Science.gov

Sample records for hydrogen sulfide producing

  1. Control of microbially generated hydrogen sulfide in produced waters

    SciTech Connect

    Burger, E.D.; Vance, I.; Gammack, G.F.; Duncan, S.E.

    1995-12-31

    Production of hydrogen sulfide in produced waters due to the activity of sulfate-reducing bacteria (SRB) is a potentially serious problem. The hydrogen sulfide is not only a safety and environmental concern, it also contributes to corrosion, solids formation, a reduction in produced oil and gas values, and limitations on water discharge. Waters produced from seawater-flooded reservoirs typically contain all of the nutrients required to support SRB metabolism. Surface processing facilities provide a favorable environment in which SRB flourish, converting water-borne nutrients into biomass and H{sub 2}S. This paper will present results from a field trial in which a new technology for the biochemical control of SRB metabolism was successfully applied. A slip stream of water downstream of separators on a produced water handling facility was routed through a bioreactor in a side-steam device where microbial growth was allowed to develop fully. This slip stream was then treated with slug doses of two forms of a proprietary, nonbiocidal metabolic modifier. Results indicated that H{sub 2}S production was halted almost immediately and that the residual effect of the treatment lasted for well over one week.

  2. Methods for producing hydrogen (BI) sulfide and/or removing metals

    DOEpatents

    Truex, Michael J [Richland, WA; Peyton, Brent M [Pullman, WA; Toth, James J [Kennewick, WA

    2002-05-14

    The present invention is a process wherein sulfide production by bacteria is efficiently turned on and off, using pH adjustment. The adjustment of pH impacts sulfide production by bacteria by altering the relative amounts of H.sub.2 S and HS-- in solution and thereby control the inhibition of the bacterial metabolism that produces sulfide. This process can be used to make a bioreactor produce sulfide "on-demand" so that the production of sulfide can be matched to its use as a metal precipitation reagent. The present invention is of significance because it enables the use of a biological reactor, a cost effective sulfide production system, by making the biological reactor produce hydrogen sulfide "on demand", and therefore responsive to production schedules, waste stream generation rate, and health and safety requirements/goals.

  3. Hydrogen sulfide

    Integrated Risk Information System (IRIS)

    Hydrogen sulfide ; 7783 - 06 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effec

  4. Removal of ammonia and hydrogen sulfide using biochar produced from pyrolyzing animal manures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reducing ammonia and hydrogen sulfide emissions from livestock facilities is an important issue for many communities and livestock producers. The emission of these gases can be substantially reduced using adsorption filters filled with biochar produced from pyrolysis of livestock residuals such as c...

  5. Endogenously produced hydrogen sulfide is involved in porcine oocyte maturation in vitro.

    PubMed

    Nevoral, Jan; Žalmanová, Tereza; Zámostná, Kateřina; Kott, Tomáš; Kučerová-Chrpová, Veronika; Bodart, Jean-Francois; Gelaude, Armance; Procházka, Radek; Orsák, Matyáš; Šulc, Miloslav; Klein, Pavel; Dvořáková, Markéta; Weingartová, Ivona; Víghová, Aurélia; Hošková, Kristýna; Krejčová, Tereza; Jílek, František; Petr, Jaroslav

    2015-12-01

    Hydrogen sulfide, one of three known gasotransmitters, is involved in physiological processes, including reproductive functions. Oocyte maturation and surrounding cumulus cell expansion play an essential role in female reproduction and subsequent embryonic development. Although the positive effects of exogenous hydrogen sulfide on maturing oocytes are well known, the role of endogenous hydrogen sulfide, which is physiologically released by enzymes, has not yet been described in oocytes. In this study, we observed the presence of Cystathionine β-Synthase (CBS), Cystathionine γ-Lyase (CTH) and 3-Mercaptopyruvate Sulfurtransferase (3-MPST), hydrogen sulfide-releasing enzymes, in porcine oocytes. Endogenous hydrogen sulfide production was detected in immature and matured oocytes as well as its requirement for meiotic maturation. Individual hydrogen sulfide-releasing enzymes seem to be capable of substituting for each other in hydrogen sulfide production. However, meiosis suppression by inhibition of all hydrogen sulfide-releasing enzymes is not irreversible and this effect is a result of M-Phase/Maturation Promoting Factor (MPF) and Mitogen-Activated Protein Kinase (MAPK) activity inhibition. Futhermore, cumulus expansion expressed by hyaluronic acid (HA) production is affected by the inhibition of hydrogen sulfide production. Moreover, quality changes of the expanded cumuli are indicated. These results demonstrate hydrogen sulfide involvement in oocyte maturation as well as cumulus expansion. As such, hydrogen sulfide appears to be an important cell messenger during mammalian oocyte meiosis and adequate cumulus expansion. PMID:26456342

  6. Thioredoxin and dihydrolipoic acid are required for 3-mercaptopyruvate sulfurtransferase to produce hydrogen sulfide.

    PubMed

    Mikami, Yoshinori; Shibuya, Norihiro; Kimura, Yuka; Nagahara, Noriyuki; Ogasawara, Yuki; Kimura, Hideo

    2011-11-01

    H2S (hydrogen sulfide) has recently been recognized as a signalling molecule as well as a cytoprotectant. We recently demonstrated that 3MST (3-mercaptopyruvate sulfurtransferase) produces H2S from 3MP (3-mercaptopyruvate). Although a reducing substance is required for an intermediate persulfide at the active site of 3MST to release H2S, the substance has not been identified. In the present study we show that Trx (thioredoxin) and DHLA (dihydrolipoic acid) associate with 3MST to release H2S. Other reducing substances, such as NADPH, NADH, GSH, cysteine and CoA, did not have any effect on the reaction. We also show that 3MST produces H2S from thiosulfate. The present study provides a new insight into a mechanism for the production of H2S by 3MST. PMID:21732914

  7. Regulation of hydrogen sulfide liberation in wine-producing Saccharomyces cerevisiae strains by assimilable nitrogen.

    PubMed Central

    Jiranek, V; Langridge, P; Henschke, P A

    1995-01-01

    Saccharomyces cerevisiae wine-producing yeast cultures grown under model winemaking conditions could be induced to liberate hydrogen sulfide (H2S) by starvation for assimilable nitrogen. The amount of H2S produced was dependent on the yeast strain, the sulfur precursor compound, the culture growth rate, and the activity of the sulfite reductase enzyme (EC 1.8.1.2) immediately before nitrogen depletion. Increased H2S formation relative to its utilization by metabolism was not a consequence of a de novo synthesis of sulfite reductase. The greatest amount of H2S was produced when nitrogen became depleted during the exponential phase of growth or during growth on amino acids capable of supporting short doubling times. Both sulfate and sulfite were able to act as substrates for the generation of H2S in the absence of assimilable nitrogen; however, sulfate reduction was tightly regulated, leading to limited H2S liberation, whereas sulfite reduction appeared to be uncontrolled. In addition to ammonium, most amino acids were able to suppress the liberation of excess H2S when added as sole sources of nitrogen, particularly for one of the strains studied. Cysteine was the most notable exception, inducing the liberation of H2S at levels exceeding that of the nitrogen-depleted control. Threonine and proline also proved to be poor substitutes for ammonium. These data suggest that any compound that can efficiently generate sulfide-binding nitrogenous precursors of organic sulfur compounds will prevent the liberation of excess H2S. PMID:7574581

  8. Regulation of hydrogen sulfide liberation in wine-producing Saccharomyces cerevisiae strains by assimilable nitrogen.

    PubMed

    Jiranek, V; Langridge, P; Henschke, P A

    1995-02-01

    Saccharomyces cerevisiae wine-producing yeast cultures grown under model winemaking conditions could be induced to liberate hydrogen sulfide (H2S) by starvation for assimilable nitrogen. The amount of H2S produced was dependent on the yeast strain, the sulfur precursor compound, the culture growth rate, and the activity of the sulfite reductase enzyme (EC 1.8.1.2) immediately before nitrogen depletion. Increased H2S formation relative to its utilization by metabolism was not a consequence of a de novo synthesis of sulfite reductase. The greatest amount of H2S was produced when nitrogen became depleted during the exponential phase of growth or during growth on amino acids capable of supporting short doubling times. Both sulfate and sulfite were able to act as substrates for the generation of H2S in the absence of assimilable nitrogen; however, sulfate reduction was tightly regulated, leading to limited H2S liberation, whereas sulfite reduction appeared to be uncontrolled. In addition to ammonium, most amino acids were able to suppress the liberation of excess H2S when added as sole sources of nitrogen, particularly for one of the strains studied. Cysteine was the most notable exception, inducing the liberation of H2S at levels exceeding that of the nitrogen-depleted control. Threonine and proline also proved to be poor substitutes for ammonium. These data suggest that any compound that can efficiently generate sulfide-binding nitrogenous precursors of organic sulfur compounds will prevent the liberation of excess H2S. PMID:7574581

  9. Ammonia and hydrogen sulfide removal using biochar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reducing ammonia and hydrogen sulfide emissions from livestock facilities is an important issue for many communities and livestock producers. Ammonia has been regarded as odorous, precursor for particulate matter (PM), and contributed to livestock mortality. Hydrogen sulfide is highly toxic at elev...

  10. Geothermal hydrogen sulfide removal

    SciTech Connect

    Urban, P.

    1981-04-01

    UOP Sulfox technology successfully removed 500 ppM hydrogen sulfide from simulated mixed phase geothermal waters. The Sulfox process involves air oxidation of hydrogen sulfide using a fixed catalyst bed. The catalyst activity remained stable throughout the life of the program. The product stream composition was selected by controlling pH; low pH favored elemental sulfur, while high pH favored water soluble sulfate and thiosulfate. Operation with liquid water present assured full catalytic activity. Dissolved salts reduced catalyst activity somewhat. Application of Sulfox technology to geothermal waters resulted in a straightforward process. There were no requirements for auxiliary processes such as a chemical plant. Application of the process to various types of geothermal waters is discussed and plans for a field test pilot plant and a schedule for commercialization are outlined.

  11. Hydrogen sulfide intoxication.

    PubMed

    Guidotti, Tee L

    2015-01-01

    Hydrogen sulfide (H2S) is a hazard primarily in the oil and gas industry, agriculture, sewage and animal waste handling, construction (asphalt operations and disturbing marshy terrain), and other settings where organic material decomposes under reducing conditions, and in geothermal operations. It is an insoluble gas, heavier than air, with a very low odor threshold and high toxicity, driven by concentration more than duration of exposure. Toxicity presents in a unique, reliable, and characteristic toxidrome consisting, in ascending order of exposure, of mucosal irritation, especially of the eye ("gas eye"), olfactory paralysis (not to be confused with olfactory fatigue), sudden but reversible loss of consciousness ("knockdown"), pulmonary edema (with an unusually favorable prognosis), and death (probably with apnea contributing). The risk of chronic neurcognitive changes is controversial, with the best evidence at high exposure levels and after knockdowns, which are frequently accompanied by head injury or oxygen deprivation. Treatment cannot be initiated promptly in the prehospital phase, and currently rests primarily on supportive care, hyperbaric oxygen, and nitrite administration. The mechanism of action for sublethal neurotoxicity and knockdown is clearly not inhibition of cytochrome oxidase c, as generally assumed, although this may play a role in overwhelming exposures. High levels of endogenous sulfide are found in the brain, presumably relating to the function of hydrogen sulfide as a gaseous neurotransmitter and immunomodulator. Prevention requires control of exposure and rigorous training to stop doomed rescue attempts attempted without self-contained breathing apparatus, especially in confined spaces, and in sudden release in the oil and gas sector, which result in multiple avoidable deaths. PMID:26563786

  12. Method for direct production of carbon disulfide and hydrogen from hydrocarbons and hydrogen sulfide feedstock

    SciTech Connect

    Miao, Frank Q.; Erekson, Erek James

    1998-12-01

    A method for converting hydrocarbons and hydrogen sulfide to carbon disulfide and hydrogen is provided comprising contacting the hydrocarbons and hydrogen sulfide to a bi-functional catalyst residing in a controlled atmosphere for a time and at a temperature sufficient to produce carbon disulfide and hydrogen. Also provided is a catalyst for converting carbon sulfides and hydrogen sulfides to gasoline range hydrocarbons comprising a mixture containing a zeolite catalyst and a hydrogenating catalyst.

  13. Production of hydrogen in non oxygen-evolving systems: co-produced hydrogen as a bonus in the photodegradation of organic pollutants and hydrogen sulfide

    SciTech Connect

    Sartoretti, C. Jorand; Ulmann, M.; Augustynski, J. ); Linkous, C.A. )

    2000-01-01

    This report was prepared as part of the documentation of Annex 10 (Photoproduction of Hydrogen) of the IEA Hydrogen Agreement. Subtask A of this Annex concerned photo-electrochemical hydrogen production, with an emphasis on direct water splitting. However, studies of non oxygen-evolving systems were also included in view of their interesting potential for combined hydrogen production and waste degradation. Annex 10 was operative from 1 March 1995 until 1 October 1998. One of the collaborative projects involved scientists from the Universities of Geneva and Bern, and the Federal Institute of Technology in Laussane, Switzerland. A device consisting of a photoelectrochemical cell (PEC) with a WO{sub 3} photoanode connected in series with a so-called Grazel cell (a dye sensitized liquid junction photovoltaic cell) was developed and studied in this project. Part of these studies concerned the combination of hydrogen production with degradation of organic pollutants, as described in Chapter 3 of this report. For completeness, a review of the state of the art of organic waste treatment is included in Chapter 2. Most of the work at the University of Geneva, under the supervision of Prof. J. Augustynski, was focused on the development and testing of efficient WO{sub 3} photoanodes for the photoelectrochemical degradation of organic waste solutions. Two types of WO{sub 3} anodes were developed: non transparent bulk photoanodes and non-particle-based transparent film photoanodes. Both types were tested for degradation and proved to be very efficient in dilute solutions. For instance, a solar-to-chemical energy conversion efficiency of 9% was obtained by operating the device in a 0.01M solution of methanol (as compared to about 4% obtained for direct water splitting with the same device). These organic compounds are oxidized to CO{sub 2} by the photocurrent produced by the photoanode. The advantages of this procedure over conventional electrolytic degradation are that much (an

  14. Application of bacteriophages to reduce biofilms formed by hydrogen sulfide producing bacteria on surfaces in a rendering plant.

    PubMed

    Gong, Chao; Jiang, Xiuping

    2015-08-01

    Hydrogen sulfide producing bacteria (SPB) in raw animal by-products are likely to grow and form biofilms in the rendering processing environments, resulting in the release of harmful hydrogen sulfide (H2S) gas. The objective of this study was to reduce SPB biofilms formed on different surfaces typically found in rendering plants by applying a bacteriophage cocktail. Using a 96-well microplate method, we determined that 3 SPB strains of Citrobacter freundii and Hafnia alvei are strong biofilm formers. Application of 9 bacteriophages (10(7) PFU/mL) from families of Siphoviridae and Myoviridae resulted in a 33%-70% reduction of biofilm formation by each SPB strain. On stainless steel and plastic templates, phage treatment (10(8) PFU/mL) reduced the attached cells of a mixed SPB culture (no biofilm) by 2.3 and 2.7 log CFU/cm(2) within 6 h at 30 °C, respectively, as compared with 2 and 1.5 log CFU/cm(2) reductions of SPB biofilms within 6 h at 30 °C. Phage treatment was also applied to indigenous SPB biofilms formed on the environmental surface, stainless steel, high-density polyethylene plastic, and rubber templates in a rendering plant. With phage treatment (10(9) PFU/mL), SPB biofilms were reduced by 0.7-1.4, 0.3-0.6, and 0.2-0.6 log CFU/cm(2) in spring, summer, and fall trials, respectively. Our study demonstrated that bacteriophages could effectively reduce the selected SPB strains either attached to or in formed biofilms on various surfaces and could to some extent reduce the indigenous SPB biofilms on the surfaces in the rendering environment. PMID:26102989

  15. Process for producing cadmium sulfide on a cadmium telluride surface

    DOEpatents

    Levi, Dean H.; Nelson, Art J.; Ahrenkiel, Richard K.

    1996-01-01

    A process for producing a layer of cadmium sulfide on a cadmium telluride surface to be employed in a photovoltaic device. The process comprises providing a cadmium telluride surface which is exposed to a hydrogen sulfide plasma at an exposure flow rate, an exposure time and an exposure temperature sufficient to permit reaction between the hydrogen sulfide and cadmium telluride to thereby form a cadmium sulfide layer on the cadmium telluride surface and accomplish passivation. In addition to passivation, a heterojunction at the interface of the cadmium sulfide and the cadmium telluride can be formed when the layer of cadmium sulfide formed on the cadmium telluride is of sufficient thickness.

  16. Inhaled Hydrogen Sulfide

    PubMed Central

    Volpato, Gian Paolo; Searles, Robert; Yu, Binglan; Scherrer-Crosbie, Marielle; Bloch, Kenneth D.; Ichinose, Fumito; Zapol, Warren M.

    2010-01-01

    Background Breathing hydrogen sulfide (H2S) has been reported to induce a suspended animation–like state with hypothermia and a concomitant metabolic reduction in rodents. However, the impact of H2S breathing on cardiovascular function remains incompletely understood. In this study, the authors investigated the cardiovascular and metabolic effects of inhaled H2S in a murine model. Methods The impact of breathing H2S on cardiovascular function was examined using telemetry and echocardiography in awake mice. The effects of breathing H2S on carbon dioxide production and oxygen consumption were measured at room temperature and in a warmed environment. Results Breathing H2S at 80 parts per million by volume at 27°C ambient temperature for 6 h markedly reduced heart rate, core body temperature, respiratory rate, and physical activity, whereas blood pressure remained unchanged. Echocardiography demonstrated that H2S exposure decreased both heart rate and cardiac output but preserved stroke volume. Breathing H2S for 6 h at 35°C ambient temperature (to prevent hypothermia) decreased heart rate, physical activity, respiratory rate, and cardiac output without altering stroke volume or body temperature. H2S breathing seems to induce bradycardia by depressing sinus node activity. Breathing H2S for 30 min decreased whole body oxygen consumption and carbon dioxide production at either 27° or 35°C ambient temperature. Both parameters returned to baseline levels within 10 min after the cessation of H2S breathing. Conclusions Inhalation of H2S at either 27° or 35°C reversibly depresses cardiovascular function without changing blood pressure in mice. Breathing H2S also induces a rapidly reversible reduction of metabolic rate at either body temperature. PMID:18362598

  17. Metal oxides remove hydrogen sulfide from landfill gas produced from waste mixed with plaster board under wet conditions.

    PubMed

    Bergersen, Ove; Haarstad, Ketil

    2008-08-01

    Hydrogen sulfide (H2S) is a major odorant in landfills. We have studied H2S production from landfill residual waste with and without sulfur-containing plaster board, including the influence of the water content in the waste. The laboratory experiments were conducted in 30-L polyethylene containers with a controlled water level. We also studied how different materials removed H2S in reactive layers on top of the waste. The organic waste produced H2S in concentrations of up to 40 parts per million (ppm) over a period of 80 days. When plaster board was added, the H2S concentration increased to 800 ppm after a lag period of approximately 40 days with a high water level, and to approximately 100 ppm after 50 days with a low water level. The methane (CH4) concentration in the initial experiment was between 5 and 70% after 80 days. The CH4 concentration in the second experiment increased to nearly 70% in the container with a high water level, slowly declining to approximately 60% between days 20 and 60. The CH4 concentrations during the experiments resembled normal landfill concentrations. Metallic filter materials were very efficient in removing H2S, whereas organic filter materials showed poor H2S removal. PMID:18720651

  18. The diagenesis of carbohydrates by hydrogen sulfide

    NASA Astrophysics Data System (ADS)

    Mango, Frank D.

    1983-08-01

    Carbohydrates react with hydrogen sulfide under low temperature (100° to 200°C) yielding a variety of organosulfur compounds including thiophenes, thiols, sulfides and sulfones. A polymer is also produced, whose elemental composition is within the range of natural coals. When reductive dehydration is carried out in the presence of hydrocarbon, organosulfur compounds are formed in the carbon number range of the hydrocarbon used. In these processes, an active hydrogen transfer catalyst is produced which facilitates the passage of hydrogen between normal paraffins and saccharide units, distributing sulfur between these two families primarily in the form of thiophene rings. The simplicity of these systems - H 2S, carbohydrates, H 2O, hydrocarbon - and the facility of the chemistry would suggest that the carbohydrates and hydrogen sulfide may be important agents in the diagenetic processes leading to petroleum and coal. Carbohydrate reduction by hydrogen sulfide may constitute an important route through which certain organosulfur compounds found in petroleum and coal entered these materials in early diagenesis.

  19. 30 CFR 250.604 - Hydrogen sulfide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Hydrogen sulfide. 250.604 Section 250.604...-Workover Operations § 250.604 Hydrogen sulfide. When a well-workover operation is conducted in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S is unknown (as defined...

  20. 30 CFR 250.808 - Hydrogen sulfide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Hydrogen sulfide. 250.808 Section 250.808 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL... § 250.808 Hydrogen sulfide. Production operations in zones known to contain hydrogen sulfide (H2S) or...

  1. 30 CFR 250.808 - Hydrogen sulfide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Hydrogen sulfide. 250.808 Section 250.808 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL... § 250.808 Hydrogen sulfide. Production operations in zones known to contain hydrogen sulfide (H2S) or...

  2. 30 CFR 250.808 - Hydrogen sulfide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Hydrogen sulfide. 250.808 Section 250.808 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL... § 250.808 Hydrogen sulfide. Production operations in zones known to contain hydrogen sulfide (H2S) or...

  3. 30 CFR 250.504 - Hydrogen sulfide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Hydrogen sulfide. 250.504 Section 250.504...-Completion Operations § 250.504 Hydrogen sulfide. When a well-completion operation is conducted in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S is unknown (as defined...

  4. 30 CFR 250.808 - Hydrogen sulfide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.808 Section 250.808... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Production Safety Systems § 250.808 Hydrogen sulfide. Production operations in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of...

  5. 30 CFR 250.604 - Hydrogen sulfide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.604 Section 250.604... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Workover Operations § 250.604 Hydrogen sulfide. When a well-workover operation is conducted in zones known to contain hydrogen sulfide (H2S) or...

  6. 30 CFR 250.504 - Hydrogen sulfide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.504 Section 250.504... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Completion Operations § 250.504 Hydrogen sulfide. When a well-completion operation is conducted in zones known to contain hydrogen sulfide (H2S) or...

  7. 30 CFR 250.490 - Hydrogen sulfide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Hydrogen sulfide. 250.490 Section 250.490 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Hydrogen Sulfide § 250.490 Hydrogen sulfide. (a)...

  8. Membrane for hydrogen recovery from streams containing hydrogen sulfide

    DOEpatents

    Agarwal, Pradeep K.

    2007-01-16

    A membrane for hydrogen recovery from streams containing hydrogen sulfide is provided. The membrane comprises a substrate, a hydrogen permeable first membrane layer deposited on the substrate, and a second membrane layer deposited on the first layer. The second layer contains sulfides of transition metals and positioned on the on a feed side of the hydrogen sulfide stream. The present invention also includes a method for the direct decomposition of hydrogen sulfide to hydrogen and sulfur.

  9. Hydrogen Sulfide Oxidation by Myoglobin.

    PubMed

    Bostelaar, Trever; Vitvitsky, Victor; Kumutima, Jacques; Lewis, Brianne E; Yadav, Pramod K; Brunold, Thomas C; Filipovic, Milos; Lehnert, Nicolai; Stemmler, Timothy L; Banerjee, Ruma

    2016-07-13

    Enzymes in the sulfur network generate the signaling molecule, hydrogen sulfide (H2S), from the amino acids cysteine and homocysteine. Since it is toxic at elevated concentrations, cells are equipped to clear H2S. A canonical sulfide oxidation pathway operates in mitochondria, converting H2S to thiosulfate and sulfate. We have recently discovered the ability of ferric hemoglobin to oxidize sulfide to thiosulfate and iron-bound hydropolysulfides. In this study, we report that myoglobin exhibits a similar capacity for sulfide oxidation. We have trapped and characterized iron-bound sulfur intermediates using cryo-mass spectrometry and X-ray absorption spectroscopy. Further support for the postulated intermediates in the chemically challenging conversion of H2S to thiosulfate and iron-bound catenated sulfur products is provided by EPR and resonance Raman spectroscopy in addition to density functional theory computational results. We speculate that the unusual sensitivity of skeletal muscle cytochrome c oxidase to sulfide poisoning in ethylmalonic encephalopathy, resulting from the deficiency in a mitochondrial sulfide oxidation enzyme, might be due to the concentration of H2S by myoglobin in this tissue. PMID:27310035

  10. Hydrogen Sulfide Regulates Ca2+ Homeostasis Mediated by Concomitantly Produced Nitric Oxide via a Novel Synergistic Pathway in Exocrine Pancreas

    PubMed Central

    Moustafa, Amira

    2014-01-01

    Abstract Aim: The present study was designed to explore the effects of hydrogen sulfide (H2S) on Ca2+ homeostasis in rat pancreatic acini. Results: Sodium hydrosulfide (NaHS; an H2S donor) induced a biphasic increase in the intracellular Ca2+ concentration ([Ca2+]i) in a dose-dependent manner. The NaHS-induced [Ca2+]i elevation persisted with an EC50 of 73.3 μM in the absence of extracellular Ca2+ but was abolished by thapsigargin, indicating that both Ca2+ entry and Ca2+ release contributed to the increase. The [Ca2+]i increase was markedly inhibited in the presence of NG-monomethyl L-arginine or 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), and diaminofluorescein-2/diaminofluorescein-2 triazole (DAF-2/DAF-2T) fluorometry demonstrated that nitric oxide (NO) was also produced by H2S in a dose-dependent manner with an EC50 of 64.8 μM, indicating that NO was involved in the H2S effect. The H2S-induced [Ca2+]i increase was inhibited by pretreatment with U73122, xestospongin C, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, KT5823, and GP2A, indicating that phospholipase C (PLC), the inositol 1,4,5-trisphosphate (IP3) receptor, soluble guanylate cyclase (sGC), protein kinase G (PKG), and Gq-protein play roles as intermediate components in the H2S-triggered intracellular signaling. Innovation: To our knowledge, our study is the first one highlighting the effect of H2S on intracellular Ca2+ dynamics in pancreatic acinar cells. Moreover, a novel cascade was presumed to function via the synergistic interaction between H2S and NO. Conclusion: We conclude that H2S affects [Ca2+]i homeostasis that is mediated by H2S-evoked NO production via an endothelial nitric oxide synthase (eNOS)-NO-sGC-cyclic guanosine monophosphate-PKG-Gq-protein-PLC-IP3 pathway to induce Ca2+ release, and this pathway is identical to the one we recently proposed for a sole effect of NO and the two gaseous molecules synergistically function to regulate Ca2+ homeostasis

  11. Microaeration for hydrogen sulfide removal in UASB reactor.

    PubMed

    Krayzelova, Lucie; Bartacek, Jan; Kolesarova, Nina; Jenicek, Pavel

    2014-11-01

    The removal of hydrogen sulfide from biogas by microaeration was studied in Up-flow Anaerobic Sludge Blanket (UASB) reactors treating synthetic brewery wastewater. A fully anaerobic UASB reactor served as a control while air was dosed into a microaerobic UASB reactor (UMSB). After a year of operation, sulfur balance was described in both reactors. In UASB, sulfur was mainly presented in the effluent as sulfide (49%) and in biogas as hydrogen sulfide (34%). In UMSB, 74% of sulfur was detected in the effluent (41% being sulfide and 33% being elemental sulfur), 10% accumulated in headspace as elemental sulfur and 9% escaped in biogas as hydrogen sulfide. The efficiency of hydrogen sulfide removal in UMSB was on average 73%. Microaeration did not cause any decrease in COD removal or methanogenic activity in UMSB and the elemental sulfur produced by microaeration did not accumulate in granular sludge. PMID:25270045

  12. 30 CFR 250.504 - Hydrogen sulfide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Hydrogen sulfide. 250.504 Section 250.504... § 250.504 Hydrogen sulfide. When a well-completion operation is conducted in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S is unknown (as defined in § 250.490 of...

  13. 30 CFR 250.604 - Hydrogen sulfide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Hydrogen sulfide. 250.604 Section 250.604... § 250.604 Hydrogen sulfide. When a well-workover operation is conducted in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S is unknown (as defined in § 250.490 of...

  14. 30 CFR 250.504 - Hydrogen sulfide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Hydrogen sulfide. 250.504 Section 250.504... § 250.504 Hydrogen sulfide. When a well-completion operation is conducted in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S is unknown (as defined in § 250.490 of...

  15. 30 CFR 250.604 - Hydrogen sulfide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Hydrogen sulfide. 250.604 Section 250.604... § 250.604 Hydrogen sulfide. When a well-workover operation is conducted in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S is unknown (as defined in § 250.490 of...

  16. 30 CFR 250.604 - Hydrogen sulfide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Hydrogen sulfide. 250.604 Section 250.604... § 250.604 Hydrogen sulfide. When a well-workover operation is conducted in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S is unknown (as defined in § 250.490 of...

  17. 30 CFR 250.504 - Hydrogen sulfide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Hydrogen sulfide. 250.504 Section 250.504... § 250.504 Hydrogen sulfide. When a well-completion operation is conducted in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S is unknown (as defined in § 250.490 of...

  18. Redetermination of piperidinium hydrogen sulfide structure

    NASA Technical Reports Server (NTRS)

    Andras, Maria T.; Hepp, Aloysius F.; Fanwick, Phillip E.; Duraj, Stan A.; Gordon, Edward M.

    1994-01-01

    The presence of adventitious water in a reaction between dicyclopentamethylene thiuram-disulfide (C5H10NCS2)(sub 2) and a picoline solution of tricyclopentadienyl indium(III) (C5H5)(sub 3). It resulted in the formation of piperidinium hydrogen sulfide (C5H13NS). The piperidinium hydrogen sulfide produced in this way was unambiguously characterized by X-ray crystallography. The structure determination showed that the piperidinium hydrogen sulfide crystal (MW = 119.23 g/mol) has an orthorhombic (Pbcm) unit cell whose parameters are: a = 9.818(2), b = 7.3720(1), c = 9.754(1) A, V = 706.0(3) A(exp 3), Z=4. D(sub chi) = 1.122 g cm(exp -3), Mo K(alpha) (lamda = 0.71073), mu= 3.36 cm(exp -1), F(000) = 264.0, T =293 K, R = 0.036 for 343 reflections with F(sub O)(sup 2) greater than 3 sigma (F(sub O)(sup 2)) and 65 variables. The compound consists of (C5H10NH2)(+) cations and (SH)(-) anions with both species residing on crystallographic mirror planes. N-H -- S hydrogen bonding contributes to the interconnection of neighboring piperidinium components of the compound.

  19. Process for producing cadmium sulfide on a cadmium telluride surface

    DOEpatents

    Levi, D.H.; Nelson, A.J.; Ahrenkiel, R.K.

    1996-07-30

    A process is described for producing a layer of cadmium sulfide on a cadmium telluride surface to be employed in a photovoltaic device. The process comprises providing a cadmium telluride surface which is exposed to a hydrogen sulfide plasma at an exposure flow rate, an exposure time and an exposure temperature sufficient to permit reaction between the hydrogen sulfide and cadmium telluride to thereby form a cadmium sulfide layer on the cadmium telluride surface and accomplish passivation. In addition to passivation, a heterojunction at the interface of the cadmium sulfide and the cadmium telluride can be formed when the layer of cadmium sulfide formed on the cadmium telluride is of sufficient thickness. 12 figs.

  20. Catalyst and process for oxidizing hydrogen sulfide

    SciTech Connect

    Hass, R.H.; Fullerton; Ward, J.W.; Yorba, L.

    1984-04-24

    Catalysts comprising bismuth and vanadium components are highly active and stable, especially in the presence of water vapor, for oxidizing hydrogen sulfide to sulfur or SO/sub 2/. Such catalysts have been found to be especially active for the conversion of hydrogen sulfide to sulfur by reaction with oxygen or SO/sub 2/.

  1. New biologically active hydrogen sulfide donors.

    PubMed

    Roger, Thomas; Raynaud, Francoise; Bouillaud, Frédéric; Ransy, Céline; Simonet, Serge; Crespo, Christine; Bourguignon, Marie-Pierre; Villeneuve, Nicole; Vilaine, Jean-Paul; Artaud, Isabelle; Galardon, Erwan

    2013-11-25

    Generous donors: The dithioperoxyanhydrides (CH3 COS)2 , (PhCOS)2 , CH3 COSSCO2 Me and PhCOSSCO2 Me act as thiol-activated hydrogen sulfide donors in aqueous buffer solution. The most efficient donor (CH3 COS)2 can induce a biological response in cells, and advantageously replace hydrogen sulfide in ex vivo vascular studies. PMID:24115650

  2. 30 CFR 250.808 - Hydrogen sulfide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Hydrogen sulfide. 250.808 Section 250.808 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE... Safety Systems § 250.808 Hydrogen sulfide. Production operations in zones known to contain...

  3. Hydrogen sulfide pollution in wastewater treatment facilities

    SciTech Connect

    AlDhowalia, K.H. )

    1987-01-01

    The hydrogen sulfide (H{sub 2}S) found in wastewater collection systems and wastewater treatment facilities results from the bacterial reduction of the sulfate ion (SO{sub 4}). Hydrogen sulfide is a gas that occurs both in the sewer atmosphere and as a dissolved gas in the wastewater. When raw wastewater first enters the wastewater treatment facility by gravity most of the hydrogen sulfide is in the gaseous phase and will escape into the atmosphere at the inlet structures. Also some of the dissolved hydrogen sulfide will be released at points of turbulance such as at drops in flow, flumes, or aeration chambers. Several factors can cause excessive hydrogen sulfide concentrations in a sewerage system. These include septic sewage, long flow times in the sewerage system, high temperatures, flat sewer grades, and poor ventilation. These factors are discussed in this paper.

  4. Laminar shear flow increases hydrogen sulfide and activates a nitric oxide producing signaling cascade in endothelial cells.

    PubMed

    Huang, Bin; Chen, Chang-Ting; Chen, Chi-Shia; Wang, Yun-Ming; Hsieh, Hsyue-Jen; Wang, Danny Ling

    2015-09-01

    Laminar shear flow triggers a signaling cascade that maintains the integrity of endothelial cells (ECs). Hydrogen sulfide (H2S), a new gasotransmitter is regarded as an upstream regulator of nitric oxide (NO). Whether the H2S-generating enzymes are correlated to the enzymes involved in NO production under shear flow conditions remains unclear as yet. In the present study, the cultured ECs were subjected to a constant shear flow (12 dyn/cm(2)) in a parallel flow chamber system. We investigated the expression of three key enzymes for H2S biosynthesis, cystathionine-γ-lyase (CSE), cystathionine-β-synthase (CBS), and 3-mercapto-sulfurtransferase (3-MST). Shear flow markedly increased the level of 3-MST. Shear flow enhanced the production of H2S was determined by NBD-SCN reagent that can bind to cysteine/homocystein. Exogenous treatment of NaHS that can release gaseous H2S, ECs showed an increase of phosphorylation in Akt(S473), ERK(T202/Y204) and eNOS(S1177). This indicated that H2S can trigger the NO-production signaling cascade. Silencing of CSE, CBS and 3-MST genes by siRNA separately attenuated the phosphorylation levels of Akt(S473) and eNOS(S1177) under shear flow conditions. The particular mode of shear flow increased H2S production. The interplay between H2S and NO-generating enzymes were discussed in the present study. PMID:26212441

  5. Mechanistic chemical perspective of hydrogen sulfide signaling.

    PubMed

    Nagy, Péter

    2015-01-01

    Hydrogen sulfide is now a well-appreciated master regulator in a diverse array of physiological processes. However, as a consequence of the rapid growth of the area, sulfide biology suffers from an increasing number of controversial observations and interpretations. A better understanding of the underlying molecular pathways of sulfide's actions is key to reconcile controversial issues, which calls for rigorous chemical/biochemical investigations. Protein sulfhydration and coordination/redox chemical interactions of sulfide with heme proteins are the two most extensively studied pathways in sulfide biochemistry. These pathways are important mediators of protein functions, generate bioactive sulfide metabolites, contribute to sulfide storage/trafficking and carry antioxidant functions. In addition, inorganic polysulfides, which are oxidative sulfide metabolites, are increasingly recognized as important players in sulfide biology. This chapter provides an overview of our mechanistic perspective on the reactions that govern (i) sulfide's bioavailability (including the delicate enzyme machineries that orchestrate sulfide production and consumption and the roles of the large sulfide-storing pools as biological buffers), (ii) biological significance and mechanisms of persulfide formation (including the reduction of disulfides, condensation with sulfenic acids, oxidation of thiols with polysulfides and radical-mediated pathways), (iii) coordination and redox chemical interactions of sulfide with heme proteins (including cytochrome c oxidase, hemoglobins, myoglobins and peroxidases), and (iv) the chemistry of polysulfides. PMID:25725513

  6. High temperature regenerable hydrogen sulfide removal agents

    DOEpatents

    Copeland, Robert J.

    1993-01-01

    A system for high temperature desulfurization of coal-derived gases using regenerable sorbents. One sorbent is stannic oxide (tin oxide, SnO.sub.2), the other sorbent is a metal oxide or mixed metal oxide such as zinc ferrite (ZnFe.sub.2 O.sub.4). Certain otherwise undesirable by-products, including hydrogen sulfide (H.sub.2 S) and sulfur dioxide (SO.sub.2) are reused by the system, and elemental sulfur is produced in the regeneration reaction. A system for refabricating the sorbent pellets is also described.

  7. Hydrogen and sulfur recovery from hydrogen sulfide wastes

    DOEpatents

    Harkness, John B. L.; Gorski, Anthony J.; Daniels, Edward J.

    1993-01-01

    A process for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

  8. Hydrogen and sulfur recovery from hydrogen sulfide wastes

    DOEpatents

    Harkness, J.B.L.; Gorski, A.J.; Daniels, E.J.

    1993-05-18

    A process is described for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is [dis]associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

  9. Ridding Groundwater of Hydrogen Sulfide. Part 1.

    ERIC Educational Resources Information Center

    Lochrane, Thomas G.

    1979-01-01

    This article is the first in a series reviewing the problems associated with hydrogen sulfide in drinking water sources. Discussion centers on identification of a cost-effective balance between aeration and chlorination treatment operations. (AS)

  10. Hydrogen Sulfide as a Gasotransmitter

    PubMed Central

    Gadalla, Moataz M.; Snyder, Solomon H.

    2010-01-01

    Nitric oxide (NO) and carbon monoxide (CO) are well established as messenger molecules throughout the body, gasotransmitters, based on striking alterations in mice lacking the appropriate biosynthetic enzymes. Hydrogen sulfide (H2S) is even more chemically reactive, but till recently there was little definitive evidence for its physiologic formation. Cystathionine β-synthase (CBS, EC 4.2.1.22), and Cystathionine γ-lyase (CSE; EC 4.4.1.1), also known as cytathionase, can generate H2S from cyst(e)ine. Very recent studies with mice lacking these enzymes have established that CSE is responsible for H2S formation in the periphery, while in the brain CBS is the biosynthetic enzyme. Endothelial-derived relaxing factor (EDRF) activity is reduced 80% in the mesenteric artery of mice with deletion of CSE, establishing H2S as a major physiologic EDRF. H2S appears to signal predominantly by S-sulfhydrating cysteines in its target proteins, analogous to S-nitrosylation by NO. Whereas S-nitrosylation typically inhibits enzymes, S-sulfhydration activates them. S-nitrosylation basally affects 1–2% of its target proteins, while 10–25% of H2S target proteins are S-sulfhydrated. In summary, H2S appears to be a physiologic gasotransmitter of comparable importance to NO and CO. PMID:20067586

  11. Hydrogen sulfide and translational medicine

    PubMed Central

    Guo, Wei; Cheng, Ze-yu; Zhu, Yi-zhun

    2013-01-01

    Hydrogen sulfide (H2S) along with carbon monoxide and nitric oxide is an important signaling molecule that has undergone large numbers of fundamental investigations. H2S is involved in various physiological activities associated with the regulation of homeostasis, vascular contractility, pro- and anti-inflammatory activities, as well as pro- and anti-apoptotic activities etc. However, the actions of H2S are influenced by its concentration, reaction time, and cell/disease types. Therefore, H2S is a signaling molecule without definite effect. The use of existing H2S donors is limited because of the instant release and short lifetime of H2S. Thus, translational medicine involving the sustained and controlled release of H2S is of great value for both scientific and clinical uses. H2S donation can be manipulated by different ways, including where H2S is given, how H2S is donated, or the specific structures of H2S-releasing drugs and H2S donor molecules. This review briefly summarizes recent progress in research on the physiological and pathological functions of H2S and H2S-releasing drugs, and suggests hope for future investigations. PMID:24096643

  12. Amorphous molybdenum sulfides as hydrogen evolution catalysts.

    PubMed

    Morales-Guio, Carlos G; Hu, Xile

    2014-08-19

    Providing energy for a population projected to reach 9 billion people within the middle of this century is one of the most pressing societal issues. Burning fossil fuels at a rate and scale that satisfy our near-term demand will irreversibly damage the living environment. Among the various sources of alternative and CO2-emission-free energies, the sun is the only source that is capable of providing enough energy for the whole world. Sunlight energy, however, is intermittent and requires an efficient storage mechanism. Sunlight-driven water splitting to make hydrogen is widely considered as one of the most attractive methods for solar energy storage. Water splitting needs a hydrogen evolution catalyst to accelerate the rate of hydrogen production and to lower the energy loss in this process. Precious metals such as Pt are superior catalysts, but they are too expensive and scarce for large-scale applications. In this Account, we summarize our recent research on the preparation, characterization, and application of amorphous molybdenum sulfide catalysts for the hydrogen evolution reaction. The catalysts can be synthesized by electrochemical deposition under ambient conditions from readily available and inexpensive precursors. The catalytic activity is among the highest for nonprecious catalysts. For example, at a loading of 0.2 mg/cm(2), the optimal catalyst delivers a current density of 10 mA/cm(2) at an overpotential of 160 mV. The growth mechanism of the electrochemically deposited film catalysts was revealed by an electrochemical quartz microcrystal balance study. While different electrochemical deposition methods produce films with different initial compositions, the active catalysts are the same and are identified as a "MoS(2+x)" species. The activity of the film catalysts can be further promoted by divalent Fe, Co, and Ni ions, and the origins of the promotional effects have been probed. Highly active amorphous molybdenum sulfide particles can also be prepared

  13. Hydrogen Sulfide Inhibits Amyloid Formation

    PubMed Central

    2015-01-01

    Amyloid fibrils are large aggregates of misfolded proteins, which are often associated with various neurodegenerative diseases such as Alzheimer’s, Parkinson’s, Huntington’s, and vascular dementia. The amount of hydrogen sulfide (H2S) is known to be significantly reduced in the brain tissue of people diagnosed with Alzheimer’s disease relative to that of healthy individuals. These findings prompted us to investigate the effects of H2S on the formation of amyloids in vitro using a model fibrillogenic protein hen egg white lysozyme (HEWL). HEWL forms typical β-sheet rich fibrils during the course of 70 min at low pH and high temperatures. The addition of H2S completely inhibits the formation of β-sheet and amyloid fibrils, as revealed by deep UV resonance Raman (DUVRR) spectroscopy and ThT fluorescence. Nonresonance Raman spectroscopy shows that disulfide bonds undergo significant rearrangements in the presence of H2S. Raman bands corresponding to disulfide (RSSR) vibrational modes in the 550–500 cm–1 spectral range decrease in intensity and are accompanied by the appearance of a new 490 cm–1 band assigned to the trisulfide group (RSSSR) based on the comparison with model compounds. The formation of RSSSR was proven further using a reaction with TCEP reduction agent and LC-MS analysis of the products. Intrinsic tryptophan fluorescence study shows a strong denaturation of HEWL containing trisulfide bonds. The presented evidence indicates that H2S causes the formation of trisulfide bridges, which destabilizes HEWL structure, preventing protein fibrillation. As a result, small spherical aggregates of unordered protein form, which exhibit no cytotoxicity by contrast with HEWL fibrils. PMID:25545790

  14. Hydrogen sulfide and polysulfides as signaling molecules.

    PubMed

    Kimura, Hideo

    2015-01-01

    Hydrogen sulfide (H2S) is a familiar toxic gas that smells of rotten eggs. After the identification of endogenous H2S in the mammalian brain two decades ago, studies of this molecule uncovered physiological roles in processes such as neuromodulation, vascular tone regulation, cytoprotection against oxidative stress, angiogenesis, anti-inflammation, and oxygen sensing. Enzymes that produce H2S, such as cystathionine β-synthase, cystathionine γ-lyase, and 3-mercaptopyruvate sulfurtransferase have been studied intensively and well characterized. Polysulfides, which have a higher number of inner sulfur atoms than that in H2S, were recently identified as potential signaling molecules that can activate ion channels, transcription factors, and tumor suppressors with greater potency than that of H2S. This article focuses on our contribution to the discovery of these molecules and their metabolic pathways and mechanisms of action. PMID:25864468

  15. Hydrogen sulfide and polysulfides as signaling molecules

    PubMed Central

    KIMURA, Hideo

    2015-01-01

    Hydrogen sulfide (H2S) is a familiar toxic gas that smells of rotten eggs. After the identification of endogenous H2S in the mammalian brain two decades ago, studies of this molecule uncovered physiological roles in processes such as neuromodulation, vascular tone regulation, cytoprotection against oxidative stress, angiogenesis, anti-inflammation, and oxygen sensing. Enzymes that produce H2S, such as cystathionine β-synthase, cystathionine γ-lyase, and 3-mercaptopyruvate sulfurtransferase have been studied intensively and well characterized. Polysulfides, which have a higher number of inner sulfur atoms than that in H2S, were recently identified as potential signaling molecules that can activate ion channels, transcription factors, and tumor suppressors with greater potency than that of H2S. This article focuses on our contribution to the discovery of these molecules and their metabolic pathways and mechanisms of action. PMID:25864468

  16. Utilization of Hyperbaric Oxygen Therapy and Induced Hypothermia After Hydrogen Sulfide Exposure

    PubMed Central

    Asif, Mir J.; Exline, Matthew C.

    2013-01-01

    Hydrogen sulfide is a toxic gas produced as a byproduct of organic waste and many industrial processes. Hydrogen sulfide exposure symptoms may vary from mild (dizziness, headaches, nausea) to severe lactic acidosis via its inhibition of oxidative phosphorylation, leading to cardiac arrhythmias and death. Treatment is generally supportive. We report the case of a patient presenting with cardiac arrest secondary to hydrogen sulfide exposure treated with both hyperbaric oxygen therapy and therapeutic hypothermia with great improvement in neurologic function. PMID:22004989

  17. Hydrogen sulfide to the rescue in obstructive kidney injury

    PubMed Central

    Kasinath, Balakuntalam S.

    2014-01-01

    Hydrogen sulfide is a gasotransmitter with far reaching effects on cell function. Studies show that depending on the context hydrogen sulfide can function as an ameliorative agent or as a mediator of kidney injury. PMID:24875544

  18. Hydrogen sulfide release from dairy manure storages containing gypsum bedding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recycled gypsum products can provide a cost-effective bedding alternative for dairy producers. Manufacturers report reduced odors, moisture and bacteria in the stall environment when compared to traditional bedding. Gypsum provides a sulfate source that can be converted to hydrogen sulfide under ana...

  19. Comparison of Hydrogen Sulfide Analysis Techniques

    ERIC Educational Resources Information Center

    Bethea, Robert M.

    1973-01-01

    A summary and critique of common methods of hydrogen sulfide analysis is presented. Procedures described are: reflectance from silver plates and lead acetate-coated tiles, lead acetate and mercuric chloride paper tapes, sodium nitroprusside and methylene blue wet chemical methods, infrared spectrophotometry, and gas chromatography. (BL)

  20. 30 CFR 250.490 - Hydrogen sulfide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... black lettering as follows: Letter height Wording 12 inches Danger. Poisonous Gas. Hydrogen Sulfide. 7... well-control techniques to prevent formation fracturing in an open hole within the pressure limits of... designed consistent with the anticipated depth, conditions of the hole, and reservoir environment to...

  1. Micro-aeration for hydrogen sulfide removal from biogas

    NASA Astrophysics Data System (ADS)

    Duangmanee, Thanapong

    The presence of sulfur compounds (e.g. protein, sulfate, thiosulfate, sulfite, etc.) in the feed stream generates highly corrosive and odorous hydrogen sulfide during anaerobic digestion. The high sulfide level in the biogas stream is not only poisonous to many novel metal catalysts employed in thermo-catalytic processes but also reduces the quality of methane to produce renewable energy. This study used an innovative, low-maintenance, low-cost biological sulfide removal technology to remove sulfides simultaneously from both gas and liquid phase. ORP (Oxidation-Reduction-Potential) was used as the controlling parameter to precisely regulate air injection to the sulfide oxidizing unit (SOU). The microaeration technique provided just enough oxygen to partially oxidize sulfides to elemental sulfur without inhibiting methanogenesis. The SOU was equipped with a diffuser at the bottom for the dispersion of sulfide-laden biogas and injected air throughout the column. The SOU can be operated as a standalone unit or coupled with an anaerobic digester to simultaneously remove sulfide from the biogas and effluent. The integrated system was capable of reducing hydrogen sulfide in biogas from 2,450 to less than 2 ppmV with minimal sulfate production at the highest available sulfide loading rate of 0.24 kg/m3-day. More than 98% of sulfide removed was recovered as elemental sulfur. However, the standalone SOU was able to operate at high hydrogen sulfide loading of 1.46 kg/m 3-day at inlet sulfide concentration of 3000 ppmV and reduce the off-gas hydrogen sulfide concentrations to less than 10 ppmV. The experiment also revealed that the ORP controlled aeration was sensitive enough to prevent oxygen overdosing (dampening effect) during unexpected surges of aeration. Using generalized linear regression, a model predicting output H2S concentration based on input H2S concentrations, SOU medium heights, and biogas flow rates, was derived. With 95% confidence, output H2S concentration

  2. Microbial control of hydrogen sulfide production

    SciTech Connect

    Montgomery, A.D.; Bhupathiraju, V.K.; Wofford, N.; McInerney, M.J.

    1995-12-31

    A sulfide-resistant strain of Thiobacillus denitrificans, strain F, prevented the accumulation of sulfide by Desulfovibrio desulfuricans when both organisms were grown in liquid medium. The wild-type strain of T. denitrificans did not prevent the accumulation of sulfide produced by D. desulfuricans. Strain F also prevented the accumulation of sulfide by a mixed population of sulfate-reducing bacteria enriched from an oil field brine. Fermentation balances showed that strain F stoichiometrically oxidized the sulfide produced by D. desulfuricans and the oil field brine enrichment to sulfate. The ability of a strain F to control sulfide production in an experimental system of cores and formation water from the Redfield, Iowa, natural gas storage facility was also investigated. A stable, sulfide-producing biofilm was established in two separate core systems, one of which was inoculated with strain F while the other core system (control) was treated in an identical manner, but was not inoculated with strain F. When formation water with 10 mM acetate and 5 mM nitrate was injected into both core systems, the effluent sulfide concentrations in the control core system ranged from 200 to 460 {mu}M. In the test core system inoculated with strain F, the effluent sulfide concentrations were lower, ranging from 70 to 110 {mu}M. In order to determine whether strain F could control sulfide production under optimal conditions for sulfate-reducing bacteria, the electron donor was changed to lactate and inorganic nutrients (nitrogen and phosphate sources) were added to the formation water. When nutrient-supplemented formation water with 3.1 mM lactate and 10 mM nitrate was used, the effluent sulfide concentrations of the control core system initially increased to about 3,800 {mu}M, and then decreased to about 1,100 {mu}M after 5 weeks. However, in the test core system inoculated with strain F, the effluent sulfide concentrations were much lower, 160 to 330 {mu}M.

  3. Mechanisms of hydrogen sulfide removal with steel making slag.

    PubMed

    Kim, Kyunghoi; Asaoka, Satoshi; Yamamoto, Tamiji; Hayakawa, Shinjiro; Takeda, Kazuhiko; Katayama, Misaki; Onoue, Takasumi

    2012-09-18

    In the present study, we experimentally investigated the removal of hydrogen sulfide using steel-making slag (SMS) and clarified the mechanism of hydrogen sulfide removal with the SMS. The results proved that SMS is able to remove hydrogen sulfide dissolved in water, and the maximum removal amount of hydrogen sulfide per unit weight of the SMS for 8 days was estimated to be 37.5 mg S/g. The removal processes of hydrogen sulfide were not only adsorption onto the SMS, but oxidation and precipitation as sulfur. The chemical forms of sulfide adsorbed onto the SMS were estimated to be sulfur and manganese sulfide in the ratio of 81% and 19%, respectively. It is demonstrated here that the SMS is a promising material to remediate organically enriched coastal sediments in terms of removal of hydrogen sulfide. Furthermore, using SMS is expected to contribute to development of a recycling-oriented society. PMID:22894171

  4. Modification of the EIC hydrogen sulfide abatement process to produce valuable by-products. Final report, May 4, 1981-May 4, 1982

    SciTech Connect

    Offenhartz, P. O'D.

    1982-06-01

    A program of analytical and experimental studies has been carried out to develop modifications of the CUPROSUL process for the desulfurization of geothermal steam. The objective of the program was to devise practical means to manipulate the chemistry of the process so that the consumption of raw materials could be controlled and a variety of valuable by-products could be produced. The process had been demonstrated, at one-tenth commercial scale, for steam of the Geysers' average composition in a configuration which resulted in essentially complete oxidation of sulfide to sulfate. The ability to control the extent of oxidation would increase process flexibility and extend its range of applicability to steams of widely varying composition. Preliminary market surveys of raw materials required for the process and by-products which could be produced indicated that controlling the oxidation of sulfides to produce elemental sulfur would probably be the preferred process option. Use of lime to treat sulfate-containing purge streams to produce by-product gypsum and ammonia for recycle or sale could also be justified for certain steam compositions. Recovery of ammonium sulfate alone from the purge stream would not normally be justified unless corecovery of other valuable by-products, such as boric acid, was possible at incremental cost. It was found that ferric sulfate was a highly effective, selective oxidant for the controlled oxidation of copper sulfide solids to produce elemental sulfur for sale and copper sulfate for recycle.

  5. Production and Physiological Effects of Hydrogen Sulfide

    PubMed Central

    2014-01-01

    Abstract Significance: Hydrogen sulfide (H2S) has been recognized as a physiological mediator with a variety of functions. It regulates synaptic transmission, vascular tone, inflammation, transcription, and angiogenesis; protects cells from oxidative stress and ischemia-reperfusion injury; and promotes healing of ulcers. Recent Advances: In addition to cystathionine β-synthase and cystathionine γ-lyase, 3-mercaptopyruvate sulfurtransferase along with cysteine aminotransferase was recently demonstrated to produce H2S. Even in bacteria, H2S produced by these enzymes functions as a defense against antibiotics, suggesting that the cytoprotective effect of H2S is a universal defense mechanism in organisms from bacteria to mammals. Critical Issues: The functional form of H2S—undissociated H2S gas, dissociated HS ion, or some other form of sulfur—has not been identified. Future Directions: The regulation of H2S production by three enzymes may lead to the identification of the physiological signals that are required to release H2S. The identification of the physiological functions of other forms of sulfur may also help understand the biological significance of H2S. Antioxid. Redox Signal. 20, 783–793. PMID:23581969

  6. Signaling Molecules: Hydrogen Sulfide and Polysulfide

    PubMed Central

    2015-01-01

    Abstract Significance: Hydrogen sulfide (H2S) has been recognized as a signaling molecule as well as a cytoprotectant. It modulates neurotransmission, regulates vascular tone, and protects various tissues and organs, including neurons, the heart, and kidneys, from oxidative stress and ischemia-reperfusion injury. H2S is produced from l-cysteine by cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3MST) along with cysteine aminotransferase. Recent Advances: In addition to these enzymes, we recently identified a novel pathway to produce H2S from d-cysteine, which involves d-amino acid oxidase (DAO) along with 3MST. These enzymes are localized in the cytoplasm, mitochondria, and peroxisomes. However, some enzymes translocate to organelles under specific conditions. Moreover, H2S-derived potential signaling molecules such as polysulfides and HSNO have been identified. Critical Issues: The physiological stimulations, which trigger the production of H2S and its derivatives and maintain their local levels, remain unclear. Future Directions: Understanding the regulation of the H2S production and H2S-derived signaling molecules and the specific stimuli that induce their release will provide new insights into the biology of H2S and therapeutic development in diseases involving these substances. Antioxid. Redox Signal. 22, 362–376. PMID:24800864

  7. Removal of hydrogen sulfide from drilling fluids

    SciTech Connect

    Gilligan Jr., T. J.

    1985-10-22

    The present invention relates to a process for scavenging hydrogen sulfide which frequently becomes entrained in drilling fluid during the course of drilling operations through subterranean formations. The process consists of introducing a solid oxidant in powdered form into the circulating drilling fluid when hydrogen sulfide is encountered. The solid oxidants are selected from the group consisting of calcium hypochlorite (Ca-(OCl)/sub 2/), sodium perborate (NaBO/sub 3/), potassium permanganate (KMnO/sub 4/), and potassium peroxydisulfate (K/sub 2/S/sub 2/O/sub 8/). The solid oxidants are soluble in the drilling fluid, promoting fast and complete scavenging reactions without adversely altering the drilling fluid rheology.

  8. Enamel surface changes caused by hydrogen sulfide

    PubMed Central

    Yamaguchi, Takao; Hanabusa, Masao; Hosoya, Noriyasu; Chiba, Toshie; Yoshida, Takumasa; Morito, Akiyuki

    2015-01-01

    Background: Volatile sulfur compounds (VSCs) produced inside the mouth are a well-known cause of halitosis. Recent studies have suggested that VSCs modify the pathology of periodontitis by encouraging the migration of bacterial toxins associated with increased permeability of gingival epithelia, and enhancing the production of matrix metalloproteinases in gingival connective tissue. Nonetheless, the effects on the enamel of direct exposure to VSCs within the oral cavity remain unclear. In the present study, we observed the effects of VSCs in the form of hydrogen sulfide (H2S) on enamel surfaces and determined their effects on restorations. Materials and Methods: Extracted human tooth and bovine tooth samples were divided into the H2S experimental side and the control side. We observed the effects of H2S on enamel surfaces using electron microscopy and conducted a shear test. Results: We found that exposure to H2S obscured the enamel surface's crystal structure. The surface also exhibited coarseness and reticular changes. Shear testing did not reveal any differences in bond strength. Conclusions: Our findings suggested that H2S occurring inside the mouth causes changes to the crystal structure of the enamel surface that can lead to tooth wear, but that it does not diminish the effects of dental bonding in adhesive restorations. PMID:26752833

  9. Hydrogen sulfide prodrugs—a review

    PubMed Central

    Zheng, Yueqin; Ji, Xingyue; Ji, Kaili; Wang, Binghe

    2015-01-01

    Hydrogen sulfide (H2S) is recognized as one of three gasotransmitters together with nitric oxide (NO) and carbon monoxide (CO). As a signaling molecule, H2S plays an important role in physiology and shows great potential in pharmaceutical applications. Along this line, there is a need for the development of H2S prodrugs for various reasons. In this review, we summarize different H2S prodrugs, their chemical properties, and some of their potential therapeutic applications. PMID:26579468

  10. Hydrogen sulfide prodrugs-a review.

    PubMed

    Zheng, Yueqin; Ji, Xingyue; Ji, Kaili; Wang, Binghe

    2015-09-01

    Hydrogen sulfide (H2S) is recognized as one of three gasotransmitters together with nitric oxide (NO) and carbon monoxide (CO). As a signaling molecule, H2S plays an important role in physiology and shows great potential in pharmaceutical applications. Along this line, there is a need for the development of H2S prodrugs for various reasons. In this review, we summarize different H2S prodrugs, their chemical properties, and some of their potential therapeutic applications. PMID:26579468

  11. Nitrite as an antidote for acute hydrogen sulfide intoxication

    SciTech Connect

    Beck, J.F.; Bradbury, C.M.; Connors, A.J.; Donini, J.C.

    1981-11-01

    The detoxification of hydrogen sulfide (H/sub 2/S) by a heme catalyzed oxidation was examined as part of an on-going study of H/sub 2/S toxicity. Interlocking O/sub 2/ absorption and sulfide depletion data indicate that both oxyhemoglobin and methemoglobin are effective catalytic agents. Although the latter is more efficacious, the life time of excess sulfide in the presence of oxygen and either of the above is of the order of minutes. It has also been established that the formation of methemoglobin following nitrite administration occurs preferentially under oxygen poor conditions. Under an atmospheric or oxygen enriched environment, which favors sulfide depletion, the nitrite retards sulfide oxidation. Thus nitrite as an antidote for acute H/sub 2/S intoxication can only be effective within the first few minutes after the exposure, at which time resuscitation and/or ventilation of the victim is likely to produce conditions in which the nitrite actually slows sulfide removal.

  12. Hydrogen attack - Influence of hydrogen sulfide. [on carbon steel

    NASA Technical Reports Server (NTRS)

    Eliezer, D.; Nelson, H. G.

    1978-01-01

    An experimental study is conducted on 12.5-mm-thick SAE 1020 steel (plain carbon steel) plate to assess hydrogen attack at room temperature after specimen exposure at 525 C to hydrogen and a blend of hydrogen sulfide and hydrogen at a pressure of 3.5 MN/sq m for exposure times up to 240 hr. The results are discussed in terms of tensile properties, fissure formation, and surface scales. It is shown that hydrogen attack from a high-purity hydrogen environment is severe, with the formation of numerous methane fissures and bubbles along with a significant reduction in the room-temperature tensile yield and ultimate strengths. However, no hydrogen attack is observed in the hydrogen/hydrogen sulfide blend environment, i.e. no fissure or bubble formation occurred and the room-temperature tensile properties remained unchanged. It is suggested that the observed porous discontinuous scale of FeS acts as a barrier to hydrogen entry, thus reducing its effective equilibrium solubility in the iron lattice. Therefore, hydrogen attack should not occur in pressure-vessel steels used in many coal gasification processes.

  13. Hydrogen Sulfide Production by Pseudomonas putrefaciens in Shrimp Experimentally Packed in Nitrogen1

    PubMed Central

    Lapin, R. M.; Koburger, J. A.

    1974-01-01

    Shrimp refrigerated in a nitrogen atmosphere develop off-odors not typical of normal spoilage. Investigations of this phenomenon showed that hydrogen sulfide developed in the headspace gas, and a large percentage of the microbial population present on the shrimp stored in nitrogen was capable of hydrogen sulfide production, in contrast to the flora on shrimp stored in air. The predominant hydrogen sulfide-producing organism, Pseudomonas putrefaciens, was present in low numbers on fresh shrimp but usually reached high numbers by day 8 of nitrogen storage. Further studies revealed that cysteine and cystine were the probable substrates in shrimp utilized by this organism for hydrogen sulfide production. When shrimp sterilized by irradiation were inoculated with P. putrefaciens and incubated in an atmosphere of nitrogen, hydrogen sulfide and the characteristic off-odors developed. PMID:4596748

  14. Hydrogen sulfide production from subgingival plaque samples.

    PubMed

    Basic, A; Dahlén, G

    2015-10-01

    Periodontitis is a polymicrobial anaerobe infection. Little is known about the dysbiotic microbiota and the role of bacterial metabolites in the disease process. It is suggested that the production of certain waste products in the proteolytic metabolism may work as markers for disease severity. Hydrogen sulfide (H2S) is a gas produced by degradation of proteins in the subgingival pocket. It is highly toxic and believed to have pro-inflammatory properties. We aimed to study H2S production from subgingival plaque samples in relation to disease severity in subjects with natural development of the disease, using a colorimetric method based on bismuth precipitation. In remote areas of northern Thailand, adults with poor oral hygiene habits and a natural development of periodontal disease were examined for their oral health status. H2S production was measured with the bismuth method and subgingival plaque samples were analyzed for the presence of 20 bacterial species with the checkerboard DNA-DNA hybridization technique. In total, 43 subjects were examined (age 40-60 years, mean PI 95 ± 6.6%). Fifty-six percent had moderate periodontal breakdown (CAL > 3 < 7 mm) and 35% had severe periodontal breakdown (CAL > 7 mm) on at least one site. Parvimonas micra, Filifactor alocis, Porphyromonas endodontalis and Fusobacterium nucleatum were frequently detected. H2S production could not be correlated to periodontal disease severity (PPD or CAL at sampled sites) or to a specific bacterial composition. Site 21 had statistically lower production of H2S (p = 0.02) compared to 16 and 46. Betel nut chewers had statistically significant lower H2S production (p = 0.01) than non-chewers. Rapid detection and estimation of subgingival H2S production capacity was easily and reliably tested by the colorimetric bismuth sulfide precipitation method. H2S may be a valuable clinical marker for degradation of proteins in the subgingival pocket. PMID:25280920

  15. Production of Hydrogen Sulfide by Streptomycetes and Methods for its Detection

    PubMed Central

    Küster, E.; Williams, S. T.

    1964-01-01

    The ability of streptomycetes to produce hydrogen sulfide is generally used for taxonomic purposes. It was found that the previously used method, the blackening of Peptone Iron Agar, does not clearly indicate formation of hydrogen sulfide. It was shown that the blackening of a lead acetate strip is the most accurate indicator for H2S-producing streptomycetes. A great variety of organic and inorganic sulfur compounds were examined and compared, and the choice of the most suitable sulfur source and method for the detection of hydrogen sulfide is discussed. PMID:14106940

  16. High temperature hydrogen sulfide removal

    SciTech Connect

    Copeland, R.J.; Karpuk, M.E.

    1992-11-01

    The objective is to develop and test a regenerable stannic oxide-based sorbent to remove H{sub 2}S from hot coal gases while producing sulfur as the only product. The detailed technical objectives in support of this are: (1) Develop mechanically strong and chemically inert support materials which will retain their properties through multiple absorption regeneration cycles. (2) Develop mathematical models to predict the performance of large-scale systems from benchscale results. (3) Test the durability of the best sorbent/support combinations. (4) Conduct a bench-scale proof of concept test with the best stannic-oxide sorbent. Several approaches are being used to develop long-life sorbents. The investigators have tested sorbents produced by agglomeration, pressing, and extrusion. To date over 50 formulations have been tested, with several showing promise. Table II presents the results on five of these formulations; all of these formulations had surface areas in excess of 2 m{sup 2}/gm. All of the formulations meet the goals for porosity, tin content, and surface area. The crush strength for a 1/8inches dia. by 1/8inches long sorbent is significantly affected by the method of preparing the sorbent.

  17. Structure of 4-methylpyridinium Hydrogen Sulfide

    NASA Technical Reports Server (NTRS)

    Andras, Maria T.; Hepp, Aloysius F.; Fanwick, Phillip E.; Martuch, Robert A.; Duraj, Stan A.; Gordon, Edward M.

    1994-01-01

    4-Methylpyridinium hydrogen sulfide, (C6H7NH)HS, M(sub r) = 127.21, consists of C6H7NH(+) cations and HS(-) anions. Z = 2 for the crystal with monoclinic space group Cm (#8), dimensions of a = 8.679(2) A, b = 7.964(1) A, and c = 4.860(2) A, an angle beta of 101.10(2) degrees, and a volume of V = 329.6(3) A(exp 3). R = 0.039 and R(sub w) = 0.048 for 385 reflections with F(sub o)(exp 2) greater than 3 sigma(F(sub o)(exp 2)) and 59 variables. Both the C6H7NH(+) cation and the HS(-) anion lie on crystallographic mirror planes with the N,S, two carbon atoms, and two hydrogen atoms positioned in the planes. The hydrogen atom of the HS(-) anion was not located.

  18. Hydrogen sulfide exposure in an adult male

    PubMed Central

    Doujaiji, Bassam; Al-Tawfiq, Jaffar A.

    2010-01-01

    Hydrogen sulfide (H2S) is responsible for many incidents of occupational toxic exposure, especially in the petroleum industry. The clinical effects of H2S depend on its concentration and the duration of exposure. H2S is immediately fatal when concentrations are over 500-1000 parts per million (ppm) but exposure to lower concentrations, such as 10-500 ppm, can cause various respiratory symptoms that range from rhinitis to acute respiratory failure. H2S may also affect multiple organs, causing temporary or permanent derangements in the nervous, cardiovascular, renal, hepatic, and hematological systems. We present a case of occupational exposure to H2S leading to multi-organ involvement, acute respiratory failure, organizing pneumonia, and shock resembling acute sepsis. The patient also developed mild obstructive and restrictive pulmonary disease and peripheral neuropathy. PMID:20103963

  19. Chemical Foundations of Hydrogen Sulfide Biology

    PubMed Central

    Li, Qian; Lancaster, Jack R.

    2013-01-01

    Following nitric oxide (nitrogen monoxide) and carbon monoxide, hydrogen sulfide (or its newer systematic name sulfane, H2S) became the third small molecule that can be both toxic and beneficial depending on the concentration. In spite of its impressive therapeutic potential, the underlying mechanisms for its beneficial effects remain unclear. Any novel mechanism has to obey fundamental chemical principles. H2S chemistry was studied long before its biological relevance was discovered, however, with a few exceptions, these past works have received relatively little attention in the path of exploring the mechanistic conundrum of H2S biological functions. This review calls attention to the basic physical and chemical properties of H2S, focuses on the chemistry between H2S and its three potential biological targets: oxidants, metals and thiol derivatives, discusses the applications of these basics into H2S biology and methodology, and introduces the standard terminology to this youthful field. PMID:23850631

  20. Chemical foundations of hydrogen sulfide biology.

    PubMed

    Li, Qian; Lancaster, Jack R

    2013-11-30

    Following nitric oxide (nitrogen monoxide) and carbon monoxide, hydrogen sulfide (or its newer systematic name sulfane, H2S) became the third small molecule that can be both toxic and beneficial depending on the concentration. In spite of its impressive therapeutic potential, the underlying mechanisms for its beneficial effects remain unclear. Any novel mechanism has to obey fundamental chemical principles. H2S chemistry was studied long before its biological relevance was discovered, however, with a few exceptions, these past works have received relatively little attention in the path of exploring the mechanistic conundrum of H2S biological functions. This review calls attention to the basic physical and chemical properties of H2S, focuses on the chemistry between H2S and its three potential biological targets: oxidants, metals and thiol derivatives, discusses the applications of these basics into H2S biology and methodology, and introduces the standard terminology to this youthful field. PMID:23850631

  1. Hydrogen Production from Hydrogen Sulfide in IGCC Power Plants

    SciTech Connect

    Elias Stefanakos; Burton Krakow; Jonathan Mbah

    2007-07-31

    IGCC power plants are the cleanest coal-based power generation facilities in the world. Technical improvements are needed to help make them cost competitive. Sulfur recovery is one procedure in which improvement is possible. This project has developed and demonstrated an electrochemical process that could provide such an improvement. IGCC power plants now in operation extract the sulfur from the synthesis gas as hydrogen sulfide. In this project H{sub 2}S has been electrolyzed to yield sulfur and hydrogen (instead of sulfur and water as is the present practice). The value of the byproduct hydrogen makes this process more cost effective. The electrolysis has exploited some recent developments in solid state electrolytes. The proof of principal for the project concept has been accomplished.

  2. Solubility of hydrogen sulfide in n-methylpyrrolidone

    SciTech Connect

    Yarym-Agaev, N.L.; Matvienko, V.G.; Povalyaeva, N.V.

    1980-01-01

    The solubility of hydrogen sulfide in N-methylpyrrolidone was investigated over wide ranges of temperature and pressure. The dynamic variant of the gravimetric method was used at hydrogen sulfide pressures equal to or below atmospheric, and the static variant at higher pressures. In the dynamic variant of the gravimetric method hydrogen sulfide is passed through a known amount of solvent until saturation is reached, and the amount of gas dissolved is found from the weight increase. This method is particularly convenient in studies of highly soluble gases when the solvent has a low vapor pressure. If the vapor pressure of the solvent exceeded this value a correction for entrainment of solvent vapor by undissolved gas was applied. The study showed that the solubility of hydrogen sulfide in N-methylpyrrolidone rose steeply with increase of pressure and decrease of temperature and that it can be used as an effective absorbent of hydrogen sulfide in highly sulfurous natural gas. Since the solubility of hydrogen sulfide under atmospheric pressure is fairly high even at elevated temperatures, effective regeneration of N-methylpyrrolidone is possible by a combination of heating and blowing with an inert gas or by application of vacuum for removal of the hydrogen sulfide.

  3. Producing Hydrogen With Sunlight

    NASA Technical Reports Server (NTRS)

    Biddle, J. R.; Peterson, D. B.; Fujita, T.

    1987-01-01

    Costs high but reduced by further research. Producing hydrogen fuel on large scale from water by solar energy practical if plant costs reduced, according to study. Sunlight attractive energy source because it is free and because photon energy converts directly to chemical energy when it breaks water molecules into diatomic hydrogen and oxygen. Conversion process low in efficiency and photochemical reactor must be spread over large area, requiring large investment in plant. Economic analysis pertains to generic photochemical processes. Does not delve into details of photochemical reactor design because detailed reactor designs do not exist at this early stage of development.

  4. NEAR-CONTINUOUS MEASUREMENT OF HYDROGEN SULFIDE AND CARBONYL SULFIDE BY AN AUTOMATIC GAS CHROMATOGRAPH

    EPA Science Inventory

    An automatic gas chromatograph with a flame photometric detector that samples and analyzes hydrogen sulfide and carbonyl sulfide at 30-s intervals is described. Temperature programming was used to elute trace amounts of carbon disulfide present in each injection from a Supelpak-S...

  5. Optimization of the superconducting phase of hydrogen sulfide

    SciTech Connect

    Degtyarenko, N. N.; Masur, E. A.

    2015-12-15

    The electron and phonon spectra, as well as the densities of electron and phonon states of the SH{sub 3} phase and the stable orthorhombic structure of hydrogen sulfide SH{sub 2}, are calculated for the pressure interval 100–225 GPa. It is found that the I4/mmm phase can be responsible for the superconducting properties of metallic hydrogen sulfide along with the SH{sub 3} phase. Sequential stages for obtaining and conservation of the SH{sub 2} phase are proposed. The properties of two (SH{sub 2} and SH{sub 3}) superconducting phases of hydrogen sulfide are compared.

  6. Microbial oxidation of mixtures of methylmercaptan and hydrogen sulfide.

    PubMed

    Subramaniyan, A; Kolhatkar, R; Sublette, K L; Beitle, R

    1998-01-01

    Refinery spent-sulfidic caustic, containing only inorganic sulfides, has previously been shown to be amenable to biotreatment with Thiobacillus denitrificans strain F with complete oxidation of sulfides to sulfate. However, many spent caustics contain mercaptans that cannot be metabolized by this strict autotroph. An aerobic enrichment culture was developed from mixed Thiobacilli and activated sludge that was capable of simultaneous oxidation of inorganic sulfide and mercaptans using hydrogen sulfide (H2S) and methylmercaptan (MeSH) gas feeds used to simulate the inorganic and organic sulfur of a spent-sulfidic caustic. The enrichment culture was also capable of biotreatment of an actual mercaptan-containing, spent-sulfidic caustic but at lower rates than predicted by operation on MeSH and H2S fed to the culture in the gas phase, indicating that the caustic contained other inhibitory components. PMID:18576062

  7. Process for thermochemically producing hydrogen

    DOEpatents

    Bamberger, Carlos E.; Richardson, Donald M.

    1976-01-01

    Hydrogen is produced by the reaction of water with chromium sesquioxide and strontium oxide. The hydrogen producing reaction is combined with other reactions to produce a closed chemical cycle for the thermal decomposition of water.

  8. Method of washing hydrogen sulfide from coke oven gas by the ammonium sulfide method

    SciTech Connect

    Ritter, H.

    1985-05-21

    An improved coke oven gas washing process for removing hydrogen sulfide is proposed wherein the coke oven gas is treated in a hydrogen sulfide scrubber by counterflow with an aqueous ammonia wash water. A stream of aqueous weak ammonia liquor is cooled and sprayed through nozzles in the mid-region of the hydrogen sulfide scrubber. A quantity of aqueous ammonia liquor, corresponding to the quantity which is sprayed through the said nozzles, is withdrawn from the hydrogen sulfide scrubber at a level below the nozzles and is introduced into the top of the said hydrogen sulfide scrubber. Ammonia vapor released at the nozzles has a higher partial pressure than the ammonia partial pressure of the coke oven gas in the region of the nozzle. The aqueous ammonia liquor from the deacidifier is the source of the cooled aqueous ammonia liquor which is introduced through the nozzles. A portion of the aqueous ammonia liquor from the deacidifier is introduced directly into the top of the hydrogen sulfide scrubber as a portion of the required aqueous ammonia wash water.

  9. The hydrogen sulfide metabolite trimethylsulfonium is found in human urine

    NASA Astrophysics Data System (ADS)

    Lajin, Bassam; Francesconi, Kevin A.

    2016-06-01

    Hydrogen sulfide is the third and most recently discovered gaseous signaling molecule following nitric oxide and carbon monoxide, playing important roles both in normal physiological conditions and disease progression. The trimethylsulfonium ion (TMS) can result from successive methylation reactions of hydrogen sulfide. No report exists so far about the presence or quantities of TMS in human urine. We developed a method for determining TMS in urine using liquid chromatography-electrospray ionization-triple quadrupole mass spectrometry (LC-ESI-QQQ), and applied the method to establish the urinary levels of TMS in a group of human volunteers. The measured urinary levels of TMS were in the nanomolar range, which is commensurate with the steady-state tissue concentrations of hydrogen sulfide previously reported in the literature. The developed method can be used in future studies for the quantification of urinary TMS as a potential biomarker for hydrogen sulfide body pools.

  10. An Experiment in Autotrophic Fermentation: Microbial Oxidation of Hydrogen Sulfide.

    ERIC Educational Resources Information Center

    Sublette, Kerry L.

    1989-01-01

    Described is an experiment which uses an autotrophic bacterium to anaerobically oxidize hydrogen sulfide to sulfate in a batch-stirred tank reactor. Discusses background information, experimental procedure, and sample results of this activity. (CW)

  11. [Activity of hydrogen sulfide production enzymes in kidneys of rats].

    PubMed

    Mel'nyk, A V; Pentiuk, O O

    2009-01-01

    An experimental research of activity and kinetic descriptions of enzymes participating in formation of hydrogen sulfide in the kidney of rats has been carried out. It was established that cystein, homocystein and thiosulphate are the basic substrates for hydrogen sulfide synthesis. The higest activity for hydrogen sulfide production belongs to thiosulfate-dithiolsulfurtransferase and cysteine aminotransferase, less activity is characteristic of cystathionine beta-synthase and cystathio-nine gamma-lyase. The highest affinity to substrate is registered for thiosulfate-dithiolsulfurtransferase and cystathionine gamma-lyase. It is discovered that the substrate inhibition is typical of all hydrogen sulfide formation enzymes, although this characteristic is the most expressed thiosulfat-dithiolsulfurtransferase. PMID:20387629

  12. The hydrogen sulfide metabolite trimethylsulfonium is found in human urine.

    PubMed

    Lajin, Bassam; Francesconi, Kevin A

    2016-01-01

    Hydrogen sulfide is the third and most recently discovered gaseous signaling molecule following nitric oxide and carbon monoxide, playing important roles both in normal physiological conditions and disease progression. The trimethylsulfonium ion (TMS) can result from successive methylation reactions of hydrogen sulfide. No report exists so far about the presence or quantities of TMS in human urine. We developed a method for determining TMS in urine using liquid chromatography-electrospray ionization-triple quadrupole mass spectrometry (LC-ESI-QQQ), and applied the method to establish the urinary levels of TMS in a group of human volunteers. The measured urinary levels of TMS were in the nanomolar range, which is commensurate with the steady-state tissue concentrations of hydrogen sulfide previously reported in the literature. The developed method can be used in future studies for the quantification of urinary TMS as a potential biomarker for hydrogen sulfide body pools. PMID:27247020

  13. The hydrogen sulfide metabolite trimethylsulfonium is found in human urine

    PubMed Central

    Lajin, Bassam; Francesconi, Kevin A.

    2016-01-01

    Hydrogen sulfide is the third and most recently discovered gaseous signaling molecule following nitric oxide and carbon monoxide, playing important roles both in normal physiological conditions and disease progression. The trimethylsulfonium ion (TMS) can result from successive methylation reactions of hydrogen sulfide. No report exists so far about the presence or quantities of TMS in human urine. We developed a method for determining TMS in urine using liquid chromatography-electrospray ionization-triple quadrupole mass spectrometry (LC-ESI-QQQ), and applied the method to establish the urinary levels of TMS in a group of human volunteers. The measured urinary levels of TMS were in the nanomolar range, which is commensurate with the steady-state tissue concentrations of hydrogen sulfide previously reported in the literature. The developed method can be used in future studies for the quantification of urinary TMS as a potential biomarker for hydrogen sulfide body pools. PMID:27247020

  14. Removal of methanethiol, dimethyl sulfide, dimethyl disulfide, and hydrogen sulfide from contaminated air by Thiobacillus thioparus TK-m

    SciTech Connect

    Kanagawa, T.; Mikami, E.

    1989-03-01

    Methanethiol, dimethyl sulfide, dimethyl disulfide, and hydrogen sulfide were efficiently removed from contaminated air by Thiobacillus thioparus TK-m and oxidized to sulfate stoichiometrically. More than 99.99% of dimethyl sulfide was removed when the load was less than 4.0 g of dimethyl sulfide per g (dry cell weight) per day.

  15. Conversion of ammonia into hydrogen and nitrogen by reaction with a sulfided catalyst

    DOEpatents

    Matthews, Charles W.

    1977-01-01

    A method is provided for removing ammonia from the sour water stream of a coal gasification process. The basic steps comprise stripping the ammonia from the sour water; heating the stripped ammonia to a temperature from between 400.degree. to 1,000.degree. F; passing the gaseous ammonia through a reactor containing a sulfided catalyst to produce elemental hydrogen and nitrogen; and scrubbing the reaction product to obtain an ammonia-free gas. The residual equilibrium ammonia produced by the reactor is recycled into the stripper. The ammonia-free gas may be advantageously treated in a Claus process to recover elemental sulfur. Iron sulfide or cobalt molybdenum sulfide catalysts are used.

  16. Hydrogen Sulfide and Cellular Redox Homeostasis

    PubMed Central

    Xie, Zhi-Zhong; Liu, Yang; Bian, Jin-Song

    2016-01-01

    Intracellular redox imbalance is mainly caused by overproduction of reactive oxygen species (ROS) or weakness of the natural antioxidant defense system. It is involved in the pathophysiology of a wide array of human diseases. Hydrogen sulfide (H2S) is now recognized as the third “gasotransmitters” and proved to exert a wide range of physiological and cytoprotective functions in the biological systems. Among these functions, the role of H2S in oxidative stress has been one of the main focuses over years. However, the underlying mechanisms for the antioxidant effect of H2S are still poorly comprehended. This review presents an overview of the current understanding of H2S specially focusing on the new understanding and mechanisms of the antioxidant effects of H2S based on recent reports. Both inhibition of ROS generation and stimulation of antioxidants are discussed. H2S-induced S-sulfhydration of key proteins (e.g., p66Shc and Keap1) is also one of the focuses of this review. PMID:26881033

  17. Hydrogen Sulfide Signaling in the Gastrointestinal Tract

    PubMed Central

    2014-01-01

    Abstract Significance: The current literature regarding the effects of the gaseous signal molecule hydrogen sulfide (H2S) in the gastrointestinal system is reviewed. Bacterial, host and pharmaceutical-derived H2S are all considered and presented according to the physiological or pathophysiological effects of the gaseous signal molecule. These subjects include the toxicology of intestinal H2S with emphasis on bacterial-derived H2S, especially from sulfate-reducing bacteria, the role of endogenous and exogenous H2S in intestinal inflammation, and the roles of H2S in gastrointestinal motility, secretion and nociception. Recent Advances: While its pro- and anti-inflammatory, smooth muscle relaxant, prosecretory, and pro- and antinociceptive actions continue to remain the major effects of H2S in this system; recent findings have expanded the potential molecular targets for H2S in the gastrointestinal tract. Critical Issues: Numerous discrepancies remain in the literature, and definitive molecular targets in this system have not been supported by the use of competitive antagonism. Future Directions: Future work will hopefully resolve discrepancies in the literature and identify molecular targets and mechanisms of action for H2S. It is clear from the current literature that the long-appreciated relationship between H2S and the gastrointestinal tract continues to be strong as we endeavor to unravel its mysteries. Antioxid. Redox Signal. 20, 818–830. PMID:23582008

  18. Can Hydrogen Sulfide Gas Be a Biosignature in a Habitable Exoplanet?

    NASA Astrophysics Data System (ADS)

    Hu, Renyu; Seager, S.; Bains, W.

    2011-05-01

    A group of microorganisms can disproportionate sulfite and elemental sulfur into sulfide and sulfate to obtain energy for a living. We explore if the sulfide produced by microorganisms can alter the atmospheric composition to manifest in the spectrum of a habitable exoplanet. We consider a dry (i.e., limited ocean cover) habitable planet of Earth size and mass, orbiting a Sun-like star. As on Earth, volcanoes release sulfur as sulfur dioxide and hydrogen sulfide, but the volcanic production of hydrogen sulfide is limited by the scarcity of water. In the meantime, in our scenario, microbes can flourish in the ocean and effectively make use of the energy gained from the sulfur disproportion and release sulfide as the metabolic byproduct. The metabolic sulfur disproportion can enhance the overall outgassing rate of hydrogen sulfide by nearly one order of magnitude over the non-biological emission. To study the atmospheric response to this enhancement, we build a one-dimensional chemical transport model that treats all O, H and S bearing species and the relevant photochemical and chemical reactions. The vertical transport is approximated with the eddy diffusion. We also consider the formation and the sedimentation of elemental sulfur aerosols and sulfate aerosols in the atmosphere and explore the effect of aerosol particle size on the chemistry and the radiative transfer. To establish hydrogen sulfide as a biosignature, we need to understand the atmospheric response to the sulfide outgassing, the spectral features of hydrogen sulfide and its photochemical products, and the volcanic release of H2S. The current work will address the first two problems, and the main uncertainty will remain at the possible false positives due to the volcanism.

  19. Carbonyl sulfide removal with compost and wood chip biofilters, and in the presence of hydrogen sulfide.

    PubMed

    Sattler, Melanie L; Garrepalli, Divya R; Nawal, Chandraprakash S

    2009-12-01

    Carbonyl sulfide (COS) is an odor-causing compound and hazardous air pollutant emitted frequently from wastewater treatment facilities and chemical and primary metals industries. This study examined the effectiveness of biofiltration in removing COS. Specific objectives were to compare COS removal efficiency for various biofilter media; to determine whether hydrogen sulfide (H2S), which is frequently produced along with COS under anaerobic conditions, adversely impacts COS removal; and to determine the maximum elimination capacity of COS for use in biofilter design. Three laboratory-scale polyvinyl chloride biofilter columns were filled with up to 28 in. of biofilter media (aged compost, fresh compost, wood chips, or a compost/wood chip mixture). Inlet COS ranged from 5 to 46 parts per million (ppm) (0.10-9.0 g/m3 hr). Compost and the compost/wood chip mixture produced higher COS removal efficiencies than wood chips alone. The compost and compost/wood chip mixture had a shorter stabilization times compared with wood chips alone. Fresh versus aged compost did not impact COS removal efficiency. The presence of H2S did not adversely impact COS removal for the concentration ratios tested. The maximum elimination capacity is at least 9 g/m3 hr for COS with compost media. PMID:20066911

  20. Hydrogen Sulfide as an Oxygen Sensor

    PubMed Central

    2015-01-01

    Abstract Significance Although oxygen (O2)-sensing cells and tissues have been known for decades, the identity of the O2-sensing mechanism has remained elusive. Evidence is accumulating that O2-dependent metabolism of hydrogen sulfide (H2S) is this enigmatic O2 sensor. Recent Advances The elucidation of biochemical pathways involved in H2S synthesis and metabolism have shown that reciprocal H2S/O2 interactions have been inexorably linked throughout eukaryotic evolution; there are multiple foci by which O2 controls H2S inactivation, and the effects of H2S on downstream signaling events are consistent with those activated by hypoxia. H2S-mediated O2 sensing has been demonstrated in a variety of O2-sensing tissues in vertebrate cardiovascular and respiratory systems, including smooth muscle in systemic and respiratory blood vessels and airways, carotid body, adrenal medulla, and other peripheral as well as central chemoreceptors. Critical Issues Information is now needed on the intracellular location and stoichometry of these signaling processes and how and which downstream effectors are activated by H2S and its metabolites. Future Directions Development of specific inhibitors of H2S metabolism and effector activation as well as cellular organelle-targeted compounds that release H2S in a time- or environmentally controlled way will not only enhance our understanding of this signaling process but also provide direction for future therapeutic applications. Antioxid. Redox Signal. 22, 377–397. “Nothing in Biology Makes Sense Except in the Light of Evolution” —Theodosius Dobzhansky (29) PMID:24801248

  1. Hydrogen Sulfide in Biochemistry and Medicine

    PubMed Central

    Predmore, Benjamin Lee; Lefer, David Joseph

    2012-01-01

    Abstract Significance: An abundance of experimental evidence suggests that hydrogen sulfide (H2S) plays a prominent role in physiology and pathophysiology. Many targets exist for H2S therapy. The molecular targets of H2S include proteins, enzymes, transcription factors, and membrane ion channels. Recent Advances: Novel H2S precursors are being synthesized and discovered that are capable of releasing H2S in a slow and sustained manner. This presents a novel and advantageous approach to H2S therapy for treatment of chronic conditions associated with a decline in endogenous H2S, such as diabetes and cardiovascular disease. Critical Issues: While H2S is cytoprotective at physiological concentrations, it is not universally cytoprotective, as it appears to have pro-apoptotic actions in cancer cells and is well known to be toxic at supraphysiological concentrations. Many of the pleiotropic effects of H2S on health are associated with the inhibition of inflammation and upregulation of prosurvival pathways. The powerful anti-inflammatory, cytoprotective, immunomodulating, and trophic effects of H2S on the vast majority of normal cells seem to be mediated mainly by its actions as an extremely versatile direct and indirect antioxidant and free radical scavenger. While the overall effects of H2S on transformed (i.e., malignant) cells can be characterized as pro-oxidant and pro-apoptotic, they contrast sharply with the cytoprotective effects on most normal cells. Future Directions: H2S has become a molecule of great interest, and several slow-releasing H2S prodrugs are currently under development. We believe that additional agents regulating H2S bioavailability will be developed during the next 10 years. Antioxid. Redox Signal. 17, 119–140. PMID:22432697

  2. Determination of Hydrogen Sulfide in Fermentation Broths Containing SO21

    PubMed Central

    Acree, T. E.; Sonoff, Elisabeth P.; Splittstoesser, D. F.

    1971-01-01

    A procedure for the determination of hydrogen sulfide in fermentation broths containing up to 100 μg of SO2 per ml is described. The method involves the sparging of H2S from the broth into a cadmium hydroxide absorption solution, the formation of methylene blue from the absorbed sulfide, and the measuring of this color spectrophotometrically. The use of cadmium hydroxide instead of zinc acetate, the common absorbent, substantially reduced the interference of SO2 with the analysis. PMID:5111300

  3. Hydrogen sulfide as a potential biomarker of asthma.

    PubMed

    Chung, Kian F

    2014-02-01

    Hydrogen sulfide (H2S), a gas characterized by the odor of rotten eggs, is produced by many cells in the airways and lungs, and may regulate physiologic and pathophysiologic processes. It plays a role in cellular signaling, and represents the third gasotransmitter after nitric oxide and carbon monoxide. Endogenous and exogenous H₂S have anti-inflammatory and anti-proliferative effects, with inhibitory effects in models of lung inflammation and fibrosis. Under certain conditions, H₂S may also be proinflammatory. It is generally a vasodilator and relaxant of airway and vascular smooth muscle cells. It acts as a reducing agent, being able to scavenge superoxide and peroxynitrite. H₂S is detectable in serum and in sputum supernatants with raised levels observed in asthmatics. The sputum levels correlated inversely with lung function. H₂S may play a role in the pathogenesis of asthma. PMID:24308655

  4. Thermochemical hydrogen production via a cycle using barium and sulfur - Reaction between barium sulfide and water

    NASA Technical Reports Server (NTRS)

    Ota, K.; Conger, W. L.

    1977-01-01

    The reaction between barium sulfide and water, a reaction found in several sulfur based thermochemical cycles, was investigated kinetically at 653-866 C. Gaseous products were hydrogen and hydrogen sulfide. The rate determining step for hydrogen formation was a surface reaction between barium sulfide and water. An expression was derived for the rate of hydrogen formation.

  5. Hydrogen Sulfide Is a Signaling Molecule and a Cytoprotectant

    PubMed Central

    Shibuya, Norihiro; Kimura, Yuka

    2012-01-01

    Abstract Significance: Accumulating evidence shows that hydrogen sulfide may function as a signaling molecule in processes such as neuromodulation in the brain and smooth muscle relaxation in the vascular system. It also has a cytoprotective effect, since it can protect neurons and cardiac muscle from oxidative stress and ischemia-reperfusion injury, respectively. Hydrogen sulfide can also modulate inflammation, insulin release, and angiogenesis. Recent Advances: The regulation of the activity of 3-mercaptopyruvate sulfur transferase (3MST) along with cysteine aminotransferase (CAT), one of the H2S producing pathways, has been demonstrated. The production of H2S by the pathway, which is regulated by Ca2+ and facilitated by thioredoxin and dihydrolipoic acid, is also involved in H2S signaling as well as cytoprotection. Sulfur hydration of proteins by H2S has been proposed to modulate protein functions. H2S-sensitive fluorescent probes, which enable us to measure the localization of H2S in real time, have been developed. Critical Issues: The basal concentrations of H2S have recently been measured and found to be much lower than those initially reported. However, the concentration of H2S reached in stimulated cells, as well as the regulation of H2S producing enzymes is not well understood. It has been proposed that some of the effects of H2S on the regulation of enzymes and receptors might be explained through the properties of sulfane sulfur (S0), another form of active sulfur. Future Directions: The determination of H2S concentrations in activated cells using new methods including H2S-sensitive fluorescent probes, as well as the investigation of the effects of H2S using specific inhibitors, may provide better understanding of the physiological function of this molecule. Clarifying mechanisms of H2S activity may also facilitate the development of new therapeutic compounds. Antioxid. Redox Signal. 17, 45–57. PMID:22229673

  6. High temperature hydrogen sulfide removal with tin oxide

    SciTech Connect

    Karpuk, M.E.; Copeland, R.J.; Feinberg, D.; Wickham, D.; Windecker, B.; Yu, J.

    1993-09-01

    The system is based on the absorption of hydrogen sulfide (H{sub 2}S) by stannic (tin) oxide. Two sorbents are required, the first sorbent is tin oxide and the second sorbent is a zinc oxide based material (i.e., zinc ferrite or zinc titanate) which is regenerated by air producing SO{sub 2}. TDA`s process carries out a modified Claus reaction to reduce the SO{sub 2} from the second sorbent generation to elemental sulfur. In this case the sulfided stannic oxide forms stannous sulfide (SnS) which reduces the SO{sub 2}. The absorption by SnO{sub 2} could remove over 90% of the H{sub 2}S from typical coal gas streams, but we use zinc ferrite (or zinc titanate), (a) to reduce H{sub 2}S to less than 20 ppM and (b) as a source of SO{sub 2} in regeneration. Due to stoichiometry of regeneration we want to remove half of the H{sub 2}S by SnO{sub 2} and the remainder by the second sorbent. The reactions with stannic oxide minimize the heat released during H{sub 2}S removal and regeneration. The absorption by SnO{sub 2} is slightly endothermic and cools the gas stream by less that 5{degrees}F (2.8{degrees}C) during absorption. Regeneration with SO{sub 2} is exothermic but releases only 11% of the heat that is liberated in regenerating the ZnO. For a nominal 6.5:1 steam to air the regeneration of ZnO increases the temperature by {approx_equal}400{degrees}F. The regeneration of SnO{sub 2} increases the temperature by less than 50{degrees}F (28{degrees}C) in the same gas flow.

  7. Sulfur transformations at the hydrogen sulfide/oxygen interface in stratified waters and in cyanobacterial mats

    NASA Technical Reports Server (NTRS)

    Cohen, Y.

    1985-01-01

    Stratified water bodies allow the development of several microbial plates along the water column. The microbial plates develop in relation to nutrient availability, light penetration, and the distribution of oxygen and sulfide. Sulfide is initially produced in the sediment by sulfate-reducing bacteria. It diffuses along the water column creating a zone of hydrogen sulfide/oxygen interface. In the chemocline of Solar Lake oxygen and sulfide coexist in a 0 to 10 cm layer that moves up and down during a diurnal cycle. The microbial plate at the chemocline is exposed to oxygen and hydrogen sulfide, alternating on a diurnal basis. The cyanobacteria occupying the interface switch from anoxygenic photosynthesis in the morning to oxygenic photosynthesis during the rest of the day which results in a temporal build up of elemental sulfur during the day and disappears at night due to both oxidation to thiosulfate and sulfate by thiobacilli, and reduction to hydrogen sulfide by Desulfuromonas sp. and anaerobically respiring cyanobacteria. Sulfate reduction was enhanced in the light at the surface of the cyanobacterial mats. Microsulfate reduction measurements showed enhanced activity of sulfate reduction even under high oxygen concentrations of 300 to 800 micrometer. Apparent aerobic SO sub 4 reduction activity is explained by the co-occurrence of H sub 2. The physiology of this apparent sulfate reduction activity is studied.

  8. Hydrogen sulfide: physiological properties and therapeutic potential in ischaemia

    PubMed Central

    Bos, Eelke M; van Goor, Harry; Joles, Jaap A; Whiteman, Matthew; Leuvenink, Henri G D

    2015-01-01

    Hydrogen sulfide (H2S) has become a molecule of high interest in recent years, and it is now recognized as the third gasotransmitter in addition to nitric oxide and carbon monoxide. In this review, we discuss the recent literature on the physiology of endogenous and exogenous H2S, focusing upon the protective effects of hydrogen sulfide in models of hypoxia and ischaemia. Linked Articles This article is part of a themed section on Pharmacology of the Gasotransmitters. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-6 PMID:25091411

  9. A solid oxide fuel cell system fed with hydrogen sulfide and natural gas

    NASA Astrophysics Data System (ADS)

    Lu, Yixin; Schaefer, Laura

    Hydrogen sulfide (H 2S) occurs naturally in crude petroleum, natural gas, volcanic gases, hot springs, and some lakes. Hydrogen sulfide can also result as a by-product from industrial activities, such as food processing, coke ovens, paper mills, tanneries, and petroleum refineries. Sometimes, it is considered to be an industrial pollutant. However, hydrogen can be decomposed from H 2S and then used as fuel for a solid oxide fuel cell (SOFC). This paper presents an examination of a simple hydrogen sulfide and natural gas-fed solid oxide fuel cell system. The possibility of utilization of hydrogen sulfide as a feedstock in a solid oxide fuel cell is discussed. A system configuration of an SOFC combined with an external H 2S decomposition device is proposed, where a certain amount of natural gas is supplied to the SOFC. The exhaust fuel gas of the SOFC is after-burned with exhaust air from the SOFC, and the heat of the combustion gas is utilized in the decomposition of H 2S in a decomposition reactor (DR) to produce hydrogen to feed the SOFC. The products are electricity and industry-usable sulfur. Through a mass and energy balance, a preliminary thermodynamic analysis of this system is performed, and the system efficiency is calculated. Also in this paper, the challenges in creating the proposed configuration are discussed, and the direction of future work is presented.

  10. Removing hydrogen sulfide from geothermal gases: hypochlorite process reduces hydrogen sulfide emissions to acceptable levels. NTIS tech note

    SciTech Connect

    Not Available

    1981-10-01

    This citation summarizes a one-page announcement of technology available for utilization. A hypochlorite process has been proposed as an alternative to other methods for the removal of hydrogen sulfide from the exhaust gases of geothermal powerplants. An electrolytically-generated sodium hypochlorite solution converts the hydrogen sulfide to water, salt, and sulfur. The hypochlorite process appears to be less expensive than competing processes for most of the cases studied. ...FOR ADDITIONAL INFORMATION: Detailed information about the technology described may be obtained by ordering the NTIS report, order number: DOE/ER/1092-T7, price code: PC A03.

  11. Synthesis and evaluation of novel biochar-based and metal oxide-based catalysts for removal of model tar (toluene), ammonia, and hydrogen sulfide from simulated producer gas

    NASA Astrophysics Data System (ADS)

    Bhandari, Pushpak

    Gasification is a thermochemical conversion process in which carbonaceous feedstock is gasified in a controlled atmosphere to generate producer gas. The producer gas is used for production of heat, power, fuels and chemicals. Various contaminants such as tars, NH3, and H2S in producer gas possess many problems due to their corrosive nature and their ability to clog and deactivate catalysts. In this study, several catalysts were synthesized, characterized, and tested for removal of three contaminants (toluene (model tar), NH3, and H2S) from the biomass-generated producer gas. Biochar, a catalyst, was generated from gasification of switchgrass. Activated carbon and acidic surface activated carbon were synthesized using ultrasonication method from biochar. Acidic surface was synthesized by coating activated carbon with dilute acid. Mixed metal oxide catalysts were synthesized from hydrotalcite precursors using novel synthesis technique using microwave and ultrasonication. Surface area of activated carbon (˜900 m2/g) was significantly higher than that of its precursor biochar (˜60 m2/g). Surface area of metal oxide catalyst was approximately 180 m2/g after calcination. Biochar, activated carbon, and acidic surface activated carbon showed toluene removal efficiencies of approximately 78, 88, and 88 %, respectively, when the catalysts were tested individually with toluene in the presence of producer gas at 800 °C. The toluene removal efficiencies increased to 86, 91, and 97 % using biochar, activated carbon and acidic surface activated carbon, respectively in the presence of NH3 and H2S in the producer gas. Increase in toluene removal efficiencies in presence of NH3 and H2S indicates that NH3 and H 2S play a role in toluene reforming reactions during simultaneous removal of contaminants. Toluene removal efficiency for mixed metal oxide was approximately 83%. Ammonia adsorption capacities were 0.008 g NH3/g catalyst for biochar and 0.03g NH3/g catalyst for activated

  12. Hydrogen evolution from water through metal sulfide reactions.

    PubMed

    Saha, Arjun; Raghavachari, Krishnan

    2013-11-28

    Transition metal sulfides play an important catalytic role in many chemical reactions. In this work, we have conducted a careful computational study of the structures, electronic states, and reactivity of metal sulfide cluster anions M2S(X)(-) (M = Mo and W, X = 4-6) using density functional theory. Detailed structural analysis shows that these metal sulfide anions have ground state isomers with two bridging sulfide bonds, notably different in some cases from the corresponding oxides with the same stoichiometry. The chemical reactivity of these metal sulfide anions with water has also been carried out. After a thorough search on the reactive potential energy surface, we propose several competitive, energetically favorable, reaction pathways that lead to the evolution of hydrogen. Selectivity in the initial water addition and subsequent hydrogen migration are found to be the key steps in all the proposed reaction channels. Initial adsorption of water is most favored involving a terminal metal sulfur bond in Mo2S4(-) isomers whereas the most preferred orientation for water addition involves a bridging metal sulfur bond in the case of W2S4(-) and M2S5(-) isomers. In all the lowest energy H2 elimination steps, the interacting hydrogen atoms involve a metal hydride and a metal hydroxide (or thiol) group. We have also observed a higher energy reaction channel where the interacting hydrogen atoms in the H2 elimination step involve a thiol (-SH) and a hydroxyl (-OH) group. For all the reaction pathways, the Mo sulfide reactions involve a higher barrier than the corresponding W analogues. We observe for both metals that reactions of M2S4(-) and M2S5(-) clusters with water to liberate H2 are exothermic and involve modest free energy barriers. However, the reaction of water with M2S6(-) is highly endothermic with a considerable barrier due to saturation of the local bonding environment. PMID:24289348

  13. Transformation of two chlorinated fumigants by hydrogen sulfide species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chlorinated fumigants chloropicrin and 1,3-dichloropropene (1,3-D) are extensively used to control soilborne pests. Transformation of these two pesticides by hydrogen sulfide species (H2S and HS-) was examined in well-defined anoxic aqueous solutions. Chloropicrin underwent an extremely rapid re...

  14. Estimation of bacterial hydrogen sulfide production in vitro.

    PubMed

    Basic, Amina; Blomqvist, Susanne; Carlén, Anette; Dahlén, Gunnar

    2015-01-01

    Oral bacterial hydrogen sulfide (H2S) production was estimated comparing two different colorimetric methods in microtiter plate format. High H2S production was seen for Fusobacterium spp., Treponema denticola, and Prevotella tannerae, associated with periodontal disease. The production differed between the methods indicating that H2S production may follow different pathways. PMID:26130377

  15. Estimation of bacterial hydrogen sulfide production in vitro

    PubMed Central

    Basic, Amina; Blomqvist, Susanne; Carlén, Anette; Dahlén, Gunnar

    2015-01-01

    Oral bacterial hydrogen sulfide (H2S) production was estimated comparing two different colorimetric methods in microtiter plate format. High H2S production was seen for Fusobacterium spp., Treponema denticola, and Prevotella tannerae, associated with periodontal disease. The production differed between the methods indicating that H2S production may follow different pathways. PMID:26130377

  16. DETERMINATION OF HYDROGEN SULFIDE IN REFINERY FUEL GASES

    EPA Science Inventory

    Several widely employed test methods for the iodimetric measurement of hydrogen sulfide in refinery fuel gases are shown to suffer from serious thiol interferences. An absorbing solution consisting of 0.16 M cadmium sulfate/sulfuric acid at pH 3.0 is shown to be effective for the...

  17. Organic silicon compounds anf hydrogen sulfide removal from biogas by mineral and adsorbent

    NASA Astrophysics Data System (ADS)

    Choi, J.

    2015-12-01

    Biogas utilized for energy production needs to be free from organic silicon compounds and hydrogen sulfide , as their burning has damaging effects on utilities and humans; organic silicon compounds and hydrogen sulfide can be found in biogas produced from biomass wastes, due to their massive industrial use in synthetic product,such as cosmetics, detergents and paints.Siloxanes and hydrogen sulfide removal from biogas can be carried out by various methods (Ajhar et al., 2010); aim of the present work is to find a single practical andeconomic way to drastically and simultaneously reduce both hydrogen sulfide and the siloxanes concentration to less than 1 ppm. Some commercial activated carbons previously selected (Monteleoneet al., 2011) as being effective in hydrogen sulfide up taking have been tested in an adsorption measurement apparatus, by flowing both hydrogen sulphide and volatile siloxane (Decamethycyclopentasiloxane or D5) in a nitrogen stream,typically 25-300 ppm D5 over N2, through an clay minerals, Fe oxides and Silica; the adsorption process was analyzed by varying some experimental parameters (concentration, grain size, bed height). The best silica shows an adsorption capacity of 0.2 g D5 per gram of silica. The next thermo gravimetric analysis (TGA) confirms the capacity data obtained experimentally by the breakthrough curve tests.The capacity results depend on D5 and hydrogen sulphide concentrations. A regenerative silica process is then carried out byheating the silica bed up to 200 ° C and flushing out the adsorbed D5 and hydrogen sulphide samples in a nitrogen stream in athree step heating procedure up to 200 ° C. The adsorption capacity is observed to degrade after cyclingthe samples through several adsorption-desorption cycles.

  18. Biology and therapeutic potential of hydrogen sulfide and hydrogen sulfide-releasing chimeras

    PubMed Central

    Kashfi, Khosrow; Olson, Kenneth R.

    2012-01-01

    Hydrogen sulfide, H2S, is a colorless gas with a strong odor that until recently was only considered to be a toxic environmental pollutant with little or no physiological significance. However, the past few years have demonstrated its role in many biological systems and it is becoming increasingly clear that H2S is likely to join nitric oxide (NO) and carbon monoxide (CO) as a major player in mammalian biology. In this review, we have provided an overview of the chemistry and biology of H2S and have summarized the chemistry and biological activity of some natural and synthetic H2S-donating compounds. The naturally occurring compounds discussed include, garlic, sulforaphane, erucin, and iberin. The synthetic H2S donors reviewed include, GYY4137; cysteine analogs; S-propyl cysteine, S-allyl cysteine, S-propargyl cysteine, and N-acetyl cysteine. Dithiolethione and its NSAID and other chimeras such as, L-DOPA, sildenafil, aspirin, diclofenac, naproxen, ibuprofen, indomethacin, and mesalamine have also been reviewed in detail. The newly reported NOSH-aspirin that releases both NO and H2S has also been discussed. PMID:23103569

  19. Hydrogen Sulfide as a Potential Therapeutic Target in Fibrosis

    PubMed Central

    Zhang, Shufang; Pan, Chuli; Zhou, Feifei; Yuan, Zhi; Wang, Huiying; Cui, Wei; Zhang, Gensheng

    2015-01-01

    Hydrogen sulfide (H2S), produced endogenously by the activation of two major H2S-generating enzymes (cystathionine β-synthase and cystathionine γ-lyase), plays important regulatory roles in different physiologic and pathologic conditions. The abnormal metabolism of H2S is associated with fibrosis pathogenesis, causing damage in structure and function of different organs. A number of in vivo and in vitro studies have shown that both endogenous H2S level and the expressions of H2S-generating enzymes in plasma and tissues are significantly downregulated during fibrosis. Supplement with exogenous H2S mitigates the severity of fibrosis in various experimental animal models. The protective role of H2S in the development of fibrosis is primarily attributed to its antioxidation, antiapoptosis, anti-inflammation, proangiogenesis, and inhibition of fibroblasts activities. Future studies might focus on the potential to intervene fibrosis by targeting the pathway of endogenous H2S-producing enzymes and H2S itself. PMID:26078809

  20. The Role of Water for Photodecomposition of Aqueous Hydrogen Sulfide Using Stratified Photocatalyst--Experimental Part

    SciTech Connect

    Arai, Takeo; Shinoda, Kozo; Tohji, Kazuyuki; Matsumoto, Takatoshi; Sakima, Shuhei; Nagashima, Umpei

    2006-05-15

    Splitting of hydrogen sulfide using sunlight is a useful reaction to produce hydrogen. Alkaline sulfide solution, which is prepared by dissolving hydrogen sulfide into alkaline water, is selected as the reaction medium of photocatalytic hydrogen generation reaction. In this system, the photocatalytic reaction is assumed to occur as follows: 2H{sub 2}O + 2e{sup -} {yields} H{sub 2} + 2OH{sup -} (1) 2S{sup 2-} + 2h{sup +} {yields} S{sub 2}{sup 2-} (2) However, as the reaction progresses white solids precipitate in the reaction medium. Furthermore, the HPLC analysis suggested that the ratio between the consumption of sulfide ion and the amount of hydrogen generation was about 3:2, which is not stoichiometric. Thus, in this paper, we characterized the white solid precipitate and tried to optimize the solution condition to prevent the precipitation of the same. From our study, the white solid precipitate was confirmed as sulfur derived from the oxidation of the disulfide ion. It was confirmed that the addition of sulfite ions prevented the oxidation of disulfide ions, which causes the precipitation. In the absence of sulfite ions and for sufide ion concentration less than 0.1M, the precipitation of sulfur occurs in a very short reaction time. On the other hand the hydrogen evolution rate retarded when the sulfide ion concentration is higher than 0.1M. This was due to the degradation of the stratified CdS particles. Thus, the optimal concentration of Na2S solution was determined to be around 0.1M.

  1. Thioethers as markers of hydrogen sulfide production in homocystinurias.

    PubMed

    Kožich, Viktor; Krijt, Jakub; Sokolová, Jitka; Melenovská, Petra; Ješina, Pavel; Vozdek, Roman; Majtán, Tomáš; Kraus, Jan P

    2016-07-01

    Two enzymes in the transsulfuration pathway of homocysteine -cystathionine beta-synthase (CBS) and gamma-cystathionase (CTH)-use cysteine and/or homocysteine to produce the important signaling molecule hydrogen sulfide (H2S) and simultaneously the thioethers lanthionine, cystathionine or homolanthionine. In this study we explored whether impaired flux of substrates for H2S synthesis and/or deficient enzyme activities alter production of hydrogen sulfide in patients with homocystinurias. As an indirect measure of H2S synthesis we determined by LC-MS/MS concentrations of thioethers in plasma samples from 33 patients with different types of homocystinurias, in 8 patient derived fibroblast cell lines, and as reaction products of seven purified mutant CBS enzymes. Since chaperoned recombinant mutant CBS enzymes retained capacity of H2S synthesis in vitro it can be stipulated that deficient CBS activity in vivo may impair H2S production. Indeed, in patients with classical homocystinuria we observed significantly decreased cystathionine and lanthionine concentrations in plasma (46% and 74% of median control levels, respectively) and significantly lower cystathionine in fibroblasts (8% of median control concentrations) indicating that H2S production from cysteine and homocysteine may be also impaired. In contrast, the grossly elevated plasma levels of homolanthionine in CBS deficient patients (32-times elevation compared to median of controls) clearly demonstrates a simultaneous overproduction of H2S from homocysteine by CTH. In the remethylation defects the accumulation of homocysteine and the increased flux of metabolites through the transsulfuration pathway resulted in elevation of cystathionine and homolanthionine (857% and 400% of median control values, respectively) indicating a possibility of an increased biosynthesis of H2S by both CBS and CTH. This study shows clearly disturbed thioether concentrations in homocystinurias, and modeling using these data indicates

  2. 30 CFR 250.490 - Hydrogen sulfide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Definitions. Terms used in this section have the following meanings: Facility means a vessel, a structure, or... structure(s), and the height of all such facilities and structures. You must equip the flare outlet with an..., reinforcing pads) which can be invaded by atomic hydrogen when H2S is present....

  3. Health assessment document for hydrogen sulfide: review draft

    SciTech Connect

    Ammann, H.M.; Bradow, F.; Fennell, D.; Griffin, R.; Kearney, B.

    1986-08-01

    Hydrogen sulfide is a highly toxic gas which is immediately lethal in concentrations greater than 2000 ppm. The toxic end-point is due to anoxia to brain and heart tissues which results from its interaction with the celluar enzyme cytochrome oxidase. Inhibition of the enzyme halts oxidative metabolism which is the primary energy source for cells. A second toxic end-point is the irritative effect of hydrogen sulfide on mucous membranes, particularly edema at sublethal doses (250 to 500 ppm) in which sufficient exposure occurs before conciousness is lost. Recovered victims of exposure report neurologic symptoms such as headache, fatigue, irritability, vertigo, and loss of libido. Long-term effects are similar to those caused by anoxia due to other toxic agents like CO, and probably are not due to specific H/sub 2/S effects. H/sub 2/S is not a cumulative poison. No mutagenic, carcinogenic, reproductive, or teratogenic effects have been reported in the literature.

  4. Epithelial Electrolyte Transport Physiology and the Gasotransmitter Hydrogen Sulfide.

    PubMed

    Pouokam, Ervice; Althaus, Mike

    2016-01-01

    Hydrogen sulfide (H2S) is a well-known environmental chemical threat with an unpleasant smell of rotten eggs. Aside from the established toxic effects of high-dose H2S, research over the past decade revealed that cells endogenously produce small amounts of H2S with physiological functions. H2S has therefore been classified as a "gasotransmitter." A major challenge for cells and tissues is the maintenance of low physiological concentrations of H2S in order to prevent potential toxicity. Epithelia of the respiratory and gastrointestinal tract are especially faced with this problem, since these barriers are predominantly exposed to exogenous H2S from environmental sources or sulfur-metabolising microbiota. In this paper, we review the cellular mechanisms by which epithelial cells maintain physiological, endogenous H2S concentrations. Furthermore, we suggest a concept by which epithelia use their electrolyte and liquid transport machinery as defence mechanisms in order to eliminate exogenous sources for potentially harmful H2S concentrations. PMID:26904165

  5. Epithelial Electrolyte Transport Physiology and the Gasotransmitter Hydrogen Sulfide

    PubMed Central

    Pouokam, Ervice; Althaus, Mike

    2016-01-01

    Hydrogen sulfide (H2S) is a well-known environmental chemical threat with an unpleasant smell of rotten eggs. Aside from the established toxic effects of high-dose H2S, research over the past decade revealed that cells endogenously produce small amounts of H2S with physiological functions. H2S has therefore been classified as a “gasotransmitter.” A major challenge for cells and tissues is the maintenance of low physiological concentrations of H2S in order to prevent potential toxicity. Epithelia of the respiratory and gastrointestinal tract are especially faced with this problem, since these barriers are predominantly exposed to exogenous H2S from environmental sources or sulfur-metabolising microbiota. In this paper, we review the cellular mechanisms by which epithelial cells maintain physiological, endogenous H2S concentrations. Furthermore, we suggest a concept by which epithelia use their electrolyte and liquid transport machinery as defence mechanisms in order to eliminate exogenous sources for potentially harmful H2S concentrations. PMID:26904165

  6. Physiological Importance of Hydrogen Sulfide: Emerging Potent Neuroprotector and Neuromodulator

    PubMed Central

    Chung, Hyung-Joo

    2016-01-01

    Hydrogen sulfide (H2S) is an emerging neuromodulator that is considered to be a gasotransmitter similar to nitrogen oxide (NO) and carbon monoxide (CO). H2S exerts universal cytoprotective effects and acts as a defense mechanism in organisms ranging from bacteria to mammals. It is produced by the enzymes cystathionine β-synthase (CBS), cystathionine ϒ-lyase (CSE), 3-mercaptopyruvate sulfurtransferase (MST), and D-amino acid oxidase (DAO), which are also involved in tissue-specific biochemical pathways for H2S production in the human body. H2S exerts a wide range of pathological and physiological functions in the human body, from endocrine system and cellular longevity to hepatic protection and kidney function. Previous studies have shown that H2S plays important roles in peripheral nerve regeneration and degeneration and has significant value during Schwann cell dedifferentiation and proliferation but it is also associated with axonal degradation and the remyelination of Schwann cells. To date, physiological and toxic levels of H2S in the human body remain unclear and most of the mechanisms of action underlying the effects of H2S have yet to be fully elucidated. The primary purpose of this review was to provide an overview of the role of H2S in the human body and to describe its beneficial effects. PMID:27413423

  7. Hydrogen sulfide as a potent cardiovascular protective agent.

    PubMed

    Yu, Xiao-Hua; Cui, Li-Bao; Wu, Kai; Zheng, Xi-Long; Cayabyab, Francisco S; Chen, Zhi-Wei; Tang, Chao-Ke

    2014-11-01

    Hydrogen sulfide (H2S) is a well-known toxic gas with the characteristic smell of rotten eggs. It is synthesized endogenously in mammals from the sulfur-containing amino acid l-cysteine by the action of several distinct enzymes: cystathionine-γ-lyase (CSE), cystathionine-ß-synthase (CBS), and 3-mercaptopyruvate sulfurtransferase (3-MST) along with cysteine aminotransferase (CAT). In particular, CSE is considered to be the major H2S-producing enzyme in the cardiovascular system. As the third gasotransmitter next to nitric oxide (NO) and carbon monoxide (CO), H2S plays an important role in the regulation of vasodilation, angiogenesis, inflammation, oxidative stress and apoptosis. Growing evidence has demonstrated that this gas exerts a significant protective effect against the progression of cardiovascular diseases by a number of mechanisms such as vasorelaxation, inhibition of cardiovascular remodeling and resistance to form foam cells. The aim of this review is to provide an overview of the physiological functions of H2S and its protection against several major cardiovascular diseases, and to explore its potential health and therapeutic benefits. A better understanding will help develop novel H2S-based therapeutic interventions for these diseases. PMID:25058799

  8. Biochemistry and therapeutic potential of hydrogen sulfide - reality or fantasy?

    PubMed

    Brodek, Paulina; Olas, Beata

    2016-01-01

    Hydrogen sulfide (H2S) is a signaling gasotransmitter, involved in different physiological and pathological processes. H2S regulates apoptosis, the cell cycle and oxidative stress. H2S exerts powerful effects on smooth muscle cells, endothelial cells, inflammatory cells, endoplasmic reticulum, mitochondria and nuclear transcription factors. H2S is known to be produced from L-cysteine, D-cysteine and L-homocysteine in the body. Four enzymes - cystathionine-b synthase (CBS), mercaptopyruvate sulfurtransferase (3-MST), cystathionine-γ lyase (CSE) and cysteine aminotransferase (CAT) - are involved in H2S synthesis. The biosynthetic pathway for the production of H2S from D-cysteine involves 3-MST and D-amino acid oxidase (DAO). The therapeutic potential of H2S is not clear. However, recently results have demonstrated that H2S has protective action for ischemic heart disease or hypertension, and protects against ischemia of the brain. This review summarizes the negative and the positive roles of H2S in various biological systems, for example the cardiovascular system and nervous system. We also discuss the function of classical, therapeutic and natural (for example garlic) donors of H2S in pre-clinical and clinical studies. PMID:27516569

  9. Physiological Importance of Hydrogen Sulfide: Emerging Potent Neuroprotector and Neuromodulator.

    PubMed

    Panthi, Sandesh; Chung, Hyung-Joo; Jung, Junyang; Jeong, Na Young

    2016-01-01

    Hydrogen sulfide (H2S) is an emerging neuromodulator that is considered to be a gasotransmitter similar to nitrogen oxide (NO) and carbon monoxide (CO). H2S exerts universal cytoprotective effects and acts as a defense mechanism in organisms ranging from bacteria to mammals. It is produced by the enzymes cystathionine β-synthase (CBS), cystathionine ϒ-lyase (CSE), 3-mercaptopyruvate sulfurtransferase (MST), and D-amino acid oxidase (DAO), which are also involved in tissue-specific biochemical pathways for H2S production in the human body. H2S exerts a wide range of pathological and physiological functions in the human body, from endocrine system and cellular longevity to hepatic protection and kidney function. Previous studies have shown that H2S plays important roles in peripheral nerve regeneration and degeneration and has significant value during Schwann cell dedifferentiation and proliferation but it is also associated with axonal degradation and the remyelination of Schwann cells. To date, physiological and toxic levels of H2S in the human body remain unclear and most of the mechanisms of action underlying the effects of H2S have yet to be fully elucidated. The primary purpose of this review was to provide an overview of the role of H2S in the human body and to describe its beneficial effects. PMID:27413423

  10. Kinetics and mechanisms of hydrogen sulfide adsorption by biochars.

    PubMed

    Shang, Guofeng; Shen, Guoqing; Liu, Liang; Chen, Qin; Xu, Zhiwei

    2013-04-01

    Three different biochars as cost-effective substitutes for activated carbon (AC) were tested for their hydrogen sulfide (H2S) adsorption ability. The biochars were produced from camphor (SC), bamboo (SB), and rice hull (SR) at 400°C by oxygen-limited pyrolysis. The surface area (SA), pH, and Fourier transform infrared spectras of the biochars and AC were compared. The maximum removal rates and the saturation constants were obtained using the Michaelis-Menten-type equation. The three biochars were found to be alkaline, and the SAs of the biochars were much smaller than that of the AC. The H2S breakthrough capacity was related to the local pH within the pore system of the biochar. The order observed in terms of both biochar and AC adsorption capacity was SR>SB>SC>AC. SR efficiently removed H2S within the inlet concentration range of 10-50 μL/L. Biochars derived from agricultural/forestry wastes are a promising H2S adsorbent with distinctive properties. PMID:23455220

  11. Hydrogen sulfide: the third gasotransmitter in biology and medicine.

    PubMed

    Wang, Rui

    2010-05-01

    The last two decades have seen one of the greatest excitements and discoveries in science, gasotransmitters in biology and medicine. Leading the trend by nitric oxide and extending the trudge by carbon monoxide, here comes hydrogen sulfide (H(2)S) who builds up the momentum as the third gasotransmitter. Being produced by different cells and tissues in our body, H(2)S, alone or together with the other two gasotransmitters, regulates an array of physiological processes and plays important roles in the pathogenesis of various diseases from neurodegenerative diseases to diabetes or heart failure, to name a few. As a journal dedicated to serve the emergent and challenging field of H(2)S biology and medicine, Antioxidant and Redox Signaling assembles the most recent discoveries and most provoking ideas from leading scientists in H(2)S fields, which were communicated in the First International Conference of H(2)S in Biology and Medicine, and brings them to our readers in two Forum Issues. Through intellectual exchange and intelligent challenge with an open-mind approach, we can reasonably expect that sooner rather than later the exploration of metabolism and function of H(2)S will provide solutions for many of the biological mysteries of life and pave way for the arrival of many more gasotransmitters. PMID:19845469

  12. Brassica juncea Produces a Phytochelatin-Cadmium-Sulfide Complex 1

    PubMed Central

    Speiser, David M.; Abrahamson, Susan L.; Banuelos, Gary; Ow, David W.

    1992-01-01

    Phytochelatins (PCs) are enzymically synthesized peptides produced in higher plants and some fungi upon exposure to heavy metals. We have examined PC production in the Se-tolerant wild mustard Brassica juncea and found that it produces two types of PC-Cd complexes with the same characteristics as those from fission yeast Schizosaccharomyces pombe, including a high molecular weight PC-Cd-sulfide form. PMID:16669006

  13. Brassica juncea Produces a Phytochelatin-Cadmium-Sulfide Complex.

    PubMed

    Speiser, D M; Abrahamson, S L; Banuelos, G; Ow, D W

    1992-07-01

    Phytochelatins (PCs) are enzymically synthesized peptides produced in higher plants and some fungi upon exposure to heavy metals. We have examined PC production in the Se-tolerant wild mustard Brassica juncea and found that it produces two types of PC-Cd complexes with the same characteristics as those from fission yeast Schizosaccharomyces pombe, including a high molecular weight PC-Cd-sulfide form. PMID:16669006

  14. Molecularly engineered quantum dots for visualization of hydrogen sulfide.

    PubMed

    Yan, Yehan; Yu, Huan; Zhang, Yajiao; Zhang, Kui; Zhu, Houjuan; Yu, Tao; Jiang, Hui; Wang, Suhua

    2015-02-18

    Among various fluorescence nanomaterials, the II-VI semiconductor nanocrystals (usually called quantum dots, QDs) should be very promising in sensing application because of their high quantum yields, capability for surface property manipulation, and unlimited possible chemical reactions. Herein, we present a fluorescence probe for hydrogen sulfide, which was prepared by first encapsulating inorganic cadmium telluride (CdTe) QDs in silica nanospheres, and subsequently engineering the silica surface with functional molecules azidocoumarin-4-acetic acid reactive to hydrogen sulfide. The nanohybrid probe exhibited two fluorescence bands centered at 452 and 657 nm, respectively. The red fluorescence at 657 nm of the nanohybrid probe is stable against H2S, while the blue fluorescence is specifically sensitive to H2S. The probe showed a distinct fluorescence color evolution from light magenta to blue upon exposure to different amounts of H2S, and a detection limit of 7.0 nM was estimated in aqueous solution. We further applied the nanohybrid probe for visual detection of gaseous H2S with a low concentration of 0.5 ppm using glass indicating spots sensors, suggesting its potential application for gaseous H2S sensing. Such an efficient on-site visual determination of gaseous hydrogen sulfide (H2S) is highly demanded in on-site environmental monitoring and protection. PMID:25615270

  15. Use of AERMOD to Determine a Hydrogen Sulfide Emission Factor for Swine Operations by Inverse Modeling

    PubMed Central

    O’Shaughnessy, Patrick T.; Altmaier, Ralph

    2011-01-01

    This study was conducted to determine both optimal settings applied to the plume dispersion model, AERMOD, and a scalable emission factor for accurately determining the spatial distribution of hydrogen sulfide concentrations in the vicinity of swine concentrated animal feeding operations (CAFOs). These operations emit hydrogen sulfide from both housing structures and waste lagoons. With ambient measurements made at 4 stations within 1 km of large swine CAFOs in Iowa, an inverse-modeling approach applied to AERMOD was used to determine hydrogen sulfide emission rates. CAFO buildings were treated as volume sources whereas nearby lagoons were modeled as area sources. The robust highest concentration (RHC), calculated for both measured and modeled concentrations, was used as the metric for adjusting the emission rate until the ratio of the two RHC levels was unity. Utilizing this approach, an average emission flux rate of 0.57 µg/m2-s was determined for swine CAFO lagoons. Using the average total animal weight (kg) of each CAFO, an average emission factor of 6.06 × 10−7 µg/yr-m2-kg was calculated. From studies that measured either building or lagoon emission flux rates, building fluxes, on a floor area basis, were considered equal to lagoon flux rates. The emission factor was applied to all CAFOs surrounding the original 4 sites and surrounding an additional 6 sites in Iowa, producing an average modeled-to-measured RHC ratio of 1.24. When the emission factor was applied to AERMOD to simulate the spatial distribution of hydrogen sulfide around a hypothetical large swine CAFO (1M kg), concentrations 0.5 km from the CAFO were 35 ppb and dropped to 2 ppb within 6 km of the CAFO. These values compare to a level of 30 ppb that has been determined by the State of Iowa as a threshold level for ambient hydrogen sulfide levels. PMID:21804761

  16. Use of AERMOD to Determine a Hydrogen Sulfide Emission Factor for Swine Operations by Inverse Modeling.

    PubMed

    O'Shaughnessy, Patrick T; Altmaier, Ralph

    2011-08-01

    This study was conducted to determine both optimal settings applied to the plume dispersion model, AERMOD, and a scalable emission factor for accurately determining the spatial distribution of hydrogen sulfide concentrations in the vicinity of swine concentrated animal feeding operations (CAFOs). These operations emit hydrogen sulfide from both housing structures and waste lagoons. With ambient measurements made at 4 stations within 1 km of large swine CAFOs in Iowa, an inverse-modeling approach applied to AERMOD was used to determine hydrogen sulfide emission rates. CAFO buildings were treated as volume sources whereas nearby lagoons were modeled as area sources. The robust highest concentration (RHC), calculated for both measured and modeled concentrations, was used as the metric for adjusting the emission rate until the ratio of the two RHC levels was unity. Utilizing this approach, an average emission flux rate of 0.57 µg/m(2)-s was determined for swine CAFO lagoons. Using the average total animal weight (kg) of each CAFO, an average emission factor of 6.06 × 10(-7) µg/yr-m(2)-kg was calculated. From studies that measured either building or lagoon emission flux rates, building fluxes, on a floor area basis, were considered equal to lagoon flux rates. The emission factor was applied to all CAFOs surrounding the original 4 sites and surrounding an additional 6 sites in Iowa, producing an average modeled-to-measured RHC ratio of 1.24. When the emission factor was applied to AERMOD to simulate the spatial distribution of hydrogen sulfide around a hypothetical large swine CAFO (1M kg), concentrations 0.5 km from the CAFO were 35 ppb and dropped to 2 ppb within 6 km of the CAFO. These values compare to a level of 30 ppb that has been determined by the State of Iowa as a threshold level for ambient hydrogen sulfide levels. PMID:21804761

  17. Use of AERMOD to determine a hydrogen sulfide emission factor for swine operations by inverse modeling

    NASA Astrophysics Data System (ADS)

    O'Shaughnessy, Patrick T.; Altmaier, Ralph

    2011-09-01

    This study was conducted to determine both optimal settings applied to the plume dispersion model, AERMOD, and a scalable emission factor for accurately determining the spatial distribution of hydrogen sulfide concentrations in the vicinity of swine concentrated animal feeding operations (CAFOs). These operations emit hydrogen sulfide from both housing structures and waste lagoons. With ambient measurements made at 4 stations within 1 km of large swine CAFOs in Iowa, an inverse-modeling approach applied to AERMOD was used to determine hydrogen sulfide emission rates. CAFO buildings were treated as volume sources whereas nearby lagoons were modeled as area sources. The robust highest concentration (RHC), calculated for both measured and modeled concentrations, was used as the metric for adjusting the emission rate until the ratio of the two RHC levels was unity. Utilizing this approach, an average emission flux rate of 0.57 μg m -2 s -1 was determined for swine CAFO lagoons. Using the average total animal weight (kg) of each CAFO, an average emission factor of 6.06 × 10 -7 μg yr -1 m -2 kg -1 was calculated. From studies that measured either building or lagoon emission flux rates, building fluxes, on a floor area basis, were considered equal to lagoon flux rates. The emission factor was applied to all CAFOs surrounding the original 4 sites and surrounding an additional 6 sites in Iowa, producing an average modeled-to-measured RHC ratio of 1.24. When the emission factor was applied to AERMOD to simulate the spatial distribution of hydrogen sulfide around a hypothetical large swine CAFO (1 M kg), concentrations within 0.5 km from the CAFO exceeded 25 ppb and dropped to 2 ppb within 6 km of the CAFO. These values compare to a level of 30 ppb that has been determined by the State of Iowa as a threshold level for ambient hydrogen sulfide levels.

  18. Hydrogen evolution from water through metal sulfide reactions

    SciTech Connect

    Saha, Arjun; Raghavachari, Krishnan

    2013-11-28

    Transition metal sulfides play an important catalytic role in many chemical reactions. In this work, we have conducted a careful computational study of the structures, electronic states, and reactivity of metal sulfide cluster anions M{sub 2}S{sub X}{sup −} (M = Mo and W, X = 4–6) using density functional theory. Detailed structural analysis shows that these metal sulfide anions have ground state isomers with two bridging sulfide bonds, notably different in some cases from the corresponding oxides with the same stoichiometry. The chemical reactivity of these metal sulfide anions with water has also been carried out. After a thorough search on the reactive potential energy surface, we propose several competitive, energetically favorable, reaction pathways that lead to the evolution of hydrogen. Selectivity in the initial water addition and subsequent hydrogen migration are found to be the key steps in all the proposed reaction channels. Initial adsorption of water is most favored involving a terminal metal sulfur bond in Mo{sub 2}S{sub 4}{sup −} isomers whereas the most preferred orientation for water addition involves a bridging metal sulfur bond in the case of W{sub 2}S{sub 4}{sup −} and M{sub 2}S{sub 5}{sup −} isomers. In all the lowest energy H{sub 2} elimination steps, the interacting hydrogen atoms involve a metal hydride and a metal hydroxide (or thiol) group. We have also observed a higher energy reaction channel where the interacting hydrogen atoms in the H{sub 2} elimination step involve a thiol (–SH) and a hydroxyl (–OH) group. For all the reaction pathways, the Mo sulfide reactions involve a higher barrier than the corresponding W analogues. We observe for both metals that reactions of M{sub 2}S{sub 4}{sup −} and M{sub 2}S{sub 5}{sup −} clusters with water to liberate H{sub 2} are exothermic and involve modest free energy barriers. However, the reaction of water with M{sub 2}S{sub 6}{sup −} is highly endothermic with a considerable

  19. ISE Analysis of Hydrogen Sulfide in Cigarette Smoke

    NASA Astrophysics Data System (ADS)

    Li, Guofeng; Polk, Brian J.; Meazell, Liz A.; Hatchett, David W.

    2000-08-01

    Many advanced undergraduate analytical laboratory courses focus on exposing students to various modern instruments. However, students rarely have the opportunity to construct their own analytical tools for solving practical problems. We designed an experiment in which students are required to build their own analytical module, a potentiometric device composed of a Ag/AgCl reference electrode, a Ag/Ag2S ion selective electrode (ISE), and a pH meter used as voltmeter, to determine the amount of hydrogen sulfide in cigarette smoke. Very simple techniques were developed for constructing these electrodes. Cigarette smoke is collected by a gas washing bottle into a 0.1 M NaOH solution. The amount of sulfide in the cigarette smoke solution is analyzed by standard addition of sulfide solution while monitoring the response of the Ag/Ag2S ISE. The collected data are further evaluated using the Gran plot technique to determine the concentration of sulfide in the cigarette smoke solution. The experiment has been successfully incorporated into the lab course Instrumental Analysis at Georgia Institute of Technology. Students enjoy the idea of constructing an analytical tool themselves and applying their classroom knowledge to solve real-life problems. And while learning electrochemistry they also get a chance to visualize the health hazard imposed by cigarette smoking.

  20. Atomic layer deposition of aluminum sulfide thin films using trimethylaluminum and hydrogen sulfide

    SciTech Connect

    Sinha, Soumyadeep; Sarkar, Shaibal K.; Mahuli, Neha

    2015-01-15

    Sequential exposures of trimethylaluminum and hydrogen sulfide are used to deposit aluminum sulfide thin films by atomic layer deposition (ALD) in the temperature ranging from 100 to 200 °C. Growth rate of 1.3 Å per ALD cycle is achieved by in-situ quartz crystal microbalance measurements. It is found that the growth rate per ALD cycle is highly dependent on the purging time between the two precursors. Increased purge time results in higher growth rate. Surface limited chemistry during each ALD half cycle is studied by in-situ Fourier transformed infrared vibration spectroscopy. Time of flight secondary ion-mass spectroscopy measurement is used to confirm elemental composition of the deposited films.

  1. Is Hydrogen Sulfide-Induced Suspended Animation General Anesthesia?

    PubMed Central

    Li, Rosie Q.; McKinstry, Andrew R.; Moore, Jason T.; Caltagarone, Breanna M.; Eckenhoff, Maryellen F.; Eckenhoff, Roderic G.

    2012-01-01

    Hydrogen sulfide (H2S) depresses mitochondrial function and thereby metabolic rates in mice, purportedly resulting in a state of “suspended animation.” Volatile anesthetics also depress mitochondrial function, an effect that may contribute to their anesthetic properties. In this study, we ask whether H2S has general anesthetic properties, and by extension, whether mitochondrial effects underlie the state of anesthesia. We compared loss of righting reflex, electroencephalography, and electromyography in mice exposed to metabolically equipotent concentrations of halothane, isoflurane, sevoflurane, and H2S. We also studied combinations of H2S and anesthetics to assess additivity. Finally, the long-term effects of H2S were assessed by using the Morris water maze behavioral testing 2 to 3 weeks after exposures. Exposure to H2S decreases O2 consumption, CO2 production, and body temperature similarly to that of the general anesthetics, but fails to produce a loss of righting reflex or muscle atonia at metabolically equivalent concentrations. When combined, H2S antagonizes the metabolic effects of isoflurane, but potentiates the isoflurane-induced loss of righting reflex. We found no effect of prior H2S exposure on memory or learning. H2S (250 ppm), not itself lethal, produced delayed lethality when combined with subanesthetic concentrations of isoflurane. H2S cannot be considered a general anesthetic, despite similar metabolic suppression. Metabolic suppression, presumably via mitochondrial actions, is not sufficient to account for the hypnotic or immobilizing components of the anesthetic state. Combinations of H2S and isoflurane can be lethal, suggesting extreme care in the combination of these gases in clinical situations. PMID:22414854

  2. Eukaryotic and prokaryotic contributions to colonic hydrogen sulfide synthesis.

    PubMed

    Flannigan, Kyle L; McCoy, Kathy D; Wallace, John L

    2011-07-01

    Hydrogen sulfide (H(2)S) is an important modulator of many aspects of digestive function, both in health and disease. Colonic tissue H(2)S synthesis increases markedly during injury and inflammation and appears to contribute to resolution. Some of the bacteria residing in the colon can also produce H(2)S. The extent to which bacterial H(2)S synthesis contributes to what is measured as colonic H(2)S synthesis is not clear. Using conventional and germ-free mice, we have delineated the eukaryotic vs. prokaryotic contributions to colonic H(2)S synthesis, both in healthy and colitic mice. Colonic tissue H(2)S production is entirely dependent on the presence of the cofactor pyridoxal 5'-phosphate (vitamin B(6)), while bacterial H(2)S synthesis appears to occur independent of this cofactor. As expected, approximately one-half of the H(2)S produced by feces is derived from eukaryotic cells. While colonic H(2)S synthesis is markedly increased when the tissue is inflamed, and, in proportion to the extent of inflammation, fecal H(2)S synthesis does not change and tissue granulocytes do not appear to be the source of the elevated H(2)S production. Rats fed a B vitamin-deficient diet for 6 wk exhibited significantly diminished colonic H(2)S synthesis, but fecal H(2)S synthesis was not different from that of rats on the control diet. Our results demonstrate that H(2)S production by colonic bacteria does not contribute significantly to what is measured as colonic tissue H(2)S production, using the acetate trapping assay system employed in this study. PMID:21474649

  3. Targeting hydrogen sulfide as a promising therapeutic strategy for atherosclerosis.

    PubMed

    Xu, Suowen; Liu, Zhiping; Liu, Peiqing

    2014-03-15

    Physiological concentrations of nitric oxide (NO) and carbon monoxide (CO) have multiple protective effects in the cardiovascular system. Recent studies have implicated hydrogen sulfide (H2S) as a new member of vasculoprotective gasotransmitter family, behaving similarly to NO and CO. H2S has been demonstrated to inhibit multiple key aspects of atherosclerosis, including atherogenic modification of LDL, monocytes adhesion to the endothelial cells, macrophage-derived foam cell formation and inflammation, smooth muscle cell proliferation, neointimal hyperplasia, vascular calcification, and thrombogenesis. H2S also decreases plasma homocysteine levels in experimental animal models. In the human body, H2S production is predominantly catalyzed by cystathionine-β-synthase (CBS) and cystathionine γ-lyase (CSE). CSE is the primary H2S-producing enzyme in the vasculature. Growing evidence suggests that atherosclerosis is associated with vascular CSE/H2S deficiency and that H2S supplementation by exogenous H2S donors (such as NaHS and GYY4137) attenuates, and H2S synthesis suppression by inhibitors (such as D, L-propargylglycine) aggravates the development of atherosclerotic plaques. However, it remains elusive whether CSE deficiency plays a causative role in atherosclerosis. A recent study (Circulation. 2013; 127: 2523-2534) demonstrates that decreased endogenous H2S production by CSE genetic deletion accelerates atherosclerosis in athero-prone ApoE-/- mice, pinpointing that endogenously produced H2S by CSE activation may be of benefit in the prevention and treatment of atherosclerosis. This study will facilitate the development of H2S-based pharmaceuticals with therapeutic applications in atherosclerosis-related cardiovascular diseases. PMID:24491853

  4. Combined adsorption and oxidation mechanisms of hydrogen sulfide on granulated coal ash.

    PubMed

    Asaoka, Satoshi; Hayakawa, Shinjiro; Kim, Kyung-Hoi; Takeda, Kazuhiko; Katayama, Misaki; Yamamoto, Tamiji

    2012-07-01

    Hydrogen sulfide is highly toxic to benthic organisms and may cause blue tide with depletion of dissolved oxygen in water column due to its oxidation. The purpose of this study is to reveal the combined adsorption and oxidation mechanisms of hydrogen sulfide on granulated coal ash that is a byproduct from coal electric power stations to apply the material as an adsorbent for hydrogen sulfide in natural fields. Sulfur species were identified in both liquid and solid phases to discuss removal mechanisms of the hydrogen sulfide with the granulated coal ash. Batch experiments revealed that hydrogen sulfide decreased significantly by addition of the granulated coal ash and simultaneously the sulfate ion concentration increased. X-ray absorption fine structure analyses showed hydrogen sulfide was adsorbed onto the granulated coal ash and successively oxidized by manganese oxide (III) contained in the material. The oxidation reaction of hydrogen sulfide was coupling with reduction of manganese oxide. On the other hand, iron containing in the granulated coal ash was not involved in hydrogen sulfide oxidation, because the major species of iron in the granulated coal ash was ferrous iron that is not easily reduced by hydrogen sulfide. PMID:22487226

  5. MET17 and Hydrogen Sulfide Formation in Saccharomyces cerevisiae

    PubMed Central

    Spiropoulos, Apostolos; Bisson, Linda F.

    2000-01-01

    Commercial isolates of Saccharomyces cerevisiae differ in the production of hydrogen sulfide (H2S) during fermentation, which has been attributed to variation in the ability to incorporate reduced sulfur into organic compounds. We transformed two commercial strains (UCD522 and UCD713) with a plasmid overexpressing the MET17 gene, which encodes the bifunctional O-acetylserine/O-acetylhomoserine sulfhydrylase (OAS/OAH SHLase), to test the hypothesis that the level of activity of this enzyme limits reduced sulfur incorporation, leading to H2S release. Overexpression of MET17 resulted in a 10- to 70-fold increase in OAS/OAH SHLase activity in UCD522 but had no impact on the level of H2S produced. In contrast, OAS/OAH SHLase activity was not as highly expressed in transformants of UCD713 (0.5- to 10-fold) but resulted in greatly reduced H2S formation. Overexpression of OAS/OAH SHLase activity was greater in UCD713 when grown under low-nitrogen conditions, but the impact on reduction of H2S was greater under high-nitrogen conditions. Thus, there was not a good correlation between the level of enzyme activity and H2S production. We measured cellular levels of cysteine to determine the impact of overexpression of OAS/OAH SHLase activity on sulfur incorporation. While Met17p activity was not correlated with increased cysteine production, conditions that led to elevated cytoplasmic levels of cysteine also reduced H2S formation. Our data do not support the simple hypothesis that variation in OAS/OAH SHLase activity is correlated with H2S production and release. PMID:11010893

  6. Hydrogen sulfide catalysis of low rank coal liquefaction

    SciTech Connect

    Stenberg, V.I.; Baltisberger, R.J.; Ogawa, T.; Raman, K.; Woolsey, N.F.

    1982-01-01

    Data are presented for reduction of bibenzyl, diphenylmethane, and diphenyl sulfide by H/sub 2/S which indicate that the chemical reactions are of more than one type. The H/sub 2/S is more effective in the hydrocracking of bibenzyl to benzene and toluene than is H/sub 2/. H/sub 2/S also appears to be a hydrogen donor and forms aromatic-sulfur bonds which implies that the sulfur can attack aromatic rings. Various reactions are proposed for the formation of sulfur which catalyzes the conversion of diphenylmethane. (BLM)

  7. Therapeutic application of hydrogen sulfide donors: the potential and challenges.

    PubMed

    Wu, Dan; Hu, Qingxun; Zhu, Yizhun

    2016-03-01

    Hydrogen sulfide (H2S), a colorless gas smelling of rotten egg, has long been considered a toxic gas and environment hazard. However, evidences show that H2S plays a great role in many physiological and pathological activities, and it exhibits different effects when applied at various doses. In this review, we summarize the chemistry and biomedical applications of H2S-releasing compounds, including inorganic salts, phosphorodithioate derivatives, derivatives of Allium sativum extracts, derivatives of thioaminoacids, and derivatives of antiinflammatory drugs. PMID:26597301

  8. Biotreatment of refinery spent sulfidic caustics

    SciTech Connect

    Sublette, K.L.; Rajganesh, B.; Woolsey, M.; Plato, A.

    1995-12-31

    Caustics are used in petroleum refinering to remove hydrogen sulfide from various hydrocarbon streams. Spent sulfidic caustics from two Conoco refineries have been successfully biotreated on bench and pilot scale, resulting in neutralization and removal of active sulfides. Sulfides were completely oxidized to sulfate by Thiobacillus denitrificans. Microbial oxidation of sulfide produced acid, which at least partially neutralized the caustic.

  9. Hydrogen sulfide selectivity with carbonyl sulfide removal to less than PPM levels

    SciTech Connect

    Bacon, T.R.; Pearce, R.L.; Foster, W.R. Jr.

    1986-01-01

    Changes in market conditions and plant operating economics require examination of traditional processes and operating practices in gas treating applications for upgrading to more stringent standards of efficiency in order to remain competitive while returning a satisfactory operating profit margin to the company. Anticipated reduction in solvent usage, improvements in Claus sulfur recovery unit performance and lower energy costs induced Ashland's Catlettsburg refinery to convert its entire sulfur removal system from monoethanolamine to methyldiethanolamine. One of the seven product streams being treated required extremely low carbonyl sulfide specifications. When the initial converted operations evidenced a need to improve the carbonyl sulfide removal, GAS/SPEC Tech Service produced an innovative solution which allowed for efficient operation which still achieved these objectives.

  10. State-of-the-art hydrogen sulfide control for geothermal energy systems: 1979

    SciTech Connect

    Stephens, F.B.; Hill, J.H.; Phelps, P.L. Jr.

    1980-03-01

    Existing state-of-the-art technologies for removal of hydrogen sulfide are discussed along with a comparative assessment of their efficiencies, reliabilities and costs. Other related topics include the characteristics of vapor-dominated and liquid-dominated resources, energy conversion systems, and the sources of hydrogen sulfide emissions. It is indicated that upstream control technologies are preferred over downsteam technologies primarily because upstream removal of hydrogen sulfide inherently controls all downstream emissions including steam-stacking. Two upstream processes for vapor-dominated resources appear promising; the copper sulfate (EIC) process, and the steam converter (Coury) process combined with an off-gas abatement system such as a Stretford unit. For liquid-dominated systems that produce steam, the process where the non-condensible gases are scrubbed with spent geothermal fluid appears to be promising. An efficient downstream technology is the Stretford process for non-condensible gas removal. In this case, partitioning in the surface condenser will determine the overall abatement efficiency. Recommendations for future environmental control technology programs are included.

  11. Modeling of Syngas Reactions and Hydrogen Generation Over Sulfides

    SciTech Connect

    Kamil Klier; Jeffery A. Spirko; Michael L. Neiman

    2002-09-17

    The objective of the research is to analyze pathways of reactions of hydrogen with oxides of carbon over sulfides, and to predict which characteristics of the sulfide catalyst (nature of metal, defect structure) give rise to the lowest barriers toward oxygenated hydrocarbon product. Reversal of these pathways entails the generation of hydrogen, which is also proposed for study. In this first year of study, adsorption reactions of H atoms and H{sub 2} molecules with MoS{sub 2}, both in molecular and solid form, have been modeled using high-level density functional theory. The geometries and strengths of the adsorption sites are described and the methods used in the study are described. An exposed MO{sup IV} species modeled as a bent MoS{sub 2} molecule is capable of homopolar dissociative chemisorption of H{sub 2} into a dihydride S{sub 2}MoH{sub 2}. Among the periodic edge structures of hexagonal MoS{sub 2}, the (1{bar 2}11) edge is most stable but still capable of dissociating H{sub 2}, while the basal plane (0001) is not. A challenging task of theoretically accounting for weak bonding of MoS{sub 2} sheets across the Van der Waals gap has been addressed, resulting in a weak attraction of 0.028 eV/MoS{sub 2} unit, compared to the experimental value of 0.013 eV/MoS{sub 2} unit.

  12. Catalysts for the selective oxidation of hydrogen sulfide to sulfur

    SciTech Connect

    Srinivas, Girish; Bai, Chuansheng

    2000-08-08

    This invention provides catalysts for the oxidation of hydrogen sulfide. In particular, the invention provides catalysts for the partial oxidation of hydrogen sulfide to elemental sulfur and water. The catalytically active component of the catalyst comprises a mixture of metal oxides containing titanium oxide and one or more metal oxides which can be selected from the group of metal oxides or mixtures of metal oxides of transition metals or lanthanide metals. Preferred metal oxides for combination with TiO.sub.2 in the catalysts of this invention include oxides of V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Mo, Tc, Ru, Rh, Hf, Ta, W, Au, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Catalysts which comprise a homogeneous mixture of titanium oxide and niobium (Nb) oxide are also provided. A preferred method for preparing the precursor homogenous mixture of metal hydroxides is by coprecipitation of titanium hydroxide with one or more other selected metal hydroxides. Catalysts of this invention have improved activity and/or selectivity for elemental sulfur production. Further improvements of activity and/or selectivity can be obtained by introducing relatively low amounts (up to about 5 mol %)of a promoter metal oxide (preferably of metals other than titanium and that of the selected second metal oxide) into the homogeneous metal/titanium oxide catalysts of this invention.

  13. Iron (III) sulfide particles produced by a polyol method

    NASA Astrophysics Data System (ADS)

    Shimizu, Ryo; Kubono, Ippei; Kobayashi, Yoshio; Yamada, Yasuhiro

    2015-04-01

    Iron(III) sulfide Fe2S3 particles were produced using a polyol method. Although pyrrhotite Fe1-xS appeared together with Fe2S3, the relative yield of Fe2S3 changed when the concentration of reagents in the oleylamine changed. Mössbauer spectra of the particles showed superparamagnetic doublets due to Fe2S3 at 293 K, along with a hyperfine magnetic splitting of H = 24.7 T at 6 K. XRD patterns of the Fe2S3 suggested a structure similar to that of greigite Fe3S4.

  14. Disequilibrium of hydrogen sulfide in ground water by aeration. Final report

    SciTech Connect

    Ritchey, J.D.

    1981-04-24

    This study examines removal of hydrogen sulfide gas by aeration as a result of bubbling air through water in the well before it is pumped out of the ground. The field study demonstrated that a substantial amount of hydrogen sulfide gas could be successfully removed by the method tested. Evaluation of water analyses indicated three processes that caused reduction in the concentration of hydrogen sulfide gas: (1) hydrogen sulfide gas was released from water to air by gas transfer--indicated by a strong 'rotten egg odor,' characteristic of hydrogen sulfide gas that was emitted from the wellhead; (2) hydrogen sulfide gas was oxidized to elemental sulfur--evidenced by an increase in dissolved oxygen measured in water samples and by clouding of pumped water; and (3) hydrogen sulfide gas was partially ionized--indicated by an increase in the pH and the redox potential of water samples. This field study demonstrates that in-well aeration is an effective method of hydrogen sulfide gas removal in domestic wells with potential application in larger installations.

  15. 30 CFR 250.215 - What hydrogen sulfide (H2S) information must accompany the EP?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... methodologies outlined in 40 CFR part 68. ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What hydrogen sulfide (H2S) information must... Contents of Exploration Plans (ep) § 250.215 What hydrogen sulfide (H2S) information must accompany the...

  16. A STUDY TO EVALUATE CARBON MONOXIDE AND HYDROGEN SULFIDE CONTINUOUS EMISSION MONITORS AT AN OIL REFINERY

    EPA Science Inventory

    An eleven month field evaluation was done on five hydrogen sulfide and four carbon monoxide monitors located at an oil refinery. The hydrogen sulfide monitors sampled a fuel gas feed line and the carbon monoxide monitors sampled the emissions from a fluid cat cracker (FCC). Two o...

  17. Inhibitory Effects of Condensed Tannins on Sulfate-Reducing Bacteria Populations and Hydrogen Sulfide Production from Swine Manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Odorous compounds and emissions associated with consolidated storage of swine manure are produced as a result of anaerobic microbial digestion of materials present in the manure. Hydrogen sulfide (H2S) is one such offensive and toxic odorant that can reach hazardous levels during manure storage and...

  18. Borax and octabor treatment of stored swine manure to reduce sulfate reducing bacteria and hydrogen sulfide emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Odorous gas emissions from stored swine manure are becoming serious environmental and health issues as the livestock industry becomes more specialized, concentrated, and industrialized. These nuisance gasses include hydrogen sulfide (H2S), ammonia, and methane, which are produced as a result of ana...

  19. Catalytic reduction of CO with hydrogen sulfide. 4. Temperature-programmed desorption of methanethiol on anatase, rutile, and sulfided rutile

    SciTech Connect

    Beck, D.D.; White, J.M.; Ratcliffe, C.T.

    1986-07-03

    The interaction of methanethiol with anatase, rutile, and sulfided rutile was studied by temperature-programmed desorption. Dissociative adsorption occurs on rutile but is insignificant on anatase. Decomposition products are dominated by H/sub 2/ on rutile and by CH/sub 4/ on sulfided rutile. In both cases desorption occurs between 500 and 775 K. The 5- and 4-coordinate sites on the (110) face of rutile are proposed as the active sites for decomposition. The dominance of methane on a sulfided surface is attributed to the relatively large supply of highly mobile surface hydrogen atoms.

  20. An intercomparison of aircraft instrumentation for tropospheric measurements of carbonyl sulfide, hydrogen sulfide, and carbon disulfide

    NASA Astrophysics Data System (ADS)

    Gregory, Gerald L.; Davis, Douglas D.; Thornton, Donald C.; Johnson, James E.; Bandy, Alan R.; Saltzman, Eric S.; Andreae, Meinrat O.; Barrick, John D.

    1993-12-01

    This paper reports results of NASA's Chemical Instrumentation and Test Evaluation (CITE 3) during which airborne measurements for carbonyl sulfide (COS), hydrogen sulfide (H2S), and carbon disulfide (CS2) were intercompared. Instrumentation included a gas chromatograph using flame photometric detection (COS, H2S, and CS2), a gas chromatograph using mass spectrometric detection (COS and CS2), a gas chromatograph using fluorination and subsequent SF6 detection via electron capture (COS and CS2), and the Natusch technique (H2S). The measurements were made over the Atlantic Ocean east of North and South America during flights from NASA's Wallops Flight Center, Virginia, and Natal, Brazil, in August/September 1989. Most of the intercomparisons for H2S and CS2 were at mixing ratios <25 pptv and <10 pptv, respectively, with a maximum mixing ratio of about 100 pptv and 50 pptv, respectively. Carbonyl sulfide intercomparisons were at mixing ratios between 400 and 600 pptv. Measurements were intercompared from data bases constructed from time periods of simultaneous or overlapping measurements. Agreement among the COS techniques averaged about 5%, and individual measurements were generally within 10%. For H2S and at mixing ratio >25 pptv, the instruments agreed on average to about 15%. At mixing ratios <25 pptv the agreement was about 5 pptv. For CS2 (mixing ratios <50 pptv), two techniques agreed on average to about 4 pptv, and the third exhibited a bias (relative to the other two) that varied in the range of 3-7 pptv. CS2 mixing ratios over the ocean east of Natal as measured by the gas chromatograph-mass spectrometer technique were only a few pptv and were below the detection limits of the other two techniques. The CITE 3 data are used to estimate the current uncertainty associated with aircraft measurements of COS, H2S, and CS2 in the remote troposphere.

  1. An intercomparison of aircraft instrumentation for tropospheric measurements of carbonyl sulfide, hydrogen sulfide, and carbon disulfide

    NASA Technical Reports Server (NTRS)

    Gregory, Gerald L.; Davis, Douglas D.; Thornton, Donald C.; Johnson, James E.; Bandy, Alan R.; Saltzman, Eric S.; Andreae, Meinrat O.; Barrick, John D.

    1993-01-01

    This paper reports results of NASA's Chemical Instrumentation and Test Evaluation (CITE 3) during which airborne measurements for carbonyl sulfide (COS), hydrogen sulfide (H2S), and carbon disulfide (CS2) were intercompared. Instrumentation included a gas chromatograph using flame photometric detection (COS, H2S, and CS2), a gas chromatograph using mass spectrometric detection (COS) and CS2), a gas chromatograph using fluorination and subsequent SF6 detection via electron capture (COS and CS2), and the Natusch technique (H2S). The measurements were made over the Atlantic Ocean east of North and South America during flights from NASA's Wallops Flight Center, Virginia, and Natal, Brazil, in August/September 1989. Most of the intercomparisons for H2S and CS2 were at mixing ratios less than 25 pptv and less than 10 pptv, respectively, with a maximum mixing ratio of about 100 pptv and 50 pptv, respectively. Carbonyl sulfide intercomparisons were at mixing ratios between 400 and 600 pptv. Measurements were intercompared from data bases constructed from time periods of simultaneous or overlapping measurements. Agreement among the COS techniques averaged about 5%, and individual measurements were generally within 10%. For H2S and at mixing ratio greater than 25 pptv, the instruments agreed on average to about 15%. At mixing ratios less than 25 pptv the agreement was about 5 pptv. For CS2 (mixing ratios less than 50 pptv), two techniques agreed on average to about 4 pptv, and the third exhibited a bias (relative to the other two) that varied in the range of 3-7 pptv. CS2 mixing ratios over the ocean east of Natal as measured by the gas chromatograph-mass spectrometer technique were only a few pptv and were below the detection limits of the other two techniques. The CITE 3 data are used to estimate the current uncertainty associated with aircraft measurements of COS, H2S, and CS2 in the remote troposphere.

  2. Detrimental effects for colonocytes of an increased exposure to luminal hydrogen sulfide: The adaptive response.

    PubMed

    Beaumont, Martin; Andriamihaja, Mireille; Lan, Annaïg; Khodorova, Nadezda; Audebert, Marc; Blouin, Jean-Marc; Grauso, Marta; Lancha, Luciana; Benetti, Pierre-Henri; Benamouzig, Robert; Tomé, Daniel; Bouillaud, Frédéric; Davila, Anne-Marie; Blachier, François

    2016-04-01

    Protein fermentation by the gut microbiota releases in the large intestine lumen various amino-acid derived metabolites. Among them, hydrogen sulfide (H2S) in excess has been suspected to be detrimental for colonic epithelium energy metabolism and DNA integrity. The first objective of this study was to evaluate in rats the epithelial response to an increased exposure to H2S. Experiments from colonocyte incubation and intra-colonic instillation indicate that low millimolar concentrations of the sulfide donor NaHS reversibly inhibited colonocyte mitochondrial oxygen consumption and increased gene expression of hypoxia inducible factor 1α (Hif-1α) together with inflammation-related genes namely inducible nitric oxide synthase (iNos) and interleukin-6 (Il-6). Additionally, rat colonocyte H2S detoxification capacity was severely impaired in the presence of nitric oxide. Based on the γH2AX ICW technique, NaHS did not induce DNA damage in colonocytes. Since H2S is notably produced by the gut microbiota from sulfur containing amino acids, the second objective of the study was to investigate the effects of a high protein diet (HPD) on large intestine luminal sulfide content and on the expression of genes involved in H2S detoxification in colonocytes. We found that HPD markedly increased H2S content in the large intestine but the concomitant increase of the content mass maintained the luminal sulfide concentration. HPD also provoked an increase of sulfide quinone reductase (Sqr) gene expression in colonocytes, indicating an adaptive response to increased H2S bacterial production. In conclusion, low millimolar NaHS concentration severely affects colonocyte respiration in association with increased expression of genes associated with intestinal inflammation. Although HPD increases the sulfide content of the large intestine, the colonic adaptive responses to this modification limit the epithelial exposure to this deleterious bacterial metabolite. PMID:26849947

  3. Giant Hydrogen Sulfide Plume in the Oxygen Minimum Zone off Peru Supports Chemolithoautotrophy

    PubMed Central

    Großkopf, Tobias; Kalvelage, Tim; Löscher, Carolin R.; Paulmier, Aurélien; Contreras, Sergio; Siegel, Herbert; Holtappels, Moritz; Rosenstiel, Philip; Schilhabel, Markus B.; Graco, Michelle; Schmitz, Ruth A.; Kuypers, Marcel M. M.; LaRoche, Julie

    2013-01-01

    In Eastern Boundary Upwelling Systems nutrient-rich waters are transported to the ocean surface, fuelling high photoautotrophic primary production. Subsequent heterotrophic decomposition of the produced biomass increases the oxygen-depletion at intermediate water depths, which can result in the formation of oxygen minimum zones (OMZ). OMZs can sporadically accumulate hydrogen sulfide (H2S), which is toxic to most multicellular organisms and has been implicated in massive fish kills. During a cruise to the OMZ off Peru in January 2009 we found a sulfidic plume in continental shelf waters, covering an area >5500 km2, which contained ∼2.2×104 tons of H2S. This was the first time that H2S was measured in the Peruvian OMZ and with ∼440 km3 the largest plume ever reported for oceanic waters. We assessed the phylogenetic and functional diversity of the inhabiting microbial community by high-throughput sequencing of DNA and RNA, while its metabolic activity was determined with rate measurements of carbon fixation and nitrogen transformation processes. The waters were dominated by several distinct γ-, δ- and ε-proteobacterial taxa associated with either sulfur oxidation or sulfate reduction. Our results suggest that these chemolithoautotrophic bacteria utilized several oxidants (oxygen, nitrate, nitrite, nitric oxide and nitrous oxide) to detoxify the sulfidic waters well below the oxic surface. The chemolithoautotrophic activity at our sampling site led to high rates of dark carbon fixation. Assuming that these chemolithoautotrophic rates were maintained throughout the sulfidic waters, they could be representing as much as ∼30% of the photoautotrophic carbon fixation. Postulated changes such as eutrophication and global warming, which lead to an expansion and intensification of OMZs, might also increase the frequency of sulfidic waters. We suggest that the chemolithoautotrophically fixed carbon may be involved in a negative feedback loop that could fuel further

  4. Evaluation of feed COD/sulfate ratio as a control criterion for the biological hydrogen sulfide production and lead precipitation.

    PubMed

    Velasco, Antonio; Ramírez, Martha; Volke-Sepúlveda, Tania; González-Sánchez, Armando; Revah, Sergio

    2008-03-01

    The ability of sulfate-reducing bacteria to produce hydrogen sulfide and the high affinity of sulfide to react with divalent metallic cations represent an excellent option to remove heavy metals from wastewater. Different parameters have been proposed to control the hydrogen sulfide production by anaerobic bacteria, such as the organic and sulfate loading rates and the feed COD/SO4(2-) ratio. This work relates the feed COD/SO4(2-) ratio with the hydrogen sulfide production and dissolved lead precipitation, using ethanol as carbon and energy source in an up-flow anaerobic sludge blanket reactor. A maximum dissolved sulfide concentration of 470+/-7 mg S/L was obtained at a feed COD/SO4(2-) ratio of 2.5, with sulfate and ethanol conversions of approximately 94 and 87%, respectively. The lowest dissolved sulfide concentration (145+/-10 mg S/L) was observed with a feed COD/SO4(2-) ratio of 0.67. Substantial amounts of acetate (510-1730 mg/L) were produced and accumulated in the bioreactor from ethanol oxidation. Although only incomplete oxidation of ethanol to acetate was observed, the consortium was able to remove 99% of the dissolved lead (200 mg/L) with a feed COD/SO4(2-) ratio of 1.5. It was found that the feed COD/SO4(2-) ratio could be an adequate parameter to control the hydrogen sulfide production and the consequent precipitation of dissolved lead. PMID:17640800

  5. Airborne sulfur trace species intercomparison campaign: Sulfur dioxide, dimethylsulfide, hydrogen sulfide, carbon disulfide, and carbonyl sulfide

    NASA Technical Reports Server (NTRS)

    Gregory, Gerald L.; Hoell, James M., Jr.; Davis, Douglas D.

    1991-01-01

    Results from an airborne intercomparison of techniques to measure tropospheric levels of sulfur trace gases are presented. The intercomparison was part of the NASA Global Tropospheric Experiment (GTE) and was conducted during the summer of 1989. The intercomparisons were conducted on the Wallops Electra aircraft during flights from Wallops Island, Virginia, and Natal, Brazil. Sulfur measurements intercompared included sulfur dioxide (SO2), dimethylsulfide (DMS), hydrogen sulfide (H2S), carbon disulfide (CS2), and carbonyl sulfide (OCS). Measurement techniques ranged from filter collection systems with post-flight analyses to mass spectrometer and gas chromatograph systems employing various methods for measuring and identifying the sulfur gases during flight. Sampling schedules for the techniques ranged from integrated collections over periods as long as 50 minutes to one- to three-minute samples every ten or fifteen minutes. Several of the techniques provided measurements of more than one sulfur gas. Instruments employing different detection principles were involved in each of the sulfur intercomparisons. Also included in the intercomparison measurement scenario were a host of supporting measurements (i.e., ozone, nitrogen oxides, carbon monoxide, total sulfur, aerosols, etc.) for purposes of: (1) interpreting results (i.e., correlation of any noted instrument disagreement with the chemical composition of the measurement environment); and (2) providing supporting chemical data to meet CITE-3 science objectives of studying ozone/sulfur photochemistry, diurnal cycles, etc. The results of the intercomparison study are briefly discussed.

  6. Hydrogen sulfide can inhibit and enhance oxygenic photosynthesis in a cyanobacterium from sulfidic springs.

    PubMed

    Klatt, Judith M; Haas, Sebastian; Yilmaz, Pelin; de Beer, Dirk; Polerecky, Lubos

    2015-09-01

    We used microsensors to investigate the combinatory effect of hydrogen sulfide (H2 S) and light on oxygenic photosynthesis in biofilms formed by a cyanobacterium from sulfidic springs. We found that photosynthesis was both positively and negatively affected by H2 S: (i) H2 S accelerated the recovery of photosynthesis after prolonged exposure to darkness and anoxia. We suggest that this is possibly due to regulatory effects of H2 S on photosystem I components and/or on the Calvin cycle. (ii) H2 S concentrations of up to 210 μM temporarily enhanced the photosynthetic rates at low irradiance. Modelling showed that this enhancement is plausibly based on changes in the light-harvesting efficiency. (iii) Above a certain light-dependent concentration threshold H2 S also acted as an inhibitor. Intriguingly, this inhibition was not instant but occurred only after a specific time interval that decreased with increasing light intensity. That photosynthesis is most sensitive to inhibition at high light intensities suggests that H2 S inactivates an intermediate of the oxygen evolving complex that accumulates with increasing light intensity. We discuss the implications of these three effects of H2 S in the context of cyanobacterial photosynthesis under conditions with diurnally fluctuating light and H2 S concentrations, such as those occurring in microbial mats and biofilms. PMID:25630511

  7. Understanding hydrogen sulfide storage: probing conditions for sulfide release from hydrodisulfides.

    PubMed

    Bailey, T Spencer; Zakharov, Lev N; Pluth, Michael D

    2014-07-30

    Hydrogen sulfide (H2S) is an important biological signaling agent that exerts action on numerous (patho)physiological processes. Once generated, H2S can be oxidized to generate reductant-labile sulfane sulfur pools, which include hydrodisulfides/persulfides. Despite the importance of hydrodisulfides in H2S storage and signaling, little is known about the physical properties or chemical reactivity of these compounds. We report here the synthesis, isolation, and characterization (NMR, IR, Raman, HRMS, X-ray) of a small-molecule hydrodisulfide and highlight its reactivity with reductants, nucleophiles, electrophiles, acids, and bases. Our experimental results establish that hydrodisulfides release H2S upon reduction and that deprotonation results in disproportionation to the parent thiol and S(0), thus providing a mechanism for transsulfuration in the sulfane sulfur pool. PMID:25010540

  8. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment..., 2011 § 60.648 Optional procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas... dilute solutions are used. In principle, this method consists of titrating hydrogen sulfide in a...

  9. 40 CFR 60.5408 - What is an optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... measuring hydrogen sulfide in acid gas-Tutwiler Procedure? 60.5408 Section 60.5408 Protection of Environment... § 60.5408 What is an optional procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure... of titrating hydrogen sulfide in a gas sample directly with a standard solution of iodine....

  10. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment... procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas Engineers Handbook, Fuel.... In principle, this method consists of titrating hydrogen sulfide in a gas sample directly with...

  11. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment..., 2011 § 60.648 Optional procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas... dilute solutions are used. In principle, this method consists of titrating hydrogen sulfide in a...

  12. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment... procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas Engineers Handbook, Fuel.... In principle, this method consists of titrating hydrogen sulfide in a gas sample directly with...

  13. 40 CFR 60.5408 - What is an optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... measuring hydrogen sulfide in acid gas-Tutwiler Procedure? 60.5408 Section 60.5408 Protection of Environment... § 60.5408 What is an optional procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure... of titrating hydrogen sulfide in a gas sample directly with a standard solution of iodine....

  14. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment... procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas Engineers Handbook, Fuel.... In principle, this method consists of titrating hydrogen sulfide in a gas sample directly with...

  15. Process for removal of hydrogen sulfide from gas streams

    SciTech Connect

    Hansford, R.C.; Hass, R.H.

    1981-01-06

    A process for the removal of H/sub 2/S from a feed gas, and the production of sulfur therefrom, is effected by oxidation with oxygen and/or SO/sub 2/ at temperatures between 250* and 450* F. The oxidation is conducted in the presence of an extremely stable oxidation catalyst comprising an oxide and/or sulfide of vanadium supported on a non-alkaline porous refractory oxide. Sulfur deposition and consequent catalyst deactivation are prevented by maintaining the partial pressure of free sulfur in the oxidation reactor below that necessary for condensation. H/sub 2/, CO, and light hydrocarbons present in the feed gas are not oxidized. Typical uses of the process include the removal of H/sub 2/S and the production of sulfur from sour natural gases or gases obtained from the gasification of coal. Feed gases which contain SO/sub 2/ and H/sub 2/S in mole ratios greater than 5, or which contain other gaseous sulfur compounds such as CO, CS/sub 2/, SO/sub 3/ and mercaptans, can be desulfurized by hydrogenating all of such sulfur components to H/sub 2/S and subsequently removing the H/sub 2/S from the hydrogenated feed gas by the oxidation process of the invention. This hydrogenation-oxidation combination is especially contemplated for the desulfurization of claus tail gases and stack gas effluents.

  16. Process for removal of hydrogen sulfide from gas streams

    SciTech Connect

    Hansford, R.C.; Hass, R.H.

    1982-01-19

    A process for the removal of H2S from a feed gas, and the production of sulfur therefrom, is effected by oxidation with oxygen and/or SO2 at temperatures between 250 and 450/sup 0/F. The oxidation is conducted in the presence of an extremely stable oxidation catalyst comprising an oxide and/or sulfide of vanadium supported on a non-alkaline porous refractory oxide. Sulfur deposition and consequent catalyst deactivation are prevented by maintaining the partial pressure of free sulfur in the oxidation reactor below that necessary for condensation. H2, CO, and light hydrocarbons present in the feed gas are not oxidized. Typical uses of the process include the removal of H2S and the production of sulfur from sour natural gases or gases obtained from the gasification of coal. Feed gases which contain SO2 and H2S in mole ratios greater than 5, or which contain other gaseous sulfur compounds such as CO CS2, SO3 and mercaptans, can be desulfurized by hydrogenating all of such sulfur components to H2S and subsequently removing the H2S from the hydrogenated feed gas by the oxidation process of the invention. This hydrogenation-oxidation combination is especially contemplated for the desulfurization of claus tail gases and stack gas effluents.

  17. The metallization and superconductivity of dense hydrogen sulfide

    NASA Astrophysics Data System (ADS)

    Li, Yinwei; Hao, Jian; Liu, Hanyu; Li, Yanling; Ma, Yanming

    2014-05-01

    Hydrogen sulfide (H2S) is a prototype molecular system and a sister molecule of water (H2O). The phase diagram of solid H2S at high pressures remains largely unexplored arising from the challenges in dealing with the pressure-induced weakening of S-H bond and larger atomic core difference between H and S. Metallization is yet achieved for H2O, but it was observed for H2S above 96 GPa. However, the metallic structure of H2S remains elusive, greatly impeding the understanding of its metallicity and the potential superconductivity. We have performed an extensive structural study on solid H2S at pressure ranges of 10-200 GPa through an unbiased structure prediction method based on particle swarm optimization algorithm. Besides the findings of candidate structures for nonmetallic phases IV and V, we are able to establish stable metallic structures violating an earlier proposal of elemental decomposition into sulfur and hydrogen [R. Rousseau, M. Boero, M. Bernasconi, M. Parrinello, and K. Terakura, Phys. Rev. Lett. 85, 1254 (2000)]. Our study unravels a superconductive potential of metallic H2S with an estimated maximal transition temperature of ˜80 K at 160 GPa, higher than those predicted for most archetypal hydrogen-containing compounds (e.g., SiH4, GeH4, etc.).

  18. High-temperature study of superconducting hydrogen and deuterium sulfide

    NASA Astrophysics Data System (ADS)

    Durajski, A. P.; Szczȩśniak, R.; Pietronero, L.

    2016-05-01

    Hydrogen-rich compounds are extensively explored as candidates for a high-temperature superconductors. Currently, the measured critical temperature of $203$ K in hydrogen sulfide (H$_3$S) is among the highest over all-known superconductors. In present paper, using the strong-coupling Eliashberg theory of superconductivity, we compared in detail the thermodynamic properties of two samples containing different hydrogen isotopes H$_3$S and D$_3$S at $150$ GPa. Our research indicates that it is possible to reproduce the measured values of critical temperature $203$ K and $147$ K for H$_3$S and D$_3$S by using a Coulomb pseudopotential of $0.123$ and $0.131$, respectively. However, we also discuss a scenario in which the isotope effect is independent of pressure and the Coulomb pseudopotential for D$_3$S is smaller than for H$_3$S. For both scenarios, the energy gap, specific heat, thermodynamic critical field and related dimensionless ratios are calculated and compared with other conventional superconductors. We shown that the existence of the strong-coupling and retardation effects in the systems analysed result in significant differences between values obtained within the framework of the Eliashberg formalism and the prediction of the Bardeen-Cooper-Schrieffer theory.

  19. Sulfur as a Signaling Nutrient Through Hydrogen Sulfide

    PubMed Central

    Kabil, Omer; Vitvitsky, Victor; Banerjee, Ruma

    2015-01-01

    Hydrogen sulfide (H2S) has emerged as an important signaling molecule with beneficial effects on various cellular processes affecting, for example, cardiovascular and neurological functions. The physiological importance of H2S is motivating efforts to develop strategies for modulating its levels. However, advancement in the field of H2S-based therapeutics is hampered by fundamental gaps in our knowledge of how H2S is regulated, its mechanism of action, and its molecular targets. This review provides an overview of sulfur metabolism; describes recent progress that has shed light on the mechanism of H2S as a signaling molecule; and examines nutritional regulation of sulfur metabolism, which pertains to health and disease. PMID:25033061

  20. Release and control of hydrogen sulfide during sludge thermal drying

    SciTech Connect

    Weng, Huanxin; Dai, Zhixin; Ji, Zhongqiang; Gao, Caixia; Liu, Chongxuan

    2015-04-15

    The release of hydrogen sulfide (H2S) during sludge drying is a major environmental problem because of its toxicity to human health. A series of experiments were performed to investigate the mechanisms and factors controlling the H2S release. Results of this study show that: 1) the biomass and activity of sulfate-reducing bacteria (SRB) in sludge were the major factors controlling the amount of H2S release, 2) the sludge drying temperature had an important effect on both the extent and the timing of H2S release from the sludge, and 3) decreasing sludge pH increased the H2S release. Based on the findings from this study, a new system that integrates sludge drying and H2S gas treatment was developed to reduce the amount of H2S released from sludge treatments.

  1. Observation of superconductivity in hydrogen sulfide from nuclear resonant scattering.

    PubMed

    Troyan, Ivan; Gavriliuk, Alexander; Rüffer, Rudolf; Chumakov, Alexander; Mironovich, Anna; Lyubutin, Igor; Perekalin, Dmitry; Drozdov, Alexander P; Eremets, Mikhail I

    2016-03-18

    High-temperature superconductivity remains a focus of experimental and theoretical research. Hydrogen sulfide (H2S) has been reported to be superconducting at high pressures and with a high transition temperature. We report on the direct observation of the expulsion of the magnetic field in H2S compressed to 153 gigapascals. A thin (119)Sn film placed inside the H2S sample was used as a sensor of the magnetic field. The magnetic field on the (119)Sn sensor was monitored by nuclear resonance scattering of synchrotron radiation. Our results demonstrate that an external static magnetic field of about 0.7 tesla is expelled from the volume of (119)Sn foil as a result of the shielding by the H2S sample at temperatures between 4.7 K and approximately 140 K, revealing a superconducting state of H2S. PMID:26989248

  2. Endogenous hydrogen sulfide is involved in the pathogenesis of atherosclerosis

    SciTech Connect

    Qiao, Wang; Chaoshu, Tang; Hongfang, Jin; Junbao, Du

    2010-05-28

    Atherosclerosis is a chronic, complex, and progressive pathological process in large and medium sized arteries. The exact mechanism of this process remains unclear. Hydrogen sulfide (H{sub 2}S), a novel gasotransmitter, was confirmed as playing a major role in the pathogenesis of many cardiovascular diseases. It plays a role in vascular smooth muscle cell (VSMC) proliferation and apoptosis, participates in the progress of hyperhomocysteinemia (HHCY), inhibits atherogenic modification of LDL, interferes with vascular calcification, intervenes with platelet function, and there are interactions between H{sub 2}S and inflammatory processes. The role of H{sub 2}S in atherosclerotic pathogenesis highlights the mysteries of atherosclerosis and inspires the search for innovative therapeutic strategies. Here, we review the studies to date that have considered the role of H{sub 2}S in atherosclerosis.

  3. Working with nitric oxide and hydrogen sulfide in biological systems

    PubMed Central

    Yuan, Shuai; Kevil, Christopher G.

    2014-01-01

    Nitric oxide (NO) and hydrogen sulfide (H2S) are gasotransmitter molecules important in numerous physiological and pathological processes. Although these molecules were first known as environmental toxicants, it is now evident that that they are intricately involved in diverse cellular functions with impact on numerous physiological and pathogenic processes. NO and H2S share some common characteristics but also have unique chemical properties that suggest potential complementary interactions between the two in affecting cellular biochemistry and metabolism. Central among these is the interactions between NO, H2S, and thiols that constitute new ways to regulate protein function, signaling, and cellular responses. In this review, we discuss fundamental biochemical principals, molecular functions, measurement methods, and the pathophysiological relevance of NO and H2S. PMID:25550314

  4. Hydrogen Sulfide, Oxidative Stress and Periodontal Diseases: A Concise Review.

    PubMed

    Greabu, Maria; Totan, Alexandra; Miricescu, Daniela; Radulescu, Radu; Virlan, Justina; Calenic, Bogdan

    2016-01-01

    In the past years, biomedical research has recognized hydrogen sulfide (H₂S) not only as an environmental pollutant but also, along with nitric oxide and carbon monoxide, as an important biological gastransmitter with paramount roles in health and disease. Current research focuses on several aspects of H₂S biology such as the biochemical pathways that generate the compound and its functions in human pathology or drug synthesis that block or stimulate its biosynthesis. The present work addresses the knowledge we have to date on H₂S production and its biological roles in the general human environment with a special focus on the oral cavity and its involvement in the initiation and development of periodontal diseases. PMID:26805896

  5. Hydrogen Sulfide, Oxidative Stress and Periodontal Diseases: A Concise Review

    PubMed Central

    Greabu, Maria; Totan, Alexandra; Miricescu, Daniela; Radulescu, Radu; Virlan, Justina; Calenic, Bogdan

    2016-01-01

    In the past years, biomedical research has recognized hydrogen sulfide (H2S) not only as an environmental pollutant but also, along with nitric oxide and carbon monoxide, as an important biological gastransmitter with paramount roles in health and disease. Current research focuses on several aspects of H2S biology such as the biochemical pathways that generate the compound and its functions in human pathology or drug synthesis that block or stimulate its biosynthesis. The present work addresses the knowledge we have to date on H2S production and its biological roles in the general human environment with a special focus on the oral cavity and its involvement in the initiation and development of periodontal diseases. PMID:26805896

  6. Role of Hydrogen Sulfide in Ischemia-Reperfusion Injury

    PubMed Central

    Wu, Dongdong; Wang, Jun; Li, Hui; Xue, Mengzhou; Ji, Ailing; Li, Yanzhang

    2015-01-01

    Ischemia-reperfusion (I/R) injury is one of the major causes of high morbidity, disability, and mortality in the world. I/R injury remains a complicated and unresolved situation in clinical practice, especially in the field of solid organ transplantation. Hydrogen sulfide (H2S) is the third gaseous signaling molecule and plays a broad range of physiological and pathophysiological roles in mammals. H2S could protect against I/R injury in many organs and tissues, such as heart, liver, kidney, brain, intestine, stomach, hind-limb, lung, and retina. The goal of this review is to highlight recent findings regarding the role of H2S in I/R injury. In this review, we present the production and metabolism of H2S and further discuss the effect and mechanism of H2S in I/R injury. PMID:26064416

  7. Detection of interstellar hydrogen sulfide in cold, dark clouds.

    PubMed

    Minh, Y C; Irvine, W M; Ziurys, L M

    1989-10-01

    We have detected interstellar hydrogen sulfide (H2S) toward the cold, dark clouds L134N and TMC 1. We derive total column densities of approximately 2.6 x 10(13) cm-2 and approximately 7.0 x 10(12) cm-2 at the SO peak of L134N and at the NH3 peak of TMC 1, respectively. Since the expected gas phase reactions leading to the formation of H2S are thought to be endothermic, grain surface reactions may play a major role in the synthesis of this species in cold, dark clouds. If the carbon abundance is high and grain surface reactions are the dominant formation route, H2CS would be expected to form instead of H2S, and the abundances of H2CS have been observed to be high where those of H2S are low in L134N and TMC 1. PMID:11538326

  8. Protein-based nanobiosensor for direct detection of hydrogen sulfide

    NASA Astrophysics Data System (ADS)

    Omidi, Meisam; Amoabediny, Ghasem; Yazdian, Fatemeh; Habibi-Rezaei, M.

    2015-01-01

    The chemically modified cytochrome c from equine heart, EC (232-700-9), was immobilized onto gold nanoparticles in order to develop a specific biosensing system for monitoring hydrogen sulfide down to the micromolar level, by means of a localized surface plasmon resonance spectroscopy. The sensing mechanism is based on the cytochrome-c conformational changes in the presence of H2S which alter the dielectric properties of the gold nanoparticles and the surface plasmon resonance peak undergoes a redshift. According to the experiments, it is revealed that H2S can be detected at a concentration of 4.0 μ \\text{M} (1.3 \\text{ppb}) by the fabricated biosensor. This simple, quantitative and sensitive sensing platform provides a rapid and convenient detection for H2S at concentrations far below the hazardous limit.

  9. Hydrogen Sulfide Chemical Biology: Pathophysiological roles and detection

    PubMed Central

    Kolluru, Gopi K; Shen, Xinggui; Bir, Shyamal C.; Kevil, Christopher G.

    2014-01-01

    Hydrogen sulfide (H2S) is the most recent endogenous gasotransmitter that has been reported to serve many physiological and pathological functions in different tissues. Studies over the past decade have revealed that H2S can be synthesized through numerous pathways and its bioavailability regulated through its conversion into different biochemical forms. H2S exerts its biological effects in various manners including redox regulation of protein and small molecular weight thiols, polysulfides, thiosulfate/sulfite, iron-sulfur cluster proteins, and anti-oxidant properties that affect multiple cellular and molecular responses. However, precise measurement of H2S bioavailability and its associated biochemical and pathophysiological roles remains less well understood. In this review, we discuss recent understanding of H2S chemical biology, its relationship to tissue pathophysiological responses and possible therapeutic uses. PMID:23850632

  10. Hydrogen sulfide at high pressure: change in stoichiometry

    NASA Astrophysics Data System (ADS)

    Goncharov, Alexander; Lobanov, Sergey; Kruglov, Ivan; Zhao, Xiao-Miao; Chen, Xiao-Jia; Oganov, Artem; Konopkova, Zuzana; Prakapenka, Vitali

    Hydrogen sulfide (H2S) was studied by x-ray synchrotron diffraction (XRD) and Raman spectroscopy up to 144 GPa at 180-295 K. We find that H2S compound become unstable with respect to formation of new compounds with different composition including pure S, H3S and HS2 depending on the thermodynamic P-T path. These results are supported by our quantum-mechanical variable-composition evolutionary simulations that show the stability of the above mentioned compounds at elevated pressures. The stability of H3S at high pressures, which we find a strong experimental and theoretical confirmation here, suggests that it is this material which is responsible for high-temperature superconducting properties reported previously. We thank DARPA, NSF, ISSP (Hefei, China), Government of Russian Federation, and Foreign Talents Introduction and Academic Exchange Program. Use of the Advanced Photon Source was supported by the U. S. Department of Energy Office of Science.

  11. Hydrogen sulfide at high pressure: Change in stoichiometry

    NASA Astrophysics Data System (ADS)

    Goncharov, Alexander F.; Lobanov, Sergey S.; Kruglov, Ivan; Zhao, Xiao-Miao; Chen, Xiao-Jia; Oganov, Artem R.; Konôpková, Zuzana; Prakapenka, Vitali B.

    2016-05-01

    Hydrogen sulfide (H2S ) was studied by x-ray synchrotron diffraction and Raman spectroscopy up to 150 GPa at 180-295 K and by quantum-mechanical variable-composition evolutionary simulations. The experiments show that H2S becomes unstable with respect to formation of compounds with different structure and composition, including Cccm and a body-centered cubic like (R 3 m or I m -3 m ) H3S , the latter one predicted previously to show a record-high superconducting transition temperature, a Tc of 203 K. These experiments provide experimental ground for understanding of this record-high Tc. The experimental results are supported by theoretical structure searches that suggest the stability of H3S , H4S3 , H5S8 , H3S5 , and H S2 compounds that have not been reported previously at elevated pressures.

  12. Hydrogen sulfide poisoning: review of 5 years' experience.

    PubMed Central

    Burnett, W. W.; King, E. G.; Grace, M.; Hall, W. F.

    1977-01-01

    The workforce of Alberta, a province rich in fossil fuel, faces an increasing risk of exposure to hydrogen sulfide (H2S). Basic knowledge of the population exposed during the years 1969 to 1973 inclusive was accumulated to identify the immediate medical and management problems. Data were recorded from three sources of records: the Workers' Compensation Board of Alberta, the Alberta Hospital Services Commission and the provincial coroner's office. There were 221 cases of exposure to H2S. The overall mortality was 6%; 5% of victims were dead on arrival at hospital. Admission to hospital was required for 65% of the victims arriving at a hospital emergency room (78% of the 221). Acute problems were coma, dysequilibrium and respiratory insufficiency with pulmonary edema. Increased attention to cardiopulmonary resuscitation at the exposure site and during transportation to hospital is necessary to reduce the mortality from H2S exposure. No long-term adverse effects were apparent in the survivors. PMID:144553

  13. Hydrogen sulfide accelerates wound healing in diabetic rats

    PubMed Central

    Wang, Guoguang; Li, Wei; Chen, Qingying; Jiang, Yuxin; Lu, Xiaohua; Zhao, Xue

    2015-01-01

    Aim: The aim of this study was to explore the role of hydrogen sulfide on wound healing in diabetic rats. Methods: Experimental diabetes in rats was induced by intraperitoneal injection of streptozotocin (STZ) (in 0.1 mol/L citrate buffer, Ph 4.5) at dose of 70 mg/kg. Diabetic and age-matched non-diabetic rats were randomly assigned to three groups: untreated diabetic controls (UDC), treated diabetic administrations (TDA), and non-diabetic controls (NDC). Wound Healing Model was prepared by making a round incision (2.0 cm in diameter) in full thickness. Rats from TDA receive 2% sodium bisulfide ointment on wound, and animals from UDC and NDC receive control cream. After treatment of 21 days with sodium bisulfide, blood samples were collected for determination of vascular endothelial growth factor (VEGF), intercellular cell adhesion molecule-1 (ICAM-1), antioxidant effects. Granulation tissues from the wound were processed for histological examination and analysis of western blot. Results: The study indicated a significant increase in levels of VEGF and ICAM-1 and a decline in activity of coagulation in diabetic rats treated with sodium bisulfide. Sodium bisulfide treatment raised the activity of superoxide dismutase (SOD) and heme oxygenase-1 (HO-1) protein expression, and decreased tumor necrosis factor α (TNF-α) protein expression in diabetic rats. Conclusions: The findings in present study suggested that hydrogen sulfide accelerates the wound healing in rats with diabetes. The beneficial effect of H2S may be associated with formation of granulation, anti-inflammation, antioxidant, and the increased level of vascular endothelial growth factor (VEGF). PMID:26191204

  14. Structural effects of naphthalimide-based fluorescent sensor for hydrogen sulfide and imaging in live zebrafish

    PubMed Central

    Choi, Seon-Ae; Park, Chul Soon; Kwon, Oh Seok; Giong, Hoi-Khoanh; Lee, Jeong-Soo; Ha, Tai Hwan; Lee, Chang-Soo

    2016-01-01

    Hydrogen sulfide (H2S) is an important biological messenger, but few biologically-compatible methods are available for its detection in aqueous solution. Herein, we report a highly water-soluble naphthalimide-based fluorescent probe (L1), which is a highly versatile building unit that absorbs and emits at long wavelengths and is selective for hydrogen sulfide over cysteine, glutathione, and other reactive sulfur, nitrogen, and oxygen species in aqueous solution. We describe turn-on fluorescent probes based on azide group reduction on the fluorogenic ‘naphthalene’ moiety to fluorescent amines and intracellular hydrogen sulfide detection without the use of an organic solvent. L1 and L2 were synthetically modified to functional groups with comparable solubility on the N-imide site, showing a marked change in turn-on fluorescent intensity in response to hydrogen sulfide in both PBS buffer and living cells. The probes were readily employed to assess intracellular hydrogen sulfide level changes by imaging endogenous hydrogen sulfide signal in RAW264.7 cells incubated with L1 and L2. Expanding the use of L1 to complex and heterogeneous biological settings, we successfully visualized hydrogen sulfide detection in the yolk, brain and spinal cord of living zebrafish embryos, thereby providing a powerful approach for live imaging for investigating chemical signaling in complex multicellular systems. PMID:27188400

  15. Structural effects of naphthalimide-based fluorescent sensor for hydrogen sulfide and imaging in live zebrafish.

    PubMed

    Choi, Seon-Ae; Park, Chul Soon; Kwon, Oh Seok; Giong, Hoi-Khoanh; Lee, Jeong-Soo; Ha, Tai Hwan; Lee, Chang-Soo

    2016-01-01

    Hydrogen sulfide (H2S) is an important biological messenger, but few biologically-compatible methods are available for its detection in aqueous solution. Herein, we report a highly water-soluble naphthalimide-based fluorescent probe (L1), which is a highly versatile building unit that absorbs and emits at long wavelengths and is selective for hydrogen sulfide over cysteine, glutathione, and other reactive sulfur, nitrogen, and oxygen species in aqueous solution. We describe turn-on fluorescent probes based on azide group reduction on the fluorogenic 'naphthalene' moiety to fluorescent amines and intracellular hydrogen sulfide detection without the use of an organic solvent. L1 and L2 were synthetically modified to functional groups with comparable solubility on the N-imide site, showing a marked change in turn-on fluorescent intensity in response to hydrogen sulfide in both PBS buffer and living cells. The probes were readily employed to assess intracellular hydrogen sulfide level changes by imaging endogenous hydrogen sulfide signal in RAW264.7 cells incubated with L1 and L2. Expanding the use of L1 to complex and heterogeneous biological settings, we successfully visualized hydrogen sulfide detection in the yolk, brain and spinal cord of living zebrafish embryos, thereby providing a powerful approach for live imaging for investigating chemical signaling in complex multicellular systems. PMID:27188400

  16. Structural effects of naphthalimide-based fluorescent sensor for hydrogen sulfide and imaging in live zebrafish

    NASA Astrophysics Data System (ADS)

    Choi, Seon-Ae; Park, Chul Soon; Kwon, Oh Seok; Giong, Hoi-Khoanh; Lee, Jeong-Soo; Ha, Tai Hwan; Lee, Chang-Soo

    2016-05-01

    Hydrogen sulfide (H2S) is an important biological messenger, but few biologically-compatible methods are available for its detection in aqueous solution. Herein, we report a highly water-soluble naphthalimide-based fluorescent probe (L1), which is a highly versatile building unit that absorbs and emits at long wavelengths and is selective for hydrogen sulfide over cysteine, glutathione, and other reactive sulfur, nitrogen, and oxygen species in aqueous solution. We describe turn-on fluorescent probes based on azide group reduction on the fluorogenic ‘naphthalene’ moiety to fluorescent amines and intracellular hydrogen sulfide detection without the use of an organic solvent. L1 and L2 were synthetically modified to functional groups with comparable solubility on the N-imide site, showing a marked change in turn-on fluorescent intensity in response to hydrogen sulfide in both PBS buffer and living cells. The probes were readily employed to assess intracellular hydrogen sulfide level changes by imaging endogenous hydrogen sulfide signal in RAW264.7 cells incubated with L1 and L2. Expanding the use of L1 to complex and heterogeneous biological settings, we successfully visualized hydrogen sulfide detection in the yolk, brain and spinal cord of living zebrafish embryos, thereby providing a powerful approach for live imaging for investigating chemical signaling in complex multicellular systems.

  17. Metal-organic frameworks for the storage and delivery of biologically active hydrogen sulfide

    SciTech Connect

    Allan, Phoebe K; Wheatley, Paul S; Aldous, David; Mohideen, M Infas; Tang, Chiu; Hriljac, Joseph A; Megson, Ian L; Chapman, Karena W; De Weireld, Guy; Vaesen, Sebastian; Morris, Russell E

    2012-04-02

    Hydrogen sulfide is an extremely toxic gas that is also of great interest for biological applications when delivered in the correct amount and at the desired rate. Here we show that the highly porous metal-organic frameworks with the CPO-27 structure can bind the hydrogen sulfide relatively strongly, allowing the storage of the gas for at least several months. Delivered gas is biologically active in preliminary vasodilation studies of porcine arteries, and the structure of the hydrogen sulfide molecules inside the framework has been elucidated using a combination of powder X-ray diffraction and pair distribution function analysis.

  18. Mitigation of hydrogen sulfide emissions in The Geysers KGRA

    SciTech Connect

    Buell, R.

    1981-07-01

    Violations of the ambient air quality standard (AAQS) for hydrogen sulfide (H/sub 2/S) are currently being experienced in The Geysers KGRA and could significantly increase in the future. Attainment and maintenance of the H/sub 2/S AAQS is a potential constraint to optimum development of this resource. The availability of reliable H/sub 2/S controls and the development of a validated air dispersion model are critical to alleviating this constraint. The purpose of this report is to assess the performance capabilities for state-of-the-art controls, to identify potential cost-effective alternative controls, and to identify the California Energy Commission (CEC) staff's efforts to develop a validated air dispersion model. Currently available controls (Stretford, Hydrogen Peroxide, and EIC) are capable of abating H/sub 2/S emissions from a proposed facility to five lbs/hr. Alternative controls, such as condensate stripping and condensate pH control, appear to be promising, cost-effective control options.

  19. No facilitator required for membrane transport of hydrogen sulfide

    PubMed Central

    Mathai, John C.; Missner, Andreas; Kügler, Philipp; Saparov, Sapar M.; Zeidel, Mark L.; Lee, John K.; Pohl, Peter

    2009-01-01

    Hydrogen sulfide (H2S) has emerged as a new and important member in the group of gaseous signaling molecules. However, the molecular transport mechanism has not yet been identified. Because of structural similarities with H2O, it was hypothesized that aquaporins may facilitate H2S transport across cell membranes. We tested this hypothesis by reconstituting the archeal aquaporin AfAQP from sulfide reducing bacteria Archaeoglobus fulgidus into planar membranes and by monitoring the resulting facilitation of osmotic water flow and H2S flux. To measure H2O and H2S fluxes, respectively, sodium ion dilution and buffer acidification by proton release (H2S ⇆ H+ + HS−) were recorded in the immediate membrane vicinity. Both sodium ion concentration and pH were measured by scanning ion-selective microelectrodes. A lower limit of lipid bilayer permeability to H2S, PM,H2S ≥ 0.5 ± 0.4 cm/s was calculated by numerically solving the complete system of differential reaction diffusion equations and fitting the theoretical pH distribution to experimental pH profiles. Even though reconstitution of AfAQP significantly increased water permeability through planar lipid bilayers, PM,H2S remained unchanged. These results indicate that lipid membranes may well act as a barrier to water transport although they do not oppose a significant resistance to H2S diffusion. The fact that cholesterol and sphingomyelin reconstitution did not turn these membranes into an H2S barrier indicates that H2S transport through epithelial barriers, endothelial barriers, and membrane rafts also occurs by simple diffusion and does not require facilitation by membrane channels. PMID:19805349

  20. The Determination of Hydrogen Sulfide in Stack Gases, Iodometric Titration After Sulfite Removal.

    ERIC Educational Resources Information Center

    Robles, E. G.

    The determination of hydrogen sulfide in effluents from coal-fired furnaces and incinerators is complicated by the presence of sulfur oxides (which form acids). Organic compounds also may interfere with or prevent the formation of the cadmium sulfide precipitate or give false positive results because of reaction with iodine. The report presents a…

  1. A batch assay to measure microbial hydrogen sulfide production from sulfur-containing solid wastes.

    PubMed

    Sun, Mei; Sun, Wenjie; Barlaz, Morton A

    2016-05-01

    Large volumes of sulfur-containing wastes enter municipal solid waste landfills each year. Under the anaerobic conditions that prevail in landfills, oxidized forms of sulfur, primarily sulfate, are converted to sulfide. Hydrogen sulfide (H2S) is corrosive to landfill gas collection and treatment systems, and its presence in landfill gas often necessitates the installation of expensive removal systems. For landfill operators to understand the cost of managing sulfur-containing wastes, an estimate of the H2S production potential is needed. The objective of this study was to develop and demonstrate a biochemical sulfide potential (BSP) test to measure the amount of H2S produced by different types of sulfur-containing wastes in a relatively fast (30days) and inexpensive (125mL serum bottles) batch assay. This study confirmed the toxic effect of H2S on both sulfate reduction and methane production in batch systems, and demonstrated that removing accumulated H2S by base adsorption was effective for mitigating inhibition. H2S production potentials of coal combustion fly ash, flue gas desulfurization residual, municipal solid waste combustion ash, and construction and demolition waste were determined in BSP assays. After 30days of incubation, most of the sulfate in the wastes was converted to gaseous or aqueous phase sulfide, with BSPs ranging from 0.8 to 58.8mLH2S/g waste, depending on the chemical composition of the samples. Selected samples contained solid phase sulfide which contributed to the measured H2S yield. A 60day incubation in selected samples resulted in 39-86% additional sulfide production. H2S production measured in BSP assays was compared with that measured in simulated landfill reactors and that calculated from chemical analyses. H2S production in BSP assays and in reactors was lower than the stoichiometric values calculated from chemical composition for all wastes tested, demonstrating the importance of assays to estimate the microbial sulfide production

  2. Transient Kinetic Analysis of Hydrogen Sulfide Oxidation Catalyzed by Human Sulfide Quinone Oxidoreductase.

    PubMed

    Mishanina, Tatiana V; Yadav, Pramod K; Ballou, David P; Banerjee, Ruma

    2015-10-01

    The first step in the mitochondrial sulfide oxidation pathway is catalyzed by sulfide quinone oxidoreductase (SQR), which belongs to the family of flavoprotein disulfide oxidoreductases. During the catalytic cycle, the flavin cofactor is intermittently reduced by sulfide and oxidized by ubiquinone, linking H2S oxidation to the electron transfer chain and to energy metabolism. Human SQR can use multiple thiophilic acceptors, including sulfide, sulfite, and glutathione, to form as products, hydrodisulfide, thiosulfate, and glutathione persulfide, respectively. In this study, we have used transient kinetics to examine the mechanism of the flavin reductive half-reaction and have determined the redox potential of the bound flavin to be -123 ± 7 mV. We observe formation of an unusually intense charge-transfer (CT) complex when the enzyme is exposed to sulfide and unexpectedly, when it is exposed to sulfite. In the canonical reaction, sulfide serves as the sulfur donor and sulfite serves as the acceptor, forming thiosulfate. We show that thiosulfate is also formed when sulfide is added to the sulfite-induced CT intermediate, representing a new mechanism for thiosulfate formation. The CT complex is formed at a kinetically competent rate by reaction with sulfide but not with sulfite. Our study indicates that sulfide addition to the active site disulfide is preferred under normal turnover conditions. However, under pathological conditions when sulfite concentrations are high, sulfite could compete with sulfide for addition to the active site disulfide, leading to attenuation of SQR activity and to an alternate route for thiosulfate formation. PMID:26318450

  3. EMERSION IN THE MANGROVE FOREST FISH 'RIVULUS MARMORATUS': A UNIQUE RESPONSE TO HYDROGEN SULFIDE

    EPA Science Inventory

    The mangrove forest fish Rivulus marmoratus (Cyprinodontidae) has frequently been observed out of water, a phenomenon generally attributed to habitat drying. The authors tested the hypothesis that hydrogen sulfide, a substance characteristically found in their environment, can se...

  4. Occupationally related hydrogen sulfide deaths in the United States from 1984 to 1994.

    PubMed

    Fuller, D C; Suruda, A J

    2000-09-01

    Alice Hamilton described fatal work injuries from acute hydrogen sulfide poisonings in 1925 in her book Industrial Poisons in the United States. There is no unique code for H2S poisoning in the International Classification of Diseases, 9th Revision; therefore, these deaths cannot be identified easily from vital records. We reviewed US Occupational Safety and Health Administration (OSHA) investigation records for the period 1984 to 1994 for mention of hazardous substance 1480 (hydrogen sulfide). There were 80 fatalities from hydrogen sulfide in 57 incidents, with 19 fatalities and 36 injuries among coworkers attempting to rescue fallen workers. Only 17% of the deaths were at workplaces covered by collective bargaining agreements. OSHA issued citations for violation of respiratory protection and confined space standards in 60% of the fatalities. The use of hydrogen sulfide detection equipment, air-supplied respirators, and confined space safety training would have prevented most of the fatalities. PMID:10998771

  5. Glutathione-garlic sulfur conjugates: slow hydrogen sulfide releasing agents for therapeutic applications.

    PubMed

    Bhuiyan, Ashif Iqbal; Papajani, Vilma Toska; Paci, Maurizio; Melino, Sonia

    2015-01-01

    Natural organosulfur compounds (OSCs) from Allium sativum L. display antioxidant and chemo-sensitization properties, including the in vitro inhibition of tumor cell proliferation through the induction of apoptosis. Garlic water- and oil-soluble allyl sulfur compounds show distinct properties and the capability to inhibit the proliferation of tumor cells. In the present study, we optimized a new protocol for the extraction of water-soluble compounds from garlic at low temperatures and the production of glutathionyl-OSC conjugates during the extraction. Spontaneously, Cys/GSH-mixed-disulfide conjugates are produced by in vivo metabolism of OSCs and represent active molecules able to affect cellular metabolism. Water-soluble extracts, with (GSGaWS) or without (GaWS) glutathione conjugates, were here produced and tested for their ability to release hydrogen sulfide (H2S), also in the presence of reductants and of thiosulfate:cyanide sulfurtransferase (TST) enzyme. Thus, the TST catalysis of the H2S-release from garlic OSCs and their conjugates has been investigated by molecular in vitro experiments. The antiproliferative properties of these extracts on the human T-cell lymphoma cell line, HuT 78, were observed and related to histone hyperacetylation and downregulation of GAPDH expression. Altogether, the results presented here pave the way for the production of a GSGaWS as new, slowly-releasing hydrogen sulfide extract for potential therapeutic applications. PMID:25608858

  6. Microbial oxidation of soluble sulfide in produced water from the Bakkeen Sands

    SciTech Connect

    Gevertz, D.; Zimmerman, S.; Jenneman, G.E.

    1995-12-31

    The presence of soluble sulfide in produced water results in problems for the petroleum industry due to its toxicity, odor, corrosive nature, and potential for wellbore plugging. Sulfide oxidation by indigenous nitrate-reducing bacteria (NRB) present in brine collected from wells at the Coleville Unit (CVU) in Saskatchewan, Canada, was investigated. Sulfide oxidation took place readily when nitrate and phosphate were added to brine enrichment cultures, resulting in a decrease in sulfide levels of 99-165 ppm to nondetectable levels (< 3.3 ppm). Produced water collected from a number of producing wells was screened to determine the time required for complete sulfide oxidation, in order to select candidate wells for treatment. Three wells were chosen, based on sulfide removal in 48 hours or less. These wells were treated down the backside of the annulus with a solution containing 10 mM KNO{sub 3} and 100 {mu}M NaH{sub 2}PO{sub 4}. Following a 24- to 72-hour shut-in, reductions in pretreatment sulfide levels of greater than 90% were observed for two of the wells, as well as sustained sulfide reductions of 50% for at least two days following startup. NRB populations in the produced brine were observed to increase significantly following treatment, but no significant increases in sulfate-reducing bacteria were observed. These results demonstrate the technical feasibility of stimulating indigenous populations of NRB to remediate and control sulfide in produced brine.

  7. Physiological Implications of Hydrogen Sulfide in Plants: Pleasant Exploration behind Its Unpleasant Odour

    PubMed Central

    Jin, Zhuping

    2015-01-01

    Recently, overwhelming evidence has proven that hydrogen sulfide (H2S), which was identified as a gasotransmitter in animals, plays important roles in diverse physiological processes in plants as well. With the discovery and systematic classification of the enzymes producing H2S in vivo, a better understanding of the mechanisms by which H2S influences plant responses to various stimuli was reached. There are many functions of H2S, including the modulation of defense responses and plant growth and development, as well as the regulation of senescence and maturation. Additionally, mounting evidence indicates that H2S signaling interacts with plant hormones, hydrogen peroxide, nitric oxide, carbon monoxide, and other molecules in signaling pathways. PMID:26078806

  8. Hydrogen sulfide scavengers market assessment. Topical report, June 16-December 15, 1995

    SciTech Connect

    Houston, C.W.

    1996-03-01

    The report objective was to establish the dollar market size for removing low level concentrations of hydrogen sulfide from natural gas using commercially available scavengers, identify the key players, and determine significant trends in the industry. The study established the oilfield and refinery markets for the treating of natural gas, with hydrogen sulfide scavengers. The total North American market is estimated to be worth $172 million in 1995. Natural gas stream or vapor phase treating represents 85 percent of the total market.

  9. The Cardioprotective Actions of Hydrogen Sulfide in Acute Myocardial Infarction and Heart Failure

    PubMed Central

    Polhemus, David J.; Calvert, John W.; Butler, Javed; Lefer, David J.

    2014-01-01

    It has now become universally accepted that hydrogen sulfide (H2S), previously considered only as a lethal toxin, has robust cytoprotective actions in multiple organ systems. The diverse signaling profile of H2S impacts multiple pathways to exert cytoprotective actions in a number of pathological states. This paper will review the recently described cardioprotective actions of hydrogen sulfide in both myocardial ischemia/reperfusion injury and congestive heart failure. PMID:25045576

  10. Novel Composite Hydrogen-Permeable Membranes for Nonthermal Plasma Reactors for the Decomposition of Hydrogen Sulfide

    SciTech Connect

    Morris Argyle; John Ackerman; Suresh Muknahallipatna; Jerry Hamann; Stanislaw Legowski; Gui-Bing Zhao; Sanil John; Ji-Jun Zhang; Linna Wang

    2007-09-30

    The goal of this experimental project was to design and fabricate a reactor and membrane test cell to dissociate hydrogen sulfide (H{sub 2}S) in a nonthermal plasma and to recover hydrogen (H{sub 2}) through a superpermeable multi-layer membrane. Superpermeability of hydrogen atoms (H) has been reported by some researchers using membranes made of Group V transition metals (niobium, tantalum, vanadium, and their alloys), but it was not achieved at the moderate pressure conditions used in this study. However, H{sub 2}S was successfully decomposed at energy efficiencies higher than any other reports for the high H{sub 2}S concentration and moderate pressures (corresponding to high reactor throughputs) used in this study.

  11. A reactor-receiver for solar thermolysis of hydrogen sulfide

    SciTech Connect

    Lee, C.S.; Fletcher, E.A.; Davidson, J.H.

    1995-10-01

    Use of concentrated solar energy as a source of heat for thermochemical dissociation of hydrogen sulfide is an intriguing method of storing solar energy in the form of hydrogen while eliminating the environmental burden of disposing of a waste product formed during processing of petroleum, coal and natural gas. The major technical challenge is the design of the interface between the solar source and the chemical reactor. As part of an ongoing effort, the authors describe a porous bed, alumina receiver-reactor and characterize and examine its important features. The authors used a one-dimensional, steady state model to predict temperature profiles in both solid and gas phases and the composition profiles in the gas. In this base-line example, with an insolation of 800 W, an inlet gas temperature of 1,000 K, a porosity of 0.5, and a mass flow rate of 0.25 kg/m{sup 2}s, surface temperature of the bed goes to about 1,690 K and the gas products emerge from a 5 cm deep bed at about 1,680 K at 0.95 atm. The gas achieved its equilibrium composition; the conversion of H{sub 2}S to H{sub 2} and S{sub 2} was 0.55. The reaction is the rate determining agent in the process. Thus, kinetics of the chemical reaction will play an essential role in determining what should be the characteristics of a practical device. Results also suggest that the optical characteristics and geometry of the solid substrate should be manipulated to optimize the performance of a commercial receiver-reactor.

  12. Endogenous Hydrogen Sulfide Production Is Essential for Dietary Restriction Benefits

    PubMed Central

    Hine, Christopher; Harputlugil, Eylul; Zhang, Yue; Ruckenstuhl, Christoph; Lee, Byung Cheon; Brace, Lear; Longchamp, Alban; Trevino-Villarreal, Jose H.; Mejia, Pedro; Ozaki, C. Keith; Wang, Rui; Gladyshev, Vadim N.; Madeo, Frank; Mair, William B.; Mitchell, James R.

    2014-01-01

    Summary Dietary restriction (DR) without malnutrition encompasses numerous regimens with overlapping benefits including longevity and stress resistance, but unifying nutritional and molecular mechanisms remain elusive. In a mouse model of DR-mediated stress resistance, we found that sulfur amino acid (SAA) restriction increased expression of the transsulfuration pathway (TSP) enzyme cystathionine γ-lyase (CGL), resulting in increased hydrogen sulfide (H2S) production and protection from hepatic ischemia reperfusion injury. SAA supplementation, mTORC1 activation, or chemical/genetic CGL inhibition reduced H2S production and blocked DR-mediated stress resistance. In vitro, the mitochondrial protein SQR was required for H2S-mediated protection during nutrient/oxygen deprivation. Finally, TSP-dependent H2S production was observed in yeast, worm, fruit fly and rodent models of DR-mediated longevity. Together, these data are consistent with evolutionary conservation of TSP-mediated H2S as a novel mediator of DR benefits with broad implications for clinical translation. PMID:25542313

  13. Endogenous hydrogen sulfide production is essential for dietary restriction benefits.

    PubMed

    Hine, Christopher; Harputlugil, Eylul; Zhang, Yue; Ruckenstuhl, Christoph; Lee, Byung Cheon; Brace, Lear; Longchamp, Alban; Treviño-Villarreal, Jose H; Mejia, Pedro; Ozaki, C Keith; Wang, Rui; Gladyshev, Vadim N; Madeo, Frank; Mair, William B; Mitchell, James R

    2015-01-15

    Dietary restriction (DR) without malnutrition encompasses numerous regimens with overlapping benefits including longevity and stress resistance, but unifying nutritional and molecular mechanisms remain elusive. In a mouse model of DR-mediated stress resistance, we found that sulfur amino acid (SAA) restriction increased expression of the transsulfuration pathway (TSP) enzyme cystathionine γ-lyase (CGL), resulting in increased hydrogen sulfide (H2S) production and protection from hepatic ischemia reperfusion injury. SAA supplementation, mTORC1 activation, or chemical/genetic CGL inhibition reduced H2S production and blocked DR-mediated stress resistance. In vitro, the mitochondrial protein SQR was required for H2S-mediated protection during nutrient/oxygen deprivation. Finally, TSP-dependent H2S production was observed in yeast, worm, fruit fly, and rodent models of DR-mediated longevity. Together, these data are consistent with evolutionary conservation of TSP-mediated H2S as a mediator of DR benefits with broad implications for clinical translation. PAPERFLICK: PMID:25542313

  14. Chemically Reversible Reactions of Hydrogen Sulfide with Metal Phthalocyanines

    PubMed Central

    2015-01-01

    Hydrogen sulfide (H2S) is an important signaling molecule that exerts action on various bioinorganic targets. Despite this importance, few studies have investigated the differential reactivity of the physiologically relevant H2S and HS– protonation states with metal complexes. Here we report the distinct reactivity of H2S and HS– with zinc(II) and cobalt(II) phthalocyanine (Pc) complexes and highlight the chemical reversibility and cyclability of each metal. ZnPc reacts with HS–, but not H2S, to generate [ZnPc-SH]−, which can be converted back to ZnPc by protonation. CoPc reacts with HS–, but not H2S, to form [CoIPc]−, which can be reoxidized to CoPc by air. Taken together, these results demonstrate the chemically reversible reaction of HS– with metal phthalocyanine complexes and highlight the importance of H2S protonation state in understanding the reactivity profile of H2S with biologically relevant metal scaffolds. PMID:24785654

  15. Chemically reversible reactions of hydrogen sulfide with metal phthalocyanines.

    PubMed

    Hartle, Matthew D; Sommer, Samantha K; Dietrich, Stephen R; Pluth, Michael D

    2014-08-01

    Hydrogen sulfide (H2S) is an important signaling molecule that exerts action on various bioinorganic targets. Despite this importance, few studies have investigated the differential reactivity of the physiologically relevant H2S and HS(-) protonation states with metal complexes. Here we report the distinct reactivity of H2S and HS(-) with zinc(II) and cobalt(II) phthalocyanine (Pc) complexes and highlight the chemical reversibility and cyclability of each metal. ZnPc reacts with HS(-), but not H2S, to generate [ZnPc-SH](-), which can be converted back to ZnPc by protonation. CoPc reacts with HS(-), but not H2S, to form [Co(I)Pc](-), which can be reoxidized to CoPc by air. Taken together, these results demonstrate the chemically reversible reaction of HS(-) with metal phthalocyanine complexes and highlight the importance of H2S protonation state in understanding the reactivity profile of H2S with biologically relevant metal scaffolds. PMID:24785654

  16. Updated cost estimates of meeting geothermal hydrogen sulfide emission regulations

    SciTech Connect

    Wells, K.D.; Currie, J.W.; Weakley, S.A.; Ballinger, M.Y.

    1981-08-01

    A means of estimating the cost of hydrogen sulfide (H/sub 2/S) emission control was investigated. This study was designed to derive H/sub 2/S emission abatement cost functions and illustrate the cost of H/sub 2/S emission abatement at a hydrothermal site. Four tasks were undertaken: document the release of H/sub 2/S associated with geothermal development; review H/sub 2/S environmental standards; develop functional relationships that may be used to estimate the most cose-effective available H/sub 2/S abatement process; and use the cost functions to generate abatement cost estimates for a specific site. The conclusions and recommendations derived from the research are presented. The definition of the term impacts as used in this research is discussed and current estimates of the highest expected H/sub 2/S concentrations of in geothermal reservoirs are provided. Regulations governing H/sub 2/S emissions are reviewed and a review of H/sub 2/S control technology and a summary of the control cost functions are included. A case study is presented to illustrate H/sub 2/S abatement costs at the Baca KGRA in New Mexico.

  17. Hydrogen Sulfide: A Therapeutic Candidate for Fibrotic Disease?

    PubMed Central

    Song, Kai; Li, Qian; Yin, Xiao-Ya; Lu, Ying; Liu, Chun-Feng; Hu, Li-Fang

    2015-01-01

    Fibrotic diseases including chronic kidney disease, liver cirrhosis, idiopathic pulmonary fibrosis, and chronic disease account for 45% mortality in the developed countries and pose a great threat to the global health. Many great targets and molecules have been reported to be involved in the initiation and/or progression of fibrosis, among which inflammation and oxidative stress are well-recognized modulation targets. Hydrogen sulfide (H2S) is the third gasotransmitter with potent properties in inhibiting inflammation and oxidative stress in various organs. Recent evidence suggests that plasma H2S level is decreased in various animal models of fibrotic diseases and supplement of exogenous H2S is able to ameliorate fibrosis in the kidney, lung, liver, and heart. This leads us to propose that modulation of H2S production may represent a promising therapeutic venue for the treatment of a variety of fibrotic diseases. Here, we summarize and discuss the current data on the role and underlying mechanisms of H2S in fibrosis diseases related to heart, liver, kidney, and other organs. PMID:26078807

  18. Interactions between oxygen homeostasis, food availability, and hydrogen sulfide signaling

    PubMed Central

    Iranon, Nicole N.; Miller, Dana L.

    2012-01-01

    The ability to sense and respond to stressful conditions is essential to maintain organismal homeostasis. It has long been recognized that stress response factors that improve survival in changing conditions can also influence longevity. In this review, we discuss different strategies used by animals in response to decreased O2 (hypoxia) to maintain O2 homeostasis, and consider interactions between hypoxia responses, nutritional status, and H2S signaling. O2 is an essential environmental nutrient for almost all metazoans as it plays a fundamental role in development and cellular metabolism. However, the physiological response(s) to hypoxia depend greatly on the amount of O2 available. Animals must sense declining O2 availability to coordinate fundamental metabolic and signaling pathways. It is not surprising that factors involved in the response to hypoxia are also involved in responding to other key environmental signals, particularly food availability. Recent studies in mammals have also shown that the small gaseous signaling molecule hydrogen sulfide (H2S) protects against cellular damage and death in hypoxia. These results suggest that H2S signaling also integrates with hypoxia response(s). Many of the signaling pathways that mediate the effects of hypoxia, food deprivation, and H2S signaling have also been implicated in the control of lifespan. Understanding how these pathways are coordinated therefore has the potential to reveal new cellular and organismal homeostatic mechanisms that contribute to longevity assurance in animals. PMID:23233860

  19. The Significance of Hydrogen Sulfide for Arabidopsis Seed Germination

    PubMed Central

    Baudouin, Emmanuel; Poilevey, Aurélie; Hewage, Nishodi Indiketi; Cochet, Françoise; Puyaubert, Juliette; Bailly, Christophe

    2016-01-01

    Hydrogen sulfide (H2S) recently emerged as an important gaseous signaling molecule in plants. In this study, we investigated the possible functions of H2S in regulating Arabidopsis seed germination. NaHS treatments delayed seed germination in a dose-dependent manner and were ineffective in releasing seed dormancy. Interestingly, endogenous H2S content was enhanced in germinating seeds. This increase was correlated with higher activity of three enzymes (L-cysteine desulfhydrase, D-cysteine desulfhydrase, and β-cyanoalanine synthase) known as sources of H2S in plants. The H2S scavenger hypotaurine and the D/L cysteine desulfhydrase inhibitor propargylglycine significantly delayed seed germination. We analyzed the germinative capacity of des1 seeds mutated in Arabidopsis cytosolic L-cysteine desulfhydrase. Although the mutant seeds do not exhibit germination-evoked H2S formation, they retained similar germination capacity as the wild-type seeds. In addition, des1 seeds responded similarly to temperature and were as sensitive to ABA as wild type seeds. Taken together, these data suggest that, although its metabolism is stimulated upon seed imbibition, H2S plays, if any, a marginal role in regulating Arabidopsis seed germination under standard conditions. PMID:27446159

  20. Hydrogen Sulfide Donor GYY4137 Protects against Myocardial Fibrosis

    PubMed Central

    Meng, Guoliang; Zhu, Jinbiao; Xiao, Yujiao; Huang, Zhengrong; Zhang, Yuqing; Tang, Xin; Xie, Liping; Chen, Yu; Shao, Yongfeng; Ferro, Albert; Wang, Rui; Moore, Philip K.; Ji, Yong

    2015-01-01

    Hydrogen sulfide (H2S) is a gasotransmitter which regulates multiple cardiovascular functions. However, the precise roles of H2S in modulating myocardial fibrosis in vivo and cardiac fibroblast proliferation in vitro remain unclear. We investigated the effect of GYY4137, a slow-releasing H2S donor, on myocardial fibrosis. Spontaneously hypertensive rats (SHR) were administrated with GYY4137 by intraperitoneal injection daily for 4 weeks. GYY4137 decreased systolic blood pressure and inhibited myocardial fibrosis in SHR as evidenced by improved cardiac collagen volume fraction (CVF) in the left ventricle (LV), ratio of perivascular collagen area (PVCA) to lumen area (LA) in perivascular regions, reduced hydroxyproline concentration, collagen I and III mRNA expression, and cross-linked collagen. GYY4137 also inhibited angiotensin II- (Ang II-) induced neonatal rat cardiac fibroblast proliferation, reduced the number of fibroblasts in S phase, decreased collagen I and III mRNA expression and protein synthesis, attenuated oxidative stress, and suppressed α-smooth muscle actin (α-SMA), transforming growth factor-β1 (TGF-β1) expression as well as Smad2 phosphorylation. These results indicate that GYY4137 improves myocardial fibrosis perhaps by a mechanism involving inhibition of oxidative stress, blockade of the TGF-β1/Smad2 signaling pathway, and decrease in α-SMA expression in cardiac fibroblasts. PMID:26078813

  1. Hydrogen sulfide and endothelial dysfunction: relationship with nitric oxide.

    PubMed

    Altaany, Zaid; Moccia, Francesco; Munaron, Luca; Mancardi, Daniele; Wang, Rui

    2014-01-01

    The endothelium is a cellular monolayer that lines the inner surface of blood vessels and plays a central role in the maintenance of cardiovascular homeostasis by controlling platelet aggregation, vascular tone, blood fluidity and fibrinolysis, adhesion and transmigration of inflammatory cells, and angiogenesis. Endothelial dysfunctions are associated with various cardiovascular diseases, including atherosclerosis, hypertension, myocardial infarction, and cardiovascular complications of diabetes. Numerous studies have established the anti-inflammatory, anti-apoptotic, and anti-oxidant effects of hydrogen sulfide (H2S), the latest member to join the gasotransmitter family along with nitric oxide and carbon monoxide, on vascular endothelium. In addition, H2S may prime endothelial cells (ECs) toward angiogenesis and contribute to wound healing, besides to its well-known ability to relax vascular smooth muscle cells (VSMCs), and thereby reducing blood pressure. Finally, H2S may inhibit VSMC proliferation and platelet aggregation. Consistently, a deficit in H2S homeostasis is involved in the pathogenesis of atherosclerosis and of hyperglycaemic endothelial injury. Therefore, the application of H2S-releasing drugs or using gene therapy to increase endogenous H2S level may help restore endothelial function and antagonize the progression of cardiovascular diseases. The present article reviews recent studies on the role of H2S in endothelial homeostasis, under both physiological and pathological conditions, and its putative therapeutic applications. PMID:25005182

  2. Organization of the Human Mitochondrial Hydrogen Sulfide Oxidation Pathway*♦

    PubMed Central

    Libiad, Marouane; Yadav, Pramod Kumar; Vitvitsky, Victor; Martinov, Michael; Banerjee, Ruma

    2014-01-01

    Sulfide oxidation is expected to play an important role in cellular switching between low steady-state intracellular hydrogen sulfide levels and the higher concentrations where the physiological effects are elicited. Yet despite its significance, fundamental questions regarding how the sulfide oxidation pathway is wired remain unanswered, and competing proposals exist that diverge at the very first step catalyzed by sulfide quinone oxidoreductase (SQR). We demonstrate that, in addition to sulfite, glutathione functions as a persulfide acceptor for human SQR and that rhodanese preferentially synthesizes rather than utilizes thiosulfate. The kinetic behavior of these enzymes provides compelling evidence for the flow of sulfide via SQR to glutathione persulfide, which is then partitioned to thiosulfate or sulfite. Kinetic simulations at physiologically relevant metabolite concentrations provide additional support for the organizational logic of the sulfide oxidation pathway in which glutathione persulfide is the first intermediate formed. PMID:25225291

  3. Evaluation of thiosulfate as a substitute for hydrogen sulfide in sour corrosion fatigue studies

    NASA Astrophysics Data System (ADS)

    Kappes, Mariano Alberto

    This work evaluates the possibility of replacing hydrogen sulfide (H 2S) with thiosulfate anion (S2O32- ) in sour corrosion fatigue studies. H2S increases the corrosion fatigue crack growth rate (FCGR) and can be present in carbon steel risers and flowlines used in off-shore oil production. Corrosion tests with gaseous H2S require special facilities with safety features, because H2S is a toxic and flammable gas. The possibility of replacing H2S with S2O32-, a non-toxic anion, for studying stress corrosion cracking of stainless and carbon steels in H2S solutions was first proposed by Tsujikawa et al. ( Tsujikawa et al., Corrosion, 1993. 49(5): p. 409-419). In this dissertation, Tsujikawa work will be extended to sour corrosion fatigue of carbon steels. H2S testing is often conducted in deareated condition to avoid oxygen reaction with sulfide that yields sulfur and to mimic oil production conditions. Nitrogen deareation was also adopted in S2O3 2- testing, and gas exiting the cell was forced through a sodium hydroxide trap. Measurements of the sulfide content of this trap were used to estimate the partial pressure of H2S in nitrogen, and Henry's law was used to estimate the content of H2S in the solution in the cell. H2S was produced by a redox reaction of S2O 32-, which required electrons from carbon steel corrosion. This reaction is spontaneous at the open circuit potential of steel. Therefore, H2S concentration was expected to be maximum at the steel surface, and this concentration was estimated by a mass balance analysis. Carbon steel specimens exposed to S2O32- containing solutions developed a film on their surface, composed by iron sulfide and cementite. The film was not passivating and a good conductor of electrons. Hydrogen permeation experiments proved that this film controls the rate of hydrogen absorption of steels exposed to thiosulfate containing solutions. The absorption of hydrogen in S2O3 2- solutions was compared with the absorption of hydrogen in

  4. Mitochondrial adaptations to utilize hydrogen sulfide for energy and signaling.

    PubMed

    Olson, Kenneth R

    2012-10-01

    Sulfur is a versatile molecule with oxidation states ranging from -2 to +6. From the beginning, sulfur has been inexorably entwined with the evolution of organisms. Reduced sulfur, prevalent in the prebiotic Earth and supplied from interstellar sources, was an integral component of early life as it could provide energy through oxidization, even in a weakly oxidizing environment, and it spontaneously reacted with iron to form iron-sulfur clusters that became the earliest biological catalysts and structural components of cells. The ability to cycle sulfur between reduced and oxidized states may have been key in the great endosymbiotic event that incorporated a sulfide-oxidizing α-protobacteria into a host sulfide-reducing Archea, resulting in the eukaryotic cell. As eukaryotes slowly adapted from a sulfidic and anoxic (euxinic) world to one that was highly oxidizing, numerous mechanisms developed to deal with increasing oxidants; namely, oxygen, and decreasing sulfide. Because there is rarely any reduced sulfur in the present-day environment, sulfur was historically ignored by biologists, except for an occasional report of sulfide toxicity. Twenty-five years ago, it became evident that the organisms in sulfide-rich environments could synthesize ATP from sulfide, 10 years later came the realization that animals might use sulfide as a signaling molecule, and only within the last 4 years did it become apparent that even mammals could derive energy from sulfide generated in the gastrointestinal tract. It has also become evident that, even in the present-day oxic environment, cells can exploit the redox chemistry of sulfide, most notably as a physiological transducer of oxygen availability. This review will examine how the legacy of sulfide metabolism has shaped natural selection and how some of these ancient biochemical pathways are still employed by modern-day eukaryotes. PMID:22430869

  5. Simple Enrichment System for Hydrogen Producers

    PubMed Central

    Tolvanen, Katariina E. S.; Mangayil, Rahul K.; Karp, Matti T.; Santala, Ville P.

    2011-01-01

    This study presents a simple enrichment system where gas pressure produced by microbes performs functions that are normally done by labor. The system was tested with Escherichia coli strains with different hydrogen production and growth capabilities. The results show that the system can enrich the best hydrogen producer. PMID:21531834

  6. Measurement, analysis, and modeling of hydrogen sulfide emissions from a swine facility in North Carolina

    NASA Astrophysics Data System (ADS)

    Blunden, Jessica

    Annual global source contributions of sulfur compounds to the natural atmospheric environment are estimated to be 142 x 106 tons. Although not quantified, volatilization from animal wastes may be an important source of gaseous reduced sulfur compounds. Hydrogen sulfide (H2S) is a colorless gas emitted during decomposition of hog manure that produces an offensive "rotten egg" odor. Once released into the atmosphere, H 2S is oxidized and the eventual byproduct, sulfuric acid, may combine with other atmospheric constituents to form aerosol products such as ammonium bisulfate and ammonium sulfate. In recent years, confined animal feeding operations (CAFOs) have increased in size, resulting in more geographically concentrated areas of animals and, subsequently, animal waste. In North Carolina and across the southeastern United States anaerobic waste treatment lagoons are traditionally used to store and treat hog excreta at commercial hog farms. Currently, no state regulations exist for H2S gaseous emissions from animal production facilities in North Carolina and the amount of H2S being emitted into the atmosphere from these potential sources is widely unknown. In response to the need for data, this research initiative has been undertaken in an effort to quantify emissions of H2S from swine CAFOs. An experimental study was conducted at a commercial swine farm in eastern North Carolina to measure hydrogen sulfide emissions from a hog housing unit utilizing a mechanical fan ventilation system and from an on-site waste storage treatment lagoon. A dynamic flow-through chamber system was employed to make lagoon flux measurements. Semi-continuous measurements were made over a one-year period (2004-2005) for a few days during each of the four predominant seasons in order to assess diurnal and temporal variability in emissions. Fan rpm from the barn was continuously measured and flow rates were calculated in order to accurately assess gaseous emissions from the system

  7. Contribution of cysteine aminotransferase and mercaptopyruvate sulfurtransferase to hydrogen sulfide production in peripheral neurons.

    PubMed

    Miyamoto, Ryo; Otsuguro, Ken-Ichi; Yamaguchi, Soichiro; Ito, Shigeo

    2014-07-01

    Hydrogen sulfide (H2 S) is a gaseous neuromodulator produced from L-cysteine. H2 S is generated by three distinct enzymatic pathways mediated by cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS), and mercaptopyruvate sulfurtransferase (MPST) coupled with cysteine aminotransferase (CAT). This study investigated the relative contributions of these three pathways to H2 S production in PC12 cells (rat pheochromocytoma-derived cells) and the rat dorsal root ganglion. CBS, CAT, and MPST, but not CSE, were expressed in the cells and tissues, and appreciable amounts of H2 S were produced from L-cysteine in the presence of α-ketoglutarate, together with dithiothreitol. The production of H2 S was inhibited by a CAT inhibitor (aminooxyacetic acid), competitive CAT substrates (L-aspartate and oxaloacetate), and RNA interference (RNAi) against MPST. Immunocytochemistry revealed a mitochondrial localization of MPST in PC12 cells and dorsal root ganglion neurons, and the amount of H2 S produced by CAT/MPST at pH 8.0, a physiological mitochondrial matrix pH, was comparable to that produced by CSE and CBS in the liver and the brain, respectively. Furthermore, H2 S production was markedly increased by alkalization. These results indicate that CAT and MPST are primarily responsible for H2 S production in peripheral neurons, and that the regulation of mitochondrial metabolism may influence neuronal H2 S generation. In the peripheral nervous system, hydrogen sulfide (H2 S) has been implicated in neurogenic pain or hyperalgesia. This study provides evidence that H2 S is synthesized in peripheral neurons through two mitochondrial enzymes, cysteine aminotransferase (CAT) and mercaptopyruvate sulfurtransferase (MPST). We propose that mitochondrial metabolism plays key roles in the physiology and pathophysiology of the peripheral nervous system via regulation of neuronal H2 S production. PMID:24611772

  8. A Single Fluorescent Probe to Visualize Hydrogen Sulfide and Hydrogen Polysulfides with Different Fluorescence Signals.

    PubMed

    Chen, Wei; Pacheco, Armando; Takano, Yoko; Day, Jacob J; Hanaoka, Kenjiro; Xian, Ming

    2016-08-16

    Hydrogen sulfide (H2 S) and hydrogen polysulfides (H2 Sn , n>1) are endogenous regulators of many physiological processes. In order to better understand the symbiotic relationship and cellular cross-talk between H2 S and H2 Sn , it is highly desirable to develop single fluorescent probes which enable dual-channel discrimination between H2 S and H2 Sn . Herein, we report the rational design, synthesis, and evaluation of the first dual-detection fluorescent probe DDP-1 that can visualize H2 S and H2 Sn with different fluorescence signals. The probe showed high selectivity and sensitivity to H2 S and H2 Sn in aqueous media and in cells. PMID:27410794

  9. Microbial control of the production of hydrogen sulfide by sulfate-reducing bacteria.

    PubMed

    Montgomery, A D; McLnerney, M J; Sublette, K L

    1990-03-01

    A sulfide-resistant ctrain of Thiobacillus denitrificans, strain F, prevented the accumulation of sulfide by Desulfovibrio desulfuricans when both organisms were grown in liquid medium or in Berea sandstone cores. The wild-type strain of T. denitrificans did not prevent the accumulation of sulfide produced by D. desulfuricans. Strain F also prevented the accumulation of sulfide by a mixed population of sulfate-reducing bacteria enriched from an oil field brine. Fermentation balances showed that strain F stoichiometrically oxidized the sulfide produced by D. desulfuricans and the oil field brine enrichment to sulfate. These data suggest that strain F would be effective in controlling sulfide production in oil reservoirs and other environments. PMID:18592547

  10. Hydrogen sulfide improves neural function in rats following cardiopulmonary resuscitation

    PubMed Central

    LIN, JI-YAN; ZHANG, MIN-WEI; WANG, JIN-GAO; LI, HUI; WEI, HONG-YAN; LIU, RONG; DAI, GANG; LIAO, XIAO-XING

    2016-01-01

    The alleviation of brain injury is a key issue following cardiopulmonary resuscitation (CPR). Hydrogen sulfide (H2S) is hypothesized to be involved in the pathophysiological process of ischemia-reperfusion injury, and exerts a protective effect on neurons. The aim of the present study was to investigate the effects of H2S on neural functions following cardiac arrest (CA) in rats. A total of 60 rats were allocated at random into three groups. CA was induced to establish the model and CPR was performed after 6 min. Subsequently, sodium hydrosulfide (NaHS), hydroxylamine or saline was administered to the rats. Serum levels of H2S, neuron-specific enolase (NSE) and S100β were determined following CPR. In addition, neurological deficit scoring (NDS), the beam walking test (BWT), prehensile traction test and Morris water maze experiment were conducted. Neuronal apoptosis rates were detected in the hippocampal region following sacrifice. After CPR, as the H2S levels increased or decreased, the serum NSE and S100β concentrations decreased or increased, respectively (P<0.0w. The NDS results of the NaHS group were improved compared with those of the hydroxylamine group at 24 h after CPR (P<0.05). In the Morris water maze experiment, BWT and prehensile traction test the animals in the NaHS group performed best and rats in the hydroxylamine group performed worst. At day 7, the apoptotic index and the expression of caspase-3 were reduced in the hippocampal CA1 region, while the expression of Bcl-2 increased in the NaHS group; and results of the hydroxylamine group were in contrast. Therefore, the results of the present study indicate that H2S is able to improve neural function in rats following CPR. PMID:26893650

  11. Role of hydrogen sulfide in skeletal muscle biology and metabolism

    PubMed Central

    Veeranki, Sudhakar; Tyagi, Suresh C.

    2014-01-01

    Hydrogen sulfide (H2S) is a novel endogenous gaseous signal transducer (gasotransmittor). Its emerging role in multiple facets of inter- and intra-cellular signaling as a metabolic, inflammatory, neuro and vascular modulator has been increasingly realized. Although H2S is known for its effects as an anti-hypertensive, anti-inflammatory and anti-oxidant molecule, the relevance of these effects in skeletal muscle biology during health and during metabolic syndromes is unclear. H2S has been implicated in vascular relaxation and vessel tone enhancement, which might lead to mitigation of vascular complications caused by the metabolic syndromes. Metabolic complications may also lead to mitochondrial remodeling by interfering with fusion and fission, therefore, leading to mitochondrial mitophagy and skeletal muscle myopathy. Mitochondrial protection by H2S enhancing treatments may mitigate deterioration of muscle function during metabolic syndromes. In addition, H2S might upregulate uncoupling proteins and might also cause browning of white fat, resulting in suppression of imbalanced cytokine signaling caused by abnormal fat accumulation. Likewise, as a source for H+ ions, it has the potential to augment anaerobic ATP synthesis. However, there is a need for studies to test these putative H2S benefits in different patho-physiological scenarios before its full-fledged usage as a therapeutic molecule. The present review highlights current knowledge with regard to exogenous and endogenous H2S roles in skeletal muscle biology, metabolism, exercise physiology and related metabolic disorders, such as diabetes and obesity, and also provides future directions. PMID:25461301

  12. Biofiltration for control of carbon disulfide and hydrogen sulfide vapors

    SciTech Connect

    Fucich, W.J.; Yang, Y.; Togna, A.P.; Alibeckoff, D.

    1997-12-31

    A full-scale biofiltration system has been installed to control carbon disulfide (CS{sub 2}) and hydrogen sulfide (H{sub 2}S) vapor emissions at Nylonge Corporation (Nylonge), a cellulose sponge manufacturing facility in Elyria, Ohio. Both CS{sub 2} and H{sub 2}S are toxic and odorous. In addition, the US Environmental Protection Agency (EPA) has classified CS{sub 2} as one of the 189 hazardous air pollutants listed under Title 3 of the 1990 Clean Air Act Amendments. Nylonge evaluated several technologies to control CS{sub 2} and H{sub 2}S vapor emissions. After careful consideration of both removal efficiency requirements and cost, Nylonge selected biological treatment as the best overall technology for their application. A biological based technology has been developed to effectively degrade CS{sub 2} and H{sub 2}S vapors. Biofiltration is a process that aerobically converts particular vapor phase compounds into CO{sub 2}, biomass, and water vapor. In this process, microorganisms, in the form of a moistened biofilm layer, immobilized on an organic packing material, such as compost, peat, wood chips, etc., are used to catalyze beneficial chemical reactions. As a contaminated vapor stream passes through the biofilter bed, the contaminants are transferred to the biofilm and are degraded by the microorganisms. This paper describes the CS{sub 2} and H{sub 2}S biofiltration process and the full-scale biofilter system installed at Nylonge`s facility. The system was started in October of 1995, and is designed to treat a 30,000 CFM exhaust stream contaminated with CS{sub 2} and H{sub 2}S vapors.

  13. Chronic Ambient Hydrogen Sulfide Exposure and Cognitive Function

    PubMed Central

    Reed, Bruce R.; Crane, Julian; Garrett, Nick; Woods, David L.; Bates, Michael N.

    2014-01-01

    Background Exposures to hydrogen sulfide gas (H2S) have been inconclusively linked to a variety of negative cognitive outcomes. We investigated possible effects on cognitive function in an urban population with chronic, low-level exposure to H2S. Methods Participants were 1,637 adults, aged 18-65 years from Rotorua city, New Zealand, exposed to ambient H2S from geothermal sources. Exposures at homes and workplaces were estimated from data collected by summer and winter H2S monitoring networks across Rotorua in 2010/11. Metrics for H2S exposure at the time of participation and for exposure over the last 30 years were calculated. H2S exposure was modeled both as continuous variables and as quartiles of exposure covering the range of 0 – 64 ppb (0-88 μg/m3). Outcomes were neuropsychological tests measuring visual and verbal episodic memory, attention, fine motor skills, psychomotor speed and mood. Associations between cognition and measures of H2S exposure were investigated with multiple regression, while covarying demographics and factors known to be associated with cognitive performance. Results The consistent finding was of no association between H2S exposure and cognition. Quartiles of H2S exposure had a small association with simple reaction time: higher exposures were associated with faster response times. Similarly, for digit symbol, higher H2S exposures tended to be marginally associated with better performance. Conclusion The results provide evidence that chronic H2S exposure, at the ambient levels found in and around Rotorua, is not associated with impairment of cognitive function. PMID:24548790

  14. Hydrogen sulfide promotes calcium uptake in larval zebrafish.

    PubMed

    Kwong, Raymond W M; Perry, Steve F

    2015-07-01

    Hydrogen sulfide (H2S) can act as a signaling molecule for various ion channels and/or transporters; however, little is known about its potential involvement in Ca(2+) balance. Using developing zebrafish (Danio rerio) as an in vivo model system, the present study demonstrated that acute exposure to H2S donors increased Ca(2+) influx at 4 days postfertilization, while chronic (3-day) exposure caused a rise in whole body Ca(2+) levels. The mRNA expression of Ca(2+)-transport-related genes was unaffected by H2S exposure, suggesting that posttranscriptional modifications were responsible for the altered rates of Ca(2+) uptake. Indeed, treatment of fish with the protein kinase A inhibitor H-89 abolished the H2S-mediated stimulation of Ca(2+) influx, suggesting that H2S increased Ca(2+) influx by activating cAMP-protein kinase A pathways. Cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) are two key enzymes in the endogenous synthesis of H2S. Using an antisense morpholino knockdown approach, we demonstrated that Ca(2+) influx was reduced in CBS isoform b (CBSb)- but not in CSE-deficient fish. Interestingly, the reduction in Ca(2+) influx in CBSb-deficient fish was observed only in fish that were acclimated to low-Ca(2+) water (i.e., 25 μM Ca(2+); control: 250 μM Ca(2+)). Similarly, mRNA expression of cbsb but not cse was increased in fish acclimated to low-Ca(2+) water. Results from whole-mount immunohistochemistry further revealed that CBSb was expressed in Na(+)-K(+)-ATPase-rich cells, which are implicated in Ca(2+) uptake in zebrafish larvae. Collectively, the present study suggests a novel role for H2S in promoting Ca(2+) influx, particularly in a low-Ca(2+) environment. PMID:25948733

  15. Intermittent control procedures for the Geysers hydrogen sulfide emission abatement

    SciTech Connect

    Buick, B.D.; Mooney, M.L.

    1984-01-01

    Pacific Gas and Electric Company (PG and E) operates the world's largest geothermal steam electric power generation facility, currently about 1.140 megawatts (Mw). This facility is located about 80 miles north of San Francisco, California and is within a region referred to as the Known Geothermal Resource Area (KGRA). Pollutants resulting from this method of electric power generation are due to impurities in the geothermal steam. A major contaminate in the steam is hydrogen sulfide (H/sub 2/S), a regulated pollutant in California. The ambient air quality standard (AAQS) for this pollutant in California is 0.03 parts per million (ppM) averaged over one hour. H/sub 2/S is an invisible, unpleasant smelling gas present in varying concentrations in the geothermal steam. Its odor has been compared to the smell of rotten eggs. Since PG and E is increasingly relying on this source of electrical power generation, it has committed millions of dollars to the development, testing, acquisition, and installation of abatement equipment to reduce H/sub 2/S emissions during the past ten years. In order to reduce the number of exceeds of the AAQS during this developmental period, a predictive model was needed for interim abatement purposes. Most of the high hourly H/sub 2/S values occur with meteorological conditions having poor ventilation resulting from a combination of low wind speed and reduced mixing layer depths. This weather condition is most common during the months of June through October in California. A predictive model was developed from three years of hourly H/sub 2/S measurements of 0.03 ppM or greater in populated areas downwind of the generation facility and from observations of associated meteorological data.

  16. Sensory and Cognitive Effects of Acute Exposure to Hydrogen Sulfide

    PubMed Central

    Fiedler, Nancy; Kipen, Howard; Ohman-Strickland, Pamela; Zhang, Junfeng; Weisel, Clifford; Laumbach, Robert; Kelly-McNeil, Kathie; Olejeme, Kelechi; Lioy, Paul

    2008-01-01

    Background Some epidemiologic studies have reported compromised cognitive and sensory performance among individuals exposed to low concentrations of hydrogen sulfide (H2S). Objectives We hypothesized a dose–response increase in symptom severity and reduction in sensory and cognitive performance in response to controlled H2S exposures. Methods In separate exposure sessions administered in random order over three consecutive weeks, 74 healthy subjects [35 females, 39 males; mean age (± SD) = 24.7 ± 4.2; mean years of education = 16.5 ± 2.4], were exposed to 0.05, 0.5, and 5 ppm H2S. During each exposure session, subjects completed ratings and tests before H2S exposure (baseline) and during the final hour of the 2-hr exposure period. Results Dose–response reduction in air quality and increases in ratings of odor intensity, irritation, and unpleasantness were observed. Total symptom severity was not significantly elevated across any exposure condition, but anxiety symptoms were significantly greater in the 5-ppm than in the 0.05-ppm condition. No dose–response effect was observed for sensory or cognitive measures. Verbal learning was compromised during each exposure condition. Conclusions Although some symptoms increased with exposure, the magnitude of these changes was relatively minor. Increased anxiety was significantly related to ratings of irritation due to odor. Whether the effect on verbal learning represents a threshold effect of H2S or an effect due to fatigue across exposure requires further investigation. These acute effects in a healthy sample cannot be directly generalized to communities where individuals have other health conditions and concomitant exposures. PMID:18197303

  17. 30 CFR 250.215 - What hydrogen sulfide (H2S) information must accompany the EP?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... methodologies outlined in 40 CFR part 68. ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What hydrogen sulfide (H2S) information must... CONTINENTAL SHELF Plans and Information Contents of Exploration Plans (ep) § 250.215 What hydrogen...

  18. Hydrogen sulfide is a novel potential virulence factor of Mycoplasma pneumoniae: characterization of the unusual cysteine desulfurase/desulfhydrase HapE.

    PubMed

    Großhennig, Stephanie; Ischebeck, Till; Gibhardt, Johannes; Busse, Julia; Feussner, Ivo; Stülke, Jörg

    2016-04-01

    Mycoplasma pneumoniae is a human pathogen causing atypical pneumonia with a minimalized and highly streamlined genome. So far, hydrogen peroxide production, cytadherence, and the ADP-ribosylating CARDS toxin have been identified as pathogenicity determinants. We have studied haemolysis caused by M. pneumoniae, and discovered that hydrogen peroxide is responsible for the oxidation of heme, but not for lysis of erythrocytes. This feature could be attributed to hydrogen sulfide, a compound that has previously not been identified as virulence factor in lung pathogens. Indeed, we observed hydrogen sulfide production by M. pneumoniae. The search for a hydrogen sulfide-producing enzyme identified HapE, a protein with similarity to cysteine desulfurases. In contrast to typical cysteine desulfurases, HapE is a bifunctional enzyme: it has both the cysteine desulfurase activity to produce alanine and the cysteine desulfhydrase activity to produce pyruvate and hydrogen sulfide. Experiments with purified HapE showed that the enzymatic activity of the protein is responsible for haemolysis, demonstrating that HapE is a novel potential virulence factor of M. pneumoniae. PMID:26711628

  19. CARBONYL SULFIDE INHALATION PRODUCES BRAIN LESIONS IN F344 RATS.

    EPA Science Inventory

    Carbonyl sulfide (COS) is an intermediate in the production of pesticides and herbicides, and is a metabolite of the neurotoxicant carbon disulfide. The potential neurotoxicity of inhaled COS was investigated in F344 rats. Male rats were exposed to 0, 75, 150, 300, or 600 ppm COS...

  20. Single Membrane Reactor Configuration for Separation of Hydrogen, Carbon Dioxide and Hydrogen Sulfide

    SciTech Connect

    Micheal Roberts; Robert Zabransky; Shain Doong; Jerry Lin

    2008-05-31

    The objective of the project was to develop a novel complementary membrane reactor process that can consolidate two or more downstream unit operations of a coal gasification system into a single module for production of a pure stream of hydrogen and a pure stream of carbon dioxide. The overall goals were to achieve higher hydrogen production efficiencies, lower capital costs and a smaller overall footprint than what could be achieved by utilizing separate components for each required unit process/operation in conventional coal-to-hydrogen systems. Specifically, this project was to develop a novel membrane reactor process that combines hydrogen sulfide removal, hydrogen separation, carbon dioxide separation and water-gas shift reaction into a single membrane configuration. The carbon monoxide conversion of the water-gas-shift reaction from the coal-derived syngas stream is enhanced by the complementary use of two membranes within a single reactor to separate hydrogen and carbon dioxide. Consequently, hydrogen production efficiency is increased. The single membrane reactor configuration produces a pure H{sub 2} product and a pure CO{sub 2} permeate stream that is ready for sequestration. This project focused on developing a new class of CO{sub 2}-selective membranes for this new process concept. Several approaches to make CO{sub 2}-selective membranes for high-temperature applications have been tested. Membrane disks using the technique of powder pressing and high temperature sintering were successfully fabricated. The powders were either metal oxide or metal carbonate materials. Experiments on CO{sub 2} permeation testing were also performed in the temperature range of 790 to 940 C for the metal carbonate membrane disks. However, no CO{sub 2} permeation rate could be measured, probably due to very slow CO{sub 2} diffusion in the solid state carbonates. To improve the permeation of CO{sub 2}, one approach is to make membranes containing liquid or molten carbonates

  1. The partitioning of hydrogen sulfide in the condensers of Geysers Unit 15

    NASA Astrophysics Data System (ADS)

    Weres, O.

    1982-09-01

    Geysers Unit 15 was the first of the geothermal units equipped with surface condensers to go on line at The Geysers power plant of the Pacific Gas and Electric Company. Units 1 through 12 have contact condensers. The switch to surface condensers was motivated by considerations of hydrogen sulfide mission abatement. In the contact condensers, there is a large liquid-to-vapor ratio, and about 75% of the hydrogen sulfide that is present in the geothermal steam supply ends up dissolved in the cooling water. Once in the cooling water, it is emitted to the atmosphere from the cooling towers unless further, tertiary abatement is employed. It was reasoned that, because the liquid-to-vapor ratio in a surface condenser would be smaller by a factor of about twenty-five than in a contact condenser, most of the hydrogen sulfide would remain in the vapor phase and leave with the gas vented from the condenser rather than by dissolving in the condensate. Unit 15 is equipped with a Stretford Unit, which removes the hydrogen sulfide from the vent gas and converts it to elemental sulfur by reaction with air. Therefore, the fraction of the hydrogen sulfide that leaves the condenser with the vent gas is not emitted to the atmosphere.

  2. Distributed fiber optic chemical sensor for hydrogen sulfide and chlorine detection

    NASA Astrophysics Data System (ADS)

    Mukamal, Harold; Cordero, Steven R.; Ruiz, David; Beshay, Manal; Lieberman, Robert A.

    2005-11-01

    Fiber optic sensors having their entire length as the sensing elements for chlorine or hydrogen sulfide are reported here. The chlorine fiber consists of a silica core and a chlorine-sensitive cladding, and the hydrogen sulfide fiber has a hydrogen sulfide sensitive cladding. Upon exposure to the corresponding challenge gas, the cladding very rapidly changes color resulting in attenuation of the light throughput of the fiber. A one-meter portion of the chlorine sensor fiber responds to 10 ppm chlorine in 20 seconds and to 1 ppm in several minutes. The attenuation after 10 minutes of exposure is very high, and is dependant on both chlorine concentration and fiber length. A ten-meter portion of the hydrogen sulfide sensor fiber responds to 100 ppm hydrogen sulfide in 30 seconds and to 10 ppm in 1 minute. The high sensitivity suggests that the propagating modes of the light interact strongly with the cladding, and that these interactions are massively increased (Beers Law) due to the extended sensor length. This approach will supersede the current method of having a collection of point-detectors to cover large areas.

  3. Mobile measurement of methane and hydrogen sulfide at natural gas production site fence lines in the Texas Barnett Shale.

    PubMed

    Eapi, Gautam R; Sabnis, Madhu S; Sattler, Melanie L

    2014-08-01

    Production of natural gas from shale formations is bringing drilling and production operations to regions of the United States that have seen little or no similar activity in the past, which has generated considerable interest in potential environmental impacts. This study focused on the Barnett Shale Fort Worth Basin in Texas, which saw the number of gas-producing wells grow from 726 in 2001 to 15,870 in 2011. This study aimed to measure fence line concentrations of methane and hydrogen sulfide at natural gas production sites (wells, liquid storage tanks, and associated equipment) in the four core counties of the Barnett Shale (Denton, Johnson, Tarrant, and Wise). A mobile measurement survey was conducted in the vicinity of 4788 wells near 401 lease sites, representing 35% of gas production volume, 31% of wells, and 38% of condensate production volume in the four-county core area. Methane and hydrogen sulfide concentrations were measured using a Picarro G2204 cavity ring-down spectrometer (CRDS). Since the research team did not have access to lease site interiors, measurements were made by driving on roads on the exterior of the lease sites. Over 150 hr of data were collected from March to July 2012. During two sets of drive-by measurements, it was found that 66 sites (16.5%) had methane concentrations > 3 parts per million (ppm) just beyond the fence line. Thirty-two lease sites (8.0%) had hydrogen sulfide concentrations > 4.7 parts per billion (ppb) (odor recognition threshold) just beyond the fence line. Measured concentrations generally did not correlate well with site characteristics (natural gas production volume, number of wells, or condensate production). t tests showed that for two counties, methane concentrations for dry sites were higher than those for wet sites. Follow-up study is recommended to provide more information at sites identified with high levels of methane and hydrogen sulfide. Implications: Information regarding air emissions from shale gas

  4. Method of recovering elemental sulfur from reactive gases containing sulfur dioxide and hydrogen sulfide

    SciTech Connect

    Thomsen, A.

    1981-12-01

    Reactive gases containing sulfur dioxide and hydrogen sulfide, e.g. reaction gases of the claus process, are passed through a catalyst stage having an inlet side and an outlet side for the gas mixture to produce elemental sulfur and water. According to the invention the gases are cooled between the inlet and discharge sides by heat-exchanger means to a temperature not less than the activation temperature for the reaction and preferably not less than the temperature at which the gases are initially introduced into the catalyst body. The heat exchanger means can be provided in gaps between catalyst beds and/or within the catalyst beds of the body of catalyst.

  5. Homocysteine in renovascular complications: hydrogen sulfide is a modulator and plausible anaerobic ATP generator

    PubMed Central

    Sen, Utpal; Pushpakumar, Sathnur B.; Amin, Matthew A.; Tyagi, Suresh C.

    2014-01-01

    Homocysteine (Hcy) is a non-protein amino acid derived from dietary methionine. High levels of Hcy, known as hyperhomocysteinemia (HHcy) is known to cause vascular complications. In the mammalian tissue, Hcy is metabolized by transsulfuration enzymes to produce hydrogen sulfide (H2S). H2S, a pungent smelling gas was previously known for its toxic effects in the central nervous system, recent studies however has revealed protective effects in a variety of diseases including hypertension, diabetes, inflammation, atherosclerosis, and renal disease progression and failure. Interestingly, under stress conditions including hypoxia, H2S can reduce metabolic demand and also act as a substrate for ATP production. This review highlights some of the recent advances in H2S research as a potential therapeutic agent targeting renovascular diseases associated with HHcy. PMID:24963795

  6. Red soil as a regenerable sorbent for high temperature removal of hydrogen sulfide from coal gas.

    PubMed

    Ko, Tzu-Hsing; Chu, Hsin; Lin, Hsiao-Ping; Peng, Ching-Yu

    2006-08-25

    In this study, hydrogen sulfide (H(2)S) was removed from coal gas by red soil under high temperature in a fixed-bed reactor. Red soil powders were collected from the northern, center and southern of Taiwan. They were characterized by XRPD, porosity analysis and DCB chemical analysis. Results show that the greater sulfur content of LP red soils is attributed to the higher free iron oxides and suitable sulfidation temperature is around 773K. High temperature has a negative effect for use red soil as a desulfurization sorbent due to thermodynamic limitation in a reduction atmosphere. During 10 cycles of regeneration, after the first cycle the red soil remained stable with a breakthrough time between 31 and 36 min. Hydrogen adversely affects sulfidation reaction, whereas CO exhibits a positive effect due to a water-shift reaction. COS was formed during the sulfidation stage and this was attributed to the reaction of H(2)S and CO. Results of XRPD indicated that, hematite is the dominant active species in fresh red soil and iron sulfide (FeS) is a product of the reaction between hematite and hydrogen sulfide in red soils. The spinel phase FeAl(2)O(4) was found during regeneration, moreover, the amount of free iron oxides decreased after regeneration indicating the some of the free iron oxide formed a spinel phase, further reducting the overall desulfurization efficiency. PMID:16469434

  7. Hydrogen Sulfide Signaling Axis as a Target for Prostate Cancer Therapeutics.

    PubMed

    Liu, Mingzhe; Wu, Lingyun; Montaut, Sabine; Yang, Guangdong

    2016-01-01

    Hydrogen sulfide (H2S) was originally considered toxic at elevated levels; however just in the past decade H2S has been proposed to be an important gasotransmitter with various physiological and pathophysiological roles in the body. H2S can be generated endogenously from L-cysteine by multiple enzymes, including cystathionine gamma-lyase, cystathionine beta-synthase, and 3-mercaptopyruvate sulfurtransferase in combination with cysteine aminotransferase. Prostate cancer is a major health concern and no effective treatment for prostate cancers is available. H2S has been shown to inhibit cell survival of androgen-independent, androgen-dependent, and antiandrogen-resistant prostate cancer cells through different mechanisms. Various H2S-releasing compounds, including sulfide salts, diallyl disulfide, diallyl trisulfide, sulforaphane, and other polysulfides, also have been shown to inhibit prostate cancer growth and metastasis. The expression of H2S-producing enzyme was reduced in both human prostate cancer tissues and prostate cancer cells. Androgen receptor (AR) signaling is indispensable for the development of castration resistant prostate cancer, and H2S was shown to inhibit AR transactivation and contributes to antiandrogen-resistant status. In this review, we summarized the current knowledge of H2S signaling in prostate cancer and described the molecular alterations, which may bring this gasotransmitter into the clinic in the near future for developing novel pharmacological and therapeutic interventions for prostate cancer. PMID:27019751

  8. Hydrogen Sulfide Signaling Axis as a Target for Prostate Cancer Therapeutics

    PubMed Central

    Liu, Mingzhe; Wu, Lingyun; Montaut, Sabine; Yang, Guangdong

    2016-01-01

    Hydrogen sulfide (H2S) was originally considered toxic at elevated levels; however just in the past decade H2S has been proposed to be an important gasotransmitter with various physiological and pathophysiological roles in the body. H2S can be generated endogenously from L-cysteine by multiple enzymes, including cystathionine gamma-lyase, cystathionine beta-synthase, and 3-mercaptopyruvate sulfurtransferase in combination with cysteine aminotransferase. Prostate cancer is a major health concern and no effective treatment for prostate cancers is available. H2S has been shown to inhibit cell survival of androgen-independent, androgen-dependent, and antiandrogen-resistant prostate cancer cells through different mechanisms. Various H2S-releasing compounds, including sulfide salts, diallyl disulfide, diallyl trisulfide, sulforaphane, and other polysulfides, also have been shown to inhibit prostate cancer growth and metastasis. The expression of H2S-producing enzyme was reduced in both human prostate cancer tissues and prostate cancer cells. Androgen receptor (AR) signaling is indispensable for the development of castration resistant prostate cancer, and H2S was shown to inhibit AR transactivation and contributes to antiandrogen-resistant status. In this review, we summarized the current knowledge of H2S signaling in prostate cancer and described the molecular alterations, which may bring this gasotransmitter into the clinic in the near future for developing novel pharmacological and therapeutic interventions for prostate cancer. PMID:27019751

  9. Method of producing hydrogenated amorphous silicon film

    DOEpatents

    Wiesmann, Harold J.

    1980-01-01

    This invention relates to hydrogenated amorphous silicon produced by thermally decomposing silane (SiH.sub.4) or other gases comprising H and Si, from a tungsten or carbon foil heated to a temperature of about 1400.degree.-1600.degree. C., in a vacuum of about 10.sup.-6 to 19.sup.-4 torr, to form a gaseous mixture of atomic hydrogen and atomic silicon, and depositing said gaseos mixture onto a substrate independent of and outside said source of thermal decomposition, to form hydrogenated amorphous silicon. The presence of an ammonia atmosphere in the vacuum chamber enhances the photoconductivity of the hydrogenated amorphous silicon film.

  10. Analysis of hypochlorite process for removal of hydrogen sulfide from geothermal gases

    SciTech Connect

    Not Available

    1980-04-01

    Sodium hypochlorite reacts readily with hydrogen sulfide to convert the sulfide ion into free sulfur in a neutral or acid solution and to the sulfate ion in an alkaline solution. Sodium hypochlorite can be generated on site by processing geothermal brine in electrolytic cells. An investigation to determine if this reaction could be economically used to remove hydrogen sulfide from geothermal noncondensible gases is reported. Two processes, the LO-CAT Process and the Stretford Process, were selected for comparison with the hypochlorite process. Three geothermal reservoirs were considered for evaluation: Niland KGRA, Baca KGRA, and The Geysers KGRA. Because of the wide variation in the amount of hydrogen sulfide present at The Geysers, two different gas analyses were considered for treatment. Plants were designed to process the effluent noncondensible gases from a 10 MW/sub e/ geothermal power plant. The effluent gas from each plant was to contain a maximum hydrogen sulfide concentration of 35 ppb. Capital costs were estimated for each of the processes at each of the four sites selected. Operating costs were also calculated for each of the processes at each of the sites. The results of these studies are shown.

  11. Studying inhibition of calcium oxalate stone formation: an in vitro approach for screening hydrogen sulfide and its metabolites

    PubMed Central

    Vaitheeswari, S.; Sriram, R.; Brindha, P.; Kurian, Gino A.

    2015-01-01

    ABSTRACT Purpose: Calcium oxalate urolithiasis is one of the most common urinary tract diseases and is of high prevalence. The present study proposes to evaluate the antilithiatic property of hydrogen sulfide and its metabolites like thiosulfate & sulfate in an in vitro model. Materials and Methods: The antilithiatic activity of sodium hydrogen sulfide (NaSH), sodium thiosulfate (Na2S2O3) and sodium sulfate (Na2SO4) on the kinetics of calcium oxalate crystal formation was investigated both in physiological buffer and in urine from normal and recurrent stone forming volunteers. The stones were characterized by optical and spectroscopic techniques. Results: The stones were characterized to be monoclinic, prismatic and bipyramidal habit which is of calcium monohydrate and dihydrate nature. The FTIR displayed fingerprint corresponding to calcium oxalate in the control while in NaSH treated, S=O vibrations were visible in the spectrum. The order of percentage inhibition was NaSH>Na2S2O3>Na2SO4. Conclusion: Our study indicates that sodium hydrogen sulfide and its metabolite thiosulfate are inhibitors of calcium oxalate stone agglomeration which makes them unstable both in physiological buffer and in urine. This effect is attributed to pH changes and complexing of calcium by S2O3 2-and SO4 2- moiety produced by the test compounds. PMID:26200543

  12. Concentrations of Bioaerosols, Odors and Hydrogen Sulfide Inside and Downwind from Two Types of Swine Livestock Operations

    PubMed Central

    Thorne, Peter S.; Ansley, Anne; Perry, Sarah Spencer

    2016-01-01

    Few data on in-barn and downwind concentrations of endotoxin, bioaerosols and odors from livestock facilities are available and no studies have compared conventional confinement operations to the more animal-friendly hoop operations. Hoops are open to the environment and use a composted bedding system rather than housing pigs on slatted floors over pits holding manure slurry as in conventional confinements. We assessed airborne toxicants upwind, in-barns and downwind and evaluated determinants of exposure. Inhalable particulate matter, endotoxin, odor threshold, hydrogen sulfide, culturable mesophilic bacteria, culturable fungi, and total airborne microbes along with wind speed, temperature, and humidity were measured at separate midsized livestock facilities (1 hoop, 1 confinement) in Central Iowa on ten occasions over two years. Significant differences in contaminants were observed between hoops and confinement buildings and across seasons for endotoxin, odors, airborne microorganisms, and hydrogen sulfide. For hoops and confinements, respectively, geometric mean in-barn concentrations were 3250 and 3100 EU/m3 for endotoxin; 1400 and 1910 μg/m3 for particulates; 19.6 and 146 ppb for hydrogen sulfide; 137 and 428 dilutions for odor threshold; and 3.0×106 and 1.5×106 organisms/m3 for total microbes. Endotoxin, odor, and culturable microorganisms exceeded recommended exposure limits. Reduced analysis of variance models for these contaminants demonstrated differences by barn type, season, number of pigs, and, in some cases, temperature and humidity. Both types of swine operations produced high airborne concentrations of endotoxin, odor, hydrogen sulfide, bacteria and fungi. Endotoxin and odors were found downwind at concentrations previously associated with adverse health effects. PMID:19177273

  13. Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part I. Biochemical and physiological mechanisms

    PubMed Central

    Szabo, Csaba; Ransy, Céline; Módis, Katalin; Andriamihaja, Mireille; Murghes, Baptiste; Coletta, Ciro; Olah, Gabor; Yanagi, Kazunori; Bouillaud, Frédéric

    2014-01-01

    Until recently, hydrogen sulfide (H2S) was exclusively viewed a toxic gas and an environmental hazard, with its toxicity primarily attributed to the inhibition of mitochondrial Complex IV, resulting in a shutdown of mitochondrial electron transport and cellular ATP generation. Work over the last decade established multiple biological regulatory roles of H2S, as an endogenous gaseous transmitter. H2S is produced by cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). In striking contrast to its inhibitory effect on Complex IV, recent studies showed that at lower concentrations, H2S serves as a stimulator of electron transport in mammalian cells, by acting as a mitochondrial electron donor. Endogenous H2S, produced by mitochondrially localized 3-MST, supports basal, physiological cellular bioenergetic functions; the activity of this metabolic support declines with physiological aging. In specialized conditions (calcium overload in vascular smooth muscle, colon cancer cells), CSE and CBS can also associate with the mitochondria; H2S produced by these enzymes, serves as an endogenous stimulator of cellular bioenergetics. The current article overviews the biochemical mechanisms underlying the stimulatory and inhibitory effects of H2S on mitochondrial function and cellular bioenergetics and discusses the implication of these processes for normal cellular physiology. The relevance of H2S biology is also discussed in the context of colonic epithelial cell physiology: colonocytes are exposed to high levels of sulfide produced by enteric bacteria, and serve as a metabolic barrier to limit their entry into the mammalian host, while, at the same time, utilizing it as a metabolic ‘fuel’. Linked Articles This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue-8 PMID:23991830

  14. 30 CFR 250.245 - What hydrogen sulfide (H2S) information must accompany the DPP or DOCD?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... analysis must be consistent with the EPA's risk management plan methodologies outlined in 40 CFR part 68. ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What hydrogen sulfide (H2S) information must... Development Operations Coordination Documents (docd) § 250.245 What hydrogen sulfide (H2S) information...

  15. A TICT-based fluorescent probe for rapid and specific detection of hydrogen sulfide and its bio-imaging applications.

    PubMed

    Ren, Mingguang; Deng, Beibei; Kong, Xiuqi; Zhou, Kai; Liu, Keyin; Xu, Gaoping; Lin, Weiying

    2016-05-11

    By blocking the intramolecular twisted internal charge transfer (TICT) process, we designed and sythesized the first TICT-based fluorescent probe for hydrogen sulfide. The new probe exhibits high selectivity, good membrane-permeability and is suitable for visualization of exogenous and endogenous hydrogen sulfide in living cells. PMID:27090853

  16. 30 CFR 250.245 - What hydrogen sulfide (H2S) information must accompany the DPP or DOCD?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... analysis must be consistent with the EPA's risk management plan methodologies outlined in 40 CFR part 68. ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What hydrogen sulfide (H2S) information must... Documents (docd) § 250.245 What hydrogen sulfide (H2S) information must accompany the DPP or DOCD?...

  17. Source Of Hydrogen Sulfide To Sulfidic Spring And Watershed Ecosystems In Northern Sierra De Chiapas, Mexico Based On Sulfur And Carbon Isotopes

    NASA Astrophysics Data System (ADS)

    Rosales Lagarde, L.; Boston, P. J.; Campbell, A.

    2013-12-01

    At least four watersheds in northern Sierra de Chiapas, Mexico are fed by conspicuous karst sulfide-rich springs. The toxic hydrogen sulfide (H2S) in these springs nurtures rich ecosystems including especially adapted microorganisms, invertebrates and fish. Sulfur and carbon isotopic analysis of various chemical species in the spring water are integrated within their hydrogeologic context to evaluate the hydrogen sulfide source. Constraining the H2S origin can also increase the understanding of this compound effect in the quality of the nearby hydrocarbon reservoirs, and the extent to which its oxidation to sulfuric acid increases carbonate dissolution and steel corrosion in surface structures. The SO42-/H2S ratio in the spring water varies from 70,000 to 2 meq/L thus sulfate is the dominant species in the groundwater system. This sulfate is mainly produced from anhydrite dissolution based on its isotopic signature. The Δ SO42--H2S range of 16 spring water samples (30-50 ‰) is similar to the values determined by Goldhaber & Kaplan (1975) and Canfield (2001) for low rates of bacterial sulfate reduction suggesting that this is the most important mechanism producing H2S. Although the carbon isotopes do not constrain the nature of the organic matter participating in this reaction, this material likely comes from depth, perhaps as hydrocarbons, due to the apparent stability of the system. The organic matter availability and reactivity probably control the progress of sulfate reduction. The subsurface environments identified in the area also have different sulfur isotopic values. The heavier residual sulfate isotopic value in the Northern brackish springs (δ34S SO42- ≥ 18 ‰) compared to the Southern springs (δ34S SO42- ~18 ‰) suggests sulfate reduction is particularly enhanced in the former, probably by contribution of organic matter associated with oil produced water. In comparison, the composition of the Southern aquifer is mainly influenced by halite

  18. Combination of borax and quebracho condensed tannins treatment to reduce hydrogen sulfide, ammonia and greenhouse gas emissions from stored swine manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Livestock producers are acutely aware for the need to reduce gaseous emissions from stored livestock waste and have been trying to identify new technologies to address the chronic problem. Besides the malodor issue, toxic gases emitted from stored livestock manure, especially hydrogen sulfide (H2S)...

  19. Grain Boundary Passivation of Multicrystalline Silicon Using Hydrogen Sulfide as a Sulfur Source

    NASA Astrophysics Data System (ADS)

    Saha, Arunodoy

    Hydrogen sulfide (H2S) has been identified as a potential ingredient for grain boundary passivation of multicrystalline silicon. Sulfur is already established as a good surface passivation material for crystalline silicon (c-Si). Sulfur can be used both from solution and hydrogen sulfide gas. For multicrystalline silicon (mc-Si) solar cells, increasing efficiency is a major challenge because passivation of mc-Si wafers is more difficult due to its randomly orientated crystal grains and the principal source of recombination is contributed by the defects in the bulk of the wafer and surface. In this work, a new technique for grain boundary passivation for multicrystalline silicon using hydrogen sulfide has been developed which is accompanied by a compatible Aluminum oxide (Al2O3) surface passivation. Minority carrier lifetime measurement of the passivated samples has been performed and the analysis shows that success has been achieved in terms of passivation and compared to already existing hydrogen passivation, hydrogen sulfide passivation is actually better. Also the surface passivation by Al 2O3 helps to increase the lifetime even more after post-annealing and this helps to attain stability for the bulk passivated samples. Minority carrier lifetime is directly related to the internal quantum efficiency of solar cells. Incorporation of this technique in making mc-Si solar cells is supposed to result in higher efficiency cells. Additional research is required in this field for the use of this technique in commercial solar cells.

  20. Living cells imaging for copper and hydrogen sulfide by a selective "on-off-on" fluorescent probe.

    PubMed

    Qian, Yong; Lin, Jie; Liu, Tianbao; Zhu, Hailiang

    2015-01-01

    A novel highly selective and sensitive fluorescent probe (NJ1) had been designed and synthesized for Cu(2+) detection by fluorescence quenching mechanism, and then the enhancement of fluorescence intensity with the addition of hydrogen sulfide in complex NJ1Cu aqueous solution at physiological conditions were described. This "on-off-on" type fluorescence recognition system was a reversible process, which could be utilized to monitor copper ion and hydrogen sulfide based on a complex NJ1Cu formation-Cu(2+) displacement approach. Importantly, this real-time recognition process of Cu(2+) and hydrogen sulfide exhibited excellent anti-interference ability. In addition, this new fluorescent probe also has potential utility for Cu(2+) and hydrogen sulfide detection in living cells, providing a potential tool for investigating copper ion and hydrogen sulfide in living systems or environment. PMID:25476371

  1. Bioconversion of high concentrations of hydrogen sulfide to elemental sulfur in airlift bioreactor.

    PubMed

    Zytoon, Mohamed Abdel-Monaem; AlZahrani, Abdulraheem Ahmad; Noweir, Madbuli Hamed; El-Marakby, Fadia Ahmed

    2014-01-01

    Several bioreactor systems are used for biological treatment of hydrogen sulfide. Among these, airlift bioreactors are promising for the bioconversion of hydrogen sulfide into elemental sulfur. The performance of airlift bioreactors is not adequately understood, particularly when directly fed with hydrogen sulfide gas. The objective of this paper is to investigate the performance of an airlift bioreactor fed with high concentrations of H2S with special emphasis on the effect of pH in combination with other factors such as H2S loading rate, oxygen availability, and sulfide accumulation. H2S inlet concentrations between 1,008 ppm and 31,215 ppm were applied and elimination capacities up to 113 g H2S m(-3) h(-1) were achieved in the airlift bioreactor under investigation at a pH range 6.5-8.5. Acidic pH values reduced the elimination capacity. Elemental sulfur recovery up to 95% was achieved under oxygen limited conditions (DO < 0.2 mg/L) and at higher pH values. The sulfur oxidizing bacteria in the bioreactor tolerated accumulated dissolved sulfide concentrations >500 mg/L at pH values 8.0-8.5, and near 100% removal efficiency was achieved. Overall, the resident microorganisms in the studied airlift bioreactor favored pH values in the alkaline range. The bioreactor performance in terms of elimination capacity and sulfur recovery was better at pH range 8-8.5. PMID:25147857

  2. Exposure to hydrogen sulfide, mercaptans and sulfur dioxide in pulp industry.

    PubMed

    Kangas, J; Jäppinen, P; Savolainen, H

    1984-12-01

    An hygienic survey for hydrogen sulfide, methyl mercaptan and its derivatives and sulfur dioxide in kraft mills and in sulfite mills revealed concentrations varying from 0 to 20 ppm hydrogen sulfide, 0 to 15 ppm methyl mercaptan and comparable amounts of dimethyl sulfide with dimethyl disulfide up to 1.5 ppm. The greatest emissions were detected at chip chutes and evaporation vacuum pumps. Batch operations yielded clearly higher sulfur dioxide concentrations (up to 20 ppm) as compared to a continuous ammonia-base digester. Furthermore, there was a strong correlation with the season in the sulfite mills where higher concentrations were found in the winter when natural ventilation was poorer. As to the health effects, the exposed workers complained of headaches and a decrease in concentration capacity more often than matched controls. The number of sick leaves was greater in the exposed workers than among the controls. PMID:6517022

  3. [Regulation of sulfates, hydrogen sulfide and heavy metals in technogenic reservoirs by sulfate-reducing bacteria].

    PubMed

    Hudz', S P; Peretiatko, T B; Moroz, O M; Hnatush, S O; Klym, I R

    2011-01-01

    Sulfate-reducing bacteria Desulfovibrio desulfuricans Ya-11 in the presence of sulfates and organic compounds in the medium reduce sulfates to hydrogen sulfide (dissimilatory sulfate reduction). Heavy metals in concentration over 2 mM inhibit this process. Pb2+, Zn2+, Ni2+, Co2+, Fe2+ and Cd2+ ions in concentration 1-1.5 mM display insignificant inhibiting effect on sulfate reduction process, and metals precipitate in the form of sulfides. At concentrations of heavy metals 2-3 mM one can observe a decrease of sulfates reduction intensity, and a percent of metals binding does not exceed 72%. Obtained results give reason to confirm, that sulfate-reducing bacteria play an important role in regulation of the level of sulfates, hydrogen sulfide and heavy metals in reservoirs and they may be used for purification of water environment from these compounds. PMID:21598657

  4. Reaction of Hydrogen Sulfide with Oxygen in the Presence ofSulfite

    SciTech Connect

    Weres, Oleh; Tsao, Leon

    1983-01-01

    Commonly, abatement of hydrogen sulfide emissions from a geothermal powerplant requires that hydrogen sulfide dissolved in the cooling water be eliminated by chemical reaction. Oxidation by atmospheric oxygen is the preferred reaction, but requires a suitable catalyst. Nickel is the most potent and thereby cheapest catalyst for this purpose. One Mg/L nickel in the cooling water would allow 99% removal of hydrogen sulfide to be attained. A major drawback of catalytic air oxidation is that colloidal sulfur is a major reaction product; this causes rapid sludge accumulation and deposition of sulfur scale. The authors studied the kinetics and product distribution of the reaction of hydrogen sulfide with oxygen, catalyzed by nickel. Adding sodium sulfite to the solution completely suppresses formation of colloidal sulfur by converting it to thiosulfate. The oxidation reaction is an autocatalytic, free radical chain reaction. A rate expression for this reaction and a detailed reaction mechanism were developed. Nickel catalyzes the chain initiation step, and polysulfidoradical ions propagate the chains. Several complexes of iron and cobalt were also studied. Iron citrate and iron N-hydroxyEDT are the most effective iron based catalysts. Uncomplexed cobalt is as effective as nickel, but forms a precipitate of cobalt oxysulfide and is too expensive for practical use.

  5. Reaction of hydrogen sulfide with oxygen in the presence of sulfite

    SciTech Connect

    Weres, O.; Tsao, L.

    1983-01-14

    Commonly, abatement of hydrogen sulfide emission from a geothermal powerplant requires that hydrogen sulfide dissolved in the cooling water be eliminated by chemical reaction. Oxidation by atmospheric oxygen is the preferred reaction, but requires a suitable catalyst. Nickel is the most potent and thereby cheapest catalyst for this purpose. One mg/L nickel in the cooling water would allow 99% removal of hydrogen sulfide to be attained. A major drawback of catalytic air oxidation is that colloidal sulfur is a major reaction product; this causes rapid sludge accumulation and deposition of sulfur scale. We studied the kinetics and product distribution of the reaction of hydrogen sulfide with oxygen, catalyzed by nickel. Adding sodium sulfite to the solution completely suppresses formation of colloidal sulfur by converting it to thiosulfate. The oxidation reaction is an autocatalytic, free radical chain reaction. A rate expression for this reaction and a detailed reaction mechanism were developed. Nickel catalyzes the chain initiation step, and polysulfidoradical ions propagate the chains. Several complexes of iron and cobalt were also studied. Iron citrate and iron N-hydroxyEDTA are the most effective iron based catalysts. Uncomplexed cobalt is as effective as nickel, but forms a precipitate of cobalt oxysulfide and is too expensive for practical use. 33 figures, 9 tables.

  6. VERIFICATION OF AMBIENT MONITORING TECHNOLOGIES FOR AMMONIA AND HYDROGEN SULFIDE AT ANIMAL FEEDING OPERATIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The performance of two hydrogen sulfide and seven ambient ammonia monitoring technologies was recently verified by the U.S. EPA ETV Program’s AMS Center. The nine technologies verified by the AMS Center could be used to enhance the scientific understanding of the environmental effects that emissions...

  7. Hydrogen sulfide and nonmethane hydrocarbon emissions from broiler houses in the Southeastern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrogen sulfide (H2S) and nonmethane hydrocarbon (NMHC) emissions from two mechanically ventilated commercial broiler houses located in the Southeastern United States were continuously monitored over 12 flocks during the one-year period of 2006-2007 as a joint effort between Iowa State University a...

  8. Genetically Anchored Fluorescent Probes for Subcellular Specific Imaging of Hydrogen Sulfide

    PubMed Central

    Jiang, Xiqian; Sizovs, Antons; Wang, Meng C.; Provost, Christopher R.; Huang, Jia

    2016-01-01

    Imaging hydrogen sulfide (H2S) at the subcellular resolution will greatly improve the understanding of functions of this signaling molecule. Taking advantage of the protein labeling technologies, we report a general strategy for the development of organelle specific H2S probes, which enables sub-cellular H2S imaging essentially in any organelles of interest. PMID:26806071

  9. IRIS TOXICOLOGICAL REVIEW AND SUMMARY DOCUMENTS FOR HYDROGEN SULFIDE (EXTERNAL REVIEW DRAFT)

    EPA Science Inventory

    Hydrogen sulfide (H2S) is a colorless gas with a strong odor of rotten eggs. Its primary uses include the production of elemental sulfur and sulfuric acid, the manufacture of heavy water and other chemicals. Occupational exposure occurs primarily from its presence in petroleum, n...

  10. Solubility of hydrogen sulfide in aqueous mixtures of monoethanolamine with N-methyldiethanolamine

    SciTech Connect

    Meng Hui Li; Keh Perng Shen . Dept. of Chemical Engineering)

    1993-01-01

    Alkanolamine aqueous solutions are frequently used for the removal of acidic gases, such as CO[sub 2] and H[sub 2]S, from gas streams in the natural gas and synthetic ammonia industries and petroleum chemical plants. The solubilities of hydrogen sulfide in aqueous mixtures of monoethanolamine (MEA) with N-methyl-diethanolamine (MDEA) have been measured at 40, 60, 80, and 100C and at partial pressures of hydrogen sulfide ranging from 1.0 to 450 kPa. The mixtures of alkanolamines studied are 4.95 kmol/m[sup 3] MEA, 3.97 kmol/m[sup 3] MEA + 0.51 kmol/m[sup 3] MDEA, 2.0 kmol/m[sup 3] MEA + 1.54 kmol/m[sup 3] MDEA, and 2.57 kmol/m[sup 3] MDEA aqueous solutions. The solubilities of hydrogen sulfide in aqueous alkanolamine solutions are reported as functions of the partial pressure of hydrogen sulfide at the temperatures of 40-100C.

  11. CHROMATOGRAPHIC SEPARATION AND IDENTIFICATION OF PRODUCTS FROM THE REACTION OF DIMETHYLARSINIC ACID WITH HYDROGEN SULFIDE

    EPA Science Inventory

    The reaction of dimethylarsinic acid (DMAV) with hydrogen sulfide (H2S) is of biological significance and may be implicated in the overall toxicity and carcinogenicity of arsenic. The course of the reaction in aqueous phase was monitored and an initial product, dimethylthioarsin...

  12. Assessment of Hydrogen Sulfide Minimum Detection Limits of an Open Path Tunable Diode Laser

    EPA Science Inventory

    During June 2007, U.S. EPA conducted a feasibility study to determine whether the EPA OTM 10 measurement approach, also known as radial plume mapping (RPM), was feasible. A Boreal open-path tunable diode laser (OP-TDL) to collect path-integrated hydrogen sulfide measurements alon...

  13. VERIFICATION OF AMBIENT MONITORING TECHNOLOGIES FOR AMMONIA AND HYDROGEN SULFIDE AT ANIMAL FEEDING OPERATIONS

    EPA Science Inventory

    The increasing concentration of livestock agriculture into animal feeding operations (AFOs) has raised concerns about the environmental and potential health impact of the emissions from AFOs into the atmosphere. Gaseous ammonia (NH3) and hydrogen sulfide (H2...

  14. 40 CFR 721.10445 - 2-Propen-1-ol, reaction products with hydrogen sulfide, distn. residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.10445 2-Propen-1-ol, reaction products with...) The chemical substance identified as 2-propen-1-ol, reaction products with hydrogen sulfide, distn... 40 Protection of Environment 32 2013-07-01 2013-07-01 false 2-Propen-1-ol, reaction products...

  15. 40 CFR 721.10445 - 2-Propen-1-ol, reaction products with hydrogen sulfide, distn. residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.10445 2-Propen-1-ol, reaction products with...) The chemical substance identified as 2-propen-1-ol, reaction products with hydrogen sulfide, distn... 40 Protection of Environment 31 2014-07-01 2014-07-01 false 2-Propen-1-ol, reaction products...

  16. Protective effect of hydrogen sulfide on renal injury in the experimental unilateral ureteral obstruction

    PubMed Central

    Dursun, Murat; Otunctemur, Alper; Ozbek, Emin; Sahin, Suleyman; Besiroglu, Huseyin; Ozsoy, Ozgur Doga; Cekmen, Mustafa; Somay, Adnan; Ozbay, Nurver

    2015-01-01

    ABSTRACT Introduction/Objective: Ureteral obstruction is a common pathology and causes kidney fibrosis and dysfunction at late period. In this present study, we investigated the antifibrotic and antiinflammatory effects of hydrogen sulfide on kidney damage after unilateral ureteral obstruction (UUO) in rats. Materials and Methods: 24 rats were divided into four groups. Group 1 was control, group 2 was sham, group 3 included rats with UUO and group 4 rats with UUO which were given sodium hydrogen sulfide (NaHS)-exogenous donor of hydrogen sulfide (intraperitoneally 56μmoL/kg/day). After 14 days, rats were killed and their kidneys were taken and blood analysis was performed. Tubular necrosis, mononuclear cell infiltration and interstitial fibrosis were determined histopathologically in a part of the kidneys; nitric oxide (NO), malondialdehyde (MDA) and reduced glutathione (GSH) levels were determined in the other part of the kidneys. Urea-creatinine levels were investigated by blood analysis. Statistical analyses were made by the Chi-square test and one-way analysis of variance (ANOVA). Results: There was no significantly difference for urea-creatinine levels among groups. Pathologically, there was serious tubular necrosis and fibrosis in group 3 and there was significantly decreasing of tubular necrosis and fibrosis in group 4 (p<0.005). Also, there was significantly increase of NO and MDA levels and decrease of GSH levels in group 3 compared to other groups (p<0.005). Conclusions: hydrogen sulfide prevents kidney damage with antioxidant and antiinflammatory effect. PMID:26742979

  17. 76 FR 69136 - Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release Reporting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... required by 1 CFR 21.1, regarding the lifted stay of hydrogen sulfide reporting requirements. In FR Doc... a document on August 22, 1994 (59 FR 43048) imposing stays on the reporting requirements for... Register of October 17, 2011 (76 FR 64022) should have lifted the Administrative Stay of the...

  18. Producing Hydrogen by Plasma Pyrolysis of Methane

    NASA Technical Reports Server (NTRS)

    Atwater, James; Akse, James; Wheeler, Richard

    2010-01-01

    Plasma pyrolysis of methane has been investigated for utility as a process for producing hydrogen. This process was conceived as a means of recovering hydrogen from methane produced as a byproduct of operation of a life-support system aboard a spacecraft. On Earth, this process, when fully developed, could be a means of producing hydrogen (for use as a fuel) from methane in natural gas. The most closely related prior competing process - catalytic pyrolysis of methane - has several disadvantages: a) The reactor used in the process is highly susceptible to fouling and deactivation of the catalyst by carbon deposits, necessitating frequent regeneration or replacement of the catalyst. b) The reactor is highly susceptible to plugging by deposition of carbon within fixed beds, with consequent channeling of flow, high pressure drops, and severe limitations on mass transfer, all contributing to reductions in reactor efficiency. c) Reaction rates are intrinsically low. d) The energy demand of the process is high.

  19. Physiological role of hydrogen sulfide and polysulfide in the central nervous system.

    PubMed

    Kimura, Hideo

    2013-11-01

    Hydrogen sulfide (H2S) is a well-known toxic gas that has the smell of rotten eggs. This pungent gas was considered as a physiological mediator, after the identification of endogenous sulfides in the mammalian brain. H2S is produced from L-cysteine by enzymes such as cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3MST) along with cysteine aminotransferase (CAT). We recently identified a fourth pathway, where H2S is produced from D-cysteine by the enzyme D-amino acid oxidase (DAO) along with 3MST. We demonstrated that H2S is a neuromodulator that facilitates hippocampal long-term potentiation (LTP) by enhancing the activity of N-methyl-D-aspartate (NMDA) receptors. It also induces Ca(2+) influx in the astrocytes by activating the transient receptor potential ankyrin-1 (TRPA1) channels. In addition to being a signaling molecule, it also functions as a neuroprotective agent by enhancing the production of glutathione, a major intracellular antioxidant that scavenges the reactive oxygen species (ROS) in the mitochondria. H2S regulates the activity of the enzymes by incorporating the bound sulfane sulfur to cysteine residues. This modification is known as sulfhydration or sulfuration. The neuroprotective ubiquitin E3 ligase, parkin, enhances its neuroprotective activity by this modification. This review is focused on the functional role of H2S as a signaling molecule and as a cytoprotectant in the nervous system. In addition, this review shows the recent findings that indicate that the H2S-derived polysulfides found in the brain activate TRPA1 channels more potently than parental H2S. PMID:24036365

  20. REMOVAL AND RECOVERY OF SULFIDE FROM TANNERY WASTEWATER

    EPA Science Inventory

    Recovery of sulfide from tannery waste was accomplished through acidification with sulfuric acid in a closed system and removing hydrogen sulfide formed by blowing with air. Sulfide was then absorbed in caustic solution to produce re-usable sodium sulfide/sulfhydrate liquor for t...

  1. Effects of pH and Lactate on Hydrogen Sulfide Production by Oral Veillonella spp.

    PubMed Central

    Washio, Jumpei; Shimada, Yuko; Yamada, Masakazu; Sakamaki, Ryouichi

    2014-01-01

    Indigenous oral bacteria in the tongue coating such as Veillonella have been identified as the main producers of hydrogen sulfide (H2S), one of the major components of oral malodor. However, there is little information on the physiological properties of H2S production by oral Veillonella such as metabolic activity and oral environmental factors which may affect H2S production. Thus, in the present study, the H2S-producing activity of growing cells, resting cells, and cell extracts of oral Veillonella species and the effects of oral environmental factors, including pH and lactate, were investigated. Type strains of Veillonella atypica, Veillonella dispar, and Veillonella parvula were used. These Veillonella species produced H2S during growth in the presence of l-cysteine. Resting cells of these bacteria produced H2S from l-cysteine, and the cell extracts showed enzymatic activity to convert l-cysteine to H2S. H2S production by resting cells was higher at pH 6 to 7 and lower at pH 5. The presence of lactate markedly increased H2S production by resting cells (4.5- to 23.7-fold), while lactate had no effect on enzymatic activity in cell extracts. In addition to H2S, ammonia was produced in cell extracts of all the strains, indicating that H2S was produced by the catalysis of cystathionine γ-lyase (EC 4.4.1.1). Serine was also produced in cell extracts of V. atypica and V. parvula, suggesting the involvement of cystathionine β-synthase lyase (EC 4.2.1.22) in these strains. This study indicates that Veillonella produce H2S from l-cysteine and that their H2S production can be regulated by oral environmental factors, namely, pH and lactate. PMID:24795374

  2. Sustainable bioreactor systems for producing hydrogen

    SciTech Connect

    Zaborsky, O.R.; Radway, J.C.; Yoza, B.A.; Benemann, J.R.; Tredici, M.R.

    1998-08-01

    The overall goal of Hawaii`s BioHydrogen Program is to generate hydrogen from water using solar energy and microalgae under sustainable conditions. Specific bioprocess engineering objectives include the design, construction, testing and validation of a sustainable photobioreactor system. Specific objectives relating to biology include investigating and optimizing key physiological parameters of cyanobacteria of the genus Arthrospira (Spirulina), the organism selected for initial process development. Another objective is to disseminate the Mitsui-Miami cyanobacteria cultures, now part of the Hawaii Culture Collection (HCC), to other research groups. The approach is to use a single organisms for producing hydrogen gas from water. Key stages are the growth of the biomass, the dark induction of hydrogenase, and the subsequent generation of hydrogen in the light. The biomass production stage involves producing dense cultures of filamentous, non-heterocystous cyanobacteria and optimizing biomass productivity in innovative tubular photobioreactors. The hydrogen generation stages entail inducing the enzymes and metabolic pathways that enable both dark and light-driven hydrogen production. The focus of Year 1 has been on the construction and operation of the outdoor photobioreactor for the production of high-density mass cultures of Arthrospira. The strains in the Mitsui-Miami collection have been organized and distributed to other researchers who are beginning to report interesting results. The project is part of the International Energy Agency`s biohydrogen program.

  3. Emergence of Hydrogen Sulfide as an Endogenous Gaseous Signaling Molecule in Cardiovascular Disease

    PubMed Central

    Polhemus, David J.; Lefer, David J.

    2014-01-01

    Long recognized as a malodorous and highly toxic gas, recent experimental studies have revealed that hydrogen sulfide (H2S) is produced enzymatically in all mammalian species including man and exerts a number of critical actions to promote cardiovascular homeostasis and health. During the past 15 years, scientists have determined that H2S is produced by three endogenous enzymes and exerts powerful effects on endothelial cells, smooth muscle cells, inflammatory cells, mitochondria, endoplasmic reticulum, and nuclear transcription factors. These effects have been reported in multiple organ systems and the vast majority of data clearly indicate that H2S produced by the endogenous enzymes exerts cytoprotective actions. Recent preclinical studies investigating cardiovascular diseases have demonstrated that the administration of physiological or pharmacological levels of H2S attenuates myocardial injury, protects blood vessels, limits inflammation, and regulates blood pressure. H2S has emerged as a critical cardiovascular signaling molecule similar to nitric oxide (NO) and carbon monoxide (CO) with a profound impact on the heart and circulation (Figure 1). Our improved understanding of how H2S elicits protective actions, coupled with the very rapid development of novel H2S releasing agents, has resulted in heightened enthusiasm for the clinical translation of this ephemeral gaseous molecule. This review will examine our current state of knowledge regarding the actions of H2S within the cardiovascular system with an emphasis on the therapeutic potential and molecular crosstalk between H2S, NO, and CO. PMID:24526678

  4. Control of hydrogen sulfide production in oil fields by managing microbial communities through nitrate or nitrite addition

    NASA Astrophysics Data System (ADS)

    Hubert, Casey R. J.

    Nitrate or nitrite injection into oil reservoirs during water flooding has the potential to control biological souring, the production of hydrogen sulfide (H2S) by sulfate-reducing bacteria (SRB). Souring control is essential because sulfide is toxic, sulfide precipitates can plug reservoir formations, souring lowers crude oil value, and SRB induce corrosion. Nitrate and nitrite can stimulate heterotrophic nitrate- or nitrite-reducing bacteria (hNRB) and nitrate- or nitrite-reducing, sulfide oxidizing bacteria (NRSOB). Nitrite also inhibits SRB activity by blocking the sulfate reduction pathway. Continuous up-flow packed-bed bioreactors were inoculated with produced water from the Coleville oil field to establish sulfide-producing biofilms similar to those found in sour reservoirs. Nitrate or nitrite addition to bioreactors indicated that the dose required for hNRB or NR-SOB to control souring depended on the concentration of oil organics. Either mechanism mediates the net removal of oil organics (lactate) with nitrate or nitrite, with lower doses of nitrate required due to its greater oxidative power. Microbial community analysis by reverse sample genome probing (RSGP) revealed that NR-SOB mediated sulfide removal at low nitrate or nitrite concentrations when lactate was still available to SRB and the redox potential was low. At high nitrate doses hNRB oxidized lactate directly, produced nitrite and maintained a high redox potential, thus excluding SRB activity. Facultatively chemolithotrophic Campylobacter sp. strains were isolated from the bioreactors and incorporated into RSGP analyses, revealing their dominance in both NR-SOB- and hNRB-containing communities. The metabolic flexibility of these strains may confer a competitive advantage over obligate chemolithotrophs like Thiomicrospira sp. strain CVO or hNRB that do not have NR-SOB activity like newly isolated Thauera sp. and Rhodobacter sp. strains. A single high dose of nitrite resulted in immediate

  5. Cystathionine β-synthase-derived hydrogen sulfide is involved in human malignant hyperthermia.

    PubMed

    Vellecco, Valentina; Mancini, Antonio; Ianaro, Angela; Calderone, Vincenzo; Attanasio, Chiara; Cantalupo, Anna; Andria, Barbara; Savoia, Gennaro; Panza, Elisabetta; Di Martino, Antonietta; Cirino, Giuseppe; Bucci, Mariarosaria

    2016-01-01

    Hydrogen sulfide is an endogenous gasotransmitter and its mechanism of action involves activation of ATP-sensitive K(+) channels and phosphodiesterase inhibition. As both mechanisms are potentially involved in malignant hyperthermia (MH), in the present study we addressed the involvement of the L-cysteine/hydrogen sulfide pathway in MH. Skeletal muscle biopsies obtained from 25 MH-susceptible (MHS) and 56 MH-negative (MHN) individuals have been used to perform the in vitro contracture test (IVCT). Quantitative real-time PCR (qPCR) and Western blotting studies have also been performed. Hydrogen sulfide levels are measured in both tissue samples and plasma. In MHS biopsies an increase in cystathionine β-synthase (CBS) occurs, as both mRNA and protein expression compared with MHN biopsies. Hydrogen sulfide biosynthesis is increased in MHS biopsies (0.128±0.12 compared with 0.943±0.13 nmol/mg of protein per min for MHN and MHS biopsies, respectively; P<0.01). Addition of sodium hydrosulfide (NaHS) to MHS samples evokes a response similar, in the IVCT, to that elicited by either caffeine or halothane. Incubation of MHN biopsies with NaHS, before caffeine or halothane challenge, switches an MHN to an MHS response. In conclusion we demonstrate the involvement of the L-cysteine/hydrogen sulfide pathway in MH, giving new insight into MH molecular mechanisms. This finding has potential implications for clinical care and could help to define less invasive diagnostic procedures. PMID:26460077

  6. Thermolysis of hydrogen sulfide in the temperature range 1350--1600 K

    SciTech Connect

    Harvey, W.S.; Davidson, J.H.; Fletcher, E.A.

    1998-06-01

    The thermal dissociation of hydrogen sulfide gives promise of becoming an economic method to convert a hazardous waste into valuable products, conserve fossil fuels, and increase usable reserves of fossil fuels. The dissociation rates at temperatures which are attractive for an industrial process are not well-characterized. The authors studied the dissociation of hydrogen sulfide into hydrogen and sulfur at temperatures from 1,350 to 1,600 K and pressures from 15 to 30 kPa in an alumina reactor. The rate depends on the surface-to-volume ratio of the reactor. The surface reaction is the dominant contributor; the activation energy for the forward surface reaction is 194 kJ/mol. The authors present a global rate expression that includes surface and gas-phase contributions.

  7. Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts

    SciTech Connect

    K. C. Kwon

    2006-09-30

    Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced power plants that produce electric power and clean transportation fuels with coal and natural gas. These plants will require highly clean coal gas with H{sub 2}S below 1 ppmv and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation power plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2} in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S In the Single-Step Sulfur Recovery Process (SSRP), the direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The H{sub 2} and CO components of

  8. Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts

    SciTech Connect

    K. C. Kwon

    2007-09-30

    Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced power plants that produce electric power and clean transportation fuels with coal and natural gas. These plants will require highly clean coal gas with H{sub 2}S below 1 ppmv and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation power plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2}S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S In the Single-Step Sulfur Recovery Process (SSRP), the direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The H{sub 2} and CO components

  9. Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts

    SciTech Connect

    K.C. Kwon

    2009-09-30

    Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced power plants that produce electric power and clean transportation fuels with coal and natural gas. These plants will require highly clean coal gas with H{sub 2}S below 1 ppmv and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation power plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2}S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S In the Single-Step Sulfur Recovery Process (SSRP), the direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The H{sub 2} and CO components

  10. Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part II. Pathophysiological and therapeutic aspects.

    PubMed

    Módis, Katalin; Bos, Eelke M; Calzia, Enrico; van Goor, Harry; Coletta, Ciro; Papapetropoulos, Andreas; Hellmich, Mark R; Radermacher, Peter; Bouillaud, Frédéric; Szabo, Csaba

    2014-04-01

    Emerging work demonstrates the dual regulation of mitochondrial function by hydrogen sulfide (H2 S), including, at lower concentrations, a stimulatory effect as an electron donor, and, at higher concentrations, an inhibitory effect on cytochrome C oxidase. In the current article, we overview the pathophysiological and therapeutic aspects of these processes. During cellular hypoxia/acidosis, the inhibitory effect of H2 S on complex IV is enhanced, which may shift the balance of H2 S from protective to deleterious. Several pathophysiological conditions are associated with an overproduction of H2 S (e.g. sepsis), while in other disease states H2 S levels and H2 S bioavailability are reduced and its therapeutic replacement is warranted (e.g. diabetic vascular complications). Moreover, recent studies demonstrate that colorectal cancer cells up-regulate the H2 S-producing enzyme cystathionine β-synthase (CBS), and utilize its product, H2 S, as a metabolic fuel and tumour-cell survival factor; pharmacological CBS inhibition or genetic CBS silencing suppresses cancer cell bioenergetics and suppresses cell proliferation and cell chemotaxis. In the last chapter of the current article, we overview the field of H2 S-induced therapeutic 'suspended animation', a concept in which a temporary pharmacological reduction in cell metabolism is achieved, producing a decreased oxygen demand for the experimental therapy of critical illness and/or organ transplantation. PMID:23991749

  11. Carbon Monoxide, Hydrogen Sulfide, and Nitric Oxide as Signaling Molecules in the Gastrointestinal Tract

    PubMed Central

    Farrugia, Gianrico; Szurszewski, Joseph H.

    2014-01-01

    Carbon monoxide (CO) and hydrogen sulfide (H2S) used to be thought of simply as lethal and (for H2S) smelly gaseous molecules; now they are known to have important signaling functions in the gastrointestinal tract. CO and H2S, which are produced in the gastrointestinal tract by different enzymes, regulate smooth muscle membrane potential and tone, transmit signals from enteric nerves and can regulate the immune system. The pathways that produce nitric oxide (NO) H2S and CO interact—each can inhibit and potentiate the level and activity of the other. However, there are significant differences between these molecules, such as in half-lives; CO is more stable and therefore able to have effects distal to the site of production, whereas NO and H2S are short lived and act only close to sites of production. We review their signaling functions in the luminal gastrointestinal tract and discuss how their pathways interact. We also describe other physiologic functions of CO and H2S and how they might be used as therapeutic agents. PMID:24798417

  12. Role of central hydrogen sulfide on ventilatory and cardiovascular responses to hypoxia in spontaneous hypertensive rats.

    PubMed

    Sabino, João Paulo J; Traslaviña, Guillermo A Ariza; Branco, Luiz G S

    2016-09-01

    Central hydrogen sulfide (H2S) has been reported to act as a gaseous neuromodulator involved in the ventilatory and cardiovascular control of normotensive rats, whereas no information is available in spontaneously hypertensive rats (SHR). We recorded minute ventilation (VE), mean arterial pressure (MAP) and heart rate (HR) before and after blocking of enzyme Cystathionine β-synthase (CBS) producing H2S in neural tissue by microinjection of aminooxyacetate (inhibitor of CBS) into the fourth ventricle of Wistar normotensive rats (WNR) and SHR followed by 30min of normoxia (21% inspired O2) or hypoxia (10% inspired O2) exposure. Microinjection of AOA or saline (1μL) did not change VE, MAP and HR during normoxia in both WNR and SHR. In WNR, hypoxia caused an increase in VE, HR and a decrease in MAP and these responses were unaltered by AOA. In SHR, hypoxia produced a higher increase of VE, and decrease in MAP and HR when compared to WNR, and these responses were all blunted by AOA. In conclusion, endogenous H2S plays important modulatory roles on hypoxia-induced ventilatory and cardiovascular responses, inhibiting the cardiovascular and stimulating the respiratory systems in SHR. PMID:27238370

  13. Thermochemical method for producing hydrogen from water

    SciTech Connect

    Fujii, K.; Kondo, W.; Kumagai, T.

    1980-02-12

    A closed system for obtaining hydrogen from water is provided by combining a first step of obtaining hydrogen by reacting water and ferrous halide, a second step of converting triiron tetraoxide produced as a by-product in the first step to ferrous sulfate, a third step of obtaining oxygen and by-products by thermally decomposing said ferrous sulfate, and a fourth step of returning said by-products by thermally decomposing said ferrous sulfate, and a fourth step of returning said by-products obtained in the third step to any of the previous steps.

  14. Novel Composite Hydrogen-Permeable Membranes for Non-Thermal Plasma Reactors for the Decomposition of Hydrogen Sulfide

    SciTech Connect

    Morris D. Argyle; John F. Ackerman; Suresh Muknahallipatna; Jerry C. Hamann; Stanislaw Legowski; Guibling Zhao; Ji-Jun Zhang; Sanil John

    2005-10-01

    The goal of this experimental project is to design and fabricate a reactor and membrane test cell to dissociate hydrogen sulfide (H{sub 2}S) in a non-thermal plasma and recover hydrogen (H{sub 2}) through a superpermeable multi-layer membrane. Superpermeability of hydrogen atoms (H) has been reported by some researchers using membranes made of Group V transition metals (niobium, tantalum, vanadium, and their alloys), although it has yet to be confirmed in this study. A pulsed corona discharge (PCD) reactor has been fabricated and used to dissociate H{sub 2}S into hydrogen and sulfur. A nonthermal plasma cannot be produced in pure H{sub 2}S with our reactor geometry, even at discharge voltages of up to 30 kV, because of the high dielectric strength of pure H{sub 2}S ({approx}2.9 times higher than air). Therefore, H{sub 2}S was diluted in another gas with lower breakdown voltage (or dielectric strength). Breakdown voltages of H{sub 2}S in four balance gases (Ar, He, N{sub 2} and H{sub 2}) have been measured at different H{sub 2}S concentrations and pressures. Breakdown voltages are proportional to the partial pressure of H{sub 2}S and the balance gas. H{sub 2}S conversion and the reaction energy efficiency depend on the balance gas and H{sub 2}S inlet concentrations. With increasing H{sub 2}S concentrations, H{sub 2}S conversion initially increases, reaches a maximum, and then decreases. H{sub 2}S conversion in atomic balance gases, such as Ar and He, is more efficient than that in diatomic balance gases, such as N{sub 2} and H{sub 2}. These observations can be explained by the proposed reaction mechanism of H{sub 2}S dissociation in different balance gases. The results show that nonthermal plasmas are effective for dissociating H{sub 2}S into hydrogen and sulfur.

  15. High temperature hydrogen sulfide removal with tin oxide

    SciTech Connect

    Copeland, R.J.; Feinberg, D.; Wickham, D.; Windecker, B.; Yu, J.

    1993-06-01

    This Phase II SBIR contract is developing a sorbent and process which removes H{sub 2}S from hot gasified coal and generates sulfur during regeneration of the sorbent. The process can be used with any type of reactor (e.g., fixed or moving bed) and any gasifier (e.g., KRW or Texaco) and shows lower costs that competing H{sub 2}S removal processes. TDA Research`s (TDA) process uses a regenerable stannic oxide-based (SnO{sub 2}) sorbent as the first sorbent and zinc ferrite (or zinc titanate) as a second sorbent to remove H{sub 2}S to very low concentrations. The process converts the sulfides from both sorbents to elemental sulfur, a commercial product which is easy to store and transport. The object of this phase is to develop chemically active, high sulfur loadings, and durable stannic oxide sorbents and to demonstrate the process at the bench scale.

  16. Method of removing hydrogen sulfide from gases utilizing a zinc oxide sorbent and regenerating the sorbent

    DOEpatents

    Jalan, Vinod M.; Frost, David G.

    1984-01-01

    A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above 500.degree. C. to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent.

  17. Involvement of ERK in NMDA receptor-independent cortical neurotoxicity of hydrogen sulfide

    SciTech Connect

    Kurokawa, Yuko; Sekiguchi, Fumiko; Kubo, Satoko; Yamasaki, Yoshiko; Matsuda, Sachi; Okamoto, Yukari; Sekimoto, Teruki; Fukatsu, Anna; Nishikawa, Hiroyuki; Kume, Toshiaki; Fukushima, Nobuyuki; Akaike, Akinori; Kawabata, Atsufumi

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Hydrogen sulfide causes NMDA receptor-independent neurotoxicity in mouse fetal cortical neurons. Black-Right-Pointing-Pointer Activation of ERK mediates the toxicity of hydrogen sulfide. Black-Right-Pointing-Pointer Apoptotic mechanisms are involved in the hydrogen-induced cell death. -- Abstract: Hydrogen sulfide (H{sub 2}S), a gasotransmitter, exerts both neurotoxicity and neuroprotection, and targets multiple molecules including NMDA receptors, T-type calcium channels and NO synthase (NOS) that might affect neuronal viability. Here, we determined and characterized effects of NaHS, an H{sub 2}S donor, on cell viability in the primary cultures of mouse fetal cortical neurons. NaHS caused neuronal death, as assessed by LDH release and trypan blue staining, but did not significantly reduce the glutamate toxicity. The neurotoxicity of NaHS was resistant to inhibitors of NMDA receptors, T-type calcium channels and NOS, and was blocked by inhibitors of MEK, but not JNK, p38 MAP kinase, PKC and Src. NaHS caused prompt phosphorylation of ERK and upregulation of Bad, followed by translocation of Bax to mitochondria and release of mitochondrial cytochrome c, leading to the nuclear condensation/fragmentation. These effects of NaHS were suppressed by the MEK inhibitor. Our data suggest that the NMDA receptor-independent neurotoxicity of H{sub 2}S involves activation of the MEK/ERK pathway and some apoptotic mechanisms.

  18. Effects of borax treatment on hydrogen sulfide emissions and sulfate reducing bacteria in stored swine manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Malodorous compounds and emissions produced from stored swine manure can pose both environmental and health issues. These nuisance odors largely result from compounds such as sulfides, volatile fatty acids, and phenols, which are produced as a result of anaerobic digestion of materials present in t...

  19. Feasibility study on high-temperature sorption of hydrogen sulfide by natural soils.

    PubMed

    Ko, Tzu-Hsing; Chu, Hsin; Tseng, Jeou-Jen

    2006-08-01

    In this study, seven natural soils were tested for the sorption of hydrogen sulfide from coal gasification gas at high temperature. Results indicate that the LP natural soil has the best performance and the highest sulfur sorption capacity. After extracting free iron oxides, most natural soils have no sorption efficiency. The free iron oxides, therefore, proved to be the major components that react with hydrogen sulfide to form iron sulfides. The sulfur sorption capacity, either determined by EA or breakthrough time, is very close to the theoretical value based on the stoichiometric calculation with the content of free iron oxides. Moreover, the presence of CO is a positive effect while H2 is a negative effect. This can be explained via the water-shift reaction. On the basis of the results of temperature-programmed sulfidation (TPS), the starting temperature for the sorption of hydrogen sulfide is between 623-673 K. From the analyses of temperature-programmed oxidation (TPO) and XPS, the iron polysulfides are the major products and approximately 90% regeneration efficiency can be theoretically achieved while the temperature is controlled higher than 813 K. In the regeneration tests, the results show that the LP natural soil can be regenerated and thus reused after the oxidation process. No significant degeneration occurs on the LP natural soil after five sorption/regeneration cycles. The sulfur sorption capacity of the tenth regenerated soil can be achieved at least 80% compared to the fresh one. The experimental analyzed SO2 concentration from the regeneration process is almost identical to the theoretical calculated equilibrium concentration of the process. Maghemite is the main product after the regeneration process. PMID:16527331

  20. Bioconversion of High Concentrations of Hydrogen Sulfide to Elemental Sulfur in Airlift Bioreactor

    PubMed Central

    Abdel-Monaem Zytoon, Mohamed; Ahmad AlZahrani, Abdulraheem; Hamed Noweir, Madbuli; Ahmed El-Marakby, Fadia

    2014-01-01

    Several bioreactor systems are used for biological treatment of hydrogen sulfide. Among these, airlift bioreactors are promising for the bioconversion of hydrogen sulfide into elemental sulfur. The performance of airlift bioreactors is not adequately understood, particularly when directly fed with hydrogen sulfide gas. The objective of this paper is to investigate the performance of an airlift bioreactor fed with high concentrations of H2S with special emphasis on the effect of pH in combination with other factors such as H2S loading rate, oxygen availability, and sulfide accumulation. H2S inlet concentrations between 1,008 ppm and 31,215 ppm were applied and elimination capacities up to 113 g H2S m−3 h−1 were achieved in the airlift bioreactor under investigation at a pH range 6.5–8.5. Acidic pH values reduced the elimination capacity. Elemental sulfur recovery up to 95% was achieved under oxygen limited conditions (DO < 0.2 mg/L) and at higher pH values. The sulfur oxidizing bacteria in the bioreactor tolerated accumulated dissolved sulfide concentrations >500 mg/L at pH values 8.0–8.5, and near 100% removal efficiency was achieved. Overall, the resident microorganisms in the studied airlift bioreactor favored pH values in the alkaline range. The bioreactor performance in terms of elimination capacity and sulfur recovery was better at pH range 8–8.5. PMID:25147857

  1. Transformation of iron sulfide to greigite by nitrite produced by oil field bacteria.

    PubMed

    Lin, Shiping; Krause, Federico; Voordouw, Gerrit

    2009-05-01

    Nitrate, injected into oil fields, can oxidize sulfide formed by sulfate-reducing bacteria (SRB) through the action of nitrate-reducing sulfide-oxidizing bacteria (NR-SOB). When reservoir rock contains siderite (FeCO(3)), the sulfide formed is immobilized as iron sulfide minerals, e.g. mackinawite (FeS). The aim of our study was to determine the extent to which oil field NR-SOB can oxidize or transform FeS. Because no NR-SOB capable of growth with FeS were isolated, the well-characterized oil field isolate Sulfurimonas sp. strain CVO was used. When strain CVO was presented with a mixture of chemically formed FeS and dissolved sulfide (HS(-)), it only oxidized the HS(-). The FeS remained acid soluble and non-magnetic indicating that it was not transformed. In contrast, when the FeS was formed by adding FeCl(2) to a culture of SRB which gradually produced sulfide, precipitating FeS, and to which strain CVO and nitrate were subsequently added, transformation of the FeS to a magnetic, less acid-soluble form was observed. X-ray diffraction and energy-dispersive spectrometry indicated the transformed mineral to be greigite (Fe(3)S(4)). Addition of nitrite to cultures of SRB, containing microbially formed FeS, was similarly effective. Nitrite reacts chemically with HS(-) to form polysulfide and sulfur (S(0)), which then transforms SRB-formed FeS to greigite, possibly via a sulfur addition pathway (3FeS + S(0) --> Fe(3)S(4)). Further chemical transformation to pyrite (FeS(2)) is expected at higher temperatures (>60 degrees C). Hence, nitrate injection into oil fields may lead to NR-SOB-mediated and chemical mineral transformations, increasing the sulfide-binding capacity of reservoir rock. Because of mineral volume decreases, these transformations may also increase reservoir injectivity. PMID:19290520

  2. Phosphorylation of BK channels modulates the sensitivity to hydrogen sulfide (H2S)

    PubMed Central

    Sitdikova, Guzel F.; Fuchs, Roman; Kainz, Verena; Weiger, Thomas M.; Hermann, Anton

    2014-01-01

    Introduction: Gases, such as nitric oxide (NO), carbon monoxide (CO), or hydrogen sulfide (H2S), termed gasotransmitters, play an increasingly important role in understanding of how electrical signaling of cells is modulated. H2S is well-known to act on various ion channels and receptors. In a previous study we reported that H2S increased calcium-activated potassium (BK) channel activity. Aims: The goal of the present study is to investigate the modulatory effect of BK channel phosphorylation on the action of H2S on the channel as well as to recalculate and determine the H2S concentrations in aqueous sodium hydrogen sulfide (NaHS) solutions. Methods: Single channel recordings of GH3, GH4, and GH4 STREX cells were used to analyze channel open probability, amplitude, and open dwell times. H2S was measured with an anion selective electrode. Results: The concentration of H2S produced from NaHS was recalculated taking pH, temperature salinity of the perfusate, and evaporation of H2S into account. The results indicate that from a concentration of 300 μM NaHS, only 11–13%, i.e., 34–41 μM is effective as H2S in solution. GH3, GH4, and GH4 STREX cells respond differently to phosphorylation. BK channel open probability (Po) of all cells lines used was increased by H2S in ATP-containing solutions. PKA prevented the action of H2S on channel Po in GH4 and GH4 STREX, but not in GH3 cells. H2S, high significantly increased Po of all PKG pretreated cells. In the presence of PKC, which lowers channel activity, H2S increased channel Po of GH4 and GH4 STREX, but not those of GH3 cells. H2S increased open dwell times of GH3 cells in the absence of ATP significantly. A significant increase of dwell times with H2S was also observed in the presence of okadaic acid. Conclusions: Our results suggest that phosphorylation by PKG primes the channels for H2S activation and indicate that channel phosphorylation plays an important role in the response to H2S. PMID:25429270

  3. Efficient new process for the desulfurization of mixtures of air and hydrogen sulfide via a dielectric barrier discharge plasma

    NASA Astrophysics Data System (ADS)

    Dahle, S.

    2015-10-01

    The efficient removal of hydrogen sulfide, H2S, from streams of H2S in air via a dielectric barrier discharge (DBD) plasma has been investigated using a quadrupole mass spectrometer. A suitable plasma device with a reservoir for storing sorbent powder of various kinds within the plasma region was constructed. Plasma treatments of gas streams with high concentrations of hydrogen sulfide in air yielded a removal of more than 98% of the initial hydrogen sulfide and a deposition of sulfur at the surface of the dielectric, while small amounts of sulfur dioxide were generated. The presence of calcium carbonate within the plasma region of the DBD device resulted in the removal of over 99% of the initial hydrogen sulfide content and the removal of 98% of the initial sulfur dioxide impurities from the gas mixture.

  4. Involvement of hydrogen sulfide and homocysteine transsulfuration pathway in the progression of kidney fibrosis after ureteral obstruction.

    PubMed

    Jung, Kyong-Jin; Jang, Hee-Seong; Kim, Jee In; Han, Sang Jun; Park, Jeen-Woo; Park, Kwon Moo

    2013-12-01

    Hydrogen sulfide (H2S) produced by cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) in the transsulfuration pathway of homocysteine plays a number of pathophysiological roles. Hyperhomocysteinemia is involved in kidney fibrosis. However, the role of H2S in kidney fibrosis remains to be defined. Here, we investigated the role of H2S and its acting mechanism in unilateral ureteral obstruction (UO)-induced kidney fibrosis in mice. UO decreased expressions of CBS and CSE in the kidney with decrease of H2S concentration. Treatment with sodium hydrogen sulfide (NaHS, a H2S producer) during UO reduced UO-induced oxidative stress with preservations of catalase, copper-zinc superoxide dismutase (CuZnSOD), and manganese superoxide dismutase (MnSOD) expression, and glutathione level. In addition, NaHS mitigated decreases of CBS and CSE expressions, and H2S concentration in the kidney. NaHS treatment attenuated UO-induced increases in levels of TGF-β1, activated Smad3, and activated NF-κB. This study provided the first evidence of involvement of the transsulfuration pathway and H2S in UO-induced kidney fibrosis, suggesting that H2S and its transsulfuration pathway may be a potential target for development of therapeutics for fibrosis-related diseases. PMID:23846016

  5. Novel Composite Hydrogen-Permeable Membranes for Non-Thermal Plasma Reactors for the Decomposition of Hydrogen Sulfide

    SciTech Connect

    Morris D. Argyle; John F. Ackerman; Suresh Muknahallipatna; Jerry C. Hamann; Stanislaw Legowski; Guibing Zhao; Sanil John

    2006-09-30

    The goal of this experimental project is to design and fabricate a reactor and membrane test cell to dissociate hydrogen sulfide (H{sub 2}S) in a non-thermal plasma and recover hydrogen (H{sub 2}) through a superpermeable multi-layer membrane. Superpermeability of hydrogen atoms (H) has been reported by some researchers using membranes made of Group V transition metals (niobium, tantalum, vanadium, and their alloys), although it has yet to be confirmed in this study. Several pulsed corona discharge (PCD) reactors have been fabricated and used to dissociate H{sub 2}S into hydrogen and sulfur. Visual observation shows that the corona is not uniform throughout the reactor. The corona is stronger near the top of the reactor in argon, while nitrogen and mixtures of argon or nitrogen with H{sub 2}S produce stronger coronas near the bottom of the reactor. Both of these effects appear to be explainable base on the different electron collision interactions with monatomic versus polyatomic gases. A series of experiments varying reactor operating parameters, including discharge capacitance, pulse frequency, and discharge voltage were performed while maintaining constant power input to the reactor. At constant reactor power input, low capacitance, high pulse frequency, and high voltage operation appear to provide the highest conversion and the highest energy efficiency for H{sub 2}S decomposition. Reaction rates and energy efficiency per H{sub 2}S molecule increase with increasing flow rate, although overall H{sub 2}S conversion decreases at constant power input. Voltage and current waveform analysis is ongoing to determine the fundamental operating characteristics of the reactors. A metal infiltrated porous ceramic membrane was prepared using vanadium as the metal and an alumina tube. Experiments with this type of membrane are continuing, but the results thus far have been consistent with those obtained in previous project years: plasma driven permeation or superpermeability

  6. NOVEL COMPOSITE HYDROGEN-PERMEABLE MEMBRANES FOR NON-THERMAL PLASMA REACTORS FOR THE DECOMPOSITION OF HYDROGEN SULFIDE

    SciTech Connect

    Morris D. Argyle; John F. Ackerman; Suresh Muknahallipatna; Jerry C. Hamann; Stanislaw Legowski; Ji-Jun Zhang; Guibing Zhao; Robyn J. Alcanzare; Linna Wang; Ovid A. Plumb

    2004-07-01

    The goal of this experimental project is to design and fabricate a reactor and membrane test cell to dissociate hydrogen sulfide (H{sub 2}S) in a non-thermal plasma and recover hydrogen (H{sub 2}) through a superpermeable multi-layer membrane. Superpermeability of hydrogen atoms (H) has been reported by some researchers using membranes made of Group V transition metals (niobium, tantalum, vanadium, and their alloys), although it has yet to be confirmed in this study. Experiments involving methane conversion reactions were conducted with a preliminary pulsed corona discharge reactor design in order to test and improve the reactor and membrane designs using a non-toxic reactant. This report details the direct methane conversion experiments to produce hydrogen, acetylene, and higher hydrocarbons utilizing a co-axial cylinder (CAC) corona discharge reactor, pulsed with a thyratron switch. The reactor was designed to accommodate relatively high flow rates (655 x 10{sup -6} m{sup 3}/s) representing a pilot scale easily converted to commercial scale. Parameters expected to influence methane conversion including pulse frequency, charge voltage, capacitance, residence time, and electrode material were investigated. Conversion, selectivity and energy consumption were measured or estimated. C{sub 2} and C{sub 3} hydrocarbon products were analyzed with a residual gas analyzer (RGA). In order to obtain quantitative results, the complex sample spectra were de-convoluted via a linear least squares method. Methane conversion as high as 51% was achieved. The products are typically 50%-60% acetylene, 20% propane, 10% ethane and ethylene, and 5% propylene. First Law thermodynamic energy efficiencies for the system (electrical and reactor) were estimated to range from 38% to 6%, with the highest efficiencies occurring at short residence time and low power input (low specific energy) where conversion is the lowest (less than 5%). The highest methane conversion of 51% occurred at a

  7. Use of sulfur-oxidizing bacteria as recognition elements in hydrogen sulfide biosensing system.

    PubMed

    Janfada, Behdokht; Yazdian, Fatemeh; Amoabediny, Ghassem; Rahaie, Mahdi

    2015-01-01

    Four sulfur-oxidizing bacteria (Thiobacillus thioparus, Acidithiobacillus thiooxidans PTCC1717, Acidithiobacillus ferrooxidans PTCC1646, and Acidithiobacillus ferrooxidans PTCC1647) were used as biorecognition elements in a hydrogen sulfide biosensing system. All the experiments were performed in 0.1 M phosphate buffer solution containing 1-20 ppm H2S with optimum pH and temperature for each species. Although H2 S was applied to the biosensing system, the dissolved O2 content decreased. Dissolved O2 consumed by cells in both free and immobilized forms was measured using a dissolved oxygen sensor. Free bacterial cells exhibit fast response (<200 Sec). Immobilization of the cells on polyvinyl alcohol was optimized using an analytical software. Immobilized A. ferrooxidans and A. thiooxidans retained more than 50% of activity after 30 days of immobilization. According to the data, A. thiooxidans and A. ferrooxidans are appropriate species for hydrogen sulfide biosensor. PMID:25158614

  8. Durable regenerable sorbent pellets for removal of hydrogen sulfide from coal gas

    DOEpatents

    Siriwardane, Ranjani V.

    1997-01-01

    Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

  9. Durable regenerable sorbent pellets for removal of hydrogen sulfide coal gas

    DOEpatents

    Siriwardane, Ranjani V.

    1999-01-01

    Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form, usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

  10. Durable regenerable sorbent pellets for removal of hydrogen sulfide from coal gas

    DOEpatents

    Siriwardane, R.V.

    1999-02-02

    Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form, usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

  11. Durable regenerable sorbent pellets for removal of hydrogen sulfide from coal gas

    DOEpatents

    Siriwardane, R.V.

    1997-12-30

    Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

  12. Effect of hydrogen sulfide loading on the density and viscosity of aqueous solutions of methyldiethanolamine

    SciTech Connect

    Rinker, E.B.; Colussi, A.T.; McKnight, N.L.; Sandall, O.C.

    2000-04-01

    Aqueous alkanolamine solutions are commonly used to remove acid gases such as carbon dioxide and hydrogen sulfide from natural gas. The change in the density and viscosity of aqueous methyldiethanolamine on the addition of hydrogen sulfide was investigated in this study. At 25 C densities and viscosities were measured for loadings up to 0.5 mol of H{sub 2}S per 1 mol of amine for amine concentrations up to 50 mass % and for H{sub 2}S loadings up to 0.5. It was found that the solution density increases with H{sub 2}S loading whereas the viscosity decreases as the H{sub 2}S loading increases.

  13. Selective Catalytic Oxidation of Hydrogen Sulfide on Activated Carbons Impregnated with Sodium Hydroxide

    SciTech Connect

    Schwartz, Viviane; Baskova, Svetlana; Armstrong, Timothy R.

    2009-01-01

    Two activated carbons of different origin were impregnated with the solution of sodium hydroxide (NaOH) of various concentrations up to 10 wt %, and the effect of impregnation on the catalytic performance of the carbons was evaluated. The catalytic activity was analyzed in terms of the capacity of carbons for hydrogen sulfide (H2S) conversion and removal from hydrogen-rich fuel streams and the emission times of H2S and the products of its oxidation [e.g., sulfur dioxide (SO2) and carbonyl sulfide (COS)]. The results of impregnation showed a significant improvement in the catalytic activity of both carbons proportional to the amount of NaOH introduced. NaOH introduces hydroxyl groups (OH-) on the surface of the activated carbon that increase its surface reactivity and its interaction with sulfur-containing compounds.

  14. Hydrogen sulfide improves cardiomyocytes electrical remodeling post ischemia/reperfusion injury in rats.

    PubMed

    Sun, Ying-Gang; Wang, Xin-Yan; Chen, Xiu; Shen, Cheng-Xing; Li, Yi-Gang

    2015-01-01

    Hydrogen sulfide (H2S), produced by cystanthionine-γ-lysase (CSE) in the cardiovascular system, is an endogenous gaseous mediator exerting pronounced physiological effects as the third gasotransmitter in addition to nitric oxide (NO) and carbon monoxide (CO). Accumulating evidence indicated that H2S could mediate the cardioprotective effects in myocardial ischemia model. Ventricular arrhythmia is the most important risk factor for cardiac mortality and sudden death after acute myocardial infarction (AMI). The potential impact of H2S on cardiomyocytes electrical remodeling post ischemic insult is not fully explored now. Present study investigated the role of H2S on cardiomyocytes electrical remodeling in rats with ischemia/reperfusion injury. H2S concentration was reduced and arrhythmia score was increased in this model. CSE mRNA level was also upregulated in the ischemic myocardium. Exposure to exogenous NaHS reduced the action potential duration (APD), inhibited L-type Ca(2+) channels and activated K(ATP) channels in cardiomyocytes isolated from ischemic myocardium Exogenous H2S application improves electrical remodeling in cardiomyocytes isolated from ischemic myocardium. These results indicated that reduced H2S level might be linked to ischemia/reperfusion induced arrhythmias. PMID:25755736

  15. Hydrogen sulfide mediates the protection of dietary restriction against renal senescence in aged F344 rats.

    PubMed

    Wang, Wen-Juan; Cai, Guang-Yan; Ning, Yi-Chun; Cui, Jing; Hong, Quan; Bai, Xue-Yuan; Xu, Xiao-Meng; Bu, Ru; Sun, Xue-Feng; Chen, Xiang-Mei

    2016-01-01

    Renal aging is always accompanied by increased oxidative stress. Hydrogen sulfide (H2S) can be up-regulated by 50% dietary restriction (DR) for 7-day and can block mitochondrial oxidative stress. H2S production exerts a critical role in yeast, worm, and fruit fly models of DR-mediated longevity. In this study, we found that renal aging could be attenuated by 30% DR for 6-month (DR-6M) and life-long (DR-LL), but not for 6-week (DR-6W). The expressions of cystathionine-γ-lyase (CGL) and cystathionine-β- synthase (CBS) were improved by DR-6M and DR-LL. Endogenous H2S production shared the same trend with CBS and CGL, while glutathione (GSH) didn't. When comparing efficiencies of DR for different durations, more evident production of H2S was found in DR-6M and DR-LL than in DR-6W. Finally the level of oxidative stress was improved by DR-6M and DR-LL rather than by DR-6W. It concluded that aged rats had the ability to produce enough H2S on 30% DR interventions protecting against renal aging, and the effect of DR for long-term were more significant than that of DR for short-term. PMID:27456368

  16. Analysis of some enzymes activities of hydrogen sulfide metabolism in plants.

    PubMed

    Li, Zhong-Guang

    2015-01-01

    Hydrogen sulfide (H2S) which is considered as a novel gasotransmitter after reactive oxygen species and nitric oxide in plants has dual character, that is, toxicity that inhibits cytochrome oxidase at high concentration and as signal molecule which is involved in plant growth, development, and the acquisition of tolerance to adverse environments such as extreme temperature, drought, salt, and heavy metal stress at low concentration. Therefore, H2S homeostasis is very important in plant cells. The level of H2S in plant cells is regulated by its synthetic and degradative enzymes, L-/D-cysteine desulfhydrase (L-/D-DES), sulfite reductase (SiR), and cyanoalanine synthase (CAS), which are responsible for H2S synthesis, while cysteine synthase (CS) takes charge of the degradation of H2S, but its reverse reaction also can produce H2S. Here, after crude enzyme is extracted from plant tissues, the activities of L-/D-DES, SiR, CAS, and CS are measured by spectrophotometry, the aim is to further understand homeostasis of H2S in plant cells and its potential mechanisms. PMID:25747484

  17. Hydrogen sulfide ameliorates cardiovascular dysfunction induced by cecal ligation and puncture in rats.

    PubMed

    Abdelrahman, R S; El-Awady, M S; Nader, M A; Ammar, E M

    2015-10-01

    Hydrogen sulfide (H2S) is an endogenously produced gaseous messenger that participates in regulation of cardiovascular functions. This study evaluates the possible protective effect of H2S in cardiovascular dysfunction induced by cecal ligation and puncture (CLP) in rats. After 24 h of induction of CLP, heart rate (HR), mortality, cardiac and inflammation biomarkers (creatine kinase-MB (CK-MB) isozyme, cardiac troponin I (cTnI), C-reactive protein (CRP), and lactate dehydrogenase (LDH)), in vitro vascular reactivity, histopathological examination, and oxidative biomarkers (malondialdehyde (MDA), reduced glutathione (GSH), and superoxide dismutase (SOD)) were determined. CLP induced elevations in HR, mortality, serum CK-MB, cTnI, CRP, and LDH, in addition to impaired aortic contraction to potassium chloride and phenylephrine and relaxation to acetylcholine without affecting sodium nitroprusside responses. Moreover, CLP increased cardiac and aortic MDA and decreased SOD, without affecting GSH and caused a marked subserosal and interstitial inflammation in endocardium. Sodium hydrosulfide, but not the irreversible inhibitor of H2S synthesis dl-propargyl glycine, protected against CLP-induced changes in HR, mortality, cardiac and inflammatory biomarkers, oxidative stress, and myocardium histopathological changes without affecting vascular dysfunction. Our results confirm that H2S can attenuate CLP-induced cardiac, but not vascular, dysfunction possibly through its anti-inflammatory and antioxidant effects. PMID:25791320

  18. Changes in physical properties of a compost biofilter treating hydrogen sulfide.

    PubMed

    Morgan-Sagastume, Juan M; Noyola, Adalberto; Revah, Sergio; Ergas, Sarina J

    2003-08-01

    A technique is presented that can be used to estimate the changes in physical structure in a natural biofilter packing medium, such as compost, over time. The technique applies information from tracer studies, grain size distribution, and pressure drop analysis to a model that estimates the number of channels, average channel diameter, number of particles, and specific surface area of the medium. Important operational factors, such as moisture content, pressure drop, and sulfate accumulation also were evaluated both in a conventionally operated biofilter and in one operated with periodic compost mixing. In the conventionally operated laboratory-scale compost biofilter, hydrogen sulfide (H2S) removal efficiency decreased from 100% to approximately 90% over 206 days of operation. In a similar system, operated with compost mixing, the H2S removal efficiency was maintained near 100%. Variations in media moisture conditions and specific surface area can explain the results observed in this study. Under conventional operation, drying near the inlet disintegrated the compost particles, producing a large number of particles and flow channels and increasing the specific surface area. At the top of the column, where moisture was added, particle size increased and specific surface area decreased. In the column with media mixing, moisture content, particle size, and specific surface area remained homogeneous. PMID:12943321

  19. Highly sensitive hydrogen sulfide (H2 S) gas sensors from viral-templated nanocrystalline gold nanowires

    NASA Astrophysics Data System (ADS)

    Moon, Chung Hee; Zhang, Miluo; Myung, Nosang V.; Haberer, Elaine D.

    2014-04-01

    A facile, site-specific viral-templated assembly method was used to fabricate sensitive hydrogen sulfide (H2S) gas sensors at room temperature. A gold-binding M13 bacteriophage served to organize gold nanoparticles into linear arrays which were used as seeds for subsequent nanowire formation through electroless deposition. Nanowire widths and densities within the sensors were modified by electroless deposition time and phage concentration, respectively, to tune device resistance. Chemiresistive H2S gas sensors with superior room temperature sensing performance were produced with sensitivity of 654%/ppmv, theoretical lowest detection limit of 2 ppbv, and 70% recovery within 9 min for 0.025 ppmv. The role of the viral template and associated gold-binding peptide was elucidated by removing organics using a short O2 plasma treatment followed by an ethanol dip. The template and gold-binding peptide were crucial to electrical and sensor performance. Without surface organics, the resistance fell by several orders of magnitude, the sensitivity dropped by more than a factor of 100 to 6%/ppmv, the lower limit of detection increased, and no recovery was detected with dry air flow. Viral templates provide a novel, alternative fabrication route for highly sensitive, nanostructured H2S gas sensors.

  20. Hydrogen sulfide mediates the protection of dietary restriction against renal senescence in aged F344 rats

    PubMed Central

    Wang, Wen-juan; Cai, Guang-yan; Ning, Yi-chun; Cui, Jing; Hong, Quan; Bai, Xue-yuan; Xu, Xiao-meng; Bu, Ru; Sun, Xue-feng; Chen, Xiang-mei

    2016-01-01

    Renal aging is always accompanied by increased oxidative stress. Hydrogen sulfide (H2S) can be up-regulated by 50% dietary restriction (DR) for 7-day and can block mitochondrial oxidative stress. H2S production exerts a critical role in yeast, worm, and fruit fly models of DR-mediated longevity. In this study, we found that renal aging could be attenuated by 30% DR for 6-month (DR-6M) and life-long (DR-LL), but not for 6-week (DR-6W). The expressions of cystathionine-γ-lyase (CGL) and cystathionine-β- synthase (CBS) were improved by DR-6M and DR-LL. Endogenous H2S production shared the same trend with CBS and CGL, while glutathione (GSH) didn’t. When comparing efficiencies of DR for different durations, more evident production of H2S was found in DR-6M and DR-LL than in DR-6W. Finally the level of oxidative stress was improved by DR-6M and DR-LL rather than by DR-6W. It concluded that aged rats had the ability to produce enough H2S on 30% DR interventions protecting against renal aging, and the effect of DR for long-term were more significant than that of DR for short-term. PMID:27456368

  1. Endogenous Hydrogen Sulfide Enhances Cell Proliferation of Human Gastric Cancer AGS Cells.

    PubMed

    Sekiguchi, Fumiko; Sekimoto, Teruki; Ogura, Ayaka; Kawabata, Atsufumi

    2016-01-01

    Hydrogen sulfide (H2S), the third gasotransmitter, is endogenously generated by certain H2S synthesizing enzymes, including cystathionine-γ-lyase (CSE) and cystathionine-β-synthase (CBS) from L-cysteine in the mammalian body. Several studies have shown that endogenous and exogenous H2S affects the proliferation of cancer cells, although the effects of H2S appear to vary with cell type, being either promotive or suppressive. In the present study, we determined whether endogenously formed H2S regulates proliferation in human gastric cancer AGS cells. CSE, but not CBS, was expressed in AGS cells. CSE inhibitors, DL-propargylglycine (PPG) and β-cyano-L-alanine (BCA), significantly suppressed the proliferation of AGS cells in a concentration-dependent manner. CSE inhibitors did not increase lactate dehydrogenase (LDH) release in the same concentration range. The inhibitory effects of PPG and BCA on cell proliferation were reversed by repetitive application of NaHS, a donor of H2S. Interestingly, nuclear condensation and fragmentation were detected in AGS cells treated with PPG or BCA. These results suggest that endogenous H2S produced by CSE may contribute to the proliferation of gastric cancer AGS cells, most probably through anti-apoptotic actions. PMID:27150157

  2. Bioenergetic relevance of hydrogen sulfide and the interplay between gasotransmitters at human cystathionine β-synthase.

    PubMed

    Vicente, João B; Malagrinò, Francesca; Arese, Marzia; Forte, Elena; Sarti, Paolo; Giuffrè, Alessandro

    2016-08-01

    Merely considered as a toxic gas in the past, hydrogen sulfide (H2S) is currently viewed as the third 'gasotransmitter' in addition to nitric oxide (NO) and carbon monoxide (CO), playing a key signalling role in human (patho)physiology. H2S can either act as a substrate or, similarly to CO and NO, an inhibitor of mitochondrial respiration, in the latter case by targeting cytochrome c oxidase (CcOX). The impact of H(2)S on mitochondrial energy metabolism crucially depends on the bioavailability of this gaseous molecule and its interplay with the other two gasotransmitters. The H(2)S-producing human enzyme cystathionine β-synthase (CBS), sustaining cellular bioenergetics in colorectal cancer cells, plays a role in the interplay between gasotransmitters. The enzyme was indeed recently shown to be negatively modulated by physiological concentrations of CO and NO, particularly in the presence of its allosteric activator S-adenosyl-l-methionine (AdoMet). These newly discovered regulatory mechanisms are herein reviewed. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. PMID:27039165

  3. Emerging Roles of Hydrogen Sulfide in Inflammatory and Neoplastic Colonic Diseases

    PubMed Central

    Guo, Fang-Fang; Yu, Ta-Chung; Hong, Jie; Fang, Jing-Yuan

    2016-01-01

    Hydrogen sulfide (H2S) is a toxic gas that has been recognized as an important mediator of many physiological processes, such as neurodegeneration, regulation of inflammation, blood pressure, and metabolism. In the human colon, H2S is produced by both endogenous enzymes and sulfate-reducing bacteria (SRB). H2S is involved in the physiological and pathophysiological conditions of the colon, such as inflammatory bowel disease (IBD) and colorectal cancer (CRC), which makes the pharmacological modulation of H2S production and metabolism a potential chemical target for the treatment of colonic diseases. However, the exact mechanisms and pathways by which H2S-mediates normal physiological function and disease in the colon are not fully understood. Besides, the production and release of H2S are modulated by both endogenous and exogenous factors. This review will discuss the production and storage of H2S, its biological roles and the emerging importance in physiology and pathology of IBD and CRC. PMID:27199771

  4. Hydrogen sulfide is a novel gasotransmitter with pivotal role in regulating lateral root formation in plants

    PubMed Central

    Li, Yan-Jun; Shi, Zhi-Qi; Gan, Li-Jun; Chen, Jian

    2014-01-01

    Hydrogen sulfide (H2S), the third gasotransmitter after nitric oxide (NO) and carbon monoxide (CO), is a critical neuromodulator in the pathogenesis of various diseases from neurodegenerative diseases to diabetes or heart failure. The crosstalk between NO and H2S has been well established in mammalian physiology. In planta, NO is demonstrated to regulate lateral root formation by acting downstream of auxin. The recent reports revealed that H2S is a novel inducer of lateral root (LR) formation by stimulating the expression of cell cycle regulatory genes (CCRGs), acting similarly with NO, CO, and IAA. Interestingly, during the initiation of lateral root primordia, IAA is a potent inducer of endogenous H2S and CO, which is produced by L-cysteine desulfhydrase (LCD) and heme oxygenase-1 (HO-1), respectively. The increasing evidences suggest that H2S-promoted LR growth is dependent on the endogenous production of CO. In addition, our results indicate that the H2S signaling in the regulation of LR formation can be associated to NO and Ca2+. In this addendum, we advanced a proposed schematic model for H2S-mediated signaling pathway of plant LR development. PMID:24832131

  5. An Antifungal Role of Hydrogen Sulfide on the Postharvest Pathogens Aspergillus niger and Penicillium italicum

    PubMed Central

    Li, Yan-Hong; Hu, Liang-Bin; Yan, Hong; Liu, Yong-Sheng; Zhang, Hua

    2014-01-01

    In this research, the antifungal role of hydrogen sulfide (H2S) on the postharvest pathogens Aspergillus niger and Penicillium italicum growing on fruits and under culture conditions on defined media was investigated. Our results show that H2S, released by sodium hydrosulfide (NaHS) effectively reduced the postharvest decay of fruits induced by A. niger and P. italicum. Furthermore, H2S inhibited spore germination, germ tube elongation, mycelial growth, and produced abnormal mycelial contractions when the fungi were grown on defined media in Petri plates. Further studies showed that H2S could cause an increase in intracellular reactive oxygen species (ROS) in A. niger. In accordance with this observation we show that enzyme activities and the expression of superoxide dismutase (SOD) and catalase (CAT) genes in A. niger treated with H2S were lower than those in control. Moreover, H2S also significantly inhibited the growth of Saccharomyces cerevisiae, Rhizopus oryzae, the human pathogen Candida albicans, and several food-borne bacteria. We also found that short time exposure of H2S showed a microbicidal role rather than just inhibiting the growth of microbes. Taken together, this study suggests the potential value of H2S in reducing postharvest loss and food spoilage caused by microbe propagation. PMID:25101960

  6. The Cardioprotective Effects of Hydrogen Sulfide in Heart Diseases: From Molecular Mechanisms to Therapeutic Potential

    PubMed Central

    Shen, Yaqi; Shen, Zhuqing; Luo, Shanshan; Guo, Wei; Zhu, Yi Zhun

    2015-01-01

    Hydrogen sulfide (H2S) is now recognized as a third gaseous mediator along with nitric oxide (NO) and carbon monoxide (CO), though it was originally considered as a malodorous and toxic gas. H2S is produced endogenously from cysteine by three enzymes in mammalian tissues. An increasing body of evidence suggests the involvement of H2S in different physiological and pathological processes. Recent studies have shown that H2S has the potential to protect the heart against myocardial infarction, arrhythmia, hypertrophy, fibrosis, ischemia-reperfusion injury, and heart failure. Some mechanisms, such as antioxidative action, preservation of mitochondrial function, reduction of apoptosis, anti-inflammatory responses, angiogenic actions, regulation of ion channel, and interaction with NO, could be responsible for the cardioprotective effect of H2S. Although several mechanisms have been identified, there is a need for further research to identify the specific molecular mechanism of cardioprotection in different cardiac diseases. Therefore, insight into the molecular mechanisms underlying H2S action in the heart may promote the understanding of pathophysiology of cardiac diseases and lead to new therapeutic targets based on modulation of H2S production. PMID:26078822

  7. Endogenous generation of hydrogen sulfide and its regulation in Shewanella oneidensis

    PubMed Central

    Wu, Genfu; Li, Ning; Mao, Yinting; Zhou, Guangqi; Gao, Haichun

    2015-01-01

    Hydrogen sulfide (H2S) has been recognized as a physiological mediator with a variety of functions across all domains of life. In this study, mechanisms of endogenous H2S generation in Shewanella oneidensis were investigated. As a research model with highly diverse anaerobic respiratory pathways, the microorganism is able to produce H2S by respiring on a variety of sulfur-containing compounds with SirACD and PsrABC enzymatic complexes, as well as through cysteine degradation with three enzymes, MdeA, SO_1095, and SseA. We showed that the SirACD and PsrABC complexes, which are predominantly, if not exclusively, responsible for H2S generation via respiration of sulfur species, do not interplay with each other. Strikingly, a screen for regulators controlling endogenous H2S generation by transposon mutagenesis identified global regulator Crp to be essential to all H2S-generating processes. In contrast, Fnr and Arc, two other global regulators that have a role in respiration, are dispensable in regulating H2S generation via respiration of sulfur species. Interestingly, Arc is involved in the H2S generation through cysteine degradation by repressing expression of the mdeA gene. We further showed that expression of the sirA and psrABC operons is subjected to direct regulation of Crp, but the mechanisms underlying the requirement of Crp for H2S generation through cysteine degradation remain elusive. PMID:25972854

  8. Ammonia, hydrogen sulfide, carbon dioxide and particulate matter emissions from California high-rise layer houses

    NASA Astrophysics Data System (ADS)

    Lin, X.-J.; Cortus, E. L.; Zhang, R.; Jiang, S.; Heber, A. J.

    2012-01-01

    Ammonia and hydrogen sulfide are hazardous substances that are regulated by the U.S. Environmental Protection Agency through community right-to-know legislation (EPCRA, EPA, 2011). The emissions of ammonia and hydrogen sulfide from large commercial layer facilities are of concern to legislators and nearby neighbors. Particulate matter (PM 10 and PM 2.5) released from layer houses are two of seven criteria pollutants for which EPA has set National Ambient Air Quality Standards as required by the Clean Air Act. Therefore, it is important to quantify the baseline emissions of these pollutants. The emissions of ammonia, hydrogen sulfide, carbon dioxide and PM from two California high-rise layer houses were monitored for two years from October 2007 to October 2009. Each house had 32,500 caged laying hens. The monitoring site was setup in compliance with a U.S. EPA-approved quality assurance project plan. The results showed the average daily mean emission rates of ammonia, hydrogen sulfide and carbon dioxide were 0.95 ± 0.67 (standard deviation) g d -1 bird -1, 1.27 ± 0.78 mg d -1 bird -1 and 91.4 ± 16.5 g d -1 bird -1, respectively. The average daily mean emission rates of PM 2.5, PM 10 and total suspended particulate (TSP) were 5.9 ± 12.6, 33.4 ± 27.4, and 78.0 ± 42.7 mg d -1 bird -1, respectively. It was observed that ammonia emission rates in summer were lower than in winter because the high airflow stabilized the manure by drying it. The reductions due to lower moisture content were greater than the increases due to higher temperature. However, PM 10 emission rates in summer were higher than in winter because the drier conditions coupled with higher internal air velocities increased PM 10 release from feathers, feed and manure.

  9. Spin- and angle-resolved spectroscopy of S 2p photoionization in the hydrogen sulfide molecule

    SciTech Connect

    Turri, G.; Snell, G.; Canton, S.E.; Bilodeau, R.C.; Langer, B.; Martins, M.; Kukk, E.; Cherepkov, N.; Bozek, J.D.; Kilcoyne, A.L.; Berrah, N.

    2004-08-01

    Angle- and spin-resolved photoelectron spectroscopy with circularly and linearly polarized synchrotron radiation were used to study the electronic structure of the hydrogen sulfide molecule. A strong effect of the molecular environment appears in the spin-resolved measurements and, although less clearly, in the angular distribution of the sulfur 2p photoelectrons. The anisotropy and spin parameters of the three main spectral components have been obtained. The validity of simple atomic models in explaining the results is discussed.

  10. Hydrogen sulfide on Io - Evidence from telescopic and laboratory infrared spectra

    NASA Technical Reports Server (NTRS)

    Nash, Douglas B.; Howell, Robert R.

    1989-01-01

    Evidence is reported for hydrogen sulfide on Io's surface. An infrared band at 3.915 (+ or - 0.015) micrometers in several ground-based spectra of Io can be accounted for by reflectance from H2S frost deposited on or cocondensed with sulfur dioxide frost. Temporal variation in the occurrence and intensity of the band suggests that condensed H2S on Io's surface is transient, implying a similar variation of H2S abundance in Io's atmosphere.

  11. Aqueous process for recovering sulfur from hydrogen sulfide-bearing gas

    SciTech Connect

    Basu, Arunabha

    2015-05-05

    A process for recovering sulfur from a hydrogen sulfide-bearing gas utilizes an aqueous reaction medium, a temperature of about 110-150.degree. C., and a high enough pressure to maintain the aqueous reaction medium in a liquid state. The process reduces material and equipment costs and addresses the environmental disadvantages associated with known processes that rely on high boiling point organic solvents.

  12. Hydrogen sulfide attenuates ferric chloride-induced arterial thrombosis in rats.

    PubMed

    Qin, Yi-Ren; You, Shou-Jiang; Zhang, Yan; Li, Qian; Wang, Xian-Hui; Wang, Fen; Hu, Li-Fang; Liu, Chun-Feng

    2016-06-01

    Hydrogen sulfide (H2S) is a novel gaseous transmitter, regulating a multitude of biological processes in the cardiovascular and other systems. However, it remains unclear whether it exerts any effect on arterial thrombosis. In this study, we examined the effect of H2S on ferric chloride (FeCl3)-induced thrombosis in the rat common carotid artery (CCA). The results revealed a decrease of the H2S-producing enzyme cystathionine γ-lyase (CSE) expression and H2S production that persisted until 48 h after FeCl3 application. Intriguingly, administration with NaHS at appropriate regimen reduced the thrombus formation and enhanced the blood flow, accompanied with the alleviation of CSE and CD31 downregulation, and endothelial cell apoptosis in the rat CCA following FeCl3 application. Moreover, the antithrombotic effect of H2S was also observed in Rose Bengal photochemical model in which the development of thrombosis is contributed by oxidative injury to the endothelium. The in vitro study demonstrated that the mRNA and protein expression of CSE, as well as H2S production, was decreased in hydrogen peroxide (H2O2)-treated endothelial cells. Exogenous supplement of NaHS and CSE overexpression consistently alleviated the increase of cleaved caspase-3 and endothelial cell damage caused by H2O2. Taken together, our findings suggest that endogenous H2S generation in the endothelium may be impaired during arterial thrombosis and that modulation of H2S, either exogenous supplement or boost of endogenous production, may become a potential venue for arterial thrombosis therapy. PMID:26982248

  13. Effect of surface characteristics of wood-based activated carbons on adsorption of hydrogen sulfide

    SciTech Connect

    Adib, F.; Bagreev, A.; Bandosz, T.J.

    1999-06-15

    Three wood-based commercial activated carbons supplied by Westvaco were studied as adsorbents of hydrogen sulfide. The initial materials were characterized using sorption of nitrogen, Boehm titration, potentiometric titration, water sorption, thermal analysis, and temperature-programmed desorption. The breakthrough tests were done at low concentrations of H{sub 2}S in the input gas to simulate conditions in water pollution control plants where carbon beds are used as odor adsorbents. In spite of apparent general similarities in the origin of the materials, method of activation, surface chemistry, and porosity, significant differences in their performance as hydrogen sulfide adsorbents were observed. Results show that the combined effect of the presence of pores large enough to accommodate surface functional groups and small enough to have the film of water at relatively low pressure contributes to oxidation of hydrogen sulfide. Moreover, there are features of activated carbon surfaces such as local environment of acidic/basic groups along with the presence of alkali metals which are important to the oxidation process.

  14. Proceedings of the Hydrogen Sulfide Health Research and Risk Assessment Symposium October 31-November 2, 2000.

    PubMed

    Woodall, George M; Smith, Roy L; Granville, Geoff C

    2005-10-01

    The Hydrogen Sulfide Health Research and Risk Assessment Symposium came about for several reasons: (1) increased interest by the U.S. Environmental Protection Agency (EPA) and several state agencies in regulating hydrogen sulfide (H2S); (2) uncertainty about ambient exposure to H2S; (3) confusion and disagreement in the literature about possible health effects at low-level exposures; and (4) presentation of results of a series of recent animal bioassays. The American Petroleum Institute (API) proposed this symposium and the EPA became an early co-sponsor, with the Chemical Industry Institute of Toxicology (CIIT) and the American Forest & Paper Association (AF&PA) contributing expertise and funding assistance. The topics covered in this symposium included Animal Research, Human Research, Mode-of-Action and Dosimetry Issues, Environmental Exposure and Monitoring, Assessment and Regulatory Issues, and closed with a panel discussion. The overall goals of the symposium were to: gather together experts in H2S health effects research and individuals from governmental agencies charged with protecting the public health, provide a venue for reporting of recent research findings, identify gaps in the current information, and outline new research directions and promote research collaboration. During the course of the symposium, presenters provided comprehensive reviews of the state of knowledge for each topic. Several new research proposals discussed at the symposium have subsequently been initiated. This report provides a summary of the talks, poster presentations, and panel discussions that occurred at the Hydrogen Sulfide Health and Risk Assessment Symposium. PMID:16033755

  15. Water vapor inhibits hydrogen sulfide detection in pulsed fluorescence sulfur monitors

    NASA Astrophysics Data System (ADS)

    Bluhme, Anders B.; Ingemar, Jonas L.; Meusinger, Carl; Johnson, Matthew S.

    2016-06-01

    The Thermo Scientific 450 Hydrogen Sulfide-Sulfur Dioxide Analyzer measures both hydrogen sulfide (H2S) and sulfur dioxide (SO2). Sulfur dioxide is measured by pulsed fluorescence, while H2S is converted to SO2 with a molybdenum catalyst prior to detection. The 450 is widely used to measure ambient concentrations, e.g., for emissions monitoring and pollution control. An air stream with a constant H2S concentration was generated and the output of the analyzer recorded as a function of relative humidity (RH). The analyzer underreported H2S as soon as the relative humidity was increased. The fraction of undetected H2S increased from 8.3 at 5.3 % RH (294 K) to over 34 % at RH > 80 %. Hydrogen sulfide mole fractions of 573, 1142, and 5145 ppb were tested. The findings indicate that previous results obtained with instruments using similar catalysts should be re-evaluated to correct for interference from water vapor. It is suspected that water decreases the efficiency of the converter unit and thereby reduces the measured H2S concentration.

  16. Ab initio intermolecular potential energy surface and thermophysical properties of hydrogen sulfide.

    PubMed

    Hellmann, Robert; Bich, Eckard; Vogel, Eckhard; Vesovic, Velisa

    2011-08-14

    A six-dimensional potential energy hypersurface (PES) for two interacting rigid hydrogen sulfide molecules was determined from high-level quantum-mechanical ab initio computations. A total of 4016 points for 405 different angular orientations of two molecules were calculated utilizing the counterpoise-corrected supermolecular approach at the CCSD(T) level of theory and extrapolating the calculated interaction energies to the complete basis set limit. An analytical site-site potential function with eleven sites per hydrogen sulfide molecule was fitted to the interaction energies. The PES has been validated by computing the second pressure virial coefficient, shear viscosity, thermal conductivity and comparing with the available experimental data. The calculated values of volume viscosity were not used to validate the potential as the low accuracy of the available data precluded such an approach. The second pressure virial coefficient was evaluated by means of the Takahashi and Imada approach, while the transport properties, in the dilute limit, were evaluated by utilizing the classical trajectory method. In general, the agreement with the primary experimental data is within the experimental error for temperatures higher than 300 K. For lower temperatures the lack of reliable data indicates that the values of the second pressure virial coefficient and of the transport properties calculated in this work are currently the most accurate estimates for the thermophysical properties of hydrogen sulfide. PMID:21720616

  17. Biological hydrogen sulfide production in an ethanol-lactate fed fluidized-bed bioreactor.

    PubMed

    Nevatalo, Laura M; Mäkinen, Annukka E; Kaksonen, Anna H; Puhakka, Jaakko A

    2010-01-01

    Sulfate-reducing fluidized-bed bioreactor (FBR) fed with ethanol-lactate mixture was operated at 35 degrees C for 540 days to assess mine wastewater treatment, biological hydrogen sulfide production capacity and acetate oxidation kinetics. During the mine wastewater treatment period with synthetic wastewater, the sulfate reduction rate was 62 mmol SO(4)(2-)L(-1)d(-1) and Fe and Zn precipitation rates were 11 mmol Fe L(-1)d(-1) and 1 mmol Zn L(-1)d(-1). After this, the hydrogen sulfide production was optimized, resulting in sulfate reduction rate of 100 mmol SO(4)(2-)L(-1)d(-1) and H(2)S production rate of 73.2 mmol H(2)SL(-1)d(-1). The limiting step in the H(2)S production was the rate of acetate oxidation, being 50 mmol acetate L(-1)d(-1). Therefore, FBR batch assays were designed to determine the acetate oxidation kinetics, and following kinetic parameters were obtained: K(m) of 63 micromol L(-1) and V(max) of 0.76 micromol acetate g VSS(-1)min(-1). The present study demonstrates high-rate hydrogen sulfide production and high-rate mine wastewater treatment with ethanol and lactate fed fluidized-bed bioreactor. PMID:19716290

  18. Formation of Hydrogen Sulfide in Wine: Interactions between Copper and Sulfur Dioxide.

    PubMed

    Bekker, Marlize Z; Smith, Mark E; Smith, Paul A; Wilkes, Eric N

    2016-01-01

    The combined synergistic effects of copper (Cu(2+)) and sulfur dioxide (SO₂) on the formation of hydrogen sulfide (H₂S) in Verdelho and Shiraz wine samples post-bottling was studied over a 12-month period. The combined treatment of Cu(2+) and SO₂ significantly increased H₂S formation in Verdelho wines samples that were not previously treated with either Cu(2+) or SO₂. The formation of H₂S produced through Cu(2+) mediated reactions was likely either: (a) directly through the interaction of SO₂ with either Cu(2+) or H₂S; or (b) indirectly through the interaction of SO₂ with other wine matrix compounds. To gain better understanding of the mechanisms responsible for the significant increases in H₂S concentration in the Verdelho samples, the interaction between Cu(2+) and SO₂ was studied in a model wine matrix with and without the presence of a representative thiol quenching compound (4-methylbenzoquinone, 4MBQ). In these model studies, the importance of naturally occurring wine compounds and wine additives, such as quinones, SO₂, and metal ions, in modulating the formation of H₂S post-bottling was demonstrated. When present in equimolar concentrations a 1:1 ratio of H₂S- and SO₂-catechol adducts were produced. At wine relevant concentrations, however, only SO₂-adducts were produced, reinforcing that the competition reactions of sulfur nucleophiles, such as H₂S and SO₂, with wine matrix compounds play a critical role in modulating final H₂S concentrations in wines. PMID:27626394

  19. A critical review of pharmacological significance of Hydrogen Sulfide in hypertension.

    PubMed

    Ahmad, Ashfaq; Sattar, Munavvar A; Rathore, Hassaan A; Khan, Safia Akhtar; Lazhari, M I; Afzal, Sheryar; Hashmi, F; Abdullah, Nor A; Johns, Edward J

    2015-01-01

    In the family of gas transmitters, hydrogen sulfide (H2S) is yet not adequately researched. Known for its rotten egg smell and adverse effects on the brain, lungs, and kidneys for more than 300 years, the vasorelaxant effects of H2S on blood vessel was first observed in 1997. Since then, research continued to explore the possible therapeutic effects of H2S in hypertension, inflammation, pancreatitis, different types of shock, diabetes, and heart failure. However, a considerable amount of efforts are yet needed to elucidate the mechanisms involved in the therapeutic effects of H2S, such as nitric oxide-dependent or independent vasodilation in hypertension and regression of left ventricular hypertrophy. More than a decade of good repute among researchers, H2S research has certain results that need to be clarified or reevaluated. H2S produces its response by multiple modes of action, such as opening the ATP-sensitive potassium channel, angiotensin-converting enzyme inhibition, and calcium channel blockade. H2S is endogenously produced from two sulfur-containing amino acids L-cysteine and L-methionine by the two enzymes cystathionine γ lyase and cystathionine β synthase. Recently, the third enzyme, 3-mercaptopyruvate sulfur transferase, along with cysteine aminotransferase, which is similar to aspartate aminotransferase, has been found to produce H2S in the brain. The H2S has interested researchers, and a great deal of information is being generated every year. This review aims to provide an update on the developments in the research of H2S in hypertension amid the ambiguity in defining the exact role of H2S in hypertension because of insufficient number of research results on this area. This critical review on the role of H2S in hypertension will clarify the gray areas and highlight its future prospects. PMID:26069359

  20. A critical review of pharmacological significance of Hydrogen Sulfide in hypertension

    PubMed Central

    Ahmad, Ashfaq; Sattar, Munavvar A.; Rathore, Hassaan A.; Khan, Safia Akhtar; Lazhari, M. I.; Afzal, Sheryar; Hashmi, F.; Abdullah, Nor A.; Johns, Edward J.

    2015-01-01

    In the family of gas transmitters, hydrogen sulfide (H2S) is yet not adequately researched. Known for its rotten egg smell and adverse effects on the brain, lungs, and kidneys for more than 300 years, the vasorelaxant effects of H2S on blood vessel was first observed in 1997. Since then, research continued to explore the possible therapeutic effects of H2S in hypertension, inflammation, pancreatitis, different types of shock, diabetes, and heart failure. However, a considerable amount of efforts are yet needed to elucidate the mechanisms involved in the therapeutic effects of H2S, such as nitric oxide-dependent or independent vasodilation in hypertension and regression of left ventricular hypertrophy. More than a decade of good repute among researchers, H2S research has certain results that need to be clarified or reevaluated. H2S produces its response by multiple modes of action, such as opening the ATP-sensitive potassium channel, angiotensin-converting enzyme inhibition, and calcium channel blockade. H2S is endogenously produced from two sulfur-containing amino acids L-cysteine and L-methionine by the two enzymes cystathionine γ lyase and cystathionine β synthase. Recently, the third enzyme, 3-mercaptopyruvate sulfur transferase, along with cysteine aminotransferase, which is similar to aspartate aminotransferase, has been found to produce H2S in the brain. The H2S has interested researchers, and a great deal of information is being generated every year. This review aims to provide an update on the developments in the research of H2S in hypertension amid the ambiguity in defining the exact role of H2S in hypertension because of insufficient number of research results on this area. This critical review on the role of H2S in hypertension will clarify the gray areas and highlight its future prospects. PMID:26069359

  1. First-principles demonstration of superconductivity at 280 K in hydrogen sulfide with low phosphorus substitution

    NASA Astrophysics Data System (ADS)

    Ge, Yanfeng; Zhang, Fan; Yao, Yugui

    2016-06-01

    Recently, BCS superconductivity at 203 K has been observed in a highly compressed hydrogen sulfide. We use first-principles calculations to systematically examine the effects of partially substituting chalcogen atoms on the superconductivity of hydrogen chalcogenides under high pressures. We find detailed trends of how the critical temperature changes upon increasing the V-, VI- or VII-substitution rate. These trends highlight the key roles played by low atomic mass and metallized covalent bonds. In particular, a possible record high critical temperature of 280 K is predicted in stable H3S0.925P0.075 with the I m 3 ¯m structure under 250 GPa.

  2. The use of ethylenediamine to remove hydrogen sulfide from coke oven gas

    SciTech Connect

    Marakhovskii, L.F.; Rezunenko, Y.I.; Popov, A.A.

    1983-01-01

    The investigations of the equilibrium absorption of H/sub 2/S by an EDA solution showed the solubility of hydrogen sulfide in ethylenediamine solutions is almost twice that in monoethanolamine solutions. Ethylenediamine may be used as an absorber for thorough removal of H/sub 2/S from coke oven gas in the presence of CO/sub 2/ and HCN. The hydrogen cyanide of coke oven gas, having practically no effect on the equilibrium absorption of H/sub 2/S and CO/sub 2/, may in this case be used in the form of ethylenethiourea - a marketable byproduct.

  3. Fluorescence signaling of hydrogen sulfide in broad pH range using a copper complex based on BINOL-benzimidazole ligands.

    PubMed

    Sun, Mingtai; Yu, Huan; Li, Huihui; Xu, Hongda; Huang, Dejian; Wang, Suhua

    2015-04-20

    A weakly fluorescent complex derived from a binaphthol-benzimidazole ligand was designed and synthesized for hydrogen sulfide at different pH conditions. It was demonstrated that the probe showed the same reactivity to various hydrogen sulfide species in a broad range of pH values to generate highly fluorescent product through a displacement reaction mechanism, whereas the product's fluorescence spectrum exhibited a hypsochromic shift of ∼73 nm (2393 cm(-1)) as pH increased from neutral to basic, which can be used for distinguishing the various species of hydrogen sulfide. This turn-on fluorescence probe was highly selective and sensitive to hydrogen sulfide with a detection limit of 0.11 μM. It was then applied for evaluating the total content of sulfide (including hydrogen sulfide, hydrosulfide, and sulfide) as well as for the visual detection of gaseous H2S in air using a simple test paper strip. PMID:25839192

  4. Hydrogen Sulfide Therapy Attenuates the Inflammatory Response in a Porcine Model of Myocardial Ischemia – Reperfusion Injury

    PubMed Central

    Sodha, Neel R.; Clements, Richard T.; Feng, Jun; Liu, Yuhong; Bianchi, Cesario; Horvath, Eszter M.; Szabo, Csaba; Stahl, Gregory L.; Sellke, Frank W.

    2009-01-01

    Introduction Hydrogen sulfide (H2S) is produced endogenously in response to myocardial ischemia and thought to be cardioprotective. The mechanism underlying this protection has yet to be fully elucidated, but may be related sulfide’s ability to limit inflammation. This study investigates the cardioprotection provided by exogenous H2S, and its potential anti-inflammatory mechanism of action. Methods The mid-LAD coronary artery in 14 Yorkshire swine was acutely occluded for 60 minutes, followed by reperfusion for 120 minutes. Controls(7) received placebo, and treatment animals(7) received sulfide 10 minutes prior to and throughout reperfusion. Hemodynamic and functional measurements were obtained. Evans blue and TTC staining identified the area-at-risk and infarction. Coronary microvascular reactivity was assessed. Tissue was assayed for myeloperoxidase activity and pro-inflammatory cytokines. Results Pre-I/R hemodynamics were similar between groups, whereas post-I/R mean arterial pressure (mmHg) was reduced by 28.7±5.0 in controls vs. 6.7±6.2 in treatment animals (p=0.03). +LV dP/dt (mmHg/sec) was reduced by 1325±455 in controls vs. 416±207 in treatment animals (p=0.002). Segmental shortening in the area-at-risk was better in treatment animals. Infarct size (% of area-at-risk) in controls was 41.0±7.8% vs. 21.2±2.5% in the treated group (p=0.036). Tissue levels of IL-6, IL-8, and TNFα and MPO activity decreased in the treatment group. Treated animals demonstrated improved microvascular reactivity. Conclusions Therapeutic sulfide provides protection in response to I/R injury, improving myocardial function, reducing infarct size, and improving coronary microvascular reactivity, potentially through its anti-inflammatory properties. Exogenous sulfide may have therapeutic utility in clinical settings in which I/R injury is encountered. PMID:19660398

  5. Reasons for high-temperature superconductivity in the electron–phonon system of hydrogen sulfide

    SciTech Connect

    Degtyarenko, N. N.; Mazur, E. A.

    2015-08-15

    We have calculated the electron and phonon spectra, as well as the densities of the electron and phonon states, of the stable orthorhombic structure of hydrogen sulfide SH{sub 2} in the pressure interval 100–180 GPa. It is found that at a pressure of 175 GPa, a set of parallel planes of hydrogen atoms is formed due to a structural modification of the unit cell under pressure with complete accumulation of all hydrogen atoms in these planes. As a result, the electronic properties of the system become quasi-two-dimensional. We have also analyzed the collective synphase and antiphase vibrations of hydrogen atoms in these planes, leading to the occurrence of two high-energy peaks in the phonon density of states.

  6. ELECTROCHEMICAL SEPARATION AND CONCENTRATION OF HYDROGEN SULFIDE FROM GAS MIXTURES

    DOEpatents

    Winnick, Jack; Sather, Norman F.; Huang, Hann S.

    1984-10-30

    A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4 -- or, in the case of H.sub.2 S, to S--. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

  7. Electrochemical separation and concentration of hydrogen sulfide from gas mixtures

    DOEpatents

    Winnick, Jack; Sather, Norman F.; Huang, Hann S.

    1984-10-30

    A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4 -- or, in the case of H.sub.2 S, to S--. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

  8. Thermolysis of bibenzyl: roles of sulfur and hydrogen sulfide

    SciTech Connect

    Stenberg, V.I.; Hei, R.D.

    1985-05-31

    The presence of sulfur in the thermolysis of bibenzyl considerably reduces the severity of the conditions required to cleave the aliphatic carbon-carbon bond. Bibenzyl rapidly reacts with sulfur at 425/sup 0/C to give nine fully characterized products: benzene, toluene, ethylbenzene, diphenylmethane, 1,1-diphenylethane, trans-stilbene, phenanthrene, 2-phenylbenzothiophene, and 2,3,4,5-tetraphenylthiophene. Toluene is the principal product, and its yields are dependent on reaction time, temperature, and sulfur loading. With the addition of H/sub 2/S to the sulfur-bibenzyl reaction mixture, the required elemental sulfur loading for maximum toluene yields is greatly decreased, and the mass recovery decreases with amounts of sulfur loaded. The two minor products, 2-phenylbenzothiophene and 2,3,4,5-tetraphenylthiophene, give evidence of sulfur incorporation under these sulfur concentration conditions. The addition of hydrogen to the reaction mixtures improves mass recovery and decreases conversion. 27 references, 4 figures, 4 tables.

  9. Production of hydrogen sulfide from tetrathionate by the iron-oxidizing bacterium Thiobacillus ferrooxidans NASF-1.

    PubMed

    Ng, K Y; Kamimura, K; Sugio, T

    2000-01-01

    When incubated under anaerobic conditions, five strains of Thiobacillus ferrooxidans tested produced hydrogen sulfide (H2S) from elemental sulfur at pH 1.5. However, among the strains, T. ferrooxidans NASF-1 and AP19-3 were able to use both elemental sulfur and tetrathionate as electron acceptors for H2S production at pH 1.5. The mechanism of H2S production from tetrathionate was studied with intact cells of strain NASF-1. Strain NASF-1 was unable to use dithionate, trithionate, or pentathionate as an electron acceptor. After 12 h of incubation under anaerobic conditions at 30 degrees C, 1.3 micromol of tetrathionate in the reaction mixture was decomposed, and 0.78 micromol of H2S and 0.6 micromol of trithionate were produced. Thiosulfate and sulfite were not detected in the reaction mixture. From these results, we propose that H2S is produced at pH 1.5 from tetrathionate by T. ferrooxidans NASF-1, via the following two-step reaction, in which AH2 represents an unknown electron donor in NASF-1 cells. Namely, tetrathionate is decomposed by tetrathionate-decomposing enzyme to give trithionate and elemental sulfur (S4O6(2-)-->S3O6(2-) + S(o), Eq. 1), and the elemental sulfur thus produced is reduced by sulfur reductase using electrons from AH2 to give H2S (S(o) + AH2-->H2S + A, Eq. 2). The optimum pH and temperature for H2S production from tetrathionate under argon gas were 1.5 and 30 degrees C, respectively. Under argon gas, the H2S production from tetrathionate stopped after 1 d of incubation, producing a total of 2.5 micromol of H2S/5 mg protein. In contrast, under H2 conditions, H2S production continued for 6 d, producing a total of 10.0 micromol of H2S/5 mg protein. These results suggest that electrons from H2 were used to reduce elemental sulfur produced as an intermediate to give H2S. Potassium cyanide at 0.5 mM slightly inhibited H2S production from tetrathionate, but increased that from elemental sulfur 3-fold. 2,4-Dinitrophenol at 0.05 mM, carbonylcyanide

  10. Hydrogen sulfide replacement therapy protects the vascular endothelium in hyperglycemia by preserving mitochondrial function.

    PubMed

    Suzuki, Kunihiro; Olah, Gabor; Modis, Katalin; Coletta, Ciro; Kulp, Gabriella; Gerö, Domokos; Szoleczky, Petra; Chang, Tuanjie; Zhou, Zongmin; Wu, Lingyun; Wang, Rui; Papapetropoulos, Andreas; Szabo, Csaba

    2011-08-16

    The goal of the present studies was to investigate the role of changes in hydrogen sulfide (H(2)S) homeostasis in the pathogenesis of hyperglycemic endothelial dysfunction. Exposure of bEnd3 microvascular endothelial cells to elevated extracellular glucose (in vitro "hyperglycemia") induced the mitochondrial formation of reactive oxygen species (ROS), which resulted in an increased consumption of endogenous and exogenous H(2)S. Replacement of H(2)S or overexpression of the H(2)S-producing enzyme cystathionine-γ-lyase (CSE) attenuated the hyperglycemia-induced enhancement of ROS formation, attenuated nuclear DNA injury, reduced the activation of the nuclear enzyme poly(ADP-ribose) polymerase, and improved cellular viability. In vitro hyperglycemia resulted in a switch from oxidative phosphorylation to glycolysis, an effect that was partially corrected by H(2)S supplementation. Exposure of isolated vascular rings to high glucose in vitro induced an impairment of endothelium-dependent relaxations, which was prevented by CSE overexpression or H(2)S supplementation. siRNA silencing of CSE exacerbated ROS production in hyperglycemic endothelial cells. Vascular rings from CSE(-/-) mice exhibited an accelerated impairment of endothelium-dependent relaxations in response to in vitro hyperglycemia, compared with wild-type controls. Streptozotocin-induced diabetes in rats resulted in a decrease in the circulating level of H(2)S; replacement of H(2)S protected from the development of endothelial dysfunction ex vivo. In conclusion, endogenously produced H(2)S protects against the development of hyperglycemia-induced endothelial dysfunction. We hypothesize that, in hyperglycemic endothelial cells, mitochondrial ROS production and increased H(2)S catabolism form a positive feed-forward cycle. H(2)S replacement protects against these alterations, resulting in reduced ROS formation, improved endothelial metabolic state, and maintenance of normal endothelial function. PMID:21808008

  11. Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part II. Pathophysiological and therapeutic aspects

    PubMed Central

    Módis, Katalin; Bos, Eelke M; Calzia, Enrico; van Goor, Harry; Coletta, Ciro; Papapetropoulos, Andreas; Hellmich, Mark R; Radermacher, Peter; Bouillaud, Frédéric; Szabo, Csaba

    2014-01-01

    Emerging work demonstrates the dual regulation of mitochondrial function by hydrogen sulfide (H2S), including, at lower concentrations, a stimulatory effect as an electron donor, and, at higher concentrations, an inhibitory effect on cytochrome C oxidase. In the current article, we overview the pathophysiological and therapeutic aspects of these processes. During cellular hypoxia/acidosis, the inhibitory effect of H2S on complex IV is enhanced, which may shift the balance of H2S from protective to deleterious. Several pathophysiological conditions are associated with an overproduction of H2S (e.g. sepsis), while in other disease states H2S levels and H2S bioavailability are reduced and its therapeutic replacement is warranted (e.g. diabetic vascular complications). Moreover, recent studies demonstrate that colorectal cancer cells up-regulate the H2S-producing enzyme cystathionine β-synthase (CBS), and utilize its product, H2S, as a metabolic fuel and tumour-cell survival factor; pharmacological CBS inhibition or genetic CBS silencing suppresses cancer cell bioenergetics and suppresses cell proliferation and cell chemotaxis. In the last chapter of the current article, we overview the field of H2S-induced therapeutic ‘suspended animation’, a concept in which a temporary pharmacological reduction in cell metabolism is achieved, producing a decreased oxygen demand for the experimental therapy of critical illness and/or organ transplantation. Linked Articles This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue-8 PMID:23991749

  12. Development of novel and sensitive methods for the determination of sulfide in aqueous samples by hydrogen sulfide generation-inductively coupled plasma-atomic emission spectroscopy.

    PubMed

    Colon, M; Todolí, J L; Hidalgo, M; Iglesias, M

    2008-02-25

    Two new, simple and accurate methods for the determination of sulfide (S(2-)) at low levels (microgL(-1)) in aqueous samples were developed. The generation of hydrogen sulfide (H(2)S) took place in a coil where sulfide reacted with hydrochloric acid. The resulting H(2)S was then introduced as a vapor into an inductively coupled plasma-atomic emission spectrometer (ICP-AES) and sulfur emission intensity was measured at 180.669nm. In comparison to when aqueous sulfide was introduced, the introduction of sulfur as H(2)S enhanced the sulfur signal emission. By setting a gas separator at the end of the reaction coil, reduced sulfur species in the form of H(2)S were removed from the water matrix, thus, interferences could be avoided. Alternatively, the gas separator was replaced by a nebulizer/spray chamber combination to introduce the sample matrix and reagents into the plasma. This methodology allowed the determination of both sulfide and sulfate in aqueous samples. For both methods the linear response was found to range from 5microgL(-1) to 25mgL(-1) of sulfide. Detection limits of 5microgL(-1) and 6microgL(-1) were obtained with and without the gas separator, respectively. These new methods were evaluated by comparison to the standard potentiometric method and were successfully applied to the analysis of reduced sulfur species in environmental waters. PMID:18261510

  13. Hydrogen sulfide production during yeast fermentation causes the accumulation of ethanethiol, S-ethyl thioacetate and diethyl disulfide.

    PubMed

    Kinzurik, Matias I; Herbst-Johnstone, Mandy; Gardner, Richard C; Fedrizzi, Bruno

    2016-10-15

    Hydrogen sulfide (H2S) is produced by yeast during winemaking and possesses off-flavors reminiscent of rotten eggs. The production of H2S during fermentation has also been associated in the finished wine with the rise of additional volatile sulfur compounds (VSCs) with strong aromas of cooked onions and vegetables. To characterize these more complex VSCs produced from H2S, we performed fermentations in synthetic grape juice. H2S production was manipulated experimentally by feeding increasing concentrations of sulfate to mutant strains that are unable to incorporate H2S efficiently as part of the sulfur assimilation pathway. In finished wines from these mutants, three VSCs - ethanethiol, S-ethyl thioacetate and diethyl disulfide - increased proportionally to H2S. (34)S-labeled sulfate fed to the MET17-deleted strain was incorporated into same three VSCs, demonstrating that they are formed directly from H2S. PMID:27173572

  14. Hydrogen Sulfide (H2S) Releasing Agents: Chemistry and Biological Applications

    PubMed Central

    Zhao, Yu; Biggs, Tyler D.

    2014-01-01

    Hydrogen sulfide (H2S) is a newly recognized signaling molecule with very potent cytoprotective actions. The fields of H2S physiology and pharmacology have been rapidly growing in recent years, but a number of fundamental issues must be addressed to advance our understanding of the biology and clinical potential of H2S in the future. Hydrogen sulfide releasing agents (also known as H2S donors) have been widely used in the field. These compounds are not only useful research tools, but also potential therapeutic agents. It is therefore important to study the chemistry and pharmacology of exogenous H2S and to be aware of the limitations associated with the choice of donors used to generate H2S in vitro and in vivo. In this review we summarized the developments and limitations of current available donors including H2S gas, sulfide salts, garlic-derived sulfur compounds, Lawesson’s reagent/analogs, 1,2-dithiole-3-thiones, thiol-activated donors, photo-caged donors, and thioamino acids. Some biological applications of these donors were also discussed. PMID:25019301

  15. The hydrogen sulfide emissions abatement program at the Geysers Geothermal Power Plant

    NASA Technical Reports Server (NTRS)

    Allen, G. W.; Mccluer, H. K.

    1974-01-01

    The scope of the hydrogen sulfide (H2S) abatement program at The Geysers Geothermal Power Plant and the measures currently under way to reduce these emissions are discussed. The Geysers steam averages 223 ppm H2S by weight and after passing through the turbines leaves the plant both through the gas ejector system and by air-stripping in the cooling towers. The sulfide dissolved in the cooling water is controlled by the use of an oxidation catalyst such as an iron salt. The H2S in the low Btu ejector off gases may be burned to sulfur dioxide and scrubbed directly into the circulating water and reinjected into the steam field with the excess condensate. Details are included concerning the disposal of the impure sulfur, design requirements for retrofitting existing plants and modified plant operating procedures. Discussion of future research aimed at improving the H2S abatement system is also included.

  16. Hydrogen Sulfide Induced Carbon Dioxide Activation by Metal-Free Dual Catalysis.

    PubMed

    Kumar, Manoj; Francisco, Joseph S

    2016-03-18

    The role of metal free dual catalysis in the hydrogen sulfide (H2S)-induced activation of carbon dioxide (CO2) and subsequent decomposition of resulting monothiolcarbonic acid in the gas phase has been explored. The results suggest that substituted amines and monocarboxylic type organic or inorganic acids via dual activation mechanisms promote both activation and decomposition reactions, implying that the judicious selection of a dual catalyst is crucial to the efficient C-S bond formation via CO2 activation. Considering that our results also suggest a new mechanism for the formation of carbonyl sulfide from CO2 and H2S, these new insights may help in better understanding the coupling between the carbon and sulfur cycles in the atmospheres of Earth and Venus. PMID:26781129

  17. Modeling hydrogen sulfide emissions across the gas-liquid interface of an anaerobic swine waste treatment storage system

    NASA Astrophysics Data System (ADS)

    Blunden, Jessica; Aneja, Viney P.; Overton, John H.

    Hydrogen sulfide (H 2S) is a colorless gas emitted during decomposition of hog manure that produces an offensive "rotten egg" smell and is considered a toxic manure gas. In the southeastern United States, anaerobic waste treatment lagoons are widely used to store and treat hog excreta at commercial hog farms. Hydrogen sulfide is produced as manure decomposes anaerobically, resulting from the mineralization of organic sulfur compounds as well as the reduction of oxidized inorganic sulfur compounds by sulfur-reducing bacteria. The process of H 2S emissions from anaerobic waste treatment lagoons are investigated utilizing a two-film model with three different modeling approaches: Coupled Mass Transfer with Chemical Reactions Model with the assumption (1) pH remains constant in the liquid film (MTCR Model I) and (2) pH may change throughout the liquid film due to diffusion processes that occur within the film (MTCR Model II); and (3) a Mass Transfer Model which neglects chemical reactions (MTNCR Model) in the gas and liquid films. Results of model predictions are consistent with previous works, which show that flux is largely dependent on the physicochemical lagoon properties including sulfide concentration, pH, and lagoon temperature. Air temperature and low wind velocities (e.g., <3.25 m s -1) have negligible impact on flux. Results also indicate that flux values decrease with increased film thickness. The flux was primarily influenced by variations in the liquid film thickness, signifying that the H 2S flux is driven by liquid-phase parameters. Model results were compared with H 2S flux measurements made at a swine waste treatment storage lagoon in North Carolina using a dynamic emission flux chamber system in order to evaluate model accuracy in calculating lagoon H 2S emissions. The MTCR Model II predicted the highest increase in emission rates as aqueous sulfide concentration was increased. The MTNCR Model showed the highest dependence on pH. All three models

  18. Mechanisms Underlying Adaptation to Life in Hydrogen Sulfide-Rich Environments.

    PubMed

    Kelley, Joanna L; Arias-Rodriguez, Lenin; Patacsil Martin, Dorrelyn; Yee, Muh-Ching; Bustamante, Carlos D; Tobler, Michael

    2016-06-01

    Hydrogen sulfide (H2S) is a potent toxicant interfering with oxidative phosphorylation in mitochondria and creating extreme environmental conditions in aquatic ecosystems. The mechanistic basis of adaptation to perpetual exposure to H2S remains poorly understood. We investigated evolutionarily independent lineages of livebearing fishes that have colonized and adapted to springs rich in H2S and compared their genome-wide gene expression patterns with closely related lineages from adjacent, nonsulfidic streams. Significant differences in gene expression were uncovered between all sulfidic and nonsulfidic population pairs. Variation in the number of differentially expressed genes among population pairs corresponded to differences in divergence times and rates of gene flow, which is consistent with neutral drift driving a substantial portion of gene expression variation among populations. Accordingly, there was little evidence for convergent evolution shaping large-scale gene expression patterns among independent sulfide spring populations. Nonetheless, we identified a small number of genes that was consistently differentially expressed in the same direction in all sulfidic and nonsulfidic population pairs. Functional annotation of shared differentially expressed genes indicated upregulation of genes associated with enzymatic H2S detoxification and transport of oxidized sulfur species, oxidative phosphorylation, energy metabolism, and pathways involved in responses to oxidative stress. Overall, our results suggest that modification of processes associated with H2S detoxification and toxicity likely complement each other to mediate elevated H2S tolerance in sulfide spring fishes. Our analyses allow for the development of novel hypotheses about biochemical and physiological mechanisms of adaptation to extreme environments. PMID:26861137

  19. Aasgard B process selection of hydrogen sulfide removal and disposal

    SciTech Connect

    Son, K.J. van; Chludzinski, G.; Charles, P.R.

    1999-07-01

    The Aasgard offshore project consists of a 2-stage development to produce the oil and gas reserves from three fields in the Norwegian Sea. The three fields Midgard, Smoerbukk and Smoerbukk Soer have reserves of approximately 220 Gia standard cubic meters (Gsm{sup 3}, 8 Tcf) and 120 (Mm{sup 3}, 750 MMbbls) of crude oil and condensate. The Aasgard unit will be jointly developed by Statoil and Saga, and operated by Statoil. Other partners are Neste Petroleum, Mobil, Total, Agip and Norsk Hydro. This paper will focus on the process selection and preliminary design of the gas treating system.

  20. Enhanced Synthesis and Diminished Degradation of Hydrogen Sulfide in Experimental Colitis: A Site-Specific, Pro-Resolution Mechanism

    PubMed Central

    Flannigan, Kyle L.; Ferraz, Jose G. P.; Wang, Rui; Wallace, John L.

    2013-01-01

    Hydrogen sulfide (H2S) is produced throughout the gastrointestinal tract, and it contributes to maintenance of mucosal integrity, resolution of inflammation, and repair of damaged tissue. H2S synthesis is elevated in inflamed and damaged colonic tissue, but the enzymatic sources of that synthesis are not completely understood. In the present study, the contributions of three enzymatic pathways to colonic H2S synthesis were determined, with tissues taken from healthy rats and rats with colitis. The ability of the colonic tissue to inactivate H2S was also determined. Colonic tissue from rats with hapten-induced colitis produced significantly more H2S than tissue from healthy controls. The largest source of the H2S synthesis was the pathway involving cysteine amino transferase and 3-mercaptopyruvate sulfurtransferase (an α-ketoglutarate-dependent pathway). Elevated H2S synthesis occurred specifically at sites of mucosal ulceration, and was not related to the extent of granulocyte infiltration into the tissue. Inactivation of H2S by colonic tissue occurred rapidly, and was significantly reduced at sites of mucosal ulceration. This correlated with a marked decrease in the expression of sulfide quinone reductase in these regions. Together, the increased production and decreased inactivation of H2S at sites of mucosal ulceration would result in higher H2S levels at these sites, which promotes of resolution of inflammation and repair of damaged tissue. PMID:23940796

  1. Selective Catalytic Oxidation of Hydrogen Sulfide to Elemental Sulfur from Coal-Derived Fuel Gases

    SciTech Connect

    Gardner, Todd H.; Berry, David A.; Lyons, K. David; Beer, Stephen K.; Monahan, Michael J.

    2001-11-06

    The development of low cost, highly efficient, desulfurization technology with integrated sulfur recovery remains a principle barrier issue for Vision 21 integrated gasification combined cycle (IGCC) power generation plants. In this plan, the U. S. Department of Energy will construct ultra-clean, modular, co-production IGCC power plants each with chemical products tailored to meet the demands of specific regional markets. The catalysts employed in these co-production modules, for example water-gas-shift and Fischer-Tropsch catalysts, are readily poisoned by hydrogen sulfide (H{sub 2}S), a sulfur contaminant, present in the coal-derived fuel gases. To prevent poisoning of these catalysts, the removal of H{sub 2}S down to the parts-per-billion level is necessary. Historically, research into the purification of coal-derived fuel gases has focused on dry technologies that offer the prospect of higher combined cycle efficiencies as well as improved thermal integration with co-production modules. Primarily, these concepts rely on a highly selective process separation step to remove low concentrations of H{sub 2}S present in the fuel gases and produce a concentrated stream of sulfur bearing effluent. This effluent must then undergo further processing to be converted to its final form, usually elemental sulfur. Ultimately, desulfurization of coal-derived fuel gases may cost as much as 15% of the total fixed capital investment (Chen et al., 1992). It is, therefore, desirable to develop new technology that can accomplish H{sub 2}S separation and direct conversion to elemental sulfur more efficiently and with a lower initial fixed capital investment.

  2. Hydrogen sulfide mediates the anti-survival effect of sulforaphane on human prostate cancer cells.

    PubMed

    Pei, Yanxi; Wu, Bo; Cao, Qiuhui; Wu, Lingyun; Yang, Guangdong

    2011-12-15

    Hydrogen sulfide (H(2)S) is a novel gasotransmitter that regulates cell proliferation and other cellular functions. Sulforaphane (SFN) is a sulfur-containing compound that exhibits anticancer properties, and young sprouts of broccoli are particularly rich in SFN. There is consistent epidemiological evidence that the consumption of sulfur-containing vegetables, such as garlic and cruciferous vegetables, may help reduce the occurrence of prostate cancer. Here we found that a large amount of H(2)S is released when SFN is added into cell culture medium or mixed with mouse liver homogenates, respectively. Both SFN and NaHS (a H(2)S donor) decreased the viability of PC-3 cells (a human prostate cancer cell line) in a dose-dependent manner, and supplement of methemoglobin or oxidized glutathione (two H(2)S scavengers) reversed SFN-reduced cell viability. We further found both cystathionine gamma-lyase (CSE) and cystathionine beta-synthase are expressed in PC-3 cells and mouse prostate tissues. H(2)S production in prostate tissues from CSE knockout mice was only 20% of that from wild-type mice, suggesting CSE is a major H(2)S-producing enzyme in prostate. CSE overexpression enhanced H(2)S production and inhibited cell viability in PC-3 cells. In addition, both SFN and NaHS activated p38 mitogen-activated protein kinases (MAPK) and c-Jun N-terminal kinase (JNK). Pre-treatment of PC-3 cells with methemoglobin decreased SFN-stimulated MAPK activities. Suppression of both p38 MAPK and JNK reversed H(2)S- or SFN-reduced viability of PC-3 cells. Our results demonstrated that H(2)S mediates the inhibitory effect of SFN on the proliferation of PC-3 cells, which suggests that H(2)S-releasing diet or drug might be beneficial in the treatment of prostate cancer. PMID:22005276

  3. Hydrogen Sulfide Ameliorates Early Brain Injury Following Subarachnoid Hemorrhage in Rats.

    PubMed

    Cui, Yonghua; Duan, Xiaochun; Li, Haiying; Dang, Baoqi; Yin, Jia; Wang, Yang; Gao, Anju; Yu, Zhengquan; Chen, Gang

    2016-08-01

    Increasing studies have demonstrated the neuroprotective effect of hydrogen sulfide (H2S) in central nervous system (CNS) diseases. However, the potential application value of H2S in the therapy of subarachnoid hemorrhage (SAH) is still not well known. This study was to investigate the potential effect of H2S on early brain injury (EBI) induced by SAH and explore the underlying mechanisms. The role of sodium hydrosulfide (NaHS), a donor of H2S, in SAH-induced EBI, was investigated in both in vivo and in vitro. A prechiasmatic cistern single injection model was used to produce experimental SAH in vivo. In vitro, cultured primary rat cortical neurons and human umbilical vein endothelial cells (HUVECs) were exposed to OxyHb at concentration of 10 μM to mimic SAH. Endogenous production of H2S in the brain was significantly inhibited by SAH. The protein levels of the predominant H2S-generating enzymes in the brain, including cystathionineb-synthase (CBS) and 3-mercaptopyruvate sulfur transferase (3MST), were also correspondingly reduced by SAH, while treatment with NaHS restored H2S production and the expressions of CBS and 3MST. More importantly, NaHS treatment could significantly attenuate EBI (including brain edema, blood-brain barrier disruption, brain cell apoptosis, inflammatory response, and cerebral vasospasm) after SAH. In vitro, H2S protects neurons and endothelial function by functioning as an antioxidant and antiapoptotic mediator. Our results suggest that NaSH as an exogenous H2S donor could significantly reduce EBI induced by SAH. PMID:26111628

  4. Bismuth-Based, Disposable Sensor for the Detection of Hydrogen Sulfide Gas.

    PubMed

    Rosolina, Samuel M; Carpenter, Thomas S; Xue, Zi-Ling

    2016-02-01

    A new sensor for the detection of hydrogen sulfide (H2S) gas has been developed to replace commercial lead(II) acetate-based test papers. The new sensor is a wet, porous, paper-like substrate coated with Bi(OH)3 or its alkaline derivatives at pH 11. In contrast to the neurotoxic lead(II) acetate, bismuth is used due to its nontoxic properties, as Bi(III) has been a reagent in medications such as Pepto-Bismol. The reaction between H2S gas and the current sensor produces a visible color change from white to yellow/brown, and the sensor responds to ≥ 30 ppb H2S in a total volume of 1.35 L of gas, a typical volume of human breath. The alkaline, wet coating helps the trapping of acidic H2S gas and its reaction with Bi(III) species, forming colored Bi2S3. The sensor is suitable for testing human bad breath and is at least 2 orders of magnitude more sensitive than a commercial H2S test paper based on Pb(II)(acetate)2. The small volume of 1.35-L H2S is important, as the commercial Pb(II)(acetate)2-based paper requires large volumes of 5 ppm H2S gas. The new sensor reported here is inexpensive, disposable, safe, and user-friendly. A simple, laboratory setup for generating small volumes of ppb-ppm of H2S gas is also reported. PMID:26742539

  5. Auxin-induced hydrogen sulfide generation is involved in lateral root formation in tomato.

    PubMed

    Fang, Tao; Cao, Zeyu; Li, Jiale; Shen, Wenbiao; Huang, Liqin

    2014-03-01

    Similar to auxin, hydrogen sulfide (H2S), mainly produced by l-cysteine desulfhydrase (DES; EC 4.4.1.1) in plants, could induce lateral root formation. The objective of this study was to test whether H2S is also involved in auxin-induced lateral root development in tomato (Solanum lycopersicum L.) seedlings. We observed that auxin depletion-induced down-regulation of transcripts of SlDES1, decreased DES activity and endogenous H2S contents, and the inhibition of lateral root formation were rescued by sodium hydrosulfide (NaHS, an H2S donor). However, No additive effects were observed when naphthalene acetic acid (NAA) was co-treated with NaHS (lower than 10 mM) in the induction of lateral root formation. Subsequent work revealed that a treatment with NAA or NaHS could simultaneously induce transcripts of SlDES1, DES activity and endogenous H2S contents, and thereafter the stimulation of lateral root formation. It was further confirmed that H2S or HS(-), not the other sulfur-containing components derived from NaHS, was attributed to the stimulative action. The inhibition of lateral root formation and decreased of H2S metabolism caused by an H2S scavenger hypotaurine (HT) were reversed by NaHS, but not NAA. Molecular evidence revealed that both NaHS- or NAA-induced modulation of some cell cycle regulatory genes, including the up-regulation of SlCDKA;1, SlCYCA2;1, together with simultaneous down-regulation of SlKRP2, were differentially reversed by HT pretreatment. To summarize, above results clearly suggested that H2S might, at least partially, act as a downstream component of auxin signaling to trigger lateral root formation. PMID:24463534

  6. Hydrogen Sulfide Triggered Charge-Reversal Micelles for Cancer-Targeted Drug Delivery and Imaging.

    PubMed

    Zhang, Haitao; Kong, Xiuqi; Tang, Yonghe; Lin, Weiying

    2016-06-29

    Currently, the development of polymeric micelles combining diagnosis and targeted therapy is theoretically and practically significant in cancer treatment. In addition, it has been reported that cancer cells can produce large amounts of hydrogen sulfide (H2S) and their survival depends on the content of H2S. In this study, a series of N-(2-hydroxyethyl)-4-azide-1,8-naphthalimide ended amphiphilic diblock copolymer poly(2-hydroxyethyl methacrylate)-block-poly(methyl methacrylate) (N3-Nap-PHEMA-b-PMMA-N3) micelles were prepared. Around cancer tissues, the N3-Nap-PHEMA45-b-PMMA42-N3 micelles exhibited dual characteristics of monitoring H2S and H2S triggered charge reversal with the reduction of the azido group. The surface charge of N3-Nap-PHEMA45-b-PMMA42-N3 micelles reversed from negative to positive after monitoring H2S. With H2S triggered charge reversal, the cellular uptake of DOX-loaded N3-Nap-PHEMA45-b-PMMA42-N3 micelles was effectively enhanced through electrostatic attraction mediated targeting, and a fast doxorubicin (DOX) release rate was observed. The MTT assay demonstrated that N3-Nap-PHEMA45-b-PMMA42-N3 micelles were biocompatible to HeLa cells, and DOX-loaded N3-Nap-PHEMA45-b-PMMA42-N3 micelles showed enhanced cytotoxicity in HeLa cells in the presence of H2S. Furthermore, in vivo fluorescence imaging and biodistribution experiments revealed that DOX-loaded N3-Nap-PHEMA45-b-PMMA42-N3 micelles could provide good tumor imaging and accumulate in tumor tissue. Therefore, N3-Nap-PHEMA45-b-PMMA42-N3 micelles can be used as a promising platform for tumor diagnosis and therapy. PMID:27280335

  7. Pathophysiological Concepts in Multiple Sclerosis and the Therapeutic Effects of Hydrogen Sulfide

    PubMed Central

    2016-01-01

    Introduction: Multiple sclerosis (MS) is generally known as a manageable but not yet curable autoimmune disease affecting central nervous system. A potential therapeutic approach should possess several properties: Prevent immune system from damaging the brain and spinal cord, promote differentiation of oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes to produce myelin, prevent the formation of fibronectin aggregates by astrocytes to inhibit scar formation, and enhance function of healthy endothelial cells (ECs). Methods: To determine if an increase in sulfur contents through H2S, a potent antioxidant known to induce protective autophagy in cells, could provide the above desired outcomes, peripheral blood mononuclear cells (PBMNCs), OCPs, astrocytes, and ECs were treated with NaHS (50 μM) in vitro. Results: Transmigration assay using EC monolayer showed that serotonin increased migration of PBMNC while pretreatment of EC with NaHS inhibited the migration induced by serotonin treatment. NaHS upregulated proteins involved in immune system response and downregulated PBMNCs- and EC-related adhesion molecules (LFA-1 and VCAM-1). Furthermore, it had a cell expansion inducing effect, altering EC morphology. The effects of NaHS on OPCs and astrocytes were studied compared to mTOR inhibitor rapamycin. In NaHS treated astrocytes the induced fibronectin production was partially inhibited while rapamycin almost fully inhibited fibronectin production. NaHS slowed but did not inhibit the differentiation of OCPs or the production of myelin compared to rapamycin. Conclusion: The in vitro results point to the potential therapeutic application of hydrogen sulfide releasing molecules or health-promoting sulfur compounds in MS. PMID:27303607

  8. Hydrogen sulfide-based therapies: focus on H2S releasing NSAIDs.

    PubMed

    Fiorucci, Stefano; Santucci, Luca

    2011-04-01

    Nonsteroidal anti-inflammatory pain medications, commonly referred to as NSAIDs, are effective treatment for pain, fever and inflammation. However their use associates with a 4-6 fold increase in the risk of gastrointestinal bleeding. The basic mode of action of NSAIDs lies in the inhibition of cyclooxygenases (COXs), a family of enzymes involved in the generation of prostaglandins (PGs). The COX exists at least in two isoforms, COX-1 and COX-2, with PGs mediating inflammation at site of injury generated by the COX-2, while COX-1 produces PGs that are essential in maintaining integrity in the gastrointestinal tract. Selective inhibitors of COX-2, the coxibs, spare the gastrointestinal tract while exerting anti-inflammatory and analgesic effects. However, their use has been linked to an increased risk of thrombo-embolic events. Nitric oxide (NO) and hydrogen sulfide (H(2)S), are potent vasodilatory agents that maintain mucosal integrity in the gastrointestinal tract. In the last decade hybrid molecules that release NO or H(2)S have been coupled with non-selective NSAIDs to generate new classes of anti-inflammatory and analgesic agents with the potential to spare the gastrointestinal and cardiovascular system. These agents, the NO-releasing NSAIDs, or CINOD, and the H(2)S-releasing NSAIDs are currently investigated as a potential alternative to NSAIDs and coxibs. Naproxcinod has been the first, and so far the only, CINOD extensively investigated in clinical trials. Despite its promising profile, the approval of this drug was recently rejected by the Food and Drug Administration because the lack of long-term controlled studies. NSAIDs that release H(2)S as a mechanism to support an enhanced gastrointestinal and cardiovascular safety are being investigated in preclinical studies. Either naproxen or diclofenac coupled to an H(2)S releasing moiety has been reported to cause less gastrointestinal and cardiovascular injury than parent NSAIDs in preclinical models. PMID

  9. Spectroscopic investigations into the binding of hydrogen sulfide to synthetic picket-fence porphyrins.

    PubMed

    Hartle, Matthew D; Prell, James S; Pluth, Michael D

    2016-03-21

    The reversible binding of hydrogen sulfide (H2S) to hemeprotein sites has been attributed to several factors, likely working in concert, including the protected binding pocket environment, proximal hydrogen bond interactions, and iron ligation environment. To investigate the importance of a sterically-constrained, protected environment on sulfide reactivity with heme centers, we report here the reactivity of H2S and HS(-) with the picket-fence porphyrin system. Our results indicate that the picket-fence porphyrin does not bind H2S in the ferric or ferrous state. By contrast, reaction of the ferric scaffold with HS(-) results in reduction to the ferrous species, followed by ligation of one equivalent of HS(-), as evidenced by UV-vis, NMR spectroscopy and mass spectrometry studies. Measurement of the HS(-) binding affinities in the picket-fence or tetraphenyl porphyrin systems revealed identical binding. Taken together, these results suggest that the protected, sterically-constrained binding pocket alone is not the primary contributor for stabilization of ferric H2S/HS(-) species in model systems, but that other interactions, such as hydrogen bonding, must play a critical role in facilitation of reversible interactions in ferric hemes. PMID:26869340

  10. Hydrogen Sulfide Is an Endogenous Potentiator of T Cell Activation*

    PubMed Central

    Miller, Thomas W.; Wang, Evelyn A.; Gould, Serge; Stein, Erica V.; Kaur, Sukhbir; Lim, Langston; Amarnath, Shoba; Fowler, Daniel H.; Roberts, David D.

    2012-01-01

    H2S is an endogenous signaling molecule that may act via protein sulfhydrylation to regulate various physiological functions. H2S is also a byproduct of dietary sulfate metabolism by gut bacteria. Inflammatory bowel diseases such as ulcerative colitis are associated with an increase in the colonization of the intestine by sulfate reducing bacteria along with an increase in H2S production. Consistent with its increased production, H2S is implicated as a mediator of ulcerative colitis both in its genesis or maintenance. As T cells are well established mediators of inflammatory bowel disease, we investigated the effect of H2S exposure on T cell activation. Using primary mouse T lymphocytes (CD3+), OT-II CD4+ T cells, and the human Jurkat T cell line, we show that physiological levels of H2S potentiate TCR-induced activation. Nanomolar levels of H2S (50–500 nm) enhance T cell activation assessed by CD69 expression, interleukin-2 expression, and CD25 levels. Exposure of T cells to H2S dose-dependently enhances TCR-stimulated proliferation with a maximum at 300 nm (30% increase, p < 0.01). Furthermore, activation increases the capacity of T cells to make H2S via increased expression of cystathionine γ-lyase and cystathionine β-synthase. Disrupting this response by silencing these H2S producing enzymes impairs T cell activation, and proliferation and can be rescued by the addition of 300 nm H2S. Thus, H2S represents a novel autocrine immunomodulatory molecule in T cells. PMID:22167178

  11. Divergent behavior of hydrogen sulfide pools and of the sulfur metabolite lanthionine, a novel uremic toxin, in dialysis patients.

    PubMed

    Perna, Alessandra F; Di Nunzio, Annarita; Amoresano, Angela; Pane, Francesca; Fontanarosa, Carolina; Pucci, Piero; Vigorito, Carmela; Cirillo, Giovanni; Zacchia, Miriam; Trepiccione, Francesco; Ingrosso, Diego

    2016-07-01

    Dialysis patients display a high cardiovascular mortality, the causes of which are still not completely explained, but are related to uremic toxicity. Among uremic toxins, homocysteine and cysteine are both substrates of cystathionine β-synthase and cystathionine γ-lyase in hydrogen sulfide biosynthesis, leading to the formation of two sulfur metabolites, lanthionine and homolanthionine, considered stable indirect biomarkers of its production. Hydrogen sulfide is involved in the modulation of multiple pathophysiological responses. In uremia, we have demonstrated low plasma total hydrogen sulfide levels, due to reduced cystathionine γ-lyase expression. Plasma hydrogen sulfide levels were measured in hemodialysis patients and healthy controls with three different techniques in comparison, allowing to discern the different pools of this gas. The protein-bound (the one thought to be the most active) and acid-labile forms are significantly decreased, while homolanthionine, but especially lanthionine, accumulate in the blood of uremic patients. The hemodialysis regimen plays a role in determining sulfur compounds levels, and lanthionine is partially removed by a single dialysis session. Lanthionine inhibits hydrogen sulfide production in cell cultures under conditions comparable to in vivo ones. We therefore propose that lanthionine is a novel uremic toxin. The possible role of high lanthionine as a contributor to the genesis of hyperhomocysteinemia in uremia is discussed. PMID:27129884

  12. Evidence that dimethyl sulfide facilitates a tritrophic mutualism between marine primary producers and top predators

    PubMed Central

    Savoca, Matthew S.; Nevitt, Gabrielle A.

    2014-01-01

    Tritrophic mutualistic interactions have been best studied in plant–insect systems. During these interactions, plants release volatiles in response to herbivore damage, which, in turn, facilitates predation on primary consumers or benefits the primary producer by providing nutrients. Here we explore a similar interaction in the Southern Ocean food web, where soluble iron limits primary productivity. Dimethyl sulfide has been studied in the context of global climate regulation and is an established foraging cue for marine top predators. We present evidence that procellariiform seabird species that use dimethyl sulfide as a foraging cue selectively forage on phytoplankton grazers. Their contribution of beneficial iron recycled to marine phytoplankton via excretion suggests a chemically mediated link between marine top predators and oceanic primary production. PMID:24591607

  13. Conditions under which cracks occur in modified 13% chromium steel in wet hydrogen sulfide environments

    SciTech Connect

    Hara, T.; Asahi, H.

    2000-05-01

    Occurrence of cracks in an API 13% Cr steel, modified 13% Cr steel, and duplex stainless steel were compared in various wet, mild hydrogen sulfide (H{sub 2}S) environments. The conditions under which cracks occurred in the modified 13% Cr steel in oil and gas production environments were made clear. No cracks occurred if pH > depassivation pH (pH{sub d}) and redox potential of sulfur (E{sub S(red/ax)}) < pitting potential (V{sub c}). Hydrogen embrittlement-type cracks occurred in pH > Ph{sub d} and E{sub S(red/ax)} > V{sub c}. The pH inside the pit decreased drastically and hydrogen embrittlement occurred. Cracks of the hydrogen embrittlement type occurred if pH < pH{sub d} and threshold hydrogen concentration under which cracks occur (H{sub th}) < hydrogen concentration in steel (H{sub 0}). No cracks occurred if pH < pH{sub d} and H{sub th} > H{sub 0}.

  14. Removal of hydrogen sulfide as ammonium sulfate from hydropyrolysis product vapors

    SciTech Connect

    Marker, Terry L; Felix, Larry G; Linck, Martin B; Roberts, Michael J

    2014-10-14

    A system and method for processing biomass into hydrocarbon fuels that includes processing a biomass in a hydropyrolysis reactor resulting in hydrocarbon fuels and a process vapor stream and cooling the process vapor stream to a condensation temperature resulting in an aqueous stream. The aqueous stream is sent to a catalytic reactor where it is oxidized to obtain a product stream containing ammonia and ammonium sulfate. A resulting cooled product vapor stream includes non-condensable process vapors comprising H.sub.2, CH.sub.4, CO, CO.sub.2, ammonia and hydrogen sulfide.

  15. Hydrogen sulfide and PKG in ischemia-reperfusion injury: sources, signaling, accelerators and brakes

    PubMed Central

    Andreadou, Ioanna; Iliodromitis, Efstathios K.; Szabo, Csaba; Papapetropoulos, Andreas

    2015-01-01

    Over the past decade, hydrogen sulfide has emerged as an important cardioprotective molecule with potential for clinical applications. Although several pathways have been proposed to mediate the beneficial effects of H2S, the NO and cGMP axis has attracted significant attention. Recent evidence has suggested that cGMP-dependent protein kinase can lie both downstream and upstream of H2S. The current literature on this topic is reviewed and data from recent studies are integrated to propose a unifying model. PMID:26318600

  16. Solubility of mixtures of hydrogen sulfide and carbon dioxide in aqueous N-methyldiethanolamine solutions

    SciTech Connect

    Jou, Fang Yuan; Carroll, J.J.; Mather, A.E.; Otto, F.D. . Dept. of Chemical Engineering)

    1993-01-01

    Aqueous solutions of alkanolamines are commonly used to strip acid gases (H[sub 2]S and CO[sub 2]) from streams contaminated with these components. The two most widely used amines are monoethanolamine (MEA) and diethanolamine (DEA). The solubilities of mixtures of hydrogen sulfide and carbon dioxide in a 35 wt% (3.04 kmol/m[sup 3]) aqueous solution of N-methyldiethanolamine at 40 and 100C have been measured. Partial pressures of the acid gases ranged from 0.006 to 101 kPa at 40C and from 4 to 530 kPa at 100C.

  17. Effect of inoculum and sulfide type on simultaneous hydrogen sulfide removal from biogas and nitrogen removal from swine slurry and microbial mechanism.

    PubMed

    Wang, Lan; Wei, Benping; Chen, Ziai; Deng, Liangwei; Song, Li; Wang, Shuang; Zheng, Dan; Liu, Yi; Pu, Xiaodong; Zhang, Yunhong

    2015-12-01

    Four reactors were initiated to study the effect of inoculum and sulfide type on the simultaneous hydrogen sulfide removal from biogas and nitrogen removal from swine slurry (Ssu-Nir) process. Anaerobic sludge, aerobic sludge, and water were used as inocula, and Na2S and biogas were used as a sulfide substrate, respectively. Additionally, 454 pyrosequencing of the 16S rRNA gene was used to explore the bacterial diversity. The results showed that sulfur-oxidizing bacteria (Thiobacillus, 42.2-84.4 %) were dominant in Ssu-Nir process and led to the excellent performance. Aerobic sludge was more suitable for inoculation of the Ssu-Nir process because it is better for rapidly enriching dominant sulfur-oxidizing bacteria (Thiobacillus, 54.4 %), denitrifying sulfur-oxidizing bacteria (40.0 %) and denitrifiers (23.9 %). Lower S(2-) removal efficiency (72.6 %) and NO3 (-) removal efficiency (<90 %) of the Ssu-Nir process were obtained using biogas as a sulfide substrate than when Na2S was used. For the Ssu-Nir process with biogas as the sulfide substrate, limiting H2S absorption caused a high relative abundance of sulfur-oxidizing bacteria, Thiobacillus (84.8 %) and Thiobacillus sayanicus (39.6 %), which in turn led to low relative abundance of denitrifiers (1.6 %) and denitrifying sulfur-oxidizing bacteria (24.4 %), low NO3 (-) removal efficiency, and eventually poor performance. PMID:26286512

  18. {open_quotes}BIOX{close_quotes} hydrogen sulfide abatement process - application analysis

    SciTech Connect

    Gallup, D.L.

    1996-12-31

    A new hydrogen sulfide abatement process, known as {open_quotes}BIOX,{close_quotes} has been specifically developed for the geothermal industry. {open_quotes}BIOX{close_quotes} (biocide induced oxidation) successfully controls both primary and secondary emissions from cooling towers in pilot, demonstration, and commercial operations by air-wet oxidation. Independent laboratory tests recently controverted the efficacy of {open_quotes}BIOX{close_quotes} to catalytically oxidize sulfides to sulfate. Studies conducted in our laboratory with a simulated cooling tower indicate that the experimental conditions employed by Nardini, et al, are unrealistic for geothermal cooling towers. Furthermore, our investigations demonstrate that the {open_quotes}BIOX{close_quotes} process performs optimally at near neutral pH, a condition common to most geothermal cooling tower circulating water systems. A {open_quotes}BIOX{close_quotes} agent, trichloroisocyanuric acid (TCCA), proved to mitigate sulfide emissions much more efficiently than air, sodium hypochlorite or chlorine dioxide. {open_quotes}BIOX{close_quotes} is a proven, cost-effective H{sub 2}S abatement technology.

  19. Kinetic and thermodynamic studies on the disulfide-bond reducing potential of hydrogen sulfide.

    PubMed

    Vasas, Anita; Dóka, Éva; Fábián, István; Nagy, Péter

    2015-04-30

    The significance of persulfide species in hydrogen sulfide biology is increasingly recognized. However, the molecular mechanisms of their formation remain largely elusive. The obvious pathway of the reduction of biologically abundant disulfide moieties by sulfide was challenged on both thermodynamic and kinetic grounds. Using DTNB (5,5'-dithiobis-(2-nitrobenzoic acid), also known as Ellman's reagent) as a model disulfide we conducted a comprehensive kinetic study for its reaction with sulfide. The bimolecular reaction is relatively fast with a second-order rate constant of 889 ± 12 M(-1)s(-1) at pH = 7.4. pH dependence of the rate law revealed that the reaction proceeds via the bisulfide anion species with an initial nucleophilic thiol-disulfide exchange reaction to give 5-thio-2-nitrobenzoic acid (TNB) and TNB-persulfide with a pH independent second-order rate constant of 1090 ± 12 M(-1)s(-1). However, kinetic studies and stoichiometric analyses in a wide range of reactant ratios together with kinetic simulations revealed that it is a multistep process that proceeds via kinetically driven, practically irreversible reactions along the disulfide → persulfide → inorganic polysulfides axis. The kinetic model postulated here, which is fully consistent with the experimental data, suggests that the TNB-persulfide is further reduced by sulfide with a second-order rate constant in the range of 5 × 10(3) - 5 × 10(4) M(-1)s(-1) at pH 7.4 and eventually yields inorganic polysulfides and TNB. The reactions of cystine and GSSG with sulfide were found to be significantly slower and to occur via more complicated reaction schemes. (1)H NMR studies suggest that these reactions also generate Cys-persulfide and inorganic polysulfide species, but in contrast with DTNB, in consecutive equilibrium processes that are sensitive to changes in the reactant and product ratios. Collectively, our results demonstrate that the reaction of disulfides with sulfide is a highly system

  20. Sulfur isotopic fractionation in vacuum UV photodissociation of hydrogen sulfide and its potential relevance to meteorite analysis.

    PubMed

    Chakraborty, Subrata; Jackson, Teresa L; Ahmed, Musahid; Thiemens, Mark H

    2013-10-29

    Select meteoritic classes possess mass-independent sulfur isotopic compositions in sulfide and organic phases. Photochemistry in the solar nebula has been attributed as a source of these anomalies. Hydrogen sulfide (H2S) is the most abundant gas-phase species in the solar nebula, and hence, photodissociation of H2S by solar vacuum UV (VUV) photons (especially by Lyman-α radiation) is a relevant process. Because of experimental difficulties associated with accessing VUV radiation, there is a paucity of data and a lack of theoretical basis to test the hypothesis of a photochemical origin of mass-independent sulfur. Here, we present multiisotopic measurements of elemental sulfur produced during the VUV photolysis of H2S. Mass-independent sulfur isotopic compositions are observed. The observed isotopic fractionation patterns are wavelength-dependent. VUV photodissociation of H2S takes place through several predissociative channels, and the measured mass-independent fractionation is most likely a manifestation of these processes. Meteorite sulfur data are discussed in light of the present experiments, and suggestions are made to guide future experiments and models. PMID:23431159

  1. Effect of nitrogen supplementation and Saccharomyces species on hydrogen sulfide and other volatile sulfur compounds in shiraz fermentation and wine.

    PubMed

    Ugliano, Maurizio; Fedrizzi, Bruno; Siebert, Tracey; Travis, Brooke; Magno, Franco; Versini, Giuseppe; Henschke, Paul A

    2009-06-10

    A Shiraz must with low yeast assimilable nitrogen (YAN) was supplemented with two increasing concentrations of diammonium phosphate (DAP) and fermented with one Saccharomyces cerevisiae and one Saccharomyces bayanus strain, with maceration on grape skins. Hydrogen sulfide (H(2)S) was monitored throughout fermentation, and a total of 16 volatile sulfur compounds (VSCs) were quantified in the finished wines. For the S. cerevisiae yeast strain, addition of DAP to a final YAN of 250 or 400 mg/L resulted in an increased formation of H(2)S compared to nonsupplemented fermentations (100 mg/L YAN). For this yeast, DAP-supplemented fermentations also showed prolonged formation of H(2)S into the later stage of fermentation, which was associated with increased H(2)S in the final wines. The S. bayanus strain showed a different H(2)S production profile, in which production was inversely correlated to initial YAN. No correlation was found between total H(2)S produced by either yeast during fermentation and H(2)S concentration in the final wines. For both yeasts, DAP supplementation yielded higher concentrations of organic VSCs in the finished wines, including sulfides, disulfides, mercaptans, and mercaptoesters. PCA analysis indicated that nitrogen supplementation before fermentation determined a much clearer distinction between the VSC profiles of the two yeasts compared to nonsupplemented fermentations. These results raise questions concerning the widespread use of DAP in the management of low YAN fermentations with respect to the formation of reductive characters in wine. PMID:19391591

  2. Sulfur isotopic fractionation in vacuum UV photodissociation of hydrogen sulfide and its potential relevance to meteorite analysis

    PubMed Central

    Chakraborty, Subrata; Jackson, Teresa L.; Ahmed, Musahid; Thiemens, Mark H.

    2013-01-01

    Select meteoritic classes possess mass-independent sulfur isotopic compositions in sulfide and organic phases. Photochemistry in the solar nebula has been attributed as a source of these anomalies. Hydrogen sulfide (H2S) is the most abundant gas-phase species in the solar nebula, and hence, photodissociation of H2S by solar vacuum UV (VUV) photons (especially by Lyman-α radiation) is a relevant process. Because of experimental difficulties associated with accessing VUV radiation, there is a paucity of data and a lack of theoretical basis to test the hypothesis of a photochemical origin of mass-independent sulfur. Here, we present multiisotopic measurements of elemental sulfur produced during the VUV photolysis of H2S. Mass-independent sulfur isotopic compositions are observed. The observed isotopic fractionation patterns are wavelength-dependent. VUV photodissociation of H2S takes place through several predissociative channels, and the measured mass-independent fractionation is most likely a manifestation of these processes. Meteorite sulfur data are discussed in light of the present experiments, and suggestions are made to guide future experiments and models. PMID:23431159

  3. EFFECTS OF INFUSION OF HUMAN METHEMOGLOBIN SOLUTION FOLLOWING HYDROGEN SULFIDE POISONING

    PubMed Central

    Chenuel, Bruno; Sonobe, Takashi; Haouzi, Philippe

    2015-01-01

    Rationale We have recently reported that infusion of a solution containing methemoglobin (MetHb) during exposure to hydrogen sulfide results in a rapid and large decrease in the concentration of the pool of soluble/diffusible H2S in the blood. However, since the pool of dissolved H2S disappears very quickly after H2S exposure, it is unclear if the ability of MetHb to “trap” sulfide in the blood has any clinical interest and relevance in the treatment of sulfide poisoning. Methods In anesthetized rats, repetition of short bouts of high level of H2S infusions were applied to allow the rapid development of an oxygen deficit. A solution containing methemoglobin (600mg/kg) or its vehicle was administered one minute and a half after the end of H2S intoxication. Results The injection of methemoglobin solution increased methemoglobinemia to about 6%, almost instantly, but was unable to decrease the blood concentration of soluble H2S, which had already vanished at the time of infusion, or to increase combined H2S. In addition H2S-induced O2 deficit and lactate production as well as the recovery of carotid blood flow and blood pressure were similar in treated or control animals. Conclusion Our results do not support the view that administration of MetHb or drugs induced methemoglobinemia during the recovery phase following severe H2S intoxication in sedated rats can restore cellular oxidative metabolism, as the pool of diffusible sulfide, accessible to MetHb, disappears rapidly from the blood after H2S exposure. PMID:25634666

  4. A metal sulfide photocatalyst composed of ubiquitous elements for solar hydrogen production.

    PubMed

    Shiga, Y; Umezawa, N; Srinivasan, N; Koyasu, S; Sakai, E; Miyauchi, M

    2016-06-14

    A visible-light-sensitive tin sulfide photocatalyst was designed based on a ubiquitous element strategy and density functional theory (DFT) calculations. Computational analysis suggested that tin monosulfide (SnS) would be more efficient than SnS2 as a photocathode for hydrogen production because of the low ionization potential and weak ionic character of SnS. To test this experimentally, nanoparticles of SnS were loaded onto a mesoporous electrode using a wet chemical method, and the bandgap of the synthesized SnS quantum dots was found to be tunable by adjusting the number of successive ionic layer adsorption and reaction (SILAR) cycles, which controls the magnitude of the quantum confinement effect. Efficient hydrogen production was achieved when the bandgap of SnS was wider than that of the bulk form. PMID:27198730

  5. Can microbially-generated hydrogen sulfide account for the rates of U(VI) reduction by a sulfate-reducing bacterium?

    SciTech Connect

    Boonchayaanant, Benjaporn; Gu, Baohua; Wang, Wei; Ortiz, Monica E; Criddle, Craig

    2010-01-01

    In situ remediation of uranium contaminated soil and groundwater is attractive because a diverse range of microbial and abiotic processes reduce soluble and mobile U(VI) to sparingly soluble and immobile U(IV). Often these processes are linked. Sulfate-reducing bacteria (SRB), for example, enzymatically reduce U(VI) to U(IV), but they also produce hydrogen sulfide that can itself reduce U(VI). This study evaluated the relative importance of these processes for Desulfovibrio aerotolerans, a SRB isolated from a U(VI)-contaminated site. For the conditions evaluated, the observed rate of SRB-mediated U(VI) reduction can be explained by the abiotic reaction of U(VI) with the microbially-generated H{sub 2}S. The presence of trace ferrous iron appeared to enhance the extent of hydrogen sulfide-mediated U(VI) reduction at 5 mM bicarbonate, but had no clear effect at 15 mM. During the hydrogen sulfide-mediated reduction of U(VI), a floc formed containing uranium and sulfur. U(VI) sequestered in the floc was not available for further reduction.

  6. Stable Isotope Measurements of Carbon Dioxide, Methane, and Hydrogen Sulfide Gas Using Frequency Modulation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Nowak-Lovato, K.

    2014-12-01

    Seepage from enhanced oil recovery, carbon storage, and natural gas sites can emit trace gases such as carbon dioxide, methane, and hydrogen sulfide. Trace gas emission at these locations demonstrate unique light stable isotope signatures that provide information to enable source identification of the material. Light stable isotope detection through surface monitoring, offers the ability to distinguish between trace gases emitted from sources such as, biological (fertilizers and wastes), mineral (coal or seams), or liquid organic systems (oil and gas reservoirs). To make light stable isotope measurements, we employ the ultra-sensitive technique, frequency modulation spectroscopy (FMS). FMS is an absorption technique with sensitivity enhancements approximately 100-1000x more than standard absorption spectroscopy with the advantage of providing stable isotope signature information. We have developed an integrated in situ (point source) system that measures carbon dioxide, methane and hydrogen sulfide with isotopic resolution and enhanced sensitivity. The in situ instrument involves the continuous collection of air and records the stable isotope ratio for the gas being detected. We have included in-line flask collection points to obtain gas samples for validation of isotopic concentrations using our in-house isotope ratio mass spectroscopy (IRMS). We present calibration curves for each species addressed above to demonstrate the sensitivity and accuracy of the system. We also show field deployment data demonstrating the capabilities of the system in making live dynamic measurements from an active source.

  7. A method for controlling hydrogen sulfide in water by adding solid phase oxygen.

    PubMed

    Chang, Yu-Jie; Chang, Yi-Tang; Chen, Hsi-Jien

    2007-01-01

    This work evaluates the addition of solid phase oxygen, a magnesium peroxide (MgO(2)) formulation manufactured by Regenesis (oxygen-releasing compounds, ORC), to inhibit the production of hydrogen sulfide (H(2)S) in an SRB-enriched environment. The initial rate of release of oxygen by the ORC was determined over a short period by adding sodium sulfite (Na(2)SO(3)), which was a novel approach developed for this study. The ability of ORCs to control H(2)S by releasing oxygen was evaluated in a bench-scale column containing cultured sulfate reducing bacteria (SRB). After a series of batch tests, 0.4% ORC was found to be able to inhibit the formation of H(2)S for more than 40 days. In comparison, the concentration of H(2)S dropped from 20 mg S/L to 0.05 mg S/L immediately after 0.1% hydrogen peroxide (H(2)O(2)) was added, but began to recover just four days later. Thus, H(2)O(2) does not seem to be able to inhibit the production of sulfide for an extended period of time. By providing long-term inhibition of the SRB population, ORC provides a good alternative means of controlling the production of H(2)S in water. PMID:16439114

  8. Effects of bamboo salt and its component, hydrogen sulfide, on enhancing immunity.

    PubMed

    Kim, Na-Rae; Nam, Sun-Young; Ryu, Ka-Jung; Kim, Hyung-Min; Jeong, Hyun-Ja

    2016-08-01

    Korean bamboo salt (BS) is known to have therapeutic effects in the treatment of diseases, including viral disease, dental plaque, diabetes, circulatory organ disorders, cancer and inflammatory disorders. However, the effect of BS on immune functions remains to be elucidated. The present study was designed to determine the immune‑enhancing effect of BS and its component, hydrogen sulfide, using RAW264.7 macrophages and a forced swimming test (FST) animal model. BS and sodium hydrosulfide (NaSH), a hydrogen sulfide donor, significantly increased the levels of tumor necrosis factor (TNF)‑α through the activation of nuclear factor‑κB in the RAW 264.7 cells. In an in vivo experiment, BS and NaSH were administered orally once a day for 28 days. After the 28 days, the immobility times in the FST were significantly decreased in the BS and NaSH‑fed groups, compared with the control group. In addition, BS and NaSH induced significant increases in the levels of interferon‑γ, interleukin‑2 and TNF‑α, compared with the control group. Taken together, these results indicated that BS and NaSH may improve immune function. PMID:27315400

  9. Unmodified versus caustics-impregnated carbons for control of hydrogen sulfide emissions from sewage treatment plants

    SciTech Connect

    Bandosz, T.J.; Bagreev, A.; Adib, F.; Turk, A.

    2000-03-15

    Unmodified and caustic-impregnated carbons were compared as adsorbents for hydrogen sulfide in the North River Water Pollution Control Plant in New York City over a period of 2 years. The carbons were characterized using accelerated H{sub 2}S breakthrough capacity tests, sorption of nitrogen, potentiometric titration, and thermal analysis. The accelerated laboratory tests indicate that the initial capacity of caustic-impregnated carbons exceeds that of unmodified carbon, but the nature of real-life challenge streams, particularly their lower H{sub 2}S concentrations, nullifies this advantage. As the caustic content of the impregnated carbon is consumed, the situation reverses, and the unmodified carbon becomes more effective. When the concentration of H{sub 2}S is low, the developed surface area and pore volume along with the affinity to retain water create a favorable environment for dissociative adsorption of hydrogen sulfide and its oxidation to elemental sulfur, S{sup 4+}, and S{sup 6+}. In the case of the caustic carbon, the catalytic impact of the carbon surface is limited, and its good performance lasts only while active base is present. The results also show the significant differences in performance of unmodified carbons due to combined effects of their porosity and surface chemistry.

  10. Reaction-based epoxide fluorescent probe for in vivo visualization of hydrogen sulfide.

    PubMed

    Sathyadevi, Palanisamy; Chen, Yu-Jen; Wu, Shou-Cheng; Chen, Yen-Hao; Wang, Yun-Ming

    2015-06-15

    Hydrogen sulfide (H2S) has emerged as the most important biosynthetic gasotransmitters along with nitric oxide (NO) and carbon monoxide (CO). In this study, we report the design and the synthesis of a new epoxide fluorescent probe 7-glycidyloxy-9-(2-glycidyloxycarbonylphenyl)-2-xanthone (FEPO) for use in in vivo visualization of hydrogen sulfide. The probe employs a fluorescein as a fluorophore, and is equipped with an operating epoxide unit. FEPO functions via epoxide ring opening upon nucleophilic attack of H2S. This ring opening strategy may open a new avenue for the development of various H2S fluorescent sensors. FEPO showed high selectivity and high sensitivity for H2S. FEPO's cytotoxicity was tested using MTT (2-(4,5-dimethyl-2-thiazolyl)-3,5-diphenyl-2H-tetrazolium bromide) assay. Furthermore, the use of confocal imaging of H2S and in vivo imaging in live zebra fish demonstrated FEPO's potential biological applications. We anticipate that, owing to their ideal properties, probes of this type will find great uses in exploring the role of H2S in biology. PMID:25660659

  11. Carbon dioxide and hydrogen sulfide associations with regional bacterial diversity patterns in microbially induced concrete corrosion.

    PubMed

    Ling, Alison L; Robertson, Charles E; Harris, J Kirk; Frank, Daniel N; Kotter, Cassandra V; Stevens, Mark J; Pace, Norman R; Hernandez, Mark T

    2014-07-01

    The microbial communities associated with deteriorating concrete corrosion fronts were characterized in 35 samples taken from wastewater collection and treatment systems in ten utilities. Bacterial communities were described using Illumina MiSeq sequencing of the V1V2 region of the small subunit ribosomal ribonucleic acid (SSU-rRNA) gene recovered from fresh corrosion products. Headspace gas concentrations (hydrogen sulfide, carbon dioxide, and methane), pore water pH, moisture content, and select mineralogy were tested for correlation to community outcomes and corrosion extent using pairwise linear regressions and canonical correspondence analysis. Corroding concrete was most commonly characterized by moisture contents greater than 10%, pore water pH below one, and limited richness (<10 taxa). Bacterial community composition was not correlated to geographic location when considered independently from other environmental factors. Corrosion was most severe in sites with high levels of hydrogen sulfide (>100 ppm) and carbon dioxide (>1%) gases, conditions which also were associated with low diversity biofilms dominated by members of the acidophilic sulfur-oxidizer genus Acidithiobacillus. PMID:24842376

  12. Matrix metalloproteinases in atherosclerosis: role of nitric oxide, hydrogen sulfide, homocysteine, and polymorphisms

    PubMed Central

    Vacek, Thomas P; Rehman, Shahnaz; Neamtu, Diana; Yu, Shipeng; Givimani, Srikanth; Tyagi, Suresh C

    2015-01-01

    Atherosclerosis is an inflammatory process that involves activation of matrix metalloproteinases (MMPs); MMPs degrade collagen and allow for smooth-muscle cell migration within a vessel. Moreover, this begets an accumulation of other cellular material, resulting in occlusion of the vessel and ischemic events to tissues in need of nutrients. Homocysteine has been shown to activate MMPs via an increase in oxidative stress and acting as a signaling molecule on receptors like the peroxisome proliferator activated receptor-γ and N-methyl-D-aspartate receptor. Nitric oxide has been shown to be beneficial in some cases of deactivating MMPs. However, in other cases, it has been shown to be harmful. Further studies are warranted on the scenarios that are beneficial versus destructive. Hydrogen sulfide (H2S) has been shown to decrease MMP activities in all cases in the literature by acting as an antioxidant and vasodilator. Various MMP-knockout and gene-silencing models have been used to determine the function of the many different MMPs. This has allowed us to discern the role that each MMP has in promoting or alleviating pathological conditions. Furthermore, there has been some study into the MMP polymorphisms that exist in the population. The purpose of this review is to examine the role of MMPs and their polymorphisms on the development of atherosclerosis, with emphasis placed on pathways that involve nitric oxide, hydrogen sulfide, and homocysteine. PMID:25767394

  13. Hydrogen sulfide mediates the anti-survival effect of sulforaphane on human prostate cancer cells

    SciTech Connect

    Pei, Yanxi; Wu, Bo; Cao, Qiuhui; Wu, Lingyun; Yang, Guangdong

    2011-12-15

    Hydrogen sulfide (H{sub 2}S) is a novel gasotransmitter that regulates cell proliferation and other cellular functions. Sulforaphane (SFN) is a sulfur-containing compound that exhibits anticancer properties, and young sprouts of broccoli are particularly rich in SFN. There is consistent epidemiological evidence that the consumption of sulfur-containing vegetables, such as garlic and cruciferous vegetables, may help reduce the occurrence of prostate cancer. Here we found that a large amount of H{sub 2}S is released when SFN is added into cell culture medium or mixed with mouse liver homogenates, respectively. Both SFN and NaHS (a H{sub 2}S donor) decreased the viability of PC-3 cells (a human prostate cancer cell line) in a dose-dependent manner, and supplement of methemoglobin or oxidized glutathione (two H{sub 2}S scavengers) reversed SFN-reduced cell viability. We further found both cystathionine gamma-lyase (CSE) and cystathionine beta-synthase are expressed in PC-3 cells and mouse prostate tissues. H{sub 2}S production in prostate tissues from CSE knockout mice was only 20% of that from wild-type mice, suggesting CSE is a major H{sub 2}S-producing enzyme in prostate. CSE overexpression enhanced H{sub 2}S production and inhibited cell viability in PC-3 cells. In addition, both SFN and NaHS activated p38 mitogen-activated protein kinases (MAPK) and c-Jun N-terminal kinase (JNK). Pre-treatment of PC-3 cells with methemoglobin decreased SFN-stimulated MAPK activities. Suppression of both p38 MAPK and JNK reversed H{sub 2}S- or SFN-reduced viability of PC-3 cells. Our results demonstrated that H{sub 2}S mediates the inhibitory effect of SFN on the proliferation of PC-3 cells, which suggests that H{sub 2}S-releasing diet or drug might be beneficial in the treatment of prostate cancer. Highlights: Black-Right-Pointing-Pointer A large amount of H{sub 2}S is released from sulforaphane. Black-Right-Pointing-Pointer H{sub 2}S mediates the anti-survival effect of

  14. Occurrence and distribution of color and hydrogen sulfide in water of the principal artesian aquifers in the Valdosta area, Georgia

    USGS Publications Warehouse

    Krause, Richard E.

    1976-01-01

    Hydrogen sulfide and color occur in objectionable amounts in ground water from the principal artesian aquifer in the Valdosta , Ga., area. Generally, water from wells south of Valdosta is high in hydrogen sulfide; water from wells north of the city is high in color. Water with high sulfate is likely to be a problem in wells deeper than about 540 ft. Heavy pumpage concentrated in a small area may cause high-sulfate water to migrate vertically upward into shallower wells. (Woodard-USGS)

  15. The influence of hydrogen sulfide-to-hydrogen partial pressure ratio on the sulfidization of Pd and 70 mol% Pd–Cu membranes

    SciTech Connect

    Iyoha, O.; Enick, R.M.; Killmeyer, R.P.; Morreale, B.

    2007-11-15

    The influence of H2S-to-H2 partial pressure ratio on the sulfidization of Pd and 70 mol% Pd–Cu membrane alloys was studied using various H2Scontaining gas mixtures. The Pd membranes exposed to various H2S mixtures were in very good agreement with the thermodynamic calculations used in this study, resisting sulfidization when exposed to H2S-to-H2 ratios below the equilibrium value predicted for Pd4S formation, and experiencing sulfidization when exposed to ratios above the equilibrium values. The 70 mol% Pd–Cu membranes, however, exhibited deviations from the predicted values, resisting sulfidization at some conditions close to the equilibrium values at which sulfidization was expected, and experiencing sulfidization at some conditions at which resistance was expected. This phenomenon was attributed to deviations of the Pd–Cu alloy from ideality, probably due to Cu segregation at the membrane surface.

  16. The influence of hydrogen sulfide-to-hydrogen partial pressure ratio on the sulfidization of Pd and 70 mol% Pd-Cu membranes

    SciTech Connect

    Iyoha, O.; Enick, R.M.; Killmeyer, R.P.; Morreale, B.D.

    2007-11-15

    The influence of H2S-to-H2 partial pressure ratio on the sulfidization of Pd and 70 mol% Pd–Cu membrane alloys was studied using various H2S-containing gas mixtures. The Pd membranes exposed to various H2S mixtures were in very good agreement with the thermodynamic calculations used in this study, resisting sulfidization when exposed to H2S-to-H2 ratios below the equilibrium value predicted for Pd4S formation, and experiencing sulfidization when exposed to ratios above the equilibrium values. The 70 mol% Pd–Cu membranes, however, exhibited deviations from the predicted values, resisting sulfidization at some conditions close to the equilibrium values at which sulfidization was expected, and experiencing sulfidization at some conditions at which resistance was expected. This phenomenon was attributed to deviations of the Pd–Cu alloy from ideality, probably due to Cu segregation at the membrane surface.

  17. Hydrogen Sulfide-Mediated Polyamines and Sugar Changes Are Involved in Hydrogen Sulfide-Induced Drought Tolerance in Spinacia oleracea Seedlings

    PubMed Central

    Chen, Juan; Shang, Yu-Ting; Wang, Wen-Hua; Chen, Xi-Yan; He, En-Ming; Zheng, Hai-Lei; Shangguan, Zhouping

    2016-01-01

    Hydrogen sulfide (H2S) is a newly appreciated participant in physiological and biochemical regulation in plants. However, whether H2S is involved in the regulation of plant responses to drought stress remains unclear. Here, the role of H2S in the regulation of drought stress response in Spinacia oleracea seedlings is reported. First, drought stress dramatically decreased the relative water content (RWC) of leaves, photosynthesis, and the efficiency of PSII. Moreover, drought caused the accumulation of ROS and increased the MDA content. However, the application of NaHS counteracted the drought-induced changes in these parameters. Second, NaHS application increased the water and osmotic potential of leaves. Additionally, osmoprotectants such as proline and glycinebetaine (GB) content were altered by NaHS application under drought conditions, suggesting that osmoprotectant contributes to H2S-induced drought resistance. Third, the levels of soluble sugars and polyamines (PAs) were increased differentially by NaHS application in S. oleracea seedlings. Moreover, several genes related to PA and soluble sugar biosynthesis, as well as betaine aldehyde dehydrogenase (SoBADH), choline monooxygenase (SoCMO), and aquaporin (SoPIP1;2), were up-regulated by H2S under drought stress. These results suggest that H2S contributes to drought tolerance in S. oleracea through its effect on the biosynthesis of PAs and soluble sugars. Additionally, GB and trehalose also play key roles in enhancing S. oleracea drought resistance. PMID:27540388

  18. Hydrogen Sulfide-Mediated Polyamines and Sugar Changes Are Involved in Hydrogen Sulfide-Induced Drought Tolerance in Spinacia oleracea Seedlings.

    PubMed

    Chen, Juan; Shang, Yu-Ting; Wang, Wen-Hua; Chen, Xi-Yan; He, En-Ming; Zheng, Hai-Lei; Shangguan, Zhouping

    2016-01-01

    Hydrogen sulfide (H2S) is a newly appreciated participant in physiological and biochemical regulation in plants. However, whether H2S is involved in the regulation of plant responses to drought stress remains unclear. Here, the role of H2S in the regulation of drought stress response in Spinacia oleracea seedlings is reported. First, drought stress dramatically decreased the relative water content (RWC) of leaves, photosynthesis, and the efficiency of PSII. Moreover, drought caused the accumulation of ROS and increased the MDA content. However, the application of NaHS counteracted the drought-induced changes in these parameters. Second, NaHS application increased the water and osmotic potential of leaves. Additionally, osmoprotectants such as proline and glycinebetaine (GB) content were altered by NaHS application under drought conditions, suggesting that osmoprotectant contributes to H2S-induced drought resistance. Third, the levels of soluble sugars and polyamines (PAs) were increased differentially by NaHS application in S. oleracea seedlings. Moreover, several genes related to PA and soluble sugar biosynthesis, as well as betaine aldehyde dehydrogenase (SoBADH), choline monooxygenase (SoCMO), and aquaporin (SoPIP1;2), were up-regulated by H2S under drought stress. These results suggest that H2S contributes to drought tolerance in S. oleracea through its effect on the biosynthesis of PAs and soluble sugars. Additionally, GB and trehalose also play key roles in enhancing S. oleracea drought resistance. PMID:27540388

  19. Hydrogen sulfide removal from sediment and water in box culverts/storm drains by iron-based granules.

    PubMed

    Sun, J L; Shang, C; Kikkert, G A

    2013-01-01

    A renewable granular iron-based technology for hydrogen sulfide removal from sediment and water in box culverts and storm drains is discussed. Iron granules, including granular ferric hydroxide (GFH), granular ferric oxide (GFO) and rusted waste iron crusts (RWIC) embedded in the sediment phase removed aqueous hydrogen sulfide formed from sedimentary biological sulfate reduction. The exhausted iron granules were exposed to dissolved oxygen and this regeneration process recovered the sulfide removal capacities of the granules. The recovery is likely attributable to the oxidation of the ferrous iron precipitates film and the formation of new reactive ferric iron surface sites on the iron granules and sand particles. GFH and RWIC showed larger sulfide removal capacities in the sediment phase than GFO, likely due to the less ordered crystal structures on their surfaces. This study demonstrates that the iron granules are able to remove hydrogen sulfide from sediment and water in box culverts and storm drains and they have the potential to be regenerated and reused by contacting with dissolved oxygen. PMID:24355850

  20. Hydrogen Sulfide Plays a Key Role in the Inhibitory Neurotransmission to the Pig Intravesical Ureter

    PubMed Central

    Fernandes, Vítor S.; Ribeiro, Ana S. F.; Martínez, Pilar; López-Oliva, María Elvira; Barahona, María Victoria; Orensanz, Luis M.; Martínez-Sáenz, Ana; Recio, Paz; Benedito, Sara; Bustamante, Salvador; García-Sacristán, Albino; Prieto, Dolores; Hernández, Medardo

    2014-01-01

    According to previous observations nitric oxide (NO), as well as an unknown nature mediator are involved in the inhibitory neurotransmission to the intravesical ureter. This study investigates the hydrogen sulfide (H2S) role in the neurogenic relaxation of the pig intravesical ureter. We have performed western blot and immunohistochemistry to study the expression of the H2S synthesis enzymes cystathionine γ-lyase (CSE) and cystathionine β-synthase (CBS), measurement of enzymatic production of H2S and myographic studies for isometric force recording. Immunohistochemical assays showed a high CSE expression in the intravesical ureter muscular layer, as well as a strong CSE-immunoreactivity within nerve fibres distributed along smooth muscle bundles. CBS expression, however, was not consistently observed. On ureteral strips precontracted with thromboxane A2 analogue U46619, electrical field stimulation (EFS) and the H2S donor P-(4-methoxyphenyl)-P-4-morpholinylphosphinodithioic acid (GYY4137) evoked frequency- and concentration-dependent relaxations. CSE inhibition with DL-propargylglycine (PPG) reduced EFS-elicited responses and a combined blockade of both CSE and NO synthase (NOS) with, respectively, PPG and NG-nitro-L-arginine (L-NOARG), greatly reduced such relaxations. Endogenous H2S production rate was reduced by PPG, rescued by addition of GYY4137 and was not changed by L-NOARG. EFS and GYY4137 relaxations were also reduced by capsaicin-sensitive primary afferents (CSPA) desensitization with capsaicin and blockade of ATP-dependent K+ (KATP) channels, transient receptor potential A1 (TRPA1), transient receptor potential vanilloid 1 (TRPV1), vasoactive intestinal peptide/pituitary adenylyl cyclase-activating polypeptide (VIP/PACAP) and calcitonin gene-related peptide (CGRP) receptors with glibenclamide, HC030031, AMG9810, PACAP6–38 and CGRP8–37, respectively. These results suggest that H2S, synthesized by CSE, is involved in the inhibitory neurotransmission

  1. Biological consilience of hydrogen sulfide and nitric oxide in plants: Gases of primordial earth linking plant, microbial and animal physiologies.

    PubMed

    Yamasaki, Hideo; Cohen, Michael F

    2016-05-01

    Hydrogen sulfide (H2S) is produced in the mammalian body through the enzymatic activities of cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3MST). A growing number of studies have revealed that biogenic H2S produced in tissues is involved in a variety of physiological responses in mammals including vasorelaxation and neurotransmission. It is now evident that mammals utilize H2S to regulate multiple signaling systems, echoing the research history of the gaseous signaling molecules nitric oxide (NO) and carbon monoxide (CO) that had previously only been recognized for their cytotoxicity. In the human diet, meats (mammals, birds and fishes) and vegetables (plants) containing cysteine and other sulfur compounds are the major dietary sources for endogenous production of H2S. Plants are primary producers in ecosystems on the earth and they synthesize organic sulfur compounds through the activity of sulfur assimilation. Although plant H2S-producing activities have been known for a long time, our knowledge of H2S biology in plant systems has not been updated to the extent of mammalian studies. Here we review recent progress on H2S studies, highlighting plants and bacteria. Scoping the future integration of H2S, NO and O2 biology, we discuss a possible linkage between physiology, ecology and evolutional biology of gas metabolisms that may reflect the historical changes of the Earth's atmospheric composition. PMID:27083071

  2. Iron sulfides and sulfur species produced at hematite surfaces in the presence of sulfate-reducing bacteria 1

    NASA Astrophysics Data System (ADS)

    Neal, Andrew L.; Techkarnjanaruk, Somkiet; Dohnalkova, Alice; McCready, David; Peyton, Brent M.; Geesey, Gill G.

    2001-01-01

    In the presence of sulfate-reducing bacteria ( Desulfovibrio desulfuricans) hematite (α-Fe 2O 3) dissolution is affected potentially by a combination of enzymatic (hydrogenase) reduction and hydrogen sulfide oxidation. As a consequence, ferrous ions are free to react with excess H 2S to form insoluble ferrous sulfides. X-ray photoelectron spectra indicate binding energies similar to ferrous sulfides having pyrrhotite-like structures (Fe2 p3/2 708.4 eV; S2 p3/2 161.5 eV). Other sulfur species identified at the surface include sulfate, sulfite and polysulfides. Thin film X-ray diffraction identifies a limited number of peaks, the principal one of which may be assigned to the hexagonal pyrrhotite (102) peak (d = 2.09 Å; 2θ = 43.22°), at the hematite surface within 3 months exposure to sulfate-reducing bacteria (SRB). High-resolution transmission electron microscopy identifies the presence of a hexagonal structure associated with observed crystallites. Although none of the analytical techniques employed provide unequivocal evidence as to the nature of the ferrous sulfide formed in the presence of SRB at hematite surfaces, we conclude from the available evidence that a pyrrhotite stiochiometry and structure is the best description of the sulfides we observe. Such ferrous sulfide production is inconsistent with previous reports in which mackinawite and greigite were products of biological sulfate reduction (Rickard 1969a; Herbert et al., 1998; Benning et al., 1999). The apparent differences in stoichiometry may be related to sulfide activity at the mineral surface, controlled in part by H 2S autooxidation in the presence of iron oxides. Due to the relative stability of pyrrhotite at low temperatures, ferrous sulfide dissolution is likely to be reduced compared to the more commonly observed products of SRB activity. Additionally, biogenic pyrrhotite formation will also have implications for geomagnetic field behavior of sediments.

  3. Method and means for producing solid evacuated microspheres of hydrogen

    DOEpatents

    Turnbull, Robert J.; Foster, Christopher A.; Hendricks, Charles D.

    1976-01-01

    A method is provided for producing solid, evacuated microspheres comprised of hydrogen. The spheres are produced by forming a jet of liquid hydrogen and exciting mechanical waves on the jet of appropriate frequency so that the jet breaks up into drops with a bubble formed in each drop by cavitation. The drops are exposed to a pressure less than the vapor pressure of the liquid hydrogen so that the bubble which is formed within each drop expands. The drops which contain bubbles are exposed to an environment having a pressure just below the triple point of liquid hydrogen and they thereby freeze giving solid, evacuated spheres of hydrogen.

  4. Metabolically engineered bacteria for producing hydrogen via fermentation

    PubMed Central

    Vardar‐Schara, Gönül; Maeda, Toshinari; Wood, Thomas K.

    2008-01-01

    Summary Hydrogen, the most abundant and lightest element in the universe, has much potential as a future energy source. Hydrogenases catalyse one of the simplest chemical reactions, 2H+ + 2e‐ ↔ H2, yet their structure is very complex. Biologically, hydrogen can be produced via photosynthetic or fermentative routes. This review provides an overview of microbial production of hydrogen by fermentation (currently the more favourable route) and focuses on biochemical pathways, theoretical hydrogen yields and hydrogenase structure. In addition, several examples of metabolic engineering to enhance fermentative hydrogen production are presented along with some examples of expression of heterologous hydrogenases for enhanced hydrogen production. PMID:21261829

  5. Borax and Octabor Treatment of Stored Swine Manure: Reduction in Hydrogen Sulfide Emissions and Phytotoxicity to Agronomic Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gaseous emissions from stored manure have become environmental and health issues for humans and animals as the livestock industry becomes specialized and concentrated. Of particular concern is hydrogen sulfide, which is being targeted for regulatory control in concentrated animal farm operations. ...

  6. Combined borax and tannin treatment of stored dairy manure to reduce bacterial populations and hydrogen sulfide emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Anaerobic digestion of organic residues in stored livestock manure is associated with the production of odors and emissions. Hydrogen sulfide (H2S) is one such emission that can reach hazardous levels during manure storage and handling, posing a risk to both farmers and livestock. New te...

  7. Kinetics and mechanism of the degradation of methyl parathion in aqueous hydrogen sulfide solution: investigation of natural organic matter effects.

    PubMed

    Guo, Xiaofen; Jans, Urs

    2006-02-01

    The kinetics of the transformation of methyl parathion have been investigated in aqueous solution containing reduced sulfur species and small concentrations of natural organic matter (NOM) from different sources such as soil, river, and peat. It was shown that NOM mediates the degradation of methyl parathion in aqueous solutions containing hydrogen sulfide. After evaluating and quantifying the effect of the NOM concentration on the degradation kinetics of methyl parathion in the presence of hydrogen sulfide, it was found that the observed pseudo-first-order reaction rate constants (k(obs)) were proportional to NOM concentrations. The influence of pH on the degradation of methyl parathion in the aqueous solutions containing hydrogen sulfide and NOM has been studied. The rate of degradation of methyl parathion was strongly pH dependent. The results indicate k(obs) with a commercially available humic acid has a maximum value at approximately pH 8.3. Two main reaction mechanisms are identified to dominate the degradation of methyl parathion in aqueous solution containing hydrogen sulfide and NOM based on the products aminomethyl parathion and desmethyl methyl parathion. The two mechanisms are nitro-group reduction and nucleophilic attack at the methoxy-carbon. The reduction of the nitro-group is only observed in the presence of NOM. The results of this study form an important base for the evaluation and interpretation of transformation processes of methyl parathion in the environment. PMID:16509335

  8. 75 FR 19319 - Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release Reporting; Extension of Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-14

    ... Number (CAS No.) 7783-06-4) (75 FR 8889). The purpose of today's action is to inform interested parties... requirements for hydrogen sulfide (75 FR 8889). B. Why and for How Long Is EPA Extending the Comment Period..., 212231, 212234, 212299 (correspond to SIC 10, Metal Mining (except 1011, 1081, and 1094)); or...

  9. Electrically Conducting Polymer-Copper Sulphide Composite Films, Preparation by Treatment of Polymer-Copper (2) Acetate Composites with Hydrogen Sulfide

    NASA Technical Reports Server (NTRS)

    Yamamoto, Takakazu; Kamigaki, Takahira; Kubota, Etsuo

    1988-01-01

    Polymer copper sulfide composite films were prepared by treatment of polymer poly(vinyl chloride), poly(acrylonitrile), copolymer of vinyl chloride and vinyl acetate (90:10), and ABS resin copper (2) acetate composites with hydrogen sulfide. The films showed electrical conductivity higher than 0.015 S/cm when they contained more than 20 wt percent of copper sulfide. A poly(acrylonitrile)-copper sulfide composite film containing 40 to 50 wt percent of copper sulfide showed electrical conductivity of 10 to 150.0 S/cm and had relatively high mechanical strength to be used in practical purposes.

  10. Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenum sulfide

    NASA Astrophysics Data System (ADS)

    Tran, Phong D.; Tran, Thu V.; Orio, Maylis; Torelli, Stephane; Truong, Quang Duc; Nayuki, Keiichiro; Sasaki, Yoshikazu; Chiam, Sing Yang; Yi, Ren; Honma, Itaru; Barber, James; Artero, Vincent

    2016-06-01

    Molybdenum sulfides are very attractive noble-metal-free electrocatalysts for the hydrogen evolution reaction (HER) from water. The atomic structure and identity of the catalytically active sites have been well established for crystalline molybdenum disulfide (c-MoS2) but not for amorphous molybdenum sulfide (a-MoSx), which exhibits significantly higher HER activity compared to its crystalline counterpart. Here we show that HER-active a-MoSx, prepared either as nanoparticles or as films, is a molecular-based coordination polymer consisting of discrete [Mo3S13]2- building blocks. Of the three terminal disulfide (S22-) ligands within these clusters, two are shared to form the polymer chain. The third one remains free and generates molybdenum hydride moieties as the active site under H2 evolution conditions. Such a molecular structure therefore provides a basis for revisiting the mechanism of a-MoSx catalytic activity, as well as explaining some of its special properties such as reductive activation and corrosion. Our findings open up new avenues for the rational optimization of this HER electrocatalyst as an alternative to platinum.

  11. Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenum sulfide.

    PubMed

    Tran, Phong D; Tran, Thu V; Orio, Maylis; Torelli, Stephane; Truong, Quang Duc; Nayuki, Keiichiro; Sasaki, Yoshikazu; Chiam, Sing Yang; Yi, Ren; Honma, Itaru; Barber, James; Artero, Vincent

    2016-06-01

    Molybdenum sulfides are very attractive noble-metal-free electrocatalysts for the hydrogen evolution reaction (HER) from water. The atomic structure and identity of the catalytically active sites have been well established for crystalline molybdenum disulfide (c-MoS2) but not for amorphous molybdenum sulfide (a-MoSx), which exhibits significantly higher HER activity compared to its crystalline counterpart. Here we show that HER-active a-MoSx, prepared either as nanoparticles or as films, is a molecular-based coordination polymer consisting of discrete [Mo3S13](2-) building blocks. Of the three terminal disulfide (S2(2-)) ligands within these clusters, two are shared to form the polymer chain. The third one remains free and generates molybdenum hydride moieties as the active site under H2 evolution conditions. Such a molecular structure therefore provides a basis for revisiting the mechanism of a-MoSx catalytic activity, as well as explaining some of its special properties such as reductive activation and corrosion. Our findings open up new avenues for the rational optimization of this HER electrocatalyst as an alternative to platinum. PMID:26974410

  12. A ratiometric strategy to detect hydrogen sulfide with a gold nanoclusters based fluorescent probe.

    PubMed

    Yang, Yan; Lei, Yingjie; Zhang, Xinrong; Zhang, Sichun

    2016-07-01

    The emergence of ratiometric fluorescent probes have offered more convincing results to the bioanalytical field of research. In particular, using nanoparticles as scaffolds for the construction of ratiometric systems has received increasing attention. In this work, a novel design strategy was implemented for ratiometric sensing of hydrogen sulfide (H2S), in which bovine serum albumin templated gold nanoclusters (BSA-AuNCs) was served as the internal reference fluorophore and HSip-1, a azamacrocyclic Cu(2+) complex based fluorescent probe toward H2S, acted as both the signal indicator and specific recognition element. Under single wavelength excitation, the nanohybrid probe HSip-1@AuNC emitted dual fluorescence at 519 and 632nm, coming from HSip-1 and AuNCs respectively. The effective fluorescence response of organic dye to H2S and constant fluorescence of AuNCs enabled the proposed HSip-1@AuNC to achieve the ratiometric measurement with a dynamic linear range of 7-100μM and a detection limit of 0.73μM. This probe also possesses high selectivity, stability against pH change and continuously light illumination. In addition, we provided HSip-1@AuNC as a valuable tool to analyze sulfides in serum samples and perfect recoveries verified its potential in biological applications. PMID:27154665

  13. Molecular Dynamics Simulations of Small Clusters and Liquid Hydrogen Sulfide at Different Thermodynamic Conditions.

    PubMed

    Albertí, M; Amat, A; Aguilar, A; Pirani, F

    2016-07-14

    A new force field for the intermolecular H2S-H2S interaction has been used to study the most relevant properties of the hydrogen sulfide system from gaseous to liquid phases by means of molecular dynamics (MD) simulations. In order to check the validity of the interaction formulation, ab initio CCSD(T)/aug-cc-pVTZ calculations, including the counterpoise correction on the H2S, (H2S)2, and (H2S)3 structures optimized at the MP2/aug-cc-pVDZ level, have been performed. The (H2S)2,3 systems have been characterized by performing NVE MD simulations at decreasing values of the temperature, while the liquid sulfide behavior has been investigated considering a NpT ensemble of 512 molecules at several thermodynamic states, defined by different pressure and temperature values. Additional calculations using an ensemble of 2197 molecules at two different temperatures have been performed to investigate the liquid/vapor interface of the system. The S-S, S-H, and H-H radial distribution functions and the coordination number, calculated at the same conditions used in X-ray and neutron diffraction experiments, and the evaluated thermodynamic and structural properties have been compared successfully with experimental data, thus confirming the reliability of the force field formulation and of the MD predictions. PMID:26835966

  14. Hydrogen Sulfide Regulates Inward-Rectifying K+ Channels in Conjunction with Stomatal Closure1[OPEN

    PubMed Central

    Papanatsiou, Maria; Scuffi, Denisse; Blatt, Michael R.; García-Mata, Carlos

    2015-01-01

    Hydrogen sulfide (H2S) is the third biological gasotransmitter, and in animals, it affects many physiological processes by modulating ion channels. H2S has been reported to protect plants from oxidative stress in diverse physiological responses. H2S closes stomata, but the underlying mechanism remains elusive. Here, we report the selective inactivation of current carried by inward-rectifying K+ channels of tobacco (Nicotiana tabacum) guard cells and show its close parallel with stomatal closure evoked by submicromolar concentrations of H2S. Experiments to scavenge H2S suggested an effect that is separable from that of abscisic acid, which is associated with water stress. Thus, H2S seems to define a unique and unresolved signaling pathway that selectively targets inward-rectifying K+ channels. PMID:25770153

  15. Exposure to low levels of hydrogen sulfide elevates circulating glucose in maternal rats

    SciTech Connect

    Hayden, L.J.; Goeden, H.; Roth, S.H. )

    1990-09-01

    Although the lethal effect of hydrogen sulfide (H{sub 2}S) has long been known, the results of exposure to low levels of H{sub 2}S have not been well documented. Rat dams and pups were exposed to low levels of H{sub 2}S (less than or equal to 75 ppm) from d 1 of gestation until d 21 postpartum and analyzed for changes in circulating enzymatic activity and metabolites. Blood glucose was significantly elevated in maternal blood on d 21 postpartum at all exposure levels. This increase in glucose was accompanied by a possible decrease in serum triglyceride in the pups and in the dams on d 21 postpartum. There was no evidence of alterations in serum alkaline phosphatase, lactate dehydrogenase, or serum glutamate oxaloacetate transaminase.

  16. Hydrogen Sulfide, the Next Potent Preventive and Therapeutic Agent in Aging and Age-Associated Diseases

    PubMed Central

    Zhang, Yuan; Tang, Zhi-Han; Ren, Zhong; Qu, Shun-Lin; Liu, Mi-Hua; Liu, Lu-Shan

    2013-01-01

    Hydrogen sulfide (H2S) is the third endogenous signaling gasotransmitter, following nitric oxide and carbon monoxide. It is physiologically generated by cystathionine-γ-lyase, cystathionine-β-synthase, and 3-mercaptopyruvate sulfurtransferase. H2S has been gaining increasing attention as an important endogenous signaling molecule because of its significant effects on the cardiovascular and nervous systems. Substantial evidence shows that H2S is involved in aging by inhibiting free-radical reactions, activating SIRT1, and probably interacting with the age-related gene Klotho. Moreover, H2S has been shown to have therapeutic potential in age-associated diseases. This article provides an overview of the physiological functions and effects of H2S in aging and age-associated diseases, and proposes the potential health and therapeutic benefits of H2S. PMID:23297346

  17. Novel hydrogen sulfide-releasing compound, S-propargyl-cysteine, prevents STZ-induced diabetic nephropathy.

    PubMed

    Qian, Xin; Li, Xinghui; Ma, Fenfen; Luo, Shanshan; Ge, Ruowen; Zhu, Yizhun

    2016-05-13

    In this work, we demonstrated for the first time that S-propargyl-cysteine (SPRC, also named as ZYZ-802), a novel hydrogen sulfide (H2S)-releasing compound, had renoprotective effects on streptozotocin (STZ)-induced diabetic kidney injury. SPRC treatment significantly reduced the level of creatinine, kidney to body weight ratio and in particular, markedly decreased 24-h urine microalbuminuria excretion. SPRC suppressed the mRNA expression of fibronectin and type IV collagen. In vitro, SPRC inhibited mesangial cells over-proliferation and hypertrophy induced by high glucose. Additionally, SPRC attenuated inflammation in diabetic kidneys. SPRC also reduced transforming growth factor β1 (TGF-β1) signaling and expression of phosphorylated Smad3 (p-Smad3) pathway. Moreover, SPRC inhibited phosphorylation of ERK, p38 protein. Taken together, SPRC was demonstrated to be a potential therapeutic candidate to suppress diabetic nephropathy. PMID:27055593

  18. Colorimetric detection of biological hydrogen sulfide using fluorosurfactant functionalized gold nanorods.

    PubMed

    Zhang, Xuan; Zhou, Wenjuan; Yuan, Zhiqin; Lu, Chao

    2015-11-01

    As a well-known environmental pollutant but also an important gaseous transmitter, the specific detection of hydrogen sulfide (H2S) is significant in biological systems. In this study, fluorosurfactant functionalized gold nanorods (FSN-AuNRs) have been proposed to act as selective colorimetric nanoprobes for H2S. With the combination of strong gold-S interactions and small FSN bilayer interstices, FSN-AuNRs demonstrate favorable selectivity and sensitivity toward H2S over other anions and small biological molecules. The practical application of the present method in biological H2S detection was validated with human and mouse serum samples. Moreover, the proposed nanoprobe can also be used for evaluating the activity of H2S synthetase. PMID:26415625

  19. How to pressurize autoclaves for corrosion testing under carbon dioxide and hydrogen sulfide pressure

    SciTech Connect

    Crolet, J.L.; Bonis, M.R.

    2000-02-01

    All the methods presently used for pressurizing autoclaves have advantages and disadvantages. Pressurizing with pure gases is undoubtedly the surest method, since it is insensitive to the autoclave filling rate, and the influence of temperature stability readily can be controlled. The only limitation is the impossibility of accurately reproducing very low hydrogen sulfide (H{sub 2}S) partial pressures (<30 mbar) at high temperatures (>150 C). Conventional pressurizing with gas mixtures is not at all practical, since it demands either excessively large autoclaves or the bubbling of prohibitive volumes of gas. To overcome these fundamental difficulties, alternative methods are proposed, such as high-temperature bubbling using a cooled reflux condenser or presaturation of the autoclave at 60 C at a fraction of the test pressure, enabling the latter to be attained during subsequent heating by the natural increase in pressure with temperature.

  20. pH-Controlled Hydrogen Sulfide Release for Myocardial Ischemia-Reperfusion Injury.

    PubMed

    Kang, Jianming; Li, Zhen; Organ, Chelsea L; Park, Chung-Min; Yang, Chun-Tao; Pacheco, Armando; Wang, Difei; Lefer, David J; Xian, Ming

    2016-05-25

    Hydrogen sulfide (H2S) is a critical signaling molecule that regulates many physiological and/or pathological processes. Modulation of H2S levels could have potential therapeutic value. In this work, we report the rational design, synthesis, and biological evaluation of a class of phosphonamidothioate-based H2S-releasing agents (i.e., H2S donors). A novel pH-dependent intramolecular cyclization was employed to promote H2S release from the donors. These water-soluble compounds showed slow, controllable, and pH-sensitive production of H2S in aqueous solutions. The donors also showed significant cytoprotective effects in cellular models of oxidative damage. Most importantly, the donors were found to exhibit potent cardioprotective effects in an in vivo murine model of myocardial ischemia-reperfusion (MI/R) injury through a H2S-related mechanism. PMID:27172143

  1. A Hypothesis: Hydrogen Sulfide Might Be Neuroprotective against Subarachnoid Hemorrhage Induced Brain Injury

    PubMed Central

    Yu, Yong-Peng; Chi, Xiang-Lin; Liu, Li-Jun

    2014-01-01

    Gases such as nitric oxide (NO) and carbon monoxide (CO) play important roles both in normal physiology and in disease. Recent studies have shown that hydrogen sulfide (H2S) protects neurons against oxidative stress and ischemia-reperfusion injury and attenuates lipopolysaccharides (LPS) induced neuroinflammation in microglia, exhibiting anti-inflammatory and antiapoptotic activities. The gas H2S is emerging as a novel regulator of important physiologic functions such as arterial diameter, blood flow, and leukocyte adhesion. It has been known that multiple factors, including oxidative stress, free radicals, and neuronal nitric oxide synthesis as well as abnormal inflammatory responses, are involved in the mechanism underlying the brain injury after subarachnoid hemorrhage (SAH). Based on the multiple physiologic functions of H2S, we speculate that it might be a promising, effective, and specific therapy for brain injury after SAH. PMID:24707204

  2. Adsorption of hydrogen sulfide onto activated carbon fibers: effect of pore structure and surface chemistry.

    PubMed

    Feng, Wenguo; Kwon, Seokjoon; Borguet, Eric; Vidic, Radisav

    2005-12-15

    To understand the nature of H2S adsorption onto carbon surfaces under dry and anoxic conditions, the effects of carbon pore structure and surface chemistry were studied using activated carbon fibers (ACFs) with different pore structures and surface areas. Surface pretreatments, including oxidation and heattreatment, were conducted before adsorption/desorption tests in a fixed-bed reactor. Raw ACFs with higher surface area showed greater adsorption and retention of sulfur, and heat treatment further enhanced adsorption and retention of sulfur. The retained amount of hydrogen sulfide correlated well with the amount of basic functional groups on the carbon surface, while the desorbed amount reflected the effect of pore structure. Temperature-programmed desorption (TPD) and thermal gravimetric analysis (TGA) showed that the retained sulfurous compounds were strongly bonded to the carbon surface. In addition, surface chemistry of the sorbent might determine the predominant form of adsorbate on the surface. PMID:16475362

  3. Postsynthetic modification of metal-organic framework for hydrogen sulfide detection

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Zhang, Jianmin; Hu, Quan; Cui, Yuanjing; Yang, Yu; Qian, Guodong

    2015-11-01

    Hydrogen sulfide (H2S) has recently been identified as the third biological gaseous messenger (gasotransmitter) that is involved in regulating many important physiological processes. The detection of H2S is thus essential for its roles but remain challenging in living systems. We report herein a novel turn-on fluorescent probe for H2S detection based on azide functionalized metal-organic framework (MOF). The MOF probe displayed high sensitivity (detection limit, 28.3 μM), excellent selectivity, and fast response (<2 min) toward H2S over other biologically relevant species. We envisage that this MOF probe can be employed as a useful tool to further elucidate the biological roles of H2S.

  4. Hydrogen sulfide mediates nicotine biosynthesis in tobacco (Nicotiana tabacum) under high temperature conditions.

    PubMed

    Chen, Xiaodong; Chen, Qian; Zhang, Xiaoming; Li, Ruijing; Jia, Yujie; Ef, Abd Allah; Jia, Aiqun; Hu, Liwei; Hu, Xiangyang

    2016-07-01

    Hydrogen sulfide (H2S) acts as a signal to induce many physiological processes in plants, but its role in controlling the biosynthesis of secondary metabolites is not well established. In this study, we found that high temperature (HT) treatment induced nicotine biosynthesis in tobacco (Nicotiana tabacum) and promoted the rapid accumulation of H2S. Furthermore, HT triggered the biosynthesis of jasmonic acid (JA), a plant hormone that promotes nicotine biosynthesis. Suppression of the H2S signal using chemical inhibitors or via RNAi suppression of l-cysteine desulphydrase (L-CD) in transgenic plants, compromised JA production and nicotine biosynthesis under HT treatments, and these inhibitory effects could be reversed by applying exogenous H2S. Based on these data, we propose that H2S is an important trigger of nicotine biosynthesis in tobacco under HT conditions, and that H2S acts upstream of JA signaling by modulating the transcription of genes associated with JA biosynthesis. PMID:27035256

  5. Systematization of published spectral data on deuterated isotopologues of hydrogen sulfide molecule

    NASA Astrophysics Data System (ADS)

    Voronina, S. S.; Naumenko, O. V.; Polovtseva, E. R.; Fazliev, A. Z.

    2014-11-01

    The report presents a description of properties of published data on spectral lines parameters of deuterated isotopologues of hydrogen sulfide - HDS, HD34S, D2S, D2 34S. Properties values characterizing data quality are calculated taking into account the validity criteria and credit estimation according to publishing criteria. Formalized criteria of data check based on the constraints and selection rules known from the vibrational-rotational theory, as well as an expert evaluation are utilized for validation of the original experimental transitions and energy levels. The consistent and accurate set of the vibration - rotation (VR) energy levels is derived based on the cleaned transitions. Published vibrational-rotational transitions and energy levels of considered molecules as well as the knowledge base are available in the Internet in W@DIS information system (IS).

  6. Intravital Microscopic Methods to Evaluate Anti-inflammatory Effects and Signaling Mechanisms Evoked by Hydrogen Sulfide

    PubMed Central

    Zuidema, Mozow Y.; Korthuis, Ronald J.

    2016-01-01

    Hydrogen sulfide (H2S) is an endogenous gaseous signaling molecule with potent anti-inflammatory properties. Exogenous application of H2S donors, administered either acutely during an inflammatory response or as an antecedent preconditioning intervention that invokes the activation of anti-inflammatory cell survival programs, effectively limits leukocyte rolling, adhesion and emigration, generation of reactive oxygen species, chemokine and cell adhesion molecule expression, endothelial barrier disruption,capillary perfusion deficits, and parenchymal cell dysfunction and injury. This chapter focuses on intravital microscopic methods that can be used to assess the anti-inflammatory effects exerted by H2S, as well as to explore the cellular signaling mechanisms by which this gaseous molecule limits the aforementioned inflammatory responses. Recent advances include use of intravital multiphoton microscopy and optical biosensor technology to explore signaling mechanisms in vivo. PMID:25747477

  7. Mechanisms of action of hydrogen sulfide in relaxation of mouse distal colonic smooth muscle.

    PubMed

    Dhaese, Ingeborg; Van Colen, Inge; Lefebvre, Romain A

    2010-02-25

    Hydrogen sulfide (H(2)S) has been suggested as a gaseous neuromodulator in mammals. The aim of this study was to examine the influence of H(2)S on contractility in mouse distal colon. The effect of sodium hydrogen sulfide (NaHS; H(2)S donor) on prostaglandin F(2alpha) (PGF(2alpha))-contracted circular muscle strips of mouse distal colon was investigated. In addition, tension and cytosolic calcium concentration ([Ca(2+)](cyt)) in the mouse distal colon strips were measured simultaneously in the presence of NaHS. NaHS caused concentration-dependent relaxation of the pre-contracted mouse distal colon strips. The NaHS-induced relaxation was not influenced by the K(+) channels blockers glibenclamide, apamin, charybdotoxin, barium chloride and 4-aminopyridine. The relaxation by NaHS was also not influenced by the nitric oxide inhibitor L-NAME, by the soluble guanylate cyclase respectively adenylate cyclase inhibitors ODQ and SQ 22536, by the nerve blockers capsazepine, omega-conotoxin and tetrodotoxin or by several channel and receptor blockers (ouabain, nifedipine, 2-aminoethyl diphenylborinate, ryanodine and thapsigargin). The initiation of the NaHS-induced relaxation was accompanied by an increase in [Ca(2+)](cyt), but once the relaxation was maximal and sustained, no change in [Ca(2+)](cyt) was measured. This calcium desensitization is not related to the best known calcium desensitizing mechanism as the myosin light chain phosphatase (MLCP) inhibitor calyculin-A and the Rho-kinase inhibitor Y-27632 had no influence. We conclude that NaHS caused concentration-dependent relaxations in mouse distal colon not involving the major known K(+) channels and without a change in [Ca(2+)](cyt). This calcium desensitization is not related to inhibition of Rho-kinase or activation of MLCP. PMID:19919833

  8. Amorphous Molybdenum Sulfide on Graphene-Carbon Nanotube Hybrids as Highly Active Hydrogen Evolution Reaction Catalysts.

    PubMed

    Pham, Kien-Cuong; Chang, Yung-Huang; McPhail, David S; Mattevi, Cecilia; Wee, Andrew T S; Chua, Daniel H C

    2016-03-01

    In this study, we report on the deposition of amorphous molybdenum sulfide (MoSx, with x ≈ 3) on a high specific surface area conductive support of Graphene-Carbon Nanotube hybrids (GCNT) as the Hydrogen Evolution Reaction (HER) catalysts. We found that the high surface area GCNT electrode could support the deposition of MoSx at much higher loadings compared with simple porous carbon paper or flat graphite paper. The morphological study showed that MoSx was successfully deposited on and was in good contact with the GCNT support. Other physical characterization techniques suggested the amorphous nature of the deposited MoSx. With a typical catalyst loading of 3 mg cm(-2), an overpotential of 141 mV was required to obtain a current density of 10 mA cm(-2). A Tafel slope of 41 mV decade(-1) was demonstrated. Both measures placed the MoSx-deposited GCNT electrode among the best performing molybdenum sulfide-based HER catalysts reported to date. The electrode showed a good stability with only a 25 mV increase in overpotential required for a current density of 10 mA cm(-2), after undergoing 500 potential sweeps with vigorous bubbling present. The current density obtained at -0.5 V vs SHE (Standard Hydrogen Electrode potential) decreased less than 10% after the stability test. The deposition of MoSx on high specific surface area conductive electrodes demonstrated to be an efficient method to maximize the catalytic performance toward HER. PMID:26864503

  9. Delivery of Hydrogen Sulfide by Ultrasound Targeted Microbubble Destruction Attenuates Myocardial Ischemia-reperfusion Injury

    PubMed Central

    Chen, Gangbin; Yang, Li; Zhong, Lintao; Kutty, Shelby; Wang, Yuegang; Cui, Kai; Xiu, Jiancheng; Cao, Shiping; Huang, Qiaobing; Liao, Wangjun; Liao, Yulin; Wu, Juefei; Zhang, Wenzhu; Bin, Jianping

    2016-01-01

    Hydrogen sulfide (H2S) is an attractive agent for myocardial ischemia-reperfusion injury, however, systemic delivery of H2S may cause unwanted side effects. Ultrasound targeted microbubble destruction has become a promising tool for organ specific delivery of bioactive substance. We hypothesized that delivery of H2S by ultrasound targeted microbubble destruction attenuates myocardial ischemia-reperfusion injury and could avoid unwanted side effects. We prepared microbubbles carrying hydrogen sulfide (hs-MB) with different H2S/C3F8 ratios (4/0, 3/1, 2/2, 1/3, 0/4) and determined the optimal ratio. Release of H2S triggered by ultrasound was investigated. The cardioprotective effect of ultrasound targeted hs-MB destruction was investigated in a rodent model of myocardial ischemia-reperfusion injury. The H2S/C3F8 ratio of 2/2 was found to be an optimal ratio to prepare stable hs-MB with higher H2S loading capability. Ultrasound targeted hs-MB destruction triggered H2S release and increased the concentration of H2S in the myocardium and lung. Ultrasound targeted hs-MB destruction limited myocardial infarct size, preserved left ventricular function and had no influence on haemodynamics and respiratory. This cardioprotective effect was associated with alleviation of apoptosis and oxidative stress. Delivery of H2S to the myocardium by ultrasound targeted hs-MB destruction attenuates myocardial ischemia-reperfusion injury and may avoid unwanted side effects. PMID:27469291

  10. Delivery of Hydrogen Sulfide by Ultrasound Targeted Microbubble Destruction Attenuates Myocardial Ischemia-reperfusion Injury.

    PubMed

    Chen, Gangbin; Yang, Li; Zhong, Lintao; Kutty, Shelby; Wang, Yuegang; Cui, Kai; Xiu, Jiancheng; Cao, Shiping; Huang, Qiaobing; Liao, Wangjun; Liao, Yulin; Wu, Juefei; Zhang, Wenzhu; Bin, Jianping

    2016-01-01

    Hydrogen sulfide (H2S) is an attractive agent for myocardial ischemia-reperfusion injury, however, systemic delivery of H2S may cause unwanted side effects. Ultrasound targeted microbubble destruction has become a promising tool for organ specific delivery of bioactive substance. We hypothesized that delivery of H2S by ultrasound targeted microbubble destruction attenuates myocardial ischemia-reperfusion injury and could avoid unwanted side effects. We prepared microbubbles carrying hydrogen sulfide (hs-MB) with different H2S/C3F8 ratios (4/0, 3/1, 2/2, 1/3, 0/4) and determined the optimal ratio. Release of H2S triggered by ultrasound was investigated. The cardioprotective effect of ultrasound targeted hs-MB destruction was investigated in a rodent model of myocardial ischemia-reperfusion injury. The H2S/C3F8 ratio of 2/2 was found to be an optimal ratio to prepare stable hs-MB with higher H2S loading capability. Ultrasound targeted hs-MB destruction triggered H2S release and increased the concentration of H2S in the myocardium and lung. Ultrasound targeted hs-MB destruction limited myocardial infarct size, preserved left ventricular function and had no influence on haemodynamics and respiratory. This cardioprotective effect was associated with alleviation of apoptosis and oxidative stress. Delivery of H2S to the myocardium by ultrasound targeted hs-MB destruction attenuates myocardial ischemia-reperfusion injury and may avoid unwanted side effects. PMID:27469291

  11. Hydrogen sulfide mitigates matrix metalloproteinase-9 activity and neurovascular permeability in hyperhomocysteinemic mice*

    PubMed Central

    Tyagi, Neetu; Givvimani, Srikanth; Qipshidze, Natia; Kundu, Soumi; Kapoor, Shray; Vacek, Jonathan C.; Tyagi, Suresh C.

    2010-01-01

    An elevated level of homocysteine (Hcy), known as hyperhomocysteinmia (HHcy), was associated with neurovascular diseases. At physiological levels, hydrogen sulfide (H2S) protected the neurovascular system. Because Hcy was also a precursor of hydrogen sulfide (H2S), we sought to test whether the H2S protected the brain during HHcy. Cystathionine-β-synthase heterozygous (CBS+/−) and wild type (WT) mice were supplemented with or without NaHS (30 µM/L, H2S donor) in drinking water. Blood flow and cerebral microvascular permeability in pial vessels were measured by intravital microscopy in WT, WT+NaHS, CBS−/+ and CBS−/+ + NaHS treated mice. The brain tissues were analyzed for matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinase (TIMP) by Western blot and RT-PCR. The mRNA levels of CBS and cystathionine gamma lyase (CSE, enzyme responsible for conversion of Hcy to H2S) genes were measured by RT-PCR. The results showed a significant increase in MMP-2, MMP-9, TIMP-3 protein and mRNA in CBS (−/+) mice, while H2S treatment mitigated this increase. Interstitial localization of MMPs was also apparent through Immunohistochemistry. A decrease in protein and mRNA expression of TIMP-4 was observed in CBS (−/+) mice. Microscopy data revealed increase in permeability in CBS (−/+) mice. These effects were ameliorated by H2S and suggested that physiological levels of H2S supplementation may have therapeutic potential against HHcy-induced microvascular permeability, in part, by normalizing the MMP/TIMP ratio in the brain. PMID:19913585

  12. Quantum hydrogen-bond symmetrization in the superconducting hydrogen sulfide system

    NASA Astrophysics Data System (ADS)

    Errea, Ion; Calandra, Matteo; Pickard, Chris J.; Nelson, Joseph R.; Needs, Richard J.; Li, Yinwei; Liu, Hanyu; Zhang, Yunwei; Ma, Yanming; Mauri, Francesco

    2016-04-01

    The quantum nature of the proton can crucially affect the structural and physical properties of hydrogen compounds. For example, in the high-pressure phases of H2O, quantum proton fluctuations lead to symmetrization of the hydrogen bond and reduce the boundary between asymmetric and symmetric structures in the phase diagram by 30 gigapascals (ref. 3). Here we show that an analogous quantum symmetrization occurs in the recently discovered sulfur hydride superconductor with a superconducting transition temperature Tc of 203 kelvin at 155 gigapascals—the highest Tc reported for any superconductor so far. Superconductivity occurs via the formation of a compound with chemical formula H3S (sulfur trihydride) with sulfur atoms arranged on a body-centred cubic lattice. If the hydrogen atoms are treated as classical particles, then for pressures greater than about 175 gigapascals they are predicted to sit exactly halfway between two sulfur atoms in a structure with symmetry. At lower pressures, the hydrogen atoms move to an off-centre position, forming a short H–S covalent bond and a longer H···S hydrogen bond in a structure with R3m symmetry. X-ray diffraction experiments confirm the H3S stoichiometry and the sulfur lattice sites, but were unable to discriminate between the two phases. Ab initio density-functional-theory calculations show that quantum nuclear motion lowers the symmetrization pressure by 72 gigapascals for H3S and by 60 gigapascals for D3S. Consequently, we predict that the phase dominates the pressure range within which the high Tc was measured. The observed pressure dependence of Tc is accurately reproduced in our calculations for the phase, but not for the R3m phase. Therefore, the quantum nature of the proton fundamentally changes the superconducting phase diagram of H3S.

  13. Quantum hydrogen-bond symmetrization in the superconducting hydrogen sulfide system.

    PubMed

    Errea, Ion; Calandra, Matteo; Pickard, Chris J; Nelson, Joseph R; Needs, Richard J; Li, Yinwei; Liu, Hanyu; Zhang, Yunwei; Ma, Yanming; Mauri, Francesco

    2016-04-01

    The quantum nature of the proton can crucially affect the structural and physical properties of hydrogen compounds. For example, in the high-pressure phases of H2O, quantum proton fluctuations lead to symmetrization of the hydrogen bond and reduce the boundary between asymmetric and symmetric structures in the phase diagram by 30 gigapascals (ref. 3). Here we show that an analogous quantum symmetrization occurs in the recently discovered sulfur hydride superconductor with a superconducting transition temperature Tc of 203 kelvin at 155 gigapascals--the highest Tc reported for any superconductor so far. Superconductivity occurs via the formation of a compound with chemical formula H3S (sulfur trihydride) with sulfur atoms arranged on a body-centred cubic lattice. If the hydrogen atoms are treated as classical particles, then for pressures greater than about 175 gigapascals they are predicted to sit exactly halfway between two sulfur atoms in a structure with Im3m symmetry. At lower pressures, the hydrogen atoms move to an off-centre position, forming a short H-S covalent bond and a longer H···S hydrogen bond in a structure with R3m symmetry. X-ray diffraction experiments confirm the H3S stoichiometry and the sulfur lattice sites, but were unable to discriminate between the two phases. Ab initio density-functional-theory calculations show that quantum nuclear motion lowers the symmetrization pressure by 72 gigapascals for H3S and by 60 gigapascals for D3S. Consequently, we predict that the Im3m phase dominates the pressure range within which the high Tc was measured. The observed pressure dependence of Tc is accurately reproduced in our calculations for the phase, but not for the R3m phase. Therefore, the quantum nature of the proton fundamentally changes the superconducting phase diagram of H3S. PMID:27018657

  14. Effective Hydrogen Generation from the Hydrogen Sulfide Solution by using Stratified Type Photocatalyst

    SciTech Connect

    Takahashi, H.; Yokoyama, S.; Baba, Y.; Hayashi, T.; Tohji, K.

    2008-02-25

    Stratified type photocatalyst with the extremely higher photocatalytic activities can be synthesized by using the chemical reaction between the Na{sub 2}S solution and Cd(OH){sub 2} precursors. This type of photocatalyst has the specific morphology which constructed by the nano-sized and capsule like formed structure, and the metal concentration was gradually changed in its wall. The 'charge gradient' was formed at the metal sulfide and oxide/hydroxide junction in the wall, which favored for the separation of the photo excited electron-hole pair. Consequently, stratified type photocatalyst shows the high catalytic activity than the usual nano CdS particles. By the addition of sulfur compound into the bio reactor contained the sulfur reducing bacteria, the H{sub 2}S gas concentration can increased to about 1000 times enlarge than the usual condition. Therefore, we can conclude that the enhancement of the H{sub 2}S gas evolved from the bio reactor was successfully achievement, and we don't need to afraid the shortage risk of H{sub 2}S supply. These H{sub 2}S gas concentration can enlarged to 80% by using A type zeorite. Especially, Ca-A type zeorite is considered as the suitable material.

  15. Hydrogen sulfide oxidation is coupled to oxidative phosphorylation in mitochondria of Solemya reidi

    SciTech Connect

    Powell, M.A.; Somero, G.N.

    1986-08-01

    Solemya reidi, a gutless clam found in sulfide-rich habitats, contains within its gills bacterial symbionts thought to oxidize sulfur compounds and provide a reduced carbon food source to the clam. However, the initial step or steps in sulfide oxidation occur in the animal tissue, and mitochondria isolated from both gill and symbiont-free foot tissue of the clam coupled the oxidation of sulfide to oxidative phosphorylation (adenosine triphosphate (ATP) synthesis). The ability of Solemya reidi to exploit directly the energy in sulfide for ATP synthesis is unprecedented, and suggests that sulfide-habitat animals that lack bacterial symbionts may also use sulfide as an inorganic energy source.

  16. Exogenous administration of thiosulfate, a donor of hydrogen sulfide, attenuates angiotensin II-induced hypertensive heart disease in rats

    PubMed Central

    Snijder, P M; Frenay, A R; de Boer, R A; Pasch, A; Hillebrands, J L; Leuvenink, H G D; van Goor, H

    2015-01-01

    Background and Purpose Hypertension is an important mediator of cardiac damage and remodelling. Hydrogen sulfide (H2S) is an endogenously produced gasotransmitter with cardioprotective properties. However, it is not yet in clinical use. We, therefore, investigated the protective effects of sodium thiosulfate (STS), a clinically applicable H2S donor substance, in angiotensin II (Ang II)-induced hypertensive cardiac disease in rats. Experimental Approach Male Sprague Dawley rats were infused with Ang II (435 ng kg min−1) or saline (control) for 3 weeks via s.c. placed osmotic minipumps. During these 3 weeks, rats received i.p. injections of either STS, NaHS or vehicle (0.9% NaCl). Key Results Compared with controls, Ang II infusion caused an increase in systolic and diastolic BP with associated cardiac damage as evidenced by cardiac hypertrophy, an increase in atrial natriuretic peptide (ANP) mRNA, cardiac fibrosis and increased oxidative stress. Treatment with NaHS and STS prevented the development of hypertension and the increase in ANP mRNA levels. Furthermore, the degree of cardiac hypertrophy, the extent of histological fibrosis in combination with the expression of profibrotic genes and the levels of oxidative stress were all significantly decreased. Conclusions and Implications Ang II-induced hypertensive cardiac disease can be attenuated by treatment with STS and NaHS. Although BP regulation is the most plausible mechanism of cardiac protection, the antifibrotic and antioxidant properties of released sulfide may also contribute to their effects. Our data show that H2S might be a valuable addition to the already existing antihypertensive and cardioprotective therapies. Linked Articles This article is part of a themed section on Pharmacology of the Gasotransmitters. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-6 PMID:24962324

  17. Inhibition of hydrogen sulfide, methane, and total gas production and sulfate-reducing bacteria in in vitro swine manure by tannins, with focus on condensed quebracho tannins.

    PubMed

    Whitehead, Terence R; Spence, Cheryl; Cotta, Michael A

    2013-09-01

    Management practices from large-scale swine production facilities have resulted in the increased collection and storage of manure for off-season fertilization use. Odor and emissions produced during storage have increased the tension among rural neighbors and among urban and rural residents. Production of these compounds from stored manure is the result of microbial activity of the anaerobic bacteria populations during storage. In the current study, the inhibitory effects of condensed quebracho tannins on in vitro swine manure for reduction of microbial activity and reduced production of gaseous emissions, including the toxic odorant hydrogen sulfide produced by sulfate-reducing bacteria (SRB), was examined. Swine manure was collected from a local swine facility, diluted in anaerobic buffer, and mixed with 1 % w/v fresh feces. This slurry was combined with quebracho tannins, and total gas and hydrogen sulfide production was monitored over time. Aliquots were removed periodically for isolation of DNA to measure the SRB populations using quantitative PCR. Addition of tannins reduced overall gas, hydrogen sulfide, and methane production by greater than 90 % after 7 days of treatment and continued to at least 28 days. SRB population was also significantly decreased by tannin addition. qRT-PCR of 16S rDNA bacteria genes showed that the total bacterial population was also decreased in these incubations. These results indicate that the tannins elicited a collective effect on the bacterial population and also suggest a reduction in the population of methanogenic microorganisms as demonstrated by reduced methane production in these experiments. Such a generalized effect could be extrapolated to a reduction in other odor-associated emissions during manure storage. PMID:23149758

  18. Implications of Hydrogen Sulfide in Glucose Regulation: How H2S Can Alter Glucose Homeostasis through Metabolic Hormones

    PubMed Central

    Pichette, Jennifer

    2016-01-01

    Diabetes and its comorbidities continue to be a major health problem worldwide. Understanding the precise mechanisms that control glucose homeostasis and their dysregulation during diabetes are a major research focus. Hydrogen sulfide (H2S) has emerged as an important regulator of glucose homeostasis. This is achieved through its production and action in several metabolic and hormone producing organs including the pancreas, liver, and adipose. Of importance, H2S production and signaling in these tissues are altered during both type 1 and type 2 diabetes mellitus. This review first examines how H2S is produced both endogenously and by gastrointestinal microbes, with a particular focus on the altered production that occurs during obesity and diabetes. Next, the action of H2S on the metabolic organs with key roles in glucose homeostasis, with a particular focus on insulin, is described. Recent work has also suggested that the effects of H2S on glucose homeostasis goes beyond its role in insulin secretion. Several studies have demonstrated important roles for H2S in hepatic glucose output and adipose glucose uptake. The mechanism of H2S action on these metabolic organs is described. In the final part of this review, future directions examining the roles of H2S in other metabolic and glucoregulatory hormone secreting tissues are proposed. PMID:27478532

  19. Implications of Hydrogen Sulfide in Glucose Regulation: How H2S Can Alter Glucose Homeostasis through Metabolic Hormones.

    PubMed

    Pichette, Jennifer; Gagnon, Jeffrey

    2016-01-01

    Diabetes and its comorbidities continue to be a major health problem worldwide. Understanding the precise mechanisms that control glucose homeostasis and their dysregulation during diabetes are a major research focus. Hydrogen sulfide (H2S) has emerged as an important regulator of glucose homeostasis. This is achieved through its production and action in several metabolic and hormone producing organs including the pancreas, liver, and adipose. Of importance, H2S production and signaling in these tissues are altered during both type 1 and type 2 diabetes mellitus. This review first examines how H2S is produced both endogenously and by gastrointestinal microbes, with a particular focus on the altered production that occurs during obesity and diabetes. Next, the action of H2S on the metabolic organs with key roles in glucose homeostasis, with a particular focus on insulin, is described. Recent work has also suggested that the effects of H2S on glucose homeostasis goes beyond its role in insulin secretion. Several studies have demonstrated important roles for H2S in hepatic glucose output and adipose glucose uptake. The mechanism of H2S action on these metabolic organs is described. In the final part of this review, future directions examining the roles of H2S in other metabolic and glucoregulatory hormone secreting tissues are proposed. PMID:27478532

  20. Hydrogen Sulfide Donor Protects Porcine Oocytes against Aging and Improves the Developmental Potential of Aged Porcine Oocytes

    PubMed Central

    Krejcova, Tereza; Smelcova, Miroslava; Petr, Jaroslav; Bodart, Jean-Francois; Sedmikova, Marketa; Nevoral, Jan; Dvorakova, Marketa; Vyskocilova, Alena; Weingartova, Ivona; Kucerova-Chrpova, Veronika; Chmelikova, Eva; Tumova, Lenka; Jilek, Frantisek

    2015-01-01

    Porcine oocytes that have matured in in vitro conditions undergo the process of aging during prolonged cultivation, which is manifested by spontaneous parthenogenetic activation, lysis or fragmentation of aged oocytes. This study focused on the role of hydrogen sulfide (H2S) in the process of porcine oocyte aging. H2S is a gaseous signaling molecule and is produced endogenously by the enzymes cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (MPST). We demonstrated that H2S-producing enzymes are active in porcine oocytes and that a statistically significant decline in endogenous H2S production occurs during the first day of aging. Inhibition of these enzymes accelerates signs of aging in oocytes and significantly increases the ratio of fragmented oocytes. The presence of exogenous H2S from a donor (Na2S.9H2O) significantly suppressed the manifestations of aging, reversed the effects of inhibitors and resulted in the complete suppression of oocyte fragmentation. Cultivation of aging oocytes in the presence of H2S donor positively affected their subsequent embryonic development following parthenogenetic activation. Although no unambiguous effects of exogenous H2S on MPF and MAPK activities were detected and the intracellular mechanism underlying H2S activity remains unclear, our study clearly demonstrates the role of H2S in the regulation of porcine oocyte aging. PMID:25615598

  1. Hydrogen Sulfide Alleviates Postharvest Senescence of Grape by Modulating the Antioxidant Defenses

    PubMed Central

    Ni, Zhi-Jing; Hu, Kang-Di; Song, Chang-Bing; Ma, Run-Hui; Li, Zhi-Rong; Zheng, Ji-Lian; Fu, Liu-Hui

    2016-01-01

    Hydrogen sulfide (H2S) has been identified as an important gaseous signal in plants. Here, we investigated the mechanism of H2S in alleviating postharvest senescence and rotting of Kyoho grape. Exogenous application of H2S released from 1.0 mM NaHS remarkably decreased the rotting and threshing rate of grape berries. H2S application also prevented the weight loss in grape clusters and inhibited the decreases in firmness, soluble solids, and titratable acidity in grape pulp during postharvest storage. The data of chlorophyll and carotenoid content suggested the role of H2S in preventing chlorophyll breakdown and carotenoid accumulation in both grape rachis and pulp. In comparison to water control, exogenous H2S application maintained significantly higher levels of ascorbic acid and flavonoid and total phenolics and reducing sugar and soluble protein in grape pulp. Meanwhile, H2S significantly reduced the accumulation of malondialdehyde (MDA), hydrogen peroxide (H2O2), and superoxide anion (O2∙−) in grape pulp. Further investigations showed that H2S enhanced the activities of antioxidant enzymes ascorbate peroxidase (APX) and catalase (CAT) and decreased those of lipoxygenase (LOX) in both grape peels and pulp. In all, we provided strong evidence that H2S effectively alleviated postharvest senescence and rotting of Kyoho grape by modulating antioxidant enzymes and attenuating lipid peroxidation. PMID:27594971

  2. Factors affecting activated carbon-based catalysts for selective hydrogen sulfide oxidation

    SciTech Connect

    Li, Huixing; Monnell, J.D.; Alvin, M.A.; Vidic, R.D.

    2008-09-01

    The primary product of coal gasification processes is synthesis gas (syngas), a mixture of CO, H2, CO2, H2O and a number of minor components. Among the most significant minor components in syngas is hydrogen sulfide (H2S). In addition to its adverse environmental impact, H2S poisons the catalysts and hydrogen purification membranes, and causes severe corrosion in gas turbines. Technologies that can remove H2S from syngas and related process streams are, therefore, of considerable practical interest. To meet this need, we work towards understanding the mechanism by which prospective H2S catalysts perform in simulated fuel gas conditions. Specifically, we show that for low-temperature gas clean-up (~1408C) using activated carbon fibers and water plays a significant role in H2S binding and helps to prolong the lifetime of the material. Basic surface functional groups were found to be imperative for significant conversion of H2S to daughter compounds, whereas metal oxides (La and Ce) did little to enhance this catalysis. We show that although thermal regeneration of the material is possible, the regenerated material has a substantially lower catalytic and sorption capacity.

  3. Mitigation of Hydrogen Sulfide Emissions in the Geysers KGRA (Staff Draft)

    SciTech Connect

    Buell, Richard

    1981-07-01

    Violations of the ambient air quality standard (AAQS) for hydrogen sulfide (H2S) are currently being experienced in The Geysers KGRA and could significantly increase in the future. Attainment and maintenance of the H2S AAQS is a potential constraint to optimum development of this resource. The availability of reliable H2S controls and the development of a validated air dispersion model are critical to alleviating this constraint. The purpose of this report is to assess the performance capabilities for state-of-the-art controls, to identify potential cost-effective alternative controls, and to identify the California Energy Commission (CEC) staffs efforts to develop a validated air dispersion model. Currently available controls (Stretford, Hydrogen Peroxide, and EIC) are capable of abating H2S emissions from a proposed facility to five lbs/hr. Alternative controls, such as condensate stripping and condensate pH control, appear to promising, cost-effective control option. The CEC staff is currently developing a validated air dispersion model for The Geysers KGRA. The CEC staff recommends investigation of retrofit control options for existing units, investigation of alternative control technologies, and dispersion analysis for optimum plant location in order to maximize the development potential of The Geysers KGRA. Energy cost studies suggest that the EIC process would be the most cost-effective for retrofits at The Geysers. (DJE-2005)

  4. Bile-acid-activated farnesoid X receptor regulates hydrogen sulfide production and hepatic microcirculation

    PubMed Central

    Renga, Barbara; Mencarelli, Andrea; Migliorati, Marco; Distrutti, Eleonora; Fiorucci, Stefano

    2009-01-01

    AIM: To investigate whether the farnesoid X receptor (FXR) regulates expression of liver cystathionase (CSE), a gene involved in hydrogen sulfide (H2S) generation. METHODS: The regulation of CSE expression in response to FXR ligands was evaluated in HepG2 cells and in wild-type and FXR null mice treated with 6-ethyl chenodeoxycholic acid (6E-CDCA), a synthetic FXR ligand. The analysis demonstrated an FXR responsive element in the 5’-flanking region of the human CSE gene. The function of this site was investigated by luciferase reporter assays, chromatin immunoprecipitation and electrophoretic mobility shift assays. Livers obtained from rats treated with carbon tetrachloride alone, or in combination with 6-ethyl chenodeoxycholic acid, were studied for hydrogen sulphide generation and portal pressure measurement. RESULTS: Liver expression of CSE is regulated by bile acids by means of an FXR-mediated mechanism. Western blotting, qualitative and quantitative polymerase chain reaction, as well as immunohistochemical analysis, showed that expression of CSE in HepG2 cells and in mice is induced by treatment with an FXR ligand. Administration of 6E-CDCA to carbon tetrachloride treated rats protected against the down-regulation of CSE expression, increased H2S generation, reduced portal pressure and attenuated the endothelial dysfunction of isolated and perfused cirrhotic rat livers. CONCLUSION: These results demonstrate that CSE is an FXR-regulated gene and provide a new molecular explanation for the pathophysiology of portal hypertension. PMID:19418582

  5. Kinetics and mechanisms of iron sulfide reductions in hydrogen and in carbon monoxide

    USGS Publications Warehouse

    Wiltowski, T.; Hinckley, C.C.; Smith, Gerard V.; Nishizawa, T.; Saporoschenko, Mykola; Shiley, R.H.; Webster, J.R.

    1987-01-01

    The reduction of iron sulfides by hydrogen and by carbon monoxide has been studied using plug flow and thermogravimetric methods. The reactions were studied in the 523-723??K temperature range and were found to be first-order processes. Plug flow studies were used to correlate reaction rates between pyrite and the gases as a function of the surface area of the pyrite. The rate of H2S formation increases with the surface area of the pyrite sample. The results of thermogravimetric experiments indicate that the reactions consist of several steps. Rate constants for the pyrite reduction by H2 and by CO were obtained. The activation energies increased with degree of reduction. Values of Ea were 113.2 (step I) and 122.5 kJ/mole (step II) for pyrite reduction with CO and 99.4 (step I), 122.4 (step II), 125.2 (step III), and 142.6 kJ/mole (step IV) for pyrite reduction with hydrogen. ?? 1987.

  6. Hydrogen Sulfide Alleviates Postharvest Senescence of Grape by Modulating the Antioxidant Defenses.

    PubMed

    Ni, Zhi-Jing; Hu, Kang-Di; Song, Chang-Bing; Ma, Run-Hui; Li, Zhi-Rong; Zheng, Ji-Lian; Fu, Liu-Hui; Wei, Zhao-Jun; Zhang, Hua

    2016-01-01

    Hydrogen sulfide (H2S) has been identified as an important gaseous signal in plants. Here, we investigated the mechanism of H2S in alleviating postharvest senescence and rotting of Kyoho grape. Exogenous application of H2S released from 1.0 mM NaHS remarkably decreased the rotting and threshing rate of grape berries. H2S application also prevented the weight loss in grape clusters and inhibited the decreases in firmness, soluble solids, and titratable acidity in grape pulp during postharvest storage. The data of chlorophyll and carotenoid content suggested the role of H2S in preventing chlorophyll breakdown and carotenoid accumulation in both grape rachis and pulp. In comparison to water control, exogenous H2S application maintained significantly higher levels of ascorbic acid and flavonoid and total phenolics and reducing sugar and soluble protein in grape pulp. Meanwhile, H2S significantly reduced the accumulation of malondialdehyde (MDA), hydrogen peroxide (H2O2), and superoxide anion (O2 (∙-)) in grape pulp. Further investigations showed that H2S enhanced the activities of antioxidant enzymes ascorbate peroxidase (APX) and catalase (CAT) and decreased those of lipoxygenase (LOX) in both grape peels and pulp. In all, we provided strong evidence that H2S effectively alleviated postharvest senescence and rotting of Kyoho grape by modulating antioxidant enzymes and attenuating lipid peroxidation. PMID:27594971

  7. Catalytic dehydroxylation of phenols. [Metal sulfides

    SciTech Connect

    Pieters, W.J.M.

    1984-05-29

    Phenolic compounds are dehydroxylated in the vapor phase by contacting with a reducing atmosphere substantially comprising hydrogen sulfide as the reducing agent in the presence of a sulfur-tolerant metal sulfide catalyst. The additional presence of hydrogen gas helps to desulfurize the catalyst and maintain catalytic activity. The process is useful in the treatment of phenolic naphtha fractions present in coal liquids, produced by pyrolysis or direct coal liquefaction.

  8. Operational overview of the NASA GTE/CITE 3 airborne instrument intercomparisons for sulfur dioxide, hydrogen sulfide, carbonyl sulfide, dimethyl sulfide, and carbon disulfide

    NASA Technical Reports Server (NTRS)

    Hoell, James M., Jr.; Davis, Douglas D.; Gregory, Gerald L.; Mcneal, Robert J.; Bendura, Richard J.; Drewry, Joseph W.; Barrick, John D.; Kirchhoff, Volker W. J. H.; Motta, Adauto G.; Navarro, Roger L.

    1993-01-01

    This paper reports the overall experimental design and gives a brief overview of results from the third airborne Chemical Instrumentation Test and Evaluation (CITE 3) mission conducted as part of the National Aeronautics and Space Administration's Global Tropospheric Experiment. The primary objective of CITE 3 was to evaluate the capability of instrumentation for airborne measurements of ambient concentrations of SO2, H2S, CS, dimethyl sulfide, and carbonyl sulfide. Ancillary measurements augmented the intercomparison data in order to address the secondary objective of CITE 3 which was to address specific issues related to the budget and photochemistry of tropospheric sulfur species. The CITE 3 mission was conducted on NASA's Wallops Flight Center Electra aircraft and included a ground-based intercomparison of sulfur standards and intercomparison/sulfur science flights conducted from the NASA Wallops Flight Facility, Wallops Island, Virginia, followed by flights from Natal, Brazil. Including the transit flights, CITE 3 included 16 flights encompassing approximately 96 flight hours.

  9. After more than a century, iron sponge still soaks up hydrogen sulfide problems

    SciTech Connect

    Anerousis, J.P. )

    1994-09-01

    The oldest and simplest method for removing H[sub 2]S and other sulfur compounds, such as mercaptans, from gaseous streams is the iron sponge process. The basic technique consists of passing a sour gas stream (one containing H[sub 2]S or mercaptans, or both) across a bed of hydrated iron oxide. The chemical reaction produces iron sulfide and a small amount of by-product water. Although not a common practice, the spent material may be regenerated by exposing it to oxygen, which converts the mixed iron sulfides to their original iron oxide form. The iron sponge technique originated in Europe more than 100 years ago, and the earliest operators used a naturally occurring form of hydrated iron oxide known as bog iron or bog ore. As refinements were made in the process, it was found that more efficient sulfur removal could be attained by uniformly distributing the iron oxide hydrate across a substrate, and that active iron oxide could be prepared synthetically. Continual improvements in the synthetic iron sponge's composition focused on such issues as the crystalline forms of the hydrated iron oxide, size distribution of the active iron oxide particulates, overall chemical composition, size and nature of the typical wood substrate, moisture content, and degree of buffering. Modern iron sponge products are prepared with careful attention to each of these issues. The synthetic materials are characterized by high quality and uniform composition, and their overall characteristics optimize performance in typical gas-sweetening applications.

  10. Stratified Microbial Structure and Activity in Sulfide- and Methane-Producing Anaerobic Sewer Biofilms

    PubMed Central

    Sun, Jing; Hu, Shihu; Sharma, Keshab Raj; Ni, Bing-Jie

    2014-01-01

    Simultaneous production of sulfide and methane by anaerobic sewer biofilms has recently been observed, suggesting that sulfate-reducing bacteria (SRB) and methanogenic archaea (MA), microorganisms known to compete for the same substrates, can coexist in this environment. This study investigated the community structures and activities of SRB and MA in anaerobic sewer biofilms (average thickness of 800 μm) using a combination of microelectrode measurements, molecular techniques, and mathematical modeling. It was seen that sulfide was mainly produced in the outer layer of the biofilm, between the depths of 0 and 300 μm, which is in good agreement with the distribution of SRB population as revealed by cryosection-fluorescence in situ hybridization (FISH). SRB had a higher relative abundance of 20% on the surface layer, which decreased gradually to below 3% at a depth of 400 μm. In contrast, MA mainly inhabited the inner layer of the biofilm. Their relative abundances increased from 10% to 75% at depths of 200 μm and 700 μm, respectively, from the biofilm surface layer. High-throughput pyrosequencing of 16S rRNA amplicons showed that SRB in the biofilm were mainly affiliated with five genera, Desulfobulbus, Desulfomicrobium, Desulfovibrio, Desulfatiferula, and Desulforegula, while about 90% of the MA population belonged to the genus Methanosaeta. The spatial organizations of SRB and MA revealed by pyrosequencing were consistent with the FISH results. A biofilm model was constructed to simulate the SRB and MA distributions in the anaerobic sewer biofilm. The good fit between model predictions and the experimental data indicate that the coexistence and spatial structure of SRB and MA in the biofilm resulted from the microbial types and their metabolic transformations and interactions with substrates. PMID:25192994

  11. Phase- and morphology-controlled synthesis of cobalt sulfide nanocrystals and comparison of their catalytic activities for hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Pan, Yuan; Liu, Yunqi; Liu, Chenguang

    2015-12-01

    Colalt sulfide nanocrystals (NCs), including dandelion-like Co9S8 and sphere-like Co3S4, have been synthesized via a thermal decomposition approach using cobalt acetylacetonate as the cobalt source, 1-dodecanethiol as the sulfur source and oleic acid or oleylamine as the high boiling organic solvent. It is found that the molar ratio of the Co:S precursor and the species of solvent play an important role in the control of phase and morphology of cobalt sulfide nanostructures. The phase structure and morphology of the as-synthesized nickel sulfide NCs are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscope (SEM), energy dispersive spectrum (EDS) mapping, X-ray photoelectron spectroscopy (XPS) and N2 adsorption-desorption. Then we further compare the electrocatalytic activity and stability of as-synthesized cobalt sulfide NCs for hydrogen evolution reaction (HER). The results show that sphere-like Co3S4 exhibits better electrocatalytic activity than the dandelion-like Co9S8 NCs for HER, which can be attributed to the difference of phase structure and morphology. The sphere-like Co3S4 NCs have large surface area and high electrical conductivity, both are beneficial to enhance the catalytic activity. This study indicates that the crystalline phase structure and morphology of cobalt sulfide NCs are important for designing HER electrocatalysts with high efficiency and good stability.

  12. Homolytic Cleavage of Both Heme-Bound Hydrogen Peroxide and Hydrogen Sulfide Leads to the Formation of Sulfheme.

    PubMed

    Arbelo-Lopez, Hector D; Simakov, Nikolay A; Smith, Jeremy C; Lopez-Garriga, Juan; Wymore, Troy

    2016-08-01

    Many heme-containing proteins with a histidine in the distal E7 (HisE7) position can form sulfheme in the presence of hydrogen sulfide (H2S) and a reactive oxygen species such as hydrogen peroxide. For reasons unknown, sulfheme derivatives are formed specifically on solvent-excluded heme pyrrole B. Sulfhemes severely decrease the oxygen-binding affinity in hemoglobin (Hb) and myoglobin (Mb). Here, use of hybrid quantum mechanical/molecular mechanical methods has permitted characterization of the entire process of sulfheme formation in the HisE7 mutant of hemoglobin I (HbI) from Lucina pectinata. This process includes a mechanism for H2S to enter the solvent-excluded active site through a hydrophobic channel to ultimately form a hydrogen bond with H2O2 bound to Fe(III). Proton transfer from H2O2 to His64 to form compound (Cpd) 0, followed by hydrogen transfer from H2S to the Fe(III)-H2O2 complex, results in homolytic cleavage of the O-O and S-H bonds to form a reactive thiyl radical (HS(•)), ferryl heme Cpd II, and a water molecule. Subsequently, the addition of HS(•) to Cpd II, followed by three proton transfer reactions, results in the formation of a three-membered ring ferric sulfheme that avoids migration of the radical to the protein matrix, in contrast to that in other peroxidative reactions. The transformation of this three-membered episulfide ring structure to the five-membered thiochlorin ring structure occurs through a significant potential energy barrier, although both structures are nearly isoenergetic. Both three- and five-membered ring structures reveal longer NB-Fe(III) bonds compared with other pyrrole nitrogen-Fe(III) bonds, which would lead to decreased oxygen binding. Overall, these results are in agreement with a wide range of experimental data and provide fertile ground for further investigations of sulfheme formation in other heme proteins and additional effects of H2S on cell signaling and reactivity. PMID:27357070

  13. A comprehensive study on atomic layer deposition of molybdenum sulfide for electrochemical hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Kwon, Do Hyun; Jin, Zhenyu; Shin, Seokhee; Lee, Wook-Seong; Min, Yo-Sep

    2016-03-01

    Atomic layer deposition (ALD) has emerged as an efficient method to design and prepare catalysts with atomic precision. Here, we report a comprehensive study on ALD of molybdenum sulfide (MoSx) for an electrocatalytic hydrogen evolution reaction. By using molybdenum hexacarbonyl and dimethyldisulfide as the precursors of Mo and S, respectively, the MoSx catalysts are grown at 100 °C on porous carbon fiber papers (CFPs). The ALD process results in the growth of particle-like MoSx on the CFP due to the lack of adsorption sites, and its crystallographic structure is a mixture of amorphous and nano-crystalline phases. In order to unveil the intrinsic activity of the ALD-MoSx, the exchange current densities, Tafel slopes, and turnover frequencies of the catalysts grown under various ALD conditions have been investigated by considering the fractional surface coverage of MoSx on the CFP and catalytically-active surface area. In addition, the ALD-MoSx/CFP catalysts exhibit excellent catalytic stability due to the strong adhesion of MoSx on the CFP and the mixed phase.Atomic layer deposition (ALD) has emerged as an efficient method to design and prepare catalysts with atomic precision. Here, we report a comprehensive study on ALD of molybdenum sulfide (MoSx) for an electrocatalytic hydrogen evolution reaction. By using molybdenum hexacarbonyl and dimethyldisulfide as the precursors of Mo and S, respectively, the MoSx catalysts are grown at 100 °C on porous carbon fiber papers (CFPs). The ALD process results in the growth of particle-like MoSx on the CFP due to the lack of adsorption sites, and its crystallographic structure is a mixture of amorphous and nano-crystalline phases. In order to unveil the intrinsic activity of the ALD-MoSx, the exchange current densities, Tafel slopes, and turnover frequencies of the catalysts grown under various ALD conditions have been investigated by considering the fractional surface coverage of MoSx on the CFP and catalytically

  14. Evaluation of different techniques to control hydrogen sulfide and greenhouse gases from animal production systems

    NASA Astrophysics Data System (ADS)

    Gautam, Dhan Prasad

    The livestock manure management sector is one of the prime sources for the emission of greenhouse gases (GHGs) and other pollutant gases such as ammonia (NH3) and hydrogen sulfide (H2S), which may affect the human health, animal welfare, and the environment. So, worldwide investigations are going on to mitigate these gaseous emissions. The overall objective of this research was to investigate different approaches (dietary manipulation and nanotechnology) for mitigating the gaseous emissions from livestock manure system. A field study was conducted to investigate the effect of different levels of dietary proteins (12 and 16%) and fat levels (3 to 5.5%) fed to beef cattle on gaseous emission (methane-CH4, nitrous oxide-N2O, carbon dioxide-CO 2 and hydrogen sulfide-H2S) from the pen surface. To evaluate the effects of different nanoparticles (zinc oxide-nZnO; and zirconium-nZrO 2) on these gaseous emissions from livestock manure stored under anaerobic conditions, laboratory studies were conducted with different treatments (control, bare NPs, NPs entrapped alginate beads applying freely and keeping in bags, and used NPs entrapped alginate beads). Field studies showed no significant differences in the GHG and H2S emissions from the manure pen surface. Between nZnO and nZrO2, nZnO outperformed the nZrO2 in terms of gases production and concentration reduction from both swine and dairy liquid manure. Application of nZnO at a rate of 3 g L-1 showed up to 82, 78, 40 and 99% reduction on total gas production, CH 4, CO2 and H2S concentrations, respectively. The effectiveness of nZnO entrapped alginate (alginate-nZnO) beads was statistically lower than the bare nZnO, but both of them were very effective in reducing gas production and concentrations. These gaseous reductions were likely due to combination of microbial inhibition of microorganisms and chemical conversion during the treatment, which was confirmed by microbial plate count, SEM-EDS, and XPS analysis. However

  15. Suicide Fads: Frequency and Characteristics of Hydrogen Sulfide Suicides in the United States

    PubMed Central

    Reedy, Sarah Jane D.; Schwartz, Michael D.; Morgan, Brent W.

    2011-01-01

    Objective: To assess the frequency of hydrogen sulfide (H2S) suicides and describe the characteristics of victims in the United States (U.S.) since the technique became common in Japan in 2007. Methods: To ascertain the frequency of intentional H2S related deaths in the U.S. prior to the start of the Japanese trend in 2007, we searched the multiple-cause-of-death data from the National Vital Statistics System. To collect as much information about the victims as possible, we sent an email to the National Association of Medical Examiners (NAME) listserv asking for their cooperation in identifying cases of H2S suicide. To identify cases that were not voluntarily reported by medical examiners but were reported by the media, we conducted Google searches using the search terms: “hydrogen sulfide suicide,” “H2S suicide,” “detergent suicide,” “chemical suicide,” and “suicide fad.” We obtained all available autopsy reports and abstracted information, including the site of the incident, the presence of a note warning others about the toxic gas and the demographic characteristics of the victims. We contacted medical examiners who potentially had custody of the cases that were identified through media reports and requested autopsies of these victims. When unable to obtain the autopsies, we gathered information from the media reports. Results: Forty-five deaths from H2S exposure occurred in the U.S. from 1999 to 2007, all unintentional. Responses from the NAME listserv yielded autopsy reports for 11 victims, and Google searches revealed an additional 19 H2S suicides in the U.S. since 2008. Overall (n=30), two cases were identified during 2008, 10 in 2009, and 18 in 2010. The majority of victims were white males, less than 30-years-old, left a warning note, and were found in cars. There were five reports of injuries to first responders, but no secondary fatalities. Conclusion: H2S suicides are increasing in the U.S., and their incidence is probably

  16. New spectrophotometric methods for the determinations of hydrogen sulfide present in the samples of lake water, industrial effluents, tender coconut, sugarcane juice and egg

    NASA Astrophysics Data System (ADS)

    Shyla, B.; Nagendrappa, G.

    2012-10-01

    The new methods are working on the principle that iron(III) is reduced to iron(II) by hydrogen sulfide, catechol and p-toluidine the system 1/hydrogen sulfide the system 2, in acidic medium followed by the reduced iron forming complex with 1,10-phenanthroline with λmax 510 nm. The other two methods are based on redox reactions between electrolytically generated manganese(III) sulfate taken in excess and hydrogen sulfide followed by the unreacted oxidant oxidizing diphenylamine λmax 570 the system 3/barium diphenylamine sulphonate λmax 540 nm, the system 4. The increase/decrease in the color intensity of the dye products of the systems 1 and 2 or 3 and 4 are proportional to the concentration of hydrogen sulfide with its quantification range 0.035-1.40 μg ml-1/0.14-1.40 μg ml-1.

  17. Microbiological removal of hydrogen sulfide from biogas by means of a separate biofilter system: experience with technical operation.

    PubMed

    Schieder, D; Quicker, P; Schneider, R; Winter, H; Prechtl, S; Faulstich, M

    2003-01-01

    The "BIO-Sulfex" biofilter of ATZ-EVUS removes hydrogen sulfide from biogas in a biological way. Hydrogen sulfide causes massive problems during power generation from biogas in a power plant, e.g. corrosion of engines and heat exchangers, and thus causes frequent and therefore expensive engine oil changes. The BIO-Sulfex module is placed between the digester and the power-plant and warrants a cost-effective, reliable and fully biological desulfurization. In the cleaned gas concentrations of less than 100 ppm can be achieved. Power-plant manufacturers usually demand less than 500 or less than 200 ppm. At present, several plants with biogas flow rates between 20 and 350 m3/h are in operation. PMID:14531443

  18. Chemical tools for the study of hydrogen sulfide (H2S) and sulfane sulfur and their applications to biological studies.

    PubMed

    Takano, Yoko; Shimamoto, Kazuhito; Hanaoka, Kenjiro

    2016-01-01

    Hydrogen sulfide (H2S) functions in many physiological processes, including relaxation of vascular smooth muscles, mediation of neurotransmission, inhibition of insulin signaling, and regulation of inflammation. On the other hand, sulfane sulfur, which is a sulfur atom with six valence electrons but no charge, has the unique ability to bind reversibly to other sulfur atoms to form hydropersulfides (R-S-SH) and polysulfides (-S-Sn-S-). H2S and sulfane sulfur always coexist, and recent work suggests that sulfane sulfur species may be the actual signaling molecules in at least some biological phenomena. For example, one of the mechanisms of activity regulation of proteins by H2S is the S-sulfhydration of cysteine residues (protein Cys-SSH). In this review, we summarize recent progress on chemical tools for the study of H2S and sulfane sulfur, covering fluorescence probes utilizing various design strategies, H2S caged compounds, inhibitors of physiological H2S-producing enzymes (cystathionine γ-lyase, cystathionine β-synthase and 3-mercaptopyruvate sulfurtransferase), and labeling reagents. Fluorescence probes offer particular advantages as chemical tools to study physiological functions of biomolecules, including ease of use and real-time, nondestructive visualization of biological processes in live cells and tissues. PMID:26798192

  19. Chemical tools for the study of hydrogen sulfide (H2S) and sulfane sulfur and their applications to biological studies

    PubMed Central

    Takano, Yoko; Shimamoto, Kazuhito; Hanaoka, Kenjiro

    2016-01-01

    Hydrogen sulfide (H2S) functions in many physiological processes, including relaxation of vascular smooth muscles, mediation of neurotransmission, inhibition of insulin signaling, and regulation of inflammation. On the other hand, sulfane sulfur, which is a sulfur atom with six valence electrons but no charge, has the unique ability to bind reversibly to other sulfur atoms to form hydropersulfides (R-S-SH) and polysulfides (-S-Sn-S-). H2S and sulfane sulfur always coexist, and recent work suggests that sulfane sulfur species may be the actual signaling molecules in at least some biological phenomena. For example, one of the mechanisms of activity regulation of proteins by H2S is the S-sulfhydration of cysteine residues (protein Cys-SSH). In this review, we summarize recent progress on chemical tools for the study of H2S and sulfane sulfur, covering fluorescence probes utilizing various design strategies, H2S caged compounds, inhibitors of physiological H2S-producing enzymes (cystathionine γ-lyase, cystathionine β-synthase and 3-mercaptopyruvate sulfurtransferase), and labeling reagents. Fluorescence probes offer particular advantages as chemical tools to study physiological functions of biomolecules, including ease of use and real-time, nondestructive visualization of biological processes in live cells and tissues. PMID:26798192

  20. Influence of sulfides on the tribological properties of composites produced by pulse electric current sintering

    NASA Astrophysics Data System (ADS)

    Kim, Seung Ho

    2014-01-01

    Self-lubricating Al2O3-15wt% ZrO2 composites with sulfides, such as molybdenum disulfide (MoS2) and tungsten disulfide (WS2) serving as solid lubricants, were fabricated by using the pulse electric current sintering (PECS) technique. The coefficient of friction (COF) of the Al2O3-15wt% ZrO2 composite without/with sulfides was in the range of 0.37-0.48 and 0.27-0.49, respectively. As the amount of sulfides increased, the COF and the wear rate decreased. The reduction in COF and wear rate of the sulfide-containing composite is caused by a reduction in shear stresses between the specimen and the tribological medium due to the formation of a lubricating film resulting from the lamellar structure of sulfides located on the worn surface.

  1. Sensitivity of Interfibrillar and Subsarcolemmal Mitochondria to Cobalt Chloride-induced Oxidative Stress and Hydrogen Sulfide Treatment

    PubMed Central

    Ayswarya, A.; Kurian, G. A.

    2016-01-01

    Oxidative stress plays a significant role not only in cardiovascular disease but also in non-communicable diseases, where it plays a significant role the mortality rate. Hydrogen sulfide, the biological gaseous signaling molecule that preserves mitochondria in its mode of action, is an effective cardioprotective drug. However, cardiac mitochondria comprise of two distinct populations, namely interfibrillar and subsarcolemmal mitochondria, which respond distinctly in cardiovascular disease. This study was designed to determine the direct impact of cobalt chloride-induced oxidative stress in isolated mitochondrial subpopulations with an intention to examine the efficacy of hydrogen sulfide in preserving interfibrillar and subsarcolemmal mitochondria functional activities when they were incubated as pretreated, co-treated and post-treated agent. Mitochondrial subpopulations were isolated from the heart of male Wistar rats and subjected to cobalt chloride treatment (500 μM) for 20 min, followed by incubation with 10 μM sodium hydrosulfide in three different ways (Pre, Co, and Post-cobalt chloride treatment). Mitochondrial oxidative stress was measured by the concentration of thiobarbituric acid reactive species, reduced glutathione and the activities of enzymes like superoxide dismutase, catalase and glutathione peroxidase. Mitochondrial membrane potential, swelling behavior and enzyme activities were measured to assess its function. The increased level of lipid peroxidation and the decreased level of reduced glutathione in cobalt chloride-induced group confirm the induction of oxidative stress and were more predominant in the subsarcolemmal mitochondria. Hydrogen sulfide treatment to interfibrillar and subsarcolemmal mitochondria preserved their functional activities, but the effect was prominent only with co-treated group. In conclusion, the present study demonstrated that subsarcolemmal mitochondria are more prone to oxidative stress and the co-treatment of the

  2. Sulfide chemiluminescence detection

    DOEpatents

    Spurlin, Stanford R.; Yeung, Edward S.

    1985-01-01

    A method of chemiluminescently determining a sulfide which is either hydrogen sulfide or methyl mercaptan by reacting the sulfide with chlorine dioxide at low pressure and under conditions which allow a longer reaction time in emission of a single photon for every two sulfide containing species, and thereafter, chemiluminescently detecting and determining the sulfide. The invention also relates not only to the detection method, but the novel chemical reaction and a specifically designed chemiluminescence detection cell for the reaction.

  3. Sulfide chemiluminescence detection

    DOEpatents

    Spurlin, S.R.; Yeung, E.S.

    1985-11-26

    A method is described for chemiluminescently determining a sulfide which is either hydrogen sulfide or methyl mercaptan by reacting the sulfide with chlorine dioxide at low pressure and under conditions which allow a longer reaction time in emission of a single photon for every two sulfide containing species, and thereafter, chemiluminescently detecting and determining the sulfide. The invention also relates not only to the detection method, but the novel chemical reaction and a specifically designed chemiluminescence detection cell for the reaction. 4 figs.

  4. Hydrogen sulfide releasing aspirin, ACS14, attenuates high glucose-induced increased methylglyoxal and oxidative stress in cultured vascular smooth muscle cells.

    PubMed

    Huang, Qian; Sparatore, Anna; Del Soldato, Piero; Wu, Lingyun; Desai, Kaushik

    2014-01-01

    Hydrogen sulfide is a gasotransmitter with vasodilatory and anti-inflammatory properties. Aspirin is an irreversible cyclooxygenase inhibitor anti-inflammatory drug. ACS14 is a novel synthetic hydrogen sulfide releasing aspirin which inhibits cyclooxygenase and has antioxidant effects. Methylglyoxal is a chemically active metabolite of glucose and fructose, and a major precursor of advanced glycation end products formation. Methylglyoxal is harmful when produced in excess. Plasma methylglyoxal levels are significantly elevated in diabetic patients. Our aim was to investigate the effects of ACS14 on methylglyoxal levels in cultured rat aortic vascular smooth muscle cells. We used cultured rat aortic vascular smooth muscle cells for the study. Methylglyoxal was measured by HPLC after derivatization, and nitrite+nitrate with an assay kit. Western blotting was used to determine NADPH oxidase 4 (NOX4) and inducible nitric oxide synthase (iNOS) protein expression. Dicholorofluorescein assay was used to measure oxidative stress. ACS14 significantly attenuated elevation of intracellular methylglyoxal levels caused by incubating cultured vascular smooth muscle cells with methylglyoxal (30 µM) and high glucose (25 mM). ACS14, but not aspirin, caused a significant attenuation of increase in nitrite+nitrate levels caused by methylglyoxal or high glucose. ACS14, aspirin, and sodium hydrogen sulfide (NaHS, a hydrogen sulfide donor), all attenuated the increase in oxidative stress caused by methylglyoxal and high glucose in cultured cells. ACS14 prevented the increase in NOX4 expression caused by incubating the cultured VSMCs with MG (30 µM). ACS14, aspirin and NaHS attenuated the increase in iNOS expression caused by high glucose (25 mM). In conclusion, ACS14 has the novel ability to attenuate an increase in methylglyoxal levels which in turn can reduce oxidative stress, decrease the formation of advanced glycation end products and prevent many of the known deleterious effects

  5. Hydrogen sulfide promotes cell proliferation of oral cancer through activation of the COX2/AKT/ERK1/2 axis.

    PubMed

    Zhang, Shuai; Bian, Huan; Li, Xiaoxu; Wu, Huanhuan; Bi, Qingwei; Yan, Yingbin; Wang, Yixiang

    2016-05-01

    Hydrogen sulfide, the third gaseous transmitter, is one of the main causes of halitosis in the oral cavity. It is generally considered as playing a deleterious role in many oral diseases including oral cancer. However, the regulatory mechanisms involved in the effects of hydrogen sulfide on oral cancer growth remain largely unknown. In the present study, we investigated the underlying mechanisms through CCK-8 assay, EdU incorporation, real-time PCR, western blot and pathway blockade assays. Our results showed that hydrogen sulfide promoted oral cancer cell proliferation through activation of the COX2, AKT and ERK1/2 pathways in a dose-dependent manner. Blocking any of the three above pathways inhibited hydrogen sulfide-induced oral cancer cell proliferation. Meanwhile, blockade of COX2 by niflumic acid downregulated NaHS-induced p-ERK and p-AKT expression. Inactivation of the AKT pathway by GSK690693 significantly decreased NaHS‑induced p-ERK1/2 expression, and inhibition of the ERK1/2 pathway by U0126 markedly increased NaHS-induced p-AKT expression. Either the AKT or ERK1/2 inhibitor did not significantly alter the COX2 expression level. Our data revealed, for the first time, that hydrogen sulfide promotes oral cancer cell proliferation through activation of the COX2/AKT/ERK1/2 axis, suggesting new potential targets to eliminate the effect of hydrogen sulfide on the development of oral cancer. PMID:26987083

  6. Reaction of Hydrogen Sulfide with Disulfide and Sulfenic Acid to Form the Strongly Nucleophilic Persulfide.

    PubMed

    Cuevasanta, Ernesto; Lange, Mike; Bonanata, Jenner; Coitiño, E Laura; Ferrer-Sueta, Gerardo; Filipovic, Milos R; Alvarez, Beatriz

    2015-11-01

    Hydrogen sulfide (H2S) is increasingly recognized to modulate physiological processes in mammals through mechanisms that are currently under scrutiny. H2S is not able to react with reduced thiols (RSH). However, H2S, more precisely HS(-), is able to react with oxidized thiol derivatives. We performed a systematic study of the reactivity of HS(-) toward symmetric low molecular weight disulfides (RSSR) and mixed albumin (HSA) disulfides. Correlations with thiol acidity and computational modeling showed that the reaction occurs through a concerted mechanism. Comparison with analogous reactions of thiolates indicated that the intrinsic reactivity of HS(-) is 1 order of magnitude lower than that of thiolates. In addition, H2S is able to react with sulfenic acids (RSOH). The rate constant of the reaction of H2S with the sulfenic acid formed in HSA was determined. Both reactions of H2S with disulfides and sulfenic acids yield persulfides (RSSH), recently identified post-translational modifications. The formation of this derivative in HSA was determined, and the rate constants of its reactions with a reporter disulfide and with peroxynitrite revealed that persulfides are better nucleophiles than thiols, which is consistent with the α effect. Experiments with cells in culture showed that treatment with hydrogen peroxide enhanced the formation of persulfides. Biological implications are discussed. Our results give light on the mechanisms of persulfide formation and provide quantitative evidence for the high nucleophilicity of these novel derivatives, setting the stage for understanding the contribution of the reactions of H2S with oxidized thiol derivatives to H2S effector processes. PMID:26269587

  7. Oxidative stress suppresses the cellular bioenergetic effect of the 3-mercaptopyruvate sulfurtransferase/hydrogen sulfide pathway.

    PubMed

    Módis, Katalin; Asimakopoulou, Antonia; Coletta, Ciro; Papapetropoulos, Andreas; Szabo, Csaba

    2013-04-19

    Recent data show that lower concentrations of hydrogen sulfide (H2S), as well as endogenous, intramitochondrial production of H2S by the 3-mercaptopyruvate (3-MP)/3-mercaptopyruvate sulfurtransferase (3-MST) pathway serves as an electron donor and inorganic source of energy to support mitochondrial electron transport and ATP generation in mammalian cells by donating electrons to Complex II. The aim of our study was to investigate the role of oxidative stress on the activity of the 3-MP/3-MST/H2S pathway in vitro. Hydrogen peroxide (H2O2, 100-500 μM) caused a concentration-dependent decrease in the activity of recombinant mouse 3-MST enzyme. In mitochondria isolated from murine hepatoma cells, H2O2 (50-500 μM) caused a concentration-dependent decrease in production of H2S from 3-MP. In cultured murine hepatoma cells H2O2, (3-100 μM), did not result in overall cytotoxicity, but caused a partial decrease in basal oxygen consumption and respiratory reserve rapacity. The positive bioenergetic effect of 3-MP (100-300 nM) was completely abolished by pre-treatment of the cells with H2O2 (50 μM). The current findings demonstrate that oxidative stress inhibits 3-MST activity and interferes with the positive bioenergetic role of the 3-MP/3-MST/H2S pathway. These findings may have implications for the pathophysiology of various conditions associated with increased oxidative stress, such as various forms of critical illness, cardiovascular diseases, diabetes or physiological aging. PMID:23537657

  8. New catalysts active for the mild oxidation of hydrogen sulfide to sulfur

    SciTech Connect

    Laperdrix, E.; Costentin, G.; Guyen, N.N.; Saur, O.; Lavalley, J.C.

    1999-10-25

    Nickel iron phosphates were studied for the selective oxidation of hydrogen sulfide to sulfur. Nickel iron phosphate and Fe/Cr samples were more active than simple iron, chromium, and mixed iron-chromium oxides, which has been previously studied. Nickel iron phosphate catalyst prepared by solid-solid method with, consequently, a very low specific surface area was intrinsically active and selective to sulfur (conversion 17%, S{sub n} selectivity 97%); no rapid deactivation was observed. Even though higher specific surface area samples, prepared according to a solution method at various calcination temperatures, showed better performance (conversion 76%, S{sub n}selectivity {gt}90%), the specific activity depended on the crystallinity of the samples. The reaction is apparently structure sensitive. The structure of the catalytic material must facilitate electronic exchange, evidence by Moessbauer characterization. The establishment of the mixed valency Fe{sub 2+}/Fe{sup 3+} under catalytic feed was shown to be an essential factor in this reaction.

  9. The role of hydrogen sulfide in pathologies of the vital organs and its clinical application.

    PubMed

    Jin, Z; Chan, H; Ning, J; Lu, K; Ma, D

    2015-04-01

    Hydrogen sulfide (H(2)S) is one of the more recently recognised gaseous transmitters that have been shown to be involved in a large range of cellular functions. While H(2)S generally has pro-survival and anti-apoptotic effects, at higher concentrations, this effect is reversed and it becomes anti-proliferative and pro-apoptotic instead. H(2)S is also involved in a number of organ specific functions such as thermoregulation, modulating myocardial activity and broncho-dilation. H(2)S has organ protective effects in ischaemia, acting as a vasodilator and negative inotrope to reduce blood pressure. H(2)S generally has a protective effect in acute inflammation and oxidative stress from causes such as allergy and toxins. In chronic organ pathology, low H(2)S levels have been observed in a number of different diseases, while there is evidence that H(2)S may be beneficial in a number of chronic organ degenerations. A number of studies on human tissue and cell line conducted in the recent years shows H(2)S exerting largely similar effects in humans as those in animals. This may indicate that the pharmacological potential of H(2)S modulators could have therapeutic value in a large range of acute conditions such as ischaemia, toxin exposure as well as chronic conditions such as hypertension, lung diseases and neurodegenerative disease. PMID:25903948

  10. A comprehensive study on atomic layer deposition of molybdenum sulfide for electrochemical hydrogen evolution.

    PubMed

    Kwon, Do Hyun; Jin, Zhenyu; Shin, Seokhee; Lee, Wook-Seong; Min, Yo-Sep

    2016-03-24

    Atomic layer deposition (ALD) has emerged as an efficient method to design and prepare catalysts with atomic precision. Here, we report a comprehensive study on ALD of molybdenum sulfide (MoSx) for an electrocatalytic hydrogen evolution reaction. By using molybdenum hexacarbonyl and dimethyldisulfide as the precursors of Mo and S, respectively, the MoSx catalysts are grown at 100 °C on porous carbon fiber papers (CFPs). The ALD process results in the growth of particle-like MoSx on the CFP due to the lack of adsorption sites, and its crystallographic structure is a mixture of amorphous and nano-crystalline phases. In order to unveil the intrinsic activity of the ALD-MoSx, the exchange current densities, Tafel slopes, and turnover frequencies of the catalysts grown under various ALD conditions have been investigated by considering the fractional surface coverage of MoSx on the CFP and catalytically-active surface area. In addition, the ALD-MoSx/CFP catalysts exhibit excellent catalytic stability due to the strong adhesion of MoSx on the CFP and the mixed phase. PMID:26973254

  11. Discrimination of the oral microbiota associated with high hydrogen sulfide and methyl mercaptan production

    PubMed Central

    Takeshita, Toru; Suzuki, Nao; Nakano, Yoshio; Yasui, Masaki; Yoneda, Masahiro; Shimazaki, Yoshihiro; Hirofuji, Takao; Yamashita, Yoshihisa

    2012-01-01

    Both hydrogen sulfide (H2S) and methyl mercaptan (CH3SH) are frequently detected in large amounts in malodorous mouth air. We investigated the bacterial composition of saliva of 30 subjects with severe oral malodor exhibiting extreme CH3SH/H2S ratios (high H2S but low CH3SH concentrations, n = 14; high CH3SH but low H2S concentrations, n = 16) and 13 subjects without malodor, using barcoded pyrosequencing analysis of the 16S rRNA gene. Phylogenetic community analysis with the UniFrac distance metric revealed a distinct bacterial community structure in each malodor group. The H2S group showed higher proportions of the genera Neisseria, Fusobacterium, Porphyromonas and SR1 than the other two groups, whereas the CH3SH group had higher proportions of the genera Prevotella, Veillonella, Atopobium, Megasphaera, and Selenomonas. Our results suggested that distinct bacterial populations in the oral microbiota are involved in production of high levels of H2S and CH3SH in the oral cavity. PMID:22355729

  12. Emersion in the mangrove forest fish Rivulus marmoratus: A unique response to hydrogen sulfide

    SciTech Connect

    Abel, D.C.; Koenig, C.C.; Davis, W.P.

    1987-01-01

    The mangrove forest fish Rivulus marmoratus (Cyprinodontidae) has frequently been observed out of water, a phenomenon generally attributed to habitat drying. The hypothesis that hydrogen sulfide, a substance characteristically found in their environment, can serve as a stimulus for emersion, is tested in this study. In the field R. marmoratus was found in water with low to moderate level of H{sub 2}S. In the laboratory, R marmora leaped from water contaminated with H{sub 2}S at ecologically relevant concentrations. Aquatic hypoxia did not induce emersion, but prey capture did. Oxygen consumption by both juveniles and adults decreased significantly in air. These results suggest that avoidance of H{sub 2}S and the ability to survive terrestrial conditions enable this species to permanently occupy an area of the forest unavailable to other fishes. Furthermore, because a variety of stimuli lead to emersion in R. marmoratus, terrestriality in this species is likely a generalized response to environmental stress as well as a means of exploiting terrestrial resources. 16 refs., 1 fig., 2 tabs.

  13. Operando spectroscopic analysis of an amorphous cobalt sulfide hydrogen evolution electrocatalyst.

    PubMed

    Kornienko, Nikolay; Resasco, Joaquin; Becknell, Nigel; Jiang, Chang-Ming; Liu, Yi-Sheng; Nie, Kaiqi; Sun, Xuhui; Guo, Jinghua; Leone, Stephen R; Yang, Peidong

    2015-06-17

    The generation of chemical fuel in the form of molecular H2 via the electrolysis of water is regarded to be a promising approach to convert incident solar power into an energy storage medium. Highly efficient and cost-effective catalysts are required to make such an approach practical on a large scale. Recently, a number of amorphous hydrogen evolution reaction (HER) catalysts have emerged that show promise in terms of scalability and reactivity, yet remain poorly understood. In this work, we utilize Raman spectroscopy and X-ray absorption spectroscopy (XAS) as a tool to elucidate the structure and function of an amorphous cobalt sulfide (CoSx) catalyst. Ex situ measurements reveal that the as-deposited CoSx catalyst is composed of small clusters in which the cobalt is surrounded by both sulfur and oxygen. Operando experiments, performed while the CoSx is catalyzing the HER, yield a molecular model in which cobalt is in an octahedral CoS2-like state where the cobalt center is predominantly surrounded by a first shell of sulfur atoms, which, in turn, are preferentially exposed to electrolyte relative to bulk CoS2. We surmise that these CoS2-like clusters form under cathodic polarization and expose a high density of catalytically active sulfur sites for the HER. PMID:26051104

  14. Removal of hydrogen sulfide at ambient conditions on cadmium/GO-based composite adsorbents.

    PubMed

    Florent, Marc; Wallace, Rajiv; Bandosz, Teresa J

    2015-06-15

    Cadmium-based materials with various hydroxide to carbonate ratios and their composites with graphite oxide were synthesized by a fast and simple precipitation procedure and then used as H2S adsorbents at ambient conditions in the dark or upon a visible light exposure. The structural properties and chemical features of the adsorbents were analyzed before and after hydrogen sulfide adsorption. The results showed that the high ratio of hydroxide to carbonate led to an improved H2S adsorption capacity. In moist conditions cadmium hydroxide was the best adsorbent. Moreover, it showed photoactive properties. While the incorporation of a graphene-based phase slightly decreased the extent of the improvement in the H2S adsorption capacity in moist conditions caused by photoactivity, its presence in the composites enhanced the performance in dry conditions. This was linked to photoactivity of CdS that can split H2S resulting in the formation of water in the system. The graphene-based phase enhanced the electron transfer and delayed the recombination of photoinduced charges. Carbonate-based materials showed a very good adsorption capacity in dark conditions in the presence of moisture. Upon the light exposure, CdS likely photocatalyzes the reduction of carbonate ions to formates/formaldehydes. Their deposition on the surface limits the number of sites available to H2S adsorption. PMID:25792480

  15. Comparative Proteomic Analysis of Differentially Expressed Proteins Induced by Hydrogen Sulfide in Spinacia oleracea Leaves

    PubMed Central

    Chen, Juan; Liu, Ting-Wu; Hu, Wen-Jun; Simon, Martin; Wang, Wen-Hua; Chen, Juan; Liu, Xiang; Zheng, Hai-Lei

    2014-01-01

    Hydrogen sulfide (H2S), as a potential gaseous messenger molecule, has been suggested to play important roles in a wide range of physiological processes in plants. The aim of present study was to investigate which set of proteins is involved in H2S-regulated metabolism or signaling pathways. Spinacia oleracea seedlings were treated with 100 µM NaHS, a donor of H2S. Changes in protein expression profiles were analyzed by 2-D gel electrophoresis coupled with MALDI-TOF MS. Over 1000 protein spots were reproducibly resolved, of which the abundance of 92 spots was changed by at least 2-fold (sixty-five were up-regulated, whereas 27 were down-regulated). These proteins were functionally divided into 9 groups, including energy production and photosynthesis, cell rescue, development and cell defense, substance metabolism, protein synthesis and folding, cellular signal transduction. Further, we found that these proteins were mainly localized in cell wall, plasma membrane, chloroplast, mitochondria, nucleus, peroxisome and cytosol. Our results demonstrate that H2S is involved in various cellular and physiological activities and has a distinct influence on photosynthesis, cell defense and cellular signal transduction in S. oleracea leaves. These findings provide new insights into proteomic responses in plants under physiological levels of H2S. PMID:25181351

  16. A Practical Look at the Chemistry and Biology of Hydrogen Sulfide

    PubMed Central

    2012-01-01

    Abstract Significance: Hydrogen sulfide (H2S) is garnering increasing interest as a biologically relevant signaling molecule. The effects of H2S have now been observed in virtually every organ system and numerous physiological processes. Recent Advances: These studies have not only opened a new field of “gasotransmitter” biology, they have also led to the development of synthetic H2S “donating” compounds with the potential to be parlayed into a variety of therapeutic applications. Critical Issues: Often lost in the exuberance of this new field is a critical examination or understanding of practical aspects of H2S chemistry and biology. This is especially notable in the areas of handling and measuring H2S, evaluating biosynthetic and metabolic pathways, and separating physiological from pharmacological responses. Future Directions: This brief review describes some of the pitfalls in H2S chemistry and biology that can lead or have already led to misleading or erroneous conclusions. The intent is to allow individuals entering or already in this burgeoning field to critically analyze the literature and to assist them in the design of future experiments. Antioxid. Redox Signal. 17, 32–44. PMID:22074253

  17. Hydrogen sulfide lowers proliferation and induces protective autophagy in colon epithelial cells.

    PubMed

    Wu, Ya C; Wang, Xiao J; Yu, Le; Chan, Francis K L; Cheng, Alfred S L; Yu, Jun; Sung, Joseph J Y; Wu, William K K; Cho, Chi H

    2012-01-01

    Hydrogen sulfide (H(2)S) is a gaseous bacterial metabolite that reaches high levels in the large intestine. In the present study, the effect of H(2)S on the proliferation of normal and cancerous colon epithelial cells was investigated. An immortalized colon epithelial cell line (YAMC) and a panel of colon cancer cell lines (HT-29, SW1116, HCT116) were exposed to H(2)S at concentrations similar to those found in the human colon. H(2)S inhibited normal and cancerous colon epithelial cell proliferation as measured by MTT assay. The anti-mitogenic effect of H(2)S was accompanied by G(1)-phase cell cycle arrest and the induction of the cyclin-dependent kinase inhibitor p21(Cip). Moreover, exposure to H(2)S led to features characteristic of autophagy, including increased formation of LC3B(+) autophagic vacuoles and acidic vesicular organelles as determined by immunofluorescence and acridine orange staining, respectively. Abolition of autophagy by RNA interference targeting Vps34 or Atg7 enhanced the anti-proliferative effect of H(2)S. Further mechanistic investigation revealed that H(2)S stimulated the phosphorylation of AMP-activated protein kinase (AMPK) and inhibited the phosphorylation of mammalian target of rapamycin (mTOR) and S6 kinase. Inhibition of AMPK significantly reversed H(2)S-induced autophagy and inhibition of cell proliferation. Collectively, we demonstrate that H(2)S inhibits colon epithelial cell proliferation and induces protective autophagy via the AMPK pathway. PMID:22679478

  18. Hydrogen sulfide post-conditioning preserves interfibrillar mitochondria of rat heart during ischemia reperfusion injury.

    PubMed

    Banu, Shakila A; Ravindran, Sriram; Kurian, Gino A

    2016-07-01

    Cardiac mitochondrial dysfunction is considered to be the main manifestation in the pathology of ischemia reperfusion injury, and by restoring its functional activity, hydrogen sulfide (H2S), a novel endogenous gaseotransmitter renders cardioprotection. Given that interfibrillar (IFM) and subsarcolemmal (SSM) mitochondria are the two main types in the heart, the present study investigates the specific H2S-mediated action on IFM and SSM during ischemic reperfusion in the Langendorff rat heart model. Rats were randomly divided into five groups, namely normal, ischemic control, reperfusion control (I/R), ischemic post-conditioning (POC), and H2S post-conditioning (POC_H2S). In reperfusion control, cardiac contractility decreased, and lactate dehydrogenase, creatine kinase, and infracted size increased compared to both normal and ischemic group. In hearts post-conditioned with H2S and the classical method improved cardiac mechanical function and decreased cardiac markers in the perfusate and infarct size significantly. Both POC and POC_H2S exerts its cardioprotective effect of preserving the IFM, as evident by significant improvement in electron transport chain enzyme activities and mitochondrial respiration. The in vitro action of H2S on IFM and SSM from normal and I/R rat heart supports H2S and mediates cardioprotection via IFM preservation. Our study indicates that IFM play an important role in POC_H2S mediated cardioprotection from reperfusion injury. PMID:26951457

  19. Measurements of atmospheric dimethylsulfide, hydrogen sulfide, and carbon disulfide during GTE/CITE 3

    NASA Technical Reports Server (NTRS)

    Cooper, David J.; Saltzman, Eric S.

    1993-01-01

    Measurements of atmospheric dimethylsulfide (DMS), hydrogen sulfide (H2S), and carbon disulfide (CS2) were made over the North and South Atlantic Ocean as part of the Global Tropospheric Experiment/Chemical Instrumentation Test and Evaluation (GTE/CITE 3) project. DMS and CS2 samples were collected and analyzed using an automated gas chromatography/flame photometric detection system with a sampling frequency of 10 min. H2S samples were collected using silver nitrate impregnated filters and analyzed by fluorescence quenching. The DMS data from both hemispheres have a bimodal distribution. Over the North Atlantic this reflects the difference between marine and continental air masses. Over the South Atlantic it may reflect differences in the sea surface source of DMS, corresponding to different air mass source regions. The median boundary layer H2S and CS2 levels were significantly higher in the northern hemisphere than the southern hemisphere, reflecting the higher frequency of samples influenced by pollutant and/or coastal emissions. Composite vertical profiles of DMS and H2S are similar to each other, are consistent with a sea surface source. Vertical profiles of CS2 have maxima in the free troposphere, implicating a continental source. The low levels of H2S and CS2 found in the southern hemisphere constrain the role of these compounds in global budgets to significantly less than previously estimated.

  20. Hydrogen sulfide induces apoptosis in epithelial cells derived from human gingiva.

    PubMed

    Murata, T; Yaegaki, K; Qian, W; Herai, M; Calenic, B; Imai, T; Sato, T; Tanaka, T; Kamoda, T; Ii, H

    2008-03-01

    Hydrogen sulfide (H(2)S) is not only one of the main causes of halitosis but is also an agent of toxicity against periodontal cells and tissues in biofilm-related periodontal diseases. Also, apoptosis of gingival epithelial cells may play an important role in the onset and progress of periodontitis. We examined the effect of H(2)S on the induction of apoptosis, using human gingival fibroblasts (HGF) and keratinocyte-like Ca9-22 cells derived from human gingiva. The cells were incubated with H(2)S (100 ng ml(-1)) for 24, 48 or 72 h by adding H(2)S to air containing 5% CO(2), supplied constantly to the culture environment during incubation. The incidence of apoptosis caused by H(2)S was determined with Annexin V staining by flow cytometry. The proportion of apoptotic cells was significantly increased by exposure to H(2)S for 48 h in comparison with the control in both Ca9-22 cells and HGF. A concentration of 100 ng ml(-1) H(2)S in air is possible in the gingival sulcus. This study indicates that apoptosis in gingival epithelial cells and HGF by H(2)S may occur in the oral cavity, which may cause a periodontal condition. PMID:21386151

  1. Penning ionization electron spectroscopy of hydrogen sulfide by metastable helium and neon atoms.

    PubMed

    Falcinelli, Stefano; Candori, Pietro; Bettoni, Marta; Pirani, Fernando; Vecchiocattivi, Franco

    2014-08-21

    The dynamics of the Penning ionization of hydrogen sulfide molecules by collision with helium and metastable neon atoms, occurring in the thermal energy range, has been studied by analyzing the energy spectra of the emitted electrons obtained in our laboratory in a crossed beam experiment. These spectra are compared with the photoelectron spectra measured by using He(I) and Ne(I) photons under the same experimental conditions. In this way we obtained the negative energy shifts for the formation of H2S(+) ions in the first three accessible electronic states by He*(2(3,1)S1,0) and Ne*((3)P2,0) Penning ionization collisions: the 2b1 (X̃(2)B1) fundamental one, the first 5a1 (Ã(2)A1), and the second 2b2 (B̃(2)B2) excited states, respectively. The recorded energy shifts indicate that in the case of He* and Ne*-H2S the autoionization dynamics depends on the features of the collision complex and is mainly driven by an effective global attraction that comes from a balance among several non covalent intermolecular interaction components. This suggests that the Penning ionization should take place, in a specific range of intermolecular distances, as we have already observed in the case of Penning ionization of water molecules [Brunetti, B. G.; Candori, P.; Falcinelli, S.; Pirani, F.; Vecchiocattivi, F. J. Chem. Phys. 2013, 139, 164305-1-164305-8]. PMID:24796487

  2. Measurement and modeling of hydrogen sulfide lagoon emissions from a swine concentrated animal feeding operation.

    PubMed

    Rumsey, Ian C; Aneja, Viney P

    2014-01-01

    Hydrogen sulfide (H2S) emissions were determined from an anaerobic lagoon at a swine concentrated animal feeding operation (CAFO) in North Carolina. Measurements of H2S were made continuously from an anaerobic lagoon using a dynamic flow-through chamber for ∼ 1 week during each of the four seasonal periods from June 2007 through April 2008. H2S lagoon fluxes were highest in the summer with a flux of 3.81 ± 3.24 μg m(-2) min(-1) and lowest in the winter with a flux of 0.08 ± 0.09 μg m(-2) min(-1). An air-manure interface (A-MI) mass transfer model was developed to predict H2S manure emissions. The accuracy of the A-MI mass transfer model in predicting H2S manure emissions was comprehensively evaluated by comparing the model predicted emissions to the continuously measured lagoon emissions using data from all four seasonal periods. In comparison to this measurement data, the A-MI mass transfer model performed well in predicting H2S fluxes with a slope of 1.13 and an r(2) value of 0.60, and a mean bias value of 0.655 μg m(-2) min(-1). The A-MI mass transfer model also performed fairly well in predicting diurnal H2S lagoon flux trends. PMID:24387076

  3. Performance of biotrickling filters for hydrogen sulfide removal under starvation and shock loads conditions*

    PubMed Central

    Zhang, Lan-he; Meng, Xiu-li; Wang, Ying; Liu, Li-dan

    2009-01-01

    In the industrial operation of biotrickling filters for hydrogen sulfide (H2S) removal, shock loads or starvation was common due to process variations or equipment malfunctions. In this study, effects of starvation and shock loads on the performance of biotrickling filters for H2S removal were investigated. Four experiments were conducted to evaluate the changes of biomass and viable bacteria numbers in the biotrickling filters during a 24-d starvation. Compared to biomass, viable bacteria numbers decreased significantly during the starvation, especially when airflow was maintained in the absence of spray liquid. During the subsequent re-acclimation, all the bioreactors could resume high removal efficiencies within 4 d regardless of the previous starvation conditions. The results show that the re-acclimation time, in the case of biotrickling filters for H2S removal, is mainly controlled by viable H2S oxidizing bacteria numbers. On the other hand, the biotrickling filters can protect against shock loads in inlet fluctuating H2S concentration after resuming normal operation. When the biotrickling filters were supplied with H2S at an input of lower than 1700 mg/m3, their removal efficiencies were nearly 98% regardless of previous H2S input. PMID:19650198

  4. Hydrogen sulfide inhibits enzymatic browning of fresh-cut lotus root slices by regulating phenolic metabolism.

    PubMed

    Sun, Ying; Zhang, Wei; Zeng, Tao; Nie, Qixing; Zhang, Fengying; Zhu, Liqin

    2015-06-15

    The effect of fumigation with hydrogen sulfide (H2S) gas on inhibiting enzymatic browning of fresh-cut lotus root slices was investigated. Browning degree, changes in color, total phenol content, superoxide anion production rate (O2(-)), H2O2 content, antioxidant capacities (DPPH radical scavenging ability, ABTS radical scavenging activity and the reducing power) and activities of the phenol metabolism-associated enzymes including phenylalanine ammonialyase (PAL), catalase (CAT), peroxidase (POD), polyphenol oxidase (PPO) were evaluated. The results showed that treatment with 15 μl L(-1) H2S significantly inhibited the browning of fresh-cut lotus root slices (P<0.05), reduced significantly O2(-) production rate and H2O2 content, and enhanced antioxidant capacities (P<0.05). PPO and POD activities in the fresh-cut lotus root slices were also significantly inhibited by treatment with H2S (P<0.05). This study suggested that treatment with exogenous H2S could inhibit the browning of fresh-cut lotus root slices by enhancing antioxidant capacities to alleviate the oxidative damage. PMID:25660900

  5. [THE INFLUENCE OF HYDROGEN SULFIDE ON COLLAGEN-INDUCED AGGREGATION OF HUMAN PLATELETS].

    PubMed

    Petrova, I V; Trubacheva, O A; Mangataeva, O S; Suslova, T E; Kovalev, I V; Gusakova, S V

    2015-10-01

    Study the impact of hydrogen sulfide on collagen-induced platelet aggregation from healthy donors and patients with type 2 diabetes. In healthy individuals, in contrast to patients with type 2 diabetes, NaHS significantly inhibited platelet aggregation. Activators of cAMP signaling (forskolin and phosphodiesterase inhibitor) significantly reduced platelet aggregation in both groups of examinees. NO-synthase inhibitors increased platelet aggregation in healthy volunteers, but not in patients with type 2 diabetes. The presence of H2S donor did not alter the extent of platelet aggregation at high concentrations of cAMP or decreased production of nitric oxide. It is assumed that the antiplatelet effect of H2S is not associated with the effect on the signal system, mediated cAMP or nitric oxide. Change H2S-dependent regulation of platelet aggregation in patients with type 2 diabetes is caused by disorders have been reported with this disease: the increase of intracellular calcium ion concentration, oxidative damage to proteins, hyperhomocysteinemia, glycosylation of key proteins involved in this process. PMID:26827498

  6. [A new "turn-on" fluorescent probe for visual detection of hydrogen sulfide].

    PubMed

    Liu, Chun-xia; Ma, Xing; Wei, Guo-hua; Du, Yu-guo

    2015-01-01

    Hydrogen sulfide (H2S) is one of the important parameters for characterizing water pollution. Therefore, fast and effective detection method is in great need. Fluorescence analysis method gains wide attention because of unparalleled advantages. A new colorimetric and fluorescent "turn-on" probe for H2S detection based on thiolysis by H2S was reported. 2-(2'-Hydroxyphenyl) benzimidazole (HBI), a kind of excited-state intramolecular proton transfer dye was chosen as the fluorophore because of large Stokes shift and high fluorescence quantum yield. It was found that the fluorescence intensity of testing system increased with the addition of H2S and accompanied with a color change from pale yellow to purple. The visual detection limit was 3 micromol x L(-1). The new fluorescent probe showed a good selectivity for H2S over other anions and a good fluorescence response in a relatively wide pH range. The response process was finished in five minutes with a 100-fold fluorescence enhancement. The probe provides a new method for the detection of H2S. PMID:25898685

  7. Hydrogen Sulfide Mitigates Kidney Injury in High Fat Diet-Induced Obese Mice

    PubMed Central

    Wu, Dongdong; Gao, Biao; Li, Mengling; Yao, Ling; Wang, Shuaiwei; Chen, Mingliang; Li, Hui; Ma, Chunyan

    2016-01-01

    Obesity is prevalent worldwide and is a major risk factor for the development and progression of kidney disease. Hydrogen sulfide (H2S) plays an important role in renal physiological and pathophysiological processes. However, whether H2S is able to mitigate kidney injury induced by obesity in mice remains unclear. In this study, we demonstrated that H2S significantly reduced the accumulation of lipids in the kidneys of high fat diet- (HFD-) induced obese mice. The results of hematoxylin and eosin, periodic acid-Schiff, and Masson's trichrome staining showed that H2S ameliorated the kidney structure, decreased the extent of interstitial injury, and reduced the degree of kidney fibrosis in HFD-induced obese mice. We found that H2S decreased the expression levels of tumor necrosis factor-α, interleukin- (IL-) 6, and monocyte chemoattractant protein-1 but increased the expression level of IL-10. Furthermore, H2S treatment decreased the protein expression of p50, p65, and p-p65 in the kidney of HFD-induced obese mice. In conclusion, H2S is able to mitigate renal injury in HFD-induced obese mice through the reduction of kidney inflammation by downregulating the expression of nuclear factor-kappa B. H2S or its releasing compounds may serve as a potential therapeutic molecule for obesity-induced kidney injury. PMID:27413418

  8. Hydrogen sulfide: A novel nephroprotectant against cisplatin-induced renal toxicity.

    PubMed

    Dugbartey, George J; Bouma, Hjalmar R; Lobb, Ian; Sener, Alp

    2016-07-01

    Cisplatin is a potent chemotherapeutic agent for the treatment of various solid-organ cancers. However, a plethora of evidence indicates that nephrotoxicity is a major side effect of cisplatin therapy. While the antineoplastic action of cisplatin is due to formation of cisplatin-DNA cross-links, which damage rapidly dividing cancer cells upon binding to DNA, its nephrotoxic effect results from metabolic conversion of cisplatin into a nephrotoxin and production of reactive oxygen species, causing oxidative stress leading to renal tissue injury and potentially, kidney failure. Despite therapeutic targets in several pre-clinical and clinical studies, there is still incomplete protection against cisplatin-induced nephrotoxicity. Hydrogen sulfide (H2S), the third discovered gasotransmitter next to nitric oxide and carbon monoxide, has recently been identified in several in vitro and in vivo studies to possess specific antioxidant, anti-inflammatory and anti-apoptotic properties that modulate several pathogenic pathways involved in cisplatin-induced nephrotoxicity. The current article reviews the molecular mechanisms underlying cisplatin-induced nephrotoxicity and displays recent findings in the H2S field that could disrupt such mechanisms to ameliorate cisplatin-induced renal injury. PMID:27095538

  9. Emerging role of hydrogen sulfide in hypertension and related cardiovascular diseases.

    PubMed

    Meng, Guoliang; Ma, Yan; Xie, Liping; Ferro, Albert; Ji, Yong

    2015-12-01

    Hydrogen sulfide (H2 S) has traditionally been viewed as a highly toxic gas; however, recent studies have implicated H2 S as a third member of the gasotransmitter family, exhibiting properties similar to NO and carbon monoxide. Accumulating evidence has suggested that H2 S influences a wide range of physiological and pathological processes, among which blood vessel relaxation, cardioprotection and atherosclerosis have been particularly studied. In the cardiovascular system, H2 S production is predominantly catalyzed by cystathionine γ-lyase (CSE). Decreased endogenous H2 S levels have been found in hypertensive patients and animals, and CSE(-/-) mice develop hypertension with age, suggesting that a deficiency in H2 S contributes importantly to BP regulation. H2 S supplementation attenuates hypertension in different hypertensive animal models. The mechanism by which H2 S was originally proposed to attenuate hypertension was by virtue of its action on vascular tone, which may be related to effects on different ion channels. Both H2 S and NO cause vasodilatation and there is cross-talk between these two molecules to regulate BP. Suppression of oxidative stress may also contribute to antihypertensive effects of H2 S. This review also summarizes the state of research on H2 S and hypertension in China. A better understanding of the role of H2 S in hypertension and related cardiovascular diseases will allow novel strategies to be devised for their treatment. PMID:25204754

  10. Hydrogen sulfide regulates abiotic stress tolerance and biotic stress resistance in Arabidopsis.

    PubMed

    Shi, Haitao; Ye, Tiantian; Han, Ning; Bian, Hongwu; Liu, Xiaodong; Chan, Zhulong

    2015-07-01

    Hydrogen sulfide (H2S) is an important gaseous molecule in various plant developmental processes and plant stress responses. In this study, the transgenic Arabidopsis thaliana plants with modulated expressions of two cysteine desulfhydrases, and exogenous H2S donor (sodium hydrosulfide, NaHS) and H2S scavenger (hypotaurine, HT) pre-treated plants were used to dissect the involvement of H2S in plant stress responses. The cysteine desulfhydrases overexpressing plants and NaHS pre-treated plants exhibited higher endogenous H2S level and improved abiotic stress tolerance and biotic stress resistance, while cysteine desulfhydrases knockdown plants and HT pre-treated plants displayed lower endogenous H2S level and decreased stress resistance. Moreover, H2S upregulated the transcripts of multiple abiotic and biotic stress-related genes, and inhibited reactive oxygen species (ROS) accumulation. Interestingly, MIR393-mediated auxin signaling including MIR393a/b and their target genes (TIR1, AFB1, AFB2, and AFB3) was transcriptionally regulated by H2S, and was related with H2S-induced antibacterial resistance. Moreover, H2S regulated 50 carbon metabolites including amino acids, organic acids, sugars, sugar alcohols, and aromatic amines. Taken together, these results indicated that cysteine desulfhydrase and H2S conferred abiotic stress tolerance and biotic stress resistance, via affecting the stress-related gene expressions, ROS metabolism, metabolic homeostasis, and MIR393-targeted auxin receptors. PMID:25329496

  11. Hydrogen Sulfide Delays LPS-Induced Preterm Birth in Mice via Anti-Inflammatory Pathways

    PubMed Central

    Liu, Weina; Xu, Chen; You, Xingji; Olson, David M.; Chemtob, Sylvain; Gao, Lu; Ni, Xin

    2016-01-01

    A major cause of preterm labor in pregnant women is intra-amniotic infection, which is mediated by an inflammatory process. Hydrogen sulfide (H2S), a gaseous transmitter, has been implicated to be involved in inflammatory responses. We sought to investigate whether H2S affects infectious preterm birth using the mouse model of lipopolysaccharides (LPS)-induced preterm birth. Administration of LPS at 0.4 mg/kg with two injections intraperitoneally (i.p.) on gestational day 14.5 induced preterm labor. LPS significantly increased leukocyte infiltration in uterus, stimulated the expression of pro-inflammatory cytokines interleukin 1β (IL-1β), IL-6, tumor necrosis factor α (TNF-α), CCL2 and CXCL15 in myometrium. Administration of NaHS (i.p.) delayed the onset of labor induced by LPS in a dose-dependent manner. NaHS prevented leukocyte infiltration into intrauterine tissues and inhibited the production of pro-inflammatory cytokines in myometrium and decreased the levels of these cytokines in maternal circulation. H2S also decreased LPS-activated extracellular signal-regulated kinase (ERK) 1/2/ nuclear factor (NF)-κB signaling pathways in myometrium. This study provides new in vivo evidence for the roles of H2S in attenuating inflammation, and a potential novel therapeutic strategy for infection-related preterm labor. PMID:27035826

  12. Discrimination of the oral microbiota associated with high hydrogen sulfide and methyl mercaptan production.

    PubMed

    Takeshita, Toru; Suzuki, Nao; Nakano, Yoshio; Yasui, Masaki; Yoneda, Masahiro; Shimazaki, Yoshihiro; Hirofuji, Takao; Yamashita, Yoshihisa

    2012-01-01

    Both hydrogen sulfide (H2S) and methyl mercaptan (CH(3)SH) are frequently detected in large amounts in malodorous mouth air. We investigated the bacterial composition of saliva of 30 subjects with severe oral malodor exhibiting extreme CH(3)SH/H(2)S ratios (high H(2)S but low CH(3)SH concentrations, n 5 14; high CH(3)SH but low H2S concentrations, n 5 16) and 13 subjects without malodor, using barcoded pyrosequencing analysis of the 16S rRNA gene. Phylogenetic community analysis with the UniFrac distance metric revealed a distinct bacterial community structure in each malodor group. The H2S group showed higher proportions of the genera Neisseria, Fusobacterium, Porphyromonas and SR1 than the other two groups, whereas the CH(3)SH group had higher proportions of the genera Prevotella, Veillonella,Atopobium, Megasphaera, and Selenomonas. Our results suggested that distinct bacterial populations in the oral microbiota are involved in production of high levels of H2S and CH3SH in the oral cavity. PMID:22355729

  13. Interaction of Hydrogen Sulfide with Nitric Oxide in the Cardiovascular System

    PubMed Central

    Nagpure, B. V.; Bian, Jin-Song

    2016-01-01

    Historically acknowledged as toxic gases, hydrogen sulfide (H2S) and nitric oxide (NO) are now recognized as the predominant members of a new family of signaling molecules, “gasotransmitters” in mammals. While H2S is biosynthesized by three constitutively expressed enzymes (CBS, CSE, and 3-MST) from L-cysteine and homocysteine, NO is generated endogenously from L-arginine by the action of various isoforms of NOS. Both gases have been transpired as the key and independent regulators of many physiological functions in mammalian cardiovascular, nervous, gastrointestinal, respiratory, and immune systems. The analogy between these two gasotransmitters is evident not only from their paracrine mode of signaling, but also from the identical and/or shared signaling transduction pathways. With the plethora of research in the pathophysiological role of gasotransmitters in various systems, the existence of interplay between these gases is being widely accepted. Chemical interaction between NO and H2S may generate nitroxyl (HNO), which plays a specific effective role within the cardiovascular system. In this review article, we have attempted to provide current understanding of the individual and interactive roles of H2S and NO signaling in mammalian cardiovascular system, focusing particularly on heart contractility, cardioprotection, vascular tone, angiogenesis, and oxidative stress. PMID:26640616

  14. C. elegans Aging Is Modulated by Hydrogen Sulfide and the sulfhydrylase/cysteine Synthase cysl-2

    PubMed Central

    Qabazard, Bedoor; Ahmed, Samanza; Li, Ling; Arlt, Volker M.; Moore, Philip K.; Stürzenbaum, Stephen R.

    2013-01-01

    Exogenous hydrogen sulfide (H2S) administration and endogenous H2S metabolism were explored in the nematode C. elegans. Chronic treatment with a slow-releasing H2S donor, GYY4137, extended median survival by 17-23% and increased tolerance towards oxidative and endoplasmic reticulum (ER) stress. Also, cysl-2, a sulfhydrylase/cysteine synthase in C. elegans, was transcriptionally upregulated by GYY4137 treatment and the deletion of cysl-2 resulted in a significant reduction in lifespan which was partially recovered by the supplementation of GYY4137. Likewise, a mammalian cell culture system, GYY4137 was able to protect bovine aortic endothelial cells (BAECs) from oxidative stress and (H2O2)-induced cell death. Taken together, this provides further support that H2S exerts a protective function which is consistent with the longevity dividend theory. Overall, this study underlines the therapeutic potential of a slow-releasing H2S donor as regulators of the aging and cellular stress pathways. PMID:24260346

  15. Genetic Targets of Hydrogen Sulfide in Ventilator-Induced Lung Injury – A Microarray Study

    PubMed Central

    Spassov, Sashko; Pfeifer, Dietmar; Strosing, Karl; Ryter, Stefan; Hummel, Matthias; Faller, Simone; Hoetzel, Alexander

    2014-01-01

    Recently, we have shown that inhalation of hydrogen sulfide (H2S) protects against ventilator-induced lung injury (VILI). In the present study, we aimed to determine the underlying molecular mechanisms of H2S-dependent lung protection by analyzing gene expression profiles in mice. C57BL/6 mice were subjected to spontaneous breathing or mechanical ventilation in the absence or presence of H2S (80 parts per million). Gene expression profiles were determined by microarray, sqRT-PCR and Western Blot analyses. The association of Atf3 in protection against VILI was confirmed with a Vivo-Morpholino knockout model. Mechanical ventilation caused a significant lung inflammation and damage that was prevented in the presence of H2S. Mechanical ventilation favoured the expression of genes involved in inflammation, leukocyte activation and chemotaxis. In contrast, ventilation with H2S activated genes involved in extracellular matrix remodelling, angiogenesis, inhibition of apoptosis, and inflammation. Amongst others, H2S administration induced Atf3, an anti-inflammatory and anti-apoptotic regulator. Morpholino mediated reduction of Atf3 resulted in elevated lung injury despite the presence of H2S. In conclusion, lung protection by H2S during mechanical ventilation is associated with down-regulation of genes related to oxidative stress and inflammation and up-regulation of anti-apoptotic and anti-inflammatory genes. Here we show that Atf3 is clearly involved in H2S mediated protection. PMID:25025333

  16. Case report: Profound neurobehavioral deficits in an oil field worker overcome by hydrogen sulfide

    SciTech Connect

    Kilburn, K.H. )

    1993-11-01

    A 24-year-old oil well tester was rendered semiconscious by hydrogen sulfide (H2S). He received oxygen and was hospitalized but released in 30 minutes. The next day, nausea, vomiting, diarrhea, and incontinence of urine and stool led to rehospitalization. These problems and leg shaking, dizziness, sweating, trouble sleeping, and nightmares prevented his return to work. A physical examination, chest x-ray, and pulmonary function tests were normal 39 months after the episode but vibration sense was diminished. Two choice visual reaction times were delayed. Balance was highly abnormal (5 to 6 cm/sec) with eyes closed. Blink reflex latency was slow (R-1 17.5 msec versus normal 14.3 msec). Numbers written on finger tips were not recognized. Verbal and visual recall were impaired but overlearned memory was intact. Cognitive functions measured by Culture Fair, block design, and digit symbol were impaired. Perceptual motor was slow. Scores for confusion, tension-anxiety, depression, and fatigue were elevated and vigor was reduced. Forty-nine months after exposure his reaction time, sway speed, and color vision had not improved. His recall and his cognitive, constructional, and psychomotor speeds had improved but remained abnormal. These deficits are most likely due to H2S. Similar testing of other survivors is recommended.

  17. Hydrogen Sulfide Mitigates Kidney Injury in High Fat Diet-Induced Obese Mice.

    PubMed

    Wu, Dongdong; Gao, Biao; Li, Mengling; Yao, Ling; Wang, Shuaiwei; Chen, Mingliang; Li, Hui; Ma, Chunyan; Ji, Ailing; Li, Yanzhang

    2016-01-01

    Obesity is prevalent worldwide and is a major risk factor for the development and progression of kidney disease. Hydrogen sulfide (H2S) plays an important role in renal physiological and pathophysiological processes. However, whether H2S is able to mitigate kidney injury induced by obesity in mice remains unclear. In this study, we demonstrated that H2S significantly reduced the accumulation of lipids in the kidneys of high fat diet- (HFD-) induced obese mice. The results of hematoxylin and eosin, periodic acid-Schiff, and Masson's trichrome staining showed that H2S ameliorated the kidney structure, decreased the extent of interstitial injury, and reduced the degree of kidney fibrosis in HFD-induced obese mice. We found that H2S decreased the expression levels of tumor necrosis factor-α, interleukin- (IL-) 6, and monocyte chemoattractant protein-1 but increased the expression level of IL-10. Furthermore, H2S treatment decreased the protein expression of p50, p65, and p-p65 in the kidney of HFD-induced obese mice. In conclusion, H2S is able to mitigate renal injury in HFD-induced obese mice through the reduction of kidney inflammation by downregulating the expression of nuclear factor-kappa B. H2S or its releasing compounds may serve as a potential therapeutic molecule for obesity-induced kidney injury. PMID:27413418

  18. High-Pressure Hydrogen Sulfide from First Principles: A Strongly Anharmonic Phonon-Mediated Superconductor

    NASA Astrophysics Data System (ADS)

    Errea, Ion; Calandra, Matteo; Pickard, Chris J.; Nelson, Joseph; Needs, Richard J.; Li, Yinwei; Liu, Hanyu; Zhang, Yunwei; Ma, Yanming; Mauri, Francesco

    2015-04-01

    We use first-principles calculations to study structural, vibrational, and superconducting properties of H2S at pressures P ≥200 GPa . The inclusion of zero-point energy leads to two different possible dissociations of H2S , namely 3 H2S →2 H3S +S and 5 H2S →3 H3S +HS2 , where both H3S and HS2 are metallic. For H3S , we perform nonperturbative calculations of anharmonic effects within the self-consistent harmonic approximation and show that the harmonic approximation strongly overestimates the electron-phonon interaction (λ ≈2.64 at 200 GPa) and Tc. Anharmonicity hardens H-S bond-stretching modes and softens H-S bond-bending modes. As a result, the electron-phonon coupling is suppressed by 30% (λ ≈1.84 at 200 GPa). Moreover, while at the harmonic level Tc decreases with increasing pressure, the inclusion of anharmonicity leads to a Tc that is almost independent of pressure. High-pressure hydrogen sulfide is a strongly anharmonic superconductor.

  19. Hydrogen Sulfide Detection Using a Gold Nanoparticle/Metalloprotein Based Probe

    NASA Astrophysics Data System (ADS)

    Meisam, Omidi; Gh., Amoabediny; Yazdian, F.; Habibi-Rezaei, M.

    2014-08-01

    We present a simple method for direct detection of hydrogen sulfide (H2S) in an aqueous solution. This method represents a novel biosensor based on metalloprotein cytochrome c (cyt c) with the localized surface plasmon resonance of gold nanoparticles (AuNPs). For this purpose, we develop a new approach based on attaching chemically-modified cyt c onto AuNPs. Here, by reacting H2S with protein heme center, its conformation changes in the locality of the heme moiety. The conformational changes occurring in the protein alter the spectral characteristics by changing the dielectric properties of AuNPs. The conformational changes of cyt c induced by the H2S interaction are characterized by the UV-visible absorption spectroscopy and the circular dichroism technique. The limit of the detection and sensitivity of the AuNPs/cyt c biosensor are evaluated by using UV-visible spectroscopy. According to the experiments, it is revealed that H2S can be detected at a concentration of 4.0 μM (1.3 ppb) by the fabricated AuNPs/cyt c biosensor. In addition, the sensor retains activity and gives reproducible results after storage in 4°C for 60 d. This simple and cost-effective sensing platform provides a rapid and convenient detection for H2S at concentrations far below the hazardous limit.

  20. Effectiveness and mechanisms of hydrogen sulfide adsorption by camphor-derived biochar.

    PubMed

    Shang, Guofeng; Shen, Guoqing; Wang, Tingting; Chen, Qin

    2012-08-01

    The characteristics and mechanisms of hydrogen sulfide (H2S) adsorption on a biochar through pyrolysis at various temperatures (100 to 500 degrees C) were investigated. The biochar used in the current study was derived from the camphor tree (Cinnamomum camphora). The samples were ground and sieved to produceparticle sizes of 0.4 mm to 1.25 mm, 0.3 mm to 0.4 mm, and <0.3 mm. The H2S breakthrough capacity was measured using a laboratory-designed test. The surface properties of the biochar were characterized using pH and Fourier-transform infrared spectroscopy (FTIR) analysis. The results obtained demonstrate that all camphor-derived biochars were effective in H2S sorption. Certain threshold ranges ofthepyrolysis temperature and surfacepH were observed, which, when exceeded, have dramatic effects on the H2S adsorption capacity. The sorption capacity ranged from 1.2 mg/g to 121.4 mg/g. The biochar with 0.3 mm to 0.4 mm particle size possesses a maximum sorption capacity at 400 degrees C. The pH and FTIR analysis results showed that carboxylic and hydroxide radical groups were responsible for H2S sorption. These observations will be helpful in designing biochar as engineered sorbents for the removal of H2S. PMID:22916434