from standard digital images of the anterior dentition and quantified using the Cielab color system, while safety was assessed from interviews and clinical examinations. At day 8, the peroxide group experienced significant (p < 0.001) color improvement relative to baseline and placebo. Adjusted means +/- standard errors for yellowness reduction were -1.65 +/- 0.115 units for the peroxide group and -0.32 +/- 0.170 units for the placebo group. For the increase in lightness, adjusted means +/- standard errors on day 8 were 1.53 +/- 0.130 units for the peroxide group and 0.37 +/- 0.191 units for the controls. Continued strip use through day 15 yielded incremental color improvement for the peroxide group. Mild and transient tooth sensitivity represented the most common adverse events. No subject discontinued treatment due to a product-related adverse event. Twice daily use of 10% hydrogen peroxide whitening strips by adults with medication-induced xerostomia was well tolerated, with significant tooth color improvement evident within 7 days. Copyright 2009 S. Karger AG, Basel.

  12. Glycerophosphate-dependent hydrogen peroxide production by rat liver mitochondria.

    PubMed

    Jesina, P; Kholová, D; Bolehovská, R; Cervinková, Z; Drahota, Z; Houstek, J

    2004-01-01

    We studied the extent to which hormonally-induced mitochondrial glycerophosphate dehydrogenase (mGPDH) activity contributes to the supply of reducing equivalents to the mitochondrial respiratory chain in the rat liver. The activity of glycerophosphate oxidase was compared with those of NADH oxidase and/or succinate oxidase. It was found that triiodothyronine-activated mGPDH represents almost the same capacity for the saturation of the respiratory chain as Complex II. Furthermore, the increase of mGPDH activity induced by triiodothyronine correlated with an increase of capacity for glycerophosphate-dependent hydrogen peroxide production. As a result of hormonal treatment, a 3-fold increase in glycerophosphate-dependent hydrogen peroxide production by liver mitochondria was detected by polarographic and luminometric measurements.

  13. Senescent intervertebral disc cells exhibit perturbed matrix homeostasis phenotype.

    PubMed

    Ngo, Kevin; Patil, Prashanti; McGowan, Sara J; Niedernhofer, Laura J; Robbins, Paul D; Kang, James; Sowa, Gwendolyn; Vo, Nam

    2017-09-01

    Aging greatly increases the risk for intervertebral disc degeneration (IDD) as a result of proteoglycan loss due to reduced synthesis and enhanced degradation of the disc matrix proteoglycan (PG). How disc matrix PG homeostasis becomes perturbed with age is not known. The goal of this study is to determine whether cellular senescence is a source of this perturbation. We demonstrated that disc cellular senescence is dramatically increased in the DNA repair-deficient Ercc1 -/Δ mouse model of human progeria. In these accelerated aging mice, increased disc cellular senescence is closely associated with the rapid loss of disc PG. We also directly examine PG homeostasis in oxidative damage-induced senescent human cells using an in vitro cell culture model system. Senescence of human disc cells treated with hydrogen peroxide was confirmed by growth arrest, senescence-associated β-galactosidase activity, γH2AX foci, and acquisition of senescence-associated secretory phenotype. Senescent human disc cells also exhibited perturbed matrix PG homeostasis as evidenced by their decreased capacity to synthesize new matrix PG and enhanced degradation of aggrecan, a major matrix PG. of the disc. Our in vivo and in vitro findings altogether suggest that disc cellular senescence is an important driver of PG matrix homeostatic perturbation and PG loss. Published by Elsevier B.V.

  14. Isothermal Decomposition of Hydrogen Peroxide Dihydrate

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Baragiola, R. A.

    2011-01-01

    We present a new method of growing pure solid hydrogen peroxide in an ultra high vacuum environment and apply it to determine thermal stability of the dihydrate compound that forms when water and hydrogen peroxide are mixed at low temperatures. Using infrared spectroscopy and thermogravimetric analysis, we quantified the isothermal decomposition of the metastable dihydrate at 151.6 K. This decomposition occurs by fractional distillation through the preferential sublimation of water, which leads to the formation of pure hydrogen peroxide. The results imply that in an astronomical environment where condensed mixtures of H2O2 and H2O are shielded from radiolytic decomposition and warmed to temperatures where sublimation is significant, highly concentrated or even pure hydrogen peroxide may form.

  15. The hydrogen peroxide impact on larval settlement and metamorphosis of abalone Haliotis diversicolor supertexta

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangjing; Yang, Zhihui; Cai, Zhonghua

    2008-08-01

    Abalone Haliotis diversicolor supertexta is an important economic mollusk. The settlement and metamorphosis are two critical stages during its development period, which has direct influence on abalone survival and production. The influence of reactive oxygen species (hydrogen peroxide) on abalone embryo and juvenile development were examined in this study. Larvae of Haliotis diversicolor supertexta were induced to settlement and metamorphose by exposure to seawater supplemented with hydrogen peroxide. They had the best performance at 800 μmol/L. The concentration of 1 000 μmol/L or higher was toxic to the larvae, as the larvae could settle down only at benthic diatom plates without complete metamorphosis. In addition, H2O2 adding time was critical to the larval performance. 24h after two-day post-fertilization was proved to be the optimal adding time. In this paper, two action mechanisms of hydrogen peroxide are discussed: (1) hydrogen peroxide has direct toxicity to ciliated cells, thus cause apoptosis; (2) hydrogen peroxide, as a product from catecholamines’ autoxidation process in vivo, can reverse this process to produce neuro-transmitters to induce abalone metamorphosis.

  16. Kinetics of Platinum-Catalyzed Decomposition of Hydrogen Peroxide

    NASA Astrophysics Data System (ADS)

    Vetter, Tiffany A.; Colombo, D. Philip, Jr.

    2003-07-01

    CIBA Vision Corporation markets a contact lens cleaning system that consists of an AOSEPT disinfectant solution and an AOSEPT lens cup. The disinfectant is a buffered 3.0% m/v hydrogen peroxide solution and the cup includes a platinum-coated AOSEPT disc. The hydrogen peroxide disinfects by killing bacteria, fungi, and viruses found on the contact lenses. Because the concentration of hydrogen peroxide needed to disinfect is irritating to eyes, the hydrogen peroxide needs to be neutralized, or decomposed, before the contact lenses can be used again. A general chemistry experiment is described where the kinetics of the catalyzed decomposition of the hydrogen peroxide are studied by measuring the amount of oxygen generated as a function of time. The order of the reaction with respect to the hydrogen peroxide, the rate constant, and the energy of activation are determined. The integrated rate law is used to determine the time required to decompose the hydrogen peroxide to a concentration that is safe for eyes.

  17. Systems and methods for generation of hydrogen peroxide vapor

    DOEpatents

    Love, Adam H; Eckels, Joel Del; Vu, Alexander K; Alcaraz, Armando; Reynolds, John G

    2014-12-02

    A system according to one embodiment includes a moisture trap for drying air; at least one of a first container and a second container; and a mechanism for at least one of: bubbling dried air from the moisture trap through a hydrogen peroxide solution in the first container for producing a hydrogen peroxide vapor, and passing dried air from the moisture trap into a headspace above a hydrogen peroxide solution in the second container for producing a hydrogen peroxide vapor. A method according one embodiment includes at least one of bubbling dried air through a hydrogen peroxide solution in a container for producing a first hydrogen peroxide vapor, and passing dried air from the moisture trap into a headspace above the hydrogen peroxide solution in a container for producing a second hydrogen peroxide vapor. Additional systems and methods are also presented.

  18. Senescence-like Phenotypes in Human Nevi

    PubMed Central

    Joselow, Andrew; Lynn, Darren; Terzian, Tamara; Box, Neil F.

    2016-01-01

    Summary Cellular senescence is an irreversible arrest of cell proliferation at the G1 stage of the cell cycle in which cells become refractory to growth stimuli. Senescence is a critical and potent defense mechanism that mammalian cells have to suppress tumors. While there are many ways to induce a senescence response, oncogene-induced senescence (OIS) remains key to inhibiting progression of cells that have acquired oncogenic mutations. In primary cells in culture, OIS induces a set of measurable phenotypic and behavioral changes, in addition to cell cycle exit. Senescence-associated β-Galactosidase (SA-β-Gal) activity is a main hallmark of senescent cells, along with morphological changes that may depend on the oncogene that is activated, or on the primary cell type. Characteristic cellular changes of senescence include increased size, flattening, multi-nucleation, and extensive vacuolation. At the molecular level, tumor suppressor genes such as p53 and p16INK4a may play a role in initiation or maintenance of OIS. Activation of a DNA damage response and a senescence-associated secretory phenotype could delineate the onset of senescence. Despite advances in our understanding of how OIS suppresses some tumor types, the in vivo role of OIS in melanocytic nevi and melanoma remains poorly understood and not validated. In an effort to stimulate research in this field, we review in this chapter the known markers of senescence and provide experimental protocols for their identification by immunofluorescent staining in melanocytic nevi and malignant melanoma. PMID:27812879

  19. High temperature decomposition of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2004-01-01

    Nitric oxide (NO) is oxidized into nitrogen dioxide (NO.sub.2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydroperoxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.

  20. High temperature decomposition of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2011-01-01

    Nitric oxide (NO) is oxidized into nitrogen dioxide (NO.sub.2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydroperoxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.

  1. High temperature decomposition of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2005-01-01

    Nitric oxide (NO) is oxidized into nitrogen dioxide (NO2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydroperoxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.

  2. High Temperature Decomposition of Hydrogen Peroxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2004-01-01

    Nitric oxide (NO) is oxidized into nitrogen dioxide (NO2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydropemxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.

  3. Hydrogen Peroxide-Induced Secreted Frizzled-Related Protein 1 Gene Demethylation Contributes to Hydrogen Peroxide-Induced Apoptosis in Human U251 Glioma Cells.

    PubMed

    Xing, Zhiguo; Ni, Yaping; Zhao, Junjie; Ma, Xudong

    2017-05-01

    Glioblastoma multiforme is a type of central nervous system tumor with extremely poor prognosis. Previously, hydrogen peroxide (H 2 O 2 ), which promotes the oxidative stress response, has been reported to induce the apoptosis of glioma cells. Recently, secreted frizzled-related protein 1 (SFRP1) has been shown to be associated with various types of malignant tumors and with H 2 O 2 -induced oxidative stress in cardiomyocytes by negatively regulating the Wnt signaling pathway. This study aimed to explore SFRP1 expression and its roles in H 2 O 2 -induced apoptosis in human glioma cells. We found that the SFRP1 level was decreased in several human glioma cell lines, including U87, U251, and SW1783 cells. In U251 cells, SFRP1 could function as a cancer suppressor gene, and the growth of U251 cells could be inhibited not only by H 2 O 2 but also by the overexpression of SFRP1. Furthermore, we demonstrated that H 2 O 2 -induced SFRP1 gene demethylation partially contributed to H 2 O 2 -induced U251 cell apoptosis, which was verified by studies using an SFRP inhibitor (WAY-316606). Our research identified that H 2 O 2 -induced SFRP1 gene demethylation contributes to H 2 O 2 -induced apoptosis in human U251 glioma cells.

  4. Hydrogen Peroxide Probes Directed to Different Cellular Compartments

    PubMed Central

    Malinouski, Mikalai; Zhou, You; Belousov, Vsevolod V.; Hatfield, Dolph L.; Gladyshev, Vadim N.

    2011-01-01

    Background Controlled generation and removal of hydrogen peroxide play important roles in cellular redox homeostasis and signaling. We used a hydrogen peroxide biosensor HyPer, targeted to different compartments, to examine these processes in mammalian cells. Principal Findings Reversible responses were observed to various redox perturbations and signaling events. HyPer expressed in HEK 293 cells was found to sense low micromolar levels of hydrogen peroxide. When targeted to various cellular compartments, HyPer occurred in the reduced state in the nucleus, cytosol, peroxisomes, mitochondrial intermembrane space and mitochondrial matrix, but low levels of the oxidized form of the biosensor were also observed in each of these compartments, consistent with a low peroxide tone in mammalian cells. In contrast, HyPer was mostly oxidized in the endoplasmic reticulum. Using this system, we characterized control of hydrogen peroxide in various cell systems, such as cells deficient in thioredoxin reductase, sulfhydryl oxidases or subjected to selenium deficiency. Generation of hydrogen peroxide could also be monitored in various compartments following signaling events. Conclusions We found that HyPer can be used as a valuable tool to monitor hydrogen peroxide generated in different cellular compartments. The data also show that hydrogen peroxide generated in one compartment could translocate to other compartments. Our data provide information on compartmentalization, dynamics and homeostatic control of hydrogen peroxide in mammalian cells. PMID:21283738

  5. 21 CFR 173.356 - Hydrogen peroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Hydrogen peroxide. 173.356 Section 173.356 Food... peroxide. Hydrogen peroxide (CAS Reg. No. 7722-84-1) may be safely used to treat food in accordance with... approves this incorporation by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. You may...

  6. Radiation-induced senescence-like phenotype in proliferating and plateau-phase vascular endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Igarashi, Kaori; Sakimoto, Ippei; Kataoka, Keiko

    The effects of ionizing radiation (IR) on tumor angiogenesis still remain largely unknown. In this study, we found that IR (8 Gy) induces a high-frequency (80-90%) senescence-like phenotype in vascular endothelial cells (ECs) undergoing exponential growth. This finding allowed us to characterize the IR-induced senescence-like (IRSL) phenotype by examining the gene expression profiles and in vitro angiogenic activities of these ECs. The expression levels of genes associated with cell cycle progression and DNA replication were remarkably reduced in the IRSL ECs. Additionally, the in vitro invasion and migration activities of these cells through Matrigel were significantly suppressed. We also foundmore » that confluent ECs exhibited a high-frequency IRSL phenotype when they were replated immediately after irradiation, whereas incubation in plateau-phase conditions reduced the induction of this phenotype and enhanced colony formation. The kinetics of DNA double-strand break repair, which showed a faster time course in confluent ECs than in growing ECs, may contribute to the protective mechanism associated with the IRSL phenotype. These results imply that the IRSL phenotype may be important for determining the angiogenic activity of ECs following irradiation. The present study should contribute to the understanding of the effects of IR on tumor angiogenesis.« less

  7. Effects of mulberry ethanol extracts on hydrogen peroxide-induced oxidative stress in pancreatic β-cells.

    PubMed

    Kim, Young Rae; Lee, Jong Seok; Lee, Ki Rim; Kim, Young Eon; Baek, Nam In; Hong, Eock Kee

    2014-01-01

    Reactive oxygen species (ROS) are key mediators of mammalian cellular damage and are associated with diseases such as aging, arteriosclerosis, inflammation, rheumatoid arthritis and diabetes. Type 1 diabetes develops upon the destruction of pancreatic β-cells, which is partly due to ROS activity. In this study, we investigated the cytoprotective and anti-oxidative effects of fractionated mulberry extracts in mouse insulin-producing pancreatic β-cells (MIN6N cells). Treatment with hydrogen peroxide (H2O2) induced significant cell death and increased intracellular ROS levels, lipid peroxidation and DNA fragmentation in the MIN6N cells. Fractionated mulberry extracts significantly reduced the H2O2-dependent production of intracellular ROS, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals and lipid peroxidation. In addition, mulberry extracts inhibited DNA fragmentation induced by H2O2. Thus, the antioxidant properties of mulberry extracts in pancreatic β-cells may be exploited for the prevention or treatment of type 1 diabetes.

  8. The Hog1 MAP Kinase Promotes the Recovery from Cell Cycle Arrest Induced by Hydrogen Peroxide in Candida albicans

    PubMed Central

    Correia, Inês; Alonso-Monge, Rebeca; Pla, Jesús

    2017-01-01

    Eukaryotic cell cycle progression in response to environmental conditions is controlled via specific checkpoints. Signal transduction pathways mediated by MAPKs play a crucial role in sensing stress. For example, the canonical MAPKs Mkc1 (of the cell wall integrity pathway), and Hog1 (of the HOG pathway), are activated upon oxidative stress. In this work, we have analyzed the effect of oxidative stress induced by hydrogen peroxide on cell cycle progression in Candida albicans. Hydrogen peroxide was shown to induce a transient arrest at the G1 phase of the cell cycle. Specifically, a G1 arrest was observed, although phosphorylation of Mkc1 and Hog1 MAPKs can take place at all stages of the cell cycle. Interestingly, hog1 (but not mkc1) mutants required a longer time compared to wild type cells to resume growth after hydrogen peroxide challenge. Using GFP-labeled cells and mixed cultures of wild type and hog1 cells we were able to show that hog1 mutants progress faster through the cell cycle under standard growth conditions in the absence of stress (YPD at 37°C). Consequently, hog1 mutants exhibited a smaller cell size. The altered cell cycle progression correlates with altered expression of the G1 cyclins Cln3 and Pcl2 in hog1 cells compared to the wild type strain. In addition, Hgc1 (a hypha-specific G1 cyclin) as well as Cln3 displayed a different kinetics of expression in the presence of hydrogen peroxide in hog1 mutants. Collectively, these results indicate that Hog1 regulates the expression of G1 cyclins not only in response to oxidative stress, but also under standard growth conditions. Hydrogen peroxide treated cells did not show fluctuations in the mRNA levels for SOL1, which are observed in untreated cells during cell cycle progression. In addition, treatment with hydrogen peroxide prevented degradation of Sol1, an effect which was enhanced in hog1 mutants. Therefore, in C. albicans, the MAPK Hog1 mediates cell cycle progression in response to oxidative

  9. Fundamentals of ISCO Using Hydrogen Peroxide

    EPA Science Inventory

    Hydrogen peroxide is a common oxidant that has been applied extensively with in situ chemical oxidation (ISCO). Because of its widespread use in this and other fields, it has been extensively researched. This research has revealed that hydrogen peroxide has very complex chemistry...

  10. Hydrogen peroxide on the surface of Europa

    USGS Publications Warehouse

    Carlson, R.W.; Anderson, M.S.; Johnson, R.E.; Smythe, W.D.; Hendrix, A.R.; Barth, C.A.; Soderblom, L.A.; Hansen, G.B.; McCord, T.B.; Dalton, J.B.; Clark, R.N.; Shirley, J.H.; Ocampo, A.C.; Matson, D.L.

    1999-01-01

    Spatially resolved infrared and ultraviolet wavelength spectra of Europa's leading, anti-jovian quadrant observed from the Galileo spacecraft show absorption features resulting from hydrogen peroxide. Comparisons with laboratory measurements indicate surface hydrogen peroxide concentrations of about 0.13 percent, by number, relative to water ice. The inferred abundance is consistent with radiolytic production of hydrogen peroxide by intense energetic particle bombardment and demonstrates that Europa's surface chemistry is dominated by radiolysis.

  11. Hydrogen peroxide on the surface of Europa.

    PubMed

    Carlson, R W; Anderson, M S; Johnson, R E; Smythe, W D; Hendrix, A R; Barth, C A; Soderblom, L A; Hansen, G B; McCord, T B; Dalton, J B; Clark, R N; Shirley, J H; Ocampo, A C; Matson, D L

    1999-03-26

    Spatially resolved infrared and ultraviolet wavelength spectra of Europa's leading, anti-jovian quadrant observed from the Galileo spacecraft show absorption features resulting from hydrogen peroxide. Comparisons with laboratory measurements indicate surface hydrogen peroxide concentrations of about 0.13 percent, by number, relative to water ice. The inferred abundance is consistent with radiolytic production of hydrogen peroxide by intense energetic particle bombardment and demonstrates that Europa's surface chemistry is dominated by radiolysis.

  12. Dental resin curing blue light induces vasoconstriction through release of hydrogen peroxide.

    PubMed

    Oktay, Elif Aybala; Tort, Huseyin; Yıldız, Oguzhan; Ulusoy, Kemal Gokhan; Topcu, Fulya Toksoy; Ozer, Cigdem

    2018-05-26

    Dental resin curing blue light (BL) is frequently used during treatments in dental clinics. However, little is known about the influence of BL irradiation on pulpal blood vessels. The aim of the present study was to investigate the mechanism of effect of BL irradiation on vascular tone. Rat aorta (RA) rings were irradiated with a BL source in organ baths, and the responses were recorded isometrically. Effect of BL irradiation on phenylephrine (PE) -precontraction and acetylcholine (ACh) -induced relaxation after PE -precontraction were obtained and compared in BL -irradiated and control RA rings. Effect of 20 min preincubation with catalase (enzyme that breaks down hydrogene peroxide, 1200 u/ml) on PE -precontraced and BL-irradiated rings was also evaluated. Total oxidative stress (TOS) and total antioxidant capacity (TAC) in BL-irradiated and control RA preparations were measured with special assay kits and spectrophotometry. BL slightly decreased ACh -induced endothelium -dependent relaxations in PE (1 μM) -precontracted RA rings (n = 6, p > 0.05 vs. control). BL induced marked contraction 23.88 + 3.10% of PE (maximum contraction) in isolated RA ring segments precontracted with PE (p < 0.05 vs. control). The contractile effect of BL was inhibited by 1200 u/ml catalase (n = 6, p < 0.05 vs. control). BL irradiation increased the level of TOS in RA rings (n = 6, p < 0.05 vs. control). TAC levels were similar in BL-irradiated and control preparations. These results suggest that BL induces contraction in RA, and the mechanism of this effect may to be through release of hydrogen peroxide. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Glycyl-alanyl-histidine protects PC12 cells against hydrogen peroxide toxicity.

    PubMed

    Shimura, Hideki; Tanaka, Ryota; Shimada, Yoshiaki; Yamashiro, Kazuo; Hattori, Nobutaka; Urabe, Takao

    2017-11-22

    Peptides with cytoprotective functions, including antioxidants and anti-infectives, could be useful therapeutics. Carnosine, β-alanine-histidine, is a dipeptide with anti-oxidant properties. Tripeptides of Ala-His-Lys, Pro-His-His, or Tyr-His-Tyr are also of interest in this respect. We synthesized several histidine-containing peptides including glycine or alanine, and tested their cytoprotective effects on hydrogen peroxide toxicity for PC12 cells. Of all these peptides (Gly-His-His, Ala-His-His, Ala-His-Ala, Ala-Ala-His, Ala-Gly-His, Gly-Ala-His (GAH), Ala-His-Gly, His-Ala-Gly, His-His-His, Gly-His-Ala, and Gly-Gly-His), GAH was found to have the strongest cytoprotective activity. GAH decreased lactate dehydrogenase (LDH) leakage, apoptosis, morphological changes, and nuclear membrane permeability changes against hydrogen peroxide toxicity in PC12 cells. The cytoprotective activity of GAH was superior to that of carnosine against hydrogen peroxide toxicity in PC12 cells. GAH also protected PC12 cells against damage caused by actinomycin D and staurosporine. Additionally, it was found that GAH also protected SH-SY5Y and Jurkat cells from damage caused by hydrogen peroxide, as assessed by LDH leakage. Thus, a novel tripeptide, GAH, has been identified as having broad cytoprotective effects against hydrogen peroxide-induced cell damage.

  14. Hydrogen peroxide catalytic decomposition

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2010-01-01

    Nitric oxide in a gaseous stream is converted to nitrogen dioxide using oxidizing species generated through the use of concentrated hydrogen peroxide fed as a monopropellant into a catalyzed thruster assembly. The hydrogen peroxide is preferably stored at stable concentration levels, i.e., approximately 50%-70% by volume, and may be increased in concentration in a continuous process preceding decomposition in the thruster assembly. The exhaust of the thruster assembly, rich in hydroxyl and/or hydroperoxy radicals, may be fed into a stream containing oxidizable components, such as nitric oxide, to facilitate their oxidation.

  15. Simple, field portable colorimetric detection device for organic peroxides and hydrogen peroxide

    DOEpatents

    Pagoria, Philip F.; Mitchell, Alexander R.; Whipple, Richard E.; Carman, M. Leslie; Reynolds, John G.; Nunes, Peter; Shields, Sharon J.

    2010-11-09

    A simple and effective system for the colorimetric determination of organic peroxides and hydrogen peroxide. A peroxide pen utilizing a swipe material attached to a polyethylene tube contains two crushable vials. The two crushable vials contain a colorimetric reagent separated into dry ingredients and liquid ingredients. After swiping a suspected substance or surface the vials are broken, the reagent is mixed thoroughly and the reagent is allowed to wick into the swipe material. The presence of organic peroxides or hydrogen peroxide is confirmed by a deep blue color.

  16. 7 CFR 58.431 - Hydrogen peroxide.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Hydrogen peroxide. 58.431 Section 58.431 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.431 Hydrogen peroxide. The solution shall comply with the specification of the U.S...

  17. 7 CFR 58.431 - Hydrogen peroxide.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Hydrogen peroxide. 58.431 Section 58.431 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.431 Hydrogen peroxide. The solution shall comply with the specification of the U.S...

  18. 7 CFR 58.431 - Hydrogen peroxide.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Hydrogen peroxide. 58.431 Section 58.431 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.431 Hydrogen peroxide. The solution shall comply with the specification of the U.S...

  19. 7 CFR 58.431 - Hydrogen peroxide.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Hydrogen peroxide. 58.431 Section 58.431 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.431 Hydrogen peroxide. The solution shall comply with the specification of the U.S...

  20. 7 CFR 58.431 - Hydrogen peroxide.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Hydrogen peroxide. 58.431 Section 58.431 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.431 Hydrogen peroxide. The solution shall comply with the specification of the U.S...

  1. Protective effect of ursolic acid from Cornus officinalis on the hydrogen peroxide-induced damage of HEI-OC1 auditory cells.

    PubMed

    Yu, Hyeon-Hee; Hur, Jong-Moon; Seo, Se-Jeong; Moon, Hae-Dalma; Kim, Hyun-Jin; Park, Rae-Kil; You, Yong-Ouk

    2009-01-01

    The fruits of Cornus officinalis have been used in traditional oriental medicine for treatment of inner ear diseases, such as tinnitus and hearing loss. In the present study, we investigated the protective effect of C. officinalis on hydrogen peroxide-induced cytotoxicity in HEI-OC1 auditory cells. The results from bioassay-guided fractionation of methanol extract of C. officinalis fruits showed that ursolic acid is a major active component. Ursolic acid (0.05-2 microg/ml) had protective effect against the HEI-OC1 cell damage and reduced lipid peroxidation in a dose-dependent manner. In addition, pre-treatment with ursolic acid significantly attenuated the decrease of activities of catalase (CAT) and glutathione peroxidase (GPX), but superoxide dismutase (SOD) activity was not significantly affected by ursolic acid. These results indicate that ursolic acid protects hydrogen peroxide-induced HEI-OC1 cell damage through inhibition of lipid peroxidation and induction of antioxidant enzymes, CAT and GPX, and may be one of the active components responsible for these effects of C. officinalis fruits.

  2. NASA Hydrogen Peroxide Propellant Hazards Technical Manual

    NASA Technical Reports Server (NTRS)

    Baker, David L.; Greene, Ben; Frazier, Wayne

    2005-01-01

    The Fire, Explosion, Compatibility and Safety Hazards of Hydrogen Peroxide NASA technical manual was developed at the NASA Johnson Space Center White Sands Test Facility. NASA Technical Memorandum TM-2004-213151 covers topics concerning high concentration hydrogen peroxide including fire and explosion hazards, material and fluid reactivity, materials selection information, personnel and environmental hazards, physical and chemical properties, analytical spectroscopy, specifications, analytical methods, and material compatibility data. A summary of hydrogen peroxide-related accidents, incidents, dose calls, mishaps and lessons learned is included. The manual draws from art extensive literature base and includes recent applicable regulatory compliance documentation. The manual may be obtained by United States government agencies from NASA Johnson Space Center and used as a reference source for hazards and safe handling of hydrogen peroxide.

  3. PTTG1 Attenuates Drug-Induced Cellular Senescence

    PubMed Central

    Tong, Yunguang; Zhao, Weijiang; Zhou, Cuiqi; Wawrowsky, Kolja; Melmed, Shlomo

    2011-01-01

    As PTTG1 (pituitary tumor transforming gene) abundance correlates with adverse outcomes in cancer treatment, we determined mechanisms underlying this observation by assessing the role of PTTG1 in regulating cell response to anti-neoplastic drugs. HCT116 cells devoid of PTTG1 (PTTG1−/−) exhibited enhanced drug sensitivity as assessed by measuring BrdU incorporation in vitro. Apoptosis, mitosis catastrophe or DNA damage were not detected, but features of senescence were observed using low doses of doxorubicin and TSA. The number of drug-induced PTTG1−/− senescent cells increased ∼4 fold as compared to WT PTTG1-replete cells (p<0.001). p21, an important regulator of cell senescence, was induced ∼3 fold in HCT116 PTTG1−/− cells upon doxorubicin or Trichostatin A treatment. Binding of Sp1, p53 and p300 to the p21 promoter was enhanced in PTTG1−/− cells after treatment, suggesting transcriptional regulation of p21. p21 knock down abrogated the observed senescent effects of these drugs, indicating that PTTG1 likely suppresses p21 to regulate drug-induced senescence. PTTG1 also regulated SW620 colon cancer cells response to doxorubicin and TSA mediated by p21. Subcutaneously xenografted PTTG1−/− HCT116 cells developed smaller tumors and exhibited enhanced responses to doxorubicin. PTTG1−/− tumor tissue derived from excised tumors exhibited increased doxorubicin-induced senescence. As senescence is a determinant of cell responses to anti-neoplastic treatments, these findings suggest PTTG1 as a tumor cell marker to predict anti-neoplastic treatment outcomes. PMID:21858218

  4. Aldehyde Oxidase 4 Plays a Critical Role in Delaying Silique Senescence by Catalyzing Aldehyde Detoxification1[OPEN

    PubMed Central

    Yarmolinsky, Dmitry; Soltabayeva, Aigerim; Samani, Talya

    2017-01-01

    The Arabidopsis (Arabidopsis thaliana) aldehyde oxidases are a multigene family of four oxidases (AAO1–AAO4) that oxidize a variety of aldehydes, among them abscisic aldehyde, which is oxidized to the phytohormone abscisic acid. Toxic aldehydes are generated in plants both under normal conditions and in response to stress. The detoxification of such aldehydes by oxidation is attributed to aldehyde dehydrogenases but never to aldehyde oxidases. The feasibility of the detoxification of aldehydes in siliques via oxidation by AAO4 was demonstrated, first, by its ability to efficiently oxidize an array of aromatic and aliphatic aldehydes, including the reactive carbonyl species (RCS) acrolein, hydroxyl-2-nonenal, and malondialdehyde. Next, exogenous application of several aldehydes to siliques in AAO4 knockout (KO) Arabidopsis plants induced severe tissue damage and enhanced malondialdehyde levels and senescence symptoms, but not in wild-type siliques. Furthermore, abiotic stresses such as dark and ultraviolet C irradiation caused an increase in endogenous RCS and higher expression levels of senescence marker genes, leading to premature senescence of KO siliques, whereas RCS and senescence marker levels in wild-type siliques were hardly affected. Finally, in naturally senesced KO siliques, higher endogenous RCS levels were associated with enhanced senescence molecular markers, chlorophyll degradation, and earlier seed shattering compared with the wild type. The aldehyde-dependent differential generation of superoxide and hydrogen peroxide by AAO4 and the induction of AAO4 expression by hydrogen peroxide shown here suggest a self-amplification mechanism for detoxifying additional reactive aldehydes produced during stress. Taken together, our results indicate that AAO4 plays a critical role in delaying senescence in siliques by catalyzing aldehyde detoxification. PMID:28188272

  5. Aldehyde Oxidase 4 Plays a Critical Role in Delaying Silique Senescence by Catalyzing Aldehyde Detoxification.

    PubMed

    Srivastava, Sudhakar; Brychkova, Galina; Yarmolinsky, Dmitry; Soltabayeva, Aigerim; Samani, Talya; Sagi, Moshe

    2017-04-01

    The Arabidopsis ( Arabidopsis thaliana ) aldehyde oxidases are a multigene family of four oxidases (AAO1-AAO4) that oxidize a variety of aldehydes, among them abscisic aldehyde, which is oxidized to the phytohormone abscisic acid. Toxic aldehydes are generated in plants both under normal conditions and in response to stress. The detoxification of such aldehydes by oxidation is attributed to aldehyde dehydrogenases but never to aldehyde oxidases. The feasibility of the detoxification of aldehydes in siliques via oxidation by AAO4 was demonstrated, first, by its ability to efficiently oxidize an array of aromatic and aliphatic aldehydes, including the reactive carbonyl species (RCS) acrolein, hydroxyl-2-nonenal, and malondialdehyde. Next, exogenous application of several aldehydes to siliques in AAO4 knockout (KO) Arabidopsis plants induced severe tissue damage and enhanced malondialdehyde levels and senescence symptoms, but not in wild-type siliques. Furthermore, abiotic stresses such as dark and ultraviolet C irradiation caused an increase in endogenous RCS and higher expression levels of senescence marker genes, leading to premature senescence of KO siliques, whereas RCS and senescence marker levels in wild-type siliques were hardly affected. Finally, in naturally senesced KO siliques, higher endogenous RCS levels were associated with enhanced senescence molecular markers, chlorophyll degradation, and earlier seed shattering compared with the wild type. The aldehyde-dependent differential generation of superoxide and hydrogen peroxide by AAO4 and the induction of AAO4 expression by hydrogen peroxide shown here suggest a self-amplification mechanism for detoxifying additional reactive aldehydes produced during stress. Taken together, our results indicate that AAO4 plays a critical role in delaying senescence in siliques by catalyzing aldehyde detoxification. © 2017 American Society of Plant Biologists. All Rights Reserved.

  6. Hydrogen peroxide production and mitochondrial dysfunction contribute to the fusaric acid-induced programmed cell death in tobacco cells.

    PubMed

    Jiao, Jiao; Sun, Ling; Zhou, Benguo; Gao, Zhengliang; Hao, Yu; Zhu, Xiaoping; Liang, Yuancun

    2014-08-15

    Fusaric acid (FA), a non-specific toxin produced mainly by Fusarium spp., can cause programmed cell death (PCD) in tobacco suspension cells. The mechanism underlying the FA-induced PCD was not well understood. In this study, we analyzed the roles of hydrogen peroxide (H2O2) and mitochondrial function in the FA-induced PCD. Tobacco suspension cells were treated with 100 μM FA and then analyzed for H2O2 accumulation and mitochondrial functions. Here we demonstrate that cells undergoing FA-induced PCD exhibited H2O2 production, lipid peroxidation, and a decrease of the catalase and ascorbate peroxidase activities. Pre-treatment of tobacco suspension cells with antioxidant ascorbic acid and NADPH oxidase inhibitor diphenyl iodonium significantly reduced the rate of FA-induced cell death as well as the caspase-3-like protease activity. Moreover, FA treatment of tobacco cells decreased the mitochondrial membrane potential and ATP content. Oligomycin and cyclosporine A, inhibitors of the mitochondrial ATP synthase and the mitochondrial permeability transition pore, respectively, could also reduce the rate of FA-induced cell death significantly. Taken together, the results presented in this paper demonstrate that H2O2 accumulation and mitochondrial dysfunction are the crucial events during the FA-induced PCD in tobacco suspension cells. Copyright © 2014 Elsevier GmbH. All rights reserved.

  7. Stabilized aqueous hydrogen peroxide solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malin, M.J.; Sciafani, L.D.

    1988-05-17

    This patent describes a stabilized aqueous hydrogen peroxide solution having a pH below 7 and an amount of Ferric ion up to about 2 ppm comprising hydrogen peroxide, acetanilide having a concentration which ranges between 0.74 M Mol/L and 2.22 mMol/L, and o-benzene disulfonic acid or salt thereof at a concentration between about 0.86 mMol/L to about 1.62 mMol/L.

  8. [Oxidative stress experimental model of rat with stria vascularis marginal cells injury induced by hydrogen peroxide in vitro].

    PubMed

    Li, Jun; Kong, Wei-jia; Zhao, Xue-yan; Hu, Yu-juan

    2008-11-01

    To set up the oxidative stress experimental model of rat cochlea with stria vascularis marginal cells injury induced by hydrogen peroxide in vitro. Cultured marginal cells of rat were treated by 200, 300, 400, 600 and 800 micromol/L hydrogen peroxide (H(2)O(2)) for 0.5, 1, 2, 4, 16 and 24 hours, respectively. Cell viability was assessed by the CCK-8 assay. The content of the lipid peroxidation production malondialdehyde (MDA) were detected in H(2)O(2) induced marginal cells injury with different concentration H(2)O(2). Apoptosis was assessed by flow cytometry by propidium sodium staining. The expression of the cleaved-caspase-3 was assessed by Western blot. Being exposed to H(2)O(2), marginal cells displayed nuclear pyknosis and margination, cytoplasmic condensation, cell shrinkage and formation of membrane and bounded apoptotic bodies. A time-dependent and dose-dependent decrease of cellular viability was detected with the treatment of H(2)O(2). Cellular maleic dialdehyde was generated in proportion to the concentration of H(2)O(2) at 2 hours and the number of apoptotic cells increased significantly (P < 0. 05). Western blot showed the expression of the cleaved-caspase-3 increased when 200 micromol/L, 300 micromol/L and 400 micromol/L H(2)O(2) treated cultured marginal cells. Thereafter the expression of the cleaved-caspase-3 decreased with 600 micromol/L H(2)O(2) and with 800 micromol/L H(2)O(2) the expression of cleaved-caspase-3 was weak. The findings indicated that the experimental model can be established successfully using cultured cells exposed to H(2)O(2) and activation of caspase-3 is associated with hydrogen peroxide induced rat marginal cells the oxidative stress injury.

  9. Necrotic cell death by hydrogen peroxide in immortal DF-1 chicken embryo fibroblast cells expressing deregulated MnSOD and catalase.

    PubMed

    Kim, H; You, S; Kong, B W; Foster, L K; Farris, J; Foster, D N

    2001-08-22

    The reactive oxygen species are known as endogenous toxic oxidant damaging factors in a variety of cell types, and in response, the antioxidant genes have been implicated in cell proliferation, senescence, immortalization, and tumorigenesis. The expression of manganese superoxide dismutase mRNA was shown to increase in most of the immortal chicken embryo fibroblast (CEF) cells tested, while expression of catalase mRNA appeared to be dramatically decreased in all immortal CEF cells compared to their primary counterparts. The expression of copper-zinc superoxide dismutase mRNA was shown to increase slightly in some immortal CEF cells. The glutathione peroxidase expressed relatively similar levels in both primary and immortal CEF cells. As primary and immortal DF-1 CEF cells were treated with 10-100 microM of hydrogen peroxide (concentrations known to be sublethal in human diploid fibroblasts), immortal DF-1 CEF cells were shown to be more sensitive to hydrogen peroxide, and total cell numbers were dramatically reduced when compared with primary cell counterparts. This increased sensitivity to hydrogen peroxide in immortal DF-1 cells occurred without evident changes in either antioxidant gene expression, mitochondrial membrane potential, cell cycle distribution or chromatin condensation. However, the total number of dead cells without chromatin condensation was dramatically elevated in immortal DF-1 CEFs treated with hydrogen peroxide, indicating that the inhibition of immortal DF-1 cell growth by low concentrations of hydrogen peroxide is due to increased necrotic cell death, but not apoptosis. Taken together, our observation suggests that the balanced antioxidant function might be important for cell proliferation in response to toxic oxidative damage by hydrogen peroxide.

  10. Hydrogen peroxide-induced Akt phosphorylation regulates Bax activation.

    PubMed

    Sadidi, Mahdieh; Lentz, Stephen I; Feldman, Eva L

    2009-05-01

    Reactive oxygen species such as hydrogen peroxide (H(2)O(2)) are involved in many cellular processes that positively and negatively regulate cell fate. H(2)O(2), acting as an intracellular messenger, activates phosphatidylinositol-3 kinase (PI3K) and its downstream target Akt, and promotes cell survival. The aim of the current study was to understand the mechanism by which PI3K/Akt signaling promotes survival in SH-SY5Y neuroblastoma cells. We demonstrate that PI3K/Akt mediates phosphorylation of the pro-apoptotic Bcl-2 family member Bax. This phosphorylation suppresses apoptosis and promotes cell survival. Increased survival in the presence of H(2)O(2) was blocked by LY294002, an inhibitor of PI3K activation. LY294002 prevented Bax phosphorylation and resulted in Bax translocation to the mitochondria, cytochrome c release, caspase-3 activation, and cell death. Collectively, these findings reveal a mechanism by which H(2)O(2)-induced activation of PI3K/Akt influences post-translational modification of Bax and inactivates a key component of the cell death machinery.

  11. Hydrogen peroxide stimulates cell motile activity through LPA receptor-3 in liver epithelial WB-F344 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shibata, Ayano; Tanabe, Eriko; Inoue, Serina

    2013-04-12

    Highlights: •Hydrogen peroxide stimulates cell motility of WB-F344 cells. •LPA{sub 3} is induced by hydrogen peroxide in WB-F344 cells. •Cell motility by hydrogen peroxide is inhibited in LPA{sub 3} knockdown cells. •LPA signaling is involved in cell migration by hydrogen peroxide. -- Abstract: Hydrogen peroxide which is one of reactive oxygen species (ROS) mediates a variety of biological responses, including cell proliferation and migration. In the present study, we investigated whether lysophosphatidic acid (LPA) signaling is involved in cell motile activity stimulated by hydrogen peroxide. The rat liver epithelial WB-F344 cells were treated with hydrogen peroxide at 0.1 or 1more » μM for 48 h. In cell motility assays, hydrogen peroxide treated cells showed significantly high cell motile activity, compared with untreated cells. To measure the expression levels of LPA receptor genes, quantitative real time RT-PCR analysis was performed. The expressions of LPA receptor-3 (Lpar3) in hydrogen peroxide treated cells were significantly higher than those in control cells, but not Lpar1 and Lpar2 genes. Next, to assess the effect of LPA{sub 3} on cell motile activity, the Lpar3 knockdown cells from WB-F344 cells were also treated with hydrogen peroxide. The cell motile activity of the knockdown cells was not stimulated by hydrogen peroxide. Moreover, in liver cancer cells, hydrogen peroxide significantly activated cell motility of Lpar3-expressing cells, but not Lpar3-unexpressing cells. These results suggest that LPA signaling via LPA{sub 3} may be mainly involved in cell motile activity of WB-F344 cells stimulated by hydrogen peroxide.« less

  12. Involvement of Activated Oxygen in Nitrate-Induced Senescence of Pea Root Nodules.

    PubMed Central

    Escuredo, P. R.; Minchin, F. R.; Gogorcena, Y.; Iturbe-Ormaetxe, I.; Klucas, R. V.; Becana, M.

    1996-01-01

    The effect of short-term nitrate application (10 mM, 0-4 d) on nitrogenase (N2ase) activity, antioxidant defenses, and related parameters was investigated in pea (Pisum sativum L. cv Frilene) nodules. The response of nodules to nitrate comprised two stages. In the first stage (0-2 d), there were major decreases in N2ase activity and N2ase-linked respiration and concomitant increases in carbon cost of N2ase and oxygen diffusion resistance of nodules. There was no apparent oxidative damage, and the decline in N2ase activity was, to a certain extent, reversible. The second stage (>2 d) was typical of a senescent, essentially irreversible process. It was characterized by moderate increases in oxidized proteins and catalytic Fe and by major decreases in antioxidant enzymes and metabolites. The restriction in oxygen supply to bacteroids may explain the initial decline in N2ase activity. The decrease in antioxidant protection is not involved in this process and is not specifically caused by nitrate, since it also occurs with drought stress. However, comparison of nitrate- and drought-induced senescence shows an important difference: there is no lipid degradation or lipid peroxide accumulation with nitrate, indicating that lipid peroxidation is not necessarily involved in nodule senescence. PMID:12226252

  13. Progress toward hydrogen peroxide micropulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitehead, J C; Dittman, M D; Ledebuhr, A G

    1999-07-08

    A new self-pressurizing propulsion system has liquid thrusters and gas jet attitude control without heavy gas storage vessels. A pump boosts the pressure of a small fraction of the hydrogen peroxide, so that reacted propellant can controllably pressurize its own source tank. The warm decomposition gas also powers the pump and is supplied to the attitude control jets. The system has been incorporated into a prototype microsatellite for terrestrial maneuvering tests. Additional progress includes preliminary testing of a bipropellant thruster, and storage of unstabilized hydrogen peroxide in small sealed tanks.

  14. Molecular Association and Structure of Hydrogen Peroxide.

    ERIC Educational Resources Information Center

    Giguere, Paul A.

    1983-01-01

    The statement is sometimes made in textbooks that liquid hydrogen peroxide is more strongly associated than water, evidenced by its higher boiling point and greater heat of vaporization. Discusses these and an additional factor (the nearly double molecular mass of the peroxide), focusing on hydrogen bonds and structure of the molecule. (JN)

  15. Drinking hydrogen water ameliorated cognitive impairment in senescence-accelerated mice.

    PubMed

    Gu, Yeunhwa; Huang, Chien-Sheng; Inoue, Tota; Yamashita, Takenori; Ishida, Torao; Kang, Ki-Mun; Nakao, Atsunori

    2010-05-01

    Hydrogen has been reported to have neuron protective effects due to its antioxidant properties, but the effects of hydrogen on cognitive impairment due to senescence-related brain alterations and the underlying mechanisms have not been characterized. In this study, we investigated the efficacies of drinking hydrogen water for prevention of spatial memory decline and age-related brain alterations using senescence-accelerated prone mouse 8 (SAMP8), which exhibits early aging syndromes including declining learning ability and memory. However, treatment with hydrogen water for 30 days prevented age-related declines in cognitive ability seen in SAMP8 as assessed by a water maze test and was associated with increased brain serotonin levels and elevated serum antioxidant activity. In addition, drinking hydrogen water for 18 weeks inhibited neurodegeneration in hippocampus, while marked loss of neurons was noted in control, aged brains of mice receiving regular water. On the basis of our results, hydrogen water merits further investigation for possible therapeutic/preventative use for age-related cognitive disorders.

  16. Catalyst Development for Hydrogen Peroxide Rocket Engines

    NASA Technical Reports Server (NTRS)

    Morlan, P. W.; Wu, P.-K.; Ruttle, D. W.; Fuller, R. P.; Nejad, A. S.; Anderson, W. E.

    1999-01-01

    The development of various catalysts of hydrogen peroxide was conducted for the applications of liquid rocket engines. The catalyst development includes silver screen technology, solid catalyst technology, and homogeneous catalyst technology. The silver screen technology development was performed with 85% (by weight) hydrogen peroxide. The results of this investigation were used as the basis for the catalyst design of a pressure-fed liquid-fueled upper stage engine. Both silver-plated nickel 200 screens and pure silver screens were used as the active metal catalyst during the investigation, The data indicate that a high decomposition efficiency (greater than 90%) of 85% hydrogen peroxide can be achieved at a bed loading of 0.5 lbm/sq in/sec with both pure silver and silver plated screens. Samarium oxide coating, however, was found to retard the decomposition process and the catalyst bed was flooded at lower bed loading. A throughput of 200 lbm of hydrogen peroxide (1000 second run time) was tested to evaluate the catalyst aging issue and performance degradation was observed starting at approximately 400 seconds. Catalyst beds of 3.5 inch in diameter was fabricated using the same configuration for a 1,000-lbf rocket engine. High decomposition efficiency was obtained with a low pressure drop across the bed. Solid catalyst using precious metal was also developed for the decomposition of hydrogen peroxide from 85% to 98% by weight. Preliminary results show that the catalyst has a strong reactivity even after 15 minutes of peroxide decomposition. The development effort also includes the homogeneous catalyst technology. Various non-toxic catalysts were evaluated with 98% peroxide and hydrocarbon fuels. The results of open cup drop tests indicate an ignition delay around 11 ms.

  17. Irradiation induces glioblastoma cell senescence and senescence-associated secretory phenotype.

    PubMed

    Jeon, Hee-Young; Kim, Jun-Kyum; Ham, Seok Won; Oh, Se-Yeong; Kim, Jaebong; Park, Jae-Bong; Lee, Jae-Yong; Kim, Sung-Chan; Kim, Hyunggee

    2016-05-01

    Glioblastoma multiforme (GBM) is one of the most aggressive and fatal primary brain tumors in humans. The standard therapy for the treatment of GBM is surgical resection, followed by radiotherapy and/or chemotherapy. However, the frequency of tumor recurrence in GBM patients is very high, and the survival rate remains poor. Delineating the mechanisms of GBM recurrence is essential for therapeutic advances. Here, we demonstrate that irradiation rendered 17-20 % of GBM cells dead, but resulted in 60-80 % of GBM cells growth-arrested with increases in senescence markers, such as senescence-associated beta-galactosidase-positive cells, H3K9me3-positive cells, and p53-p21(CIP1)-positive cells. Moreover, irradiation induced expression of senescence-associated secretory phenotype (SASP) mRNAs and NFκB transcriptional activity in GBM cells. Strikingly, compared to injection of non-irradiated GBM cells into immune-deficient mice, the co-injection of irradiated and non-irradiated GBM cells resulted in faster growth of tumors with the histological features of human GBM. Taken together, our findings suggest that the increases in senescent cells and SASP in GBM cells after irradiation is likely one of main reasons for tumor recurrence in post-radiotherapy GBM patients.

  18. Hazard Assessment of Personal Protective Clothing for Hydrogen Peroxide Service

    NASA Technical Reports Server (NTRS)

    Greene, Ben; McClure, Mark B.; Johnson, Harry T.

    2004-01-01

    Selection of personal protective equipment (PPE) for hydrogen peroxide service is an important part of the hazard assessment process. But because drip testing of chemical protective clothing for hydrogen peroxide service has not been reported for about 40 years, it is of great interest to test new protective clothing materials with new, high-concentration hydrogen peroxide following similar procedures. The suitability of PPE for hydrogen peroxide service is in part determined by observations made when hydrogen peroxide is dripped onto swatches of protective clothing material. Protective clothing material was tested as received, in soiled condition, and in grossly soiled condition. Materials were soiled by pretreating the material with potassium permanganate (KMnO4) solution then drying to promote a reaction. Materials were grossly soiled with solid KMnO4 to greatly promote reaction. Observations of results including visual changes to the hydrogen peroxide and materials, times to ignition, and self-extinguishing characteristics of the materials are reported.

  19. 21 CFR 172.167 - Silver nitrate and hydrogen peroxide solution.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Silver nitrate and hydrogen peroxide solution. 172... FOOD FOR HUMAN CONSUMPTION Food Preservatives § 172.167 Silver nitrate and hydrogen peroxide solution. An aqueous solution containing a mixture of silver nitrate and hydrogen peroxide may be safely used...

  20. 21 CFR 172.167 - Silver nitrate and hydrogen peroxide solution.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Silver nitrate and hydrogen peroxide solution. 172... FOOD FOR HUMAN CONSUMPTION Food Preservatives § 172.167 Silver nitrate and hydrogen peroxide solution. An aqueous solution containing a mixture of silver nitrate and hydrogen peroxide may be safely used...

  1. 21 CFR 172.167 - Silver nitrate and hydrogen peroxide solution.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Silver nitrate and hydrogen peroxide solution. 172... Preservatives § 172.167 Silver nitrate and hydrogen peroxide solution. An aqueous solution containing a mixture of silver nitrate and hydrogen peroxide may be safely used in accordance with the following...

  2. 21 CFR 172.167 - Silver nitrate and hydrogen peroxide solution.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Silver nitrate and hydrogen peroxide solution. 172... FOOD FOR HUMAN CONSUMPTION Food Preservatives § 172.167 Silver nitrate and hydrogen peroxide solution. An aqueous solution containing a mixture of silver nitrate and hydrogen peroxide may be safely used...

  3. Boronate-Based Fluorescent Probes: Imaging Hydrogen Peroxide in Living Systems

    PubMed Central

    Lin, Vivian S.; Dickinson, Bryan C.; Chang, Christopher J.

    2014-01-01

    Hydrogen peroxide, a reactive oxygen species with unique chemical properties, is produced endogenously in living systems as a destructive oxidant to ward off pathogens or as a finely tuned second messenger in dynamic cellular signaling pathways. In order to understand the complex roles that hydrogen peroxide can play in biological systems, new tools to monitor hydrogen peroxide in its native settings, with high selectivity and sensitivity, are needed. Knowledge of organic synthetic reactivity provides the foundation for the molecular design of selective, functional hydrogen peroxide probes. A palette of fluorescent and luminescent probes that react chemoselectively with hydrogen peroxide has been developed, utilizing a boronate oxidation trigger. These indicators offer a variety of colors and in cellulo characteristics and have been used to examine hydrogen peroxide in a number of experimental setups, including in vitro fluorometry, confocal fluorescence microscopy, and flow cytometry. In this chapter, we provide an overview of the chemical features of these probes and information on their behavior to help researchers select the optimal probe and application. PMID:23791092

  4. Use of Hydrogen Peroxide to Disinfect Hydroponic Plant Growth Systems

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Henderson, Keith

    2000-01-01

    Hydrogen peroxide was studied as an alternative to conventional bleach and rinsing methods to disinfect hydroponic plant growth systems. A concentration of 0.5% hydrogen peroxide was found to be effective. Residual hydrogen peroxide can be removed from the system by repeated rinsing or by flowing the solution through a platinum on aluminum catalyst. Microbial populations were reduced to near zero immediately after treatment but returned to pre-disinfection levels 2 days after treatment. Treating nutrient solution with hydrogen peroxide and planting directly into trays being watered with the nutrient solution without replenishment, was found to be detrimental to lettuce germination and growth.

  5. Effects of Hydrogen Peroxide on Common Aviation Textiles

    DTIC Science & Technology

    2009-08-01

    efficacious (complete kill of 106 CFU of the spore forming Geobacillus stearothermophilus ) in a narrow-body aircraft fuselage (3), as well as wide-body...disinfectant/ sterilant for transportation vehicles like aircraft, buses, subway trains, ambulances, etc. Although the biological efficacy of STERIS...hydrogen peroxide (VHP)1 technology is of particular interest due to rapid sterilization , easy usage, intrinsic environmental friendliness (i .e

  6. Hydrogen Peroxide - Material Compatibility Studied by Microcalorimetry

    NASA Technical Reports Server (NTRS)

    Homung, Steven D.; Davis, Dennis D.; Baker, David; Popp, Christopher G.

    2003-01-01

    Environmental and toxicity concerns with current hypergolic propellants have led to a renewed interest in propellant grade hydrogen peroxide (HP) for propellant applications. Storability and stability has always been an issue with HP. Contamination or contact of HP with metallic surfaces may cause decomposition, which can result in the evolution of heat and gas leading to increased pressure or thermal hazards. The NASA Johnson Space Center White Sands Test Facility has developed a technique to monitor the decompositions of hydrogen peroxide at temperatures ranging from 25 to 60 C. Using isothermal microcalorimetry we have measured decomposition rates at the picomole/s/g level showing the catalytic effects of materials of construction. In this paper we will present the results of testing with Class 1 and 2 materials in 90 percent hydrogen peroxide.

  7. Procyanidins protect Fao cells against hydrogen peroxide-induced oxidative stress.

    PubMed

    Roig, Roser; Cascón, Esther; Arola, Lluis; Bladé, Cinta; Salvadó, M Josepa

    2002-08-15

    In this paper, we evaluate the extent to which flavonoids in red wine (catechin, epicatechin, quercetin and procyanidins) protect against hydrogen peroxide-induced oxidative stress in Fao cells. When cells were exposed to H(2)O(2), malondialdehyde (MDA) levels, oxidized glutathione (GSSG) levels and lactate dehydrogenase (LDH) release increased, indicating membrane damage and oxidative stress. All the flavonoids studied, and in particular epicatechin and quercetin, protected the plasma membrane. Only procyanidins lowered MDA levels and LDH leakage, maintained a higher reduced/oxidized glutathione ratio, and increased catalase/superoxide dismutase and glutathione peroxidase/superoxide dismutase ratios, and glutathione reductase and glutathione transferase activities. These results show that the procyanidin mixture has a greater antioxidant effect than the individual flavonoids studied, probably due to its oligomer content and/or the additive/synergistic effect of its compounds. This suggests that the mixture of flavonoids found in wine has a greater effect than individual phenols, which may explain many of the healthy effects attributed to wine.

  8. SK-N-MC cell death occurs by distinct molecular mechanisms in response to hydrogen peroxide and superoxide anions: involvements of JAK2-STAT3, JNK, and p38 MAP kinases pathways.

    PubMed

    Moslehi, Maryam; Yazdanparast, Razieh

    2013-07-01

    Oxidative stress plays a vital role in the pathogenesis of neurodegenerative diseases. Nerve cells are incessantly exposed to environmental stresses leading to overproduction of some harmful species like reactive oxygen species (ROS). ROS including hydrogen peroxide and superoxide anion are potent inducers of various signaling pathways encompassing MAPKs and JAK-STAT pathways. In the current study, we scrutinized the effects of hydrogen peroxide and/or menadione (superoxide anion generator) on JNK/p38-MAPKs and JAK2-STAT3 pathways to elucidate the mechanism(s) by which each oxidant modulated the above-mentioned pathways leading to SK-N-MC cell death. Our results delineated that hydrogen peroxide and superoxide anion radical induced distinct responses as we showed that STAT3 and p38 were activated in response to hydrogen peroxide, but not superoxide anion radicals indicating the specificity in ROS-induced signaling pathways activations and behaviors. We also observed that menadione induced JNK-dependent p53 expression and apoptotic death in SK-N-MC cells while H2O2-induced JNK activation was p53 independent. Thus, we declare that ROS type has a key role in selective instigation of JNK/p38-MAPKs and JAK2-STAT3 pathways in SK-N-MC cells. Identifying these differential behaviors and mechanisms of hydrogen peroxide and superoxide anion functions illuminates the possible therapeutic targets in the prevention or treatment of ROS-induced neurodegenerative diseases such as Alzheimer's disease.

  9. Evaluating different concentrations of hydrogen peroxide in an automated room disinfection system.

    PubMed

    Murdoch, L E; Bailey, L; Banham, E; Watson, F; Adams, N M T; Chewins, J

    2016-09-01

    A comparative study was made on the efficacy of 5, 10 and 35% weight by weight (w/w) hydrogen peroxide solutions when applied using an automated room disinfection system. Six-log biological indicators of methicillin-resistant Staphylococcus aureus (MRSA) and Geobacillus stearothermophilus were produced on stainless steel coupons and placed within a large, sealed, environmentally controlled enclosure. Five percent hydrogen peroxide was distributed throughout the enclosure using a Bioquell hydrogen peroxide vapour generator (BQ-50) for 40 min and left to reside for a further 200 min. Biological indicators were removed at 10-min intervals throughout the first 120 min of the process. The experiment was repeated for 10 and 35% hydrogen peroxide solutions. Five percent and 10% hydrogen peroxide solutions failed to achieve any reduction of MRSA, but achieved full kill of G. stearothermophilus spores at 70 and 40 min respectively. Thirty-five percent hydrogen peroxide achieved a 6-log reduction of MRSA after 30 min and full kill of G. stearothermophilus at 20 min. The concentration of 5% hydrogen peroxide within the enclosure after the 200-min dwell was measured at 9·0 ppm. This level exceeds the 15-min Short Term Exposure Limit (STEL) for hydrogen peroxide of 2·0 ppm. Users of automated hydrogen peroxide disinfection systems should review system efficacy and room re-entry protocols in light of these results. This research allows hospital infection control teams to consider the impact and risks of using low concentrations of hydrogen peroxide for disinfection within their facilities, and to question automated room disinfection system providers on the efficacy claims they make. The evidence that low concentration hydrogen peroxide solutions do not rapidly, autonomously break down, is in contradiction to the claims made by some hydrogen peroxide equipment providers and raises serious health and safety concerns. Facilities using hydrogen peroxide systems that

  10. Demonstration of the Catalytic Decomposition of Hydrogen Peroxide.

    ERIC Educational Resources Information Center

    Conklin, Alfred R. Jr.; Kessinger, Angela

    1996-01-01

    Describes a demonstration known as Elephant's Toothpaste in which the decomposition of hydrogen peroxide is catalyzed by iodide. Oxygen is released and soap bubbles are produced. The foam produced is measured, and results show a good relationship between the amount of foam and the concentration of the hydrogen peroxide. (DDR)

  11. 2, 3, 7, 8-Tetrachlorodibenzo-P-dioxin (TCDD) induces premature senescence in human and rodent neuronal cells via ROS-dependent mechanisms.

    PubMed

    Wan, Chunhua; Liu, Jiao; Nie, Xiaoke; Zhao, Jianya; Zhou, Songlin; Duan, Zhiqing; Tang, Cuiying; Liang, Lingwei; Xu, Guangfei

    2014-01-01

    The widespread environmental pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a potent toxicant that causes significant neurotoxicity. However, the biological events that participate in this process remain largely elusive. In the present study, we demonstrated that TCDD exposure triggered apparent premature senescence in rat pheochromocytoma (PC12) and human neuroblastoma SH-SY5Y cells. Senescence-associated β-galactosidase (SA-β-Gal) assay revealed that TCDD induced senescence in PC12 neuronal cells at doses as low as 10 nM. TCDD led to F-actin reorganization and the appearance of an alternative senescence marker, γ-H2AX foci, both of which are important features of cellular senescence. In addition, TCDD exposure altered the expression of senescence marker proteins, such as p16, p21 and p-Rb, in both dose- and time-dependent manners. Furthermore, we demonstrated that TCDD promotes mitochondrial dysfunction and the accumulation of cellular reactive oxygen species (ROS) in PC12 cells, leading to the activation of signaling pathways that are involved in ROS metabolism and senescence. TCDD-induced ROS generation promoted significant oxidative DNA damage and lipid peroxidation. Notably, treatment with the ROS scavenger N-acetylcysteine (NAC) markedly attenuated TCDD-induced ROS production, cellular oxidative damage and neuronal senescence. Moreover, we found that TCDD induced a similar ROS-mediated senescence response in human neuroblastoma SH-SY5Y cells. In sum, these results demonstrate for the first time that TCDD induces premature senescence in neuronal cells by promoting intracellular ROS production, supporting the idea that accelerating the onset of neuronal senescence may be an important mechanism underlying TCDD-induced neurotoxic effects.

  12. Improved Electrolytic Hydrogen Peroxide Generator

    NASA Technical Reports Server (NTRS)

    James, Patrick I.

    2005-01-01

    An improved apparatus for the electrolytic generation of hydrogen peroxide dissolved in water has been developed. The apparatus is a prototype of H2O2 generators for the safe and effective sterilization of water, sterilization of equipment in contact with water, and other applications in which there is need for hydrogen peroxide at low concentration as an oxidant. Potential applications for electrolytic H2O2 generators include purification of water for drinking and for use in industrial processes, sanitation for hospitals and biotechnological industries, inhibition and removal of biofouling in heat exchangers, cooling towers, filtration units, and the treatment of wastewater by use of advanced oxidation processes that are promoted by H2O2.

  13. Selective detection of vapor phase hydrogen peroxide with phthalocyanine chemiresistors.

    PubMed

    Bohrer, Forest I; Colesniuc, Corneliu N; Park, Jeongwon; Schuller, Ivan K; Kummel, Andrew C; Trogler, William C

    2008-03-26

    The use of hydrogen peroxide as a precursor to improvised explosives has made its detection a topic of critical importance. Chemiresistor arrays comprised of 50 nm thick films of metallophthalocyanines (MPcs) are redox selective vapor sensors of hydrogen peroxide. Hydrogen peroxide is shown to decrease currents in cobalt phthalocyanine sensors while it increases currents in nickel, copper, and metal-free phthalocyanine sensors; oxidation and reduction of hydrogen peroxide via catalysis at the phthalocyanine surface are consistent with the pattern of sensor responses. This represents the first example of MPc vapor sensors being oxidized and reduced by the same analyte by varying the metal center. Consequently, differential analysis by redox contrast with catalytic amplification using a small array of sensors may be used to uniquely identify peroxide vapors. Metallophthalocyanine chemiresistors represent an improvement over existing peroxide vapor detection technologies in durability and selectivity in a greatly decreased package size.

  14. Hydrogen peroxide generated by xanthine/xanthine oxidase system represses the proliferation of colorectal cancer cell line Caco-2.

    PubMed

    Sakuma, Satoru; Abe, Muneyuki; Kohda, Tetsuya; Fujimoto, Yohko

    2015-01-01

    The twin character of reactive oxygen species is substantiated by a growing body of evidence that reactive oxygen species within cells act as inducers and accelerators of the oncogenic phenotype of cancer cells, while reactive oxygen species can also induce cancer cell death and can therefore function as anti-tumorigenic species. The aim of this study was to assess a possible influence of xanthine/xanthine oxidase on the proliferation of colorectal cancer cell line Caco-2. xanthine/xanthine oxidase (2.5 µM/0.25 mU/ml-25 µM/2.5 mU/ml) dose-dependently inhibited the proliferation of Caco-2 cells. Experiments utilizing reactive oxygen species scavengers (superoxide dismutase, catalase and mannitol) and exogenous hydrogen peroxide revealed a major role of hydrogen peroxide in the xanthine/xanthine oxidase effect. Investigations utilizing annexin V-fluorescein/PI assay using flow cytometry, and the lactate dehydrogenase extracellular release assay indicated that hydrogen peroxide induced necrosis, but not apoptosis, in Caco-2 cells. These results suggest that hydrogen peroxide generated by xanthine/xanthine oxidase has the potential to suppress colorectal cancer cell proliferation.

  15. Comparison of hydrogen peroxide and peracetic acid as isolator sterilization agents in a hospital pharmacy.

    PubMed

    Bounoure, Frederic; Fiquet, Herve; Arnaud, Philippe

    2006-03-01

    The efficacy of hydrogen peroxide and peracetic acid as isolator sterilization agents was compared. Sterilization and efficacy tests were conducted in a flexible 0.8-m3 transfer isolator using a standard load of glass bottles and sterile medical devices in their packing paper. Bacillus stearothermophilus spores were placed in six critical locations of the isolator and incubated at 55 degrees C in a culture medium for 14 days. Sterilization by 4.25 mL/m3 of 33% vapor-phase hydrogen peroxide and 12.5 mL/m3 of 3.5% peracetic acid was tested in triplicate. Sterility was validated for hydrogen peroxide and peracetic acid at 60, 90, 120, and 180 minutes and at 90, 120, 150, 180, 210, and 240 minutes, respectively. In an efficacy test conducted with an empty isolator, the sterilization time required to destroy B. stearothermophilus spores was 90 minutes for both sterilants, indicating that they have comparable bactericidal properties. During the validation test with a standard load, the sterilization time using hydrogen peroxide was 150 minutes versus 120 minutes with peracetic acid. The glove cuff was particularly difficult for hydrogen peroxide to sterilize, likely due to its slower diffusion time than that of peracetic acid. Hydrogen peroxide is an environmentally safer agent than peracetic acid; however, its bacteriostatic properties, lack of odor, and poor diffusion time may limit its use in sterilizing some materials. Hydrogen peroxide is a useful alternative to peracetic acid for isolator sterilization in a hospital pharmacy or parenteral nutrition preparation unit.

  16. Enhanced endothelial cell senescence by lithium-induced matrix metalloproteinase-1 expression.

    PubMed

    Struewing, Ian T; Durham, Samuel N; Barnett, Corey D; Mao, Catherine D

    2009-06-26

    Endothelial cell (EC) senescence and dysfunction occurring after chronic injury and inflammation are highly associated with the development and progression of cardiovascular diseases. However, the factors involved in the establishment of EC senescence remain poorly understood. We have previously shown that lithium, an inhibitor of glycogen synthase kinase (GSK)-3beta and activator of the Wnt/beta-catenin signaling pathway, induces an EC senescent-like phenotype. Herein, we show that lithium induces a rapid and pronounced up-regulation of the matrix metalloproteinase (MMP)-1, an inflammation and senescent cell marker, at the mRNA and protein levels, whereas the induction of two other senescent cell markers is either weak (interleukin-8) or delayed (plasminogen activator inhibitor-1). Lithium effect on MMP-1 expression is also specific among other MMPs and not mediated by GSK3beta inhibition. Lithium affects MMP-1 expression mainly at the transcriptional level but neither the AP1/Ets regulatory sites nor the redox sensitive (-1607/2G) site in MMP-1 promoter are involved in lithium-dependent MMP-1 regulation. However, down-regulation of p53, a target of lithium in EC, dampens both basal and lithium-induced MMP-1 expression, which further links MMP-1 up-regulation with the establishment of cell senescence. Although increased MMP-1 levels are usually associated with angiogenesis in enabled proliferative EC, the exogenous addition of activated MMP-1 on lithium- arrested EC increases the number of EC positive for the senescent-associated-beta-galactosidase marker. Conversely, down-regulation of MMP-1 expression by small interfering RNAs blunts the lithium-dependent increase in senescent-associated-beta-galactosidase positive cells. Altogether our data indicate that lithium-induced MMP-1 may participate in the reinforcement of EC senescence and reveal a novel mechanism for lithium-induced tissue remodeling.

  17. Protection of Bovine Mammary Epithelial Cells from Hydrogen Peroxide-Induced Oxidative Cell Damage by Resveratrol.

    PubMed

    Jin, Xiaolu; Wang, Kai; Liu, Hongyun; Hu, Fuliang; Zhao, Fengqi; Liu, Jianxin

    2016-01-01

    The mammary epithelial cells (MECs) of high-producing dairy cows are likely to be subject to oxidative stress (OS) due to the intensive cell metabolism. The objectives of this study were to investigate the cytoprotective effects of resveratrol against hydrogen peroxide- (H2O2-) induced OS in cultured bovine MECs (MAC-T). Pretreatment of MAC-T cells with resveratrol could rescue the decrease in cell viability and resulted in lower intracellular reactive oxygen species (ROS) accumulation after H2O2 exposure. Resveratrol helped MAC-T cells to prevent H2O2-induced endoplasmic reticulum stress and mitochondria-related cell apoptosis. Moreover, resveratrol induced mRNA expression of multiple antioxidant defense genes in MAC-T cells under normal/oxidative conditions. Nuclear factor erythroid 2-related factor 2 (Nrf2) was required for the cytoprotective effects on MAC-T cells by resveratrol, as knockdown of Nrf2 significantly abolished resveratrol-induced cytoprotective effects against OS. In addition, by using selective inhibitors, we further confirmed that the induction of Nrf2 by resveratrol was mediated through the prolonged activation of PI3K/Akt and ERK/MAPK pathways but negatively regulated by p38/MAPK pathway. Overall, resveratrol has beneficial effects on bovine MECs redox balance and may be potentially used as a therapeutic medicine against oxidative insult in lactating animals.

  18. Simultaneous determination of superoxide and hydrogen peroxide in macrophage RAW 264.7 cell extracts by microchip electrophoresis with laser-induced fluorescence detection.

    PubMed

    Li, Hongmin; Li, Qingling; Wang, Xu; Xu, Kehua; Chen, Zhenzhen; Gong, Xiaocong; Liu, Xin; Tong, Lili; Tang, Bo

    2009-03-15

    A method for the first time to simultaneously determine superoxide and hydrogen peroxide in macrophage RAW 264.7 cell extracts by microchip electrophoresis with laser-induced fluorescence detection (MCE-LIF) was developed. 2-Chloro-1,3-dibenzothiazolinecyclohexene (DBZTC) and bis(p-methylbenzenesulfonyl) dichlorofluorescein (FS), two probes that can be specifically derivatized by superoxide and hydrogen peroxide, respectively, were synthesized and used. Parameters influencing the derivatization and on-chip separation were optimized. With the use of a HEPES (20 mM, pH 7.4) running buffer, a 50 mm long separation channel, and a separation voltage of 1800 V, baseline separation was achieved within 48 s for the two derivatization products, DBZTC-oxide (DBO) and 2,7-dichlorofluorescein (DCF). The linearity ranges of the method were 0.08-5.0 and 0.02-5.0 microM with detection limits (signal-to-noise ratio = 3) of 10 nM (1.36 amol) and 5.6 nM (0.76 amol) for superoxide and hydrogen peroxide, respectively. The relative standard deviations (RSDs) of migration time and peak area were less than 2.0% and 5.0%, respectively. The recoveries of the cell extract samples spiked with 1.0 microM standard solutions were 96.1% and 93.0% for superoxide and hydrogen peroxide, respectively. With the use of this method, superoxide and hydrogen peroxide in phorbol myristate acetate (PMA)-stimulated macrophage RAW 264.7 cell extracts were found to be 0.78 and 1.14 microM, respectively. The method has paved a way for simultaneously determining two or more reactive oxygen species (ROS) in a biological system with high resolution.

  19. A Modified Demonstration of the Catalytic Decomposition of Hydrogen Peroxide

    NASA Astrophysics Data System (ADS)

    Trujillo, Carlos Alexander

    2005-06-01

    A safer and cheaper version of the popular catalyzed decomposition of hydrogen peroxide demonstration commonly called the “Elephants’ Toothpaste” is presented. Hydrogen peroxide is decomposed in the presence of a surfactant by the enzyme catalase producing foam. Catalase has a higher activity compared with the traditional iodide and permits the use of diluted hydrogen peroxide solutions. The demonstration can be made with household products with similar amazing effects.

  20. Hydrogen peroxide-assisted synthesis of novel three-dimensional octagonal-like CuO nanostructures with enhanced visible-light-driven photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Chen, Xiangyu; Chu, Deqing; Wang, Limin; Hu, Wenhui; Yang, Huifang; Sun, Jingjing; Zhu, Shaopeng; Wang, Guowei; Tao, Jian; Zhang, Songsong

    2018-04-01

    Novel three-dimensional octagonal-like CuO micro-/nanostructures with diameters ranging from 10 to 15 μm have been successfully prepared by hydrogen peroxide-assisted hydrothermal method and subsequent calcination. The product morphology can be changed by simply ordering the amount of hydrogen peroxide (H2O2). When the amounts of H2O2 is increased, the length of the corner portion is increased and the width is narrower. The obtained octagonal CuO nanostructures were evaluated for their ability for the degradation of hazardous organic contaminants in water under visible-light irradiation. Comparing with commercial CuO and other CuO products, the CuO octagonal nanostructures exhibit excellent performance for photocatalytic decomposition of RhB (Rhodamine B). It is well established that effective photocatalytic performance results from its unique 3D octagonal nanostructures. We believe that the present work will provide some ideas for further fabrication of other novel nanostructures and exploration of their applications.

  1. Different Modes of Hydrogen Peroxide Action During Seed Germination

    PubMed Central

    Wojtyla, Łukasz; Lechowska, Katarzyna; Kubala, Szymon; Garnczarska, Małgorzata

    2016-01-01

    Hydrogen peroxide was initially recognized as a toxic molecule that causes damage at different levels of cell organization and thus losses in cell viability. From the 1990s, the role of hydrogen peroxide as a signaling molecule in plants has also been discussed. The beneficial role of H2O2 as a central hub integrating signaling network in response to biotic and abiotic stress and during developmental processes is now well established. Seed germination is the most pivotal phase of the plant life cycle, affecting plant growth and productivity. The function of hydrogen peroxide in seed germination and seed aging has been illustrated in numerous studies; however, the exact role of this molecule remains unknown. This review evaluates evidence that shows that H2O2 functions as a signaling molecule in seed physiology in accordance with the known biology and biochemistry of H2O2. The importance of crosstalk between hydrogen peroxide and a number of signaling molecules, including plant phytohormones such as abscisic acid, gibberellins, and ethylene, and reactive molecules such as nitric oxide and hydrogen sulfide acting on cell communication and signaling during seed germination, is highlighted. The current study also focuses on the detrimental effects of H2O2 on seed biology, i.e., seed aging that leads to a loss of germination efficiency. The dual nature of hydrogen peroxide as a toxic molecule on one hand and as a signal molecule on the other is made possible through the precise spatial and temporal control of its production and degradation. Levels of hydrogen peroxide in germinating seeds and young seedlings can be modulated via pre-sowing seed priming/conditioning. This rather simple method is shown to be a valuable tool for improving seed quality and for enhancing seed stress tolerance during post-priming germination. In this review, we outline how seed priming/conditioning affects the integrative role of hydrogen peroxide in seed germination and aging. PMID:26870076

  2. 40 CFR 415.90 - Applicability; description of the hydrogen peroxide production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hydrogen peroxide production subcategory. 415.90 Section 415.90 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Hydrogen Peroxide Production Subcategory § 415.90 Applicability; description of the hydrogen peroxide production subcategory. The provisions of this subpart are applicable to discharges...

  3. 40 CFR 415.90 - Applicability; description of the hydrogen peroxide production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hydrogen peroxide production subcategory. 415.90 Section 415.90 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Hydrogen Peroxide Production Subcategory § 415.90 Applicability; description of the hydrogen peroxide production subcategory. The provisions of this subpart are applicable to discharges...

  4. 40 CFR 415.90 - Applicability; description of the hydrogen peroxide production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hydrogen peroxide production subcategory. 415.90 Section 415.90 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Hydrogen Peroxide Production Subcategory § 415.90 Applicability; description of the hydrogen peroxide production subcategory. The provisions of this subpart are applicable to discharges...

  5. 40 CFR 415.90 - Applicability; description of the hydrogen peroxide production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hydrogen peroxide production subcategory. 415.90 Section 415.90 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Hydrogen Peroxide Production Subcategory § 415.90 Applicability; description of the hydrogen peroxide production subcategory. The provisions of this subpart are applicable to discharges...

  6. 40 CFR 415.90 - Applicability; description of the hydrogen peroxide production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hydrogen peroxide production subcategory. 415.90 Section 415.90 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Hydrogen Peroxide Production Subcategory § 415.90 Applicability; description of the hydrogen peroxide production subcategory. The provisions of this subpart are applicable to discharges...

  7. Selective electrochemical generation of hydrogen peroxide from water oxidation

    DOE PAGES

    Viswanathan, Venkatasubramanian; Hansen, Heine A.; Norskov, Jens K.

    2015-10-08

    Water is a life-giving source, fundamental to human existence, yet over a billion people lack access to clean drinking water. The present techniques for water treatment such as piped, treated water rely on time and resource intensive centralized solutions. In this work, we propose a decentralized device concept that can utilize sunlight to split water into hydrogen and hydrogen peroxide. The hydrogen peroxide can oxidize organics while the hydrogen bubbles out. In enabling this device, we require an electrocatalyst that can oxidize water while suppressing the thermodynamically favored oxygen evolution and form hydrogen peroxide. Using density functional theory calculations, wemore » show that the free energy of adsorbed OH* can be used to determine selectivity trends between the 2e– water oxidation to H 2O 2 and the 4e– oxidation to O 2. We show that materials which bind oxygen intermediates sufficiently weakly, such as SnO 2, can activate hydrogen peroxide evolution. Furthermore, we present a rational design principle for the selectivity in electrochemical water oxidation and identify new material candidates that could perform H 2O 2 evolution selectively.« less

  8. Demonstration of the Catalytic Decomposition of Hydrogen Peroxide

    NASA Astrophysics Data System (ADS)

    Conklin, Alfred R., Jr.; Kessinger, Angela

    1996-09-01

    Catalytic decomposition is demonstrated by placing hydrogen peroxide solutions in a one liter graduated cylinder and adding soap, food coloring, and potassium iodide. Released oxygen is trapped by the soap producing bubbles. The volume of bubbles is proportional to the concentration of hydrogen peroxide. Chloride and bromide do not cause decomposition. Increased reactant temperature increases the volume of bubbles formed.

  9. A biosensor for hydrogen peroxide detection based on electronic properties of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Majidi, Roya

    2013-01-01

    Density functional theory has been used to study the effect of hydrogen peroxide on the electronic properties of single walled carbon nanotubes. The metallic and semiconducting carbon nanotubes have been considered in the presence of different number of hydrogen peroxide. The results indicate that hydrogen peroxide has no significant effect on the metallic nanotube and these nanotubes remain to be metallic. In contrast, the electronic properties of the semiconducting nanotubes are so sensitive to hydrogen peroxide. The energy band gap of these nanotubes is decreased by increasing the number of hydrogen peroxide. The electronic sensivity of the carbon nanotubes to hydrogen peroxide opens new insights into developing biosensors based on the single walled carbon nanotubes.

  10. From the Hayflick mosaic to the mosaics of ageing. Role of stress-induced premature senescence in human ageing.

    PubMed

    Toussaint, Olivier; Remacle, Jose; Dierick, Jean-François; Pascal, Thierry; Frippiat, Christophe; Zdanov, Stéphanie; Magalhaes, Joao Pedro; Royer, Véronique; Chainiaux, Florence

    2002-11-01

    The Hayflick limit-senescence of proliferative cell types-is a fundamental feature of proliferative cells in vitro. Various human proliferative cell types exposed in vitro to many types of subcytotoxic stresses undergo stress-induced premature senescence (SIPS) (also called stress-induced premature senescence-like phenotype, according to the definition of senescence). The known mechanisms of appearance the main features of SIPS are reviewed: senescent-like morphology, growth arrest, senescence-related changes in gene expression, telomere shortening. Long before telomere-shortening induces senescence, other factors such as culture conditions or lack of 'feeder cells' can trigger either SIPS or prolonged reversible G(0) phase of the cell cycle. In vivo, 'proliferative' cell types of aged individuals are likely to compose a mosaic made of cells irreversibly growth arrested or not. The higher level of stress to which these cells have been exposed throughout their life span, the higher proportion of the cells of this mosaic will be in SIPS rather than in telomere-shortening dependent senescence. All cell types undergoing SIPS in vivo, most notably the ones in stressful conditions, are likely to participate in the tissular changes observed along ageing. For instance, human diploid fibroblasts (HDFs) exposed in vivo and in vitro to pro-inflammatory cytokines display biomarkers of senescence and might participate in the degradation of the extracellular matrix observed in ageing.

  11. Hyperoside prevents oxidative damage induced by hydrogen peroxide in lung fibroblast cells via an antioxidant effect.

    PubMed

    Piao, Mei Jing; Kang, Kyoung Ah; Zhang, Rui; Ko, Dong Ok; Wang, Zhi Hong; You, Ho Jin; Kim, Hee Sun; Kim, Ju Sun; Kang, Sam Sik; Hyun, Jin Won

    2008-12-01

    We elucidated the cytoprotective effects of hyperoside (quercetin-3-O-galactoside) against hydrogen peroxide (H2O2)-induced cell damage. We found that hyperoside scavenged the intracellular reactive oxygen species (ROS) detected by fluorescence spectrometry, flow cytometry, and confocal microscopy. In addition, we found that hyperoside scavenged the hydroxyl radicals generated by the Fenton reaction (FeSO4)+H2O2) in a cell-free system, which was detected by electron spin resonance (ESR) spectrometry. Hyperoside was found to inhibit H2O2-induced apoptosis in Chinese hamster lung fibroblast (V79-4) cells, as shown by decreased apoptotic nuclear fragmentation, decreased sub-G(1) cell population, and decreased DNA fragmentation. In addition, hyperoside pretreatment inhibited the H2O2-induced activation of caspase-3 measured in terms of levels of cleaved caspase-3. Hyperoside prevented H2O2-induced lipid peroxidation as well as protein carbonyl. In addition, hyperoside prevented the H2O2-induced cellular DNA damage, which was established by comet tail, and phospho histone H2A.X expression. Furthermore, hyperoside increased the catalase and glutathione peroxidase activities. Conversely, the catalase inhibitor abolished the cytoprotective effect of hyperoside from H2O2-induced cell damage. In conclusion, hyperoside was shown to possess cytoprotective properties against oxidative stress by scavenging intracellular ROS and enhancing antioxidant enzyme activity.

  12. Electrochemical Visualization of Intracellular Hydrogen Peroxide at Single Cells.

    PubMed

    He, Ruiqin; Tang, Huifen; Jiang, Dechen; Chen, Hong-yuan

    2016-02-16

    In this Letter, the electrochemical visualization of hydrogen peroxide inside one cell was achieved first using a comprehensive Au-luminol-microelectrode and electrochemiluminescence. The capillary with a tip opening of 1-2 μm was filled with the mixture of chitosan and luminol, which was coated with the thin layers of polyvinyl chloride/nitrophenyloctyl ether (PVC/NPOE) and gold as the microelectrode. Upon contact with the aqueous hydrogen peroxide, hydrogen peroxide and luminol in contact with the gold layer were oxidized under the positive potential resulting in luminescence for the imaging. Due to the small diameter of the electrode, the microelectrode tip was inserted into one cell and the bright luminescence observed at the tip confirmed the visualization of intracellular hydrogen peroxide. The further coupling of oxidase on the electrode surface could open the field in the electrochemical imaging of intracellular biomolecules at single cells, which benefited the single cell electrochemical detection.

  13. Hydrogen peroxide inhibits iodide uptake and iodine organification in cultured porcine thyroid follicles.

    PubMed

    Fukayama, H; Murakami, S; Nasu, M; Sugawara, M

    1991-01-01

    We investigated the effect of hydrogen peroxide on the process of thyroid hormone formation in a physiologic culture system of porcine thyroid follicles that we recently established. Porcine thyroid follicles cultured in medium containing 1 mU/mL TSH were exposed to 0 to 500 microM hydrogen peroxide in the presence of 0.1 microCi carrier-free Na125 and sodium iodide for 2 h. Iodide uptake and iodine organification were measured in this incubation system. The kinetics of iodide uptake were used to explain the action of hydrogen peroxide. In addition, cAMP content and Na+,K(+)-ATPase activity (an enzyme necessary for iodide uptake) were measured to investigate the mechanism of hydrogen peroxide action. Hydrogen peroxide at concentrations of 100, 200, and 500 microM inhibited iodide uptake in a dose-dependent manner. Iodide organification was inhibited only when the concentration of hydrogen peroxide was greater than 200 microM. The kinetics of iodide uptake indicated that hydrogen peroxide was a noncompetitive inhibitor with iodide. Inhibition of iodide uptake and iodine organification by hydrogen peroxide were not mediated by alteration of cAMP content of Na+,K(+)-ATPase activity, since exposure to even 500 microM hydrogen peroxide did not change these parameters in the follicle when compared with those of control samples. Our results suggest that the iodide transport system in the thyroid follicle is inhibited at 200 microM hydrogen peroxide or greater.

  14. Hydrogen peroxide production is affected by oxygen levels in mammalian cell culture.

    PubMed

    Maddalena, Lucas A; Selim, Shehab M; Fonseca, Joao; Messner, Holt; McGowan, Shannon; Stuart, Jeffrey A

    2017-11-04

    Although oxygen levels in the extracellular space of most mammalian tissues are just a few percent, under standard cell culture conditions they are not regulated and are often substantially higher. Some cellular sources of reactive oxygen species, like NADPH oxidase 4, are sensitive to oxygen levels in the range between 'normal' physiological (typically 1-5%) and standard cell culture (up to 18%). Hydrogen peroxide in particular participates in signal transduction pathways via protein redox modifications, so the potential increase in its production under standard cell culture conditions is important to understand. We measured the rates of cellular hydrogen peroxide production in some common cell lines, including C2C12, PC-3, HeLa, SH-SY5Y, MCF-7, and mouse embryonic fibroblasts (MEFs) maintained at 18% or 5% oxygen. In all instances the rate of hydrogen peroxide production by these cells was significantly greater at 18% oxygen than at 5%. The increase in hydrogen peroxide production at higher oxygen levels was either abolished or substantially reduced by treatment with GKT 137831, a selective inhibitor of NADPH oxidase subunits 1 and 4. These data indicate that oxygen levels experienced by cells in culture influence hydrogen peroxide production via NADPH oxidase 1/4, highlighting the importance of regulating oxygen levels in culture near physiological values. However, we measured pericellular oxygen levels adjacent to cell monolayers under a variety of conditions and with different cell lines and found that, particularly when growing at 5% incubator oxygen levels, pericellular oxygen was often lower and variable. Together, these observations indicate the importance, and difficulty, of regulating oxygen levels experienced by cells in culture. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Efficacy of hydrogen peroxide in controlling mortality associated with saprolegniasis on walleye, white sucker, and paddlefish eggs

    USGS Publications Warehouse

    Gaikowski, M.P.; Rach, J.J.; Drobish, M.; Hamilton, J.; Harder, T.; Lee, L.A.; Moen, C.; Moore, A.

    2003-01-01

    The efficacy of hydrogen peroxide in controlling saprolegniasis on eggs of walleye Stizostedion vitreum, white sucker Catostomus commersoni, and paddlefish Polyodon spathula was evaluated at four private, state, and federal production hatcheries participating in an Investigational New Animal Drug efficacy study (experiment 1; walleyes) and in a laboratory-based miniature egg jar incubation system (experiment 2; walleyes, white suckers, and paddlefish). Naturally occurring fungal infestations (saprolegniasis) were observed on eggs in both experiments. Confirmatory diagnosis of infested eggs from one hatchery in experiment 1 identified the pathogen as Saprolegnia parasitica. During experiment 1, eggs were treated daily for 15 min with either 0, 500, or 750 mg/L of hydrogen peroxide, and one trial compared a 500-mg/L hydrogen peroxide treatment with a formalin treatment at 1,667 mg/L. Saprolegniasis infestation was observed in control egg jars, whereas treatment with either formalin or hydrogen peroxide virtually eliminated the infestation. Hydrogen peroxide treatments of 500 mg/L either increased egg hatch or were as effective as physical removal of infested eggs in controlling mortality. Although treatment with formalin at 1,667 mg/L significantly increased the percent eye-up of walleye eggs compared with that of those treated with hydrogen peroxide at 500 mg/L, the difference was only 1.9-2.6%. In experiment 2, noneyed eggs were treated for 15 min every other day with 0, 283, 565, or 1,130 mg/L of hydrogen peroxide until the viable eggs hatched. Saprolegniasis infestation engulfed most control eggs, whereas infestation of treated eggs was either reduced or not visible. Hydrogen peroxide significantly increased egg hatch for all three species tested in experiment 2. Although hydrogen peroxide treatments as low as 283 mg/L significantly increased walleye and white sucker hatch, treatments between 500 and 1,000 mg/L are more likely to be effective in production egg

  16. Hydrogen sulfide alleviates postharvest ripening and senescence of banana by antagonizing the effect of ethylene

    PubMed Central

    Hu, Lan-Ying; Chen, Xiao-Yan; Li, Yan-Hong; Yang, Ying; Yang, Feng

    2017-01-01

    Accumulating evidence shows that hydrogen sulfide (H2S) acts as a multifunctional signaling molecule in plants, whereas the interaction between H2S and ethylene is still unclear. In the present study we investigated the role of H2S in ethylene-promoted banana ripening and senescence by the application of ethylene released from 1.0 g·L−1 ethephon solution or H2S with 1 mM sodium hydrosulfide (NaHS) as the donor or in combination. Fumigation with ethylene was found to accelerate banana ripening and H2S treatment effectively alleviated ethylene-induced banana peel yellowing and fruit softening in parallel with decreased activity of polygalacturonase (PG). Ethylene+H2S treatment also delayed the decreases in chlorophyll and total phenolics, and increased the accumulation of flavonoid, whereas decreased the contents of carotenoid, soluble protein in banana peel and reducing sugar in pulp compared with ethylene treatment alone. Besides, ethylene+H2S treatment suppressed the accumulation of superoxide radicals (·O2−), hydrogen peroxide (H2O2) and malondialdehyde (MDA) which accumulated highly in ethylene-treated banana peels. Furthermore H2S enhanced total antioxidant capacity in ethylene-treated banana peels with the 2,2’-azobis(3-ethylbenz-thiazoline-6-sulfonic acid (ABTS) assay. The result of quantitative real-time PCR showed that the combined treatment of ethylene with H2S down-regulated the expression of ethylene synthesis genes MaACS1, MaACS2 and MaACO1 and pectate lyase MaPL compared with ethylene treatment, while the expression of ethylene receptor genes MaETR, MaERS1 and MaERS2 was enhanced in combination treatment compared with ethylene alone. In all, it can be concluded that H2S alleviates banana fruit ripening and senescence by antagonizing the effect of ethylene through reduction of oxidative stress and inhibition of ethylene signaling pathway. PMID:28662156

  17. Hydrogen sulfide alleviates postharvest ripening and senescence of banana by antagonizing the effect of ethylene.

    PubMed

    Ge, Yun; Hu, Kang-Di; Wang, Sha-Sha; Hu, Lan-Ying; Chen, Xiao-Yan; Li, Yan-Hong; Yang, Ying; Yang, Feng; Zhang, Hua

    2017-01-01

    Accumulating evidence shows that hydrogen sulfide (H2S) acts as a multifunctional signaling molecule in plants, whereas the interaction between H2S and ethylene is still unclear. In the present study we investigated the role of H2S in ethylene-promoted banana ripening and senescence by the application of ethylene released from 1.0 g·L-1 ethephon solution or H2S with 1 mM sodium hydrosulfide (NaHS) as the donor or in combination. Fumigation with ethylene was found to accelerate banana ripening and H2S treatment effectively alleviated ethylene-induced banana peel yellowing and fruit softening in parallel with decreased activity of polygalacturonase (PG). Ethylene+H2S treatment also delayed the decreases in chlorophyll and total phenolics, and increased the accumulation of flavonoid, whereas decreased the contents of carotenoid, soluble protein in banana peel and reducing sugar in pulp compared with ethylene treatment alone. Besides, ethylene+H2S treatment suppressed the accumulation of superoxide radicals (·O2-), hydrogen peroxide (H2O2) and malondialdehyde (MDA) which accumulated highly in ethylene-treated banana peels. Furthermore H2S enhanced total antioxidant capacity in ethylene-treated banana peels with the 2,2'-azobis(3-ethylbenz-thiazoline-6-sulfonic acid (ABTS) assay. The result of quantitative real-time PCR showed that the combined treatment of ethylene with H2S down-regulated the expression of ethylene synthesis genes MaACS1, MaACS2 and MaACO1 and pectate lyase MaPL compared with ethylene treatment, while the expression of ethylene receptor genes MaETR, MaERS1 and MaERS2 was enhanced in combination treatment compared with ethylene alone. In all, it can be concluded that H2S alleviates banana fruit ripening and senescence by antagonizing the effect of ethylene through reduction of oxidative stress and inhibition of ethylene signaling pathway.

  18. Hydrogen peroxide oxidant fuel cell systems for ultra-portable applications

    NASA Technical Reports Server (NTRS)

    Valdez, T. I.; Narayanan, S. R.

    2001-01-01

    This paper will address the issues of using hydrogen peroxide as an oxidant fuel in a miniature DMFC system. Cell performance for DMFC based fuel cells operating on hydrogen peroxide will be presented and discussed.

  19. Hydrogen peroxide contributes to the ultraviolet-B (280-315 nm) induced oxidative stress of plant leaves through multiple pathways.

    PubMed

    Czégény, Gyula; Wu, Min; Dér, András; Eriksson, Leif A; Strid, Åke; Hideg, Éva

    2014-06-27

    Solar UV-B (280-315 nm) radiation is a developmental signal in plants but may also cause oxidative stress when combined with other environmental factors. Using computer modeling and in solution experiments we show that UV-B is capable of photosensitizing hydroxyl radical production from hydrogen peroxide. We present evidence that the oxidative effect of UV-B in leaves is at least twofold: (i) it increases cellular hydrogen peroxide concentrations, to a larger extent in pyridoxine antioxidant mutant pdx1.3-1 Arabidopsis and; (ii) is capable of a partial photo-conversion of both 'natural' and 'extra' hydrogen peroxide to hydroxyl radicals. As stress conditions other than UV can increase cellular hydrogen peroxide levels, synergistic deleterious effects of various stresses may be expected already under ambient solar UV-B. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  20. Cu-ZSM-5 catalyzed low-temperature hydrogen peroxide-induced methane-to-methanol conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yang; Li, Zhenglong; Allard, Jr., Lawrence Frederick

    2017-01-01

    We report that Cu-ZSM-5 is an effective catalyst for methane oxidation with hydrogen peroxide. We find that synthesis via ion-exchage and reaction conditions are important factors for the observed efficiency of Cu-ZSM-5.

  1. An upper limit for stratospheric hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Chance, K. V.; Traub, W. A.

    1984-01-01

    It has been postulated that hydrogen peroxide is important in stratospheric chemistry as a reservoir and sink for odd hydrogen species, and for its ability to interconvert them. The present investigation is concerned with an altitude dependent upper limit curve for stratospheric hydrogen peroxide, taking into account an altitude range from 21.5 to 38.0 km for January 23, 1983. The data employed are from balloon flight No. 1316-P, launched from the National Scientific Balloon Facility (NSBF) in Palestine, Texas. The obtained upper limit curve lies substantially below the data reported by Waters et al. (1981), even though the results are from the same latitude and are both wintertime measurements.

  2. Hyperbaric oxygen therapy for systemic gas embolism after hydrogen peroxide ingestion.

    PubMed

    Byrne, Brendan; Sherwin, Robert; Courage, Cheryl; Baylor, Alfred; Dolcourt, Bram; Brudzewski, Jacek R; Mosteller, Jeffrey; Wilson, Robert F

    2014-02-01

    Hydrogen peroxide is a commonly available product and its ingestion has been demonstrated to produce in vivo gas bubbles, which can embolize to devastating effect. We report two cases of hydrogen peroxide ingestion with resultant gas embolization, one to the portal system and one cerebral embolus, which were successfully treated with hyperbaric oxygen therapy (HBO), and review the literature. Two individuals presented to our center after unintentional ingestion of concentrated hydrogen peroxide solutions. Symptoms were consistent with portal gas emboli (Patient A) and cerebral gas emboli (Patient B), which were demonstrated on imaging. They were successfully treated with HBO and recovered without event. As demonstrated by both our experience as well as the current literature, HBO has been used to successfully treat gas emboli associated with hydrogen peroxide ingestion. We recommend consideration of HBO in any cases of significant hydrogen peroxide ingestion with a clinical picture compatible with gas emboli. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Expression of a nitric oxide degrading enzyme induces a senescence programme in Arabidopsis.

    PubMed

    Mishina, Tatiana E; Lamb, Chris; Zeier, Jürgen

    2007-01-01

    Nitric oxide (NO) has been proposed to act as a factor delaying leaf senescence and fruit maturation in plants. Here we show that expression of a NO degrading dioxygenase (NOD) in Arabidopsis thaliana initiates a senescence-like phenotype, an effect that proved to be more pronounced in older than in younger leaves. This senescence phenotype was preceded by a massive switch in gene expression in which photosynthetic genes were down-regulated, whereas many senescence-associated genes (SAGs) and the 1-aminocyclopropane-1-carboxylic acid (ACC) synthase gene ACS6 involved in ethylene synthesis were up-regulated. External fumigation of NOD plants with NO as well as environmental conditions known to stimulate endogenous NO production attenuated the induced senescence programme. For instance, both high light conditions and nitrate feeding reduced the senescence phenotype and attenuated the down-regulation of photosynthetic genes as well as the up-regulation of SAGs. Treatment of plants with the cytokinin 6-benzylaminopurin (BAP) reduced the down-regulation of photosynthesis, although it had no consistent effect on SAG expression. Metabolic changes during NOD-induced senescence comprehended increases in salicylic acid (SA) levels, accumulation of the phytoalexin camalexin and elevation of leaf gamma-tocopherol contents, all of which occurred during natural senescence in Arabidopsis leaves as well. Moreover, NO fumigation delayed the senescence process induced by darkening individual Arabidopsis Columbia-0 (Col-0) leaves. Our data thus support the notion that NO acts as a negative regulator of leaf senescence.

  4. Chemiluminescent Nanomicelles for Imaging Hydrogen Peroxide and Self-Therapy in Photodynamic Therapy

    PubMed Central

    Chen, Rui; Zhang, Luzhong; Gao, Jian; Wu, Wei; Hu, Yong; Jiang, Xiqun

    2011-01-01

    Hydrogen peroxide is a signal molecule of the tumor, and its overproduction makes a higher concentration in tumor tissue compared to normal tissue. Based on the fact that peroxalates can make chemiluminescence with a high efficiency in the presence of hydrogen peroxide, we developed nanomicelles composed of peroxalate ester oligomers and fluorescent dyes, called peroxalate nanomicelles (POMs), which could image hydrogen peroxide with high sensitivity and stability. The potential application of the POMs in photodynamic therapy (PDT) for cancer was also investigated. It was found that the PDT-drug-loaded POMs were sensitive to hydrogen peroxide, and the PDT drug could be stimulated by the chemiluminescence from the reaction between POMs and hydrogen peroxide, which carried on a self-therapy of the tumor without the additional laser light resource. PMID:21765637

  5. Cathodic electrocatalyst layer for electrochemical generation of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Tennakoon, Charles L. K. (Inventor); Singh, Waheguru Pal (Inventor); Rhodes, Christopher P. (Inventor); Anderson, Kelvin C. (Inventor)

    2011-01-01

    A cathodic gas diffusion electrode for the electrochemical production of aqueous hydrogen peroxide solutions. The cathodic gas diffusion electrode comprises an electrically conductive gas diffusion substrate and a cathodic electrocatalyst layer supported on the gas diffusion substrate. A novel cathodic electrocatalyst layer comprises a cathodic electrocatalyst, a substantially water-insoluble quaternary ammonium compound, a fluorocarbon polymer hydrophobic agent and binder, and a perfluoronated sulphonic acid polymer. An electrochemical cell using the novel cathodic electrocatalyst layer has been shown to produce an aqueous solution having between 8 and 14 weight percent hydrogen peroxide. Furthermore, such electrochemical cells have shown stable production of hydrogen peroxide solutions over 1000 hours of operation including numerous system shutdowns.

  6. [Heat-shock protein HSP70 protects neuroblastoma cells SK-N-SH from the neurotoxic effects hydrogen peroxide and the β-amyloid peptide].

    PubMed

    Yurinskaya, M M; Mit'kevich, V A; Barykin, E P; Garbuz, D G; Evgen'ev, M B; Makarov, A A; Vinokurov, M G

    2015-01-01

    Neuronal cell death in Alzheimer's disease is associated with the development of oxidative stress caused by the reactive oxygen species (ROS), which can be generated as a result of the effect of beta-amyloid peptides. One of the sources of ROS is hydrogen peroxide, inducing the apoptosis and necrosis of neural tissue cells. The mechanism of hydrogen peroxide apoptotic action includes launching signaling pathways that involve protein kinases PI3K, p38MAPK, JNK and ERK. Oxidative stress leads to increased synthesis of heat-shock proteins in the cells including HSP70. It was shown that the exogenous HSP70 could reduce generation of ROS in cells. In this study, we determined how HSP70 affected apoptosis and necrosis in human neuroblastoma cells SK-N-SH, induced by hydrogen peroxide and β-amyloid peptide Aβ(1-42). It was shown that HSP70 reduces the cytotoxic effects of hydrogen peroxide and beta-amyloid, and protein kinases PI3K and JNK play an important role in the mechanism of HSP70 protective effect on the peroxide induced apoptosis in SK-N-SH cells.

  7. Hydrogen Peroxide Accidents and Incidents: What We Can Learn From History

    NASA Technical Reports Server (NTRS)

    Greene, Ben; Baker, David L.; Frazier, Wayne

    2005-01-01

    Historical accidents and incidents involving hydrogen peroxide are reviewed and presented. These hydrogen peroxide events are associated with storage, transportation, handling, and disposal and they include exposures, fires, and explosions. Understanding the causes and effects of these accident and incident examples may aid personnel currently working with hydrogen peroxide to mitigate and perhaps avoid similar situations. Lessons learned, best practices, and regulatory compliance information related to the cited accidents and incidents are also discussed.

  8. Anti-inflammatory activities of Ophiopogonis Radix on hydrogen peroxide-induced cellular senescence of normal human dermal fibroblasts.

    PubMed

    Kitahiro, Yumi; Koike, Atsushi; Sonoki, Aska; Muto, Mei; Ozaki, Kazuo; Shibano, Makio

    2018-06-30

    Ophiopogonis Radix (Ophiopogon root), which nourishes the yin, has been used in clinical practice to promote fluid secretion and to moisturize the lungs and skin in traditional Chinese and Japanese (Kampo) medicine. To evaluate this traditional medicinal effect, we investigated the anti-chronic inflammatory effect of Radix Ophiopogonis on senescent cells. Conversely, although several phenotypes of Ophiopogon japonicus Ker-Gawler (Liliaceae) are prevalent in Japan and China, we used these Ophiopogon roots by considering them as one crude drug, Ophiopogonis Radix. In this study, it was revealed that there are two chemotypes (Types A and B) in the root of the original plant, O. japonicus. Methylophiopogonanone A (compound 1) and methylophiopogonanone B (compound 2) were isolated as index compounds from Type A and compound 1 and ophiopogonanone A (compound 3) from Type B. In addition, ophiopogonin B (compound 4) was isolated as the main steroidal saponin from both Type A and B. The results indicated that two different methanol extracts (from Types A and B) and the main constituents of O. japonicus (compound 1-4), significantly downregulated the expression of interleukin (IL)-6 and IL-8, which were enhanced by senescent normal human dermal fibroblasts. Moreover, the two different methanol extracts and compounds 1-4 decreased IL-6 production in a strong and concentration-dependent manner by the ELISA method.

  9. Visual Biopsy by Hydrogen Peroxide-Induced Signal Amplification.

    PubMed

    Zhao, Wenjie; Yang, Sheng; Yang, Jinfeng; Li, Jishan; Zheng, Jing; Qing, Zhihe; Yang, Ronghua

    2016-11-01

    Visual biopsy has attracted special interest by surgeons due to its simplicity and practicality; however, the limited sensitivity of the technology makes it difficult to achieve an early diagnosis. To circumvent this problem, herein, we report a visual signal amplification strategy for establishing a marker-recognizable biopsy that enables early cancer diagnosis. In our proposed approach, hydrogen peroxide (H 2 O 2 ) was selected as a potential underlying marker for its compact relationship in cancer progression. For selective recognition of H 2 O 2 in the process of visual biopsy, a benzylbenzeneboronic acid pinacol ester-decorated copolymer, namely, PMPC-Bpe, was synthesized, affording the final formation of the H 2 O 2 -responsive micelles in which amylose was trapped. The presence of H 2 O 2 activates the boronate ester recognition site and induces it releasing abundant indicator amylose, leading to signal amplification. The indicator came across the solution of KI/I 2 added to the sample, and the formative amylose-KI/I 2 complex has a distinct blue color at 574 nm for visual amplification detection. The feasibility of the proposed method is demonstrated by visualizing the H 2 O 2 content of cancer at different stages and three kinds of actual cancerous samples. As far as we know, this is the first paradigm to rationally design a signaling amplification-based molecular recognizable biopsy for visual and sensitive disease identification, which will extend new possibilities for marker-recognition and signal amplification-based biopsy in disease progressing.

  10. Ring-like distribution of constitutive heterochromatin in bovine senescent cells.

    PubMed

    Pichugin, Andrey; Beaujean, Nathalie; Vignon, Xavier; Vassetzky, Yegor

    2011-01-01

    Cells that reach "Hayflick limit" of proliferation, known as senescent cells, possess a particular type of nuclear architecture. Human senescent cells are characterized by the presence of highly condensed senescent associated heterochromatin foci (SAHF) that can be detected both by immunostaining for histone H3 three-methylated at lysine 9 (H3K9me3) and by DAPI counterstaining. We have studied nuclear architecture in bovine senescent cells using a combination of immunofluorescence and 3D fluorescent in-situ hybridization (FISH). Analysis of heterochromatin distribution in bovine senescent cells using fluorescent in situ hybridization for pericentric chromosomal regions, immunostaining of H3K9me3, centromeric proteins CENP A/B and DNA methylation showed a lower level of heterochromatin condensation as compared to young cells. No SAHF foci were observed. Instead, we observed fibrous ring-like or ribbon-like heterochromatin patterns that were undetectable with DAPI counterstaining. These heterochromatin fibers were associated with nucleoli. Constitutive heterochromatin in bovine senescent cells is organized in ring-like structures.

  11. Release of oxygen radicals by articular chondrocytes: a study of luminol-dependent chemiluminescence and hydrogen peroxide secretion.

    PubMed

    Rathakrishnan, C; Tiku, K; Raghavan, A; Tiku, M L

    1992-10-01

    We previously established that normal articular chondrocytes, like macrophages, express class II major histocompatibility antigens, present antigen, and induce mixed and autologous lymphocyte stimulation. In a recent study using the trapped indicator 2',7'-dichlorofluorescein diacetate, we were able to measure levels of intracellular hydrogen peroxide within normal articular chondrocytes (J Immunol 245:690-696, 1990). In the present study, we utilized the technique of chemiluminescence and the biochemical method of quantitating hydrogen peroxide release to measure the production of reactive oxygen intermediates by articular chondrocytes. Chondrocytes, in suspension or adherent to coverslips, showed luminol-dependent chemiluminescence that was dependent on the number and viability of cells. There was a dose-dependent increase in chemiluminescence in response to soluble stimuli, such as phorbol myristate acetate (PMA), concanavalin A (ConA), and f-Met-Leu-Phe (FMLP). Azide inhibited chemiluminescence, suggesting that the light emission in chondrocytes is myeloperoxidase dependent. The antioxidant, catalase, inhibited chemiluminescence but superoxide dismutase had no effect, suggesting that luminol-dependent chemiluminescence in chondrocytes mostly measured hydrogen peroxide. Chemiluminescence was also observed in fragments of live cartilage tissue, indicating that chondrocytes that are cartilage matrix bound can generate the respiratory burst response. Using the scopoletin oxidation assay, we confirmed the release of increasing amounts of hydrogen peroxide by chondrocytes exposed to interleukin-1, rabbit interferon, and tumor necrosis factor alpha. Tumor necrosis factor alpha had both priming and enhancing effects on reactive oxygen intermediate production by chondrocytes. Reactive oxygen intermediates have been shown to play a significant role in matrix degradation. We suggest that reactive oxygen intermediates produced by chondrocytes play an important role in the

  12. Chitooligosaccharides protect human embryonic hepatocytes against oxidative stress induced by hydrogen peroxide.

    PubMed

    Xu, Qingsong; Ma, Pan; Yu, Weiting; Tan, Chengyu; Liu, Hongtao; Xiong, Chuannan; Qiao, Ying; Du, Yuguang

    2010-06-01

    Chitooligosaccharides (COS) has many biological activities, such as antitumor activity and hepatoprotective effect. Herein, we investigated the protective effect of COS against hydrogen peroxide (H2O2)-induced oxidative stress on human embryonic hepatocytes (L02 cells) and its scavenging activity against the 1,1-diphenyl-2-picrylhydrazyl radical in vitro. The results showed that the lost cell viability induced by H2O2 was markedly restored after 24 h pre-incubation with COS (0.1-0.4 mg/ml). This rescue effect could be related to the antioxidant property of COS, in which we showed that the radical scavenging activity of COS reached 80% at concentration of 2 mg/ml. In addition, COS could prevent cell apoptosis induced by H2O2, as shown by the inhibition of the cleavage of poly (adenosine diphosphate-ribose) polymerase and increased expression of the anti-apoptotic protein Bcl-xL. Furthermore, we have utilized confocal laser microscopy to observe cellular uptake of COS, an important step for COS to exert its effects on target cells. Taken together, our findings suggested that COS could effectively protect L02 cells against oxidative stress, which might be useful in clinical setting during the treatment of oxidative stress-related liver damages.

  13. Effects on gastric mucosa induced by dental bleaching--an experimental study with 6% hydrogen peroxide in rats.

    PubMed

    Paula, Anabela Baptista; Dias, Maria Isabel; Ferreira, Manuel Marques; Carrilho, Teresa; Marto, Carlos Miguel; Casalta, João; Cabrita, António Silvério; Carrilho, Eunice

    2015-10-01

    The value of aesthetic dentistry has precipitated several developments in the investigation of dental materials related to this field. The free marketing of these products is a problem and it is subject to various interpretations regarding its legality. There are several techniques for tooth whitening, the most used one being the external bleaching. It is the later version of such technique that poses the greatest danger of ingesting the product. The present study analysed the systemic effect of these products when they are swallowed. This experimental study aimed to observe the effects of a tooth whitening product, whose active agent is 6% hydrogen peroxide, on the gastric mucosa of healthy and non-tumour gastric pathology animals. Fifty Wistar-Han rats were used and then distributed into 5 groups, one for control and four test groups in which the bleaching product was administered in animals with and without non-tumour gastric pathology (induced by the administration of 1 sample of 50% ethanol and 5% of drinking water during 6 days) at different times of study by gavage. There was a decrease in body weight in animals of groups handled during the study period, which was most pronounced in IV and VA groups. Changes in spleen weight relative to body weight revealed no statistically significant changes. An analysis of the frequency was performed on the results of macroscopic observation of the gastric mucosa. The gastric mucosa revealed lesions in all manipulated groups, being more frequent in groups III and IV. It appears that there is a synergism when using hydrogen peroxide and 50% ethanol in the same group. Therefore, it seems that there are some signs of toxicity 3 to 4 days after administration of 6% hydrogen peroxide. The prescription of these therapies must be controlled by the clinician and the risks must be minimized.

  14. Hydrogen peroxide fuels aging, inflammation, cancer metabolism and metastasis

    PubMed Central

    Martinez-Outschoorn, Ubaldo E; Lin, Zhao; Pavlides, Stephanos; Whitaker-Menezes, Diana; Pestell, Richard G; Howell, Anthony

    2011-01-01

    In 1889, Dr. Stephen Paget proposed the “seed and soil” hypothesis, which states that cancer cells (the seeds) need the proper microenvironment (the soil) for them to grow, spread and metastasize systemically. In this hypothesis, Dr. Paget rightfully recognized that the tumor microenvironment has an important role to play in cancer progression and metastasis. In this regard, a series of recent studies have elegantly shown that the production of hydrogen peroxide, by both cancer cells and cancer-associated fibroblasts, may provide the necessary “fertilizer,” by driving accelerated aging, DNA damage, inflammation and cancer metabolism, in the tumor microenvironment. By secreting hydrogen peroxide, cancer cells and fibroblasts are mimicking the behavior of immune cells (macrophages/neutrophils), driving local and systemic inflammation, via the innate immune response (NFκB). Thus, we should consider using various therapeutic strategies (such as catalase and/or other antioxidants) to neutralize the production of cancer-associated hydrogen peroxide, thereby preventing tumor-stroma co-evolution and metastasis. The implications of these findings for overcoming chemo-resistance in cancer cells are also discussed in the context of hydrogen peroxide production and cancer metabolism. PMID:21734470

  15. Stress-induced premature senescence (SIPS)--influence of SIPS on radiotherapy.

    PubMed

    Suzuki, Masatoshi; Boothman, David A

    2008-03-01

    Replicative senescence is a fundamental feature in normal human diploid cells and results from dysfunctional telomeres at the Hayflick cell division limit. Ionizing radiation (IR) prematurely induces the same phenotypes as replicative senescence prior to the Hayflick limit. This process is known as stress-induced premature senescence (SIPS). Since the cell cycle is irreversibly arrested in SIPS-induced cells, even if they are stimulated by various growth factors, it is thought that SIPS is a form of cell death, irreversibly eliminating replicating cells. IR-induced-focus formation of DNA repair proteins, a marker of DNA damage, is detected in SIPS as well as replicative senescent cells. Furthermore, both processes persistently induce cell cycle checkpoint mechanisms, indicating DNA damage created by ionizing radiation induces SIPS in normal cells, possibly by the same mechanisms as those occurring in replicative senescence. Interestingly, IR induces SIPS not only in normal cells, but also in tumor cells. Due to the expression of telomerase in tumor cells, telomere-dependent replicative senescence does not occur. However, SIPS is induced under certain conditions after IR exposure. Thus, cell death triggered by IR can be attributed to apoptosis or SIPS in tumor cells. However, metabolic function remains intact in SIPS-induced cancer cells, and recent studies show that senescence eliminate cells undergoing SIPS secrete various kinds of factors outside the cell, changing the microenvironment. Evidence using co-culture systems containing normal senescent stromal cells and epithelial tumor cells show that factors secreted from senescent stroma cells promote the growth of tumor epithelial cells both in vitro and in vivo. Thus, regulation of factors secreted from SIPS-induced stromal cells, as well as tumor cells, may affect radiotherapy.

  16. Distillation Kinetics of Solid Mixtures of Hydrogen Peroxide and Water and the Isolation of Pure Hydrogen Peroxide in Ultrahigh Vacuum

    NASA Technical Reports Server (NTRS)

    Teolis, B. D.; Baragiola, R. A.

    2006-01-01

    We present results of the growth of thin films of crystalline H2O2 and H2O2.2H2O (dihydrate) in ultrahigh vacuum by distilling an aqueous solution of hydrogen peroxide. We traced the process using infrared reflectance spectroscopy, mass loss on a quartz crystal microbalance, and in a few cases ultraviolet-visible reflectance. We find that the different crystalline phases-water, dihydrate, and hydrogen peroxide-have very different sublimation rates, making distillation efficient to isolate the less volatile component, crystalline H2O2.

  17. Hydrogen Peroxide Sensing and Signaling by Protein Kinases in the Cardiovascular System

    PubMed Central

    Burgoyne, Joseph R.; Oka, Shin-ichi; Ale-Agha, Niloofar

    2013-01-01

    Abstract Significance: Oxidants were once principally considered perpetrators of injury and disease. However, this has become an antiquated view, with cumulative evidence showing that the oxidant hydrogen peroxide serves as a signaling molecule. Hydrogen peroxide carries vital information about the redox state of the cell and is crucial for homeostatic regulation during health and adaptation to stress. Recent Advances: In this review, we examine the contemporary concepts for how hydrogen peroxide is sensed and transduced into a biological response by introducing post-translational oxidative modifications on select proteins. Oxidant sensing and signaling by kinases are of particular importance as they integrate oxidant signals into phospho-regulated pathways. We focus on CAMKII, PKA, and PKG, kinases whose redox regulation has notable impact on cardiovascular function. Critical Issues: In addition, we examine the mechanism for regulating intracellular hydrogen peroxide, considering the net concentrations that may accumulate. The effects of endogenously generated oxidants are often modeled by applying exogenous hydrogen peroxide to cells or tissues. Here we consider whether model systems exposed to exogenous hydrogen peroxide have relevance to systems where the oxidant is generated endogenously, and if so, what concentration can be justified in terms of relevance to health and disease. Future Directions: Improving our understanding of hydrogen peroxide signaling and the sensor proteins that it can modify will help us develop new strategies to regulate intracellular signaling to prevent disease. Antioxid. Redox Signal. 18, 1042–1052. PMID:22867279

  18. 40 CFR 180.1197 - Hydrogen peroxide; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Hydrogen peroxide; exemption from the... Exemptions From Tolerances § 180.1197 Hydrogen peroxide; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for residues of hydrogen peroxide in or on all...

  19. 40 CFR 180.1197 - Hydrogen peroxide; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Hydrogen peroxide; exemption from the... Exemptions From Tolerances § 180.1197 Hydrogen peroxide; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for residues of hydrogen peroxide in or on all...

  20. 40 CFR 180.1197 - Hydrogen peroxide; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Hydrogen peroxide; exemption from the... Exemptions From Tolerances § 180.1197 Hydrogen peroxide; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for residues of hydrogen peroxide in or on all...

  1. 40 CFR 180.1197 - Hydrogen peroxide; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Hydrogen peroxide; exemption from the... Exemptions From Tolerances § 180.1197 Hydrogen peroxide; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for residues of hydrogen peroxide in or on all...

  2. 40 CFR 180.1197 - Hydrogen peroxide; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Hydrogen peroxide; exemption from the... Exemptions From Tolerances § 180.1197 Hydrogen peroxide; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for residues of hydrogen peroxide in or on all...

  3. 21 CFR 172.167 - Silver nitrate and hydrogen peroxide solution.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... agent in bottled water. (b) Hydrogen peroxide meets the specifications of the “Food Chemicals Codex... information on the availability of this material at NARA, call 202-741-6030 or go to: http://www.archives.gov... exceed 17 micrograms per kilogram in the treated bottled water, and the amount of hydrogen peroxide will...

  4. [The origin of hydrogen peroxide in oral cavity and its role in oral microecology balance].

    PubMed

    Keke, Zhang; Xuedong, Zhou; Xin, Xu

    2017-04-01

    Hydrogen peroxide, an important antimicrobial agent in oral cavity, plays a significant role in the balance of oral microecology. At the early stage of biofilm formation, about 80% of the detected initial colonizers belong to the genus Streptococcus. These oral streptococci use different oxidase to produce hydrogen peroxide. Recent studies showed that the produced hydrogen peroxide plays a critical role in modulating oral microecology. Hydrogen peroxide modulates biofilm development attributed to its growth inhibitory nature. Hydrogen peroxide production is closely associated with extracellular DNA(eDNA) release from microbe and the development of its competent cell which are critical for biofilm development and also serves as source for horizontal gene transfer. Microbe also can reduce the damage to themselves through several detoxification mechanisms. Moreover, hydrogen peroxide is also involved in the regulation of interactions between oral microorganisms and host. Taken together, hydrogen peroxide is an imperative ecological factor that contributes to the microbial equilibrium in the oral cavity. Here we will give a brief review of both the origin and the function in the oral microecology balance of hydrogen peroxide.

  5. Hydrogen peroxide as a new defensive compound in "benzoyl cyanide" producing polydesmid millipedes

    NASA Astrophysics Data System (ADS)

    Kuwahara, Yasumasa; Yamaguchi, Takuya; Ichiki, Yayoi; Tanabe, Tsutomu; Asano, Yasuhisa

    2017-04-01

    Hydrogen peroxide was newly and simultaneously demonstrated with well-known hydrogen cyanide as a component of defensive secretions of "benzoyl cyanide" producing polydesmid millipedes. Presence of hydrogen peroxide was successively evidenced by Trinder reagent's spray with colorless as well as oily smears of defensive secretions containing benzoyl cyanide and hydrogen cyanide by alkaline picrate paper treatment. Linear correlation was demonstrated between quantities of hydrogen peroxide and benzoyl cyanide. By qualitative assay, seven benzoyl cyanide containing polydesmidans (six species of adults and one species of a nymph at stadium I) tested positive to Trinder reagent, indicative of the presence of hydrogen peroxide (together with hydrogen cyanide), while two cyanogenic species without benzoyl cyanide exhibited negative responses to the reagent. Two types of millipedes were elucidated as species of cyanogenic Polydesmida.

  6. Hydrogen peroxide as a new defensive compound in "benzoyl cyanide" producing polydesmid millipedes.

    PubMed

    Kuwahara, Yasumasa; Yamaguchi, Takuya; Ichiki, Yayoi; Tanabe, Tsutomu; Asano, Yasuhisa

    2017-04-01

    Hydrogen peroxide was newly and simultaneously demonstrated with well-known hydrogen cyanide as a component of defensive secretions of "benzoyl cyanide" producing polydesmid millipedes. Presence of hydrogen peroxide was successively evidenced by Trinder reagent's spray with colorless as well as oily smears of defensive secretions containing benzoyl cyanide and hydrogen cyanide by alkaline picrate paper treatment. Linear correlation was demonstrated between quantities of hydrogen peroxide and benzoyl cyanide. By qualitative assay, seven benzoyl cyanide containing polydesmidans (six species of adults and one species of a nymph at stadium I) tested positive to Trinder reagent, indicative of the presence of hydrogen peroxide (together with hydrogen cyanide), while two cyanogenic species without benzoyl cyanide exhibited negative responses to the reagent. Two types of millipedes were elucidated as species of cyanogenic Polydesmida.

  7. Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli.

    PubMed

    Joshi, Suresh G; Cooper, Moogega; Yost, Adam; Paff, Michelle; Ercan, Utku K; Fridman, Gregory; Friedman, Gary; Fridman, Alexander; Brooks, Ari D

    2011-03-01

    Oxidative stress leads to membrane lipid peroxidation, which yields products causing variable degrees of detrimental oxidative modifications in cells. Reactive oxygen species (ROS) are the key regulators in this process and induce lipid peroxidation in Escherichia coli. Application of nonthermal (cold) plasma is increasingly used for inactivation of surface contaminants. Recently, we reported a successful application of nonthermal plasma, using a floating-electrode dielectric-barrier discharge (FE-DBD) technique for rapid inactivation of bacterial contaminants in normal atmospheric air (S. G. Joshi et al., Am. J. Infect. Control 38:293-301, 2010). In the present report, we demonstrate that FE-DBD plasma-mediated inactivation involves membrane lipid peroxidation in E. coli. Dose-dependent ROS, such as singlet oxygen and hydrogen peroxide-like species generated during plasma-induced oxidative stress, were responsible for membrane lipid peroxidation, and ROS scavengers, such as α-tocopherol (vitamin E), were able to significantly inhibit the extent of lipid peroxidation and oxidative DNA damage. These findings indicate that this is a major mechanism involved in FE-DBD plasma-mediated inactivation of bacteria.

  8. Nonthermal Dielectric-Barrier Discharge Plasma-Induced Inactivation Involves Oxidative DNA Damage and Membrane Lipid Peroxidation in Escherichia coli▿

    PubMed Central

    Joshi, Suresh G.; Cooper, Moogega; Yost, Adam; Paff, Michelle; Ercan, Utku K.; Fridman, Gregory; Friedman, Gary; Fridman, Alexander; Brooks, Ari D.

    2011-01-01

    Oxidative stress leads to membrane lipid peroxidation, which yields products causing variable degrees of detrimental oxidative modifications in cells. Reactive oxygen species (ROS) are the key regulators in this process and induce lipid peroxidation in Escherichia coli. Application of nonthermal (cold) plasma is increasingly used for inactivation of surface contaminants. Recently, we reported a successful application of nonthermal plasma, using a floating-electrode dielectric-barrier discharge (FE-DBD) technique for rapid inactivation of bacterial contaminants in normal atmospheric air (S. G. Joshi et al., Am. J. Infect. Control 38:293-301, 2010). In the present report, we demonstrate that FE-DBD plasma-mediated inactivation involves membrane lipid peroxidation in E. coli. Dose-dependent ROS, such as singlet oxygen and hydrogen peroxide-like species generated during plasma-induced oxidative stress, were responsible for membrane lipid peroxidation, and ROS scavengers, such as α-tocopherol (vitamin E), were able to significantly inhibit the extent of lipid peroxidation and oxidative DNA damage. These findings indicate that this is a major mechanism involved in FE-DBD plasma-mediated inactivation of bacteria. PMID:21199923

  9. Sodium Borohydride/Hydrogen Peroxide Fuel Cells For Space Application

    NASA Technical Reports Server (NTRS)

    Valdez, T. I.; Deelo, M. E.; Narayanan, S. R.

    2006-01-01

    This viewgraph presentation examines Sodium Borohydride and Hydrogen Peroxide Fuel Cells as they are applied to space applications. The topics include: 1) Motivation; 2) The Sodium Borohydride Fuel Cell; 3) Sodium Borohydride Fuel Cell Test Stands; 4) Fuel Cell Comparisons; 5) MEA Performance; 6) Anode Polarization; and 7) Electrode Analysis. The benefits of hydrogen peroxide as an oxidant and benefits of sodium borohydride as a fuel are also addressed.

  10. Material Demand Studies: Materials Sorption of Vaporized Hydrogen Peroxide

    DTIC Science & Technology

    2010-06-01

    SORPTION OF VAPORIZED HYDROGEN PEROXIDE Lawrence R. Procell Zoe A. Hess David G. Gehring Joseph T. Lynn Philip W. Bartram Teri Lalain RESEARCH AND...2010 2. REPORT TYPE Final 3. DATES COVERED (From - To) Nov 2003 - Jul 2005 4. TITLE AND SUBTITLE Material Demand Studies: Materials Sorption of...of office surfaces 33 \\i MATERIAL DEMAND STUDIES: MATERIALS SORPTION OF VAPORIZED HYDROGEN PEROXIDE 1. BACKGROUND The Material Demand effort was

  11. Rejuvenation of MPTP-induced human neural precursor cell senescence by activating autophagy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Liang; Dong, Chuanming; Department of Anatomy and Neurobiology, The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong

    Aging of neural stem cell, which can affect brain homeostasis, may be caused by many cellular mechanisms. Autophagy dysfunction was found in aged and neurodegenerative brains. However, little is known about the relationship between autophagy and human neural stem cell (hNSC) aging. The present study used 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) to treat neural precursor cells (NPCs) derived from human embryonic stem cell (hESC) line H9 and investigate related molecular mechanisms involved in this process. MPTP-treated NPCs were found to undergo premature senescence [determined by increased senescence-associated-β-galactosidase (SA-β-gal) activity, elevated intracellular reactive oxygen species level, and decreased proliferation] and weremore » associated with impaired autophagy. Additionally, the cellular senescence phenotypes were manifested at the molecular level by a significant increase in p21 and p53 expression, a decrease in SOD2 expression, and a decrease in expression of some key autophagy-related genes such as Atg5, Atg7, Atg12, and Beclin 1. Furthermore, we found that the senescence-like phenotype of MPTP-treated hNPCs was rejuvenated through treatment with a well-known autophagy enhancer rapamycin, which was blocked by suppression of essential autophagy gene Beclin 1. Taken together, these findings reveal the critical role of autophagy in the process of hNSC aging, and this process can be reversed by activating autophagy. - Highlights: • We successfully establish hESC-derived neural precursor cells. • MPTP treatment induced senescence-like state in hESC-derived NPCs. • MPTP treatment induced impaired autophagy of hESC-derived NPCs. • MPTP-induced hESC-derived NPC senescence was rejuvenated by activating autophagy.« less

  12. Hydrogen peroxide as a fungicide for fish culture

    USGS Publications Warehouse

    Dawson, V.K.; Rach, J.J.; Schreier, Theresa M.

    1994-01-01

    Antifungal agents are needed to maintain healthy stocks of fish in the intensive culture systems currently employed in fish hatcheries. Malachite green has been the most widely used antifungal agent; however, its potential for producing teratology in animals and fish precludes further use in fish culture. Preliminary studies at the National Fisheries Research Center, La Crosse, WI, USA (La Crosse Center) indicate that hydrogen peroxide is effective for control of Saprolegnia sp. fungus on incubating eggs of rainbow trout. It is also effective against a wide variety of other organisms such as bacteria, yeasts, viruses, and spores, and has been proposed as a treatment for sea lice on salmon. Hydrogen peroxide and its primary decomposition products, oxygen and water, are not systemic poisons and are considered environmentally compatible. In response to a petition from the La Crosse Center, the U.S. Food and Drug Administration (FDA) recently classified hydrogen peroxide as a 'low regulatory priority' when used for control of fungus on fish and fish eggs. Preliminary tests conducted at the La Crosse Center suggest that prophylactic treatments of 250 to 500 ppm (based on 100% active ingredient) for 15 minutes every other day will inhibit fungal infections on healthy rainbow trout (Oncorhynchus mykiss) eggs. This treatment regime also seems to inhibit fungal development and increase hatching success among infected eggs. Efficacy and safety of hydrogen peroxide as a fungicide for fish are currently being evaluated.

  13. Protective Effects of Bacopa Monnieri on Hydrogen Peroxide and Staurosporine: Induced Damage of Human Neuroblastoma SH-SY5Y Cells.

    PubMed

    Łojewski, Maciej; Pomierny, Bartosz; Muszyńska, Bożena; Krzyżanowska, Weronika; Budziszewska, Bogusława; Szewczyk, Agnieszka

    2016-02-01

    Many herbs, and recently their biomass from in vitro cultures, are essential for the treatment of diseases. The aim of this study was to determine the optimal growth of Bacopa monnieri (water hyssop) in an in vitro culture and to examine if extracts of the B. monnieri biomass from the in vitro culture would affect hydrogen peroxide- and staurosporine-induced injury of the human neuroblastoma SH-SY5Y cell line. It has been found that B. monnieri at concentrations of 25, 50, and 100 µg/mL inhibited both hydrogen peroxide-induced efflux of lactate dehydrogenase from damaged cells to culture medium and increased cell viability determined by an MTT assay. Moreover, B. monnieri at concentrations of 10, 25, and 50 µg/mL decreased staurosporine-induced activity of an executive apoptotic enzyme-caspase-3 and protected mitochondrial membrane potential. The obtained data indicate that the biomass from the in vitro culture of B. monnieri prevented SH-SY5Y cell damage related to oxidative stress and had the ability to inhibit the apoptotic process. Thus, this study supports the traditional use of B. monnieri as a neuroprotective therapy, and further in vivo studies on the effects of this preparation on morphology and function of nerve cells could lead to its wider application. Georg Thieme Verlag KG Stuttgart · New York.

  14. Necessity of OxyR for the hydrogen peroxide stress response and full virulence in Ralstonia solanacearum.

    PubMed

    Flores-Cruz, Zomary; Allen, Caitilyn

    2011-09-01

    The plant pathogen Ralstonia solanacearum, which causes bacterial wilt disease, is exposed to reactive oxygen species (ROS) during tomato infection and expresses diverse oxidative stress response (OSR) genes during midstage disease on tomato. The R. solanacearum genome predicts that the bacterium produces multiple and redundant ROS-scavenging enzymes but only one known oxidative stress response regulator, OxyR. An R. solanacearum oxyR mutant had no detectable catalase activity, did not grow in the presence of 250 μM hydrogen peroxide, and grew poorly in the oxidative environment of solid rich media. This phenotype was rescued by the addition of exogenous catalase, suggesting that oxyR is essential for the hydrogen peroxide stress response. Unexpectedly, the oxyR mutant strain grew better than the wild type in the presence of the superoxide generator paraquat. Gene expression studies indicated that katE, kaG, ahpC1, grxC, and oxyR itself were each differentially expressed in the oxyR mutant background and in response to hydrogen peroxide, suggesting that oxyR is necessary for hydrogen peroxide-inducible gene expression. Additional OSR genes were differentially regulated in response to hydrogen peroxide alone. The virulence of the oxyR mutant strain was significantly reduced in both tomato and tobacco host plants, demonstrating that R. solanacearum is exposed to inhibitory concentrations of ROS in planta and that OxyR-mediated responses to ROS during plant pathogenesis are important for R. solanacearum host adaptation and virulence.

  15. Epigenetic alteration to activate Bmp2-Smad signaling in Raf-induced senescence

    PubMed Central

    Fujimoto, Mai; Mano, Yasunobu; Anai, Motonobu; Yamamoto, Shogo; Fukuyo, Masaki; Aburatani, Hiroyuki; Kaneda, Atsushi

    2016-01-01

    AIM: To investigate epigenomic and gene expression alterations during cellular senescence induced by oncogenic Raf. METHODS: Cellular senescence was induced into mouse embryonic fibroblasts (MEFs) by infecting retrovirus to express oncogenic Raf (RafV600E). RNA was collected from RafV600E cells as well as MEFs without infection and MEFs with mock infection, and a genome-wide gene expression analysis was performed using microarray. The epigenomic status for active H3K4me3 and repressive H3K27me3 histone marks was analyzed by chromatin immunoprecipitation-sequencing for RafV600E cells on day 7 and for MEFs without infection. These data for Raf-induced senescence were compared with data for Ras-induced senescence that were obtained in our previous study. Gene knockdown and overexpression were done by retrovirus infection. RESULTS: Although the expression of some genes including secreted factors was specifically altered in either Ras- or Raf-induced senescence, many genes showed similar alteration pattern in Raf- and Ras-induced senescence. A total of 841 commonly upregulated 841 genes and 573 commonly downregulated genes showed a significant enrichment of genes related to signal and secreted proteins, suggesting the importance of alterations in secreted factors. Bmp2, a secreted protein to activate Bmp2-Smad signaling, was highly upregulated with gain of H3K4me3 and loss of H3K27me3 during Raf-induced senescence, as previously detected in Ras-induced senescence, and the knockdown of Bmp2 by shRNA lead to escape from Raf-induced senescence. Bmp2-Smad inhibitor Smad6 was strongly repressed with H3K4me3 loss in Raf-induced senescence, as detected in Ras-induced senescence, and senescence was also bypassed by Smad6 induction in Raf-activated cells. Different from Ras-induced senescence, however, gain of H3K27me3 did not occur in the Smad6 promoter region during Raf-induced senescence. When comparing genome-wide alteration between Ras- and Raf-induced senescence, genes

  16. Chronic toxicity of hydrogen peroxide to Daphnia magna in a continuous exposure, flow-through test system

    USGS Publications Warehouse

    Meinertz, J.R.; Greseth, Shari L.; Gaikowski, M.P.; Schmidt, L.J.

    2008-01-01

    A flow-through, continuous exposure test system was developed to expose Daphnia magna to an unstable compound. 35% Perox-Aid?? is a specially formulated hydrogen peroxide (a highly oxidative chemical) product approved for use in U.S. aquaculture and therefore has the potential to be released from aquaculture facilities and pose a risk to aquatic invertebrates. The study objective was to assess the effects of 35% Perox-Aid?? on an aquatic invertebrate by evaluating the survival, growth, production, and gender ratio of progeny from a representative aquatic invertebrate continuously exposed to 35% Perox-Aid??. The study design consisted of 6 treatment groups (10 test chambers each) with target hydrogen peroxide concentrations of 0.0, 0.32, 0.63, 1.25, 2.5, and 5.0??mg L- 1. The study was initiated with < 24-h-old Daphnia (1 daphnid per chamber) that were exposed to hydrogen peroxide for 21??days. Hydrogen peroxide concentrations ??? 1.25??mg L- 1 had no significant effect on Daphnia time to death compared to controls and no significant effect on the time to first brood production and the number of broods produced. Concentrations ??? 0.63??mg L- 1 had no significant effect on the total number of young produced. Concentrations ??? 0.32??mg L- 1 had a negative effect on Daphnia growth. Hydrogen peroxide had no significant effect on the gender ratio of young produced. All second generation Daphnia were female. A continuous discharge of hydrogen peroxide into aquatic ecosystems is not likely to affect cladocerans if the concentration is maintained at ??? 0.63??mg L- 1 for less than 21??days.

  17. The Role of Hydrogen Peroxide in Mediating the Mechanical Wounding-Induced Freezing Tolerance in Wheat

    PubMed Central

    Si, Tong; Wang, Xiao; Zhao, Chunzhao; Huang, Mei; Cai, Jian; Zhou, Qin; Dai, Tingbo; Jiang, Dong

    2018-01-01

    Systemic wound response (SWR), a well-characterized systemic signaling response, plays crucial roles in plant defense responses. Progress in understanding of the SWR in abiotic stress has also been aided by the researchers. However, the function of SWR in freezing stress remains elusive. In this study, we showed that local mild mechanical wounding enhanced freezing tolerance in newly occurred systemic leaves of wheat plants (Triticum aestivum L.). Wounding significantly increased the maximal photochemical efficiency of photosystem II, net photosynthetic rate, and the activities of the antioxidant enzymes under freezing stress. Wounding also alleviated freezing-induced chlorophyll decomposition, electrolyte leakage, water lose, and membrane peroxidation. In addition, wounding-induced freezing stress mitigation was closely associated with the ratio between reduced glutathione (GSH) and oxidized glutathione (GSSG), and the ratio between ascorbate (AsA) and dehydroascorbate (DHA), as well as the contents of total soluble sugars and free amino acids. Importantly, pharmacological study showed that wounding-induced freezing tolerance was substantially arrested by pretreatment of wheat leaves with the scavenger of hydrogen peroxide (H2O2) or the inhibitor of NADPH oxidase (RBOH). These results support the hypothesis that local mechanical wounding-induced SWR in newly occurred leaves is largely attributed to RBOH-dependent H2O2 production, which may subsequently induce freezing tolerance in wheat plants. This mechanism may have a potential application to reduce the yield losses of wheat under late spring freezing conditions. Highlights: In our previous research, we found that local mechanical wounding could induce freezing tolerance in the upper systemic leaves of wheat plants. Surprisingly, in this paper, we further demonstrated that local mechanical wounding could also increase freezing resistance in newly occurred leaves of wheat plants. RBOH mediated H2O2 and ascorbate

  18. miR-34a Inhibits Lung Fibrosis by Inducing Lung Fibroblast Senescence.

    PubMed

    Cui, Huachun; Ge, Jing; Xie, Na; Banerjee, Sami; Zhou, Yong; Antony, Veena B; Thannickal, Victor J; Liu, Gang

    2017-02-01

    Cellular senescence has been implicated in diverse pathologies. However, there is conflicting evidence regarding the role of this process in tissue fibrosis. Although dysregulation of microRNAs is a key mechanism in the pathogenesis of lung fibrosis, it is unclear whether microRNAs function by regulating cellular senescence in the disease. In this study, we found that miR-34a demonstrated greater expression in the lungs of patients with idiopathic pulmonary fibrosis and in mice with experimental pulmonary fibrosis, with its primary localization in lung fibroblasts. More importantly, miR-34a was up-regulated significantly in both human and mouse lung myofibroblasts. We found that mice with miR-34a ablation developed more severe pulmonary fibrosis than did wild-type animals after fibrotic lung injury. Mechanistically, we found that miR-34a induced a senescent phenotype in lung fibroblasts because this microRNA increased senescence-associated β-galactosidase activity, enhanced expression of senescence markers, and decreased cell proliferative capacities. Consistently, we found that primary lung fibroblasts from fibrotic lungs of miR-34a-deficient mice had a diminished senescent phenotype and enhanced resistance to apoptosis as compared with those from wild-type animals. We also identified multiple miR-34a targets that likely mediated its activities in inducing senescence in lung fibroblasts. In conclusion, our data suggest that miR-34a functions through a negative feedback mechanism to restrain fibrotic response in the lungs by promoting senescence of pulmonary fibroblasts.

  19. Esculetin-induced protection of human hepatoma HepG2 cells against hydrogen peroxide is associated with the Nrf2-dependent induction of the NAD(P)H: Quinone oxidoreductase 1 gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subramaniam, Sudhakar R.; Ellis, Elizabeth M., E-mail: elizabeth.ellis@strath.ac.uk

    Esculetin (6,7-dihydroxy coumarin), is a potent antioxidant that is present in several plant species. The aim of this study was to investigate the mechanism of protection of esculetin in human hepatoma HepG2 cells against reactive oxygen species (ROS) induced by hydrogen peroxide. Cell viability, cell integrity, intracellular glutathione levels, generation of reactive oxygen species and expression of antioxidant enzymes were used as markers to measure cellular oxidative stress and response to ROS. The protective effect of esculetin was compared to a well-characterized chemoprotective compound quercetin. Pre-treatment of HepG2 cells with sub-lethal (10-25 {mu}M) esculetin for 8 h prevented cell deathmore » and maintained cell integrity following exposure to 0.9 mM hydrogen peroxide. An increase in the generation of ROS following hydrogen peroxide treatment was significantly attenuated by 8 h pre-treatment with esculetin. In addition, esculetin ameliorated the decrease in intracellular glutathione caused by hydrogen peroxide exposure. Moreover, treatment with 25 {mu}M esculetin for 8 h increased the expression of NAD(P)H: quinone oxidoreductase (NQO1) at both protein and mRNA levels significantly, by 12-fold and 15-fold, respectively. Esculetin treatment also increased nuclear accumulation of Nrf2 by 8-fold indicating that increased NQO1 expression is Nrf2-mediated. These results indicate that esculetin protects human hepatoma HepG2 cells from hydrogen peroxide induced oxidative injury and that this protection is provided through the induction of protective enzymes as part of an adaptive response mediated by Nrf2 nuclear accumulation.« less

  20. High levels of hydrogen peroxide in overnight tooth-whitening formulas: effects on enamel and pulp.

    PubMed

    Pugh, George; Zaidel, Lynette; Lin, Nora; Stranick, Michael; Bagley, Daniel

    2005-01-01

    Limited data are available to assess the safety of high levels of hydrogen peroxide in overnight tooth-whitening formulas. The purpose of this study was to assess the effects of hydrogen peroxide on enamel microhardness, pulp penetration, and enamel morphology. Colgate Platinum Professional Overnight Whitening System (Colgate Oral Pharmaceuticals, Inc., Canton, MA, USA) (10% carbamide peroxide, equivalent to 3.5% hydrogen peroxide) was compared with two prototype formulations containing either 7.0% or 12.0% hydrogen peroxide. In the pulp chamber studies, human extracted teeth were exposed to 3.5%, 7.0%, or 12.0% hydrogen peroxide for 30 minutes, 4 hours, or 7 hours. Microhardness, electron spectroscopy for chemical analysis, and atomic force microscopy evaluations were made from enamel blocks cut from human extracted molars. The enamel blocks were evaluated following 14 7-hour treatments (98 h total). At 7 hours' post-treatment, hydrogen peroxide penetrated the pulp chamber at 23.12 +/- 10.09, 24.58 +/- 6.90, and 26.39 +/- 5.43 microg for 3.5%, 7.0%, and 12.0% hydrogen peroxide, respectively. With regard to enamel morphology, pulp penetration, microhardness, and elemental composition, no statistically significant differences were observed between treatment groups following 98 hours of treatment. Hydrogen peroxide does not adversely affect enamel morphology or microhardness. The levels recovered in pulp indicate that hydrogen peroxide is not expected to inhibit pulpal enzymes. Overnight tray products containing levels of hydrogen peroxide of 3.5%, 7.0%, and 12.0% are not expected to adversely affect the enamel or pulpal enzymes. Additional safety studies are needed to assess the potential for tooth sensitivity and gingival irritation.

  1. Artificial photosynthesis for production of hydrogen peroxide and its fuel cells.

    PubMed

    Fukuzumi, Shunichi

    2016-05-01

    The reducing power released from photosystem I (PSI) via ferredoxin enables the reduction of NADP(+) to NADPH, which is essential in the Calvin-Benson cycle to make sugars in photosynthesis. Alternatively, PSI can reduce O2 to produce hydrogen peroxide as a fuel. This article describes the artificial version of the photocatalytic production of hydrogen peroxide from water and O2 using solar energy. Hydrogen peroxide is used as a fuel in hydrogen peroxide fuel cells to make electricity. The combination of the photocatalytic H2O2 production from water and O2 using solar energy with one-compartment H2O2 fuel cells provides on-site production and usage of H2O2 as a more useful and promising solar fuel than hydrogen. This article is part of a Special Issue entitled Biodesign for Bioenergetics--The design and engineering of electronc transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Silver-palladium catalysts for the direct synthesis of hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Khan, Zainab; Dummer, Nicholas F.; Edwards, Jennifer K.

    2017-11-01

    A series of bimetallic silver-palladium catalysts supported on titania were prepared by wet impregnation and assessed for the direct synthesis of hydrogen peroxide, and its subsequent side reactions. The addition of silver to a palladium catalyst was found to significantly decrease hydrogen peroxide productivity and hydrogenation, but crucially increase the rate of decomposition. The decomposition product, which is predominantly hydroxyl radicals, can be used to decrease bacterial colonies. The interaction between silver and palladium was characterized using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and temperature programmed reduction (TPR). The results of the TPR and XPS indicated the formation of a silver-palladium alloy. The optimal 1% Ag-4% Pd/TiO2 bimetallic catalyst was able to produce approximately 200 ppm of H2O2 in 30 min. The findings demonstrate that AgPd/TiO2 catalysts are active for the synthesis of hydrogen peroxide and its subsequent decomposition to reactive oxygen species. The catalysts are promising for use in wastewater treatment as they combine the disinfectant properties of silver, hydrogen peroxide production and subsequent decomposition. This article is part of a discussion meeting issue 'Providing sustainable catalytic solutions for a rapidly changing world'.

  3. Efficacy of hydrogen peroxide for treating saprolegniasis in channel catfish

    USGS Publications Warehouse

    Howe, G.E.; Gingerich, W.H.; Dawson, V.K.; Olson, J.J.

    1999-01-01

    Hatchery-reared fish and their eggs are commonly afflicted with saprolegniasis, a fungal disease that can cause significant losses in production. Fish culturists need safe and effective fungicides to minimize losses and meet production demands. The efficacy of hydrogen peroxide was evaluated for preventing or controlling mortality associated with saprolegniasis in channel catfish Ictalurus punctatus. Saprolegniasis was systematically induced in channel catfish so various therapies could be evaluated in a controlled laboratory environment. Both prophylactic and therapeutic hydrogen peroxide bath treatments of 50, 100, and 150 ??L/L for 1 h were administered every other day for seven total treatments. All untreated positive control fish died of saprolegniasis during the prophylactic and therapeutic tests. Hydrogen peroxide treatments of 150 ??L/L were harmful (relative to lower concentrations) to test fish and resulted in 73-95% mortality. Mortality was attributed to a combination of abrasion, temperature, chemical treatment, and disease stressors. Treatments of 100 ??L/L were less harmful (relatively) but also appeared to contribute to mortality (60-79%). These treatments, however, significantly reduced the incidence of mortality and infection compared with those observed for fish of the positive control or 150-??L/L treatment groups. Overall, treatments of 50 ??L/L were found to be the most safe and effective of those tested. Mortality with this concentration ranged from 16% in therapeutic tests to 41% in prophylactic tests. The statistical model employed estimated that the optimum treatment concentration for preventing or controlling mortality, reducing the incidence of infections, and enhancing the recovery of infected fish was 75 ??L H2O2/L.

  4. Apparatus and method for treating pollutants in a gas using hydrogen peroxide and UV light

    NASA Technical Reports Server (NTRS)

    Cooper, Charles David (Inventor); Clausen, Christian Anthony (Inventor)

    2005-01-01

    An apparatus for treating pollutants in a gas may include a source of hydrogen peroxide, and a treatment injector for creating and injecting dissociated hydrogen peroxide into the flow of gas. The treatment injector may further include an injector housing having an inlet, an outlet, and a hollow interior extending therebetween. The inlet may be connected in fluid communication with the source of hydrogen peroxide so that hydrogen peroxide flows through the hollow interior and toward the outlet. At least one ultraviolet (UV) lamp may be positioned within the hollow interior of the injector housing. The at least one UV lamp may dissociate the hydrogen peroxide flowing through the tube. The dissociated hydrogen peroxide may be injected into the flow of gas from the outlet for treating pollutants, such as nitrogen oxides.

  5. APPARATUS AND METHOD FOR TREATING POLLUTANTS IN A GAS USING HYDROGEN PEROXIDE AND UV LIGHT

    NASA Technical Reports Server (NTRS)

    Cooper, Charles David (Inventor); Clauseu, christian Anthony (Inventor)

    2005-01-01

    An apparatus for treating pollutants in a gas may include a source of hydrogen peroxide, and a treatment injector for creating and injecting dissociated hydrogen peroxide into the flow of gas. The treatment injector may further include an injector housing having an inlet, an outlet, and a hollow interior extending there between. The inlet may be connected in fluid communication with the source of hydrogen peroxide so that hydrogen peroxide flows through the hollow interior and toward the outlet. At least one ultraviolet (UV) lamp may be positioned within the hollow interior of the injector housing. The at least one UV lamp may dissociate the hydrogen peroxide flowing through the tube. The dissociated hydrogen peroxide may be injected into the flow of gas from the outlet for treating pollutants, such as nitrogen oxides.

  6. Effects on gastric mucosa induced by dental bleaching – an experimental study with 6% hydrogen peroxide in rats

    PubMed Central

    PAULA, Anabela Baptista; DIAS, Maria Isabel; FERREIRA, Manuel Marques; CARRILHO, Teresa; MARTO, Carlos Miguel; CASALTA, João; CABRITA, António Silvério; CARRILHO, Eunice

    2015-01-01

    The value of aesthetic dentistry has precipitated several developments in the investigation of dental materials related to this field. The free marketing of these products is a problem and it is subject to various interpretations regarding its legality. There are several techniques for tooth whitening, the most used one being the external bleaching. It is the later version of such technique that poses the greatest danger of ingesting the product. The present study analysed the systemic effect of these products when they are swallowed. Objective This experimental study aimed to observe the effects of a tooth whitening product, whose active agent is 6% hydrogen peroxide, on the gastric mucosa of healthy and non-tumour gastric pathology animals. Material and Methods Fifty Wistar-Han rats were used and then distributed into 5 groups, one for control and four test groups in which the bleaching product was administered in animals with and without non-tumour gastric pathology (induced by the administration of 1 sample of 50% ethanol and 5% of drinking water during 6 days) at different times of study by gavage. There was a decrease in body weight in animals of groups handled during the study period, which was most pronounced in IV and VA groups. Changes in spleen weight relative to body weight revealed no statistically significant changes. An analysis of the frequency was performed on the results of macroscopic observation of the gastric mucosa. Results The gastric mucosa revealed lesions in all manipulated groups, being more frequent in groups III and IV. It appears that there is a synergism when using hydrogen peroxide and 50% ethanol in the same group. Conclusion Therefore, it seems that there are some signs of toxicity 3 to 4 days after administration of 6% hydrogen peroxide. The prescription of these therapies must be controlled by the clinician and the risks must be minimized. PMID:26537721

  7. Inactivation of possible micromycete food contaminants using the low-temperature plasma and hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Čeřovský, M.; Khun, J.; Rusová, K.; Scholtz, V.; Soušková, H.

    2013-09-01

    The inhibition effect of hydrogen peroxide aerosol, low-temperature plasma and their combinations has been studied on several micromycetes spores. The low-temperature plasma was generated in corona discharges in the open air apparatus with hydrogen peroxide aerosol. Micromycete spores were inoculated on the surface of agar plates, exposed solely to the hydrogen peroxide aerosol, corona discharge or their combination. After incubation the diameter of inhibition zone was measured. The solely positive corona discharge exhibits no inactivation effect, the solely negative corona discharge and solely hydrogen peroxide aerosol exhibit the inactivation effect, however their combinations exhibit to be much more effective. Low-temperature plasma and hydrogen peroxide aerosol present a possible alternative method of microbial decontamination of food, food packages or other thermolabile materials.

  8. Oxygen from Hydrogen Peroxide. A Safe Molar Volume-Molar Mass Experiment.

    ERIC Educational Resources Information Center

    Bedenbaugh, John H.; And Others

    1988-01-01

    Describes a molar volume-molar mass experiment for use in general chemistry laboratories. Gives background technical information, procedures for the titration of aqueous hydrogen peroxide with standard potassium permanganate and catalytic decomposition of hydrogen peroxide to produce oxygen, and a discussion of the results obtained in three…

  9. Azelaic acid reduced senescence-like phenotype in photo-irradiated human dermal fibroblasts: possible implication of PPARγ.

    PubMed

    Briganti, Stefania; Flori, Enrica; Mastrofrancesco, Arianna; Kovacs, Daniela; Camera, Emanuela; Ludovici, Matteo; Cardinali, Giorgia; Picardo, Mauro

    2013-01-01

    Azelaic acid (AzA) has been used for the treatment for inflammatory skin diseases, such as acne and rosacea. Interestingly, an improvement in skin texture has been observed after long-time treatment with AzA. We previously unrevealed that anti-inflammatory activity of AzA involves a specific activation of PPARγ, a nuclear receptor that plays a relevant role in inflammation and even in ageing processes. As rosacea has been considered as a photo-aggravated disease, we investigated the ability of AzA to counteract stress-induced premature cell senescence (SIPS). We employed a SIPS model based on single exposure of human dermal fibroblasts (HDFs) to UVA and 8-methoxypsoralen (PUVA), previously reported to activate a senescence-like phenotype, including long-term growth arrest, flattened morphology and increased synthesis of matrix metalloproteinases (MMPs) and senescence-associated β-galactosidase (SA-β-gal). We found that PUVA-treated HDFs grown in the presence of AzA maintained their morphology and reduced MMP-1 release and SA-β-galactosidase-positive cells. Moreover, AzA induced a reduction in ROS generation, an up-modulation of antioxidant enzymes and a decrease in cell membrane lipid damages in PUVA-treated HDFs. Further evidences of AzA anti-senescence effect were repression of p53 and p21, increase in type I pro-collagen and abrogation of the enhanced expression of growth factors, such as HGF and SCF. Interestingly, PUVA-SIPS showed a decreased activation of PPARγ and AzA counteracted this effect, suggesting that AzA effect involves PPARγ modulation. All together these data showed that AzA interferes with PUVA-induced senescence-like phenotype and its ability to activate PPAR-γ provides relevant insights into the anti-senescence mechanism. © 2013 John Wiley & Sons A/S.

  10. Effect of species, life stage, and water temperature on the toxicity of hydrogen peroxide to fish

    USGS Publications Warehouse

    Rach, J.J.; Schreier, Theresa M.; Howe, G.E.; Redman, S.D.

    1997-01-01

    Hydrogen peroxide is a drug of low regulatory priority status that is effective in treating fish and fish eggs infected by fungi. However, only limited information is available to guide fish culturists in administering hydrogen peroxide to diseased fish. Laboratory tests were conducted to determine (1) the sensitivity of brown trout Salmo trutta, lake trout Salvelinus namaycush, fathead minnow Pimephales promelas, walleye Stizostedion vitreum, channel catfish Ictalurus punctatus, and bluegill Lepomis, machrochirus to hydrogen peroxide treatments; (2) the sensitivity of various life stages of rainbow trout Oncorhynchus mykiss to hydrogen peroxide treatments; and (3) the effect of water temperature on the acute toxicity of hydrogen peroxide to three fish species. Fish were exposed to hydrogen peroxide concentrations ranging from 100 to 5,000 mu L/L (ppm) for 15-min or 45-min treatments every other day for four consecutive treatments to determine the sensitivity of various species and life stages of fish. Except for walleye, most species of fish tested (less than or equal to 2 g) tolerated hydrogen peroxide of 1,000 mu L/L or greater. Walleyes were sensitive to hydrogen peroxide concentrations as low as 100 mu L/L. A correlation was found between the toxicity of hydrogen peroxide and the life stages of rainbow trout; larger fish were more sensitive. Generally, the toxicity of hydrogen peroxide increased for all species as water temperature increased. The results of these experiments demonstrate that it is important to consider the effects of species, life stage, and water temperature when conducting hydrogen peroxide treatments.

  11. Protective effects of nicergoline against hydrogen peroxide toxicity in rat neuronal cell line.

    PubMed

    Iwata, E; Miyazaki, I; Asanuma, M; Iida, A; Ogawa, N

    1998-07-17

    We examined the effects of nicergoline on hydrogen peroxide (H2O2)-induced neurotoxicity in cultured rat neuronal cell line (B50). H2O2 induced death of B50 cells in a dose-dependent manner. The H2O2-induced neuronal cell death was significantly decreased in B50 cells maintained in the presence of nicergoline. We compared the levels of antioxidants (glutathione, catalase and superoxide dismutase) in nicergoline-treated and untreated B50 cells. Lipid peroxidation products (thiobarbituric acid reactive substances, TBARS) levels were also measured. Cultures treated with nicergoline had higher levels of catalase activity. TBARS level was significantly lower in nicergoline-treated cells than in untreated cells. Our results suggest that nicergoline may induce the up-regulation of intracellular antioxidant defences and protect the neuronal cells against oxidative stress.

  12. Inactivation of possible micromycete food contaminants using the low-temperature plasma and hydrogen peroxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Čeřovský, M., E-mail: scholtz@aldebaran.cz; Khun, J.; Rusová, K.

    2013-09-15

    The inhibition effect of hydrogen peroxide aerosol, low-temperature plasma and their combinations has been studied on several micromycetes spores. The low-temperature plasma was generated in corona discharges in the open air apparatus with hydrogen peroxide aerosol. Micromycete spores were inoculated on the surface of agar plates, exposed solely to the hydrogen peroxide aerosol, corona discharge or their combination. After incubation the diameter of inhibition zone was measured. The solely positive corona discharge exhibits no inactivation effect, the solely negative corona discharge and solely hydrogen peroxide aerosol exhibit the inactivation effect, however their combinations exhibit to be much more effective. Low-temperaturemore » plasma and hydrogen peroxide aerosol present a possible alternative method of microbial decontamination of food, food packages or other thermolabile materials.« less

  13. Ochratoxin A induced premature senescence in human renal proximal tubular cells.

    PubMed

    Yang, Xuan; Liu, Sheng; Huang, Chuchu; Wang, Haomiao; Luo, Yunbo; Xu, Wentao; Huang, Kunlun

    2017-05-01

    Ochratoxin A (OTA) has many nephrotoxic effects and is a promising compound for the study of nephrotoxicity. Human renal proximal tubular cells (HKC) are an important model for the study of renal reabsorption, renal physiology and pathology. Since the induction of OTA in renal senescence is largely unknown, whether OTA can induce renal senescence, especially at a sublethal dose, and the mechanism of OTA toxicity remain unclear. In our study, a sublethal dose of OTA led to an enhanced senescent phenotype, β-galactosidase staining and senescence associated secretory phenotype (SASP). Cell cycle arrest and cell shape alternations also confirmed senescence. In addition, telomere analysis by RT-qPCR allowed us to classify OTA-induced senescence as a premature senescence. Western blot assays showed that the p53-p21 and the p16-pRB pathways and the ezrin-associated cell spreading changes were activated during the OTA-induced senescence of HKC. In conclusion, our results demonstrate that OTA promotes the senescence of HKC through the p53-p21 and p16-pRB pathways. The understanding of the mechanisms of OTA-induced senescence is critical in determining the role of OTA in cytotoxicity and its potential carcinogenicity. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Loss of DLK expression in WI-38 human diploid fibroblasts induces a senescent-like proliferation arrest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daviau, Alex; Couture, Jean-Philippe; Blouin, Richard, E-mail: Richard.Blouin@USherbrooke.ca

    Highlights: {yields} Role of DLK in cell proliferation. {yields} Modulation of DLK expression during cell cycle progression. {yields} DLK knockdown induces proliferation arrest and senescence. {yields} DLK-depleted cells display loss of cyclin D1 and up-regulation of p21. {yields} DLK participates in cell proliferation by modulating cell cycle regulator expression. -- Abstract: DLK, a serine/threonine kinase that functions as an upstream activator of the mitogen-activated protein kinase (MAPK) pathways, has been shown to play a role in development, cell differentiation, apoptosis and neuronal response to injury. Interestingly, recent studies have shown that DLK may also be required for cell proliferation, althoughmore » little is known about its specific functions. To start addressing this issue, we studied how DLK expression is modulated during cell cycle progression and what effect DLK depletion has on cell proliferation in WI-38 fibroblasts. Our results indicate that DLK protein levels are low in serum-starved cells, but that serum addition markedly stimulated it. Moreover, RNA interference experiments demonstrate that DLK is required for ERK activity, expression of the cell cycle regulator cyclin D1 and proliferation of WI-38 cells. DLK-depleted cells also show a senescent phenotype as revealed by senescence-associated galactosidase activity and up-regulation of the senescence pathway proteins p53 and p21. Consistent with a role for p53 in this response, inhibition of p53 expression by RNA interference significantly alleviated senescence induced by DLK knockdown. Together, these findings indicate that DLK participates in cell proliferation and/or survival, at least in part, by modulating the expression of cell cycle regulatory proteins.« less

  15. The sigma-1 receptor-Zinc finger protein 179 pathway protects against hydrogen peroxide-induced cell injury

    PubMed Central

    Su, Tzu-Chieh; Lin, Shu-Hui; Lee, Pin-Tse; Yeh, Shiu-Hwa; Hsieh, Tsung-Hsun; Chou, Szu-Yi; Su, Tsung-Ping; Hung, Jan-Jong; Chang, Wen-Chang; Lee, Yi-Chao; Chuang, Jian-Ying

    2017-01-01

    The accumulation of reactive oxygen species (ROS) have implicated the pathogenesis of several human diseases including neurodegenerative disorders, stroke, and traumatic brain injury, hence protecting neurons against ROS is very important. In this study, we focused on sigma-1 receptor (Sig-1R), a chaperone at endoplasmic reticulum, and investigated its protective functions. Using hydrogen peroxide (H2O2)-induced ROS accumulation model, we verified that apoptosis-signaling pathways were elicited by H2O2 treatment. However, the Sig-1R agonists, dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS), reduced the activation of apoptotic pathways significantly. By performing protein-protein interaction assays and shRNA knockdown of Sig-1R, we identified the brain Zinc finger protein 179 (Znf179) as a downstream target of Sig-1R regulation. The neuroprotective effect of Znf179 overexpression was similar to that of DHEAS treatment, and likely mediated by affecting the levels of antioxidant enzymes. We also quantified the levels of peroxiredoxin 3 (Prx3) and superoxide dismutase 2 (SOD2) in the hippocampi of wild-type and Znf179 knockout mice, and found both enzymes to be reduced in the knockout versus the wild-type mice. In summary, these results reveal that Znf179 plays a novel role in neuroprotection, and Sig-1R agonists may be therapeutic candidates to prevent ROS-induced damage in neurodegenerative and neurotraumatic diseases. PMID:26792191

  16. A comparison of oncogene-induced senescence and replicative senescence: implications for tumor suppression and aging.

    PubMed

    Nelson, David M; McBryan, Tony; Jeyapalan, Jessie C; Sedivy, John M; Adams, Peter D

    2014-06-01

    Cellular senescence is a stable proliferation arrest associated with an altered secretory pathway, the senescence-associated secretory phenotype. However, cellular senescence is initiated by diverse molecular triggers, such as activated oncogenes and shortened telomeres, and is associated with varied and complex physiological endpoints, such as tumor suppression and tissue aging. The extent to which distinct triggers activate divergent modes of senescence that might be associated with different physiological endpoints is largely unknown. To begin to address this, we performed gene expression profiling to compare the senescence programs associated with two different modes of senescence, oncogene-induced senescence (OIS) and replicative senescence (RS [in part caused by shortened telomeres]). While both OIS and RS are associated with many common changes in gene expression compared to control proliferating cells, they also exhibit substantial differences. These results are discussed in light of potential physiological consequences, tumor suppression and aging.

  17. Protective effect of curcumin (Curcuma longa) against D-galactose-induced senescence in mice.

    PubMed

    Kumar, Anil; Prakash, Atish; Dogra, Samrita

    2011-01-01

    Brain senescence plays an important role in cognitive dysfunction and neurodegenerative disorders. Curcumin was reported to have beneficial effect against several neurodegenerative disorders including Alzheimer's disease. Therefore, the present study was conducted in order to explore the possible role of curcumin against D-galactose-induced cognitive dysfunction, oxidative damage, and mitochondrial dysfunction in mice. Chronic administration of D-galactose for 6 weeks significantly impaired cognitive function (both in Morris water maze and elevated plus maze), locomotor activity, oxidative defense (raised lipid peroxidation, nitrite concentration, depletion of reduced glutathione and catalase activity), and mitochondrial enzyme complex activities (I, II, and III) as compared to vehicle treated group. Curcumin (15 and 30 mg/kg) and galantamine (5 mg/kg) treatment for 6 weeks significantly improved cognitive tasks, locomotor activity, oxidative defense, and restored mitochondrial enzyme complex activity as compared to control (D-galactose). Chronic D-galactose treatment also significantly increased acetylcholine esterase activity that was attenuated by curcumin (15 and 30 mg/kg) and galantamine (5 mg/kg) treatment. In conclusion, the present study highlights the therapeutic potential of curcumin against d-galactose induced senescence in mice.

  18. Arsenic oxidation by UV radiation combined with hydrogen peroxide.

    PubMed

    Sorlini, S; Gialdini, F; Stefan, M

    2010-01-01

    Arsenic is a widespread contaminant in the environment around the world. The most abundant species of arsenic in groundwater are arsenite [As(III)] and arsenate [As(V)]. Several arsenic removal processes can reach good removal yields only if arsenic is present as As(V). For this reason it is often necessary to proceed with a preliminary oxidation of As(III) to As(V) prior to the removal technology. Several studies have focused on arsenic oxidation with conventional reagents and advanced oxidation processes. In the present study the arsenic oxidation was evaluated using hydrogen peroxide, UV radiation and their combination in distilled and in real groundwater samples. Hydrogen peroxide and UV radiation alone are not effective at the arsenic oxidation. Good arsenic oxidation yields can be reached in presence of hydrogen peroxide combined with a high UV radiation dose (2,000 mJ/cm(2)). The quantum efficiencies for As(III) oxidation were calculated for both the UV photolysis and the UV/H(2)O(2) processes.

  19. Novel aqueous dual-channel aluminum-hydrogen peroxide battery

    NASA Astrophysics Data System (ADS)

    Marsh, Catherine; Licht, Stuart

    1994-06-01

    A dual-channel aluminum hydrogen peroxide battery is introduced with an open-circuit voltage of 1.9 volts, polarization losses of 0.9 mV cm(exp 2) mA(exp -1), and power densities of 1 W/cm(exp 2). Catholyte and anolyte cell compartments are separated by an Ir/Pd modified porous nickel cathode. Separation of catholyte and anolyte chambers prevents hydrogen peroxide poisoning of the aluminum anode. The battery is expressed by aluminum oxidation and aqueous solution phase hydrogen peroxide reduction for an overall battery discharge consisting of 2Al + 3H2O2 + 2OH(-) yields 2AlO2(-) + 4H2O E = 2.3 V. The search for electrical propulsion sources which fit the requirements for electrically powered vehicles has blurred the standard characteristics associated with electrochemical storage systems. Presently, electrochemical systems comprised of mechanically rechargeable primary batteries, secondary batteries, and fuel cells are candidates for electrochemical propulsion sources. While important advances in energy and power density continue for nonaqueous and molten electrolytes, aqueous electrolyte batteries often have an advantage in simplicity, conductivity, cost effectiveness, and environmental impact. Systems coupling aluminum anodes and aqueous electrolytes have been investigated. These systems include: aluminum/silver oxide, aluminum/manganese dioxide, aluminum air, aluminum/hydrogen peroxide aqueous batteries, and the recently introduced aluminum/ferricyanide and aluminum sulfur aqueous batteries. Conventional aqueous systems such as the nickel cadmium and lead-acid batteries are characterized by their relatively low energy densities and adverse environmental impact. Other systems have substantially higher theoretical energy capacities. While aluminum-silver oxide has demonstrated the highest steady-state power density, its high cost is an impediment for widespread utilization for electric propulsion.

  20. PROCESS OF ELIMINATING HYDROGEN PEROXIDE IN SOLUTIONS CONTAINING PLUTONIUM VALUES

    DOEpatents

    Barrick, J.G.; Fries, B.A.

    1960-09-27

    A procedure is given for peroxide precipitation processes for separating and recovering plutonium values contained in an aqueous solution. When plutonium peroxide is precipitated from an aqueous solution, the supernatant contains appreciable quantities of plutonium and peroxide. It is desirable to process this solution further to recover plutonium contained therein, but the presence of the peroxide introduces difficulties; residual hydrogen peroxide contained in the supernatant solution is eliminated by adding a nitrite or a sulfite to this solution.

  1. Hydrogen peroxide and caustic soda: Dancing with a dragon while bleaching

    Treesearch

    Peter W. Hart; Carl Houtman; Kolby Hirth

    2013-01-01

    When hydrogen peroxide is mixed with caustic soda, an auto-accelerating reaction can lead to generation of significant amounts of heat and oxygen. On the basis of experiments using typical pulp mill process concentration and temperatures, a relatively simple kinetic model has been developed. Evaluation of these model results reveals that hydrogen peroxide-caustic soda...

  2. Bacillus pumilus KatX2 confers enhanced hydrogen peroxide resistance to a Bacillus subtilis PkatA::katX2 mutant strain.

    PubMed

    Handtke, Stefan; Albrecht, Dirk; Zühlke, Daniela; Otto, Andreas; Becher, Dörte; Schweder, Thomas; Riedel, Kathrin; Hecker, Michael; Voigt, Birgit

    2017-04-26

    Bacillus pumilus cells exhibit a significantly higher resistance to hydrogen peroxide compared to closely related Bacilli like Bacillus subtilis. In this study we analyzed features of the catalase KatX2 of B. pumilus as one of the most important parts of the cellular response to hydrogen peroxide. KatX2, the vegetative catalase expressed in B. pumilus, was compared to the vegetative catalase KatA of B. subtilis. Data of our study demonstrate that B. pumilus can degrade toxic concentrations of hydrogen peroxide faster than B. subtilis. By replacing B. subtilis katA gene by katX2 we could significantly enhance its resistance to H 2 O 2 and its potential to eliminate this toxic compound. Mutant cells showed a 1.5- to 2-fold higher survival to toxic concentrations of hydrogen peroxide compared to wild type cells. Furthermore, we found reversible but also irreversible oxidations of the KatX2 protein which, in contrast to KatA, contains several cysteine residues. Our study indicates that the catalase KatX2 plays a major role in the increased resistance of B. pumilus to oxidative stress caused by hydrogen peroxide. Resistance to hydrogen peroxide of other Bacilli can be enhanced by exchanging the native catalase in the cells with katX2.

  3. Rosiglitazone ameliorates senescence-like phenotypes in a cellular photoaging model.

    PubMed

    Chen, Liang; Bi, Bo; Zeng, Jiping; Zhou, Yiqun; Yang, Ping; Guo, Yu; Zhu, Jingjing; Yang, Qingjian; Zhu, Ningwen; Liu, Tianyi

    2015-03-01

    Rosiglitazone (RO), a second-generation thiazolidinedione used mainly in the treatment of non-insulin-dependent diabetes mellitus, has been discovered to be a high-affinity ligand for peroxisome proliferator-activated receptor-γ (PPAR-γ). Several studies have revealed that PPAR-γ is also involved in the regulation of oxidative stress and chronic inflammation associated with aging process in vivo as well as with cellular senescence in vitro. We sought to investigate whether RO pretreatment will counteract the photoaging process using a well-established cellular photoaging model. Murine dermal fibroblasts (MDFs) were cultured in the absence or presence of RO for 48h, followed by exposure to repeated UVB irradiation. The senescent phenotypes were evaluated including cell viability, senescence-associated β-galactosidase (SA-β-gal) expression, cell morphology, ROS generation, cell cycle, production and degradation of extracellular matrix (ECM), and the potential mechanisms were discussed. Pretreatment with RO (40μM) significantly decreased the staining intensity and the percentage of SA-β-gal-positive cells and reserved the elongated cell shape compared with UVB group. The cells pretreated with RO also showed decreased UVB-induced degradation of type I collagen by decreasing MMPs expressions. In addition, we observed counteraction of cell-cycle arrest and repression of UVB-induced p53 and p21 in the presence of RO. We further confirmed a significant decrease in ROS accumulation accompanied by an increase in catalase in RO group. RO, a potent PPAR-γ activator, counteracts senescence-like phenotypes, including long-term growth arrest, flattened morphology, degradation of ECM and SA-β-gal-positive staining in MDFs by inhibiting the expression of MMPs and increasing the synthesis of catalase when administered to repeated UVB irradiation. The novel application of RO may lead to innovative and effective anti-photoaging therapies. Copyright © 2015 Japanese Society

  4. Sensory and Functionality Differences of Whey Protein Isolate Bleached by Hydrogen or Benzoyl Peroxide.

    PubMed

    Smith, Tucker J; Foegeding, E Allen; Drake, MaryAnne

    2015-10-01

    Whey protein is a highly functional food ingredient used in a wide variety of applications. A large portion of fluid whey produced in the United States is derived from Cheddar cheese manufacture and contains annatto (norbixin), and therefore must be bleached. The objective of this study was to compare sensory and functionality differences between whey protein isolate (WPI) bleached by benzoyl peroxide (BP) or hydrogen peroxide (HP). HP and BP bleached WPI and unbleached controls were manufactured in triplicate. Descriptive sensory analysis and gas chromatography-mass spectrometry were conducted to determine flavor differences between treatments. Functionality differences were evaluated by measurement of foam stability, protein solubility, SDS-PAGE, and effect of NaCl concentration on gelation relative to an unbleached control. HP bleached WPI had higher concentrations of lipid oxidation and sulfur containing volatile compounds than both BP and unbleached WPI (P < 0.05). HP bleached WPI was characterized by high aroma intensity, cardboard, cabbage, and fatty flavors, while BP bleached WPI was differentiated by low bitter taste. Overrun and yield stress were not different among WPI (P < 0.05). Soluble protein loss at pH 4.6 of WPI decreased by bleaching with either hydrogen peroxide or benzoyl peroxide (P < 0.05), and the heat stability of WPI was also distinct among WPI (P < 0.05). SDS PAGE results suggested that bleaching of whey with either BP or HP resulted in protein degradation, which likely contributed to functionality differences. These results demonstrate that bleaching has flavor effects as well as effects on many of the functionality characteristics of whey proteins. Whey protein isolate (WPI) is often used for its functional properties, but the effect of oxidative bleaching chemicals on the functional properties of WPI is not known. This study identifies the effects of hydrogen peroxide and benzoyl peroxide on functional and flavor characteristics of WPI

  5. Antioxidative effects of fermented sesame sauce against hydrogen peroxide-induced oxidative damage in LLC-PK1 porcine renal tubule cells

    PubMed Central

    Song, Jia-Le; Choi, Jung-Ho; Seo, Jae-Hoon; Kil, Jeung-Ha

    2014-01-01

    BACKGROUND/OBJECTIVES This study was performed to investigate the in vitro antioxidant and cytoprotective effects of fermented sesame sauce (FSeS) against hydrogen peroxide (H2O2)-induced oxidative damage in renal proximal tubule LLC-PK1 cells. MATERIALS/METHODS 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl radical (•OH), and H2O2 scavenging assay was used to evaluate the in vitro antioxidant activity of FSeS. To investigate the cytoprotective effect of FSeS against H2O2-induced oxidative damage in LLC-PK1 cells, the cellular levels of reactive oxygen species (ROS), lipid peroxidation, and endogenous antioxidant enzymes including catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-px) were measured. RESULTS The ability of FSeS to scavenge DPPH, •OH and H2O2 was greater than that of FSS and AHSS. FSeS also significantly inhibited H2O2-induced (500 µM) oxidative damage in the LLC-PK1 cells compared to FSS and AHSS (P < 0.05). Following treatment with 100 µg/mL of FSeS and FSS to prevent H2O2-induced oxidation, cell viability increased from 56.7% (control) to 83.7% and 75.6%, respectively. However, AHSS was not able to reduce H2O2-induced cell damage (viability of the AHSS-treated cells was 54.6%). FSeS more effectively suppressed H2O2-induced ROS generation and lipid peroxidation compared to FSS and AHSS (P < 0.05). Compared to the other sauces, FSeS also significantly increased cellular CAT, SOD, and GSH-px activities and mRNA expression (P < 0.05). CONCULUSIONS These results from the present study suggest that FSeS is an effective radical scavenger and protects against H2O2-induced oxidative damage in LLC-PK1 cells by reducing ROS levels, inhibiting lipid peroxidation, and stimulating antioxidant enzyme activity. PMID:24741396

  6. Electrosynthesis of hydrogen peroxide via the reduction of oxygen assisted by power ultrasound.

    PubMed

    González-García, José; Banks, Craig E; Sljukić, Biljana; Compton, Richard G

    2007-04-01

    The electrosynthesis of hydrogen peroxide using the oxygen reduction reaction has been studied in the absence and presence of power ultrasound in a non-optimized sono-electrochemical flow reactor (20 cm cathodic compartment length with 6.5 cm inner diameter) with reticulated vitreous glassy carbon electrode (30 x 40 x 10 mm, 10 ppi, 7 cm(2)cm(-3)) as the cathode. The effect of several electrochemical operational variables (pH, volumetric flow, potential) and of the sono-electrochemical parameters (ultrasound amplitude and horn-to-electrode distance) on the cumulative concentration of hydrogen peroxide and current efficiency of the electrosynthesis process have been explored. The application of power ultrasound was found to increase both the cumulative concentration of hydrogen peroxide and the current efficiency. The application of ultrasound is therefore a promising approach to the increased efficiency of production of hydrogen peroxide by electrosynthesis, even in the solutions of lower pH (<12). The results demonstrate the feasibility of at-site-of-use green synthesis of hydrogen peroxide.

  7. Conversion of aryl iodides into aryliodine(III) dichlorides by an oxidative halogenation strategy using 30% aqueous hydrogen peroxide in fluorinated alcohol.

    PubMed

    Podgorsek, Ajda; Iskra, Jernej

    2010-04-20

    Oxidative chlorination with HCl/H2O2 in 1,1,1-trifluoroethanol was used to transform aryl iodides into aryliodine(III) dihalides. In this instance 1,1,1-trifluoroethanol is not only the reaction medium, but is also an activator of hydrogen peroxide for the oxidation of hydrochloric acid to molecular chlorine. Aryliodine(III) dichlorides were formed in 72-91% isolated yields in the reaction of aryl iodides with 30% aqueous hydrogen peroxide and hydrochloric acid at ambient temperature. A study of the effect that substituents on the aromatic ring have on the formation and stability of aryliodine(III) dichlorides shows that the transformation is easier to achieve in the presence of the electron-donating groups (i.e. methoxy), but in this case the products rapidly decompose under the reported reaction conditions to form chlorinated arenes. The results suggest that oxidation of hydrogen chloride with hydrogen peroxide is the initial reaction step, while direct oxidation of aryl iodide with hydrogen peroxide is less likely to occur.

  8. Influence of calcium on glucose biosensor response and on hydrogen peroxide detection.

    PubMed

    Labat-Allietta, N; Thévenot, D R

    1998-01-01

    Of small species capable of reaching a platinum working electrode from biological samples, calcium cations have been found to inhibit significantly glucose biosensor responses. The sensitivities to glucose of sensors immersed in carbonate buffer saline solutions decreased when 0.5 mM calcium chloride was added. The degree of inhibition was proportional to the glucose response in the absence of calcium (0-17% of the normalized current). Likewise, sensor sensitivities to hydrogen peroxide decreased, in the 5-90% range, in the presence of 0.5 mM calcium. Bare Pt-lr wires show a reversible inhibition of hydrogen peroxide sensitivity. This reversible inhibition is directly related to the decrease of hydrogen peroxide oxidation rate at the platinum anode: this has been evidenced, using rotating disk electrodes, by plotting Koutecky-Levich plots. Such inhibition has been found both for free and chelated calcium cations at levels below 1 mM. Several hypotheses for possible reactions between platinum, hydrogen peroxide and calcium are discussed.

  9. Effect of exogenous hydrogen peroxide on biophoton emission from radish root cells.

    PubMed

    Rastogi, Anshu; Pospísil, Pavel

    2010-01-01

    Biophotons spontaneously emitted from radish root cells were detected using highly sensitive photomultiplier tube. Freshly isolated radish root cells exhibited spontaneous photon emission of about 4 counts s(-1). Addition of hydrogen peroxide to the cells caused significant enhancement in biophoton emission to about 500 counts s(-1). Removal of molecular oxygen using glucose/glucose oxidase system and scavengering of reactive oxygen species by reducing agents such are sodium ascorbate and cysteine completely diminished biophoton emission. Spectral analysis of the hydrogen peroxide-induced biophoton emission indicates that biophotons are emitted mainly in green-red region of the spectra. The data provided by electron paramagnetic resonance spin-trapping technique showed that formation of singlet oxygen observed after addition of H2O2 correlates with enhancement in biophoton emission. These observations provide direct evidence that singlet oxygen is involved in biophoton emission from radish root cells. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  10. Development of vapor phase hydrogen peroxide sterilization process for spacecraft applications

    NASA Technical Reports Server (NTRS)

    Rohatgi, N.; Schubert, W.; Knight, J.; Quigley, M.; Forsberg, G.; Ganapathi, G.; Yarbrough, C.; Koukol, R.

    2001-01-01

    This paper will present test data and discussion on the work we are conducting at JPL to address the following issues: 1) efficacy of sterilization process; 2) diffusion of hydrogen peroxide under sterilization process conditions into hard to reach places; 3) materials and components compatibility with the sterilization process and 4) development of methodology to protect sensitive components from hydrogen peroxide vapor.

  11. Fluorescent Probes Used for Detection of Hydrogen Peroxide under Biological Conditions.

    PubMed

    Żamojć, Krzysztof; Zdrowowicz, Magdalena; Jacewicz, Dagmara; Wyrzykowski, Dariusz; Chmurzyński, Lech

    2016-05-03

    Hydrogen peroxide is a well-established precursor of reactive oxygen and nitrogen species that are known to contribute to oxidative stress-the crucial factor responsible for the course of a wide range of phy-sicochemical processes as well as the genesis of various diseases, such as cancer and neurodegenerative disorders. Thus, the development of sensitive and selective methods for the detection and quantitative determination of hydrogen peroxide is of great importance in monitoring the in vivo production of that species and elucidating its biological functions. This review highlights the progress that has been made in the development of fluorescent and luminescent probes (excluding nanoparticles) employed to monitor hydrogen peroxide under biological conditions. Attention was focused on probes developed in the past 10 years.

  12. Developing Planetary Protection Technology: Recurrence of Hydrogen Peroxide Resistant Microbes from Spacecraft Assembly Facilities

    NASA Astrophysics Data System (ADS)

    Kempf, M. J.; Chen, F.; Quigley, M. S.; Pillai, S.; Kern, R.; Venkateswaran, K.

    2001-12-01

    Hydrogen peroxide vapor is currently the sterilant-of-choice for flight hardware because it is a low-heat sterilization process suitable for use with various spacecraft components. Hydrogen peroxide is a strong oxidizing agent that produces hydroxyl free radicals ( .OH) which attack essential cell components, including lipids, proteins, and DNA. Planetary protection research efforts at the Jet Propulsion Laboratory (JPL) are focused on developing cleaning and sterilization technologies for spacecraft preparation prior to launch. These efforts include research to assess the microbial diversity of spacecraft assembly areas and any extreme characteristics these microbes might possess. Previous studies have shown that some heat-tolerant Bacillus species isolated from the JPL Spacecraft Assembly Facility (SAF) are resistant to recommended hydrogen peroxide vapor sterilization exposures. A Bacillus species, which was related to a hydrogen peroxide resistant strain, was repeatedly isolated from various locations in the JPL-SAF. This species was found in both unclassified (entrance floors, ante-room, and air-lock) and classified (class 100K) (floors, cabinet tops, and air) areas. The phylogenetic affiliation of these strains was carried out using biochemical tests and 16S rDNA sequencing. The 16S rDNA analysis showed >99% sequence similarity to Bacillus pumilus. In order to understand the epidemiology of these strains, a more highly evolved gene (topoisomerase II β -subunit, gyrB) was also sequenced. Among 4 clades, one cluster, comprised of 3 strains isolated from the air-lock area, tightly aligned with the B. pumilus ATCC 7061 type strain (97%). The gyrB sequence similarity of this clade was only 91% with the 3 other clades. The genetic relatedness of these strains, as per pulse field gel electrophoresis patterns, will be presented. The vegetative cells and spores of a number of isolates were tested for their hydrogen peroxide resistance. Cells and spores were

  13. Chlorophyll loss associated with heat-induced senescence in bentgrass.

    PubMed

    Jespersen, David; Zhang, Jing; Huang, Bingru

    2016-08-01

    Heat stress-induced leaf senescence is characterized by the loss of chlorophyll from leaf tissues. The objectives of this study were to examine genetic variations in the level of heat-induced leaf senescence in hybrids of colonial (Agrostis capillaris)×creeping bentgrass (Agrostis stolonifera) contrasting in heat tolerance, and determine whether loss of leaf chlorophyll during heat-induced leaf senescence was due to suppressed chlorophyll synthesis and/or accelerated chlorophyll degradation in the cool-season perennial grass species. Plants of two hybrid backcross genotypes ('ColxCB169' and 'ColxCB190') were exposed to heat stress (38/33°C, day/night) for 28 d in growth chambers. The analysis of turf quality, membrane stability, photochemical efficiency, and chlorophyll content demonstrated significant variations in the level of leaf senescence induced by heat stress between the two genotypes, with ColXCB169 exhibiting a lesser degree of decline in chlorophyll content, photochemical efficiency and membrane stability than ColXCB190. The assays of enzymatic activity or gene expression of several major chlorophyll-synthesizing (porphobilinogen deaminase, Mg-chelatase, protochlorophyllide-reductase) and chlorophyll-degrading enzymes (chlorophyllase, pheophytinase, and chlorophyll-degrading peroxidase) indicated heat-induced decline in leaf chlorophyll content was mainly due to accelerated chlorophyll degradation, as manifested by increased gene expression levels of chlorophyllase and pheophytinase, and the activity of pheophytinase (PPH), while chlorophyll-synthesizing genes and enzymatic activities were not differentially altered by heat stress in the two genotypes. The analysis of heat-induced leaf senescence of pph mutants of Arabidopsis further confirmed that PPH could be one enzymes that plays key roles in regulating heat-accelerated chlorophyll degradation. Further research on enzymes responsible in part for the loss of chlorophyll during heat-induced

  14. Hydrogen peroxide-induced apoptosis of human lens epithelial cells is inhibited by parthenolide

    PubMed Central

    Shentu, Xing-Chao; Ping, Xi-Yuan; Cheng, Ya-Lan; Zhang, Xin; Tang, Ye-Lei; Tang, Xia-Jing

    2018-01-01

    AIM To explore the effect of parthenolide on hydrogen peroxide (H2O2)-induced apoptosis in human lens epithelial (HLE) cells. METHODS The morphology and number of apoptotic HLE cells were assessed using light microscopy and flow cytometry. Cell viability was tested by MTS assay. In addition, the expression of related proteins was measured by Western blot assay. RESULTS Apoptosis of HLE cells was induced by 200 µmol/L H2O2, and the viability of these cells was similar to the half maximal inhibitory concentration (IC50), as examined by MTS assay. In addition, cells were treated with either different concentrations (6.25, 12.5, 25 and 50 µmol/L) of parthenolide along with 200 µmol/L H2O2 or only 50 µmol/L parthenolide or 200 µmol/L H2O2 for 24h. Following treatment with higher concentrations of parthenolide (50 µmol/L), fewer HLE cells underwent H2O2-induced apoptosis, and cell viability was increased. Further, Western blot assay showed that the parthenolide treatment reduced the expression of caspase-3 and caspase-9, which are considered core apoptotic proteins, and decreased the levels of phosphorylated nuclear factor-κB (NF-κB), ERK1/2 [a member of the mitogen-activated protein kinase (MAPK) family], and Akt proteins in HLE cells. CONCLUSION Parthenolide may suppress H2O2-induced apoptosis in HLE cells by interfering with NF-κB, MAPKs, and Akt signaling. PMID:29375984

  15. Protein oxidation and degradation during proliferative senescence of human MRC-5 fibroblasts.

    PubMed

    Sitte, N; Merker, K; von Zglinicki, T; Grune, T

    2000-03-01

    One of the highlights of age-related changes of cellular metabolism is the accumulation of oxidized proteins. The aging process on a cellular level can be treated either as the ongoing proliferation until a certain number of cell divisions is reached (the Hayflick limit) or as the aging of nondividing cells, that is, the age-related changes in cells without proliferation. The present investigation was undertaken to reveal the changes in protein turnover, proteasome activity, and protein oxidation status during proliferative senescence. We were able to demonstrate that the activity of the cytosolic proteasomal system declines dramatically during the proliferative senescence of human MRC-5 fibroblasts. Regardless of the loss in activity, it could be demonstrated that there are no changes in the transcription and translation of proteasomal subunits. This decline in proteasome activity was accompanied by an increased concentration of oxidized proteins. Cells at higher proliferation stages were no longer able to respond with increased degradation of endogenous [(35)S]-Met-radiolabeled proteins after hydrogen peroxide- or quinone-induced oxidative stress. It could be demonstrated that oxidized proteins in senescent human MRC-5 fibroblasts are not as quickly removed as they are in young cells. Therefore, our study demonstrates that the accumulation of oxidized proteins and decline in protein turnover and activity of the proteasomal system are not only a process of postmitotic aging but also occur during proliferative senescence and result in an increased half-life of oxidized proteins.

  16. In vitro protective effects of an aqueous extract of Clitoria ternatea L. flower against hydrogen peroxide-induced cytotoxicity and UV-induced mtDNA damage in human keratinocytes.

    PubMed

    Zakaria, N N A; Okello, E J; Howes, M-J; Birch-Machin, M A; Bowman, A

    2018-06-01

    The traditional practice of eating the flowers of Clitoria ternatea L. or drinking their infusion as herbal tea in some of the Asian countries is believed to promote a younger skin complexion and defend against skin aging. This study was conducted to investigate the protective effect of C. ternatea flower water extract (CTW) against hydrogen peroxide-induced cytotoxicity and ultraviolet (UV)-induced mitochondrial DNA (mtDNA) damage in human keratinocytes. The protective effect against hydrogen peroxide-induced cytotoxicity was determined by 3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay, and mtDNA damage induced by UV was determined by polymerase chain reaction. Preincubation of HaCaT with 100, 250, and 500 μg/ml CTW reduced cytotoxicity effects of H 2 O 2 compared with control (H 2 O 2 alone). CTW also significantly reduced mtDNA damage in UV-exposed HaCaT (p < .05). CTW was chemically-characterized using high resolution liquid chromatography-mass spectrometry. The main compounds detected were assigned as anthocyanins derived from delphinidin, including polyacylated ternatins, and flavonol glycosides derived from quercetin and kaempferol. These results demonstrated the protective effects of C. ternatea flower extracts that contain polyacylated anthocyanins and flavonol glycosides as major constituents, against H 2 O 2 and UV-induced oxidative stress on skin cells, and may provide some explanation for the putative traditional and cosmetic uses of C. ternatea flower against skin aging. Copyright © 2018 John Wiley & Sons, Ltd.

  17. Analysis of the Color and Fluorescence Alterations of Enamel and Dentin Treated With Hydrogen Peroxide.

    PubMed

    Caneppele, Taciana Marco Ferraz; Rocha Gomes Torres, Carlos; Bresciani, Eduardo

    2015-10-01

    The aim of this study was to evaluate the effect of hydrogen peroxide whitening on fluorescence and color of bovine enamel and dentin. Twenty five dentin discs and 25 enamel discs, with 6 mm diameter and 1 mm thick, were obtained. Direct fluorescence (spectrofluorophotometry) and color (spectrophotometry) were assessed. After fluorescence and color baseline measurements, specimens were immersed in a 35% hydrogen peroxide (HP) solution for 1 h. This procedure was repeated after 7 days. Final fluorescence and color measurements were performed after the second immersion. Chemical characterization of 5 additional specimens was also performed. Data were submitted to repeated analysis of variance and Tukey's test for fluorescence and unpaired t-test for color and chemical components (p<0.05). Fluorescence decreased significantly in dentin specimens after whitening. Enamel presented lower fluorescence than dentin at baseline, but this parameter did not decrease after whitening. Color changes were observed for both substrates, with significantly greater whitening effect in dentin (ΔE=10.37) (p<0.001). Whitening by hydrogen peroxide induced significant decrease in fluorescence of tooth dentin and promoted significant color changes in dentin and enamel with more accentuated outcomes in dentin.

  18. Hydrogen peroxide stimulates cell motile activity through LPA receptor-3 in liver epithelial WB-F344 cells.

    PubMed

    Shibata, Ayano; Tanabe, Eriko; Inoue, Serina; Kitayoshi, Misaho; Okimoto, Souta; Hirane, Miku; Araki, Mutsumi; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2013-04-12

    Hydrogen peroxide which is one of reactive oxygen species (ROS) mediates a variety of biological responses, including cell proliferation and migration. In the present study, we investigated whether lysophosphatidic acid (LPA) signaling is involved in cell motile activity stimulated by hydrogen peroxide. The rat liver epithelial WB-F344 cells were treated with hydrogen peroxide at 0.1 or 1 μM for 48 h. In cell motility assays, hydrogen peroxide treated cells showed significantly high cell motile activity, compared with untreated cells. To measure the expression levels of LPA receptor genes, quantitative real time RT-PCR analysis was performed. The expressions of LPA receptor-3 (Lpar3) in hydrogen peroxide treated cells were significantly higher than those in control cells, but not Lpar1 and Lpar2 genes. Next, to assess the effect of LPA3 on cell motile activity, the Lpar3 knockdown cells from WB-F344 cells were also treated with hydrogen peroxide. The cell motile activity of the knockdown cells was not stimulated by hydrogen peroxide. Moreover, in liver cancer cells, hydrogen peroxide significantly activated cell motility of Lpar3-expressing cells, but not Lpar3-unexpressing cells. These results suggest that LPA signaling via LPA3 may be mainly involved in cell motile activity of WB-F344 cells stimulated by hydrogen peroxide. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Functional analysis of a novel hydrogen peroxide resistance gene in Lactobacillus casei strain Shirota.

    PubMed

    Serata, Masaki; Kiwaki, Mayumi; Iino, Tohru

    2016-11-01

    Lactic acid bacteria have a variety of mechanisms for tolerance to oxygen and reactive oxygen species, and these mechanisms differ among species. Lactobacillus casei strain Shirota grows well under aerobic conditions, indicating that the various systems involved in oxidative stress resistance function in this strain. To elucidate the mechanism of oxidative stress resistance in L. casei strain Shirota, we examined the transcriptome response to oxygen or hydrogen peroxide exposure. We then focused on an uncharacterized gene that was found to be up-regulated by both oxygen and hydrogen peroxide stress; we named the gene hprA1 (hydrogen peroxide resistance gene). This gene is widely distributed among lactobacilli. We investigated the involvement of this gene in oxidative stress resistance, as well as the mechanism of tolerance to hydrogen peroxide. Growth of L. casei MS105, an hprA1-disrupted mutant, was not affected by oxygen stress, whereas the survival rate of MS105 after hydrogen peroxide treatment was markedly reduced compared to that of the wild-type. However, the activity of MS105 in eliminating hydrogen peroxide was similar to that of the wild-type. We cloned hprA1 from L. caseiShirota and purified recombinant HprA1 protein from Escherichia coli. We demonstrated that the recombinant HprA1 protein bound to iron and prevented the formation of a hydroxyl radical in vitro. Thus, HprA1 protein probably contributes to hydrogen peroxide tolerance in L. casei strain Shirota by binding to iron in the cells and preventing the formation of a hydroxyl radical.

  20. Engineering bacterial motility towards hydrogen-peroxide.

    PubMed

    Virgile, Chelsea; Hauk, Pricila; Wu, Hsuan-Chen; Shang, Wu; Tsao, Chen-Yu; Payne, Gregory F; Bentley, William E

    2018-01-01

    Synthetic biologists construct innovative genetic/biological systems to treat environmental, energy, and health problems. Many systems employ rewired cells for non-native product synthesis, while a few have employed the rewired cells as 'smart' devices with programmable function. Building on the latter, we developed a genetic construct to control and direct bacterial motility towards hydrogen peroxide, one of the body's immune response signaling molecules. A motivation for this work is the creation of cells that can target and autonomously treat disease, the latter signaled by hydrogen peroxide release. Bacteria naturally move towards a variety of molecular cues (e.g., nutrients) in the process of chemotaxis. In this work, we engineered bacteria to recognize and move towards hydrogen peroxide, a non-native chemoattractant and potential toxin. Our system exploits oxyRS, the native oxidative stress regulon of E. coli. We first demonstrated H2O2-mediated upregulation motility regulator, CheZ. Using transwell assays, we showed a two-fold increase in net motility towards H2O2. Then, using a 2D cell tracking system, we quantified bacterial motility descriptors including velocity, % running (of tumble/run motions), and a dynamic net directionality towards the molecular cue. In CheZ mutants, we found that increased H2O2 concentration (0-200 μM) and induction time resulted in increased running speeds, ultimately reaching the native E. coli wild-type speed of ~22 μm/s with a ~45-65% ratio of running to tumbling. Finally, using a microfluidic device with stable H2O2 gradients, we characterized responses and the potential for "programmed" directionality towards H2O2 in quiescent fluids. Overall, the synthetic biology framework and tracking analysis in this work will provide a framework for investigating controlled motility of E. coli and other 'smart' probiotics for signal-directed treatment.

  1. Antifungal efficacy of hydrogen peroxide in dental unit waterline disinfection.

    PubMed

    Szymańska, Jolanta

    2006-01-01

    The concentration and composition of fungal flora in dental unit waterlines (DUWL) were evaluated. For this purpose, water samples from unit reservoirs and high-speed handpieces, and biofilm samples from the waterline walls from units were collected. Subsequently, analogous samples from DUWL were taken before and after disinfection using agent containing hydrogen peroxide. In the examined samples, the yeast-like fungi Candida albicans and Candida curvata were found. The following species of mould were also identified: Aspergillus amstelodami, Aspergillus fumigatus, Aspergillus glaucus group, Aspergillus (=Eurotium herbariorum) repens, Citromyces spp., Geotrichum candidum, Penicillium (glabrum) frequentans, Penicillium pusillum, Penicillium turolense and Sclerotium sclerotiorum (Sclerotinia sclerotiorum). Before disinfection, Candida curvata and Candida albicans constituted the greatest proportion of the total fungi in the reservoirs water; in the water of handpieces--Candida albicans and Aspergillus glaucus group; and in the biofilm samples--Aspergillus glaucus group and Candida albicans. After disinfection, in all 3 kinds of samples, Candida albicans prevailed, constituting from 31.2-85.7 % of the total fungi. The application of agent containing hydrogen peroxide caused a significant decrease both in the number of total fungi and individual fungal species, which confirms the product effectiveness in fungal decontamination of DUWL.

  2. Chamomile confers protection against hydrogen peroxide-induced toxicity through activation of Nrf2-mediated defense response.

    PubMed

    Bhaskaran, Natarajan; Srivastava, Janmejai K; Shukla, Sanjeev; Gupta, Sanjay

    2013-01-01

    Oxidative stress plays an important role in the development of various human diseases. Aqueous chamomile extract is used as herbal medicine, in the form of tea, demonstrated to possess antiinflammatory and antioxidant properties. We demonstrate the cytoprotective effects of chamomile on hydrogen peroxide (H₂O₂)-induced cellular damage in macrophage RAW 264.7 cells. Pretreatment of cells with chamomile markedly attenuated H₂O₂-induced cell viability loss in a dose-dependent manner. The mechanisms by which chamomile-protected macrophages from oxidative stress was through the induction of several antioxidant enzymes including NAD(P)H:quinone oxidoreductase, superoxide dismutase, and catalase and increase nuclear accumulation of the transcription factor Nrf2 and its binding to antioxidant response elements. Furthermore, chamomile dose-dependently reduced H₂O₂-mediated increase in the intracellular levels of reactive oxygen species. Our results, for the first time, demonstrate that chamomile has protective effects against oxidative stress and might be beneficial to provide defense against cellular damage. Copyright © 2012 John Wiley & Sons, Ltd.

  3. Chamomile Confers Protection against Hydrogen Peroxide-Induced Toxicity through Activation of Nrf2-Mediated Defense Response

    PubMed Central

    Bhaskaran, Natarajan; Srivastava, Janmejai K.; Shukla, Sanjeev; Gupta, Sanjay

    2014-01-01

    Oxidative stress plays an important role in the development of various human diseases. Aqueous chamomile extract is used as herbal medicine, in the form of tea, demonstrated to possess antiinflammatory and antioxidant properties. We demonstrate the cytoprotective effects of chamomile on hydrogen peroxide (H2O2)-induced cellular damage in macrophage RAW 264.7 cells. Pretreatment of cells with chamomile markedly attenuated H2O2-induced cell viability loss in a dose-dependent manner. The mechanisms by which chamomile-protected macrophages from oxidative stress was through the induction of several antioxidant enzymes including NAD (P)H:quinone oxidoreductase, superoxide dismutase, and catalase and increase nuclear accumulation of the transcription factor Nrf2 and its binding to antioxidant response elements. Furthermore, chamomile dose-dependently reduced H2O2-mediated increase in the intracellular levels of reactive oxygen species. Our results, for the first time, demonstrate that chamomile has protective effects against oxidative stress and might be beneficial to provide defense against cellular damage. PMID:22511316

  4. Live-cell imaging visualizes frequent mitotic skipping during senescence-like growth arrest in mammary carcinoma cells exposed to ionizing radiation.

    PubMed

    Suzuki, Masatoshi; Yamauchi, Motohiro; Oka, Yasuyoshi; Suzuki, Keiji; Yamashita, Shunichi

    2012-06-01

    Senescence-like growth arrest in human solid carcinomas is now recognized as the major outcome of radiotherapy. This study was designed to analyze cell cycle during the process of senescence-like growth arrest in mammary carcinoma cells exposed to X-rays. Fluorescent ubiquitination-based cell cycle indicators were introduced into the human mammary carcinoma cell line MCF-7. Cell cycle was sequentially monitored by live-cell imaging for up to 5 days after exposure to 10 Gy of X-rays. Live-cell imaging revealed that cell cycle transition from G2 to G1 phase without mitosis, so-called mitotic skipping, was observed in 17.1% and 69.8% of G1- and G2-irradiated cells, respectively. Entry to G1 phase was confirmed by the nuclear accumulation of mKO(2)-hCdt1 as well as cyclin E, which was inversely correlated to the accumulation of G2-specific markers such as mAG-hGeminin and CENP-F. More than 90% of cells skipping mitosis were persistently arrested in G1 phase and showed positive staining for the senescent biochemical marker, which is senescence-associated ß-galactosidase, indicating induction of senescence-like growth arrest accompanied by mitotic skipping. While G2 irradiation with higher doses of X-rays induced mitotic skipping in approximately 80% of cells, transduction of short hairpin RNA (shRNA) for p53 significantly suppressed mitotic skipping, suggesting that ionizing radiation-induced mitotic skipping is associated with p53 function. The present study found the pathway of senescence-like growth arrest in G1 phase without mitotic entry following G2-irradiation. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Hydrogen peroxide bleaching of cotton in ultrasonic energy.

    PubMed

    Mistik, S Ilker; Yükseloglu, S Müge

    2005-12-01

    It is well known that, conventional hydrogen peroxide bleaching process is an important and a specific step for wet processors; however it has some problems such as long time, high energy consumption. On the other hand, using ultrasonic energy in bleaching is an alternative method for the conventional processes. In this work, 100% cotton materials of different forms such as raw fibre, ring-spun yarns and knitted fabrics produced from these cottons, were treated with hydrogen peroxide in two different concentrations (5 mL/L and 10 mL/L), at three different temperatures (20 degrees C, 30 degrees C, 40 degrees C) and times (20 min, 30 min, 60 min). Whiteness Index of the samples were then measured spectrophotometrically and the overall results were compared.

  6. High glucose induces bone marrow-derived mesenchymal stem cell senescence by upregulating autophagy.

    PubMed

    Chang, Tzu-Ching; Hsu, Min-Fen; Wu, Kenneth K

    2015-01-01

    Hyperglycemia was reported to cause bone marrow hematopoietic niche dysfunction, and high glucose (HG) in the cultured medium induces MSC senescence. The underlying mechanism is unclear. Here, we investigated the role of HG-induced autophagy in bone-marrow-derived mesenchymal stem cell (BMSC) senescence. HG (25 mM) increased expression of Beclin-1, Atg 5, 7 and 12, generation of LC3-II and autophagosome formation which was correlated with development of cell senescence. Pretreatment of HG-MSC with 3-methyladenine (3-MA) prevented senescence but increased apoptosis. N-acetylcysteine (NAC) was effective in abrogating HG-induced autophagy accompanied by prevention of senescence. Diphenyleneiodonium (DPI), an inhibitor of NADPH oxidase, blocked autophagy and senescence in a manner comparable to NAC. 3-MA, NAC and DPI inhibited HG-induced interleukin-6 production in BMSCs. These results suggest that hyperglycemia induces MSC senescence and local inflammation via a novel oxidant-mediated autophagy which contributes to bone marrow niche dysfunction and hematopoietic impairment.

  7. Surface Passivation of CdZnTe Detector by Hydrogen Peroxide Solution Etching

    NASA Technical Reports Server (NTRS)

    Hayes, M.; Chen, H.; Chattopadhyay, K.; Burger, A.; James, R. B.

    1998-01-01

    The spectral resolution of room temperature nuclear radiation detectors such as CdZnTe is usually limited by the presence of conducting surface species that increase the surface leakage current. Studies have shown that the leakage current can be reduced by proper surface preparation. In this study, we try to optimize the performance of CdZnTe detector by etching the detector with hydrogen peroxide solution as function of concentration and etching time. The passivation effect that hydrogen peroxide introduces have been investigated by current-voltage (I-V) measurement on both parallel strips and metal-semiconductor-metal configurations. The improvements on the spectral response of Fe-55 and 241Am due to hydrogen peroxide treatment are presented and discussed.

  8. Glycerophosphate-dependent peroxide production by brown fat mitochondria from newborn rats.

    PubMed

    Drahota, Z; Rauchova, H; Jesina, P; Vojtísková, A; Houstek, J

    2003-03-01

    Glycerophosphate (GP)-dependent, ferricyanide-induced hydrogen peroxide production was studied in brown adipose tissue mitochondria from newborn rats. Relations between the rate of hydrogen peroxide production and total amount of hydrogen peroxide produced at different GP and ferricyanide concentrations were determined. It was found that the rate of hydrogen peroxide production increases with increasing GP concentration and decreases with increasing ferricyanide concentration. Total amount of hydrogen peroxide produced increases with increasing ferricyanide concentration, however, not proportionally, and the efficiency of this process (oxygen/ferricyanide ratio) strongly declines. Data presented provide further information on the character and kinetics of hydrogen peroxide production by mammalian mitochondrial glycerophosphate dehydrogenase.

  9. Carvedilol protects bone marrow stem cells against hydrogen peroxide-induced cell death via PI3K-AKT pathway.

    PubMed

    Chen, Meihui; Chen, Shudong; Lin, Dingkun

    2016-03-01

    Carvedilol, a nonselective β-adrenergic receptor blocker, has been reported to exert potent anti-oxidative activities. In the present study, we aimed to investigate the effects of carvedilol against hydrogen peroxide (H2O2)-induced bone marrow-derived mesenchymal stem cells (BMSCs) death, which imitate the microenvironment surrounding transplanted cells in the injured spinal cord in vitro. Carvedilol significantly reduced H2O2-induced reactive oxygen species production, apoptosis and subsequent cell death. LY294002, the PI3K inhibitor, blocked the protective effects and up-regulation of Akt phosphorylation of carvedilol. Together, our results showed that carvedilol protects H2O2-induced BMSCs cell death partly through PI3K-Akt pathway, suggesting carvedilol could be used in combination with BMSCs for the treatment of spinal cord injury by improving the cell survival and oxidative stress microenvironments. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. NOX4-dependent Hydrogen peroxide promotes shear stress-induced SHP2 sulfenylation and eNOS activation.

    PubMed

    Sánchez-Gómez, Francisco J; Calvo, Enrique; Bretón-Romero, Rosa; Fierro-Fernández, Marta; Anilkumar, Narayana; Shah, Ajay M; Schröder, Katrin; Brandes, Ralf P; Vázquez, Jesús; Lamas, Santiago

    2015-12-01

    Laminar shear stress (LSS) triggers signals that ultimately result in atheroprotection and vasodilatation. Early responses are related to the activation of specific signaling cascades. We investigated the participation of redox-mediated modifications and in particular the role of hydrogen peroxide (H2O2) in the sulfenylation of redox-sensitive phosphatases. Exposure of vascular endothelial cells to short periods of LSS (12 dyn/cm(2)) resulted in the generation of superoxide radical anion as detected by the formation of 2-hydroxyethidium by HPLC and its subsequent conversion to H2O2, which was corroborated by the increase in the fluorescence of the specific peroxide sensor HyPer. By using biotinylated dimedone we detected increased total protein sulfenylation in the bovine proteome, which was dependent on NADPH oxidase 4 (NOX4)-mediated generation of peroxide. Mass spectrometry analysis allowed us to identify the phosphatase SHP2 as a protein susceptible to sulfenylation under LSS. Given the dependence of FAK activity on SHP2 function, we explored the role of FAK under LSS conditions. FAK activation and subsequent endothelial NO synthase (eNOS) phosphorylation were promoted by LSS and both processes were dependent on NOX4, as demonstrated in lung endothelial cells isolated from NOX4-null mice. These results support the idea that LSS elicits redox-sensitive signal transduction responses involving NOX4-dependent generation of hydrogen peroxide, SHP2 sulfenylation, and ulterior FAK-mediated eNOS activation. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Pyrite-Induced Hydrogen Peroxide Formation as a Driving Force in the Evolution of Photosynthetic Organisms on an Early Earth

    NASA Astrophysics Data System (ADS)

    Borda, Michael J.; Elsetinow, Alicia R.; Schoonen, Martin A.; Strongin, Daniel R.

    2001-09-01

    The remarkable discovery of pyrite-induced hydrogen peroxide (H2O2) provides a key step in the evolution of oxygenic photosynthesis. Here we show that H2O2 can be generated rapidly via a reaction between pyrite and H2O in the absence of dissolved oxygen. The reaction proceeds in the dark, and H2O2 levels increase upon illumination with visible light. Since pyrite was stable in most photic environments prior to the rise of O2 levels, this finding represents an important mechanism for the formation of H2O2 on early Earth.

  12. Evaluation of a hydrogen peroxide-based system for high-level disinfection of vaginal ultrasound probes.

    PubMed

    Johnson, Stephen; Proctor, Matthew; Bluth, Edward; Smetherman, Dana; Baumgarten, Katherine; Troxclair, Laurie; Bienvenu, Michele

    2013-10-01

    Because of the complex process and the risk of errors associated with the glutaraldehyde-based solutions previously used at our institution for disinfection, our department has implemented a new method for high-level disinfection of vaginal ultrasound probes: the hydrogen peroxide-based Trophon system (Nanosonics, Alexandria, New South Wales, Australia). The aim of this study was to compare the time difference, safety, and sonographers' satisfaction between the glutaraldehyde-based Cidex (CIVCO Medical Solutions, Kalona, IA) and the hydrogen peroxide-based Trophon disinfection systems. The Institutional Review Board approved a 14-question survey administered to the 13 sonographers in our department. Survey questions addressed a variety of aspects of the disinfection processes with graded responses over a standardized 5-point scale. A process diagram was developed for each disinfection method with segmental timing analysis, and a cost analysis was performed. Nonvariegated analysis of the survey data with the Wilcoxon signed rank test showed a statistical difference in survey responses in favor of the hydrogen peroxide-based system over the glutaraldehyde-based system regarding efficiency (P = .0013), ease of use (P = .0013), ability to maintain work flow (P = .026), safety (P = .0026), fixing problems (P = .0158), time (P = .0011), and overall satisfaction (P = .0018). The glutaraldehyde-based system took 32 minutes versus 14 minutes for the hydrogen peroxide-based system; the hydrogen peroxide-based system saved on average 7.5 hours per week. The cost of the hydrogen peroxide-based system and weekly maintenance pays for itself if 1.5 more ultrasound examinations are performed each week. The hydrogen peroxide-based disinfection system was proven to be more efficient and viewed to be easier and safer to use than the glutaraldehyde-based system. The adoption of the hydrogen peroxide-based system led to higher satisfaction among sonographers.

  13. Inhibitory effects of LPA1 on cell motile activities stimulated by hydrogen peroxide and 2,3-dimethoxy-1,4-naphthoquinone in fibroblast 3T3 cells.

    PubMed

    Hirane, Miku; Araki, Mutsumi; Dong, Yan; Honoki, Kanya; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2013-11-08

    Reactive oxygen species (ROS) are known to mediate a variety of biological responses, including cell motility. Recently, we indicated that lysophosphatidic acid (LPA) receptor-3 (LPA3) increased cell motile activity stimulated by hydrogen peroxide. In the present study, we assessed the role of LPA1 in the cell motile activity mediated by ROS in mouse fibroblast 3T3 cells. 3T3 cells were treated with hydrogen peroxide and 2,3-dimethoxy-1,4-naphthoquinone (DMNQ) at concentrations of 0.1 and 1 μM for 48 h. In cell motility assays with Cell Culture Inserts, the cell motile activities of 3T3 cells treated with hydrogen peroxide and DMNQ were significantly higher than those of untreated cells. 3T3 cells treated with hydrogen peroxide and DMNQ showed elevated expression levels of the Lpar3 gene, but not the Lpar1 and Lpar2 genes. To investigate the effects of LPA1 on the cell motile activity induced by hydrogen peroxide and DMNQ, Lpar1-overexpressing (3T3-a1) cells were generated from 3T3 cells and treated with hydrogen peroxide and DMNQ. The cell motile activities stimulated by hydrogen peroxide and DMNQ were markedly suppressed in 3T3-a1 cells. These results suggest that LPA signaling via LPA1 inhibits the cell motile activities stimulated by hydrogen peroxide and DMNQ in 3T3 cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Sailuotong Prevents Hydrogen Peroxide (H₂O₂)-Induced Injury in EA.hy926 Cells.

    PubMed

    Seto, Sai Wang; Chang, Dennis; Ko, Wai Man; Zhou, Xian; Kiat, Hosen; Bensoussan, Alan; Lee, Simon M Y; Hoi, Maggie P M; Steiner, Genevieve Z; Liu, Jianxun

    2017-01-05

    Sailuotong (SLT) is a standardised three-herb formulation consisting of Panax ginseng , Ginkgo biloba , and Crocus sativus designed for the management of vascular dementia. While the latest clinical trials have demonstrated beneficial effects of SLT in vascular dementia, the underlying cellular mechanisms have not been fully explored. The aim of this study was to assess the ability and mechanisms of SLT to act against hydrogen peroxide (H₂O₂)-induced oxidative damage in cultured human vascular endothelial cells (EAhy926). SLT (1-50 µg/mL) significantly suppressed the H₂O₂-induced cell death and abolished the H₂O₂-induced reactive oxygen species (ROS) generation in a concentration-dependent manner. Similarly, H₂O₂ (0.5 mM; 24 h) caused a ~2-fold increase in lactate dehydrogenase (LDH) release from the EA.hy926 cells which were significantly suppressed by SLT (1-50 µg/mL) in a concentration-dependent manner. Incubation of SLT (50 µg/mL) increased superoxide dismutase (SOD) activity and suppressed the H₂O₂-enhanced Bax/Bcl-2 ratio and cleaved caspase-3 expression. In conclusion, our results suggest that SLT protects EA.hy916 cells against H₂O₂-mediated injury via direct reduction of intracellular ROS generation and an increase in SOD activity. These protective effects are closely associated with the inhibition of the apoptotic death cascade via the suppression of caspase-3 activation and reduction of Bax/Bcl-2 ratio, thereby indicating a potential mechanism of action for the clinical effects observed.

  15. Trends in Selective Hydrogen Peroxide Production on Transition Metal Surfaces from First Principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rankin, Rees B.; Greeley, Jeffrey P.

    2012-10-19

    We present a comprehensive, Density Functional Theory-based analysis of the direct synthesis of hydrogen peroxide, H2O2, on twelve transition metal surfaces. We determine the full thermodynamics and selected kinetics of the reaction network on these metals, and we analyze these energetics with simple, microkinetically motivated rate theories to assess the activity and selectivity of hydrogen peroxide production on the surfaces of interest. By further exploiting Brønsted-Evans-Polanyi relationships and scaling relationships between the binding energies of different adsorbates, we express the results in the form of a two dimensional contour volcano plot, with the activity and selectivity being determined as functionsmore » of two independent descriptors, the atomic hydrogen and oxygen adsorption free energies. We identify both a region of maximum predicted catalytic activity, which is near Pt and Pd in descriptor space, and a region of selective hydrogen peroxide production, which includes Au. The optimal catalysts represent a compromise between activity and selectivity and are predicted to fall approximately between Au and Pd in descriptor space, providing a compact explanation for the experimentally known performance of Au-Pd alloys for hydrogen peroxide synthesis, and suggesting a target for future computational screening efforts to identify improved direct hydrogen peroxide synthesis catalysts. Related methods of combining activity and selectivity analysis into a single volcano plot may be applicable to, and useful for, other aqueous phase heterogeneous catalytic reactions where selectivity is a key catalytic criterion.« less

  16. Facile one-step electrochemical deposition of copper nanoparticles and reduced graphene oxide as nonenzymatic hydrogen peroxide sensor

    NASA Astrophysics Data System (ADS)

    Moozarm Nia, Pooria; Woi, Pei Meng; Alias, Yatimah

    2017-08-01

    For several decades, hydrogen peroxide has exhibited to be an extremely significant analyte as an intermediate in several biological devices as well as in many industrial systems. A straightforward and novel one-step technique was employed to develop a sensitive non-enzymatic hydrogen peroxide (H2O2) sensor by simultaneous electrodeposition of copper nanoparticles (CuNPs) and reduced graphene oxide (rGO). The electroreduction performance of the CuNPs-rGO for hydrogen peroxide detection was studied by cyclic voltammetry (CV) and chronoamperometry (AMP) methods The CuNPs-rGO showed a synergistic effect of reduced graphene oxide and copper nanoparticles towards the electroreduction of hydrogen peroxide, indicating high reduction current. At detection potential of -0.2 V, the CuNPs-rGO sensor demonstrated a wide linear range up to 18 mM with a detection limit of 0.601 mM (S/N = 3). Furthermore, with addition of hydrogen peroxide, the sensor responded very quickly (<3 s). The CuNPs-rGO presents high selectivity, sensitivity, stability and fast amperometric sensing towards hydrogen peroxide which makes it favorable for the development of non-enzymatic hydrogen peroxide sensor.

  17. PROPULSE 980: A Hydrogen Peroxide Enrichment System

    NASA Technical Reports Server (NTRS)

    Boxwell, Robert; Bromley, G.; Wanger, Robert; Pauls, Dan; Maynard, Bryon; McNeal, Curtis; Dumbacher, D. L. (Technical Monitor)

    2000-01-01

    The PROPULSE 980 unit is a transportable processing plant that enriches aerospace grade hydrogen peroxide from 90% to 98% final concentration. The unit was developed by Degussa-H Is, in cooperation with Orbital, NASA Marshall Space Center, and NASA Stennis Space Center. The system is a self-contained unit that houses all of the process equipment, instrumentation and controls to perform the concentration operation nearly autonomously. It is designed to produce non-bulk quantities of 98% hydrogen peroxide. The enrichment unit design also maintains system, personnel and environmental safety during all aspects of the enrichment process and final product storage. As part of the Propulse 980 checkout and final buyoff, it will be disassembled at the Degussa-H Is Corporation plant in Theodore, AL, transported to the Stennis Space Center, reassembled and subjected to a series of checkout tests to verify design objectives have been met. This paper will summarize the basic project elements and provide an update on the present status of the project.

  18. Hydrogen Peroxide and Polyamines Act as Double Edged Swords in Plant Abiotic Stress Responses.

    PubMed

    Gupta, Kamala; Sengupta, Atreyee; Chakraborty, Mayukh; Gupta, Bhaskar

    2016-01-01

    The specific genetic changes through which plants adapt to the multitude of environmental stresses are possible because of the molecular regulations in the system. These intricate regulatory mechanisms once unveiled will surely raise interesting questions. Polyamines and hydrogen peroxide have been suggested to be important signaling molecules during biotic and abiotic stresses. Hydrogen peroxide plays a versatile role from orchestrating physiological processes to stress response. It helps to achieve acclimatization and tolerance to stress by coordinating intra-cellular and systemic signaling systems. Polyamines, on the other hand, are low molecular weight polycationic aliphatic amines, which have been implicated in various stress responses. It is quite interesting to note that both hydrogen peroxide and polyamines have a fine line of inter-relation between them since the catabolic pathways of the latter releases hydrogen peroxide. In this review we have tried to illustrate the roles and their multifaceted functions of these two important signaling molecules based on current literature. This review also highlights the fact that over accumulation of hydrogen peroxide and polyamines can be detrimental for plant cells leading to toxicity and pre-mature cell death.

  19. Geraniol attenuates hydrogen peroxide-induced liver fatty acid alterations in male rats.

    PubMed

    Ozkaya, Ahmet; Sahin, Zafer; Gorgulu, Ahmet Orhan; Yuce, Abdurrauf; Celik, Sait

    2017-01-01

    Hydrogen peroxide (H 2 O 2 ) is an oxidant agent and this molecule naturally occurs in the body as a product of aerobic metabolism. Geraniol is a plant-derived natural antioxidant. The aim of this study was to determine the role of geraniol on hepatic fatty acids alterations following H 2 O 2 -induced oxidative stress in male rats. After randomization, male Wistar rats were divided into four groups ( n = 7 each group). Geraniol (50 mg/kg, dissolved in corn oil) and H 2 O 2 (16 mg/kg, dissolved in distilled water) were administered by an intraperitoneal injection. Administrations were performed during 30 days with 1-day interval. Administration of H 2 O 2 resulted with a significant increase in malondialdehyde (MDA) and a significant decrease in glutathione (GSH) peroxidase glutathione level; geraniol restored its effects on liver. However, hepatic catalase (CAT) activities were significantly higher in H 2 O 2 , geraniol, and geraniol+H 2 O 2 groups than control group. The ratio of hepatic total saturated fatty acids increased in H 2 O 2 -treated animals compared with control. In addition, hepatic total unsaturated fatty acids reduced in H 2 O 2 group compared with control. The percentages of both hepatic total saturated and unsaturated fatty acids were not different between geraniol+H 2 O 2 and control groups. H 2 O 2 -induced oxidative stress may affect fatty acid composition in liver and body. Geraniol can partly restore oxidative hepatic damage because it cannot completely reverse the H 2 O 2 -induced increase in hepatic CAT activities. Moreover, this natural compound can regulate hepatic total saturated and unsaturated fatty acids percentages against H 2 O 2 -induced alterations.

  20. Effect of ultrasonic pre-treatment of thermomechanical pulp on hydrogen peroxide bleaching

    NASA Astrophysics Data System (ADS)

    Loranger, E.; Charles, A.; Daneault, C.

    2012-12-01

    Ultrasound pre-treatments of softwood TMP had been carried to evaluate its impact on the efficiency of hydrogen peroxide bleaching. The trials were performed after a factorial design of experiment using frequency, power and time as variables. The experiments were conducted in an ultrasonic bath and then bleached with hydrogen peroxide. Measurements such as brightness, L*A*B* color system coordinate, residual hydrogen peroxide and metal content were evaluated on bleached pulp. The results indicate that the effect of ultrasonic treatment on brightness was dependent on the ultrasound frequency used; the brightness increased slightly at 68 kHz and decreased at 40 and 170 kHz. These results were correlated to the ultrasound effect on the generation of transition metals (copper, iron and manganese) which are responsible for catalytic decomposition of hydrogen peroxide. The influence of metal interference was minimized by using a chelating agent such as diethylene triamine pentaacetic acid (DTPA). With the results obtained in this study we have identified a set of option conditions, e.g. 1000 W, 40 kHz, 1.5 % consistency and 0.2% addition of DTPA prior to the bleaching stage (after ultrasonic pre-treatment) who improve brightness by 2.5 %ISO.

  1. Chlorogenic acid attenuates hydrogen peroxide-induced oxidative stress in lens epithelial cells

    PubMed Central

    Song, Jike; Guo, Dadong; Bi, Hongsheng

    2018-01-01

    Oxidative stress has an important role in the degradation, oxidation, cross-linking and aggregation of lens proteins, and can trigger lens epithelial cell apoptosis. To investigate the protective effect of chlorogenic acid (CGA) against hydrogen peroxide (H2O2)-induced oxidative stress, human lens epithelial cells (hLECs) were exposed to various concentrations of H2O2 in the presence and absence of CGA. Using MTT assay, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and ELISA techniques, cell viability, and protein/mRNA levels of BCL2 apoptosis regulator (Bcl-2) and BCL2 associated X apoptosis regulator (Bax) were investigated. Additionally, the levels of intracellular reactive oxygen species (ROS) and apoptosis within cells were measured using flow cytometry to determine the protective effect of CGA on H2O2-induced oxidative stress. Furthermore, the protective effect of CGA on H2O2-induced apoptosis was also examined using rabbit lenses ex vivo. The results indicated that CGA reduced H2O2-induced cytotoxicity in a dose-dependent manner. Flow cytometry analysis demonstrated that simultaneous exposure of hLECs to H2O2 and CGA significantly decreased apoptosis and the levels of ROS. RT-qPCR analysis revealed a decrease in Bcl-2 and an increase in Bax in hLECs following exposure to H2O2 for 24 h, regardless of CGA presence. Furthermore, ELISA results indicate that CGA increased Bcl-2 expression and decreased Bax expression following treatment with H2O2 for 24 h and the Bax/Bcl-2 ratio was significantly decreased by CGA treatment. Lens organ culture experiments indicated a dose-dependent decrease in H2O2-induced lens opacity following CGA treatment. These results suggest that CGA suppresses hLECs apoptosis and prevents lens opacity induced by H2O2 via Bax/Bcl-2 signaling pathway. CGA may provide effective defenses against oxidative stress and, thus, haσ potential as treatment for a variety of diseases in clinical practice. PMID:29207051

  2. Safety issues of high-concentrated hydrogen peroxide production used as rocket propellant

    NASA Astrophysics Data System (ADS)

    Romantsova, O. V.; Ulybin, V. B.

    2015-04-01

    The article dwells on the possibility of production of high-concentrated hydrogen peroxide with the Russian technology of isopropyl alcohol autoxidation. Analysis of fire/explosion hazards and reasons of insufficient quality is conducted for the technology. Modified technology is shown. Non-standard fire/explosion characteristics required for integrated fire/explosion hazards rating for modified hydrogen peroxide production based on the autoxidation of isopropyl alcohol are defined.

  3. Bactericidal Efficacy of Hydrogen Peroxide-Based Disinfectants Against Gram-Positive and Gram-Negative Bacteria on Stainless Steel Surfaces.

    PubMed

    Ríos-Castillo, Abel G; González-Rivas, Fabián; Rodríguez-Jerez, José J

    2017-10-01

    In order to develop disinfectant formulations that leverage the effectiveness of hydrogen peroxide (H 2 O 2 ), this study evaluated the bactericidal efficacy of hydrogen peroxide-based disinfectants against Gram-positive and Gram-negative bacteria on stainless steel surfaces. Low concentration of hydrogen peroxide as 0.5% with a cationic polymer, ethoxylated fatty alcohol, and ethyl alcohol had bactericidal efficacy (reductions ≥ 4 log 10 CFU/mL) against Escherichia coli, Staphylococcus aureus, Enterococcus hirae, and Pseudomonas aeruginosa. Hydrogen peroxide-based disinfectants were more effective against E. hirae and P. aeruginosa than to S. aureus. However, the efficacy of hydrogen peroxide against catalase positive bacteria such as S. aureus was increased when this compound was formulated with low concentrations of benzalkonium chloride or ethyl alcohol, lactic acid, sodium benzoate, cationic polymer, and salicylic acid. This study demonstrates that the use of hydrogen peroxide with other antimicrobial products, in adequate concentrations, had bactericidal efficacy in Gram-positive and Gram-negative bacteria on stainless steel surfaces, enabling to reduce the effective concentration of hydrogen peroxide. In the same way, the use of hydrogen peroxide-based disinfectants could reduce the concentrations of traditional disinfectants as quaternary ammonium compounds and therefore a reduction of their chemical residues in the environment after being used. The study of the bactericidal properties of environmentally nontoxic disinfectants such as hydrogen peroxide, sole or in formulations with other disinfectants against Gram-positive and Gram-negative bacteria can enhance the efficacy of various commonly used disinfectant formulations with the hygiene benefits that it entails. Also, the use of hydrogen peroxide formulations can reduce the concentration levels of products that generate environmental residues. © 2017 Institute of Food Technologists®.

  4. Induced senescence promotes the feeding activities and nymph development of Myzus persicae (Hemiptera: Aphididae) on potato plants.

    PubMed

    Machado-Assefh, Cristina R; Lucatti, Alejandro F; Alvarez, Adriana E

    2014-01-01

    The effect of dark-induced senescence on Solanum tuberosum L. (Solanales: Solanaceae) plants was assessed on the feeding behavior and performance of the green peach aphid, Myzus persicae Sulzer (Hemiptera: Aphididae). Senescence was induced by covering the basal part of the plant with a black cloth for 5 d, avoiding the light passage, but keeping the apical buds uncovered. The basal part of control plants was covered with a white nonwoven cloth. The degree of senescence was determined by measuring the chlorophyll content of the covered leaves. The performance and feeding behavior of M. persicae were studied on the uncovered nonsenescent apical leaves. The aphid's performance was evaluated by measuring nymphal mortality and prereproductive time. Aphid feeding behavior was monitored by the electrical penetration graph technique. In plants with dark-induced senescence, the aphids showed a reduction in their prereproductive time. Aphids also spent more time ingesting sap from the phloem than in control plants and performed more test probes after the first sustained ingestion of phloem sap. These data suggest that M. persicae's phloem activities and nymph development benefit from the nutritional enrichment of phloem sap, derived from dark-induced senescence on potato plants. The induced senescence improved plant acceptance by M. persicae through an increase in sap ingestion that likely resulted in a reduction in developmental time. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  5. Effects of various chemical compounds on spontaneous and hydrogen peroxide-induced reversion in strain TA104 of Salmonella typhimurium.

    PubMed

    Han, J S

    1992-04-01

    In experiments designed to determine which active oxygen species contribute to hydrogen peroxide (HP)-induced reversion in strain TA104 of Salmonella typhimurium, 1,10-phenanthroline (an iron chelator, which prevents the formation of hydroxyl radicals from HP and DNA-bound iron by the Fenton reaction), sodium azide (a singlet oxygen scavenger), and potassium iodide (an hydroxyl radical scavenger) inhibited HP-induced reversion. These results indicate that hydroxyl radicals generated from HP by the Fenton reaction, and perhaps singlet oxygen, contribute to HP-induced reversion in TA104. However, reduced glutathione (reduces Fe3+ to Fe2+ and/or HP to water), diethyldithiocarbamic acid (an inhibitor of superoxide dismutase), diethyl maleate (a glutathione scavenger), and 3-amino-1,2,4-triazole (an inhibitor of catalase) did not inhibit HP-induced reversion in TA104. Thus, superoxide radical anions and HP itself do not appear to be the cause of HP-induced reversion in this strain. In experiments on the effect of 5 common dietary compounds (beta-carotene, retinoic acid, and vitamins A, C and E), chlorophyllin (CHL), and ergothioneine, the frequency of revertants in TA104 increased above the spontaneous frequency in the presence of beta-carotene or vitamin C (about 2-fold) or vitamin A (about 3-fold). The 5 dietary antimutagens and CHL did not inhibit HP-induced reversion in TA104. However, L-ergothioneine inhibited HP-induced reversion in this strain. Therefore, it is likely that L-ergothioneine is a scavenger of hydroxyl radicals or an inhibitor of their formation, and perhaps of singlet oxygen, at the concentrations tested in TA104.

  6. Interaction of plant growth regulators and reactive oxygen species to regulate petal senescence in wallflowers (Erysimum linifolium).

    PubMed

    Salleh, Faezah Mohd; Mariotti, Lorenzo; Spadafora, Natasha D; Price, Anna M; Picciarelli, Piero; Wagstaff, Carol; Lombardi, Lara; Rogers, Hilary

    2016-04-02

    In many species floral senescence is coordinated by ethylene. Endogenous levels rise, and exogenous application accelerates senescence. Furthermore, floral senescence is often associated with increased reactive oxygen species, and is delayed by exogenously applied cytokinin. However, how these processes are linked remains largely unresolved. Erysimum linifolium (wallflower) provides an excellent model for understanding these interactions due to its easily staged flowers and close taxonomic relationship to Arabidopsis. This has facilitated microarray analysis of gene expression during petal senescence and provided gene markers for following the effects of treatments on different regulatory pathways. In detached Erysimum linifolium (wallflower) flowers ethylene production peaks in open flowers. Furthermore senescence is delayed by treatments with the ethylene signalling inhibitor silver thiosulphate, and accelerated with ethylene released by 2-chloroethylphosphonic acid. Both treatments with exogenous cytokinin, or 6-methyl purine (which is an inhibitor of cytokinin oxidase), delay petal senescence. However, treatment with cytokinin also increases ethylene biosynthesis. Despite the similar effects on senescence, transcript abundance of gene markers is affected differentially by the treatments. A significant rise in transcript abundance of WLS73 (a putative aminocyclopropanecarboxylate oxidase) was abolished by cytokinin or 6-methyl purine treatments. In contrast, WFSAG12 transcript (a senescence marker) continued to accumulate significantly, albeit at a reduced rate. Silver thiosulphate suppressed the increase in transcript abundance both of WFSAG12 and WLS73. Activity of reactive oxygen species scavenging enzymes changed during senescence. Treatments that increased cytokinin levels, or inhibited ethylene action, reduced accumulation of hydrogen peroxide. Furthermore, although auxin levels rose with senescence, treatments that delayed early senescence did not affect

  7. Omeprazole induces heme oxygenase-1 in fetal human pulmonary microvascular endothelial cells via hydrogen peroxide-independent Nrf2 signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Ananddeep; Zhang, Shaojie; Shrestha, Amrit

    Omeprazole (OM) is an aryl hydrocarbon receptor (AhR) agonist and a proton pump inhibitor that is used to treat humans with gastric acid related disorders. Recently, we showed that OM induces NAD (P) H quinone oxidoreductase-1 (NQO1) via nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent mechanism. Heme oxygenase-1 (HO-1) is another cytoprotective and antioxidant enzyme that is regulated by Nrf2. Whether OM induces HO-1 in fetal human pulmonary microvascular endothelial cells (HPMEC) is unknown. Therefore, we tested the hypothesis that OM will induce HO-1 expression via Nrf2 in HPMEC. OM induced HO-1 mRNA and protein expression in a dose-dependent manner.more » siRNA-mediated knockdown of AhR failed to abrogate, whereas knockdown of Nrf2 abrogated HO-1 induction by OM. To identify the underlying molecular mechanisms, we determined the effects of OM on cellular hydrogen peroxide (H{sub 2}O{sub 2}) levels since oxidative stress mediated by the latter is known to activate Nrf2. Interestingly, the concentration at which OM induced HO-1 also increased H{sub 2}O{sub 2} levels. Furthermore, H{sub 2}O{sub 2} independently augmented HO-1 expression. Although N-acetyl cysteine (NAC) significantly decreased H{sub 2}O{sub 2} levels in OM-treated cells, we observed that OM further increased HO-1 mRNA and protein expression in NAC-pretreated compared to vehicle-pretreated cells, suggesting that OM induces HO-1 via H{sub 2}O{sub 2}-independent mechanisms. In conclusion, we provide evidence that OM transcriptionally induces HO-1 via AhR - and H{sub 2}O{sub 2} - independent, but Nrf2 - dependent mechanisms. These results have important implications for human disorders where Nrf2 and HO-1 play a beneficial role. - Highlights: • Omeprazole induces HO-1 in human fetal lung cells. • AhR deficiency fails to abrogate omeprazole-mediated induction of HO-1. • Nrf2 knockdown abrogates omeprazole-mediated HO-1 induction in human lung cells. • Hydrogen peroxide depletion

  8. Synergy between sulforaphane and selenium in the up-regulation of thioredoxin reductase and protection against hydrogen peroxide-induced cell death in human hepatocytes.

    PubMed

    Li, Dan; Wang, Wei; Shan, Yujuan; Barrera, Lawrence N; Howie, Alexander F; Beckett, Geoffrey J; Wu, Kun; Bao, Yongping

    2012-07-15

    Dietary isothiocyanates and selenium are chemopreventive agents and potent inducers of antioxidant enzymes. It has been previously shown that sulforaphane and selenium have a synergistic effect on the upregulation of thioredoxin reductase-1 (TrxR-1) in human hepatoma HepG2 cells. In this paper, further evidence is presented to show that sulforaphane and selenium synergistically induce TrxR-1 expression in immortalised human hepatocytes. Sulforaphane was found to be more toxic toward hepatocytes than HepG2 cells with IC50=25.1 and 56.4 μM, respectively. Sulforaphane can protect against hydrogen peroxide-induced cell death and this protection was enhanced by co-treatment with selenium. Using siRNA to knock down TrxR-1 or Nrf2, sulforaphane (5 μM)-protected cell viability was reduced from 73% to 46% and 34%, respectively, suggesting that TrxR-1 is an important enzyme in protection against hydrogen peroxide-induced cell death. Sulforaphane-induced TrxR-1 expression was positively associated with significant levels of Nrf2 translocation into the nucleus, but co-treatment with selenium showed no significant increase in Nrf2 translocation. Moreover, MAPK (ERK, JNK and p38) and PI3K/Akt signalling pathways were found to play no significant role in sulforaphane-induced Nrf2 translocation into the nucleus. However, blocking ERK and JNK signalling pathways decreased sulforaphane-induced TrxR-1 mRNA by about 20%; whereas blocking p38 and PI3K/AKT increased TrxR-1 transcription. In summary, a combination of sulforaphane and selenium resulted in a synergistic upregulation of TrxR-1 that contributed to the enhanced protection against free radical-mediated oxidative damage in human hepatocytes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. An Experimental Investigation of Hypergolic Ignition Delay of Hydrogen Peroxide with Fuel Mixtures

    NASA Technical Reports Server (NTRS)

    Blevins, John A.; Gostowski, Rudy; Chianese, Silvio

    2003-01-01

    An experimental evaluation of decomposition and ignition delay of hydrogen peroxide at concentrations of 80% to 98% with combinations of hydrocarbon fuels, tertiary amines and transition metal chelates will be presented in the proposed paper. The results will be compared to hydrazine ignition delays with hydrogen peroxide and nitric acid mixtures using the same test apparatus.

  10. Another Unprecedented Wieland Mechanism Confirmed: Hydrogen Formation from Hydrogen Peroxide, Formaldehyde, and Sodium Hydroxide.

    PubMed

    Czochara, Robert; Litwinienko, Grzegorz; Korth, Hans-Gert; Ingold, Keith U

    2018-03-26

    In 1923, Wieland and Wingler reported that in the molecular hydrogen producing reaction of hydrogen peroxide with formaldehyde in basic solution, free hydrogen atoms (H . ) are not involved. They postulated that bis(hydroxymethyl)peroxide, HOCH 2 OOCH 2 OH, is the intermediate, which decomposes to yield H 2 and formate, proposing a mechanism that would nowadays be considered as a "concerted process". Since then, several other (conflicting) "mechanisms" have been suggested. Our NMR and Raman spectroscopic and kinetic studies, particularly the determination of the deuterium kinetic isotope effect (DKIE), now confirm that in this base-dependent reaction, both H atoms of H 2 derive from the CH 2 hydrogen atoms of formaldehyde, and not from the OH groups of HOCH 2 OOCH 2 OH or from water. Quantum-chemical CBS-QB3 and W1BD computations show that H 2 release proceeds through a concerted process, which is strongly accelerated by double deprotonation of HOCH 2 OOCH 2 OH, thereby ruling out a free radical pathway. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Quantification of peroxide ion passage in dentin, enamel, and cementum after internal bleaching with hydrogen peroxide.

    PubMed

    Palo, R M; Bonetti-Filho, I; Valera, M C; Camargo, C H R; Camargo, Sea; Moura-Netto, C; Pameijer, C

    2012-01-01

    The aim of this study was to evaluate the amount of peroxide passage from the pulp chamber to the external enamel surface during the internal bleaching technique. Fifty bovine teeth were sectioned transversally 5 mm below the cemento-enamel junction (CEJ), and the remaining part of the root was sealed with a 2-mm layer of glass ionomer cement. The external surface of the samples was coated with nail varnish, with the exception of standardized circular areas (6-mm diameter) located on the enamel, exposed dentin, or cementum surface of the tooth. The teeth were divided into three experimental groups according to exposed areas close to the CEJ and into two control groups (n=10/group), as follows: GE, enamel exposure area; GC, cementum exposed area; GD, dentin exposed area; Negative control, no presence of internal bleaching agent and uncoated surface; and Positive control, pulp chamber filled with bleaching agent and external surface totally coated with nail varnish. The pulp chamber was filled with 35% hydrogen peroxide (Opalescence Endo, Ultradent). Each sample was placed inside of individual flasks with 1000 μL of acetate buffer solution, 2 M (pH 4.5). After seven days, the buffer solution was transferred to a glass tube, in which 100 μL of leuco-crystal violet and 50 μL of horseradish peroxidase were added, producing a blue solution. The optical density of the blue solution was determined by spectrophotometer and converted into microgram equivalents of hydrogen peroxide. Data were submitted to Kruskal-Wallis and Dunn-Bonferroni tests (α=0.05). All experimental groups presented passage of peroxide to the external surface that was statistically different from that observed in the control groups. It was verified that the passage of peroxide was higher in GD than in GE (p<0.01). The GC group presented a significantly lower peroxide passage than did GD and GE (p<0.01). It can be concluded that the hydrogen peroxide placed into the pulp chamber passed through the

  12. Use of hydrogen peroxide during incubation of landlocked fall Chinook salmon eggs in vertical-flow incubators

    USGS Publications Warehouse

    Barnes, M.E.; Gaikowski, M.P.

    2004-01-01

    Six different hydrogen peroxide treatment regimes were evaluated in a series of three trials with landlocked fall Chinook salmon Oncorhynchus tshawytscha eggs incubated in vertical-flow incubators. Six daily 15-min hydrogen peroxide treatment regimes (1,000 mg/L; 1,000 mg/L with a decrease to 500 mg/L during estimated blastopore formation; 2,000 mg/L; 2,000 mg/L with a decrease to 500 mg/L during estimated blastopore formation; 2,500 mg/L; and 2,500 mg/L with a decrease to 500 mg/L during estimated blastopore formation) were compared with daily 15-min treatments of 1,667 mg/L of formalin. Mortality at egg eye-up and fry hatch and from eye-up to hatch was significantly greater in eggs receiving the 2,500-mg/L hydrogen peroxide treatments throughout incubation and in those receiving 2,500 mg/L hydrogen peroxide with a decrease to 500 mg/L during blastopore formation than in either of the 1,000-mg/L hydrogen peroxide treatment regimes or the formalin-treated eggs in the first trial. No significant differences in mortality were observed among any of the treatments in the subsequent two trials with maximum hydrogen peroxide concentrations of 2,000 mg/L. Fungal infestations were observed primarily in the incubation trays treated at either of the 1,000-mg/L hydrogen peroxide regimens, as well as in those trays whose treatment concentrations were dropped to 500 mg/L during blastopore formation. Infestations were not observed in any of the formalin-treated trays. If minor fungal infestation is acceptable, then daily hydrogen peroxide treatments of 1,000 mg/L for 15 min would probably provide adequate fungal control compared with formalin usage.

  13. Normal Human Fibroblasts Are Resistant to RAS-Induced Senescence

    PubMed Central

    Benanti, Jennifer A.; Galloway, Denise A.

    2004-01-01

    Oncogenic stimuli are thought to induce senescence in normal cells in order to protect against transformation and to induce proliferation in cells with altered p53 and/or retinoblastoma (Rb) pathways. In human fibroblasts, RAS initiates senescence through upregulation of the cyclin-dependent kinase inhibitor p16INK4A. We show here that in contrast to cultured fibroblast strains, freshly isolated normal fibroblasts are resistant to RAS-induced senescence and instead show some characteristics of transformation. RAS did not induce growth arrest or expression of senescence-associated β-galactosidase, and Rb remained hyperphosphorylated despite elevated levels of p16. Instead, RAS promoted anchorage-independent growth of normal fibroblasts, although expression of hTert with RAS increased colony formation and allowed normal fibroblasts to bypass contact inhibition. To test the hypothesis that p16 levels determine how cells respond to RAS, we expressed RAS in freshly isolated fibroblasts that expressed very low levels of p16, in hTert-immortalized fibroblasts that had accumulated intermediate levels of p16, and in IMR90 fibroblasts with high levels of p16. RAS induced growth arrest in cells with higher p16 levels, and this effect was reversed by p16 knockdown in the hTert-immortalized fibroblasts. These findings indicate that culture-imposed stress sensitizes cells to RAS-induced arrest, whereas early passage cells do not arrest in response to RAS. PMID:15024073

  14. Converting Chemical Energy to Electricity through a Three-Jaw Mini-Generator Driven by the Decomposition of Hydrogen Peroxide.

    PubMed

    Xiao, Meng; Wang, Lei; Ji, Fanqin; Shi, Feng

    2016-05-11

    Energy conversion from a mechanical form to electricity is one of the most important research advancements to come from the horizontal locomotion of small objects. Until now, the Marangoni effect has been the only propulsion method to produce the horizontal locomotion to induce an electromotive force, which is limited to a short duration because of the specific property of surfactants. To solve this issue, in this article we utilized the decomposition of hydrogen peroxide to provide the propulsion for a sustainable energy conversion from a mechanical form to electricity. We fabricated a mini-generator consisting of three parts: a superhydrophobic rotator with three jaws, three motors to produce a jet of oxygen bubbles to propel the rotation of the rotator, and three magnets integrated into the upper surface of the rotator to produce the magnet flux. Once the mini-generator was placed on the solution surface, the motor catalyzed the decomposition of hydrogen peroxide. This generated a large amount of oxygen bubbles that caused the generator and integrated magnets to rotate at the air/water interface. Thus, the magnets passed under the coil area and induced a change in the magnet flux, thus generating electromotive forces. We also investigated experimental factors, that is, the concentration of hydrogen peroxide and the turns of the solenoid coil, and found that the mini-generator gave the highest output in a hydrogen peroxide solution with a concentration of 10 wt % and under a coil with 9000 turns. Through combining the stable superhydrophobicity and catalyst, we realized electricity generation for a long duration, which could last for 26 000 s after adding H2O2 only once. We believe this work provides a simple process for the development of horizontal motion and provides a new path for energy reutilization.

  15. Power generation in fuel cells using liquid methanol and hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Valdez, Thomas I. (Inventor); Chun, William (Inventor)

    2002-01-01

    The invention is directed to an encapsulated fuel cell including a methanol source that feeds liquid methanol (CH.sub.3 OH) to an anode. The anode is electrical communication with a load that provides electrical power. The fuel cell also includes a hydrogen peroxide source that feeds liquid hydrogen peroxide (H.sub.2 O.sub.2) to the cathode. The cathode is also in communication with the electrical load. The anode and cathode are in contact with and separated by a proton-conducting polymer electrolyte membrane.

  16. mir-24 activity propagates stress-induced senescence by down regulating DNA topoisomerase 1.

    PubMed

    Bu, Huajie; Baraldo, Giorgia; Lepperdinger, Günter; Jansen-Dürr, Pidder

    2016-03-01

    MicroRNAs (miRNAs) are a group of small non-coding executor RNAs. Their function as key modulators of cellular senescence has been widely recognized recently. By cross-comparing several human aging models we previously identified dozens of miRNAs being differentially regulated during aging. Here the functions of two miRNAs, mir-24 and mir-424, were investigated in an oxidative stress-induced fibroblast premature senescence model. Using pre-miRNA precursors, miRNAs were overexpressed in cells undergoing premature senescence induced by oxidative stress. More senescent cells were observed in mir-24 transfected cells. p53 was upregulated in mir-24 overexpressing cells, but downregulated in mir-424 overexpressing cells. DNA topoisomerase I (TOP1), an enzyme controlling DNA topology, was identified as a target of mir-24, whose expression was induced by oxidative stress. Knocking down TOP1 induced cellular senescence. These results suggest that mir-24 activity propagates stress-induced senescence by down regulating TOP1. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Formononetin attenuates hydrogen peroxide (H2O2)-induced apoptosis and NF-κB activation in RGC-5 cells.

    PubMed

    Jia, W-C; Liu, G; Zhang, C-D; Zhang, S-P

    2014-01-01

    Diabetic retinopathy is a common diabetic eye disease caused by changes in retinal ganglion cells (RGCs). Several studies suggest that the oxidative stress plays a role in the pathogenesis of diabetic retinopathy in adults. Formononetin is a flavone with powerful antioxidant properties that exists naturally in various plants and Chinese medicine. In the present study, an attempt has been made to investigate the antioxidative effects of formononetin on H2O2-induced apoptosis of RGC-5 cells. Exposure of retinal ganglion cells (RGCs) to the indicated concentrations of formononetin and H2O2 for 24 h, analyzed by MTT assay. Cells were stained with Annexin V-FITC and PI, analyzed by flow cytometry. And the level of superoxide anions, malondialdehyde (MDA, a marker of lipid peroxidation), 8-hydroxy-2-deoxyguanosine (8-OHdG, indicator of oxidative DNA damage) and MnSOD (manganese superoxide dismutase) activity were measured by kits. Formononetin reduced hydrogen peroxide (H2O2)-induced apoptosis and improved the levels or activity of indicators of oxidative stress. Formononetin also inhibited the activation of nuclear factor-kappaB (NF-κB), which is a significant transcription factor for RGC-5 apoptosis. Formononetin may be developed as a antioxidant drug to treat diabetic retinopathy.

  18. Silencing of the CaCP Gene Delays Salt- and Osmotic-Induced Leaf Senescence in Capsicum annuum L.

    PubMed Central

    Xiao, Huai-Juan; Yin, Yan-Xu; Chai, Wei-Guo; Gong, Zhen-Hui

    2014-01-01

    Cysteine proteinases have been known to participate in developmental processes and in response to stress in plants. Our present research reported that a novel CP gene, CaCP, was involved in leaf senescence in pepper (Capsicum annuum L.). The full-length CaCP cDNA is comprised of 1316 bp, contains 1044 nucleotides in open reading frame (ORF), and encodes a 347 amino acid protein. The deduced protein belongs to the papain-like cysteine proteases (CPs) superfamily, containing a highly conserved ERFNIN motif, a GCNGG motif and a conserved catalytic triad. This protein localized to the vacuole of plant cells. Real-time quantitative PCR analysis revealed that the expression level of CaCP gene was dramatically higher in leaves and flowers than that in roots, stems and fruits. Moreover, CaCP transcripts were induced upon during leaf senescence. CaCP expression was upregulated by plant hormones, especially salicylic acid. CaCP was also significantly induced by abiotic and biotic stress treatments, including high salinity, mannitol and Phytophthora capsici. Loss of function of CaCP using the virus-induced gene-silencing technique in pepper plants led to enhanced tolerance to salt- and osmotic-induced stress. Taken together, these results suggest that CaCP is a senescence-associated gene, which is involved in developmental senescence and regulates salt- and osmotic-induced leaf senescence in pepper. PMID:24823878

  19. Understanding the mechanism of DNA deactivation in ion therapy of cancer cells: hydrogen peroxide action*

    NASA Astrophysics Data System (ADS)

    Piatnytskyi, Dmytro V.; Zdorevskyi, Oleksiy O.; Perepelytsya, Sergiy M.; Volkov, Sergey N.

    2015-11-01

    Changes in the medium of biological cells under ion beam irradiation has been considered as a possible cause of cell function disruption in the living body. The interaction of hydrogen peroxide, a long-lived molecular product of water radiolysis, with active sites of DNA macromolecule was studied, and the formation of stable DNA-peroxide complexes was considered. The phosphate groups of the macromolecule backbone were picked out among the atomic groups of DNA double helix as a probable target for interaction with hydrogen peroxide molecules. Complexes consisting of combinations including: the DNA phosphate group, H2O2 and H2O molecules, and Na+ counterion, were considered. The counterions have been taken into consideration insofar as under the natural conditions they neutralise DNA sugar-phosphate backbone. The energy of the complexes have been determined by considering the electrostatic and the Van der Waals interactions within the framework of atom-atom potential functions. As a result, the stability of various configurations of molecular complexes was estimated. It was shown that DNA phosphate groups and counterions can form stable complexes with hydrogen peroxide molecules, which are as stable as the complexes with water molecules. It has been demonstrated that the formation of stable complexes of H2O2-Na+-PO4- may be detected experimentally by observing specific vibrations in the low-frequency Raman spectra. The interaction of H2O2 molecule with phosphate group of the double helix backbone can disrupt DNA biological function and induce the deactivation of the cell genetic apparatus. Thus, the production of hydrogen peroxide molecules in the nucleus of living cells can be considered as an additional mechanism by which high-energy ion beams destroy tumour cells during ion beam therapy. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene

  20. Increased Production of Hydrogen Peroxide by Lactobacillus delbrueckii subsp. bulgaricus upon Aeration: Involvement of an NADH Oxidase in Oxidative Stress

    PubMed Central

    Marty-Teysset, C.; de la Torre, F.; Garel, J.-R.

    2000-01-01

    The growth of Lactobacillus delbrueckii subsp. bulgaricus (L. delbrueckii subsp. bulgaricus) on lactose was altered upon aerating the cultures by agitation. Aeration caused the bacteria to enter early into stationary phase, thus reducing markedly the biomass production but without modifying the maximum growth rate. The early entry into stationary phase of aerated cultures was probably related to the accumulation of hydrogen peroxide in the medium. Indeed, the concentration of hydrogen peroxide in aerated cultures was two to three times higher than in unaerated ones. Also, a similar shift from exponential to stationary phase could be induced in unaerated cultures by adding increasing concentrations of hydrogen peroxide. A significant fraction of the hydrogen peroxide produced by L. delbrueckii subsp. bulgaricus originated from the reduction of molecular oxygen by NADH catalyzed by an NADH:H2O2 oxidase. The specific activity of this NADH oxidase was the same in aerated and unaerated cultures, suggesting that the amount of this enzyme was not directly regulated by oxygen. Aeration did not change the homolactic character of lactose fermentation by L. delbrueckii subsp. bulgaricus and most of the NADH was reoxidized by lactate dehydrogenase with pyruvate. This indicated that NADH oxidase had no (or a very small) energetic role and could be involved in eliminating oxygen. PMID:10618234

  1. Development of biological and nonbiological explanations for the Viking label release data. [hydrogen peroxide theory

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The plausibility that hydrogen peroxide, widely distributed within the Mars surface material, was responsible for the evocative response obtained by the Viking Labeled Release (LR) experiment on Mars was investigated. Although a mixture of gamma Fe2O3 and silica sand stimulated the LR nutrient reaction with hydrogen peroxide and reduced the rate of hydrogen decomposition under various storage conditions, the Mars analog soil prepared by the Viking Inorganic Analysis Team to match the Mars analytical data does not cause such effects. Nor is adequate resistance to UV irradiation shown. On the basis of the results and consideration presented while the hydrogen peroxide theory remains the most, if not only, attractive chemical explanation of the LR data, it remains unconvincing on critical points. Until problems concerning the formation and stabilization of hydrogen peroxide on the surface of Mars can be overcome, adhere to the scientific evidence requires serious consideration of the biological theory.

  2. Necroulcerative hemorrhagic gastritis in a cat secondary to the administration of 3% hydrogen peroxide as an emetic agent.

    PubMed

    Obr, Teresa D; Fry, Joanna K; Lee, Justine A; Hottinger, Heidi A

    2017-09-01

    To describe a case of necroulcerative gastritis in a cat secondary to administration of 3% hydrogen peroxide as an emetic agent. A 10-year-old neutered male domestic shorthair was evaluated for hematemesis less than 24 hours following ingestion of a piece of foam. The pet owner had administered 2 doses of 0.5-1.0 tablespoons (7.5-15 mL) of 3% hydrogen peroxide in an attempt to induce emesis at home; emesis was achieved and produced the foam foreign body. Due to the presence of protracted vomiting and hematemesis, the patient was then presented to an emergency facility for further diagnostics and treatment. Initial blood work was normal on presentation, and advanced imaging of the abdomen was performed. An exploratory laparotomy revealed no foreign material in the gastrointestinal tract; however, severe ulceration of approximately 60% of the gastric mucosa was observed around the cardia and extended from the fundus down through the body of the stomach to the lesser curvature. Due to the severity of ulceration and presumed poor prognosis, the patient was euthanized intraoperatively. Histopathology of the stomach wall was consistent with severe confluent necroulcerative and hemorrhagic pleocellular gastritis, presumed to be secondary to administration of 3% hydrogen peroxide, which was used as the primary emetic agent in this case. The oral administration of 3% hydrogen peroxide solution in cats can result in necroulcerative gastritis as a possible sequel. While hydrogen peroxide is considered a safe emetic agent in dogs, its use in cats is not recommended. As a result, the use of emetic agents in cats should be limited to veterinary administration, using alternative, safer emetic agents such as alpha-adrenergic agonists. © Veterinary Emergency and Critical Care Society 2017.

  3. Effect of exogenous hydrogen peroxide on iodide transport and iodine organification in FRTL-5 rat thyroid cells.

    PubMed

    Chen, G; Pekary, A E; Sugawara, M; Hershman, J M

    1993-07-01

    Hydrogen peroxide plays an important role in the regulation of iodination and thyroid hormone formation. In the present study, the effect of exogenous H2O2 on 125I transport and organification was investigated in FRTL-5 rat thyroid cells. Less than 20 passages after subcloning, cells in 24-well plates (6 x 10(4) cells/well) were maintained in a thyrotropin (TSH)-containing medium (6H) for 3 days. A TSH-free medium (5H) was then used for the next 7 days. A 1-h exposure to H2O2 stimulated 125I transport and 125I organification at 0.1-0.5 mmol/l H2O2 and had a toxic effect on FRTL-5 cell at 5 mmol/l. Hydrogen peroxide (0.5 mmol/l) augmented the iodide transport and iodine organification induced by TSH (333 U/l) by two- and threefold, respectively. The biphasic effect of H2O2 was blocked totally by 5-200 micrograms/l of catalase. Catalase by itself did not influence TSH-mediated 125I transport and 125I organification. Hydrogen peroxide (0.5 mmol/l) added to cells in 5H medium increased Na+K(+)-ATPase activity twofold. Ouabain (1 mmol/l), an inhibitor of Na+K(+)-ATPase, completely inhibited the twofold increase in 125I transport induced by 0.5 mmol/l H2O2 but only inhibited H2O2-induced 125I organification by 28%. Methimazole (1 mmol/l), an inhibitor of thyroid peroxidase, had no effect on H2O2-mediated 125I transport but totally blocked the fivefold rise in 125I organification induced by 0.5 mmol/l H2O2. The effect of H2O2 on intracellular cyclic adenosine monophosphate (cAMP) levels also was studied.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. The principal phenolic and alcoholic components of wine protect human lymphocytes against hydrogen peroxide- and ionizing radiation-induced DNA damage in vitro.

    PubMed

    Greenrod, William; Fenech, Michael

    2003-03-01

    We have tested the hypothesis that the alcoholic and phenolic components of wine are protective against the DNA-damaging and cytotoxic effects of hydrogen peroxide and gamma-radiation in vitro. The components of wine tested were ethanol, glycerol, a mixture of the phenolic compounds catechin and caffeic acid and tartaric acid, all at concentrations that were 2.5 or 10.0% of the concentration in a typical Australian white wine (Riesling). These components were tested individually or combined as a mixture and compared to a white wine stripped of polyphenols, as well as a Hanks balanced salt solution control, which was the diluent for the wine components. The effect of the components was tested in lymphocytes, using the cytokinesis-block micronucleus assay, after 30 min incubation in plasma or whole blood for the hydrogen peroxide or gamma-radiation challenge, respectively. The results obtained showed that ethanol, glycerol, the catechin-caffeic acid mixture, the mixture of all components and the stripped white wine significantly reduced the DNA-damaging effects of hydrogen peroxide and gamma-radiation (P = 0.043-0.001, ANOVA). The strongest protective effect against DNA damage by gamma-irradiation was observed for the catechin-caffeic acid mixture and the mixture of all components (30 and 32% reduction, respectively). These two treatments as well as ethanol produced the strongest protective effects against DNA damage by hydrogen peroxide (24, 25 and 18%, respectively). The protection provided by the mixture did not account for the expected additive protective effects of the individual components. Ethanol was the only component that significantly increased baseline DNA damage rate, however, this effect was negated in the mixture. In conclusion, our results suggest that the main phenolic and alcoholic components of wine can reduce the DNA-damaging effects of two important oxidants, i.e. hydrogen peroxide and ionizing radiation, in this physiologically relevant in vitro

  5. A reaction-diffusion model of cytosolic hydrogen peroxide.

    PubMed

    Lim, Joseph B; Langford, Troy F; Huang, Beijing K; Deen, William M; Sikes, Hadley D

    2016-01-01

    As a signaling molecule in mammalian cells, hydrogen peroxide (H2O2) determines the thiol/disulfide oxidation state of several key proteins in the cytosol. Localization is a key concept in redox signaling; the concentrations of signaling molecules within the cell are expected to vary in time and in space in manner that is essential for function. However, as a simplification, all theoretical studies of intracellular hydrogen peroxide and many experimental studies to date have treated the cytosol as a well-mixed compartment. In this work, we incorporate our previously reported reduced kinetic model of the network of reactions that metabolize hydrogen peroxide in the cytosol into a model that explicitly treats diffusion along with reaction. We modeled a bolus addition experiment, solved the model analytically, and used the resulting equations to quantify the spatiotemporal variations in intracellular H2O2 that result from this kind of perturbation to the extracellular H2O2 concentration. We predict that micromolar bolus additions of H2O2 to suspensions of HeLa cells (0.8 × 10(9)cells/l) result in increases in the intracellular concentration that are localized near the membrane. These findings challenge the assumption that intracellular concentrations of H2O2 are increased uniformly throughout the cell during bolus addition experiments and provide a theoretical basis for differing phenotypic responses of cells to intracellular versus extracellular perturbations to H2O2 levels. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Monolithic Hydrogen Peroxide Catalyst Bed Development

    NASA Technical Reports Server (NTRS)

    Ponzo, J. B.

    2003-01-01

    With recent increased industry and government interest in rocket grade hydrogen peroxide as a viable propellant, significant effort has been expended to improve on earlier developments. This effort has been predominately centered in improving heterogeneous. typically catalyst beds; and homogeneous catalysts, which are typically solutions of catalytic substances. Heterogeneous catalyst beds have traditionally consisted of compressed wire screens plated with a catalytic substance, usually silver, and were used m many RCS applications (X-1, Mercury, and Centaur for example). Aerojet has devised a heterogeneous catalyst design that is monolithic (single piece), extremely compact, and has pressure drops equal to or less than traditional screen beds. The design consists of a bonded stack of very thin, photoetched metal plates, silver coated. This design leads to a high surface area per unit volume and precise flow area, resulting in high, stable, and repeatable performance. Very high throughputs have been demonstrated with 90% hydrogen peroxide. (0.60 lbm/s/sq in at 1775-175 psia) with no flooding of the catalyst bed. Bed life of over 900 seconds has also been demonstrated at throughputs of 0.60 lbm/s/sq in across varying chamber pressures. The monolithic design also exhibits good starting performance, short break-in periods, and will easily scale to various sizes.

  7. Hydrogen peroxide sensing using ultrathin platinum-coated gold nanoparticles with core@shell structure.

    PubMed

    Li, Yongxin; Lu, Qiufang; Wu, Shengnan; Wang, Lun; Shi, Xianming

    2013-03-15

    Ultrathin platinum-coated gold (Pt@Au) nanoparticles with core@shell structure have been developed by under-potential deposition (UPD) redox replacement technique. A single UPD Cu replacement with Pt(2+) produced a uniform Pt monolayer on the surface of gold nanoparticles, which are immobilized on glassy carbon electrode (GCE) surface based on electrostatic interaction. The ultrathin Pt@Au nanoparticles were confirmed by cyclic voltammetry and X-ray photoelectron spectroscopy (XPS). Voltammetry and amperometric methodologies were used to evaluate the electrocatalytic activity of the Pt@Au nanoparticles modified electrode towards the reduction of hydrogen peroxide under the physiological condition. The present results show that ultrathin Pt coating greatly enhances the electrocatalytic activity towards the reduction of hydrogen peroxide, which can be utilized to fabricate the hydrogen peroxide sensor. Chronoamperometric experiments showed that at an applied potential of 0.08 V (vs. Ag/AgCl), the current reduction of hydrogen peroxide was linear to its concentration in the range of 1-450 μΜ, and the detection limit was found to be 0.18 μM (signal-to-noise ratio, S/N=3). Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Exposure to disinfectants (soap or hydrogen peroxide) increases tolerance to permethrin in Anopheles gambiae populations from the city of Yaoundé, Cameroon

    PubMed Central

    2014-01-01

    Background The rapid expansion of insecticide resistance is limiting the efficiency of malaria vector control interventions. However, current knowledge of factors inducing pyrethroid resistance remains incomplete. In the present study, the role of selection at the larval stage by disinfectants, such as soap and hydrogen peroxide (H2O2), on adult mosquito resistance to permethrin was investigated. Methods Field Anopheles gambiae sensu lato larvae, were exposed to variable concentrations of soap and H2O2. Larvae surviving to acute toxicity assays after 24 hours were reared to the adult stage and exposed to permethrin. The susceptibility level of adults was compared to the untreated control group. The effect of soap or hydrogen peroxide selection on the length of larval development and emergence rate was assessed. Result Larval bioassays analysis showed a more acute effect of hydrogen peroxide on mosquito larvae compared to soap. The regression lines describing the dose mortality profile showed higher mean and variance to hydrogen peroxide than to soap. The duration of larval development (<5 days) and adults emergence rates (1 to 77%) were shorter and lower compare to control. Anopheles gambiae s.l. larvae surviving to selection with either soap or hydrogen peroxide or both, produced adults who were up to eight-times more resistant to permethrin than mosquitoes from the untreated control group. Conclusion The present study shows that selective pressure exerted by non-insecticidal compounds such as soap and hydrogen peroxide affect An. gambiae s.l. tolerance to pyrethroids. This requires further studies with regard to the adaptation of An. gambiae s.l. to polluted habitats across sub-Saharan Africa cities. PMID:25086741

  9. Exposure to disinfectants (soap or hydrogen peroxide) increases tolerance to permethrin in Anopheles gambiae populations from the city of Yaoundé, Cameroon.

    PubMed

    Antonio-Nkondjio, Christophe; Youmsi-Goupeyou, Marlene; Kopya, Edmond; Tene-Fossog, Billy; Njiokou, Flobert; Costantini, Carlo; Awono-Ambene, Parfait

    2014-08-03

    The rapid expansion of insecticide resistance is limiting the efficiency of malaria vector control interventions. However, current knowledge of factors inducing pyrethroid resistance remains incomplete. In the present study, the role of selection at the larval stage by disinfectants, such as soap and hydrogen peroxide (H2O2), on adult mosquito resistance to permethrin was investigated. Field Anopheles gambiae sensu lato larvae, were exposed to variable concentrations of soap and H2O2. Larvae surviving to acute toxicity assays after 24 hours were reared to the adult stage and exposed to permethrin. The susceptibility level of adults was compared to the untreated control group. The effect of soap or hydrogen peroxide selection on the length of larval development and emergence rate was assessed. Larval bioassays analysis showed a more acute effect of hydrogen peroxide on mosquito larvae compared to soap. The regression lines describing the dose mortality profile showed higher mean and variance to hydrogen peroxide than to soap. The duration of larval development (<5 days) and adults emergence rates (1 to 77%) were shorter and lower compare to control. Anopheles gambiae s.l. larvae surviving to selection with either soap or hydrogen peroxide or both, produced adults who were up to eight-times more resistant to permethrin than mosquitoes from the untreated control group. The present study shows that selective pressure exerted by non-insecticidal compounds such as soap and hydrogen peroxide affect An. gambiae s.l. tolerance to pyrethroids. This requires further studies with regard to the adaptation of An. gambiae s.l. to polluted habitats across sub-Saharan Africa cities.

  10. A novel procedure to assess the non-enzymatic hydrogen-peroxide antioxidant capacity of metabolites with high UV absorption.

    PubMed

    Csepregi, Kristóf; Hideg, Éva

    2016-12-01

    Assays assessing non-enzymatic hydrogen peroxide antioxidant capacities are often hampered by the high UV absorption of the sample itself. This is a typical problem in studies using plant extracts with high polyphenol content. Our assay is based on comparing the 405 nm absorption of the product of potassium iodine and hydrogen peroxide in the presence and absence of a putative hydrogen peroxide reactive antioxidant. This method is free of interference with either hydrogen peroxide or antioxidant self-absorption and it is also suitable for high-throughput plate reader applications.

  11. Activation of rho is involved in the mechanism of hydrogen-peroxide-induced lung edema in isolated perfused rabbit lung.

    PubMed

    Chiba, Y; Ishii, Y; Kitamura, S; Sugiyama, Y

    2001-09-01

    Acute lung injury is attributed primarily to increased vascular permeability caused by reactive oxygen species derived from neutrophils, such as hydrogen peroxide (H2O2). Increased permeability is accompanied by the contraction and cytoskeleton reorganization of endothelial cells, resulting in intercellular gap formation. The Rho family of Ras-like GTPases is implicated in the regulation of the cytoskeleton and cell contraction. We examined the role of Rho in H2O2-induced pulmonary edema with the use of isolated perfused rabbit lungs. To our knowledge, this is the first study to examine the role of Rho in increased vascular permeability induced by H2O2 in perfused lungs. Vascular permeability was evaluated on the basis of the capillary filtration coefficient (Kfc, ml/min/cm H2O/100 g). We found that H2O2 (300 microM) increased lung weight, Kfc, and pulmonary capillary pressure. These effects of H2O2 were abolished by treatment with Y-27632 (50 microM), an inhibitor of the Rho effector p160 ROCK. In contrast, the muscular relaxant papaverine inhibited the H2O2-induced rise in pulmonary capillary pressure, but did not suppress the increases in lung weight and Kfc. These findings indicate that H2O2 causes pulmonary edema by elevating hydrostatic pressure and increasing vascular permeability. Y-27632 inhibited the formation of pulmonary edema by blocking both of these H2O2-induced effects. Our results suggest that Rho-related pathways have a part in the mechanism of H2O2-induced pulmonary edema. Copyright 2001 Academic Press.

  12. Hydrogen peroxide-dependent antibacterial action of Melilotus albus honey.

    PubMed

    Sowa, P; Grabek-Lejko, D; Wesołowska, M; Swacha, S; Dżugan, M

    2017-07-01

    Honey originating from different floral sources exhibits the broad spectrum of antibacterial activity as a result of the presence of hydrogen peroxide as well as nonperoxide bioactive compounds. The mechanisms of antibacterial activity of Polish melilot honey were investigated for the first time. Polish melilot honey samples (Melilotus albus biennial = 3 and annual = 5, Melilotus officinalis = 1) were collected directly from beekeepers and analysed for pollen profile, basic physicochemical parameters, antioxidant capacity, radical scavenging activity, total phenolic contents as well as antibacterial properties against pathogenic bacteria Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Salmonella spp. The physicochemical properties of melilot honey were specific for light-coloured unifloral honey samples and were not dependent on its botanical and geographical origin (P > 0·05). All tested honey samples exhibited inhibitory activity (above 90%) against Gram-positive bacteria at the concentration of 12·5-25%. Above 30-50% of antibacterial activity of melilot honey was connected with glucose oxidase enzyme action and was destroyed in the presence of catalase. Hydrogen peroxide-dependent antibacterial activity of honey was inversely correlated with its radical scavenging activity (r = -0·67) and phenolic compounds (r = -0·61). Antibacterial action of melilot honey depends not only on hydrogen peroxide produced by glucose oxidase, but also on other nonperoxide bioactive components of honey. Melilot honey is used in traditional medicine as an anticoagulant agent due to the possibility of the presence of the coumarin compounds which are specific for Melilotus plant. Melilotus albus is rarely used to produce honey, and antibacterial properties of this variety of honey had not been studied yet. Nine samples of melilot honey produced in different regions of Poland were analysed according to their antibacterial activity which was correlated

  13. Sensitization of cervix cancer cells to Adriamycin by Pentoxifylline induces an increase in apoptosis and decrease senescence.

    PubMed

    Bravo-Cuellar, Alejandro; Ortiz-Lazareno, Pablo C; Lerma-Diaz, Jose M; Dominguez-Rodriguez, Jorge R; Jave-Suarez, Luis F; Aguilar-Lemarroy, Adriana; del Toro-Arreola, Susana; de Celis-Carrillo, Ruth; Sahagun-Flores, Jose E; de Alba-Garcia, Javier E Garcia; Hernandez-Flores, Georgina

    2010-05-19

    Chemotherapeutic drugs like Adriamycin (ADR) induces apoptosis or senescence in cancer cells but these cells often develop resistance and generate responses of short duration or complete failure. The methylxantine drug Pentoxifylline (PTX) used routinely in the clinics setting for circulatory diseases has been recently described to have antitumor properties. We evaluated whether pretreatment with PTX modifies apoptosis and senescence induced by ADR in cervix cancer cells. HeLa (HPV 18+), SiHa (HPV 16+) cervix cancer cells and non-tumorigenic immortalized HaCaT cells (control) were treated with PTX, ADR or PTX + ADR. The cellular toxicity of PTX and survival fraction were determinated by WST-1 and clonogenic assay respectively. Apoptosis, caspase activation and ADR efflux rate were measured by flow cytometry, senescence by microscopy. IkappaBalpha and DNA fragmentation were determinated by ELISA. Proapoptotic, antiapoptotic and senescence genes, as well as HPV-E6/E7 mRNA expression, were detected by time real RT-PCR. p53 protein levels were assayed by Western blot. PTX is toxic (WST-1), affects survival (clonogenic assay) and induces apoptosis in cervix cancer cells. Additionally, the combination of this drug with ADR diminished the survival fraction and significantly increased apoptosis of HeLa and SiHa cervix cancer cells. Treatments were less effective in HaCaT cells. We found caspase participation in the induction of apoptosis by PTX, ADR or its combination. Surprisingly, in spite of the antitumor activity displayed by PTX, our results indicate that methylxantine, per se does not induce senescence; however it inhibits senescence induced by ADR and at the same time increases apoptosis. PTX elevates IkappaBalpha levels. Such sensitization is achieved through the up-regulation of proapoptotic factors such as caspase and bcl family gene expression. PTX and PTX + ADR also decrease E6 and E7 expression in SiHa cells, but not in HeLa cells. p53 was detected only in Si

  14. Sensitization of cervix cancer cells to Adriamycin by Pentoxifylline induces an increase in apoptosis and decrease senescence

    PubMed Central

    2010-01-01

    Background Chemotherapeutic drugs like Adriamycin (ADR) induces apoptosis or senescence in cancer cells but these cells often develop resistance and generate responses of short duration or complete failure. The methylxantine drug Pentoxifylline (PTX) used routinely in the clinics setting for circulatory diseases has been recently described to have antitumor properties. We evaluated whether pretreatment with PTX modifies apoptosis and senescence induced by ADR in cervix cancer cells. Methods HeLa (HPV 18+), SiHa (HPV 16+) cervix cancer cells and non-tumorigenic immortalized HaCaT cells (control) were treated with PTX, ADR or PTX + ADR. The cellular toxicity of PTX and survival fraction were determinated by WST-1 and clonogenic assay respectively. Apoptosis, caspase activation and ADR efflux rate were measured by flow cytometry, senescence by microscopy. IκBα and DNA fragmentation were determinated by ELISA. Proapoptotic, antiapoptotic and senescence genes, as well as HPV-E6/E7 mRNA expression, were detected by time real RT-PCR. p53 protein levels were assayed by Western blot. Results PTX is toxic (WST-1), affects survival (clonogenic assay) and induces apoptosis in cervix cancer cells. Additionally, the combination of this drug with ADR diminished the survival fraction and significantly increased apoptosis of HeLa and SiHa cervix cancer cells. Treatments were less effective in HaCaT cells. We found caspase participation in the induction of apoptosis by PTX, ADR or its combination. Surprisingly, in spite of the antitumor activity displayed by PTX, our results indicate that methylxantine, per se does not induce senescence; however it inhibits senescence induced by ADR and at the same time increases apoptosis. PTX elevates IκBα levels. Such sensitization is achieved through the up-regulation of proapoptotic factors such as caspase and bcl family gene expression. PTX and PTX + ADR also decrease E6 and E7 expression in SiHa cells, but not in HeLa cells. p53 was

  15. Effects of Vaporized Decontamination Systems on Selected Building Interior Materials: Vaporized Hydrogen Peroxide

    DTIC Science & Technology

    2009-01-01

    surfaces in buildings following a terrorist attack using CB agents. Vaporized hydrogen peroxide ( VHP ) and Cl02 are decontamination technologies that...decontaminant. The focus of this technical report is the evaluation of the building interior materials and the Steris VHP technology. 15. SUBJECT...TERMS Material Compatibility VHP vaporized hydrogen peroxide 16. SECURITY CLASSIFICATION OF: a. REPORT U b. ABSTRACT U c. THIS PAGE U 17

  16. Free standing graphene oxide film for hydrogen peroxide sensing

    NASA Astrophysics Data System (ADS)

    Ranjan, Pranay; Balakrishnan, Jayakumar; Thakur, Ajay D.

    2018-05-01

    We report hydrogen peroxide (H2O2)sensing using free standing graphene oxide thin films prepared using a cost effective scalable approach. Such sensors may find application in pharmaceutical and food processing industries.

  17. Combined treatment of toxic cyanobacteria Microcystis aeruginosa with hydrogen peroxide and microcystin biodegradation agents results in quick toxin elimination.

    PubMed

    Dziga, Dariusz; Maksylewicz, Anna; Maroszek, Magdalena; Marek, Sylwia

    2018-01-01

    Under some conditions the growth of toxic cyanobacteria must be controlled by treatment with algicidal compounds. Hydrogen peroxide has been proposed as an efficient and relatively safe chemical which can remove cyanobacteria from the environment selectively, without affecting other microorganisms. However, the uncontrolled release of secondary metabolites, including toxins may occur after such a treatment. Our proposal presented in this paper concerns fast biodegradation of microcystin released after cell lysis induced by hydrogen peroxide. The effectiveness of both, Sphingomonas sp. and heterologously expressed MlrA enzyme, in the removal of the toxin from Microcystis aeruginosa culture was investigated. The results indicate that neither Sphingomonas cells nor MlrA are affected by hydrogen peroxide at the concentrations which stop the growth of cyanobacteria. A several-fold reduction in microcystin levels was documented in the presence of these agents with biodegradation ability. Our results provide evidence that such a combined treatment of water reservoirs dominated by microcystin-producing cyanobacteria may be a promising alternative which allows fast elimination of both, the bloom forming species and toxins, from the environment.

  18. A decrease in cyclin B1 levels leads to polyploidization in DNA damage-induced senescence.

    PubMed

    Kikuchi, Ikue; Nakayama, Yuji; Morinaga, Takao; Fukumoto, Yasunori; Yamaguchi, Naoto

    2010-05-04

    Adriamycin, an anthracycline antibiotic, has been used for the treatment of various types of tumours. Adriamycin induces at least two distinct types of growth repression, such as senescence and apoptosis, in a concentration-dependent manner. Cellular senescence is a condition in which cells are unable to proliferate further, and senescent cells frequently show polyploidy. Although abrogation of cell division is thought to correlate with polyploidization, the mechanisms underlying induction of polyploidization in senescent cells are largely unclear. We wished, therefore, to explore the role of cyclin B1 level in polyploidization of Adriamycin-induced senescent cells. A subcytotoxic concentration of Adriamycin induced polyploid cells having the features of senescence, such as flattened and enlarged cell shape and activated beta-galactosidase activity. In DNA damage-induced senescent cells, the levels of cyclin B1 were transiently increased and subsequently decreased. The decrease in cyclin B1 levels occurred in G2 cells during polyploidization upon treatment with a subcytotoxic concentration of Adriamycin. In contrast, neither polyploidy nor a decrease in cyclin B1 levels was induced by treatment with a cytotoxic concentration of Adriamycin. These results suggest that a decrease in cyclin B1 levels is induced by DNA damage, resulting in polyploidization in DNA damage-induced senescence.

  19. Simultaneous removal of nitrate, hydrogen peroxide and phosphate in semiconductor acidic wastewater by zero-valent iron.

    PubMed

    Yoshino, Hiroyuki; Tokumura, Masahiro; Kawase, Yoshinori

    2014-01-01

    The zero-valent iron (ZVI) wastewater treatment has been applied to simultaneous removal of nitrate, hydrogen peroxide and phosphate in semiconductor acidic wastewaters. The simultaneous removal occurs by the reactions performed due to the sequential transformation of ZVI under the acidic condition. Fortunately the solution pH of semiconductor acidic wastewaters is low which is effective for the sequential transformation of ZVI. Firstly the reduction of nitrate is taken place by electrons generated by the corrosion of ZVI under acidic conditions. Secondly the ferrous ion generated by the corrosion of ZVI reacts with hydrogen peroxide and generates ·OH radical (Fenton reaction). The Fenton reaction consists of the degradation of hydrogen peroxide and the generation of ferric ion. Finally phosphate precipitates out with iron ions. In the simultaneous removal process, 1.6 mM nitrate, 9.0 mM hydrogen peroxide and 1.0 mM phosphate were completely removed by ZVI within 100, 15 and 15 min, respectively. The synergy among the reactions for the removal of nitrate, hydrogen peroxide and phosphate was found. In the individual pollutant removal experiment, the removal of phosphate by ZVI was limited to 80% after 300 min. Its removal rate was considerably improved in the presence of hydrogen peroxide and the complete removal of phosphate was achieved after 15 min.

  20. 14 CFR 420.66 - Separation distance requirements for storage of hydrogen peroxide, hydrazine, and liquid hydrogen...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Separation distance requirements for storage of hydrogen peroxide, hydrazine, and liquid hydrogen and any incompatible energetic liquids stored within an intraline distance. 420.66 Section 420.66 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION...

  1. 14 CFR 420.66 - Separation distance requirements for storage of hydrogen peroxide, hydrazine, and liquid hydrogen...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Separation distance requirements for storage of hydrogen peroxide, hydrazine, and liquid hydrogen and any incompatible energetic liquids stored within an intraline distance. 420.66 Section 420.66 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION...

  2. Oxygen venous embolism after the use of hydrogen peroxide during lumbar discectomy.

    PubMed

    Despond, O; Fiset, P

    1997-04-01

    The knee-prone position is commonly used for patients undergoing spinal surgery. Venous air embolism in such a position may be produced by the negative venous pressure gradient between the ambient air and the venous plexuses of the spinous process. When hydrogen peroxide is used to cleanse the wound, oxygen is produced. We report a case of suspected oxygen venous embolism during lumbar discectomy in the knee-prone position after use of H2O2. Immediately after irrigation of a discectomy wound with H2O2, a dramatic decrease of the PETCO2, blood pressure and oxygen saturation coincident with ST segment elevation occurred suggesting a coronary gas embolism. Symptomatic treatment was initiated immediately and the patient recovered without any sequelae. Although hydrogen peroxide has an innocuous reputation, cases of accidental ingestion or massive gas embolism after wound irrigation leading to death have been reported. A review of the literature suggests that many of the clinical and physiopathological features of air and oxygen emboli are similar. For both, measures of prevention and treatment of complications are similar. We argue that the use of hydrogen peroxide should be avoided during procedures where the position of the patient (sitting, knee-prone) increases the risk of gas embolism and that hydrogen peroxide is a potentially dangerous solution.

  3. Fiber post etching with hydrogen peroxide: effect of concentration and application time.

    PubMed

    de Sousa Menezes, Murilo; Queiroz, Ellyne Cavalcanti; Soares, Paulo Vinícius; Faria-e-Silva, André Luis; Soares, Carlos José; Martins, Luis Roberto Marcondes

    2011-03-01

    Etching is necessary to expose the fibers and enable both mechanical and chemical bonding of the resin core to the fiber post. This study evaluated the effect of concentration and application time of hydrogen peroxide on the surface topography and bond strength of glass fiber posts to resin cores. Fiber posts were etched with 24% or 50% hydrogen peroxide for 1, 5, or 10 min (n = 10). Posts without any treatment were used as a control. After etching, the posts were silanated and adhesive resin was applied. The posts were positioned into a mold to allow a self-cured resin core to be inserted. The post/resin assembly was serially sectioned into five beams that were subjected to a tensile bond strength test. Data were subjected to two-way ANOVA and Tukey test (α = 0.05). The surface topography was analyzed using scanning electronic microscopy. Non-etched post presents a relatively smooth surface without fiber exposure. Application of hydrogen peroxide increased the surface roughness and exposed the fibers. All experimental conditions yielded similar bond strength values that were higher than those obtained in the control group. Both 24% and 50% hydrogen peroxide exposure increased the bond strength of resin to the posts, irrespective of the application time. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. Hydroxy acetone and lactic acid synthesis from aqueous propylene glycol/hydrogen peroxide catalysis on Pd-black

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Disselkamp, Robert S.; Harris, Benjamin D.; Hart, Todd R.

    2008-07-20

    The production of polyol chemicals is of increasing interest as they are obtained from the catalytic processing of biological feedstock materials, which also is becoming more prevalent. A case in point is glycerol production, formed as a byproduct in biodiesel catalytic processing. Here we report the reaction of a simple 1,2-diol, propylene glycol, with hydrogen peroxide and a Pd-black catalyst under reflux conditions at 368 K. The experiments were performed by either co-addition of hydrogen peroxide with air sparging, or addition of hydrogen peroxide alone, each yielding hydroxy acetone (HA) and acetic acid (AA) products, with a lesser amount ofmore » lactic acid (LA) formed. Product conversion data at near neutral pH versus hydrogen peroxide equivalents added relative to substrate is presented. Hydrogen peroxide addition without air sparging at 5 equivalents resulted in 65% conversion with an HA:AA molar ratio of 2:1. Conversely, hydrogen peroxide addition with air sparging at only 0.75 equivalents resulted in 40% conversion with an HA:AA ratio of 3:1. From this it is concluded that although the product distribution in these chemistries is somewhat unchanged by air sparging, it is surprising that the amount of reactive oxygen is greatly enhanced with co-addition of O2/H2O2. Additional studies have revealed the amount of LA formed can be enhanced under acidic conditions (pH=1.5 compared to pH=8.5), such that 26% of total product formation is LA. Since hydrogen peroxide is an environmentally clean reagent and becoming more cost effective to use, this work may guide future applied investigations into polyol chemical syntheses.« less

  5. Protective effects of Arctium lappa L. roots against hydrogen peroxide-induced cell injury and potential mechanisms in SH-SY5Y cells.

    PubMed

    Tian, Xing; Guo, Li-Ping; Hu, Xiao-Long; Huang, Jin; Fan, Yan-Hua; Ren, Tian-Shu; Zhao, Qing-Chun

    2015-04-01

    Accumulated evidence has shown that excessive reactive oxygen species (ROS) have been implicated in neuronal cell death related with various chronic neurodegenerative disorders. This study was designed to explore neuroprotective effects of ethyl acetate extract of Arctium lappa L. roots (EAL) on hydrogen peroxide (H2O2)-induced cell injury in human SH-SY5Y neuroblastoma cells. The cell viability was significantly decreased after exposure to 200 μM H2O2, whereas pretreatment with different concentrations of EAL attenuated the H2O2-induced cytotoxicity. Hoechst 33342 staining indicated that EAL reversed nuclear condensation in H2O2-treated cells. Meanwhile, TUNEL assay with DAPI staining showed that EAL attenuated apoptosis was induced by H2O2. Pretreatment with EAL also markedly elevated activities of antioxidant enzyme (GSH-Px and SOD), reduced lipid peroxidation (MDA) production, prevented ROS formation, and the decrease of mitochondrial membrane potential. In addition, EAL showed strong radical scavenging ability in 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) assays. Furthermore, EAL inhibited H2O2-induced apoptosis by increases in the Bcl-2/Bax ratio, decreases in cytochrome c release, and attenuation of caspase-3, caspase-9 activities, and expressions. These findings suggest that EAL may be regarded as a potential antioxidant agent and possess potent neuroprotective activity against H2O2-induced injury.

  6. Oncogene-induced senescence results in marked metabolic and bioenergetic alterations

    PubMed Central

    Quijano, Celia; Cao, Liu; Fergusson, Maria M; Romero, Hector; Liu, Jie; Gutkind, Sarah; Rovira, Ilsa I; Mohney, Robert P; Karoly, Edward D

    2012-01-01

    Oncogene-induced senescence (OIS) is characterized by permanent growth arrest and the acquisition of a secretory, pro-inflammatory state. Increasingly, OIS is viewed as an important barrier to tumorgenesis. Surprisingly, relatively little is known about the metabolic changes that accompany and therefore may contribute to OIS. Here, we have performed a metabolomic and bioenergetic analysis of Ras-induced senescence. Profiling approximately 300 different intracellular metabolites reveals that cells that have undergone OIS develop a unique metabolic signature that differs markedly from cells undergoing replicative senescence. A number of lipid metabolites appear uniquely increased in OIS cells, including a marked increase in the level of certain intracellular long chain fatty acids. Functional studies reveal that this alteration in the metabolome reflects substantial changes in overall lipid metabolism. In particular, Ras-induced senescent cells manifest a decline in lipid synthesis and a significant increase in fatty acid oxidation. Increased fatty acid oxidation results in an unexpectedly high rate of basal oxygen consumption in cells that have undergone OIS. Pharmacological or genetic inhibition of carnitine palmitoyltransferase 1, the rate-limiting step in mitochondrial fatty acid oxidation, restores a presenescent metabolic rate and, surprisingly, selectively inhibits the secretory, pro-inflammatory state that accompanies OIS. Thus, Ras-induced senescent cells demonstrate profound alterations in their metabolic and bioenergetic profiles, particularly with regards to the levels, synthesis and oxidation of free fatty acids. Furthermore, the inflammatory phenotype that accompanies OIS appears to be related to these underlying changes in cellular metabolism. PMID:22421146

  7. Effect of hydrogen peroxide on antibacterial activities of Canadian honeys.

    PubMed

    Brudzynski, Katrina

    2006-12-01

    Honey is recognized as an efficacious topical antimicrobial agent in the treatment of burns and wounds. The antimicrobial activity in some honeys depends on the endogenous hydrogen peroxide content. This study was aimed to determine whether honey's hydrogen peroxide level could serve as a honey-specific, activity-associated biomarker that would allow predicting and assessing the therapeutic effects of honey. Using a broth microdilution assay, I analyzed antibacterial activities of 42 Canadian honeys against two bacterial strains: Escherichia coli (ATCC 14948) and Bacillus subtilis (ATCC 6633). The MIC90 and MIC50 were established from the dose-response relationship between antibacterial activities and honey concentrations. The impact of H2O2 on antibacterial activity was determined (i) by measuring the levels of H2O2 before and after its removal by catalase and (ii) by correlating the results with levels of antibacterial activities. Canadian honeys demonstrated moderate to high antibacterial activity against both bacterial species. Both MIC90 and MIC50 revealed that the honeys exhibited a selective growth inhibitory activity against E. coli, and this activity was strongly influenced by endogenous H2O2 concentrations. Bacillus subtilis activity was marginally significantly correlated with H2O2 content. The removal of H2O2 by catalase reduced the honeys' antibacterial activity, but the enzyme was unable to completely decompose endogenous H2O2. The 25%-30% H2O2 "leftover" was significantly correlated with the honeys' residual antibacterial activity against E. coli. These data indicate that all Canadian honeys exhibited antibacterial activity, with higher selectivity against E. coli than B. subtilis, and that these antibacterial activities were correlated with hydrogen peroxide production in honeys. Hydrogen peroxide levels in honey, therefore, is a strong predictor of the honey's antibacterial activity.

  8. Ganglioside GT1b protects human spermatozoa from hydrogen peroxide-induced DNA and membrane damage.

    PubMed

    Gavella, Mirjana; Garaj-Vrhovac, Verica; Lipovac, Vaskresenija; Antica, Mariastefania; Gajski, Goran; Car, Nikica

    2010-06-01

    We have reported previously that various gangliosides, the sialic acid containing glycosphingolipids, provide protection against sperm injury caused by reactive oxygen species (ROS). In this study, we investigated the effect of treatment of human spermatozoa with ganglioside GT1b on hydrogen peroxide (H(2)O(2))-induced DNA fragmentation and plasma membrane damage. Single-cell gel electrophoresis (Comet assay) used in the assessment of sperm DNA integrity showed that in vitro supplemented GT1b (100 microm) significantly reduced DNA damage induced by H(2)O(2) (200 microm) (p < 0.05). Measurements of Annexin V binding in combination with the propidium iodide vital dye labelling demonstrated that the spermatozoa pre-treated with GT1b exhibited a significant increase (p < 0.05) in the percentage of live cells with intact membrane and decreased phosphatidylserine translocation after exposure to H(2)O(2). Flow cytometry using the intracellular ROS-sensitive fluorescence dichlorodihydrofluorescein diacetate dye employed to investigate the transport of the extracellularly supplied H(2)O(2) into the cell interior revealed that ganglioside GT1b completely inhibited the passage of H(2)O(2) through the sperm membrane. These results suggest that ganglioside GT1b may protect human spermatozoa from H(2)O(2)-induced damage by rendering sperm membrane more hydrophobic, thus inhibiting the diffusion of H(2)O(2) across the membrane.

  9. Organic hydrogen peroxide-driven low charge potentials for high-performance lithium-oxygen batteries with carbon cathodes

    PubMed Central

    Wu, Shichao; Qiao, Yu; Yang, Sixie; Ishida, Masayoshi; He, Ping; Zhou, Haoshen

    2017-01-01

    Reducing the high charge potential is a crucial concern in advancing the performance of lithium-oxygen batteries. Here, for water-containing lithium-oxygen batteries with lithium hydroxide products, we find that a hydrogen peroxide aqueous solution added in the electrolyte can effectively promote the decomposition of lithium hydroxide compounds at the ultralow charge potential on a catalyst-free Ketjen Black-based cathode. Furthermore, for non-aqueous lithium-oxygen batteries with lithium peroxide products, we introduce a urea hydrogen peroxide, chelating hydrogen peroxide without any water in the organic, as an electrolyte additive in lithium-oxygen batteries with a lithium metal anode and succeed in the realization of the low charge potential of ∼3.26 V, which is among the best levels reported. In addition, the undesired water generally accompanying hydrogen peroxide solutions is circumvented to protect the lithium metal anode and ensure good battery cycling stability. Our results should provide illuminating insights into approaches to enhancing lithium-oxygen batteries. PMID:28585527

  10. Organic hydrogen peroxide-driven low charge potentials for high-performance lithium-oxygen batteries with carbon cathodes

    NASA Astrophysics Data System (ADS)

    Wu, Shichao; Qiao, Yu; Yang, Sixie; Ishida, Masayoshi; He, Ping; Zhou, Haoshen

    2017-06-01

    Reducing the high charge potential is a crucial concern in advancing the performance of lithium-oxygen batteries. Here, for water-containing lithium-oxygen batteries with lithium hydroxide products, we find that a hydrogen peroxide aqueous solution added in the electrolyte can effectively promote the decomposition of lithium hydroxide compounds at the ultralow charge potential on a catalyst-free Ketjen Black-based cathode. Furthermore, for non-aqueous lithium-oxygen batteries with lithium peroxide products, we introduce a urea hydrogen peroxide, chelating hydrogen peroxide without any water in the organic, as an electrolyte additive in lithium-oxygen batteries with a lithium metal anode and succeed in the realization of the low charge potential of ~3.26 V, which is among the best levels reported. In addition, the undesired water generally accompanying hydrogen peroxide solutions is circumvented to protect the lithium metal anode and ensure good battery cycling stability. Our results should provide illuminating insights into approaches to enhancing lithium-oxygen batteries.

  11. Reversible cysteine oxidation in hydrogen peroxide sensing and signal transduction.

    PubMed

    García-Santamarina, Sarela; Boronat, Susanna; Hidalgo, Elena

    2014-04-29

    Activation of redox cascades through hydrogen peroxide-mediated reversible cysteine oxidation is a major mechanism for intracellular signaling. Understanding why some cysteine residues are specifically oxidized, in competition with other proximal cysteine residues and in the presence of strong redox buffers, is therefore crucial for understanding redox signaling. In this review, we explore the recent advances in thiol-redox chemistry linked to signaling. We describe the last findings in the field of redox sensors, those that are naturally present in different model organisms as well as those that have been engineered to quantify intracellular hydrogen peroxide concentrations. Finally, we provide a summary of the newest approaches developed to study reversible cysteine oxidation at the proteomic level.

  12. Structural Basis for Inhibitor-Induced Hydrogen Peroxide Production by Kynurenine 3-Monooxygenase.

    PubMed

    Kim, Hyun Tae; Na, Byeong Kwan; Chung, Jiwoung; Kim, Sulhee; Kwon, Sool Ki; Cha, Hyunju; Son, Jonghyeon; Cho, Joong Myung; Hwang, Kwang Yeon

    2018-04-19

    Kynurenine 3-monooxygenase (KMO) inhibitors have been developed for the treatment of neurodegenerative disorders. The mechanisms of flavin reduction and hydrogen peroxide production by KMO inhibitors are unknown. Herein, we report the structure of human KMO and crystal structures of Saccharomyces cerevisiae (sc) and Pseudomonas fluorescens (pf) KMO with Ro 61-8048. Proton transfer in the hydrogen bond network triggers flavin reduction in p-hydroxybenzoate hydroxylase, but the mechanism triggering flavin reduction in KMO is different. Conformational changes via π-π interactions between the loop above the flavin and substrate or non-substrate effectors lead to disorder of the C-terminal α helix in scKMO and shifts of domain III in pfKMO, stimulating flavin reduction. Interestingly, Ro 61-8048 has two different binding modes. It acts as a competitive inhibitor in scKMO and as a non-substrate effector in pfKMO. These findings provide understanding of the catalytic cycle of KMO and insight for structure-based drug design of KMO inhibitors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Quantifying intracellular hydrogen peroxide perturbations in terms of concentration

    PubMed Central

    Huang, Beijing K.; Sikes, Hadley D.

    2014-01-01

    Molecular level, mechanistic understanding of the roles of reactive oxygen species (ROS) in a variety of pathological conditions is hindered by the difficulties associated with determining the concentration of various ROS species. Here, we present an approach that converts fold-change in the signal from an intracellular sensor of hydrogen peroxide into changes in absolute concentration. The method uses extracellular additions of peroxide and an improved biochemical measurement of the gradient between extracellular and intracellular peroxide concentrations to calibrate the intracellular sensor. By measuring peroxiredoxin activity, we found that this gradient is 650-fold rather than the 7–10-fold that is widely cited. The resulting calibration is important for understanding the mass-action kinetics of complex networks of redox reactions, and it enables meaningful characterization and comparison of outputs from endogenous peroxide generating tools and therapeutics across studies. PMID:25460730

  14. Feruloylserotonin inhibits hydrogen peroxide-induced melanogenesis and apoptosis in B16F10 and SK-Mel-2 melanoma cells.

    PubMed

    Cho, Hyejoung; Kim, Okjoon; Lee, Younghee; Kang, Li-Jung; Nguyen, Cam Ngoc; Ishihara, Atsushi; Kim, Hye-Eun

    2017-09-30

    Feruloylserotonin (FS) is a major bioactive component of safflower seeds, with documented strong antibacterial, anti-inflammatory, and free radical scavenging activities. Reactive oxygen species (ROS) can strongly induce melanogenesis and cell apoptosis. The present study aimed to investigate the ability of FS in preventing hydrogen peroxide (H 2 O 2 )-induced melanogenesis and cell apoptosis. Melanogenesis and apoptotic cell death were induced by transient exposure to H 2 O 2 in B16F10 and SK-Mel-2 melanoma cells. FS significantly inhibited melanogenesis and cell death in both cell lines. FS inhibited H 2 O 2 -induced melanin production by down-regulating CREB/MITF/TYR signaling via inhibited intracellular cAMP accumulation. Additionally, FS induced extracellular regulated kinase activation, which led to the degradation of MITF and consequently decreased TYR expression and melanin production in H 2 O 2 -stimulated cells. Furthermore, FS inhibited H 2 O 2 -induced apoptotic cell death by maintaining mitochondrial membrane potential. Therefore, FS might have potential use for cosmetic whitening and as a therapeutic agent for hyperpigmentation disorder. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Evaluation of the toxicity and efficacy of hydrogen peroxide treatments on eggs of warm and cool water fishes

    USGS Publications Warehouse

    Rach, J.J.; Gaikowski, M.P.; Howe, G.E.; Schreier, Theresa M.

    1998-01-01

    The use of hydrogen peroxide in aquaculture is growing and there is a need to develop fundamental guidelines to effectively treat diseased fish. The safety (toxicity) of hydrogen peroxide treatments was determined on eggs of representative warm- and coolwater fish species. Eggs of northern pike (Esox lucius), walleye (Stizostedion vitreum), yellow perch (Pel ca flavescens), white sucker (Catostomus commersoni), lake sturgeon (Acipenser fulvescens), paddlefish (Polyodon spathula), common carp (Cyprinus carpio), and channel catfish (Ictalurus punctatus) were cultured in egg jars or aquaria. Treatments were initiated with non-eyed eggs and continued until all viable eggs had hatched. Eggs were treated daily for 15 min Monday through Friday with either 0, 500, 1000, 3000, or 6000 mu l l(-1) of hydrogen peroxide. For all species, the mean percent hatch was greater in eggs treated with 1000 mu l l(-1) hydrogen peroxide for 15 min than in the untreated controls. Common carp, lake sturgeon, and paddlefish were the least sensitive to hydrogen peroxide with percent hatch ranging from 40 to 48% in the 6000 mu l l(-1) hydrogen peroxide treatment. Fungal infections reduced or eliminated the hatch in most controls whereas nearly all treated eggs remained free of infection; hydrogen peroxide inhibited fungal infections on fish eggs. (C) 1998 Elsevier Science B.V. All rights reserved.

  16. Hydrogen peroxide and methylhydroperoxide variations in Houston urban air during May 2009

    NASA Astrophysics Data System (ADS)

    Golovko, J.; Rappenglueck, B.; Jobson, B. T.

    2010-12-01

    Formation and destruction of peroxides along with OH and ozone cycles plays a significant role in the oxidizing capacity of the troposphere. Measurements of hydrogen peroxide and methylhydroperoxide (MHP) were carried out as a part of the Study of Houston Atmospheric Radical Precursors (SHARP) campaign during late spring 2009. The purpose of this study was to investigate peroxides variations in Houston urban atmosphere and factors controlling their distribution. Diurnal variation of hydrogen peroxide show typical pattern with the broad maximum in the afternoon for the whole period of time, with an exception on May 19th when the second maximum was determined after the sunrise. Less abundant in the atmosphere and possibly originating from different sources methylhydroperoxide demonstrated similar diurnal pattern of elevated mixing ratios in the afternoon. Elevated values of hydrogen peroxide in Houston area are associated with warm, moderately humid air, while southerly winds from the Gulf of Mexico result in H2O2 mixing ratio decrease. Some selected VOCs were analyzed in order to evaluate possible sources for both peroxides. Meteorological conditions significantly control H2O2 mixing ratios, showing elevated values primarily related to easterly and to a lesser extent to southeasterly winds. Similar pattern with the significant role of the easterly winds was observed for VOCs and was more pronounced during nighttime, pointing into industrial sector (Houston Ship Channel) influence. Increased values of H2O2/MHP ratio are mostly associated with drier northerly and northeasterly air masses, pointing out different solubility and origin of H2O2 and MHP.

  17. Transenamel and transdentinal penetration of hydrogen peroxide applied to cracked or microabrasioned enamel.

    PubMed

    Briso, A L F; Lima, A P B; Gonçalves, R S; Gallinari, M O; dos Santos, P H

    2014-01-01

    The present study evaluated transenamel and transdentinal penetration of hydrogen peroxide during tooth whitening recognized in altered enamel by the presence of cracks or microabrasion. We used 72 experimental units (n=20) obtained from bovine incisors: GI-sound enamel; GII-teeth showing visible enamel cracks (4 mm to 5.7 mm in length); and GIII-microabrasioned enamel. The 12 remaining specimens were used to analyze the enamel surface morphology using scanning electron microscopy. The specimens were cylindrical and 5.7 mm in diameter and 3.5 mm thick. A product based on 35% hydrogen peroxide was used for bleaching, following the manufacturer's recommendations for use. To quantify the H2O2 penetration, the specimens were placed in artificial pulp chambers containing an acetate buffer solution. After bleaching, the solution was collected and adequately proportioned with leucocrystal violet, peroxidase enzyme, and deionized water. The resulting solution was evaluated using ultraviolet visible reflectance spectrophotometer equipment. The data were analyzed by analysis of variance (ANOVA) and Fisher's PLSD at a significance level of 0.05, and significant differences in the penetration of peroxide in different substrate conditions were observed (p<0.0001). The penetration of hydrogen peroxide was more intense in cracked teeth. The group in which the enamel was microabraded showed intermediate values when compared to the control group. Microabrasion and the presence of cracks in the enamel make this substrate more susceptible to penetration of hydrogen peroxide during in-office whitening.

  18. Interleukin-22 induces hepatic stellate cell senescence and restricts liver fibrosis in mice.

    PubMed

    Kong, Xiaoni; Feng, Dechun; Wang, Hua; Hong, Feng; Bertola, Adeline; Wang, Fu-Sheng; Gao, Bin

    2012-09-01

    Interleukin (IL)-22 is known to play a key role in promoting antimicrobial immunity, inflammation, and tissue repair at barrier surfaces by binding to the receptors, IL-10R2 and IL-22R1. IL-22R1 is generally thought to be expressed exclusively in epithelial cells. In this study, we identified high levels of IL-10R2 and IL-22R1 expression on hepatic stellate cells (HSCs), the predominant cell type involved in liver fibrogenesis in response to liver damage. In vitro treatment with IL-22 induced the activation of signal transducer and activator of transcription (STAT) 3 in primary mouse and human HSCs. IL-22 administration prevented HSC apoptosis in vitro and in vivo, but surprisingly, the overexpression of IL-22 by either gene targeting (e.g., IL-22 transgenic mice) or exogenous administration of adenovirus expressing IL-22 reduced liver fibrosis and accelerated the resolution of liver fibrosis during recovery. Furthermore, IL-22 overexpression or treatment increased the number of senescence-associated beta-galactosidase-positive HSCs and decreased alpha-smooth muscle actin expression in fibrotic livers in vivo and cultured HSCs in vitro. Deletion of STAT3 prevented IL-22-induced HSC senescence in vitro, whereas the overexpression of a constitutively activated form of STAT3 promoted HSC senescence through p53- and p21-dependent pathways. Finally, IL-22 treatment up-regulated the suppressor of cytokine signaling (SOCS) 3 expression in HSCs. Immunoprecipitation analyses revealed that SOCS3 bound p53 and subsequently increased the expression of p53 and its target genes, contributing to IL-22-mediated HSC senescence. IL-22 induces the senescence of HSCs, which express both IL-10R2 and IL-22R1, thereby ameliorating liver fibrogenesis. The antifibrotic effect of IL-22 is likely mediated by the induction of HSC senescence, in addition to the previously discovered hepatoprotective functions of IL-22. Copyright © 2012 American Association for the Study of Liver Diseases.

  19. Arctigenin induced gallbladder cancer senescence through modulating epidermal growth factor receptor pathway.

    PubMed

    Zhang, Mingdi; Cai, Shizhong; Zuo, Bin; Gong, Wei; Tang, Zhaohui; Zhou, Di; Weng, Mingzhe; Qin, Yiyu; Wang, Shouhua; Liu, Jun; Ma, Fei; Quan, Zhiwei

    2017-05-01

    Gallbladder cancer has poor prognosis and limited therapeutic options. Arctigenin, a representative dibenzylbutyrolactone lignan, occurs in a variety of plants. However, the molecular mechanisms involved in the antitumor effect of arctigenin on gallbladder cancer have not been fully elucidated. The expression levels of epidermal growth factor receptor were examined in 100 matched pairs of gallbladder cancer tissues. A positive correlation between high epidermal growth factor receptor expression levels and poor prognosis was observed in gallbladder cancer tissues. Pharmacological inhibition or inhibition via RNA interference of epidermal growth factor receptor induced cellular senescence in gallbladder cancer cells. The antitumor effect of arctigenin on gallbladder cancer cells was primarily achieved by inducing cellular senescence. In gallbladder cancer cells treated with arctigenin, the expression level of epidermal growth factor receptor significantly decreased. The analysis of the activity of the kinases downstream of epidermal growth factor receptor revealed that the RAF-MEK-ERK signaling pathway was significantly inhibited. Furthermore, the cellular senescence induced by arctigenin could be reverted by pcDNA-epidermal growth factor receptor. Arctigenin also potently inhibited the growth of tumor xenografts, which was accompanied by the downregulation of epidermal growth factor receptor and induction of senescence. This study demonstrates arctigenin could induce cellular senescence in gallbladder cancer through the modulation of epidermal growth factor receptor pathway. These data identify epidermal growth factor receptor as a key regulator in arctigenin-induced gallbladder cancer senescence.

  20. Hydrogen peroxide biosensor based on a myoglobin/hydrophilic room temperature ionic liquid film.

    PubMed

    Safavi, Afsaneh; Farjami, Fatemeh

    2010-07-01

    The composite film based on Nafion and hydrophilic room temperature ionic liquid (RTIL) 1-butyl-3-methyl-imidazolium chloride ([bmim]Cl) was used as an immobilization matrix to entrap myoglobin (Mb). The study of ionic liquid (IL)-Mb interaction by ultraviolet-visible (UV-vis) spectroscopy showed that Mb retains its native conformation in the presence of IL. The immobilized Mb displayed a pair of well-defined cyclic voltammetric peaks with a formal potential (E(o)(')) of -0.35 V in a 0.1 M phosphate buffer solution (PBS) of pH 7.0. The immobilized Mb exhibited excellent electrocatalytic response to the reduction of hydrogen peroxide, based on which a mediator-free amperometric biosensor for hydrogen peroxide was designed. The linear range for the determination of hydrogen peroxide was from 1.0 to 180 microM with a detection limit of 0.14 microM at a signal/noise ratio of 3. The apparent Michaelis constant (K(m)(app)) for the electrocatalytic reaction was 22.6 microM. The stability, repeatability, and selectivity of the sensor were evaluated. The proposed biosensor has a lower detection limit than many other IL-heme protein-based biosensors and is free from common interference in hydrogen peroxide biosensors. 2010 Elsevier Inc. All rights reserved.

  1. Long-term acclimatory response to excess excitation energy: evidence for a role of hydrogen peroxide in the regulation of photosystem II antenna size.

    PubMed

    Borisova-Mubarakshina, Maria M; Ivanov, Boris N; Vetoshkina, Daria V; Lubimov, Valeriy Y; Fedorchuk, Tatyana P; Naydov, Ilya A; Kozuleva, Marina A; Rudenko, Natalia N; Dall'Osto, Luca; Cazzaniga, Stefano; Bassi, Roberto

    2015-12-01

    Higher plants possess the ability to trigger a long-term acclimatory response to different environmental light conditions through the regulation of the light-harvesting antenna size of photosystem II. The present study provides an insight into the molecular nature of the signal which initiates the high light-mediated response of a reduction in antenna size. Using barley (Hordeum vulgare) plants, it is shown (i) that the light-harvesting antenna size is not reduced in high light with a low hydrogen peroxide content in the leaves; and (ii) that a decrease in the antenna size is observed in low light in the presence of an elevated concentration of hydrogen peroxide in the leaves. In particular, it has been demonstrated that the ability to reduce the antenna size of photosystem II in high light is restricted to photosynthetic apparatus with a reduced level of the plastoquinone pool and with a low hydrogen peroxide content. Conversely, the reduction of antenna size in low light is induced in photosynthetic apparatus possessing elevated hydrogen peroxide even when the reduction level of the plastoquinone pool is low. Hydrogen peroxide affects the relative abundance of the antenna proteins that modulate the antenna size of photosystem II through a down-regulation of the corresponding lhcb mRNA levels. This work shows that hydrogen peroxide contributes to triggering the photosynthetic apparatus response for the reduction of the antenna size of photosystem II by being the molecular signal for the long-term acclimation of plants to high light. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Phase transition and chemical decomposition of hydrogen peroxide and its water mixtures under high pressures.

    PubMed

    Chen, Jing-Yin; Kim, Minseob; Yoo, Choong-Shik; Dattelbaum, Dana M; Sheffield, Stephen

    2010-06-07

    We have studied the pressure-induced phase transition and chemical decomposition of hydrogen peroxide and its mixtures with water to 50 GPa, using confocal micro-Raman and synchrotron x-ray diffractions. The x-ray results indicate that pure hydrogen peroxide crystallizes into a tetragonal structure (P4(1)2(1)2), the same structure previously found in 82.7% H(2)O(2) at high pressures and in pure H(2)O(2) at low temperatures. The tetragonal phase (H(2)O(2)-I) is stable to 15 GPa, above which transforms into an orthorhombic structure (H(2)O(2)-II) over a relatively large pressure range between 13 and 18 GPa. Inferring from the splitting of the nu(s)(O-O) stretching mode, the phase I-to-II transition pressure decreases in diluted H(2)O(2) to around 7 GPa for the 41.7% H(2)O(2) and 3 GPa for the 9.5%. Above 18 GPa H(2)O(2)-II gradually decomposes to a mixture of H(2)O and O(2), which completes at around 40 GPa for pure and 45 GPa for the 9.5% H(2)O(2). Upon pressure unloading, H(2)O(2) also decomposes to H(2)O and O(2) mixtures across the melts, occurring at 2.5 GPa for pure and 1.5 GPa for the 9.5% mixture. At H(2)O(2) concentrations below 20%, decomposed mixtures form oxygen hydrate clathrates at around 0.8 GPa--just after H(2)O melts. The compression data of pure H(2)O(2) and the stability data of the mixtures seem to indicate that the high-pressure decomposition is likely due to the pressure-induced densification, whereas the low-pressure decomposition is related to the heterogeneous nucleation process associated with H(2)O(2) melting.

  3. Oxidative and Molecular Responses in Capsicum annuum L. after Hydrogen Peroxide, Salicylic Acid and Chitosan Foliar Applications

    PubMed Central

    Mejía-Teniente, Laura; de Dalia Durán-Flores, Flor; Chapa-Oliver, Angela María; Torres-Pacheco, Irineo; Cruz-Hernández, Andrés; González-Chavira, Mario M.; Ocampo-Velázquez, Rosalía V.; Guevara-González, Ramón G.

    2013-01-01

    Hydrogen peroxide (H2O2) is an important ROS molecule (Reactive oxygen species) that serves as a signal of oxidative stress and activation of signaling cascades as a result of the early response of the plant to biotic stress. This response can also be generated with the application of elicitors, stable molecules that induce the activation of transduction cascades and hormonal pathways, which trigger induced resistance to environmental stress. In this work, we evaluated the endogenous H2O2 production caused by salicylic acid (SA), chitosan (QN), and H2O2 elicitors in Capsicum annuum L. Hydrogen peroxide production after elicitation, catalase (CAT) and phenylalanine ammonia lyase (PAL) activities, as well as gene expression analysis of cat1, pal, and pathogenesis-related protein 1 (pr1) were determined. Our results displayed that 6.7 and 10 mM SA concentrations, and, 14 and 18 mM H2O2 concentrations, induced an endogenous H2O2 and gene expression. QN treatments induced the same responses in lesser proportion than the other two elicitors. Endogenous H2O2 production monitored during several days, showed results that could be an indicator for determining application opportunity uses in agriculture for maintaining plant alert systems against a stress. PMID:23676352

  4. Simulated afterburner performance with hydrogen peroxide injection for thrust augmentation

    NASA Technical Reports Server (NTRS)

    Metzler, Allen J; Grobman, Jack S

    1956-01-01

    Combustion performance of three afterburner configurations was evaluated at simulated altitude flight conditions with liquid augmentation to the primary combustor. Afterburner combustion efficiency and stability were better with injection of high-strength hydrogen peroxide than with no injection or with water injection. Improvements were observed in afterburner configurations with and without flameholders and in a short-length afterburner. At a peroxide-air ratio of 0.3, combustion was stable and 85 to 90 percent efficient in all configurations tested. Calculated augmented net-thrust ratios for peroxide injection with afterburning were approximately 60 percent greater than those for water injection.

  5. Results of a Multicenter, Randomized, Controlled Trial of a Hydrogen Peroxide-based Kit versus a Benzoyl Peroxide-based Kit in Mild-to-moderate Acne

    PubMed Central

    Micali, Giuseppe; Berardesca, Enzo; Dall’Oglio, Federica; Sinagra, Jo Linda; Guanziroli, Elena

    2016-01-01

    Objective:To evaluate the efficacy and tolerability of a novel hydrogen peroxide-based regimen versus a benzoyl peroxide-based regimen in mild-to-moderate acne. Methods: In this eight-week multicenter study, patients were randomized to either a hydrogen peroxide-based or a benzoyl peroxide-based regimen.The primary outcome measure of clinical response was assessed using the Global Acne Grading System (GAGS) at baseline,four weeks, and eight weeks. At Week 8, a patient self-satisfaction questionnaire was administered. Investigators were also queried at that time regarding assessment of tolerability and cosmetic acceptability. Tolerability was also measured at each visit. Results: Both treatment regimens were associated with improvement of GAGS score at Week 8 compared to baseline (p<0.0001). GAGS score did not differ significantly between the two regimens over the same period (p=0.7765). No significant adverse events were reported or observed in either treatment arm. Both patients and investigators found both regimens to be similarly effective and cosmetically acceptable. Conclusion: A novel hydrogen peroxide-based regimen was shown to be comparable in efficacy, safety, and cosmetic acceptability to a benzoyl peroxide-based regimen in the treatment of mild-to-moderate acne. PMID:27847549

  6. Considerations for Storage of High Test Hydrogen Peroxide (HTP) Utilizing Non-Metal Containers

    NASA Technical Reports Server (NTRS)

    Moore, Robin E.; Scott, Joseph P.; Wise, Harry

    2005-01-01

    When working with high concentrations of hydrogen peroxide, it is critical that the storage container be constructed of the proper materials, those which will not degrade to the extent that container breakdown or dangerous decomposition occurs. It has been suggested that the only materials that will safely contain the peroxide for a significant period of time are metals of stainless steel construction or aluminum use as High Test Hydrogen Peroxide (HTP) Containers. The stability and decomposition of HTP will be also discussed as well as various means suggested in the literature to minimize these problems. The dangers of excess oxygen generation are also touched upon.

  7. The study of hydrogen peroxide level under cisplatin action using genetically encoded sensor hyper

    NASA Astrophysics Data System (ADS)

    Belova, A. S.; Orlova, A. G.; Maslennikova, A. V.; Brilkina, A. A.; Balalaeva, I. V.; Antonova, N. O.; Mishina, N. M.; Shakhova, N. M.; Belousov, V. V.

    2014-03-01

    The aim of the work was to study the participation of hydrogen peroxide in reaction of cervical cancer cell line HeLa Kyoto on cisplatin action. Determination of hydrogen peroxide level was performed using genetically encoded fluorescent sensor HyPer2. The dependence of cell viability on cisplatin concentration was determined using MTT assay. Mechanisms of cell death as well as HyPer2 reaction was revealed by flow cytometry after 6-hours of incubation with cisplatin in different concentrations. Cisplatin used in low concentrations had no effect on hydrogen peroxide level in HeLa Kyoto cells. Increase of HyPer2 fluorescence was detected only after exposure with cisplatin in high concentration. The reaction was not the consequence of cell death.

  8. Hydrogen peroxide modified sodium titanates with improved sorption capabilities

    DOEpatents

    Nyman, May D [Albuquerque, NM; Hobbs, David T [North Augusta, SC

    2009-02-24

    The sorption capabilities (e.g., kinetics, selectivity, capacity) of the baseline monosodium titanate (MST) sorbent material currently being used to sequester Sr-90 and alpha-emitting radioisotopes at the Savannah River Site are significantly improved when treated with hydrogen peroxide; either during the original synthesis of MST, or, as a post-treatment step after the MST has been synthesized. It is expected that these peroxide-modified MST sorbent materials will have significantly improved sorption capabilities for non-radioactive cations found in industrial processes and waste streams.

  9. Preparation of water soluble chitosan by hydrolysis using hydrogen peroxide.

    PubMed

    Xia, Zhenqiang; Wu, Shengjun; Chen, Jinhua

    2013-08-01

    Chitosan is not soluble in water, which limits its wide application particularly in the medicine and food industry. In the present study, water soluble chitosan (WSC) was prepared by hydrolyzing chitosan using hydrogen peroxide under the catalysis of phosphotungstic acid in homogeneous phase. Factors affecting hydrolysis were investigated and the optimal hydrolysis conditions were determined. The WSC structure was characterized by Fourier transform infrared spectroscopy. The resulting products were composed of chitooligosaccharides of DP 2-9. The WSC content of the product and the yield were 94.7% and 92.3% (w/w), respectively. The results indicate that WSC can be effectively prepared by hydrolysis of chitosan using hydrogen peroxide under the catalysis of phosphotungstic acid. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Erythrocyte membrane stability to hydrogen peroxide is decreased in Alzheimer disease.

    PubMed

    Gilca, Marilena; Lixandru, Daniela; Gaman, Laura; Vîrgolici, Bogdana; Atanasiu, Valeriu; Stoian, Irina

    2014-01-01

    The brain and erythrocytes have similar susceptibility toward free radicals. Therefore, erythrocyte abnormalities might indicate the progression of the oxidative damage in Alzheimer disease (AD). The aim of this study was to investigate erythrocyte membrane stability and plasma antioxidant status in AD. Fasting blood samples (from 17 patients with AD and 14 healthy controls) were obtained and erythrocyte membrane stability against hydrogen peroxide and 2,2'-azobis-(2-amidinopropane) dihydrochloride (AAPH), serum Trolox equivalent antioxidant capacity (TEAC), residual antioxidant activity or gap (GAP), erythrocyte catalase activity (CAT), erythrocyte superoxide dismutase (SOD) activity, erythrocyte nonproteic thiols, and total plasma thiols were determined. A significant decrease in erythrocyte membrane stability to hydrogen peroxide was found in AD patients when compared with controls (P<0.05). On the contrary, CAT activity (P<0.0001) and total plasma thiols (P<0.05) were increased in patients with AD compared with controls. Our results indicate that the most satisfactory measurement of the oxidative stress level in the blood of patients with AD is the erythrocyte membrane stability to hydrogen peroxide. Reduced erythrocyte membrane stability may be further evaluated as a potential peripheral marker for oxidative damage in AD.

  11. Both Complexity and Location of DNA Damage Contribute to Cellular Senescence Induced by Ionizing Radiation

    PubMed Central

    Zhang, Xurui; Ye, Caiyong; Sun, Fang; Wei, Wenjun; Hu, Burong; Wang, Jufang

    2016-01-01

    Persistent DNA damage is considered as a main cause of cellular senescence induced by ionizing radiation. However, the molecular bases of the DNA damage and their contribution to cellular senescence are not completely clear. In this study, we found that both heavy ions and X-rays induced senescence in human uveal melanoma 92–1 cells. By measuring senescence associated-β-galactosidase and cell proliferation, we identified that heavy ions were more effective at inducing senescence than X-rays. We observed less efficient repair when DNA damage was induced by heavy ions compared with X-rays and most of the irreparable damage was complex of single strand breaks and double strand breaks, while DNA damage induced by X-rays was mostly repaired in 24 hours and the remained damage was preferentially associated with telomeric DNA. Our results suggest that DNA damage induced by heavy ion is often complex and difficult to repair, thus presents as persistent DNA damage and pushes the cell into senescence. In contrast, persistent DNA damage induced by X-rays is preferentially associated with telomeric DNA and the telomere-favored persistent DNA damage contributes to X-rays induced cellular senescence. These findings provide new insight into the understanding of high relative biological effectiveness of heavy ions relevant to cancer therapy and space radiation research. PMID:27187621

  12. Spatial Positioning of All 24 Chromosomes in the Lymphocytes of Six Subjects: Evidence of Reproducible Positioning and Spatial Repositioning following DNA Damage with Hydrogen Peroxide and Ultraviolet B

    PubMed Central

    Kandukuri, Lakshmi; Quadri, Ameer; Becerra, Victor; Simpson, Joe Leigh

    2015-01-01

    The higher-order organization of chromatin is well-established, with chromosomes occupying distinct positions within the interphase nucleus. Chromatin is susceptible to, and constantly assaulted by both endogenous and exogenous threats. However, the effects of DNA damage on the spatial topology of chromosomes are hitherto, poorly understood. This study investigates the organization of all 24 human chromosomes in lymphocytes from six individuals prior to- and following in-vitro exposure to genotoxic agents: hydrogen peroxide and ultraviolet B. This study is the first to report reproducible distinct hierarchical radial organization of chromosomes with little inter-individual differences between subjects. Perturbed nuclear organization was observed following genotoxic exposure for both agents; however a greater effect was observed for hydrogen peroxide including: 1) More peripheral radial organization; 2) Alterations in the global distribution of chromosomes; and 3) More events of chromosome repositioning (18 events involving 10 chromosomes vs. 11 events involving 9 chromosomes for hydrogen peroxide and ultraviolet B respectively). Evidence is provided of chromosome repositioning and altered nuclear organization following in-vitro exposure to genotoxic agents, with notable differences observed between the two investigated agents. Repositioning of chromosomes following genotoxicity involved recurrent chromosomes and is most likely part of the genomes inherent response to DNA damage. The variances in nuclear organization observed between the two agents likely reflects differences in mobility and/or decondensation of chromatin as a result of differences in the type of DNA damage induced, chromatin regions targeted, and DNA repair mechanisms. PMID:25756782

  13. Spatial positioning of all 24 chromosomes in the lymphocytes of six subjects: evidence of reproducible positioning and spatial repositioning following DNA damage with hydrogen peroxide and ultraviolet B.

    PubMed

    Ioannou, Dimitrios; Kandukuri, Lakshmi; Quadri, Ameer; Becerra, Victor; Simpson, Joe Leigh; Tempest, Helen G

    2015-01-01

    The higher-order organization of chromatin is well-established, with chromosomes occupying distinct positions within the interphase nucleus. Chromatin is susceptible to, and constantly assaulted by both endogenous and exogenous threats. However, the effects of DNA damage on the spatial topology of chromosomes are hitherto, poorly understood. This study investigates the organization of all 24 human chromosomes in lymphocytes from six individuals prior to- and following in-vitro exposure to genotoxic agents: hydrogen peroxide and ultraviolet B. This study is the first to report reproducible distinct hierarchical radial organization of chromosomes with little inter-individual differences between subjects. Perturbed nuclear organization was observed following genotoxic exposure for both agents; however a greater effect was observed for hydrogen peroxide including: 1) More peripheral radial organization; 2) Alterations in the global distribution of chromosomes; and 3) More events of chromosome repositioning (18 events involving 10 chromosomes vs. 11 events involving 9 chromosomes for hydrogen peroxide and ultraviolet B respectively). Evidence is provided of chromosome repositioning and altered nuclear organization following in-vitro exposure to genotoxic agents, with notable differences observed between the two investigated agents. Repositioning of chromosomes following genotoxicity involved recurrent chromosomes and is most likely part of the genomes inherent response to DNA damage. The variances in nuclear organization observed between the two agents likely reflects differences in mobility and/or decondensation of chromatin as a result of differences in the type of DNA damage induced, chromatin regions targeted, and DNA repair mechanisms.

  14. Hydrogenation of liquid natural rubber via diimide reduction in hydrazine hydrate/hydrogen peroxide system

    NASA Astrophysics Data System (ADS)

    Yusof, Muhammad Jefri Mohd; Jamaluddin, Naharullah; Abdullah, Ibrahim; Yusoff, Siti Fairus M.

    2015-09-01

    Liquid natural rubber (LNR) with molecular weight of lower than 105 and shorter polymeric chain than natural rubber was prepared. LNR was then hydrogenated via diimide reduction by oxidation of hydrazine hydrate with hydrogen peroxide. The unsaturated units of the rubber were converted into saturated hydrocarbon to strengthen the backbone of the polymer so it was able to resist thermal degradation. The results indicated that hydrogenation degree of the product (HLNR) could be extended to 91.2% conversion under appropriate conditions. The hydrogenated LNR (HLNR) was characterized using Fourier-Transform Infrared (FTIR) and Nuclear Magnetic Resonance (NMR) spectroscopy. The physical characteristics of HLNR were analyzed with Termogravimetric Analysis (TGA).

  15. [Hydrogen peroxide, chloramine T and chlorhexidrine in the disinfection of acrylic resin].

    PubMed

    Czerwińska, W; Kedzia, A; Kałowski, M

    1978-01-01

    The effectiveness of 3% h drogen peroxide, 5% chloramine T and 0,5% chlorhexidine gluconate solutions in disinfection of acrylic resine plates massively infected with oral flora was analysed. The acrylic resine plates used for investigations, were infected in vitro with mixed salivary flora characterized by small numbers of yeast-like fungi (1st group), or great number of these microorganisms (2nd group). Infected plates were exposed to solutions of analysed disinfectants during various time periods. After rinsing or inactivation of disinfectant residues, acrylic plates were put into bacteriological medium and incubated during 7 days period in 37 degrees C. The results of this study indicated the effectiveness of acrylic plates disinfection to be dependent on used disinfectant, time of exposition, and microorganisms present on the surface of acrylic resine. The solutions of disinfectants were less active in the cases of plates infected with material containing great numbers of yeast-like microorganisms. Among analysed disinfectants 0,5% solution of chlorhexidine was characterized by most effective and rapid activity, whereas 3% solution of hydrogen peroxide was found to be the least effective.

  16. Inactivation of AKT Induces Cellular Senescence in Uterine Leiomyoma

    PubMed Central

    Xu, Xiaofei; Lu, Zhenxiao; Qiang, Wenan; Vidimar, Vania; Kong, Beihua

    2014-01-01

    Uterine leiomyomas (fibroids) are a major public health problem. Current medical treatments with GnRH analogs do not provide long-term benefit. Thus, permanent shrinkage or inhibition of fibroid growth via medical means remains a challenge. The AKT pathway is a major growth and survival pathway for fibroids. We propose that AKT inhibition results in a transient regulation of specific mechanisms that ultimately drive cells into cellular senescence or cell death. In this study, we investigated specific mechanisms of AKT inhibition that resulted in senescence. We observed that administration of MK-2206, an allosteric AKT inhibitor, increased levels of reactive oxygen species, up-regulated the microRNA miR-182 and several senescence-associated genes (including p16, p53, p21, and β-galactosidase), and drove leiomyoma cells into stress-induced premature senescence (SIPS). Moreover, induction of SIPS was mediated by HMGA2, which colocalized to senescence-associated heterochromatin foci. This study provides a conceivable molecular mechanism of SIPS by AKT inhibition in fibroids. PMID:24476133

  17. An Ethylene-Induced Regulatory Module Delays Flower Senescence by Regulating Cytokinin Content.

    PubMed

    Wu, Lin; Ma, Nan; Jia, Yangchao; Zhang, Yi; Feng, Ming; Jiang, Cai-Zhong; Ma, Chao; Gao, Junping

    2017-01-01

    In many plant species, including rose (Rosa hybrida), flower senescence is promoted by the gaseous hormone ethylene and inhibited by the cytokinin (CTK) class of hormones. However, the molecular mechanisms underlying these antagonistic effects are not well understood. In this study, we characterized the association between a pathogenesis-related PR-10 family gene from rose (RhPR10.1) and the hormonal regulation of flower senescence. Quantitative reverse transcription PCR analysis showed that RhPR10.1 was expressed at high levels during senescence in different floral organs, including petal, sepal, receptacle, stamen, and pistil, and that expression was induced by ethylene treatment. Silencing of RhPR10.1 expression in rose plants by virus-induced gene silencing accelerated flower senescence, which was accompanied by a higher ion leakage rate in the petals, as well as increased expression of the senescence marker gene RhSAG12 CTK content and the expression of three CTK signaling pathway genes were reduced in RhPR10.1-silenced plants, and the accelerated rate of petal senescence that was apparent in the RhPR10.1-silenced plants was restored to normal levels by CTK treatment. Finally, RhHB6, a homeodomain-Leu zipper I transcription factor, was observed to bind to the RhPR10.1 promoter, and silencing of its expression also promoted flower senescence. Our results reveal an ethylene-induced RhHB6-RhPR10.1 regulatory module that functions as a brake of ethylene-promoted senescence through increasing the CTK content. © 2017 American Society of Plant Biologists. All Rights Reserved.

  18. Solar-Driven Hydrogen Peroxide Production Using Polymer-Supported Carbon Dots as Heterogeneous Catalyst

    NASA Astrophysics Data System (ADS)

    Gogoi, Satyabrat; Karak, Niranjan

    2017-10-01

    Safe, sustainable, and green production of hydrogen peroxide is an exciting proposition due to the role of hydrogen peroxide as a green oxidant and energy carrier for fuel cells. The current work reports the development of carbon dot-impregnated waterborne hyperbranched polyurethane as a heterogeneous photo-catalyst for solar-driven production of hydrogen peroxide. The results reveal that the carbon dots possess a suitable band-gap of 2.98 eV, which facilitates effective splitting of both water and ethanol under solar irradiation. Inclusion of the carbon dots within the eco-friendly polymeric material ensures their catalytic activity and also provides a facile route for easy catalyst separation, especially from a solubilizing medium. The overall process was performed in accordance with the principles of green chemistry using bio-based precursors and aqueous medium. This work highlights the potential of carbon dots as an effective photo-catalyst.

  19. Effects of Martian Surface Materials on the Thermal Decomposition of Hydrogen Peroxide

    NASA Technical Reports Server (NTRS)

    Archer, P. D., Jr.

    2017-01-01

    While hydrogen peroxide (H2O2) has been detected in the martian atmosphere, it has not been detected in surface materials. Since the Viking lander mission, we have sent instruments to Mars with the capability to detect H2O2. The Sample Analysis at Mars (SAM) instrument onboard the Curiosity Rover and Thermal and Evolved Gas Analyzer (TEGA) instrument on the Phoenix lander both detected water and oxygen releases from analyzed sediments but whether or not peroxide could be the source of these gases has not been investigated. We are investigating the possible presence of H2O2 in martian materials by analyzing Mars-relevant minerals that have been mixed with hydrogen peroxide using lab instruments configured as analogs to Mars mission instruments. The object of this research is to use lab instruments to find the effects of Mars analog minerals on hydrogen peroxide gas release temperatures, specifically gas releases of water and oxygen and also determine the effect of the peroxide on the minerals. Data that we get from the lab can then be compared to the data collected from Mars. The minerals hematite, siderite, San Carlos olivine, magnetite and nontronite were chosen as our Mars analog minerals. 20 mg of analog Mars minerals with 5µl of 50% H2O2, and were either run immediately or placed in a sealed tube for 2, 4, or 9 days to look for changes over time with two reps being done at each time step to determine repeatability. Each sample was heated from -60 degC to 500 degC at 20 degC/min and the evolved gases were monitored with a mass spectrometer. Each sample was also analyzed with an X-ray diffraction instrument to look for changes in mineralogy. Preliminary results show three potential outcomes: 1) peroxide has no effect on the sample (e.g., hematite), 2) the mineral is unaffected but catalyzes peroxide decomposition (magnetite, siderite), or 3) peroxide alters the mineral (pyrrhotite, San Carlos olivine).

  20. Effects of Martian Surface Materials on the Thermal Decomposition of Hydrogen Peroxide

    NASA Astrophysics Data System (ADS)

    Dame, Rudger H.; Archer, Paul Douglas; Hogancamp, Joanna C.

    2017-10-01

    While hydrogen peroxide (H2O2) has been detected in the martian atmosphere, it has not been detected in surface materials. Since the Viking lander mission, we have sent instruments to Mars with the capability to detect H2O2. The Sample Analysis at Mars (SAM) instrument onboard the Curiosity Rover and Thermal and Evolved Gas Analyzer (TEGA) instrument on the Phoenix lander both detected water and oxygen releases from analyzed sediments but whether or not peroxide could be the source of these gases has not been investigated. We are investigating the possible presence of H2O2 in martian materials by analyzing Mars-relevant minerals that have been mixed with hydrogen peroxide using lab instruments configured as analogs to Mars mission instruments.The object of this research is to use lab instruments to find the effects of Mars analog minerals on hydrogen peroxide gas release temperatures, specifically gas releases of water and oxygen and also determine the effect of the peroxide on the minerals. Data that we get from the lab can then be compared to the data collected from Mars.The minerals hematite, siderite, San Carlos olivine, magnetite and nontronite were chosen as our Mars analog minerals. ~20 mg of analog Mars minerals with 5µl of 50% H2O2, and were either run immediately or placed in a sealed tube for 2, 4, or 9 days to look for changes over time with two reps being done at each time step to determine repeatability. Each sample was heated from -60 °C to 500 °C at 20 °C/min and the evolved gases were monitored with a mass spectrometer. Each sample was also analyzed with an X-ray diffraction instrument to look for changes in mineralogy.Preliminary results show three potential outcomes: 1) peroxide has no effect on the sample (e.g., hematite), 2) the mineral is unaffected but catalyzes peroxide decomposition (magnetite, siderite), or 3) peroxide alters the mineral (pyrrhotite, San Carlos olivine).

  1. The inhibitory mechanism of Cordyceps sinensis on cigarette smoke extract-induced senescence in human bronchial epithelial cells.

    PubMed

    Liu, Ailing; Wu, Jinxiang; Li, Aijun; Bi, Wenxiang; Liu, Tian; Cao, Liuzhao; Liu, Yahui; Dong, Liang

    2016-01-01

    Cellular senescence is a state of irreversible growth arrest induced either by telomere shortening (replicative senescence) or stress. The bronchial epithelial cell is often injured by inhaled toxic substances, such as cigarette smoke. In the present study, we investigated whether exposure to cigarette smoke extract (CSE) induces senescence of bronchial epithelial cells; and Cordyceps sinensis mechanism of inhibition of CSE-induced cellular senescence. Human bronchial epithelial cells (16HBE cells) cultured in vitro were treated with CSE and/or C. sinensis. p16, p21, and senescence-associated-galactosidase activity were used to detect cellular senescence with immunofluorescence, quantitative polymerase chain reaction, and Western blotting. Reactive oxygen species (ROS), PI3K/AKT/mTOR and their phosphorylated proteins were examined to testify the activation of signaling pathway by ROS fluorescent staining and Western blotting. Then, inhibitors of ROS and PI3K were used to further confirm the function of this pathway. Cellular senescence was upregulated by CSE treatment, and C. sinensis can decrease CSE-induced cellular senescence. Activation of ROS/PI3K/AKT/mTOR signaling pathway was enhanced by CSE treatment, and decreased when C. sinensis was added. Blocking ROS/PI3K/AKT/mTOR signaling pathway can attenuate CSE-induced cellular senescence. CSE can induce cellular senescence in human bronchial epithelial cells, and ROS/PI3K/AKT/mTOR signaling pathway may play an important role in this process. C. sinensis can inhibit the CSE-induced senescence.

  2. Pseudolaric Acid B Induced Cell Cycle Arrest, Autophagy and Senescence in Murine Fibrosarcoma L929 Cell

    PubMed Central

    hua Yu, Jing; yu Liu, Chun; bin Zheng, Gui; Zhang, Li Ying; hui Yan, Ming; yan Zhang, Wen; ying Meng, Xian; fang Yu, Xiao

    2013-01-01

    Objective: PAB induced various cancer cell apoptosis, cell cycle arrest and senescence. But in cell line murine fibrosarcoma L929, PAB did not induce apoptosis, but autophagy, therefore it was thought by us as a good model to research the relationship of cell cycle arrest, autophagy and senescence bypass apoptosis. Methods: Inhibitory ratio was assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) analysis. Phase contrast microscopy visualized cell morphology. Hoechst 33258 staining for nuclear change, propidium iodode (PI) staining for cell cycle, monodansylcadaverine (MDC) staining for autophagy, and rodanmine 123 staining for mitochondrial membrane potential (MMP) were measured by fluorescence microscopy or flowcytometry. Apoptosis was determined by DNA ladder test. Protein kinase C (PKC) activity was detected by PKC assay kit. SA-β-galactosidase assay was used to detect senescence. Protein expression was examined by western blot. Results: PAB inhibited L929 cell growth in time-and dose-dependent manner. At 12 h, 80 μmol/L PAB induced obvious mitotic arrest; at 24 h, PAB began to induce autophagy; at 36 h, cell-treated with PAB slip into G1 cell cycle; and 3 d PAB induced senescence. In time sequence PAB induced firstly cell cycle arrest, then autophagy, then slippage into G1 phase, lastly senescence. Senescent cells had high level of autophagy, inhibiting autophagy led to apoptosis, and no senescence. PAB activated PKC activity to induce cell cycle arrest, autophagy and senescence, inhibiting PKC activity suppressed cell cycle arrest, autophagy and senescence. Conclusion: PAB induced cell cycle arrest, autophagy and senescence in murine fibrosarcoma L929 cell through PKC. PMID:23630435

  3. Fluorescence hydrogen peroxide probe based on a microstructured polymer optical fiber modified with a titanium dioxide film.

    PubMed

    Li, Dongdong; Wang, Lili

    2010-05-01

    A highly sensitive microstructured polymer optical fiber (MPOF) probe for hydrogen peroxide was made by forming a rhodamine 6G-doped titanium dioxide film on the side walls of array holes in an MPOF. It was found that hydrogen peroxide only has a response to the MPOF probe in a certain concentration of potassium iodide in sulfuric acid solution. The calibration graph of fluorescence intensity versus hydrogen peroxide concentration is linear in the range of 1.6 x 10(-7) mol/L to 9.6 x 10(-5) mol/L. The method, with high sensitivity and a wide linear range, has been applied to the determination of trace amounts of hydrogen peroxide in a few real samples, such as rain water and contact lens disinfectant, with satisfactory results.

  4. An in vivo study of the effect of a 38 percent hydrogen peroxide in-office whitening agent on enamel.

    PubMed

    Cadenaro, Milena; Navarra, Chiara Ottavia; Mazzoni, Annalisa; Nucci, Cesare; Matis, Bruce A; Di Lenarda, Roberto; Breschi, Lorenzo

    2010-04-01

    In an in vivo study, the authors tested the hypothesis that no difference in enamel surface roughness is detectable either during or after bleaching with a high-concentration in-office whitening agent. The authors performed profilometric and scanning electron microscopic (SEM) analyses of epoxy resin replicas of the upper right incisors of 20 participants at baseline (control) and after each bleaching treatment with a 38 percent hydrogen peroxide whitening agent, applied four times, at one-week intervals. The authors used analysis of variance for repeated measures to analyze the data statistically. The profilometric analysis of the enamel surface replicas after the in vivo bleaching protocol showed no significant difference in surface roughness parameters (P > .05) compared with those at baseline, irrespective of the time interval. Results of the correlated SEM analysis showed no relevant alteration on the enamel surface. Results of this in vivo study support the tested hypothesis that the application of a 38 percent hydrogen peroxide in-office whitening agent does not alter enamel surface roughness, even after multiple applications. The use of a 38 percent hydrogen peroxide in-office whitening agent induced no roughness alterations of the enamel surface, even after prolonged and repeated applications.

  5. Protective effects of parecoxib on rat primary astrocytes from oxidative stress induced by hydrogen peroxide* #

    PubMed Central

    Ling, Yun-zhi; Li, Xiao-hong; Yu, Li; Zhang, Ye; Liang, Qi-sheng; Yang, Xiao-di; Wang, Hong-tao

    2016-01-01

    Objective: To investigate the protective effects of parecoxib from oxidative stress induced by hydrogen peroxide (H2O2) in rat astrocytes in vitro. Methods: All experiments included 4 groups: (1) negative control (NC) group, without any treatment; (2) H2O2 treatment group, 100 μmol/L H2O2 treatment for 24 h; (3) and (4) parecoxib pretreatment groups, 80 and 160 μmol/L parecoxib treatment for 24 h, respectively, and then treated with 100 μmol/L H2O2. Several indices were investigated, and the expressions of Bax, Bcl-2, and brain-derived neurotrophic factor (BDNF) were quantified. Results: Compared to the NC group, exposure to H2O2 resulted in significant morphological changes, which could be reversed by pretreatment of parecoxib. In addition, H2O2 treatment led to loss of viability (P=0.026) and increased intracellular reactive oxygen species (ROS) levels (P<0.001), and induced apoptosis (P<0.01) in the primary astrocytes relative to the NC group. However, in the parecoxib pretreatment groups, all the above changes reversed significantly (P<0.05) as compared to the H2O2 treatment group, and were nearly unchanged when compared to the NC group. Mechanical investigation showed that dysregulated Bax, Bcl-2, and BDNF could be implicated in these changes. Conclusions: Our results indicated that parecoxib provided a protective effect from oxidative stress induced by exposure to H2O2. PMID:27604861

  6. Protective effects of parecoxib on rat primary astrocytes from oxidative stress induced by hydrogen peroxide.

    PubMed

    Ling, Yun-Zhi; Li, Xiao-Hong; Yu, Li; Zhang, Ye; Liang, Qi-Sheng; Yang, Xiao-di; Wang, Hong-Tao

    2016-09-01

    To investigate the protective effects of parecoxib from oxidative stress induced by hydrogen peroxide (H2O2) in rat astrocytes in vitro. All experiments included 4 groups: (1) negative control (NC) group, without any treatment; (2) H2O2 treatment group, 100 μmol/L H2O2 treatment for 24 h; (3) and (4) parecoxib pretreatment groups, 80 and 160 μmol/L parecoxib treatment for 24 h, respectively, and then treated with 100 μmol/L H2O2. Several indices were investigated, and the expressions of Bax, Bcl-2, and brain-derived neurotrophic factor (BDNF) were quantified. Compared to the NC group, exposure to H2O2 resulted in significant morphological changes, which could be reversed by pretreatment of parecoxib. In addition, H2O2 treatment led to loss of viability (P=0.026) and increased intracellular reactive oxygen species (ROS) levels (P<0.001), and induced apoptosis (P<0.01) in the primary astrocytes relative to the NC group. However, in the parecoxib pretreatment groups, all the above changes reversed significantly (P<0.05) as compared to the H2O2 treatment group, and were nearly unchanged when compared to the NC group. Mechanical investigation showed that dysregulated Bax, Bcl-2, and BDNF could be implicated in these changes. Our results indicated that parecoxib provided a protective effect from oxidative stress induced by exposure to H2O2.

  7. Nucleases activities during French bean leaf aging and dark-induced senescence.

    PubMed

    Lambert, Rocío; Quiles, Francisco Antonio; Gálvez-Valdivieso, Gregorio; Piedras, Pedro

    2017-11-01

    During leaf senescence resources are managed, with nutrients mobilized from older leaves to new sink tissues. The latter implies a dilemma in terms of resource utilization, the leaf senescence should increase seed quality whereas delay in senescence should improve the seed yield. Increased knowledge about nutrient recycling during leaf senescence could lead to advances in agriculture and improved seed quality. Macromolecules mobilized during leaf senescence include proteins and nucleic acids. Although nucleic acids have been less well studied than protein degradation, they are possible reservoirs of nitrogen and phosphorous. The present study investigated nuclease activities and gene expression patterns of five members of the S1/P1 family in French bean (Phaseolus vulgaris L. cv.)Page: 2 during leaf senescence. An in-gel assay was used to detect nuclease activity during natural and dark-induced senescence, with single-stranded DNA (ssDNA) used as a substrate. The results revealed two nucleases (glycoproteins), with molecular masses of 34 and 39kDa in the senescent leaves. The nuclease activities were higher at a neutral than at an acidic pH. EDTA treatment inhibited the activities of the nucleases, and the addition of zinc resulted in the recovery of these activities. Both the 34 and 39kDa nucleases were able to use RNA and double-stranded DNA (dsDNA) as substrates, although their activities were low when dsDNA was used as a substrate. In addition, two ribonucleases with molecular masses of 14 and 16kDa, both of which could only utilize RNA as a substrate, were detected in the senescent leaves. Two members of the S1/P1 family, PVN2 and PVN5, were expressed under the experimental conditions, suggesting that these two genes were involved in senescence. The nuclease activity of the glycoproteins and gene expression were similar under both natural senescence and dark-induced senescence conditions. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights

  8. Detection of the ubiquitinome in cells undergoing oncogene-induced senescence

    PubMed Central

    Zhu, Hengrui; Le, Linh; Tang, Hsin-Yao; Speicher, David W.; Zhang, Rugang

    2017-01-01

    Summary Senescent cells exhibit dramatic changes in protein post-translational modifications. Here, we describe a method, stable isotope labeling with amino acids in cell culture (SILAC) coupled to liquid chromatography tandem mass spectrometry (LC-MS/MS), to identify changes in the ubiquitinome in cells that have undergone oncogene-induced senescence. PMID:27812874

  9. Low-Temperature Decontamination with Hydrogen Peroxide or Chlorine Dioxide for Space Applications

    PubMed Central

    Macken, S.; Giri, K.; Walker, J. T.; Bennett, A. M.

    2012-01-01

    The currently used microbial decontamination method for spacecraft and components uses dry-heat microbial reduction at temperatures of >110°C for extended periods to prevent the contamination of extraplanetary destinations. This process is effective and reproducible, but it is also long and costly and precludes the use of heat-labile materials. The need for an alternative to dry-heat microbial reduction has been identified by space agencies. Investigations assessing the biological efficacy of two gaseous decontamination technologies, vapor hydrogen peroxide (Steris) and chlorine dioxide (ClorDiSys), were undertaken in a 20-m3 exposure chamber. Five spore-forming Bacillus spp. were exposed on stainless steel coupons to vaporized hydrogen peroxide and chlorine dioxide gas. Exposure for 20 min to vapor hydrogen peroxide resulted in 6- and 5-log reductions in the recovery of Bacillus atrophaeus and Geobacillus stearothermophilus, respectively. However, in comparison, chlorine dioxide required an exposure period of 60 min to reduce both B. atrophaeus and G. stearothermophilus by 5 logs. Of the three other Bacillus spp. tested, Bacillus thuringiensis proved the most resistant to hydrogen peroxide and chlorine dioxide with D values of 175.4 s and 6.6 h, respectively. Both low-temperature decontamination technologies proved effective at reducing the Bacillus spp. tested within the exposure ranges by over 5 logs, with the exception of B. thuringiensis, which was more resistant to both technologies. These results indicate that a review of the indicator organism choice and loading could provide a more appropriate and realistic challenge for the sterilization procedures used in the space industry. PMID:22492450

  10. Oxygen embolism after hydrogen peroxide irrigation of a vulvar abscess.

    PubMed

    Haller, G; Faltin-Traub, E; Faltin, D; Kern, C

    2002-04-01

    We report a case of venous oxygen embolism in a 33-yr-old healthy woman after irrigation of a vulvar abscess with 25 ml of 3% hydrogen peroxide. Venous oxygen embolism was diagnosed by the development of sudden hypoxia associated with a decrease in end-tidal carbon dioxide concentration from 5.3 kPa to 3.2 kPa, and a 'mill-wheel' sound on cardiac auscultation soon after injection of the solution. The patient responded to corrective treatment including the Trendelenburg position and 100% oxygen. She made an uneventful recovery. We discuss the possible causative mechanism of this embolism, the different diagnostic methods, and the controversial aspects of available treatments. We emphasize that hydrogen peroxide is a dangerous and unsuitable agent for routine wound irrigation and debridement.

  11. Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water

    NASA Astrophysics Data System (ADS)

    Locke, Bruce R.; Shih, Kai-Yuan

    2011-06-01

    This paper presents a review of the literature dealing with the formation of hydrogen peroxide from plasma processes. Energy yields for hydrogen peroxide generation by plasma from water span approximately three orders of magnitude from 4 × 10-2 to 80 g kWh-1. A wide range of plasma processes from rf to pulsed, ac, and dc discharges directly in the liquid phase have similar energy yields and may thus be limited by radical quenching processes at the plasma-liquid interface. Reactor modification using discharges in bubbles and discharges over the liquid phase can provide modest improvements in energy yield over direct discharge in the liquid, but the interpretation is complicated by additional chemical reactions of gas phase components such as ozone and nitrogen oxides. The highest efficiency plasma process utilizes liquid water droplets that may enhance efficiency by sequestering hydrogen peroxide in the liquid and by suppressing decomposition reactions by radicals from the gas and at the interface. Kinetic simulations of water vapor reported in the literature suggest that plasma generation of hydrogen peroxide should approach 45% of the thermodynamics limit, and this fact coupled with experimental studies demonstrating improvements with the presence of the condensed liquid phase suggest that further improvements in energy yield may be possible. Plasma generation of hydrogen peroxide directly from water compares favorably with a number of other methods including electron beam, ultrasound, electrochemical and photochemical methods, and other chemical processes.

  12. An enzyme-chromogenic surface plasmon resonance biosensor probe for hydrogen peroxide determination using a modified Trinder's reagent.

    PubMed

    Nakamura, Hideaki; Mogi, Yotaro; Akimoto, Takuo; Naemura, Kiyoshi; Kato, Teru; Yano, Kazuyoshi; Karube, Isao

    2008-11-15

    An absorption-based surface plasmon resonance (SPR(Abs)) biosensor probe has been developed for simple and reproducible measurements of hydrogen peroxide using a modified Trinder's reagent (a chromogenic reagent). The reagent enabled the determination of the hydrogen peroxide concentration by the development of deep color dyes (lambda(max)=630 nm) through the oxidative coupling reaction with N-ethyl-N-(2-hydroxy-3-sulfopropyl)-3,5-dimethylaniline sodium salt monohydrate (MAOS; C(13)H(20)NNaO(4)S.H(2)O) and 4-aminoantipyrine (4-AA) in the presence of hydrogen peroxide and horseradish peroxidase (HRP). In the present study, urea as an adduct of hydrogen peroxide for color development could be omitted from the measurement solution. The measurement solution containing 5mM hydrogen peroxide was deeply colored at a high absorbance value calculated as 46.7cm(-1) and was directly applied to the SPR(Abs) biosensing without dilution. The measurement was simply performed by dropping the measurement solution onto the surface of the SPR sensor probe, and the SPR(Abs) biosensor response to hydrogen peroxide was obtained as a reflectivity change in the SPR spectrum. After investigation of the pH profiles in the SPR(Abs) biosensor probe, a linear calibration curve was obtained between 1.0 and 50mM hydrogen peroxide (r=0.991, six points, average of relative standard deviation; 0.152%, n=3) with a detection limit of 0.5mM. To examine the applicability of this SPR(Abs) biosensor probe, 20mM glucose detection using glucose oxidase was also confirmed without influence of the refractive index in the measurement solution. Thus, the SPR(Abs) biosensor probe employing the modified Trinder's reagent demonstrated applicability to other analyte biosensing tools.

  13. The inhibitory mechanism of Cordyceps sinensis on cigarette smoke extract-induced senescence in human bronchial epithelial cells

    PubMed Central

    Liu, Ailing; Wu, Jinxiang; Li, Aijun; Bi, Wenxiang; Liu, Tian; Cao, Liuzhao; Liu, Yahui; Dong, Liang

    2016-01-01

    Objectives Cellular senescence is a state of irreversible growth arrest induced either by telomere shortening (replicative senescence) or stress. The bronchial epithelial cell is often injured by inhaled toxic substances, such as cigarette smoke. In the present study, we investigated whether exposure to cigarette smoke extract (CSE) induces senescence of bronchial epithelial cells; and Cordyceps sinensis mechanism of inhibition of CSE-induced cellular senescence. Methods Human bronchial epithelial cells (16HBE cells) cultured in vitro were treated with CSE and/or C. sinensis. p16, p21, and senescence-associated-galactosidase activity were used to detect cellular senescence with immunofluorescence, quantitative polymerase chain reaction, and Western blotting. Reactive oxygen species (ROS), PI3K/AKT/mTOR and their phosphorylated proteins were examined to testify the activation of signaling pathway by ROS fluorescent staining and Western blotting. Then, inhibitors of ROS and PI3K were used to further confirm the function of this pathway. Results Cellular senescence was upregulated by CSE treatment, and C. sinensis can decrease CSE-induced cellular senescence. Activation of ROS/PI3K/AKT/mTOR signaling pathway was enhanced by CSE treatment, and decreased when C. sinensis was added. Blocking ROS/PI3K/AKT/mTOR signaling pathway can attenuate CSE-induced cellular senescence. Conclusion CSE can induce cellular senescence in human bronchial epithelial cells, and ROS/PI3K/AKT/mTOR signaling pathway may play an important role in this process. C. sinensis can inhibit the CSE-induced senescence. PMID:27555762

  14. Transient generation of hydrogen peroxide is responsible for carcinostatic effects of hydrogen combined with platinum nanocolloid, together with increases intracellular ROS, DNA cleavages, and proportion of G2/M-phase.

    PubMed

    Saitoh, Yasukazu; Ikeshima, Minoru; Kawasaki, Naho; Masumoto, Aoi; Miwa, Nobuhiko

    2016-01-01

    In our previous study, we demonstrated that combined treatment with hydrogen (H2) and platinum nanocolloid (Pt-nc) exerted markedly antiproliferative effects on cancer cells compared with each treatment alone. However, because the related mechanisms remain unclear, we investigated carcinostatic mechanisms of the combined treatment with H2 + Pt-nc. Significant suppression of cell proliferation was confirmed at 52 h following combined treatment, and the similar effect was also observed by the 30- or 40-min transient treatment with H2 + Pt-nc. The transient treatments led to changes in cell size and morphology, loss of microvilli, and apoptosis-like cell death at 120 h after treatment. Moreover, transient combined treatment with H2 + Pt-nc induced cell-cycle arrest, as reflected by decreased proportions of G1-phase cells and accumulation of G2/M-phase cells. In contrast, intracellular peroxide levels were temporarily and significantly increased immediately after H2 + Pt-nc treatment but not after treatment with H2 or Pt-nc alone. Additionally, combined treatment-induced carcinostatic effects were significantly diminished in the presence of catalase, and marked hydrogen peroxide (H2O2) generation was confirmed after mixing Pt-nc into cell culture media containing a high concentration of H2. These changes are in agreement with the results that carcinostatic effects were induced after only 40 min of treatment with H2 + Pt-nc. Thus, transient and marked generation of H2O2 is responsible for the carcinostatic effects of combined treatment with H2 + Pt-nc.

  15. A high-throughput microtiter plate based method for the determination of peracetic acid and hydrogen peroxide.

    PubMed

    Putt, Karson S; Pugh, Randall B

    2013-01-01

    Peracetic acid is gaining usage in numerous industries who have found a myriad of uses for its antimicrobial activity. However, rapid high throughput quantitation methods for peracetic acid and hydrogen peroxide are lacking. Herein, we describe the development of a high-throughput microtiter plate based assay based upon the well known and trusted titration chemical reactions. The adaptation of these titration chemistries to rapid plate based absorbance methods for the sequential determination of hydrogen peroxide specifically and the total amount of peroxides present in solution are described. The results of these methods were compared to those of a standard titration and found to be in good agreement. Additionally, the utility of the developed method is demonstrated through the generation of degradation curves of both peracetic acid and hydrogen peroxide in a mixed solution.

  16. A High-Throughput Microtiter Plate Based Method for the Determination of Peracetic Acid and Hydrogen Peroxide

    PubMed Central

    Putt, Karson S.; Pugh, Randall B.

    2013-01-01

    Peracetic acid is gaining usage in numerous industries who have found a myriad of uses for its antimicrobial activity. However, rapid high throughput quantitation methods for peracetic acid and hydrogen peroxide are lacking. Herein, we describe the development of a high-throughput microtiter plate based assay based upon the well known and trusted titration chemical reactions. The adaptation of these titration chemistries to rapid plate based absorbance methods for the sequential determination of hydrogen peroxide specifically and the total amount of peroxides present in solution are described. The results of these methods were compared to those of a standard titration and found to be in good agreement. Additionally, the utility of the developed method is demonstrated through the generation of degradation curves of both peracetic acid and hydrogen peroxide in a mixed solution. PMID:24260173

  17. Redox markers for drought-induced nodule senescence, a process occurring after drought-induced senescence of the lowest leaves in soybean (Glycine max).

    PubMed

    Marquez-Garcia, Belén; Shaw, Daniel; Cooper, James William; Karpinska, Barbara; Quain, Marian Dorcas; Makgopa, Eugene Matome; Kunert, Karl; Foyer, Christine Helen

    2015-09-01

    Water is an increasingly scarce resource that limits crop productivity in many parts of the world, and the frequency and severity of drought are predicted to increase as a result of climate change. Improving tolerance to drought stress is therefore important for maximizing future crop yields. The aim of this study was to compare the effects of drought on soybean (Glycine max) leaves and nodules in order to define phenotypic markers and changes in cellular redox state that characterize the stress response in different organs, and to characterize the relationships between leaf and nodule senescence during drought. Leaf and crown nodule metabolite pools were measured together with leaf and soil water contents, and leaf chlorophyll, total protein contents and chlorophyll a fluorescence quenching parameters in nodulated soybeans that were grown under either well-watered conditions or deprived of water for up to 21 d. Ureides, ascorbate, protein, chlorophyll and the ratios of variable chlorophyll a fluorescence (Fv') to maximal chlorophyll a fluorescence (Fm') fell to levels below detection in the oldest leaves after 21 d of drought. While these drought-induced responses were not observed in the youngest leaf ranks, the Fv'/Fm' ratios, pyridine nucleotide levels and the reduction state of the ascorbate pool were lower in all leaf ranks after 21 d of drought. In contrast to leaves, total nodule protein, pyridine nucleotides, ureides, ascorbate and glutathione contents increased as a result of the drought treatment. However, the nodule ascorbate pool was significantly less reduced as a result of drought. Higher levels of transcripts encoding two peroxiredoxins were detected in nodules exposed to drought stress but senescence-associated transcripts and other mRNAs encoding redox-related proteins were similar under both conditions. While the physiological impact of the drought was perceived throughout the shoot, stress-induced senescence occurred only in the oldest

  18. Determination of berberine in pharmaceutical preparations using acidic hydrogen peroxide-nitrite chemiluminescence system.

    PubMed

    Liang, Yao-Dong; Yu, Chun-Xia

    2013-03-01

    A stronger chemiluminescence (CL) was observed when hydrogen peroxide was mixed with nitrite and berberine in sulfuric acid solution. The stronger CL originated from peroxidation of berberine by peroxynitrous acid that was synthesized online by the mixing of acidic hydrogen peroxide solution with nitrite solution in a flow system. The emitting species was excited state oxyberberine, a peroxidized product of berberine. Based on the stronger CL, a flow injection CL method for the determination of berberine was proposed. Under optimum experimental conditions, the stronger CL intensity was linearly related to the concentration of berberine over the range of 2.0 × 10(-7) -2.0 × 10(-5) mol L(-1) . The limit of detection (s/n = 3) was 6.2 × 10(-8) mol L(-1) . The proposed method has been evaluated by analyzing berberine in pharmaceutical preparations. Copyright © 2011 John Wiley & Sons, Ltd.

  19. Hydrogenation of liquid natural rubber via diimide reduction in hydrazine hydrate/hydrogen peroxide system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusof, Muhammad Jefri Mohd; Jamaluddin, Naharullah; Abdullah, Ibrahim

    Liquid natural rubber (LNR) with molecular weight of lower than 10{sup 5} and shorter polymeric chain than natural rubber was prepared. LNR was then hydrogenated via diimide reduction by oxidation of hydrazine hydrate with hydrogen peroxide. The unsaturated units of the rubber were converted into saturated hydrocarbon to strengthen the backbone of the polymer so it was able to resist thermal degradation. The results indicated that hydrogenation degree of the product (HLNR) could be extended to 91.2% conversion under appropriate conditions. The hydrogenated LNR (HLNR) was characterized using Fourier-Transform Infrared (FTIR) and Nuclear Magnetic Resonance (NMR) spectroscopy. The physical characteristicsmore » of HLNR were analyzed with Termogravimetric Analysis (TGA)« less

  20. Identification of microRNA-mRNA functional interactions in UVB-induced senescence of human diploid fibroblasts

    PubMed Central

    2013-01-01

    Background Cellular senescence can be induced by a variety of extrinsic stimuli, and sustained exposure to sunlight is a key factor in photoaging of the skin. Accordingly, irradiation of skin fibroblasts by UVB light triggers cellular senescence, which is thought to contribute to extrinsic skin aging, although molecular mechanisms are incompletely understood. Here, we addressed molecular mechanisms underlying UVB induced senescence of human diploid fibroblasts. Results We observed a parallel activation of the p53/p21WAF1 and p16INK4a/pRb pathways. Using genome-wide transcriptome analysis, we identified a transcriptional signature of UVB-induced senescence that was conserved in three independent strains of human diploid fibroblasts (HDF) from skin. In parallel, a comprehensive screen for microRNAs regulated during UVB-induced senescence was performed which identified five microRNAs that are significantly regulated during the process. Bioinformatic analysis of miRNA-mRNA networks was performed to identify new functional mRNA targets with high confidence for miR-15a, miR-20a, miR-20b, miR-93, and miR-101. Already known targets of these miRNAs were identified in each case, validating the approach. Several new targets were identified for all of these miRNAs, with the potential to provide new insight in the process of UVB-induced senescence at a genome-wide level. Subsequent analysis was focused on miR-101 and its putative target gene Ezh2. We confirmed that Ezh2 is regulated by miR-101 in human fibroblasts, and found that both overexpression of miR-101 and downregulation of Ezh2 independently induce senescence in the absence of UVB irradiation. However, the downregulation of miR-101 was not sufficient to block the phenotype of UVB-induced senescence, suggesting that other UVB-induced processes induce the senescence response in a pathway redundant with upregulation of miR-101. Conclusion We performed a comprehensive screen for UVB-regulated microRNAs in human diploid

  1. Naringin protects human adipose-derived mesenchymal stem cells against hydrogen peroxide-induced inhibition of osteogenic differentiation.

    PubMed

    Wang, Lei; Zhang, Yu-Ge; Wang, Xiu-Mei; Ma, Long-Fei; Zhang, Yuan-Min

    2015-12-05

    Extensive evidence indicates that oxidative stress plays a pivotal role in the development of osteoporosis. We show that naringin, a natural antioxidant and anti-inflammatory compound, effectively protects human adipose-derived mesenchymal stem cells (hADMSCs) against hydrogen peroxide (H2O2)-induced inhibition of osteogenic differentiation. Naringin increased viability of hAMDSCs and attenuated H2O2-induced cytotoxicity. Naringin also reversed H2O2-induced oxidative stress. Oxidative stress induced by H2O2 inhibits osteogenic differentiation by decreasing alkaline phosphatase (ALP) activity, calcium content and mRNA expression levels of osteogenesis marker genes RUNX2 and OSX in hADMSCs. However, addition of naringin leads to a significant recovery, suggesting the protective effects of naringin against H2O2-induced inhibition of osteogenic differentiation. Furthermore, the H2O2-induced decrease of protein expressions of β-catenin and clyclin D1, two important transcriptional regulators of Wnt-signaling, was successfully rescued by naringin treatment. Also, in the presence of Wnt inhibitor DKK-1, naringin is no longer effective in stimulating ALP activity, increasing calcium content and mRNA expression levels of RUNX2 and OSX in H2O2-exposed hADMSCs. These data clearly demonstrates that naringin protects hADMSCs against oxidative stress-induced inhibition of osteogenic differentiation, which may involve Wnt signaling pathway. Our work suggests that naringin may be a useful addition to the treatment armamentarium for osteoporosis and activation of Wnt signaling may represent attractive therapeutic strategy for the treatment of degenerative disease of bone tissue. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. 3',4',7-Trihydroxyflavone prevents apoptotic cell death in neuronal cells from hydrogen peroxide-induced oxidative stress.

    PubMed

    Kwon, Seung-Hwan; Hong, Sa-Ik; Ma, Shi-Xun; Lee, Seok-Yong; Jang, Choon-Gon

    2015-06-01

    In this study, we investigated the mechanisms of 3',4',7-trihydroxyflavone (THF) protection of neuronal cells from neuronal cell death induced by the oxidative stress-related neurotoxin hydrogen peroxide (H2O2). Pretreatment with THF significantly elevated cell viability, reduced H2O2-induced lactate dehydrogenase (LDH) release, reactive oxygen species (ROS) production, glutathione (GSH) content, superoxide dismutase (SOD) activity, catalase (CAT) activity, and mitochondria membrane potential (MMP) loss. Western blot data demonstrated that THF inhibited the H2O2-induced up- or down-regulation of cleaved caspase-3, cleaved caspase-9, cleaved poly-ADP-ribose polymerase (PARP), Bax, Bcl-2, and Bcl-xL, and attenuated the H2O2-induced release of cytochrome c from the mitochondria to the cytosol. In addition, pretreatment with THF attenuated H2O2-induced rapid and significant phosphorylation of c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), and phosphatidylinositol 3-kinases (PI3K)/Akt. THF also inhibited nuclear factor-κB (NF-κB) translocation to the nucleus induced by H2O2, down-stream of H2O2-induced phosphorylation of MAPKs and PI3K/Akt. These data provide the first evidence that THF protects neuronal cells against H2O2-induced oxidative stress, possibly through ROS reduction, mitochondria protection, and NF-κB modulation via MAPKs and PI3K/Akt pathways. The neuroprotective effects of THF make it a promising candidate as a therapeutic agent for neurodegenerative diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Methods and apparatus for the on-site production of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Buschmann, Wayne E. (Inventor); James, Patrick I. (Inventor)

    2010-01-01

    Methods, apparatus, and applications for the on-site production of hydrogen peroxide are described. An embodiment of the apparatus comprises at least one anolyte chamber coupled to at least one anode, at least one catholyte chamber, wherein the at least one catholyte chamber is coupled to at least one cathode, at least one anode membrane and at least one cathode membrane, wherein the anode membrane is adjacent to the at least one anode, wherein the cathode membrane is adjacent to the at least one cathode, at least one central chamber disposed between the at least one anolyte chamber and the at least one catholyte chamber. Hydrogen peroxide is produced by reduction of an oxygen-containing gas at the cathode.

  4. Oxidizer Selection for the ISTAR Program (Liquid Oxygen versus Hydrogen Peroxide)

    NASA Technical Reports Server (NTRS)

    Quinn, Jason Eugene; Koelbl, Mary E. (Technical Monitor)

    2002-01-01

    This paper discusses a study of two alternate oxidizers, liquid oxygen and hydrogen peroxide, for use in a rocket based combined cycle (RBCC) demonstrator vehicle. The flight vehicle is baselined as an airlaunched self-powered Mach 0.7 to 7 demonstration of an RBCC engine through all or its air breathing propulsion modes. Selection of an alternate oxidizer has the potential to lower overall vehicle size, system complexity/ cost and ultimately the total program risk. This trade study examined the oxidizer selection effects upon the overall vehicle performance, safety and operations. After consideration of all the technical and programmatic details available at this time, 90% hydrogen peroxide was selected over liquid oxygen for use in this program.

  5. Reinvestigation of the Henry's law constant for hydrogen peroxide with temperature and acidity variation.

    PubMed

    Huang, Daoming; Chen, Zhongming

    2010-01-01

    Hydrogen peroxide is not only an important oxidant in itself; it also serves as both sink and temporary reservoir for other important oxidants including HOx (OH and HO2) radicals and O3 in the atmosphere. Its partitioning between gas and aqueous phases in the atmosphere, usually described by its Henry's law constant (K(H)), significantly influences its role in atmospheric processes. Large discrepancies between the K(H) values reported in previous work, however, have created uncertainty for atmospheric modelers. Based on our newly developed online instrumentation, we have re-determined the temperature and acidity dependence of K(H) for hydrogen peroxide at an air pressure of (0.960 +/- 0.013) atm (1 atm = 1.01325 x 10(5) Pa). The results indicated that the temperature dependence of K(H) for hydrogen peroxide fits to the Van't Hoff equation form, expressed as lnK(H) = a/T - b, and a = -deltaH/R, where K(H) is in M/atm (M is mol/L), T is in degrees Kelvin, R is the ideal gas constant, and deltaH is the standard heat of solution. For acidity dependence, results demonstrated that the K(H) value of hydrogen peroxide appeared to have no obvious dependence on decreasing pH level (from pH 7 to pH 1). Combining the dependence of both temperature and acidity, the obtained a and b were 7024 +/- 138 and 11.97 +/- 0.48, respectively, deltaH was (58.40 +/- 1.15) kJ/(K x mol), and the uncertainties represent sigma. Our determined K(H) values for hydrogen peroxide will therefore be of great use in atmospheric models.

  6. Mushroom extract inhibits ultraviolet B-induced cellular senescence in human keratinocytes.

    PubMed

    Chong, Zhao; Matsuo, Haruka; Kuroda, Mai; Yamashita, Shuntaro; Parajuli, Gopal Prasad; Manandhar, Hira Kaji; Shimizu, Kuniyoshi; Katakura, Yoshinori

    2018-06-02

    Mushrooms possess various bioactivities and are used as nutritional supplements and medicinal products. Twenty-nine bioactive components have been extracted recently from mushrooms grown in Nepal. In this study, we evaluated the ability of these mushroom extracts to augment SIRT1, a mammalian SIR2 homologue localized in cytosol and nuclei. We established a system for screening food ingredients that augment the SIRT1 promoter in HaCaT cells, and identified a SIRT1-augmenting mushroom extract (number 28, Trametes versicolor). UVB irradiation induced cellular senescence in HaCaT cells, as evidenced by increased activity and expression of cellular senescence markers including senescence-associated β-galactosidase, p21, p16, phosphorylated p38, and γH2AX. Results clearly showed that the mushroom extract (No. 28) suppressed the ultraviolet B irradiation-induced cellular senescence in HaCaT cells possibly through augmenting SIRT1 expression.

  7. Sonochemical and hydrodynamic cavitation reactors for laccase/hydrogen peroxide cotton bleaching.

    PubMed

    Gonçalves, Idalina; Martins, Madalena; Loureiro, Ana; Gomes, Andreia; Cavaco-Paulo, Artur; Silva, Carla

    2014-03-01

    The main goal of this work is to develop a novel and environmental-friendly technology for cotton bleaching with reduced processing costs. This work exploits a combined laccase-hydrogen peroxide process assisted by ultrasound. For this purpose, specific reactors were studied, namely ultrasonic power generator type K8 (850 kHz) and ultrasonic bath equipment Ultrasonic cleaner USC600TH (45 kHz). The optimal operating conditions for bleaching were chosen considering the highest levels of hydroxyl radical production and the lowest energy input. The capacity to produce hydroxyl radicals by hydrodynamic cavitation was also assessed in two homogenizers, EmulsiFlex®-C3 and APV-2000. Laccase nanoemulsions were produced by high pressure homogenization using BSA (bovine serum albumin) as emulsifier. The bleaching efficiency of these formulations was tested and the results showed higher whiteness values when compared to free laccase. The combination of laccase-hydrogen peroxide process with ultrasound energy produced higher whiteness levels than those obtained by conventional methods. The amount of hydrogen peroxide was reduced 50% as well as the energy consumption in terms of temperature (reduction of 40 °C) and operating time (reduction of 90 min). Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Neuroglobin protects astroglial cells from hydrogen peroxide-induced oxidative stress and apoptotic cell death.

    PubMed

    Amri, Fatma; Ghouili, Ikram; Amri, Mohamed; Carrier, Alice; Masmoudi-Kouki, Olfa

    2017-01-01

    Oxidative stress, resulting from accumulation of reactive oxygen species, plays a critical role in astroglial cell death occurring in diverse neuropathological conditions. Numerous studies indicate that neuroglobin (Ngb) promotes neuron survival, but nothing is known regarding the action of Ngb in astroglial cell survival. Thus, the purpose of this study was to investigate the potential glioprotective effect of Ngb on hydrogen peroxide (H 2 O 2 )-induced oxidative stress and apoptosis in cultured mouse astrocytes. Incubation of cells with subnanomolar concentrations of Ngb (10 -14 -10 -10  M) was found to prevent both H 2 O 2 -evoked reduction in surviving cells number and accumulation of reactive oxygen species in a concentration-dependent manner. Furthermore, Ngb treatment abolishes H 2 O 2 -induced increase in mitochondrial oxygen consumption rates. Concomitantly, Ngb treatment rescues H 2 O 2 -associated reduced expression of endogenous antioxidant enzymes (superoxide dismutases and catalase) and prevents the stimulation of the expression of pro-inflammatory genes (inducible nitric oxide synthase, cyclooxygenase-2, and interleukin (IL) IL-6 and IL-33). Moreover, Ngb blocks the stimulation of Bax (pro-apoptotic) and the inhibition of Bcl-2 (anti-apoptotic) gene expression induced by H 2 O 2 , which in turn abolishes caspase 3 activation. The protective effect of Ngb upon H 2 O 2 induced activation of caspase 3 activity and cell death can be accounted for by activation of protein kinase A and mitogen-activated protein kinase transduction cascade. Finally, we demonstrate that Ngb increases Akt phosphorylation and prevents H 2 O 2 -provoked inhibition of ERK and Akt phosphorylation. Taken together, these data demonstrate for the first time that Ngb is a glioprotective agent that prevents H 2 O 2 -induced oxidative stress and apoptotic astroglial cell death. Protection of astrocytes from oxidative insult may thus contribute to the neuroprotective effect of Ngb.

  9. Development of a sterilizing in-place application for a production machine using Vaporized Hydrogen Peroxide.

    PubMed

    Mau, T; Hartmann, V; Burmeister, J; Langguth, P; Häusler, H

    2004-01-01

    The use of steam in sterilization processes is limited by the implementation of heat-sensitive components inside the machines to be sterilized. Alternative low-temperature sterilization methods need to be found and their suitability evaluated. Vaporized Hydrogen Peroxide (VHP) technology was adapted for a production machine consisting of highly sensitive pressure sensors and thermo-labile air tube systems. This new kind of "cold" surface sterilization, known from the Barrier Isolator Technology, is based on the controlled release of hydrogen peroxide vapour into sealed enclosures. A mobile VHP generator was used to generate the hydrogen peroxide vapour. The unit was combined with the air conduction system of the production machine. Terminal vacuum pumps were installed to distribute the gas within the production machine and for its elimination. In order to control the sterilization process, different physical process monitors were incorporated. The validation of the process was based on biological indicators (Geobacillus stearothermophilus). The Limited Spearman Karber Method (LSKM) was used to statistically evaluate the sterilization process. The results show that it is possible to sterilize surfaces in a complex tube system with the use of gaseous hydrogen peroxide. A total microbial reduction of 6 log units was reached.

  10. Vapor Hydrogen Peroxide Sterilization Certification

    NASA Astrophysics Data System (ADS)

    Chen, Fei; Chung, Shirley; Barengoltz, Jack

    For interplanetary missions landing on a planet of potential biological interest, United States NASA planetary protection currently requires that the flight system must be assembled, tested and ultimately launched with the intent of minimizing the bioload taken to and deposited on the planet. Currently the only NASA approved microbial reduction method is dry heat sterilization process. However, with utilization of such elements as highly sophisticated electronics and sensors in modern spacecraft, this process presents significant materials challenges and is thus an undesirable bioburden reduction method to design engineers. The objective of this work is to introduce vapor hydrogen peroxide (VHP) as an alternative to dry heat microbial reduction to meet planetary protection requirements. The VHP sterilization technology is widely used by the medical industry, but high doses of VHP may degrade the performance of flight hardware, or compromise material compatibility. The goal of our study is determine the minimum VHP process conditions for PP acceptable microbial reduction levels. A series of experiments were conducted using Geobacillus stearothermophilus to determine VHP process parameters that provided significant reductions in spore viability while allowing survival of sufficient spores for statistically significant enumeration. In addition to the obvious process parameters -hydrogen peroxide concentration, number of pulses, and exposure duration -the investigation also considered the possible effect of environmental pa-rameters. Temperature, relative humidity, and material substrate effects on lethality were also studied. Based on the results, a most conservative D value was recommended. This recom-mended D value was also validated using VHP "hardy" strains that were isolated from clean-rooms and environmental populations collected from spacecraft relevant areas. The efficiency of VHP at ambient condition as well as VHP material compatibility will also be

  11. Functional, structural, and chemical changes in myosin associated with hydrogen peroxide treatment of skeletal muscle fibers.

    PubMed

    Prochniewicz, Ewa; Lowe, Dawn A; Spakowicz, Daniel J; Higgins, LeeAnn; O'Conor, Kate; Thompson, LaDora V; Ferrington, Deborah A; Thomas, David D

    2008-02-01

    To understand the molecular mechanism of oxidation-induced inhibition of muscle contractility, we have studied the effects of hydrogen peroxide on permeabilized rabbit psoas muscle fibers, focusing on changes in myosin purified from these fibers. Oxidation by 5 mM peroxide decreased fiber contractility (isometric force and shortening velocity) without significant changes in the enzymatic activity of myofibrils and isolated myosin. The inhibitory effects were reversed by treating fibers with dithiothreitol. Oxidation by 50 mM peroxide had a more pronounced and irreversible inhibitory effect on fiber contractility and also affected enzymatic activity of myofibrils, myosin, and actomyosin. Peroxide treatment also affected regulation of contractility, resulting in fiber activation in the absence of calcium. Electron paramagnetic resonance of spin-labeled myosin in muscle fibers showed that oxidation increased the fraction of myosin heads in the strong-binding structural state under relaxing conditions (low calcium) but had no effect under activating conditions (high calcium). This change in the distribution of structural states of myosin provides a plausible explanation for the observed changes in both contractile and regulatory functions. Mass spectroscopy analysis showed that 50 mM but not 5 mM peroxide induced oxidative modifications in both isoforms of the essential light chains and in the heavy chain of myosin subfragment 1 by targeting multiple methionine residues. We conclude that 1) inhibition of muscle fiber contractility via oxidation of myosin occurs at high but not low concentrations of peroxide and 2) the inhibitory effects of oxidation suggest a critical and previously unknown role of methionines in myosin function.

  12. Phenylbutyric acid induces the cellular senescence through an Akt/p21{sup WAF1} signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hag Dong; Jang, Chang-Young; Choe, Jeong Min

    2012-06-01

    Highlights: Black-Right-Pointing-Pointer Phenylbutyric acid induces cellular senescence. Black-Right-Pointing-Pointer Phenylbutyric acid activates Akt kinase. Black-Right-Pointing-Pointer The knockdown of PERK also can induce cellular senescence. Black-Right-Pointing-Pointer Akt/p21{sup WAF1} pathway activates in PERK knockdown induced cellular senescence. -- Abstract: It has been well known that three sentinel proteins - PERK, ATF6 and IRE1 - initiate the unfolded protein response (UPR) in the presence of misfolded or unfolded proteins in the ER. Recent studies have demonstrated that upregulation of UPR in cancer cells is required to survive and proliferate. Here, we showed that long exposure to 4-phenylbutyric acid (PBA), a chemical chaperone that canmore » reduce retention of unfolded and misfolded proteins in ER, induced cellular senescence in cancer cells such as MCF7 and HT1080. In addition, we found that treatment with PBA activates Akt, which results in p21{sup WAF1} induction. Interestingly, the depletion of PERK but not ATF6 and IRE1 also induces cellular senescence, which was rescued by additional depletion of Akt. This suggests that Akt pathway is downstream of PERK in PBA induced cellular senescence. Taken together, these results show that PBA induces cellular senescence via activation of the Akt/p21{sup WAF1} pathway by PERK inhibition.« less

  13. Action of hydrogen peroxide on degradation of DNA after irradiation in Escherichia coli.

    PubMed

    Keller, K M; Pollard, E C

    1977-05-01

    Hydrogen peroxide (H2O2), which produces breaks in cellular DNA, has not hitherto been shown to cause degradation of DNA. In this investigation it is shown that if transcription is blocked with rifampin, treatment with H2O2 causes degradation of DNA to nearly the same extent as does gamma-radiation. Further, if cells are given a treatment with H2O2 and incubated for 50 min, the amount of degradation in a second treatment is markedly less. This is attributed to the induction of the inhibitor of post-irradiation degradation of DNA (prd) by the first treatment. There is thus a double action of H2O2: first, to induce inhibition, and second, to cause degradation of DNA to begin in non-induced cells. The genetic dependence of induction by H2O2 mimics that of ionizing radiation. Accordingly, the induction process does not occur in recA- and lex- cells, because they are not inducible and is absent in recB- cells because they lack exonuclease V, the major component of prd. Potassium iodide (KI), an OH radical scavenger, negates the action of peroxide on DNA. The results obtained in this study suggest a possible theory for the evolution of radiation response systems

  14. Optimization study on the hydrogen peroxide pretreatment and production of bioethanol from seaweed Ulva prolifera biomass.

    PubMed

    Li, Yinping; Cui, Jiefen; Zhang, Gaoli; Liu, Zhengkun; Guan, Huashi; Hwang, Hueymin; Aker, Winfred G; Wang, Peng

    2016-08-01

    The seaweed Ulva prolifera, distributed in inter-tidal zones worldwide, contains a large percentage of cellulosic materials. The technical feasibility of using U. prolifera residue (UPR) obtained after extraction of polysaccharides as a renewable energy resource was investigated. An environment-friendly and economical pretreatment process was conducted using hydrogen peroxide. The hydrogen peroxide pretreatment improved the efficiency of enzymatic hydrolysis. The resulting yield of reducing sugar reached a maximum of 0.42g/g UPR under the optimal pretreatment condition (hydrogen peroxide 0.2%, 50°C, pH 4.0, 12h). The rate of conversion of reducing sugar in the concentrated hydrolysates to bioethanol reached 31.4% by Saccharomyces cerevisiae fermentation, which corresponds to 61.7% of the theoretical maximum yield. Compared with other reported traditional processes on Ulva biomass, the reducing sugar and bioethanol yield are substantially higher. Thus, hydrogen peroxide pretreatment is an effective enhancement of the process of bioethanol production from the seaweed U. prolifera. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Sailuotong Prevents Hydrogen Peroxide (H2O2)-Induced Injury in EA.hy926 Cells

    PubMed Central

    Seto, Sai Wang; Chang, Dennis; Ko, Wai Man; Zhou, Xian; Kiat, Hosen; Bensoussan, Alan; Lee, Simon M. Y.; Hoi, Maggie P. M.; Steiner, Genevieve Z.; Liu, Jianxun

    2017-01-01

    Sailuotong (SLT) is a standardised three-herb formulation consisting of Panax ginseng, Ginkgo biloba, and Crocus sativus designed for the management of vascular dementia. While the latest clinical trials have demonstrated beneficial effects of SLT in vascular dementia, the underlying cellular mechanisms have not been fully explored. The aim of this study was to assess the ability and mechanisms of SLT to act against hydrogen peroxide (H2O2)-induced oxidative damage in cultured human vascular endothelial cells (EAhy926). SLT (1–50 µg/mL) significantly suppressed the H2O2-induced cell death and abolished the H2O2-induced reactive oxygen species (ROS) generation in a concentration-dependent manner. Similarly, H2O2 (0.5 mM; 24 h) caused a ~2-fold increase in lactate dehydrogenase (LDH) release from the EA.hy926 cells which were significantly suppressed by SLT (1–50 µg/mL) in a concentration-dependent manner. Incubation of SLT (50 µg/mL) increased superoxide dismutase (SOD) activity and suppressed the H2O2-enhanced Bax/Bcl-2 ratio and cleaved caspase-3 expression. In conclusion, our results suggest that SLT protects EA.hy916 cells against H2O2-mediated injury via direct reduction of intracellular ROS generation and an increase in SOD activity. These protective effects are closely associated with the inhibition of the apoptotic death cascade via the suppression of caspase-3 activation and reduction of Bax/Bcl-2 ratio, thereby indicating a potential mechanism of action for the clinical effects observed. PMID:28067784

  16. A PORTABLE MICROREACTOR SYSTEM TO SYNTHESIZE HYDROGEN PEROXIDE - PHASE I

    EPA Science Inventory

    In the event that vehicles of buildings become contaminated by hazardous chemical or biological materials, a well-studied and effective decontaminant is hydrogen peroxide vapor (HPV).  Unfortunately, the current technology for generating HPV requires 35 weight percent hydro...

  17. A different role for hydrogen peroxide and the antioxidative system under short and long salt stress in Brassica oleracea roots

    PubMed Central

    Hernandez, Mercedes; Fernandez-Garcia, Nieves; Diaz-Vivancos, Pedro; Olmos, Enrique

    2010-01-01

    Salinity affects normal growth and development of plants depending on their capacity to overcome the induced stress. The present study was focused on the response and regulation of the antioxidant defence system in Brassica oleracea roots under short and long salt treatments. The function and the implications of hydrogen peroxide as a stressor or as a signalling molecule were also studied. Two different zones were analysed—the elongation and differentiation zone and the fully differentiated root zone—in order to broaden the knowledge of the different effects of salt stress in root. In general, an accumulation of hydrogen peroxide was observed in both zones at the highest (80 mM NaCl) concentration. A higher accumulation of hydrogen peroxide was observed in the stele of salt-treated roots. At the subcellular level, mitochondria accumulated hydrogen peroxide in salt-treated roots. The results confirm a drastic decrease in the antioxidant enzymes catalase, ascorbate peroxidase, and peroxidases under short salt treatments. However, catalase and peroxidase activities were recovered under long salt stress treatments. The two antioxidant molecules analysed, ascorbate and glutathione, showed a different trend during salt treatments. Ascorbate was progressively accumulated and its redox state maintained, but glutathione was highly accumulated at 24 h of salt treatment, but then its concentration and redox state progressively decreased. Concomitantly, the antioxidant enzymes involved in ascorbate and glutathione regeneration were modified under salt stress treatments. In conclusion, the increase in ascorbate levels and the maintenance of the redox state seem to be critical for root growth and development under salt stress. PMID:19906795

  18. CREG1 enhances p16INK4a-induced cellular senescence

    PubMed Central

    Moolmuang, Benchamart

    2011-01-01

    Cellular senescence is an irreversible growth arrest that is activated in normal cells upon shortening of telomere and other cellular stresses. Bypassing cellular senescence is a necessary step for cells to become immortal during oncogenic transformation. During the spontaneous immortalization of Li-Fraumeni Syndrome (LFS) fibroblasts, we found that CREG1 (Cellular Repressor of E1A-stimulated Genes 1) expression was decreased during immortalization and increased in senescence. Moreover, we found that repression of CREG1 expression occurs via an epigenetic mechanism, promoter DNA methylation. Ectopic expression of CREG1 in the immortal LFS cell lines decreases cell proliferation but does not directly induce senescence. We confirmed this in osteosarcoma and fibrosarcoma cancer cell lines, cancers commonly seen in Li-Fraumeni Syndrome. In addition, we found that p16INK4a is also downregulated in immortal cells and that coexpression of CREG1 and p16INK4a, an inhibitor of CDK4/6 and Rb phosphorylation, has a greater effect than either CREG1 and p16INK4a alone to reduce cell growth, induce cell cycle arrest and cellular senescence in immortal LFS fibroblasts, osteosarcoma and fibrosarcoma cell lines. Moreover, cooperation of CREG1 and p16INK4a inhibits the expression of cyclin A and cyclin B by inhibiting promoter activity, thereby decreasing mRNA and protein levels; these proteins are required for S-phase entry and G2/M transition. In conclusion, this is the first evidence to demonstrate that CREG1 enhances p16INK4a-induced senescence by transcriptional repression of cell cycle-regulated genes. PMID:21263217

  19. The impact of iron on the bleaching efficacy of hydrogen peroxide in liquid whey systems.

    PubMed

    Jervis, Suzanne M; Drake, MaryAnne

    2013-02-01

    Whey is a value-added product that is utilized in many food and beverage applications for its nutritional and functional properties. Whey and whey products are generally utilized in dried ingredient applications. One of the primary sources of whey is from colored Cheddar cheese manufacture that contains the pigment annatto resulting in a characteristic yellow colored Cheddar cheese. The colorant is also present in the liquid cheese whey and must be bleached so that it can be used in ingredient applications without imparting a color. Hydrogen peroxide and benzoyl peroxide are 2 commercially approved chemical bleaching agents for liquid whey. Concerns regarding bleaching efficacy, off-flavor development, and functionality changes have been previously reported for whey bleached with hydrogen peroxide and benzoyl peroxide. It is very important for the dairy industry to understand how bleaching can impact flavor and functionality of dried ingredients. Currently, the precise mechanisms of off-flavor development and functionality changes are not entirely understood. Iron reactions in a bleached liquid whey system may play a key role. Reactions between iron and hydrogen peroxide have been widely studied since the reaction between these 2 relatively stable species can cause great destruction in biological and chemical systems. The actual mechanism of the reaction of iron with hydrogen peroxide has been a controversy in the chemistry and biological community. The precise mechanism for a given reaction can vary greatly based upon the concentration of reactants, temperature, pH, and addition of biological material. In this review, some hypotheses for the mechanisms of iron reactions that may occur in fluid whey that may impact bleaching efficacy, off-flavor development, and changes in functionality are presented. Cheese whey is bleached to remove residual carotenoid cheese colorant. Concerns regarding bleaching efficacy, off-flavor development, and functionality changes have

  20. Hydrogen Peroxide-Reducing Factor Released by PC12D Cells Increases Cell Tolerance against Oxidative Stress.

    PubMed

    Muraishi, Asami; Haneta, Emi; Saito, Yoshiro; Hitomi, Yutaka; Sano, Mamoru; Noguchi, Noriko

    2018-01-01

    PC12D cells, a subline of rat adrenal pheochromocytoma PC12 cells, extend neurites rapidly in response to differentiation stimuli and are used to investigate the molecular mechanisms of neurite extension. In the present study, we found significant tolerance of PC12D cells against Parkinson's disease-related stimuli such as dopamine and 6-hydroxydopamine; this tolerance was significantly decreased by a change in the medium. Conditioned medium from PC12D cells induced tolerance against oxidative stress, which suggests that cytoprotective factor may be released by PC12D cells into the culture medium. Conditioned medium-induced tolerance was not found for PC12 cells or human neuroblastoma SH-SY5Y cells. A cytoprotective factor generated by PC12D cells exhibited hydrogen peroxide-reducing activity. Chemical characterization showed that this cytoprotective factor is water soluble and has a molecular weight about 1000 Da, and that its activity is inhibited by sodium cyanide. Release of this cytoprotective factor was increased by differentiation stimuli and oxidative stress. Taken together, these results suggest that release of a hydrogen peroxide-reducing factor by PC12D cells increases cell tolerance against oxidative stress. This study provides new insights into the antioxidative properties of factors in extracellular fluid.

  1. Decontamination assessment of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surfaces using a hydrogen peroxide gas generator.

    PubMed

    Rogers, J V; Sabourin, C L K; Choi, Y W; Richter, W R; Rudnicki, D C; Riggs, K B; Taylor, M L; Chang, J

    2005-01-01

    To evaluate the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface materials using hydrogen peroxide gas. Bacillus anthracis, B. subtilis, and G. stearothermophilus spores were dried on seven types of indoor surfaces and exposed to > or =1000 ppm hydrogen peroxide gas for 20 min. Hydrogen peroxide exposure significantly decreased viable B. anthracis, B. subtilis, and G. stearothermophilus spores on all test materials except G. stearothermophilus on industrial carpet. Significant differences were observed when comparing the reduction in viable spores of B. anthracis with both surrogates. The effectiveness of gaseous hydrogen peroxide on the growth of biological indicators and spore strips was evaluated in parallel as a qualitative assessment of decontamination. At 1 and 7 days postexposure, decontaminated biological indicators and spore strips exhibited no growth, while the nondecontaminated samples displayed growth. Significant differences in decontamination efficacy of hydrogen peroxide gas on porous and nonporous surfaces were observed when comparing the mean log reduction in B. anthracis spores with B. subtilis and G. stearothermophilus spores. These results provide comparative information for the decontamination of B. anthracis spores with surrogates on indoor surfaces using hydrogen peroxide gas.

  2. 'No touch' technologies for environmental decontamination: focus on ultraviolet devices and hydrogen peroxide systems.

    PubMed

    Weber, David J; Kanamori, Hajime; Rutala, William A

    2016-08-01

    This article reviews 'no touch' methods for disinfection of the contaminated surface environment of hospitalized patients' rooms. The focus is on studies that assessed the effectiveness of ultraviolet (UV) light devices, hydrogen peroxide systems, and self-disinfecting surfaces to reduce healthcare-associated infections (HAIs). The contaminated surface environment in hospitals plays an important role in the transmission of several key nosocomial pathogens including methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus spp., Clostridium difficile, Acinetobacter spp., and norovirus. Multiple clinical trials have now demonstrated the effectiveness of UV light devices and hydrogen peroxide systems to reduce HAIs. A limited number of studies have suggested that 'self-disinfecting' surfaces may also decrease HAIs. Many studies have demonstrated that terminal cleaning and disinfection with germicides is often inadequate and leaves environmental surfaces contaminated with important nosocomial pathogens. 'No touch' methods of room decontamination (i.e., UV devices and hydrogen peroxide systems) have been demonstrated to reduce key nosocomial pathogens on inoculated test surfaces and on environmental surfaces in actual patient rooms. Further UV devices and hydrogen peroxide systems have been demonstrated to reduce HAI. A validated 'no touch' device or system should be used for terminal room disinfection following discharge of patients on contact precautions. The use of a 'self-disinfecting' surface to reduce HAI has not been convincingly demonstrated.

  3. A new amperometric nanostructured sensor for the analytical determination of hydrogen peroxide.

    PubMed

    Guascito, M R; Filippo, E; Malitesta, C; Manno, D; Serra, A; Turco, A

    2008-12-01

    A new amperometric, nanostructured sensor for the analytical determination of hydrogen peroxide is proposed. This sensor was constructed by immobilizing silver nanoparticles in a polyvinyl alcohol (PVA) film on a platinum electrode, which was performed by direct drop-casting silver nanoparticles that were capped in a PVA colloidal suspension. UV-vis spectroscopy, X-ray diffraction and transmission electron microscopy were used to give a complete characterization of the nanostructured film. Cyclic voltammetry experiments yielded evidence that silver nanoparticles facilitate hydrogen peroxide reduction, showing excellent catalytic activity. Moreover, the cronoamperometric response of modified sensors was dependent on nanoparticle lifetime. Experiments were performed, using freshly prepared solutions, after 4 and 8 days. Results concerning the quantitative analysis of hydrogen peroxide, in terms of detection limit, linear range, sensitivity and standard deviation (STD), are discussed for each tested sensor type. Utilization of two different linear ranges (40 microM to 6mM and 1.25 microM to 1.0mM) enabled the assessment of concentration intervals having up to three orders of magnitude. Moreover, the electrode made using a 4-day-old solution showed the maximal sensitivity of 128 nA microM(-1)(4090 nA microM(-1)cm(-2)), yielding a limit of detection of 1 microuM and STD of 2.5 microAmM(-1). All of these analytical parameters make the constructed sensors suitable for peroxide determination in aqueous solution.

  4. STAT3-mediated SMAD3 activation underlies Oncostatin M-induced Senescence

    PubMed Central

    Junk, Damian J.; Cipriano, Rocky; Jackson, Mark W.

    2017-01-01

    ABSTRACT Cytokines in the developing tumor microenvironment (TME) can drive transformation and subsequent progression toward metastasis. Elevated levels of the Interleukin-6 (IL-6) family cytokine Oncostatin M (OSM) in the breast TME correlate with aggressive, metastatic cancers, increased tumor recurrence, and poor patient prognosis. Paradoxically, OSM engages a tumor-suppressive, Signal Transducer and Activator of Transcription 3 (STAT3)-dependent senescence response in normal and non-transformed human mammary epithelial cells (HMEC). Here, we identify a novel link between OSM-activated STAT3 signaling and the Transforming Growth Factor-β (TGF-β) signaling pathway that engages senescence in HMEC. Inhibition of functional TGF-β/SMAD signaling by expressing a dominant-negative TGF-β receptor, treating with a TGF-β receptor inhibitor, or suppressing SMAD3 expression using a SMAD3-shRNA prevented OSM-induced senescence. OSM promoted a protein complex involving activated-STAT3 and SMAD3, induced the nuclear localization of SMAD3, and enhanced SMAD3-mediated transcription responsible for senescence. In contrast, expression of MYC (c-MYC) from a constitutive promoter abrogated senescence and strikingly, cooperated with OSM to promote a transformed phenotype, epithelial-mesenchymal transition (EMT), and invasiveness. Our findings suggest that a novel STAT3/SMAD3-signaling axis is required for OSM-mediated senescence that is coopted during the transformation process to confer aggressive cancer cell properties. Understanding how developing cancer cells bypass OSM/STAT3/SMAD3-mediated senescence may help identify novel targets for future “pro-senescence” therapies aiming to reengage this hidden tumor-suppressive response. PMID:27892764

  5. Streptococcus sanguinis induces neutrophil cell death by production of hydrogen peroxide

    PubMed Central

    Sumioka, Ryuichi; Nakata, Masanobu; Okahashi, Nobuo; Li, Yixuan; Wada, Satoshi; Yamaguchi, Masaya; Sumitomo, Tomoko; Hayashi, Mikako; Kawabata, Shigetada

    2017-01-01

    Streptococcus is the dominant bacterial genus in the human oral cavity and a leading cause of infective endocarditis. Streptococcus sanguinis belongs to the mitis group of streptococci and produces hydrogen peroxide (H2O2) by the action of SpxB, a pyruvate oxidase. In this study, we investigated the involvement of SpxB in survival of S. sanguinis in human blood and whether bacterial H2O2 exhibits cytotoxicity against human neutrophils. Results of a bactericidal test with human whole blood revealed that the spxB mutation in S. sanguinis is detrimental to its survival in blood. When S. sanguinis strains were exposed to isolated neutrophils, the bacterial survival rate was significantly decreased by spxB deletion. Furthermore, human neutrophils exposed to the S. sanguinis wild-type strain, in contrast to those exposed to an spxB mutant strain, underwent cell death with chromatin de-condensation and release of web-like extracellular DNA, reflecting induction of neutrophil extracellular traps (NETs). Since reactive oxygen species-mediated NET induction requires citrullination of arginine residues in histone proteins and subsequent chromatin de-condensation, we examined citrullination levels of histone in infected neutrophils. It is important to note that the citrullinated histone H3 was readily detected in neutrophils infected with the wild-type strain, as compared to infection with the spxB mutant strain. Moreover, decomposition of streptococcal H2O2 with catalase reduced NET induction. These results suggest that H2O2 produced by S. sanguinis provokes cell death of neutrophils and NET formation, thus potentially affecting bacterial survival in the bloodstream. PMID:28222125

  6. Streptococcus sanguinis induces neutrophil cell death by production of hydrogen peroxide.

    PubMed

    Sumioka, Ryuichi; Nakata, Masanobu; Okahashi, Nobuo; Li, Yixuan; Wada, Satoshi; Yamaguchi, Masaya; Sumitomo, Tomoko; Hayashi, Mikako; Kawabata, Shigetada

    2017-01-01

    Streptococcus is the dominant bacterial genus in the human oral cavity and a leading cause of infective endocarditis. Streptococcus sanguinis belongs to the mitis group of streptococci and produces hydrogen peroxide (H2O2) by the action of SpxB, a pyruvate oxidase. In this study, we investigated the involvement of SpxB in survival of S. sanguinis in human blood and whether bacterial H2O2 exhibits cytotoxicity against human neutrophils. Results of a bactericidal test with human whole blood revealed that the spxB mutation in S. sanguinis is detrimental to its survival in blood. When S. sanguinis strains were exposed to isolated neutrophils, the bacterial survival rate was significantly decreased by spxB deletion. Furthermore, human neutrophils exposed to the S. sanguinis wild-type strain, in contrast to those exposed to an spxB mutant strain, underwent cell death with chromatin de-condensation and release of web-like extracellular DNA, reflecting induction of neutrophil extracellular traps (NETs). Since reactive oxygen species-mediated NET induction requires citrullination of arginine residues in histone proteins and subsequent chromatin de-condensation, we examined citrullination levels of histone in infected neutrophils. It is important to note that the citrullinated histone H3 was readily detected in neutrophils infected with the wild-type strain, as compared to infection with the spxB mutant strain. Moreover, decomposition of streptococcal H2O2 with catalase reduced NET induction. These results suggest that H2O2 produced by S. sanguinis provokes cell death of neutrophils and NET formation, thus potentially affecting bacterial survival in the bloodstream.

  7. Methyltrioxorhenium-catalyzed epoxidation of homoallylic alcohols with hydrogen peroxide.

    PubMed

    Yamazaki, Shigekazu

    2012-11-02

    Homoallylic alcohols were efficiently converted to the corresponding 3,4-epoxy alcohols in excellent yields by methyltrioxorhenium (MTO)-catalyzed epoxidation with aqueous hydrogen peroxide as the terminal oxidant and 3-methylpyrazole (10 mol %) as an additive. The epoxidations of homoallylic alcohols proceeded under organic solvent-free conditions faster than those in dichloromethane.

  8. A novel amperometric biosensor based on artichoke (Cynara scolymus L.) tissue homogenate immobilized in gelatin for hydrogen peroxide detection.

    PubMed

    Oztürk, G; Ertaş, F N; Akyilmaz, E; Dinçkaya, E; Tural, H

    2004-01-01

    A biosensor for specific determination of hydrogen peroxide was developed by using homogenized artichoke (Cynara scolymus L.) tissue in combination with a dissolved oxygen probe and applied in determination of hydrogen peroxide in milk samples. Artichoke tissue, which has catalase activity, was immobilized with gelatine by means of glutaraldehyde and fixed on a pretreated teflon membrane. The electrode response was maximum when 0.05 M phosphate buffer was used at pH 7.0 and at 30 degrees C. Upon addition of hydrogen peroxide, the electrode gives a linear response in a concentration range of 5.0-50 x 10(-5) M with a response time of 3 min. The method was also applied to the determination of hydrogen peroxide in milk samples.

  9. Titanium-doped cerium oxide nanoparticles protect cells from hydrogen peroxide-induced apoptosis

    PubMed Central

    Clark, Andrea; Zhu, Aiping; Petty, Howard R.

    2014-01-01

    To develop new nanoparticle materials possessing anti-oxidative capacity with improved physical characteristics, we have studied titanium-doped cerium oxide (CeTiO2) nanoparticles. CeTiO2 nanoparticles had a mode diameter of 15-20 nm. These nanoparticles demonstrated catalase activity, and did not promote the activation of hemolytic or cytolytic pathways in living cells. Using surface plasmon resonance enhanced microscopy, we find that these nanoparticles associate with cells. Transmission electron microscopy studies demonstrated that these nanoparticles accumulate within the vacuolar compartment of cells. Importantly, CeTiO2 nanoparticles decrease hydrogen peroxide-mediated apoptosis of cells as judged by the reduced cleavage of a caspase 3-sensitive label. CeTiO2 nanoparticles may contribute to deflecting tissue damage in a broad spectrum of oxidant-mediated diseases, such as macular degeneration and Alzheimer's disease. PMID:24791147

  10. Titanium-doped cerium oxide nanoparticles protect cells from hydrogen peroxide-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Clark, Andrea; Zhu, Aiping; Petty, Howard R.

    2013-12-01

    To develop new nanoparticle materials possessing antioxidative capacity with improved physical characteristics, we have studied titanium-doped cerium oxide (CeTiO2) nanoparticles. CeTiO2 nanoparticles had mode diameters in the range of 15-20 nm. These nanoparticles demonstrated catalase activity, and did not promote the activation of hemolytic or cytolytic pathways in living cells. Using surface plasmon resonance-enhanced microscopy, we find that these nanoparticles associate with cells. Transmission electron microscopy studies demonstrated that these nanoparticles accumulate within the vacuolar compartment of cells. Importantly, CeTiO2 nanoparticles decrease hydrogen peroxide-mediated apoptosis of cells as judged by the reduced cleavage of a caspase 3-sensitive label. CeTiO2 nanoparticles may contribute to deflecting tissue damage in a broad spectrum of oxidant-mediated diseases, such as macular degeneration and Alzheimer's disease.

  11. Hyperosmolarity induced by high glucose promotes senescence in human glomerular mesangial cells.

    PubMed

    del Nogal, Maria; Troyano, Nuria; Calleros, Laura; Griera, Mercedes; Rodriguez-Puyol, Manuel; Rodriguez-Puyol, Diego; Ruiz-Torres, María P

    2014-09-01

    Hyperglycemia is involved in the diabetic complication of different organs and can elevate serum osmolarity. Here, we tested whether hyperosmolarity promoted by high glucose levels induces cellular senescence in renal cells. We treated Wistar rats with streptozotocin to induce diabetes or with consecutive daily injections of mannitol to increase serum osmolarity and analyzed p53 and p16 genes in renal cortex by immunohistochemistry. Both diabetic and mannitol treated rats showed a significant increase in serum osmolarity, without significant signs of renal dysfunction, but associated with increased staining for p53 and p16 in the renal cortex. An increase in p53 and p16 expression was also found in renal cortex slices and glomeruli isolated from healthy rats, which were later treated with 30 mM glucose or mannitol. Intracellular mechanisms involved were analyzed in cultured human glomerular mesangial cells treated with 30 mM glucose or mannitol. After treatments, cells showed increased p53, p21 and p16 expression and elevated senescence-associated β-galactosidase activity. Senescence was prevented when myo-inositol was added before treatment. High glucose or mannitol induced constitutive activation of Ras and ERK pathways which, in turn, were activated by oxidative stress. In summary, hyperosmolarity induced renal senescence, particularly in glomerular mesangial cells, increasing oxidative stress, which constitutively activated Ras-ERK 1/2 pathway. Cellular senescence could contribute to the organ dysfunction associated with diabetes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Efficacy of hydrogen-peroxide-based mouthwash in altering enamel color.

    PubMed

    Jaime, Ivone Maria de Lima; França, Fabiana Mantovani Gomes; Basting, Roberta Tarkany; Turssi, Cecilia Pedroso; Amaral, Flávia Lucisano Botelho

    2014-02-01

    To analyze the efficacy of Colgate Plax Whitening mouthwash containing 1.5% hydrogen peroxide. 30 enamel fragments, obtained from the proximal surfaces of human third molars were darkened with Orange II methyl orange. The fragments were divided into three groups according to the type of bleaching agent applied (n = 10): (1) 10% carbamide peroxide gel (positive control, PC) was applied for 2 hours/day for 28 days; (2) a solution containing 1.5% hydrogen peroxide (Plax) was applied for 4 minutes once a day for 28 days, and (3) no bleaching agent, kept in artificial saliva (negative control, AS). The specimens were kept in artificial saliva between treatment intervals. The specimens were photographed before darkening (baseline), after darkening and before lightening and on the 28th day of whitening. Afterwards, they were analyzed with color measurement software using the CIELab system. The data for the L*, a* and b* parameters were submitted to two-way ANOVA with repeated measures. The values of deltaL *, deltaa *, deltab * and deltaE* were calculated using two procedures: (1) darkened versus original, and (2) bleached versus darkened. This data was submitted to the one-way ANOVA test. Multiple comparisons were conducted using the Tukey test (alpha = 0.05). When the specimens were subjected to bleaching agents, there was a significant increase in the brightness (L* parameter) of the enamel exposed to the gel and also to the bleaching solution. However, higher brightness was observed for the PC (gel) group. As for the axis a* parameters, there were no significant differences between the bleaching products. Regarding the axis b* parameters, the PC group underwent major changes (indicating a color change toward blue chroma), statistically greater than those of the Plax group. After bleaching, there was a significantly greater color change (deltaE*) in the PC group. Although the Plax solution caused a color change, it was less than that produced by the gel. The slightest

  13. Identification of BFN1, a bifunctional nuclease induced during leaf and stem senescence in Arabidopsis.

    PubMed

    Pérez-Amador, M A; Abler, M L; De Rocher, E J; Thompson, D M; van Hoof, A; LeBrasseur, N D; Lers, A; Green, P J

    2000-01-01

    Nuclease I enzymes are responsible for the degradation of RNA and single-stranded DNA during several plant growth and developmental processes, including senescence. However, in the case of senescence the corresponding genes have not been reported. We describe the identification and characterization of BFN1 of Arabidopsis, and demonstrate that it is a senescence-associated nuclease I gene. BFN1 nuclease shows high similarity to the sequence of a barley nuclease induced during germination and a zinnia (Zinnia elegans) nuclease induced during xylogenesis. In transgenic plants overexpressing the BFN1 cDNA, a nuclease activity of about 38 kD was detected on both RNase and DNase activity gels. Levels of BFN1 mRNA were extremely low or undetectable in roots, leaves, and stems. In contrast, relatively high BFN1 mRNA levels were detected in flowers and during leaf and stem senescence. BFN1 nuclease activity was also induced during leaf and stem senescence. The strong response of the BFN1 gene to senescence indicated that it would be an excellent tool with which to study the mechanisms of senescence induction, as well as the role of the BFN1 enzyme in senescence using reverse genetic approaches in Arabidopsis.

  14. Evaluation of cotton-fabric bleaching using hydrogen peroxide and Blue LED

    NASA Astrophysics Data System (ADS)

    de Oliveira, Bruno P.; Moriyama, Lilian T.; Bagnato, Vanderlei S.

    2015-06-01

    The raw cotton production requires multiple steps being one of them the removal of impurities acquired during previous processes. This procedure is widely used by textile industries around the world and is called bleaching. The raw cotton is composed by cellulosic and non-cellulosic materials like waxes, pectins and oils, which are responsible for its characteristic yellowish color. The bleaching process aims to remove the non-cellulosic materials concentration in the fabric, increasing its whiteness degree. The most used bleaching method utilizes a bath in an alkali solution of hydrogen peroxide, stabilizers and buffer solutions under high temperature. In the present study we evaluated the possibility of using a blue illumination for the bleaching process. We used blue LEDs (450 nm) to illuminate an acid hydrogen peroxide solution at room temperature. The samples treated by this method were compared with the conventional bleaching process through a colorimetric analysis and by a multiple comparison visual inspection by volunteers. The samples were also studied by a tensile test in order to verify the integrity of the cloth after bleaching. The results of fabric visual inspection and colorimetric analysis showed a small advantage for the sample treated by the standard method. The tensile test showed an increasing on the yield strength of the cloth after blue light bleaching. The presented method has great applicability potential due to the similar results compared to the standard method, with relative low cost and reduced production of chemical waste.

  15. High cytokinin levels induce a hypersensitive-like response in tobacco.

    PubMed

    Novák, Jan; Pavlů, Jaroslav; Novák, Ondřej; Nožková-Hlaváčková, Vladimíra; Špundová, Martina; Hlavinka, Jan; Koukalová, Šárka; Skalák, Jan; Černý, Martin; Brzobohatý, Břetislav

    2013-07-01

    Cytokinins are positive regulators of shoot development. However, it has previously been demonstrated that efficient activation of the cytokinin biosynthesis gene ipt can cause necrotic lesions and wilting in tobacco leaves. Some plant pathogens reportedly use their ability to produce cytokinins in disease development. In response to pathogen attacks, plants can trigger a hypersensitive response that rapidly kills cells near the infection site, depriving the pathogen of nutrients and preventing its spread. In this study, a diverse set of processes that link ipt activation to necrotic lesion formation were investigated in order to evaluate the potential of cytokinins as signals and/or mediators in plant defence against pathogens. The binary pOp-ipt/LhGR system for dexamethasone-inducible ipt expression was used to increase endogenous cytokinin levels in transgenic tobacco. Changes in the levels of cytokinins and the stress hormones salicylic, jasmonic and abscisic acid following ipt activation were determined by ultra-performance liquid chromatography-electrospray tandem mass spectrometry (UPLC-MS/MS). Trends in hydrogen peroxide content and lipid peroxidation were monitored using the potassium iodide and malondialdehyde assays. The subcellular distribution of hydrogen peroxide was investigated using 3,3'-diaminobenzidine staining. The dynamics of transcripts related to photosynthesis and pathogen response were analysed by reverse transcription followed by quantitative PCR. The effects of cytokinins on photosynthesis were deciphered by analysing changes in chlorophyll fluorescence and leaf gas exchange. Plants can produce sufficiently high levels of cytokinins to trigger fast cell death without any intervening chlorosis - a hallmark of the hypersensitive response. The results suggest that chloroplastic hydrogen peroxide orchestrates the molecular responses underpinning the hypersensitive-like response, including the inhibition of photosynthesis, elevated levels of

  16. Efficient Method for the Determination of the Activation Energy of the Iodide-Catalyzed Decomposition of Hydrogen Peroxide

    ERIC Educational Resources Information Center

    Sweeney, William; Lee, James; Abid, Nauman; DeMeo, Stephen

    2014-01-01

    An experiment is described that determines the activation energy (E[subscript a]) of the iodide-catalyzed decomposition reaction of hydrogen peroxide in a much more efficient manner than previously reported in the literature. Hydrogen peroxide, spontaneously or with a catalyst, decomposes to oxygen and water. Because the decomposition reaction is…

  17. Kinetics of the Bicarbonate-Assisted Oxidation of Diethyl Sulfide by Hydrogen Peroxide and Sodium Peroxoborate

    NASA Astrophysics Data System (ADS)

    Dyatlenko, L. M.; Lobachev, V. L.; Bezbozhnaya, T. V.

    2018-07-01

    The kinetics of oxidation of diethyl sulfide (Et2S) is studied in aqueous solutions of hydrogen peroxide and sodium peroxoborate (Na2[B2(O2)2(OH)4]) in the presence of bicarbonate ions by means of gas-liquid distribution. The kinetics is investigated in a broad range of pH. Data show that the oxidation of Et2S by sodium peroxoborate in the range of pH 6-12 is mediated by such reactive species as hydrogen peroxide, hydrogen peroxide anions, and mono (B(O2H)(OH)3^{ - }) and diperoxoborate (B(O2H)2(OH)2^{ - }) anions. The rate of Et2S oxidation increases in the presence of bicarbonate, due to the additional reaction pathways mediated by monoperoxocarbonate species.

  18. High-dose ascorbic acid induces carcinostatic effects through hydrogen peroxide and superoxide anion radical generation-induced cell death and growth arrest in human tongue carcinoma cells.

    PubMed

    Ohwada, Ryouhei; Ozeki, Yu; Saitoh, Yasukazu

    2017-01-01

    High-dose ascorbic acid (AsA) treatment, known as pharmacological AsA, has been shown to exert carcinostatic effects in many types of cancer cells and in vivo tumour models. Although pharmacological AsA has potential as a complementary and alternative medicine for anticancer treatment, its effects on human tongue carcinoma have not yet been elucidated. In this study, we investigated the effect of AsA treatment on human tongue carcinoma HSC-4 cells compared with non-tumourigenic tongue epithelial dysplastic oral keratinocyte (DOK) cells. Our results show that treatment with 1 and 3 mM of AsA for 60 min preferentially inhibits the growth of human tongue carcinoma HSC-4 over DOK cells. Furthermore, AsA-induced effects were accompanied by increased intracellular oxidative stress and were repressed by treatment with a hydrogen peroxide (H 2 O 2 ) scavenger catalase and a superoxide anion radical (O 2 - ) scavenger, tempol. Time-lapse observation and thymidine analog EdU incorporation revealed that AsA treatment induces not only cell death but also suppression of DNA synthesis and cell growth. Moreover, the growth arrest was accompanied by abnormal cellular morphologies whereby cells extended dendrite-like pseudopodia. Taken together, our results demonstrate that AsA treatment can induce carcinostatic effects through induction of cell death, growth arrest, and morphological changes mediated by H 2 O 2 and O 2 - generation. These findings suggest that high-dose AsA treatment represents an effective treatment for tongue cancer as well as for other types of cancer cells.

  19. Characterization of hydrogen peroxide-resistant Acinetobacter species isolated during the Mars Phoenix spacecraft assembly.

    PubMed

    Derecho, I; McCoy, K B; Vaishampayan, P; Venkateswaran, K; Mogul, R

    2014-10-01

    The microbiological inventory of spacecraft and the associated assembly facility surfaces represent the primary pool of forward contaminants that may impact the integrity of life-detection missions. Herein, we report on the characterization of several strains of hydrogen peroxide-resistant Acinetobacter, which were isolated during the Mars Phoenix lander assembly. All Phoenix-associated Acinetobacter strains possessed very high catalase specific activities, and the specific strain, A. gyllenbergii 2P01AA, displayed a survival against hydrogen peroxide (no loss in 100 mM H2O2 for 1 h) that is perhaps the highest known among Gram-negative and non-spore-forming bacteria. Proteomic characterizations reveal a survival mechanism inclusive of proteins coupled to peroxide degradation (catalase and alkyl hydroperoxide reductase), energy/redox management (dihydrolipoamide dehydrogenase), protein synthesis/folding (EF-G, EF-Ts, peptidyl-tRNA hydrolase, DnaK), membrane functions (OmpA-like protein and ABC transporter-related protein), and nucleotide metabolism (HIT family hydrolase). Together, these survivability and biochemical parameters support the hypothesis that oxidative tolerance and the related biochemical features are the measurable phenotypes or outcomes for microbial survival in the spacecraft assembly facilities, where the low-humidity (desiccation) and clean (low-nutrient) conditions may serve as selective pressures. Hence, the spacecraft-associated Acinetobacter, due to the conferred oxidative tolerances, may ultimately hinder efforts to reduce spacecraft bioburden when using chemical sterilants, thus suggesting that non-spore-forming bacteria may need to be included in the bioburden accounting for future life-detection missions.

  20. Water-soluble fractions from defatted sesame seeds protect human neuroblast cells against peroxyl radicals and hydrogen peroxide-induced oxidative stress.

    PubMed

    Ben Othman, Sana; Katsuno, Nakako; Kitayama, Akemi; Fujimura, Makoto; Kitaguchi, Kohji; Yabe, Tomio

    2016-09-01

    Oxidative stress is involved in the development of aging-related diseases, such as neurodegenerative diseases. Dietary antioxidants that can protect neuronal cells from oxidative damage play an important role in preventing such diseases. Previously, we reported that water-soluble fractions purified from defatted sesame seed flour exhibit good antioxidant activity in vitro. In the present study, we investigated the protective effects of white and gold sesame seed water-soluble fractions (WS-wsf and GS-wsf, respectively) against 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) and hydrogen peroxide (H2O2) induced oxidative stress in human neuroblast SH-SY5Y cells. Pretreatment with WS-wsf and GS-wsf did not protect cells against AAPH-induced cytotoxicity, while simultaneous co-treatment with AAPH significantly improved cell viability and inhibited membrane lipid peroxidation. These results suggest that WS-wsf and GS-wsf protect cells from AAPH-induced extracellular oxidative damage via direct scavenging of peroxyl radicals. When oxidative stress was induced by H2O2, pretreatment WS-wsf and GS-wsf significantly enhanced cell viability. These results suggest that in addition to radical scavenging, WS-wsf and GS-wsf enhance cellular resistance to intracellular oxidative stress by activation of the Nrf-2/ARE pathway as confirmed by the increased Nrf2 protein level in the nucleus and increased heme oxygenase 1 (HO-1) mRNA expression. The roles of ferulic and vanillic acids as bioactive antioxidants in these fractions were also confirmed. In conclusion, our results indicated that WS-wsf and GS-wsf, which showed antioxidant activity in vitro, are also efficient antioxidants in a cell system protecting SH-SY5Y cells against both extracellular and intracellular oxidative stress.

  1. Comparison of chemiluminescence methods for analysis of hydrogen peroxide and hydroxyl radicals

    NASA Astrophysics Data System (ADS)

    Pehrman, R.; Amme, M.; Cachoir, C.

    2006-01-01

    Assessment of alpha radiolysis influence on the chemistry of geologically disposed spent fuel demands analytical methods for radiolytic product determination at trace levels. Several chemiluminescence methods for the detection of radiolytic oxidants hydrogen peroxide and hydroxyl radicals are tested. Two of hydrogen peroxide methods use luminol, catalyzed by either μ-peroxidase or hemin, one uses 10-methyl-9-(p-formylphenyl)-acridinium carboxylate trifluoromethanesulfonate and one potassium periodate. All recipes are tested as batch systems in basic conditions. For hydroxyl radical detection luminophores selected are 3-hydroxyphthalic hydrazide and rutin. Both methods are tested as batch systems. The results are compared and the applicability of the methods for near-field dissolution studies is discussed.

  2. Massive gas embolism secondary in the use of intraoperative hydrogen peroxide: still use to lavage with this liquid?

    PubMed Central

    Benali, Zine El Abidine; Abdedaim, Hatim; Omari, Driss

    2013-01-01

    Cases of embolism after using hydrogen peroxide have been described in many circumstances in the operating room. Hydrogen peroxide is not more effective than other antiseptics; its potentially serious risk should not be unrecognized. The alternative use of saline seems very reasonable. The widespread use of hydrogen peroxide by practitioners is explained mainly by its antiseptic effect associated with effervescent backlash visual and auditory, but sometimes the liquid hiding behind a black hole that absorbs the life of the patient in case of inappropriate use. Diagnosis is based on clinical variations in a conscious patient at the time of use, confirmed by echocardiology if available. We related the case of a massive embolism after hydrogen peroxide use in the cleaning of infected wound with osteosynthesis material left femoral done under spinal anesthesia in a young girl of 17 years admitted after to the ICU intubated ventilated. PMID:24839532

  3. Certification of vapor phase hydrogen peroxide sterilization process for spacecraft application

    NASA Technical Reports Server (NTRS)

    Rohatgi, N.; Schubert, W.; Koukol, R.; Foster, T. L.; Stabekis, P. D.

    2002-01-01

    This paper describes the selection process and research activities JPL is planning to conduct for certification of hydrogen peroxide as a NASA approved technique for sterilization of various spacecraft parts/components and entire modern spacecraft.

  4. Coupled laboratory experiments and numerical models for generating ice-depth profiles of steady-state hydrogen peroxide concentrations on radiolytically processed icy worlds.

    NASA Astrophysics Data System (ADS)

    Hand, K. P.; Carlson, R. W.

    2007-12-01

    The presence of hydrogen peroxide and condensed phase molecular oxygen on the surface of Europa is now well established [1,2] and laboratory experiments have repeatedly demonstrated the viability of various radiolytic processes for explaining the observations [see e.g. 3, 4]. To date, however, both the Europa observations and the laboratory work have been limited to only the upper few, or few tens of microns, of ice. The spectrum of charged particles incident on the surface of Europa penetrates deeper, and deposits energy over a much greater range, than any laboratory experiment has aimed to replicate [5, 6]. Here we present results from laboratory work on hydrogen peroxide production using energetic electrons (4 keV - 16 keV) and couple these results with a numerical model for the integrated steady-state density of hydrogen peroxide as a function of depth into the ice. Production rates and steady-state peroxide levels for a range of initial electron energies are used to generate functions for the number of peroxide molecules produced per initial electron as it penetrates through the ice. We examined the electron energy spectrum from 0.01 MeV to 10 MeV and accounted for electrons incident to the surface over the solid angle from cosine(theta) = 0.3-1.0, where theta is the angle from the normal to the surface. We found that, accounting for production and destruction as a function of energy deposition, steady-state hydrogen peroxide concentrations resulting from electron radiolysis likely increases by a factor of a few to an order of magnitude at a depth of a few hundred microns. In other words, the 0.13 percent by number abundance of peroxide observed by NIMS [1] may be a low-end value; at depth the peroxide concentration could increase to a few percent by number relative to water. [1] Carlson et al. 1999. [2] Spencer and Calvin, 2002. [3] Moore and Hudson, 2000. [4] Loeffler et al., 2006. [5] Cooper et al., 2001 [6] Paranicas et al., 2001.

  5. Hyperbaric oxygen therapy for the prevention of arterial gas embolism in food grade hydrogen peroxide ingestion.

    PubMed

    Hendriksen, Stephen M; Menth, Nicholas L; Westgard, Bjorn C; Cole, Jon B; Walter, Joseph W; Masters, Thomas C; Logue, Christopher J

    2017-05-01

    Food grade hydrogen peroxide ingestion is a relatively rare presentation to the emergency department. There are no defined guidelines at this time regarding the treatment of such exposures, and providers may not be familiar with the potential complications associated with high concentration hydrogen peroxide ingestions. In this case series, we describe four patients who consumed 35% hydrogen peroxide, presented to the emergency department, and were treated with hyperbaric oxygen therapy. Two of the four patients were critically ill requiring intubation. All four patients had evidence on CT or ultrasound of venous gas emboli and intubated patients were treated as if they had an arterial gas embolism since an exam could not be followed. After hyperbaric oxygen therapy each patient was discharged from the hospital neurologically intact with no other associated organ injuries related to vascular gas emboli. Hyperbaric oxygen therapy is an effective treatment for patients with vascular gas emboli after high concentration hydrogen peroxide ingestion. It is the treatment of choice for any impending, suspected, or diagnosed arterial gas embolism. Further research is needed to determine which patients with portal venous gas emboli should be treated with hyperbaric oxygen therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Acetylcholine Attenuates Hydrogen Peroxide-Induced Intracellular Calcium Dyshomeostasis Through Both Muscarinic and Nicotinic Receptors in Cardiomyocytes.

    PubMed

    Palee, Siripong; Apaijai, Nattayaporn; Shinlapawittayatorn, Krekwit; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2016-01-01

    Oxidative stress induced intracellular Ca2+ overload plays an important role in the pathophysiology of several heart diseases. Acetylcholine (ACh) has been shown to suppress reactive oxygen species generation during oxidative stress. However, there is little information regarding the effects of ACh on the intracellular Ca2+ regulation in the presence of oxidative stress. Therefore, we investigated the effects of ACh applied before or after hydrogen peroxide (H2O2) treatment on the intracellular Ca2+ regulation in isolated cardiomyocytes. Single ventricular myocytes were isolated from the male Wistar rats for the intracellular Ca2+ transient study by a fluorimetric ratio technique. H2O2 significantly decreased both of intracellular Ca2+ transient amplitude and decay rate. ACh applied before, but not after, H2O2 treatment attenuated the reduction of intracellular Ca2+ transient amplitude and decay rate. Both atropine (a muscarinic acetylcholine receptor blocker) and mecamylamine (a nicotinic acetylcholine receptor blocker) significantly decreased the protective effects of acetylcholine on the intracellular Ca2+ regulation. Moreover, the combination of atropine and mecamylamine completely abolished the protective effects of acetylcholine on intracellular Ca2+ transient amplitude and decay rate. ACh pretreatment attenuates H2O2-induced intracellular Ca2+ dyshomeostasis through both muscarinic and nicotinic receptors. © 2016 The Author(s) Published by S. Karger AG, Basel.

  7. Fully-reversible optical sensor for hydrogen peroxide with fast response.

    PubMed

    Ding, Longjiang; Chen, Siyu; Zhang, Wei; Zhang, Yinglu; Wang, Xu-Dong

    2018-05-09

    A fully reversible optical sensor for hydrogen peroxide with fast response is presented. The sensor was fabricated by in-situ growing ultra-small platinum nanoparticles (PtNPs) inside the pores of fibrous silica particles (KCC-1). The nanocomposite was then embedded into a hydrogel matrix and form a sensor layer, the immobilized PtNPs can catalytically convert hydrogen peroxide into molecular oxygen, which is measured via luminescent quenching based oxygen sensor underneath. Owing to the high porosity and permeability of KCC-1 and high local concentration of PtNPs, the sensor exhibits fast response (less than 1 min) and full reversibility. The measurement range of the sensor covers 1.0 μM to 10.0 mM, and very small amount of sample is required during measurement (200 μL). Because of its high stability, excellent reversibility and selectivity, and extremely fast response, the sensor could fulfill all industry requirements for real-time measurement, and fill market vacancy.

  8. Wind-Eroded Silicate as a Source of Hydrogen Peroxide on Mars

    NASA Astrophysics Data System (ADS)

    Bak, E. N.; Merrison, J. P.; Jensen, S. K.; Nørnberg, P.; Finster, K.

    2014-07-01

    Laboratory simulations show that wind-eroded silicate can be a source of hydrogen peroxide. The ubiquitous, fine-grained silicate dust might thus explain the oxidizing properties of the martian soil and affect the preservation of organic compounds.

  9. Carbon dioxide laser and hydrogen peroxide conditioning in the treatment of periimplantitis: an experimental study in the dog.

    PubMed

    Persson, Leif G; Mouhyi, Jafaar; Berglundh, Tord; Sennerby, Lars; Lindhe, Jan

    2004-01-01

    Various methods have been applied for the treatment of periimplantitis lesions. It has been reported that the procedures used have been effective in eliminating the inflammatory lesion but that re-osseointegration to the once-contaminated implant surface has been difficult or impossible to achieve. The aim of this study was to examine the use of carbon dioxide (CO2) laser in combination with hydrogen peroxide in the treatment of experimentally induced periimplantitis lesions. Three dental implants (ITI Dental Implant System, Straumann AG, Waldenburg, Switzerland) were placed in each side of the edentulous mandible of four beagle dogs. Implants with a turned surface and implants with a sand-blasted large-grit acid-etched (SLA) surface (SLA, Straumann AG, Waldenburg, Switzerland) were used. Experimental periimplantitis was induced during 3 months. Five weeks later each animal received tablets of amoxicillin and metronidazole for a period of 17 days. Three days after the start of the antibiotic treatment, full-thickness flaps were elevated, and the granulation tissue in the bone craters was removed. In the two anterior implant sites in both sides of the mandible, a combination of CO2 laser therapy and application of a water solution of hydrogen peroxide was used. The implant in the posterior site of each quadrant was cleaned with cotton pellets soaked in saline. Biopsy specimens were obtained 6 months later. The amount of re-osseointegration was 21% and 82% at laser-treated turned-surface implants and SLA implants, respectively, and 22% and 84% at saline-treated turned-surface implants and SLA implants, respectively. The present study demonstrated the following: (1) a combination of systemic antibiotics and local curettage and debridement resulted in the resolution of experimentally induced periimplantitis lesions; (2) at implants with a turned surface, a small amount of re-osseointegration was observed at the base of the bone defects whereas a considerable amount of

  10. Effects of alcohols, povidone-iodine and hydrogen peroxide on biofilms of Staphylococcus epidermidis.

    PubMed

    Presterl, Elisabeth; Suchomel, Miranda; Eder, Michaela; Reichmann, Sonja; Lassnigg, Andrea; Graninger, Wolfgang; Rotter, Manfred

    2007-08-01

    To test the effects of several biocides [N-propanol, a commercially available propanol/ethanol/chlorhexidine mixture, polyvinylpyrolidone (povidone-iodine) and hydrogen peroxide] on established biofilms of Staphylococcus epidermidis isolated from patients with cardiac implant infections and catheter-related bacteraemia. Biofilms were grown in microtitre plates for 24 h, dyed and stained with Crystal Violet. The mean optical density (OD) and the OD ratio (ODr=OD of the treated biofilm/OD of the untreated biofilm) were used for quantification. Biofilms were incubated with 60% (v/v) N-propanol, the mixture of propanol/ethanol/chlorhexidine, hydrogen peroxide at three concentrations (0.5%, 3% and 5%, v/v) and povidone-iodine for 1, 5, 15, 30 and 60 min. Unstained biofilms were sonicated and plated on Columbia agar for time-kill curves. S. epidermidis skin isolates from healthy volunteers were used as controls. Biofilm ODs of the clinical S. epidermidis isolates and the isolates from the healthy volunteers were significantly different (1.17+/-0.512 versus 0.559+/-0.095, respectively; mean+/-SD) (P<0.01). No viable S. epidermidis was detected in biofilms treated with the alcohols, N-propanol or the propanol/ethanol/chlorhexidine mixture. Incubation with povidone-iodine and hydrogen peroxide 3% and 5% led to a log reduction of the viable cells of >5 after incubation for 5 min, however, up to 10(3) viable cells were detected in four isolates after 30 min of incubation with povidone-iodine. S. epidermidis obtained from infected implants forms thicker biofilms than that of healthy volunteers. Hydrogen peroxide, at a concentration of 3% and 5%, and alcohols rapidly eradicate S. epidermidis biofilms, whereas povidone-iodine is less effective.

  11. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling.

    PubMed

    Brand, Martin D

    2016-11-01

    This review examines the generation of reactive oxygen species by mammalian mitochondria, and the status of different sites of production in redox signaling and pathology. Eleven distinct mitochondrial sites associated with substrate oxidation and oxidative phosphorylation leak electrons to oxygen to produce superoxide or hydrogen peroxide: oxoacid dehydrogenase complexes that feed electrons to NAD + ; respiratory complexes I and III, and dehydrogenases, including complex II, that use ubiquinone as acceptor. The topologies, capacities, and substrate dependences of each site have recently clarified. Complex III and mitochondrial glycerol 3-phosphate dehydrogenase generate superoxide to the external side of the mitochondrial inner membrane as well as the matrix, the other sites generate superoxide and/or hydrogen peroxide exclusively in the matrix. These different site-specific topologies are important for redox signaling. The net rate of superoxide or hydrogen peroxide generation depends on the substrates present and the antioxidant systems active in the matrix and cytosol. The rate at each site can now be measured in complex substrate mixtures. In skeletal muscle mitochondria in media mimicking muscle cytosol at rest, four sites dominate, two in complex I and one each in complexes II and III. Specific suppressors of two sites have been identified, the outer ubiquinone-binding site in complex III (site III Qo ) and the site in complex I active during reverse electron transport (site I Q ). These suppressors prevent superoxide/hydrogen peroxide production from a specific site without affecting oxidative phosphorylation, making them excellent tools to investigate the status of the sites in redox signaling, and to suppress the sites to prevent pathologies. They allow the cellular roles of mitochondrial superoxide/hydrogen peroxide production to be investigated without catastrophic confounding bioenergetic effects. They show that sites III Qo and I Q are active in cells

  12. Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions.

    PubMed

    Wang, Yang; Hernandez, Rose M; Bartlett, David J; Bingham, Julia M; Kline, Timothy R; Sen, Ayusman; Mallouk, Thomas E

    2006-12-05

    Bimetallic nanorods are propelled in aqueous solutions by the catalytic decomposition of hydrogen peroxide to oxygen and water. Several mechanisms (interfacial tension gradients, bubble recoil, viscous Brownian ratchet, self-electrophoresis) have been proposed for the transduction of chemical to mechanical energy in this system. From Tafel plots of anodic and cathodic hydrogen peroxide reactions at various metal (Au, Pt, Rh, Ni, Ru, and Pd) ultramicroelectrodes, we determine the potential at which the anodic and cathodic reaction rates are equal for each metal. These measurements allow one to predict the direction of motion of all possible bimetallic combinations according to the bipolar electrochemical (or self-electrophoretic) mechanism. These predictions are consistent with the observed direction of motion in all cases studied, providing strong support for the mechanism. We also find that segmented nanorods with one Au end and one poly(pyrrole) end containing catalase, an enzyme that decomposes hydrogen peroxide nonelectrochemically, perform the overall catalytic reaction at a rate similar to that of nanorods containing Au and Pt segments. However, in this case there is no observed axial movement, again supporting the bipolar electrochemical propulsion mechanism for bimetallic nanorods.

  13. Pulsed discharge plasma induced Fenton-like reactions for the enhancement of the degradation of 4-chlorophenol in water.

    PubMed

    Hao, Xiaolong; Zhou, Minghua; Xin, Qing; Lei, Lecheng

    2007-02-01

    To sufficiently utilize chemically active species and enhance the degradation rate and removal efficiency of toxic and biorefractory organic pollutant para-chlorophenol (para-CP), the introductions of iron metal ions (Fe2+/Fe3+) into either pulsed discharge plasma (PDP) process or the PDP process with TiO2 photo-catalyst were tentatively performed. The experimental results showed that under the same experimental condition, the degradation rate and removal efficiency of para-CP were greatly enhanced by the introduction of iron ions (Fe2+/Fe3+) into the PDP process. Moreover, when iron ions and TiO2 were added together in the PDP process, the degradation rate and removal energy of para-CP further improved. The possible mechanism was discussed that the obvious promoting effects were attributed to ferrous ions via plasma induced Fenton-like reactions by UV light irradiation excited and hydrogen peroxide formed in pulsed electrical discharge, resulting in a larger amount of hydroxyl radicals produced from the residual hydrogen peroxide. In addition, the regeneration of ferric ions to ferrous ions facilitates the progress of plasma induced Fenton-like reactions by photo-catalytic reduction of UV light, photo-catalytic reduction on TiO2 surface and electron transfer of quinone intermediates, i.e. 1,4-hydroquinone and 1,4-benzoquinone.

  14. Coupling of Solar Energy to Hydrogen Peroxide Production in the Cyanobacterium Anacystis nidulans

    PubMed Central

    Roncel, Mercedes; Navarro, José A.; De la Rosa, Miguel A.

    1989-01-01

    Hydrogen peroxide production by blue-green algae (cyanobacteria) under photoautotrophic conditions is of great interest as a model system for the bioconversion of solar energy. Our experimental system was based on the photosynthetic reduction of molecular oxygen with electrons from water by Anacystis nidulans 1402-1 as the biophotocatalyst and methyl viologen as a redox intermediate. It has been demonstrated that the metabolic conditions of the algae in their different growth stages strongly influence the capacity for hydrogen peroxide photoproduction, and so the initial formation rate and net peroxide yield became maximum in the mid-log phase of growth. The overall process can be optimized in the presence of certain metabolic inhibitors such as iodoacetamide and p-hydroxymercuribenzoate, as well as by permeabilization of the cellular membrane after drastic temperature changes and by immobilization of the cells in inert supports such as agar and alginate. PMID:16347855

  15. Treatment of oily port wastewater effluents using the ultraviolet/hydrogen peroxide photodecomposition system.

    PubMed

    Siedlecka, Ewa Maria; Stepnowski, Piotr

    2006-08-01

    This paper presents the nonselective degradation of mechanically pretreated oily wastewater by hydrogen peroxide (H2O2) in the presence and absence of UV irradiation. The effect of chemical oxidation on wastewater biodegradability was also examined. The exclusive use of H2O2 photolyzed by daylight results in quite efficient degradation rates for the low peroxide concentrations used. Higher hydrogen peroxide concentrations inhibit degradation of organic contaminants in the wastewater. The degradation rates of all contaminants are relatively high with an advanced oxidation system (UV/H2O2), but degradation efficiencies are not distinguishably different when 20 or 45 minutes of UV irradiation is used. The excess of H2O2 used in the process can inhibit phenolic degradation and may lead to the formation of a new phenolic fraction. The biodegradability of port wastewater did not increase significantly following the application of the advanced oxidation process.

  16. Senescence-Induced Serotonin Biosynthesis and Its Role in Delaying Senescence in Rice Leaves1[C][W][OA

    PubMed Central

    Kang, Kiyoon; Kim, Young-Soon; Park, Sangkyu; Back, Kyoungwhan

    2009-01-01

    Serotonin, which is well known as a pineal hormone in mammals, plays a key role in conditions such as mood, eating disorders, and alcoholism. In plants, although serotonin has been suggested to be involved in several physiological roles, including flowering, morphogenesis, and adaptation to environmental changes, its regulation and functional roles are as yet not characterized at the molecular level. In this study, we found that serotonin is greatly accumulated in rice (Oryza sativa) leaves undergoing senescence induced by either nutrient deprivation or detachment, and its synthesis is closely coupled with transcriptional and enzymatic induction of the tryptophan biosynthetic genes as well as tryptophan decarboxylase (TDC). Transgenic rice plants that overexpressed TDC accumulated higher levels of serotonin than the wild type and showed delayed senescence of rice leaves. However, transgenic rice plants, in which expression of TDC was suppressed through an RNA interference (RNAi) system, produced less serotonin and senesced faster than the wild type, suggesting that serotonin is involved in attenuating leaf senescence. The senescence-retarding activity of serotonin is associated with its high antioxidant activity compared to either tryptophan or chlorogenic acid. Results of TDC overexpression and TDC RNAi plants suggest that TDC plays a rate-limiting role for serotonin accumulation, but the synthesis of serotonin depends on an absolute amount of tryptophan accumulation by the coordinate induction of the tryptophan biosynthetic genes. In addition, immunolocalization analysis revealed that serotonin was abundant in the vascular parenchyma cells, including companion cells and xylem-parenchyma cells, suggestive of its involvement in maintaining the cellular integrity of these cells for facilitating efficient nutrient recycling from senescing leaves to sink tissues during senescence. PMID:19439571

  17. Development of a green bipropellant hydrogen peroxide thruster for attitude control on satellites

    NASA Astrophysics Data System (ADS)

    Woschnak, A.; Krejci, D.; Schiebl, M.; Scharlemann, C.

    2013-03-01

    This document describes the selection assessment of propellants for a 1-newton green bipropellant thruster for attitude control on satellites. The development of this thruster was conducted as a part of the project GRASP (Green Advanced Space Propellants) within the European FP7 research program. The green propellant combinations hydrogen peroxide (highly concentrated with 87.5 %(wt.)) with kerosene or hydrogen peroxide (87.5 %(wt.)) with ethanol were identified as interesting candidates and were investigated in detail with the help of an experimental combustion chamber in the chemical propulsion laboratory at the Forschungsund Technologietransfer GmbH ― Fotec. Based on the test results, a final selection of propellants was performed.

  18. Vapor hydrogen peroxide as alternative to dry heat microbial reduction

    NASA Astrophysics Data System (ADS)

    Chung, S.; Kern, R.; Koukol, R.; Barengoltz, J.; Cash, H.

    2008-09-01

    The Jet Propulsion Laboratory (JPL), in conjunction with the NASA Planetary Protection Officer, has selected vapor phase hydrogen peroxide (VHP) sterilization process for continued development as a NASA approved sterilization technique for spacecraft subsystems and systems. The goal was to include this technique, with an appropriate specification, in NASA Procedural Requirements 8020.12 as a low-temperature complementary technique to the dry heat sterilization process. The VHP process is widely used by the medical industry to sterilize surgical instruments and biomedical devices, but high doses of VHP may degrade the performance of flight hardware, or compromise material compatibility. The goal for this study was to determine the minimum VHP process conditions for planetary protection acceptable microbial reduction levels. Experiments were conducted by the STERIS Corporation, under contract to JPL, to evaluate the effectiveness of vapor hydrogen peroxide for the inactivation of the standard spore challenge, Geobacillus stearothermophilus. VHP process parameters were determined that provide significant reductions in spore viability while allowing survival of sufficient spores for statistically significant enumeration. In addition to the obvious process parameters of interest: hydrogen peroxide concentration, number of injection cycles, and exposure duration, the investigation also considered the possible effect on lethality of environmental parameters: temperature, absolute humidity, and material substrate. This study delineated a range of test sterilizer process conditions: VHP concentration, process duration, a process temperature range for which the worst case D-value may be imposed, a process humidity range for which the worst case D-value may be imposed, and the dependence on selected spacecraft material substrates. The derivation of D-values from the lethality data permitted conservative planetary protection recommendations.

  19. Overexpression of MpCYS4, a phytocystatin gene from Malus prunifolia (Willd.) Borkh., delays natural and stress-induced leaf senescence in apple.

    PubMed

    Tan, Yanxiao; Yang, Yingli; Li, Chao; Liang, Bowen; Li, Mingjun; Ma, Fengwang

    2017-06-01

    Phytocystatins are a well-characterized class of naturally occurring protease inhibitors that prevent the catalysis of papain-like cysteine proteases. The action of cystatins in stress tolerance has been studied intensively, but relatively little is known about their functions in plants during leaf senescence. Here, we examined the potential roles of the apple cystatin, MpCYS4, in leaf photosynthesis as well as the concentrations and composition of leaf proteins when plants encounter natural or stress-induced senescence. Overexpression of this gene in apple rootstock M26 effectively slowed the senescence-related declines in photosynthetic activity and chlorophyll concentrations and prevented the action of cysteine proteinases during the process of degrading proteins (e.g., Rubisco) in senescing leaves. Moreover, MpCYS4 alleviated the associated oxidative damage and enhanced the capacity of plants to eliminate reactive oxygen species by activating antioxidant enzymes such as ascorbate peroxidase, peroxidase, and catalase. Consequently, plant cells were protected against damage from free radicals during leaf senescence. Based on these results, we conclude that MpCYS4 functions in delaying natural and stress-induced senescence of apple leaves. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Alkaline hydrogen peroxide pretreatment of cashew apple bagasse for ethanol production: study of parameters.

    PubMed

    Correia, Jessyca Aline da Costa; Júnior, José Edvan Marques; Gonçalves, Luciana Rocha B; Rocha, Maria Valderez Ponte

    2013-07-01

    The alkaline hydrogen peroxide (AHP) pretreatment of cashew apple bagasse (CAB) was evaluated based on the conversion of the resultant cellulose into glucose. The effects of the concentration of hydrogen peroxide at pH 11.5, the biomass loading and the pretreatment duration performed at 35°C and 250 rpm were evaluated after the subsequent enzymatic saccharification of the pretreated biomass using a commercial cellulase enzyme. The CAB used in this study contained 20.56 ± 2.19% cellulose, 10.17 ± 0.89% hemicellulose and 35.26 ± 0.90% lignin. The pretreatment resulted in a reduced lignin content in the residual solids. Increasing the H2O2 concentration (0-4.3% v/v) resulted in a higher rate of enzymatic hydrolysis. Lower biomass loadings gave higher glucose yields. In addition, no measurable furfural and hydroxymethyl furfural were produced in the liquid fraction during the pretreatment. The results show that alkaline hydrogen peroxide is effective for the pretreatment of CAB. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  1. Hydrogen peroxide as sustainable fuel: electrocatalysts for production with a solar cell and decomposition with a fuel cell.

    PubMed

    Yamada, Yusuke; Fukunishi, Yurie; Yamazaki, Shin-ichi; Fukuzumi, Shunichi

    2010-10-21

    Hydrogen peroxide was electrochemically produced by reducing oxygen in an aqueous solution with [Co(TCPP)] as a catalyst and photovoltaic solar cell operating at 0.5 V. Hydrogen peroxide thus produced is utilized as a fuel for a one-compartment fuel cell with Ag-Pb alloy nanoparticles as the cathode.

  2. Oxygen Mass Flow Rate Generated for Monitoring Hydrogen Peroxide Stability

    NASA Technical Reports Server (NTRS)

    Ross, H. Richard

    2002-01-01

    Recent interest in propellants with non-toxic reaction products has led to a resurgence of interest in hydrogen peroxide for various propellant applications. Because peroxide is sensitive to contaminants, material interactions, stability and storage issues, monitoring decomposition rates is important. Stennis Space Center (SSC) uses thermocouples to monitor bulk fluid temperature (heat evolution) to determine reaction rates. Unfortunately, large temperature rises are required to offset the heat lost into the surrounding fluid. Also, tank penetration to accomodate a thermocouple can entail modification of a tank or line and act as a source of contamination. The paper evaluates a method for monitoring oxygen evolution as a means to determine peroxide stability. Oxygen generation is not only directly related to peroxide decomposition, but occurs immediately. Measuring peroxide temperature to monitor peroxide stability has significant limitations. The bulk decomposition of 1% / week in a large volume tank can produce in excess of 30 cc / min. This oxygen flow rate corresponds to an equivalent temperature rise of approximately 14 millidegrees C, which is difficult to measure reliably. Thus, if heat transfer were included, there would be no temperature rise. Temperature changes from the surrounding environment and heat lost to the peroxide will also mask potential problems. The use of oxygen flow measurements provides an ultra sensitive technique for monitoring reaction events and will provide an earlier indication of an abnormal decomposition when compared to measuring temperature rise.

  3. Direct synthesis of hydrogen peroxide from plasma-water interactions

    PubMed Central

    Liu, Jiandi; He, Bangbang; Chen, Qiang; Li, Junshuai; Xiong, Qing; Yue, Guanghui; Zhang, Xianhui; Yang, Size; Liu, Hai; Liu, Qing Huo

    2016-01-01

    Hydrogen peroxide (H2O2) is usually considered to be an important reagent in green chemistry since water is the only by-product in H2O2 involved oxidation reactions. Early studies show that direct synthesis of H2O2 by plasma-water interactions is possible, while the factors affecting the H2O2 production in this method remain unclear. Herein, we present a study on the H2O2 synthesis by atmospheric pressure plasma-water interactions. The results indicate that the most important factors for the H2O2 production are the processes taking place at the plasma-water interface, including sputtering, electric field induced hydrated ion emission, and evaporation. The H2O2 production rate reaches ~1200 μmol/h when the liquid cathode is purified water or an aqueous solution of NaCl with an initial conductivity of 10500 μS cm−1. PMID:27917925

  4. Stress-induced premature senescence of endothelial cells.

    PubMed

    Chen, Jun; Patschan, Susann; Goligorsky, Michael S

    2008-01-01

    Stress-induced premature senescence (SIPS) is characterized by cell cycle arrest and curtailed Hayflick limit. Studies support a central role for Rb protein in controlling this process via signaling from the p53 and p16 pathways. Cellular senescence is considered an essential contributor to the aging process and has been shown to be an important tumor suppression mechanism. In addition, emerging evidence suggests that SIPS may be involved in the pathogenesis of chronic human diseases. Here, focusing on endothelial cells, we discuss recent advances in our understanding of SIPS and the pathways that trigger it, evaluate their correlation with the apoptotic response and examine their links to the development of chronic diseases, with the emphasis on vasculopathy. Emerging novel therapeutic interventions based on recent experimental findings are also reviewed.

  5. Rutin protects rat articular chondrocytes against oxidative stress induced by hydrogen peroxide through SIRT1 activation.

    PubMed

    Na, Ji-Young; Song, Kibbeum; Kim, Sokho; Kwon, Jungkee

    2016-05-13

    The progressive degeneration and ossification of articular chondrocytes are main symptoms in the pathogenesis of osteoarthritis (OA). Several flavonoids may provide an adjunctive alternative for the management of moderate OA in humans. Rutin, a natural flavone derivative (quercetin-3-rhamnosylglucoside), is well known for its potent anti-inflammatory and anti-oxidant properties against oxidative stress. However, the protective function of rutin related to OA, which is characterized by deterioration of articular cartilage, remains unclear. The present study investigated the protective effects of rutin, an activator of silent information regulator 1 (SIRT1), involved in the inhibition of NF-κB/MAPK signaling pathway in hydrogen peroxide (H2O2)-induced oxidative stress in rat chondrocytes. SIRT1 activation by rutin attenuated levels of inflammatory cytokines and NF-κB/MAPK signaling, whereas the inhibition of SIRT1 by sirtinol counteracted the beneficial effects of rutin in H2O2-treated chondrocytes. The findings of these studies suggested the potential involvement of SIRT1 in the pathogenesis of OA, and indicated that rutin is a possible therapeutic option for OA. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Mechanism of Action of Sulforaphane as a Superoxide Radical Anion and Hydrogen Peroxide Scavenger by Double Hydrogen Transfer: A Model for Iron Superoxide Dismutase.

    PubMed

    Prasad, Ajit Kumar; Mishra, P C

    2015-06-25

    The mechanism of action of sulforaphane as a scavenger of superoxide radical anion (O2(•-)) and hydrogen peroxide (H2O2) was investigated using density functional theory (DFT) in both gas phase and aqueous media. Iron superoxide dismutase (Fe-SOD) involved in scavenging superoxide radical anion from biological media was modeled by a complex consisting of the ferric ion (Fe(3+)) attached to three histidine rings. Reactions related to scavenging of superoxide radical anion by sulforaphane were studied using DFT in the presence and absence of Fe-SOD represented by this model in both gas phase and aqueous media. The scavenging action of sulforaphane toward both superoxide radical anion and hydrogen peroxide was found to involve the unusual mechanism of double hydrogen transfer. It was found that sulforaphane alone, without Fe-SOD, cannot scavenge superoxide radical anion in gas phase or aqueous media efficiently as the corresponding reaction barriers are very high. However, in the presence of Fe-SOD represented by the above-mentioned model, the scavenging reactions become barrierless, and so sulforaphane scavenges superoxide radical anion by converting it to hydrogen peroxide efficiently. Further, sulforaphane was found to scavenge hydrogen peroxide also very efficiently by converting it into water. Thus, the mechanism of action of sulforaphane as an excellent antioxidant has been unravelled.

  7. A head-to-head comparison of hydrogen peroxide vapor and aerosol room decontamination systems.

    PubMed

    Holmdahl, T; Lanbeck, P; Wullt, M; Walder, M H

    2011-09-01

    New technologies have emerged in recent years for the disinfection of hospital rooms and equipment that may not be disinfected adequately using conventional methods. There are several hydrogen peroxide-based area decontamination technologies on the market, but no head-to-head studies have been performed. We conducted a head-to-head in vitro comparison of a hydrogen peroxide vapor (HPV) system (Bioquell) and an aerosolized hydrogen peroxide (aHP) system (Sterinis). The tests were conducted in a purpose-built 136-m(3) test room. One HPV generator and 2 aHP machines were used, following recommendations of the manufacturers. Three repeated tests were performed for each system. The microbiological efficacy of the 2 systems was tested using 6-log Tyvek-pouched Geobacillus stearothermophilus biological indicators (BIs). The indicators were placed at 20 locations in the first test and 14 locations in the subsequent 2 tests for each system. All BIs were inactivated for the 3 HPV tests, compared with only 10% in the first aHP test and 79% in the other 2 aHP tests. The peak hydrogen peroxide concentration was 338 ppm for HPV and 160 ppm for aHP. The total cycle time (including aeration) was 3 and 3.5 hours for the 3 HPV tests and the 3 aHP tests, respectively. Monitoring around the perimeter of the enclosure with a handheld sensor during tests of both systems did not identify leakage. One HPV generator was more effective than 2 aHP machines for the inactivation of G. stearothermophilus BIs, and cycle times were faster for the HPV system.

  8. Acute dyskerin depletion triggers cellular senescence and renders osteosarcoma cells resistant to genotoxic stress-induced apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Ping; Mobasher, Maral E.; Alawi, Faizan, E-mail: falawi@upenn.edu

    Highlights: • Dyskerin depletion triggers cellular senescence in U2OS osteosarcoma cells. • Dyskerin-depleted cells are resistant to apoptosis induced by genotoxic stress. • Chromatin relaxation sensitizes dyskerin-depleted cells to apoptosis. - Abstract: Dyskerin is a conserved, nucleolar RNA-binding protein implicated in an increasing array of fundamental cellular processes. Germline mutation in the dyskerin gene (DKC1) is the cause of X-linked dyskeratosis congenita (DC). Conversely, wild-type dyskerin is overexpressed in sporadic cancers, and high-levels may be associated with poor prognosis. It was previously reported that acute loss of dyskerin function via siRNA-mediated depletion slowed the proliferation of transformed cell lines. However,more » the mechanisms remained unclear. Using human U2OS osteosarcoma cells, we show that siRNA-mediated dyskerin depletion induced cellular senescence as evidenced by proliferative arrest, senescence-associated heterochromatinization and a senescence-associated molecular profile. Senescence can render cells resistant to apoptosis. Conversely, chromatin relaxation can reverse the repressive effects of senescence-associated heterochromatinization on apoptosis. To this end, genotoxic stress-induced apoptosis was suppressed in dyskerin-depleted cells. In contrast, agents that induce chromatin relaxation, including histone deacetylase inhibitors and the DNA intercalator chloroquine, sensitized dyskerin-depleted cells to apoptosis. Dyskerin is a core component of the telomerase complex and plays an important role in telomere homeostasis. Defective telomere maintenance resulting in premature senescence is thought to primarily underlie the pathogenesis of X-linked DC. Since U2OS cells are telomerase-negative, this leads us to conclude that loss of dyskerin function can also induce cellular senescence via mechanisms independent of telomere shortening.« less

  9. Amadori products promote cellular senescence activating insulin-like growth factor-1 receptor and down-regulating the antioxidant enzyme catalase.

    PubMed

    Del Nogal-Ávila, María; Troyano-Suárez, Nuria; Román-García, Pablo; Cannata-Andía, Jorge B; Rodriguez-Puyol, Manuel; Rodriguez-Puyol, Diego; Kuro-O, Makoto; Ruiz-Torres, María P

    2013-07-01

    Activation of the insulin growth factor receptor-1 signaling pathways has been largely related to the aging process. Amadori products are produced in pathological conditions such as diabetes and aging, and are potentially involved in diabetic nephropathy or age-associated decline of renal function. We hypothesize that Amadori products induce senescence in primary human mesangial cells through the activation of IGF-1 receptor and investigate, in the present work, the intracellular mechanism involved after this activation. We treated cultured human mesangial cells with glycated albumin, one of the most abundant Amadori product, and senescence was assessed by determining the senescence associated β-galactosidase activity and the expression of the cell cycle regulators p53 and p21. We demonstrated that prolonged exposition (more than 24h) to glycated albumin induced senescence and, in parallel, incremented the release of IGF-1 and the activation of the IGF-1 receptor. Inhibition of the IGF-1 activation prevented the GA induced senescence. Activation of IGF-1R, after GA addition, promoted a reduction in the catalase content through the constitutive activation of Ras and erk1/2 proteins which were, in turn, responsible of the observed GA-induced senescence. In conclusion, we propose that the Amadori product, glycated albumin, promotes premature cell senescence in mesangial cells through the activation of the IGF-1 receptor and the subsequent reduction in the antioxidant enzyme catalase. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Hydrogen-peroxide-modified egg albumen for transparent and flexible resistive switching memory

    NASA Astrophysics Data System (ADS)

    Zhou, Guangdong; Yao, Yanqing; Lu, Zhisong; Yang, Xiude; Han, Juanjuan; Wang, Gang; Rao, Xi; Li, Ping; Liu, Qian; Song, Qunliang

    2017-10-01

    Egg albumen is modified by hydrogen peroxide with concentrations of 5%, 10%, 15% and 30% at room temperature. Compared with devices without modification, a memory cell of Ag/10% H2O2-egg albumen/indium tin oxide exhibits obviously enhanced resistive switching memory behavior with a resistance ratio of 104, self-healing switching endurance for 900 cycles and a prolonged retention time for a 104 s @ 200 mV reading voltage after being bent 103 times. The breakage of massive protein chains occurs followed by the recombination of new protein chain networks due to the oxidation of amidogen and the synthesis of disulfide during the hydrogen peroxide modifying egg albumen. Ions such as Fe3+, Na+, K+, which are surrounded by protein chains, are exposed to the outside of protein chains to generate a series of traps during the egg albumen degeneration process. According to the fitting results of the double logarithm I-V curves and the current-sensing atomic force microscopy (CS-AFM) images of the ON and OFF states, the charge transfer from one trap center to its neighboring trap center is responsible for the resistive switching memory phenomena. The results of our work indicate that hydrogen- peroxide-modified egg albumen could open up a new avenue of biomaterial application in nanoelectronic systems.

  11. Construction of a horseradish peroxidase resistant toward hydrogen peroxide by saturation mutagenesis.

    PubMed

    Asad, Sedigheh; Dastgheib, Seyed Mohammad Mehdi; Khajeh, Khosro

    2016-11-01

    Horseradish peroxidase (HRP) with a variety of potential biotechnological applications is still isolated from the horseradish root as a mixture of different isoenzymes with different biochemical properties. There is an increasing demand for preparations of high amounts of pure enzyme but its recombinant production is limited because of the lack of glycosylation in Escherichia coli and different glycosylation patterns in yeasts which affects its stability parameters. The goal of this study was to increase the stability of non-glycosylated enzyme, which is produced in E. coli, toward hydrogen peroxide via mutagenesis. Asparagine 268, one of the N-glycosylation sites of the enzyme, has been mutated via saturation mutagenesis using the megaprimer method. Modification and miniaturization of previously described protocols enabled screening of a library propagated in E. coli XJb (DE3). The library of mutants was screened for stability toward hydrogen peroxide with azinobis (ethylbenzthiazoline sulfonate) as a reducing substrate. Asn268Gly mutant, the top variant from the screening, exhibited 18-fold increased stability toward hydrogen peroxide and twice improved thermal stability compared with the recombinant HRP. Moreover, the substitution led to 2.5-fold improvement in the catalytic efficiency with phenol/4-aminoantipyrine. Constructed mutant represents a stable biocatalyst, which may find use in medical diagnostics, biosensing, and bioprocesses. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  12. The role of nitric oxide in basal and induced resistance in relation with hydrogen peroxide and antioxidant enzymes.

    PubMed

    Keshavarz-Tohid, Vahid; Taheri, Parissa; Taghavi, Seyed Mohsen; Tarighi, Saeed

    2016-07-20

    Nitric oxide (NO) is one of the main signal molecules, which is involved in plant growth and development and can change regular physiological activity in biotic and abiotic stresses. In this study, the role of NO in induced resistance with Pseudomonas fluorescent (CHA0) and basal resistance against Rhizoctonia solani in bean plant was investigated. Our results revealed that P. fluorescent and R. solani can increase NO production at 6h post inoculation (hpi). Also, using the NO donor S-nitroso-N-acetyl D-penicillamine (SNAP) led to increase NO and bean plant resistance against R. solani. Utilizing the NO scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethy-limidazoline-1-oxyl-3-oxide (cPTIO), not only decreased basal resistance but also reduced induced resistance. In continue, the activity of antioxidant enzymes was studied in the former treatments. SNAP, CHA0 and R. solani increased the activity of peroxidase (POX), catalase (CAT) and ascorbate peroxidase (APX) at 6, 12 and 24h post inoculation (hpi). In contrast, using cPTIO and R. solani simultaneously (cPTIO+R) showed reduction in activity of POX and APX at 6 hpi. The cPTIO+R treatment increased POX, APX and CAT activity at 12 and 24 hpi. Hydrogen peroxide (H 2 O 2 ) monitoring in the leaf discs clarified that SNAP can increase H 2 O 2 production like CHA0 and R. solani. On the other hand, SNAP increased the resistance level of leaf discs against R. solani. Treating the leaf discs with cPTIO led to decrease resistance against the pathogen. These leaf discs showed reduction in H 2 O 2 production at 6 hpi and suddenly enhanced H 2 O 2 generation was observed at 24hpi. This study showed that CHA0 can increase NO level in bean plants. NO induced H 2 O 2 generation and regulated redox state of the host plant. This interaction resulted in significant defense against the pathogen. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. Effect of Overproduction of Mitochondrial Uncoupling Protein 2 on Cos7 Cells: Induction of Senescent-like Morphology and Oncotic Cell Death.

    PubMed

    Nishio, Koji; Ma, Qian

    2016-01-01

    The maintenance of mitochondrial membrane potential is essential for cell growth and survival. Mitochondrial uncoupling protein 2 plays the most important roles in uncoupling oxidative phosphorylation and decreasing mitochondrial O2- production by regulating the mitochondrial membrane potential. We propose that mouse UCP2 has two glycine-rich motifs, motif 1: EGIRGLWKG (170-178) and a known Walker A-like motif 2: EGPRAFYKG (264-272). These motifs seem to be important for the function of UCP2. We investigated the biological effects of overproduced-UCP2 and its physiological consequence in Cos7 cells. We introduced several amino acid changes in the motif 1. The expression vectors of the green fluorescent protein (GFP)-fused UCP2 and mutant UCP2 were constructed and expressed in Cos7 cells. The UCP2-GFP-expressed cells significantly down-regulated the mitochondrial membrane potentials and induced the enlarged cell shapes. Next we generated the stably UCP2-GFP-expressed Cos7 cells by selection with the antibiotic Genecitin (G418). Within the first few weeks following G418-selection, the stably UCP2-GFP-expressed cells could not divide well and gradually manifested the irregular and enlarged senescent-like cell morphology. The UCP2/K177E- or UCP2/G174L-expressed cells did not induce the enlarged cell shapes. Hence, UCP2/K177E and UCP2/G174L produced the functional incompetence of the glycine-rich motif 1. The senescent-like cells significantly decreased the mitochondrial membrane potentials and finally died nearly one month. Overproduction of UCP2 irreversibly reduces the mitochondrial membrane potentials and induces the senescent-like morphology and finally oncotic cell death in Cos7 cells. These changes seem to occur from the irreversible metabolic changes following total loss of cellular ATP.

  14. Agent neutralization study IV. VX-caustic peroxide reactions. Final report, August 1993-February 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hovanec, J.W.; Albizo, J.M.; Henderson, V.D.

    1994-08-01

    The use of concentrated mixtures of hydrogen peroxide and sodium hydroxide for the chemical neutralization (detoxification) of VX has been examined. The reaction of VX in 4 N sodium hydroxide/11% hydrogen peroxide is rapid and exothermic. Care must be taken to avoid temperature increases which can induce peroxide decomposition. This can be done by controlling the addition of VX to the reaction. (Author).

  15. Growth hormone is a cellular senescence target in pituitary and nonpituitary cells

    PubMed Central

    Chesnokova, Vera; Zhou, Cuiqi; Ben-Shlomo, Anat; Zonis, Svetlana; Tani, Yuji; Ren, Song-Guang; Melmed, Shlomo

    2013-01-01

    Premature proliferative arrest in benign or early-stage tumors induced by oncoproteins, chromosomal instability, or DNA damage is associated with p53/p21 activation, culminating in either senescence or apoptosis, depending on cell context. Growth hormone (GH) elicits direct peripheral metabolic actions as well as growth effects mediated by insulin-like growth factor 1 (IGF1). Locally produced peripheral tissue GH, in contrast to circulating pituitary-derived endocrine GH, has been proposed to be both proapoptotic and prooncogenic. Pituitary adenomas expressing and secreting GH are invariably benign and exhibit DNA damage and a senescent phenotype. We therefore tested effects of nutlin-induced p53-mediated senescence in rat and human pituitary cells. We show that DNA damage senescence induced by nutlin triggers the p53/p21 senescent pathway, with subsequent marked induction of intracellular pituitary GH in vitro. In contrast, GH is not induced in cells devoid of p53. Furthermore we show that p53 binds specific GH promoter motifs and enhances GH transcription and secretion in senescent pituitary adenoma cells and also in nonpituitary (human breast and colon) cells. In vivo, treatment with nutlin results in up-regulation of both p53 and GH in the pituitary gland, as well as increased GH expression in nonpituitary tissues (lung and liver). Intracrine GH acts in pituitary cells as an apoptosis switch for p53-mediated senescence, likely protecting the pituitary adenoma from progression to malignancy. Unlike in the pituitary, in nonpituitary cells GH exerts antiapoptotic properties. Thus, the results show that GH is a direct p53 transcriptional target and fulfills criteria as a p53 target gene. Induced GH is a readily measurable cell marker for p53-mediated cellular senescence. PMID:23940366

  16. A HIGHLY EFFICIENT OXIDATION OF CYCLOHEXANE OVER VPO CATALYSTS USING HYDROGEN PEROXIDE

    EPA Science Inventory

    An unprecedented and highly efficient oxidation of cyclohexane to cyclohexanol and cyclohexanone is accomplished over calcined vanadium phosphorus oxide (VPO) catalysts in a relatively mild condition using hydrogen peroxide under a nitrogen atmosphere.

  17. Nitric Oxide and Hydrogen Peroxide Mediate Wounding-Induced Freezing Tolerance through Modifications in Photosystem and Antioxidant System in Wheat

    PubMed Central

    Si, Tong; Wang, Xiao; Wu, Lin; Zhao, Chunzhao; Zhang, Lini; Huang, Mei; Cai, Jian; Zhou, Qin; Dai, Tingbo; Zhu, Jian-Kang; Jiang, Dong

    2017-01-01

    Mechanical wounding is a common stress caused by herbivores or manual and natural manipulations, whereas its roles in acclimation response to a wide spectrum of abiotic stresses remain unclear. The present work showed that local mechanical wounding enhanced freezing tolerance in untreated systemic leaves of wheat plants (Triticum aestivum L.), and meanwhile the signal molecules hydrogen peroxide (H2O2) and nitric oxide (NO) were accumulated systemically. Pharmacological study showed that wounding-induced NO synthesis was substantially arrested by pretreatment with scavengers of reactive oxygen species and an inhibitor of NADPH oxidase (respiratory burst oxidase homolog, RBOH). On the contrary, wounding-induced H2O2 accumulation was not sensitive to NO synthetic inhibitors or scavenger, indicating that H2O2 acts upstream of NO in wounding signal transduction pathways. Cytochemical and vascular tissues localizations approved that RBOH-dependent H2O2 acts as long-distance signal in wounding response. Transcriptome analysis revealed that 279 genes were up-regulated in plants treated with wounding and freezing, but not in plants treated with freezing alone. Importantly, freezing- and wounding-induced genes were significantly enriched in the categories of “photosynthesis” and “signaling.” These results strongly supported that primary mechanical wounding can induce freezing tolerance in wheat through the systemic accumulation of NO and H2O2, and further modifications in photosystem and antioxidant system. PMID:28769973

  18. Protection by the flavonoids quercetin and luteolin against peroxide- or menadione-induced oxidative stress in MC3T3-E1 osteoblast cells.

    PubMed

    Fatokun, Amos A; Tome, Mercedes; Smith, Robert A; Darlington, L Gail; Stone, Trevor W

    2015-01-01

    Potential protective effects of the flavonoids quercetin and luteolin have been examined against the oxidative stress of MC3T3-E1 osteoblast-like cells. Although hydrogen peroxide and menadione reduced cell viability, the toxicity was prevented by desferrioxamine or catalase but not superoxide dismutase, suggesting the involvement of hydrogen peroxide in both cases. Quercetin and luteolin reduced the oxidative damage, especially that caused by hydrogen peroxide. When cultures were pre-incubated with quercetin or luteolin, protection was reduced or lost. Protection was also reduced when a 24 h pre-incubation with the flavonoids was followed by exposure to menadione alone. Pretreating cultures with luteolin impaired protection by quercetin, whereas quercetin pretreatment did not affect protection by luteolin. It is concluded that quercetin and luteolin suppress oxidative damage to MC3T3-E1 cells, especially caused by peroxide. The reduction in protection by pretreatment implies a down-regulation of part of the toxic transduction pathway.

  19. Compatibility Studies of Hydrogen Peroxide and a New Hypergolic Fuel Blend

    NASA Technical Reports Server (NTRS)

    Baldridge, Jennifer; Villegas, Yvonne

    2002-01-01

    Several preliminary materials compatibility studies have been conducted to determine the practicality of a new hypergolic fuel system. Hypergolic fuel ignites spontaneously as the oxidizer decomposes and releases energy in the presence of the fuel. The bipropellant system tested consists of high-test hydrogen peroxide (HTP) and a liquid fuel blend consisting of a hydrocarbon fuel, an ignition enhancer and a transition metal catalyst. In order for further testing of the new fuel blend to take place, some basic materials compatibility and HTP decomposition studies must be accomplished. The thermal decomposition rate of HTP was tested using gas evolution and isothermal microcalorimetry (IMC). Materials were analyzed for compatibility with hydrogen peroxide including a study of the affect welding has on stainless steel elemental composition and its relation to HTP decomposition. Compatibility studies of valve materials in the fuel blend were performed to determine the corrosion resistance of the materials.

  20. Mathematical modeling of static layer crystallization for propellant grade hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Hao, Lin; Chen, Xinghua; Sun, Yaozhou; Liu, Yangyang; Li, Shuai; Zhang, Mengqian

    2017-07-01

    Hydrogen peroxide (H2O2) is an important raw material widely used in many fields. In this work a mathematical model of heat conduction with a moving boundary was proposed to study the melt crystallization process of hydrogen peroxide which was carried out outside a cylindrical crystallizer. Considering the effects of the temperature of the cooling fluid on the thermal conductivity of crude crystal, the model is an improvement of Guardani's research and can be solved by analytic iteration method. An experiment was designed to measure the thickness of crystal layer with time under different conditions. A series of analysis, including the effects of different refrigerant temperature on crystal growth rate, the effects of different cooling rates on crystal layer growth rate, the effects of crystallization temperature on heat transfer and the model's application scope were conducted based on the comparison between experimental results and simulation results of the model.

  1. [Effect of microRNA-34a/SIRT1/p53 signal pathway on notoginsenoside R₁ delaying vascular endothelial cell senescence].

    PubMed

    Lai, Xiao-Hua; Lei, Yan; Yang, Jing; Xiu, Cheng-Kui

    2018-02-01

    This study aimed to investigate the effect of notoginsenoside R₁ in delaying H₂O₂-induced vascular endothelial cell senescence through microRNA-34a/SIRT1/p53 signal pathway. In this study, human umbilical vein endothelial cells(HUVECs) were selected as the study object; the aging model induced by hydrogen peroxide(H₂O₂) was established, with resveratrol as the positive drug. HUVECs were randomly divided into four groups, youth group, senescence model group, notoginsenoside R₁ group and resveratrol group. Notoginsenoside R₁ group and resveratrol group were modeled with 100 μmoL·L⁻¹ H₂O₂ for 4 h after 24 h treatment with notoginsenoside R₁(30 μmoL·L⁻¹) and resveratrol(10 μmoL·L⁻¹) respectively. At the end, each group was cultured with complete medium for 24 h. The degree of cellular senescence was detected by senescence-associated β-galactosidase(SA-β-Gal) staining kit, the cell viability was detected by cell counting kit-8, the cell cycle distribution was analyzed by flow cytometry, and the cellular SOD activity was detected by WST-1 method in each group. The expressions of SIRT1, p53, p21 and p16 proteins in HUVECs were detected by Western blot. In addition, the mRNA expressions of miRNA-34a, SIRT1 and p53 in HUVECs were assayed by Real-time PCR. These results indicated that notoginsenoside R₁ significantly reduced the positive staining rate of senescent cells, enhanced the cell proliferation capacity and intracellular SOD activity, decreased the proportion of cells in G₀/G₁ phase, and increased the percentage of cells in S phase simultaneously compared with the senescence model group. Moreover, notoginsenoside R₁ decreased the mRNA expressions of miRNA-34a and p53 and the protein expression of p53, p21 and p16.At the same time, notoginsenoside R₁ increased the protein and mRNA expressions of SIRT1. The differences in these results between the senescence model group and the

  2. Senescence-inducible LEC2 enhances triacylglycerol accumulation in leaves without negatively affecting plant growth

    PubMed Central

    Kim, Hyun Uk; Lee, Kyeong-Ryeol; Jung, Su-Jin; Shin, Hyun A; Go, Young Sam; Suh, Mi-Chung; Kim, Jong Bum

    2017-01-01

    Summary The synthesis of fatty acids and glycerolipids in wild-type Arabidopsis leaves do not typically lead to strong triacylglycerol (TAG) accumulation. LEAFY COTYLEDON2 (LEC2) is a master regulator of seed maturation and oil accumulation in seeds. Constitutive ectopic LEC2 expression causes somatic embryogenesis and defects in seedling growth. Here, we report that senescence-inducible LEC2 expression caused a 3-fold increase in TAG levels in transgenic leaves compared with that in the leaves of wild-type plants. Plant growth was not severely affected by the accumulation the TAG in response to LEC2 expression. The levels of plastid-synthesized lipids, mono- and di-galactosyldiacylglycerol and phosphatidylglycerol, were reduced more in senescence-induced LEC2 than endoplasmic reticulum-synthesized lipids, including phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol. Senescence-induced LEC2 upregulated the expression of many genes involved in fatty acid and TAG biosynthesis at precise times in senescent leaves, including WRINKLED1 (WRI1), which encodes a fatty acid transcription factor. The expression of glycerol-3-phosphate dehydrogenase 1 and phospholipid:diacylglycerol 2 were increased in the transgenic leaves. Five seed-type oleosin-encoding genes, expressed during oil-body formation, and the seed-specific FAE1 gene, which encodes the enzyme responsible for the synthesis of C20:1 and C22:1 fatty acids, were also expressed at higher levels in senescing transgenic leaves than in wild-type leaves. Senescence-inducible LEC2 triggers the key metabolic steps that increase TAG accumulation in vegetative tissues. PMID:25790072

  3. Efficacy of disinfectants containing accelerated hydrogen peroxide against conidial arthrospores and isolated infective spores of Microsporum canis and Trichophyton sp.

    PubMed

    Moriello, Karen A; Hondzo, Hanna

    2014-06-01

    Accelerated hydrogen peroxide is a proprietary disinfectant formulation that is available for both commercial and home use and is labelled as antifungal. To determine the antifungal efficacy of accelerated hydrogen peroxide disinfectants against Microsporum and Trichophyton spp. Three products formulated as ready to use and three concentrates were used. Concentrates were tested at dilutions of 1:8, 1:16 (recommended dilution) and 1:32. One product was a surgical instrument disinfectant. Sterile water, sodium hypochlorite (1:32 dilution) and over-the-counter 3% hydrogen peroxide were used as controls. Conidial suspensions contained ~9.6 × 10(5) /mL Microsporum canis, ~1.0 × 10(7) /mL M. gypseum or ~2.0 × 10(7) /mL Trichophyton sp. and were tested at 1:10 dilution. Isolated infective spore suspensions of M. canis from an untreated cat and T. erinacei from an untreated hedgehog were tested at 1:10, 1:5 and 1:1 spore-to-disinfectant dilutions. Too many colonies to count were present on untreated control plates. Accelerated hydrogen peroxide and household hydrogen peroxide inhibited growth of both pathogens in conidial (1:10 dilution) and spore suspensions (1:10, 1:5 and 1:10 dilution). There was no lack of efficacy of products that were >12 months old. Accelerated hydrogen peroxide products are an option for environmental disinfection of surfaces exposed to M. canis and Trichophyton sp. after appropriate gross decontamination and mechanical cleaning with a detergent. The results from conidial testing were identical to those of isolated infected spore testing, which suggests that accelerated hydrogen peroxide products with label claim as antifungal against Trichophyton mentagrophytes may be suitable as an alternative disinfectant to sodium hypochlorite. © 2014 ESVD and ACVD.

  4. Telomere Fragment Induced Amnion Cell Senescence: A Contributor to Parturition?

    PubMed Central

    Polettini, Jossimara; Behnia, Faranak; Taylor, Brandie D.; Saade, George R.; Taylor, Robert N.; Menon, Ramkumar

    2015-01-01

    Oxidative stress (OS)-induced senescence of the amniochorion has been associated with parturition at term. We investigated whether telomere fragments shed into the amniotic fluid (AF) correlated with labor status and tested if exogenous telomere fragments (T-oligos) could induce human and murine amnion cell senescence. In a cross-sectional clinical study, AF telomere fragment concentrations quantitated by a validated real-time PCR assay were higher in women in labor at term compared to those not in labor. In vitro treatment of primary human amnion epithelial cells with 40 μM T-oligos ([TTAGGG]2) that mimic telomere fragments, activated p38MAPK, produced senescence-associated (SA) β-gal staining and increased interleukin (IL)-6 and IL-8 production compared to cells treated with complementary DNA sequences (Cont-oligos, [AATCCC]2). T-oligos injected into the uteri of pregnant CD1 mice on day 14 of gestation, led to increased p38MAPK, SA-β-gal (SA β-gal) staining in murine amniotic sacs and higher AF IL-8 levels on day 18, compared to saline treated controls. In summary, term labor AF samples had higher telomere fragments than term not in labor AF. In vitro and in situ telomere fragments increased human and murine amnion p38MAPK, senescence and inflammatory cytokines. We propose that telomere fragments released from senescent fetal cells are indicative of fetal cell aging. Based on our data, these telomere fragments cause oxidative stress associated damages to the term amniotic sac and force them to release other DAMPS, which, in turn, provide a sterile immune response that may be one of the many inflammatory signals required to initiate parturition at term. PMID:26397719

  5. Glucose Oxidase Induces Cellular Senescence in Immortal Renal Cells through ILK by Downregulating Klotho Gene Expression

    PubMed Central

    Troyano-Suárez, Nuria; del Nogal-Avila, María; Mora, Inés; Sosa, Patricia; López-Ongil, Susana; Rodriguez-Puyol, Diego; Olmos, Gemma; Ruíz-Torres, María Piedad

    2015-01-01

    Cellular senescence can be prematurely induced by oxidative stress involved in aging. In this work, we were searching for novel intermediaries in oxidative stress-induced senescence, focusing our interest on integrin-linked kinase (ILK), a scaffold protein at cell-extracellular matrix (ECM) adhesion sites, and on the Klotho gene. Cultured renal cells were treated with glucose oxidase (GOx) for long time periods. GOx induced senescence, increasing senescence associated β-galactosidase activity and the expression of p16. In parallel, GOx increased ILK protein expression and activity. Ectopic overexpression of ILK in cells increased p16 expression, even in the absence of GOx, whereas downregulation of ILK inhibited the increase in p16 due to oxidative stress. Additionally, GOx reduced Klotho gene expression and cells overexpressing Klotho protein did not undergo senescence after GOx addition. We demonstrated a direct link between ILK and Klotho since silencing ILK expression in cells and mice increases Klotho expression and reduces p53 and p16 expression in renal cortex. In conclusion, oxidative stress induces cellular senescence in kidney cells by increasing ILK protein expression and activity, which in turn reduces Klotho expression. We hereby present ILK as a novel downregulator of Klotho gene expression. PMID:26583057

  6. Glucose Oxidase Induces Cellular Senescence in Immortal Renal Cells through ILK by Downregulating Klotho Gene Expression.

    PubMed

    Troyano-Suárez, Nuria; del Nogal-Avila, María; Mora, Inés; Sosa, Patricia; López-Ongil, Susana; Rodriguez-Puyol, Diego; Olmos, Gemma; Ruíz-Torres, María Piedad

    2015-01-01

    Cellular senescence can be prematurely induced by oxidative stress involved in aging. In this work, we were searching for novel intermediaries in oxidative stress-induced senescence, focusing our interest on integrin-linked kinase (ILK), a scaffold protein at cell-extracellular matrix (ECM) adhesion sites, and on the Klotho gene. Cultured renal cells were treated with glucose oxidase (GOx) for long time periods. GOx induced senescence, increasing senescence associated β-galactosidase activity and the expression of p16. In parallel, GOx increased ILK protein expression and activity. Ectopic overexpression of ILK in cells increased p16 expression, even in the absence of GOx, whereas downregulation of ILK inhibited the increase in p16 due to oxidative stress. Additionally, GOx reduced Klotho gene expression and cells overexpressing Klotho protein did not undergo senescence after GOx addition. We demonstrated a direct link between ILK and Klotho since silencing ILK expression in cells and mice increases Klotho expression and reduces p53 and p16 expression in renal cortex. In conclusion, oxidative stress induces cellular senescence in kidney cells by increasing ILK protein expression and activity, which in turn reduces Klotho expression. We hereby present ILK as a novel downregulator of Klotho gene expression.

  7. Attenuation of Replication Stress–Induced Premature Cellular Senescence to Assess Anti-Aging Modalities

    PubMed Central

    Zhao, Hong; Darzynkiewicz, Zbigniew

    2014-01-01

    Described is an in vitro model of premature senescence in pulmonary adenocarcinoma A549 cells induced by persistent DNA replication stress in response to treatment with the DNA damaging drug mitoxantrone (Mxt). The degree of cellular senescence, based on characteristic changes in cell morphology, is measured by laser scanning cytometry. Specifically, the flattening of cells grown on slides (considered the hallmark of cellular senescence) is measured as the decline in local intensity of DNA-associated DAPI fluorescence (represented by maximal pixels). This change is paralleled by an increase in nuclear area. Thus, the ratio of mean intensity of maximal pixels to nuclear area provides a very sensitive morphometric biomarker for the degree of senescence. This analysis is combined with immunocytochemical detection of senescence markers, such as overexpression of cyclin kinase inhibitors (e.g., p21WAF1) and phosphorylation of ribosomal protein S6 (rpS6), a key marker associated with aging/senescence that is detected using a phospho-specific antibody. These biomarker indices are presented in quantitative terms defined as a senescence index (SI), which is the fraction of the marker in test cultures relative to the same marker in exponentially growing control cultures. This system can be used to evaluate the anti-aging potential of test agents by assessing attenuation of maximal senescence. As an example, the inclusion of berberine, a natural alkaloid with reported anti-aging properties and a long history of use in traditional Chinese medicine, is shown to markedly attenuate the Mxt-induced SI and phosphorylation of rpS6. The multivariate analysis of senescence markers by laser scanning cytometry offers a promising tool to explore the potential anti-aging properties of a variety agents. PMID:24984966

  8. Antibacterial Properties and Mechanism of Activity of a Novel Silver-Stabilized Hydrogen Peroxide

    PubMed Central

    Martin, Nancy L.; Bass, Paul; Liss, Steven N.

    2015-01-01

    Huwa-San peroxide (hydrogen peroxide; HSP) is a NSF Standard 60 (maximum 8mg/L-1) new generation peroxide stabilized with ionic silver suitable for continuous disinfection of potable water. Experiments were undertaken to examine the mechanism of HSP against planktonic and biofilm cultures of indicator bacterial strains. Contact/kill time (CT) relationships that achieve effective control were explored to determine the potential utility in primary disinfection. Inhibitory assays were conducted using both nutrient rich media and a medium based on synthetic wastewater. Assays were compared for exposures to three disinfectants (HSP, laboratory grade hydrogen peroxide (HP) and sodium hypochlorite) at concentrations of 20 ppm (therefore at 2.5 and 5 times the NSF limit for HP and sodium hypochlorite, respectively) and at pH 7.0 and 8.5 in dechlorinated tap water. HSP was found to be more or equally effective as hypochlorite or HP. Results from CT assays comparing HSP and HP at different bacterial concentrations with neutralization of residual peroxide with catalase suggested that at a high bacterial concentration HSP, but not HP, was protected from catalase degradation possibly through sequestration by bacterial cells. Consistent with this hypothesis, at a low bacterial cell density residual HSP was more effectively neutralized as less HSP was associated with bacteria and therefore accessible to catalase. Silver in HSP may facilitate this association through electrostatic interactions at the cell surface. This was supported by experiments where the addition of mono (K+) and divalent (Ca+2) cations (0.005-0.05M) reduced the killing efficacy of HSP but not HP. Experiments designed to distinguish any inhibitory effect of silver from that of peroxide in HSP were carried out by monitoring the metabolic activity of established P. aeruginosa PAO1 biofilms. Concentrations of 70-500 ppm HSP had a pronounced effect on metabolic activity while the equivalent concentrations of ionic

  9. Protective Effect of Crocodile Hemoglobin and Whole Blood Against Hydrogen Peroxide-Induced Oxidative Damage in Human Lung Fibroblasts (MRC-5) and Inflammation in Mice.

    PubMed

    Phosri, Santi; Jangpromma, Nisachon; Patramanon, Rina; Kongyingyoes, Bunkerd; Mahakunakorn, Pramote; Klaynongsruang, Sompong

    2017-02-01

    A putative protective effect of cHb and cWb against H 2 O 2 -induced oxidative damage was evaluated in detail using MRC-5 cells. In addition, the carrageenan (Carr)-induced mouse paw edema model and the cotton pellet-induced granuloma model were employed to examine the in vivo anti-inflammatory activity of cHb and cWb in mice. It was demonstrated that both cHb and cWb treatments significantly increased cell viability and inhibited morphology alterations in MRC-5 cells exposed to H 2 O 2 . Orally administered cHb and cWb significantly reduced Carr-induced paw edema volume and cotton pellet-induced granuloma formation. Moreover, cHb and cWb decreased the expression levels of important pro-inflammatory cytokines (IL-6, IL-1β, and TNF-α), while only cWb was found to increase the expression of the anti-inflammatory cytokine IL-10 significantly. Finally, the activity of antioxidant enzymes (SOD, CAT, and GPx) in the liver improved after cHb and cWb treatment under acute and chronic inflammation. Taken collectively, the results of this study suggest that both cHb and cWb protect against hydrogen peroxide-induced damage in fibroblast cells. Moreover, cHb and cWb were found to exhibit anti-inflammatory activity in both the acute and chronic stages of inflammation and appear to enhance antioxidant enzyme activity and decrease lipid peroxidation in the livers of mice. Therefore, this study indicates that cHb and cWb have great potential to be used in the development of dietary supplements for the prevention of oxidative stress related to inflammatory disorders.

  10. Effect of standardized fruit extract of Luffa cylindrica on oxidative stress markers in hydrogen peroxide induced cataract.

    PubMed

    Dubey, Suchita; Saha, Sudipta; Kaithwas, Gaurav; Saraf, Shubhini A

    2015-01-01

    The ability of Luffa cylindrica Roem fruit extract (LCE) to modulate biochemical parameters was investigated by in vitro studies for its role in hydrogen peroxide induced cataract on isolated goat lenses which were incubated for 72 h at 37°C. Test groups contained 5, 10, 15, 20, 25, and 30 µg/ml of LCE along with 1 ml of H2O2 (0.5 mM) as cataract inducer. Lenses were examined for morphological variation and transparency periodically during the incubation. Biochemical parameters such as superoxide dismutase (SOD), reduced glutathione (GSH), total protein content (TPC), and malondialdehyde (MDA) were estimated. SOD, GSH, and TPC levels were found to increase proportionally with the concentration of LCE. However, MDA levels were found to be inversely proportional to the concentration of LCE. Opacity was graded as per "lens opacities classification system III." Morphological examination suggested that LCE (25 µg/ml) maintained a vision for 44 h. No lens in LCE dose groups developed dense nuclear opacity after 24 h as opposed to 80% in negative control. The results suggest that LCE can delay the onset and/or prevent the progression of cataract which can be attributed to the presence of adequate phenolics, flavonoids, and Vitamin A and its high nutritional value. This preliminary study can be further synergized by testing LCE against other in vivo and in vitro models of cataract.

  11. On copper peroxide

    NASA Technical Reports Server (NTRS)

    Moser, L.

    1988-01-01

    The action of hydrogen superoxide on copper salts in alcoholic solutions is studied. The action of hydrogen peroxide on copper hydroxide in alcoholic suspensions, and the action of ethereal hydrogen peroxide on copper hydroxide are discussed. It is concluded that using the procedure proposed excludes almost entirely the harmful effect of hydrolysis.

  12. Efficacy of formalin, hydrogen-peroxide, and sodium-chloride on fungal-infected rainbow-trout eggs

    USGS Publications Warehouse

    Schreier, Theresa M.; Rach, J.J.; Howe, G.E.

    1996-01-01

    Antifungal agents are essential for the maintenance of healthy stocks of fish and their eggs in intensive aquaculture operations. In the usa, formalin is the only fungicide approved for use in fish culture, however, hydrogen peroxide and sodium chloride have been granted low regulatory priority drug status by the united states food and drug administration (fda) and their use is allowed. We evaluated the efficacy of these fungicides for controlling fungal infections on rainbow trout eggs. A pilot study was conducted to determine the minimum water flow rate required to administer test chemicals accurately in heath incubators. A minimum water flow rate of 7.6 1 min(-1) was necessary to maintain treatment concentrations during flow-through chemical exposures, the antifungal activity of formalin, hydrogen peroxide, and sodium chloride was evaluated by treating uninfected and 10% fungal-infected (saprolegnia parasitica) rainbow trout eggs (oncorhynchus mykiss) for 15 min every other day until hatch. There were no significant differences among treatments in percent hatch or final infection for uninfected eggs receiving prophylactic chemical treatments, eggs of the negative control group (uninfected and untreated) had a mean hatch exceeding 86%, all chemical treatments conducted on the infected egg groups controlled the spread of fungus and improved hatching success compared with the positive control groups (infected and untreated), formalin treatments of 1000 and 1500 mu l 1(-1) and hydrogen peroxide treatments of 500 and 1000 mu l 1(-1) were the most effective. Sodium chloride treatments of 30000 mg 1(-1) improved fry hatch, but the compound was less effective at inhibiting fungal growths compared with hydrogen peroxide and formalin treatments.

  13. Fisetin inhibits TNF-α-induced inflammatory action and hydrogen peroxide-induced oxidative damage in human keratinocyte HaCaT cells through PI3K/AKT/Nrf-2-mediated heme oxygenase-1 expression.

    PubMed

    Seo, Seung-Hee; Jeong, Gil-Saeng

    2015-12-01

    Oxidative skin damage and skin inflammation play key roles in the pathogenesis of skin-related diseases. Fisetin is a naturally occurring flavonoid abundantly found in several vegetables and fruits. Fisetin has been shown to exert various positive biological effects, such as anti-cancer, anti-proliferative, neuroprotective and anti-oxidative effects. In this study, we investigate the skin protective effects and anti-inflammatory properties of fisetin in hydrogen peroxide- and TNF-α-challenged human keratinocyte HaCaT cells. When HaCaT cells were treated with non-cytotoxic concentrations of fisetin (1-20μM), heme oxygenase (HO)-1 mRNA and protein expression increased in a dose-dependent manner. Furthermore, fisetin dose-dependently increased cell viability and reduced ROS production in hydrogen peroxide-treated HaCaT cells. Fisetin also inhibited the production of NO, PGE2 IL-1β, IL-6, expression of iNOS and COX-2, and activation of NF-κB in HaCaT cells treated with TNF-α. Fisetin induced Nrf2 translocation to the nuclei. HO-1 siRNA transient transfection reversed the effects of fisetin on cytoprotection, ROS reduction, NO, PGE2, IL-1β, IL-6, and TNF-α production, and NF-κB DNA-binding activity. Moreover, fisetin increased Akt phosphorylation and a PI3K pathway inhibitor (LY294002) abolished fisetin-induced cytoprotection and NO inhibition. Taken together, these results provide evidence for a beneficial role of fisetin in skin therapy. Copyright © 2015. Published by Elsevier B.V.

  14. Plasma Rich in Growth Factors Induces Cell Proliferation, Migration, Differentiation, and Cell Survival of Adipose-Derived Stem Cells

    PubMed Central

    Mellado-López, Maravillas; Griffeth, Richard J.; Meseguer-Ripolles, Jose; García, Montserrat

    2017-01-01

    Adipose-derived stem cells (ASCs) are a promising therapeutic alternative for tissue repair in various clinical applications. However, restrictive cell survival, differential tissue integration, and undirected cell differentiation after transplantation in a hostile microenvironment are complications that require refinement. Plasma rich in growth factors (PRGF) from platelet-rich plasma favors human and canine ASC survival, proliferation, and delaying human ASC senescence and autophagocytosis in comparison with serum-containing cultures. In addition, canine and human-derived ASCs efficiently differentiate into osteocytes, adipocytes, or chondrocytes in the presence of PRGF. PRGF treatment induces phosphorylation of AKT preventing ASC death induced by lethal concentrations of hydrogen peroxide. Indeed, AKT inhibition abolished the PRGF apoptosis prevention in ASC exposed to 100 μM of hydrogen peroxide. Here, we show that canine ASCs respond to PRGF stimulus similarly to the human cells regarding cell survival and differentiation postulating the use of dogs as a suitable translational model. Overall, PRGF would be employed as a serum substitute for mesenchymal stem cell amplification to improve cell differentiation and as a preconditioning agent to prevent oxidative cell death. PMID:29270200

  15. Plasma Rich in Growth Factors Induces Cell Proliferation, Migration, Differentiation, and Cell Survival of Adipose-Derived Stem Cells.

    PubMed

    Mellado-López, Maravillas; Griffeth, Richard J; Meseguer-Ripolles, Jose; Cugat, Ramón; García, Montserrat; Moreno-Manzano, Victoria

    2017-01-01

    Adipose-derived stem cells (ASCs) are a promising therapeutic alternative for tissue repair in various clinical applications. However, restrictive cell survival, differential tissue integration, and undirected cell differentiation after transplantation in a hostile microenvironment are complications that require refinement. Plasma rich in growth factors (PRGF) from platelet-rich plasma favors human and canine ASC survival, proliferation, and delaying human ASC senescence and autophagocytosis in comparison with serum-containing cultures. In addition, canine and human-derived ASCs efficiently differentiate into osteocytes, adipocytes, or chondrocytes in the presence of PRGF. PRGF treatment induces phosphorylation of AKT preventing ASC death induced by lethal concentrations of hydrogen peroxide. Indeed, AKT inhibition abolished the PRGF apoptosis prevention in ASC exposed to 100  μ M of hydrogen peroxide. Here, we show that canine ASCs respond to PRGF stimulus similarly to the human cells regarding cell survival and differentiation postulating the use of dogs as a suitable translational model. Overall, PRGF would be employed as a serum substitute for mesenchymal stem cell amplification to improve cell differentiation and as a preconditioning agent to prevent oxidative cell death.

  16. ENAMEL SUSCEPTIBILITY TO RED WINE STAINING AFTER 35% HYDROGEN PEROXIDE BLEACHING

    PubMed Central

    Berger, Sandrine Bittencourt; Coelho, Alessandra Sanchez; Oliveira, Valéria Aparecida Pessatti; Cavalli, Vanessa; Giannini, Marcelo

    2008-01-01

    Concern has been expressed regarding the staining of enamel surface by different beverages after bleaching. This study investigated the influence of 35% hydrogen peroxide bleaching agents on enamel surface stained with wine after whitening treatments. Flat and polished bovine enamel surfaces were submitted to two commercially available 35% hydrogen peroxide bleaching agents or kept in 100% humidity, as a control group (n = 10). Specimens of all groups were immersed in red wine for 48 h at 37°C, immediately, 24 h or 1 week after treatments. All specimens were ground into powder and prepared for the spectrophotometric analysis. Data were subjected to two-way analysis of variance and Fisher's PLSD test at 5% significance level. The amount of wine pigments uptake by enamel submitted to bleaching treatments was statistically higher than that of control group, independently of the evaluation time. Results suggested that wine staining susceptibility was increased by bleaching treatments. PMID:19089218

  17. Paper-based membraneless hydrogen peroxide fuel cell prepared by micro-fabrication

    NASA Astrophysics Data System (ADS)

    Mousavi Ehteshami, Seyyed Mohsen; Asadnia, Mohsen; Tan, Swee Ngin; Chan, Siew Hwa

    2016-01-01

    A paper-based membraneless single-compartment hydrogen peroxide power source prepared by micro-electromechanical systems (MEMS) technology is reported. The cell utilizes hydrogen peroxide as both fuel and oxidant in a low volume cell fabricated on paper. The fabrication method used is a simple method where precise, small-sized patterns are produced which include the hydrophilic paper bounded by hydrophobic resin. Open circuit potentials of 0.61 V and 0.32 V are achieved for the cells fabricated with Prussian Blue as the cathode and aluminium/nickel as the anode materials, respectively. The power produced by the cells is 0.81 mW cm-2 at 0.26 V and 0.38 mW cm-2 at 0.14 V, respectively, even after the cell is bent or distorted. Such a fuel cell provides an easily fabricated, environmentally friendly, flexible and cost saving power source. The cell may be integrated within a self-sustained diagnostic system to provide the on-demand power for future bio-sensing applications.

  18. Simultaneous visualization of water and hydrogen peroxide vapor using two-photon laser-induced fluorescence and photofragmentation laser-induced fluorescence.

    PubMed

    Larsson, Kajsa; Johansson, Olof; Aldén, Marcus; Bood, Joakim

    2014-01-01

    A concept based on a combination of photofragmentation laser-induced fluorescence (PF-LIF) and two-photon laser-induced fluorescence (LIF) is for the first time demonstrated for simultaneous detection of hydrogen peroxide (H2O2) and water (H2O) vapor. Water detection is based on two-photon excitation by an injection-locked krypton fluoride (KrF) excimer laser (248.28 nm), which induces broadband fluorescence (400-500 nm) from water. The same laser simultaneously photodissociates H2O2, whereupon the generated OH fragments are probed by LIF after a time delay of typically 50 ns, by a frequency-doubled dye laser (281.91 nm). Experiments in six different H2O2/H2O mixtures of known compositions show that both signals are linearly dependent on respective species concentration. For the H2O2 detection there is a minor interfering signal contribution from OH fragments created by two-photon photodissociation of H2O. Since the PF-LIF signal yield from H2O2 is found to be at least ∼24,000 times higher than the PF-LIF signal yield from H2O at room temperature, this interference is negligible for most H2O/H2O2 mixtures of practical interest. Simultaneous single-shot imaging of both species was demonstrated in a slightly turbulent flow. For single-shot imaging the minimum detectable H2O2 and H2O concentration is 10 ppm and 0.5%, respectively. The proposed measurement concept could be a valuable asset in several areas, for example, in atmospheric and combustion science and research on vapor-phase H2O2 sterilization in the pharmaceutical and aseptic food-packaging industries.

  19. Senescence-inducible LEC2 enhances triacylglycerol accumulation in leaves without negatively affecting plant growth.

    PubMed

    Kim, Hyun Uk; Lee, Kyeong-Ryeol; Jung, Su-Jin; Shin, Hyun A; Go, Young Sam; Suh, Mi-Chung; Kim, Jong Bum

    2015-12-01

    The synthesis of fatty acids and glycerolipids in wild-type Arabidopsis leaves does not typically lead to strong triacylglycerol (TAG) accumulation. LEAFY COTYLEDON2 (LEC2) is a master regulator of seed maturation and oil accumulation in seeds. Constitutive ectopic LEC2 expression causes somatic embryogenesis and defects in seedling growth. Here, we report that senescence-inducible LEC2 expression caused a threefold increase in TAG levels in transgenic leaves compared with that in the leaves of wild-type plants. Plant growth was not severely affected by the accumulation the TAG in response to LEC2 expression. The levels of plastid-synthesized lipids, mono- and di-galactosyldiacylglycerol and phosphatidylglycerol were reduced more in senescence-induced LEC2 than in endoplasmic reticulum-synthesized lipids, including phosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol. Senescence-induced LEC2 up-regulated the expression of many genes involved in fatty acid and TAG biosynthesis at precise times in senescent leaves, including WRINKLED1 (WRI1), which encodes a fatty acid transcription factor. The expressions of glycerol-3-phosphate dehydrogenase 1 and phospholipid:diacylglycerol 2 were increased in the transgenic leaves. Five seed-type oleosin-encoding genes, expressed during oil-body formation, and the seed-specific FAE1 gene, which encodes the enzyme responsible for the synthesis of C20:1 and C22:1 fatty acids, were also expressed at higher levels in senescing transgenic leaves than in wild-type leaves. Senescence-inducible LEC2 triggers the key metabolic steps that increase TAG accumulation in vegetative tissues. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  20. Tocotrienol-Rich Fraction Ameliorates Antioxidant Defense Mechanisms and Improves Replicative Senescence-Associated Oxidative Stress in Human Myoblasts

    PubMed Central

    Wan Ngah, Wan Zurinah; Abdul Karim, Norwahidah

    2017-01-01

    During aging, oxidative stress affects the normal function of satellite cells, with consequent regeneration defects that lead to sarcopenia. This study aimed to evaluate tocotrienol-rich fraction (TRF) modulation in reestablishing the oxidative status of myoblasts during replicative senescence and to compare the effects of TRF with other antioxidants (α-tocopherol (ATF) and N-acetyl-cysteine (NAC)). Primary human myoblasts were cultured to young, presenescent, and senescent phases. The cells were treated with antioxidants for 24 h, followed by the assessment of free radical generation, lipid peroxidation, antioxidant enzyme mRNA expression and activities, and the ratio of reduced to oxidized glutathione. Our data showed that replicative senescence increased reactive oxygen species (ROS) generation and lipid peroxidation in myoblasts. Treatment with TRF significantly diminished ROS production and decreased lipid peroxidation in senescent myoblasts. Moreover, the gene expression of superoxide dismutase (SOD2), catalase (CAT), and glutathione peroxidase (GPX1) was modulated by TRF treatment, with increased activity of superoxide dismutase and catalase and reduced glutathione peroxidase in senescent myoblasts. In comparison to ATF and NAC, TRF was more efficient in heightening the antioxidant capacity and reducing free radical insults. These results suggested that TRF is able to ameliorate antioxidant defense mechanisms and improves replicative senescence-associated oxidative stress in myoblasts. PMID:28243354

  1. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: BIOQUELL, INC. CLARIS C HYDROGEN PEROXIDE GAS GENERATOR

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Clarus C Hydrogen Peroxide Gas Generator, a biological decontamination device manufactured by BIOQUELL, Inc. The unit was tested by evaluating its ability to decontaminate seven types...

  2. Activity of a dry mist hydrogen peroxide system against environmental Clostridium difficile contamination in elderly care wards.

    PubMed

    Shapey, S; Machin, K; Levi, K; Boswell, T C

    2008-10-01

    Clostridium difficile causes serious healthcare-associated infections. Infection control is difficult, due in part to environmental contamination with C. difficile spores. These spores are relatively resistant to cleaning and disinfection. The activity of a dry mist hydrogen peroxide decontamination system (Sterinis) against environmental C. difficile contamination was assessed in three elderly care wards. Initial sampling for C. difficile was performed in 16 rooms across a variety of wards and specialties, using Brazier's CCEY (cycloserine-cefoxitin-egg yolk) agar. Ten rooms for elderly patients (eight isolation and two sluice rooms) were then resampled following dry mist hydrogen peroxide decontamination. Representative isolates of C. difficile were typed by polymerase chain reaction ribotyping. C. difficile was recovered from 3%, 11% and 26% of samples from low, medium and high risk rooms, respectively. In 10 high risk elderly care rooms, 24% (48/203) of samples were positive for C. difficile, with a mean of 6.8 colony-forming units (cfu) per 10 samples prior to hydrogen peroxide decontamination. Ribotyping identified the presence of the three main UK epidemic strains (ribotypes 001, 027 and 106) and four rooms contained mixed strains. After a single cycle of hydrogen peroxide decontamination, only 3% (7/203) of samples were positive (P<0.001), with a mean of 0.4 cfu per 10 samples ( approximately 94% reduction). The Sterinis hydrogen peroxide system significantly reduced the extent of environmental contamination with C. difficile in these elderly care rooms. This relatively quick and user-friendly technology might be a more reliable method of terminally disinfecting isolation rooms, following detergent cleaning, compared to the manual application of other disinfectants.

  3. Hydrogen peroxide concentration by pervaporation of a ternary liquid solution in microfluidics.

    PubMed

    Ziemecka, Iwona; Haut, Benoît; Scheid, Benoit

    2015-01-21

    Pervaporation in a microfluidic device is performed on liquid ternary solutions of hydrogen peroxide-water-methanol in order to concentrate hydrogen peroxide (H2O2) by removing methanol. The quantitative analysis of the pervaporation of solutions with different initial compositions is performed, varying the operating temperature of the microfluidic device. Experimental results together with a mathematical model of the separation process are used to understand the effect of the operating conditions on the microfluidic device efficiency. The parameters influencing significantly the performance of pervaporation in the microfluidic device are determined and the limitations of the process are discussed. For the analysed system, the operating temperature of the chip has to be below the temperature at which H2O2 decomposes. Therefore, the choice of an adequate reduced operating pressure is required, depending on the expected separation efficiency.

  4. 8-Alkylcoumarins from the Fruits of Cnidium monnieri Protect against Hydrogen Peroxide Induced Oxidative Stress Damage

    PubMed Central

    Chang, Chi-I; Hu, Wan-Chiao; Shen, Che-Piao; Hsu, Ban-Dar; Lin, Wei-Yong; Sung, Ping-Jyun; Wang, Wei-Hsien; Wu, Jin-Bin; Kuo, Yueh-Hsiung

    2014-01-01

    Three new 8-alkylcoumarins, 7-O-methylphellodenol-B (1), 7-methoxy-8-(3-methyl-2,3-epoxy-1-oxobutyl)chromen-2-one (2), and 3′-O-methylvaginol (3), together with seven known compounds (4–10) were isolated from the fruits of Cnidium monnieri. Their structures were determined by detailed analysis of spectroscopic data and comparison with the data of known analogues. All the isolates were evaluated the cytoprotective activity by MTS cell proliferation assay and the results showed that all the three new 8-alkylcoumarins exhibited cytoprotective effect on Neuro-2a neuroblastoma cells injured by hydrogen peroxide. PMID:24642881

  5. Use of ozone and hydrogen peroxide in the post-treatment of UASB treated alkaline fruit cannery effluent.

    PubMed

    Sigge, G O; Britz, T J; Fouri, P C; Barnardt, C A; Strydom, R

    2001-01-01

    UASB treatment of cannery effluents was shown to be feasible. However, the treated effluent still does not allow direct discharge to a water system and a further form of post-treatment is necessary to reduce the COD to lower than the legal limit of 75 mg/l. The use of ozone, hydrogen peroxide and granular activated carbon were used singly or in combination to assess the effectiveness as post-treatment options for the UASB treated alkaline fruit cannery effluent. Colour reduction in the effluent ranged from 15% to 92% and COD reductions of 26-91% were achieved. Combinations of ozone and hydrogen peroxide gave better results than either oxidant singly. The best results were achieved by combining ozone, hydrogen peroxide and granular activated carbon, and COD levels were reduced to levels sufficiently below the 75 mg/l limit.

  6. Disinfection of wastewater effluents with the Fenton-like process induced by electromagnetic fields.

    PubMed

    Rodríguez-Chueca, J; Mediano, A; Ormad, M P; Mosteo, R; Ovelleiro, J L

    2014-09-01

    This research work is focused on the application and assessment of effectiveness of the Fenton-like processes induced by radiofrequency for the inactivation of faecal bacteria (Escherichia coli and Enterococcus sp.) present in treated urban wastewater effluents. Fenton processes were carried out at near neutral pH (pH 5) with different iron sources, such as iron salts (ferric chloride, 5, 50 and 100 mg/L Fe(3+)), magnetite (1 g/L) and clay (80 g/L), hydrogen peroxide (25 mg/L) and in absence and presence of radiofrequency. Two different electromagnetic field intensities (1.57 and 3.68 kA/m) were used in Fenton processes induced by radiofrequency. Different agents used in the Fenton processes induced by electromagnetic fields (iron source, hydrogen peroxide and RF) were analyzed individually and in combination under the same experimental conditions. First assays of ferromagnetic material/H2O2/radiofrequency processes achieved promising results in terms of bacterial inactivation. For instance, Fe(3+)/H2O2/Radiofrequency achieved a maximum level of E. coli inactivation of 3.55 log after 10 min of treatment. These results are higher than those obtained in absence of radiofrequency. The thermal activation of iron atoms allows the Fenton reaction to intensify, increasing the final yield of the treatment. On the other hand, different behavior was observed in the inactivation of E. coli and Enterococcus sp. due to the structural differences between Gram-negative and Gram-positive bacteria. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Enhanced hydrogen peroxide release from macrophages stimulated with streptococcal preparation OK-432.

    PubMed Central

    Saito, H; Tomioka, H

    1979-01-01

    Wheat germ lectin was found to be a potent triggering agent for hydrogen peroxide release from mouse peritoneal macrophages. Macrophages stimulated by intraperitoneal injection of OK-432, a lyophilized attenuated streptococcal preparation, were highly responsive to wheat germ lectin. PMID:546795

  8. Anti-photoaging potential of Botulinum Toxin Type A in UVB-induced premature senescence of human dermal fibroblasts in vitro through decreasing senescence-related proteins.

    PubMed

    Permatasari, Felicia; Hu, Yan-yan; Zhang, Jia-an; Zhou, Bing-rong; Luo, Dan

    2014-04-05

    This study was aimed to evaluate the anti-photoaging effects of Botulinum Toxin Type A (BoNTA) in Ultraviolet B-induced premature senescence (UVB-SIPS) of human dermal fibroblasts (HDFs) in vitro and the underlying mechanism. We established a stress-induced premature senescence model by repeated subcytotoxic exposures to Ultraviolet B (UVB) irradiation. The aging condition was determined by cytochemical staining of senescence-associated β-galactosidase (SA-β-gal). The tumor suppressor and senescence-associated protein levels of p16(INK-4a), p21(WAF-1), and p53 were estimated by Western blotting. The G1 phase cell growth arrest was analyzed by flow cytometry. The mRNA expressions of p16, p21, p53, COL1a1, COL3a1, MMP1, and MMP3 were determined by real-time PCR. The level of Col-1, Col-3, MMP-1, and MMP-3 were determined by ELISA. Compared with the UVB-irradiated group, we found that the irradiated fibroblasts additionally treated with BoNTA demonstrated a decrease in the expression of SA-β-gal, a decrease in the level of tumor suppressor and senescence-associated proteins, a decrease in the G1 phase cell proportion, an increase in the production of Col-1 and Col-3, and a decrease in the secretion of MMP-1 and MMP-3, in a dose-dependent manner. Taken together, these results indicate that BoNTA significantly antagonizes premature senescence induced by UVB in HDFs in vitro, therefore potential of intradermal BoNTA injection as anti-photoaging treatment still remains a question. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Glycogen Synthase Kinase 3 Inactivation Induces Cell Senescence through Sterol Regulatory Element Binding Protein 1-Mediated Lipogenesis in Chang Cells.

    PubMed

    Kim, You-Mie; Song, Insun; Seo, Yong-Hak; Yoon, Gyesoon

    2013-12-01

    Enhanced lipogenesis plays a critical role in cell senescence via induction of expression of the mature form of sterol regulatory element binding protein 1 (SREBP1), which contributes to an increase in organellar mass, one of the indicators of senescence. We investigated the molecular mechanisms by which signaling molecules control SREBP1-mediated lipogenesis and senescence. We developed cellular models for stress-induced senescence, by exposing Chang cells, which are immortalized human liver cells, to subcytotoxic concentrations (200 µM) of deferoxamine (DFO) and H2O2. In this model of stress-induced cell senescence using DFO and H2O2, the phosphorylation profile of glycogen synthase kinase 3α (GSK3α) and β corresponded closely to the expression profile of the mature form of SREBP-1 protein. Inhibition of GSK3 with a subcytotoxic concentration of the selective GSK3 inhibitor SB415286 significantly increased mature SREBP1 expression, as well as lipogenesis and organellar mass. In addition, GSK3 inhibition was sufficient to induce senescence in Chang cells. Suppression of GSK3 expression with siRNAs specific to GSK3α and β also increased mature SREBP1 expression and induced senescence. Finally, blocking lipogenesis with fatty acid synthase inhibitors (cerulenin and C75) and siRNA-mediated silencing of SREBP1 and ATP citrate lyase (ACL) significantly attenuated GSK3 inhibition-induced senescence. GSK3 inactivation is an important upstream event that induces SREBP1-mediated lipogenesis and consequent cell senescence.

  10. The influences of shape and structure of MnO2 nanomaterials over the non-enzymatic sensing ability of hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Babu, K. Justice; Zahoor, Awan; Nahm, Kee Suk; Ramachandran, R.; Rajan, M. A. Jothi; Gnana kumar, G.

    2014-02-01

    The different morphologies of MnO2 nanomaterials such as rod, belt, and flower were synthesized through a facile hydrothermal method, and their phases were also effectively controlled without employing any organic surfactants. The growth mechanisms of prepared nanostructures has been rationalized through the observed morphologic and structural characterizations. The prepared MnO2 nanostructures improved the electron transfer kinetics and minimized the overpotential and exhibited good electrocatalytic activities in detecting the hydrogen peroxide. Among the studied nanostructures, r-MnO2 exhibited an excellent sensing behavior toward hydrogen peroxide, and a linear current response was observed for the hydrogen peroxide, ranging from 1 micromolar to 1.5 mM with a high-sensitivity and low-level detection limit of 62.9 μAmM-1 cm-2 and 0.1 μM, respectively. Moreover, r-MnO2-modified electrode exhibited high selectivity toward hydrogen peroxide and interference-free phenomenon for the other electroactive species.

  11. High-performance liquid chromatography method for the determination of hydrogen peroxide present or released in teeth bleaching kits and hair cosmetic products.

    PubMed

    Gimeno, Pascal; Bousquet, Claudine; Lassu, Nelly; Maggio, Annie-Françoise; Civade, Corinne; Brenier, Charlotte; Lempereur, Laurent

    2015-03-25

    This manuscript presents an HPLC/UV method for the determination of hydrogen peroxide present or released in teeth bleaching products and hair products. The method is based on an oxidation of triphenylphosphine into triphenylphosphine oxide by hydrogen peroxide. Triphenylphosphine oxide formed is quantified by HPLC/UV. Validation data were obtained using the ISO 12787 standard approach, particularly adapted when it is not possible to make reconstituted sample matrices. For comparative purpose, hydrogen peroxide was also determined using ceric sulfate titrimetry for both types of products. For hair products, a cross validation of both ceric titrimetric method and HPLC/UV method using the cosmetic 82/434/EEC directive (official iodometric titration method) was performed. Results obtained for 6 commercialized teeth whitening products and 5 hair products point out similar hydrogen peroxide contain using either the HPLC/UV method or ceric sulfate titrimetric method. For hair products, results were similar to the hydrogen peroxide content using the cosmetic 82/434/EEC directive method and for the HPLC/UV method, mean recoveries obtained on spiked samples, using the ISO 12787 standard, ranges from 100% to 110% with a RSD<3.0%. To assess the analytical method proposed, the HPLC method was used to control 35 teeth bleaching products during a market survey and highlight for 5 products, hydrogen peroxide contents higher than the regulated limit. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Effect of pH on whitening efficacy of 35% hydrogen peroxide and enamel microhardness.

    PubMed

    Jurema, Ana Luiza Barbosa; de Souza, Mauricio Yugo; Torres, Carlos Rocha Gomes; Borges, Alessandra Bühler; Caneppele, Taciana Marco Ferraz

    2018-03-01

    This study aimed to evaluate the effect of 35% hydrogen peroxide at different pH values and the degree of tooth staining on whitening efficacy and enamel microhardness. 90 enamel-dentin specimens were obtained from bovine incisors. They were randomly divided into 2 groups (n = 45), 1 group was immersed in a staining broth for 14 days, and another group was not stained and kept in distilled water at 37°C. Twenty-four hours after the staining procedure, each group was distributed into 3 subgroups that were whitened by 35% hydrogen peroxide with different pH values (5, 7, and 8.4) for 30 minutes. The color was measured at baseline and 7 days after whitening. Microhardness was measured at baseline, immediate, 24 hours, and 1 month after the whitening procedure. Data were submitted to 2-way analysis of variance (ANOVA) and the Tukey test for multiple comparisons for color analysis. Repeated measures ANOVA and the Tukey test were used to analyze microhardness data. The color change of the stained groups (ΔE 00  = 4.6) was significantly higher than that of the nonstained groups (ΔE 00  = 3.7). Microhardness value decreased significantly immediately after whitening for all subgroups and did not return to initial values. For each measurement time, microhardness was not significantly different among subgroups with different pH values. Despite the effectiveness of 35% hydrogen peroxide, changes on gel pH did not affect the whitening efficacy, and the enamel was superficially demineralized, regardless of pH values. Independently of the pH value of whitening gel, enamel undergoes superficial demineralization and with a reduction in superficial microhardness that does not return to the initial values. However, using hydrogen peroxide with different pH values does not alter the whitening effect. © 2018 Wiley Periodicals, Inc.

  13. Treatment of portal venous gas embolism with hyperbaric oxygen after accidental ingestion of hydrogen peroxide: a case report and review of the literature.

    PubMed

    Papafragkou, Sotirios; Gasparyan, Anna; Batista, Richard; Scott, Paul

    2012-07-01

    It is well known that hydrogen peroxide ingestion can cause gas embolism. To report a case illustrating that the definitive, most effective treatment for gas embolism is hyperbaric oxygen therapy. We present a case of a woman who presented to the Emergency Department with acute abdominal pain after an accidental ingestion of concentrated hydrogen peroxide. Complete recovery from her symptoms occurred quickly with hyperbaric oxygen therapy. This is a case report of the successful use of hyperbaric oxygen therapy to treat portal venous gas embolism caused by hydrogen peroxide ingestion. Hyperbaric oxygen therapy can be considered for the treatment of symptomatic hydrogen peroxide ingestion. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Regulation of replicative senescence by NADP+ -dependent isocitrate dehydrogenase.

    PubMed

    Kil, In Sup; Huh, Tae Lin; Lee, Young Sup; Lee, You Mie; Park, Jeen-Woo

    2006-01-01

    The free radical hypothesis of aging postulates that senescence is due to an accumulation of cellular oxidative damage, caused largely by reactive oxygen species that are produced as by-products of normal metabolic processes. Recently, we demonstrated that the control of cytosolic and mitochondrial redox balance and the cellular defense against oxidative damage is one of the primary functions of cytosolic (IDPc) and mitochondrial NADP+ -dependent isocitrate dehydrogenase (IDPm) by supplying NADPH for antioxidant systems. In this paper, we demonstrate that modulation of IDPc or IDPm activity in IMR-90 cells regulates cellular redox status and replicative senescence. When we examined the regulatory role of IDPc and IDPm against the aging process with IMR-90 cells transfected with cDNA for IDPc or IDPm in sense and antisense orientations, a clear inverse relationship was observed between the amount of IDPc or IDPm expressed in target cells and their susceptibility to senescence, which was reflected by changes in replicative potential, cell cycle, senescence-associated beta-galactosidase activity, expression of p21 and p53, and morphology of cells. Furthermore, lipid peroxidation, oxidative DNA damage, and intracellular peroxide generation were higher and cellular redox status shifted to a prooxidant condition in the cell lines expressing the lower level of IDPc or IDPm. The results suggest that IDPc and IDPm play an important regulatory role in cellular defense against oxidative stress and in the senescence of IMR-90 cells.

  15. Cyanobacterial and microcystins dynamics following the application of hydrogen peroxide to waste stabilisation ponds

    NASA Astrophysics Data System (ADS)

    Barrington, D. J.; Ghadouani, A.; Ivey, G. N.

    2013-02-01

    Cyanobacteria and cyanotoxins are a risk to human and ecological health, and a hindrance to biological wastewater treatment. This study investigated the use of hydrogen peroxide (H2O2) for the removal of cyanobacteria and cyanotoxins from within waste stabilization ponds (WSPs). The daily dynamics of cyanobacteria and microcystins (a commonly occurring cyanotoxin) were examined following the addition of H2O2 to wastewater within both the laboratory and at the full-scale within a WSP. Hydrogen peroxide treatment at concentrations ≥ 10-4 g H2O2 μg-1 of total phytoplankton chlorophyll a led to the death of cyanobacteria, in turn releasing intracellular microcystins to the dissolved state. In the full-scale trial, dissolved microcystins were then degraded to negligible concentrations by H2O2 and environmental processes within five days. A shift in the phytoplankton assemblage towards beneficial chlorophyta species was also observed within days of H2O2 addition. However, within weeks, the chlorophyta population was significantly reduced by the re-establishment of toxic cyanobacterial species. This re-establishment was likely due to the inflow of cyanobacteria from ponds earlier in the treatment train, suggesting that whilst H2O2 may be a suitable short-term management technique, it must be coupled with control over inflows if it is to improve WSP performance in the longer term.

  16. Hydrogen Peroxide responsive miR153 targets Nrf2/ARE cytoprotection in paraquat induced dopaminergic neurotoxicitya

    PubMed Central

    Narasimhan, Madhusudhanan; Riar, Amanjot Kaur; Rathinam, Mary Latha; Vedpathak, Dhanashree; Henderson, George; Mahimainathan, Lenin

    2014-01-01

    Epidemiological and animal studies suggest that environmental toxins including paraquat (PQ) increase the risk of developing Parkinson's disease (PD) by damaging nigrostriatal dopaminergic neurons. We previously showed that overexpression of a group of microRNAs (miRs) affects the antioxidant promoting factor, Nrf2 and related glutathione-redox homeostasis in SH-SY5Y dopaminergic neurons. Although, dysregulation of redox balance by PQ is well documented, the role for miRs and their impact have not been elucidated. In the current study we investigated whether PQ impairs Nrf2 and its related cytoprotective machinery by misexpression of specific fine tune miRs in SH-SY5Y neurons. Real time PCR analysis revealed that PQ significantly (p<0.05) increased the expression of brain enriched miR153 with an associated decrease in Nrf2 and its function as revealed by decrease in 4× ARE activity and expression of GCLC and NQO1. Also, PQ and H2O2-induced decrease in Nrf2 3′ UTR activity was restored on miR153 site mutation suggesting a 3′ UTR interacting role. Overexpression of either anti-miR153 or Nrf2 cDNA devoid of 3′ UTR prevented PQ and H2O2-induced loss in Nrf2 activity confirming that PQ could cause miR153 to bind to and target Nrf2 3′ UTR thereby weakening the cellular antioxidant defense. Adenovirus mediated overexpression of cytoplasmic catalase (Ad cCAT) confirmed that PQ induced miR153 is hydrogen peroxide (H2O2) dependent. In addition, Ad cCAT significantly (p<0.05) negated the PQ induced dysregulation of Nrf2 and function along with minimizing ROS, caspase 3/7 activation and neuronal death. Altogether, these results suggest a critical role for oxidant mediated miR153-Nrf2/ARE pathway interaction in paraquat neurotoxicity. This novel finding facilitates the understanding of molecular mechanisms and to develop appropriate management alternatives to counteract PQ-induced neuronal pathogenesis. PMID:24866057

  17. Influence of Hydrogen Peroxide, Lactic Acid, and Surfactants from Vaginal Lactobacilli on the Antibiotic Sensitivity of Opportunistic Bacteria.

    PubMed

    Sgibnev, Andrey; Kremleva, Elena

    2017-06-01

    We studied as hydrogen peroxide, lactic acid, or surfactants from clinical isolates of vaginal lactobacilli and cell-free supernatants from probiotic strain LCR35 can influence on the sensitivity of opportunistic bacteria to antibiotics. We found that the most effective in increasing sensitivity to antibiotics were hydrogen peroxide and surfactants or their combination but no lactic acid. In some cases, the effect of the composition of hydrogen peroxide and surfactants was clearly higher than the sum of effects of these substances alone. With using of the supernatant of LCR35 was shown that the combination of surfactant and lactate has greater effect compared with surfactants alone. In concluding, metabolites of vaginal lactobacilli are suitable for the role of "antibiotic assistants" and it can help solve the problems the antibiotic resistance.

  18. The Immortal Senescence.

    PubMed

    Bianchi-Smiraglia, Anna; Lipchick, Brittany C; Nikiforov, Mikhail A

    2017-01-01

    Activation of oncogenic signaling paradoxically results in the permanent withdrawal from cell cycle and induction of senescence (oncogene-induced senescence (OIS)). OIS is a fail-safe mechanism used by the cells to prevent uncontrolled tumor growth, and, as such, it is considered as the first barrier against cancer. In order to progress, tumor cells thus need to first overcome the senescent phenotype. Despite the increasing attention gained by OIS in the past 20 years, this field is still rather young due to continuous emergence of novel pathways and processes involved in OIS. Among the many factors contributing to incomplete understanding of OIS are the lack of unequivocal markers for senescence and the complexity of the phenotypes revealed by senescent cells in vivo and in vitro. OIS has been shown to play major roles at both the cellular and organismal levels in biological processes ranging from embryonic development to barrier to cancer progression. Here we will briefly outline major advances in methodologies that are being utilized for induction, identification, and characterization of molecular processes in cells undergoing oncogene-induced senescence. The full description of such methodologies is provided in the corresponding chapters of the book.

  19. Human Umbilical Cord Wharton's Jelly Stem Cell Conditioned Medium Induces Tumoricidal Effects on Lymphoma Cells Through Hydrogen Peroxide Mediation.

    PubMed

    Lin, Hao Daniel; Fong, Chui-Yee; Biswas, Arijit; Choolani, Mahesh; Bongso, Ariff

    2016-09-01

    Several groups have reported that human umbilical cord Wharton's jelly stem cells (hWJSCs) possess unique tumoricidal properties against many cancers. However, the exact mechanisms as to how hWJSCs inhibit tumor growth are not known. Recent evidence suggests that exposure of cancer cells to high hydrogen peroxide (H2 O2 ) levels from H2 O2 -releasing drugs causes their death. We therefore explored whether the tumoricidal effect of hWJSCs on lymphoma cells was mediated via H2 O2 . We first exposed lymphoma cells to six different molecular weight cut-off (MWCO) concentrates of hWJSC-conditioned medium (hWJSC-CM) (3, 5, 10, 30, 50, 100 kDa) for 48 h. Since, the 3 kDa-MWCO concentrate showed the greatest cell inhibition we then investigated whether the tumoricidal effect of the specific 3 kDa-MWCO concentrate on two different lymphoma cell lines (Ramos and Toledo) was mediated via accumulation of H2 O2 . We used a battery of assays (MTT, propidium iodide, mitochondria membrane potential, apoptosis, cell cycle, oxidative stress enzymes, hydrogen peroxide, mitochondrial superoxide, hydroxyl radical, peroxynitrile anion, and lipid peroxidation) to test this mechanism. The hWJSC-CM-3 kDa MWCO concentrate significantly decreased cell viability and mitochondrial membrane potential and increased cell death and apoptosis in both lymphoma cell lines. There were significant increases in superoxide dismutase with concomitant decreases in glutathione peroxidase, catalase, and thioredoxin peroxidase activities. H2 O2 levels, mitochondrial superoxide, hydroxyl radical, peroxynitrile anion, and lipid peroxidation were also significantly increased in both lymphoma cell lines. The results suggested that the hWJSC-CM-3 kDa MWCO concentrate regulates cellular H2 O2 leading to a tumoricidal effect and may thus be a promising anti-lymphoma agent. J. Cell. Biochem. 117: 2045-2055, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. SELECTIVE OXIDATION OF ALCOHOLS OVER VANADIUM PHOSPHORUS OXIDE CATALYST USING HYDROGEN PEROXIDE

    EPA Science Inventory

    Oxidation of various alcohols is studied in liquid phase under nitrogen atmosphere over vanadium phosphorus oxide catalyst in an environmentally friendly protocol using hydrogen peroxide. The catalyst and the method are found to be suitable for the selective oxidation of a variet...

  1. 23-Hydroxytormentic acid protects human dermal fibroblasts by attenuating UVA-induced oxidative stress.

    PubMed

    Youn, Hae Jeong; Kim, Ki Bbeum; Han, Hyo-Sun; An, In-Sook; Ahn, Kyu Joong

    2017-03-01

    Ultraviolet A (UVA), one of the major components of sunlight, can penetrate the dermal layer of the skin and generate reactive oxygen species (ROS). It causes alterations in the dermal connective tissue and gene expression, inflammation, photoaging, and DNA damage. Therefore, the harmful effects of UVA and strategies to reduce it have been consistently investigated. 23-Hydroxytormentic acid (23-HTA) has been demonstrated to improve drug-induced nephrotoxicity and exhibit several free radical scavenging effects with other molecules. Therefore, the aim of this study was to investigate the anti-inflammatory effects and extracellular matrix (ECM) reconstructive activity of 23-HTA in UVA-irradiated normal human dermal fibroblasts (NHDFs). The antioxidant capacity of 23-HTA was determined by examining its scavenging activities against hydrogen peroxide, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid), and diphenylpicrylhydrazyl in vitro. Its effect on cell viability was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tertazolium bromide, and 2,7-dichlorofluorescin diacetate was used to investigate intracellular ROS scavenging activity. The mRNA levels of antioxidant enzymes and pro-inflammatory cytokines were detected using quantitative real-time polymerase chain reaction. A senescence-associated β-galactosidase (SA-β-gal) staining kit was used to assess senescent cells. 23-HTA showed antioxidant capacity mediated by ROS scavenging and regulation of antioxidant-related gene expression. Further, the SA-β-gal analysis and mRNA expression of matrix metalloproteinases and type I procollagen suggested that 23-HTA regulates the gene expression of ECM proteins and cellular senescence under UVA-irradiated conditions. In conclusion, 23-HTA protects against and attenuates UVA-induced oxidative stress in NHDFs likely via the nuclear factor erythroid-derived 2-like 2 signaling pathway. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Inactivation of aflatoxin B1 by using the synergistic effect of hydrogen peroxide and gamma radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, U.D.; Govindarajan, P.; Dave, P.J.

    Inactivation of aflatoxin B1 was studied by using gamma radiation and hydrogen peroxide. A 100-krad dose of gamma radiation was sufficient to inactivate 50 micrograms of aflatoxin B1 in the presence of 5% hydrogen peroxide, and 400 krad was required for total degradation of 100 micrograms of aflatoxin in the same system. Degradation of aflatoxin B1 was confirmed by high-pressure liquid chromatographic and thin-layer chromatographic analysis. Ames microsomal mutagenicity test showed loss of aflatoxin activity. This method of detoxification also reduces the toxin levels effectively in artificially contaminated groundnuts.

  3. EARLY SENESCENCE1 Encodes a SCAR-LIKE PROTEIN2 That Affects Water Loss in Rice1[OPEN

    PubMed Central

    Rao, Yuchun; Yang, Yaolong; Xu, Jie; Li, Xiaojing; Leng, Yujia; Dai, Liping; Huang, Lichao; Shao, Guosheng; Ren, Deyong; Hu, Jiang; Guo, Longbiao; Pan, Jianwei; Zeng, Dali

    2015-01-01

    The global problem of drought threatens agricultural production and constrains the development of sustainable agricultural practices. In plants, excessive water loss causes drought stress and induces early senescence. In this study, we isolated a rice (Oryza sativa) mutant, designated as early senescence1 (es1), which exhibits early leaf senescence. The es1-1 leaves undergo water loss at the seedling stage (as reflected by whitening of the leaf margin and wilting) and display early senescence at the three-leaf stage. We used map-based cloning to identify ES1, which encodes a SCAR-LIKE PROTEIN2, a component of the suppressor of cAMP receptor/Wiskott-Aldrich syndrome protein family verprolin-homologous complex involved in actin polymerization and function. The es1-1 mutants exhibited significantly higher stomatal density. This resulted in excessive water loss and accelerated water flow in es1-1, also enhancing the water absorption capacity of the roots and the water transport capacity of the stems as well as promoting the in vivo enrichment of metal ions cotransported with water. The expression of ES1 is higher in the leaves and leaf sheaths than in other tissues, consistent with its role in controlling water loss from leaves. GREEN FLUORESCENT PROTEIN-ES1 fusion proteins were ubiquitously distributed in the cytoplasm of plant cells. Collectively, our data suggest that ES1 is important for regulating water loss in rice. PMID:26243619

  4. Effect of hydrogen peroxide on the three-dimensional polymer network in composites.

    PubMed

    Durner, Jürgen; Stojanovic, Marija; Urcan, Ebru; Spahl, Werner; Haertel, Ursula; Hickel, Reinhard; Reichl, Franx-Xaver

    2011-06-01

    Less data are available about the effects of hydrogen peroxide on the three-dimensional polymer network of polymerized composites. Therefore the study was performed to test the effects of hydrogen peroxide on the three-dimensional polymer network in composites. Polymerized specimens from Tetric Flow®, Tetric Ceram® and Filtek™ Supreme XT were bleached with Opalescence® PF 15% for 5h or PF 35% for 0.5h, respectively, and then stored in methanol for 1d and 7d. Controls were unbleached specimens. The eluates were analyzed by gas chromatography/mass spectrometry. More methacrylic acid (MAA), bisphenol-A (BPA), ethoxylated bisphenol-A-dimethacrylate (BisEMA), hydroquinone monomethyl ether (HQME), 1,10-decanediol dimethacrylate (DDDMA) and/or triethylene glycol dimethacrylate (TEGDMA) were eluted from bleached specimens compared with non bleached controls (1d). The highest DDDMA amount of 419.8 μmol/l was found in the eluates after 7d in Tetric Flow® specimens treated with PF 15. The highest HQME amount of 159.6 μmol/l was found in eluates from Tetric Ceram® specimens treated with PF after 7d. The highest TEGDMA amount of 178.7 μmol/l was found in eluates from Filtek™ Supreme XT specimens treated with PF 35 after 7d. Bleaching with hydrogen peroxide has an effect on the three-dimensional polymer network in polymerized composites leading to an increase in the release of unpolymerized monomers, additives and unspecific oxidative products. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Synergism between hydrogen peroxide and seventeen acids against five agri-food-borne fungi and one yeast strain.

    PubMed

    Martin, H; Maris, P

    2012-12-01

    The objective of this study was to evaluate fungicidal efficacy of hydrogen peroxide administered in combination with 17 mineral and organic acids authorized for use in the food industry. The assays were performed on a 96-well microplate using a microdilution technique based on the checkerboard titration method. The six selected strains (one yeast and five fungi) were reference strains and strains representative of contaminating fungi found in the food industry. Each synergistic hydrogen peroxide/acid combination found after fifteen minutes contact time at 20 °C in distilled water was then tested in conditions simulating four different use conditions. Twelve combinations were synergistic in distilled water, eleven of these remained synergistic with one or more of the four mineral and organic interfering substances selected. Hydrogen peroxide/formic acid combination remained effective against four strains and was never antagonistic against the other two fungi. Combinations with propionic acid and acetic acid stayed synergistic against two strains. Those with oxalic acid and lactic acid kept their synergism only against Candida albicans. No synergism was detected against Penicillium cyclopium. Synergistic combinations of disinfectants were revealed, among them the promising hydrogen peroxide/formic acid combination. A rapid screening method developed in our laboratory for bacteria was adapted to fungi and used to reveal the synergistic potential of disinfectants and/or sanitizers combinations. © 2012 The Society for Applied Microbiology.

  6. Hydrogen peroxide propulsion for smaller satellites (SSC98-VIII-1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitehead, J C

    1998-07-13

    As satellite designs shrink, providing maneuvering and control capability falls outside the realm of available propulsion technology. While cold gas has been used on the smallest satellites, hydrogen peroxide propellant is suggested as the next step in performance and cost before hydrazine. Minimal toxicity and a small scale enable benchtop propellant preparation and development testing. Progress toward low-cost thrusters and self-pressurizing tank systems is described.

  7. Resveratrol induces cellular senescence with attenuated mono-ubiquitination of histone H2B in glioma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Zhen; Xu, Michael S.; Barnett, Tamara L.

    2011-04-08

    Research highlights: {yields} Resveratrol induces cellular senescence in glioma cell. {yields} Resveratrol inhibits mono-ubiquitination of histone H2B at K120. {yields} Depletion of RNF20, phenocopies the inhibitory effects of resveratrol. {yields} Mono-ubiquitination of histone H2B at K120 is a novel target of resveratrol. {yields} RNF20 inhibits cellular senescence in proliferating glioma cells. -- Abstract: Resveratrol (3,4',5-trihydroxy-trans-stilbene), a polyphenol naturally occurring in grapes and other plants, has cancer chemo-preventive effects and therapeutic potential. Although resveratrol modulates multiple pathways in tumor cells, how resveratrol or its affected pathways converge on chromatin to mediate its effects is not known. Using glioma cells as amore » model, we showed here that resveratrol inhibited cell proliferation and induced cellular hypertrophy by transforming spindle-shaped cells to enlarged, irregular and flatten-shaped ones. We further showed that resveratrol-induced hypertrophic cells expressed senescence-associated-{beta}-galactosidase, suggesting that resveratrol-induced cellular senescence in glioma cells. Consistent with these observations, we demonstrated that resveratrol inhibited clonogenic efficiencies in vitro and tumor growth in a xenograft model. Furthermore, we found that acute treatment of resveratrol inhibited mono-ubiquitination of histone H2B at K120 (uH2B) in breast, prostate, pancreatic, lung, brain tumor cells as well as primary human cells. Chronic treatment with low doses of resveratrol also inhibited uH2B in the resveratrol-induced senescent glioma cells. Moreover, we showed that depletion of RNF20, a ubiquitin ligase of histone H2B, inhibited uH2B and induced cellular senescence in glioma cells in vitro, thereby recapitulated the effects of resveratrol. Taken together, our results suggest that uH2B is a novel direct or indirect chromatin target of resveratrol and RNF20 plays an important role in inhibiting

  8. Balance between senescence and apoptosis is regulated by telomere damage-induced association between p16 and caspase-3.

    PubMed

    Panneer Selvam, Shanmugam; Roth, Braden M; Nganga, Rose; Kim, Jisun; Cooley, Marion A; Helke, Kristi L; Smith, Charles D; Ogretmen, Besim

    2018-05-10

    Telomerase activation protects cells from telomere damage by delaying senescence and inducing cell immortalization, whereas telomerase inhibition mediates rapid senescence or apoptosis. However, the cellular mechanisms that determine telomere damage-dependent senescence versus apoptosis induction are largely unknown. Here, we demonstrate that telomerase instability mediated by silencing of sphingosine kinase 2 (SPHK2) and sphingosine 1-phosphate (S1P), which binds and stabilizes telomerase, induces telomere damage-dependent caspase-3 activation and apoptosis, but not senescence, in p16-deficient lung cancer cells or tumors. These outcomes were prevented by knockdown of a tumor-suppressor protein, transcription factor 21 (TCF21), or by ectopic expression of WT human telomerase reverse transcriptase (hTERT), but not mutant hTERT with altered S1P binding. Interestingly, SphK2-deficient mice exhibited accelerated aging and telomerase instability that increased telomere damage and senescence via p16 activation especially in testes tissues, but not in apoptosis. Moreover, p16 silencing in SphK2-/- mouse embryonic fibroblasts activated caspase-3 and apoptosis without inducing senescence. Further, ectopic WT p16 expression in p16-deficient A549 lung cancer cells prevented TCF21 and caspase-3 activation, and resulted in senescence in response to SphK2/S1P inhibition and telomere damage. Mechanistically, a p16 mutant with impaired [MS2] caspase-3 association did not prevent telomere damage-induced apoptosis, indicating that an association between p16 and caspase-3 proteins forces senescence induction by inhibiting caspase-3 activation and apoptosis.[MS3]  These results suggest that p16 plays a direct role in telomere damage-dependent senescence by limiting apoptosis via binding to caspase-3, revealing a direct link between telomere damage-dependent senescence and apoptosis with regards to aging and cancer. Published under license by The American Society for Biochemistry

  9. The p53-reactivating small molecule RITA induces senescence in head and neck cancer cells.

    PubMed

    Chuang, Hui-Ching; Yang, Liang Peng; Fitzgerald, Alison L; Osman, Abdullah; Woo, Sang Hyeok; Myers, Jeffrey N; Skinner, Heath D

    2014-01-01

    TP53 is the most commonly mutated gene in head and neck cancer (HNSCC), with mutations being associated with resistance to conventional therapy. Restoring normal p53 function has previously been investigated via the use of RITA (reactivation of p53 and induction of tumor cell apoptosis), a small molecule that induces a conformational change in p53, leading to activation of its downstream targets. In the current study we found that RITA indeed exerts significant effects in HNSCC cells. However, in this model, we found that a significant outcome of RITA treatment was accelerated senescence. RITA-induced senescence in a variety of p53 backgrounds, including p53 null cells. Also, inhibition of p53 expression did not appear to significantly inhibit RITA-induced senescence. Thus, this phenomenon appears to be partially p53-independent. Additionally, RITA-induced senescence appears to be partially mediated by activation of the DNA damage response and SIRT1 (Silent information regulator T1) inhibition, with a synergistic effect seen by combining either ionizing radiation or SIRT1 inhibition with RITA treatment. These data point toward a novel mechanism of RITA function as well as hint to its possible therapeutic benefit in HNSCC.

  10. Anti-ageing effects of Sonchus oleraceus L. (pūhā) leaf extracts on H₂O₂-induced cell senescence.

    PubMed

    Ou, Zong-Quan; Rades, Thomas; McDowell, Arlene

    2015-03-12

    Antioxidants protect against damage from free radicals and are believed to slow the ageing process. Previously, we have reported the high antioxidant activity of 70% methanolic Sonchus oleraceus L. (Asteraceae) leaf extracts. We hypothesize that S. oleraceus extracts protect cells against H2O2-induced senescence by mediating oxidative stress. Premature senescence of young WI-38 cells was induced by application of H2O2. Cells were treated with S. oleraceus extracts before or after H2O2 stress. The senescence- associated β-galactosidase (SA-β-gal) activity was used to indicate cell senescence. S. oleraceus extracts showed higher cellular antioxidant activity than chlorogenic acid in WI-38 cells. S. oleraceus extracts suppressed H2O2 stress-induced premature senescence in a concentration-dependent manner. At 5 and 20 mg/mL, S. oleraceus extracts showed better or equivalent effects of reducing stress-induced premature senescence than the corresponding ascorbic acid treatments. These findings indicate the potential of S. oleraceus extracts to be formulated as an anti-ageing agent.

  11. Ameliorating replicative senescence of human bone marrow stromal cells by PSMB5 overexpression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Li, E-mail: luli7300@126.com; Song, Hui-Fang; Wei, Jiao-Long

    2014-01-24

    Highlights: • PSMB5 overexpression restores the differentiation potential of aged hBMSCs. • PSMB5 overexpression enhances the proteasomal activity of late-stage hBMSCs. • PSMB5 overexpression inhibits replicative senescence and improved cell viability. • PSMB5 overexpression promotes cell growth by upregulating the Cyclin D1/CDK4 complex. - Abstract: Multipotent human bone marrow stromal cells (hBMSCs) potentially serve as a source for cell-based therapy in regenerative medicine. However, in vitro expansion was inescapably accompanied with cell senescence, characterized by inhibited proliferation and compromised pluripotency. We have previously demonstrated that this aging process is closely associated with reduced 20S proteasomal activity, with down-regulation of rate-limitingmore » catalytic β-subunits particularly evident. In the present study, we confirmed that proteasomal activity directly contributes to senescence of hBMSCs, which could be reversed by overexpression of the β5-subunit (PSMB5). Knocking down PSMB5 led to decreased proteasomal activity concurrent with reduced cell proliferation in early-stage hBMSCs, which is similar to the senescent phenotype observed in late-stage cells. In contrast, overexpressing PSMB5 in late-stage cells efficiently restored the normal activity of 20S proteasomes and promoted cell growth, possibly via upregulating the Cyclin D1/CDK4 complex. Additionally, PSMB5 could enhance cell resistance to oxidative stress, as evidenced by the increased cell survival upon exposing senescent hBMSCs to hydrogen peroxide. Furthermore, PSMB5 overexpression retained the pluripotency of late-stage hBMSCs by facilitating their neural differentiation both in vitro and in vivo. Collectively, our work reveals a critical role of PSMB5 in 20S proteasome-mediated protection against replicative senescence, pointing to a possible strategy for maintaining the integrity of culture-expanded hBMSCs by manipulating the expression of PSMB5.« less

  12. Hydrogen-bearing iron peroxide and its implications to the deep Earth

    NASA Astrophysics Data System (ADS)

    Liu, J.; Hu, Q.; Kim, D. Y.; Wu, Z.; Wang, W.; Alp, E. E.; Yang, L.; Xiao, Y.; Meng, Y.; Chow, P.; Greenberg, E.; Prakapenka, V. B.; Mao, H. K.; Mao, W. L.

    2017-12-01

    Hydrous materials subducted into the deep mantle may play a significant role in the geophysical and geochemical processes of the lower mantle through geological time, but their roles have not become clear yet in the region. Hydrogen-bearing iron peroxide (FeO2Hx) was recently discovered to form through dehydrogenation of goethite (e.g., FeOOH) and the reaction between hematite (Fe2O3) and water under deep lower mantle conditions. We conducted synchrotron Mössbauer, X-ray absorption, and X-ray emission spectroscopy measurements to investigate the electronic spin and valence states of iron in hydrogen-bearing iron peroxide (FeO2Hx) in-situ at high pressures. Combined with theoretical calculations and other high-pressure experiments (i.e., nuclear resonant inelastic x-ray scattering spectroscopy and X-ray diffraction coupled with laser-heated diamond-anvil cell techniques), we find that the intriguing properties of FeO2Hx could shed light on the origin of a number of the observed geochemical and geophysical anomalies in the deep Earth.

  13. Macrophage Response to UHMWPE Submitted to Accelerated Ageing in Hydrogen Peroxide

    PubMed Central

    Rocha, Magda F.G.; Mansur, Alexandra A.P.; Martins, Camila P.S.; Barbosa-Stancioli, Edel F.; Mansur, Herman S.

    2010-01-01

    Ultra-high molecular weight polyethylene (UHMWPE) has been the most commonly used bearing material in total joint arthroplasty. Wear and oxidation fatigue resistance of UHMWPE are regarded as two important properties to extend the longevity of knee prostheses. The present study investigated the accelerated ageing of UHMWPE in hydrogen peroxide highly oxidative chemical environment. The sliced samples of UHMWPE were oxidized in a hydrogen peroxide solution for 120 days with their total level of oxidation (Iox) characterized by Fourier Transformed Infrared Spectroscopy (FTIR). The potential inflammatory response, cell viability and biocompatibility of such oxidized UHMWPE systems were assessed by a novel biological in vitro assay based on the secretion of nitric oxide (NO) by activated murine macrophages with gamma interferon (IFN-γ) cytokine and lipopolysaccharide (LPS). Furthermore, macrophage morphologies in contact with UHMWPE oxidized surfaces were analyzed by cell spreading-adhesion procedure using scanning electron microscopy (SEM). The results have given significant evidence that the longer the period of accelerated aging of UHMWPE the higher was the macrophage inflammatory equivalent response based on NO secretion analysis. PMID:20721321

  14. Microarray analysis of Pseudomonas aeruginosa reveals induction of pyocin genes in response to hydrogen peroxide

    PubMed Central

    Chang, Wook; Small, David A; Toghrol, Freshteh; Bentley, William E

    2005-01-01

    Background Pseudomonas aeruginosa, a pathogen infecting those with cystic fibrosis, encounters toxicity from phagocyte-derived reactive oxidants including hydrogen peroxide during active infection. P. aeruginosa responds with adaptive and protective strategies against these toxic species to effectively infect humans. Despite advances in our understanding of the responses to oxidative stress in many specific cases, the connectivity between targeted protective genes and the rest of cell metabolism remains obscure. Results Herein, we performed a genome-wide transcriptome analysis of the cellular responses to hydrogen peroxide in order to determine a more complete picture of how oxidative stress-induced genes are related and regulated. Our data reinforce the previous conclusion that DNA repair proteins and catalases may be among the most vital antioxidant defense systems of P. aeruginosa. Our results also suggest that sublethal oxidative damage reduces active and/or facilitated transport and that intracellular iron might be a key factor for a relationship between oxidative stress and iron regulation. Perhaps most intriguingly, we revealed that the transcription of all F-, R-, and S-type pyocins was upregulated by oxidative stress and at the same time, a cell immunity protein (pyocin S2 immunity protein) was downregulated, possibly leading to self-killing activity. Conclusion This finding proposes that pyocin production might be another novel defensive scheme against oxidative attack by host cells. PMID:16150148

  15. Cloning and characterization of TPE4A, a thiol-protease gene induced during ovary senescence and seed germination in pea.

    PubMed

    Cercós, M; Santamaría, S; Carbonell, J

    1999-04-01

    A cDNA clone encoding a thiol-protease (TPE4A) was isolated from senescent ovaries of pea (Pisum sativum) by reverse transcriptase-polymerase chain reaction. The deduced amino acid sequence of TPE4A has the conserved catalytic amino acids of papain. It is very similar to VSCYSPROA, a thiol-protease induced during seed germination in common vetch. TPE4A mRNA levels increase during the senescence of unpollinated pea ovaries and are totally suppressed by treatment with gibberellic acid. In situ hybridization indicated that TPE4A mRNA distribution in senescent pea ovaries is different from that of previously reported thiol-proteases induced during senescence, suggesting the involvement of different proteases in the mobilization of proteins from senescent pea ovaries. TPE4A is also induced during the germination of pea seeds, indicating that a single protease gene can be induced during two different physiological processes, senescence and germination, both of which require protein mobilization.

  16. Simvastatin rises reactive oxygen species levels and induces senescence in human melanoma cells by activation of p53/p21 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guterres, Fernanda Augusta de Lima Barbosa; Martinez, Glaucia Regina; Rocha, Maria Eliane Merlin

    2013-11-15

    Recent studies demonstrated that simvastatin has antitumor properties in several types of cancer cells, mainly by inducing apoptosis and inhibiting growth. The arrest of proliferation is a feature of cellular senescence; however, the occurrence of senescence in melanoma cells upon simvastatin treatment has not been investigated until now. Our results demonstrated that exposure of human metastatic melanoma cells (WM9) to simvastatin induces a senescent phenotype, characterized by G1 arrest, positive staining for senescence-associated β-galactosidase assay, and morphological changes. Also, the main pathways leading to cell senescence were examined in simvastatin-treated human melanoma cells, and the expression levels of phospho-p53 andmore » p21 were upregulated by simvastatin, suggesting that cell cycle regulators and DNA damage pathways are involved in the onset of senescence. Since simvastatin can act as a pro-oxidant agent, and oxidative stress may be related to senescence, we measured the intracellular ROS levels in WM9 cells upon simvastatin treatment. Interestingly, we found an increased amount of intracellular ROS in these cells, which was accompanied by elevated expression of catalase and peroxiredoxin-1. Collectively, our results demonstrated that simvastatin can induce senescence in human melanoma cells by activation of p53/p21 pathway, and that oxidative stress may be related to this process. - Highlights: • Lower concentrations of simvastatin can induce senescent phenotype in melanoma cells. • Simvastatin induces senescence in human melanoma cells via p53/p21 pathway. • Senescent phenotype is related with increased intracellular ROS. • Partial detoxification of ROS by catalase/peroxiredoxin-1 could lead cells to senescence rather than apoptosis.« less

  17. Flow cytometric HyPer-based assay for hydrogen peroxide.

    PubMed

    Lyublinskaya, O G; Antonov, S A; Gorokhovtsev, S G; Pugovkina, N A; Kornienko, Ju S; Ivanova, Ju S; Shatrova, A N; Aksenov, N D; Zenin, V V; Nikolsky, N N

    2018-05-30

    HyPer is a genetically encoded fluorogenic sensor for hydrogen peroxide which is generally used for the ratiometric imaging of H 2 O 2 fluxes in living cells. Here, we demonstrate the advantages of HyPer-based ratiometric flow cytometry assay for H 2 O 2 , by using K562 and human mesenchymal stem cell lines expressing HyPer. We show that flow cytometry analysis is suitable to detect HyPer response to submicromolar concentrations of extracellularly added H 2 O 2 that is much lower than concentrations addressed previously in the other HyPer-based assays (such as cell imaging or fluorimetry). Suggested technique is also much more sensitive to hydrogen peroxide than the widespread flow cytometry assay exploiting H 2 O 2 -reactive dye H 2 DCFDA and, contrary to the H 2 DCFDA-based assay, can be employed for the kinetic studies of H 2 O 2 utilization by cells, including measurements of the rate constants of H 2 O 2 removal. In addition, flow cytometry multi-parameter ratiometric measurements enable rapid and high-throughput detection of endogenously generated H 2 O 2 in different subpopulations of HyPer-expressing cells. To sum up, HyPer can be used in multi-parameter flow cytometry studies as a highly sensitive indicator of intracellular H 2 O 2 . Copyright © 2018. Published by Elsevier Inc.

  18. Hyperphosphatemia induces cellular senescence in human aorta smooth muscle cells through integrin linked kinase (ILK) up-regulation.

    PubMed

    Troyano, Nuria; Nogal, María Del; Mora, Inés; Diaz-Naves, Manuel; Lopez-Carrillo, Natalia; Sosa, Patricia; Rodriguez-Puyol, Diego; Olmos, Gemma; Ruiz-Torres, María P

    2015-12-01

    Aging is conditioned by genetic and environmental factors. Hyperphosphatemia is related to some pathologies, affecting to vascular cells behavior. This work analyze whether high concentration of extracellular phosphate induces vascular smooth muscle cells senescence, exploring the intracellular mechanisms and highlighting the in vivo relevance of this phenomenon. Human aortic smooth muscle cells treated with β-Glycerophosphate (BGP, 10mM) suffered cellular senescence by increasing p53, p21 and p16 expression and the senescence associated β-galactosidase activity. In parallel, BGP induced ILK overexpression, dependent on the IGF-1 receptor activation, and oxidative stress. Down-regulating ILK expression prevented BGP-induced senescence and oxidative stress. Aortic rings from young rats treated with 10mM BGP for 48h, showed increased p53, p16 and ILK expression and SA-β-gal activity. Seven/eight nephrectomized rats feeding a hyperphosphatemic diet and fifteenth- month old mice showed hyperphosphatemia and aortic ILK, p53 and p16 expression. In conclusion, we demonstrated that high extracellular concentration of phosphate induced senescence in cultured smooth muscle through the activation of IGF-1 receptor and ILK overexpression and provided solid evidences for the in vivo relevance of these results since aged animals showed high levels of serum phosphate linked to increased expression of ILK and senescence genes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. UVB-Induced Senescence of Human Dermal Fibroblasts Involves Impairment of Proteasome and Enhanced Autophagic Activity.

    PubMed

    Cavinato, Maria; Koziel, Rafal; Romani, Nikolaus; Weinmüllner, Regina; Jenewein, Brigitte; Hermann, Martin; Dubrac, Sandrine; Ratzinger, Gudrun; Grillari, Johannes; Schmuth, Matthias; Jansen-Dürr, Pidder

    2017-05-01

    In the current study, we have extended previous findings aiming at a better understanding of molecular mechanisms underlying UVB-induced senescence of diploid human dermal fibroblasts (HDFs), an experimental model to study the process of photoaging in the skin. We provide evidence that the inhibition of proteasomal degradation of damaged proteins and the activation of autophagosome formation are early events in UVB-induced senescence of HDFs, dependent on UVB-induced accumulation of reactive oxygen species. Our data suggest that autophagy is required for the establishment of the senescent phenotype in UVB-treated HDFs and that inhibition of autophagy is sufficient to change the cell fate from senescence to cell death by apoptosis. Studies in reconstructed skin equivalents revealed that UVB irradiation triggers hallmarks of autophagy induction in the dermal layer. These findings have potential implications for fundamental as well as translational research into skin aging, in particular photoaging. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. OXIDATION OF ALCOHOLS OVER FE3+/MONTMORILLONITE-K10 USING HYDROGEN PEROXIDE

    EPA Science Inventory

    Oxidation of various primary and secondary alcohols is studied in liquid phase at atmospheric pressure over Fe3+/montmorillonite-K10 catalyst prepared by ion-exchange method at a pH of 4 in an environmentally friendly protocol using hydrogen peroxide. The catalyst and the method ...