Science.gov

Sample records for hydrogen peroxide-induced senescence-like

  1. Tolerance of pentose utilising yeast to hydrogen peroxide-induced oxidative stress

    PubMed Central

    2014-01-01

    Background Bioethanol fermentations follow traditional beverage fermentations where the yeast is exposed to adverse conditions such as oxidative stress. Lignocellulosic bioethanol fermentations involve the conversion of pentose and hexose sugars into ethanol. Environmental stress conditions such as osmotic stress and ethanol stress may affect the fermentation performance; however, oxidative stress as a consequence of metabolic output can also occur. However, the effect of oxidative stress on yeast with pentose utilising capabilities has yet to be investigated. Results Assaying for the effect of hydrogen peroxide-induced oxidative stress on Candida, Pichia and Scheffersomyces spp. has demonstrated that these yeast tolerate hydrogen peroxide-induced oxidative stress in a manner consistent with that demonstrated by Saccharomyces cerevisiae. Pichia guillermondii appears to be more tolerant to hydrogen peroxide-induced oxidative stress when compared to Candida shehatae, Candida succiphila or Scheffersomyces stipitis. Conclusions Sensitivity to hydrogen peroxide-induced oxidative stress increased in the presence of minimal media; however, addition of amino acids and nucleobases was observed to increase tolerance. In particular adenine increased tolerance and methionine reduced tolerance to hydrogen peroxide-induced oxidative stress. PMID:24636079

  2. Hydrogen peroxide-induced apoptosis in human gingival fibroblasts.

    PubMed

    Gutiérrez-Venegas, Gloria; Guadarrama-Solís, Adriana; Muñoz-Seca, Carmen; Arreguín-Cano, Juan Antonio

    2015-01-01

    In the process of bleaching vital, discolored teeth, low concentrations of hydrogen peroxide (H2O2) are effective alternatives to heat-activated 30% H2O2. However, interest has been expressed in the assessment of pathological effects of long-term exposure to bleaching agents such as irritation and ulceration of the gingival or other soft tissues. The aim of the present study was to determine the effect of hydrogen peroxide on apoptosis in human gingival fibroblasts (HGF). Cytochrome c, Bcl-2, Bax, Bid and caspase-3 protein expression were detected by Western blotting. HGF cell apoptosis induced by H2O2 was both dose and time dependent. The addition of H2O2 resulted in the release of cytochrome c to the cytosol, and an increase of Caspase-3 cleavage. Data suggest that oxidative stress-induced apoptosis in HGF is intrinsic pathway involved the release of apoptotic signal from mitochondria. PMID:26884825

  3. Hydrogen peroxide-induced apoptosis in human gingival fibroblasts

    PubMed Central

    Gutiérrez-Venegas, Gloria; Guadarrama-Solís, Adriana; Muñoz-Seca, Carmen; Arreguín-Cano, Juan Antonio

    2015-01-01

    In the process of bleaching vital, discolored teeth, low concentrations of hydrogen peroxide (H2O2) are effective alternatives to heat-activated 30% H2O2. However, interest has been expressed in the assessment of pathological effects of long-term exposure to bleaching agents such as irritation and ulceration of the gingival or other soft tissues. The aim of the present study was to determine the effect of hydrogen peroxide on apoptosis in human gingival fibroblasts (HGF). Cytochrome c, Bcl-2, Bax, Bid and caspase-3 protein expression were detected by Western blotting. HGF cell apoptosis induced by H2O2 was both dose and time dependent. The addition of H2O2 resulted in the release of cytochrome c to the cytosol, and an increase of Caspase-3 cleavage. Data suggest that oxidative stress-induced apoptosis in HGF is intrinsic pathway involved the release of apoptotic signal from mitochondria. PMID:26884825

  4. Effect of ethanol on hydrogen peroxide-induced AMPK phosphorylation

    PubMed Central

    Liangpunsakul, Suthat; Wou, Sung-Eun; Zeng, Yan; Ross, Ruth A.; Jayaram, Hiremagalur N.; Crabb, David W.

    2008-01-01

    AMP-activated protein kinase (AMPK) responds to oxidative stress. Previous work has shown that ethanol treatment of cultured hepatoma cells and of mice inhibited the activity of AMPK and reduced the amount of AMPK protein. Ethanol generates oxidative stress in the liver. Since AMPK is activated by reactive oxygen species, it seems paradoxical that ethanol would inhibit AMPK in the hepatoma cells. In an attempt to understand the mechanism whereby ethanol inhibits AMPK, we studied the effect of ethanol on AMPK activation by exogenous hydrogen peroxide. The effects of ethanol, hydrogen peroxide, and inhibitors of protein phosphatase 2A (PP2A) [either okadaic acid or PP2A small interference RNA (siRNA)] on AMPK phosphorylation and activity were examined in rat hepatoma cells (H4IIEC3) and HeLa cells. In H4IIEC3 cells, hydrogen peroxide (H2O2, 1 mM) transiently increased the level of phospho-AMPK to 1.5-fold over control (P < 0.05). Similar findings were observed in HeLa cells, which do not express the upstream AMPK kinase, LKB1. H2O2 markedly increased the phosphorylation of LKB1 in H4IIEC3 cells. Ethanol significantly inhibited the phosphorylation of PKC-ζ, LKB1, and AMPK caused by exposure to H2O2. This inhibitory effect of ethanol required its metabolism. More importantly, the inhibitory effects of ethanol on H2O2-induced AMPK phosphorylation were attenuated by the presence of the PP2A inhibitor, okadaic acid, or PP2A siRNA. The inhibitory effect of ethanol on AMPK phosphorylation is exerted through the inhibition of PKC-ζ and LKB1 phosphorylation and the activation of PP2A. PMID:18832448

  5. Hydrogen Peroxide-Induced Akt Phosphorylation Regulates Bax Activation

    PubMed Central

    Sadidi, Mahdieh; Lentz, Stephen I.; Feldman, Eva L.

    2009-01-01

    Reactive oxygen species such as hydrogen peroxide (H2O2) are involved in many cellular processes that positively and negatively regulate cell fate. H2O2, acting as an intracellular messenger, activates phosphatidylinositol-3 kinase (PI3K) and its downstream target Akt, and promotes cell survival. The aim of the current study was to understand the mechanism by which PI3K/Akt signaling promotes survival in SH-SY5Y neuroblastoma cells. We demonstrate that PI3K/Akt mediates phosphorylation of the pro-apoptotic Bcl-2 family member Bax. This phosphorylation suppresses apoptosis and promotes cell survival. Increased survival in the presence of H2O2 was blocked by LY294002, an inhibitor of PI3K activation. LY294002 prevented Bax phosphorylation and resulted in Bax translocation to the mitochondria, cytochrome c release, caspase-3 activation, and cell death. Collectively, these findings reveal a mechanism by which H2O2-induced activation of PI3K/Akt influences posttranslational modification of Bax and inactivate a key component of the cell death machinery. PMID:19278624

  6. Hydrogen peroxide induced responses of cat tracheal smooth muscle cells

    PubMed Central

    Bauer, V; Oike, M; Tanaka, H; Inoue, R; Ito, Y

    1997-01-01

    The effects of hydrogen peroxide H2O2 (10−6 and 10−3 M) on membrane potential, membrane currents, intracellular calcium concentration, resting muscle tone and contractions elicited by electrical field stimulation (EFS) and carbachol were examined in cat tracheal strips and isolated smooth muscle cells. H2O2 (10−4 and 10−5 M) enhanced the amplitude of contractions and excitatory junction potentials (e.j.p.) evoked by EFS without changing muscle tone and resting membrane potential of the tracheal smooth muscle, and enhanced the contraction induced by carbachol (10−8 M). At an increased concentration (10−3 M), H2O2 elevated resting muscle tone and marginally hyperpolarized the membrane in the majority of the cells. In 51 out of 56 cells examined, H2O2 (10−6–10−3 M) elicited an outward current at a holding potential of −40 mV and enhanced the frequency of the spontaneous transient outward current (STOC). In 20 cells the outward current was preceded by a small inward current. In the other cells, H2O2 elicited only an inward current or did not affect the background current. In Ca2+ free solution the action of H2O2 on the resting muscle tone, STOCs, background current and on the current induced by ramp depolarization was significantly reduced. H2O2 (10−4 M) increased the intracellular ionized calcium concentration both in the absence and presence of external Ca2+. However, the effect developed faster and was of a higher amplitude in the presence of external Ca2+. These results suggest that H2O2 increases intracellular Ca2+, with a subsequent augmentation of stimulation-evoked contractions, and enhances Ca2+ and voltage-sensitive potassium conductance. PMID:9222542

  7. Hydrogen peroxide induces apoptosis via a mitochondrial pathway in chondrocytes

    NASA Astrophysics Data System (ADS)

    Zhuang, Cai-ping; Liang, Qian; Wang, Xiao-ping; Chen, Tong-sheng

    2012-03-01

    The degenerative joint disease such as osteoarthritis (OA) is closely associated with the death of chondrocytes in apoptosis fashion. Hydrogen peroxide (H2O2), higher expression following acute damage in OA patients, has been shown to be up-regulated during apoptosis in a bulk of experimental models. This study was aimed to explore the mechanism of H2O2-induced rabbit chondrocytes apoptosis. Articular cartilage was biopsied from the joints of 6 weeks old New Zealand rabbits. Cell Counting Kit (CCK-8) assay was used to assess the inhibitory effect of H2O2 on cell viability. H2O2 treatment induced a remarkable reduction of cell viability. We used flow cytometry to assess the form of cell death with Annexin-V/PI double staining, and found that H2O2 treatment induced apoptosis in a dose-and time-dependent manner. Exposure of chondrocytes to 1.5 mM of H2O2 for 2 h induced a burst apoptosis that can be alleviated by N-acetyl cysteine (NAC) pretreatment, an anti-oxidant amino-acid derivative. Loss of mitochondria membrane potential (▵Ψm) was evaluated using confocal microscopy imaging and flow cytometry (FCM). H2O2 treatment induced a marked reduction of ▵Ψm, and the abrupt disappearance of ▵Ψm occurred within 5 minutes. These results indicate that H2O2 induces a rapid apoptosis via a mitochondrial pathway in rabbit chondrocytes.

  8. Carbon Sources for Yeast Growth as a Precondition of Hydrogen Peroxide Induced Hormetic Phenotype

    PubMed Central

    Vasylkovska, Ruslana; Petriv, Natalia; Semchyshyn, Halyna

    2015-01-01

    Hormesis is a phenomenon of particular interest in biology, medicine, pharmacology, and toxicology. In this study, we investigated the relationship between H2O2-induced hormetic response in S. cerevisiae and carbon sources in yeast growth medium. In general, our data indicate that (i) hydrogen peroxide induces hormesis in a concentration-dependent manner; (ii) the effect of hydrogen peroxide on yeast reproductive ability depends on the type of carbon substrate in growth medium; and (iii) metabolic and growth rates as well as catalase activity play an important role in H2O2-induced hormetic response in yeast. PMID:26843865

  9. Carbon Sources for Yeast Growth as a Precondition of Hydrogen Peroxide Induced Hormetic Phenotype.

    PubMed

    Vasylkovska, Ruslana; Petriv, Natalia; Semchyshyn, Halyna

    2015-01-01

    Hormesis is a phenomenon of particular interest in biology, medicine, pharmacology, and toxicology. In this study, we investigated the relationship between H2O2-induced hormetic response in S. cerevisiae and carbon sources in yeast growth medium. In general, our data indicate that (i) hydrogen peroxide induces hormesis in a concentration-dependent manner; (ii) the effect of hydrogen peroxide on yeast reproductive ability depends on the type of carbon substrate in growth medium; and (iii) metabolic and growth rates as well as catalase activity play an important role in H2O2-induced hormetic response in yeast. PMID:26843865

  10. Mushroom extract protects against hydrogen peroxide-induced toxicity in hepatic and neuronal human cultured cells.

    PubMed

    Guizani, Nejib; Waly, Mostafa I

    2012-11-15

    Hydrogen peroxide is an oxidative stress agent that is associated with depletion of intracellular glutathione and inhibition of antioxidant enzymes in different cell lines. Consumption of antioxidant-rich foods reduces cellular oxidative stress and its related health problems. This study aimed to assess the antioxidant properties of mushroom, Agaricus bisporous cultivar extract, against hydrogen peroxide induced oxidative stress in cultured human hepatic (HepG2) and neuronal (SH-SY5Y) cells. In this study, hydrogen peroxide caused significant oxidative stress in HepG2 and SH-SY5Y cells as demonstrated by glutathione depletion, impairment of total antioxidant capacity and inhibition of antioxidant enzymes (glutathione peroxidase, catalase and superoxide dismutase). Agaricusbisporous extract ameliorated the observed hydrogen peroxide-induced oxidative cellular insult as indicated by restoring the activity of glutathione and the assayed antioxidant enzymes to control levels. The results suggest that mushroom extract as antioxidant properties and protects against the oxidative stress induced by hydrogen peroxide-in cultured human hepatic and neuronal cells. PMID:24261122

  11. Reduction of hydrogen peroxide-induced erythrocyte damage by Carica papaya leaf extract

    PubMed Central

    Okoko, Tebekeme; Ere, Diepreye

    2012-01-01

    Objective To investigate the in vitro antioxidant potential of Carica papaya (C. papaya) leaf extract and its effect on hydrogen peroxide-induced erythrocyte damage assessed by haemolysis and lipid peroxidation. Methods Hydroxyl radical scavenging activities, hydrogen ion scavenging activity, metal chelating activity, and the ferrous ion reducing ability were assessed as antioxidant indices. In the other experiment, human erythrocytes were treated with hydrogen peroxide to induce erythrocyte damage. The extract (at various concentrations) was subsequently incubated with the erythrocytes and later analysed for haemolysis and lipid peroxidation as indices for erythrocyte damage. Results Preliminary investigation of the extract showed that the leaf possessed significant antioxidant and free radical scavenging abilities using in vitro models in a concentration dependent manner (P<0.05). The extract also reduced hydrogen peroxide induced erythrocyte haemolysis and lipid peroxidation significantly when compared with ascorbic acid (P<0.05). The IC50 values were 7.33 mg/mL and 1.58 mg/mL for inhibition of haemolysis and lipid peroxidation, respectively. In all cases, ascorbic acid (the reference antioxidant) possessed higher activity than the extract. Conclusions The findings show that C. papaya leaves possess significant bioactive potential which is attributed to the phytochemicals which act in synergy. Thus, the leaves can be exploited for pharmaceutical and nutritional purposes. PMID:23569948

  12. Resveratrol attenuated hydrogen peroxide-induced myocardial apoptosis by autophagic flux

    PubMed Central

    Huang, Chih-Yang; Ting, Wei-Jen; Huang, Chih-Yang; Yang, Jing-Yi; Lin, Wan-Teng

    2016-01-01

    Background Resveratrol is a Sirt-1-specific activator, which also exerts cardioprotective effects that regulate redox signalling during oxidative stress and autophagy during cardiovascular disease (CVD). Objective This study investigated the protective effects of resveratrol against hydrogen peroxide-induced damage in cardiomyocytes. Design In this article, hydrogen peroxide-induced autophagy and apoptosis in H9c2 cardiomyoblasts were studied at an increasing concentration from 0 to 100 µM. Results Resveratrol pretreatment with concentrations of 10, 20, and 50 µM inhibits autophagic apoptosis by increasing p-Akt and Bcl-2 protein levels in H9c2 cells. Interestingly, resveratrol treatment activates the Beclin-1, LC3, p62, and the lysosome-associated protein LAMP2a within 24 h of administration. Conclusions These results suggest that resveratrol-regulated autophagy may play a role in degrading damaged organelles in H9c2 cells rather than causing apoptosis, and this may be a possible mechanism by which resveratrol protects the heart during CVD. PMID:27211317

  13. Inhibition of hydrogen peroxide induced injuring on human skin fibroblast by Ulva prolifera polysaccharide.

    PubMed

    Cai, Chuner; Guo, Ziye; Yang, Yayun; Geng, Zhonglei; Tang, Langlang; Zhao, Minglin; Qiu, Yuyan; Chen, Yifan; He, Peimin

    2016-10-01

    Ulva prolifera can protect human skin fibroblast from being injured by hydrogen peroxide. This work studied the composition of Ulva prolifera polysaccharide and identified its physicochemical properties. The results showed that the cell proliferation of 0.5mg/mL crude polysaccharide was 154.4% of that in negative control group. Moreover, ROS detection indices, including DCFH-DA, GSH-PX, MDA and CAT, indicated that crude polysaccharide could improve cellular ability to scavenge free radical and decrease the injury on human skin fibroblast by hydrogen peroxide. In purified polysaccharide, the activity of fraction P1-1 was the highest, with 174.6% of that in negative control group. The average molecular weight of P1-1 was 137kD with 18.0% of sulfate content. This work showed the inhibition of hydrogen peroxide induced injuries on human skin fibroblast by Ulva prolifera polysaccharide, which may further evaluate the application of U. prolifera on cosmetics. PMID:27211299

  14. Normal Platelet Integrin Function in Mice Lacking Hydrogen Peroxide-Induced Clone-5 (Hic-5)

    PubMed Central

    Popp, Michael; Thielmann, Ina; Nieswandt, Bernhard; Stegner, David

    2015-01-01

    Integrin αIIbβ3 plays a central role in the adhesion and aggregation of platelets and thus is essential for hemostasis and thrombosis. Integrin activation requires the transmission of a signal from the small cytoplasmic tails of the α or β subunit to the large extracellular domains resulting in conformational changes of the extracellular domains to enable ligand binding. Hydrogen peroxide-inducible clone-5 (Hic-5), a member of the paxillin family, serves as a focal adhesion adaptor protein associated with αIIbβ3 at its cytoplasmic tails. Previous studies suggested Hic-5 as a novel regulator of integrin αIIbβ3 activation and platelet aggregation in mice. To assess this in more detail, we generated Hic-5-null mice and analyzed activation and aggregation of their platelets in vitro and in vivo. Surprisingly, lack of Hic-5 had no detectable effect on platelet integrin activation and function in vitro and in vivo under all tested conditions. These results indicate that Hic-5 is dispensable for integrin αIIbβ3 activation and consequently for arterial thrombosis and hemostasis in mice. PMID:26172113

  15. Hydrogen peroxide inducible clone-5 mediates reactive oxygen species signaling for hepatocellular carcinoma progression.

    PubMed

    Wu, Jia-Ru; Hu, Chi-Tan; You, Ren-In; Pan, Siou-Mei; Cheng, Chuan-Chu; Lee, Ming-Che; Wu, Chao-Chuan; Chang, Yao-Jen; Lin, Shu-Chuan; Chen, Chang-Shan; Lin, Teng-Yi; Wu, Wen-Sheng

    2015-10-20

    One of the signaling components involved in hepatocellular carcinoma (HCC) progression is the focal adhesion adaptor paxillin. Hydrogen peroxide inducible clone-5 (Hic-5), one of the paralogs of paxillin, exhibits many biological functions distinct from paxillin, but may cooperate with paxillin to trigger tumor progression. Screening of Hic-5 in 145 surgical HCCs demonstrated overexpression of Hic-5 correlated well with intra- and extra-hepatic metastasis. Hic-5 highly expressed in the patient derived HCCs with high motility such as HCC329 and HCC353 but not in the HCCs with low motility such as HCC340. Blockade of Hic-5 expression prevented constitutive migration of HCC329 and HCC353 and HGF-induced cell migration of HCC340. HCC329Hic-5(-), HCC353Hic-5(-), HCC372Hic-5(-), the HCCs stably depleted of Hic-5, exhibited reduced motility compared with each HCC expressing Scramble shRNA. Moreover, intra/extrahepatic metastasis of HCC329Hic-5(-) in SCID mice greatly decreased compared with HCC329Scramble. On the other hand, ectopic Hic-5 expression in HCC340 promoted its progression. Constitutive and HGF-induced Hic-5 expression in HCCs were suppressed by the reactive oxygen species (ROS) scavengers catalase and dithiotheritol and c-Jun N-terminal kinase (JNK) inhibitor SP600125. On the contrary, depletion of Hic-5 blocked constitutive and HGF-induced ROS generation and JNK phosphorylation in HCCs. Also, ectopic expression of Hic-5 enhanced ROS generation and JNK phosphorylation. These highlighted that Hic-5 plays a central role in the positive feedback ROS-JNK signal cascade. Finally, the Chinese herbal derived anti-HCC peptide LZ-8 suppressed constitutive Hic-5 expression and JNK phosphorylation. In conclusion, Hic-5 mediates ROS-JNK signaling and may serve as a therapeutic target for prevention of HCC progression. PMID:26416447

  16. Zinc carnosine protects against hydrogen peroxide-induced DNA damage in WIL2-NS lymphoblastoid cell line independent of poly (ADP-Ribose) polymerase expression.

    PubMed

    Ooi, Theng Choon; Mohammad, Nur Hafiza; Sharif, Razinah

    2014-12-01

    The aim of this study is to investigate the ability of zinc carnosine to protect the human lymphoblastoid (WIL2-NS) cell line from hydrogen peroxide-induced DNA damage. Cells were cultured with medium containing zinc carnosine at the concentrations of 0.4, 4, 16 and 32 μM for 9 days prior to treatment with 30 μM of hydrogen peroxide (30 min). Zinc carnosine at the concentration 16 μM was optimal in protecting cells from hydrogen peroxide-induced cytotoxicity and gave the lowest percentage of apoptotic and necrotic cells. Results showed that zinc carnosine was able to induce glutathione production and protect cells from hydrogen peroxide-induced oxidative stress at all concentration and the highest protection was observed at 32-μM zinc carnosine culture. Cytokinesis-block micronucleus cytome assay showed that cells cultured with 4-32 μM of zinc carnosine showed significant reduction in micronuclei formation, nucleoplasmic bridges and nuclear bud frequencies (p < 0.05), suggesting that these concentrations maybe optimal in protecting cells from hydrogen peroxide-induced DNA damage. However, after being challenged with hydrogen peroxide, no increase in poly(ADP-ribose) polymerase expression was observed. Thus, results from this study demonstrate that zinc carnosines possess antioxidant properties and are able to reduce hydrogen peroxide-induced DNA damage in vitro independent of poly(ADP-ribose) polymerase. Further studies are warranted to understand the mechanism of protection of zinc carnosine against hydrogen peroxide-induced damage. PMID:25326781

  17. Degradation of bisphenol A and formation of hydrogen peroxide induced by glow discharge plasma in aqueous solutions.

    PubMed

    Wang, Lei; Jiang, Xuanzhen; Liu, Yongjun

    2008-06-15

    Degradation of bisphenol A (BPA) and simultaneous formation of hydrogen peroxide induced by glow discharge plasma in contact with aqueous solution were investigated. Experimental results indicated that the BPA degradation rate was higher in sodium chloride solution than that in sodium sulfate or phosphate solutions. However, the formation rates of hydrogen peroxide were on the opposite case. Both the BPA removal and the hydrogen peroxide production rates decreased in the presence of hydroxyl radical scavengers, indicating that hydroxyl radicals are the most probable oxidants responsible for BPA degradation and the precursors of hydrogen peroxide. Ferric ion showed better catalytic effect than that of ferrous ion, suggesting that the ferric ion was reduced by the intermediates formed during BPA degradation, which was confirmed by following the production of ferrous ion in the system. TOC of the solution gradually reduced with discharge time; however, without catalysts, the solution COD increased with discharge time and sharply decreased in the presence of iron salts. The major intermediate products were identified by LC/MS and the possible degradation mechanism was discussed. PMID:18082947

  18. White tea (Camellia sinensis Kuntze) exerts neuroprotection against hydrogen peroxide-induced toxicity in PC12 cells.

    PubMed

    López, Víctor; Calvo, Maria Isabel

    2011-03-01

    Tea is a popular beverage whose consumption is associated with prevention of certain disorders. The objective of the study was to investigate the potential neuroprotective effect of white tea extract (WTE) on hydrogen peroxide induced toxicity in PC12 cells. Cells were treated with various doses of WTE (10-250 μg/ml) before exposition to 250 μM hydrogen peroxide and cell survival was determined through the MTT and LDH assays. Oxidative stress was quantified in the cells after treatments as intracellular reactive oxygen species (ROS) production and the antioxidant activity of the extract was assessed in a cell free system in terms of free radical scavenging capacity. Results showed that WTE has a significant protective effect in the PC12 cell line against hydrogen peroxide as cell survival was significantly superior in WTE-treated cells compared to hydrogen peroxide-treated cells. A reduction on intracellular oxidative stress as well as radical scavenging properties were produced by WTE. Results suggest that WTE protects PC12 cells against H(2)O(2)-induced toxicity, and that an antioxidant mechanism through ROS scavenging may be in part responsible for cells neuroprotection. PMID:21271291

  19. Hydrogen peroxide induces spawning in mollusks, with activation of prostaglandin endoperoxide synthetase.

    PubMed

    Morse, D E; Duncan, H; Hooker, N; Morse, A

    1977-04-15

    Addition of hydrogen peroxide to seawater causes synchronous spawning in gravid male and female abalones, and certain other mollusks as well. This effect is blocked by exposure of the animals to aspirin, an inhibitor of the enzyme catalyzing oxidative synthesis of prostaglandin endoperoxide. Hydrogen peroxide activates this enzymatic reaction in cell-free extracts prepared from abalone eggs (a very rich source of the prostaglandin endoperoxide synthetase); this effect appears to reveal a fundamental property of prostaglandin endoperoxide synthesis. Applicability of these findings to both mariculture and medical purposes is suggested. PMID:403609

  20. Effect of standardized fruit extract of Luffa cylindrica on oxidative stress markers in hydrogen peroxide induced cataract

    PubMed Central

    Dubey, Suchita; Saha, Sudipta; Kaithwas, Gaurav; Saraf, Shubhini A.

    2015-01-01

    Objective: The ability of Luffa cylindrica Roem fruit extract (LCE) to modulate biochemical parameters was investigated by in vitro studies for its role in hydrogen peroxide induced cataract on isolated goat lenses which were incubated for 72 h at 37°C. Materials and Methods: Test groups contained 5, 10, 15, 20, 25, and 30 µg/ml of LCE along with 1 ml of H2O2 (0.5 mM) as cataract inducer. Lenses were examined for morphological variation and transparency periodically during the incubation. Biochemical parameters such as superoxide dismutase (SOD), reduced glutathione (GSH), total protein content (TPC), and malondialdehyde (MDA) were estimated. Results: SOD, GSH, and TPC levels were found to increase proportionally with the concentration of LCE. However, MDA levels were found to be inversely proportional to the concentration of LCE. Opacity was graded as per “lens opacities classification system III.” Morphological examination suggested that LCE (25 µg/ml) maintained a vision for 44 h. No lens in LCE dose groups developed dense nuclear opacity after 24 h as opposed to 80% in negative control. Conclusion: The results suggest that LCE can delay the onset and/or prevent the progression of cataract which can be attributed to the presence of adequate phenolics, flavonoids, and Vitamin A and its high nutritional value. This preliminary study can be further synergized by testing LCE against other in vivo and in vitro models of cataract. PMID:26729957

  1. Protective effects of rice dreg protein hydrolysates against hydrogen peroxide-induced oxidative stress in HepG-2 cells.

    PubMed

    Zhang, Xinxia; Wang, Li; Wang, Ren; Luo, Xiaohu; Li, Yanan; Chen, Zhengxing

    2016-03-01

    In this paper, the effects of rice dreg protein hydrolysates (RDPHs) obtained by various proteases on hydrogen peroxide-induced oxidative stress in HepG-2 cells were investigated. Cell cytotoxicity was evaluated through the aspects of cell viability, ROS level, antioxidant enzyme activity, and production of malondialdehyde (MDA). Cell apoptosis was assessed by flow cytometry. Molecular weight distribution was analyzed by gel permeation chromatography, and amino acid composition was measured using an automatic amino acid analyzer. The survival of cells and the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were significantly increased through the pre-incubation of HepG-2 cells with RDPHs before H2O2 exposure. Additionally, these pretreatments also resulted in a reduction in ROS and MDA levels. As a result, apoptosis and loss of mitochondrial membrane potential of the HepG-2 cells were alleviated. Furthermore, the protective effects of protein hydrolysates obtained by various proteases were noticeably distinct, in which RDPHs prepared by alkaline protease showed higher antioxidant activities. The difference in the protective effects might be attributed to the specific peptide or amino acid composition. Therefore, enzymatic hydrolysis with different enzymes studied here could attenuate H2O2-induced cell damage, and the type of protease greatly influenced the anti-oxidative activity. Particularly, optimum use of Alcalase could produce peptides with higher antioxidant activity. PMID:26843356

  2. Proline dehydrogenase is essential for proline protection against hydrogen peroxide induced cell death

    PubMed Central

    Natarajan, Sathish Kumar; Zhu, Weidong; Liang, Xinwen; Zhang, Lu; Demers, Andrew J.; Zimmerman, Matthew C.; Simpson, Melanie A.; Becker, Donald F.

    2012-01-01

    Proline metabolism has an underlying role in apoptotic signaling that impacts tumorigenesis. Proline is oxidized to glutamate in the mitochondria with the rate limiting step catalyzed by proline dehydrogenase (PRODH). PRODH expression is inducible by p53 leading to increased proline oxidation, reactive oxygen species (ROS) formation, and induction of apoptosis. Paradoxical to its role in apoptosis, proline also protects cells against oxidative stress. Here we explore the mechanism of proline protection against hydrogen peroxide stress in melanoma WM35 cells. Treatment of WM35 cells with proline significantly increased cell viability, diminished oxidative damage of cellular lipids and proteins, and retained ATP and NADPH levels after exposure to hydrogen peroxide. Inhibition or siRNA-mediated knockdown of PRODH abolished proline protection against oxidative stress whereas knockdown of Δ1-pyrroline-5-carboxylate reductase, a key enzyme in proline biosynthesis, had no impact on proline protection. Potential linkages between proline metabolism and signaling pathways were explored. The combined inhibition of the mammalian target of rapamycin complex 1 (mTORC1) and mTORC2 eliminated proline protection. A significant increase in Akt activation was observed in proline treated cells after hydrogen peroxide stress along with a corresponding increase in the phosphorylation of the fork head transcription factor class O3a (FoxO3a). The role of PRODH in proline mediated protection was validated in the prostate carcinoma cell line, PC3. Knockdown of PRODH in PC3 cells attenuated phosphorylated levels of Akt and FoxO3a and decreased cell survival during hydrogen peroxide stress. The results provide evidence that PRODH is essential in proline protection against hydrogen peroxide mediated cell death and that proline/PRODH helps activate Akt in cancer cells. PMID:22796327

  3. Prompt repair of hydrogen peroxide-induced DNA lesions prevents catastrophic chromosomal fragmentation.

    PubMed

    Mahaseth, Tulip; Kuzminov, Andrei

    2016-05-01

    Iron-dependent oxidative DNA damage in vivo by hydrogen peroxide (H2O2, HP) induces copious single-strand(ss)-breaks and base modifications. HP also causes infrequent double-strand DNA breaks, whose relationship to the cell killing is unclear. Since hydrogen peroxide only fragments chromosomes in growing cells, these double-strand breaks were thought to represent replication forks collapsed at direct or excision ss-breaks and to be fully reparable. We have recently reported that hydrogen peroxide kills Escherichia coli by inducing catastrophic chromosome fragmentation, while cyanide (CN) potentiates both the killing and fragmentation. Remarkably, the extreme density of CN+HP-induced chromosomal double-strand breaks makes involvement of replication forks unlikely. Here we show that this massive fragmentation is further amplified by inactivation of ss-break repair or base-excision repair, suggesting that unrepaired primary DNA lesions are directly converted into double-strand breaks. Indeed, blocking DNA replication lowers CN+HP-induced fragmentation only ∼2-fold, without affecting the survival. Once cyanide is removed, recombinational repair in E. coli can mend several double-strand breaks, but cannot mend ∼100 breaks spread over the entire chromosome. Therefore, double-strand breaks induced by oxidative damage happen at the sites of unrepaired primary one-strand DNA lesions, are independent of replication and are highly lethal, supporting the model of clustered ss-breaks at the sites of stable DNA-iron complexes. PMID:27078578

  4. [Hydrogen peroxide-induced lesions in the digestive tract. Apropos 4 cases].

    PubMed

    Asanza, G; Menchén, P L; Castellote, J I; Salcedo, M; Jaime, B; Senent, C; Castellanos, D; Cos, E

    1995-06-01

    Gastrointestinal injury caused by caustic products a are relatively infrequent, occurring mainly in the upper gastrointestinal tract. Accidental ingestion accounts for most of the cases, and the severity and extent of damage produced, depends on the composition and volume of the caustic agent ingested; endoscopy is a safe and effective diagnostic procedure. We report four unusual cases of caustic injury of the gastrointestinal tract due to hydrogen peroxide, two cases due to oral ingestion and another two due to the accidental administration of enemas, there was a good clinic and endoscopic recovery with conservative treatment. PMID:7612371

  5. A comprehensive analysis of hydrogen peroxide-induced gene expression in tobacco

    PubMed Central

    Vandenabeele, Steven; Van Der Kelen, Katrien; Dat, James; Gadjev, Ilya; Boonefaes, Tom; Morsa, Stijn; Rottiers, Pieter; Slooten, Luit; Van Montagu, Marc; Zabeau, Marc; Inzé, Dirk; Van Breusegem, Frank

    2003-01-01

    Hydrogen peroxide plays a central role in launching the defense response during stress in plants. To establish a molecular profile provoked by a sustained increase in hydrogen peroxide levels, catalase-deficient tobacco plants (CAT1AS) were exposed to high light (HL) intensities over a detailed time course. The expression kinetics of >14,000 genes were monitored by using transcript profiling technology based on cDNA-amplified fragment length polymorphism. Clustering and sequence analysis of 713 differentially expressed transcript fragments revealed a transcriptional response that mimicked that reported during both biotic and abiotic stresses, including the up-regulation of genes involved in the hypersensitive response, vesicular transport, posttranscriptional processes, biosynthesis of ethylene and jasmonic acid, proteolysis, mitochondrial metabolism, and cell death, and was accompanied by a very rapid up-regulation of several signal transduction components. Expression profiling corroborated by functional experiments showed that HL induced photoinhibition in CAT1AS plants and that a short-term HL exposure of CAT1AS plants triggered an increased tolerance against a subsequent severe oxidative stress. PMID:14671332

  6. Hydrogen peroxide induced cell death: One or two modes of action?

    PubMed

    Uhl, Lionel; Gerstel, Audrey; Chabalier, Maialène; Dukan, Sam

    2015-12-01

    Imlay and Linn show that exposure of logarithmically growing Escherichia coli to hydrogen peroxide (H2O2) leads to two kinetically distinguishable modes of cell killing. Mode one killing is pronounced near 1 mM concentration of H2O2 and is caused by DNA damage, whereas mode-two killing requires higher concentration ([Formula: see text]). The second mode seems to be essentially due to damage to all macromolecules. This phenomenon has also been observed in Fenton in vitro systems with DNA nicking caused by hydroxyl radical ([Formula: see text]). To our knowledge, there is currently no mathematical model for predicting mode one killing in vitro or in vivo after H2O2 exposure. We propose a simple model, using Escherichia coli as a model organism and a set of ordinary differential equations. Using this model, we show that available iron and cell density, two factors potentially involved in ROS dynamics, play a major role in the prediction of the experimental results obtained by our team and in previous studies. Indeed the presence of the mode one killing is strongly related to those two parameters. To our knowledge, mode-one death has not previously been explained. Imlay and Linn (Imlay and Linn, 1986) suggested that perhaps the amount of the toxic species was reduced at high concentrations of H2O2 because hydroxyl (or other) radicals might be quenched directly by hydrogen peroxide with the concomitant formation of superoxide anion (a less toxic species). We demonstrate (mathematically and numerically) that free available iron decrease is necessary to explain mode one killing which cannot appear without it and that H2O2 quenching or consumption is not responsible for mode-one death. We are able to follow ROS concentration (particularly responsible for mode one killing) after exposure to H2O2. This model therefore allows us to understand two major parameters involved in the presence or not of the first killing mode. PMID:27441232

  7. Hydrogen Peroxide Induced Protein Oxidation During Storage and Lyophilization Process.

    PubMed

    Cheng, Weiqiang; Zheng, Xiaoyang; Yang, Mark

    2016-06-01

    Although the impact of hydrogen peroxide (HP) on proteins in liquid solutions has been studied extensively, the impact during lyophilization has been largely overlooked. The purpose of this work was to investigate the effect of HP on lyophilized proteins and HP removal by lyophilization. A protein formulation at 5 mg/mL and its placebo were spiked with HP up to 5.0 ppm and then lyophilized. HP concentration, protein oxidation, and aggregation were monitored before and after lyophilization, as well as during storage at 25°C. The lyophilization process removed on average 94.1% of HP from protein formulation, but only 72.5% from the placebo. There were also significant increases in protein oxidization and aggregation. The oxidation increment correlated with the decrease of HP concentration in both the protein formulation and placebo at all temperatures. Protein oxidation at different freezing temperatures was also studied in follow-up studies. Data from these studies suggest that (1) HP has a significant impact on oxidation and aggregation of protein during lyophilization; (2) significant oxidation can occur even when the protein formulation is frozen; (3) the oxidized protein is more prone to aggregation during lyophilization process. PMID:27238482

  8. Catalases Induction in High Virulence Pinewood Nematode Bursaphelenchus xylophilus under Hydrogen Peroxide-Induced Stress.

    PubMed

    Vicente, Cláudia S L; Ikuyo, Yoriko; Shinya, Ryoji; Mota, Manuel; Hasegawa, Koichi

    2015-01-01

    Considered an EPPO A2 quarantine pest, Bursaphelenchus xylophilus is the causal agent of the pine wilt disease and the most devastating plant parasitic nematode attacking coniferous trees in the world. In the early stages of invasion, this nematode has to manage host defence mechanisms, such as strong oxidative stress. Only successful, virulent nematodes are able to tolerate the basal plant defences, and furthermore migrate and proliferate inside of the host tree. In this work, our main objective was to understand to what extent B. xylophilus catalases are involved in their tolerance to oxidative stress and virulence, using as oxidant agent the reactive oxygen species hydrogen peroxide (H2O2). After 24 hours of exposure, high virulence isolates of B. xylophilus could withstand higher H2O2 concentrations in comparison with low virulence B. xylophilus and B. mucronatus, corroborating our observation of Bxy-ctl-1 and Bxy-ctl-2 catalase up-regulation under the same experimental conditions. Both catalases are expressed throughout the nematode intestine. In addition, transgenic strains of Caenorhabditis elegans overexpressing B. xylophilus catalases were constructed and evaluated for survival under similar conditions as previously. Our results suggest that catalases of high virulence B. xylophilus were crucial for nematode survival under prolonged exposure to in vitro oxidative stress, highlighting their adaptive response, which could contribute to their success in host conditions. PMID:25894519

  9. Catalases Induction in High Virulence Pinewood Nematode Bursaphelenchus xylophilus under Hydrogen Peroxide-Induced Stress

    PubMed Central

    Vicente, Cláudia S. L.; Ikuyo, Yoriko; Shinya, Ryoji; Mota, Manuel; Hasegawa, Koichi

    2015-01-01

    Considered an EPPO A2 quarantine pest, Bursaphelenchus xylophilus is the causal agent of the pine wilt disease and the most devastating plant parasitic nematode attacking coniferous trees in the world. In the early stages of invasion, this nematode has to manage host defence mechanisms, such as strong oxidative stress. Only successful, virulent nematodes are able to tolerate the basal plant defences, and furthermore migrate and proliferate inside of the host tree. In this work, our main objective was to understand to what extent B. xylophilus catalases are involved in their tolerance to oxidative stress and virulence, using as oxidant agent the reactive oxygen species hydrogen peroxide (H2O2). After 24 hours of exposure, high virulence isolates of B. xylophilus could withstand higher H2O2 concentrations in comparison with low virulence B. xylophilus and B. mucronatus, corroborating our observation of Bxy-ctl-1 and Bxy-ctl-2 catalase up-regulation under the same experimental conditions. Both catalases are expressed throughout the nematode intestine. In addition, transgenic strains of Caenorhabditis elegans overexpressing B. xylophilus catalases were constructed and evaluated for survival under similar conditions as previously. Our results suggest that catalases of high virulence B. xylophilus were crucial for nematode survival under prolonged exposure to in vitro oxidative stress, highlighting their adaptive response, which could contribute to their success in host conditions. PMID:25894519

  10. Role of mitochondrial hydrogen peroxide induced by intermittent hypoxia in airway epithelial wound repair in vitro.

    PubMed

    Hamada, Satoshi; Sato, Atsuyasu; Hara-Chikuma, Mariko; Satooka, Hiroki; Hasegawa, Koichi; Tanimura, Kazuya; Tanizawa, Kiminobu; Inouchi, Morito; Handa, Tomohiro; Oga, Toru; Muro, Shigeo; Mishima, Michiaki; Chin, Kazuo

    2016-05-15

    The airway epithelium acts as a frontline barrier against various environmental insults and its repair process after airway injury is critical for the lung homeostasis restoration. Recently, the role of intracellular reactive oxygen species (ROS) as transcription-independent damage signaling has been highlighted in the wound repair process. Both conditions of continuous hypoxia and intermittent hypoxia (IH) induce ROS. Although IH is important in clinical settings, the roles of IH-induced ROS in the airway repair process have not been investigated. In this study, we firstly showed that IH induced mitochondrial hydrogen peroxide (H2O2) production and significantly decreased bronchial epithelial cell migration, prevented by catalase treatment in a wound scratch assay. RhoA activity was higher during repair process in the IH condition compared to in the normoxic condition, resulting in the cellular morphological changes shown by immunofluorescence staining: round cells, reduced central stress fiber numbers, pronounced cortical actin filament distributions, and punctate focal adhesions. These phenotypes were replicated by exogenous H2O2 treatment under the normoxic condition. Our findings confirmed the transcription-independent role of IH-induced intracellular ROS in the bronchial epithelial cell repair process and might have significant implications for impaired bronchial epithelial cell regeneration. PMID:27093911

  11. Deacetylation of the tumor suppressor protein PML regulates hydrogen peroxide-induced cell death

    PubMed Central

    Guan, D; Lim, J H; Peng, L; Liu, Y; Lam, M; Seto, E; Kao, H-Y

    2014-01-01

    The promyelocytic leukemia protein (PML) is a tumor suppressor that is expressed at a low level in various cancers. Although post-translational modifications including SUMOylation, phosphorylation, and ubiquitination have been found to regulate the stability or activity of PML, little is known about the role of its acetylation in the control of cell survival. Here we demonstrate that acetylation of lysine 487 (K487) and SUMO1 conjugation of K490 at PML protein are mutually exclusive. We found that hydrogen peroxide (H2O2) promotes PML deacetylation and identified SIRT1 and SIRT5 as PML deacetylases. Both SIRT1 and SIRT5 are required for H2O2-mediated deacetylation of PML and accumulation of nuclear PML protein in HeLa cells. Knockdown of SIRT1 reduces the number of H2O2-induced PML-nuclear bodies (NBs) and increases the survival of HeLa cells. Ectopic expression of wild-type PML but not the K487R mutant rescues H2O2-induced cell death in SIRT1 knockdown cells. Furthermore, ectopic expression of wild-type SIRT5 but not a catalytic defective mutant can also restore H2O2-induced cell death in SIRT1 knockdown cells. Taken together, our findings reveal a novel regulatory mechanism in which SIRT1/SIRT5-mediated PML deacetylation plays a role in the regulation of cancer cell survival. PMID:25032863

  12. Effect of vitamin C administration on hydrogen peroxide-induced cytotoxicity in periodontal ligament cells.

    PubMed

    Wu, Wenlei; Yang, Nanfei; Feng, Xiujing; Sun, Tingzhe; Shen, Pingping; Sun, Weibin

    2015-01-01

    Periodontitis is a disease, which is associated with chronic inflammation and leads to significant destruction of periodontal tissues. Periodontal ligament cells (PDLCs) constitute the largest cell population in PDL tissues and a considerable body of evidence has demonstrated an association between oxidative stress and the progression of periodontitis. However, the effects on PDLCs exposed to hydrogen peroxide (H2O2) and the molecular mechanisms by which H2O2 affects periodontitis remain to be elucidated. In the present study, the potential cytotoxic effect of H2O2 and the antioxidative function of vitamin C (Vc) in PDLCs were investigated. The results demonstrated that H2O2 treatment decreased the viability of PDLCs. The decreased PDLC viability was primarily induced by apoptosis, which was evidenced by cleaved caspases-3, caspases-9 and poly (ADP-ribose) polymerase. Following optimal Vc addition, the proapoptotic effects of H2O2 were partially antagonized. Taken together, the present study demonstrated that H2O2 primarily induced the apoptosis of PDLCs and that these adverse effects were partially rescued following treatment with Vc. These results revealed how H2O2 promotes the progression of periodontitis and provide an improved understanding of the reversal effect of antioxidant treatment. Therefore, optimal Vc administration may provide a potentially effective technique in periodontal therapy. PMID:25333298

  13. Astaxanthin protects steroidogenesis from hydrogen peroxide-induced oxidative stress in mouse Leydig cells.

    PubMed

    Wang, Jyun-Yuan; Lee, Yue-Jia; Chou, Mei-Chia; Chang, Renin; Chiu, Chih-Hsien; Liang, Yao-Jen; Wu, Leang-Shin

    2015-03-01

    Androgens, especially testosterone produced in Leydig cells, play an essential role in development of the male reproductive phenotype and fertility. However, testicular oxidative stress may cause a decline in testosterone production. Many antioxidants have been used as reactive oxygen species (ROS) scavengers to eliminate oxidative stress to protect steroidogenesis. Astaxanthin (AST), a natural extract from algae and plants ubiquitous in the marine environment, has been shown to have antioxidant activity in many previous studies. In this study, we treated primary mouse Leydig cells or MA-10 cells with hydrogen peroxide (H2O2) to cause oxidative stress. Testosterone and progesterone production was suppressed and the expression of the mature (30 kDa) form of StAR protein was down-regulated in MA-10 cells by H2O2 and cAMP co-treatment. However, progesterone production and expression of mature StAR protein were restored in MA-10 cells by a one-hour pretreatment with AST. AST also reduced ROS levels in cells so that they were lower than the levels in untreated controls. These results provide additional evidence of the potential health benefits of AST as a potential food additive to ease oxidative stress. PMID:25786065

  14. Calpain-1 is required for hydrogen peroxide-induced myotube atrophy.

    PubMed

    McClung, J M; Judge, A R; Talbert, E E; Powers, S K

    2009-02-01

    Recent reports suggest numerous roles for cysteine proteases in the progression of skeletal muscle atrophy due to disuse or disease. Nonetheless, a specific requirement for these proteases in the progression of skeletal muscle atrophy has not been demonstrated. Therefore, this investigation determined whether calpains or caspase-3 is required for oxidant-induced C2C12 myotube atrophy. We demonstrate that exposure to hydrogen peroxide (25 microM H2O2) induces myotube oxidative damage and atrophy, with no evidence of cell death. Twenty-four hours of exposure to H2O2 significantly reduced both myotube diameter and the abundance of numerous proteins, including myosin (-81%), alpha-actinin (-40%), desmin (-79%), talin (-37%), and troponin I (-80%). Myotube atrophy was also characterized by increased cleavage of the cysteine protease substrate alphaII-spectrin following 4 h and 24 h of H2O2 treatment. This degradation was blocked by administration of the protease inhibitor leupeptin (10 microM). Using small interfering RNA transfection of mature myotubes against the specific proteases calpain-1, calpain-2, and caspase-3, we demonstrated that calpain-1 is required for H2O2-induced myotube atrophy. Collectively, our data provide the first evidence for an absolute requirement for calpain-1 in the development of skeletal muscle myotube atrophy in response to oxidant-induced cellular stress. PMID:19109522

  15. Protection of Bovine Mammary Epithelial Cells from Hydrogen Peroxide-Induced Oxidative Cell Damage by Resveratrol

    PubMed Central

    Jin, Xiaolu; Wang, Kai; Liu, Hongyun; Hu, Fuliang; Zhao, Fengqi; Liu, Jianxin

    2016-01-01

    The mammary epithelial cells (MECs) of high-producing dairy cows are likely to be subject to oxidative stress (OS) due to the intensive cell metabolism. The objectives of this study were to investigate the cytoprotective effects of resveratrol against hydrogen peroxide- (H2O2-) induced OS in cultured bovine MECs (MAC-T). Pretreatment of MAC-T cells with resveratrol could rescue the decrease in cell viability and resulted in lower intracellular reactive oxygen species (ROS) accumulation after H2O2 exposure. Resveratrol helped MAC-T cells to prevent H2O2-induced endoplasmic reticulum stress and mitochondria-related cell apoptosis. Moreover, resveratrol induced mRNA expression of multiple antioxidant defense genes in MAC-T cells under normal/oxidative conditions. Nuclear factor erythroid 2-related factor 2 (Nrf2) was required for the cytoprotective effects on MAC-T cells by resveratrol, as knockdown of Nrf2 significantly abolished resveratrol-induced cytoprotective effects against OS. In addition, by using selective inhibitors, we further confirmed that the induction of Nrf2 by resveratrol was mediated through the prolonged activation of PI3K/Akt and ERK/MAPK pathways but negatively regulated by p38/MAPK pathway. Overall, resveratrol has beneficial effects on bovine MECs redox balance and may be potentially used as a therapeutic medicine against oxidative insult in lactating animals. PMID:26962394

  16. Protective Effects of Costunolide against Hydrogen Peroxide-Induced Injury in PC12 Cells.

    PubMed

    Cheong, Chong-Un; Yeh, Ching-Sheng; Hsieh, Yi-Wen; Lee, Ying-Ray; Lin, Mei-Ying; Chen, Chung-Yi; Lee, Chien-Hsing

    2016-01-01

    Oxidative stress-mediated cellular injury has been considered as a major cause of neurodegenerative diseases including Alzheimer's and Parkinson's diseases. The scavenging of reactive oxygen species (ROS) mediated by antioxidants may be a potential strategy for retarding the diseases' progression. Costunolide (CS) is a well-known sesquiterpene lactone, used as a popular herbal remedy, which possesses anti-inflammatory and antioxidant activity. This study aimed to investigate the protective role of CS against the cytotoxicity induced by hydrogen peroxide (H₂O₂) and to elucidate potential protective mechanisms in PC12 cells. The results showed that the treatment of PC12 cells with CS prior to H₂O₂ exposure effectively increased the cell viability. Furthermore, it decreased the intracellular ROS, stabilized the mitochondria membrane potential (MMP), and reduced apoptosis-related protein such as caspase 3. In addition, CS treatment attenuated the cell injury by H₂O₂ through the inhibition of phosphorylation of p38 and the extracellular signal-regulated kinase (ERK). These results demonstrated that CS is promising as a potential therapeutic candidate for neurodegenerative diseases resulting from oxidative damage and further research on this topic should be encouraged. PMID:27409597

  17. Astaxanthin Protects Steroidogenesis from Hydrogen Peroxide-Induced Oxidative Stress in Mouse Leydig Cells

    PubMed Central

    Wang, Jyun-Yuan; Lee, Yue-Jia; Chou, Mei-Chia; Chang, Renin; Chiu, Chih-Hsien; Liang, Yao-Jen; Wu, Leang-Shin

    2015-01-01

    Androgens, especially testosterone produced in Leydig cells, play an essential role in development of the male reproductive phenotype and fertility. However, testicular oxidative stress may cause a decline in testosterone production. Many antioxidants have been used as reactive oxygen species (ROS) scavengers to eliminate oxidative stress to protect steroidogenesis. Astaxanthin (AST), a natural extract from algae and plants ubiquitous in the marine environment, has been shown to have antioxidant activity in many previous studies. In this study, we treated primary mouse Leydig cells or MA-10 cells with hydrogen peroxide (H2O2) to cause oxidative stress. Testosterone and progesterone production was suppressed and the expression of the mature (30 kDa) form of StAR protein was down-regulated in MA-10 cells by H2O2 and cAMP co-treatment. However, progesterone production and expression of mature StAR protein were restored in MA-10 cells by a one-hour pretreatment with AST. AST also reduced ROS levels in cells so that they were lower than the levels in untreated controls. These results provide additional evidence of the potential health benefits of AST as a potential food additive to ease oxidative stress. PMID:25786065

  18. NADPH oxidase-generated hydrogen peroxide induces DNA damage in mutant FLT3-expressing leukemia cells.

    PubMed

    Stanicka, Joanna; Russell, Eileen G; Woolley, John F; Cotter, Thomas G

    2015-04-10

    Internal tandem duplication of the FMS-like tyrosine kinase (FLT3-ITD) receptor is present in 20% of acute myeloid leukemia (AML) patients and it has been associated with an aggressive AML phenotype. FLT3-ITD expressing cell lines have been shown to generate increased levels of reactive oxygen species (ROS) and DNA double strand breaks (DSBs). However, the molecular basis of how FLT3-ITD-driven ROS leads to the aggressive form of AML is not clearly understood. Our group has previously reported that inhibition of FLT3-ITD signaling results in post-translational down-regulation of p22(phox), a small membrane-bound subunit of the NADPH oxidase (NOX) complex. Here we demonstrated that 32D cells, a myeloblast-like cell line transfected with FLT3-ITD, have a higher protein level of p22(phox) and p22(phox)-interacting NOX isoforms than 32D cells transfected with the wild type FLT3 receptor (FLT3-WT). The inhibition of NOX proteins, p22(phox), and NOX protein knockdowns caused a reduction in ROS, as measured with a hydrogen peroxide (H2O2)-specific dye, peroxy orange 1 (PO1), and nuclear H2O2, as measured with nuclear peroxy emerald 1 (NucPE1). These reductions in the level of H2O2 following the NOX knockdowns were accompanied by a decrease in the number of DNA DSBs. We showed that 32D cells that express FLT3-ITD have a higher level of both oxidized DNA and DNA DSBs than their wild type counterparts. We also observed that NOX4 and p22(phox) localize to the nuclear membrane in MV4-11 cells expressing FLT3-ITD. Taken together these data indicate that NOX and p22(phox) mediate the ROS production from FLT3-ITD that signal to the nucleus causing genomic instability. PMID:25697362

  19. NADPH Oxidase-generated Hydrogen Peroxide Induces DNA Damage in Mutant FLT3-expressing Leukemia Cells*

    PubMed Central

    Stanicka, Joanna; Russell, Eileen G.; Woolley, John F.; Cotter, Thomas G.

    2015-01-01

    Internal tandem duplication of the FMS-like tyrosine kinase (FLT3-ITD) receptor is present in 20% of acute myeloid leukemia (AML) patients and it has been associated with an aggressive AML phenotype. FLT3-ITD expressing cell lines have been shown to generate increased levels of reactive oxygen species (ROS) and DNA double strand breaks (DSBs). However, the molecular basis of how FLT3-ITD-driven ROS leads to the aggressive form of AML is not clearly understood. Our group has previously reported that inhibition of FLT3-ITD signaling results in post-translational down-regulation of p22phox, a small membrane-bound subunit of the NADPH oxidase (NOX) complex. Here we demonstrated that 32D cells, a myeloblast-like cell line transfected with FLT3-ITD, have a higher protein level of p22phox and p22phox-interacting NOX isoforms than 32D cells transfected with the wild type FLT3 receptor (FLT3-WT). The inhibition of NOX proteins, p22phox, and NOX protein knockdowns caused a reduction in ROS, as measured with a hydrogen peroxide (H2O2)-specific dye, peroxy orange 1 (PO1), and nuclear H2O2, as measured with nuclear peroxy emerald 1 (NucPE1). These reductions in the level of H2O2 following the NOX knockdowns were accompanied by a decrease in the number of DNA DSBs. We showed that 32D cells that express FLT3-ITD have a higher level of both oxidized DNA and DNA DSBs than their wild type counterparts. We also observed that NOX4 and p22phox localize to the nuclear membrane in MV4–11 cells expressing FLT3-ITD. Taken together these data indicate that NOX and p22phox mediate the ROS production from FLT3-ITD that signal to the nucleus causing genomic instability. PMID:25697362

  20. Differential Gene Expression Patterns in Chicken Cardiomyocytes during Hydrogen Peroxide-Induced Apoptosis

    PubMed Central

    Li, Youwen; Guo, Dingzong

    2016-01-01

    Hydrogen peroxide (H2O2) is both an exogenous and endogenous cytotoxic agent that can reliably induce apoptosis in numerous cell types for studies on apoptosis signaling pathways. However, little is known of these apoptotic processes in myocardial cells of chicken, a species prone to progressive heart failure. Sequencing of mRNA transcripts (RNA-Seq) allows for the identification of differentially expressed genes under various physiological and pathological conditions to elucidate the molecular pathways involved, including cellular responses to exogenous and endogenous toxins. We used RNA-seq to examine genes differentially expressed during H2O2-induced apoptosis in primary cultures of embryonic chicken cardiomyocytes. Following control or H2O2 treatment, RNA was extracted and sequencing performed to identify novel transcripts up- or downregulated in the H2O2 treatment group and construct protein−protein interaction networks. Of the 19,268 known and 2,160 novel transcripts identified in both control and H2O2 treatment groups, 4,650 showed significant differential expression. Among them, 55.63% were upregulated and 44.37% downregulated. Initiation of apoptosis by H2O2 was associated with upregulation of caspase-8, caspase-9, and caspase-3, and downregulation of anti-apoptotic genes API5 and TRIA1. Many other differentially expressed genes were associated with metabolic pathways (including ‘Fatty acid metabolism’, ‘Alanine, aspartate, and glutamate metabolism’, and ‘Biosynthesis of unsaturated fatty acids’) and cell signaling pathways (including ‘PPAR signaling pathway’, ‘Adipocytokine signaling pathway’, ‘TGF-beta signaling pathway’, ‘MAPK signaling pathway’, and ‘p53 signaling pathway’). In chicken cardiomyocytes, H2O2 alters the expression of numerous genes linked to cell signaling and metabolism as well as genes directly associated with apoptosis. In particular, H2O2 also affects the biosynthesis and processing of proteins and

  1. Hydrogen Peroxide Induced Cell Death: The Major Defences Relative Roles and Consequences in E. coli.

    PubMed

    Uhl, Lionel; Dukan, Sam

    2016-01-01

    We recently developed a mathematical model for predicting reactive oxygen species (ROS) concentration and macromolecules oxidation in vivo. We constructed such a model using Escherichia coli as a model organism and a set of ordinary differential equations. In order to evaluate the major defences relative roles against hydrogen peroxide (H2 O2), we investigated the relative contributions of the various reactions to the dynamic system and searched for approximate analytical solutions for the explicit expression of changes in H2 O2 internal or external concentrations. Although the key actors in cell defence are enzymes and membrane, a detailed analysis shows that their involvement depends on the H2 O2 concentration level. Actually, the impact of the membrane upon the H2 O2 stress felt by the cell is greater when micromolar H2 O2 is present (9-fold less H2 O2 in the cell than out of the cell) than when millimolar H2 O2 is present (about 2-fold less H2 O2 in the cell than out of the cell). The ratio between maximal external H2 O2 and internal H2 O2 concentration also changes, reducing from 8 to 2 while external H2 O2 concentration increases from micromolar to millimolar. This non-linear behaviour mainly occurs because of the switch in the predominant scavenger from Ahp (Alkyl Hydroperoxide Reductase) to Cat (catalase). The phenomenon changes the internal H2 O2 maximal concentration, which surprisingly does not depend on cell density. The external H2 O2 half-life and the cumulative internal H2 O2 exposure do depend upon cell density. Based on these analyses and in order to introduce a concept of dose response relationship for H2 O2-induced cell death, we developed the concepts of "maximal internal H2 O2 concentration" and "cumulative internal H2 O2 concentration" (e.g. the total amount of H2 O2). We predict that cumulative internal H2 O2 concentration is responsible for the H2 O2-mediated death of bacterial cells. PMID:27494019

  2. Hydrogen Peroxide Induced Cell Death: The Major Defences Relative Roles and Consequences in E. coli

    PubMed Central

    Uhl, Lionel; Dukan, Sam

    2016-01-01

    We recently developed a mathematical model for predicting reactive oxygen species (ROS) concentration and macromolecules oxidation in vivo. We constructed such a model using Escherichia coli as a model organism and a set of ordinary differential equations. In order to evaluate the major defences relative roles against hydrogen peroxide (H2 O2), we investigated the relative contributions of the various reactions to the dynamic system and searched for approximate analytical solutions for the explicit expression of changes in H2 O2 internal or external concentrations. Although the key actors in cell defence are enzymes and membrane, a detailed analysis shows that their involvement depends on the H2 O2 concentration level. Actually, the impact of the membrane upon the H2 O2 stress felt by the cell is greater when micromolar H2 O2 is present (9-fold less H2 O2 in the cell than out of the cell) than when millimolar H2 O2 is present (about 2-fold less H2 O2 in the cell than out of the cell). The ratio between maximal external H2 O2 and internal H2 O2 concentration also changes, reducing from 8 to 2 while external H2 O2 concentration increases from micromolar to millimolar. This non-linear behaviour mainly occurs because of the switch in the predominant scavenger from Ahp (Alkyl Hydroperoxide Reductase) to Cat (catalase). The phenomenon changes the internal H2 O2 maximal concentration, which surprisingly does not depend on cell density. The external H2 O2 half-life and the cumulative internal H2 O2 exposure do depend upon cell density. Based on these analyses and in order to introduce a concept of dose response relationship for H2 O2-induced cell death, we developed the concepts of “maximal internal H2 O2 concentration” and “cumulative internal H2 O2 concentration” (e.g. the total amount of H2 O2). We predict that cumulative internal H2 O2 concentration is responsible for the H2 O2-mediated death of bacterial cells. PMID:27494019

  3. Ocimum sanctum extracts attenuate hydrogen peroxide induced cytotoxic ultrastructural changes in human lens epithelial cells.

    PubMed

    Halder, Nabanita; Joshi, Sujata; Nag, Tapas Chandra; Tandon, Radhika; Gupta, Suresh Kumar

    2009-12-01

    Hydrogen peroxide (H2O2) is the major oxidant involved in cataract formation. The present study investigated the effect of an aqueous leaf extract of Tulsi (Ocimum sanctum) against H2O2 induced cytotoxic changes in human lens epithelial cells (HLEC). Donor eyes of the age range 20-40 years were procured within 5-8 h of death. After several washings with gentamicin (50 mL/L) and betadine (10 mL/L), clear transparent lenses (n=6 in each group) were incubated in Dulbecco's modified Eagle's medium (DMEM) alone (normal) or in DMEM containing 100 microm of H2O2 (control) or in DMEM containing both H2O2 (100 microm) and 150 microg/mL of Ocimum sanctum extract (treated) for 30 min at 37 degrees C with 5% CO2 and 95% air. Following incubation, the semi-hardened epithelium of each lens was carefully removed, fixed and processed for electron microscopic studies. Thin sections (60-70 mm) were contrasted with uranyl acetate and lead citrate and viewed under a transmission electron microscope. Normal epithelial cells showed intact, euchromatic nucleus with few small vacuoles (diameter 0.58+/-0.6 microm) in well-demarcated cytoplasm. After treatment with H2O2, they showed pyknotic nuclei with clumping of chromatin and ill-defined edges. The cytoplasm was full of vacuoles (diameter 1.61+/-0.7 microm). The overall cellular morphology was typical of dying cells. Treatment of cells with Ocimum sanctum extract protected the epithelial cells from H2O2 insult and maintained their normal architecture. The mean diameter of the vacuoles was 0.66+/-0.2 microm. The results indicate that extracts of O. sanctum have an important protective role against H2O2 injury in HLEC by maintaining the normal cellular architecture. The protection could be due to its ability to reduce H2O2 through its antioxidant property and thus reinforcing the concept that the extracts can penetrate the HLEC membrane. PMID:19441070

  4. Hydrogen peroxide induces activation of insulin signaling pathway via AMP-dependent kinase in podocytes

    SciTech Connect

    Piwkowska, Agnieszka; Rogacka, Dorota; Angielski, Stefan; Jankowski, Maciej

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer H{sub 2}O{sub 2} activates the insulin signaling pathway and glucose uptake in podocytes. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} induces time-dependent changes in AMPK phosphorylation. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} enhances insulin signaling pathways via AMPK activation. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} stimulation of glucose uptake is AMPK-dependent. -- Abstract: Podocytes are cells that form the glomerular filtration barrier in the kidney. Insulin signaling in podocytes is critical for normal kidney function. Insulin signaling is regulated by oxidative stress and intracellular energy levels. We cultured rat podocytes to investigate the effects of hydrogen peroxide (H{sub 2}O{sub 2}) on the phosphorylation of proximal and distal elements of insulin signaling. We also investigated H{sub 2}O{sub 2}-induced intracellular changes in the distribution of protein kinase B (Akt). Western blots showed that H{sub 2}O{sub 2} (100 {mu}M) induced rapid, transient phosphorylation of the insulin receptor (IR), the IR substrate-1 (IRS1), and Akt with peak activities at 5 min ({Delta} 183%, P < 0.05), 3 min ({Delta} 414%, P < 0.05), and 10 min ({Delta} 35%, P < 0.05), respectively. Immunostaining cells with an Akt-specific antibody showed increased intensity at the plasma membrane after treatment with H{sub 2}O{sub 2}>. Furthermore, H{sub 2}O{sub 2} inhibited phosphorylation of the phosphatase and tensin homologue (PTEN; peak activity at 10 min; {Delta} -32%, P < 0.05) and stimulated phosphorylation of the AMP-dependent kinase alpha subunit (AMPK{alpha}; 78% at 3 min and 244% at 10 min). The stimulation of AMPK was abolished with an AMPK inhibitor, Compound C (100 {mu}M, 2 h). Moreover, Compound C significantly reduced the effect of H{sub 2}O{sub 2} on IR phosphorylation by about 40% (from 2.07 {+-} 0.28 to 1.28 {+-} 0.12, P < 0.05). In addition, H{sub 2}O{sub 2} increased glucose uptake in podocytes

  5. Neuroprotective effect of Citrus unshiu immature peel and nobiletin inhibiting hydrogen peroxide-induced oxidative stress in HT22 murine hippocampal neuronal cells

    PubMed Central

    Cho, Hyun Woo; Jung, Su Young; Lee, Gyeong Hwan; Cho, Jung Hee; Choi, In Young

    2015-01-01

    Background: Oxidative stress-induced cell damage is common in the etiology of several neurobiological disorders, including Alzheimer's disease and Parkinson's disease. In a case study, nobiletin-rich Citrus reticulata peels could prevent the progression of cognitive impairment in donepezil-preadministered Alzheimer's disease patients. Objective: In this study, we investigated the effects and underlying mechanism of nobiletin and Citrus unshiu immature peel (CUIP) water extract, which contains nobiletin as a major compound, on hydrogen peroxide-induced oxidative stress in HT22 cells, a murine hippocampal neuronal model. Materials and Methods: HT22 cells were treated with hydrogen peroxide in the presence or absence of various concentrations of CUIP and nobiletin. Cytotoxicity and apoptotic protein levels were measured by 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and Western blotting. Results: Pretreatment with CUIP and nobiletin inhibited cell death due to hydrogen peroxide. Hydrogen peroxide-induced the expression of phospho-Jun N-terminal kinases (p-JNK) and p-p38 proteins in HT22 cells; however CUIP and nobiletin suppressed p-JNK and p-p38 without changing JNK or p38. Regarding apoptosis, caspase 3, B-cell lymphoma 2 (Bcl-2), and Bax protein expression was determined. CUIP and nobiletin suppressed caspase 3 and Bax expression, but they induced Bcl-2 expression in HT22 cells. Conclusion: These results show that CUIP and nobiletin can protect against hydrogen peroxide-induced cell death in HT22 neurons via mitogen-activated protein kinases and apoptotic pathways. PMID:26664016

  6. PED/PEA-15 Inhibits Hydrogen Peroxide-Induced Apoptosis in Ins-1E Pancreatic Beta-Cells via PLD-1

    PubMed Central

    Raciti, Gregory Alexander; Zatterale, Federica; Nigro, Cecilia; Mirra, Paola; Falco, Roberta; Ulianich, Luca; Di Jeso, Bruno; Formisano, Pietro; Miele, Claudia; Beguinot, Francesco

    2014-01-01

    The small scaffold protein PED/PEA-15 is involved in several different physiologic and pathologic processes, such as cell proliferation and survival, diabetes and cancer. PED/PEA-15 exerts an anti-apoptotic function due to its ability to interfere with both extrinsic and intrinsic apoptotic pathways in different cell types. Recent evidence shows that mice overexpressing PED/PEA-15 present larger pancreatic islets and increased beta-cells mass. In the present work we investigated PED/PEA-15 role in hydrogen peroxide-induced apoptosis in Ins-1E beta-cells. In pancreatic islets isolated from TgPED/PEA-15 mice hydrogen peroxide-induced DNA fragmentation was lower compared to WT islets. TUNEL analysis showed that PED/PEA-15 overexpression increases the viability of Ins-1E beta-cells and enhances their resistance to apoptosis induced by hydrogen peroxide exposure. The activity of caspase-3 and the cleavage of PARP-1 were markedly reduced in Ins-1E cells overexpressing PED/PEA-15 (Ins-1EPED/PEA-15). In parallel, we observed a decrease of the mRNA levels of pro-apoptotic genes Bcl-xS and Bad. In contrast, the expression of the anti-apoptotic gene Bcl-xL was enhanced. Accordingly, DNA fragmentation was higher in control cells compared to Ins-1EPED/PEA-15 cells. Interestingly, the preincubation with propranolol, an inhibitor of the pathway of PLD-1, a known interactor of PED/PEA-15, responsible for its deleterious effects on glucose tolerance, abolishes the antiapoptotic effects of PED/PEA-15 overexpression in Ins-1E beta-cells. The same results have been obtained by inhibiting PED/PEA-15 interaction with PLD-1 in Ins-1EPED/PEA-15. These results show that PED/PEA-15 overexpression is sufficient to block hydrogen peroxide-induced apoptosis in Ins-1E cells through a PLD-1 mediated mechanism. PMID:25489735

  7. Inhibitory heterotrimeric GTP-binding proteins inhibit hydrogen peroxide-induced apoptosis by up-regulation of Bcl-2 via NF-{kappa}B in H1299 human lung cancer cells

    SciTech Connect

    Seo, Mi Ran; Nam, Hyo-Jung; Kim, So-Young; Juhnn, Yong-Sung

    2009-04-03

    Inhibitory heterotrimeric GTP-binding proteins (Gi proteins) mediate a variety of signaling pathways by coupling receptors and effectors to regulate cellular proliferation, differentiation, and apoptosis. However, the role of Gi proteins in the modulation of hydrogen peroxide-induced apoptosis is not clearly understood. Thus, we investigated the effect of Gi proteins on hydrogen peroxide-induced apoptosis and the underlying mechanisms in H1299 human lung cancer cells. The stable expression of constitutively active alpha subunits of Gi1 (G{alpha}i1QL), Gi2, or Gi3 inhibited hydrogen peroxide-induced apoptosis. The expression of G{alpha}i1QL up-regulated Bcl-2 expression, and the knockdown of Bcl-2 with siRNA abolished the anti-apoptotic effect of G{alpha}i1QL. G{alpha}i1 induced the transcription of Bcl-2 by activation of NF-{kappa}B, which resulted from an increase in NF-{kappa}B p50 protein. We conclude that G{alpha}i1 inhibits hydrogen peroxide-induced apoptosis of H1299 lung cancer cells by up-regulating the transcription of Bcl-2 through a p50-mediated NF-{kappa}B activation.

  8. Hydrogen peroxide induced relaxation in porcine pulmonary arteries in vitro is mediated by EDRF and cyclic GMP

    SciTech Connect

    Zellers, T.; McCormick, J. )

    1991-03-15

    Xanthine and xanthine oxidase induced relaxations in porcine pulmonary arteries in vitro are augmented in the presence of the endothelium and abolished by catalase, implicating hydrogen peroxide as an endothelium-dependent effector. To determine the mechanism whereby H{sub 2}O{sub 2} causes relaxations, isolated rings of fifth order porcine pulmonary artery, with (E{sup +}) and without (E{sup {minus}}) endothelium, were suspended in organ baths filled with buffer, and isometric tension was recorded. Hydrogen peroxide caused concentration-dependent, endothelium-augmented relaxations which were abolished by catalase and hydroquinone and reversed by L-nitroarginine and methylene blue. Prostacyclin (PGI{sub 2}) levels, measured after a two minute exposure to H{sub 2}O{sub 2} in rings with endothelium were comparable to controls. This concentration of PGI{sub 2} does not cause relaxations in these rings. These data suggest that H{sub 2}O{sub 2} stimulates the release of an EDRF, causing relaxations mediated by cyclic GMP, which is independent of prostacyclin.

  9. Hydrogen Peroxide Induced Changes in Energy Status and Respiration Metabolism of Harvested Longan Fruit in Relation to Pericarp Browning.

    PubMed

    Lin, Yi-Xiong; Lin, Yi-Fen; Chen, Yi-Hui; Wang, Hui; Shi, John; Lin, He-Tong

    2016-06-01

    Energy status and respiration metabolism of "Fuyan" longan fruit treated by hydrogen peroxide (H2O2) and their relationship to pericarp browning were studied. The results displayed that H2O2 significantly increased the respiration rate, increased activities of respiratory terminal oxidases like cytochrome C oxidase (CCO) and ascorbic acid oxidase (AAO), decreased NAD kinase activity, maintained lower contents of NADP and NADPH as well as higher amounts of NAD and NADH, and accelerated the decrease of energy charge. These results gave convincing evidence that the treatment of H2O2 for accelerating longan pericarp browning was due to an increase of energy deficiency, an increase of respiratory metabolic pathways of Embden-Meyerhof pathway (EMP) and tricarboxylic acid (TCA) cycle, a decrease of pentose phosphate pathway (PPP) of respiratory pathway, and an increase of activities of respiratory terminal oxidases like CCO and AAO. PMID:27213701

  10. Carvedilol protects bone marrow stem cells against hydrogen peroxide-induced cell death via PI3K-AKT pathway.

    PubMed

    Chen, Meihui; Chen, Shudong; Lin, Dingkun

    2016-03-01

    Carvedilol, a nonselective β-adrenergic receptor blocker, has been reported to exert potent anti-oxidative activities. In the present study, we aimed to investigate the effects of carvedilol against hydrogen peroxide (H2O2)-induced bone marrow-derived mesenchymal stem cells (BMSCs) death, which imitate the microenvironment surrounding transplanted cells in the injured spinal cord in vitro. Carvedilol significantly reduced H2O2-induced reactive oxygen species production, apoptosis and subsequent cell death. LY294002, the PI3K inhibitor, blocked the protective effects and up-regulation of Akt phosphorylation of carvedilol. Together, our results showed that carvedilol protects H2O2-induced BMSCs cell death partly through PI3K-Akt pathway, suggesting carvedilol could be used in combination with BMSCs for the treatment of spinal cord injury by improving the cell survival and oxidative stress microenvironments. PMID:26898450

  11. Effects of rutaecarpine on hydrogen peroxide-induced apoptosis in murine hepa-1c1c7 cells.

    PubMed

    Lee, Sung-Jin; Ahn, Hyunjin; Nam, Kung-Woo; Kim, Kyeong Ho; Mar, Woongchon

    2012-09-01

    The aim of this study was to investigate the inhibitory effects of rutaecarpine on DNA strand breaks and apoptosis induced by hydrogen peroxide (H2O2) in murine Hepa-1c1c7 cells. Oxidative DNA damage was estimated by nuclear condensation assessment, fluorescence-activated cell sorting analysis, and Comet assay. Rutaecarpine inhibited cell death induced by 500 μM H2O2, as assessed by 4',6-diamidino-2-phenylindole (DAPI) staining. Treatment with rutaecarpine reduced the number of DNA strand breaks induced by H2O2, as assessed by DAPI staining and Comet assay, and increased quinone reductase, phosphatidylinositol 3-kinase, and pAkt protein levels, as assessed by western blotting. PMID:24009839

  12. Effects of Rutaecarpine on Hydrogen Peroxide-Induced Apoptosis in Murine Hepa-1c1c7 Cells

    PubMed Central

    Lee, Sung-Jin; Ahn, Hyunjin; Nam, Kung-Woo; Kim, Kyeong Ho; Mar, Woongchon

    2012-01-01

    The aim of this study was to investigate the inhibitory effects of rutaecarpine on DNA strand breaks and apoptosis induced by hydrogen peroxide (H2O2) in murine Hepa-1c1c7 cells. Oxidative DNA damage was estimated by nuclear condensation assessment, fluorescence-activated cell sorting analysis, and Comet assay. Rutaecarpine inhibited cell death induced by 500 μM H2O2, as assessed by 4',6-diamidino-2-phenylindole (DAPI) staining. Treatment with rutaecarpine reduced the number of DNA strand breaks induced by H2O2, as assessed by DAPI staining and Comet assay, and increased quinone reductase, phosphatidylinositol 3-kinase, and pAkt protein levels, as assessed by western blotting. PMID:24009839

  13. Nitric oxide attenuates hydrogen peroxide-induced barrier disruption and protein tyrosine phosphorylation in monolayers of intestinal epithelial cell.

    PubMed

    Katsube, Takanori; Tsuji, Hideo; Onoda, Makoto

    2007-06-01

    The intestinal epithelium provides a barrier to the transport of harmful luminal molecules into the systemic circulation. A dysfunctional epithelial barrier is closely associated with the pathogenesis of a variety of intestinal and systemic disorders. We investigated here the effects of nitric oxide (NO) and hydrogen peroxide (H(2)O(2)) on the barrier function of a human intestinal epithelial cell line, Caco-2. When treated with H(2)O(2), Caco-2 cell monolayers grown on permeable supports exhibited several remarkable features of barrier dysfunction as follows: a decrease in transepithelial electrical resistance, an increase in paracellular permeability to dextran, and a disruption of the intercellular junctional localization of the scaffolding protein ZO-1. In addition, an induction of tyrosine phosphorylation of numerous cellular proteins including ZO-1, E-cadherin, and beta-catenin, components of tight and adherens junctions, was observed. On the other hand, combined treatment of Caco-2 monolayers with H(2)O(2) and an NO donor (NOC5 or NOC12) relieved the damage to the barrier function and suppressed the protein tyrosine phosphorylation induced by H(2)O(2) alone. These results suggest that NO protects the barrier function of intestinal epithelia from oxidative stress by modulating some intracellular signaling pathways of protein tyrosine phosphorylation in epithelial cells. PMID:17451824

  14. Evaluating the effects of galbanic acid on hydrogen peroxide-induced oxidative DNA damage in human lymphocytes

    PubMed Central

    Shirani, Kobra; Behravan, Javad; Mosaffa, Fatemeh; Iranshahi, Mehrdad; Mehmankhah, Babak; Razavi-Azarkhiavi, Kamal; Karimi, Gholamreza

    2014-01-01

    Objective: Ferula szowitsiana has been widely used for medicinal purposes around the world. The anti-oxidant effect of F. szowitsiana had been proved. The current study aims to determine the protective effects of galbanic acid, a sesquiterpene coumarin from F. szowitsiana, against hydrogen peroxide (H2O2) - induced oxidative DNA damage in human lymphocytes. Materials and Methods: Human lymphocytes were incubated with H2O2 (0, 25, 50, 100, and 200 µM), galbanic acid (200 and 400 µM) and a combination of galbanic acid (200 and 400 µM) and H2O2 (25 µM) at 4 C for 30 minutes. Solvents of galbanic acid without H2O2 were used as negative controls. Results: The findings of this study demonstrated that H2O2 exposure leads to a significant concentration-dependent increase in DNA damage. Galbanic acid did not cause DNA damage compared with the control cells. Data showed that galbanic acid does not have a protective effect against H2O2-induced oxidative DNA damage in human lymphocytes. Conclusion: According to the results, it is concluded that the capability of F. szowitsiana in reducing reactive oxygen species and the anti-inflammatory property of its methanolic extract may be due to its other ingredients. PMID:25386396

  15. Protective effect of reduced glutathione C60 derivative against hydrogen peroxide-induced apoptosis in HEK 293T cells.

    PubMed

    Huang, Jin; Zhou, Chi; He, Jun; Hu, Zheng; Guan, Wen-Chao; Liu, Sheng-Hong

    2016-06-01

    Hydrogen peroxide (H2O2) and free radicals cause oxidative stress, which induces cellular injuries, metabolic dysfunction, and even cell death in various clinical abnormalities. Fullerene (C60) is critical for scavenging oxygen free radicals originated from cell metabolism, and reduced glutathione (GSH) is another important endogenous antioxidant. In this study, a novel water-soluble reduced glutathione fullerene derivative (C60-GSH) was successfully synthesized, and its beneficial roles in protecting against H2O2-induced oxidative stress and apoptosis in cultured HEK 293T cells were investigated. Fourier Transform infrared spectroscopy and (1)H nuclear magnetic resonance were used to confirm the chemical structure of C60-GSH. Our results demonstrated that C60-GSH prevented the reactive oxygen species (ROS)-mediated cell damage. Additionally, C60-GSH pretreatment significantly attenuated H2O2-induced superoxide dismutase (SOD) consumption and malondialdehyde (MDA) elevation. Furthermore, C60-GSH inhibited intracellular calcium mobilization, and subsequent cell apoptosis via bcl-2/bax-caspase-3 signaling pathway induced by H2O2 stimulation in HEK 293T cells. Importantly, these protective effects of C60-GSH were superior to those of GSH. In conclusion, these results suggested that C60-GSH has potential to protect against H2O2-induced cell apoptosis by scavenging free radicals and maintaining intracellular calcium homeostasis without evident toxicity. PMID:27376803

  16. Synthesis and Protective Effects of Kaempferol-3'-sulfonate on Hydrogen Peroxide-induced injury in Vascular Smooth Muscle Cells.

    PubMed

    Yang, Xinbin; Wang, Qin; Wang, Chunmei; Qin, Xiaolin; Huang, Yu; Zeng, Renquan

    2016-06-01

    A novel water-soluble sulfated derivative, kaempferol-3'-sulfonate acid sodium (KS) with the composition of [C15 H9 O9 SNa]·2.5H2 O, was synthesized and characterized by elemental analysis, IR, (1) H NMR, (13) C NMR, and HRMS. Its protective effects on human vascular smooth muscle cells injured by hydrogen peroxide were evaluated by CCK-8 method, flow cytometry, and Western blotting. The experimental results indicated that the KS can significantly increase cell viability and reduce apoptosis on H2 O2 -injured VSMCs, as well as reverse the effects of H2 O2 on Bcl-2, Bad, and caspase-3 expressions. In addition, LDH leakage, MDA levels, and SOD and GSH activities were also measured with spectrophotometry. The results indicated that the KS acted as antioxidant preventing LDH leakage and MDA production, while increasing intracellular SOD and GSH activities. These findings revealed that KS might potentially serve as an effective antioxidant agent for prevention and treatment of vascular disease caused by H2 O2 -injured VSMCs. PMID:26706847

  17. Inhibition of sphingomyelin synthase 1 affects ceramide accumulation and hydrogen peroxide-induced apoptosis in Neuro-2a cells.

    PubMed

    Tu, Ranran; Yang, Wei; Hu, Zhiping

    2016-09-01

    Oxidative stress plays a key role in brain injury after cerebral ischemia-reperfusion, which contributes toward excessive apoptosis of nerve cells. Therefore, it would be beneficial to identify a therapy that could interfere with the progression of apoptosis and protect the brain from ischemia-reperfusion injury. As ceramide, a well-known second messenger of apoptosis, can be metabolized by sphingomyelin synthase 1 (SMS1), recent research has focused on the link between SMS1 and apoptosis in different cells. To investigate whether SMS1 is involved in the process of oxidative stress-induced apoptosis in neurons and to explore the possible underlying mechanism, we treated mouse neuroblastoma Neuro-2A (N2a) cells with hydrogen peroxide (H2O2). Incubation with H2O2 significantly upregulated the expression of SMS1, increased the intracellular levels of ceramide and sphingomyelin synthase activity, and induced apoptosis. Moreover, pretreatment of N2a cells with D609, an sphingomyelin synthase inhibitor, or SMS1-silencing RNA (siRNA) further increased ceramide and potentiated H2O2-induced apoptosis which could be reversed by SB203580 (a p38 inhibitor). Thus, our study has shown that SMS1 regulates ceramide levels in N2a cells and plays a potent protective role in this oxidative stress-induced apoptosis partly through the p38 pathway. PMID:27391427

  18. Effects of mulberry ethanol extracts on hydrogen peroxide-induced oxidative stress in pancreatic β-cells.

    PubMed

    Kim, Young Rae; Lee, Jong Seok; Lee, Ki Rim; Kim, Young Eon; Baek, Nam In; Hong, Eock Kee

    2014-01-01

    Reactive oxygen species (ROS) are key mediators of mammalian cellular damage and are associated with diseases such as aging, arteriosclerosis, inflammation, rheumatoid arthritis and diabetes. Type 1 diabetes develops upon the destruction of pancreatic β-cells, which is partly due to ROS activity. In this study, we investigated the cytoprotective and anti-oxidative effects of fractionated mulberry extracts in mouse insulin-producing pancreatic β-cells (MIN6N cells). Treatment with hydrogen peroxide (H2O2) induced significant cell death and increased intracellular ROS levels, lipid peroxidation and DNA fragmentation in the MIN6N cells. Fractionated mulberry extracts significantly reduced the H2O2-dependent production of intracellular ROS, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals and lipid peroxidation. In addition, mulberry extracts inhibited DNA fragmentation induced by H2O2. Thus, the antioxidant properties of mulberry extracts in pancreatic β-cells may be exploited for the prevention or treatment of type 1 diabetes. PMID:24154764

  19. The sigma-1 receptor-zinc finger protein 179 pathway protects against hydrogen peroxide-induced cell injury.

    PubMed

    Su, Tzu-Chieh; Lin, Shu-Hui; Lee, Pin-Tse; Yeh, Shiu-Hwa; Hsieh, Tsung-Hsun; Chou, Szu-Yi; Su, Tsung-Ping; Hung, Jan-Jong; Chang, Wen-Chang; Lee, Yi-Chao; Chuang, Jian-Ying

    2016-06-01

    The accumulation of reactive oxygen species (ROS) have implicated the pathogenesis of several human diseases including neurodegenerative disorders, stroke, and traumatic brain injury, hence protecting neurons against ROS is very important. In this study, we focused on sigma-1 receptor (Sig-1R), a chaperone at endoplasmic reticulum, and investigated its protective functions. Using hydrogen peroxide (H2O2)-induced ROS accumulation model, we verified that apoptosis-signaling pathways were elicited by H2O2 treatment. However, the Sig-1R agonists, dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS), reduced the activation of apoptotic pathways significantly. By performing protein-protein interaction assays and shRNA knockdown of Sig-1R, we identified the brain Zinc finger protein 179 (Znf179) as a downstream target of Sig-1R regulation. The neuroprotective effect of Znf179 overexpression was similar to that of DHEAS treatment, and likely mediated by affecting the levels of antioxidant enzymes. We also quantified the levels of peroxiredoxin 3 (Prx3) and superoxide dismutase 2 (SOD2) in the hippocampi of wild-type and Znf179 knockout mice, and found both enzymes to be reduced in the knockout versus the wild-type mice. In summary, these results reveal that Znf179 plays a novel role in neuroprotection, and Sig-1R agonists may be therapeutic candidates to prevent ROS-induced damage in neurodegenerative and neurotraumatic diseases. PMID:26792191

  20. Can Melatonin Act as an Antioxidant in Hydrogen Peroxide-Induced Oxidative Stress Model in Human Peripheral Blood Mononuclear Cells?

    PubMed Central

    Emamgholipour, Solaleh; Hossein-Nezhad, Arash; Ansari, Mohammad

    2016-01-01

    Purpose. We aimed to investigate the possible effects of melatonin on gene expressions and activities of MnSOD and catalase under conditions of oxidative stress induced by hydrogen peroxide (H2O2) in peripheral blood mononuclear cells (PBMCs). Materials and Methods. PBMCs were isolated from healthy subjects and treated as follows: (1) control (only with 0.1% DMSO for 12 h); (2) melatonin (1 mM) for 12 h; (3) H2O2 (250 μM) for 2 h; (4) H2O2 (250 μM) for 2 h following 10 h pretreatment with melatonin (1 mM). The gene expression was evaluated by real-time PCR. MnSOD and catalase activities in PBMCs were determined by colorimetric assays. Results. Pretreatment of PBMCs with melatonin significantly augmented expression and activity of MnSOD which were diminished by H2O2. Melatonin treatment of PBMCs caused a significant upregulation of catalase by almost 2-fold in comparison with untreated cells. However, activity and expression of catalase increased by 1.5-fold in PBMCs under H2O2-induced oxidative stress compared with untreated cell. Moreover, pretreatment of PBMCs with melatonin resulted in a significant 1.8-fold increase in catalase expression compared to PBMCs treated only with H2O2. Conclusion. It seems that melatonin could prevent from undesirable impacts of H2O2-induced oxidative stress on MnSOD downregulation. Moreover, melatonin could promote inductive effect of H2O2 on catalase mRNA expression. PMID:26881079

  1. Heat shock protein 70 inhibits hydrogen peroxide-induced nucleolar fragmentation via suppressing cleavage and down-regulation of nucleolin.

    PubMed

    Wang, Kangkai; Deng, Gonghua; Chen, Guangwen; Liu, Meidong; Yi, Yuxin; Yang, Tubao; McMillan, Daniel R; Xiao, Xiangzhong

    2012-01-01

    It has been reported that nucleolar fragmentation is a part of the overall apoptotic morphology, however, it is currently obscure whether and how nucleolar fragmentation can be induced by hydrogen peroxide (H(2)O(2)) and heat shock protein 70 (Hsp70) can prevent nucleolar fragmentation. To dissect these two questions, C(2)C(12) myogenic cells and immortalized mouse embryonic fibroblasts (MEFs) with heat shock transcriptional factor 1 (HSF1) null mutation were treated with heat shock response (HS) (42.5 ± 0.5°C for 1 h and recovery at 37°C for 24 h) and then were insulted with 0.5 mmol/L H(2)O(2). Morphological changes of nucleoli were observed under contrast microscope or electronic microscope. It was found that (1) stimulation with H(2)O(2)-induced nucleolar fragmentation by mediating cleavage and down-regulation of nucleolar protein, nucleolin in C(2)C(12) myocytes and MEFs; (2) HS suppressed nucleolar fragmentation by inducing the expression of Hsp70 in an HSF1-dependent manner as indicated by assays of transfection with Hsp70 antisense oligonucleotides (AS-ONs) or recombinant plasmids of full-length Hsp70 cDNA; (3) protection of Hsp70 against nucleolar fragmentation was related to its accumulation in nucleolus mediated by nuclear localization sequence and its inhibition against cleavage and down-regulation of nucleolin. These results suggested that H(2)O(2)-induced nucleolar fragmentation and HS or Hsp70 inhibit H(2)O(2)-induced nucleolar fragmentation through the translocation of Hsp70 into nucleolar and its protection against impairment of nucleolin. PMID:21960124

  2. Protective effect of Cymbopogon citratus on hydrogen peroxide-induced oxidative stress in the reproductive system of male rats.

    PubMed

    Rahim, Saleh M; Taha, Ekhlass M; Mubark, Zaid M; Aziz, Salam S; Simon, K D; Mazlan, A G

    2013-12-01

    Cymbopogon citratus (C. citratus) has antioxidant, anti-inflammatory, and chemoprotective properties. This study was conducted to evaluate the protective effect of C. citratus aqueous extract against hydrogen peroxide (H2O2)-induced oxidative stress and injury in the reproductive system of male rats. The twenty-five rats used in this study were divided into five groups, comprised of five rats each. The control group received standard food and drink. The H2O2 group received standard food and water with 0.5% H2O2. The rats in the H2O2 + C. citratus group and H2O2 + vitamin E group received standard food, H2O2, and C. citratus [100 mg·kg(-1) body weight (bw)], or vitamin E as an antioxidant reference (500 mg·kg(-1) bw), respectively. The C. citratus group was given C. citratus (100 mg·kg(-1) bw) in addition to the standard food and drink. The treatments were administered for 30 days. The H2O2 treatment significantly (P < 0.05) decreased body, testicular, and epididymal weight, as well as glutathione (GSH) level, but markedly increased malonaldehyde (MDA) in serum and testes homogenates. The rats treated with H2O2 exhibited testicular degeneration and significant reduction in sperm viability, motility, count, and rate of normal sperm. The C. citratus, vitamin E, and H2O2 treatment significantly (P < 0.05) increased the body, testicular, and epididymal weight, testosterone level, the values of the various sperm characteristics, and GSH. However, this treatment markedly reduced MDA in serum and testes homogenates, as well as testicular histopathological alterations in the H2O2-treated rats. The C. citratus aqueous extract reduced oxidative stress and protected male rats against H2O2-induced reproductive system injury. PMID:23957393

  3. The Octadecaneuropeptide ODN Protects Astrocytes against Hydrogen Peroxide-Induced Apoptosis via a PKA/MAPK-Dependent Mechanism

    PubMed Central

    Hamdi, Yosra; Kaddour, Hadhemi; Vaudry, David; Bahdoudi, Seyma; Douiri, Salma; Leprince, Jérôme; Castel, Helene; Vaudry, Hubert; Tonon, Marie-Christine; Amri, Mohamed; Masmoudi-Kouki, Olfa

    2012-01-01

    Astrocytes synthesize and release endozepines, a family of regulatory peptides, including the octadecaneuropeptide (ODN) an endogenous ligand of both central-type benzodiazepine (CBR) and metabotropic receptors. We have recently shown that ODN exerts a protective effect against hydrogen peroxide (H2O2)-induced oxidative stress in astrocytes. The purpose of the present study was to determine the type of receptor and the transduction pathways involved in the protective effect of ODN in cultured rat astrocytes. We have first observed a protective activity of ODN at very low concentrations that was abrogated by the metabotropic ODN receptor antagonist cyclo1–8[DLeu5]OP, but not by the CBR antagonist flumazenil. We have also found that the metabotropic ODN receptor is positively coupled to adenylyl cyclase in astrocytes and that the glioprotective action of ODN upon H2O2-induced astrocyte death is PKA- and MEK-dependent, but PLC/PKC-independent. Downstream of PKA, ODN induced ERK phosphorylation, which in turn activated the expression of the anti-apoptotic gene Bcl-2 and blocked the stimulation by H2O2 of the pro-apoptotic gene Bax. The effect of ODN on the Bax/Bcl-2 balance contributed to abolish the deleterious action of H2O2 on mitochondrial membrane integrity and caspase-3 activation. Finally, the inhibitory effect of ODN on caspase-3 activity was shown to be PKA and MEK-dependent. In conclusion, the present results demonstrate that the potent glioprotective action of ODN against oxidative stress involves the metabotropic ODN receptor coupled to the PKA/ERK-kinase pathway to inhibit caspase-3 activation. PMID:22927932

  4. Hydrogen peroxide-induced antioxidant activities and cardiotonic glycoside accumulation in callus cultures of endemic Digitalis species.

    PubMed

    Cingoz, Gunce Sahin; Verma, Sandeep Kumar; Gurel, Ekrem

    2014-09-01

    The effect of hydrogen peroxide (H2O2) on callus cultures of four Digitalis species (Digitalis lamarckii, Digitalis trojana, Digitalis davisiana and Digitalis cariensis) increased catalase (CAT), superoxide dismutase (SOD), total phenolic, proline activity and cardiotonic glycoside production. Callus derived from hypocotyl explants was cultured on Murashige and Skoog medium supplemented with 0.25 mg L(-1) indole-3-acetic acid (IAA) and 0.5 mg L(-1) thidiazuron (TDZ). After a month of culture, callus was transferred to MS medium containing 10 mM H2O2 and then incubated for 6 h. The amount of five cardenolides (Lanatoside C, Digitoxin, Digoxigenin, Gitoxigenin and Digoxin) as well as CAT, SOD, total phenolic, proline activity from Digitalis species were compared. No digoxin was detected in all treatments and control groups. The total cardenolides estimated were in the order of D. lamarckii (586.65  μg g(-1) dw), D. davisiana (506.79 μg g(-1) dw), D. cariensis (376.60 μg g(-1) dw) and D. trojana (282.39 μg g(-1) dw). It was clear that H2O2 pre-treatment resulted in an increase in enzymatic and nonenzymatic antioxidants. However, a significant negative relationship between cardenolides production and overall activities of CAT, SOD, total phenolic and proline was evident. The described protocol here will be useful for the development of new strategies for a large-scale production of cardenolides. PMID:24915111

  5. Metabolic responses of Beauveria bassiana to hydrogen peroxide-induced oxidative stress using an LC-MS-based metabolomics approach.

    PubMed

    Zhang, Chen; Wang, Wei; Lu, Ruili; Jin, Song; Chen, Yihui; Fan, Meizhen; Huang, Bo; Li, Zengzhi; Hu, Fenglin

    2016-06-01

    The entomopathogenic fungus, Beauveria bassiana, is commonly used as a biological agent for pest control. Environmental and biological factors expose the fungus to oxidative stress; as a result, B. bassiana has adopted a number of anti-oxidant mechanisms. In this study, we investigated metabolites of B. bassiana that are formed in response to oxidative stress from hydrogen peroxide (H2O2) by using a liquid chromatography mass spectrometry (LC-MS) approach. Partial least-squares discriminant analysis (PLS-DA) revealed differences between the control and the H2O2-treated groups. Hierarchical cluster analysis (HCA) showed 18 up-regulated metabolites and 25 down-regulated metabolites in the H2O2-treated fungus. Pathway analysis indicated that B. bassiana may be able to alleviate oxidative stress by enhancing lipid catabolism and glycometabolism, thus decreasing membrane polarity and preventing polar H2O2 or ROS from permeating into fungal cells and protecting cells against oxidative injury. Meanwhile, most of the unsaturated fatty acids that are derived from glycerophospholipids hydrolysis can convert into oxylipins through autoxidation, which can prevent the reactive oxygen of H2O2 from attacking important macromolecules of the fungus. Results showed also that H2O2 treatment can enhance mycotoxins production which implies that oxidative stress may be able to increase the virulence of the fungus. In comparison to the control group, citric acid and UDP-N-acetylglucosamine were down-regulated, which suggested that metabolic flux was occurring to the TCA cycle and enhancing carbohydrate metabolism. The findings from this study will contribute to the understanding of how the molecular mechanisms of fungus respond to environmental and biological stress factors as well as how the manipulation of such metabolisms may lead to selection of more effective fungal strains for pest control. PMID:27116916

  6. Naringin protects human adipose-derived mesenchymal stem cells against hydrogen peroxide-induced inhibition of osteogenic differentiation.

    PubMed

    Wang, Lei; Zhang, Yu-Ge; Wang, Xiu-Mei; Ma, Long-Fei; Zhang, Yuan-Min

    2015-12-01

    Extensive evidence indicates that oxidative stress plays a pivotal role in the development of osteoporosis. We show that naringin, a natural antioxidant and anti-inflammatory compound, effectively protects human adipose-derived mesenchymal stem cells (hADMSCs) against hydrogen peroxide (H2O2)-induced inhibition of osteogenic differentiation. Naringin increased viability of hAMDSCs and attenuated H2O2-induced cytotoxicity. Naringin also reversed H2O2-induced oxidative stress. Oxidative stress induced by H2O2 inhibits osteogenic differentiation by decreasing alkaline phosphatase (ALP) activity, calcium content and mRNA expression levels of osteogenesis marker genes RUNX2 and OSX in hADMSCs. However, addition of naringin leads to a significant recovery, suggesting the protective effects of naringin against H2O2-induced inhibition of osteogenic differentiation. Furthermore, the H2O2-induced decrease of protein expressions of β-catenin and clyclin D1, two important transcriptional regulators of Wnt-signaling, was successfully rescued by naringin treatment. Also, in the presence of Wnt inhibitor DKK-1, naringin is no longer effective in stimulating ALP activity, increasing calcium content and mRNA expression levels of RUNX2 and OSX in H2O2-exposed hADMSCs. These data clearly demonstrates that naringin protects hADMSCs against oxidative stress-induced inhibition of osteogenic differentiation, which may involve Wnt signaling pathway. Our work suggests that naringin may be a useful addition to the treatment armamentarium for osteoporosis and activation of Wnt signaling may represent attractive therapeutic strategy for the treatment of degenerative disease of bone tissue. PMID:26482937

  7. Inhibition of miR-134 Protects Against Hydrogen Peroxide-Induced Apoptosis in Retinal Ganglion Cells.

    PubMed

    Shao, Yi; Yu, Yao; Zhou, Qiong; Li, Cheng; Yang, Lu; Pei, Chong-Gang

    2015-06-01

    MicroRNAs (miRNAs) have been suggested to play an important role in neurological diseases. Particularly, miR-134 is reportedly involved in regulating neuron survival. However, the association between miR-134 and retinal ganglion cell (RGC) survival under adverse stimulus has not been extensively investigated. In this study, we aimed to explore the role and underlying mechanism of miR-134 in regulating RGC apoptosis in response to hydrogen peroxide (H2O2) treatment. Results showed that the expression of miR-134 dose- and time-dependently increased in RGC after H2O2 treatment. H2O2-induced RGC apoptosis was significantly attenuated by the inhibition of miR-134 expression by antagomiR-134 and was enhanced by miR-134 overexpression. Luciferase reporter assay revealed a direct interaction between miR-134 and the 3'-untranslated region of cyclic AMP-response element-binding protein (CREB), a critical transcription factor for neuronal protection. In H2O2-treated RGCs, the inhibition of miR-134 significantly elevated the expression of CREB and its downstream genes, including brain-derived neurotrophic factor (BDNF) and Bcl-2. Furthermore, the inhibition of miR-134 also increased the expression of miR-132, a rapid response gene downstream of CREB. In addition, the target gene of miR-132, acetylcholinesterase was expectedly decreased by miR-134 inhibition. However, the overexpression of miR-134 exerted an opposite effect. The knockdown of CREB apparently abolished the protective effect of miR-134 inhibition against H2O2-induced RGC apoptosis. The increased expression of BDNF and Bcl-2 induced by miR-134 inhibition was also abrogated by CREB knockdown. Overall, our results suggested that the downregulation of miR-134 can effectively protect against H2O2-induced RGC apoptosis by negatively modulating CREB expression. PMID:25744098

  8. Lipid Peroxide-Derived Short-Chain Carbonyls Mediate Hydrogen Peroxide-Induced and Salt-Induced Programmed Cell Death in Plants.

    PubMed

    Biswas, Md Sanaullah; Mano, Jun'ichi

    2015-07-01

    Lipid peroxide-derived toxic carbonyl compounds (oxylipin carbonyls), produced downstream of reactive oxygen species (ROS), were recently revealed to mediate abiotic stress-induced damage of plants. Here, we investigated how oxylipin carbonyls cause cell death. When tobacco (Nicotiana tabacum) Bright Yellow-2 (BY-2) cells were exposed to hydrogen peroxide, several species of short-chain oxylipin carbonyls [i.e. 4-hydroxy-(E)-2-nonenal and acrolein] accumulated and the cells underwent programmed cell death (PCD), as judged based on DNA fragmentation, an increase in terminal deoxynucleotidyl transferase dUTP nick end labeling-positive nuclei, and cytoplasm retraction. These oxylipin carbonyls caused PCD in BY-2 cells and roots of tobacco and Arabidopsis (Arabidopsis thaliana). To test the possibility that oxylipin carbonyls mediate an oxidative signal to cause PCD, we performed pharmacological and genetic experiments. Carnosine and hydralazine, having distinct chemistry for scavenging carbonyls, significantly suppressed the increase in oxylipin carbonyls and blocked PCD in BY-2 cells and Arabidopsis roots, but they did not affect the levels of ROS and lipid peroxides. A transgenic tobacco line that overproduces 2-alkenal reductase, an Arabidopsis enzyme to detoxify α,β-unsaturated carbonyls, suffered less PCD in root epidermis after hydrogen peroxide or salt treatment than did the wild type, whereas the ROS level increases due to the stress treatments were not different between the lines. From these results, we conclude that oxylipin carbonyls are involved in the PCD process in oxidatively stressed cells. Our comparison of the ability of distinct carbonyls to induce PCD in BY-2 cells revealed that acrolein and 4-hydroxy-(E)-2-nonenal are the most potent carbonyls. The physiological relevance and possible mechanisms of the carbonyl-induced PCD are discussed. PMID:26025050

  9. Lipid Peroxide-Derived Short-Chain Carbonyls Mediate Hydrogen Peroxide-Induced and Salt-Induced Programmed Cell Death in Plants1[OPEN

    PubMed Central

    Biswas, Md. Sanaullah; Mano, Jun’ichi

    2015-01-01

    Lipid peroxide-derived toxic carbonyl compounds (oxylipin carbonyls), produced downstream of reactive oxygen species (ROS), were recently revealed to mediate abiotic stress-induced damage of plants. Here, we investigated how oxylipin carbonyls cause cell death. When tobacco (Nicotiana tabacum) Bright Yellow-2 (BY-2) cells were exposed to hydrogen peroxide, several species of short-chain oxylipin carbonyls [i.e. 4-hydroxy-(E)-2-nonenal and acrolein] accumulated and the cells underwent programmed cell death (PCD), as judged based on DNA fragmentation, an increase in terminal deoxynucleotidyl transferase dUTP nick end labeling-positive nuclei, and cytoplasm retraction. These oxylipin carbonyls caused PCD in BY-2 cells and roots of tobacco and Arabidopsis (Arabidopsis thaliana). To test the possibility that oxylipin carbonyls mediate an oxidative signal to cause PCD, we performed pharmacological and genetic experiments. Carnosine and hydralazine, having distinct chemistry for scavenging carbonyls, significantly suppressed the increase in oxylipin carbonyls and blocked PCD in BY-2 cells and Arabidopsis roots, but they did not affect the levels of ROS and lipid peroxides. A transgenic tobacco line that overproduces 2-alkenal reductase, an Arabidopsis enzyme to detoxify α,β-unsaturated carbonyls, suffered less PCD in root epidermis after hydrogen peroxide or salt treatment than did the wild type, whereas the ROS level increases due to the stress treatments were not different between the lines. From these results, we conclude that oxylipin carbonyls are involved in the PCD process in oxidatively stressed cells. Our comparison of the ability of distinct carbonyls to induce PCD in BY-2 cells revealed that acrolein and 4-hydroxy-(E)-2-nonenal are the most potent carbonyls. The physiological relevance and possible mechanisms of the carbonyl-induced PCD are discussed. PMID:26025050

  10. Antioxidant phenolic profile from ethyl acetate fraction of Fructus Ligustri Lucidi with protection against hydrogen peroxide-induced oxidative damage in SH-SY5Y cells.

    PubMed

    Ju, Heng-Yin; Chen, Shiu Ching; Wu, Kuo-Jen; Kuo, Hui-Chun; Hseu, You-Cheng; Ching, Hui; Wu, Chi-Rei

    2012-03-01

    In this study, we demonstrated the antioxidant and protective properties of crude extract and fractions from Fructus Ligustri Lucidi (FLL) against hydrogen peroxide (H2O2)-induced oxidative damage in SH-SY5Y cells. The contents of their phytochemical profiles were determined by spectrophotometric methods and high performance liquid chromatography using a photodiode array detector. FLL crude extract possessed appreciable scavenging capacity against 1,1-diphenyl-2-picrylhydrazyl and H2O2. The ethyl acetate (EtOAc) fraction was the most active fraction in scavenging free radicals and H2O2. Following exposure of cells to H2O2, there was a marked decrease in cell survival and intracellular antioxidant enzymes, and then intracellular oxidative stress, the level of lipid peroxidation, and caspase-3 activity were increased. Simultaneous treatment with the EtOAc fraction blocked these H2O2-induced cellular events. Hydroxytyrosol and salidroside are major components of the EtOAc fraction. These results show that the phenolic-enriched EtOAc fraction of FLL contains tyrosol-related derivatives and exerts the protective effects against H2O2 toxicity via its free radical scavenging activity and ability to elevate the levels of antioxidant enzymes. PMID:22142696

  11. Protective effects of Arctium lappa L. roots against hydrogen peroxide-induced cell injury and potential mechanisms in SH-SY5Y cells.

    PubMed

    Tian, Xing; Guo, Li-Ping; Hu, Xiao-Long; Huang, Jin; Fan, Yan-Hua; Ren, Tian-Shu; Zhao, Qing-Chun

    2015-04-01

    Accumulated evidence has shown that excessive reactive oxygen species (ROS) have been implicated in neuronal cell death related with various chronic neurodegenerative disorders. This study was designed to explore neuroprotective effects of ethyl acetate extract of Arctium lappa L. roots (EAL) on hydrogen peroxide (H2O2)-induced cell injury in human SH-SY5Y neuroblastoma cells. The cell viability was significantly decreased after exposure to 200 μM H2O2, whereas pretreatment with different concentrations of EAL attenuated the H2O2-induced cytotoxicity. Hoechst 33342 staining indicated that EAL reversed nuclear condensation in H2O2-treated cells. Meanwhile, TUNEL assay with DAPI staining showed that EAL attenuated apoptosis was induced by H2O2. Pretreatment with EAL also markedly elevated activities of antioxidant enzyme (GSH-Px and SOD), reduced lipid peroxidation (MDA) production, prevented ROS formation, and the decrease of mitochondrial membrane potential. In addition, EAL showed strong radical scavenging ability in 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) assays. Furthermore, EAL inhibited H2O2-induced apoptosis by increases in the Bcl-2/Bax ratio, decreases in cytochrome c release, and attenuation of caspase-3, caspase-9 activities, and expressions. These findings suggest that EAL may be regarded as a potential antioxidant agent and possess potent neuroprotective activity against H2O2-induced injury. PMID:25352420

  12. The Role of Aquaporins and Membrane Damage in Chilling and Hydrogen Peroxide Induced Changes in the Hydraulic Conductance of Maize Roots12

    PubMed Central

    Aroca, Ricardo; Amodeo, Gabriela; Fernández-Illescas, Silvia; Herman, Eliot M.; Chaumont, François; Chrispeels, Maarten J.

    2005-01-01

    When chilling-sensitive plants are chilled, root hydraulic conductance (Lo) declines precipitously; Lo also declines in chilling-tolerant plants, but it subsequently recovers, whereas in chilling-sensitive plants it does not. As a result, the chilling-sensitive plants dry out and may die. Using a chilling-sensitive and a chilling-tolerant maize genotype we investigated the effect of chilling on Lo, and its relationship to osmotic water permeability of isolated root cortex protoplasts, aquaporin gene expression, aquaporin abundance, and aquaporin phosphorylation, hydrogen peroxide (H2O2) accumulation in the roots and electrolyte leakage from the roots. Because chilling can cause H2O2 accumulation we also determined the effects of a short H2O2 treatment of the roots and examined the same parameters. We conclude from these studies that the recovery of Lo during chilling in the chilling-tolerant genotype is made possible by avoiding or repairing membrane damage and by a greater abundance and/or activity of aquaporins. The same changes in aquaporins take place in the chilling-sensitive genotype, but we postulate that membrane damage prevents the Lo recovery. It appears that the aquaporin response is necessary but not sufficient to respond to chilling injury. The plant must also be able to avoid the oxidative damage that accompanies chilling. PMID:15591439

  13. Modulation of Hydrogen Peroxide-Induced Oxidative Stress in Human Neuronal Cells by Thymoquinone-Rich Fraction and Thymoquinone via Transcriptomic Regulation of Antioxidant and Apoptotic Signaling Genes.

    PubMed

    Ismail, Norsharina; Ismail, Maznah; Azmi, Nur Hanisah; Abu Bakar, Muhammad Firdaus; Basri, Hamidon; Abdullah, Maizaton Atmadini

    2016-01-01

    Nigella sativa Linn. (N. sativa) and its bioactive constituent Thymoquinone (TQ) have demonstrated numerous pharmacological attributes. In the present study, the neuroprotective properties of Thymoquinone-rich fraction (TQRF) and TQ against hydrogen peroxide- (H2O2-) induced neurotoxicity in differentiated human SH-SY5Y cells were investigated. TQRF was extracted using supercritical fluid extraction while TQ was acquired commercially, and their effects on H2O2 were evaluated using cell viability assay, reactive oxygen species (ROS) assay, morphological observation, and multiplex gene expression. Both TQRF and TQ protected the cells against H2O2 by preserving the mitochondrial metabolic enzymes, reducing intracellular ROS levels, preserving morphological architecture, and modulating the expression of genes related to antioxidants (SOD1, SOD2, and catalase) and signaling genes (p53, AKT1, ERK1/2, p38 MAPK, JNK, and NF-κβ). In conclusion, the enhanced efficacy of TQRF over TQ was likely due to the synergism of multiple constituents in TQRF. The efficacy of TQRF was better than that of TQ alone when equal concentrations of TQ in TQRF were compared. In addition, TQRF also showed comparable effects to TQ when the same concentrations were tested. These findings provide further support for the use of TQRF as an alternative to combat oxidative stress insults in neurodegenerative diseases. PMID:26823946

  14. Protective effect of polypeptides from larva of housefly (Musca domestica) on hydrogen peroxide-induced oxidative damage in HepG2 cells.

    PubMed

    Zhu, Li; Wang, Pan; Qin, Qi-Lian; Zhang, Huan; Wu, Yi-Jun

    2013-10-01

    Housefly (Musca domestica) is an important medical insect and its larva is an ideal high protein food source. We isolated from housefly larvae the polypeptides hydrolyzed by neutral protease (PHNP), and investigated the protective effect of PHNP on hydrogen peroxide (H₂O₂)-induced oxidative damage in HepG2 cells. Cells exposed to H₂O₂ showed a marked decrease in proliferation and intracellular superoxide dismutase (SOD) activity, and a significant increase in reactive oxygen species (ROS) level and malondialdehyde (MDA) content. H₂O₂ also caused apoptosis and mitochondrial dysfunction including mitochondrial fragmentation and the loss of mitochondrial membrane potential. Pretreatment with PHNP at concentrations of 2.5, 5, 10 μg/mL blocked these H₂O₂-induced cellular events in a dose-dependent manner. The effect of PHNP at 10 μg/mL is equal to that of ascorbic acid at 10 μM. In summary, PHNP has a protective effect against H₂O₂-induced oxidative injury in cells due to its ability to decrease intracellular ROS and elevate antioxidant enzyme activities. PMID:23933357

  15. Modulation of Hydrogen Peroxide-Induced Oxidative Stress in Human Neuronal Cells by Thymoquinone-Rich Fraction and Thymoquinone via Transcriptomic Regulation of Antioxidant and Apoptotic Signaling Genes

    PubMed Central

    Ismail, Norsharina; Ismail, Maznah; Azmi, Nur Hanisah; Abu Bakar, Muhammad Firdaus; Basri, Hamidon; Abdullah, Maizaton Atmadini

    2016-01-01

    Nigella sativa Linn. (N. sativa) and its bioactive constituent Thymoquinone (TQ) have demonstrated numerous pharmacological attributes. In the present study, the neuroprotective properties of Thymoquinone-rich fraction (TQRF) and TQ against hydrogen peroxide- (H2O2-) induced neurotoxicity in differentiated human SH-SY5Y cells were investigated. TQRF was extracted using supercritical fluid extraction while TQ was acquired commercially, and their effects on H2O2 were evaluated using cell viability assay, reactive oxygen species (ROS) assay, morphological observation, and multiplex gene expression. Both TQRF and TQ protected the cells against H2O2 by preserving the mitochondrial metabolic enzymes, reducing intracellular ROS levels, preserving morphological architecture, and modulating the expression of genes related to antioxidants (SOD1, SOD2, and catalase) and signaling genes (p53, AKT1, ERK1/2, p38 MAPK, JNK, and NF-κβ). In conclusion, the enhanced efficacy of TQRF over TQ was likely due to the synergism of multiple constituents in TQRF. The efficacy of TQRF was better than that of TQ alone when equal concentrations of TQ in TQRF were compared. In addition, TQRF also showed comparable effects to TQ when the same concentrations were tested. These findings provide further support for the use of TQRF as an alternative to combat oxidative stress insults in neurodegenerative diseases. PMID:26823946

  16. Lactoferrin and ovotransferrin contribute toward antioxidative effects of Edible Bird's Nest against hydrogen peroxide-induced oxidative stress in human SH-SY5Y cells.

    PubMed

    Hou, Zhiping; Imam, Mustapha Umar; Ismail, Maznah; Azmi, Nur Hanisah; Ismail, Norsharina; Ideris, Aini; Mahmud, Rozi

    2015-01-01

    There are reports of improved redox outcomes due to consumption of Edible Bird's Nest (EBN). Many of the functional effects of EBN can be linked to its high amounts of antioxidants. Interestingly, dietary components with high antioxidants have shown promise in the prevention of aging and its related diseases like Alzheimer's disease. In this study, the antioxidative potentials of EBN and its constituents, lactoferrin (LF) and ovotransferrin (OVF), were determined and protective effects against hydrogen peroxide (H2O2)- induced toxicity on SH-SY5Y cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and acridine orange and propidium iodide (AO/PI) staining with microscopy were examined. Results showed that EBN and its constituents attenuated H2O2-induced cytotoxicity, and decreased radical oxygen species (ROS) through increased scavenging activity. Furthermore, LF, OVF, and EBN produced transcriptional changes in antioxidant related genes that tended towards neuroprotection as compared to H2O2-treated group. Overall, the results suggest that LF and OVF may produce synergistic or all-or-none antioxidative effects in EBN. PMID:26057702

  17. Cocktail of Four Active Components Derived from Sheng Mai San Inhibits Hydrogen Peroxide-Induced PC12 Cell Apoptosis Linked with the Caspase-3/ROCK1/MLC Pathway.

    PubMed

    Shen, Kai; Wang, Yan; Zhang, Yuanyuan; Zhou, Huana; Song, Yunfei; Cao, Zhengyu; Kou, Junping; Yu, Boyang

    2015-12-01

    SMXZF, a combination of four active components including ginsenoside Rb1, ginsenoside Rg1, schizandrin, and DT-13 (6:9:5:4) that is derived from Sheng Mai San, has previously been shown to exhibit a neuroprotective effect against focal ischemia/reperfusion injury. Due to the key role of oxidative stress-induced neuronal apoptosis in the pathogenesis of stroke, we examined the effect of SMXZF in oxidative stress responses and related signaling pathways in differentiated pheochromocytoma (PC12) cells. Our results showed that incubation with 100 μM hydrogen peroxide (H2O2) for 12 hr could reduce cell viability and superoxide dismutase (SOD) activity with an increase of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA). In contrast, SMXZF alleviated oxidative stress by reducing the over-production of ROS and MDA in parallel to concentration dependently increasing SOD activity. In addition, SMXZF significantly attenuated H2O2-induced caspase-3 cleavage, Rho-associated coiled-coil-containing protein kinase-1 (ROCK1) activation, and myosin light-chain (MLC) phosphorylation. Inhibiting either caspase-3 or ROCK1 mimicked the effect. Consequently, our results suggest that SMXZF inhibits H2O2-induced neuronal apoptosis linked with the caspase-3/ROCK1/MLC pathway, which has also been confirmed to be a positive feedback loop in oxidative stress-injured PC12 cells. These findings support the pharmacological potential of SMXZF for neurodegenerative diseases and stroke. PMID:26058543

  18. Overexpression of X chromosome-linked inhibitor of apoptosis by inhibiting microRNA-24 protects periodontal ligament cells against hydrogen peroxide-induced cell apoptosis.

    PubMed

    Liu, C; Chen, Z; Wang, J; Hu, H

    2016-01-01

    Hydrogen peroxide (H2O2), a common oral clinical drug for the tooth bleaching, induces severe cell apoptosis of periodontal ligament cells (PDLCs). The excessive cell apoptosis of PDLCs impairs periodontal tissue damage and repair. However, the underlying mechanism is incompletely understood. Here, we showed that microRNA-24 (miR-24) played an important role in regulating H2O2-induced cell apoptosis of PDLCs. We found that miR-24 expression was increased in PDLCs in response to H2O2 treatment. Down-regulation of miR-24 obviously rescued H2O2-induced cell apoptosis in PDLCs. By bioinformatic analysis, X chromosome-linked inhibitor of apoptosis (XIAP) was identified as a candidate target gene of miR-24, which was further verified by the dual-luciferase reporter assay. Furthermore, the protein expression level of phosphatase and tensin homolog deleted on chromosome ten was significantly decreased by miR-24 silencing, whereas the phosphorylation of Akt was remarkably increased by miR-24 silencing. In addition, the gene silencing of XIAP significantly reduced Akt activity and blocked the protective effect of the miR-24 inhibitor against H2O2-induced cell apoptosis. Overall, our findings suggest that miR-24 plays an important role in regulating the cell survival of PDLCs through targeting XIAP. PMID:27188727

  19. Akt attenuates apoptotic death through phosphorylation of H2A under hydrogen peroxide-induced oxidative stress in PC12 cells and hippocampal neurons

    PubMed Central

    Park, Ji Hye; Kim, Chung Kwon; Lee, Sang Bae; Lee, Kyung-Hoon; Cho, Sung-Woo; Ahn, Jee-Yin

    2016-01-01

    Although the essential role of protein kinase B (PKB)/Akt in cell survival signaling has been clearly established, the mechanism by which Akt mediates the cellular response to hydrogen peroxide (H2O2)-induced oxidative stress remains unclear. We demonstrated that Akt attenuated neuronal apoptosis through direct association with histone 2A (H2A) and phosphorylation of H2A at threonine 17. At early time points during H2O2 exposure of PC12 cells and primary hippocampal neurons, when the cells can tolerate the level of DNA damage, Akt was activated and phosphorylated H2A, leading to inhibition of apoptotic death. At later time points, Akt delivered the NAD+-dependent protein deacetylase Sirtuin 2 (Sirt 2) to the vicinity of phosphorylated H2A in response to irreversible DNA damage, thereby inducing H2A deacetylation and subsequently leading to apoptotic death. Ectopically expressed T17A-substituted H2A minimally interacted with Akt and failed to prevent apoptosis under oxidative stress. Thus Akt-mediated H2A phosphorylation has an anti-apoptotic function in conditions of H2O2-induced oxidative stress in neurons and PC12 cells. PMID:26899247

  20. Enzyme-Treated Asparagus Extract Attenuates Hydrogen Peroxide-Induced Matrix Metalloproteinase-9 Expression in Murine Skin Fibroblast L929 Cells.

    PubMed

    Shirato, Ken; Takanari, Jun; Ogasawara, Junetsu; Sakurai, Takuya; Imaizumi, Kazuhiko; Ohno, Hideki; Kizaki, Takako

    2016-05-01

    Enzyme-treated asparagus extract (ETAS) exerts a wide variety of beneficial biological actions including facilitating anti-cortisol stress and neurological anti-aging responses. However, the anti-skin aging effects of ETAS remain to be elucidated. Reactive oxygen species (ROS) play pivotal roles in skin aging. Increased ROS levels in fibroblasts in response to ultraviolet irradiation activate c-Jun N-terminal kinase (JNK) and its downstream transcription factor activator protein-1 (AP-1), and the resultant gene expression of matrix metalloproteinase (MMP) isoforms accelerates collagen breakdown in the dermis. Therefore, we explored whether ETAS has anti-skin aging effects by attenuating the oxidative stress responses in fibroblasts. Simultaneous treatment of murine skin L929 fibroblasts with hydrogen peroxide (H2O2) and either ETAS or dextrin showed that ETAS significantly suppressed H2O2-induced expression of MMP-9 mRNA as measured by real-time polymerase chain reaction. ETAS also clearly suppressed H2O2-stimulated phosphorylation of c-Jun (AP-1 subunit) and JNK as determined by Western blot. However, ETAS did not affect the increased amounts of carbonyl proteins in response to H2O2, also as determined by Western blotting. These results suggest that ETAS diminishes cellular responsiveness to ROS but does not scavenge ROS. Thus, ETAS has the potential to prevent skin aging through attenuating the oxidative stress responses in dermal fibroblasts. PMID:27319149

  1. Allicin protects rat cardiomyoblasts (H9c2 cells) from hydrogen peroxide-induced oxidative injury through inhibiting the generation of intracellular reactive oxygen species.

    PubMed

    Chan, Jackie Yan-Yan; Tsui, Hei-Tung; Chung, Ivan Ying-Ming; Chan, Robbie Yat-Kan; Kwan, Yiu-Wa; Chan, Shun-Wan

    2014-11-01

    Oxidative stress is considered an important factor that promotes cell death in response to a variety of pathophysiological conditions. This study investigated the antioxidant properties of allicin, the principle ingredient of garlic, on preventing oxidative stress-induced injury. The antioxidant capacities of allicin were measured by using 1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging assay and hydrogen peroxide (H(2)O(2))-induced cell damage on H9c2 cardiomyoblasts. Allicin (0.3-10 μM) pre-incubation could concentration-dependently attenuate the intracellular reactive oxygen species (ROS) increase induced by H(2)O(2) on H9c2 cells. It could also protect H9c2 cells against H(2)O(2)-induced cell damage. However, the DPPH free radical scavenging activity of allicin was shown to be low. Therefore, it is believed that the protective effect of allicin on H9c2 cells could inhibit intracellular ROS production instead of scavenging extracellular H(2)O(2) or free radicals. For the observed protective effect on H9c2 cells, allicin might also be effective in reducing free radical-induced myocardial cell death in ischemic condition. PMID:24945597

  2. Lycopene protects human SH-SY5Y neuroblastoma cells against hydrogen peroxide-induced death via inhibition of oxidative stress and mitochondria-associated apoptotic pathways

    PubMed Central

    FENG, CHUNSHENG; LUO, TIANFEI; ZHANG, SHUYAN; LIU, KAI; ZHANG, YANHONG; LUO, YINAN; GE, PENGFEI

    2016-01-01

    Oxidative stress, which is characterized by excessive production of reactive oxygen species (ROS), is a common pathway that results in neuronal injury or death due to various types of pathological stress. Although lycopene has been identified as a potent antioxidant, its effect on hydrogen peroxide (H2O2)-induced neuronal damage remains unclear. In the present study, pretreatment with lycopene was observed to protect SH-SY5Y neuroblastoma cells against H2O2-induced death via inhibition of apoptosis resulting from activation of caspase-3 and translocation of apoptosis inducing factor (AIF) to the nucleus. Furthermore, the over-produced ROS, as well as the reduced activities of anti-oxidative enzymes, superoxide dismutase and catalase, were demonstrated to be alleviated by lycopene. Additionally, lycopene counteracted H2O2-induced mitochondrial dysfunction, which was evidenced by suppression of mitochondrial permeability transition pore opening, attenuation of the decline of the mitochondrial membrane potential, and inhibition of the increase of Bax and decrease of Bcl-2 levels within the mitochondria. The release of cytochrome c and AIF from the mitochondria was also reduced. These results indicate that lycopene is a potent neuroprotectant against apoptosis, oxidative stress and mitochondrial dysfunction, and could be administered to prevent neuronal injury or death. PMID:27035331

  3. Oxidative damage due to copper ion and hydrogen peroxide induces GlcNAc-specific cleavage of an Asn-linked oligosaccharide.

    PubMed

    Eguchi, Hironobu; Ikeda, Yoshitaka; Koyota, Souichi; Honke, Koichi; Suzuki, Keiichiro; Gutteridge, John M C; Taniguchi, Naoyuki

    2002-03-01

    Cleavage of an asparagine-linked sugar chain by hydrogen peroxide (H2O2) and a copper salt was investigated. Incubation of a 2-aminopyridine (PA)-labeled biantennary sugar chain, GlcNAcbeta1-2Manalpha1-6(GlcNAcbeta1-2Manalpha1-3)Manbeta1-4GlcNAcbeta1-4GlcNAc-PA, with H2O2 and Cu2+ led to formation of four major degradation products. Reversed phase high performance liquid chromatographic analysis coupled with glycosidase digestion indicated that the sugar chain is not randomly degraded but specifically degraded at a GlcNAc residue. Treatment with either of H2O2 or copper alone did not cleave nor degrade the sugar chain to any extent. Electron spin resonance (ESR) spectra obtained using a spin trap reagent were consistent with the generation of OH* or an OH*-like radical by the H2O2/copper salt mixture. The addition of ascorbic acid enhanced this radical generation as well as the degradation of the sugar chain. It was also found that H2O2/Cu2+ destroys the N-acetyl group of the monosaccharide GlcNAc, as judged by a decrease in the ultraviolet absorption spectrum of this group. On the other hand, replacement of copper by Fe2+ caused no cleavage of the sugar chain, although comparable levels of the same radical species were generated. Furthermore, spectrophotometric analysis showed that a GlcNAc-containing sugar chain coordinates to copper but not to iron, and, thus, the coordination appears to play an essential role in the degradation of the sugar chain. These findings suggest that coordination of copper ions to GlcNAc residues localizes the generation of a radical, which cleaves the glycosidic linkage, possibly involving alteration of the N-acetyl group, thereby allowing the GlcNAc-specific cleavage. PMID:11872178

  4. Peroxide-inducible catalase in Aeromonas salmonicida subsp. salmonicida protects against exogenous hydrogen peroxide and killing by activated rainbow trout, Oncorhynchus mykiss L., macrophages.

    PubMed

    Barnes, A C; Bowden, T J; Horne, M T; Ellis, A E

    1999-03-01

    Aeromonas salmonicida subsp. salmonicida expresses a single cytoplasmically located catalase which was found to be inducible by exposure to 20 microM hydrogen peroxide in mid-exponential phase resulting in a 4 fold increase in activity. Subsequent exposure to 2 mM peroxide in late-exponential/early-stationary phase resulted in further induction of catalase activity which increased to 20 fold higher levels than those found in uninduced cultures. Exponentially induced cultures were protected against subsequent exposure to 10 mM peroxide which was lethal to non-induced cultures. Bacteria subjected to induction in mid-exponential and early-stationary phase were resistant to 100 mM peroxide, although viability was greatly reduced. Growth of the bacterium under iron-restricted conditions had no effect on the peroxide induction of catalase. As current evidence indicates, the latter is an iron-co-factored heme catalase, this result suggests that catalase induction has a high priority in the metabolism of iron. Furthermore, exposure to peroxide also induces expression of periplasmic MnSOD. A. salmonicida MT423 was resistant to normal rainbow trout macrophages, but was susceptible to killing by activated macrophages. However, if catalase was induced by prior exposure to 20 microM peroxide during mid-exponential phase, A. salmonicida was resistant to killing by activated macrophages. The ability of A. salmonicida to upregulate periplasmic MnSOD and cytoplasmic catalase production under iron restricted conditions and low level peroxide (conditions expected to exist during the early stages of an infection) may be vital for its ability to withstand attack by phagocytic cells in vivo. PMID:10089155

  5. Baicalein protects C6 glial cells against hydrogen peroxide-induced oxidative stress and apoptosis through regulation of the Nrf2 signaling pathway.

    PubMed

    Choi, Eun-Ok; Jeong, Jin-Woo; Park, Cheol; Hong, Su Hyun; Kim, Gi-Young; Hwang, Hye-Jin; Cho, Eun-Ju; Choi, Yung Hyun

    2016-03-01

    Baicalein, a flavonoid originally obtained from the roots of Scutellaria baicalensis Georgi, has been reported to possess various biological properties. Although several studies have demonstrated the anti-oxidative activity of baicalein, its neuroprotective mechanisms have not been clearly established. The present study aimed to detect the effects of baicalein against hydrogen peroxide (H2O2)-induced neuronal damage in C6 glial cells and to investigate the molecular mechanisms involved in this process. The results demonstrated that baicalein effectively inhibited H2O2-induced growth and reactive oxygen species (ROS) generation. We noted that Baicalein also attenuated the H2O2‑induced formation of comet tail, phosphorylation of p-γH2A.X, loss of mitochondrial membrane potential (MMP or ΔΨm), and changes to apoptosis‑related protein expression, which suggests that it can prevent H2O2‑induced cellular DNA damage and apoptotic cell death. Furthermore, treatment with baicalein effectively induced the expression of nuclear factor-erythroid 2-related factor 2 (Nrf2) as well as heme oxygenase-1 (HO-1) and thioredoxin reductase 1 (TrxR1) in a concentration and time-dependent manner. Moreover, the protective effects of baicalein against H2O2‑induced DNA damage and apoptosis were abolished by zinc protoporphyrin (ZnPP) IX, a HO-1 inhibitor, and auranofin, a TrxR inhibitor. In addition, we noted that the cytoprotective effects of baicalein were attenuated by transient transfection with Nrf2-specific small interfering RNA (siRNA). The findings of our present study suggest that baicalein enhances cellular antioxidant defense capacity through the inhibition of ROS generation and the activation of the Nrf2 signaling pathway, thus protecting C6 cells from H2O2-induced neuronal damage. PMID:26796879

  6. Protective Effect of 2,4',5'-Trihydroxyl-5,2'-dibromo diphenylmethanone, a New Halophenol, against Hydrogen Peroxide-Induced EA.hy926 Cells Injury.

    PubMed

    Li, Jianguo; Feng, Xiue; Ge, Rui; Li, Jiankuan; Li, Qingshan

    2015-01-01

    Vascular endothelial cells produce reactive oxygen species (ROS) during the process of energy metabolism in aerobic respiration. A growing body of evidence indicates that excessive ROS is implicated in the pathogenesis of cardiovascular diseases including atherosclerosis. The newly synthesized halophenol, 2,4',5'-trihydroxyl-5,2'-dibromo diphenylmethanone (TDD), exhibits antioxidative and cytoprotective activities in vitro. In this study, the protective effect of TDD against hydrogen peroxide (H2O2)-induced oxidative injury of EA.hy926 cells was investigated. Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-dephenyltetrazolium bromide (MTT) assay, while the effect of TDD on the transcription profile of EA.hy926 cells subjected to H2O2-induced oxidative injury was evaluated by microarray analysis. Several signaling pathways, including apoptosis, were significantly associated with TDD. Flow cytometric analysis was used to evaluate anti-apoptotic effect of TDD. Subsequently, RT-PCR and Western blot were used to detect the expressions of the apoptosis-associated protein, Bcl-2 and Bax. Meanwhile the expression of cleaved caspase-3, an executioner of apoptosis, was also detected by Western blot. The results showed that pretreatment of EA.hy926 cells with TDD prevented the decrease of cell viability induced by H2O2, and attenuated H2O2-induced elevation of Bax and cleaved caspase-3 while increased Bcl-2 expressions. In summary, TDD inhibited H2O2-induced oxidative injury of EA.hy926 cells through negative regulation of apoptosis. These findings suggest that TDD is a potential candidate for therapeutic intervention in oxidative stress-associated cardiovascular diseases. PMID:26251890

  7. Protective effects of Semiaquilegia adoxoides n-butanol extract against hydrogen peroxide-induced oxidative stress in human lens epithelial cells.

    PubMed

    Liang, Bing; Wei, Wei; Wang, Jianta; Zhang, Mingming; Xu, Ran; Wu, Fei; Xiao, Haitao; Tang, Lei

    2016-09-01

    Context Hydrogen peroxide (H2O2)-induced damage in the lens epithelium leads to cell death and cataract. Semiaquilegia adoxoides (DC.) Makino (Ranunculaceae), a folk medicine of Hmong (an ethnic group of China), has been traditionally used to treat cataract; however, the underlying molecular mechanism is yet to be uncovered. Objective This study aimed to investigate whether the n-butanol extract of S. adoxoides (nSA) is effective against the H2O2-induced oxidative stress in human lens epithelial (HLE) cells. Materials and methods Human lens epithelial (SRA 01/04) cells were stimulated by H2O2 (250 μM) in the presence or absence of nSA. The antioxidant effects of nSA were determined in terms of cell viability (MTT assay), apoptosis (AnnexinV/PI staining), radical scavenging capability (various enzymatic assays), loss of mitochondrial membrane potential (Rhodamine 123 staining), expression of apoptotic markers including caspase-3 and caspase-9 and the change of Bcl-2/Bax ratio (western blot) in the HLE cells. Results The results showed that pretreatment of nSA (250, 500 and 1000 μg/mL) markedly reduced H2O2-induced cellular apoptosis and malondialdehyde accumulation, but elevated the activities of total superoxide dismutase, catalase, glutathione peroxidase. Thus, the total antioxidative capability was enhanced upon the nSA treatment meanwhile the loss of mitochondrial membrane potential was prevented. Moreover, nSA at concentrations of 250, 500 and 1000 μg/mL also significantly suppressed the activation of caspase-3 and -9, and increased the Bcl-2/Bax ratio in the HLE cells. Discussion and conclusion Our findings suggested that nSA is a potential prophylactic agent in the prevention of cataractogeneis. PMID:26974044

  8. Methanol extracts from Cystoseira tamariscifolia and Cystoseira nodicaulis are able to inhibit cholinesterases and protect a human dopaminergic cell line from hydrogen peroxide-induced cytotoxicity.

    PubMed

    Custódio, Luísa; Silvestre, Laura; Rocha, Maria Isabel; Rodrigues, Maria João; Vizetto-Duarte, Catarina; Pereira, Hugo; Barreira, Luísa; Varela, João

    2016-09-01

    Context Marine macroalgae contain several bioactive molecules that may be developed as functional foods, but information about their neuroprotective potential is scarce. Objective The objective of this study is to determine the in vitro antioxidant and neuroprotective features of marine algae from the southern coast of Portugal and to assess the total content of different types of bioactives. Materials and methods Methanol extracts from 21 macroalgal species from the southern Portugal were evaluated for in vitro antioxidant and acetylcholinesterase (AChE) inhibition. Active extracts were further evaluated for inhibitory activity against butyrylcholinesterase (BuChE) and tyrosinase (TYRO), and for their ability to attenuate hydrogen peroxide (H2O2)-induced toxicity in SH-SY5Y cells. The total contents of different phenolic groups were determined for the most active extracts. Results Cystoseira tamariscifolia (Hudson) Papenfuss (Sargassaceae) had the highest antiradical activity (92%, 1 mg/mL). Cystoseira nodicaulis (Withering) M. Roberts (Sargassaceae) (75%) and Cystoseira humilis Schousboe ex Kützing (Sargassaceae) (70%) had the highest iron-chelating activity at 10 mg/mL. Cystoseira baccata (S.G. Gmelin) P.C. Silva (Sargassaceae) was more active towards copper (66%, 10 mg/mL). Cystoseira tamariscifolia had the highest AChE inhibitory capacity (85%, 10 mg/mL). Cystoseira tamariscifolia and C. nodicaulis were also active against BuChE and TYRO, and were able to protect SH-SY5Y cells against oxidative stress induced by H2O2. Cystoseira tamariscifolia had the highest content of all the groups of phenolics, and was particularly enriched in hydroxycinnamic acids (106 mg CAE/g DW). Discussion and conclusion Results indicate that C. tamariscifolia and C. nodicaulis are important sources of nutraceutical compounds and may be considered functional foods that could improve cognitive functions. PMID:26731087

  9. Protective efficacy of carnosic acid against hydrogen peroxide induced oxidative injury in HepG2 cells through the SIRT1 pathway.

    PubMed

    Hu, Yan; Zhang, Ning; Fan, Qing; Lin, Musen; Zhang, Ce; Fan, Guangjun; Zhai, Xiaohan; Zhang, Feng; Chen, Zhao; Yao, Jihong

    2015-08-01

    Carnosic acid (CA), found in rosemary, has been reported to have antioxidant and antiadipogenic properties. Here, we investigate the molecular mechanism by which CA inhibits hydrogen peroxide (H2O2)-induced injury in HepG2 cells. Cells were pretreated with 2.5-10 μmol/L CA for 2 h and then exposed to 3 mmol/L H2O2 for an additional 4 h. CA dose-dependently increased cell viability and decreased lactate dehydrogenase activities. Pretreatment with CA completely attenuated the inhibited expression of manganese superoxide dismutase (MnSOD) and the B-cell lymphoma-extra large (Bcl-xL), and reduced glutathione activity caused by H2O2, whereas it reversed reactive oxygen species accumulation and the increase in cleaved caspase-3. Importantly, sirtuin 1 (SIRT1), a NAD(+)-dependent deacetylase, was significantly increased by CA. Considering the above results, we hypothesized that SIRT1 may play important roles in the protective effects of CA in injury induced by H2O2. As expected, SIRT1 suppression by Ex527 (6-chloro-2,3,4,9-tetrahydro-1H-carbazole-1-carboxamide) and siRNA-mediated SIRT1 silencing (si-SIRT1) significantly aggravated the H2O2-induced increased level of cleaved caspase-3 but greatly reduced the decreased expression of MnSOD and Bcl-xL. Furthermore, the positive regulatory effect of CA was inhibited by si-SIRT1. Collectively, the present study indicated that CA can alleviate H2O2-induced hepatocyte damage through the SIRT1 pathway. PMID:26059423

  10. Plumbagin exerts protective effects in nucleus pulposus cells by attenuating hydrogen peroxide-induced oxidative stress, inflammation and apoptosis through NF-κB and Nrf-2.

    PubMed

    Chu, Hui; Yu, Hang; Ren, Ding; Zhu, Kejun; Huang, Hong

    2016-06-01

    Plumbagin, one of the constituents responsible for the various biological activities of Plumbago zeylanica has been demonstrated to possess antioxidant activity, which may inhibit lipid peroxidation in a dose- and time-dependent manner. In the present study, we aimed to examine the protective effects of plumbagin as well as the underlying mechansim through which plumbagin attenuates hydrogen peroxide (H2O2)-induced oxidative stress in nucleus pulposus cells (NPCs). For this purpose, the NPCs were incubated with fresh medium containing H2O2 (200 µM) at 37˚C in a humidified 5% CO2 atmosphere for 6 h, and cultured with various concentrations of plumbagin (0, 0.5, 1, 2, 5, 10 and 20 µM). Treatment with plumbagin significantly increased the viability of the H2O2-exposed NPCs in a dose‑dependent manner. Moreover, plumbagin significantly reduced the generation of reactive oxygen species, lipid peroxidation, as well as the levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6 in the H2O2‑exposed NPCs. Glutathione (GSH) content, as well as the activity of catalase (CAT), superoxide dismutase (SOD) and glutathione peroxdiase (GSH-Px) were increased. We found that the administration of plumbagin significantly inhibited the activity of caspase-9 and -3, and downregulated NF-κB expression and upregulated Nrf-2 expression in the H2O2-exposed NPCs. Taken together, these findings suggest that plumbagin exerts neuroprotective effects in NPCs by attenuating H2O2‑induced oxidative stress, inflammation and apoptosis through mediating the expression of NF-κB and Nrf-2. PMID:27082014

  11. Involvement of endogenous antioxidant systems in the protective activity of pituitary adenylate cyclase-activating polypeptide against hydrogen peroxide-induced oxidative damages in cultured rat astrocytes.

    PubMed

    Douiri, Salma; Bahdoudi, Seyma; Hamdi, Yosra; Cubì, Roger; Basille, Magali; Fournier, Alain; Vaudry, Hubert; Tonon, Marie-Christine; Amri, Mohamed; Vaudry, David; Masmoudi-Kouki, Olfa

    2016-06-01

    Astroglial cells possess an array of cellular defense mechanisms, including superoxide dismutase (SOD) and catalase antioxidant enzymes, to prevent damages caused by oxidative stress. Nevertheless, astroglial cell viability and functionality can be affected by significant oxidative stress. We have previously shown that pituitary adenylate cyclase-activating polypeptide (PACAP) is a potent glioprotective agent that prevents hydrogen peroxide (H2 O2 )-induced apoptosis in cultured astrocytes. The purpose of this study was to investigate the potential protective effect of PACAP against oxidative-generated alteration of astrocytic antioxidant systems. Incubation of cells with subnanomolar concentrations of PACAP inhibited H2 O2 -evoked reactive oxygen species accumulation, mitochondrial respiratory burst, and caspase-3 mRNA level increase. PACAP also stimulated SOD and catalase activities in a concentration-dependent manner, and counteracted the inhibitory effect of H2 O2 on the activity of these two antioxidant enzymes. The protective action of PACAP against H2 O2 -evoked inhibition of antioxidant systems in astrocytes was protein kinase A, PKC, and MAP-kinase dependent. In the presence of H2 O2 , the SOD blocker NaCN and the catalase inhibitor 3-aminotriazole, both suppressed the protective effects of PACAP on SOD and catalase activities, mitochondrial function, and cell survival. Taken together, these results indicate that the anti-apoptotic effect of PACAP on astroglial cells can account for the activation of endogenous antioxidant enzymes and reduction in respiration rate, thus preserving mitochondrial integrity and preventing caspase-3 expression provoked by oxidative stress. Considering its powerful anti-apoptotic and anti-oxidative properties, the PACAPergic signaling system should thus be considered for the development of new therapeutical approaches to cure various pathologies involving oxidative neurodegeneration. We propose the following cascade for the

  12. Radiation-induced senescence-like phenotype in proliferating and plateau-phase vascular endothelial cells

    SciTech Connect

    Igarashi, Kaori; Sakimoto, Ippei; Kataoka, Keiko; Ohta, Keisuke; Miura, Masahiko

    2007-09-10

    The effects of ionizing radiation (IR) on tumor angiogenesis still remain largely unknown. In this study, we found that IR (8 Gy) induces a high-frequency (80-90%) senescence-like phenotype in vascular endothelial cells (ECs) undergoing exponential growth. This finding allowed us to characterize the IR-induced senescence-like (IRSL) phenotype by examining the gene expression profiles and in vitro angiogenic activities of these ECs. The expression levels of genes associated with cell cycle progression and DNA replication were remarkably reduced in the IRSL ECs. Additionally, the in vitro invasion and migration activities of these cells through Matrigel were significantly suppressed. We also found that confluent ECs exhibited a high-frequency IRSL phenotype when they were replated immediately after irradiation, whereas incubation in plateau-phase conditions reduced the induction of this phenotype and enhanced colony formation. The kinetics of DNA double-strand break repair, which showed a faster time course in confluent ECs than in growing ECs, may contribute to the protective mechanism associated with the IRSL phenotype. These results imply that the IRSL phenotype may be important for determining the angiogenic activity of ECs following irradiation. The present study should contribute to the understanding of the effects of IR on tumor angiogenesis.

  13. Fisetin inhibits TNF-α-induced inflammatory action and hydrogen peroxide-induced oxidative damage in human keratinocyte HaCaT cells through PI3K/AKT/Nrf-2-mediated heme oxygenase-1 expression.

    PubMed

    Seo, Seung-Hee; Jeong, Gil-Saeng

    2015-12-01

    Oxidative skin damage and skin inflammation play key roles in the pathogenesis of skin-related diseases. Fisetin is a naturally occurring flavonoid abundantly found in several vegetables and fruits. Fisetin has been shown to exert various positive biological effects, such as anti-cancer, anti-proliferative, neuroprotective and anti-oxidative effects. In this study, we investigate the skin protective effects and anti-inflammatory properties of fisetin in hydrogen peroxide- and TNF-α-challenged human keratinocyte HaCaT cells. When HaCaT cells were treated with non-cytotoxic concentrations of fisetin (1-20μM), heme oxygenase (HO)-1 mRNA and protein expression increased in a dose-dependent manner. Furthermore, fisetin dose-dependently increased cell viability and reduced ROS production in hydrogen peroxide-treated HaCaT cells. Fisetin also inhibited the production of NO, PGE2 IL-1β, IL-6, expression of iNOS and COX-2, and activation of NF-κB in HaCaT cells treated with TNF-α. Fisetin induced Nrf2 translocation to the nuclei. HO-1 siRNA transient transfection reversed the effects of fisetin on cytoprotection, ROS reduction, NO, PGE2, IL-1β, IL-6, and TNF-α production, and NF-κB DNA-binding activity. Moreover, fisetin increased Akt phosphorylation and a PI3K pathway inhibitor (LY294002) abolished fisetin-induced cytoprotection and NO inhibition. Taken together, these results provide evidence for a beneficial role of fisetin in skin therapy. PMID:26590114

  14. Effect of acetone extract from stem bark of Acacia species (A. dealbata, A. ferruginea and A. leucophloea) on antioxidant enzymes status in hydrogen peroxide-induced HepG2 cells

    PubMed Central

    Sowndhararajan, Kandhasamy; Hong, Sunghyun; Jhoo, Jin-Woo; Kim, Songmun; Chin, Nyuk Ling

    2015-01-01

    Acacia species are multipurpose trees, widely used in the traditional systems of medicine to treat various ailments. The major objective of the present study was to determine the gene expression of enzymatic antioxidants by acetone extract from the stem bark of three Acacia species (Acacia dealbata, Acacia ferruginea and Acacia leucophloea) in hydrogen peroxide (H2O2)-induced human hepatoma (HepG2) cells. The expression of antioxidant enzymes such as superoxide dismutase containing copper–zinc (CuZnSOD)/manganese (MnSOD), catalase (CAT) and glutathione peroxidase (GPx) in HepG2 cells was evaluated by real-time PCR. The results of antioxidant enzyme expression in real-time PCR study revealed that the H2O2 (200 μM) challenged HepG2 cells reduced the expression of enzymes such as SOD, GPx and CAT. However, the cells pre-treated with acetone extracts of all the three Acacia species significantly (P > 0.05) up-regulated the expression of antioxidant enzymes in a concentration dependent manner (25, 50 and 75 μg/mL). In conclusion, the findings of our study demonstrated that the acetone extract of Acacia species effectively inhibited H2O2 mediated oxidative stress and may be useful as a therapeutic agent in preventing oxidative stress mediated diseases. PMID:26586994

  15. Bacterial Fucose-Rich Polysaccharide Stabilizes MAPK-Mediated Nrf2/Keap1 Signaling by Directly Scavenging Reactive Oxygen Species during Hydrogen Peroxide-Induced Apoptosis of Human Lung Fibroblast Cells

    PubMed Central

    Roy Chowdhury, Sougata; Sinha, Tridib Kumar; Sen, Ramkrishna; Basak, Ratan Kumar; Adhikari, Basudam; Bhattacharyya, Arindam

    2014-01-01

    Continuous free radical assault upsets cellular homeostasis and dysregulates associated signaling pathways to promote stress-induced cell death. In spite of the continuous development and implementation of effective therapeutic strategies, limitations in treatments for stress-induced toxicities remain. The purpose of the present study was to determine the potential therapeutic efficacy of bacterial fucose polysaccharides against hydrogen peroxide (H2O2)-induced stress in human lung fibroblast (WI38) cells and to understand the associated molecular mechanisms. In two different fermentation processes, Bacillus megaterium RB-05 biosynthesized two non-identical fucose polysaccharides; of these, the polysaccharide having a high-fucose content (∼42%) conferred the maximum free radical scavenging efficiency in vitro. Structural characterizations of the purified polysaccharides were performed using HPLC, GC-MS, and 1H/13C/2D-COSY NMR. H2O2 (300 µM) insult to WI38 cells showed anti-proliferative effects by inducing intracellular reactive oxygen species (ROS) and by disrupting mitochondrial membrane permeability, followed by apoptosis. The polysaccharide (250 µg/mL) attenuated the cell death process by directly scavenging intracellular ROS rather than activating endogenous antioxidant enzymes. This process encompasses inhibition of caspase-9/3/7, a decrease in the ratio of Bax/Bcl2, relocalization of translocated Bax and cytochrome c, upregulation of anti-apoptotic members of the Bcl2 family and a decrease in the phosphorylation of MAPKs (mitogen activated protein kinases). Furthermore, cellular homeostasis was re-established via stabilization of MAPK-mediated Nrf2/Keap1 signaling and transcription of downstream cytoprotective genes. This molecular study uniquely introduces a fucose-rich bacterial polysaccharide as a potential inhibitor of H2O2-induced stress and toxicities. PMID:25412177

  16. Bacterial fucose-rich polysaccharide stabilizes MAPK-mediated Nrf2/Keap1 signaling by directly scavenging reactive oxygen species during hydrogen peroxide-induced apoptosis of human lung fibroblast cells.

    PubMed

    Roy Chowdhury, Sougata; Sengupta, Suman; Biswas, Subir; Sinha, Tridib Kumar; Sen, Ramkrishna; Basak, Ratan Kumar; Adhikari, Basudam; Bhattacharyya, Arindam

    2014-01-01

    Continuous free radical assault upsets cellular homeostasis and dysregulates associated signaling pathways to promote stress-induced cell death. In spite of the continuous development and implementation of effective therapeutic strategies, limitations in treatments for stress-induced toxicities remain. The purpose of the present study was to determine the potential therapeutic efficacy of bacterial fucose polysaccharides against hydrogen peroxide (H2O2)-induced stress in human lung fibroblast (WI38) cells and to understand the associated molecular mechanisms. In two different fermentation processes, Bacillus megaterium RB-05 biosynthesized two non-identical fucose polysaccharides; of these, the polysaccharide having a high-fucose content (∼ 42%) conferred the maximum free radical scavenging efficiency in vitro. Structural characterizations of the purified polysaccharides were performed using HPLC, GC-MS, and (1)H/(13)C/2D-COSY NMR. H2O2 (300 µM) insult to WI38 cells showed anti-proliferative effects by inducing intracellular reactive oxygen species (ROS) and by disrupting mitochondrial membrane permeability, followed by apoptosis. The polysaccharide (250 µg/mL) attenuated the cell death process by directly scavenging intracellular ROS rather than activating endogenous antioxidant enzymes. This process encompasses inhibition of caspase-9/3/7, a decrease in the ratio of Bax/Bcl2, relocalization of translocated Bax and cytochrome c, upregulation of anti-apoptotic members of the Bcl2 family and a decrease in the phosphorylation of MAPKs (mitogen activated protein kinases). Furthermore, cellular homeostasis was re-established via stabilization of MAPK-mediated Nrf2/Keap1 signaling and transcription of downstream cytoprotective genes. This molecular study uniquely introduces a fucose-rich bacterial polysaccharide as a potential inhibitor of H2O2-induced stress and toxicities. PMID:25412177

  17. A combination of four effective components derived from Sheng-mai san attenuates hydrogen peroxide-induced injury in PC12 cells through inhibiting Akt and MAPK signaling pathways.

    PubMed

    Cao, Guo-Sheng; Li, Shao-Xia; Wang, Yan; Xu, Ying-Qiong; Lv, Yan-Ni; Kou, Jun-Ping; Yu, Bo-Yang

    2016-07-01

    The present study was designed to investigate whether a combination of four effective components derived from Sheng-mai san (SMXZF; ginsenoside Rb1: ginsenoside Rg1: DT-13: Schizandrol A as 6 : 9 : 4 : 5) could attenuate hydrogen peroxide (H2O2)-induced injury in PC12 cells, focusing on the Akt and MAPK pathways . The PC12 cells were exposed to H2O2 (400 μmol·L(-1)) for 1 h in the presence or absence of SMXZF pre-treatment for 24 h. Cell viability was measured by MTT assay. The efflux of lactate dehydrogenase (LDH), the intracellular content of malondialdehyde (MDA), the activities of superoxide dismutase (SOD), and caspase-3 were also determined. Cell apoptosis was measured by Hoechst 33342 staining and Annexin V-FITC/PI staining method. The expression of Bcl-2, Bax, cleaved caspase-3, Akt, and MAPKs were detected by Western blotting analyses. SMXZF pretreatment significantly increased the cell viability and SOD activity and improved the cell morphological changes, while reduced the levels of LDH and MDA at the concentrations of 0.1, 1 and 10 μg·mL(-1). SMXZF also inhibited H2O2-induced apoptosis in PC12 cells. Moreover, SMXZF reduced the activity of caspase-3, up-regulated the protein ratio of Bcl-2 and Bax and inhibited the expression of cleaved caspase-3, p-Akt, p-p38, p-JNK and p-ERK1/2 in H2O2-induced PC12 cells. Co-incubation of Akt inhibitor or p38 inhibitor partly attenuated the protection of SMXZF against H2O2-injured PC12 cells. In conclusion, our findings suggested that SMXZF attenuated H2O2-induced injury in PC12 cells by inhibiting Akt and MAPKs signaling pathways, which might shed insights on its neuroprotective mechanism. PMID:27507201

  18. Hydrogen peroxide induces lysosomal protease alterations in PC12 cells.

    PubMed

    Lee, Daniel C; Mason, Ceceile W; Goodman, Carl B; Holder, Maurice S; Kirksey, Otis W; Womble, Tracy A; Severs, Walter B; Palm, Donald E

    2007-09-01

    Alterations in lysosomal proteases have been implicated in many neurodegenerative diseases. The current study demonstrates a concentration-dependent decrease in PC12 cell viability and transient changes in cystatin C (CYSC), cathepsin B (CATB), cathepsin D (CATD) and caspase-3 following exposure to H2O2. Furthermore, activation of CATD occurred following exposure to H2O2 and cysteine protease suppression, while inhibition of CATD with pepstatin A significantly improved cell viability. Additionally, significant PARP cleavage, suggestive of caspase-3-like activity, was observed following H2O2 exposure, while inhibition of caspase-3 significantly increased cell viability compared to H2O2 administration alone. Collectively, our data suggest that H2O2 induced cell death is regulated at least in part by caspase-3 and CATD. Furthermore, cysteine protease suppression increases CATD expression and activity. These studies provide insight for alternate pathways and potential therapeutic targets of cell death associated with oxidative stress and lysosomal protease alterations. PMID:17440810

  19. Immortalised breast epithelia survive prolonged DNA replication stress and return to cycle from a senescent-like state

    PubMed Central

    Maya-Mendoza, A; Merchut-Maya, J M; Bartkova, J; Bartek, J; Streuli, C H; Jackson, D A

    2014-01-01

    Mammalian cells have mechanisms to counteract the effects of metabolic and exogenous stresses, many of that would be mutagenic if ignored. Damage arising during DNA replication is a major source of mutagenesis. The extent of damage dictates whether cells undergo transient cell cycle arrest and damage repair, senescence or apoptosis. Existing dogma defines these alternative fates as distinct choices. Here we show that immortalised breast epithelial cells are able to survive prolonged S phase arrest and subsequently re-enter cycle after many days of being in an arrested, senescence-like state. Prolonged cell cycle inhibition in fibroblasts induced DNA damage response and cell death. However, in immortalised breast epithelia, efficient S phase arrest minimised chromosome damage and protected sufficient chromatin-bound replication licensing complexes to allow cell cycle re-entry. We propose that our observation could have implications for the design of drug therapies for breast cancer. PMID:25058425

  20. Azelaic acid reduced senescence-like phenotype in photo-irradiated human dermal fibroblasts: possible implication of PPARγ.

    PubMed

    Briganti, Stefania; Flori, Enrica; Mastrofrancesco, Arianna; Kovacs, Daniela; Camera, Emanuela; Ludovici, Matteo; Cardinali, Giorgia; Picardo, Mauro

    2013-01-01

    Azelaic acid (AzA) has been used for the treatment for inflammatory skin diseases, such as acne and rosacea. Interestingly, an improvement in skin texture has been observed after long-time treatment with AzA. We previously unrevealed that anti-inflammatory activity of AzA involves a specific activation of PPARγ, a nuclear receptor that plays a relevant role in inflammation and even in ageing processes. As rosacea has been considered as a photo-aggravated disease, we investigated the ability of AzA to counteract stress-induced premature cell senescence (SIPS). We employed a SIPS model based on single exposure of human dermal fibroblasts (HDFs) to UVA and 8-methoxypsoralen (PUVA), previously reported to activate a senescence-like phenotype, including long-term growth arrest, flattened morphology and increased synthesis of matrix metalloproteinases (MMPs) and senescence-associated β-galactosidase (SA-β-gal). We found that PUVA-treated HDFs grown in the presence of AzA maintained their morphology and reduced MMP-1 release and SA-β-galactosidase-positive cells. Moreover, AzA induced a reduction in ROS generation, an up-modulation of antioxidant enzymes and a decrease in cell membrane lipid damages in PUVA-treated HDFs. Further evidences of AzA anti-senescence effect were repression of p53 and p21, increase in type I pro-collagen and abrogation of the enhanced expression of growth factors, such as HGF and SCF. Interestingly, PUVA-SIPS showed a decreased activation of PPARγ and AzA counteracted this effect, suggesting that AzA effect involves PPARγ modulation. All together these data showed that AzA interferes with PUVA-induced senescence-like phenotype and its ability to activate PPAR-γ provides relevant insights into the anti-senescence mechanism. PMID:23278893

  1. Transcriptional and biochemical responses of monoacylglycerol acyltransferase-mediated oil synthesis and associated senescence-like responses in Nicotiana benthamiana

    PubMed Central

    Divi, Uday K.; El Tahchy, Anna; Vanhercke, Thomas; Petrie, James R.; Robles-Martinez, Jose A.; Singh, Surinder P.

    2014-01-01

    Triacylglycerol (TAG) accumulates in plant seeds as a major renewable source of carbon for food, fuel and industrial feedstock. Approaches to enhance TAG content by altering lipid pathways and genes in vegetative parts have gained significant attention for biofuel and other applications. However, consequences of these modifications are not always studied in detail. In an attempt to increase TAG levels in leaves we previously demonstrated that a novel substrate, monoacylglycerol (MAG), can be used for the biosynthesis of diacylglycerol (DAG) and TAG. Transient expression of the Mus musculus monoacylglycerol acyltransferases MGAT1 and 2 in the model plant Nicotiana benthamiana increased TAG levels at 5 days post-infiltration (dpi). Here we show that increased TAG and DAG levels can be achieved as early as 2 dpi. In addition, the MGAT1 infiltrated areas showed senescence-like symptoms from 3 dpi onwards. To unravel underlying molecular mechanisms, Illumina deep sequencing was carried out (a) for de-novo assembling and annotation of N. benthamiana leaf transcripts and (b) to characterize MGAT1-responsive transcriptome. We found that MGAT1-responsive genes are involved in several processes including TAG biosynthesis, photosynthesis, cell-wall, cutin, suberin, wax and mucilage biosynthesis, lipid and hormone metabolism. Comparative analysis with transcript profiles from other senescence studies identified characteristic gene expression changes involved in senescence induction. We confirmed that increased TAG and observed senescence-symptoms are due to the MAG depletion caused by MGAT1 activity and suggest a mechanism for MGAT1 induced TAG increase and senescence-like symptoms. The data generated will serve as a valuable resource for oil and senescence related studies and for future N. benthamiana transcriptome studies. PMID:24904604

  2. Transcriptional and biochemical responses of monoacylglycerol acyltransferase-mediated oil synthesis and associated senescence-like responses in Nicotiana benthamiana.

    PubMed

    Divi, Uday K; El Tahchy, Anna; Vanhercke, Thomas; Petrie, James R; Robles-Martinez, Jose A; Singh, Surinder P

    2014-01-01

    Triacylglycerol (TAG) accumulates in plant seeds as a major renewable source of carbon for food, fuel and industrial feedstock. Approaches to enhance TAG content by altering lipid pathways and genes in vegetative parts have gained significant attention for biofuel and other applications. However, consequences of these modifications are not always studied in detail. In an attempt to increase TAG levels in leaves we previously demonstrated that a novel substrate, monoacylglycerol (MAG), can be used for the biosynthesis of diacylglycerol (DAG) and TAG. Transient expression of the Mus musculus monoacylglycerol acyltransferases MGAT1 and 2 in the model plant Nicotiana benthamiana increased TAG levels at 5 days post-infiltration (dpi). Here we show that increased TAG and DAG levels can be achieved as early as 2 dpi. In addition, the MGAT1 infiltrated areas showed senescence-like symptoms from 3 dpi onwards. To unravel underlying molecular mechanisms, Illumina deep sequencing was carried out (a) for de-novo assembling and annotation of N. benthamiana leaf transcripts and (b) to characterize MGAT1-responsive transcriptome. We found that MGAT1-responsive genes are involved in several processes including TAG biosynthesis, photosynthesis, cell-wall, cutin, suberin, wax and mucilage biosynthesis, lipid and hormone metabolism. Comparative analysis with transcript profiles from other senescence studies identified characteristic gene expression changes involved in senescence induction. We confirmed that increased TAG and observed senescence-symptoms are due to the MAG depletion caused by MGAT1 activity and suggest a mechanism for MGAT1 induced TAG increase and senescence-like symptoms. The data generated will serve as a valuable resource for oil and senescence related studies and for future N. benthamiana transcriptome studies. PMID:24904604

  3. Induction of senescence-like phenotypes by forced expression of hic-5, which encodes a novel LIM motif protein, in immortalized human fibroblasts.

    PubMed Central

    Shibanuma, M; Mochizuki, E; Maniwa, R; Mashimo, J; Nishiya, N; Imai, S; Takano, T; Oshimura, M; Nose, K

    1997-01-01

    The hic-5 gene encodes a novel protein with Zn finger-like (LIM) motifs, the expression of which increases during cellular senescence. The ectopic expression of hic-5 in nontumorigenic immortalized human fibroblasts, whose expression levels of hic-5 were significantly reduced in comparison with those of mortal cells, decreased colony-forming efficiency. Stable clones expressing high levels of hic-5 mRNA showed higher levels of mRNAs for several extracellular matrix-related proteins, along with the alteration of an alternative splicing as seen in senescent cells and decreased c-fos inducibility. Furthermore, these clones acquired a senescence-like phenotype, such as growth retardation; senescence-like morphology; and increased expression of Cip1/WAF1/sdi1 after 20 to 40 population doublings. On the other hand, antisense RNA expression of hic-5 in human normal diploid fibroblasts delayed the senescence process. HIC-5 was localized in nuclei and had affinity for DNA. Based on these observations, we speculated that HIC-5 affected the expression of senescence-related genes through interacting with DNA and thereby induced the senescence-like phenotypes. To our knowledge, hic-5 is the first single gene that could induce senescence-like phenotypes in a certain type of immortalized human cell and mediate the normal process of senescence. PMID:9032249

  4. Enhanced adhesion of early endothelial progenitor cells to radiation-induced senescence-like vascular endothelial cells in vitro.

    PubMed

    Sermsathanasawadi, Nuttawut; Ishii, Hideto; Igarashi, Kaori; Miura, Masahiko; Yoshida, Masayuki; Inoue, Yoshinori; Iwai, Takehisa

    2009-09-01

    The effects of ionizing radiation (IR) on tumor neovascularization are still unclear. We previously reported that vascular endothelial cells (ECs) expressing the IR-induced senescence-like (IRSL) phenotype exhibit a significant decrease in angiogenic activity in vitro. In this study, we examined the effects of the IRSL phenotype on adhesion to early endothelial progenitor cells (early EPCs). Adhesion of human peripheral blood-derived early EPCs to human umbilical vein endothelial cells (HUVECs) expressing the IRSL phenotype was evaluated by an adhesion assay under static conditions. It was revealed that the IRSL HUVECs supported significantly more adhesion of early EPCs than normal HUVECs. Expressions of ICAM-1, VCAM-1 and E-selectin were up-regulated in IRSL HUVECs. Pre-treatment of IRSL HUVECs with adhesion-blocking monoclonal antibodies against E-selectin and VCAM-1 significantly reduced early EPC adhesion to IRSL HUVECs, suggesting a potential role for the E-selectin and VCAM-1 in the adhesion between IRSL ECs and early EPCs. Therefore, the IRSL phenotype expressed in ECs may enhance neovascularization via increased homing of early EPCs. Our findings are first to implicate the complex effects of this phenotype on tumor neovascularization following irradiation. PMID:19628926

  5. Interstitial chromatin alteration causes persistent p53 activation involved in the radiation-induced senescence-like growth arrest

    SciTech Connect

    Suzuki, Masatoshi; Suzuki, Keiji; Kodama, Seiji; Watanabe, Masami . E-mail: nabe@rri.kyoto-u.ac.jp

    2006-02-03

    Various stresses including ionizing radiation give normal human fibroblasts a phenotype of senescence-like growth arrest (SLGA), manifested by p53-dependent irreversible G1 arrest. To determine the mechanism of persistent activation of p53, we examined phosphorylated Ataxia telangiectasia mutated (ATM) and phosphorylated histone H2AX foci formation after X-irradiation. Although the multiple tiny foci, detected soon after (<30 min) irradiation, gradually disappeared, some of these foci changed to large foci and persisted for 5 days. Large foci containing phosphorylated ATM and {gamma}-H2AX co-localized and foci with p53 phosphorylated at serine 15 also showed the same distribution. Interestingly, the signals obtained by telomere fluorescence in situ hybridization (FISH) assay did not co-localize with 90% of the large foci. Our results indicate that chromatin alteration in interstitial chromosomal regions is the most likely cause of continuous activation of p53, which results in the induction of SLGA by ionizing radiation.

  6. Interstitial chromatin alteration causes persistent p53 activation involved in the radiation-induced senescence-like growth arrest.

    PubMed

    Suzuki, Masatoshi; Suzuki, Keiji; Kodama, Seiji; Watanabe, Masami

    2006-02-01

    Various stresses including ionizing radiation give normal human fibroblasts a phenotype of senescence-like growth arrest (SLGA), manifested by p53-dependent irreversible G1 arrest. To determine the mechanism of persistent activation of p53, we examined phosphorylated Ataxia telangiectasia mutated (ATM) and phosphorylated histone H2AX foci formation after X-irradiation. Although the multiple tiny foci, detected soon after (<30 min) irradiation, gradually disappeared, some of these foci changed to large foci and persisted for 5 days. Large foci containing phosphorylated ATM and gamma-H2AX co-localized and foci with p53 phosphorylated at serine 15 also showed the same distribution. Interestingly, the signals obtained by telomere fluorescence in situ hybridization (FISH) assay did not co-localize with 90% of the large foci. Our results indicate that chromatin alteration in interstitial chromosomal regions is the most likely cause of continuous activation of p53, which results in the induction of SLGA by ionizing radiation. PMID:16360120

  7. Oxidative stress and senescence-like status of pear calli co-cultured on suspensions of incompatible quince microcalli.

    PubMed

    Nocito, Fabio F; Espen, Luca; Fedeli, Chiara; Lancilli, Clarissa; Musacchi, Stefano; Serra, Sara; Sansavini, Silviero; Cocucci, Maurizio; Sacchi, Gian Attilio

    2010-04-01

    This work presents a simple in vitro system to study physiological, biochemical and molecular changes occurring in a pear callus (Pyrus communis L., cv. Beurré Bosc) grown in close proximity to spatially separated undifferentiated homologous (pear) or heterologous (quince; Cydonia oblonga Mill., East Malling clone C) cells in its neighboring environment. After a 7-day co-culture period, the presence of heterologous cells produced negative effects on the pear callus, whose relative weight increase and adenylate energy charge decreased by 30 and 24%, respectively. Such behavior was associated with a higher O(2) consumption rate (+125%) which did not seem to be coupled to adenosine triphosphate synthesis. Analyses of alternative oxidase and enzymatic activities involved in reactive oxygen species (ROS) detoxification strongly suggested that the higher O(2) consumption rate, measured in the pear callus grown in the heterologous combination, may probably be ascribed to extra-respiratory activities. These, in turn, might contribute to generate metabolic scenarios where ROS-induced oxidative stresses may have the upper hand. The increase in the levels of 2-thiobarbituric acid reactive metabolites, considered as diagnostic indicators of ROS-induced lipid peroxidation, seemed to confirm this hypothesis. Moreover, reverse transcription polymerase chain reaction analysis revealed that the expression levels of a few senescence-associated genes were higher in the pear callus grown in the heterologous combination than in the homologous one. Taken as a whole, physiological and molecular data strongly suggest that undifferentiated cells belonging to a pear graft-incompatible quince clone may induce an early senescence-like status in a closely co-cultured pear callus. PMID:20190345

  8. Live-Cell Imaging Visualizes Frequent Mitotic Skipping During Senescence-Like Growth Arrest in Mammary Carcinoma Cells Exposed to Ionizing Radiation

    SciTech Connect

    Suzuki, Masatoshi; Yamauchi, Motohiro; Oka, Yasuyoshi; Suzuki, Keiji; Yamashita, Shunichi

    2012-06-01

    Purpose: Senescence-like growth arrest in human solid carcinomas is now recognized as the major outcome of radiotherapy. This study was designed to analyze cell cycle during the process of senescence-like growth arrest in mammary carcinoma cells exposed to X-rays. Methods and Materials: Fluorescent ubiquitination-based cell cycle indicators were introduced into the human mammary carcinoma cell line MCF-7. Cell cycle was sequentially monitored by live-cell imaging for up to 5 days after exposure to 10 Gy of X-rays. Results: Live-cell imaging revealed that cell cycle transition from G2 to G1 phase without mitosis, so-called mitotic skipping, was observed in 17.1% and 69.8% of G1- and G2-irradiated cells, respectively. Entry to G1 phase was confirmed by the nuclear accumulation of mKO{sub 2}-hCdt1 as well as cyclin E, which was inversely correlated to the accumulation of G2-specific markers such as mAG-hGeminin and CENP-F. More than 90% of cells skipping mitosis were persistently arrested in G1 phase and showed positive staining for the senescent biochemical marker, which is senescence-associated ss-galactosidase, indicating induction of senescence-like growth arrest accompanied by mitotic skipping. While G2 irradiation with higher doses of X-rays induced mitotic skipping in approximately 80% of cells, transduction of short hairpin RNA (shRNA) for p53 significantly suppressed mitotic skipping, suggesting that ionizing radiation-induced mitotic skipping is associated with p53 function. Conclusions: The present study found the pathway of senescence-like growth arrest in G1 phase without mitotic entry following G2-irradiation.

  9. Lentinula edodes (Shiitake) mushroom extract protects against hydrogen peroxide induced cytotoxicity in peripheral blood mononuclear cells.

    PubMed

    Kuppusamy, U R; Chong, Y L; Mahmood, A A; Indran, M; Abdullah, Noorlidah; Vikineswary, S

    2009-04-01

    Lentinula edodes (Berk) Pegler, commonly known as Shiitake mushroom has been used as medicinal food in Asian countries, especially in China and Japan and is believed to possess strong immunomodulatory property. In the present study, the methanolic extract of the fruit bodies of L. edodes was investigated for cytoprotective effect against H2O2-induced cytotoxicity in human peripheral blood mononuclear cells (PBMCs) by measuring the activities of xanthine oxidase (XO) and glutathione peroxidase (GPx) . H2O2 at a concentration of 5 microM caused 50% inhibition of PBMCs viability. The extract improved the PBMC viability and exerted a dose-dependent protection against H2O2-induced cytotoxicity. At 100 microg/ml of extract concentration, the cell viability increased by 60% compared with the PBMCs incubated with H2O2 alone. The extract also inhibited XO activity in PBMC, while showing moderate stimulatory effect on GPx. However, in the presence of H2O2 alone, both the enzyme activities were increased significantly. The GPx activity increased, possibly in response to the increased availability of H2O2 in the cell. When the cells were pretreated with the extract and washed (to remove the extract) prior to the addition of H2O2, the GPx and XO activities as well as the cell viability were comparable to those when incubated with the extract alone. Thus, it is suggested that one of the possible mechanisms via which L. edodes methanolic extract confers protection against H2O2-induced oxidative stress in PBMC is by inhibiting the superoxide-producing XO and increasing GPx activity which could rapidly inactivate H2O2. PMID:19517993

  10. Protective Effect of Selected Medicinal Plants against Hydrogen Peroxide Induced Oxidative Damage on Biological Substrates

    PubMed Central

    Pai Kotebagilu, Namratha; Reddy Palvai, Vanitha

    2014-01-01

    Oxidative stress is developed due to susceptibility of biological substrates to oxidation by generation of free radicals. In degenerative diseases, oxidative stress level can be reduced by antioxidants which neutralize free radicals. Primary objective of this work was to screen four medicinal plants, namely, Andrographis paniculata, Costus speciosus, Canthium parviflorum, and Abrus precatorius, for their antioxidant property using two biological substrates—RBC and microsomes. The antioxidative ability of three solvent extracts, methanol (100% and 80%) and aqueous leaf extracts, was studied at different concentrations by thiobarbituric acid reactive substances method using Fenton's reagent to induce oxidation in the substrates. The polyphenol and flavonoid content were analyzed to relate with the observed antioxidant effect of the extracts. The phytochemical screening indicated the presence of flavonoids, polyphenols, tannins, and β-carotene in the samples. In microsomes, 80% methanol extract of Canthium and Costus and, in RBC, 80% methanol extract of Costus showed highest inhibition of oxidation and correlated well with the polyphenol and flavonoid content. From the results it can be concluded that antioxidants from medicinal plants are capable of inhibiting oxidation in biological systems, suggesting scope for their use as nutraceuticals. PMID:25436152

  11. In Vitro Neuroprotective Effect of Shikimic Acid Against Hydrogen Peroxide-Induced Oxidative Stress.

    PubMed

    Rabelo, Thallita Kelly; Zeidán-Chuliá, Fares; Caregnato, Fernanda Freitas; Schnorr, Carlos Eduardo; Gasparotto, Juciano; Serafini, Mairim Russo; de Souza Araújo, Adriano Antunes; Quintans-Junior, Lucindo José; Moreira, José Cláudio Fonseca; Gelain, Daniel Pens

    2015-08-01

    Shikimic acid (SA), originally extracted from Illicium verum Hook. fil., is an indispensable starting material for the synthesis of the antiviral drug Oseltamivir (Tamiflu(®)) with very limited number of studies regarding its biological effects in vitro. Therefore, we here evaluated the thermoanalytical profile, redox properties, and in vitro effects of SA on human neuronal-like cells (SH-SY5Y). The thermoanalytical profile of SA was studied by using differential scanning calorimetry (DSC) and thermogravimetry/derivative thermogravimetry (TG/DTG) characterization. Both antioxidant potential and in vitro lipoperoxidation levels were analyzed. Cell viability and intracellular reactive species (RS) production was determined by DCF and SRB assays, respectively. Our results show in vitro antioxidant activity of SA without exerting cytotoxic effects on SH-SY5Y cells at tested concentrations of 10 nM, 10 μM, and 10 mM. In addition, SA protected the cells against H2O2-induced toxicity; effect that could be related, at least in part, with decreased intracellular RS production and its antioxidant potential. The present study shows evidence for neuroprotective actions of SA against oxidative stress-induced toxicity on SH-SY5Y cells, inviting for further investigation about its potential use in the context of oxidative stress-associated neurodegenerative diseases. PMID:25862258

  12. ORGANIC AND INORGANIC ARSENICALS SENSITIZE HUMAN BRONCHIAL EPITHELIAL CELLS TO HYDROGEN PEROXIDE-INDUCED DNA DAMAGE

    EPA Science Inventory

    The lungs are a target organ for arsenic carcinogenesis, however, its mechanism of action remains unclear. Furthermore, it has been suggested that inorganic arsenic (iAs) can potentiate DNA damage induced by other agents. Once inside the human body iAs generally undergoes two ...

  13. Steady-state hydrogen peroxide induces glycolysis in Staphylococcus aureus and Pseudomonas aeruginosa.

    PubMed

    Deng, Xin; Liang, Haihua; Ulanovskaya, Olesya A; Ji, Quanjiang; Zhou, Tianhong; Sun, Fei; Lu, Zhike; Hutchison, Alan L; Lan, Lefu; Wu, Min; Cravatt, Benjamin F; He, Chuan

    2014-07-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from human pathogens Staphylococcus aureus and Pseudomonas aeruginosa can be readily inhibited by reactive oxygen species (ROS)-mediated direct oxidation of their catalytic active cysteines. Because of the rapid degradation of H2O2 by bacterial catalase, only steady-state but not one-dose treatment with H2O2 rapidly induces glycolysis and the pentose phosphate pathway (PPP). We conducted transcriptome sequencing (RNA-seq) analyses to globally profile the bacterial transcriptomes in response to a steady level of H2O2, which revealed profound transcriptional changes, including the induced expression of glycolytic genes in both bacteria. Our results revealed that the inactivation of GAPDH by H2O2 induces metabolic levels of glycolysis and the PPP; the elevated levels of fructose 1,6-biphosphate (FBP) and 2-keto-3-deoxy-6-phosphogluconate (KDPG) lead to dissociation of their corresponding glycolytic repressors (GapR and HexR, respectively) from their cognate promoters, thus resulting in derepression of the glycolytic genes to overcome H2O2-stalled glycolysis in S. aureus and P. aeruginosa, respectively. Both GapR and HexR may directly sense oxidative stresses, such as menadione. PMID:24769698

  14. Steady-State Hydrogen Peroxide Induces Glycolysis in Staphylococcus aureus and Pseudomonas aeruginosa

    PubMed Central

    Deng, Xin; Liang, Haihua; Ulanovskaya, Olesya A.; Ji, Quanjiang; Zhou, Tianhong; Sun, Fei; Lu, Zhike; Hutchison, Alan L.; Lan, Lefu; Wu, Min; Cravatt, Benjamin F.

    2014-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from human pathogens Staphylococcus aureus and Pseudomonas aeruginosa can be readily inhibited by reactive oxygen species (ROS)-mediated direct oxidation of their catalytic active cysteines. Because of the rapid degradation of H2O2 by bacterial catalase, only steady-state but not one-dose treatment with H2O2 rapidly induces glycolysis and the pentose phosphate pathway (PPP). We conducted transcriptome sequencing (RNA-seq) analyses to globally profile the bacterial transcriptomes in response to a steady level of H2O2, which revealed profound transcriptional changes, including the induced expression of glycolytic genes in both bacteria. Our results revealed that the inactivation of GAPDH by H2O2 induces metabolic levels of glycolysis and the PPP; the elevated levels of fructose 1,6-biphosphate (FBP) and 2-keto-3-deoxy-6-phosphogluconate (KDPG) lead to dissociation of their corresponding glycolytic repressors (GapR and HexR, respectively) from their cognate promoters, thus resulting in derepression of the glycolytic genes to overcome H2O2-stalled glycolysis in S. aureus and P. aeruginosa, respectively. Both GapR and HexR may directly sense oxidative stresses, such as menadione. PMID:24769698

  15. Centella asiatica extracts modulate hydrogen peroxide-induced senescence in human dermal fibroblasts.

    PubMed

    Kim, Young Joo; Cha, Hwa Jun; Nam, Ki Ho; Yoon, Yeongmin; Lee, Hyunjin; An, Sungkwan

    2011-12-01

    Centella asiatica (C. asiatica) is a pharmacological plant in South Asia. It has been demonstrated that C. asiatica extracts containing various pentacyclic triterpenes exert healing effects, especially wound healing and collagen synthesis in skin. However, there are few studies on the effect of C. asiatica extracts on stress-induced premature senescence (SIPS). To determine whether H(2) O(2) -induced senescence is affected by C. asiatica extracts, we performed senescence analysis on cultured human dermal fibroblasts (HDFs). We also analysed whole gene expression level using microarrays and showed that 39 mRNAs are differentially expressed in H(2) O(2) -induced HDFs with and without treatment with C. asiatica extracts. These genes regulate apoptosis, gene silencing, cell growth, transcription, senescence, DNA replication and the spindle checkpoint. Differential expression of FOXM1, E2F2, MCM2, GDF15 and BHLHB2 was confirmed using semi-quantitative PCR. In addition, C. asiatica extracts rescued the H(2) O(2) -induced repression of replication in HDFs. Therefore, the findings presented here suggest that C. asiatica extracts might regulate SIPS by preventing repression of DNA replication and mitosis-related gene expression. PMID:22092576

  16. Hydrogen Peroxide Inducible DNA Cross-Linking Agents: Targeted Anticancer Prodrugs

    PubMed Central

    Kuang, Yunyan; Balakrishnan, Kumudha; Gandhi, Varsha; Peng, Xiaohua

    2011-01-01

    The major concern for anticancer chemotherapeutic agents is the host toxicity. The development of anti-cancer prodrugs targeting the unique biochemical alterations in cancer cells is an attractive approach to achieve therapeutic activity and selectivity. We designed and synthesized a new type of nitrogen mustard prodrug that can be activated by high level of reactive oxygen species (ROS) found in cancer cells to release the active chemotherapy agent. The activation mechanism was determined by NMR analysis. The activity and selectivity of these prodrugs towards ROS was determined by measuring DNA interstrand crosslinks and/or DNA alkylations. These compounds showed 60–90% inhibition toward various cancer cells, while normal lymphocytes were not affected. To the best of our knowledge, this is the first example of H2O2-activated anticancer prodrugs. PMID:22035519

  17. Huperzine B, a novel acetylcholinesterase inhibitor, attenuates hydrogen peroxide induced injury in PC12 cells.

    PubMed

    Zhang, H Y; Tang, X C

    2000-09-29

    A number of studies indicate that free radicals are involved in the neurodegeneration in Alzheimer's disease (AD). The present study was mainly conducted to examine the effect of Huperzine B on H(2)O(2) induced toxicity in rat pheochromocytoma line PC12 by measuring cell lesion, level of lipid peroxidation and antioxidant enzyme activities. Following a 30 min exposure of the cells to H(2)O(2) (150 microM), a marked decrease in cell survival, activities of glutathione peroxidase and catalase as well as increased production of malondialdehyde (MDA) were found. Pretreatment of the cells with huperzine B (10-100 microM) prior to H(2)O(2) exposure significantly elevated the cell survival, antioxidant enzyme activities and decreased the level of MDA. The above-mentioned neuroprotective effects are also observed with tacrine (1 microM), donepezil (10 microM) and galanthamine (10 microM), suggesting that the neuroprotective effects of cholinesterase inhibitor might partly contribute to the clinical efficacy in AD treatment. PMID:10996445

  18. Protective Effect of Selected Medicinal Plants against Hydrogen Peroxide Induced Oxidative Damage on Biological Substrates.

    PubMed

    Pai Kotebagilu, Namratha; Reddy Palvai, Vanitha; Urooj, Asna

    2014-01-01

    Oxidative stress is developed due to susceptibility of biological substrates to oxidation by generation of free radicals. In degenerative diseases, oxidative stress level can be reduced by antioxidants which neutralize free radicals. Primary objective of this work was to screen four medicinal plants, namely, Andrographis paniculata, Costus speciosus, Canthium parviflorum, and Abrus precatorius, for their antioxidant property using two biological substrates-RBC and microsomes. The antioxidative ability of three solvent extracts, methanol (100% and 80%) and aqueous leaf extracts, was studied at different concentrations by thiobarbituric acid reactive substances method using Fenton's reagent to induce oxidation in the substrates. The polyphenol and flavonoid content were analyzed to relate with the observed antioxidant effect of the extracts. The phytochemical screening indicated the presence of flavonoids, polyphenols, tannins, and β-carotene in the samples. In microsomes, 80% methanol extract of Canthium and Costus and, in RBC, 80% methanol extract of Costus showed highest inhibition of oxidation and correlated well with the polyphenol and flavonoid content. From the results it can be concluded that antioxidants from medicinal plants are capable of inhibiting oxidation in biological systems, suggesting scope for their use as nutraceuticals. PMID:25436152

  19. Protection against hydrogen peroxide-induced cytotoxicity in PC12 cells by scutellarin.

    PubMed

    Hong, Hao; Liu, Guo-Qing

    2004-04-30

    The present study investigated the protective actions of the antioxidant scutellarin against the cytotoxicity produced by exposure to H2O2 in PC12 cells. This was done by assaying for MTT (3,(4,5-dimethylthiazole-2-yl)2,5-diphenyl-tetrazolium bromide) reduction and lactate dehydrogenase (LDH) release. Reactive oxygen species (ROS) and Ca2+ in cells were evaluated by fluorescent microplate reader using DCFH and Fura 2-AM, respectively, as probes. Lipid peroxidation was quantified using thiobarbituric acid-reactive substances (TBARS). Mitochondrial membrane potential (MMP) was assessed by the retention of rhodamine123 (Rh123), a specific fluorescent cationic dye that is readily sequestered by active mitochondria, depending on their transmembrane potential. The DNA content and percentage of apoptosis were monitored with flow cytometry. Vitamin E, a potent antioxidant, was employed as a comparative agent. Preincubation of PC12 cells with scutellarin prevented cytotoxicity induced by H2O2. Intracellular accumulation of ROS, Ca2+ and products of lipid peroxidation, resulting from H2O2 were significantly reduced by scutellarin. Incubation of cells with H2O2 caused a marked decrease in MMP, which was significantly inhibited by scutellarin. PC12 cells treated with H2O2 underwent apoptotic death as determined by flow cytometric assay. The percentage of this H2O2-induced apoptosis in the cells was decreased in the presence of different concentrations of scutellarin. Scutellarin exhibited significantly higher potency compared to the antioxidant vitamin E. The present findings showed that scutellarin attenuated H2O2-induced cytotoxicity, intracellular accumulation of ROS and Ca2+, lipid peroxidation, and loss of MMP and DNA, which may represent the cellular mechanisms for its neuroprotective action. PMID:15051420

  20. Hydrogen-peroxide-induced oxidative stress responses in Desulfovibrio vulgaris Hildenborough

    SciTech Connect

    Zhou, A.; He, Z.; Redding-Johanson, A.M.; Mukhopadhyay, A.; Hemme, C.L.; Joachimiak, M.P.; Bender, K.S.; Keasling, J.D.; Stahl, D.A.; Fields, M.W.; Hazen, T.C.; Arkin, A.P.; Wall, J.D.; Zhou, J.; Luo, F.; Deng, Y.; He, Q.

    2010-07-01

    To understand how sulphate-reducing bacteria respond to oxidative stresses, the responses of Desulfovibrio vulgaris Hildenborough to H{sub 2}O{sub 2}-induced stresses were investigated with transcriptomic, proteomic and genetic approaches. H{sub 2}O{sub 2} and induced chemical species (e.g. polysulfide, ROS) and redox potential shift increased the expressions of the genes involved in detoxification, thioredoxin-dependent reduction system, protein and DNA repair, and decreased those involved in sulfate reduction, lactate oxidation and protein synthesis. A gene coexpression network analysis revealed complicated network interactions among differentially expressed genes, and suggested possible importance of several hypothetical genes in H{sub 2}O{sub 2} stress. Also, most of the genes in PerR and Fur regulons were highly induced, and the abundance of a Fur regulon protein increased. Mutant analysis suggested that PerR and Fur are functionally overlapped in response to stresses induced by H{sub 2}O{sub 2} and reaction products, and the upregulation of thioredoxin-dependent reduction genes was independent of PerR or Fur. It appears that induction of those stress response genes could contribute to the increased resistance of deletion mutants to H{sub 2}O{sub 2}-induced stresses. In addition, a conceptual cellular model of D. vulgaris responses to H{sub 2}O{sub 2} stress was constructed to illustrate that this bacterium may employ a complicated molecular mechanism to defend against the H{sub 2}O{sub 2}-induced stresses.

  1. Protective effects of ginsenoside Rg1 against hydrogen peroxide-induced injury in human neuroblastoma cells

    PubMed Central

    Sun, Zhi-gao; Chen, Li-ping; Wang, Fa-wei; Xu, Cheng-yong; Geng, Miao

    2016-01-01

    The active ingredient of ginseng, ginsenosides Rg1, has been shown to scavenge free radicals and improve antioxidant capacity. This study hypothesized that ginsenosides Rg1 has a protective role in human neuroblastoma cells injured by H2O2. Ginsenosides Rg1 at different concentrations (50 and 100 μM) was used to treat H2O2 (150 μM)-injured SH-SY5Y cells. Results demonstrated that ginsenoside Rg1 elevated the survival rate of SH-SY5Y cells injured by H2O2, diminished the amount of leaked lactate dehydrogenase, and increased superoxide dismutase activity. Ginsenoside Rg1 effectively suppressed caspase-3 immunoreactivity, and contributed to heat shock protein 70 gene expression, in a dose-dependent manner. These results indicate that ginsenoside Rg1 has protective effects on SH-SY5Y cells injured by H2O2 and that its mechanism of action is associated with anti-oxidation and the inhibition of apoptosis.

  2. Polyphenols from Berries of Aronia melanocarpa Reduce the Plasma Lipid Peroxidation Induced by Ziprasidone

    PubMed Central

    Dietrich-Muszalska, Anna; Kopka, Justyna

    2014-01-01

    Background. Oxidative stress in schizophrenia may be caused partially by the treatment of patients with antipsychotics. The aim of the study was to establish the effects of polyphenol compounds derived from berries of Aronia melanocarpa (Aronox) on the plasma lipid peroxidation induced by ziprasidone in vitro. Methods. Lipid peroxidation was measured by the level of thiobarbituric acid reactive species (TBARS). The samples of plasma from healthy subjects were incubated with ziprasidone (40 ng/ml; 139 ng/ml; and 250 ng/ml) alone and with Aronox (5 ug/ml; 50 ug/ml). Results. We observed a statistically significant increase of TBARS level after incubation of plasma with ziprasidone (40 ng/ml; 139 ng/ml; and 250 ng/ml) (after 24 h incubation: P = 7.0 × 10−4, P = 1.6 × 10−3, and P = 2.7 × 10−3, resp.) and Aronox lipid peroxidation caused by ziprasidone was significantly reduced. After 24-hour incubation of plasma with ziprasidone (40 ng/ml; 139 ng/ml; and 250 ng/ml) in the presence of 50 ug/ml Aronox, the level of TBARS was significantly decreased: P = 6.5 × 10−8, P = 7.0 × 10−6, and P = 3.0 × 10−5, respectively. Conclusion. Aronox causes a distinct reduction of lipid peroxidation induced by ziprasidone. PMID:25061527

  3. Polyphenols from Berries of Aronia melanocarpa Reduce the Plasma Lipid Peroxidation Induced by Ziprasidone.

    PubMed

    Dietrich-Muszalska, Anna; Kopka, Justyna; Kontek, Bogdan

    2014-01-01

    Background. Oxidative stress in schizophrenia may be caused partially by the treatment of patients with antipsychotics. The aim of the study was to establish the effects of polyphenol compounds derived from berries of Aronia melanocarpa (Aronox) on the plasma lipid peroxidation induced by ziprasidone in vitro. Methods. Lipid peroxidation was measured by the level of thiobarbituric acid reactive species (TBARS). The samples of plasma from healthy subjects were incubated with ziprasidone (40 ng/ml; 139 ng/ml; and 250 ng/ml) alone and with Aronox (5 ug/ml; 50 ug/ml). Results. We observed a statistically significant increase of TBARS level after incubation of plasma with ziprasidone (40 ng/ml; 139 ng/ml; and 250 ng/ml) (after 24 h incubation: P = 7.0 × 10(-4), P = 1.6 × 10(-3), and P = 2.7 × 10(-3), resp.) and Aronox lipid peroxidation caused by ziprasidone was significantly reduced. After 24-hour incubation of plasma with ziprasidone (40 ng/ml; 139 ng/ml; and 250 ng/ml) in the presence of 50 ug/ml Aronox, the level of TBARS was significantly decreased: P = 6.5 × 10(-8), P = 7.0 × 10(-6), and P = 3.0 × 10(-5), respectively. Conclusion. Aronox causes a distinct reduction of lipid peroxidation induced by ziprasidone. PMID:25061527

  4. [Kinetics of lipid peroxidation induced by UV beta rays in human keratinocyte and fibroblast cultures].

    PubMed

    Perez, S; Sergent, O; Morel, P; Chevanne, M; Dubos, M P; Cillard, P; Cillard, J

    1995-01-01

    Lipid peroxidation has been implicated in skin damage by ultraviolet radiation. The aim of the study was to determine the kinetic of lipid peroxidation induced by ultraviolet beta (UVB) in adult keratinocytes and fibroblasts in culture. The keratinocytes were obtained from a single primary culture and the fibroblasts were in the same subculture (4 to 10 transfers). For UVB irradiation, the cells were maintained in a small volume of Hanks balanced salt solution and were irradiated (0.75, 1.5, 3 and 4.5 Jcm-2). Then cells were cultured for 3 to 48 hours. Lipid peroxidation was estimated by free MDA determination in both extracellular medium and cells using a size exclusion chromatography coupled to an HPLC procedure. In addition, LDH release in culture media was evaluated as in indice of cytotoxicity. An increase of total free MDA was observed 3 hours after cell irradiation which was dose-dependent from 0.75 to 3 Jcm-2 for keratinocytes and fibroblasts. MDA was detected both in cells and in culture media. As soon as 3 hours after irradiation 90% in total MDA was present in the culture media. Kinetic of lipid peroxidation: for 0.75 Jcm-2, an elevation of MDA was observed 12 hours after irradiation in both cultures. A further increase in MDA was noted 24 hours after fibroblasts irradiation but not in irradiated keratinocytes. LDH release in culture media increased with post irradiation time until 48 hours. The cytotoxic effect of UVB irradiation on keratinocytes and fibroblasts cultures was shown by an enhancement of lipid peroxidation which was detectable during 48 hours after irradiation. An increase of LDH release was observed simultaneously. PMID:8521093

  5. Prevention of lipid peroxidation induced by ochratoxin A in Vero cells in culture by several agents.

    PubMed

    Baudrimont, I; Ahouandjivo, R; Creppy, E E

    1997-04-18

    Ochratoxin A (OTA) is a mycotoxin produced by Aspergillus ochraceus as well as other moulds. This mycotoxin contaminates animal feed and food and is nephrotoxic for all animal species studied so far. OTA is immunosuppressive, genotoxic, teratogenic and carcinogenic. It is a structural analogue of phenylalanine and contains a chlorinated dihydroisocoumarinic moiety. Ochratoxin A inhibits protein synthesis by competition with phenylalanine in the phenylalanine-tRNA aminoacylation reaction. Recently lipid peroxidation induced by OTA has been reported, indicating that the lesions induced by this toxin could also be related to oxidative damage. An attempt to prevent its toxic effect, mainly the lipid peroxidation, has been made using aspartame (L-aspartyl-L-phenylalanine methyl ester) a structural analogue of both OTA and phenylalanine, piroxicam, a non steroidal anti-inflammatory drug and superoxide dismutase+catalase (endogenous oxygen radical scavengers). Lipid peroxidation was assayed in monkey kidney cells (Vero cells) treated by increasing concentrations of OTA (5-50 microM). After 24 h incubation OTA induced lipid peroxidation in Vero cells in a concentration dependent manner, as measured by malonaldehyde (MDA) production. The MDA production, in Vero cells, was significantly increased by 50.5% from 694.1 +/- 21.0 to 1041.5 +/- 23.5 pmol/mg of protein. In the presence of superoxide dismutase (SOD)+catalase (25 micrograms/ml each) the MDA production induced by OTA was significantly decreased. At 50 microM of OTA concentration (optimal production of MDA) the MDA production decreased from 1041.5 +/- 23.5 to 827.5 +/- 21.3 pmol/mg of protein. SOD and catalase, when applied prior to the toxin, seemed to prevent lipid peroxidation more efficiently than piroxicam (at a ten-fold higher concentration than OTA) and aspartame (at equimolar concentration). These molecules also partially prevented the OTA-induced leakage of MDA in the culture medium. PMID:9158693

  6. Metabolome variations in the Porphyromonas gingivalis vimA mutant during hydrogen peroxide-induced oxidative stress

    PubMed Central

    McKenzie, R.M.E.; Aruni, W.; Johnson, N.A.; Robles, A.; Dou, Y.; Henry, L.; Boskovic, D.S.; Fletcher, H.M.

    2015-01-01

    SUMMARY The adaptability and survival of Porphyromonas gingivalis in the oxidative microenvironment of the periodontal pocket are indispensable for survival and virulence, and are modulated by multiple systems. Among the various genes involved in P. gingivalis oxidative stress resistance, vimA gene is a part of the 6.15-kb locus. To elucidate the role of a P. gingivalis vimA-defective mutant in oxidative stress resistance, we used a global approach to assess the transcriptional profile, to study the unique metabolome variations affecting survival and virulence in an environment typical of the periodontal pocket. A multilayered protection strategy against oxidative stress was noted in P. gingivalis FLL92 with upregulation of detoxifying genes. The duration of oxidative stress was shown to differentially modulate transcription with 94 (87%) genes upregulated twofold during 10 min and 55 (83.3%) in 15 min. Most of the up-regulated genes (55%), fell in the hypothetical/unknown/unassigned functional class. Metabolome variation showed reduction in fumarate and formaldehyde, hence resorting to alternative energy generation and maintenance of a reduced metabolic state. There was upregulation of transposases, genes encoding for the metal ion binding protein transport and secretion system. PMID:25055986

  7. Zingerone protects against stannous chloride-induced and hydrogen peroxide-induced oxidative DNA damage in vitro.

    PubMed

    Rajan, Iyappan; Narayanan, Nithya; Rabindran, Remitha; Jayasree, P R; Manish Kumar, P R

    2013-12-01

    In this paper, we report the dose-dependent antioxidant activity and DNA protective effects of zingerone. At 500 μg/mL, the DPPH radical scavenging activity of zingerone and ascorbic acid as a standard was found to be 86.7 and 94.2 % respectively. At the same concentration, zingerone also showed significant reducing power (absorbance 0.471) compared to that of ascorbic acid (absorbance 0.394). The in vitro toxicity of stannous chloride (SnCl2) was evaluated using genomic and plasmid DNA. SnCl2-induced degradation of genomic DNA was found to occur at a concentration of 0.8 mM onwards with complete degradation at 1.02 mM and above. In the case of plasmid DNA, conversion of supercoiled DNA into the open circular form indicative of DNA nicking activity was observed at a concentration of 0.2 mM onwards; complete conversion was observed at a concentration of 1.02 mM and above. Zingerone was found to confer protection against SnCl2-induced oxidative damage to genomic and plasmid DNA at concentrations of 500 and 750 μg/mL onwards, respectively. This protective effect was further confirmed in the presence of UV/H2O2-a known reactive oxygen species (ROS) generating system-wherein protection by zingerone against ROS-mediated DNA damage was observed at a concentration of 250 μg/mL onwards in a dose-dependent manner. This study clearly indicated the in vitro DNA protective property of zingerone against SnCl2-induced, ROS-mediated DNA damage. PMID:24006104

  8. Flavonoid Fraction of Orange and Bergamot Juices Protect Human Lung Epithelial Cells from Hydrogen Peroxide-Induced Oxidative Stress.

    PubMed

    Ferlazzo, Nadia; Visalli, Giuseppa; Smeriglio, Antonella; Cirmi, Santa; Lombardo, Giovanni Enrico; Campiglia, Pietro; Di Pietro, Angela; Navarra, Michele

    2015-01-01

    It has been reported that oxidant/antioxidant imbalance triggers cell damage that in turn causes a number of lung diseases. Flavonoids are known for their health benefits, and Citrus fruits juices are one of the main food sources of these secondary plant metabolites. The present study was designed to evaluate the effect of the flavonoid fraction of bergamot and orange juices, on H2O2-induced oxidative stress in human lung epithelial A549 cells. First we tested the antioxidant properties of both extracts in cell-free experimental models and then we assayed their capability to prevent the cytotoxic effects induced by H2O2. Our results demonstrated that both Citrus juice extracts reduce the generation of reactive oxygen species and membrane lipid peroxidation, improve mitochondrial functionality, and prevent DNA-oxidative damage in A549 cells incubated with H2O2. Our data indicate that the mix of flavonoids present in both bergamot and orange juices may be of use in preventing oxidative cell injury and pave the way for further research into a novel healthy approach to avoid lung disorders. PMID:26221182

  9. DIVALENT METAL TRANSPORTER-1 REGULATION BY IRON AND VANADIUM MODULATES HYDROGEN PEROXIDE-INDUCED DNA DAMAGE IN LUNG CELLS

    EPA Science Inventory

    The divalent metal transporter-1 (DMT1) participates in the detoxification of metals that can damage lung epithelium. Elevated iron levels increase the expression of DMT1 in bronchial epithelial cells stimulating its uptake and storage in ferritin, thus making iron unavailable t...

  10. Nelumbo nucifera leaves protect hydrogen peroxide-induced hepatic damage via antioxidant enzymes and HO-1/Nrf2 activation.

    PubMed

    Je, Jae-Young; Lee, Da-Bin

    2015-06-01

    Naturally occurring phenolic compounds are widely found in plants. Here, the phenolic composition and hepatoprotective effect of the butanolic extract (BE) from Nelumbo nucifera leaves against H2O2-induced hepatic damage in cultured hepatocytes were investigated. BE showed high total phenol and flavonoid contents, and major phenolic compounds are quercetin, catechin, ferulic acid, rutin, and protocatechuic acid by HPLC analysis. BE effectively scavenged 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azino-bis(3-ethylbenzthiazoline)-6-sulfonic acid (ABTS) cation radicals (IC50 values of 5.21 μg mL(-1) for DPPH and 6.22 μg mL(-1) for ABTS(+)) and showed strong reducing power. Pretreatment of BE prior to 650 μM H2O2 exposure markedly increased cell viability and suppressed H2O2-induced intracellular reactive oxygen species generation and AAPH-induced cell membrane lipid peroxidation. In addition, BE up-regulated intracellular glutathione levels under normal and oxidative stress conditions. Notably, the hepatoprotective effect of BE was directly correlated with the increased expression of superoxide dismutase-1 (SOD-1) by 0.62-fold, catalase (CAT) by 0.42-fold, and heme oxygenase-1 (HO-1) by 2.4-fold. Pretreatment of BE also increased the nuclear accumulation of Nrf2 by 8.1-fold indicating that increased SOD-1, CAT, and HO-1 expressions are Nrf2-mediated. PMID:25962859

  11. Flavonoid Fraction of Orange and Bergamot Juices Protect Human Lung Epithelial Cells from Hydrogen Peroxide-Induced Oxidative Stress

    PubMed Central

    Ferlazzo, Nadia; Visalli, Giuseppa; Smeriglio, Antonella; Cirmi, Santa; Lombardo, Giovanni Enrico; Campiglia, Pietro; Di Pietro, Angela; Navarra, Michele

    2015-01-01

    It has been reported that oxidant/antioxidant imbalance triggers cell damage that in turn causes a number of lung diseases. Flavonoids are known for their health benefits, and Citrus fruits juices are one of the main food sources of these secondary plant metabolites. The present study was designed to evaluate the effect of the flavonoid fraction of bergamot and orange juices, on H2O2-induced oxidative stress in human lung epithelial A549 cells. First we tested the antioxidant properties of both extracts in cell-free experimental models and then we assayed their capability to prevent the cytotoxic effects induced by H2O2. Our results demonstrated that both Citrus juice extracts reduce the generation of reactive oxygen species and membrane lipid peroxidation, improve mitochondrial functionality, and prevent DNA-oxidative damage in A549 cells incubated with H2O2. Our data indicate that the mix of flavonoids present in both bergamot and orange juices may be of use in preventing oxidative cell injury and pave the way for further research into a novel healthy approach to avoid lung disorders. PMID:26221182

  12. THE ROLE OF TRPM2 IN HYDROGEN PEROXIDE-INDUCED EXPRESSION OF INFLAMMATORY CYTOKINE AND CHEMOKINE IN RAT TRIGEMINAL GANGLIA

    PubMed Central

    CHUNG, M.-K.; ASGAR, J.; LEE, J.; SHIM, M. S.; DUMLER, C.; RO, J. Y.

    2016-01-01

    Trigeminal ganglia (TG) contain neuronal cell bodies surrounded by satellite glial cells. Although peripheral injury is well known to induce changes in gene expression within sensory ganglia, detailed mechanisms whereby peripheral injury leads to gene expression within sensory ganglia are not completely understood. Reactive oxygen species (ROS) are an important modulator of hyperalgesia, but the role of ROS generated within sensory ganglia is unclear. Since ROS are known to affect transcription processes, ROS generated within sensory ganglia could directly influence gene expression and induce cellular changes at the soma level. In this study, we hypothesized that peripheral inflammation leads to cytokine and chemokine production and ROS generation within TG and that transient receptor potential melastatin (TRPM2), a well known oxidative sensor, contributes to ROS-induced gene regulation within TG. The masseter injection of complete Freund’s adjuvant (CFA) resulted in a significantly elevated level of ROS within TG of the inflamed side with a concurrent increase in cytokine expression in TG. Treatment of TG cultures with H2O2 significantly up-regulated mRNA and protein levels of cytokine/chemokine such as interleukin 6 (IL-6) and chemokine (C-X-C motif) ligand 2 (CXCL2). TRPM2 was expressed in both neurons and nonneuronal cells in TG, and pretreatment of TG cultures with 2-aminoethoxydiphenyl borate (2-APB), an inhibitor of TRPM2, or siRNA against TRPM2 attenuated H2O2-induced up-regulation of IL-6 and CXCL2. These results suggested that activation of TRPM2 could play an important role in the modulation of cytokine/chemokine expression within TG under oxidative stress and that such changes may contribute to amplification of nociceptive signals leading to pathological pain conditions. PMID:25849615

  13. Protective activity of butyrate on hydrogen peroxide-induced DNA damage in isolated human colonocytes and HT29 tumour cells.

    PubMed

    Rosignoli, P; Fabiani, R; De Bartolomeo, A; Spinozzi, F; Agea, E; Pelli, M A; Morozzi, G

    2001-10-01

    Epidemiological studies support the involvement of short-chain fatty acids (SCFA) in colon physiology and the protective role of butyrate on colon carcinogenesis. Among the possible mechanisms by which butyrate may exert its anti-carcinogenicity an antioxidant activity has been recently suggested. We investigated the effects of butyrate and mixtures of SCFA (butyrate, propionate and acetate) on DNA damage induced by H(2)O(2) in isolated human colonocytes and in two human colon tumour cell lines (HT29 and HT29 19A). Human colonocytes were isolated from endoscopically obtained samples and the DNA damage was assessed by the comet assay. H(2)O(2) induced DNA damage in normal colonocytes in a dose-dependent manner which was statistically significant at concentrations over 10 microM. At 15 microM H(2)O(2) DNA damage in HT29 and HT29 19A cells was significantly lower than that observed in normal colonocytes (P < 0.01). Pre-incubation of the cells with physiological concentrations of butyrate (6.25 and 12.5 mM) reduced H(2)O(2) (15 microM) induced damage by 33 and 51% in human colonocytes, 45 and 75% in HT29 and 30 and 80% in HT29 19A, respectively. Treatment of cells with a mixture of 25 mM acetate + 10.4 mM propionate + 6.25 mM butyrate did not induce DNA damage, while a mixture of 50 mM acetate + 20.8 mM propionate + 12.5 mM butyrate was weakly genotoxic only towards normal colonocytes. However, both mixtures were able to reduce the H(2)O(2)-induced DNA damage by about 50% in all cell types. The reported protective effect of butyrate might be important in pathogenetic mechanisms mediated by reactive oxygen species, and aids understanding of the apparent protection toward colorectal cancer exerted by dietary fibres, which enhance the butyrate bioavailability in the colonic mucosa. PMID:11577008

  14. Protective effect of quercitrin against hydrogen peroxide-induced dysfunction in osteoblastic MC3T3-E1 cells.

    PubMed

    Choi, Eun Mi

    2012-03-01

    The protective effect of quercitrin on the response of osteoblastic MC3T3-E1 cells to oxidative stress was evaluated. Osteoblasts were incubated with H(2)O(2) and/or quercitrin, and markers of osteoblast function and oxidative damage were examined. Quercitrin treatment reversed the cytotoxic effect of H(2)O(2) significantly (P<0.05). This effect was blocked by ICI182780 and LY294002, suggesting that quercitrin's effect might be involved in estrogen action and results from PI3K mediated signaling pathway. Pretreatment of quercitrin increased collagen content, alkaline phosphatase (ALP) activity, and calcium deposition of osteoblasts compared with H(2)O(2) treated cells and these effects were blocked by ERKs and p38 mitogen-activated protein kinases (MAPKs) inhibitors such as PD98059 and SB203580, respectively. These suggest that quercitrin-induced protective effect against osteoblast dysfunction by oxidative stress is associated with increased activation of ERKs and p38 MAPK. Pretreatment with quercitrin also reduced the increase in bone-resorbing factor, receptor activator of nuclear factor-kB ligand (RANKL) and oxidative damage markers (malondialdehyde, protein carbonyl, and nitrotyrosine) induced by H(2)O(2). These results suggest that quercitrin may be protective against H(2)O(2)-induced dysfunction in osteoblasts. PMID:20822887

  15. Metabolome variations in the Porphyromonas gingivalis vimA mutant during hydrogen peroxide-induced oxidative stress.

    PubMed

    McKenzie, R M E; Aruni, W; Johnson, N A; Robles, A; Dou, Y; Henry, L; Boskovic, D S; Fletcher, H M

    2015-04-01

    The adaptability and survival of Porphyromonas gingivalis in the oxidative microenvironment of the periodontal pocket are indispensable for survival and virulence, and are modulated by multiple systems. Among the various genes involved in P. gingivalis oxidative stress resistance, vimA gene is a part of the 6.15-kb locus. To elucidate the role of a P. gingivalis vimA-defective mutant in oxidative stress resistance, we used a global approach to assess the transcriptional profile, to study the unique metabolome variations affecting survival and virulence in an environment typical of the periodontal pocket. A multilayered protection strategy against oxidative stress was noted in P. gingivalis FLL92 with upregulation of detoxifying genes. The duration of oxidative stress was shown to differentially modulate transcription with 94 (87%) genes upregulated twofold during 10 min and 55 (83.3%) in 15 min. Most of the upregulated genes (55%), fell in the hypothetical/unknown/unassigned functional class. Metabolome variation showed reduction in fumarate and formaldehyde, hence resorting to alternative energy generation and maintenance of a reduced metabolic state. There was upregulation of transposases, genes encoding for the metal ion binding protein transport and secretion system. PMID:25055986

  16. Proteomic analysis of ginsenoside Re attenuates hydrogen peroxide-induced oxidative stress in human umbilical vein endothelial cells.

    PubMed

    Huang, Gui-Dong; Zhong, Xian-Feng; Deng, Ze-Yuan; Zeng, Rong

    2016-05-18

    Ginsenoside Re is an active component in ginseng that has attracted much attention because of its evident therapeutic effects on the cardiovascular system. However, little basic information is available on the mechanisms and pharmacological effects of ginsenoside Re. The potential mechanisms and protective effects of Re on H2O2-induced oxidative injury in human umbilical vein endothelial cells (HUVECs) were investigated in this study. An oxidative injury model was established using H2O2. The anti-oxidative effects of Re were determined using a series of experiments, such as MTT and anti-oxidative indicator assays. The potential protective mechanisms of Re were explored at the proteomic level, and differentially expressed proteins were validated by quantitative real-time polymerase chain reaction and western blotting. Results indicated that Re could be a potential anti-oxidant to protect HUVECs against oxidative stress damage. Proteomic analysis showed that the expression of 23 protein spots was upregulated in Re and H2O2 groups to resist oxidative stress, 15 of which were identified by their mass spectrum. These upregulated proteins were involved in stress response, anti-oxidative systems, protein synthesis, regulation of transcription and post-translational modifications, and repair of mitochondrial functions. This study may provide new insights into the mechanisms of ginsenoside Re in protecting the cardiovascular system. PMID:27161858

  17. Sieving characteristics of cytokine- and peroxide-induced epithelial barrier leak: Inhibition by berberine

    PubMed Central

    DiGuilio, Katherine M; Mercogliano, Christina M; Born, Jillian; Ferraro, Brendan; To, Julie; Mixson, Brittany; Smith, Allison; Valenzano, Mary Carmen; Mullin, James M

    2016-01-01

    AIM: To study whether the inflammatory bowel disease (IBD) colon which exhibits varying severity and cytokine levels across its mucosa create varying types of transepithelial leak. METHODS: We examined the effects of tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin-1-β (IL1β) and hydrogen peroxide (H2O2) - singly and in combinations - on barrier function of CACO-2 cell layers. Our focus was on the type (not simply the magnitude) of transepithelial leak generated by these agents as measured by transepithelial electrical resistance (TER) and transepithelial flux of 14C-D-mannitol, 3H-Lactulose and 14C-Polyethylene glycol as radiolabeled probe molecules. The isoquinoline alkaloid, berberine, was then examined for its ability to reduce specific types of transepithelial leak. RESULTS: Exposure to TNF-α alone (200 ng/mL; 48 h) induced a 50% decrease in TER, i.e., increased leak of Na+ and Cl- - with only a marginal but statistically significant increase in transepithelial leak of 14C-mannitol (Jm). Exposure to TNF-α + IFN-γ (200 ng/mL; 48 h) + IL1β (50 ng/mL; 48 h) did not increase the TER change (from TNF-α alone), but there was now a 100% increase in Jm. There however was no increase in transepithelial leak of two larger probe molecules, 3H-lactulose and 14C-polyethylene glycol (PEG). However, exposure to TNF-α + IFN-γ + IL1β followed by a 5 h exposure to 2 mmol/L H2O2 resulted in a 500% increase in 14C-PEG leak as well as leak to the luminal mitogen, epidermal growth factor. CONCLUSION: This model of graded transepithelial leak is useful in evaluating therapeutic agents reducing IBD morbidity by reducing barrier leak to various luminal substances. PMID:27190695

  18. Effects of tryptophan derivatives and β-carboline alkaloids on radiation- and peroxide-induced transformations of ethanol

    NASA Astrophysics Data System (ADS)

    Sverdlov, R. L.; Brinkevich, S. D.; Shadyro, O. I.

    2014-05-01

    The subject of this study was investigation of interactions of tryptophan and its derivatives, including structurally related β-carboline alkaloids with oxygen- and carbon-centered radicals being formed during radiation- and peroxide-induced transformations of ethanol. It was shown that the above named compounds suppressed recombination and disproportionation reactions of α-hydroxyethyl radicals. The inhibitory effects of tryptophan, 5-hydroxytryptophan and serotonin were mainly realized by means of reduction and addition reactions, while those of β-carboline alkaloids - harmine, harmane and harmaline - were due to oxidation reactions. Melatonin displayed low reactivity towards α-hydroxyethyl radicals. Tryptophan derivatives and β-carboline alkaloids were found to inhibit radiation-induced oxidation of ethanol while being virtually not used up. The low transformation yields of tryptophan, 5-hydroxytryptophan and serotonin, as well as β-carboline alkaloids, indicate their capability of regeneration, which could occur on interaction of tryptophan with О-2 and НО2, or on oxidation of α-hydroxyethyl radicals by β-carboline alkaloids.

  19. Fully biobased and supertough polylactide-based thermoplastic vulcanizates fabricated by peroxide-induced dynamic vulcanization and interfacial compatibilization.

    PubMed

    Liu, Guang-Chen; He, Yi-Song; Zeng, Jian-Bing; Li, Qiu-Tong; Wang, Yu-Zhong

    2014-11-10

    A fully biobased and supertough thermoplastic vulcanizate (TPV) consisting of polylactide (PLA) and a biobased vulcanized unsaturated aliphatic polyester elastomer (UPE) was fabricated via peroxide-induced dynamic vulcanization. Interfacial compatibilization between PLA and UPE took place during dynamic vulcanization, which was confirmed by gel measurement and NMR analysis. After vulcanization, the TPV exhibited a quasi cocontinuous morphology with vulcanized UPE compactly dispersed in PLA matrix, which was different from the pristine PLA/UPE blend, exhibiting typically phase-separated morphology with unvulcanized UPE droplets discretely dispersed in matrix. The TPV showed significantly improved tensile and impact toughness with values up to about 99.3 MJ/m(3) and 586.6 J/m, respectively, compared to those of 3.2 MJ/m(3) and 16.8 J/m for neat PLA, respectively. The toughening mechanisms under tensile and impact tests were investigated and deduced as massive shear yielding of the PLA matrix triggered by internal cavitation of VUPE. The fully biobased supertough PLA vulcanizate could serve as a promising alternative to traditional commodity plastics. PMID:25287757

  20. Astragalus Polysaccharide Inhibits Autophagy and Apoptosis from Peroxide-Induced Injury in C2C12 Myoblasts.

    PubMed

    Yin, Yi; Lu, Lu; Wang, Dongtao; Shi, Ying; Wang, Ming; Huang, Yanfeng; Chen, Dexiu; Deng, Cong; Chen, Jiebin; Lv, Peijia; Wang, Yanjing; Li, Chengjie; Wei, Lian-Bo

    2015-11-01

    The aim is to study the effects and underlying mechanisms of astragalus polysaccharide (APS) on the peroxide-induced injury in C2C12 myoblasts in vitro. Cell viability in the presence or absence of APS was detected by the methyl thiazolyl tetrazolium colorimetric assay. The autophagosomes were observed by electron microscopy to examine the influence of APS on autophagy caused by H2O2 in C2C12 cells, and the percentage of apoptosis cells was measured by flow cytometry. To further confirm the effect of H2O2 on C2C12 cells, the protein expression of LC3 and RARP, which are the markers of autophagy and apoptosis, respectively, was analyzed by Western blot, as well as the expression levels of p-p70S6K, p70S6K, Bcl-2, Bax, cyto-C, and Caspase-3, to reveal the underlying mechanisms. We observed multiple effects of APS on C2C12 functionality. APS treatment of C2C12 cells at 1 mg/mL reduced cell viability to less than 70 %, and analysis by electron microscopy revealed that APS also reduced the number of H2O2-induced autophagosome formation. Similarly, APS abated the H2O2-mediated increase in cell apoptosis, which was accompanied by the inhibition of LC3 II and RARP that are normally upregulated by H2O2. The expression of p-p70S6K and p70S6K, however, remained unchanged in C2C12 cells in the Control, H2O2 and H2O2 + APS groups. In addition, APS promoted the expression of protein Bcl-2 in H2O2-treated C2C12 cells, but did not change Bax, thus reducing the Bax/Bcl-2 ratio that in turn prevented the release of cytochrome c and the activation of caspase-3. APS inhibits the autophagy and apoptosis induced by peroxide injury in C2C12 myoblasts through two independent signaling pathways: the mTOR-independent pathway for the inhibition of autophagy, and the caspase-3-dependent pathway for the suppression of apoptosis. PMID:27352334

  1. Prevention of hydrogen peroxide-induced oxidative stress in PC12 cells by 3,4-dihydroxybenzalacetone isolated from Chaga (Inonotus obliquus (persoon) Pilat).

    PubMed

    Nakajima, Yuki; Nishida, Hiroshi; Nakamura, Yutaka; Konishi, Tetsuya

    2009-10-15

    Chaga (Inonotus obliquus (persoon) Pilat) is a mushroom traditionally used as a folk medicine for tumors and stomach ulcers in Russia. Previously, we reported the antioxidant potential of Chaga extracts and seven isolated phenolic ingredients. In the present study, we investigated the protective effects of Chaga extracts and other isolated phenolic ingredients against H(2)O(2)-induced oxidative stress in PC12 cells. Intracellular generation of reactive oxygen species (ROS) leads to oxidative stress and subsequent damage of cellular and nuclear components. Chaga extracts and the phenolic ingredients, 3,4-dihydroxybenzalacetone (DBL) and caffeic acid (CA), effectively suppressed intracellular ROS level in H(2)O(2)-treated cells. The H(2)O(2)-induced cell death was more pronounced, effectively prevented in the cells treated with DBL than in cells treated with CA. In addition, ROS activate various signal transduction pathways including the mitogen-activated protein kinase (MAPK) cascade. Therefore, we examined the potentially beneficial effects of DBL on extracellular signal-regulated protein kinase (ERK), c-Jun NH(2)-terminal kinase (JNK), and p38-MAPK signaling activated by H(2)O(2) stimulation. DBL selectively inhibited the phosphorylation of p38-MAPK, without affecting JNK and ERK. PMID:19647072

  2. Red paprika (Capsicum annuum L.) and its main carotenoids, capsanthin and β-carotene, prevent hydrogen peroxide-induced inhibition of gap-junction intercellular communication.

    PubMed

    Kim, Ji-Sun; Lee, Woo-Moon; Rhee, Han Cheol; Kim, Suna

    2016-07-25

    This study was conducted to investigate the protective effect of red paprika extract (RPE) and its main carotenoids, namely, capsanthin (CST) and β-carotene (BCT), on the H2O2-induced inhibition of gap-junction intercellular communication (GJIC) in WB-F344 rat liver epithelial cells (WB cells). We found that pre-treatment with RPE, CST and BCT protected WB cells from H2O2-induced inhibition of GJIC. RPE, CST and BCT not only recovered connexin 43 (Cx43) mRNA expression but also prevented phosphorylation of Cx43 protein by H2O2 treatment. RPE attenuated the phosphorylation of ERK, p38 and JNK, whereas pre-treatment with CST and BCT only attenuated the phosphorylation of ERK and p38 and did not affect JNK in H2O2-treated WB cells. RPE, CST and BCT significantly suppressed the formation of reactive oxygen species (ROS) in H2O2-treated cells compared to untreated WB cells. These results suggest that dietary intake of red paprika might be helpful for lowering the risk of diseases caused by oxidative stress. PMID:27154496

  3. Protective Effects of Chlorogenic Acid and its Metabolites on Hydrogen Peroxide-Induced Alterations in Rat Brain Slices: A Comparative Study with Resveratrol.

    PubMed

    Gul, Zulfiye; Demircan, Celaleddin; Bagdas, Deniz; Buyukuysal, Rifat Levent

    2016-08-01

    The effectiveness of chlorogenic acid and its main metabolites, caffeic and quinic acids, against oxidative stress was investigated. Resveratrol, another natural phenolic compound, was also tested for comparison. Rat cortical slices were incubated with 200 μM H2O2 for 1 h, and alterations in oxidative stress parameters, such as 2, 3, 5-triphenyltetrazolium chloride (TTC) staining and the production of both malondialdehyde (MDA) and reactive oxygen species (ROS), were assayed in the absence or presence of phenolic compounds. Additionally, the effectiveness of chlorogenic acid and other compounds on H2O2-induced increases in fluorescence intensities were also compared in slice-free incubation medium. Although quinic acid failed, chlorogenic and caffeic acids significantly ameliorated the H2O2-induced decline in TTC staining intensities. Although resveratrol also caused an increase in staining intensity, its effect was not dose-dependent; the high concentrations of resveratrol tested in the present study (10 and 100 μM) further lessened the staining of the slices. Additionally, all phenolic compounds significantly attenuated the H2O2-induced increases in MDA and ROS levels in cortical slices. When the IC50 values were compared to H2O2-induced alterations, chlorogenic acid was more potent than either its metabolites or resveratrol for all parameters studied under these experimental conditions. In slice-free experimental conditions, on the other hand, chlorogenic and caffeic acids significantly attenuated the fluorescence emission enhanced by H2O2 with a similar order of potency to that obtained in slice-containing physiological medium. These results indicate that chlorogenic acid is a more potent phenolic compound than resveratrol and its main metabolites caffeic and quinic acids against H2O2-induced alterations in oxidative stress parameters in rat cortical slices. PMID:27161374

  4. Epigallocatechin-3-gallate Protects against Hydrogen Peroxide-Induced Inhibition of Osteogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells

    PubMed Central

    Wang, Dawei; Wang, Yonghui; Xu, Shihong; Wang, Fu; Wang, Bomin; Han, Ke; Sun, Daqing; Li, Lianxin

    2016-01-01

    Oxidative stress induces bone loss and osteoporosis, and epigallocatechin-3-gallate (EGCG) may be used to combat these diseases due to its antioxidative property. Herein, oxidative stress in human bone marrow-derived mesenchymal stem cells (BM-MSCs) was induced by H2O2, resulting in an adverse effect on their osteogenic differentiation. However, this H2O2-induced adverse effect was nullified when the cells were treated with EGCG. In addition, treatment of BM-MSCs with EGCG alone also resulted in the enhancement of osteogenic differentiation of BM-MSCs. After EGCG treatment, expressions of β-catenin and cyclin D1 were upregulated, suggesting that the Wnt pathway was involved in the effects of EGCG on the osteogenic differentiation of BM-MSCs. This was also confirmed by the fact that the Wnt pathway inhibitor, Dickkopf-1 (DKK-1), can nullify the EGCG-induced enhancement effect on BM-MSC's osteogenic differentiation. Hence, our results suggested that EGCG can reduce the effects of oxidative stress on Wnt pathway in osteogenic cells, which supported a potentially promising therapy of bone disorders induced by oxidative stress. Considering its positive effects on BM-MSCs, EGCG may also be beneficial for stem cell-based bone repair. PMID:26977159

  5. Hydrogen peroxide-induced oxidative damage in peripheral blood lymphocytes from rats chronically treated with corticosterone: The protective effect of oxytocin treatment.

    PubMed

    Stanić, Dušanka; Plećaš-Solarović, Bosiljka; Petrović, Jelena; Bogavac-Stanojević, Nataša; Sopić, Miron; Kotur-Stevuljević, Jelena; Ignjatović, Svetlana; Pešić, Vesna

    2016-08-25

    Contemporary lifestyle is commonly associated with chronic stress, an environmental factor contributing to development of various psychological and somatic disorders. Increased levels of glucocorticoids, observed in the chronic stress, induce the production of reactive oxygen species leading to genotoxicity. The aim of this study was to investigate whether chronic administration of oxytocin (OXY) 10 IU/400 μL/day, s.c., for 14 days, a hormone presumed to exert antioxidant effect, may prevent DNA damage in the comet assay of peripheral blood lymphocytes of Wistar rats treated chronically with corticosterone (CORT) 100 mg/L ad libitum, per os, for 21 days, as well as, to influence some plasma oxidative stress parameters, i.e. levels of total lipid hydroperoxide (LOOH), and malondialdehyde (MDA), and the activity of antioxidative enzyme superoxide dismutase (SOD). Even though there was no reduction in overall number of damaged cells after oxytocin treatment only, the marked increase in total comet score (TCS) after incubation with H2O2 in CORT group compared to controls, was absent in the CORT + OXY experimental group. Furthermore, significant decrease of highly damaged cells compared to corticosterone group was noted. Chronic oxytocin administration thus protected lymphocytes from high intensity damage that leads to cellular death. In addition, treatment with OXY along with CORT, significantly decreased concentration of LOOH in plasma, and increased SOD compared to CORT treatment only. This finding corresponds well with current reports on beneficial effects of OXY in conditions of HPA axis hyperactivity, and supports the hypothesis of OXY-mediated antioxidant action. PMID:27402529

  6. Protective effect of enzymatic hydrolysates from highbush blueberry (Vaccinium corymbosum L.) against hydrogen peroxide-induced oxidative damage in Chinese hamster lung fibroblast cell line

    PubMed Central

    Senevirathne, Mahinda; Kim, Soo-Hyun

    2010-01-01

    Blueberry was enzymatically hydrolyzed using selected commercial food grade carbohydrases (AMG, Celluclast, Termamyl, Ultraflo and Viscozyme) and proteases (Alcalase, Flavourzyme, Kojizyme, Neutrase and Protamex) to obtain water soluble compounds, and their protective effect was investigated against H2O2-induced damage in Chinese hamster lung fibroblast cell line (V79-4) via various published methods. Both AMG and Alcalase hydrolysates showed higher total phenolic content as well as higher cell viability and ROS scavenging activities, and hence, selected for further antioxidant assays. Both AMG and Alcalase hydrolysates also showed higher protective effects against lipid peroxidation, DNA damage and apoptotic body formation in a dose-dependent fashion. Thus, the results indicated that water soluble compounds obtained by enzymatic hydrolysis of blueberry possess good antioxidant activity against H2O2-induced cell damage in vitro. PMID:20607062

  7. The in vivo infusion of hydrogen peroxide induces oxidative stress and differentially affects the activities of small intestinal carbohydrate digestive enzymes in the neonatal pig.

    PubMed

    Lackeyram, D; Mine, Y; Widowski, T; Archbold, T; Fan, M Z

    2012-12-01

    Chronic fatigue syndrome (CFS) is characterized by persistent and relapsing fatigue that involves oxidative stress in its pathogenesis. We tested the hypothesis that a decrease in key carbohydrate-digesting enzyme activity in the gut is one of the major biological mechanisms of developing CFS in liquid formula-fed neonatal pigs with in vivo infusion of H(2)O(2). Piglets at 7 to 10 d of age were fitted with an intraperitoneal catheter, allowed a 3-d post surgical recovery, and infused with either H(2)O(2) at 5 mmol/kg BW (PER; n = 8) or the same volume of saline (CON; n = 8) in six 20-ml doses daily for a period of 10 d. During this period, animal behavior was monitored, blood samples collected, and jejunal enzyme activity kinetic experiments for lactase, sucrase, maltase, and maltase-glucoamylase were conducted. Plasma concentration of reduced glutathione remained similar (P > 0.05) to the pre-infusion level over the study duration in the CON group whereas this was 65% lower (P < 0.05) than the pre-infusion level in the PER group. Piglets experiencing oxidative stress had an overall lower (P < 0.05) physical mobility and the maximal jejunal specific activities [μmol/(mg protein · min)] for lactase (PER, 6.54 ± 0.68 vs. CON, 12.65 ± 0.69) and maltase (PER, 57.39 ± 1.02 vs. CON, 75.60 ± 1.04), respectively. However, differences were not observed (P > 0.05) in the maximal specific activities [μmol/(mg protein · min)] of sucrase (PER, 10.50 ± 1.37 vs. CON, 12.40 ± 1.55) and maltase-glucoamylase (PER, 0.71 ± 0.08 vs. CON, 0.70 ± 0.07) between the 2 groups. In conclusion, infusion of a suitable dose of H(2)O(2) induced CFS in the neonatal pigs. Oxidative stress in vivo differentially affected the maximal activities of important small intestinal carbohydrate-digesting enzymes in neonatal pigs fed a dairy milk-based liquid formula. PMID:23365398

  8. Hydrogen peroxide-induced production of a 40 kDa immunoreactive thyroglobulin fragment in human thyroid cells: the onset of thyroid autoimmunity?

    PubMed Central

    Duthoit, C; Estienne, V; Giraud, A; Durand-Gorde, J M; Rasmussen, A K; Feldt-Rasmussen, U; Carayon, P; Ruf, J

    2001-01-01

    We recently reported that, during in vitro thyroid-hormone synthesis, H(2)O(2) stress cleaved thyroglobulin (Tg) into C-terminal peptides. These peptides were found to contain the immunodominant region of Tg recognized by Tg autoantibodies from patients with an autoimmune thyroid disease. To test the hypothesis that Tg fragmentation is an early upstream initiating event involved in Tg autoimmune response and the consequence of oxidative injuries, we studied the effect of H(2)O(2) stress on human thyroid cells. In culture conditions allowing Tg synthesis and iodine organification by the cells, we found that bolus addition of increasing millimolar doses of H(2)O(2) induced a dose-response appearance of floating cells in the culture medium. These cells apparently resulted from a necrotic process, and they bore iodinated Tg fragments. These fragments were found to be similar to those previously obtained in vitro from purified Tg. In both cases, Tg peptides were recognized by a well-defined monoclonal antibody directed to the immunodominant region of Tg. The smallest immunoreactive Tg peptide had a molecular mass of 40 kDa and entered human thyrocytes more efficiently than the entire Tg. These data suggest that thyrocytes exposed to locally increased H(2)O(2) doses accumulate fragmented Tg for further delivery into surrounding living thyrocytes in the course of an autoimmune response. PMID:11736644

  9. α-Tocopherol at Nanomolar Concentration Protects PC12 Cells from Hydrogen Peroxide-Induced Death and Modulates Protein Kinase Activities

    PubMed Central

    Zakharova, Irina O.; Sokolova, Tatyana V.; Bayunova, Liubov V.; Vlasova, Yulia A.; Rychkova, Maria P.; Avrova, Natalia F.

    2012-01-01

    The aim of this work was to compare protective and anti-apoptotic effects of α-tocopherol at nanomolar and micromolar concentrations against 0.2 mM H2O2-induced toxicity in the PC12 neuronal cell line and to reveal protein kinases that contribute to α-tocopherol protective action. The protection by 100 nM α-tocopherol against H2O2-induced PC12 cell death was pronounced if the time of pre-incubation with α-tocopherol was 3–18 h. For the first time, the protective effect of α-tocopherol was shown to depend on its concentration in the nanomolar range (1 nM < 10 nM < 100 nM), if the pre-incubation time was 18 h. Nanomolar and micromolar α-tocopherol decreased the number of PC12 cells in late apoptosis induced by H2O2 to the same extent if pre-incubation time was 18 h. Immunoblotting data showed that α-tocopherol markedly diminished the time of maximal activation of extracellular signal-regulated kinase 1/2 (ERK 1/2) and protein kinase B (Akt)-induced in PC12 cells by H2O2. Inhibitors of MEK 1/2, PI 3-kinase and protein kinase C (PKC) diminished the protective effect of α-tocopherol against H2O2-initiated toxicity if the pre-incubation time was long. The modulation of ERK 1/2, Akt and PKC activities appears to participate in the protection by α-tocopherol against H2O2-induced death of PC12 cells. The data obtained suggest that inhibition by α-tocopherol in late stage ERK 1/2 and Akt activation induced by H2O2 in PC12 cells makes contribution to its protective effect, while total inhibition of these enzymes is not protective. PMID:23109870

  10. Quantitative proteomics study of the neuroprotective effects of B12 on hydrogen peroxide-induced apoptosis in SH-SY5Y cells

    PubMed Central

    Zhong, Lijun; Zhou, Juntuo; Chen, Xi; Lou, Yaxin; Liu, Dan; Zou, Xiajuan; Yang, Bin; Yin, Yuxin; Pan, Yan

    2016-01-01

    B12 belongs to the coumarin class of compounds that have been shown to have various physiological and pharmacological activities including anti-inflammatory, antibacterial, and antioxidant. In the present study, we characterised the neuroprotective effects of B12 against H2O2-induced neuronal cell damage in SH-SY5Y cells. Protein expression profiling in combination with pathway analysis was deployed to investigate the molecular events associated with the neuroprotective effects in human neuronal cells using a label-free quantitative proteomics approach. A total of 22 proteins were significantly differentially expressed in H2O2-damaged cells with or without B12 treatment. Bioinformatics analysis using the Cytoscape platform indicated that poly pyrimidine tract binding protein 1 (PTBP1) was highly associated with the protective effect, and western blotting verified that PTBP1 was up-regulated in H2O2 + B12 treatment group, compared with the H2O2 treated group. PTBP RNAi experiments knocked down PTBP expression, which cancelled out the protective effect of B12 on cell viability. Thus, we infer that B12 neuroprotective activity involves up-regulation of PTBP1 and its associated signalling networks following H2O2-induced apoptosis in SH-SY5Y cells. B12 or related compounds may prove to be useful therapeutic agents for the treatment of neurodegenerative diseases such as Alzheimer’s and Parkinson’s. PMID:26951766

  11. The hydrogen-peroxide-induced radical behaviour in human cytochrome c-phospholipid complexes: implications for the enhanced pro-apoptotic activity of the G41S mutant.

    PubMed

    Rajagopal, Badri S; Edzuma, Ann N; Hough, Michael A; Blundell, Katie L I M; Kagan, Valerian E; Kapralov, Alexandr A; Fraser, Lewis A; Butt, Julea N; Silkstone, Gary G; Wilson, Michael T; Svistunenko, Dimitri A; Worrall, Jonathan A R

    2013-12-15

    We have investigated whether the pro-apoptotic properties of the G41S mutant of human cytochrome c can be explained by a higher than wild-type peroxidase activity triggered by phospholipid binding. A key complex in mitochondrial apoptosis involves cytochrome c and the phospholipid cardiolipin. In this complex cytochrome c has its native axial Met(80) ligand dissociated from the haem-iron, considerably augmenting the peroxidase capability of the haem group upon H2O2 binding. By EPR spectroscopy we reveal that the magnitude of changes in the paramagnetic haem states, as well as the yield of protein-bound free radical, is dependent on the phospholipid used and is considerably greater in the G41S mutant. A high-resolution X-ray crystal structure of human cytochrome c was determined and, in combination with the radical EPR signal analysis, two tyrosine residues, Tyr(46) and Tyr(48), have been rationalized to be putative radical sites. Subsequent single and double tyrosine-to-phenylalanine mutations revealed that the EPR signal of the radical, found to be similar in all variants, including G41S and wild-type, originates not from a single tyrosine residue, but is instead a superimposition of multiple EPR signals from different radical sites. We propose a mechanism of multiple radical formations in the cytochrome c-phospholipid complexes under H2O2 treatment, consistent with the stabilization of the radical in the G41S mutant, which elicits a greater peroxidase activity from cytochrome c and thus has implications in mitochondrial apoptosis. PMID:24099549

  12. Mitochondrial peroxiredoxin 3 (Prx3) from rock bream (Oplegnathus fasciatus): immune responses and role of recombinant Prx3 in protecting cells from hydrogen peroxide induced oxidative stress.

    PubMed

    Godahewa, G I; Kim, Yucheol; Dananjaya, S H S; Jayasooriya, R G P T; Noh, Jae Koo; Lee, Jehee; De Zoysa, Mahanama

    2015-03-01

    Pathogenic infections and environmental factors cause a variety of stresses in fish including oxidative stress by rapid elevation of reactive oxygen species (ROS) and reactive nitrogen species (RNS). Transcriptional activation and expression of antioxidant enzymes are essential for reducing the oxidative stress. In this study, we present the molecular characterization, immune responses and ROS scavenging activity of mitochondrial peroxiredoxin 3 from Oplegnathus fasciatus (RbPrx3). Coding sequence (CDS) of RbPrx3 contains 248 amino acids polypeptide which consists of highly conserved peroxiredoxin super family domain and two cysteine residues. Pairwise sequence comparison revealed that RbPrx3 has the greatest identity (94.8%) to Sparus aurata Prx3. Transcriptional analysis of RbPrx3 indicated the ubiquitously expressed mRNA in wide array of organs showing the highest expression in the liver of rock bream. Upon immune challenge of Edwardsiella tarda, Streptococcus iniae, rock bream iridovirus (RBIV) and lipopolysaccharide (LPS), RbPrx3 mRNA level was up-regulated in immunocompetent liver tissues compared to unchallenged fish. Purified recombinant RbPrx3 treated THP-1 cells showed higher survival rate against H(2)O(2) induced oxidative stress and significantly reduced the level of intracellular ROS. Overall results from our study suggest that RbPrx3 may be involved in broader functions such as regulating oxidative stresses by scavenging ROS and activating immune responses in rock bream. PMID:25542382

  13. Hyperoside attenuates hydrogen peroxide-induced L02 cell damage via MAPK-dependent Keap{sub 1}-Nrf{sub 2}-ARE signaling pathway

    SciTech Connect

    Xing, Hai-Yan; Liu, Yao; Chen, Jian-Hong; Sun, Feng-Jun; Shi, Hui-Qing; Xia, Pei-Yuan

    2011-07-15

    Highlights: {yields} Hyperoside attenuated H{sub 2}O{sub 2}-induced L02 cell damage. {yields} Hyperoside up-regulated HO-1 expression at both mRNA and protein levels. {yields} Hyperoside activated both Nrf{sub 2} nuclear translocation and gene expression. {yields} Hyperoside may inhibit Keap{sub 1} mRNA translation or protein degradation. {yields} Phosphorylation of ERK and p38 is involved in hyperoside-mediated Nrf{sub 2} activation. -- Abstract: The flavonoid hyperoside has been reported to elicit cytoprotection against oxidative stress partly by increasing the activity of antioxidant enzymes, such as glutathione peroxidase, superoxide dismutase and catalase. However, the cellular and molecular mechanisms underlying this effect remain unclear. Here, hepatic L02 cells exposed to H{sub 2}O{sub 2} (100 {mu}M) were used to demonstrate that hyperoside protected cells by significantly inhibiting overproduction of intracellular ROS, depletion of the mitochondrial membrane potential and leakage of lactate dehydrogenase. Hyperoside further enhanced the cellular antioxidant defense system through increasing the activity of heme oxygenase-1 (HO-1), and by up-regulating HO-1 expression. Meanwhile, real time PCR, western blot and immunofluorescence studies revealed that hyperoside stimulated nuclear translocation of the Nrf{sub 2} transcription factor in a dose-dependent manner, and this effect was significantly suppressed by pharmacological inhibition of the mitogen-activated protein kinases (MAPK) p38 and ERK. Collectively, our data provide the first description of the mechanism underlying hyperoside's ability to attenuate H{sub 2}O{sub 2}-induced cell damage, namely this compound interacts with the MAPK-dependent Keap{sub 1}-Nrf{sub 2}-ARE signaling pathway to up-regulate HO-1 expression and enhance intracellular antioxidant activity.

  14. Activation of AP-1 and nuclear factor-kappaB transcription factors is involved in hydrogen peroxide-induced apoptotic cell death of oligodendrocytes.

    PubMed

    Vollgraf, U; Wegner, M; Richter-Landsberg, C

    1999-12-01

    H2O2-induced onset and execution of programmed cell death in mature rat brain oligodendrocytes in culture is accompanied by the induction and nuclear translocation of the transcription factors AP-1 and nuclear factor-kappaB (NF-kappaB), both of which have been discussed as regulators of cell death and survival. Supershift analysis of nuclear extracts indicated that the AP-1 complex consists of c-Jun, c-Fos, JunD, and possibly JunB proteins, and that the NF-kappaB complex contains p50, p65, and c-Rel proteins. The first signs of DNA fragmentation were seen already during the first hour after the treatment. DNA fragmentation could be prevented by the antioxidants pyrrolidine dithiocarbamate and vitamin E, by the nuclease inhibitor aurintricarboxylic acid, and by preincubation with the iron chelator deferoxamine (DFO). Additionally, DFO protected oligodendrocytes from H2O2-induced cytotoxic effects as assessed by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, and suppressed the formation of free radicals. DFO alone led to a slight increase and in combination with H2O2 synergistically induced DNA-binding activities of AP-1 and NF-kappaB in oligodendrocytes. Our data suggest that although low levels of H2O2 directly activate AP-1 and NF-kappaB and might contribute to signal transduction pathways promoting cell survival, the formation and action of hydroxyl radicals promote cell death mechanisms that can be attenuated by the iron chelator DFO. PMID:10582611

  15. Protective effects of fangchinoline and tetrandrine on hydrogen peroxide-induced oxidative neuronal cell damage in cultured rat cerebellar granule cells.

    PubMed

    Koh, Sang Bum; Ban, Ju Yeon; Lee, Bo Young; Seong, Yeon Hee

    2003-06-01

    The present study was performed to examine the neuroprotective effects of fangchinoline (FAN) and tetrandrine (TET), bis-benzylisoquinoline alkaloids, which exhibit the characteristics of Ca 2+ channel blockers, on H2O2 -induced neurotoxicity using cultured rat cerebellar granule neurons. H2O2 produced a concentration-dependent reduction of cell viability, which was blocked by (5 R,10 S)-(+)-5-methyl-10,11-dihydro-5 H-dibenzo[ a,d]cyclohepten-5,10-imine (MK-801), an N-methyl- D-aspartate (NMDA) receptor antagonist, verapamil, an L-type Ca 2+ channel blocker, and NG-nitro- L-arginine methyl ester (L-NAME), a nitric oxide synthase (NOS) inhibitor. Pretreatment with FAN and TET over a concentration range of 0.1 to 10 microM significantly decreased the H2O2 -induced neuronal cell death as assessed by a trypan blue exclusion test, a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay and the number of apoptotic nuclei. In addition, FAN and TET inhibited the H2O2 -induced elevation of glutamate release into the medium, elevation of the cytosolic free Ca 2+ concentration ([Ca 2+] c ), and generation of reactive oxygen species (ROS). These results suggest that FAN and TET may mitigate the harmful effects of H2O2 -induced neuronal cell death by interfering with the increase of [Ca 2+] c, and then by inhibiting glutamate release and generation of ROS. Abbreviations. AP5:D(-)-2-amino-5-phosphonopentanoic acid DMSO:dimethyl sulfoxide FAN:fangchinoline H 2 DCF-DA:2',7'-dichlorodihydrofluorescin diacetate MK-801:(5 R,10 S)-(+)-5-methyl-10,11-dihydro-5 H-dibenzo[ a,d]cyclohepten-5,20-imine MTT:3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide L-NAME: NG-Nitro- L-arginine methyl ester NMDA: N-methyl- D-aspartate TET:tetrandrine PMID:12865967

  16. Study of the antioxidant effect of α-tocopherol on low-density lipoprotein peroxidation induced at low and high γ-radiation dose rates

    NASA Astrophysics Data System (ADS)

    Khalil, Abdelouahed; Milochevitch, Christelle

    2005-02-01

    It is well known that vitamin E ( α-tocopherol, α-toc) is a very efficient lipid soluble antioxidant and several studies showed its beneficial action in the prevention and reduction of atherosclerosis. However, some in vitro studies suggest a prooxidant role of vitamin E, which could occur under given circumstances. This study was thus designed to investigate the antioxidant vs. prooxidant effect of vitamin E with regards to LDL peroxidation induced under different oxidative stress conditions. LDL was enriched with α-tocopherol and different α-toc/LDL ratios were studied (8.0±2.5, 14.3±3.0, 33.3±3.7, 42.7±3.5 and 48.2±4.5 molecules of α-toc/LDL particle). Enriched and control LDL were oxidized by action of rad OH and O 2rad - free radicals produced by γ-radiolysis at different dose rates. Susceptibility of LDL to oxidation was examined by the measure of conjugated diene and TBARS formation as well as LDL endogenous α-toc disappearance. Increasing LDL α-toc concentration reduced the LDL susceptibility to oxidation and their oxidizability. α-toc disappearance rates were comprised between 43 and 8.3×10 -10 M s -1 and decreased with the radiation dose rate. Our results support an antioxidant role for α-tocopherol at high and low oxidative stress conditions.

  17. In situ reactive compatibilization of polypropylene/ethylene-propylene-diene monomer thermoplastic vulcanizate by zinc dimethacrylate via peroxide-induced dynamic vulcanization.

    PubMed

    Chen, Yukun; Xu, Chuanhui; Liang, Xingquan; Cao, Liming

    2013-09-12

    This work demonstrates an approach of in situ reactive compatibilization between polypropylene (PP) and ethylene-propylene-diene monomer (EPDM) by using zinc dimethacrylate (ZDMA) as a compatibilizer and, simultaneously, as a very strong reinforcing agent. With the incorporation of 7phr ZDMA in the PP/EPDM (30/70, w/w) thermoplastic vulcanizate (TPV), the tensile strength, tear strength, elongation at break, and hardness of PP/EPDM/ZDMA TPV were increased from 5.3 MPa, 31.3 kN/m, 222%, and 78 up to 11.2 MPa, 64.2 kN/m, 396%, and 83, respectively. This tremendous reinforcing as well as the compatibilization effect of the ZDMA was understood by polymerization of ZDMA and ZDMA reacted with EPDM and PP during peroxide-induced dynamic vulcanization. A peculiar phase structure that rubber particles were surrounded and "bonded" by a thick transition zone that contained numerous of nanoparticles with dimensions of about 20-30 nm was observed from transmission electron microscopy. Scanning electron microscopy results confirmed that incorporation of ZDMA reduced the size of the cross-linked EPDM particles. Moreover, we found that the compatibilized TPV showed a higher tan δ peak temperature for EPDM phase and a lower tan δ peak temperature for PP phase. The suggested method for in situ reactive compatibilization of PP and EPDM offers routes to the design of new TPV-based technical products for diversified applications. PMID:23981036

  18. Layer-by-layer immobilized catalase on electrospun nanofibrous mats protects against oxidative stress induced by hydrogen peroxide.

    PubMed

    Huang, Rong; Deng, Hongbing; Cai, Tongjian; Zhan, Yingfei; Wang, Xiankai; Chen, Xuanxuan; Ji, Ailing; Lil, Xueyong

    2014-07-01

    Catalase, a kind of redox enzyme and generally recognized as an efficient agent for protecting cells against hydrogen peroxide (H2O2)-induced cytotoxicity. The immobilization of catalase was accomplished by depositing the positively charged chitosan and the negatively charged catalase on electrospun cellulose nanofibrous mats through electrospining and layer-by-layer (LBL) techniques. The morphology obtained from Field emission scanning electron microscopy (FE-SEM) indicated that more orderly arranged three-dimension (3D) structure and roughness formed with increasing the number of coating bilayers. Besides, the enzyme-immobilized nanofibrous mats were found with high enzyme loading and activity, moreover, X-ray photoelectron spectroscopy (XPS) results further demonstrated the successful immobilization of chitosan and catalase on cellulose nanofibers support. Furthermore, we evaluated the cytotoxicity induced by hydrogen peroxide in the Human umbilical vascular endothelial cells with or without pretreatment of nanofibrous mats by MTT assay, LDH activity and Flow cytometric evaluation, and confirmed the pronounced hydrogen peroxide-induced toxicity, but pretreatment of immobilized catalase reduced the cytotoxicity and protected cells against hydrogen peroxide-induced cytotoxic effects which were further demonstrated by scanning electron microscopy (SEM) and Transmission Electron Microscopy (TEM) images. The data pointed toward a role of catalase-immobilized nanofibrous mats in protecting cells against hydrogen peroxide-induced cellular damage and their potential application in biomedical field. PMID:24804555

  19. MicroRNA-34a induces a senescence-like change via the down-regulation of SIRT1 and up-regulation of p53 protein in human esophageal squamous cancer cells with a wild-type p53 gene background.

    PubMed

    Ye, Zhimin; Fang, Jun; Dai, Shujun; Wang, Yuezhen; Fu, Zhenfu; Feng, Wei; Wei, Qichun; Huang, Pintong

    2016-01-28

    MiR-34a has been reported as a non-coding RNA universally expressed in normal old cells and a probable suppressor of diverse cancer cells; however, this miRNA's expression and anti-tumor mechanism in esophageal squamous cancer cells (ESCC) remains unclear. We explored these questions in three human ESCC lines, KYSE-450, KYSE-410, and ECa-109, with wild-type p53 and mutant p53 backgrounds. Through a specific stem-loop RT primer for miR-34a, we examined the relevant expression level of miR-34a in these three cell lines using real-time reverse transcription PCR (qRT-PCR). We found that the expression level of miR-34a induced by the DNA damage agent adrmycin (ADR) was both p53- and time-dependent. Following incubation with miR-34a, cellular growth inhibition was exhibited differently in the three cell lines harbored with different p53 backgrounds. Furthermore, the MTT assay demonstrated an miR-34a-related cytotoxic effect in cell growth. Senescence-associated β-galactosidase (SA-β-Gal) staining was used to examine senescence-like phenotypes induced by miR-34a. Mechanistic investigation suggested that the down-regulation of Sirtuin1 (SIRT1) and up-regulation of p53/p21 contributed to the anti-tumor mechanism of miR-34a in wild-type p53 ECa-109 cells, while neither of the apoptosis-related proteins PARP and caspase-3 caused significant changes. In summary, our findings indicated that the intrinsic expression of miR-34a was relatively low and was expressed differently among different p53 backgrounds and ADR treatment times. The anti-tumor effect of miR-34a was primarily dependent on the regulation of SIRT1 and p53/p21 protein, not apoptosis-associated proteins. PMID:26523671

  20. Effect of 16.16 dimethyl prostaglandin E2, N-acetyl-cysteine and the proton pump inhibitor BY 831-78 on hydrogen peroxide-induced mucosal damage in the rat stomach.

    PubMed

    Schürer-Maly, C C; Haussner, V; Halter, F

    1990-01-01

    Reactive oxygen species are noxious to gastrointestinal mucosa and contribute to a variety of gastrointestinal diseases. We examined whether 16.16 dimethyl prostaglandin E2 (PG) is protective against the oxidizing action of 6% H2O2 causing gross hemorrhagic lesions in rat gastric mucosa. Male Wistar rats were treated with PG, 0.005-5 micrograms/kg, either intragastrically (i.g.) or subcutaneously, 30 min prior to i.g. administration of 6% H2O2, 0.5 ml/100 g. Further animals received 25 mg of the mucus dissolvent N-acetyl-cystein (NAC) following oral PG treatment or 30 mumol/kg of the H+K(+)-ATPase inhibitor BY 831-78 (BY), 4 h before onset of the experiments. Volume, pH and beta-N-acetyl-glucosaminidase and lactate dehydrogenase as parameters of cell damage were determined in the gastric juice. i.g. PG treatment achieved 60 and 55% reduction of the mucosal lesions in doses between 5 and 0.05 micrograms/kg, respectively. i.p. PG administration was effective in all doses tested. Gastric juice volume was only slightly and enzymes were not significantly affected by PG treatment. NAC did not diminish PG efficacy or aggravate mucosal lesions. Gastric acid suppression did not increase PG-induced protection but was strongly protective by itself, reducing damage by 75%. Low-dose PG treatment achieves an effective protection against oxidative damage in gastric mucosa, which is not the result of dilution or enhanced mucus production. PMID:2147665

  1. Flavokawains A and B from kava (Piper methysticum) activate heat shock and antioxidant responses and protect against hydrogen peroxide-induced cell death in HepG2 hepatocytes.

    PubMed

    Pinner, Keanu D; Wales, Christina T K; Gristock, Rachel A; Vo, Hoa T; So, Nadine; Jacobs, Aaron T

    2016-09-01

    Context Flavokawains are secondary metabolites from the kava plant (Piper methysticum Forst. f., Piperaceae) that have anticancer properties and demonstrated oral efficacy in murine cancer models. However, flavokawains also have suspected roles in rare cases of kava-induced hepatotoxicity. Objective To compare the toxicity flavokawains A and B (FKA, FKB) and monitor the resulting transcriptional responses and cellular adaptation in the human hepatocyte cell line, HepG2. Materials and methods HepG2 were treated with 2-100 μM FKA or FKB for 24-48 h. Cellular viability was measured with calcein-AM and changes in signalling and gene expression were monitored by luciferase reporter assay, real-time PCR and Western blot of both total and nuclear protein extracts. To test for subsequent resistance to oxidative stress, cells were pretreated with 50 μM FKA, 10 μM FKB or 10 μM sulphoraphane (SFN) for 24 h, followed by 0.4-2.8 mM H2O2 for 48 h, and then viability was assessed. Results FKA (≤100 μM) was not toxic to HepG2, whereas FKB caused significant cell death (IC50=23.2 ± 0.8 μM). Both flavokawains activated Nrf2, increasing HMOX1 and GCLC expression and enhancing total glutathione levels over 2-fold (p < 0.05). FKA and FKB also activated HSF1, increasing HSPA1A and DNAJA4 expression. Also, flavokawain pretreatment mitigated cell death after a subsequent challenge with H2O2, with FKA being more effective than FKB, and similar to SFN. Conclusions Flavokawains promote an adaptive cellular response that protects hepatocytes against oxidative stress. We propose that FKA has potential as a chemopreventative or chemotherapeutic agent. PMID:26789234

  2. Probing skin interaction with hydrogen peroxide using diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zonios, George; Dimou, Aikaterini; Galaris, Dimitrios

    2008-01-01

    Hydrogen peroxide is an important oxidizing agent in biological systems. In dermatology, it is frequently used as topical antiseptic, it has a haemostatic function, it can cause skin blanching, and it can facilitate skin tanning. In this work, we investigated skin interaction with hydrogen peroxide, non-invasively, using diffuse reflectance spectroscopy. We observed transient changes in the oxyhaemoglobin and deoxyhaemoglobin concentrations as a result of topical application of dilute H2O2 solutions to the skin, with changes in deoxyhaemoglobin concentration being more pronounced. Furthermore, we did not observe any appreciable changes in melanin absorption properties as well as in the skin scattering properties. We also found no evidence for production of oxidized haemoglobin forms. Our observations are consistent with an at least partial decomposition of hydrogen peroxide within the stratum corneum and epidermis, with the resulting oxygen and/or remaining hydrogen peroxide inducing vasoconstriction to dermal blood vessels and increasing haemoglobin oxygen saturation. An assessment of the effects of topical application of hydrogen peroxide to the skin may serve as the basis for the development of non-invasive techniques to measure skin antioxidant capacity and also may shed light onto skin related disorders such as vitiligo.

  3. Hydrogen production

    NASA Technical Reports Server (NTRS)

    England, C.; Chirivella, J. E.; Fujita, T.; Jeffe, R. E.; Lawson, D.; Manvi, R.

    1975-01-01

    The state of hydrogen production technology is evaluated. Specific areas discussed include: hydrogen production fossil fuels; coal gasification processes; electrolysis of water; thermochemical production of hydrogen; production of hydrogen by solar energy; and biological production of hydrogen. Supply options are considered along with costs of hydrogen production.

  4. Effect of exogenous hydrogen peroxide on biophoton emission from radish root cells.

    PubMed

    Rastogi, Anshu; Pospísil, Pavel

    2010-01-01

    Biophotons spontaneously emitted from radish root cells were detected using highly sensitive photomultiplier tube. Freshly isolated radish root cells exhibited spontaneous photon emission of about 4 counts s(-1). Addition of hydrogen peroxide to the cells caused significant enhancement in biophoton emission to about 500 counts s(-1). Removal of molecular oxygen using glucose/glucose oxidase system and scavengering of reactive oxygen species by reducing agents such are sodium ascorbate and cysteine completely diminished biophoton emission. Spectral analysis of the hydrogen peroxide-induced biophoton emission indicates that biophotons are emitted mainly in green-red region of the spectra. The data provided by electron paramagnetic resonance spin-trapping technique showed that formation of singlet oxygen observed after addition of H2O2 correlates with enhancement in biophoton emission. These observations provide direct evidence that singlet oxygen is involved in biophoton emission from radish root cells. PMID:20106674

  5. Differential regulation of epidermal growth factor receptor by hydrogen peroxide and flagellin in cultured lung alveolar epithelial cells.

    PubMed

    Nishi, Hiroyuki; Maeda, Noriko; Izumi, Shunsuke; Higa-Nakamine, Sayomi; Toku, Seikichi; Kakinohana, Manabu; Sugahara, Kazuhiro; Yamamoto, Hideyuki

    2015-02-01

    In previous studies, we found that stimulation of Toll-like receptor 5 (TLR5) by flagellin induced the activation of mitogen-activated protein kinase (MAPK)-activated protein kinase-2 (MAPKAPK-2) through activation of the p38 MAPK pathway in cultured alveolar epithelial A549 cells. Our studies strongly suggested that MAPKAPK-2 phosphorylated epidermal growth factor receptor (EGFR) at Ser1047. It has been reported that phosphorylation of Ser1047 after treatment with tumor necrosis factor α (TNFα) induced the internalization of EGFR. In the present study, we first found that treatment of A549 cells with hydrogen peroxide induced the activation of MAPKAPK-2 and phosphorylation of EGFR at Ser1047 within 30 min. This was different from flagellin treatment because hydrogen peroxide treatment induced the phosphorylation of EGFR at Tyr1173 as well as Ser1047, indicating the activation of EGFR. We also found that KN93, an inhibitor of CaM kinase II, inhibited the hydrogen peroxide-induced phosphorylation of EGFR at Ser1047 through inhibition of the activation of the p38 MAPK pathway. Furthermore, we examined the internalization of EGFR by three different methods. Flow cytometry with an antibody against the extracellular domain of EGFR and biotinylation of cell surface proteins revealed that flagellin, but not hydrogen peroxide, decreased the amount of cell-surface EGFR. In addition, activation of extracellular signal-regulated kinase by EGF treatment was reduced by flagellin pre-treatment. These results strongly suggested that hydrogen peroxide activated the p38 MAPK pathway via activation of CaM kinase II and that flagellin and hydrogen peroxide regulate the functions of EGFR by different mechanisms. PMID:25542757

  6. Hydrogen sensor

    DOEpatents

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  7. Hydrogenation apparatus

    DOEpatents

    Friedman, Joseph [Encino, CA; Oberg, Carl L [Canoga Park, CA; Russell, Larry H [Agoura, CA

    1981-01-01

    Hydrogenation reaction apparatus comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1100.degree. to 1900.degree. C., while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products.

  8. Hydrogen Production

    SciTech Connect

    2014-09-01

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produce hydrogen. It includes an overview of research goals as well as “quick facts” about hydrogen energy resources and production technologies.

  9. Hydrogenation apparatus

    DOEpatents

    Friedman, J.; Oberg, C. L.; Russell, L. H.

    1981-06-23

    Hydrogenation reaction apparatus is described comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1,100 to 1,900 C, while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products. 2 figs.

  10. Protective Effects of Minor Components of Curcuminoids on Hydrogen Peroxide-Treated Human HaCaT Keratinocytes.

    PubMed

    Liu, Yuh-Hwa; Lin, Yin-Shiou; Huang, Yu-Wei; Fang, Sheng-Uei; Lin, Shyr-Yi; Hou, Wen-Chi

    2016-05-11

    Hydrogen peroxide, one of the reactive oxygen species (ROS), can cause intracellular oxidative stress associated with skin aging and/or photoaging. Curcumin, a polyphenol in turmeric, has been reported to exhibit biological activity. In this study, five naturally occurring curcuminoids [curcumin, demethoxycurcumin (DMC), bisdemethoxycurcumin (BDMC), monohydroxy-DMC, and monohydroxy-BDMC] were used to investigate their protective roles against hydrogen peroxide-induced oxidative stress in the immortalized human keratinocyte cell lines (HaCaT cells). These five curcuminoids at 10 μM, but not at 5 μM, were shown to exhibit cytotoxicities toward HaCaT keratinocytes. Therefore, a 5 μM concentration of the five curcuminoids was selected for further investigations. Cells were pretreated with or without curcuminoids for 2.5 h before 24-h hydrogen peroxide (150 μM) treatments. Pretreatments with the minor components monohydroxy-DMC or monohydroxy-BDMC, but not curcumin, DMC, and BDMC, showed protective activity, elevating cell viability compared to cells with direct hydrogen peroxide treatments. Pretreatments with monohydroxy-DMC and monohydroxy-BDMC showed the best protective effects, reducing apoptotic cell populations and intracellular ROS, as demonstrated by flow cytometry, as well as reducing the changes of the mitochondrial membrane potential compared to cells with direct hydrogen peroxide treatments. The pretreatments with monohydroxy-DMC and monohydroxy-BDMC reduced c-jun and c-fos mRNA expression and p53 tumor suppressor protein expression and increased HO-1 protein expression and glutathione peroxidase (GPx) activity, respectively, compared to cells with direct hydrogen peroxide treatments. The five curcuminoids exhibited similar hydrogen peroxide-scavenging activity in vitro. It was proposed that monohydroxy-DMC and monohydroxy-BDMC could induce antioxidant defense systems better than curcumin, DMC, or BDMC could against hydrogen peroxide-induced oxidative

  11. Hydrogen Generator

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Another spinoff from spacecraft fuel cell technology is the portable hydrogen generator shown. Developed by General Electric Company, it is an aid to safer operation of systems that use hydrogen-for example, gas chromatographs, used in laboratory analysis of gases. or flame ionization detectors used as $ollution monitors. The generator eliminates the need for high-pressure hydrogen storage bottles, which can be a safety hazard, in laboratories, hospitals and industrial plants. The unit supplies high-purity hydrogen by means of an electrochemical process which separates the hydrogen and oxygen in distilled water. The oxygen is vented away and the hydrogen gas is stored within the unit for use as needed. GE's Aircraft Equipment Division is producing about 1,000 of the generators annually.

  12. Hydrogen Bibliography

    SciTech Connect

    Not Available

    1991-12-01

    The Hydrogen Bibliography is a compilation of research reports that are the result of research funded over the last fifteen years. In addition, other documents have been added. All cited reports are contained in the National Renewable Energy Laboratory (NREL) Hydrogen Program Library.

  13. Hydrogen energy.

    PubMed

    Edwards, P P; Kuznetsov, V L; David, W I F

    2007-04-15

    The problem of anthropogenically driven climate change and its inextricable link to our global society's present and future energy needs are arguably the greatest challenge facing our planet. Hydrogen is now widely regarded as one key element of a potential energy solution for the twenty-first century, capable of assisting in issues of environmental emissions, sustainability and energy security. Hydrogen has the potential to provide for energy in transportation, distributed heat and power generation and energy storage systems with little or no impact on the environment, both locally and globally. However, any transition from a carbon-based (fossil fuel) energy system to a hydrogen-based economy involves significant scientific, technological and socio-economic barriers. This brief report aims to outline the basis of the growing worldwide interest in hydrogen energy and examines some of the important issues relating to the future development of hydrogen as an energy vector. PMID:17272235

  14. Roles of RPS41 in Biofilm Formation, Virulence, and Hydrogen Peroxide Sensitivity in Candida albicans.

    PubMed

    Lu, Hui; Xiong, Juan; Shang, Qinghua; Jiang, Yuanying; Cao, Yingying

    2016-06-01

    In eukaryotes, loss of cytoplasmic ribosomal proteins (RPs) results in a reduced growth rate and other phenotypic defects. The ability to transition from a unicellular budding yeast to a filamentous form is very important for biofilm formation and virulence in Candida albicans. Our recent study found that loss of the RPS41 (C2_10620W_A) gene but not its paralog RPS42 (C1_01640W_A) resulted in altered growth and filamentation changes in C. albicans, so we hypothesized that the RPS41 gene should play important roles in virulence and biofilm formation in this pathogen. We found that both virulence and the ability to form biofilms were defective due to deletion of the RPS41 gene. We also found that loss of the RPS41 gene increased sensitivity to hydrogen peroxide, and that hydrogen peroxide induced the expression of the RPS41 gene in a wild-type strain. These results suggested that the RPS41 gene plays important roles in C. albicans biofilm formation, virulence, and susceptibility to hydrogen peroxide. PMID:26952720

  15. Hydrogen Effect against Hydrogen Embrittlement

    NASA Astrophysics Data System (ADS)

    Murakami, Yukitaka; Kanezaki, Toshihiko; Mine, Yoji

    2010-10-01

    The well-known term “hydrogen embrittlement” (HE) expresses undesirable effects due to hydrogen such as loss of ductility, decreased fracture toughness, and degradation of fatigue properties of metals. However, this article shows, surprisingly, that hydrogen can have an effect against HE. A dramatic phenomenon was found in which charging a supersaturated level of hydrogen into specimens of austenitic stainless steels of types 304 and 316L drastically improved the fatigue crack growth resistance, rather than accelerating fatigue crack growth rates. Although this mysterious phenomenon has not previously been observed in the history of HE research, its mechanism can be understood as an interaction between hydrogen and dislocations. Hydrogen can play two roles in terms of dislocation mobility: pinning (or dragging) and enhancement of mobility. Competition between these two roles determines whether the resulting phenomenon is damaging or, unexpectedly, desirable. This finding will, not only be the crucial key factor to elucidate the mechanism of HE, but also be a trigger to review all existing theories on HE in which hydrogen is regarded as a dangerous culprit.

  16. Storing Hydrogen

    SciTech Connect

    Kim, Hyun Jeong; Karkamkar, Abhijeet J.; Autrey, Thomas; Chupas, Peter; Proffen, Thomas E.

    2010-05-31

    Researchers have been studying mesoporous materials for almost two decades with a view to using them as hosts for small molecules and scaffolds for molding organic compounds into new hybrid materials and nanoparticles. Their use as potential storage systems for large quantities of hydrogen has also been mooted. Such systems that might hold large quantities of hydrogen safely and in a very compact volume would have enormous potential for powering fuel cell vehicles, for instance. A sponge-like form of silicon dioxide, the stuff of sand particles and computer chips, can soak up and store other compounds including hydrogen. Studies carried out at the XOR/BESSRC 11-ID-B beamline at the APS have revealed that the nanoscopic properties of the hydrogenrich compound ammonia borane help it store hydrogen more efficiently than usual. The material may have potential for addressing the storage issues associated with a future hydrogen economy. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  17. Hydrogen program overview

    SciTech Connect

    Gronich, S.

    1997-12-31

    This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

  18. Melatonin protects skin keratinocyte from hydrogen peroxide-mediated cell death via the SIRT1 pathway

    PubMed Central

    Lee, Ju-Hee; Moon, Ji-Hong; Nazim, Uddin MD.; Lee, You-Jin; Seol, Jae-Won; Eo, Seong-Kug; Lee, John-Hwa; Park, Sang-Youel

    2016-01-01

    Melatonin (N-acetyl-5-methoxytryptamine), which is primarily synthesized in and secreted from the pineal gland, plays a pivotal role in cell proliferation as well as in the regulation of cell metastasis and cell survival in a diverse range of cells. The aim of this study is to investigate protection effect of melatonin on H2O2-induced cell damage and the mechanisms of melatonin in human keratinocytes. Hydrogen peroxide dose-dependently induced cell damages in human keratinocytes and co-treatment of melatonin protected the keratinocytes against H2O2-induced cell damage. Melatonin treatment activated the autophagy flux signals, which were identified by the decreased levels of p62 protein. Inhibition of autophagy flux via an autophagy inhibitor and ATG5 siRNA technique blocked the protective effects of melatonin against H2O2-induced cell death in human keratinocytes. And we found the inhibition of sirt1 using sirtinol and sirt1 siRNA reversed the protective effects of melatonin and induces the autophagy process in H2O2-treated cells. This is the first report demonstrating that autophagy flux activated by melatonin protects human keratinocytes through sirt1 pathway against hydrogen peroxide-induced damages. And this study also suggest that melatonin could potentially be utilized as a therapeutic agent in skin disease. PMID:26918354

  19. Melatonin protects skin keratinocyte from hydrogen peroxide-mediated cell death via the SIRT1 pathway.

    PubMed

    Lee, Ju-Hee; Moon, Ji-Hong; Nazim, Uddin Md; Lee, You-Jin; Seol, Jae-Won; Eo, Seong-Kug; Lee, John-Hwa; Park, Sang-Youel

    2016-03-15

    Melatonin (N-acetyl-5-methoxytryptamine), which is primarily synthesized in and secreted from the pineal gland, plays a pivotal role in cell proliferation as well as in the regulation of cell metastasis and cell survival in a diverse range of cells. The aim of this study is to investigate protection effect of melatonin on H2O2-induced cell damage and the mechanisms of melatonin in human keratinocytes. Hydrogen peroxide dose-dependently induced cell damages in human keratinocytes and co-treatment of melatonin protected the keratinocytes against H2O2-induced cell damage. Melatonin treatment activated the autophagy flux signals, which were identified by the decreased levels of p62 protein. Inhibition of autophagy flux via an autophagy inhibitor and ATG5 siRNA technique blocked the protective effects of melatonin against H2O2-induced cell death in human keratinocytes. And we found the inhibition of sirt1 using sirtinol and sirt1 siRNA reversed the protective effects of melatonin and induces the autophagy process in H2O2-treated cells. This is the first report demonstrating that autophagy flux activated by melatonin protects human keratinocytes through sirt1 pathway against hydrogen peroxide-induced damages. And this study also suggest that melatonin could potentially be utilized as a therapeutic agent in skin disease. PMID:26918354

  20. Hydrogen chloride

    Integrated Risk Information System (IRIS)

    Hydrogen chloride ; CASRN 7647 - 01 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogeni

  1. Hydrogen sulfide

    Integrated Risk Information System (IRIS)

    Hydrogen sulfide ; 7783 - 06 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effec

  2. Metallic Hydrogen

    NASA Astrophysics Data System (ADS)

    Silvera, Isaac; Zaghoo, Mohamed; Salamat, Ashkan

    2015-03-01

    Hydrogen is the simplest and most abundant element in the Universe. At high pressure it is predicted to transform to a metal with remarkable properties: room temperature superconductivity, a metastable metal at ambient conditions, and a revolutionary rocket propellant. Both theory and experiment have been challenged for almost 80 years to determine its condensed matter phase diagram, in particular the insulator-metal transition. Hydrogen is predicted to dissociate to a liquid atomic metal at multi-megabar pressures and T =0 K, or at megabar pressures and very high temperatures. Thus, its predicted phase diagram has a broad field of liquid metallic hydrogen at high pressure, with temperatures ranging from thousands of degrees to zero Kelvin. In a bench top experiment using static compression in a diamond anvil cell and pulsed laser heating, we have conducted measurements on dense hydrogen in the region of 1.1-1.7 Mbar and up to 2200 K. We observe a first-order phase transition in the liquid phase, as well as sharp changes in optical transmission and reflectivity when this phase is entered. The optical signature is that of a metal. The mapping of the phase line of this transition is in excellent agreement with recent theoretical predictions for the long-sought plasma phase transition to metallic hydrogen. Research supported by the NSF, Grant DMR-1308641, the DOE Stockpile Stewardship Academic Alliance Program, Grant DE-FG52-10NA29656, and NASA Earth and Space Science Fellowship Program, Award NNX14AP17H.

  3. Hydrogen environment embrittlement.

    NASA Technical Reports Server (NTRS)

    Gray, H. R.

    1972-01-01

    Hydrogen embrittlement is classified into three types: internal reversible hydrogen embrittlement, hydrogen reaction embrittlement, and hydrogen environment embrittlement. Characteristics of and materials embrittled by these types of hydrogen embrittlement are discussed. Hydrogen environment embrittlement is reviewed in detail. Factors involved in standardizing test methods for detecting the occurrence of and evaluating the severity of hydrogen environment embrittlement are considered. The effects of test technique, hydrogen pressure, purity, strain rate, stress concentration factor, and test temperature are discussed.

  4. Lipid peroxidation induced by maternal cadmium exposure in mouse pups

    SciTech Connect

    Baohui Xu |; Yapin Jin; Zhaoliang Feng; Zhaofa Xu; Matsushita, Toshio

    1993-11-01

    Cadmium as an environmental pollutant has received considerable attention and its toxic effects have been studied extensively in human and adult animals. Moreover, an International Task Group on Metal Accumulation (1973) has established that although it is in a limited quantity cadmium can be transported across placenta and excreted through milk in animals. Likewise, it can pass through placenta in humans. Furthermore, the fact is that women in the cadmium-polluted areas are continuously exposed to cadmium during gestation and lactation. Even if they are removed from the exposure, the body burden of cadmium probably remains high because of the very long biological half-time of cadmium which is estimated to be between 17.6 and 33 years. Thus, it is possible that fetuses and pups may be exposed to cadmium during maternal gestation and lactation. Although placenta affords some protection from cadmium exposure, cadmium exposure prior to day 10-11 when placenta forms may be deleterious. Cadmium exposure during pregnancy and its effects on offsprings, which were mainly focused on litter size, pup survival, pup growth and cadmium contents in pups following maternal cadmium exposure have been reported. Lipid peroxide has been considered as a sensitive toxicological index for environmental pollutants. The inhibited antioxidant enzymes and enhanced lipid peroxidation due to cadmium exposure have been demonstrated both in humans and animals. Therefore, the present study was designed to evaluate the toxic effects of maternal cadmium exposure on mouse pups using both the indices used in the previous studies and determinations of lipid peroxide concentrations in various pup organs. In conclusion, data from the present study indicate that the detection of LPO concentration in selected pup tissues is a sensitive index for evaluating the effects of maternal cadmium exposure on mouse pups. 16 refs., 4 tabs.

  5. Hydrogen scavengers

    SciTech Connect

    Carroll, David W.; Salazar, Kenneth V.; Trkula, Mitchell; Sandoval, Cynthia W.

    2002-01-01

    There has been invented a codeposition process for fabricating hydrogen scavengers. First, a .pi.-bonded allylic organometallic complex is prepared by reacting an allylic transition metal halide with an organic ligand complexed with an alkali metal; and then, in a second step, a vapor of the .pi.-bonded allylic organometallic complex is combined with the vapor of an acetylenic compound, irradiated with UV light, and codeposited on a substrate.

  6. Hydrogen environment embrittlement

    NASA Technical Reports Server (NTRS)

    Gray, H. R.

    1972-01-01

    Hydrogen embrittlement is classified into three types: internal reversible hydrogen embrittlement, hydrogen reaction embrittlement, and hydrogen environment embrittlement. Characteristics of and materials embrittled by these types of hydrogen embrittlement are discussed. Hydrogen environment embrittlement is reviewed in detail. Factors involved in standardizing test methods for detecting the occurrence of and evaluating the severity of hydrogen environment embrittlement are considered. The effect of test technique, hydrogen pressure, purity, strain rate, stress concentration factor, and test temperature are discussed. Additional research is required to determine whether hydrogen environment embrittlement and internal reversible hydrogen embrittlement are similar or distinct types of embrittlement.

  7. Hydrogen detector

    DOEpatents

    Kanegae, Naomichi; Ikemoto, Ichiro

    1980-01-01

    A hydrogen detector of the type in which the interior of the detector is partitioned by a metal membrane into a fluid section and a vacuum section. Two units of the metal membrane are provided and vacuum pipes are provided independently in connection to the respective units of the metal membrane. One of the vacuum pipes is connected to a vacuum gauge for static equilibrium operation while the other vacuum pipe is connected to an ion pump or a set of an ion pump and a vacuum gauge both designed for dynamic equilibrium operation.

  8. Mechanochemical hydrogenation of coal

    DOEpatents

    Yang, Ralph T.; Smol, Robert; Farber, Gerald; Naphtali, Leonard M.

    1981-01-01

    Hydrogenation of coal is improved through the use of a mechanical force to reduce the size of the particulate coal simultaneously with the introduction of gaseous hydrogen, or other hydrogen donor composition. Such hydrogen in the presence of elemental tin during this one-step size reduction-hydrogenation further improves the yield of the liquid hydrocarbon product.

  9. Necessity of OxyR for the hydrogen peroxide stress response and full virulence in Ralstonia solanacearum.

    PubMed

    Flores-Cruz, Zomary; Allen, Caitilyn

    2011-09-01

    The plant pathogen Ralstonia solanacearum, which causes bacterial wilt disease, is exposed to reactive oxygen species (ROS) during tomato infection and expresses diverse oxidative stress response (OSR) genes during midstage disease on tomato. The R. solanacearum genome predicts that the bacterium produces multiple and redundant ROS-scavenging enzymes but only one known oxidative stress response regulator, OxyR. An R. solanacearum oxyR mutant had no detectable catalase activity, did not grow in the presence of 250 μM hydrogen peroxide, and grew poorly in the oxidative environment of solid rich media. This phenotype was rescued by the addition of exogenous catalase, suggesting that oxyR is essential for the hydrogen peroxide stress response. Unexpectedly, the oxyR mutant strain grew better than the wild type in the presence of the superoxide generator paraquat. Gene expression studies indicated that katE, kaG, ahpC1, grxC, and oxyR itself were each differentially expressed in the oxyR mutant background and in response to hydrogen peroxide, suggesting that oxyR is necessary for hydrogen peroxide-inducible gene expression. Additional OSR genes were differentially regulated in response to hydrogen peroxide alone. The virulence of the oxyR mutant strain was significantly reduced in both tomato and tobacco host plants, demonstrating that R. solanacearum is exposed to inhibitory concentrations of ROS in planta and that OxyR-mediated responses to ROS during plant pathogenesis are important for R. solanacearum host adaptation and virulence. PMID:21803891

  10. Hydrogen peroxide poisoning

    MedlinePlus

    ... peroxide is used in these products: Hydrogen peroxide Hair bleach Some contact lens cleaners Note: Household hydrogen peroxide ... it contains 97% water and 3% hydrogen peroxide. Hair bleaches are stronger. They usually have a concentration of ...

  11. Induction of eosinophil apoptosis by hydrogen peroxide promotes the resolution of allergic inflammation.

    PubMed

    Reis, A C; Alessandri, A L; Athayde, R M; Perez, D A; Vago, J P; Ávila, T V; Ferreira, T P T; de Arantes, A C S; Coutinho, D de Sá; Rachid, M A; Sousa, L P; Martins, M A; Menezes, G B; Rossi, A G; Teixeira, M M; Pinho, V

    2015-01-01

    Eosinophils are effector cells that have an important role in the pathogenesis of allergic disease. Defective removal of these cells likely leads to chronic inflammatory diseases such as asthma. Thus, there is great interest in understanding the mechanisms responsible for the elimination of eosinophils from inflammatory sites. Previous studies have demonstrated a role for certain mediators and molecular pathways responsible for the survival and death of leukocytes at sites of inflammation. Reactive oxygen species have been described as proinflammatory mediators but their role in the resolution phase of inflammation is poorly understood. The aim of this study was to investigate the effect of reactive oxygen species in the resolution of allergic inflammatory responses. An eosinophilic cell line (Eol-1) was treated with hydrogen peroxide and apoptosis was measured. Allergic inflammation was induced in ovalbumin sensitized and challenged mouse models and reactive oxygen species were administered at the peak of inflammatory cell infiltrate. Inflammatory cell numbers, cytokine and chemokine levels, mucus production, inflammatory cell apoptosis and peribronchiolar matrix deposition was quantified in the lungs. Resistance and elastance were measured at baseline and after aerosolized methacholine. Hydrogen peroxide accelerates resolution of airway inflammation by induction of caspase-dependent apoptosis of eosinophils and decrease remodeling, mucus deposition, inflammatory cytokine production and airway hyperreactivity. Moreover, the inhibition of reactive oxygen species production by apocynin or in gp91(phox-/-) mice prolonged the inflammatory response. Hydrogen peroxide induces Eol-1 apoptosis in vitro and enhances the resolution of inflammation and improves lung function in vivo by inducing caspase-dependent apoptosis of eosinophils. PMID:25675292

  12. Induction of eosinophil apoptosis by hydrogen peroxide promotes the resolution of allergic inflammation

    PubMed Central

    Reis, A C; Alessandri, A L; Athayde, R M; Perez, D A; Vago, J P; Ávila, T V; Ferreira, T P T; de Arantes, A CS; de Sá Coutinho, D; Rachid, M A; Sousa, L P; Martins, M A; Menezes, G B; Rossi, A G; Teixeira, M M; Pinho, V

    2015-01-01

    Eosinophils are effector cells that have an important role in the pathogenesis of allergic disease. Defective removal of these cells likely leads to chronic inflammatory diseases such as asthma. Thus, there is great interest in understanding the mechanisms responsible for the elimination of eosinophils from inflammatory sites. Previous studies have demonstrated a role for certain mediators and molecular pathways responsible for the survival and death of leukocytes at sites of inflammation. Reactive oxygen species have been described as proinflammatory mediators but their role in the resolution phase of inflammation is poorly understood. The aim of this study was to investigate the effect of reactive oxygen species in the resolution of allergic inflammatory responses. An eosinophilic cell line (Eol-1) was treated with hydrogen peroxide and apoptosis was measured. Allergic inflammation was induced in ovalbumin sensitized and challenged mouse models and reactive oxygen species were administered at the peak of inflammatory cell infiltrate. Inflammatory cell numbers, cytokine and chemokine levels, mucus production, inflammatory cell apoptosis and peribronchiolar matrix deposition was quantified in the lungs. Resistance and elastance were measured at baseline and after aerosolized methacholine. Hydrogen peroxide accelerates resolution of airway inflammation by induction of caspase-dependent apoptosis of eosinophils and decrease remodeling, mucus deposition, inflammatory cytokine production and airway hyperreactivity. Moreover, the inhibition of reactive oxygen species production by apocynin or in gp91phox−/− mice prolonged the inflammatory response. Hydrogen peroxide induces Eol-1 apoptosis in vitro and enhances the resolution of inflammation and improves lung function in vivo by inducing caspase-dependent apoptosis of eosinophils. PMID:25675292

  13. Hydrogen Permeation Barrier Coatings

    SciTech Connect

    Henager, Charles H.

    2008-01-01

    Gaseous hydrogen, H2, has many physical properties that allow it to move rapidly into and through materials, which causes problems in keeping hydrogen from materials that are sensitive to hydrogen-induced degradation. Hydrogen molecules are the smallest diatomic molecules, with a molecular radius of about 37 x 10-12 m and the hydrogen atom is smaller still. Since it is small and light it is easily transported within materials by diffusion processes. The process of hydrogen entering and transporting through a materials is generally known as permeation and this section reviews the development of hydrogen permeation barriers and barrier coatings for the upcoming hydrogen economy.

  14. Hydrogen embrittlement in nickel-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Gross, Sidney

    1989-01-01

    It was long known that many strong metals can become weakened and brittle as the result of the accumulation of hydrogen within the metal. When the metal is stretched, it does not show normal ductile properties, but fractures prematurely. This problem can occur as the result of a hydrogen evolution reaction such as corrosion or electroplating, or due to hydrogen in the environment at the metal surface. High strength alloys such as steels are especially susceptible to hydrogen embrittlement. Nickel-hydrogen cells commonly use Inconel 718 alloy for the pressure container, and this also is susceptible to hydrogen embrittlement. Metals differ in their susceptibility to embrittlement. Hydrogen embrittlement in nickel-hydrogen cells is analyzed and the reasons why it may or may not occur are discussed. Although Inconel 718 can display hydrogen embrittlement, experience has not identified any problem with nickel-hydrogen cells. No hydrogen embrittlement problem is expected with the 718 alloy pressure container used in nickel-hydrogen cells.

  15. Composition for absorbing hydrogen

    DOEpatents

    Heung, L.K.; Wicks, G.G.; Enz, G.L.

    1995-05-02

    A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  16. An independent hydrogen source

    SciTech Connect

    Kobzenko, G.F.; Chubenko, M.V.; Kobzenko, N.S.; Senkevich, A.I.; Shkola, A.A.

    1985-10-01

    Descriptions are given of the design and operation of an independent hydrogen source used in purifying and storing hydrogen. If LaNi/sub 5/ or TiFe is used as the sorbent, one can store about 500 liter of chemically bound hydrogen in a vessel of 0.9 liter. Molecular purification of the desorbed hydrogen is used. The IHS is a safe hydrogen source, since the hydrogen is trapped in the sorbent in the chemically bound state and in equilibrium with LaNi/sub 5/Hx at room temperature. If necessary, the IHS can serve as a compressor and provide higher hydrogen pressures. The device is compact and transportable.

  17. Composition for absorbing hydrogen

    DOEpatents

    Heung, Leung K.; Wicks, George G.; Enz, Glenn L.

    1995-01-01

    A hydrogen absorbing composition. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  18. Hydrogen Embrittlement Understood

    NASA Astrophysics Data System (ADS)

    Robertson, Ian M.; Sofronis, P.; Nagao, A.; Martin, M. L.; Wang, S.; Gross, D. W.; Nygren, K. E.

    2015-06-01

    The connection between hydrogen-enhanced plasticity and the hydrogen-induced fracture mechanism and pathway is established through examination of the evolved microstructural state immediately beneath fracture surfaces including voids, "quasi-cleavage," and intergranular surfaces. This leads to a new understanding of hydrogen embrittlement in which hydrogen-enhanced plasticity processes accelerate the evolution of the microstructure, which establishes not only local high concentrations of hydrogen but also a local stress state. Together, these factors establish the fracture mechanism and pathway.

  19. A Few Facts about Hydrogen [and] Hydrogen Bibliography.

    ERIC Educational Resources Information Center

    Hinds, H. Roger

    Divided into two sections, this publication presents facts about and the characteristics of hydrogen and a bibliography on hydrogen. The first section lists nine facts on what hydrogen is, four on where hydrogen is found, nine on how hydrogen is used, nine on how hydrogen can be used, and 14 on how hydrogen is made. Also included are nine…

  20. Hydrogen nanobubble at normal hydrogen electrode

    NASA Astrophysics Data System (ADS)

    Nakabayashi, S.; Shinozaki, R.; Senda, Y.; Yoshikawa, H. Y.

    2013-05-01

    Electrochemically formed hydrogen nanobubbles at a platinum rotating disk electrode (RDE) were detected by re-oxidation charge. The dissolution time course of the hydrogen nanobubbles was measured by AFM tapping topography under open-circuit conditions at stationary platinum and gold single-crystal electrodes. The bubble dissolution at platinum was much faster than that at gold because two types of diffusion, bulk and surface diffusion, proceeded at the platinum surface, whereas surface diffusion was prohibited at the gold electrode. These findings indicated that the electrochemical reaction of normal hydrogen electrode partly proceeded heterogeneously on the three-phase boundary around the hydrogen nanobubble.

  1. Hydrogen energy systems studies

    SciTech Connect

    Ogden, J.M.; Kreutz, T.G.; Steinbugler, M.

    1996-10-01

    In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

  2. Concentration of Hydrogen Peroxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2006-01-01

    Methods for concentrating hydrogen peroxide solutions have been described. The methods utilize a polymeric membrane separating a hydrogen peroxide solution from a sweep gas or permeate. The membrane is selective to the permeability of water over the permeability of hydrogen peroxide, thereby facilitating the concentration of the hydrogen peroxide solution through the transport of water through the membrane to the permeate. By utilizing methods in accordance with the invention, hydrogen peroxide solutions of up to 85% by volume or higher may be generated at a point of use without storing substantial quantities of the highly concentrated solutions and without requiring temperatures that would produce explosive mixtures of hydrogen peroxide vapors.

  3. Loss of DLK expression in WI-38 human diploid fibroblasts induces a senescent-like proliferation arrest

    SciTech Connect

    Daviau, Alex; Couture, Jean-Philippe; Blouin, Richard

    2011-09-23

    Highlights: {yields} Role of DLK in cell proliferation. {yields} Modulation of DLK expression during cell cycle progression. {yields} DLK knockdown induces proliferation arrest and senescence. {yields} DLK-depleted cells display loss of cyclin D1 and up-regulation of p21. {yields} DLK participates in cell proliferation by modulating cell cycle regulator expression. -- Abstract: DLK, a serine/threonine kinase that functions as an upstream activator of the mitogen-activated protein kinase (MAPK) pathways, has been shown to play a role in development, cell differentiation, apoptosis and neuronal response to injury. Interestingly, recent studies have shown that DLK may also be required for cell proliferation, although little is known about its specific functions. To start addressing this issue, we studied how DLK expression is modulated during cell cycle progression and what effect DLK depletion has on cell proliferation in WI-38 fibroblasts. Our results indicate that DLK protein levels are low in serum-starved cells, but that serum addition markedly stimulated it. Moreover, RNA interference experiments demonstrate that DLK is required for ERK activity, expression of the cell cycle regulator cyclin D1 and proliferation of WI-38 cells. DLK-depleted cells also show a senescent phenotype as revealed by senescence-associated galactosidase activity and up-regulation of the senescence pathway proteins p53 and p21. Consistent with a role for p53 in this response, inhibition of p53 expression by RNA interference significantly alleviated senescence induced by DLK knockdown. Together, these findings indicate that DLK participates in cell proliferation and/or survival, at least in part, by modulating the expression of cell cycle regulatory proteins.

  4. Hydrogen transport membranes

    DOEpatents

    Mundschau, Michael V.

    2005-05-31

    Composite hydrogen transport membranes, which are used for extraction of hydrogen from gas mixtures are provided. Methods are described for supporting metals and metal alloys which have high hydrogen permeability, but which are either too thin to be self supporting, too weak to resist differential pressures across the membrane, or which become embrittled by hydrogen. Support materials are chosen to be lattice matched to the metals and metal alloys. Preferred metals with high permeability for hydrogen include vanadium, niobium, tantalum, zirconium, palladium, and alloys thereof. Hydrogen-permeable membranes include those in which the pores of a porous support matrix are blocked by hydrogen-permeable metals and metal alloys, those in which the pores of a porous metal matrix are blocked with materials which make the membrane impervious to gases other than hydrogen, and cermets fabricated by sintering powders of metals with powders of lattice-matched ceramic.

  5. Hydrogen production by Cyanobacteria

    PubMed Central

    Dutta, Debajyoti; De, Debojyoti; Chaudhuri, Surabhi; Bhattacharya, Sanjoy K

    2005-01-01

    The limited fossil fuel prompts the prospecting of various unconventional energy sources to take over the traditional fossil fuel energy source. In this respect the use of hydrogen gas is an attractive alternate source. Attributed by its numerous advantages including those of environmentally clean, efficiency and renew ability, hydrogen gas is considered to be one of the most desired alternate. Cyanobacteria are highly promising microorganism for hydrogen production. In comparison to the traditional ways of hydrogen production (chemical, photoelectrical), Cyanobacterial hydrogen production is commercially viable. This review highlights the basic biology of cynobacterial hydrogen production, strains involved, large-scale hydrogen production and its future prospects. While integrating the existing knowledge and technology, much future improvement and progress is to be done before hydrogen is accepted as a commercial primary energy source. PMID:16371161

  6. Supply options. [hydrogen market

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The use of captive hydrogen (produced and consumed on site) and merchant hydrogen (externally supplied) is considered. A low-merchant-captive ratio market and a high-merchant-captive ratio market are described and compared.

  7. Hydrogen Technologies Safety Guide

    SciTech Connect

    Rivkin, C.; Burgess, R.; Buttner, W.

    2015-01-01

    The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

  8. Solar hydrogen generator

    NASA Technical Reports Server (NTRS)

    Sebacher, D. I.; Sabol, A. P. (Inventor)

    1977-01-01

    An apparatus, using solar energy to manufacture hydrogen by dissociating water molecules into hydrogen and oxygen molecules is described. Solar energy is concentrated on a globe containing water thereby heating the water to its dissociation temperature. The globe is pervious to hydrogen molecules permitting them to pass through the globe while being essentially impervious to oxygen molecules. The hydrogen molecules are collected after passing through the globe and the oxygen molecules are removed from the globe.

  9. Sensitive hydrogen leak detector

    DOEpatents

    Myneni, G.R.

    1999-08-03

    A sensitive hydrogen leak detector system is described which uses passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor. 1 fig.

  10. Flash hydrogenation of coal

    DOEpatents

    Manowitz, Bernard; Steinberg, Meyer; Sheehan, Thomas V.; Winsche, Warren E.; Raseman, Chad J.

    1976-01-01

    A process for the hydrogenation of coal comprising the contacting of powdered coal with hydrogen in a rotating fluidized bed reactor. A rotating fluidized bed reactor suitable for use in this process is also disclosed. The coal residence time in the reactor is limited to less than 5 seconds while the hydrogen contact time is not in excess of 0.2 seconds.

  11. Biological hydrogen photoproduction

    SciTech Connect

    Nemoto, Y.

    1995-09-01

    Following are the major accomplishments of the 6th year`s study of biological hydrogen photoproduction which were supported by DOE/NREL. (1) We have been characterizing a biological hydrogen production system using synchronously growing aerobically nitrogen-fixing unicellular cyanobacterium, Synechococcus sp. Miami BG 043511. So far it was necessary to irradiate the cells to produce hydrogen. Under darkness they did not produce hydrogen. However, we found that, if the cells are incubated with oxygen, they produce hydrogen under the dark. Under 80% argon + 20% oxygen condition, the hydrogen production activity under the dark was about one third of that under the light + argon condition. (2) Also it was necessary so far to incubate the cells under argon atmosphere to produce hydrogen in this system. Argon treatment is very expensive and should be avoided in an actual hydrogen production system. We found that, if the cells are incubated at a high cell density and in a container with minimum headspace, it is not necessary to use argon for the hydrogen production. (3) Calcium ion was found to play an important role in the mechanisms of protection of nitrogenase from external oxygen. This will be a clue to understand the reason why the hydrogen production is so resistant to oxygen in this strain. (4) In this strain, sulfide can be used as electron donor for the hydrogen production. This result shows that waste water can be used for the hydrogen production system using this strain.

  12. Liquid metal hydrogen barriers

    DOEpatents

    Grover, George M.; Frank, Thurman G.; Keddy, Edward S.

    1976-01-01

    Hydrogen barriers which comprise liquid metals in which the solubility of hydrogen is low and which have good thermal conductivities at operating temperatures of interest. Such barriers are useful in nuclear fuel elements containing a metal hydride moderator which has a substantial hydrogen dissociation pressure at reactor operating temperatures.

  13. Sensitive hydrogen leak detector

    DOEpatents

    Myneni, Ganapati Rao

    1999-01-01

    A sensitive hydrogen leak detector system using passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor.

  14. Hydrogen from coal

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Hydrogen production from coal by hydrogasification is described. The process involves the solubilization of coal to form coal liquids, which are hydrogasified to produce synthetic pipeline gas; steam reforming this synthetic gas by a nuclear heat source produces hydrogen. A description is given of the hydrogen plant, its performance, and its effect on the environment.

  15. Purification of Hydrogen

    DOEpatents

    Newton, A S

    1950-12-05

    Disclosed is a process for purifying hydrogen containing various gaseous impurities by passing the hydrogen over a large surface of uranium metal at a temperature above the decomposition temperature of uranium hydride, and below the decomposition temperature of the compounds formed by the combination of the uranium with the impurities in the hydrogen.

  16. Effects of aqueous extracts of Halimeda incrassata (Ellis) Lamouroux and Bryothamnion triquetrum (S.G.Gmelim) Howe on hydrogen peroxide and methyl mercury-induced oxidative stress in GT1-7 mouse hypothalamic immortalized cells.

    PubMed

    Fallarero, A; Loikkanen, J J; Männistö, P T; Castañeda, O; Vidal, A

    2003-01-01

    The current investigation focuses attention on the neuroprotective and antioxidant properties of aqueous extracts from Halimeda incrassata (Hi) and Bryothamniom triquetrum (Bt) in the mouse immortalized hypothalamic GT1-7 cell line. Under basal oxidative conditions, Hi extract reduces intracellular reactive oxygen species production, as assessed by 2',7'-dichlorofluorescein fluorescence, while Bt extract does not contribute to basal ROS generation. Both extracts, at concentrations higher than 0.20 mg/ml, exert protection against hydrogen peroxide-mediated cell death, although only Hi extract can additionally prevent hydrogen peroxide-induced ROS production. The two seaweed aqueous extracts, at concentrations higher than 0.05 mg/ml, also display protection against neuronal death induced by methyl mercury chloride, as well as against methyl mercury chloride-mediated ROS generation. None of the extracts increase GSH intracellular pools, in basal conditions, after depleting its levels with either hydrogen peroxide or methyl mercury chloride. Some comments on the probable targets of the neuroprotection exerted by these two extracts are included in this paper. PMID:12622462

  17. Hydrogen separation process

    DOEpatents

    Mundschau, Michael; Xie, Xiaobing; Evenson, IV, Carl; Grimmer, Paul; Wright, Harold

    2011-05-24

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  18. Nanoplasmonic hydrogen sensing

    NASA Astrophysics Data System (ADS)

    Wadell, Carl; Syrenova, Svetlana; Langhammer, Christoph

    2014-09-01

    In this review we discuss the evolution of surface plasmon resonance and localized surface plasmon resonance based hydrogen sensors. We put particular focus on how they are used to study metal-hydrogen interactions at the nanoscale, both at the ensemble and the single nanoparticle level. Such efforts are motivated by a fundamental interest in understanding the role of nanosizing on metal hydride formation processes. However, nanoplasmonic hydrogen sensors are not only of academic interest but may also find more practical use as all-optical gas detectors in industrial and medical applications, as well in a future hydrogen economy, where hydrogen is used as a carbon free energy carrier.

  19. Safe venting of hydrogen

    SciTech Connect

    Stewart, W.F.; Dewart, J.M.; Edeskuty, F.J.

    1990-01-01

    The disposal of hydrogen is often required in the operation of an experimental facility that contains hydrogen. Whether the vented hydrogen can be discharged to the atmosphere safely depends upon a number of factors such as the flow rate and atmospheric conditions. Calculations have been made that predict the distance a combustible mixture can extend from the point of release under some specified atmospheric conditions. Also the quantity of hydrogen in the combustible cloud is estimated. These results can be helpful in deciding of the hydrogen can be released directly to the atmosphere, or if it must be intentionally ignited. 15 refs., 5 figs., 2 tabs.

  20. Hydrogen storage methods.

    PubMed

    Züttel, Andreas

    2004-04-01

    Hydrogen exhibits the highest heating value per mass of all chemical fuels. Furthermore, hydrogen is regenerative and environmentally friendly. There are two reasons why hydrogen is not the major fuel of today's energy consumption. First of all, hydrogen is just an energy carrier. And, although it is the most abundant element in the universe, it has to be produced, since on earth it only occurs in the form of water and hydrocarbons. This implies that we have to pay for the energy, which results in a difficult economic dilemma because ever since the industrial revolution we have become used to consuming energy for free. The second difficulty with hydrogen as an energy carrier is its low critical temperature of 33 K (i.e. hydrogen is a gas at ambient temperature). For mobile and in many cases also for stationary applications the volumetric and gravimetric density of hydrogen in a storage material is crucial. Hydrogen can be stored using six different methods and phenomena: (1) high-pressure gas cylinders (up to 800 bar), (2) liquid hydrogen in cryogenic tanks (at 21 K), (3) adsorbed hydrogen on materials with a large specific surface area (at T<100 K), (4) absorbed on interstitial sites in a host metal (at ambient pressure and temperature), (5) chemically bonded in covalent and ionic compounds (at ambient pressure), or (6) through oxidation of reactive metals, e.g. Li, Na, Mg, Al, Zn with water. The most common storage systems are high-pressure gas cylinders with a maximum pressure of 20 MPa (200 bar). New lightweight composite cylinders have been developed which are able to withstand pressures up to 80 MPa (800 bar) and therefore the hydrogen gas can reach a volumetric density of 36 kg.m(-3), approximately half as much as in its liquid state. Liquid hydrogen is stored in cryogenic tanks at 21.2 K and ambient pressure. Due to the low critical temperature of hydrogen (33 K), liquid hydrogen can only be stored in open systems. The volumetric density of liquid hydrogen

  1. Hydrogen Filling Station

    SciTech Connect

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen

  2. Hydrogen energy systems studies

    SciTech Connect

    Ogden, J.M.; Steinbugler, M.; Kreutz, T.

    1998-08-01

    In this progress report (covering the period May 1997--May 1998), the authors summarize results from ongoing technical and economic assessments of hydrogen energy systems. Generally, the goal of their research is to illuminate possible pathways leading from present hydrogen markets and technologies toward wide scale use of hydrogen as an energy carrier, highlighting important technologies for RD and D. Over the past year they worked on three projects. From May 1997--November 1997, the authors completed an assessment of hydrogen as a fuel for fuel cell vehicles, as compared to methanol and gasoline. Two other studies were begun in November 1997 and are scheduled for completion in September 1998. The authors are carrying out an assessment of potential supplies and demands for hydrogen energy in the New York City/New Jersey area. The goal of this study is to provide useful data and suggest possible implementation strategies for the New York City/ New Jersey area, as the Hydrogen Program plans demonstrations of hydrogen vehicles and refueling infrastructure. The authors are assessing the implications of CO{sub 2} sequestration for hydrogen energy systems. The goals of this work are (a) to understand the implications of CO{sub 2} sequestration for hydrogen energy system design; (b) to understand the conditions under which CO{sub 2} sequestration might become economically viable; and (c) to understand design issues for future low-CO{sub 2} emitting hydrogen energy systems based on fossil fuels.

  3. Hydrogen interactions with metals

    NASA Technical Reports Server (NTRS)

    Mclellan, R. B.; Harkins, C. G.

    1975-01-01

    Review of the literature on the nature and extent of hydrogen interactions with metals and the role of hydrogen in metal failure. The classification of hydrogen-containing systems is discussed, including such categories as covalent hydrides, volatile hydrides, polymeric hydrides, and transition metal hydride complexes. The use of electronegativity as a correlating parameter in determining hydride type is evaluated. A detailed study is made of the thermodynamics of metal-hydrogen systems, touching upon such aspects as hydrogen solubility, the positions occupied by hydrogen atoms within the solvent metal lattice, the derivation of thermodynamic functions of solid solutions from solubility data, and the construction of statistical models for hydrogen-metal solutions. A number of theories of hydrogen-metal bonding are reviewed, including the rigid-band model, the screened-proton model, and an approach employing the augmented plane wave method to solve the one-electron energy band problem. Finally, the mechanism of hydrogen embrittlement is investigated on the basis of literature data concerning stress effects and the kinetics of hydrogen transport to critical sites.

  4. Ultrafine hydrogen storage powders

    DOEpatents

    Anderson, Iver E.; Ellis, Timothy W.; Pecharsky, Vitalij K.; Ting, Jason; Terpstra, Robert; Bowman, Robert C.; Witham, Charles K.; Fultz, Brent T.; Bugga, Ratnakumar V.

    2000-06-13

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  5. Analysis of hydrogen isotope mixtures

    DOEpatents

    Villa-Aleman, Eliel

    1994-01-01

    An apparatus and method for determining the concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.

  6. Fiber optic hydrogen sensor

    NASA Astrophysics Data System (ADS)

    Jung, Chuck C.; Saaski, Elric W.; McCrae, David A.

    1998-09-01

    This paper describes a novel fiber optic-based hydrogen sensor. The sensor consists of a thin-film etalon, constructed on the distal end of a fiber optic. The exterior mirror of the etalon is palladium or a palladium-alloy, which undergoes an optical change upon exposure to hydrogen. Data is presented on fiber optic sensors constructed with palladium and several alloys of palladium. The linearity of the optical response of these sensors to hydrogen is examined. Etalons made with pure palladium are found to be desirable for sensing low concentrations of hydrogen, or for one-time exposure to high concentrations of hydrogen. Etalons made from palladium alloys are found to be more desirable in applications were repeated cycling in high concentrations of hydrogen occurs.

  7. Hydrogen powered bus

    ScienceCinema

    None

    2013-11-22

    Take a ride on a new type of bus, fueled by hydrogen. These hydrogen taxis are part of a Department of Energy-funded deployment of hydrogen powered vehicles and fueling infrastructure at nine federal facilities across the country to demonstrate this market-ready advanced technology. Produced and leased by Ford Motor Company , they consist of one 12- passenger bus and one nine-passenger bus. More information at: http://go.usa.gov/Tgr

  8. National hydrogen energy roadmap

    SciTech Connect

    None, None

    2002-11-01

    This report was unveiled by Energy Secretary Spencer Abraham in November 2002 and provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy development. Based on the results of the government-industry National Hydrogen Energy Roadmap Workshop, held in Washington, DC on April 2-3, 2002, it displays the development of a roadmap for America's clean energy future and outlines the key barriers and needs to achieve the hydrogen vision goals defined in

  9. HYDROGEN ISOTOPE TARGETS

    DOEpatents

    Ashley, R.W.

    1958-08-12

    The design of targets for use in the investigation of nuclear reactions of hydrogen isotopes by bombardment with accelerated particles is described. The target con struction eomprises a backing disc of a metal selected from the group consisting of molybdenunn and tungsten, a eoating of condensed titaniunn on the dise, and a hydrogen isotope selected from the group consisting of deuterium and tritium absorbed in the coatiag. The proeess for preparing these hydrogen isotope targets is described.

  10. Hydrogen rich gas generator

    NASA Technical Reports Server (NTRS)

    Houseman, J. (Inventor)

    1976-01-01

    A process and apparatus is described for producing a hydrogen rich gas by introducing a liquid hydrocarbon fuel in the form of a spray into a partial oxidation region and mixing with a mixture of steam and air that is preheated by indirect heat exchange with the formed hydrogen rich gas, igniting the hydrocarbon fuel spray mixed with the preheated mixture of steam and air within the partial oxidation region to form a hydrogen rich gas.

  11. Hydrogen energy systems studies

    SciTech Connect

    Ogden, J.M.; Steinbugler, M.; Dennis, E.

    1995-09-01

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  12. HYDROGEN SEPARATION MEMBRANES

    SciTech Connect

    Donald P. McCollor; John P. Kay

    1999-08-01

    A likely membrane for future testing of high-temperature hydrogen separation from a gasification product stream was targeted as an inorganic analog of a dense-metal membrane, where the hydrogen would dissolve into and diffuse through the membrane structure. An amorphous membrane such as zinc sulfide appeared to be promising. Previously, ZnS film coating tests had been performed using an electron-beam vacuum coating instrument, with zinc films successfully applied to glass substrates. The coatings appeared relatively stable in air and in a simple simulated gasification atmosphere at elevated temperature. Because the electron-beam coating instrument suffered irreparable breakdown, several alternative methods were tested in an effort to produce a nitrogen-impermeable, hydrogen-permeable membrane on porous sintered steel substrates. None of the preparation methods proved successful in sealing the porous substrate against nitrogen gas. To provide a nitrogen-impermeable ZnS material to test for hydrogen permeability, two ZnS infrared sample windows were purchased. These relatively thick ''membranes'' did not show measurable permeation of hydrogen, either due to lack of absorption or a negligible permeation rate due to their thickness. To determine if hydrogen was indeed adsorbed, thermogravimetric and differential thermal analyses tests were performed on samples of ZnS powder. A significant uptake of hydrogen gas occurred, corresponding to a maximum of 1 mole H{sub 2} per 1 mole ZnS at a temperature of 175 C. The hydrogen remained in the material at ambient temperature in a hydrogen atmosphere, but approximately 50% would be removed in argon. Reheating in a hydrogen atmosphere resulted in no additional hydrogen uptake. Differential scanning calorimetry indicated that the hydrogen uptake was probably due to the formation of a zinc-sulfur-hydrogen species resulting in the formation of hydrogen sulfide. The zinc sulfide was found to be unstable above approximately 200 C

  13. Optimized hydrogen piston engines

    SciTech Connect

    Smith, J.R.

    1994-05-10

    Hydrogen piston engines can be simultaneously optimized for improved thermal efficiency and for extremely low emissions. Using these engines in constant-speed, constant-load systems such as series hybrid-electric automobiles or home cogeneration systems can result in significantly improved energy efficiency. For the same electrical energy produced, the emissions from such engines can be comparable to those from natural gas-fired steam power plants. These hydrogen-fueled high-efficiency, low-emission (HELE) engines are a mechanical equivalent of hydrogen fuel cells. HELE engines could facilitate the transition to a hydrogen fuel cell economy using near-term technology.

  14. Hydrogen ion microlithography

    DOEpatents

    Tsuo, Y. Simon; Deb, Satyen K.

    1990-01-01

    Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing.

  15. Hydrogen ion microlithography

    DOEpatents

    Tsuo, Y.S.; Deb, S.K.

    1990-10-02

    Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing. 6 figs.

  16. Hydrogen Gets Onboard

    SciTech Connect

    Gutowski, Maciej S.; Autrey, Thomas

    2006-03-01

    In this brief review we update progress in research efforts for on-board hydrogen storage for fuel cell powered vehicles. In addition to economic targets, the technological challenges are bounded by volumetric and gravimetric constraints. Specifically, an amoiunt of 4 kg of H2, required to propel a highly fuel efficient automobile for 500 kilometers, must fit into the space of a conventional gasoline tank. The volumetric constraints rule out compressed and liquefied H2 and teach us that hydrogen must be stored as a solid material, either by physi-sorption to high surface area materials or chemically bond (covalent or ionic) to light weight elements. Hydrogen stored on high surface area materials is weakly bound and general requires low temperatures to stabilize the hydrogen. On the other end, hydrogen covalently bound to light metals requires high temperatures to release the hydrogen. One interesting alterative is chemical hydrogen storage (CHS). CHS covers a broad range of materials but is defined as a process whereby the hydrogen is released by a chemical reaction. The reaction could be induced by hydrolysis, a reaction with water, or by thermolysis, heating to moderate temperatures to release hydrogen. The spent material can then be reprocessed or regenerated off-board. Battelle operates the Pacific Northwest National Laboratory for the US Department of Energy.

  17. Sustainable hydrogen production

    SciTech Connect

    Block, D.L.; Linkous, C.; Muradov, N.

    1996-01-01

    This report describes the Sustainable Hydrogen Production research conducted at the Florida Solar Energy Center (FSEC) for the past year. The report presents the work done on the following four tasks: Task 1--production of hydrogen by photovoltaic-powered electrolysis; Task 2--solar photocatalytic hydrogen production from water using a dual-bed photosystem; Task 3--development of solid electrolytes for water electrolysis at intermediate temperatures; and Task 4--production of hydrogen by thermocatalytic cracking of natural gas. For each task, this report presents a summary, introduction/description of project, and results.

  18. Thin film hydrogen sensor

    DOEpatents

    Lauf, Robert J.; Hoffheins, Barbara S.; Fleming, Pamela H.

    1994-01-01

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

  19. Hydrogen Safety Knowledge Tools

    SciTech Connect

    Fassbender, Linda L.

    2011-01-31

    With hydrogen gaining acceptance as an energy carrier for fuel cell vehicles and stationary fuel cell applications, a new community of hydrogen users is emerging and continues to grow. With this growth has come the need to spread the word about safe practices for handling, storing, and using hydrogen. Like all energy forms, hydrogen can be used safely through proper procedures and engineering techniques. However, hydrogen involves a degree of risk that must be respected, and the importance of avoiding complacency or haste in the safe conduct and performance of projects involving hydrogen cannot be overstated. To encourage and promote the safe use of hydrogen, Pacific Northwest National Laboratory (PNNL) has developed and continues to enhance two software tools in support of the U.S. Department of Energy's Fuel Cell Technologies Program: the Hydrogen Safety Best Practices online manual (www.H2BestPractices.org) and the Hydrogen Incident Reporting and Lessons Learned database (www.H2Incidents.org).

  20. Hydrogen Peroxide–Inducible Clone-5 Regulates Mesangial Cell Proliferation in Proliferative Glomerulonephritis in Mice

    PubMed Central

    Jamba, Ariunbold; Kondo, Shuji; Urushihara, Maki; Nagai, Takashi; Kim-Kaneyama, Joo-ri; Miyazaki, Akira; Kagami, Shoji

    2015-01-01

    Hydrogen peroxide-inducible clone-5 (Hic-5) is a transforming growth factor (TGF)-β1-inducible focal adhesion protein. We previously demonstrated that Hic-5 was localized in mesangial cells and its expression was associated with glomerular cell proliferation and matrix expansion in human and rat glomerulonephritis (GN). In the present study, we first assessed the role of Hic-5 in mesangioproliferative GN by injecting Habu venom into heminephrectomized wild type (Hic-5+/+) and Hic-5-deficient (Hic-5-/-) mice. Hic-5+/+ GN mice exhibited glomerular cell proliferation on day 7. Surprisingly, glomerular cell number and Ki-67-positive cells in Hic-5-/- GN mice were significantly greater than those in Hic-5+/+ GN mice on day 7, although the number of glomerular apoptotic cells and the expression of growth factors (platelet-derived growth factor-BB and TGF-β1) and their receptors were similarly increased in both Hic-5+/+ and Hic-5-/- GN mice. In culture experiments, proliferation assays showed that platelet-derived growth factor-BB and TGF-β1 enhanced the proliferation of Hic-5-/- mesangial cells compared with Hic-5+/+ mesangial cells. In addition, mitogenic regulation by Hic-5 was associated with altered and coordinated expression of cell cycle-related proteins including cyclin D1 and p21. The present results suggest that Hic-5 might regulate mesangial cell proliferation in proliferative GN in mice. In conclusion, modulation of Hic-5 expression might have a potential to prevent mesangial cell proliferation in the acute mitogenic phase of glomerulonephritis. PMID:25835392

  1. Combination moisture and hydrogen getter

    DOEpatents

    Harrah, L.A.; Mead, K.E.; Smith, H.M.

    1983-09-20

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (1) a solid acetylenic compound and (2) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the resultant hydrogen.

  2. Combination moisture and hydrogen getter

    DOEpatents

    Not Available

    1982-04-29

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (i) a solid acetylenic compound and (ii) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the reusltant hydrogen.

  3. Combination moisture and hydrogen getter

    DOEpatents

    Harrah, Larry A.; Mead, Keith E.; Smith, Henry M.

    1983-01-01

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (i) a solid acetylenic compound and (ii) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the resultant hydrogen.

  4. Enhancing hydrogen spillover and storage

    DOEpatents

    Yang, Ralph T; Li, Yingwei; Lachawiec, Jr., Anthony J

    2013-02-12

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonication as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  5. Enhancing hydrogen spillover and storage

    DOEpatents

    Yang, Ralph T.; Li, Yingwel; Lachawiec, Jr., Anthony J.

    2011-05-31

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonification as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  6. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    DOEpatents

    Hindin, Saul G.; Roberts, George W.

    1980-08-12

    A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst.

  7. Hydrogenated graphene and hydrogenated silicene: computational insights.

    PubMed

    Nguyen, Manh-Thuong; Phong, Pham Nam; Tuyen, Nguyen Duc

    2015-06-01

    Density functional calculations are performed to study the energetic, structural, and electronic properties of graphene and silicene functionalized with hydrogen. Our calculations predict that H atoms bind much more strongly to silicene than to graphene. The adsorbed H atoms tend to cooperatively stabilize each other leading to a two-dimensional nucleation and growth mechanism. The different structural and electronic modifications induced by H in fully functionalized graphene and silicene (known as graphane and silicane) are also explained. Finally, the electronic properties of defective graphane with multiple hydrogen vacancies are investigated. Engineering the vacancies in graphane offers a way to modify the electronic properties of this material. PMID:25820304

  8. Membrane for hydrogen recovery from streams containing hydrogen sulfide

    DOEpatents

    Agarwal, Pradeep K.

    2007-01-16

    A membrane for hydrogen recovery from streams containing hydrogen sulfide is provided. The membrane comprises a substrate, a hydrogen permeable first membrane layer deposited on the substrate, and a second membrane layer deposited on the first layer. The second layer contains sulfides of transition metals and positioned on the on a feed side of the hydrogen sulfide stream. The present invention also includes a method for the direct decomposition of hydrogen sulfide to hydrogen and sulfur.

  9. Hydrogen evolution reaction catalyst

    DOEpatents

    Subbaraman, Ram; Stamenkovic, Vojislav; Markovic, Nenad; Tripkovic, Dusan

    2016-02-09

    Systems and methods for a hydrogen evolution reaction catalyst are provided. Electrode material includes a plurality of clusters. The electrode exhibits bifunctionality with respect to the hydrogen evolution reaction. The electrode with clusters exhibits improved performance with respect to the intrinsic material of the electrode absent the clusters.

  10. Thick film hydrogen sensor

    DOEpatents

    Hoffheins, Barbara S.; Lauf, Robert J.

    1995-01-01

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

  11. Thick film hydrogen sensor

    DOEpatents

    Hoffheins, B.S.; Lauf, R.J.

    1995-09-19

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors. 8 figs.

  12. Towards a Hydrogen Economy

    SciTech Connect

    Sherif, S.A.; Barbir, Frano; Veziroglu, T.N.

    2005-07-01

    From electrolysis and thermolysis to production from biomass, hydrogen production methods are falling into place. So is storage, via all modes of gaseous, liquid, slush, and metal hydride systems. But proponents need to address the perception that hydrogen poses a severe safety risk, since the evidence suggests its risks are of the same order of magnitude as gasoline or natural gas.

  13. Hydrogen permeation through metals

    SciTech Connect

    Huhn, D.K.

    1985-01-01

    The permeation of hydrogen through metals was studied both theoretically and experimentally. Gas phase permeation experiments with nickel, iron, and iron-titanium alloys were done at low temperatures, 270 to 343 K, and high temperatures, 751 to 384 K, with hydrogen pressures ranging from 10/sup 3/ to 10/sup 5/ Pa. Experiments at low temperatures used an electrochemical cell to detect the permeating hydrogen, deuterium, or hydrogen-deuterium flux. At high temperatures a vacuum system equipped with a mass spectrometer measured the permeating hydrogen flux. The permeability and diffusivity of hydrogen through nickel membranes, 10/sup -4/ to 10/sup -5/ m in thickness, was measured in the temperature range of 580 to 270 K. The experimental results did not exhibit postulated surface effects; however, trapping of hydrogen was observed with a trap density of 2.5 x 10/sup 23/ sites/m/sup 3/ and a binding energy of 33 kJ/mole. The permeability of hydrogen through iron-titanium alloys increased with titanium concentration with a maximum increase of approximately 10% for a Fe-3.04 wt% Ti alloy compared to pure iron. High temperature diffusivity measurements showed a small decrease in diffusivity with titanium concentration; therefore, the solubility increased.

  14. Hydrogen in amorphous silicon

    SciTech Connect

    Peercy, P. S.

    1980-01-01

    The structural aspects of amorphous silicon and the role of hydrogen in this structure are reviewed with emphasis on ion implantation studies. In amorphous silicon produced by Si ion implantation of crystalline silicon, the material reconstructs into a metastable amorphous structure which has optical and electrical properties qualitatively similar to the corresponding properties in high-purity evaporated amorphous silicon. Hydrogen studies further indicate that these structures will accomodate less than or equal to 5 at.% hydrogen and this hydrogen is bonded predominantly in a monohydride (SiH/sub 1/) site. Larger hydrogen concentrations than this can be achieved under certain conditions, but the excess hydrogen may be attributed to defects and voids in the material. Similarly, glow discharge or sputter deposited amorphous silicon has more desirable electrical and optical properties when the material is prepared with low hydrogen concentration and monohydride bonding. Results of structural studies and hydrogen incorporation in amorphous silicon were discussed relative to the different models proposed for amorphous silicon.

  15. Esculetin-induced protection of human hepatoma HepG2 cells against hydrogen peroxide is associated with the Nrf2-dependent induction of the NAD(P)H: Quinone oxidoreductase 1 gene

    SciTech Connect

    Subramaniam, Sudhakar R.; Ellis, Elizabeth M.

    2011-01-15

    Esculetin (6,7-dihydroxy coumarin), is a potent antioxidant that is present in several plant species. The aim of this study was to investigate the mechanism of protection of esculetin in human hepatoma HepG2 cells against reactive oxygen species (ROS) induced by hydrogen peroxide. Cell viability, cell integrity, intracellular glutathione levels, generation of reactive oxygen species and expression of antioxidant enzymes were used as markers to measure cellular oxidative stress and response to ROS. The protective effect of esculetin was compared to a well-characterized chemoprotective compound quercetin. Pre-treatment of HepG2 cells with sub-lethal (10-25 {mu}M) esculetin for 8 h prevented cell death and maintained cell integrity following exposure to 0.9 mM hydrogen peroxide. An increase in the generation of ROS following hydrogen peroxide treatment was significantly attenuated by 8 h pre-treatment with esculetin. In addition, esculetin ameliorated the decrease in intracellular glutathione caused by hydrogen peroxide exposure. Moreover, treatment with 25 {mu}M esculetin for 8 h increased the expression of NAD(P)H: quinone oxidoreductase (NQO1) at both protein and mRNA levels significantly, by 12-fold and 15-fold, respectively. Esculetin treatment also increased nuclear accumulation of Nrf2 by 8-fold indicating that increased NQO1 expression is Nrf2-mediated. These results indicate that esculetin protects human hepatoma HepG2 cells from hydrogen peroxide induced oxidative injury and that this protection is provided through the induction of protective enzymes as part of an adaptive response mediated by Nrf2 nuclear accumulation.

  16. Hydrogen utilization and alternatives

    NASA Technical Reports Server (NTRS)

    Manvi, R.; Caputo, R.; Fujita, T.

    1975-01-01

    The historical uses of hydrogen are described along with potential new uses which could develop as a result of the diminishing supply of conventional fossil fuels such as natural gas. A perspective view of hydrogen, both as a chemical feedstock and as a fuel, is necessary to understand its relationship to the overall national energy projections. These projections, which show energy usage in terms of use sectors, forms of energy, and sources of energy, do not specifically identify hydrogen as a component of the energy system. By superimposing the traditional roles upon the new opportunities for hydrogen on the energy projections, the role of hydrogen and future projections is developed within the context of the national energy projections. Use, supply, and other factors affecting application are interrelated and are discussed.

  17. Hydrogen Fuel Quality

    SciTech Connect

    Rockward, Tommy

    2012-07-16

    For the past 6 years, open discussions and/or meetings have been held and are still on-going with OEM, Hydrogen Suppliers, other test facilities from the North America Team and International collaborators regarding experimental results, fuel clean-up cost, modeling, and analytical techniques to help determine levels of constituents for the development of an international standard for hydrogen fuel quality (ISO TC197 WG-12). Significant progress has been made. The process for the fuel standard is entering final stages as a result of the technical accomplishments. The objectives are to: (1) Determine the allowable levels of hydrogen fuel contaminants in support of the development of science-based international standards for hydrogen fuel quality (ISO TC197 WG-12); and (2) Validate the ASTM test method for determining low levels of non-hydrogen constituents.

  18. Challenges in hydrogen storage

    NASA Astrophysics Data System (ADS)

    Schüth, F.

    2009-09-01

    Hydrogen is one possible medium for energy storage and transportation in an era beyond oil. Hydrogen appears to be especially promising in connection with electricity generation in polymer electrolyte membrane (PEM) fuel cells in cars. However, before such technologies can be implemented on a larger scale, satisfactory solutions for on-board storage of hydrogen are required. This is a difficult task due to the low volumetric and gravimetric storage density on a systems level which can be achieved so far. Possibilities include cryogenic storage as liquid hydrogen, high pressure storage at 70 MPa, (cryo)adsorptive storage, or various chemical methods of binding and releasing hydrogen. This survey discusses the different options and the associated advantages and disadvantages.

  19. Hydrogen Peroxide Concentrator

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F.

    2007-01-01

    A relatively simple and economical process and apparatus for concentrating hydrogen peroxide from aqueous solution at the point of use have been invented. The heart of the apparatus is a vessel comprising an outer shell containing tubular membranes made of a polymer that is significantly more permeable by water than by hydrogen peroxide. The aqueous solution of hydrogen peroxide to be concentrated is fed through the interstitial spaces between the tubular membranes. An initially dry sweep gas is pumped through the interiors of the tubular membranes. Water diffuses through the membranes and is carried away as water vapor mixed into the sweep gas. Because of the removal of water, the hydrogen peroxide solution flowing from the vessel at the outlet end is more concentrated than that fed into the vessel at the inlet end. The sweep gas can be air, nitrogen, or any other gas that can be conveniently supplied in dry form and does not react chemically with hydrogen peroxide.

  20. Hydrogen Data Book from the Hydrogen Analysis Resource Center

    DOE Data Explorer

    The Hydrogen Data Book contains a wide range of factual information on hydrogen and fuel cells (e.g., hydrogen properties, hydrogen production and delivery data, and information on fuel cells and fuel cell vehicles), and it also provides other data that might be useful in analyses of hydrogen infrastructure in the United States (e.g., demographic data and data on energy supply and/or infrastructure). ItÆs made available from the Hydrogen Analysis Resource Center along with a wealth of related information. The related information includes guidelines for DOE Hydrogen Program Analysis, various calculator tools, a hydrogen glossary, related websites, and analysis tools relevant to hydrogen and fuel cells. [From http://hydrogen.pnl.gov/cocoon/morf/hydrogen

  1. Measuring Hydrogen Concentrations in Metals

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1985-01-01

    Commercial corrosion-measurement system adapted to electrochemical determination of hydrogen concentrations in metals. New technique based on diffusion of hydrogen through foil specimen of metal. In sample holder, hydrogen produced on one side of foil, either by corrosion reaction or by cathodic current. Hydrogen diffused through foil removed on other side by constant anode potential, which leads to oxidation of hydrogen to water. Anode current is measure of concentration of hydrogen diffusing through foil. System used to study hydrogen uptake, hydrogen elimination by baking, effect of heat treatment, and effect of electroplating on high-strength steels.

  2. Photoelectrochemical hydrogen production

    SciTech Connect

    Rocheleau, R.; Misra, A.; Miller, E.

    1998-08-01

    A significant component of the US DOE Hydrogen Program is the development of a practical technology for the direct production of hydrogen using a renewable source of energy. High efficiency photoelectrochemical systems to produce hydrogen directly from water using sunlight as the energy source represent one of the technologies identified by DOE to meet this mission. Reactor modeling and experiments conducted at UH provide strong evidence that direct solar-to-hydrogen conversion efficiency greater than 10% can be expected using photoelectrodes fabricated from low-cost, multijunction (MJ) amorphous silicon solar cells. Solar-to-hydrogen conversion efficiencies as high as 7.8% have been achieved using a 10.3% efficient MJ amorphous silicon solar cell. Higher efficiency can be expected with the use of higher efficiency solar cells, further improvement of the thin film oxidation and reduction catalysts, and optimization of the solar cell for hydrogen production rather than electricity production. Hydrogen and oxygen catalysts developed under this project are very stable, exhibiting no measurable degradation in KOH after over 13,000 hours of operation. Additional research is needed to fully optimize the transparent, conducting coatings which will be needed for large area integrated arrays. To date, the best protection has been afforded by wide bandgap amorphous silicon carbide films.

  3. Chemochromic Hydrogen Leak Detectors

    NASA Technical Reports Server (NTRS)

    Roberson, Luke; Captain, Janine; Williams, Martha; Smith, Trent; Tate, LaNetra; Raissi, Ali; Mohajeri, Nahid; Muradov, Nazim; Bokerman, Gary

    2009-01-01

    At NASA, hydrogen safety is a key concern for space shuttle processing. Leaks of any level must be quickly recognized and addressed due to hydrogen s lower explosion limit. Chemo - chromic devices have been developed to detect hydrogen gas in several embodiments. Because hydrogen is odorless and colorless and poses an explosion hazard, there is an emerging need for sensors to quickly and accurately detect low levels of leaking hydrogen in fuel cells and other advanced energy- generating systems in which hydrogen is used as fuel. The device incorporates a chemo - chromic pigment into a base polymer. The article can reversibly or irreversibly change color upon exposure to hydrogen. The irreversible pigment changes color from a light beige to a dark gray. The sensitivity of the pigment can be tailored to its application by altering its exposure to gas through the incorporation of one or more additives or polymer matrix. Furthermore, through the incorporation of insulating additives, the chemochromic sensor can operate at cryogenic temperatures as low as 78 K. A chemochromic detector of this type can be manufactured into any feasible polymer part including injection molded plastic parts, fiber-spun textiles, or extruded tapes. The detectors are simple, inexpensive, portable, and do not require an external power source. The chemochromic detectors were installed and removed easily at the KSC launch pad without need for special expertise. These detectors may require an external monitor such as the human eye, camera, or electronic detector; however, they could be left in place, unmonitored, and examined later for color change to determine whether there had been exposure to hydrogen. In one type of envisioned application, chemochromic detectors would be fabricated as outer layers (e.g., casings or coatings) on high-pressure hydrogen storage tanks and other components of hydrogen-handling systems to provide visible indications of hydrogen leaks caused by fatigue failures or

  4. Color Changing Hydrogen Sensors

    NASA Technical Reports Server (NTRS)

    Roberson, Luke B.; Williams, Martha; Captain, Janine E.; Mohajeri, Nahid; Raissi, Ali

    2015-01-01

    During the Space Shuttle Program, one of the most hazardous operation that occurred was the loading of liquid hydrogen (LH2) during fueling operations of the spacecraft. Due to hydrogen's low explosive limit, any amount leaked could lead to catastrophic event. Hydrogen's chemical properties make it ideal as a rocket fuel; however, the fuel is deemed unsafe for most commercial use because of the inability to easily detect the gas leaking. The increased use of hydrogen over traditional fossil fuels would reduce greenhouse gases and America's dependency on foreign oil. Therefore a technology that would improve safety at NASA and in the commercial sector while creating a new economic sector would have a huge impact to NASA's mission. The Chemochromic Detector for sensing hydrogen gas leakage is a color-changing detector that is useful in any application where it is important to know not only the presence but also the location of the hydrogen gas leak. This technology utilizes a chemochromicpigment and polymer matrix that can be molded or spun into rigid or pliable shapes useable in variable temperature environments including atmospheres of inert gas, hydrogen gas, or mixtures of gases. A change in color of the detector material indicates where gaseous hydrogen leaks are occurring. The irreversible sensor has a dramatic color change from beige to dark grey and remains dark grey after exposure. A reversible pigment changes from white to blue in the presence of hydrogen and reverts back to white in the presence of oxygen. Both versions of the sensor's pigments were comprised of a mixture of a metal oxide substrate and a hydro-chromic compound (i.e., the compound that changed color in the presence of hydrogen) and immediately notified the operator of the presence of low levels of hydrogen. The detector can be used in a variety of formats including paint, tape, caulking, injection molded parts, textiles and fabrics, composites, and films. This technology brings numerous

  5. Chromatographic hydrogen isotope separation

    DOEpatents

    Aldridge, F.T.

    Intermetallic compounds with the CaCu/sub 5/ type of crystal structure, particularly LaNiCo/sub 4/ and CaNi/sub 5/, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation column. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale multi-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen cn produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  6. Chromatographic hydrogen isotope separation

    DOEpatents

    Aldridge, Frederick T.

    1981-01-01

    Intermetallic compounds with the CaCu.sub.5 type of crystal structure, particularly LaNiCo.sub.4 and CaNi.sub.5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  7. Biological hydrogen production

    SciTech Connect

    Benemann, J.R.

    1995-11-01

    Biological hydrogen production can be accomplished by either thermochemical (gasification) conversion of woody biomass and agricultural residues or by microbiological processes that yield hydrogen gas from organic wastes or water. Biomass gasification is a well established technology; however, the synthesis gas produced, a mixture of CO and H{sub 2}, requires a shift reaction to convert the CO to H{sub 2}. Microbiological processes can carry out this reaction more efficiently than conventional catalysts, and may be more appropriate for the relatively small-scale of biomass gasification processes. Development of a microbial shift reaction may be a near-term practical application of microbial hydrogen production.

  8. Extremely weak hydrogen flames

    SciTech Connect

    Lecoustre, V.R.; Sunderland, P.B.; Chao, B.H.; Axelbaum, R.L.

    2010-11-15

    Hydrogen jet diffusion flames were observed near their quenching limits. These involved downward laminar flow of hydrogen from a stainless steel hypodermic tube with an inside diameter of 0.15 mm. Near their quenching limits these flames had hydrogen flow rates of 3.9 and 2.1 {mu}g/s in air and oxygen, respectively. Assuming complete combustion, the associated heat release rates are 0.46 and 0.25 W. To the authors' knowledge, these are the weakest self-sustaining steady flames ever observed. (author)

  9. The columbium-hydrogen system and hydrogen embrittlement of columbium

    NASA Technical Reports Server (NTRS)

    Walter, R. J.

    1970-01-01

    Columbium specimens are charged uniformly with hydrogen allowing accurate measurement of the hydrogen content by a procedure involving the removal of hydrogen from flowing argon at 2000 degrees F. Hydrogen content effects on the ductile-to-transition temperature are determined for temperatures between 200 and 600 degrees F.

  10. Hydrogen storage compositions

    DOEpatents

    Li, Wen; Vajo, John J.; Cumberland, Robert W.; Liu, Ping

    2011-04-19

    Compositions for hydrogen storage and methods of making such compositions employ an alloy that exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The composition includes a ternary alloy including magnesium, boron and a metal and a metal hydride. The ternary alloy and the metal hydride are present in an amount sufficient to render the composition capable of hydrogen storage. The molar ratio of the metal to magnesium and boron in the alloy is such that the alloy exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The hydrogen storage composition is prepared by combining magnesium, boron and a metal to prepare a ternary alloy and combining the ternary alloy with a metal hydride to form the hydrogen storage composition.

  11. Photoelectrochemical hydrogen production

    SciTech Connect

    Rocheleau, R.E.; Miller, E.; Misra, A.

    1996-10-01

    The large-scale production of hydrogen utilizing energy provided by a renewable source to split water is one of the most ambitious long-term goals of the U.S. Department of Energy`s Hydrogen Program. One promising option to meet this goal is direct photoelectrolysis in which light absorbed by semiconductor-based photoelectrodes produces electrical power internally to split water into hydrogen and oxygen. Under this program, direct solar-to-chemical conversion efficiencies as high as 7.8 % have been demonstrated using low-cost, amorphous-silicon-based photoelectrodes. Detailed loss analysis models indicate that solar-to-chemical conversion greater than 10% can be achieved with amorphous-silicon-based structures optimized for hydrogen production. In this report, the authors describe the continuing progress in the development of thin-film catalytic/protective coatings, results of outdoor testing, and efforts to develop high efficiency, stable prototype systems.

  12. Hydrogen chloride test set

    NASA Technical Reports Server (NTRS)

    Workman, G. L.

    1976-01-01

    Detector uses tertiary amine, which makes reaction fairly specific for relatively small highly polarized hydrogen chloride molecule. Reaction is monitored by any microbalance capable of measuring extremely small mass differences in real time.

  13. Hydrogen in titanium alloys

    SciTech Connect

    Wille, G W; Davis, J W

    1981-04-01

    The titanium alloys that offer properties worthy of consideration for fusion reactors are Ti-6Al-4V, Ti-6Al-2Sn-4Zr-2Mo-Si (Ti-6242S) and Ti-5Al-6Sn-2Zr-1Mo-Si (Ti-5621S). The Ti-6242S and Ti-5621S are being considered because of their high creep resistance at elevated temperatures of 500/sup 0/C. Also, irradiation tests on these alloys have shown irradiation creep properties comparable to 20% cold worked 316 stainless steel. These alloys would be susceptible to slow strain rate embrittlement if sufficient hydrogen concentrations are obtained. Concentrations greater than 250 to 500 wppm hydrogen and temperatures lower than 100 to 150/sup 0/C are approximate threshold conditions for detrimental effects on tensile properties. Indications are that at the elevated temperature - low hydrogen pressure conditions of the reactors, there would be negligible hydrogen embrittlement.

  14. Hydrogen on the rise

    NASA Astrophysics Data System (ADS)

    2016-08-01

    Using hydrogen as an energy carrier has long been discussed as a route to a greener future, and although headway has been less significant than many hoped, recent developments point to tangible progress.

  15. Fiber optic hydrogen sensor

    SciTech Connect

    Butler, M.A.; Sanchez, R.; Dulleck, G.R.

    1996-05-01

    This report covers the development of fiber optic hydrogen and temperature sensors for monitoring dissolved hydrogen gas in transformer oil. The concentration of hydrogen gas is a measure of the corona and spark discharge within the transformer and reflects the state of health of the transformer. Key features of the instrument include use of palladium alloys to enhance hydrogen sensitivity, a microprocessor controlled instrument with RS-232, liquid crystal readout, and 4-20 ma. current loop interfaces. Calibration data for both sensors can be down loaded to the instrument through the RS-232 interface. This project was supported by the Technology Transfer Initiative in collaboration with J. W. Harley, Inc. through the mechanism of a cooperative research and development agreement (CRADA).

  16. Hydrogen-fueled engine

    NASA Technical Reports Server (NTRS)

    Laumann, E. A.; Reynolds, R. K. (Inventor)

    1978-01-01

    A hydrogen-oxygen fueled internal combustion engine is described, which utilizes an inert gas, such as argon, as a working fluid to increase the efficiency of the engine, eliminate pollution, and facilitate operation of a closed cycle energy system. In a system where sunlight or other intermittent energy source is available to separate hydrogen and oxygen from water, the oxygen and inert gas are taken into a diesel engine into which hydrogen is injected and ignited. The exhaust is cooled so that it contains only water and the inert gas. The inert gas in the exhaust is returned to the engine for use with fresh oxygen, while the water in the exhaust is returned to the intermittent energy source for reconversion to hydrogen and oxygen.

  17. Florida Hydrogen Initiative

    SciTech Connect

    Block, David L

    2013-06-30

    The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety monitoring

  18. The Hydrogen Economy

    NASA Astrophysics Data System (ADS)

    Crabtree, George W.; Dresselhaus, Mildred S.; Buchanan, Michelle V.

    2004-12-01

    If the fuel cell is to become the modern steam engine, basic research must provide breakthroughs in understanding, materials, and design to make a hydrogen-based energy system a vibrant and competitive force.

  19. Thermal cracking with hydrogen donor diluent

    SciTech Connect

    Derbyshire, F.; Varghese, P.; Whitehurst, D.D.

    1983-07-26

    An improved hydrogen donor for hydrogen donor diluent cracking is provided by extraction with naphtha from the cracked product and hydrogenation by hydrogen transfer from a lower boiling hydrogen donor such as tetralin.

  20. The hydrogen issue.

    PubMed

    Armaroli, Nicola; Balzani, Vincenzo

    2011-01-17

    Hydrogen is often proposed as the fuel of the future, but the transformation from the present fossil fuel economy to a hydrogen economy will need the solution of numerous complex scientific and technological issues, which will require several decades to be accomplished. Hydrogen is not an alternative fuel, but an energy carrier that has to be produced by using energy, starting from hydrogen-rich compounds. Production from gasoline or natural gas does not offer any advantage over the direct use of such fuels. Production from coal by gasification techniques with capture and sequestration of CO₂ could be an interim solution. Water splitting by artificial photosynthesis, photobiological methods based on algae, and high temperatures obtained by nuclear or concentrated solar power plants are promising approaches, but still far from practical applications. In the next decades, the development of the hydrogen economy will most likely rely on water electrolysis by using enormous amounts of electric power, which in its turn has to be generated. Producing electricity by burning fossil fuels, of course, cannot be a rational solution. Hydroelectric power can give but a very modest contribution. Therefore, it will be necessary to generate large amounts of electric power by nuclear energy of by renewable energies. A hydrogen economy based on nuclear electricity would imply the construction of thousands of fission reactors, thereby magnifying all the problems related to the use of nuclear energy (e.g., safe disposal of radioactive waste, nuclear proliferation, plant decommissioning, uranium shortage). In principle, wind, photovoltaic, and concentrated solar power have the potential to produce enormous amounts of electric power, but, except for wind, such technologies are too underdeveloped and expensive to tackle such a big task in a short period of time. A full development of a hydrogen economy needs also improvement in hydrogen storage, transportation and distribution

  1. Pionic hydrogen and deuterium

    NASA Astrophysics Data System (ADS)

    Gotta, Detlev; Amaro, F. D.; Anagnostopoulos, D. F.; Bühler, P.; Gorke, H.; Covita, D. S.; Fuhrmann, H.; Gruber, A.; Hennebach, M.; Hirtl, A.; Ishiwatari, T.; Indelicato, P.; Le Bigot, E.-O.; Marton, J.; Nekipelov, M.; dos Santos, J. M. F.; Schlesser, S.; Schmid, Ph.; Simons, L. M.; Strauch, Th.; Trassinelli, M.; Veloso, J. F. C. A.; Zmeskal, J.

    The ground-state level shifts and broadenings of the hydrogen isotopes caused by the strong interaction have been redetermined by using a high-resolution crystal spectrometer. An additional measurement of muonic hydrogen reveals properties of the de-excitation cascade of such electrically neutral exotic atoms, in particular Coulomb de-excitation, the understanding of which is essential for the analysis of the hadronic-atom data.

  2. Pionic hydrogen and deuterium

    NASA Astrophysics Data System (ADS)

    Gotta, Detlev; Amaro, F. D.; Anagnostopoulos, D. F.; Bühler, P.; Gorke, H.; Covita, D. S.; Fuhrmann, H.; Gruber, A.; Hennebach, M.; Hirtl, A.; Ishiwatari, T.; Indelicato, P.; Le Bigot, E.-O.; Marton, J.; Nekipelov, M.; dos Santos, J. M. F.; Schlesser, S.; Schmid, Ph.; Simons, L. M.; Strauch, Th.; Trassinelli, M.; Veloso, J. F. C. A.; Zmeskal, J.

    2012-05-01

    The ground-state level shifts and broadenings of the hydrogen isotopes caused by the strong interaction have been redetermined by using a high-resolution crystal spectrometer. An additional measurement of muonic hydrogen reveals properties of the de-excitation cascade of such electrically neutral exotic atoms, in particular Coulomb de-excitation, the understanding of which is essential for the analysis of the hadronic-atom data.

  3. Hydrogen recovery process

    DOEpatents

    Baker, Richard W.; Lokhandwala, Kaaeid A.; He, Zhenjie; Pinnau, Ingo

    2000-01-01

    A treatment process for a hydrogen-containing off-gas stream from a refinery, petrochemical plant or the like. The process includes three separation steps: condensation, membrane separation and hydrocarbon fraction separation. The membrane separation step is characterized in that it is carried out under conditions at which the membrane exhibits a selectivity in favor of methane over hydrogen of at least about 2.5.

  4. Cryogenic hydrogen release research.

    SciTech Connect

    LaFleur, Angela Christine

    2015-12-01

    The objective of this project was to devolop a plan for modifying the Turbulent Combustion Laboratory (TCL) with the necessary infrastructure to produce a cold (near liquid temperature) hydrogen jet. The necessary infrastructure has been specified and laboratory modifications are currently underway. Once complete, experiments from this platform will be used to develop and validate models that inform codes and standards which specify protection criteria for unintended releases from liquid hydrogen storage, transport, and delivery infrastructure.

  5. Lokiarchaeon is hydrogen dependent.

    PubMed

    Sousa, Filipa L; Neukirchen, Sinje; Allen, John F; Lane, Nick; Martin, William F

    2016-01-01

    The nature of the host that acquired the mitochondrion at the eukaryote origin is an important microbial evolutionary issue. Modern phylogenetics indicates that the host was an archaeon. The metagenome sequence of Candidatus Lokiarchaeon has identified it as being the closest relative of the host yet known. Here, we report comparative genomic evidence indicating that Lokiarchaeon is hydrogen dependent, as one theory for the eukaryote origin-the hydrogen hypothesis-predicts for the host lineage. PMID:27572645

  6. Hydrogen-powered flight

    NASA Technical Reports Server (NTRS)

    Smith, Timothy D.

    2005-01-01

    As the Nation moves towards a hydrogen economy the shape of aviation will change dramatically. To accommodate a switch to hydrogen the aircraft designs, propulsion, and power systems will look much different than the systems of today. Hydrogen will enable a number of new aircraft capabilities from high altitude long endurance remotely operated aircraft (HALE ROA) that will fly weeks to months without refueling to clean, zero emissions transport aircraft. Design and development of new hydrogen powered aircraft have a number of challenges which must be addressed before an operational system can become a reality. While the switch to hydrogen will be most outwardly noticeable in the aircraft designs of the future, other significant changes will be occurring in the environment. A switch to hydrogen for aircraft will completely eliminate harmful greenhouse gases such as carbon monoxide (CO), carbon dioxide (CO2), sulfur oxides (SOx), unburnt hydrocarbons and smoke. While these aircraft emissions are a small percentage of the amount produced on a daily basis, their placement in the upper atmosphere make them particularly harmful. Another troublesome gaseous emission from aircraft is nitrogen oxides (NOx) which contribute to ozone depletion in the upper atmosphere. Nitrogen oxide emissions are produced during the combustion process and are primarily a function of combustion temperature and residence time. The introduction of hydrogen to a gas turbine propulsion system will not eliminate NOx emissions; however the wide flammability range will make low NOx producing, lean burning systems feasible. A revolutionary approach to completely eliminating NOx would be to fly all electric aircraft powered by hydrogen air fuel cells. The fuel cells systems would only produce water, which could be captured on board or released in the lower altitudes. Currently fuel cell systems do not have sufficient energy densities for use in large aircraft, but the long term potential of eliminating

  7. Advanced Hydrogen Liquefaction Process

    SciTech Connect

    Schwartz, Joseph; Kromer, Brian; Neu, Ben; Jankowiak, Jerome; Barrett, Philip; Drnevich, Raymond

    2011-09-28

    The project identified and quantified ways to reduce the cost of hydrogen liquefaction, and reduce the cost of hydrogen distribution. The goal was to reduce the power consumption by 20% and then to reduce the capital cost. Optimizing the process, improving process equipment, and improving ortho-para conversion significantly reduced the power consumption of liquefaction, but by less than 20%. Because the efficiency improvement was less than the target, the program was stopped before the capital cost was addressed. These efficiency improvements could provide a benefit to the public to improve the design of future hydrogen liquefiers. The project increased the understanding of hydrogen liquefaction by modeling different processes and thoroughly examining ortho-para separation and conversion. The process modeling provided a benefit to the public because the project incorporated para hydrogen into the process modeling software, so liquefaction processes can be modeled more accurately than using only normal hydrogen. Adding catalyst to the first heat exchanger, a simple method to reduce liquefaction power, was identified, analyzed, and quantified. The demonstrated performance of ortho-para separation is sufficient for at least one identified process concept to show reduced power cost when compared to hydrogen liquefaction processes using conventional ortho-para conversion. The impact of improved ortho-para conversion can be significant because ortho para conversion uses about 20-25% of the total liquefaction power, but performance improvement is necessary to realize a substantial benefit. Most of the energy used in liquefaction is for gas compression. Improvements in hydrogen compression will have a significant impact on overall liquefier efficiency. Improvements to turbines, heat exchangers, and other process equipment will have less impact.

  8. Purdue Hydrogen Systems Laboratory

    SciTech Connect

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts

  9. Hydrogen Delivery Technical Team Roadmap

    SciTech Connect

    2013-06-01

    The mission of the Hydrogen Delivery Technical Team (HDTT) is to enable the development of hydrogen delivery technologies, which will allow for fuel cell competitiveness with gasoline and hybrid technologies by achieving an as-produced, delivered, and dispensed hydrogen cost of $2-$4 per gallon of gasoline equivalent of hydrogen.

  10. Hydrogen Distribution and Delivery Infrastructure

    SciTech Connect

    2008-11-01

    This 2-page fact sheet provides a brief introduction to hydrogen delivery technologies. Intended for a non-technical audience, it explains how hydrogen is transported and delivered today, the challenges to delivering hydrogen for use as a widespread energy carrier, and the research goals for hydrogen delivery.

  11. Nanostructured materials for hydrogen storage

    DOEpatents

    Williamson, Andrew J.; Reboredo, Fernando A.

    2007-12-04

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  12. Electrochemical hydrogen Storage Systems

    SciTech Connect

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the

  13. STME Hydrogen Mixer Study

    NASA Technical Reports Server (NTRS)

    Blumenthal, Rob; Kim, Dongmoon; Bache, George

    1992-01-01

    The hydrogen mixer for the Space Transportation Main Engine is used to mix cold hydrogen bypass flow with warm hydrogen coolant chamber gas, which is then fed to the injectors. It is very important to have a uniform fuel temperature at the injectors in order to minimize mixture ratio problems due to the fuel density variations. In addition, the fuel at the injector has certain total pressure requirements. In order to achieve these objectives, the hydrogen mixer must provide a thoroughly mixed fluid with a minimum pressure loss. The AEROVISC computational fluid dynamics (CFD) code was used to analyze the STME hydrogen mixer, and proved to be an effective tool in optimizing the mixer design. AEROVISC, which solves the Reynolds Stress-Averaged Navier-Stokes equations in primitive variable form, was used to assess the effectiveness of different mixer designs. Through a parametric study of mixer design variables, an optimal design was selected which minimized mixed fuel temperature variation and fuel mixer pressure loss. The use of CFD in the design process of the STME hydrogen mixer was effective in achieving an optimal mixer design while reducing the amount of hardware testing.

  14. Examining hydrogen transitions.

    SciTech Connect

    Plotkin, S. E.; Energy Systems

    2007-03-01

    This report describes the results of an effort to identify key analytic issues associated with modeling a transition to hydrogen as a fuel for light duty vehicles, and using insights gained from this effort to suggest ways to improve ongoing modeling efforts. The study reported on here examined multiple hydrogen scenarios reported in the literature, identified modeling issues associated with those scenario analyses, and examined three DOE-sponsored hydrogen transition models in the context of those modeling issues. The three hydrogen transition models are HyTrans (contractor: Oak Ridge National Laboratory), MARKAL/DOE* (Brookhaven National Laboratory), and NEMS-H2 (OnLocation, Inc). The goals of these models are (1) to help DOE improve its R&D effort by identifying key technology and other roadblocks to a transition and testing its technical program goals to determine whether they are likely to lead to the market success of hydrogen technologies, (2) to evaluate alternative policies to promote a transition, and (3) to estimate the costs and benefits of alternative pathways to hydrogen development.

  15. Hydrogen Generation Via Sodium Borohydride

    NASA Astrophysics Data System (ADS)

    Mohring, Richard M.; Wu, Ying

    2003-07-01

    Along with the technological challenges associated with developing fuel cells and hydrogen burning engines, a major issue that must be addressed to ensure the ultimate success of a hydrogen economy is the ability to store and transport hydrogen effectively. Millennium Cell has developed and patented a proprietary system for storing and generating hydrogen gas called Hydrogen on Demand™. The system releases the hydrogen stored in fuel solutions of sodium borohydride as needed through an easily controllable catalytic process. The fuel itself is water-based, rich in hydrogen content, and non-flammable. It can be stored in plastic containers under no pressure. After the hydrogen from the fuel is consumed, the remaining product, sodium metaborate (chemically similar to borax), can be recycled back into fresh fuel. In this paper, an overview of the Hydrogen on Demand™ technology is presented along with data showing the performance characteristics of practical hydrogen generation systems. A brief discussion of sodium borohydride regeneration chemistry is also provided.

  16. California Hydrogen Infrastructure Project

    SciTech Connect

    Heydorn, Edward C

    2013-03-12

    Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a real-world retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation's hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling stations

  17. Theory of hydrogen in semiconductors

    SciTech Connect

    Walle, C.G. van de

    1998-12-31

    This paper treats the subject of hydrogen in semiconductors from various perspectives. First, a brief historical overview is given. Then, some basic principles governing the interaction between hydrogen and semiconductors are outlined. Finally, specific examples will emphasize the impact of hydrogen on technological applications. While the general treatment applies to interactions of hydrogen with any semiconductor, the applications will focus mainly on hydrogen interacting with silicon.

  18. Hydrogen storage and generation system

    DOEpatents

    Dentinger, Paul M.; Crowell, Jeffrey A. W.

    2010-08-24

    A system for storing and generating hydrogen generally and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses the beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  19. Metastable metallic hydrogen glass

    SciTech Connect

    Nellis, W J

    2001-02-06

    The quest for metallic hydrogen has been going on for over one hundred years. Before hydrogen was first condensed into a liquid in 1898, it was commonly thought that condensed hydrogen would be a metal, like the monatomic alkali metals below hydrogen in the first column of the Periodic Table. Instead, condensed hydrogen turned out to be transparent, like the diatomic insulating halogens in the seventh column of the Periodic Table. Wigner and Huntington predicted in 1935 that solid hydrogen at 0 K would undergo a first-order phase transition from a diatomic to a monatomic crystallographically ordered solid at {approx}25 GPa. This first-order transition would be accompanied by an insulator-metal transition. Though searched for extensively, a first-order transition from an ordered diatomic insulator to a monatomic metal is yet to be observed at pressures up to 120 and 340 GPa using x-ray diffraction and visual inspection, respectively. On the other hand, hydrogen reaches the minimum electrical conductivity of a metal at 140 GPa, 0.6 g/cm{sup 3}, and 3000 K. These conditions were achieved using a shock wave reverberating between two stiff sapphire anvils. The shock wave was generated with a two-stage light-gas gun. This temperature exceeds the calculated melting temperature at 140 GPa by a factor of {approx}2, indicating that this metal is in the disordered fluid phase. The disorder permits hydrogen to become metallic via a Mott transition in the liquid at a much smaller pressure than in the solid, which has an electronic bandgap to the highest pressures reached to date. Thus, by using the finite temperature achieved with shock compression to achieve a disordered melt, metallic hydrogen can be achieved at a much lower pressure in a fluid than in a solid. It is not known how, nor even whether, metallic hydrogen can be quenched from a fluid at high pressures to a disordered solid metallic glass at ambient pressure and temperature. Because metallization occurs by simply

  20. Hydrogen peroxide poisoning.

    PubMed

    Watt, Barbara E; Proudfoot, Alex T; Vale, J Allister

    2004-01-01

    Hydrogen peroxide is an oxidising agent that is used in a number of household products, including general-purpose disinfectants, chlorine-free bleaches, fabric stain removers, contact lens disinfectants and hair dyes, and it is a component of some tooth whitening products. In industry, the principal use of hydrogen peroxide is as a bleaching agent in the manufacture of paper and pulp. Hydrogen peroxide has been employed medicinally for wound irrigation and for the sterilisation of ophthalmic and endoscopic instruments. Hydrogen peroxide causes toxicity via three main mechanisms: corrosive damage, oxygen gas formation and lipid peroxidation. Concentrated hydrogen peroxide is caustic and exposure may result in local tissue damage. Ingestion of concentrated (>35%) hydrogen peroxide can also result in the generation of substantial volumes of oxygen. Where the amount of oxygen evolved exceeds its maximum solubility in blood, venous or arterial gas embolism may occur. The mechanism of CNS damage is thought to be arterial gas embolisation with subsequent brain infarction. Rapid generation of oxygen in closed body cavities can also cause mechanical distension and there is potential for the rupture of the hollow viscus secondary to oxygen liberation. In addition, intravascular foaming following absorption can seriously impede right ventricular output and produce complete loss of cardiac output. Hydrogen peroxide can also exert a direct cytotoxic effect via lipid peroxidation. Ingestion of hydrogen peroxide may cause irritation of the gastrointestinal tract with nausea, vomiting, haematemesis and foaming at the mouth; the foam may obstruct the respiratory tract or result in pulmonary aspiration. Painful gastric distension and belching may be caused by the liberation of large volumes of oxygen in the stomach. Blistering of the mucosae and oropharyngeal burns are common following ingestion of concentrated solutions, and laryngospasm and haemorrhagic gastritis have been

  1. Safe Use of Hydrogen and Hydrogen Systems

    NASA Technical Reports Server (NTRS)

    Maes, Miguel

    2006-01-01

    This is a viewgraph presentation that is a course for teaching the safe use of hydrogen. The objectives of the course are 1. To familiarize the student with H2 safety properties 2. To enable the identification, evaluations and addressing of H2 system hazards 3. To teach: a. Safe practices for, b. Design, c. Materials selection, d. H2 system operation, e. Physical principles and empirical observations on which these safe practices are based, f. How to respond to emergency situations involving H2, g How to visualize safety concepts through in-class exercises, h. Identify numerous parameters important to H2 safety.

  2. Hot Hydrogen Test Facility

    SciTech Connect

    W. David Swank

    2007-02-01

    The core in a nuclear thermal rocket will operate at high temperatures and in hydrogen. One of the important parameters in evaluating the performance of a nuclear thermal rocket is specific impulse, ISp. This quantity is proportional to the square root of the propellant’s absolute temperature and inversely proportional to square root of its molecular weight. Therefore, high temperature hydrogen is a favored propellant of nuclear thermal rocket designers. Previous work has shown that one of the life-limiting phenomena for thermal rocket nuclear cores is mass loss of fuel to flowing hydrogen at high temperatures. The hot hydrogen test facility located at the Idaho National Lab (INL) is designed to test suitability of different core materials in 2500°C hydrogen flowing at 1500 liters per minute. The facility is intended to test non-uranium containing materials and therefore is particularly suited for testing potential cladding and coating materials. In this first installment the facility is described. Automated Data acquisition, flow and temperature control, vessel compatibility with various core geometries and overall capabilities are discussed.

  3. Magnetic liquefier for hydrogen

    SciTech Connect

    1992-12-31

    This document summarizes work done at the Astronautics Technology Center of the Astronautics Corporation of America (ACA) in Phase 1 of a four phase program leading to the development of a magnetic liquefier for hydrogen. The project involves the design, fabrication, installation, and operation of a hydrogen liquefier providing significantly reduced capital and operating costs, compared to present liquefiers. To achieve this goal, magnetic refrigeration, a recently developed, highly efficient refrigeration technology, will be used for the liquefaction process. Phase 1 project tasks included liquefier conceptual design and analysis, preliminary design of promising configurations, design selection, and detailed design of the selected design. Fabrication drawings and vendor specifications for the selected design were completed during detailed design. The design of a subscale, demonstration magnetic hydrogen liquefier represents a significant advance in liquefaction technology. The cost reductions that can be realized in hydrogen liquefaction in both the subscale and, more importantly, in the full-scale device are expected to have considerable impact on the use of liquid hydrogen in transportation, chemical, and electronic industries. The benefits to the nation from this technological advance will continue to have importance well into the 21st century.

  4. Hydrogen Contractors Meeting

    SciTech Connect

    Fitzsimmons, Tim

    2006-05-16

    This volume highlights the scientific content of the 2006 Hydrogen Contractors Meeting sponsored by the Division of Materials Sciences and Engineering (DMS&E) on behalf of the Office of Basic Energy Sciences (BES) of the U. S. Department of Energy (DOE). Hydrogen Contractors Meeting held from May 16-19, 2006 at the Crystal Gateway Marriott Hotel Arlington, Virginia. This meeting is the second in a series of research theme-based Contractors Meetings sponsored by DMS&E held in conjunction with our counterparts in the Office of Energy Efficiency and Renewable Energy (EERE) and the first with the Hydrogen, Fuel Cells and Infrastructure Technologies Program. The focus of this year’s meeting is BES funded fundamental research underpinning advancement of hydrogen storage. The major goals of these research efforts are the development of a fundamental scientific base in terms of new concepts, theories and computational tools; new characterization capabilities; and new materials that could be used or mimicked in advancing capabilities for hydrogen storage.

  5. Hydrogen Optical Fiber Sensors

    SciTech Connect

    Lieberman, Robert A.; Beshay, Manal; Cordero, Steven R.

    2008-07-28

    Optically-based hydrogen sensors promise to deliver an added level of safety as hydrogen and fuel cell technologies enter the mainstream. More importantly, they offer reduced power consumption and lower cost, which are desirable for mass production applications such as automobiles and consumer appliances. This program addressed two of the major challenges previously identified in porous optrode-based optical hydrogen sensors: sensitivity to moisture (ambient humidity), and interference from the oxygen in air. Polymer coatings to inhibit moisture and oxygen were developed in conjunction with newer and novel hydrogen sensing chemistries. The results showed that it is possible to achieve sensitive hydrogen detection and rapid response with minimal interference from oxygen and humidity. As a result of this work, a new and more exciting avenue of investigation was developed: the elimination of the porous optrode and deposition of the sensor chemistry directly into the polymer film. Initial results have been promising, and open up a wider range of potential applications from extended optical fiber sensing networks, to simple plastic "stickers" for use around the home and office.

  6. Hot Hydrogen Test Facility

    SciTech Connect

    Swank, W. David; Carmack, Jon; Werner, James E.; Pink, Robert J.; Haggard, DeLon C.; Johnson, Ryan

    2007-01-30

    The core in a nuclear thermal rocket will operate at high temperatures and in hydrogen. One of the important parameters in evaluating the performance of a nuclear thermal rocket is specific impulse, ISP. This quantity is proportional to the square root of the propellant's absolute temperature and inversely proportional to square root of its molecular weight. Therefore, high temperature hydrogen is a favored propellant of nuclear thermal rocket designers. Previous work has shown that one of the life-limiting phenomena for thermal rocket nuclear cores is mass loss of fuel to flowing hydrogen at high temperatures. The hot hydrogen test facility located at the Idaho National Lab (INL) is designed to test suitability of different core materials in 2500 deg. C hydrogen flowing at 1500 liters per minute. The facility is intended to test low activity uranium containing materials but is also suited for testing cladding and coating materials. In this first installment the facility is described. Automated data acquisition, flow and temperature control, vessel compatibility with various core geometries and overall capabilities are discussed.

  7. Hydrogen-Selective Membrane

    DOEpatents

    Collins, John P.; Way, J. Douglas

    1995-09-19

    A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 .mu.m but typically less than about 20 .mu.m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m.sup.2.s at a temperature of greater than about 500.degree. C. and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500.degree. C. and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400.degree. C. and less than about 1000.degree. C. before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process.

  8. Hydrogen-selective membrane

    DOEpatents

    Collins, J.P.; Way, J.D.

    1995-09-19

    A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 {micro}m but typically less than about 20 {micro}m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m{sup 2}s at a temperature of greater than about 500 C and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500 C and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400 C and less than about 1000 C before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process. 9 figs.

  9. Hydrogen-selective membrane

    DOEpatents

    Collins, John P.; Way, J. Douglas

    1997-01-01

    A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 .mu.m but typically less than about 20 .mu.m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m.sup.2. s at a temperature of greater than about 500.degree. C. and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500.degree. C. and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400.degree. C. and less than about 1000.degree. C. before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process.

  10. Hydrogen-selective membrane

    DOEpatents

    Collins, J.P.; Way, J.D.

    1997-07-29

    A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 {micro}m but typically less than about 20 {micro}m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m{sup 2} s at a temperature of greater than about 500 C and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500 C and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400 C and less than about 1000 C before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process. 9 figs.

  11. Influence of hydrogen oxidation kinetics on hydrogen environment embrittlement

    NASA Technical Reports Server (NTRS)

    Walter, R. J.; Kendig, M. W.; Meisels, A. P.

    1992-01-01

    Results are presented from experiments performed to determine the roles of hydrogen absorption and hydrogen electron transfer on the susceptibility of Fe- and Ni-base alloys to ambient-temperature hydroen embrittlement. An apparent independence is noted between hydrogen environment embrittlement and internal hydrogen embrittlement. The experiments were performed on Inconel 718, Incoloy 903, and A286. The electrochemical results obtained indicate that Inconel 718 either adsorbs hydrogen more rapidly and/or the electrochemical oxidation of the adsorbed hydrogen occurred more rapidly than in the other two materials.

  12. Hydrogen production from carbonaceous material

    DOEpatents

    Lackner, Klaus S.; Ziock, Hans J.; Harrison, Douglas P.

    2004-09-14

    Hydrogen is produced from solid or liquid carbon-containing fuels in a two-step process. The fuel is gasified with hydrogen in a hydrogenation reaction to produce a methane-rich gaseous reaction product, which is then reacted with water and calcium oxide in a hydrogen production and carbonation reaction to produce hydrogen and calcium carbonate. The calcium carbonate may be continuously removed from the hydrogen production and carbonation reaction zone and calcined to regenerate calcium oxide, which may be reintroduced into the hydrogen production and carbonation reaction zone. Hydrogen produced in the hydrogen production and carbonation reaction is more than sufficient both to provide the energy necessary for the calcination reaction and also to sustain the hydrogenation of the coal in the gasification reaction. The excess hydrogen is available for energy production or other purposes. Substantially all of the carbon introduced as fuel ultimately emerges from the invention process in a stream of substantially pure carbon dioxide. The water necessary for the hydrogen production and carbonation reaction may be introduced into both the gasification and hydrogen production and carbonation reactions, and allocated so as transfer the exothermic heat of reaction of the gasification reaction to the endothermic hydrogen production and carbonation reaction.

  13. Asymmetric hydrogenations (Nobel lecture).

    PubMed

    Knowles, William S

    2002-06-17

    The start of the development of catalysts for asymmetric hydrogenation was the concept of replacing the triphenylphosphane ligand of the Wilkinson catalyst with a chiral ligand. With the new catalysts, it should be possible to hydrogenate prochiral olefins. Knowles and his co-workers were convinced that the phosphorus atom played a central role in this selectivity, as only chiral phosphorus ligands such as (R,R)-DIPAMP, whose stereogenic center lies directly on the phosphorus atom, lead to high enantiomeric excesses when used as catalysts in asymmetric hydrogenation reactions. This hypothesis was disproven by the development of ligands with chiral carbon backbones. Although the exact mechanism of action of the phosphane ligands is not incontrovertibly determined to this day, they provide a simple entry to a large number of chiral compounds. PMID:19746594

  14. Hydrogen vehicle fueling station

    SciTech Connect

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A.; Prenger, F.C.; Hill, D.D.

    1995-09-01

    The authors describe a hydrogen vehicle fueling station that receives and stores hydrogen in liquid form and dispenses it either as a liquid or compressed gas. The economics that accrue from the favorable weight and volume advantages of liquid hydrogen support this concept both now and probably for some time to come. The model for liquid transfer to a 120-liter vehicle tank shows that transfer times under five minutes are feasible with pump-assisted transfer, or for pressure transfer with subcooling greater than 1 K. The model for compressed gas transfer shows that underfilling of nearly 30% can occur during rapid filling. Cooling the fill gas to 214 K completely eliminates underfilling.

  15. Hydrogen vehicle fueling station

    SciTech Connect

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A.

    1996-12-31

    The authors describe a hydrogen vehicle fueling station that receives and stores hydrogen in liquid form and dispenses it either as a liquid or compressed gas. The economics of distribution that accrue from the favorable weight and volume advantages of liquid hydrogen support this concept both now and for some time to come. The authors model for liquid transfer to a 120 L vehicle tank shows that tank filling times under five minutes are feasible with pump-assisted transfer, or for pressure transfer with subcooling greater than 1 K. The authorsmodel for compressed gas transfer shows that vehicle tank underfilling of nearly 30 percent can occur during rapid refueling. Cooling the fill gas to 214 K completely eliminates the underfilling problem.

  16. Hydrogen: Fueling the Future

    SciTech Connect

    Leisch, Jennifer

    2007-02-27

    As our dependence on foreign oil increases and concerns about global climate change rise, the need to develop sustainable energy technologies is becoming increasingly significant. Worldwide energy consumption is expected to double by the year 2050, as will carbon emissions along with it. This increase in emissions is a product of an ever-increasing demand for energy, and a corresponding rise in the combustion of carbon containing fossil fuels such as coal, petroleum, and natural gas. Undisputable scientific evidence indicates significant changes in the global climate have occurred in recent years. Impacts of climate change and the resulting atmospheric warming are extensive, and know no political or geographic boundaries. These far-reaching effects will be manifested as environmental, economic, socioeconomic, and geopolitical issues. Offsetting the projected increase in fossil energy use with renewable energy production will require large increases in renewable energy systems, as well as the ability to store and transport clean domestic fuels. Storage and transport of electricity generated from intermittent resources such as wind and solar is central to the widespread use of renewable energy technologies. Hydrogen created from water electrolysis is an option for energy storage and transport, and represents a pollution-free source of fuel when generated using renewable electricity. The conversion of chemical to electrical energy using fuel cells provides a high efficiency, carbon-free power source. Hydrogen serves to blur the line between stationary and mobile power applications, as it can be used as both a transportation fuel and for stationary electricity generation, with the possibility of a distributed generation energy infrastructure. Hydrogen and fuel cell technologies will be presented as possible pollution-free solutions to present and future energy concerns. Recent hydrogen-related research at SLAC in hydrogen production, fuel cell catalysis, and hydrogen

  17. Hydrogen vehicle fueling station

    SciTech Connect

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A.

    1995-09-01

    Hydrogen fueling stations are an essential element in the practical application of hydrogen as a vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology which is the link between the local storage facility and the vehicle. Because most merchant hydrogen delivered in the US today (and in the near future) is in liquid form due to the overall economics of production and delivery, we believe a practical refueling station should be designed to receive liquid. Systems studies confirm this assumption for stations fueling up to about 300 vehicles. Our fueling station, aimed at refueling fleet vehicles, will receive hydrogen as a liquid and dispense it as either liquid, high pressure gas, or low pressure gas. Thus, it can refuel any of the three types of tanks proposed for hydrogen-powered vehicles -- liquid, gaseous, or hydride. The paper discusses the fueling station design. Results of a numerical model of liquid hydrogen vehicle tank filling, with emphasis on no vent filling, are presented to illustrate the usefulness of the model as a design tool. Results of our vehicle performance model illustrate our thesis that it is too early to judge what the preferred method of on-board vehicle fuel storage will be in practice -- thus our decision to accommodate all three methods.

  18. Hydrogen production from microbial strains

    DOEpatents

    Harwood, Caroline S; Rey, Federico E

    2012-09-18

    The present invention is directed to a method of screening microbe strains capable of generating hydrogen. This method involves inoculating one or more microbes in a sample containing cell culture medium to form an inoculated culture medium. The inoculated culture medium is then incubated under hydrogen producing conditions. Once incubating causes the inoculated culture medium to produce hydrogen, microbes in the culture medium are identified as candidate microbe strains capable of generating hydrogen. Methods of producing hydrogen using one or more of the microbial strains identified as well as the hydrogen producing strains themselves are also disclosed.

  19. Polyhydride complexes for hydrogen storage

    SciTech Connect

    Jensen, C.M.

    1995-09-01

    Polyhydride metal complexes are being developed for application in hydrogen storage. Efforts have focused on developing complexes with improved available hydrogen weight percentages. We have explored the possibility that complexes containing aromatic hydrocarbon ligands could store hydrogen at both the metal center and in the ligands. We have synthesized novel indenyl hydride complexes and explored their reactivity with hydrogen. The reversible hydrogenation of [IrH{sub 3}(PPh{sub 3})({eta}{sup 5}-C{sub 10}H{sub 7})]{sup +} has been achieved. While attempting to prepare {eta}{sup 6}-tetrahydronaphthalene complexes, we discovered that certain polyhydride complexes catalyze both the hydrogenation and dehydrogenation of tetrahydronaphthalene.

  20. Hydrogen environment embrittlement of metals

    NASA Technical Reports Server (NTRS)

    Jewett, R. P.; Walter, R. J.; Chandler, W. T.; Frohmberg, R. P.

    1973-01-01

    Hydrogen environment embrittlement refers to metals stressed while exposed to a hydrogen atmosphere. Tested in air, even after exposure to hydrogen under pressure, this effect is not observed on similar specimens. Much high purity hydrogen is prepared by evaporation of liquid hydrogen, and thus has low levels for potential impurities which could otherwise inhibit or poison the absorbent reactions that are involved. High strength steels and nickel-base allows are rated as showing extreme embrittlement; aluminum alloys and the austenitic stainless steels, as well as copper, have negligible susceptibility to this phenomenon. The cracking that occurs appears to be a surface phenomenon, is unlike that of internal hydrogen embrittlement.

  1. Thin film hydrogen sensor

    DOEpatents

    Cheng, Y.T.; Poli, A.A.; Meltser, M.A.

    1999-03-23

    A thin film hydrogen sensor includes a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end. 5 figs.

  2. NREL's Hydrogen Program

    SciTech Connect

    2011-01-01

    The research and development taking place today at the National Renewable Energy Laboratory (NREL) is paving the way for nature's most plentiful element—hydrogen—to power the next generation. NREL researchers are working to unlock the potential of hydrogen and to advance the fuel cell technologies that will power the automobiles, equipment, and buildings of tomorrow. Hydrogen and fuel cells are a fundamental part of the broader portfolio of renewable technologies that are moving our nation toward its goals of energy independence and sustainability.

  3. Reduced hydrogen cadmium plating

    SciTech Connect

    Hoeller, T.; Ross, L. ); Varma, R. ); Agarwala, V.S. )

    1991-01-01

    This paper demonstrates the advantages of using a periodic reverse pulse plating method, incorporating a fast cathodic pulse which is separated from the subsequent anodic/cathodic pulses by a long rest period in producing silvery cadmium coatings on steel from aqueous fluoroborate electrolyte. Also, the deposition obtained by combination of pulse currents and turbulent electrolyte flow system (forced convection of electrolyte, Re {approximately} 20-25,000) result in a near hydrogen-free electrodeposition of fine- grained cadmium. This is confirmed by the determination of diffusible hydrogen by the electrochemical (Barnach Electrode) method.

  4. Producing Hydrogen With Sunlight

    NASA Technical Reports Server (NTRS)

    Biddle, J. R.; Peterson, D. B.; Fujita, T.

    1987-01-01

    Costs high but reduced by further research. Producing hydrogen fuel on large scale from water by solar energy practical if plant costs reduced, according to study. Sunlight attractive energy source because it is free and because photon energy converts directly to chemical energy when it breaks water molecules into diatomic hydrogen and oxygen. Conversion process low in efficiency and photochemical reactor must be spread over large area, requiring large investment in plant. Economic analysis pertains to generic photochemical processes. Does not delve into details of photochemical reactor design because detailed reactor designs do not exist at this early stage of development.

  5. Hydrogen/bromine cell

    SciTech Connect

    Hohne, K.; Starbeck, G.

    1985-05-28

    Described herein is an energy storage device which utilizes a hydrogen/bromine cell. The cell includes a bromine electrode and a hydrogen electrode. The cell is light weight, resists corrosion caused by bromine or hydrobromic acid and uses both an electrolysis and a fuel cell reaction to store or discharge electrical energy. The cell frame is made of graphite and has a pyrographite coating on at least the portion facing the bromine electrode. This cell is therefore very useful in matching varying energy supplies with varying energy demands and allows for decentralization of energy storage.

  6. Hydrogen rich gas generator

    NASA Technical Reports Server (NTRS)

    Houseman, J.; Rupe, J. H.; Kushida, R. O. (Inventor)

    1976-01-01

    A process and apparatus is described for producing a hydrogen rich gas by injecting air and hydrocarbon fuel at one end of a cylindrically shaped chamber to form a mixture and igniting the mixture to provide hot combustion gases by partial oxidation of the hydrocarbon fuel. The combustion gases move away from the ignition region to another region where water is injected to be turned into steam by the hot combustion gases. The steam which is formed mixes with the hot gases to yield a uniform hot gas whereby a steam reforming reaction with the hydrocarbon fuel takes place to produce a hydrogen rich gas.

  7. Hydrogen peroxide catalytic decomposition

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2010-01-01

    Nitric oxide in a gaseous stream is converted to nitrogen dioxide using oxidizing species generated through the use of concentrated hydrogen peroxide fed as a monopropellant into a catalyzed thruster assembly. The hydrogen peroxide is preferably stored at stable concentration levels, i.e., approximately 50%-70% by volume, and may be increased in concentration in a continuous process preceding decomposition in the thruster assembly. The exhaust of the thruster assembly, rich in hydroxyl and/or hydroperoxy radicals, may be fed into a stream containing oxidizable components, such as nitric oxide, to facilitate their oxidation.

  8. Electrolytic hydrogen production

    NASA Astrophysics Data System (ADS)

    Ramani, M. P. S.

    In the role of a secondary energy carrier complementary to electricity in a postfossil-fuel era, hydrogen produced by the elecrolytic splitting of water may be obtained by a variety of methods whose technology development status is presently assessed. Nuclear heat can be converted into hydrogen either directly, via thermal splitting of water, or by means of water electrolysis, which can be of the unipolar tank type or the bipolar filter-press type. An evaluation is made of advanced electrolytic techniques involving exotic materials, as well as solid polymer electrolyte electrolysis and high-temperature water-vapor electrolysis.

  9. Thin film hydrogen sensor

    DOEpatents

    Cheng, Yang-Tse; Poli, Andrea A.; Meltser, Mark Alexander

    1999-01-01

    A thin film hydrogen sensor, includes: a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end.

  10. Regional Consumer Hydrogen Demand and Optimal Hydrogen Refueling Station Siting

    SciTech Connect

    Melendez, M.; Milbrandt, A.

    2008-04-01

    Using a GIS approach to spatially analyze key attributes affecting hydrogen market transformation, this study proposes hypothetical hydrogen refueling station locations in select subregions to demonstrate a method for determining station locations based on geographic criteria.

  11. Hydrogen trapping and the interaction of hydrogen with metals

    NASA Technical Reports Server (NTRS)

    Danford, Merlin D.

    1987-01-01

    A method has been developed for the determination of trapped hydrogen in metal alloys, involving the determination of mobile hydrogen using the electrochemical method and the determination of total hydrogen with the fusion method, the difference in hydrogen concentrations being due to trapped hydrogen. It has been found that hydrogen enters body-centered cubic structures through the grain bodies rather than through the grain boundaries. Hydrogen also diffuses much more rapidly in body-centered cubic structures on charging than in face-centered cubic structures, the hydrogen distribution being more uniform in nature. The energy necessary to cause hydrogen embrittlement is postulated to arise from the changes in crystal lattice energies brought about through interaction of hydrogen with atoms in the metal lattice. The total energy change is more negative for body-centered cubic structures, believed to be the cause of a greater tendency toward hydrogen embrittlement. Finally, the agreement of hydrogen concentrations obtained at 25 C by the electrochemical method with those obtained by the fusion method are taken as a strong indication of the power and validity of the electrochemical method.

  12. Low Trans Hydrogenation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although hydrogenation has been the technology of choice for fat formulation for many years recent concerns over the health and nutrition of trans fatty acids have had a profound effect on the edible oil industry. Since Jan. 1, 2006, TFA has been required on nutrition labels along with saturated an...

  13. Gas controlled hydrogen fermentation.

    PubMed

    Bastidas-Oyanedel, Juan-Rodrigo; Mohd-Zaki, Zuhaida; Zeng, Raymond J; Bernet, Nicolas; Pratt, Steven; Steyer, Jean-Philippe; Batstone, Damien John

    2012-04-01

    Acidogenic fermentation is an anaerobic process of double purpose, while treating organic residues it produces chemical compounds, such as hydrogen, ethanol and organic acids. Therefore, acidogenic fermentation arises as an attractive biotechnology process towards the biorefinery concept. Moreover, this process does not need sterile operating conditions and works under a wide range of pH. Changes of operating conditions produce metabolic shifts, inducing variability on acidogenic product yield. To induce those changes, experiments, based on reactor headspace N(2)-flushing (gas phase), were designed. A major result was the hydrogen yield increase from 1 to 3.25±0.4 ( [Formula: see text] ) at pH 4.5 and N(2)-flushing of 58.4 (L·d(-1)). This yield is close to the theoretical acidogenic value (4 [Formula: see text] ). The mechanisms that explain this increase on hydrogen yield shifts are related to the thermodynamics of three metabolic reactions: lactate hydrogenase, NADH hydrogenase and homoacetogenesis, which are affected by the low hydrogen partial pressures. PMID:22342590

  14. A Simple Hydrogen Electrode

    ERIC Educational Resources Information Center

    Eggen, Per-Odd

    2009-01-01

    This article describes the construction of an inexpensive, robust, and simple hydrogen electrode, as well as the use of this electrode to measure "standard" potentials. In the experiment described here the students can measure the reduction potentials of metal-metal ion pairs directly, without using a secondary reference electrode. Measurements…

  15. Resistive hydrogen sensing element

    DOEpatents

    Lauf, Robert J.

    2000-01-01

    Systems and methods are described for providing a hydrogen sensing element with a more robust exposed metallization by application of a discontinuous or porous overlay to hold the metallization firmly on the substrate. An apparatus includes: a substantially inert, electrically-insulating substrate; a first Pd containing metallization deposited upon the substrate and completely covered by a substantially hydrogen-impermeable layer so as to form a reference resistor on the substrate; a second Pd containing metallization deposited upon the substrate and at least a partially accessible to a gas to be tested, so as to form a hydrogen-sensing resistor; a protective structure disposed upon at least a portion of the second Pd containing metallization and at least a portion of the substrate to improve the attachment of the second Pd containing metallization to the substrate while allowing the gas to contact said the second Pd containing metallization; and a resistance bridge circuit coupled to both the first and second Pd containing metallizations. The circuit determines the difference in electrical resistance between the first and second Pd containing metallizations. The hydrogen concentration in the gas may be determined. The systems and methods provide advantages because adhesion is improved without adversely effecting measurement speed or sensitivity.

  16. Liquid Hydrogen: Target, Detector

    SciTech Connect

    Mulholland, G.T.; Harigel, G.G.

    2004-06-23

    In 1952 D. Glaser demonstrated that a radioactive source's radiation could boil 135 deg. C superheated-diethyl ether in a 3-mm O glass vessel and recorded bubble track growth on high-speed film in a 2-cm3 chamber. This Bubble Chamber (BC) promised improved particle track time and spatial resolution and cycling rate. Hildebrand and Nagle, U of Chicago, reported Liquid Hydrogen minimum ionizing particle boiling in August 1953. John Wood created the 3.7-cm O Liquid Hydrogen BC at LBL in January 1954. By 1959 the Lawrence Berkley Laboratory (LBL) Alvarez group's '72-inch' BC had tracks in liquid hydrogen. Within 10 years bubble chamber volumes increased by a factor of a million and spread to every laboratory with a substantial high-energy physics program. The BC, particle accelerators and special separated particle beams created a new era of High Energy Physics (HEP) experimentation. The BC became the largest most complex cryogenic installation at the world's HEP laboratories for decades. The invention and worldwide development, deployment and characteristics of these cryogenic dynamic target/detectors and related hydrogen targets are described.

  17. Hydrogen isotope separation

    DOEpatents

    Bartlit, John R.; Denton, William H.; Sherman, Robert H.

    1982-01-01

    A system of four cryogenic fractional distillation columns interlinked with two equilibrators for separating a DT and hydrogen feed stream into four product streams, consisting of a stream of high purity D.sub.2, DT, T.sub.2, and a tritium-free stream of HD for waste disposal.

  18. Hydrogen isotope separation

    DOEpatents

    Bartlit, J.R.; Denton, W.H.; Sherman, R.H.

    Disclosed is a system of four cryogenic fractional distillation columns interlinked with two equilibrators for separating a DT and hydrogen feed stream into four product streams, consisting of a stream of high purity D/sub 2/, DT, T/sub 2/, and a tritium-free stream of HD for waste disposal.

  19. Hydrogen fuel - Universal energy

    NASA Astrophysics Data System (ADS)

    Prince, A. G.; Burg, J. A.

    The technology for the production, storage, transmission, and consumption of hydrogen as a fuel is surveyed, with the physical and chemical properties of hydrogen examined as they affect its use as a fuel. Sources of hydrogen production are described including synthesis from coal or natural gas, biomass conversion, thermochemical decomposition of water, and electrolysis of water, of these only electrolysis is considered economicially and technologically feasible in the near future. Methods of production of the large quantities of electricity required for the electrolysis of sea water are explored: fossil fuels, hydroelectric plants, nuclear fission, solar energy, wind power, geothermal energy, tidal power, wave motion, electrochemical concentration cells, and finally ocean thermal energy conversion (OTEC). The wind power and OTEC are considered in detail as the most feasible approaches. Techniques for transmission (by railcar or pipeline), storage (as liquid in underwater or underground tanks, as granular metal hydride, or as cryogenic liquid), and consumption (in fuel cells in conventional power plants, for home usage, for industrial furnaces, and for cars and aircraft) are analyzed. The safety problems of hydrogen as a universal fuel are discussed, noting that they are no greater than those for conventional fuels.

  20. Chemochromic Hydrogen Sensors

    NASA Technical Reports Server (NTRS)

    Wiggins, Bryan C.

    2007-01-01

    As fossil fuel supplies decline, hydrogen is quickly becoming an increasingly important fuel source. Currently hydrogen is the prime fuel of today's space vehicles (e.g., Space Shuttle) and featured as a fuel for some prototype vehicles such as the BMW seven series model. Hydrogen is a colorless, odorless gas with a 4% lower explosive limit which makes leak detection a priority. In an effort to support the use of hydrogen, a chemochromic (color changing) sensor was developed that is robust, simple to use, and does not require active operation. It can be made into a thin tape which can be conveniently used for leak detection at flanges, valves, or outlets. Chemochromic sensors can be either reversible or irreversible; however, irreversible chemochromic sensors will be analyzed in this report. The irreversible sensor is useful during hazardous operations when personnel cannot be present. To actively monitor leaks, testing of the irreversible sensor against environmental effects was completed and results indicated this material is suitable for outdoor use in the harsh beachside environment of Kennedy Space Center. The experiments in this report will give additional results to the environmental testing by adding solid rocket booster residue as a variable. The primary motivation for these experiments is to prepare the sensors for the launch pad environment at the Kennedy Space Center. In an effort to simulate the atmosphere at the pads before and after launch, the chemochromic sensors are exposed to solid rocket residue under various conditions.

  1. Hydrogen production from coal

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The gasification reactions necessary for the production of hydrogen from montana subbituminous coal are presented. The coal composition is given. The gasifier types mentioned include: suspension (entrained) combustion; fluidized bed; and moving bed. Each gasification process is described. The steam-iron process, raw and product gas compositions, gasifier feed quantities, and process efficiency evaluations are also included.

  2. Onboard hydrogen generation for automobiles

    NASA Technical Reports Server (NTRS)

    Houseman, J.; Cerini, D. J.

    1976-01-01

    Problems concerning the use of hydrogen as a fuel for motor vehicles are related to the storage of the hydrogen onboard a vehicle. The feasibility is investigated to use an approach based on onboard hydrogen generation as a means to avoid these storage difficulties. Two major chemical processes can be used to produce hydrogen from liquid hydrocarbons and methanol. In steam reforming, the fuel reacts with water on a catalytic surface to produce a mixture of hydrogen and carbon monoxide. In partial oxidation, the fuel reacts with air, either on a catalytic surface or in a flame front, to yield a mixture of hydrogen and carbon monoxide. There are many trade-offs in onboard hydrogen generation, both in the choice of fuels as well as in the choice of a chemical process. Attention is given to these alternatives, the results of some experimental work in this area, and the combustion of various hydrogen-rich gases in an internal combustion engine.

  3. Hydrogen Storage Technical Team Roadmap

    SciTech Connect

    2013-06-01

    The mission of the Hydrogen Storage Technical Team is to accelerate research and innovation that will lead to commercially viable hydrogen-storage technologies that meet the U.S. DRIVE Partnership goals.

  4. Oxidation resistant organic hydrogen getters

    DOEpatents

    Shepodd, Timothy J.; Buffleben, George M.

    2008-09-09

    A composition for removing hydrogen from an atmosphere, comprising a mixture of a polyphenyl ether and a hydrogenation catalyst, preferably a precious metal catalyst, and most preferably Pt. This composition is stable in the presence of oxygen, will not polymerize or degrade upon exposure to temperatures in excess of 200.degree. C., or prolonged exposure to temperatures in the range of 100-300.degree. C. Moreover, these novel hydrogen getter materials can be used to efficiently removing hydrogen from mixtures of hydrogen/inert gas (e.g., He, Ar, N.sub.2), hydrogen/ammonia atmospheres, such as may be encountered in heat exchangers, and hydrogen/carbon dioxide atmospheres. Water vapor and common atmospheric gases have no adverse effect on the ability of these getter materials to absorb hydrogen.

  5. Process for thermochemically producing hydrogen

    DOEpatents

    Bamberger, Carlos E.; Richardson, Donald M.

    1976-01-01

    Hydrogen is produced by the reaction of water with chromium sesquioxide and strontium oxide. The hydrogen producing reaction is combined with other reactions to produce a closed chemical cycle for the thermal decomposition of water.

  6. The Summer of Hydrogen

    NASA Technical Reports Server (NTRS)

    Weber, Philip

    2008-01-01

    Ground crew veterans at Kennedy Space Center still talk about what they call "the summer of hydrogen"-the long, frustrating months in 1990 when the shuttle fleet was grounded by an elusive hydrogen leak that foiled our efforts to fill the orbiter's external fuel tank. Columbia (STS-35) was on Launch Pad A for a scheduled May 30 launch when we discovered the hydrogen leak during - tanking. The external fuel tank is loaded through the orbiter. Liquid hydrogen flows through a 17-inch umbilical between the orbiter and the tank. During fueling, we purge the aft fuselage with gaseous nitrogen to reduce the risk of fire, and we have a leak-detection system in the mobile launch platform, which samples (via tygon tubing) the atmosphere in and around the vehicle, drawing it down to a mass spectrometer that analyzes its composition. When we progressed to the stage of tanking where liquid hydrogen flows through the vehicle, the concentration of hydrogen approached four percent-the limit above which it would be dangerously flammable. We had a leak. We did everything we could think of to find it, and the contractor who supplied the flight hardware was there every day, working alongside us. We did tanking tests, which involved instrumenting the suspected leak sources, and cryo-loaded the external tank to try to isolate precisely where the leak originated. We switched out umbilicals; we replaced the seals between the umbilical and the orbiter. We inspected the seals microscopically and found no flaws. We replaced the recirculation pumps, and we found and replaced a damaged teflon seal in a main propulsion system detent cover, which holds the prevalve-the main valve supplying hydrogen to Space Shuttle Main Engine 3 -in the open position. The seal passed leak tests at ambient temperature but leaked when cryogenic temperatures were applied. We added new leak sensors-up to twenty at a time and tried to be methodical in our placements to narrow down the possible sources of the problem

  7. Detroit Commuter Hydrogen Project

    SciTech Connect

    Brooks, Jerry; Prebo, Brendan

    2010-07-31

    This project was undertaken to demonstrate the viability of using hydrogen as a fuel in an internal combustion engine vehicle for use as a part of a mass transit system. The advantages of hydrogen as a fuel include renew-ability, minimal environmental impact on air quality and the environment, and potential to reduce dependence on foreign energy sources for the transportation sector. Recognizing the potential for the hydrogen fuel concept, the Southeast Michigan Congress of Governments (SEMCOG) determined to consider it in the study of a proposed regional mass transit rail system for southeast Michigan. SEMCOG wanted to evaluate the feasibility of using hydrogen fueled internal combustion engine (H2ICE) vehicles in shuttle buses to connect the Detroit Metro Airport to a proposed, nearby rail station. Shuttle buses are in current use on the airport for passenger parking and inter-terminal transport. This duty cycle is well suited to the application of hydrogen fuel at this time because of the ability to re-fuel vehicles at a single nearby facility, overcoming the challenge of restricted fuel availability in the undeveloped hydrogen fuel infrastructure. A cooperative agreement between SEMCOG and the DOE was initiated and two H2ICE buses were placed in regular passenger service on March 29, 2009 and operated for six months in regular passenger service. The buses were developed and built by the Ford Motor Company. Wayne County Airport Authority provided the location for the demonstration with the airport transportation contractor, Metro Cars Inc. operating the buses. The buses were built on Ford E450 chassis and incorporated a modified a 6.8L V-10 engine with specially designed supercharger, fuel rails and injectors among other sophisticated control systems. Up to 30 kg of on-board gaseous hydrogen were stored in a modular six tank, 350 bar (5000 psi) system to provide a 150 mile driving range. The bus chassis and body were configured to carry nine passengers with

  8. Photovoltaic hydrogen production

    SciTech Connect

    Hiser, H.W.; Memory, S.B.; Veziroglu, T.N.; Padin, J.

    1996-10-01

    This is a new project, which started in June 1995, and involves photovoltaic hydrogen production as a fuel production method for the future. In order to increase the hydrogen yield, it was decided to use hybrid solar collectors to generate D.C. electricity, as well as high temperature steam for input to the electrolyzer. In this way, some of the energy needed to dissociate the water is supplied in the form of heat (or low grade energy), to generate steam, which results in a reduction of electrical energy (or high grade energy) needed. As a result, solar to hydrogen conversion efficiency is increased. In the above stated system, the collector location, the collector tracking sub-system (i.e., orientation/rotation), and the steam temperature have been taken as variables. Five locations selected - in order to consider a variety of latitudes, altitudes, cloud coverage and atmospheric conditions - are Atlanta, Denver, Miami, Phoenix and Salt Lake City. Plain PV and hybrid solar collectors for a stationary south facing system and five different collector rotation systems have been analyzed. Steam temperatures have been varied between 200{degrees}C and 1200{degrees}C. During the first year, solar to hydrogen conversion efficiencies have been considered. The results show that higher steam temperatures, 2 dimensional tracking system, higher elevations and dryer climates causes higher conversion efficiencies. Cost effectiveness of the sub-systems and of the overall system will be analyzed during the second year. Also, initial studies will be made of an advanced high efficiency hybrid solar hydrogen production system.

  9. Task D: Hydrogen safety analysis

    SciTech Connect

    Swain, M.R.; Sievert, B.G.; Swain, M.N.

    1996-10-01

    This report covers two topics. The first is a review of codes, standards, regulations, recommendations, certifications, and pamphlets which address safety of gaseous fuels. The second is an experimental investigation of hydrogen flame impingement. Four areas of concern in the conversion of natural gas safety publications to hydrogen safety publications are delineated. Two suggested design criteria for hydrogen vehicle fuel systems are proposed. It is concluded from the experimental work that light weight, low cost, firewalls to resist hydrogen flame impingement are feasible.

  10. Hydrogen Fire Spectroscopy Issues Project

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Compiler)

    2014-01-01

    The detection of hydrogen fires is important to the aerospace community. The National Aeronautics and Space Administration (NASA) has devoted significant effort to the development, testing, and installation of hydrogen fire detectors based on ultraviolet, near-infrared, mid-infrared, andor far-infrared flame emission bands. Yet, there is no intensity calibrated hydrogen-air flame spectrum over this range in the literature and consequently, it can be difficult to compare the merits of different radiation-based hydrogen fire detectors.

  11. Hydrogen and sulfur recovery from hydrogen sulfide wastes

    DOEpatents

    Harkness, John B. L.; Gorski, Anthony J.; Daniels, Edward J.

    1993-01-01

    A process for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

  12. Hydrogen and sulfur recovery from hydrogen sulfide wastes

    DOEpatents

    Harkness, J.B.L.; Gorski, A.J.; Daniels, E.J.

    1993-05-18

    A process is described for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is [dis]associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

  13. Magnetic levitation of condensed hydrogen

    NASA Technical Reports Server (NTRS)

    Paine, C. G.; Seidel, G. M.

    1991-01-01

    Liquid and solid molecular hydrogen has been levitated using a pair of small superconducting solenoids. The hydrogen samples, up to 3 mm in dimension, were trapped in a magnetic potential having either a discrete minimum or a minimum in the form of a ring 1 cm in diameter. The hydrogen could be moved about in the magnetic trap by applying an electric field.

  14. Hydrogen as an energy vector

    NASA Technical Reports Server (NTRS)

    Powers, W. D.

    1975-01-01

    The feasibility of utilizing hydrogen as an energy vector is considered, with special attention given to means of hydrogen production. The state-of-the-art in thermochemical processes is reviewed, and criteria for the technical and economic feasibility of large-scale thermochemical water splitting processes are presented. The production of hydrogen from coal and from photolysis of water is discussed.

  15. Hydrogen, socio-environmental impact

    NASA Technical Reports Server (NTRS)

    Gilmore, J. S.; Matthews, W. E.; Duff, M. K.

    1975-01-01

    The concept and logic flow of a hydrogen technology assessment are described along with a specific procedure for such an assessment. The development of hydrogen technology is discussed. Factors considered in the development and use of hydrogen include: stimulus of societal needs and technological innovations; economic factors; and social and environmental effects.

  16. Hydrogen storage: beyond conventional methods.

    PubMed

    Dalebrook, Andrew F; Gan, Weijia; Grasemann, Martin; Moret, Séverine; Laurenczy, Gábor

    2013-10-01

    The efficient storage of hydrogen is one of three major hurdles towards a potential hydrogen economy. This report begins with conventional storage methods for hydrogen and broadly covers new technology, ranging from physical media involving solid adsorbents, to chemical materials including metal hydrides, ammonia borane and liquid precursors such as alcohols and formic acid. PMID:23964360

  17. Hydrogen rotation-vibration oscillator

    DOEpatents

    Rhodes, C.K.

    1974-01-29

    A laser system is described wherein molecular species of hydrogen and hydrogen isotopes are induced to oscillate on rotational-vibrational levels by subjecting the hydrogen to a transverse beam of electrons of a narrowly defined energy between about 1 and 5 eV, thereby producing high intensity and high energy output. (Official Gazette)

  18. Nickel-hydrogen component development

    NASA Technical Reports Server (NTRS)

    Charleston, J. A.

    1983-01-01

    Light weight energy storage systems for future space missions are investigated. One of the systems being studied is the nickel hydrogen battery. This battery is designed to achieve longer life, improve performance, and higher energy densities for space applications. The nickel hydrogen component development is discussed. Test data from polarization measurements of the hydrogen electrode component is presented.

  19. Hydrogen attack - Influence of hydrogen sulfide. [on carbon steel

    NASA Technical Reports Server (NTRS)

    Eliezer, D.; Nelson, H. G.

    1978-01-01

    An experimental study is conducted on 12.5-mm-thick SAE 1020 steel (plain carbon steel) plate to assess hydrogen attack at room temperature after specimen exposure at 525 C to hydrogen and a blend of hydrogen sulfide and hydrogen at a pressure of 3.5 MN/sq m for exposure times up to 240 hr. The results are discussed in terms of tensile properties, fissure formation, and surface scales. It is shown that hydrogen attack from a high-purity hydrogen environment is severe, with the formation of numerous methane fissures and bubbles along with a significant reduction in the room-temperature tensile yield and ultimate strengths. However, no hydrogen attack is observed in the hydrogen/hydrogen sulfide blend environment, i.e. no fissure or bubble formation occurred and the room-temperature tensile properties remained unchanged. It is suggested that the observed porous discontinuous scale of FeS acts as a barrier to hydrogen entry, thus reducing its effective equilibrium solubility in the iron lattice. Therefore, hydrogen attack should not occur in pressure-vessel steels used in many coal gasification processes.

  20. Electrochemical Hydrogen Peroxide Generator

    NASA Technical Reports Server (NTRS)

    Tennakoon, Charles L. K.; Singh, Waheguru; Anderson, Kelvin C.

    2010-01-01

    Two-electron reduction of oxygen to produce hydrogen peroxide is a much researched topic. Most of the work has been done in the production of hydrogen peroxide in basic media, in order to address the needs of the pulp and paper industry. However, peroxides under alkaline conditions show poor stabilities and are not useful in disinfection applications. There is a need to design electrocatalysts that are stable and provide good current and energy efficiencies to produce hydrogen peroxide under acidic conditions. The innovation focuses on the in situ generation of hydrogen peroxide using an electrochemical cell having a gas diffusion electrode as the cathode (electrode connected to the negative pole of the power supply) and a platinized titanium anode. The cathode and anode compartments are separated by a readily available cation-exchange membrane (Nafion 117). The anode compartment is fed with deionized water. Generation of oxygen is the anode reaction. Protons from the anode compartment are transferred across the cation-exchange membrane to the cathode compartment by electrostatic attraction towards the negatively charged electrode. The cathode compartment is fed with oxygen. Here, hydrogen peroxide is generated by the reduction of oxygen. Water may also be generated in the cathode. A small amount of water is also transported across the membrane along with hydrated protons transported across the membrane. Generally, each proton is hydrated with 3-5 molecules. The process is unique because hydrogen peroxide is formed as a high-purity aqueous solution. Since there are no hazardous chemicals or liquids used in the process, the disinfection product can be applied directly to water, before entering a water filtration unit to disinfect the incoming water and to prevent the build up of heterotrophic bacteria, for example, in carbon based filters. The competitive advantages of this process are: 1. No consumable chemicals are needed in the process. The only raw materials

  1. Hydrogen-rich boron-containing materials for hydrogen storage.

    PubMed

    Wang, Ping; Kang, Xiang-Dong

    2008-10-28

    Hydrogen-rich boron-containing compounds have received extensive attention as potential hydrogen storage media for vehicular applications. The past years have seen significant progresses in material discovery, material composition/structure tailoring, catalyst identification and regeneration chemistry, which give rise to state-of-the-art hydrogen storage materials/technologies. Lithium tetrahydroborate-related materials exhibit the hitherto highest reversible hydrogen capacity via solid-gas reactions. Catalytic hydrolysis of sodium tetrahydroborate offers an on-demand hydrogen generation system for vehicular applications. Ammonia borane-related materials exhibit a satisfactory combination of material properties that are suited for on-board hydrogen sources, coupled with significant advances in spent fuels regeneration. This Perspective discusses the current progresses of these representative reversible or irreversible material systems, aiming at providing an outline of the forefront of hydrogen storage materials/technologies for transportation applications. PMID:19082020

  2. Hydrogen and hydrogen-related defects in CVD diamond

    SciTech Connect

    Rutledge, K.M.M.

    1998-12-31

    Hydrogen is a detrimental impurity in many chemical vapor deposited (CVD) materials, particularly those involved in electronic or optical applications. For example, active hydrogen defects have been observed in materials such as silicon, Si, gallium arsenide, GaAs, and diamond, C, thin films. Hydrogen and its related defects can be identified, quantified, and observed using magnetic resonance techniques. These techniques allow a unique quantitative, non-destructive view of hydrogen in the solid-state. Nuclear magnetic resonance (NMR) is used to study hydrogenated defects directly, while electron paramagnetic resonance (EPR) is used to observe hydrogen associated with paramagnetic defects. These observations can enhance understanding of the effects of hydrogen incorporation on the properties of such materials.

  3. Hydrogen spillover: Its "diffusion" from catalysis to hydrogen storage community

    SciTech Connect

    Contescu, Cristian I; Bhat, Vinay V; Gallego, Nidia C

    2009-01-01

    Dissociative adsorption of hydrogen on catalyst sites followed by surface diffusion (spillover) to a carbon support was first reported for Pt-carbon catalysts (Robell, 1964) and was soon accepted as a valid step of numerous catalytic reactions. However, the concept of metal-assisted hydrogen storage (Schwarz, 1988) based on spillover entered much later the hydrogen community (Lueking and Yang, 2002) and is gaining recognition slowly as an alternate approach for enhancing hydrogen storage capacity of microporous materials for fuel-cell powered vehicles. This talk will analyze the significance and limits of the spillover mechanism for adsorptive storage of hydrogen, with examples of enhanced hydrogen uptake on Pd-containing activated carbon fibers. Evidence of the atomic nature of spilt-over hydrogen will be presented based on experimental results from inelastic neutron spectroscopy studies. Research sponsored by the Division of Materials Sciences and Engineering, U.S. Department of Energy under contract with UT-Battelle, LLC.

  4. Testing for hydrogen environment embrittlement - Experimental variables

    NASA Technical Reports Server (NTRS)

    Gray, H. R.

    1974-01-01

    Hydrogen embrittlement is classified into three types: internal reversible hydrogen embrittlement, hydrogen reaction embrittlement, and hydrogen environment embrittlement. Characteristics of and materials embrittled by these types of hydrogen embrittlement are discussed. Hydrogen environment embrittlement is reviewed in detail. Factors involved in standardizing test methods for detecting the occurrence of and evaluating the severity of hydrogen environment embrittlement are considered. The effects of test technique, hydrogen pressure, gas purity, strain rate, stress concentration factor, and test temperature are discussed.

  5. Hydrogen diffusion in Zircon

    NASA Astrophysics Data System (ADS)

    Ingrin, Jannick; Zhang, Peipei

    2016-04-01

    Hydrogen mobility in gem quality zircon single crystals from Madagascar was investigated through H-D exchange experiments. Thin slices were annealed in a horizontal furnace flushed with a gas mixture of Ar/D2(10%) under ambient pressure between 900 ° C to 1150 ° C. FTIR analyses were performed on oriented slices before and after each annealing run. H diffusion along [100] and [010] follow the same diffusion law D = D0exp[-E /RT], with log D0 = 2.24 ± 1.57 (in m2/s) and E = 374 ± 39 kJ/mol. H diffusion along [001] follows a slightly more rapid diffusion law, with log D0 = 1.11 ± 0.22 (in m2/s) and E = 334 ± 49 kJ/mol. H diffusion in zircon has much higher activation energy and slower diffusivity than other NAMs below 1150 ° C even iron-poor garnets which are known to be among the slowest (Blanchard and Ingrin, 2004; Kurka et al. 2005). During H-D exchange zircon incorporates also deuterium. This hydration reaction involves uranium reduction as it is shown from the exchange of U5+ and U4+ characteristic bands in the near infrared region during annealing. It is the first time that a hydration reaction U5+ + OH‑ = U4+ + O2‑ + 1/2H2, is experimentally reported. The kinetics of deuterium incorporation is slightly slower than hydrogen diffusion, suggesting that the reaction is limited by hydrogen mobility. Hydrogen isotopic memory of zircon is higher than other NAMs. Zircons will be moderately retentive of H signatures at mid-crustal metamorphic temperatures. At 500 ° C, a zircon with a radius of 300 μm would retain its H isotopic signature over more than a million years. However, a zircon is unable to retain this information for geologically significant times under high-grade metamorphism unless the grain size is large enough. Refrences Blanchard, M. and Ingrin, J. (2004) Hydrogen diffusion in Dora Maira pyrope. Physics and Chemistry of Minerals, 31, 593-605. Kurka, A., Blanchard, M. and Ingrin, J. (2005) Kinetics of hydrogen extraction and deuteration in

  6. Hydrogen Diffusion in Forsterite

    NASA Astrophysics Data System (ADS)

    Demouchy, S.; Mackwell, S.

    2002-12-01

    Physical and chemical properties of Earth's mantle are readily modified by interaction with volatiles, such as water. Thus, characterization of solubility and kinetics of incorporation for water in nominally anhydrous minerals is important in order to understand the behavior of Earth's interior under hydrous conditions. Experimental studies on the olivine-water system indicate that significant amounts of OH can dissolve within olivine as point defects (Bell and Rossman, 1992; Kohlstedt et al. 1996). Extending Kohlstedt and Mackwell's (1998) work, our study concerns the kinetics of hydrogen transport in the iron-free olivine-water system. This study is based on hydrogenation of forsterite samples during piston-cylinder and TZM cold-seal vessel experiments. We use infrared analyses in order to constrain the speciation of the mobile water-derived defects in forsterite single-crystal sample, and the rates of diffusion of such species under uppermost mantle conditions (0.2 to 1.5 GPa, 900 to 1100° C). Hydrogen defect transport in single crystals of forsterite is investigated for diffusion parallel to each crystallographic axis. Defect diffusivities are obtained by fitting a diffusion law to the OH content as a function of position in the sample. Our current results indicate that incorporation of hydroxyl species into iron-free olivine is a one-stage process with hydrogen diffusion linked to magnesium vacancy self-diffusion DV, such that DV = D~/3 = 10-12 m2/s at 1000° C parallel to [001], where D~ represents the chemical diffusivity. Those diffusion rates are slightly lower than in iron-bearing olivine for the same incorporation mechanism. The different concentration profiles show a clear anisotropy of diffusion, with fastest diffusion parallel to [001] as in iron-bearing olivine. Thus, while hydrogen solubilities are dependent on iron content, the rate of incorporation of water-derived species in olivine is not strongly coupled to the concentration of iron. This

  7. Solid evacuated microspheres of hydrogen

    DOEpatents

    Turnbull, Robert J.; Foster, Christopher A.; Hendricks, Charles D.

    1982-01-01

    A method is provided for producing solid, evacuated microspheres comprised of hydrogen. The spheres are produced by forming a jet of liquid hydrogen and exciting mechanical waves on the jet of appropriate frequency so that the jet breaks up into drops with a bubble formed in each drop by cavitation. The drops are exposed to a pressure less than the vapor pressure of the liquid hydrogen so that the bubble which is formed within each drop expands. The drops which contain bubbles are exposed to an environment having a pressure just below the triple point of liquid hydrogen and they thereby freeze giving solid, evacuated spheres of hydrogen.

  8. Pionic hydrogen and friends

    NASA Astrophysics Data System (ADS)

    Gotta, D.; Amaro, F. D.; Anagnostopoulos, D. F.; Bühler, P.; Gorke, H.; Covita, D. S.; Fuhrmann, H.; Gruber, A.; Hennebach, M.; Hirtl, A.; Ishiwatari, T.; Indelicato, P.; Jensen, T. S.; Bigot, E.-O. Le; Markushin, V. E.; Marton, J.; Nekipelov, M.; Pomerantsev, V. N.; Popov, V. P.; dos Santos, J. M. F.; Schlesser, S.; Schmid, Ph.; Simons, L. M.; Strauch, Th.; Theisen, M.; Trassinelli, M.; Veloso, J. F. C. A.; Zmeskal, J.

    2015-08-01

    Pion-nucleon scattering lengths are directly related to the ground-state level shift and broadening in pionic hydrogen as well as to the pionic deuterium level shift. The level broadening in deuterium measures the strength of pion threshold-production in proton-proton reactions. However, collisional processes during the atomic de-excitation cascade considerably complicate the analysis of X-ray line shapes in order to extract the hadronic broadening. Therefore, additionally the purely electromagnetic twin system muonic hydrogen was studied. Results of these experiments performed at PSI by using a high-resolution crystal spectrometer are discussed in the context with a new analysis approach for the hadronic broadening.

  9. Container for hydrogen isotopes

    DOEpatents

    Solomon, David E.

    1977-01-01

    A container for the storage, shipping and dispensing of hydrogen isotopes such as hydrogen, deuterium, tritium, or mixtures of the same which has compactness, which is safe against fracture or accident, and which is reusable. The container consists of an outer housing with suitable inlet and outlet openings and electrical feed elements, the housing containing an activated sorber material in the form, for example, of titanium sponge or an activated zirconium aluminate cartridge. The gas to be stored is introduced into the chamber under conditions of heat and vacuum and will be retained in the sorber material. Subsequently, it may be released by heating the unit to drive off the stored gas at desired rates.

  10. Hydrogen on semiconductor surfaces

    SciTech Connect

    Schaefer, J.A.; Balster, T.; Polyakov, V.; Rossow, U.; Sloboshanin, S.; Starke, U.; Tautz, F.S.

    1998-12-31

    The authors review structural and electronic aspects of the reaction of hydrogen with semiconductor surfaces. Among others, they address the Si(100), Ge{sub x}Si{sub 1{minus}x}(100), GaAs(100), InP(100), SiC(100), SiC(0001) and SiC(000{bar 1}) surfaces. It is demonstrated that high resolution electron energy loss spectroscopy (HREELS) in conjunction with a number of other surface sensitive techniques like low energy electron diffraction (LEED) and photoelectron spectroscopy (XPS/UPS) can yield important information about the surface atomic structure, the effects of hydrogen passivation and etching and on electronic properties of the surfaces. 67 refs., 7 figs., 3 tabs.

  11. Geothermal hydrogen sulfide removal

    SciTech Connect

    Urban, P.

    1981-04-01

    UOP Sulfox technology successfully removed 500 ppM hydrogen sulfide from simulated mixed phase geothermal waters. The Sulfox process involves air oxidation of hydrogen sulfide using a fixed catalyst bed. The catalyst activity remained stable throughout the life of the program. The product stream composition was selected by controlling pH; low pH favored elemental sulfur, while high pH favored water soluble sulfate and thiosulfate. Operation with liquid water present assured full catalytic activity. Dissolved salts reduced catalyst activity somewhat. Application of Sulfox technology to geothermal waters resulted in a straightforward process. There were no requirements for auxiliary processes such as a chemical plant. Application of the process to various types of geothermal waters is discussed and plans for a field test pilot plant and a schedule for commercialization are outlined.

  12. Thermochemical production of hydrogen

    DOEpatents

    Dreyfuss, Robert M.

    1976-07-13

    A thermochemical reaction cycle for the generation of hydrogen from water comprising the following sequence of reactions wherein M represents a metal and Z represents a metalloid selected from the arsenic-antimony-bismuth and selenium-tellurium subgroups of the periodic system: 2MO + Z + SO.sub.2 .fwdarw. MZ + MSO.sub.4 (1) mz + h.sub.2 so.sub.4 .fwdarw. mso.sub.4 + h.sub.2 z (2) 2mso.sub.4 .fwdarw. 2mo + so.sub.2 + so.sub.3 + 1/20.sub.2 (3) h.sub.2 z .fwdarw. z + h.sub.2 (4) h.sub.2 o + so.sub.3 .fwdarw. h.sub.2 so.sub.4 (5) the net reaction is the decomposition of water into hydrogen and oxygen.

  13. Hydrogen Reclamation and Reutilization

    NASA Technical Reports Server (NTRS)

    Hebert, Bartt; Lansaw, John

    2009-01-01

    John C. Stennis Space Center (SSC) provides rocket engine propulsion testing for NASA's space programs. Since the development of the Space Shuttle, every Space Shuttle Main Engine (SSME) has undergone acceptance testing at SSC before going to Kennedy Space Center (KSC) for integration into the Space Shuttle. The SSME is a large cryogenic rocket engine that uses Liquid Hydrogen (LH2) as the fuel. As NASA moves to the new ARES V launch system, the main engines on the new vehicle, as well as the upper stage engine, are currently base lined to be cryogenic rocket engines that will also use LH2. The main rocket engines for the ARES V will be larger than the SSME, while the upper stage engine will be approximately half that size. As a result, significant quantities of hydrogen will be required during the development, testing, and operation of these rocket engines.

  14. PHOTOBIOLOGICAL HYDROGEN RESEARCH

    SciTech Connect

    Philippidis, George; Tek, Vekalet

    2009-07-01

    The project objectives are to develop bio-hydrogen production by:  Cloning the structural and subunit genes (cooKMUX and cooLH resp.) of the O{sub 2}- tolerant NiFe-hydrogenase from the photosynthetic bacterium Rubrivivax gelatinosus CBS strain in collaboration with NREL.  Cloning the active site maturation genes (hypA-F) of the CBS hydrogenase in collaboration with NREL.  Transforming the structural and subunits genes, along with the maturation genes, into E. coli and determining the minimum number of genes required for expression of a functional hydrogenase.  Upon expression of a functional hydrogenase, purifying and characterizing the recombinant hydrogenase from E. coli and performing bioreactor studies to optimize hydrogen production by E. coli.

  15. Economics of hydrogen production

    SciTech Connect

    Gaines, L.L.; Wolsky, A.M.

    1984-01-01

    Much of the current interest in hydrogen (H/sub 2/) centers around its potential to displace oil and gas as a fuel. The results of this study should be useful to research and development managers making funding decisions, and they should also be of interest to energy analysts, economists, and proponents of a hydrogen economy. We examined the current costs of H/sub 2/ produced by commercially available technologies (from fossil fuels and by electrolysis) and projected these costs to 2010, to set cost goals for H/sub 2/ produced via new technologies. We also examined the sensitivity of H/sub 2/ costs to varying energy price forecasts, capital costs and the required rate of return on investment, and by-product credits. We find that conventionally produced H/sub 2/ will not break into the fuel market before 2010. 23 references, 19 figures, 12 tables.

  16. Reversible hydrogen storage materials

    DOEpatents

    Ritter, James A.; Wang, Tao; Ebner, Armin D.; Holland, Charles E.

    2012-04-10

    In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

  17. Parity nonconservation in hydrogen.

    SciTech Connect

    Dunford, R. W.; Holt, R. J.

    2011-01-01

    We discuss the prospects for parity violation experiments in atomic hydrogen and deuterium to contribute to testing the Standard Model (SM). We find that, if parity experiments in hydrogen can be done, they remain highly desirable because there is negligible atomic-physics uncertainty and low energy tests of weak neutral current interactions are needed to probe for new physics beyond the SM. Analysis of a generic APV experiment in deuterium indicates that a 0.3% measurement of C{sub 1D} requires development of a slow (77K) metastable beam of {approx} 5 x 10{sup 14}D(2S)s{sup -1} per hyperfine component. The advent of UV radiation from free electron laser (FEL) technology could allow production of such a beam.

  18. Advanced hydrogen utilization technology demonstration

    SciTech Connect

    Hedrick, J C; Winsor, R E

    1994-06-01

    This report presents the results of a study done by Detroit Diesel Corporation (DDC). DDC used a 6V-92TA engine for experiments with hydrogen fuel. The engine was first baseline tested using methanol fuel and methanol unit injectors. One cylinder of the engine was converted to operate on hydrogen fuel, and methanol fueled the remaining five cylinders. This early testing with only one hydrogen-fueled cylinder was conducted to determine the operating parameters that would later be implemented for multicylinder hydrogen operation. Researchers then operated three cylinders of the engine on hydrogen fuel to verify single-cylinder idle tests. Once it was determined that the engine would operate well at idle, the engine was modified to operate with all six cylinders fueled with hydrogen. Six-cylinder operation on hydrogen provided an opportunity to verify previous test results and to more accurately determine the performance, thermal efficiency, and emissions of the engine.

  19. Polymer system for gettering hydrogen

    DOEpatents

    Shepodd, Timothy Jon; Whinnery, LeRoy L.

    2000-01-01

    A novel composition comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen.

  20. Polymer formulations for gettering hydrogen

    DOEpatents

    Shepodd, Timothy Jon; Whinnery, LeRoy L.

    1998-11-17

    A novel composition comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen.

  1. Polymer formulations for gettering hydrogen

    DOEpatents

    Shepodd, T.J.; Whinnery, L.L.

    1998-11-17

    A novel composition is described comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen. 1 fig.

  2. New approaches to hydrogen storage.

    PubMed

    Graetz, Jason

    2009-01-01

    The emergence of a Hydrogen Economy will require the development of new media capable of safely storing hydrogen in a compact and light weight package. Metal hydrides and complex hydrides, where hydrogen is chemically bonded to the metal atoms in the bulk, offer some hope of overcoming the challenges associated with hydrogen storage. The objective is to find a material with a high volumetric and gravimetric hydrogen density that can also meet the unique demands of a low temperature automotive fuel cell. Currently, there is considerable effort to develop new materials with tunable thermodynamic and kinetic properties. This tutorial review provides an overview of the different types of metal hydrides and complex hydrides being investigated for on-board (reversible) and off-board (non-reversible) hydrogen storage along with a few new approaches to improving the hydrogenation-dehydrogenation properties. PMID:19088966

  3. Spontaneous combustion of hydrogen

    NASA Technical Reports Server (NTRS)

    Nusselt, Wilhelm; Pothmann, PH

    1923-01-01

    It is shown by the author's experiments that hydrogen which escapes to the atmosphere through openings in the system may burn spontaneously if it contains dust. Purely thermal reasoning can not account for the combustion. It seems to be rather an electrical ignition. In order to determine whether the cause of the spontaneous ignition was thermo-chemical, thermo-mechanical, or thermo-electrical, the experiments in this paper were performed.

  4. Hydrogen Fire Imager

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Through NASA's Technology Transfer Office at Stennis Space Center, two SSC engineers were able to market their hand-held fire imager. Called FIRESCAPE, the device allows firefighters to 'see' the invisible flames of hydrogen and alcohol fires in the daylight, as well as to find victims and burning embers in dense smoke and fog. SafetySCAN, which specializes in fire safety electronic products, will make the device the first affordable commercial product for fire imaging.

  5. Coal liquefaction and hydrogenation

    DOEpatents

    Schindler, Harvey D.

    1985-01-01

    The coal liquefaction process disclosed uses three stages. The first stage is a liquefaction. The second and third stages are hydrogenation stages at different temperatures and in parallel or in series. One stage is within 650.degree.-795.degree. F. and optimizes solvent production. The other stage is within 800.degree.-840.degree. F. and optimizes the C.sub.5 -850.degree. F. product.

  6. Hydrogen Fuel Cell Automobiles

    NASA Astrophysics Data System (ADS)

    Feldman, Bernard J.

    2005-11-01

    With gasoline now more than 2.00 a gallon, alternate automobile technologies will be discussed with greater interest and developed with more urgency. For our government, the hydrogen fuel cell-powered automobile is at the top of the list of future technologies. This paper presents a simple description of the principles behind this technology and a brief discussion of the pros and cons. It is also an extension on my previous paper on the physics of the automobile engine.

  7. Curvature, Hydrogen, Q

    SciTech Connect

    Wallace, John Paul; Myneni, Ganapati Rao; Pike, Robert

    2011-03-31

    The manufacturing of niobium SRF accelerator cavities is plagued by a mobile point defect, hydrogen. For efficient accelerator operation, niobium must function at both high electric and magnetic fields, and is compromised if magnetic impurities are located in the surface regions of the material. The finding that trace hydrogen in niobium can produce structures with magnetic properties is a feature that is not acceptable for a high performance cavity. X-ray diffraction has proved to be the key tool in assessing irreversible process damage to the niobium substrate. In future generations of accelerators, niobium will actually be merely the substrate for more effective superconductors that will allow for more efficient operation. The substrate analogy to the silicon wafer industry is useful since for niobium it may be possible to avoid some of the mistakes made in silicon technology. Because hydrogen attacks niobium on a number of different size scales, there is an inherent complexity in the trouble sources. There are also features in cavity design that are benign, such as local curvature considerations, requiring a fully non symmetric analysis of current flow to be appreciated.

  8. Photoelectrochemical hydrogen production

    SciTech Connect

    Rocheleau, R.E.; Miller, E.; Zhang, Z.

    1995-09-01

    The large-scale production of hydrogen utilizing energy provided by a renewable source to split water is one of the most ambitious long-term goals of the U.S. Department of Energy`s Hydrogen Program. Photoelectrochemical devices-direct photoconversion systems utilizing a photovoltaic-type structure coated with water-splitting catalysts-represent a promising option to meet this goal. Direct solar-to-chemical conversion efficiencies greater than 7% and photoelectrode lifetimes of up to 30 hours in 1 molar KOH have been demonstrated in our laboratory using low-cost, amorphous-silicon-based photoelectrodes. Loss analysis models indicate that the DOE`s goal of 10% solar-to-chemical conversion can be met with amorphous-silicon-based structures optimized for hydrogen production. In this report, we describe recent progress in the development of thin-film catalytic/protective coatings, improvements in photoelectrode efficiency and stability, and designs for higher efficiency and greater stability.

  9. Imino Transfer Hydrogenation Reductions.

    PubMed

    Wills, Martin

    2016-04-01

    This review contains a summary of recent developments in the transfer hydrogenation of C=N bonds, with a particularly focus on reports from within the last 10 years and asymmetric transformations. However, earlier work in the area is also discussed in order to provide context for the more recent results described. I focus strongly on the Ru/TsDPEN class of asymmetric transfer hydrogenation reactions originally reported by Noyori et al., together with examples of their applications, particularly to medically valuable target molecules. The recent developments in the area of highly active imine-reduction catalysts, notably those based on iridium, are also described in some detail. I discuss diastereoselective reduction methods as a route to the synthesis of chiral amines using transfer hydrogenation. The recent development of a methodology for positioning reduction complexes within chiral proteins, permitting the generation of asymmetric reduction products through a directed modification of the protein environment in a controlled manner, is also discussed. PMID:27573139

  10. Curvature, Hydrogen, Q

    SciTech Connect

    John Paul Wallace, Ganapati Rao Myneni, and Robert Pike

    2011-03-01

    The manufacturing of niobium SRF accelerator cavities is plagued by a mobile point defect, hydrogen. For efficient accelerator operation, niobium must function at both high electric and magnetic fields, and is compromised if magnetic impurities are located in the surface regions of the material. The finding that trace hydrogen in niobium can produce structures with magnetic properties is a feature that is not acceptable for a high performance cavity. X-ray diffraction has proved to be the key tool in assessing irreversible process damage to the niobium substrate. In future generations of accelerators, niobium will actually be merely the substrate for more effective superconductors that will allow for more efficient operation. The substrate analogy to the silicon wafer industry is useful since for niobium it may be possible to avoid some of the mistakes made in silicon technology. Because hydrogen attacks niobium on a number of different size scales, there is an inherent complexity in the trouble sources. There are also features in cavity design that are benign, such as local curvature considerations, requiring a fully non symmetric analysis of current flow to be appreciated.

  11. Hydrogen Fuel Pilot Plant and Hydrogen ICE Vehicle Testing

    SciTech Connect

    J. Francfort

    2005-03-01

    The U.S. Department Energy's Advanced Vehicle Testing Activity (AVTA) teamed with Electric Transportation Applications (ETA) and Arizona Public Service (APS) to develop the APS Alternative Fuel (Hydrogen) Pilot Plant that produces and compresses hydrogen on site through an electrolysis process by operating a PEM fuel cell in reverse; natural gas is also compressed onsite. The Pilot Plant dispenses 100% hydrogen, 15 to 50% blends of hydrogen and compressed natural gas (H/CNG), and 100% CNG via a credit card billing system at pressures up to 5,000 psi. Thirty internal combustion engine (ICE) vehicles (including Daimler Chrysler, Ford and General Motors vehicles) are operating on 100% hydrogen and 15 to 50% H/CNG blends. Since the Pilot Plant started operating in June 2002, they hydrogen and H/CNG ICE vehicels have accumulated 250,000 test miles.

  12. Hydrogen technology: Foreign, change 1

    NASA Astrophysics Data System (ADS)

    Busi, J. D.; Greenbaum, P.

    1980-04-01

    Hydrogen is both a promising medium for the efficient storage and transmission of energy and a potential alternate fuel. Hydrogen is not a primary energy source, however, since its production is dependent upon other energy sources (thermal, electrical, and radiant). To be practicable as a fuel, hydrogen must be produced in bulk quantities with a standardized purity that will satisfy consumer specifications. In addition, improved distribution systems must make hydrogen widely available to military, industrial, and domestic consumers if the successful evolution of a hydrogen economy is to occur. The greatest potential military impact of hydrogen lies in its use as an aviation fuel. Because of its high specific energy (124 kJ/kg--2.7 times greater than conventional aviation fuels), hydrogen has potential use as a fuel for subsonic transports, supersonic aircraft, and helicopters; however, safety measures, logistics, and storage and handling systems must be developed and standardized before this capability can be achieved. Initial experimental use of hydrogen in military aircraft may occur in the 1980s. A followup conversion and modification of aircraft and airports to hydrogen will require an additional 10 to 15 years. Secondary military interests include the use of hydrogen fuel cells for portable and transportable power generation, and its use as a propellant in aerospace applications.

  13. Photoinduced hydrogen-bonding dynamics.

    PubMed

    Chu, Tian-Shu; Xu, Jinmei

    2016-09-01

    Hydrogen bonding dynamics has received extensive research attention in recent years due to the significant advances in femtolaser spectroscopy experiments and quantum chemistry calculations. Usually, photoexcitation would cause changes in the hydrogen bonding formed through the interaction between hydrogen donor and acceptor molecules on their ground electronic states, and such transient strengthening or weakening of hydrogen bonding could be crucial for the photophysical transformations and the subsequent photochemical reactions that occurred on a time scale from tens of femtosecond to a few nanoseconds. In this article, we review the combined experimental and theoretical studies focusing on the ultrafast electronic and vibrational hydrogen bonding dynamics. Through these studies, new mechanisms and proposals and common rules have been put forward to advance our understanding of the hydrogen bondings dynamics in a variety of important photoinduced phenomena like photosynthesis, dual fluorescence emission, rotational reorientation, excited-state proton transfer and charge transfer processes, chemosensor fluorescence sensing, rearrangements of the hydrogen-bond network including forming and breaking hydrogen bond in water. Graphical Abstract We review the recent advances on exploring the photoinduced hydrogen bonding dynamics in solutions through a joint approach of laser spectroscopy and theoretical calculation. The reviewed studies have put forward a new mechanism, new proposal, and new rule for a variety of photoinduced phenomena such as photosynthesis, dual fluorescence emission, rotational reorientation, excited-state proton transfer and charge transfer, chemosensor fluorescence sensing, and rearrangements of the hydrogen-bond network in water. PMID:27491849

  14. Biomimetic Production of Hydrogen

    NASA Astrophysics Data System (ADS)

    Gust, Devens

    2004-03-01

    The basic reaction for hydrogen generation is formation of molecular hydrogen from two electrons and two protons. Although there are many possible sources for the protons and electrons, and a variety of mechanisms for providing the requisite energy for hydrogen synthesis, the most abundant and readily available source of protons and electrons is water, and the most attractive source of energy for powering the process is sunlight. Not surprisingly, living systems have evolved to take advantage of these sources for materials and energy. Thus, biology provides paradigms for carrying out the reactions necessary for hydrogen production. Photosynthesis in green plants uses sunlight as the source of energy for the oxidation of water to give molecular oxygen, protons, and reduction potential. Some photosynthetic organisms are capable of using this reduction potential, in the form of the reduced redox protein ferredoxin, to reduce protons and produce molecular hydrogen via the action of an hydrogenase enzyme. A variety of other organisms metabolize the reduced carbon compounds that are ultimately the major products of photosynthesis to produce molecular hydrogen. These facts suggest that it might be possible to use light energy to make molecular hydrogen via biomimetic constructs that employ principles similar to those used by natural organisms, or perhaps with hybrid "bionic" systems that combine biomimetic materials with natural enzymes. It is now possible to construct artificial photosynthetic systems that mimic some of the major steps in the natural process.(1) Artificial antennas based on porphyrins, carotenoids and other chromophores absorb light at various wavelengths in the solar spectrum and transfer the harvested excitation energy to artificial photosynthetic reaction centers.(2) In these centers, photoinduced electron transfer uses the energy from light to move an electron from a donor to an acceptor moiety, generating a high-energy charge-separated state

  15. Hydrogen energy for tomorrow: Advanced hydrogen production technologies

    SciTech Connect

    1995-08-01

    The future vision for hydrogen is that it will be cost-effectively produced from renewable energy sources and made available for widespread use as an energy carrier and a fuel. Hydrogen can be produced from water and when burned as a fuel, or converted to electricity, joins with oxygen to again form water. It is a clean, sustainable resource with many potential applications, including generating electricity, heating homes and offices, and fueling surface and air transportation. To achieve this vision, researchers must develop advanced technologies to produce hydrogen at costs competitive with fossil fuels, using sustainable sources. Hydrogen is now produced primarily by steam reforming of natural gas. For applications requiring extremely pure hydrogen, production is done by electrolysis. This is a relatively expensive process that uses electric current to dissociate, or split, water into its hydrogen and oxygen components. Technologies with the best potential for producing hydrogen to meet future demand fall into three general process categories: photobiological, photoelectrochemical, and thermochemical. Photobiological and photoelectrochemical processes generally use sunlight to split water into hydrogen and oxygen. Thermochemical processes, including gasification and pyrolysis systems, use heat to produce hydrogen from sources such as biomass and solid waste.

  16. Hydrogen-enriched fuels

    SciTech Connect

    Roser, R.

    1998-08-01

    NRG Technologies, Inc. is attempting to develop hardware and infrastructure that will allow mixtures of hydrogen and conventional fuels to become viable alternatives to conventional fuels alone. This commercialization can be successful if the authors are able to achieve exhaust emission levels of less than 0.03 g/kw-hr NOx and CO; and 0.15 g/kw-hr NMHC at full engine power without the use of exhaust catalysts. The major barriers to achieving these goals are that the lean burn regimes required to meet exhaust emissions goals reduce engine output substantially and tend to exhibit higher-than-normal total hydrocarbon emissions. Also, hydrogen addition to conventional fuels increases fuel cost, and reduces both vehicle range and engine output power. Maintaining low emissions during transient driving cycles has not been demonstrated. A three year test plan has been developed to perform the investigations into the issues described above. During this initial year of funding research has progressed in the following areas: (a) a cost effective single-cylinder research platform was constructed; (b) exhaust gas speciation was performed to characterize the nature of hydrocarbon emissions from hydrogen-enriched natural gas fuels; (c) three H{sub 2}/CH{sub 4} fuel compositions were analyzed using spark timing and equivalence ratio sweeping procedures and finally; (d) a full size pick-up truck platform was converted to run on HCNG fuels. The testing performed in year one of the three year plan represents a baseline from which to assess options for overcoming the stated barriers to success.

  17. Hydrogen arcjet technology

    NASA Technical Reports Server (NTRS)

    Sankovic, John M.; Hamley, John A.; Haag, Thomas W.; Sarmiento, Charles J.; Curran, Francis M.

    1991-01-01

    During the 1960's, a substantial research effort was centered on the development of arcjets for space propulsion applications. The majority of the work was at the 30 kW power level with some work at 1-2 kW. At the end of the research effort, the hydrogen arcjet had demonstrated over 700 hours of life in a continuous endurance test at 30 kW, at a specific impulse over 1000 s, and at an efficiency of 0.41. Another high power design demonstrated 500 h life with an efficiency of over 0.50 at the same specific impulse and power levels. At lower power levels, a life of 150 hours was demonstrated at 2 kW with an efficiency of 0.31 and a specific impulse of 935 s. Lack of a space power source hindered arcjet acceptance and research ceased. Over three decades after the first research began, renewed interest exists for hydrogen arcjets. The new approach includes concurrent development of the power processing technology with the arcjet thruster. Performance data were recently obtained over a power range of 0.3-30 kW. The 2 kW performance has been repeated; however, the present high power performance is lower than that obtained in the 1960's at 30 kW, and lifetimes of present thrusters have not yet been demonstrated. Laboratory power processing units have been developed and operated with hydrogen arcjets for the 0.1 kW to 5 kW power range. A 10 kW power processing unit is under development and has been operated at design power into a resistive load.

  18. Hydrogen from renewable resources research

    SciTech Connect

    Takahashi, P.K.; McKinley, K.R.

    1990-07-01

    In 1986 the Hawaii Natural Energy Institute (HNEI) and the Florida Solar Energy Center (FSEC) were contracted by the Solar Energy Research Institute (SERI) to conduct an assessment of hydrogen production technologies and economic feasibilities of the production and use of hydrogen from renewable resources. In the 1989/90 period all monies were directed toward research and development with an emphasis on integration of tasks, focusing on two important issues, production and storage. The current year's efforts consisted of four tasks, one task containing three subtasks: Hydrogen Production by Gasification of Glucose and Wet Biomass in Supercritical Water; Photoelectrochemical Production of Hydrogen; Photoemission and Photoluminescence Studies of Catalyzed Photoelectrode Surfaces for Hydrogen Production; Solar Energy Chemical Conversion by Means of Photoelectrochemical (PEC) Methods Using Coated Silicon Electrodes; Assessment of Impedance Spectroscopy Methods for Evaluation of Semiconductor-Electrolyte Interfaces; Solar Energy Conversion with Cyanobacteria; Nonclassical Polyhydride Metal Complexes as Hydrogen Storage Materials. 61 refs., 22 figs., 11 tabs.

  19. Hydrogen ICE Vehicle Testing Activities

    SciTech Connect

    J. Francfort; D. Karner

    2006-04-01

    The Advanced Vehicle Testing Activity teamed with Electric Transportation Applications and Arizona Public Service to develop and monitor the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant. The Pilot Plant provides 100% hydrogen, and hydrogen and compressed natural gas (H/CNG)-blended fuels for the evaluation of hydrogen and H/CNG internal combustion engine (ICE) vehicles in controlled and fleet testing environments. Since June 2002, twenty hydrogen and H/CNG vehicles have accumulated 300,000 test miles and 5,700 fueling events. The AVTA is part of the Department of Energy’s FreedomCAR and Vehicle Technologies Program. These testing activities are managed by the Idaho National Laboratory. This paper discusses the Pilot Plant design and monitoring, and hydrogen ICE vehicle testing methods and results.

  20. Liquid Hydrogen Absorber for MICE

    SciTech Connect

    Ishimoto, S.; Suzuki, S.; Yoshida, M.; Green, Michael A.; Kuno, Y.; Lau, Wing

    2010-05-30

    Liquid hydrogen absorbers for the Muon Ionization Cooling Experiment (MICE) have been developed, and the first absorber has been tested at KEK. In the preliminary test at KEK we have successfully filled the absorber with {approx}2 liters of liquid hydrogen. The measured hydrogen condensation speed was 2.5 liters/day at 1.0 bar. No hydrogen leakage to vacuum was found between 300 K and 20 K. The MICE experiment includes three AFC (absorber focusing coil) modules, each containing a 21 liter liquid hydrogen absorber made of aluminum. The AFC module has safety windows to separate its vacuum from that of neighboring modules. Liquid hydrogen is supplied from a cryocooler with cooling power 1.5 W at 4.2 K. The first absorber will be assembled in the AFC module and installed in MICE at RAL.

  1. Hydrogen desorption kinetics for aqueous hydrogen fluoride and remote hydrogen plasma processed silicon (001) surfaces

    SciTech Connect

    King, Sean W. Davis, Robert F.; Carter, Richard J.; Schneider, Thomas P.; Nemanich, Robert J.

    2015-09-15

    The desorption kinetics of molecular hydrogen (H{sub 2}) from silicon (001) surfaces exposed to aqueous hydrogen fluoride and remote hydrogen plasmas were examined using temperature programmed desorption. Multiple H{sub 2} desorption states were observed and attributed to surface monohydride (SiH), di/trihydride (SiH{sub 2/3}), and hydroxide (SiOH) species, subsurface hydrogen trapped at defects, and hydrogen evolved during the desorption of surface oxides. The observed surface hydride species were dependent on the surface temperature during hydrogen plasma exposure with mono, di, and trihydride species being observed after low temperature exposure (150 °C), while predominantly monohydride species were observed after higher temperature exposure (450 °C). The ratio of surface versus subsurface H{sub 2} desorption was also found to be dependent on the substrate temperature with 150 °C remote hydrogen plasma exposure generally leading to more H{sub 2} evolved from subsurface states and 450 °C exposure leading to more H{sub 2} desorption from surface SiH{sub x} species. Additional surface desorption states were observed, which were attributed to H{sub 2} desorption from Si (111) facets formed as a result of surface etching by the remote hydrogen plasma or aqueous hydrogen fluoride treatment. The kinetics of surface H{sub 2} desorption were found to be in excellent agreement with prior investigations of silicon surfaces exposed to thermally generated atomic hydrogen.

  2. System for Hydrogen Sensing

    NASA Technical Reports Server (NTRS)

    Lin, Jenshan; Norton, David P.; Pearton, Stephen J.; Ren, Fan

    2010-01-01

    A low-power, wireless gas-sensing system is designed to safeguard the apparatus to which it is attached, as well as associated personnel. It also ensures the efficiency and operational integrity of the hydrogen-powered apparatus. This sensing system can be operated with lower power consumption (less than 30 nanowatts), but still has a fast response. The detecting signal can be wirelessly transmitted to remote locations, or can be posted on the Web. This system can also be operated by harvesting energy.

  3. Hydrogen storage development

    SciTech Connect

    Thomas, G.J.; Guthrie, S.E.

    1998-08-01

    A summary of the hydride development efforts for the current program year (FY98) are presented here. The Mg-Al-Zn alloy system was studied at low Zn levels (2--4 wt%) and midrange Al contents (40--60 wt%). Higher plateau pressures were found with Al and Zn alloying in Mg and, furthermore, it was found that the hydrogen desorption kinetics were significantly improved with small additions of Zn. Results are also shown here for a detailed study of the low temperature properties of Mg{sub 2}NiH{sub 4}, and a comparison made between conventional melt cast alloy and the vapor process material.

  4. Thermochemical generation of hydrogen

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.; Petersen, G. R. (Inventor)

    1982-01-01

    The direct fluid contact heat exchange with H2SO4 at about 330 C prior to high temperature decomposition at about 830 C in the oxygen release step of several thermochemical cycles for splitting water into hydrogen and oxygen provides higher heat transfer rates, savings in energy and permits use of cast vessels rather than expensive forged alloy indirect heat exchangers. Among several candidate perfluorocarbon liquids tested, only perfluoropropylene oxide polymers having a degree of polymerization from about 10 to 60 were chemically stable, had low miscibility and vapor pressure when tested with sulfuric acid at temperatures from 300 C to 400 C.

  5. Hydrogen film cooling investigation

    NASA Technical Reports Server (NTRS)

    Rousar, D. C.; Ewen, R. L.

    1973-01-01

    Effects of flow turning, flow acceleration, and supersonic flow on film cooling were determined experimentally and correlated in terms of an entrainment film cooling model. Experiments were conducted using thin walled metal test sections, hot nitrogen mainstream gas, and ambient hydrogen or nitrogen as film coolants. The entrainment film cooling model relates film cooling effectiveness to the amount of mainstream gases entrained with the film coolant in a mixing layer. The experimental apparatus and the analytical model used are described in detail and correlations for the entrainment fraction and film coolant-to-wall heat transfer coefficient are presented.

  6. Hydrogen aircraft technology

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.

    1991-01-01

    A comprehensive evaluation is conducted of the technology development status, economics, commercial feasibility, and infrastructural requirements of LH2-fueled aircraft, with additional consideration of hydrogen production, liquefaction, and cryostorage methods. Attention is given to the effects of LH2 fuel cryotank accommodation on the configurations of prospective commercial transports and military airlifters, SSTs, and HSTs, as well as to the use of the plentiful heatsink capacity of LH2 for innovative propulsion cycles' performance maximization. State-of-the-art materials and structural design principles for integral cryotank implementation are noted, as are airport requirements and safety and environmental considerations.

  7. National Hydrogen Roadmap Workshop Proceedings

    SciTech Connect

    2002-04-01

    This document summarizes the presentations and suggestions put forth by officials, industry experts and policymakers in their efforts to come together to develop a roadmap for America''s clean energy future and outline the key barriers and needs to achieve the hydrogen vision. The National Hydrogen Roadmap Workshop was held April 2-3, 2002. These proceedings were compiled into a formal report, The National Hydrogen Energy Roadmap, which is also available online.

  8. Complex hydrides for hydrogen storage

    DOEpatents

    Zidan, Ragaiy

    2006-08-22

    A hydrogen storage material and process of forming the material is provided in which complex hydrides are combined under conditions of elevated temperatures and/or elevated temperature and pressure with a titanium metal such as titanium butoxide. The resulting fused product exhibits hydrogen desorption kinetics having a first hydrogen release point which occurs at normal atmospheres and at a temperature between 50.degree. C. and 90.degree. C.

  9. Hydrogen production costs -- A survey

    SciTech Connect

    Basye, L.; Swaminathan, S.

    1997-12-04

    Hydrogen, produced using renewable resources, is an environmentally benign energy carrier that will play a vital role in sustainable energy systems. The US Department of Energy (DOE) supports the development of cost-effective technologies for hydrogen production, storage, and utilization to facilitate the introduction of hydrogen in the energy infrastructure. International interest in hydrogen as an energy carrier is high. Research, development, and demonstration (RD and D) of hydrogen energy systems are in progress in many countries. Annex 11 of the International Energy Agency (IEA) facilitates member countries to collaborate on hydrogen RD and D projects. The United States is a member of Annex 11, and the US representative is the Program Manager of the DOE Hydrogen R and D Program. The Executive Committee of the Hydrogen Implementing Agreement in its June 1997 meeting decided to review the production costs of hydrogen via the currently commercially available processes. This report compiles that data. The methods of production are steam reforming, partial oxidation, gasification, pyrolysis, electrolysis, photochemical, photobiological, and photoelectrochemical reactions.

  10. Hydrogen Technology Research at SRNL

    SciTech Connect

    Danko, E.

    2011-02-13

    The Savannah River National Laboratory (SRNL) is a U.S. Department of Energy research and development laboratory located at the Savannah River Site (SRS) near Aiken, South Carolina. SRNL has over 50 years of experience in developing and applying hydrogen technology, both through its national defense activities as well as through its recent activities with the DOE Hydrogen Programs. The hydrogen technical staff at SRNL comprises over 90 scientists, engineers and technologists. SRNL has ongoing R&D initiatives in a variety of hydrogen storage areas, including metal hydrides, complex hydrides, chemical hydrides and carbon nanotubes. SRNL has over 25 years of experience in metal hydrides and solid-state hydrogen storage research, development and demonstration. As part of its defense mission at SRS, SRNL developed, designed, demonstrated and provides ongoing technical support for the largest hydrogen processing facility in the world based on the integrated use of metal hydrides for hydrogen storage, separation, and compression. The SRNL has been active in teaming with academic and industrial partners to advance hydrogen technology. A primary focus of SRNL's R&D has been hydrogen storage using metal and complex hydrides. SRNL and its Hydrogen Technology Research Laboratory have been very successful in leveraging their defense infrastructure, capabilities and investments to help solve this country's energy problems. SRNL has participated in projects to convert public transit and utility vehicles for operation using hydrogen fuel. Two major projects include the H2Fuel Bus and an Industrial Fuel Cell Vehicle (IFCV) also known as the GATOR{trademark}. Both of these projects were funded by DOE and cost shared by industry. These are discussed further in Section 3.0, Demonstration Projects. In addition to metal hydrides technology, the SRNL Hydrogen group has done extensive R&D in other hydrogen technologies, including membrane filters for H2 separation, doped carbon nanotubes

  11. Hydrogen embrittlement of structural steels.

    SciTech Connect

    Somerday, Brian P.

    2010-06-01

    Carbon-manganese steels are candidates for the structural materials in hydrogen gas pipelines, however it is well known that these steels are susceptible to hydrogen embrittlement. Decades of research and industrial experience have established that hydrogen embrittlement compromises the structural integrity of steel components. This experience has also helped identify the failure modes that can operate in hydrogen containment structures. As a result, there are tangible ideas for managing hydrogen embrittement in steels and quantifying safety margins for steel hydrogen containment structures. For example, fatigue crack growth aided by hydrogen embrittlement is a key failure mode for steel hydrogen containment structures subjected to pressure cycling. Applying appropriate structural integrity models coupled with measurement of relevant material properties allows quantification of safety margins against fatigue crack growth in hydrogen containment structures. Furthermore, application of these structural integrity models is aided by the development of micromechanics models, which provide important insights such as the hydrogen distribution near defects in steel structures. The principal objective of this project is to enable application of structural integrity models to steel hydrogen pipelines. The new American Society of Mechanical Engineers (ASME) B31.12 design code for hydrogen pipelines includes a fracture mechanics-based design option, which requires material property inputs such as the threshold for rapid cracking and fatigue crack growth rate under cyclic loading. Thus, one focus of this project is to measure the rapid-cracking thresholds and fatigue crack growth rates of line pipe steels in high-pressure hydrogen gas. These properties must be measured for the base materials but more importantly for the welds, which are likely to be most vulnerable to hydrogen embrittlement. The measured properties can be evaluated by predicting the performance of the pipeline

  12. Hydrogen fracture toughness tester completion

    SciTech Connect

    Morgan, Michael J.

    2015-09-30

    The Hydrogen Fracture Toughness Tester (HFTT) is a mechanical testing machine designed for conducting fracture mechanics tests on materials in high-pressure hydrogen gas. The tester is needed for evaluating the effects of hydrogen on the cracking properties of tritium reservoir materials. It consists of an Instron Model 8862 Electromechanical Test Frame; an Autoclave Engineering Pressure Vessel, an Electric Potential Drop Crack Length Measurement System, associated computer control and data acquisition systems, and a high-pressure hydrogen gas manifold and handling system.

  13. Catalyzed borohydrides for hydrogen storage

    DOEpatents

    Au, Ming

    2012-02-28

    A hydrogen storage material and process is provided in which alkali borohydride materials are created which contain effective amounts of catalyst(s) which include transition metal oxides, halides, and chlorides of titanium, zirconium, tin, and combinations of the various catalysts. When the catalysts are added to an alkali borodydride such as a lithium borohydride, the initial hydrogen release point of the resulting mixture is substantially lowered. Additionally, the hydrogen storage material may be rehydrided with weight percent values of hydrogen at least about 9 percent.

  14. Hydrogen storage in carbon nanotubes.

    PubMed

    Hirscher, M; Becher, M

    2003-01-01

    The article gives a comprehensive overview of hydrogen storage in carbon nanostructures, including experimental results and theoretical calculations. Soon after the discovery of carbon nanotubes in 1991, different research groups succeeded in filling carbon nanotubes with some elements, and, therefore, the question arose of filling carbon nanotubes with hydrogen by possibly using new effects such as nano-capillarity. Subsequently, very promising experiments claiming high hydrogen storage capacities in different carbon nanostructures initiated enormous research activity. Hydrogen storage capacities have been reported that exceed the benchmark for automotive application of 6.5 wt% set by the U.S. Department of Energy. However, the experimental data obtained with different methods for various carbon nanostructures show an extreme scatter. Classical calculations based on physisorption of hydrogen molecules could not explain the high storage capacities measured at ambient temperature, and, assuming chemisorption of hydrogen atoms, hydrogen release requires temperatures too high for technical applications. Up to now, only a few calculations and experiments indicate the possibility of an intermediate binding energy. Recently, serious doubt has arisen in relation to several key experiments, causing considerable controversy. Furthermore, high hydrogen storage capacities measured for carbon nanofibers did not survive cross-checking in different laboratories. Therefore, in light of today's knowledge, it is becoming less likely that at moderate pressures around room temperature carbon nanostructures can store the amount of hydrogen required for automotive applications. PMID:12908227

  15. Carbon tetrachloride-mediated lipid peroxidation induces early mitochondrial alterations in mouse liver.

    PubMed

    Knockaert, Laetitia; Berson, Alain; Ribault, Catherine; Prost, Pierre-Emmanuel; Fautrel, Alain; Pajaud, Julie; Lepage, Sylvie; Lucas-Clerc, Catherine; Bégué, Jean-Marc; Fromenty, Bernard; Robin, Marie-Anne

    2012-03-01

    Although carbon tetrachloride (CCl(4))-induced acute and chronic hepatotoxicity have been extensively studied, little is known about the very early in vivo effects of this organic solvent on oxidative stress and mitochondrial function. In this study, mice were treated with CCl(4) (1.5 ml/kg ie 2.38 g/kg) and parameters related to liver damage, lipid peroxidation, stress/defense and mitochondria were studied 3 h later. Some CCl(4)-intoxicated mice were also pretreated with the cytochrome P450 2E1 inhibitor diethyldithiocarbamate or the antioxidants Trolox C and dehydroepiandrosterone. CCl(4) induced a moderate elevation of aminotransferases, swelling of centrilobular hepatocytes, lipid peroxidation, reduction of cytochrome P4502E1 mRNA levels and a massive increase in mRNA expression of heme oxygenase-1 and heat shock protein 70. Moreover, CCl(4) intoxication induced a severe decrease of mitochondrial respiratory chain complex IV activity, mitochondrial DNA depletion and damage as well as ultrastructural alterations. Whereas DDTC totally or partially prevented all these hepatic toxic events, both antioxidants protected only against liver lipid peroxidation and mitochondrial damage. Taken together, our results suggest that lipid peroxidation is primarily implicated in CCl(4)-induced early mitochondrial injury. However, lipid peroxidation-independent mechanisms seem to be involved in CCl(4)-induced early hepatocyte swelling and changes in expression of stress/defense-related genes. Antioxidant therapy may not be an efficient strategy to block early liver damage after CCl(4) intoxication. PMID:22157718

  16. Slush Hydrogen Technology Program

    NASA Technical Reports Server (NTRS)

    Cady, Edwin C.

    1994-01-01

    A slush hydrogen (SH2) technology facility (STF) was designed, fabricated, and assembled by a contractor team of McDonnell Douglas Aerospace (MDA), Martin Marietta Aerospace Group (MMAG), and Air Products and Chemicals, Inc. (APCI). The STF consists of a slush generator which uses the freeze-thaw production process, a vacuum subsystem, a test tank which simulates the NASP vehicle, a triple point hydrogen receiver tank, a transfer subsystem, a sample bottle, a pressurization system, and a complete instrumentation and control subsystem. The STF was fabricated, checked-out, and made ready for testing under this contract. The actual SH2 testing was performed under the NASP consortium following NASP teaming. Pre-STF testing verified SH2 production methods, validated special SH2 instrumentation, and performed limited SH2 pressurization and expulsion tests which demonstrated the need for gaseous helium pre-pressurized of SH2 to control pressure collapse. The STF represents cutting-edge technology development by an effective Government-Industry team under very tight cost and schedule constraints.

  17. Solar Hydrogen Production

    SciTech Connect

    Koval, C.; Sutin, N.; Turner, J.

    1996-09-01

    This panel addressed different methods for the photoassisted dissociation of water into its component parts, hydrogen and oxygen. Systems considered include PV-electrolysis, photoelectrochemical cells, and transition-metal based microheterogeneous and homogeneous systems. While none of the systems for water splitting appear economically viable at the present time, the panel identified areas of basic research that could increase the overall efficiency and decrease the costs. Common to all the areas considered was the underlying belief that the water-to-hydrogen half reaction is reasonably well characterized, while the four-electron oxidation of water-to-oxygen is less well understood and represents a significant energy loss. For electrolysis, research in electrocatalysis to reduce overvoltage losses was identified as a key area for increased efficiency. Non-noble metal catalysts and less expensive components would reduce capital costs. While potentially offering higher efficiencies and lower costs, photoelectrochemical-based direct conversion systems undergo corrosion reactions and often have poor energetics for the water reaction. Research is needed to understand the factors that control the interfacial energetics and the photoinduced corrosion. Multi-photon devices were identified as promising systems for high efficiency conversion.

  18. Fully Hydrogenated Beryllium Nanoclusters.

    PubMed

    Koukaras, Emmanuel N; Sgouros, Aris P; Sigalas, Michael M

    2016-03-01

    We present the ground state and energetically low structures of BenH2n nanoclusters as predicted using density functional theory (DFT) and employing the M06 meta-hybrid exchange-correlation functional. Results using the M06 functional are benchmarked against high accuracy coupled-cluster CCSD(T) and found to be in excellent agreement. For small values of n, the linear or polymeric form is the lowest energy geometry, while for sizes larger, n > 9 ring type and link type structures are the energetically lowest configurations. This trend has also been observed through ab initio molecular dynamics (AIMD) simulations at finite temperatures. In addition to the binding energies of the structures we report on polymerization energies, Be-H bond energies with respect to coordination details, hydrogen desorption energies of saturated and oversaturated species, as well as computed infrared spectra of all the ground state and energetically low lying structures presented. Furthermore, we find that the saturated polymeric forms of the nanoclusters cannot retain molecular hydrogen, in contrast to what is expected when zero point energy corrections are not taken into account. PMID:26906563

  19. Hydrogen iodide decomposition

    DOEpatents

    O'Keefe, Dennis R.; Norman, John H.

    1983-01-01

    Liquid hydrogen iodide is decomposed to form hydrogen and iodine in the presence of water using a soluble catalyst. Decomposition is carried out at a temperature between about 350.degree. K. and about 525.degree. K. and at a corresponding pressure between about 25 and about 300 atmospheres in the presence of an aqueous solution which acts as a carrier for the homogeneous catalyst. Various halides of the platinum group metals, particularly Pd, Rh and Pt, are used, particularly the chlorides and iodides which exhibit good solubility. After separation of the H.sub.2, the stream from the decomposer is countercurrently extracted with nearly dry HI to remove I.sub.2. The wet phase contains most of the catalyst and is recycled directly to the decomposition step. The catalyst in the remaining almost dry HI-I.sub.2 phase is then extracted into a wet phase which is also recycled. The catalyst-free HI-I.sub.2 phase is finally distilled to separate the HI and I.sub.2. The HI is recycled to the reactor; the I.sub.2 is returned to a reactor operating in accordance with the Bunsen equation to create more HI.

  20. Advanced Hydrogen Turbine Development

    SciTech Connect

    Joesph Fadok

    2008-01-01

    Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the

  1. Electrochemical Hydrogen Compressor

    SciTech Connect

    David P. Bloomfield; Brian S. MacKenzie

    2006-05-01

    The Electrochemical Hydrogen Compressor EHC was evaluated against DOE applications for compressing hydrogen at automobile filling stations, in future hydrogen pipelines and as a commercial replacement for conventional diaphragm hydrogen compressors. It was also evaluated as a modular replacement for the compressors used in petrochemical refineries. If the EHC can be made inexpensive, reliable and long lived then it can satisfy all these applications save pipelines where the requirements for platinum catalyst exceeds the annual world production. The research performed did not completely investigate Molybdenum as a hydrogen anode or cathode, it did show that photoetched 316 stainless steel is inadequate for an EHC. It also showed that: molybdenum bipolar plates, photochemical etching processes, and Gortex Teflon seals are too costly for a commercial EHC. The use of carbon paper in combination with a perforated thin metal electrode demonstrated adequate anode support strength, but is suspect in promoting galvanic corrosion. The nature of the corrosion mechanisms are not well understood, but locally high potentials within the unit cell package are probably involved. The program produced a design with an extraordinary high cell pitch, and a very low part count. This is one of the promising aspects of the redesigned EHC. The development and successful demonstration of the hydraulic cathode is also important. The problem of corrosion resistant metal bipolar plates is vital to the development of an inexpensive, commercial PEM fuel cell. Our research suggests that there is more to the corrosion process in fuel cells and electrochemical compressors than simple, steady state, galvanic stability. It is an important area for scientific investigation. The experiments and analysis conducted lead to several recommended future research directions. First, we need a better understanding of the corrosion mechanisms involved. The diagnosis of experimental cells with titration to

  2. Hydrogen purifier module with membrane support

    DOEpatents

    A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

    2012-07-24

    A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

  3. Metal salt catalysts for enhancing hydrogen spillover

    DOEpatents

    Yang, Ralph T; Wang, Yuhe

    2013-04-23

    A composition for hydrogen storage includes a receptor, a hydrogen dissociating metal doped on the receptor, and a metal salt doped on the receptor. The hydrogen dissociating metal is configured to spill over hydrogen to the receptor, and the metal salt is configured to increase a rate of the spill over of the hydrogen to the receptor.

  4. Hydrogen adsorption of ruthenium: Isosteres of solubility of adsorbed hydrogen

    SciTech Connect

    Zaginaichenko, S.Y.; Matysina, Z.A.; Schur, D.V.; Pishuk, V.K.

    1998-12-31

    The theoretical investigation of solubility isosteres of adsorbed hydrogen has been performed for free face (0001) of crystals with hexagonal close-packed lattice A3 of Mg type. The face free energy has been calculated and its dependence on temperature, pressure, hydrogen concentration and character of hydrogen atoms distribution over surface interstitial sites of different type has been defined. The equations of thermodynamic equilibrium and solubility of adsorbed hydrogen have been defined. The plots of isosteres in the region of phase transition from isotropic to anisotropic state have been constructed and it has been established that in anisotropic state the order in distribution of hydrogen atoms over interstitial sites of different type must become apparent. Comparison of the theoretical isosteres with experimental for ruthenium has been carried out, the isotropic-anisotropic state transition can stipulate a stepwise and break-like change in isosteres.

  5. Hydrogen and OUr Energy Future

    SciTech Connect

    Rick Tidball; Stu Knoke

    2009-03-01

    In 2003, President George W. Bush announced the Hydrogen Fuel Initiative to accelerate the research and development of hydrogen, fuel cell, and infrastructure technologies that would enable hydrogen fuel cell vehicles to reach the commercial market in the 2020 timeframe. The widespread use of hydrogen can reduce our dependence on imported oil and benefit the environment by reducing greenhouse gas emissions and criteria pollutant emissions that affect our air quality. The Energy Policy Act of 2005, passed by Congress and signed into law by President Bush on August 8, 2005, reinforces Federal government support for hydrogen and fuel cell technologies. Title VIII, also called the 'Spark M. Matsunaga Hydrogen Act of 2005' authorizes more than $3.2 billion for hydrogen and fuel cell activities intended to enable the commercial introduction of hydrogen fuel cell vehicles by 2020, consistent with the Hydrogen Fuel Initiative. Numerous other titles in the Act call for related tax and market incentives, new studies, collaboration with alternative fuels and renewable energy programs, and broadened demonstrations--clearly demonstrating the strong support among members of Congress for the development and use of hydrogen fuel cell technologies. In 2006, the President announced the Advanced Energy Initiative (AEI) to accelerate research on technologies with the potential to reduce near-term oil use in the transportation sector--batteries for hybrid vehicles and cellulosic ethanol--and advance activities under the Hydrogen Fuel Initiative. The AEI also supports research to reduce the cost of electricity production technologies in the stationary sector such as clean coal, nuclear energy, solar photovoltaics, and wind energy.

  6. Measurements of Hydrogen

    NASA Astrophysics Data System (ADS)

    Ashburn, John Robert

    1990-01-01

    The H(n = 3) density matrices for hydrogen atoms resulting from 20 to 150 keV protons on helium were measured. The technique consisted of applying electric fields in the collision region to Stark mix the field-free eigenstates of H atoms and measuring the Stokes parameters of the emitted Balmer-alpha radiation as a function of the electric field. The n = 3 density matrix with 14 independent parameters associated with the newly formed hydrogen atoms could be fit to the measured Balmer- alpha signals via multivariate regression. The theoretical signal responses used for the fit were determined by fully modeling the collision region and calculating the transition amplitudes of the Stark-mixed hydrogenic states. Significant improvements in the measuring apparatus and in the analysis associated with the fit of the density matrix to the optical signals have reduced systematic errors which were present in the previous investigation. The improvements include a modified optical system, which was automated and calibrated with a well defined viewing region. The performance of four different polarimeters was investigated with the optical system. Also, the background subtraction technique was improved with the addition of an automated gas handling system. Improvements were also implemented in the design of the electrodes which were used for the applied electric fields. Nonuniformities which were present in the electric field were determined by a numerical model and were incorporated into the analysis. The analysis which determined the theoretical signal responses was extensively modified and it was found that H(n = 4) cascade was the most critical limiting factor for the accuracy of the results. An agreement analysis which utilized Hotelling's T^2 statistic determined that smaller systematic errors do remain and that the results are less reproducible at the lower energies studied. However, the results were improved by combining and analyzing the axial and transverse field data

  7. Hydrogen: A Future Energy Mediator?

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1975

    1975-01-01

    Hydrogen may be the fuel to help the United States to a non fossil energy source. Although hydrogen may not be widely used as a fuel until after the turn of the century, special applications may become feasible in the short term. Costs, uses, safety, and production methods are discussed. (BT)

  8. Hydrogen-air ignition torch

    NASA Technical Reports Server (NTRS)

    Repas, G. A.

    1986-01-01

    The design and operation of a hydrogen-air ignition torch presently being used to burn off excess hydrogen that accumulates in the scrubber exhaust ducts of two rocket engine test facilities at the NASA Lewis Research Center in Cleveland, Ohio, is described.

  9. Recover and purify hydrogen economically

    SciTech Connect

    Mehra, Y.R.

    1987-01-01

    With continued processing of crudes having higher sulfur content and higher carbon-to-hydrogen ratio and stricter environmental regulations requiring lower sulfur content of products such as diesel fuel, the hydrogen demand is expected to grow. Even though a substantial portion of this increased demand will be met by steam reforming of light hydrocarbons and partial oxidation of heavy hydrocarbons, upgrading existing refinery off-gas streams is a viable alternative. Several processes are available for recovering hydrogen from off-gas streams. These processes include cryogenic separation, catalytic purification, pressure swing adsorption and membrane separation. The process selection depends upon many factors, including the desired hydrogen product purity, hydrogen recovery levels, the available pressure drop, pretreatment requirements, the off-gas composition, the impact of impurities remaining in hydrogen product and turndown capability of such a facility. A new selective solvent process which recovers hydrogen from refinery and petrochemical off-gas streams is the subject of this paper. This technology, known as the Mehra Process, was originally developed for recovering hydrocarbons from natural gas streams. However, this technology also offers another alternative to refiners for the recovery of high purity hydrogen from off-gas streams.

  10. Hydrogen Storage in Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Gilbert, Joseph; Gilbert, Matthew; Naab, Fabian; Savage, Lauren; Holland, Wayne; Duggan, Jerome; McDaniel, Floyd

    2004-10-01

    Hydrogen as a fuel source is an attractive, relatively clean alternative to fossil fuels. However, a major limitation in its use for the application of automobiles has been the requirement for an efficient hydrogen storage medium. Current hydrogen storage systems are: physical storage in high pressure tanks, metal hydride, and gas-on-solid absorption. However, these methods do not fulfill the Department of Energy's targeted requirements for a usable hydrogen storage capacity of 6.5 wt.%, operation near ambient temperature and pressure, quick extraction and refueling, reliability and reusability.Reports showing high capacity hydrogen storage in single-walled carbon nanotubes originally prompted great excitement in the field, but further research has shown conflicting results. Results for carbon nanostructures have ranged from less than 1 wt.% to 70 wt.%. The wide range of adsorption found in previous experiments results from the difficulty in measuring hydrogen in objects just nanometers in size. Most previous experiments relied on weight analysis and residual gas analysis to determine the amount of hydrogen being adsorbed by the CNTs. These differing results encouraged us to perform our own analysis on single-walled (SWNTs), double-walled (DWNTs), and multi-walled carbon nanotubes (MWNTs), as well as carbon fiber. We chose to utilize direct measurement of hydrogen in the materials using elastic recoil detection analysis (ERDA). This work was supported by the National Science Foundation's Research Experience for Undergraduates and the University of North Texas.

  11. Magnetic refrigerator for hydrogen liquefaction

    NASA Astrophysics Data System (ADS)

    Numazawa, T.; Kamiya, K.; Utaki, T.; Matsumoto, K.

    2014-07-01

    This paper reviews the status of magnetic refrigeration system for hydrogen liquefaction. There is no doubt that hydrogen is one of most important energy sources in the near future. In particular, liquid hydrogen can be utilized for infrastructure construction consisting of storage and transportation. When we compare the consuming energy of hydrogen liquefaction with high pressurized hydrogen gas, FOM must be larger than 0.57 for hydrogen liquefaction. Thus, we need to develop a highly efficient liquefaction method. Magnetic refrigeration using the magneto-caloric effect has potential to realize not only the higher liquefaction efficiency >50%, but also to be environmentally friendly and cost effective. Our hydrogen magnetic refrigeration system consists of Carnot cycle for liquefaction stage and AMR (active magnetic regenerator) cycle for precooling stages. For the Carnot cycle, we develop the high efficient system with >80% liquefaction efficiency by using the heat pipe. For the AMR cycle, we studied two kinds of displacer systems, which transferred the working fluid. We confirmed the AMR effect with the cooling temperature span of 12 K for 1.8 T of the magnetic field and 6 s of the cycle. By using the simulation, we estimate the efficiency of the hydrogen liquefaction plant for 10 kg/day. A FOM of 0.47 is obtained for operation temperature between 20 K and 77 K including LN2 work input.

  12. Effects of hydrogen on metals

    NASA Technical Reports Server (NTRS)

    Cataldo, C. E.

    1969-01-01

    Several rules to guide choice of materials, and methods of welding, electroplating, and heat treatment will provide a method for minimizing failures in storage tanks and related hardware. Failures are caused by high-pressure hydrogen effects, the formation of hydrides in titanium, and hydrogen absorption through various metals processing techniques.

  13. Hydrogen manufacturing using plasma reformers

    SciTech Connect

    Bromberg, L.; Cohn, D.R.; Rabinovich, A.; Hochgreb, S.; O`Brien, C.

    1996-10-01

    Manufacturing of hydrogen from hydrocarbon fuels is needed for a variety of applications. These applications include fuel cells used in stationary electric power production and in vehicular propulsion. Hydrogen can also be used for various combustion engine systems. There is a wide range of requirements on the capacity of the hydrogen manufacturing system, the purity of the hydrogen fuel, and capability for rapid response. The overall objectives of a hydrogen manufacturing facility are to operate with high availability at the lowest possible cost and to have minimal adverse environmental impact. Plasma technology has potential to significantly alleviate shortcomings of conventional means of manufacturing hydrogen. These shortcomings include cost and deterioration of catalysts; limitations on hydrogen production from heavy hydrocarbons; limitations on rapid response; and size and weight requirements. In addition, use of plasma technology could provide for a greater variety of operating modes; in particular the possibility of virtual elimination of CO{sub 2} production by pyrolytic operation. This mode of hydrogen production may be of increasing importance due to recent additional evidence of global warming.

  14. Hydrogen Technology Education Workshop Proceedings

    SciTech Connect

    2002-12-01

    This document outlines activities for educating key target audiences, as suggested by workshop participants. Held December 4-5, 2002, the Hydrogen Technology Education Workshop kicked off a new education effort coordinated by the Hydrogen, Fuel Cells, & Infrastructure Technologies Program of the Office of Energy Efficiency and Renewable Energy.

  15. Hydrogen technology survey: Thermophysical properties

    NASA Technical Reports Server (NTRS)

    Mccarty, R. D.

    1975-01-01

    The thermodynamic functions, transport properties, and physical properties of both liquid and gaseous hydrogen are presented. The low temperature regime is emphasized. The tabulation of the properties of normal hydrogen in both Si and engineering units is given along with the tabulation of parahydrogen.

  16. Hydrogen Embrittlement and Its Control in Hydrogen-Fueled Engine Systems

    NASA Technical Reports Server (NTRS)

    Chandler, W. T.

    1978-01-01

    The nature of hydrogen embrittlement by high pressure gaseous hydrogen is described and methods of designing SSME gaseous hydrogen systems, including techniques of hydrogen embrittlement prevention, are discussed. The effects of gaseous hydrogen environments are emphasized. Results of extensive investigations of gaseous hydrogen environments on metals conducted under the SSME program are presented.

  17. Advanced Hydrogen Turbine Development

    SciTech Connect

    Marra, John

    2015-09-30

    Under the sponsorship of the U.S. Department of Energy (DOE) National Energy Technology Laboratories, Siemens has completed the Advanced Hydrogen Turbine Development Program to develop an advanced gas turbine for incorporation into future coal-based Integrated Gasification Combined Cycle (IGCC) plants. All the scheduled DOE Milestones were completed and significant technical progress was made in the development of new technologies and concepts. Advanced computer simulations and modeling, as well as subscale, full scale laboratory, rig and engine testing were utilized to evaluate and select concepts for further development. Program Requirements of: A 3 to 5 percentage point improvement in overall plant combined cycle efficiency when compared to the reference baseline plant; 20 to 30 percent reduction in overall plant capital cost when compared to the reference baseline plant; and NOx emissions of 2 PPM out of the stack. were all met. The program was completed on schedule and within the allotted budget

  18. New Hydrogen Cryostat

    NASA Astrophysics Data System (ADS)

    Ueno, Tomohiro; Newman, Bonna; Johnson, Cort; Steinberger, Julia; vant, Kendra; Matos, Lia; Yi, Peng; Willmann, Lorenz; Kleppner, Daniel; Greytak, Thomas

    2003-05-01

    We are setting up a new dilution refrigerator for ultracold hydrogen experiments. The aims of the new fridge can be summerized as following: having more optical access, improving solid angle to a detector, having larger and colder condensate, and trapping Deuterium too. As the first step, we are implementing Anti-Helmholtz loading and ^3He buffer-gas cooling. To enhance H cooling, we are introducing other species such as Li, Na. After trapping atoms in the Anti-Helmholtz field, we transfer atoms to quadrupole field. We are planning to investigate the Li-H scattering lengths, H cooling process by Li, ultracold Li-H mixture, also trapped D and Li-D mixture in the quadrupole field. If time allows me to do, I would like to mention the sencond stage of the new fridge and H experiments.

  19. Metallization of fluid hydrogen

    SciTech Connect

    Nellis, W.J.; Louis, A.A.; Ashcroft, N.W.

    1997-05-14

    The electrical activity of liquid hydrogen has been measured at the high dynamic pressures, and temperatures that can be achieved with a reverberating shock wave. The resulting data are most naturally interpreted in terms of a continuous transition from a semiconducting to a metallic, largely diatomic fluid, the latter at 140 CPa, (ninefold compression) and 3000 K. While the fluid at these conditions resembles common liquid metals by the scale of its resistivity of 500 micro-ohm-cm, it differs by retaining a strong pairing character, and the precise mechanism by which a metallic state might be attained is still a matter of debate. Some evident possibilities include (i) physics of a largely one-body character, such as a band-overlap transition, (ii) physics of a strong-coupling or many-body character,such as a Mott-Hubbard transition, and (iii) process in which structural changes are paramount.

  20. Hydrogen production from solar energy

    NASA Technical Reports Server (NTRS)

    Eisenstadt, M. M.; Cox, K. E.

    1975-01-01

    Three alternatives for hydrogen production from solar energy have been analyzed on both efficiency and economic grounds. The analysis shows that the alternative using solar energy followed by thermochemical decomposition of water to produce hydrogen is the optimum one. The other schemes considered were the direct conversion of solar energy to electricity by silicon cells and water electrolysis, and the use of solar energy to power a vapor cycle followed by electrical generation and electrolysis. The capital cost of hydrogen via the thermochemical alternative was estimated at $575/kW of hydrogen output or $3.15/million Btu. Although this cost appears high when compared with hydrogen from other primary energy sources or from fossil fuel, environmental and social costs which favor solar energy may prove this scheme feasible in the future.

  1. Hydrogen as an energy medium

    NASA Technical Reports Server (NTRS)

    Cox, K. E.

    1976-01-01

    Coal, though abundant in certain geographical locations of the USA poses environmental problems associated with its mining and combustion. Also, nuclear fission energy appears to have problems regarding safety and radioactive waste disposal that are as yet unresolved. The paper discusses hydrogen use and market projection along with energy sources for hydrogen production. Particular attention is given to hydrogen production technology as related to electrolysis and thermochemical water decomposition. Economics of hydrogen will ultimately be determined by the price and availability of future energy carriers such as electricity and synthetic natural gas. Thermochemical methods of hydrogen production appear to offer promise largely in the efficiency of energy conversion and in capital costs over electrolytic methods.

  2. Using plants for hydrogen production

    SciTech Connect

    Greenbaum, E.

    1981-01-01

    The objective of this program is to make a quantitative assessment of the potential for using marine algae for producing hydrogen and oxygen from sea water. The approach is to screen selected species of green algae for simultaneous photoproduction of hydrogen and oxygen. Six marine green algae have been identified as having this property. The limiting step of algal hydrogen production is turnover time. This report contains data on the first simultaneous measurement of the turnover times of steady-state photosynthetic hydrogen and oxygen production. An instrument for measuring the absolute yield of hydrogen or oxygen per saturating single-turnover flash of light has been designed and built as part of this research program.

  3. Hydrogen-augmented space boosters

    SciTech Connect

    Roof, S.K.; Ferguson, D.C.; Merrill, C.E.; Thompson, D.D.; Ennix, K.A.

    1989-01-01

    Performance gains available through injecting hydrogen into a burning solid rocket motor were investigated in a total of 19 tests. The test bed was a 32-kg Bates (for ballistic test and evaluation system) motor modified to allow injections of gaseous hydrogen into either the aft or head-end. Results demonstrated that, with the TPH-1148 solid propellant, hydrogen injections leads to a 10-percent higher specific impulse than the baseline (no hydrogen) firings, with very little loss in efficiency with head-end injection, an increase in motor chamber pressure, and a substantial reduction of nozzle throat erosion (especially with an aft-end injection). Flight analysis calculations using a Space Shuttle example indicate that the addition of hydrogen can increase polar orbit payloads by a factor of two.

  4. Hydrogen energy systems technology study

    NASA Technical Reports Server (NTRS)

    Kelley, J. H.

    1975-01-01

    The paper discusses the objectives of a hydrogen energy systems technology study directed toward determining future demand for hydrogen based on current trends and anticipated new uses and identifying the critical research and technology advancements required to meet this need with allowance for raw material limitations, economics, and environmental effects. Attention is focused on historic production and use of hydrogen, scenarios used as a basis for projections, projections of energy sources and uses, supply options, and technology requirements and needs. The study found more than a billion dollar annual usage of hydrogen, dominated by chemical-industry needs, supplied mostly from natural gas and petroleum feedstocks. Evaluation of the progress in developing nuclear fusion and solar energy sources relative to hydrogen production will be necessary to direct the pace and character of research and technology work in the advanced water-splitting areas.

  5. Hydrogen sulfide intoxication.

    PubMed

    Guidotti, Tee L

    2015-01-01

    Hydrogen sulfide (H2S) is a hazard primarily in the oil and gas industry, agriculture, sewage and animal waste handling, construction (asphalt operations and disturbing marshy terrain), and other settings where organic material decomposes under reducing conditions, and in geothermal operations. It is an insoluble gas, heavier than air, with a very low odor threshold and high toxicity, driven by concentration more than duration of exposure. Toxicity presents in a unique, reliable, and characteristic toxidrome consisting, in ascending order of exposure, of mucosal irritation, especially of the eye ("gas eye"), olfactory paralysis (not to be confused with olfactory fatigue), sudden but reversible loss of consciousness ("knockdown"), pulmonary edema (with an unusually favorable prognosis), and death (probably with apnea contributing). The risk of chronic neurcognitive changes is controversial, with the best evidence at high exposure levels and after knockdowns, which are frequently accompanied by head injury or oxygen deprivation. Treatment cannot be initiated promptly in the prehospital phase, and currently rests primarily on supportive care, hyperbaric oxygen, and nitrite administration. The mechanism of action for sublethal neurotoxicity and knockdown is clearly not inhibition of cytochrome oxidase c, as generally assumed, although this may play a role in overwhelming exposures. High levels of endogenous sulfide are found in the brain, presumably relating to the function of hydrogen sulfide as a gaseous neurotransmitter and immunomodulator. Prevention requires control of exposure and rigorous training to stop doomed rescue attempts attempted without self-contained breathing apparatus, especially in confined spaces, and in sudden release in the oil and gas sector, which result in multiple avoidable deaths. PMID:26563786

  6. Geographically Based Hydrogen Demand & Infrastructure Analysis (Presentation)

    SciTech Connect

    Melendez, M.

    2006-05-18

    Presentation given at the 2006 DOE Hydrogen, Fuel Cells & Infrastructure Technologies Program Annual Merit Review in Washington, D.C., May 16-19, 2006, discusses potential future hydrogen demand and the infrastructure needed to support hydrogen vehicles.

  7. High capacity hydrogen storage nanocomposite materials

    DOEpatents

    Zidan, Ragaiy; Wellons, Matthew S

    2015-02-03

    A novel hydrogen absorption material is provided comprising a mixture of a lithium hydride with a fullerene. The subsequent reaction product provides for a hydrogen storage material which reversibly stores and releases hydrogen at temperatures of about 270.degree. C.

  8. An integrated optic hydrogen sensor for fast detection of hydrogen

    NASA Astrophysics Data System (ADS)

    Alam, M. Z.; Moreno, J.; Aitchison, J. S.; Mojahedi, M.

    2007-09-01

    Hydrogen is used as the main propellant for space shuttles, as an energy source in fuel cells, in oil refineries, and for many other applications. Hydrogen is extremely volatile, easily flammable, and highly explosive. Storage and handling of hydrogen is a challenging task and a good hydrogen sensor is highly desirable. An ideal hydrogen sensor should be fast, reversible, highly selective, compact in size, easy to fabricate, and cheap in price. Unfortunately such a sensor to date is not available. In this paper we propose a multi-channel integrated optical sensor for detection of hydrogen. The sensor consists of a high index waveguide on a low index substrate and uses Pd or Pd alloy thin film as the sensing medium. Since a single channel hydrogen sensor will be affected by the presence of other gases and the variations of temperature, humidity, and input power; a multi-channel sensing scheme and differential measurements are proposed to correct for some of these effects. All the components of the multi-channel sensor can be realized using planar technology and the complete sensor can be fabricated on a single chip. The sensor is compact and the response time is expected to be very short. The concept of multi-channel sensing presented in this work is very general and can be extended to other gas sensors as well.

  9. Superconductivity in compressed hydrogen-rich materials: Pressing on hydrogen

    NASA Astrophysics Data System (ADS)

    Struzhkin, Viktor V.

    2015-07-01

    Periodic table of elements starts with hydrogen, a simplest element of all. The simplicity is lost when the element is compressed to high densities or participates in a chemical bonding in compounds, being subjected to "chemical pressure" of surrounding atoms or molecules. The chemical nature of hydrogen is dictated by its simplest electronic shell, which has only one electron. Hydrogen can donate this electron and behave like alkali metal, or accept an extra electron and form a hydride ion with closed shell resembling a group VII element. The complexity of hydrogen goes beyond these simplest configurations, when hydrogen is involved in a multicenter bonding or in hydrogen bonds. This complex behavior is tightly related to the ability of hydrogen to participate in the process of electronic transport in solids and potentially be able to contribute to the superconductivity in a material. Hydrogen by itself when compressed to immense pressures of 400-500 GPa may form a simple atomic phase with very high critical superconducting temperatures (Tc) well above room temperature. While this theoretical insight awaits confirmation at pressures at the limit of current experimental capabilities, a variety of other hydrogen-rich materials have been suggested recently to have record high Tc values. The very existence of many of these materials still lacks experimental confirmation. In this review article, we will present an extensive list of such predicted materials. We will also review superconductivity in classical hydrides (mostly metal hydrides) and current theoretical understanding of relatively low Tc's in metal hydrides of transition and noble metals.

  10. Hydrogen fueled-hydrogen transport rail system - A NASA proposal

    NASA Technical Reports Server (NTRS)

    Bain, A. L.; Tison, R. R.; Spafka, R. J.

    1984-01-01

    The technical possibility of fueling motive power equipment with hydrogen as an alternative to petroleum is studied, and the economics of operating hydrogen-fueled systems are evaluated. Technical considerations include the areas of fuel storage and distribution systems, engine design changes, and a test and evaluation program. A conversion methodology, which conforms to the scheme of high-pressure injection of hydrogen directly into the cylinder late in the compresssion stroke and injection of pilot diesel fuel for ignition, is illustrated with detailed diagrams.

  11. Hydrogen-bond symmetrization and molecular dissociation in hydrogen halids

    NASA Astrophysics Data System (ADS)

    Aoki, K.; Katoh, E.; Yamawaki, H.; Sakashita, M.; Fujihisa, H.

    1999-04-01

    Hydrogen chloride is a simple diatomic molecule forming a planar zig-zag chain of molecules connected by hydrogen bonds in the solid phase. Raman spectra were measured for solid HCl to 60 GPa at room temperature. The molecular stretching frequency falls toward zero at about 51 GPa, where the molecular vibrational peaks disappear and the lattice peaks remain. The spectral changes are very similar to those observed for HBr at about 42 GPa and interpreted as hydrogen bond symmetrization. Molecular dissociation into diatomic halogen molecules, which has been observed for HBr, does not occur in HCl.

  12. High efficiency stationary hydrogen storage

    SciTech Connect

    Hynek, S.; Fuller, W.; Truslow, S.

    1995-09-01

    Stationary storage of hydrogen permits one to make hydrogen now and use it later. With stationary hydrogen storage, one can use excess electrical generation capacity to power an electrolyzer, and store the resultant hydrogen for later use or transshipment. One can also use stationary hydrogen as a buffer at fueling stations to accommodate non-steady fueling demand, thus permitting the hydrogen supply system (e.g., methane reformer or electrolyzer) to be sized to meet the average, rather than the peak, demand. We at ADL designed, built, and tested a stationary hydrogen storage device that thermally couples a high-temperature metal hydride to a phase change material (PCM). The PCM captures and stores the heat of the hydriding reaction as its own heat of fusion (that is, it melts), and subsequently returns that heat of fusion (by freezing) to facilitate the dehydriding reaction. A key component of this stationary hydrogen storage device is the metal hydride itself. We used nickel-coated magnesium powder (NCMP) - magnesium particles coated with a thin layer of nickel by means of chemical vapor deposition (CVD). Magnesium hydride can store a higher weight fraction of hydrogen than any other practical metal hydride, and it is less expensive than any other metal hydride. We designed and constructed an experimental NCM/PCM reactor out of 310 stainless steel in the form of a shell-and-tube heat exchanger, with the tube side packed with NCMP and the shell side filled with a eutectic mixture of NaCL, KCl, and MgCl{sub 2}. Our experimental results indicate that with proper attention to limiting thermal losses, our overall efficiency will exceed 90% (DOE goal: >75%) and our overall system cost will be only 33% (DOE goal: <50%) of the value of the delivered hydrogen. It appears that NCMP can be used to purify hydrogen streams and store hydrogen at the same time. These prospects make the NCMP/PCM reactor an attractive component in a reformer-based hydrogen fueling station.

  13. Composition and method for hydrogen storage

    NASA Technical Reports Server (NTRS)

    Mao, Wendy L. (Inventor); Mao, Ho-Kwang (Inventor)

    2004-01-01

    A method for hydrogen storage includes providing water and hydrogen gas to a containment volume, reducing the temperature of the water and hydrogen gas to form a hydrogen clathrate at a first cryogenic temperature and a first pressure and maintaining the hydrogen clathrate at second cryogenic temperature within a temperature range of up to 250 K to effect hydrogen storage. The low-pressure hydrogen hydrate includes H.sub.2 O molecules, H.sub.2 molecules and a unit cell including polyhedron cages of hydrogen-bonded frameworks of the H.sub.2 O molecules built around the H.sub.2 molecules.

  14. Process for hydrogenating coal and coal solvents

    DOEpatents

    Tarrer, Arthur R.; Shridharani, Ketan G.

    1983-01-01

    A novel process is described for the hydrogenation of coal by the hydrogenation of a solvent for the coal in which the hydrogenation of the coal solvent is conducted in the presence of a solvent hydrogenation catalyst of increased activity, wherein the hydrogenation catalyst is produced by reacting ferric oxide with hydrogen sulfide at a temperature range of 260.degree. C. to 315.degree. C. in an inert atmosphere to produce an iron sulfide hydrogenation catalyst for the solvent. Optimally, the reaction temperature is 275.degree. C. Alternately, the reaction can be conducted in a hydrogen atmosphere at 350.degree. C.

  15. Dense, layered membranes for hydrogen separation

    DOEpatents

    Roark, Shane E.; MacKay, Richard; Mundschau, Michael V.

    2006-02-21

    This invention provides hydrogen-permeable membranes for separation of hydrogen from hydrogen-containing gases. The membranes are multi-layer having a central hydrogen-permeable layer with one or more catalyst layers, barrier layers, and/or protective layers. The invention also relates to membrane reactors employing the hydrogen-permeable membranes of the invention and to methods for separation of hydrogen from a hydrogen-containing gas using the membranes and reactors. The reactors of this invention can be combined with additional reactor systems for direct use of the separated hydrogen.

  16. Technical Analysis of Hydrogen Production

    SciTech Connect

    Ali T-Raissi

    2005-01-14

    The aim of this work was to assess issues of cost, and performance associated with the production and storage of hydrogen via following three feedstocks: sub-quality natural gas (SQNG), ammonia (NH{sub 3}), and water. Three technology areas were considered: (1) Hydrogen production utilizing SQNG resources, (2) Hydrogen storage in ammonia and amine-borane complexes for fuel cell applications, and (3) Hydrogen from solar thermochemical cycles for splitting water. This report summarizes our findings with the following objectives: Technoeconomic analysis of the feasibility of the technology areas 1-3; Evaluation of the hydrogen production cost by technology areas 1; and Feasibility of ammonia and/or amine-borane complexes (technology areas 2) as a means of hydrogen storage on-board fuel cell powered vehicles. For each technology area, we reviewed the open literature with respect to the following criteria: process efficiency, cost, safety, and ease of implementation and impact of the latest materials innovations, if any. We employed various process analysis platforms including FactSage chemical equilibrium software and Aspen Technologies AspenPlus and HYSYS chemical process simulation programs for determining the performance of the prospective hydrogen production processes.

  17. Hydrogen in semiconductors and metals

    SciTech Connect

    Nickel, N.H.; Jackson, W.B.; Bowman, R.C.; Leisure, R.G.

    1998-12-31

    Major highlights of the conference include further understanding of the structure of extended hydrogen clusters in semiconductors, switchable optical properties of metal-hydride films, reversible changes in the magnetic coupling in metallic superlattices, and increased lifetime of integrated circuits due to deuterium device passivation. Continued progress has also been achieved in understanding hydrogenation of defects in compound semiconductors and on surfaces. Total energy calculations in semiconductors have progressed sufficiently to predict energetics and vibration frequencies as measured by experiment. Similarly, electronic structure calculations of hydrogen-metal systems provide a deeper understanding of stability, bonding, and phase changes. Various nuclear techniques have been refined to yield important information regarding the concentration and transport of hydrogen in condensed matter. Finally, the interaction of hydrogen to create thermal donors has been used to create deep p-n junctions without the need for deep diffusion of dopants. The volume has been organized along the order of presentation within the conference. Similar methods and subjects have been grouped together. The authors have attempted to keep similar metal and semiconductor papers together in order to further promote cross-fertilization between the fields. Major categories include hydrogen on surfaces, theory and thermodynamics, hydrogen transport phenomena, nuclear characterization techniques, compound semiconductors, metal bulk, devices and applications, bulk silicon, and carbon and carbon-like materials. Separate abstracts were prepared for most papers.

  18. Hydrogen storage in molecular compounds.

    PubMed

    Mao, Wendy L; Mao, Ho-Kwang

    2004-01-20

    At low temperature (T) and high pressure (P), gas molecules can be held in ice cages to form crystalline molecular compounds that may have application for energy storage. We synthesized a hydrogen clathrate hydrate, H(2)(H(2)O)(2), that holds 50 g/liter hydrogen by volume or 5.3 wt %. The clathrate, synthesized at 200-300 MPa and 240-249 K, can be preserved to ambient P at 77 K. The stored hydrogen is released when the clathrate is warmed to 140 K at ambient P. Low T also stabilizes other molecular compounds containing large amounts of molecular hydrogen, although not to ambient P, e.g., the stability field for H(2)(H(2)O) filled ice (11.2 wt % molecular hydrogen) is extended from 2,300 MPa at 300 K to 600 MPa at 190 K, and that for (H(2))(4)CH(4) (33.4 wt % molecular hydrogen) is extended from 5,000 MPa at 300 K to 200 MPa at 77 K. These unique characteristics show the potential of developing low-T molecular crystalline compounds as a new means for hydrogen storage. PMID:14711993

  19. Nanoporous polymers for hydrogen storage.

    PubMed

    Germain, Jonathan; Fréchet, Jean M J; Svec, Frantisek

    2009-05-01

    The design of hydrogen storage materials is one of the principal challenges that must be met before the development of a hydrogen economy. While hydrogen has a large specific energy, its volumetric energy density is so low as to require development of materials that can store and release it when needed. While much of the research on hydrogen storage focuses on metal hydrides, these materials are currently limited by slow kinetics and energy inefficiency. Nanostructured materials with high surface areas are actively being developed as another option. These materials avoid some of the kinetic and thermodynamic drawbacks of metal hydrides and other reactive methods of storing hydrogen. In this work, progress towards hydrogen storage with nanoporous materials in general and porous organic polymers in particular is critically reviewed. Mechanisms of formation for crosslinked polymers, hypercrosslinked polymers, polymers of intrinsic microporosity, and covalent organic frameworks are discussed. Strategies for controlling hydrogen storage capacity and adsorption enthalpy via manipulation of surface area, pore size, and pore volume are discussed in detail. PMID:19360719

  20. Hydrogen-storing hydride complexes

    DOEpatents

    Srinivasan, Sesha S.; Niemann, Michael U.; Goswami, D. Yogi; Stefanakos, Elias K.

    2012-04-10

    A ternary hydrogen storage system having a constant stoichiometric molar ratio of LiNH.sub.2:MgH.sub.2:LiBH.sub.4 of 2:1:1. It was found that the incorporation of MgH.sub.2 particles of approximately 10 nm to 20 nm exhibit a lower initial hydrogen release temperature of 150.degree. C. Furthermore, it is observed that the particle size of LiBNH quaternary hydride has a significant effect on the hydrogen sorption concentration with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160.degree. C. and the other around 300.degree. C., with the main hydrogen release temperature reduced from 310.degree. C. to 270.degree. C., while hydrogen is first reversibly released at temperatures as low as 150.degree. C. with a total hydrogen capacity of 6 wt. % to 8 wt. %. Detailed thermal, capacity, structural and microstructural properties have been demonstrated and correlated with the activation energies of these materials.

  1. Hydrogen Generation From Electrolysis

    SciTech Connect

    Steven Cohen; Stephen Porter; Oscar Chow; David Henderson

    2009-03-06

    Small-scale (100-500 kg H2/day) electrolysis is an important step in increasing the use of hydrogen as fuel. Until there is a large population of hydrogen fueled vehicles, the smaller production systems will be the most cost-effective. Performing conceptual designs and analyses in this size range enables identification of issues and/or opportunities for improvement in approach on the path to 1500 kg H2/day and larger systems. The objectives of this program are to establish the possible pathways to cost effective larger Proton Exchange Membrane (PEM) water electrolysis systems and to identify areas where future research and development efforts have the opportunity for the greatest impact in terms of capital cost reduction and efficiency improvements. System design and analysis was conducted to determine the overall electrolysis system component architecture and develop a life cycle cost estimate. A design trade study identified subsystem components and configurations based on the trade-offs between system efficiency, cost and lifetime. Laboratory testing of components was conducted to optimize performance and decrease cost, and this data was used as input to modeling of system performance and cost. PEM electrolysis has historically been burdened by high capital costs and lower efficiency than required for large-scale hydrogen production. This was known going into the program and solutions to these issues were the focus of the work. The program provided insights to significant cost reduction and efficiency improvement opportunities for PEM electrolysis. The work performed revealed many improvement ideas that when utilized together can make significant progress towards the technical and cost targets of the DOE program. The cell stack capital cost requires reduction to approximately 25% of today’s technology. The pathway to achieve this is through part count reduction, use of thinner membranes, and catalyst loading reduction. Large-scale power supplies are available

  2. Solar hydrogen for urban trucks

    SciTech Connect

    Provenzano, J.: Scott, P.B.; Zweig, R.

    1997-12-31

    The Clean Air Now (CAN) Solar Hydrogen Project, located at Xerox Corp., El Segundo, California, includes solar photovoltaic powered hydrogen generation, compression, storage and end use. Three modified Ford Ranger trucks use the hydrogen fuel. The stand-alone electrolyzer and hydrogen dispensing system are solely powered by a photovoltaic array. A variable frequency DC-AC converter steps up the voltage to drive the 15 horsepower compressor motor. On site storage is available for up to 14,000 standard cubic feet (SCF) of solar hydrogen, and up to 80,000 SCF of commercial hydrogen. The project is 3 miles from Los Angeles International airport. The engine conversions are bored to 2.9 liter displacement and are supercharged. Performance is similar to that of the Ranger gasoline powered truck. Fuel is stored in carbon composite tanks (just behind the driver`s cab) at pressures up to 3600 psi. Truck range is 144 miles, given 3600 psi of hydrogen. The engine operates in lean burn mode, with nil CO and HC emissions. NO{sub x} emissions vary with load and rpm in the range from 10 to 100 ppm, yielding total emissions at a small fraction of the ULEV standard. Two trucks have been converted for the Xerox fleet, and one for the City of West Hollywood. A public outreach program, done in conjunction with the local public schools and the Department of Energy, introduces the local public to the advantages of hydrogen fuel technologies. The Clean Air Now program demonstrates that hydrogen powered fleet development is an appropriate, safe, and effective strategy for improvement of urban air quality, energy security and avoidance of global warming impact. Continued technology development and cost reduction promises to make such implementation market competitive.

  3. Insight into hydrogenation of graphene: Effect of hydrogen plasma chemistry

    SciTech Connect

    Felten, A.; Nittler, L.; Pireaux, J.-J.; McManus, D.; Rice, C.; Casiraghi, C.

    2014-11-03

    Plasma hydrogenation of graphene has been proposed as a tool to modify the properties of graphene. However, hydrogen plasma is a complex system and controlled hydrogenation of graphene suffers from a lack of understanding of the plasma chemistry. Here, we correlate the modifications induced on monolayer graphene studied by Raman spectroscopy with the hydrogen ions energy distributions obtained by mass spectrometry. We measure the energy distribution of H{sup +}, H{sub 2}{sup +}, and H{sub 3}{sup +} ions for different plasma conditions showing that their energy strongly depends on the sample position, pressure, and plasma power and can reach values as high as 45 eV. Based on these measurements, we speculate that under specific plasma parameters, protons should possess enough energy to penetrate the graphene sheet. Therefore, a graphene membrane could become, under certain conditions, transparent to both protons and electrons.

  4. Video System Highlights Hydrogen Fires

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.; Gleman, Stuart M.; Moerk, John S.

    1992-01-01

    Video system combines images from visible spectrum and from three bands in infrared spectrum to produce color-coded display in which hydrogen fires distinguished from other sources of heat. Includes linear array of 64 discrete lead selenide mid-infrared detectors operating at room temperature. Images overlaid on black and white image of same scene from standard commercial video camera. In final image, hydrogen fires appear red; carbon-based fires, blue; and other hot objects, mainly green and combinations of green and red. Where no thermal source present, image remains in black and white. System enables high degree of discrimination between hydrogen flames and other thermal emitters.

  5. Interstellar clouds and molecular hydrogen

    NASA Technical Reports Server (NTRS)

    Jura, M.

    1977-01-01

    Data obtained from the Copernicus Orbiting Astronomical Observatory, launched in 1972 and still obtaining information, are used in a discussion of the interstellar medium. The Copernicus instruments have facilitated direct estimates for the density and temperature of individual interstellar clouds, and improved the ability to determine where along the line of sight a cloud lies with respect to background stars. The physical characteristics of hydrogen molecules are considered, with attention to the formation and destruction of interstellar hydrogen. The differences between 'thin' clouds, in which molecular hydrogen is optically thin, and 'thick' clouds are examined. Several features of the interstellar medium are described.

  6. Towards A Hydrogen Economy, 3. edition

    SciTech Connect

    2007-05-15

    The report provides a study of the movement towards using hydrogen as a key energy carrier in the future and takes a high-level look at the current state of hydrogen and addresses the infrastructure requirements needed to make the hydrogen economy a reality. The report offers a detailed look at the move to a hydrogen economy by: identifying the current status of hydrogen production and use; discussing the key business drivers of the move towards hydrogen; discussing the barriers to implementation that stand in the way of a transition; providing a critical look at whether the hydrogen economy can succeed; describing the options that exist for a hydrogen infrastructure; identifying the key government initiatives making the hydrogen economy a reality; providing company-by-company profiles of automobile manufacturer efforts to develop and commercialize hydrogen vehicles; and, providing profiles of key hydrogen infrastructure manufacturers.

  7. Towards a hydrogen economy. 3rd ed.

    SciTech Connect

    2006-07-15

    The report is a study of the movement towards using hydrogen as a key energy carrier in the future. It takes a look at the current state of hydrogen and addresses the infrastructure requirements needed to make the hydrogen economy a reality. The report offers a detailed look at the move to a hydrogen economy by: Identifying the current status of hydrogen production and use; Discussing the key business drivers of the move towards hydrogen; Discussing the barriers to implementation that stand in the way of a transition; Providing a critical look at whether the hydrogen economy can succeed; Describing the options that exist for a hydrogen infrastructure; Identifying the key government initiatives making the hydrogen economy a reality; Providing company-by-company profiles of automobile manufacturer efforts to develop and commercialize hydrogen vehicles; and Providing profiles of key hydrogen infrastructure manufacturers.

  8. Hydrogen Storage in Wind Turbine Towers

    SciTech Connect

    Kottenstette, R.; Cotrell, J.

    2003-09-01

    Low-cost hydrogen storage is recognized as a cornerstone of a renewables-hydrogen economy. Modern utility-scale wind turbine towers are typically conical steel structures that, in addition to supporting the rotor, could be used to store hydrogen. This study has three objectives: (1) Identify the paramount considerations associated with using a wind turbine tower for hydrogen storage; (2)Propose and analyze a cost-effective design for a hydrogen-storing tower; and (3) Compare the cost of storage in hydrogen towers to the cost of storage in conventional pressure vessels. The paramount considerations associated with a hydrogen tower are corrosion (in the form of hydrogen embrittlement) and structural failure (through bursting or fatigue life degradation). Although hydrogen embrittlement (HE) requires more research, it does not appear to prohibit the use of turbine towers for hydrogen storage. Furthermore, the structural modifications required to store hydrogen in a tower are not cost prohibitive.

  9. Advanced hydrogen electrode for hydrogen-bromide battery

    NASA Technical Reports Server (NTRS)

    Kosek, Jack A.; Laconti, Anthony B.

    1987-01-01

    Binary platinum alloys are being developed as hydrogen electrocatalysts for use in a hydrogen bromide battery system. These alloys were varied in terms of alloy component mole ratio and heat treatment temperature. Electrocatalyst evaluation, performed in the absence and presence of bromide ion, includes floating half cell polarization studies, electrochemical surface area measurements, X ray diffraction analysis, scanning electron microscopy analysis and corrosion measurements. Results obtained to date indicate a platinum rich alloy has the best tolerance to bromide ion poisoning.

  10. Formaldoxime hydrogen bonded complexes with ammonia and hydrogen chloride

    NASA Astrophysics Data System (ADS)

    Golec, Barbara; Mucha, Małgorzata; Sałdyka, Magdalena; Barnes, Austin; Mielke, Zofia

    2015-02-01

    An infrared spectroscopic and MP2/6-311++G(2d,2p) study of hydrogen bonded complexes of formaldoxime with ammonia and hydrogen chloride trapped in solid argon matrices is reported. Both 1:1 and 1:2 complexes between formaldoxime and ammonia, hydrogen chloride have been identified in the CH2NOH/NH3/Ar, CH2NOH/HCl/Ar matrices, respectively, their structures were determined by comparison of the spectra with the results of calculations. In the 1:1 complexes present in the argon matrices the OH group of formaldoxime acts as a proton donor for ammonia and the nitrogen atom acts as a proton acceptor for hydrogen chloride. In the 1:2 complexes ammonia or hydrogen chloride dimers interact both with the OH group and the nitrogen atom of CH2NOH to form seven membered cyclic structures stabilized by three hydrogen bonds. The theoretical spectra generally agree well with the experimental ones, but they seriously underestimate the shift of the OH stretch for the 1:1 CH2NOH⋯NH3 complex.

  11. Fiber optic hydrogen sensor

    DOEpatents

    Buchanan, B.R.; Prather, W.S.

    1992-10-06

    An apparatus and method are described for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading by a single spectrophotometer. 4 figs.

  12. Fiber optic hydrogen sensor

    DOEpatents

    Buchanan, B.R.; Prather, W.S.

    1991-01-01

    Apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading, by a single spectrophotometer.

  13. Fiber optic hydrogen sensor

    DOEpatents

    Buchanan, Bruce R.; Prather, William S.

    1992-01-01

    An apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading by a single spectrophotometer.

  14. Hydrogen Fueling via Guanidine

    NASA Astrophysics Data System (ADS)

    van Vechten, J. A.

    2007-03-01

    Three related materials, ammonia (NH3), urea (OCN2H4), and guanidine (CN3H5) are practicable hydrogen-based fuels^1 that could be produced in the giga-tonne quantities required from air, water and renewable energy. NH3 has long been established as a fuel for internal combustion engines and can be cracked to H2 for use in fuelcells, but is a gas at STP and extremely toxic, so general use is problematic. Urea and guanidine can easily be converted to NH3 and CO2 by addition of hot water from oxidation of NH3. Both are solids at STP, non-toxic, non-explosive and commonly shipped in plastic bags. The energy density in kWhr/L of guanidine is 4.7 compared with 3.0 for urea, 3.5 for liquid NH3, and 0.8 for H gas in 10,000 psi tanks. The specific energies in kWhr/kg for these materials are respectively 3.58, 2.35, 5.2, and (including the tank) 1.8. Guanidine melts at 50 C and is infinitely soluble in both ethanol and water. 1) http://www.energy.iastate.edu/renewable/biomass/AmmoniaMtg06.html

  15. An Atomic Hydrogen Mushroom

    NASA Astrophysics Data System (ADS)

    English, J.; Taylor, A. R.; Irwin, J. A.; Canadian Galactic Plane Survey Collaboration

    1998-12-01

    Neutral hydrogen ``worms'', which stream vertically from the mid-plane to high latitudes, may be conduits through which hot gas can escape into the halo. Using the Dominion Radio Astrophysical Observatory's (DRAO) Synthesis Telescope, as part of the Canadian Galactic Plane Survey, we have resolved an HI worm candidate. Although simulations have previously made general predictions, these data will constrain, for the first time, detailed numerical models of the dynamical processes generating disk-halo features. After the incorporation of the data from the 26-m DRAO's single-dish telescope, the mosaic data cube has full information on all spatial scales down to a resolution limit of 1 arcmin and a velocity resolution of 0.82 km s(-1) . Thus we delineate Rayleigh-Taylor instability-like structures and can distinguish a 5 km s(-1) line of sight velocity difference between the base and top of the worm. In general morphology, the worm is mushroom-shaped. Although it extends only a few hundred parsecs south of the midplane, the cap appears to be fragmenting. This may allow hot material from the stem's cavity, as well as UV photons, to escape to higher galactic latitudes. The preliminary estimate of the observed minimum HI mass is 1.3 x 10(5) Msolar. Our initial thin-shell model, which assumes supernovae explosions drive this outflow, gives a minimum total energy of about 100 x 10(51) ergs s(-1) .

  16. Atomic hydrogen in planetary nebulae

    NASA Technical Reports Server (NTRS)

    Schneider, Stephen E.; Silverglate, Peter R.; Altschuler, Daniel R.; Giovanardi, Carlo

    1987-01-01

    The authors searched for neutral atomic hydrogen associated with 22 planetary nebulae and three evolved stars in the 21 cm line at the Arecibo Observatory. Objects whose radial velocities permitted discrimination from Galactic H I were chosen for observation. Hydrogen was detected in absorption from IC 4997. From the measurements new low limits are derived to the mass of atomic hydrogen associated with the undetected nebulae. Radio continuum observations were also made of several of the nebulae at 12.6 cm. The authors reexamine previous measurements of H I in planetary nebulae, and present the data on a consistent footing. The question of planetary nebula distances is considered at length. Finally, implications of the H I measurements for nebular evolution are discussed and it is suggested that atomic hydrogen seen in absorption was expelled from the progenitor star during the final 1000 yr prior to the onset of ionization.

  17. Chemical/hydrogen energy systems

    NASA Astrophysics Data System (ADS)

    1987-06-01

    This report describes activities conducted during 1986 within the Chemical/Hydrogen Energy Systems (C/HES) Program, for which Bookhaven National Laboratory provides technical and management support to the U.S. Department of Energy. Research and exploratory efforts under this program have been directed towards developing a base technology that will apply to hydrogen production, storage, and transport. Major areas of interest include: (1) High Temperature Water Vapor Electrolysis for Hydrogen Generation (Westinghouse); (2) Evaluation of Materials for Medium Temperature Water Vapor Electrolysis; (3) Cryoadsorption of Hydrogen on Activated Carbon (Syracuse). Contributions in 1986 made by private sector contractors, university, researchers, and BNL in-house technical staff are summarized in the report. Also included is a summary of related International Energy Agency (IEA) cooperative efforts as well as plans and major activities scheduled for 1987.

  18. Hyperfine interaction in hydrogenated graphene

    NASA Astrophysics Data System (ADS)

    Garcia, Noel; Melle, Manuel; Fernandez-Rossier, Joaquin

    We study the hyperfine interaction of Hydrogen chemisorbed in graphene nanostructures with a gap in their spectrum, such as islands and ribbons. Chemisorption of Hydrogen on graphene results in a bound in-gap state that hosts a single electron localized around the adatom. Using both density functional theory and a four-orbital tight-binding model we study the hyperfine interaction between the hydrogen nuclear spin and the conduction electrons in graphene. We find that the strength of the hyperfine interaction decreases for larger nanostructures for which the energy gap is smaller. We then compare the results of the hyperfine interaction for large nanostructures with those of graphene 2D crystal with a periodic arrangement of chemisorbed Hydrogen atoms, obtaining very similar results. The magnitude of the hyperfine interaction is about 150 MHz, in line with that of Si:P. We acknowledge financial support by Marie-Curie-ITN 607904-SPINOGRAPH.

  19. Production of hydrogen from alcohols

    DOEpatents

    Deluga, Gregg A.; Schmidt, Lanny D.

    2007-08-14

    A process for producing hydrogen from ethanol or other alcohols. The alcohol, optionally in combination with water, is contacted with a catalyst comprising rhodium. The overall process is preferably carried out under autothermal conditions.

  20. Precision Spectroscopy of Atomic Hydrogen

    NASA Astrophysics Data System (ADS)

    Beyer, A.; Parthey, Ch G.; Kolachevsky, N.; Alnis, J.; Khabarova, K.; Pohl, R.; Peters, E.; Yost, D. C.; Matveev, A.; Predehl, K.; Droste, S.; Wilken, T.; Holzwarth, R.; Hänsch, T. W.; Abgrall, M.; Rovera, D.; Salomon, Ch; Laurent, Ph; Udem, Th

    2013-12-01

    Precise determinations of transition frequencies of simple atomic systems are required for a number of fundamental applications such as tests of quantum electrodynamics (QED), the determination of fundamental constants and nuclear charge radii. The sharpest transition in atomic hydrogen occurs between the metastable 2S state and the 1S ground state. Its transition frequency has now been measured with almost 15 digits accuracy using an optical frequency comb and a cesium atomic clock as a reference [1]. A recent measurement of the 2S - 2P3/2 transition frequency in muonic hydrogen is in significant contradiction to the hydrogen data if QED calculations are assumed to be correct [2, 3]. We hope to contribute to this so-called "proton size puzzle" by providing additional experimental input from hydrogen spectroscopy.

  1. Complex Hydrides for Hydrogen Storage

    SciTech Connect

    Slattery, Darlene; Hampton, Michael

    2003-03-10

    This report describes research into the use of complex hydrides for hydrogen storage. The synthesis of a number of alanates, (AIH4) compounds, was investigated. Both wet chemical and mechano-chemical methods were studied.

  2. Negative hydrogen ion production mechanisms

    SciTech Connect

    Bacal, M.; Wada, M.

    2015-06-15

    Negative hydrogen/deuterium ions can be formed by processes occurring in the plasma volume and on surfaces facing the plasma. The principal mechanisms leading to the formation of these negative ions are dissociative electron attachment to ro-vibrationally excited hydrogen/deuterium molecules when the reaction takes place in the plasma volume, and the direct electron transfer from the low work function metal surface to the hydrogen/deuterium atoms when formation occurs on the surface. The existing theoretical models and reported experimental results on these two mechanisms are summarized. Performance of the negative hydrogen/deuterium ion sources that emerged from studies of these mechanisms is reviewed. Contemporary negative ion sources do not have negative ion production electrodes of original surface type sources but are operated with caesium with their structures nearly identical to volume production type sources. Reasons for enhanced negative ion current due to caesium addition to these sources are discussed.

  3. Hydrogen selenide treatment of electrolytes

    SciTech Connect

    Rasmussen, J. R.; Virkar, A. V.

    1985-01-29

    A method for lowering the activation energy of a polycrystalline ceramic electrolyte is disclosed. Polycrystalline ceramic electrolytes, such as beta-alumina, when contacted with hydrogen selenide exhibit a lower activation energy than untreated electrolytes.

  4. Stabilized aqueous hydrogen peroxide solution

    SciTech Connect

    Malin, M.J.; Sciafani, L.D.

    1988-05-17

    This patent describes a stabilized aqueous hydrogen peroxide solution having a pH below 7 and an amount of Ferric ion up to about 2 ppm comprising hydrogen peroxide, acetanilide having a concentration which ranges between 0.74 M Mol/L and 2.22 mMol/L, and o-benzene disulfonic acid or salt thereof at a concentration between about 0.86 mMol/L to about 1.62 mMol/L.

  5. Hydrogen Production Technical Team Roadmap

    SciTech Connect

    2013-06-01

    The Hydrogen Production Technical Team Roadmap identifies research pathways leading to hydrogen production technologies that produce near-zero net greenhouse gas (GHG) emissions from highly efficient and diverse renewable energy sources. This roadmap focuses on initial development of the technologies, identifies their gaps and barriers, and describes activities by various U.S. Department of Energy (DOE) offices to address the key issues and challenges.

  6. Transuranic drum hydrogen explosion tests

    SciTech Connect

    Dykes, K.L.; Meyer, M.L.

    1991-06-01

    Radiolysis of transuranic (TRU) waste can produce flammable ({gt}4%) mixtures of hydrogen gas in 55 gallon vented waste storage drums. Explosion testing was conducted at the E. I. duPont Explosion Hazards Laboratory to determine the minimum concentration at which a drum lid removal occurs. A secondary objective was to investigate the maximum pressure and rate of pressure rise as a function of hydrogen concentration. Prior to beginning any drum explosion tests, small-scale pressure vessel tests and drum mixing tests were completed. The pressure vessel tests established a relationship between hydrogen concentration and the maximum pressure and pressure rise. These small-scale tests were used to establish the concentration range over which a drum lid removal might occur. Mixing tests were also conducted to determine the equilibration times for two different hydrogen-air mixtures in a TRU drum. Nine successful drum explosion tests were conducted over a hydrogen concentration range of 13--36% (v/v), test results suggest total integrity failure via drum lid removal will not occur below 15% (v/v). Controlled small-scale pressure vessel tests were conducted over a range of 5--50% (v/v) to determine the pressure and pressure rise as a function of hydrogen concentration. No similar relationship could be established for the drum explosion tests due to the variability in drum lid sealing and retaining ring closure. Mixing tests conducted at 5% and 25% (v/v) indicate adding pure hydrogen to the middle of a drum causes some initial stratification along the drum length, but the air and hydrogen become well-mixed after 50 minutes. 4 refs., 11 figs., 2 tabs.

  7. National Hydrogen Vision Meeting Proceedings

    SciTech Connect

    2001-11-01

    This document provides presentations and summaries of the notes from the National Hydrogen Vision Meeting''s facilitated breakout sessions. The Vision Meeting, which took place November 15-16, 2001, kicked off the public-private partnership that will pave the way to a more secure and cleaner energy future for America. These proceedings were compiled into a formal report, A National Vision of America''s Transition to a Hydrogen Economy - To 2030 and Beyond, which is also available online.

  8. Hydrogen/Oxygen Torch Ignitor

    NASA Technical Reports Server (NTRS)

    Repas, George A.

    1995-01-01

    Reliable device used to ignite variety of fuels. Used as general-purpose ignitor in other applications, or as hydrogen/oxygen torch. Operation of device straight-forward. Hydrogen and oxygen flow through separate ports into combustion chamber in device, where they ignite by use of surface-gap spark plug. Hot gases flow from this combustion chamber, through injector tube, into larger combustion chamber containing fuel-oxidizer mixture to be ignited.

  9. Hydrogen-Bromine Secondary Battery

    NASA Technical Reports Server (NTRS)

    England, C. (Inventor)

    1975-01-01

    A secondary battery is described utilizing hydrogen and halogen as primary reactants. It comprises inert anode and cathode initially contacting an aqueous solution of an acid and an alkali metal bromide. The hydrogen generated during charging of the cell is stored as gas, while the bromine becomes dissolved predominantly in the lower layers of the acid electrolyte. Preferred components are phosphoric acid and lithium bromide.

  10. Stabilizing Semiconductor Devices With Hydrogen

    NASA Technical Reports Server (NTRS)

    Overhauser, Albert W.; Maserjian, Joseph

    1989-01-01

    Damage by radiation healed rapidly. Feature provides continuous, rapid recovery of devices from degradation caused by hot electrons, photons, and ionizing radiation. Several candidate sites for palladium film catalysts, inserted during manufacture as integral parts of devices. Paladium films made by evaporation, sputtering, or chemical-vapor deposition. If additional storage required, thick layer of palladium plated on inside of package surrounding device. Hydrogen stored by exposing palladium to hydrogen gas just before package sealed hermetically.

  11. Vapor-liquid equilibria for the systems difluoromethane + hydrogen fluoride, dichlorodifluoromethane + hydrogen fluoride, and chlorine + hydrogen fluoride

    SciTech Connect

    Kang, Y.W.

    1998-01-01

    Isothermal vapor-liquid equilibria for difluoromethane + hydrogen fluoride, dichlorodifluoromethane + hydrogen fluoride, and chlorine + hydrogen fluoride have been measured. The experimental data for the binary systems are correlated with the NRTL equation with the vapor-phase association model for the mixtures containing hydrogen fluoride, and the relevant parameters are presented. The binary system difluoromethane + hydrogen fluoride forms a homogeneous liquid phase, and the others form minimum boiling heterogeneous azeotropes at the experimental conditions.

  12. Effects Of Aging On Embrittlement By Hydrogen

    NASA Technical Reports Server (NTRS)

    Lassila, D. H.; Birnbaum, H. K.

    1989-01-01

    Report discusses study of grain-boundary fracture of hydrogen-charged nickel under conditions in which hydrogen is immobile. Thermally-charged nickel specimens aged at several temperatures for various periods of time to allow hydrogen to diffuse. Specimens then quenched and tested in liquid nitrogen (at temperature of 77 K) so distribution of hydrogen produced by aging maintained.

  13. Desulfurizing Coal By Chlorinolysis and Hydrogenation

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Rohatgi, N. K.

    1983-01-01

    85 percent of organic and pyritic sulfur in coal removed by combination of chlorinolysis and hydrogeneration. Coal is fed to hydrogenator after chlorination. Coal flows against hydrogen current increasing mixing and reducing hydrogen consumption. Excess hydrogen is recovered from gaseous reaction products. Product coal contained 62.5 percent less total sulfur than same coal after chlorination.

  14. High speed hydrogen/graphite interaction

    NASA Technical Reports Server (NTRS)

    Kelly, A. J.; Hamman, R.; Sharma, O. P.; Harrje, D. T.

    1974-01-01

    Various aspects of a research program on high speed hydrogen/graphite interaction are presented. Major areas discussed are: (1) theoretical predictions of hydrogen/graphite erosion rates; (2) high temperature, nonequilibrium hydrogen flow in a nozzle; and (3) molecular beam studies of hydrogen/graphite erosion.

  15. Nickel-hydrogen cell reversal characteristics

    NASA Technical Reports Server (NTRS)

    Lurie, Charles

    1994-01-01

    Nickel-hydrogen cell reversal characteristics are being studied as part of a TRW program directed towards development of a high current battery cell bypass switch. The following are discussed: cell bypass switch; nickel-hydrogen cell reversal characteristics; and nickel-hydrogen cell chemistry: discharge/reversal and overdischarge (reversal) with nickel and hydrogen precharge.

  16. Real and potential nickel hydrogen superiority

    NASA Technical Reports Server (NTRS)

    Betz, F. E.

    1983-01-01

    Events from the development and orbital flight experience with a nickel hydrogen battery are described. The events highlight characteristics of nickel hydrogen which afford superior capability in overcharge, overdischarge and state of charge evaluation, when compared to the nickel cadmium electrochemical system. Some developments in nickel hydrogen technology that provide the potential of furthering nickel hydrogen superiority for satellite applications are also discussed.

  17. Hydrogen in the Methanol Production Process

    ERIC Educational Resources Information Center

    Kralj, Anita Kovac; Glavic, Peter

    2006-01-01

    Hydrogen is a very important industrial gas in chemical processes. It is very volatile; therefore, it can escape from the process units and its mass balance is not always correct. In many industrial processes where hydrogen is reacted, kinetics are often related to hydrogen pressure. The right thermodynamic properties of hydrogen can be found for…

  18. 49 CFR 173.163 - Hydrogen fluoride.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Hydrogen fluoride. 173.163 Section 173.163... Hydrogen fluoride. (a) Hydrogen fluoride (hydrofluoric acid, anhydrous) must be packaged as follows: (1) In... filling ratio of 0.84. (b) A cylinder removed from hydrogen fluoride service must be condemned...

  19. 49 CFR 173.163 - Hydrogen fluoride.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Hydrogen fluoride. 173.163 Section 173.163... Hydrogen fluoride. (a) Hydrogen fluoride (hydrofluoric acid, anhydrous) must be packaged as follows: (1) In... filling ratio of 0.84. (b) A cylinder removed from hydrogen fluoride service must be condemned...

  20. 49 CFR 173.163 - Hydrogen fluoride.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Hydrogen fluoride. 173.163 Section 173.163... Hydrogen fluoride. (a) Hydrogen fluoride (hydrofluoric acid, anhydrous) must be packaged as follows: (1) In... filling ratio of 0.84. (b) A cylinder removed from hydrogen fluoride service must be condemned...