Science.gov

Sample records for hydrogen sulfide protects

  1. Hydrogen sulfide as a potent cardiovascular protective agent.

    PubMed

    Yu, Xiao-Hua; Cui, Li-Bao; Wu, Kai; Zheng, Xi-Long; Cayabyab, Francisco S; Chen, Zhi-Wei; Tang, Chao-Ke

    2014-11-01

    Hydrogen sulfide (H2S) is a well-known toxic gas with the characteristic smell of rotten eggs. It is synthesized endogenously in mammals from the sulfur-containing amino acid l-cysteine by the action of several distinct enzymes: cystathionine-γ-lyase (CSE), cystathionine-ß-synthase (CBS), and 3-mercaptopyruvate sulfurtransferase (3-MST) along with cysteine aminotransferase (CAT). In particular, CSE is considered to be the major H2S-producing enzyme in the cardiovascular system. As the third gasotransmitter next to nitric oxide (NO) and carbon monoxide (CO), H2S plays an important role in the regulation of vasodilation, angiogenesis, inflammation, oxidative stress and apoptosis. Growing evidence has demonstrated that this gas exerts a significant protective effect against the progression of cardiovascular diseases by a number of mechanisms such as vasorelaxation, inhibition of cardiovascular remodeling and resistance to form foam cells. The aim of this review is to provide an overview of the physiological functions of H2S and its protection against several major cardiovascular diseases, and to explore its potential health and therapeutic benefits. A better understanding will help develop novel H2S-based therapeutic interventions for these diseases. PMID:25058799

  2. Hydrogen sulfide

    Integrated Risk Information System (IRIS)

    Hydrogen sulfide ; 7783 - 06 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effec

  3. Hydrogen Sulfide Donor GYY4137 Protects against Myocardial Fibrosis

    PubMed Central

    Meng, Guoliang; Zhu, Jinbiao; Xiao, Yujiao; Huang, Zhengrong; Zhang, Yuqing; Tang, Xin; Xie, Liping; Chen, Yu; Shao, Yongfeng; Ferro, Albert; Wang, Rui; Moore, Philip K.; Ji, Yong

    2015-01-01

    Hydrogen sulfide (H2S) is a gasotransmitter which regulates multiple cardiovascular functions. However, the precise roles of H2S in modulating myocardial fibrosis in vivo and cardiac fibroblast proliferation in vitro remain unclear. We investigated the effect of GYY4137, a slow-releasing H2S donor, on myocardial fibrosis. Spontaneously hypertensive rats (SHR) were administrated with GYY4137 by intraperitoneal injection daily for 4 weeks. GYY4137 decreased systolic blood pressure and inhibited myocardial fibrosis in SHR as evidenced by improved cardiac collagen volume fraction (CVF) in the left ventricle (LV), ratio of perivascular collagen area (PVCA) to lumen area (LA) in perivascular regions, reduced hydroxyproline concentration, collagen I and III mRNA expression, and cross-linked collagen. GYY4137 also inhibited angiotensin II- (Ang II-) induced neonatal rat cardiac fibroblast proliferation, reduced the number of fibroblasts in S phase, decreased collagen I and III mRNA expression and protein synthesis, attenuated oxidative stress, and suppressed α-smooth muscle actin (α-SMA), transforming growth factor-β1 (TGF-β1) expression as well as Smad2 phosphorylation. These results indicate that GYY4137 improves myocardial fibrosis perhaps by a mechanism involving inhibition of oxidative stress, blockade of the TGF-β1/Smad2 signaling pathway, and decrease in α-SMA expression in cardiac fibroblasts. PMID:26078813

  4. Protective effect of hydrogen sulfide on renal injury in the experimental unilateral ureteral obstruction

    PubMed Central

    Dursun, Murat; Otunctemur, Alper; Ozbek, Emin; Sahin, Suleyman; Besiroglu, Huseyin; Ozsoy, Ozgur Doga; Cekmen, Mustafa; Somay, Adnan; Ozbay, Nurver

    2015-01-01

    ABSTRACT Introduction/Objective: Ureteral obstruction is a common pathology and causes kidney fibrosis and dysfunction at late period. In this present study, we investigated the antifibrotic and antiinflammatory effects of hydrogen sulfide on kidney damage after unilateral ureteral obstruction (UUO) in rats. Materials and Methods: 24 rats were divided into four groups. Group 1 was control, group 2 was sham, group 3 included rats with UUO and group 4 rats with UUO which were given sodium hydrogen sulfide (NaHS)-exogenous donor of hydrogen sulfide (intraperitoneally 56μmoL/kg/day). After 14 days, rats were killed and their kidneys were taken and blood analysis was performed. Tubular necrosis, mononuclear cell infiltration and interstitial fibrosis were determined histopathologically in a part of the kidneys; nitric oxide (NO), malondialdehyde (MDA) and reduced glutathione (GSH) levels were determined in the other part of the kidneys. Urea-creatinine levels were investigated by blood analysis. Statistical analyses were made by the Chi-square test and one-way analysis of variance (ANOVA). Results: There was no significantly difference for urea-creatinine levels among groups. Pathologically, there was serious tubular necrosis and fibrosis in group 3 and there was significantly decreasing of tubular necrosis and fibrosis in group 4 (p<0.005). Also, there was significantly increase of NO and MDA levels and decrease of GSH levels in group 3 compared to other groups (p<0.005). Conclusions: hydrogen sulfide prevents kidney damage with antioxidant and antiinflammatory effect. PMID:26742979

  5. Hydrogen sulfide replacement therapy protects the vascular endothelium in hyperglycemia by preserving mitochondrial function.

    PubMed

    Suzuki, Kunihiro; Olah, Gabor; Modis, Katalin; Coletta, Ciro; Kulp, Gabriella; Gerö, Domokos; Szoleczky, Petra; Chang, Tuanjie; Zhou, Zongmin; Wu, Lingyun; Wang, Rui; Papapetropoulos, Andreas; Szabo, Csaba

    2011-08-16

    The goal of the present studies was to investigate the role of changes in hydrogen sulfide (H(2)S) homeostasis in the pathogenesis of hyperglycemic endothelial dysfunction. Exposure of bEnd3 microvascular endothelial cells to elevated extracellular glucose (in vitro "hyperglycemia") induced the mitochondrial formation of reactive oxygen species (ROS), which resulted in an increased consumption of endogenous and exogenous H(2)S. Replacement of H(2)S or overexpression of the H(2)S-producing enzyme cystathionine-γ-lyase (CSE) attenuated the hyperglycemia-induced enhancement of ROS formation, attenuated nuclear DNA injury, reduced the activation of the nuclear enzyme poly(ADP-ribose) polymerase, and improved cellular viability. In vitro hyperglycemia resulted in a switch from oxidative phosphorylation to glycolysis, an effect that was partially corrected by H(2)S supplementation. Exposure of isolated vascular rings to high glucose in vitro induced an impairment of endothelium-dependent relaxations, which was prevented by CSE overexpression or H(2)S supplementation. siRNA silencing of CSE exacerbated ROS production in hyperglycemic endothelial cells. Vascular rings from CSE(-/-) mice exhibited an accelerated impairment of endothelium-dependent relaxations in response to in vitro hyperglycemia, compared with wild-type controls. Streptozotocin-induced diabetes in rats resulted in a decrease in the circulating level of H(2)S; replacement of H(2)S protected from the development of endothelial dysfunction ex vivo. In conclusion, endogenously produced H(2)S protects against the development of hyperglycemia-induced endothelial dysfunction. We hypothesize that, in hyperglycemic endothelial cells, mitochondrial ROS production and increased H(2)S catabolism form a positive feed-forward cycle. H(2)S replacement protects against these alterations, resulting in reduced ROS formation, improved endothelial metabolic state, and maintenance of normal endothelial function. PMID:21808008

  6. Protective effect of hydrogen sulfide against cold restraint stress-induced gastric mucosal injury in rats.

    PubMed

    Aboubakr, Esam M; Taye, Ashraf; El-Moselhy, Mohamed A; Hassan, Magdy K

    2013-12-01

    Hydrogen sulfide (H2S) is an endogenous gaseous mediator plays a potential role in modulating gastric inflammatory responses. However, its putative protective role remains to be defined. The present study aimed to evaluate role of the exogenously released and endogenously synthesized H2S in cold restraint stress (CRS)-induced oxidative gastric damage in rats. Rats were restrained, and maintained at 4 °C for 3 h. The H2S donor, sodium hydrosulfide (NaHS) (60 μmol/kg) was injected intraperitoneally (i.p.) before CRS. Our results revealed that NaHS pretreatment significantly attenuated ulcer index, free and total acid output, and pepsin activity in gastric juice along with decreased gastric mucosal carbonyl content and reactive oxygen species production. This was accompanied by increased gastric juice pH and mucin concentration in addition to restoring the deficits in the gastric reduced glutathione, catalase as well as superoxide dismutase enzyme activities. NaHS pretreatment markedly reduced the serum level of tumor necrosis factor (TNF-α) and myeloperoxidase activity compared to CRS-non-treated. Moreover, NaHS preadministration significantly abrogated the inflammatory and the deleterious responses of gastric mucosa in CRS. The protective effects of H2S were confirmed by gastric histopathological examination. However, pretreatment with the H2S-synthesizing enzyme, cystathionine-gamma-lyase inhibitor, beta-cyano-L-alanine (50 mg/kg, i.p.) reversed the gastroprotection afforded by the endogenous H2S. Collectively, our results suggest that H2S can protect rat gastric mucosa against CRS-induced gastric ulceration possibly through mechanisms that involve anti-oxidant and anti-inflammatory actions alongside enhancement of gastric mucosal barrier and reduction in acid secretory parameters. PMID:23812778

  7. Hydrogen sulfide mediates the protection of dietary restriction against renal senescence in aged F344 rats

    PubMed Central

    Wang, Wen-juan; Cai, Guang-yan; Ning, Yi-chun; Cui, Jing; Hong, Quan; Bai, Xue-yuan; Xu, Xiao-meng; Bu, Ru; Sun, Xue-feng; Chen, Xiang-mei

    2016-01-01

    Renal aging is always accompanied by increased oxidative stress. Hydrogen sulfide (H2S) can be up-regulated by 50% dietary restriction (DR) for 7-day and can block mitochondrial oxidative stress. H2S production exerts a critical role in yeast, worm, and fruit fly models of DR-mediated longevity. In this study, we found that renal aging could be attenuated by 30% DR for 6-month (DR-6M) and life-long (DR-LL), but not for 6-week (DR-6W). The expressions of cystathionine-γ-lyase (CGL) and cystathionine-β- synthase (CBS) were improved by DR-6M and DR-LL. Endogenous H2S production shared the same trend with CBS and CGL, while glutathione (GSH) didn’t. When comparing efficiencies of DR for different durations, more evident production of H2S was found in DR-6M and DR-LL than in DR-6W. Finally the level of oxidative stress was improved by DR-6M and DR-LL rather than by DR-6W. It concluded that aged rats had the ability to produce enough H2S on 30% DR interventions protecting against renal aging, and the effect of DR for long-term were more significant than that of DR for short-term. PMID:27456368

  8. Hydrogen sulfide mediates the protection of dietary restriction against renal senescence in aged F344 rats.

    PubMed

    Wang, Wen-Juan; Cai, Guang-Yan; Ning, Yi-Chun; Cui, Jing; Hong, Quan; Bai, Xue-Yuan; Xu, Xiao-Meng; Bu, Ru; Sun, Xue-Feng; Chen, Xiang-Mei

    2016-01-01

    Renal aging is always accompanied by increased oxidative stress. Hydrogen sulfide (H2S) can be up-regulated by 50% dietary restriction (DR) for 7-day and can block mitochondrial oxidative stress. H2S production exerts a critical role in yeast, worm, and fruit fly models of DR-mediated longevity. In this study, we found that renal aging could be attenuated by 30% DR for 6-month (DR-6M) and life-long (DR-LL), but not for 6-week (DR-6W). The expressions of cystathionine-γ-lyase (CGL) and cystathionine-β- synthase (CBS) were improved by DR-6M and DR-LL. Endogenous H2S production shared the same trend with CBS and CGL, while glutathione (GSH) didn't. When comparing efficiencies of DR for different durations, more evident production of H2S was found in DR-6M and DR-LL than in DR-6W. Finally the level of oxidative stress was improved by DR-6M and DR-LL rather than by DR-6W. It concluded that aged rats had the ability to produce enough H2S on 30% DR interventions protecting against renal aging, and the effect of DR for long-term were more significant than that of DR for short-term. PMID:27456368

  9. Hydrogen sulfide lowers proliferation and induces protective autophagy in colon epithelial cells.

    PubMed

    Wu, Ya C; Wang, Xiao J; Yu, Le; Chan, Francis K L; Cheng, Alfred S L; Yu, Jun; Sung, Joseph J Y; Wu, William K K; Cho, Chi H

    2012-01-01

    Hydrogen sulfide (H(2)S) is a gaseous bacterial metabolite that reaches high levels in the large intestine. In the present study, the effect of H(2)S on the proliferation of normal and cancerous colon epithelial cells was investigated. An immortalized colon epithelial cell line (YAMC) and a panel of colon cancer cell lines (HT-29, SW1116, HCT116) were exposed to H(2)S at concentrations similar to those found in the human colon. H(2)S inhibited normal and cancerous colon epithelial cell proliferation as measured by MTT assay. The anti-mitogenic effect of H(2)S was accompanied by G(1)-phase cell cycle arrest and the induction of the cyclin-dependent kinase inhibitor p21(Cip). Moreover, exposure to H(2)S led to features characteristic of autophagy, including increased formation of LC3B(+) autophagic vacuoles and acidic vesicular organelles as determined by immunofluorescence and acridine orange staining, respectively. Abolition of autophagy by RNA interference targeting Vps34 or Atg7 enhanced the anti-proliferative effect of H(2)S. Further mechanistic investigation revealed that H(2)S stimulated the phosphorylation of AMP-activated protein kinase (AMPK) and inhibited the phosphorylation of mammalian target of rapamycin (mTOR) and S6 kinase. Inhibition of AMPK significantly reversed H(2)S-induced autophagy and inhibition of cell proliferation. Collectively, we demonstrate that H(2)S inhibits colon epithelial cell proliferation and induces protective autophagy via the AMPK pathway. PMID:22679478

  10. Geothermal hydrogen sulfide removal

    SciTech Connect

    Urban, P.

    1981-04-01

    UOP Sulfox technology successfully removed 500 ppM hydrogen sulfide from simulated mixed phase geothermal waters. The Sulfox process involves air oxidation of hydrogen sulfide using a fixed catalyst bed. The catalyst activity remained stable throughout the life of the program. The product stream composition was selected by controlling pH; low pH favored elemental sulfur, while high pH favored water soluble sulfate and thiosulfate. Operation with liquid water present assured full catalytic activity. Dissolved salts reduced catalyst activity somewhat. Application of Sulfox technology to geothermal waters resulted in a straightforward process. There were no requirements for auxiliary processes such as a chemical plant. Application of the process to various types of geothermal waters is discussed and plans for a field test pilot plant and a schedule for commercialization are outlined.

  11. Hydrogen sulfide intoxication.

    PubMed

    Guidotti, Tee L

    2015-01-01

    Hydrogen sulfide (H2S) is a hazard primarily in the oil and gas industry, agriculture, sewage and animal waste handling, construction (asphalt operations and disturbing marshy terrain), and other settings where organic material decomposes under reducing conditions, and in geothermal operations. It is an insoluble gas, heavier than air, with a very low odor threshold and high toxicity, driven by concentration more than duration of exposure. Toxicity presents in a unique, reliable, and characteristic toxidrome consisting, in ascending order of exposure, of mucosal irritation, especially of the eye ("gas eye"), olfactory paralysis (not to be confused with olfactory fatigue), sudden but reversible loss of consciousness ("knockdown"), pulmonary edema (with an unusually favorable prognosis), and death (probably with apnea contributing). The risk of chronic neurcognitive changes is controversial, with the best evidence at high exposure levels and after knockdowns, which are frequently accompanied by head injury or oxygen deprivation. Treatment cannot be initiated promptly in the prehospital phase, and currently rests primarily on supportive care, hyperbaric oxygen, and nitrite administration. The mechanism of action for sublethal neurotoxicity and knockdown is clearly not inhibition of cytochrome oxidase c, as generally assumed, although this may play a role in overwhelming exposures. High levels of endogenous sulfide are found in the brain, presumably relating to the function of hydrogen sulfide as a gaseous neurotransmitter and immunomodulator. Prevention requires control of exposure and rigorous training to stop doomed rescue attempts attempted without self-contained breathing apparatus, especially in confined spaces, and in sudden release in the oil and gas sector, which result in multiple avoidable deaths. PMID:26563786

  12. Controlled release hydrogen sulfide delivery system based on mesoporous silica nanoparticles protects graft endothelium from ischemia–reperfusion injury

    PubMed Central

    Wang, Wenshuo; Sun, Xiaotian; Zhang, Huili; Yang, Cheng; Liu, Ye; Yang, Wuli; Guo, Changfa; Wang, Chunsheng

    2016-01-01

    Hydrogen sulfide (H2S) functions as a protective gas transmitter in various physiological and pathological processes, but the lack of ideal donors severely hampers the clinical application of H2S. This study aims to construct a controlled release H2S donor and evaluate its protective effect on graft endothelium. Mesoporous silica nanoparticles (MSNs) were synthesized using the sol–gel method and loaded with diallyl trisulfide (DATS), an H2S-releasing agent named DATS-MSN. In vitro experiments showed that DATS-MSN could alleviate endothelial cell inflammation and enhance endothelial cell proliferation and migration. In vivo experiments demonstrated that the apoptosis of graft endothelium was mitigated in the presence of DATS-MSN. Our results indicated that DATS-MSN, releasing H2S in a controlled release fashion, could serve as an ideal H2S donor. PMID:27486324

  13. Thermally stable derivatives or propylenepolyamines as protective additives for lubricating oils used in compressors handling hydrogen sulfide-containing gas

    SciTech Connect

    Trofimov, V.A.; Panidi, I.S.; Spirkin, V.G.

    1995-09-01

    In the transmission of natural, associated, and petroleum gases containing hydrogen sulfide, carbon dioxide, water, and other corrosive impurities, problems are created by the saturation of the compressor lubricating oil with these impurities and failure of components of the lubricating and sealing system. Hydrogen sulfide is distinguished by the greatest affinity for oil and the highest corrosivity. Its solubility in oils may be as high as 10 g/liter under standard conditions. In the work reported here, we investigated the protective properties of salts and amides based on higher aliphatic, alkylaromatic, and unsaturated carboxylic acids with certain substituted propylenepolyamines. In synthesizing the additives, we used the following: a commercial C{sub 17} - C{sub 20} fraction of synthetic fatty acids (SFA): C{sub 25+} still bottoms; technical alkyl (C{sub 16} - C {sub 18}) salicylic acids; and oleic acid. From these materials, we obtained salts and amides of N,N-dimethylpropanediamine, N-benzylpropanediamine, N-cyanoethylpropanediamine, N,N,N`,N`-tetramethyldipropylenetriamine, and N,N-dimethyldipropylenetriamine.

  14. Inhaled Hydrogen Sulfide

    PubMed Central

    Volpato, Gian Paolo; Searles, Robert; Yu, Binglan; Scherrer-Crosbie, Marielle; Bloch, Kenneth D.; Ichinose, Fumito; Zapol, Warren M.

    2010-01-01

    Background Breathing hydrogen sulfide (H2S) has been reported to induce a suspended animation–like state with hypothermia and a concomitant metabolic reduction in rodents. However, the impact of H2S breathing on cardiovascular function remains incompletely understood. In this study, the authors investigated the cardiovascular and metabolic effects of inhaled H2S in a murine model. Methods The impact of breathing H2S on cardiovascular function was examined using telemetry and echocardiography in awake mice. The effects of breathing H2S on carbon dioxide production and oxygen consumption were measured at room temperature and in a warmed environment. Results Breathing H2S at 80 parts per million by volume at 27°C ambient temperature for 6 h markedly reduced heart rate, core body temperature, respiratory rate, and physical activity, whereas blood pressure remained unchanged. Echocardiography demonstrated that H2S exposure decreased both heart rate and cardiac output but preserved stroke volume. Breathing H2S for 6 h at 35°C ambient temperature (to prevent hypothermia) decreased heart rate, physical activity, respiratory rate, and cardiac output without altering stroke volume or body temperature. H2S breathing seems to induce bradycardia by depressing sinus node activity. Breathing H2S for 30 min decreased whole body oxygen consumption and carbon dioxide production at either 27° or 35°C ambient temperature. Both parameters returned to baseline levels within 10 min after the cessation of H2S breathing. Conclusions Inhalation of H2S at either 27° or 35°C reversibly depresses cardiovascular function without changing blood pressure in mice. Breathing H2S also induces a rapidly reversible reduction of metabolic rate at either body temperature. PMID:18362598

  15. Hydrogen sulfide preconditioning protects against myocardial ischemia/reperfusion injury in rats through inhibition of endo/sarcoplasmic reticulum stress

    PubMed Central

    Li, Changyong; Hu, Min; Wang, Yuan; Lu, Huan; Deng, Jing; Yan, Xiaohong

    2015-01-01

    Ischemia reperfusion (I/R) injury is a major cause of myocardial damage. Hydrogen sulfide (H2S), a gaseous signal molecule, has drawn considerable attention for its role in various pathophysiological processes. Multiple lines of evidence reveal the protective effects of H2S in various models of cardiac injury, however, the exact mechanism underlying this protective effect of H2S against myocardial I/R injury is not fully understood. The present study was designed to investigate whether H2S preconditioning attenuates myocardial I/R injury in rats and whether the observed protection is associated with reduced endo/sarcoplasmic reticulum (ER/SR) stress. We found that H2S preconditioning significantly reduced myocardial infarct size, preserved left ventricular function, and inhibited I/R-induced cardiomyocyte apoptosis in vivo. Furthermore, H2S preconditioning significantly attenuated I/R-induced ER/SR stress responses, including the increased expression of glucose-regulated protein 78, C/EBP homologous protein, and activate transcription factor in myocardium. Additionally, we demonstrate that H2S preconditioning attenuates ER/SR stress and inhibits cardiomyocyte apoptosis in an in vitro model of hypoxia/reoxygenation in rat H9c2 cardiac myocytes. In conclusion, these results suggest that H2S-attenuated ER/SR stress plays an important role in its protective effects against I/R-induced myocardial injury. PMID:26339339

  16. 30 CFR 250.604 - Hydrogen sulfide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Hydrogen sulfide. 250.604 Section 250.604...-Workover Operations § 250.604 Hydrogen sulfide. When a well-workover operation is conducted in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S is unknown (as defined...

  17. 30 CFR 250.808 - Hydrogen sulfide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Hydrogen sulfide. 250.808 Section 250.808 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL... § 250.808 Hydrogen sulfide. Production operations in zones known to contain hydrogen sulfide (H2S) or...

  18. 30 CFR 250.808 - Hydrogen sulfide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Hydrogen sulfide. 250.808 Section 250.808 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL... § 250.808 Hydrogen sulfide. Production operations in zones known to contain hydrogen sulfide (H2S) or...

  19. 30 CFR 250.808 - Hydrogen sulfide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Hydrogen sulfide. 250.808 Section 250.808 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL... § 250.808 Hydrogen sulfide. Production operations in zones known to contain hydrogen sulfide (H2S) or...

  20. 30 CFR 250.504 - Hydrogen sulfide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Hydrogen sulfide. 250.504 Section 250.504...-Completion Operations § 250.504 Hydrogen sulfide. When a well-completion operation is conducted in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S is unknown (as defined...

  1. 30 CFR 250.808 - Hydrogen sulfide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.808 Section 250.808... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Production Safety Systems § 250.808 Hydrogen sulfide. Production operations in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of...

  2. 30 CFR 250.604 - Hydrogen sulfide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.604 Section 250.604... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Workover Operations § 250.604 Hydrogen sulfide. When a well-workover operation is conducted in zones known to contain hydrogen sulfide (H2S) or...

  3. 30 CFR 250.504 - Hydrogen sulfide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.504 Section 250.504... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Completion Operations § 250.504 Hydrogen sulfide. When a well-completion operation is conducted in zones known to contain hydrogen sulfide (H2S) or...

  4. 30 CFR 250.490 - Hydrogen sulfide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Hydrogen sulfide. 250.490 Section 250.490 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Hydrogen Sulfide § 250.490 Hydrogen sulfide. (a)...

  5. Membrane for hydrogen recovery from streams containing hydrogen sulfide

    DOEpatents

    Agarwal, Pradeep K.

    2007-01-16

    A membrane for hydrogen recovery from streams containing hydrogen sulfide is provided. The membrane comprises a substrate, a hydrogen permeable first membrane layer deposited on the substrate, and a second membrane layer deposited on the first layer. The second layer contains sulfides of transition metals and positioned on the on a feed side of the hydrogen sulfide stream. The present invention also includes a method for the direct decomposition of hydrogen sulfide to hydrogen and sulfur.

  6. Hydrogen sulfide protects against apoptosis under oxidative stress through SIRT1 pathway in H9c2 cardiomyocytes.

    PubMed

    Wu, Dan; Hu, Qingxun; Liu, Xinhua; Pan, Lilong; Xiong, Qinghui; Zhu, Yi Zhun

    2015-04-30

    Oxidative stress plays a great role in the pathogenesis of heart failure (HF). Oxidative stress results in apoptosis, which can cause the damage of cardiomyocytes. Hydrogen sulfide (H2S), the third gasotransmitter, is a good reactive oxygen species (ROS) scavenger, which has protective effect against HF. Sirtuin-1 (SIRT1) is a highly conserved nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylase that plays a critical role in promoting cell survival under oxidative stress. The purpose of this article is to investigate the interaction between H2S and SIRT1 under oxidative stress in H9c2 cardiomyocytes. Oxidative stress was induced by hydrogen peroxide (H2O2). Treatment with NaSH (25-100 µmol/L) dose-dependently increased the cell viability and improved the cell apoptosis induced by H2O2 in H9c2 cardiomyocytes. The protective effect of NaSH against the apoptosis could be attenuated by SIRT1 inhibitor Ex 527 (10 µmol/L). Treatment with NaSH (100 µmol/L) could increase the expression of SIRT1 in time dependent manner, which decreased by different concentration of H2O2. NaSH (100 µmol/L) increased the cellular ATP level and the expression of ATPase. These effects were attenuated by Ex 527 (10 µmol/L). After NaSH (100 µmol/L) treatment, the decrease in ROS production and the enhancement in SOD, GPx and GST expression were observed. Ex 527 (10 µmol/L) reversed these effects. In conclusion, for the first time, this article can identify antioxidative effects of H2S under oxidative stress through SIRT1 pathway in H9c2 cardiomyocytes. PMID:25461268

  7. Hydrogen Sulfide Oxidation by Myoglobin.

    PubMed

    Bostelaar, Trever; Vitvitsky, Victor; Kumutima, Jacques; Lewis, Brianne E; Yadav, Pramod K; Brunold, Thomas C; Filipovic, Milos; Lehnert, Nicolai; Stemmler, Timothy L; Banerjee, Ruma

    2016-07-13

    Enzymes in the sulfur network generate the signaling molecule, hydrogen sulfide (H2S), from the amino acids cysteine and homocysteine. Since it is toxic at elevated concentrations, cells are equipped to clear H2S. A canonical sulfide oxidation pathway operates in mitochondria, converting H2S to thiosulfate and sulfate. We have recently discovered the ability of ferric hemoglobin to oxidize sulfide to thiosulfate and iron-bound hydropolysulfides. In this study, we report that myoglobin exhibits a similar capacity for sulfide oxidation. We have trapped and characterized iron-bound sulfur intermediates using cryo-mass spectrometry and X-ray absorption spectroscopy. Further support for the postulated intermediates in the chemically challenging conversion of H2S to thiosulfate and iron-bound catenated sulfur products is provided by EPR and resonance Raman spectroscopy in addition to density functional theory computational results. We speculate that the unusual sensitivity of skeletal muscle cytochrome c oxidase to sulfide poisoning in ethylmalonic encephalopathy, resulting from the deficiency in a mitochondrial sulfide oxidation enzyme, might be due to the concentration of H2S by myoglobin in this tissue. PMID:27310035

  8. Exogenous Hydrogen Sulfide (H2S) Protects Alveolar Growth in Experimental O2-Induced Neonatal Lung Injury

    PubMed Central

    Vadivel, Arul; Alphonse, Rajesh S.; Ionescu, Lavinia; Machado, Desiree S.; O’Reilly, Megan; Eaton, Farah; Haromy, Al; Michelakis, Evangelos D.; Thébaud, Bernard

    2014-01-01

    Background Bronchopulmonary dysplasia (BPD), the chronic lung disease of prematurity, remains a major health problem. BPD is characterized by impaired alveolar development and complicated by pulmonary hypertension (PHT). Currently there is no specific treatment for BPD. Hydrogen sulfide (H2S), carbon monoxide and nitric oxide (NO), belong to a class of endogenously synthesized gaseous molecules referred to as gasotransmitters. While inhaled NO is already used for the treatment of neonatal PHT and currently tested for the prevention of BPD, H2S has until recently been regarded exclusively as a toxic gas. Recent evidence suggests that endogenous H2S exerts beneficial biological effects, including cytoprotection and vasodilatation. We hypothesized that H2S preserves normal alveolar development and prevents PHT in experimental BPD. Methods We took advantage of a recently described slow-releasing H2S donor, GYY4137 (morpholin-4-ium-4-methoxyphenyl(morpholino) phosphinodithioate) to study its lung protective potential in vitro and in vivo. Results In vitro, GYY4137 promoted capillary-like network formation, viability and reduced reactive oxygen species in hyperoxia-exposed human pulmonary artery endothelial cells. GYY4137 also protected mitochondrial function in alveolar epithelial cells. In vivo, GYY4137 preserved and restored normal alveolar growth in rat pups exposed from birth for 2 weeks to hyperoxia. GYY4137 also attenuated PHT as determined by improved pulmonary arterial acceleration time on echo-Doppler, pulmonary artery remodeling and right ventricular hypertrophy. GYY4137 also prevented pulmonary artery smooth muscle cell proliferation. Conclusions H2S protects from impaired alveolar growth and PHT in experimental O2-induced lung injury. H2S warrants further investigation as a new therapeutic target for alveolar damage and PHT. PMID:24603989

  9. Cinaciguat, a novel activator of soluble guanylate cyclase, protects against ischemia/reperfusion injury: role of hydrogen sulfide

    PubMed Central

    Salloum, Fadi N.; Das, Anindita; Samidurai, Arun; Hoke, Nicholas N.; Chau, Vinh Q.; Ockaili, Ramzi A.; Stasch, Johannes-Peter

    2012-01-01

    Cinaciguat (BAY 58–2667) is a novel nitric oxide (NO)-independent activator of soluble guanylate cyclase (sGC), which induces cGMP-generation and vasodilation in diseased vessels. We tested the hypothesis that cinaciguat might trigger protection against ischemia/reperfusion (I/R) in the heart and adult cardiomyocytes through cGMP/protein kinase G (PKG)-dependent generation of hydrogen sulfide (H2S). Adult New Zealand White rabbits were pretreated with 1 or 10 μg/kg cinaciguat (iv) or 10% DMSO (vehicle) 15 min before I/R or with 10 μg/kg cinaciguat (iv) at reperfusion. Additionally, adult male ICR mice were treated with either cinaciguat (10 μg/kg ip) or vehicle 30 min before I/R or at the onset of reperfusion (10 μg/kg iv). The PKG inhibitor KT5283 (KT; 1 mg/kg ip) or dl-propargylglycine (PAG; 50 mg/kg ip) the inhibitor of the H2S-producing enzyme cystathionine-γ-lyase (CSE) were given 10 and 30 min before cinaciguat. Cardiac function and infarct size were assessed by echocardiography and tetrazolium staining, respectively. Primary adult mouse cardiomyocytes were isolated and treated with cinaciguat before simulated ischemia/reoxygenation. Cinaciguat caused 63 and 41% reduction of infarct size when given before I/R and at reperfusion in rabbits, respectively. In mice, cinaciguat pretreatment caused a more robust 80% reduction in infarct size vs. 63% reduction when given at reperfusion and preserved cardiac function following I/R, which were blocked by KT and PAG. Cinaciguat also caused an increase in myocardial PKG activity and CSE expression. In cardiomyocytes, cinaciguat (50 nM) reduced necrosis and apoptosis and increased H2S levels, which was abrogated by KT. Cinaciguat is a novel molecule to induce H2S generation and a powerful protection against I/R injury in heart. PMID:22268103

  10. Diallyl trisulfide protects against ethanol-induced oxidative stress and apoptosis via a hydrogen sulfide-mediated mechanism.

    PubMed

    Chen, Lian-Yun; Chen, Qin; Zhu, Xiao-Jing; Kong, De-Song; Wu, Li; Shao, Jiang-Juan; Zheng, Shi-Zhong

    2016-07-01

    Garlic is one natural source of organic sulfur containing compounds and has shown promise in the treatment of chronic liver disease. Dietary garlic consumption is inversely correlated with the progression of alcoholic fatty liver (AFL), although the exact underlying mechanisms are not clear. Our previous studies also have shown that diallyl trisulfide (DATS), the primary organosulfur compound from Allium sativum L, displayed anti-lipid deposition and antioxidant properties in AFL. The aim of the present study was to clarify the underlying mechanisms. In the present study, we used the intragastric infusion model of alcohol administration and human normal liver cell line LO2 cultured with suitable ethanol to mimic the pathological condition of AFL. We showed that accumulation of intracellular reactive oxygen species (ROS) was lowered significantly by the administration of DATS, but antioxidant capacity was increased by DATS. Additionally, DATS inhibited hepatocyte apoptosis via down-regulating Bax expression and up-regulating Bcl-2 expression, and attenuated alcohol-induced caspase-dependent apoptosis. More importantly, using iodoacetamide (IAM) to block hydrogen sulfide (H2S) production from DATS, we noted that IAM abolished all the above effects of DATS in ethanol-treated LO2 cells. Lastly, we found DATS could increase the expressions of cystathionine gamma-lyase (CSE) and cystathionine beta-synthase (CBS), the major H2S-producing enzymes. These results demonstrate that DATS protect against alcohol-induced fatty liver via a H2S-mediated mechanism. Therefore, targeting H2S may play a therapeutic role for AFL. PMID:27107369

  11. A Novel Controllable Hydrogen Sulfide-Releasing Molecule Protects Human Skin Keratinocytes Against Methylglyoxal-Induced Injury and Dysfunction

    PubMed Central

    Yang, Chun-tao; Zhao, Yu; Xian, Ming; Li, Jian-hua; Dong, Qi; Bai, Hong-bo; Xu, Ji-de; Zhang, Mei-fen

    2014-01-01

    Background/Aim Delayed wound healing is a common skin complication of diabetes, which is associated with keratinocyte injury and dysfunction. Levels of methylglyoxal (MGO), an α-dicarbonyl compound, are elevated in diabetic skin tissue and plasma, while levels of hydrogen sulfide (H2S), a critical gaseous signaling molecule, are reduced. Interestingly, the gas has shown dermal protection in our previous study. To date, there is no evidence demonstrating whether MGO affects keratinocyte viability and function or H2S donation abolishes these effects and improves MGO-related impairment of wound healing. The current study was conducted to examine the effects of MGO on the injury and function in human skin keratinocytes and then to evaluate the protective action of a novel H2S-releasing molecule. Methods An N-mercapto-based H2S donor (NSHD)-1 was synthesized and its ability to release H2S was observed in cell medium and cells, respectively. HaCaT cells, a cell line of human skin keratinocyte, were exposed to MGO to establish an in vitro diabetic wound healing model. NSHD-1 was added to the cells before MGO exposure and the improvement of cell function was observed in respect of cellular viability, apoptosis, oxidative stress, mitochondrial membrane potential (MMP) and behavioral function. Results Treatment with MGO decreased cell viability, induced cellular apoptosis, increased intracellular reactive oxygen species (ROS) content and depressed MMP in HaCaT cells. The treatment also damaged cell behavioral function, characterized by decreased cellular adhesion and migration. The synthesized H2S-releasing molecule, NSHD-1, was able to increase H2S levels in both cell medium and cells. Importantly, pretreatment with NSHD-1 inhibited MGO-induced decreases in cell viability and MMP, increases in apoptosis and ROS accumulation in HaCaT cells. The pretreatment was also able to improve adhesion and migration function. Conclusion These results demonstrate that the novel

  12. 30 CFR 250.504 - Hydrogen sulfide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Hydrogen sulfide. 250.504 Section 250.504... § 250.504 Hydrogen sulfide. When a well-completion operation is conducted in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S is unknown (as defined in § 250.490 of...

  13. 30 CFR 250.604 - Hydrogen sulfide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Hydrogen sulfide. 250.604 Section 250.604... § 250.604 Hydrogen sulfide. When a well-workover operation is conducted in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S is unknown (as defined in § 250.490 of...

  14. 30 CFR 250.504 - Hydrogen sulfide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Hydrogen sulfide. 250.504 Section 250.504... § 250.504 Hydrogen sulfide. When a well-completion operation is conducted in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S is unknown (as defined in § 250.490 of...

  15. 30 CFR 250.604 - Hydrogen sulfide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Hydrogen sulfide. 250.604 Section 250.604... § 250.604 Hydrogen sulfide. When a well-workover operation is conducted in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S is unknown (as defined in § 250.490 of...

  16. 30 CFR 250.604 - Hydrogen sulfide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Hydrogen sulfide. 250.604 Section 250.604... § 250.604 Hydrogen sulfide. When a well-workover operation is conducted in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S is unknown (as defined in § 250.490 of...

  17. 30 CFR 250.504 - Hydrogen sulfide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Hydrogen sulfide. 250.504 Section 250.504... § 250.504 Hydrogen sulfide. When a well-completion operation is conducted in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S is unknown (as defined in § 250.490 of...

  18. Hydrogen sulfide [corrected] increases survival during sepsis: protective effect of CHOP inhibition.

    PubMed

    Ferlito, Marcella; Wang, Qihong; Fulton, William B; Colombani, Paul M; Marchionni, Luigi; Fox-Talbot, Karen; Paolocci, Nazareno; Steenbergen, Charles

    2014-02-15

    Sepsis is a major cause of mortality, and dysregulation of the immune response plays a central role in this syndrome. H2S, a recently discovered gaso-transmitter, is endogenously generated by many cell types, regulating a number of physiologic processes and pathophysiologic conditions. We report that H2S increased survival after experimental sepsis induced by cecal ligation and puncture (CLP) in mice. Exogenous H2S decreased the systemic inflammatory response, reduced apoptosis in the spleen, and accelerated bacterial eradication. We found that C/EBP homologous protein 10 (CHOP), a mediator of the endoplasmic reticulum stress response, was elevated in several organs after CLP, and its expression was inhibited by H2S treatment. Using CHOP-knockout (KO) mice, we demonstrated for the first time, to our knowledge, that genetic deletion of Chop increased survival after LPS injection or CLP. CHOP-KO mice displayed diminished splenic caspase-3 activation and apoptosis, decreased cytokine production, and augmented bacterial clearance. Furthermore, septic CHOP-KO mice treated with H2S showed no additive survival benefit compared with septic CHOP-KO mice. Finally, we showed that H2S inhibited CHOP expression in macrophages by a mechanism involving Nrf2 activation. In conclusion, our findings show a protective effect of H2S treatment afforded, at least partially, by inhibition of CHOP expression. The data reveal a major negative role for the transcription factor CHOP in overall survival during sepsis and suggest a new target for clinical intervention, as well potential strategies for treatment. PMID:24403532

  19. 30 CFR 250.808 - Hydrogen sulfide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Hydrogen sulfide. 250.808 Section 250.808 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE... Safety Systems § 250.808 Hydrogen sulfide. Production operations in zones known to contain...

  20. Catalyst and process for oxidizing hydrogen sulfide

    SciTech Connect

    Hass, R.H.; Fullerton; Ward, J.W.; Yorba, L.

    1984-04-24

    Catalysts comprising bismuth and vanadium components are highly active and stable, especially in the presence of water vapor, for oxidizing hydrogen sulfide to sulfur or SO/sub 2/. Such catalysts have been found to be especially active for the conversion of hydrogen sulfide to sulfur by reaction with oxygen or SO/sub 2/.

  1. New biologically active hydrogen sulfide donors.

    PubMed

    Roger, Thomas; Raynaud, Francoise; Bouillaud, Frédéric; Ransy, Céline; Simonet, Serge; Crespo, Christine; Bourguignon, Marie-Pierre; Villeneuve, Nicole; Vilaine, Jean-Paul; Artaud, Isabelle; Galardon, Erwan

    2013-11-25

    Generous donors: The dithioperoxyanhydrides (CH3 COS)2 , (PhCOS)2 , CH3 COSSCO2 Me and PhCOSSCO2 Me act as thiol-activated hydrogen sulfide donors in aqueous buffer solution. The most efficient donor (CH3 COS)2 can induce a biological response in cells, and advantageously replace hydrogen sulfide in ex vivo vascular studies. PMID:24115650

  2. Ammonia and hydrogen sulfide removal using biochar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reducing ammonia and hydrogen sulfide emissions from livestock facilities is an important issue for many communities and livestock producers. Ammonia has been regarded as odorous, precursor for particulate matter (PM), and contributed to livestock mortality. Hydrogen sulfide is highly toxic at elev...

  3. Hydrogen sulfide pollution in wastewater treatment facilities

    SciTech Connect

    AlDhowalia, K.H. )

    1987-01-01

    The hydrogen sulfide (H{sub 2}S) found in wastewater collection systems and wastewater treatment facilities results from the bacterial reduction of the sulfate ion (SO{sub 4}). Hydrogen sulfide is a gas that occurs both in the sewer atmosphere and as a dissolved gas in the wastewater. When raw wastewater first enters the wastewater treatment facility by gravity most of the hydrogen sulfide is in the gaseous phase and will escape into the atmosphere at the inlet structures. Also some of the dissolved hydrogen sulfide will be released at points of turbulance such as at drops in flow, flumes, or aeration chambers. Several factors can cause excessive hydrogen sulfide concentrations in a sewerage system. These include septic sewage, long flow times in the sewerage system, high temperatures, flat sewer grades, and poor ventilation. These factors are discussed in this paper.

  4. Mechanistic chemical perspective of hydrogen sulfide signaling.

    PubMed

    Nagy, Péter

    2015-01-01

    Hydrogen sulfide is now a well-appreciated master regulator in a diverse array of physiological processes. However, as a consequence of the rapid growth of the area, sulfide biology suffers from an increasing number of controversial observations and interpretations. A better understanding of the underlying molecular pathways of sulfide's actions is key to reconcile controversial issues, which calls for rigorous chemical/biochemical investigations. Protein sulfhydration and coordination/redox chemical interactions of sulfide with heme proteins are the two most extensively studied pathways in sulfide biochemistry. These pathways are important mediators of protein functions, generate bioactive sulfide metabolites, contribute to sulfide storage/trafficking and carry antioxidant functions. In addition, inorganic polysulfides, which are oxidative sulfide metabolites, are increasingly recognized as important players in sulfide biology. This chapter provides an overview of our mechanistic perspective on the reactions that govern (i) sulfide's bioavailability (including the delicate enzyme machineries that orchestrate sulfide production and consumption and the roles of the large sulfide-storing pools as biological buffers), (ii) biological significance and mechanisms of persulfide formation (including the reduction of disulfides, condensation with sulfenic acids, oxidation of thiols with polysulfides and radical-mediated pathways), (iii) coordination and redox chemical interactions of sulfide with heme proteins (including cytochrome c oxidase, hemoglobins, myoglobins and peroxidases), and (iv) the chemistry of polysulfides. PMID:25725513

  5. Hydrogen and sulfur recovery from hydrogen sulfide wastes

    DOEpatents

    Harkness, John B. L.; Gorski, Anthony J.; Daniels, Edward J.

    1993-01-01

    A process for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

  6. Hydrogen and sulfur recovery from hydrogen sulfide wastes

    DOEpatents

    Harkness, J.B.L.; Gorski, A.J.; Daniels, E.J.

    1993-05-18

    A process is described for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is [dis]associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

  7. Ridding Groundwater of Hydrogen Sulfide. Part 1.

    ERIC Educational Resources Information Center

    Lochrane, Thomas G.

    1979-01-01

    This article is the first in a series reviewing the problems associated with hydrogen sulfide in drinking water sources. Discussion centers on identification of a cost-effective balance between aeration and chlorination treatment operations. (AS)

  8. Hydrogen Sulfide Donor Protects Porcine Oocytes against Aging and Improves the Developmental Potential of Aged Porcine Oocytes

    PubMed Central

    Krejcova, Tereza; Smelcova, Miroslava; Petr, Jaroslav; Bodart, Jean-Francois; Sedmikova, Marketa; Nevoral, Jan; Dvorakova, Marketa; Vyskocilova, Alena; Weingartova, Ivona; Kucerova-Chrpova, Veronika; Chmelikova, Eva; Tumova, Lenka; Jilek, Frantisek

    2015-01-01

    Porcine oocytes that have matured in in vitro conditions undergo the process of aging during prolonged cultivation, which is manifested by spontaneous parthenogenetic activation, lysis or fragmentation of aged oocytes. This study focused on the role of hydrogen sulfide (H2S) in the process of porcine oocyte aging. H2S is a gaseous signaling molecule and is produced endogenously by the enzymes cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (MPST). We demonstrated that H2S-producing enzymes are active in porcine oocytes and that a statistically significant decline in endogenous H2S production occurs during the first day of aging. Inhibition of these enzymes accelerates signs of aging in oocytes and significantly increases the ratio of fragmented oocytes. The presence of exogenous H2S from a donor (Na2S.9H2O) significantly suppressed the manifestations of aging, reversed the effects of inhibitors and resulted in the complete suppression of oocyte fragmentation. Cultivation of aging oocytes in the presence of H2S donor positively affected their subsequent embryonic development following parthenogenetic activation. Although no unambiguous effects of exogenous H2S on MPF and MAPK activities were detected and the intracellular mechanism underlying H2S activity remains unclear, our study clearly demonstrates the role of H2S in the regulation of porcine oocyte aging. PMID:25615598

  9. Hydrogen sulfide and translational medicine

    PubMed Central

    Guo, Wei; Cheng, Ze-yu; Zhu, Yi-zhun

    2013-01-01

    Hydrogen sulfide (H2S) along with carbon monoxide and nitric oxide is an important signaling molecule that has undergone large numbers of fundamental investigations. H2S is involved in various physiological activities associated with the regulation of homeostasis, vascular contractility, pro- and anti-inflammatory activities, as well as pro- and anti-apoptotic activities etc. However, the actions of H2S are influenced by its concentration, reaction time, and cell/disease types. Therefore, H2S is a signaling molecule without definite effect. The use of existing H2S donors is limited because of the instant release and short lifetime of H2S. Thus, translational medicine involving the sustained and controlled release of H2S is of great value for both scientific and clinical uses. H2S donation can be manipulated by different ways, including where H2S is given, how H2S is donated, or the specific structures of H2S-releasing drugs and H2S donor molecules. This review briefly summarizes recent progress in research on the physiological and pathological functions of H2S and H2S-releasing drugs, and suggests hope for future investigations. PMID:24096643

  10. Hydrogen Sulfide as a Gasotransmitter

    PubMed Central

    Gadalla, Moataz M.; Snyder, Solomon H.

    2010-01-01

    Nitric oxide (NO) and carbon monoxide (CO) are well established as messenger molecules throughout the body, gasotransmitters, based on striking alterations in mice lacking the appropriate biosynthetic enzymes. Hydrogen sulfide (H2S) is even more chemically reactive, but till recently there was little definitive evidence for its physiologic formation. Cystathionine β-synthase (CBS, EC 4.2.1.22), and Cystathionine γ-lyase (CSE; EC 4.4.1.1), also known as cytathionase, can generate H2S from cyst(e)ine. Very recent studies with mice lacking these enzymes have established that CSE is responsible for H2S formation in the periphery, while in the brain CBS is the biosynthetic enzyme. Endothelial-derived relaxing factor (EDRF) activity is reduced 80% in the mesenteric artery of mice with deletion of CSE, establishing H2S as a major physiologic EDRF. H2S appears to signal predominantly by S-sulfhydrating cysteines in its target proteins, analogous to S-nitrosylation by NO. Whereas S-nitrosylation typically inhibits enzymes, S-sulfhydration activates them. S-nitrosylation basally affects 1–2% of its target proteins, while 10–25% of H2S target proteins are S-sulfhydrated. In summary, H2S appears to be a physiologic gasotransmitter of comparable importance to NO and CO. PMID:20067586

  11. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment..., 2011 § 60.648 Optional procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas... dilute solutions are used. In principle, this method consists of titrating hydrogen sulfide in a...

  12. 40 CFR 60.5408 - What is an optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... measuring hydrogen sulfide in acid gas-Tutwiler Procedure? 60.5408 Section 60.5408 Protection of Environment... § 60.5408 What is an optional procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure... of titrating hydrogen sulfide in a gas sample directly with a standard solution of iodine....

  13. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment... procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas Engineers Handbook, Fuel.... In principle, this method consists of titrating hydrogen sulfide in a gas sample directly with...

  14. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment..., 2011 § 60.648 Optional procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas... dilute solutions are used. In principle, this method consists of titrating hydrogen sulfide in a...

  15. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment... procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas Engineers Handbook, Fuel.... In principle, this method consists of titrating hydrogen sulfide in a gas sample directly with...

  16. 40 CFR 60.5408 - What is an optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... measuring hydrogen sulfide in acid gas-Tutwiler Procedure? 60.5408 Section 60.5408 Protection of Environment... § 60.5408 What is an optional procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure... of titrating hydrogen sulfide in a gas sample directly with a standard solution of iodine....

  17. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment... procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas Engineers Handbook, Fuel.... In principle, this method consists of titrating hydrogen sulfide in a gas sample directly with...

  18. Hydrogen Sulfide Inhibits Amyloid Formation

    PubMed Central

    2015-01-01

    Amyloid fibrils are large aggregates of misfolded proteins, which are often associated with various neurodegenerative diseases such as Alzheimer’s, Parkinson’s, Huntington’s, and vascular dementia. The amount of hydrogen sulfide (H2S) is known to be significantly reduced in the brain tissue of people diagnosed with Alzheimer’s disease relative to that of healthy individuals. These findings prompted us to investigate the effects of H2S on the formation of amyloids in vitro using a model fibrillogenic protein hen egg white lysozyme (HEWL). HEWL forms typical β-sheet rich fibrils during the course of 70 min at low pH and high temperatures. The addition of H2S completely inhibits the formation of β-sheet and amyloid fibrils, as revealed by deep UV resonance Raman (DUVRR) spectroscopy and ThT fluorescence. Nonresonance Raman spectroscopy shows that disulfide bonds undergo significant rearrangements in the presence of H2S. Raman bands corresponding to disulfide (RSSR) vibrational modes in the 550–500 cm–1 spectral range decrease in intensity and are accompanied by the appearance of a new 490 cm–1 band assigned to the trisulfide group (RSSSR) based on the comparison with model compounds. The formation of RSSSR was proven further using a reaction with TCEP reduction agent and LC-MS analysis of the products. Intrinsic tryptophan fluorescence study shows a strong denaturation of HEWL containing trisulfide bonds. The presented evidence indicates that H2S causes the formation of trisulfide bridges, which destabilizes HEWL structure, preventing protein fibrillation. As a result, small spherical aggregates of unordered protein form, which exhibit no cytotoxicity by contrast with HEWL fibrils. PMID:25545790

  19. Hydrogen sulfide: physiological properties and therapeutic potential in ischaemia

    PubMed Central

    Bos, Eelke M; van Goor, Harry; Joles, Jaap A; Whiteman, Matthew; Leuvenink, Henri G D

    2015-01-01

    Hydrogen sulfide (H2S) has become a molecule of high interest in recent years, and it is now recognized as the third gasotransmitter in addition to nitric oxide and carbon monoxide. In this review, we discuss the recent literature on the physiology of endogenous and exogenous H2S, focusing upon the protective effects of hydrogen sulfide in models of hypoxia and ischaemia. Linked Articles This article is part of a themed section on Pharmacology of the Gasotransmitters. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-6 PMID:25091411

  20. Hydrogen sulfide to the rescue in obstructive kidney injury

    PubMed Central

    Kasinath, Balakuntalam S.

    2014-01-01

    Hydrogen sulfide is a gasotransmitter with far reaching effects on cell function. Studies show that depending on the context hydrogen sulfide can function as an ameliorative agent or as a mediator of kidney injury. PMID:24875544

  1. The diagenesis of carbohydrates by hydrogen sulfide

    NASA Astrophysics Data System (ADS)

    Mango, Frank D.

    1983-08-01

    Carbohydrates react with hydrogen sulfide under low temperature (100° to 200°C) yielding a variety of organosulfur compounds including thiophenes, thiols, sulfides and sulfones. A polymer is also produced, whose elemental composition is within the range of natural coals. When reductive dehydration is carried out in the presence of hydrocarbon, organosulfur compounds are formed in the carbon number range of the hydrocarbon used. In these processes, an active hydrogen transfer catalyst is produced which facilitates the passage of hydrogen between normal paraffins and saccharide units, distributing sulfur between these two families primarily in the form of thiophene rings. The simplicity of these systems - H 2S, carbohydrates, H 2O, hydrocarbon - and the facility of the chemistry would suggest that the carbohydrates and hydrogen sulfide may be important agents in the diagenetic processes leading to petroleum and coal. Carbohydrate reduction by hydrogen sulfide may constitute an important route through which certain organosulfur compounds found in petroleum and coal entered these materials in early diagenesis.

  2. Comparison of Hydrogen Sulfide Analysis Techniques

    ERIC Educational Resources Information Center

    Bethea, Robert M.

    1973-01-01

    A summary and critique of common methods of hydrogen sulfide analysis is presented. Procedures described are: reflectance from silver plates and lead acetate-coated tiles, lead acetate and mercuric chloride paper tapes, sodium nitroprusside and methylene blue wet chemical methods, infrared spectrophotometry, and gas chromatography. (BL)

  3. 30 CFR 250.490 - Hydrogen sulfide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... black lettering as follows: Letter height Wording 12 inches Danger. Poisonous Gas. Hydrogen Sulfide. 7... well-control techniques to prevent formation fracturing in an open hole within the pressure limits of... designed consistent with the anticipated depth, conditions of the hole, and reservoir environment to...

  4. Mechanisms of hydrogen sulfide removal with steel making slag.

    PubMed

    Kim, Kyunghoi; Asaoka, Satoshi; Yamamoto, Tamiji; Hayakawa, Shinjiro; Takeda, Kazuhiko; Katayama, Misaki; Onoue, Takasumi

    2012-09-18

    In the present study, we experimentally investigated the removal of hydrogen sulfide using steel-making slag (SMS) and clarified the mechanism of hydrogen sulfide removal with the SMS. The results proved that SMS is able to remove hydrogen sulfide dissolved in water, and the maximum removal amount of hydrogen sulfide per unit weight of the SMS for 8 days was estimated to be 37.5 mg S/g. The removal processes of hydrogen sulfide were not only adsorption onto the SMS, but oxidation and precipitation as sulfur. The chemical forms of sulfide adsorbed onto the SMS were estimated to be sulfur and manganese sulfide in the ratio of 81% and 19%, respectively. It is demonstrated here that the SMS is a promising material to remediate organically enriched coastal sediments in terms of removal of hydrogen sulfide. Furthermore, using SMS is expected to contribute to development of a recycling-oriented society. PMID:22894171

  5. Signaling Molecules: Hydrogen Sulfide and Polysulfide

    PubMed Central

    2015-01-01

    Abstract Significance: Hydrogen sulfide (H2S) has been recognized as a signaling molecule as well as a cytoprotectant. It modulates neurotransmission, regulates vascular tone, and protects various tissues and organs, including neurons, the heart, and kidneys, from oxidative stress and ischemia-reperfusion injury. H2S is produced from l-cysteine by cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3MST) along with cysteine aminotransferase. Recent Advances: In addition to these enzymes, we recently identified a novel pathway to produce H2S from d-cysteine, which involves d-amino acid oxidase (DAO) along with 3MST. These enzymes are localized in the cytoplasm, mitochondria, and peroxisomes. However, some enzymes translocate to organelles under specific conditions. Moreover, H2S-derived potential signaling molecules such as polysulfides and HSNO have been identified. Critical Issues: The physiological stimulations, which trigger the production of H2S and its derivatives and maintain their local levels, remain unclear. Future Directions: Understanding the regulation of the H2S production and H2S-derived signaling molecules and the specific stimuli that induce their release will provide new insights into the biology of H2S and therapeutic development in diseases involving these substances. Antioxid. Redox Signal. 22, 362–376. PMID:24800864

  6. Production and Physiological Effects of Hydrogen Sulfide

    PubMed Central

    2014-01-01

    Abstract Significance: Hydrogen sulfide (H2S) has been recognized as a physiological mediator with a variety of functions. It regulates synaptic transmission, vascular tone, inflammation, transcription, and angiogenesis; protects cells from oxidative stress and ischemia-reperfusion injury; and promotes healing of ulcers. Recent Advances: In addition to cystathionine β-synthase and cystathionine γ-lyase, 3-mercaptopyruvate sulfurtransferase along with cysteine aminotransferase was recently demonstrated to produce H2S. Even in bacteria, H2S produced by these enzymes functions as a defense against antibiotics, suggesting that the cytoprotective effect of H2S is a universal defense mechanism in organisms from bacteria to mammals. Critical Issues: The functional form of H2S—undissociated H2S gas, dissociated HS ion, or some other form of sulfur—has not been identified. Future Directions: The regulation of H2S production by three enzymes may lead to the identification of the physiological signals that are required to release H2S. The identification of the physiological functions of other forms of sulfur may also help understand the biological significance of H2S. Antioxid. Redox Signal. 20, 783–793. PMID:23581969

  7. Redetermination of piperidinium hydrogen sulfide structure

    NASA Technical Reports Server (NTRS)

    Andras, Maria T.; Hepp, Aloysius F.; Fanwick, Phillip E.; Duraj, Stan A.; Gordon, Edward M.

    1994-01-01

    The presence of adventitious water in a reaction between dicyclopentamethylene thiuram-disulfide (C5H10NCS2)(sub 2) and a picoline solution of tricyclopentadienyl indium(III) (C5H5)(sub 3). It resulted in the formation of piperidinium hydrogen sulfide (C5H13NS). The piperidinium hydrogen sulfide produced in this way was unambiguously characterized by X-ray crystallography. The structure determination showed that the piperidinium hydrogen sulfide crystal (MW = 119.23 g/mol) has an orthorhombic (Pbcm) unit cell whose parameters are: a = 9.818(2), b = 7.3720(1), c = 9.754(1) A, V = 706.0(3) A(exp 3), Z=4. D(sub chi) = 1.122 g cm(exp -3), Mo K(alpha) (lamda = 0.71073), mu= 3.36 cm(exp -1), F(000) = 264.0, T =293 K, R = 0.036 for 343 reflections with F(sub O)(sup 2) greater than 3 sigma (F(sub O)(sup 2)) and 65 variables. The compound consists of (C5H10NH2)(+) cations and (SH)(-) anions with both species residing on crystallographic mirror planes. N-H -- S hydrogen bonding contributes to the interconnection of neighboring piperidinium components of the compound.

  8. Method for direct production of carbon disulfide and hydrogen from hydrocarbons and hydrogen sulfide feedstock

    SciTech Connect

    Miao, Frank Q.; Erekson, Erek James

    1998-12-01

    A method for converting hydrocarbons and hydrogen sulfide to carbon disulfide and hydrogen is provided comprising contacting the hydrocarbons and hydrogen sulfide to a bi-functional catalyst residing in a controlled atmosphere for a time and at a temperature sufficient to produce carbon disulfide and hydrogen. Also provided is a catalyst for converting carbon sulfides and hydrogen sulfides to gasoline range hydrocarbons comprising a mixture containing a zeolite catalyst and a hydrogenating catalyst.

  9. Removal of hydrogen sulfide from drilling fluids

    SciTech Connect

    Gilligan Jr., T. J.

    1985-10-22

    The present invention relates to a process for scavenging hydrogen sulfide which frequently becomes entrained in drilling fluid during the course of drilling operations through subterranean formations. The process consists of introducing a solid oxidant in powdered form into the circulating drilling fluid when hydrogen sulfide is encountered. The solid oxidants are selected from the group consisting of calcium hypochlorite (Ca-(OCl)/sub 2/), sodium perborate (NaBO/sub 3/), potassium permanganate (KMnO/sub 4/), and potassium peroxydisulfate (K/sub 2/S/sub 2/O/sub 8/). The solid oxidants are soluble in the drilling fluid, promoting fast and complete scavenging reactions without adversely altering the drilling fluid rheology.

  10. Hydrogen sulfide prodrugs—a review

    PubMed Central

    Zheng, Yueqin; Ji, Xingyue; Ji, Kaili; Wang, Binghe

    2015-01-01

    Hydrogen sulfide (H2S) is recognized as one of three gasotransmitters together with nitric oxide (NO) and carbon monoxide (CO). As a signaling molecule, H2S plays an important role in physiology and shows great potential in pharmaceutical applications. Along this line, there is a need for the development of H2S prodrugs for various reasons. In this review, we summarize different H2S prodrugs, their chemical properties, and some of their potential therapeutic applications. PMID:26579468

  11. Hydrogen sulfide prodrugs-a review.

    PubMed

    Zheng, Yueqin; Ji, Xingyue; Ji, Kaili; Wang, Binghe

    2015-09-01

    Hydrogen sulfide (H2S) is recognized as one of three gasotransmitters together with nitric oxide (NO) and carbon monoxide (CO). As a signaling molecule, H2S plays an important role in physiology and shows great potential in pharmaceutical applications. Along this line, there is a need for the development of H2S prodrugs for various reasons. In this review, we summarize different H2S prodrugs, their chemical properties, and some of their potential therapeutic applications. PMID:26579468

  12. Hydrogen attack - Influence of hydrogen sulfide. [on carbon steel

    NASA Technical Reports Server (NTRS)

    Eliezer, D.; Nelson, H. G.

    1978-01-01

    An experimental study is conducted on 12.5-mm-thick SAE 1020 steel (plain carbon steel) plate to assess hydrogen attack at room temperature after specimen exposure at 525 C to hydrogen and a blend of hydrogen sulfide and hydrogen at a pressure of 3.5 MN/sq m for exposure times up to 240 hr. The results are discussed in terms of tensile properties, fissure formation, and surface scales. It is shown that hydrogen attack from a high-purity hydrogen environment is severe, with the formation of numerous methane fissures and bubbles along with a significant reduction in the room-temperature tensile yield and ultimate strengths. However, no hydrogen attack is observed in the hydrogen/hydrogen sulfide blend environment, i.e. no fissure or bubble formation occurred and the room-temperature tensile properties remained unchanged. It is suggested that the observed porous discontinuous scale of FeS acts as a barrier to hydrogen entry, thus reducing its effective equilibrium solubility in the iron lattice. Therefore, hydrogen attack should not occur in pressure-vessel steels used in many coal gasification processes.

  13. Structure of 4-methylpyridinium Hydrogen Sulfide

    NASA Technical Reports Server (NTRS)

    Andras, Maria T.; Hepp, Aloysius F.; Fanwick, Phillip E.; Martuch, Robert A.; Duraj, Stan A.; Gordon, Edward M.

    1994-01-01

    4-Methylpyridinium hydrogen sulfide, (C6H7NH)HS, M(sub r) = 127.21, consists of C6H7NH(+) cations and HS(-) anions. Z = 2 for the crystal with monoclinic space group Cm (#8), dimensions of a = 8.679(2) A, b = 7.964(1) A, and c = 4.860(2) A, an angle beta of 101.10(2) degrees, and a volume of V = 329.6(3) A(exp 3). R = 0.039 and R(sub w) = 0.048 for 385 reflections with F(sub o)(exp 2) greater than 3 sigma(F(sub o)(exp 2)) and 59 variables. Both the C6H7NH(+) cation and the HS(-) anion lie on crystallographic mirror planes with the N,S, two carbon atoms, and two hydrogen atoms positioned in the planes. The hydrogen atom of the HS(-) anion was not located.

  14. Cystathionine-γ lyase-derived hydrogen sulfide mediates the cardiovascular protective effects of moxonidine in diabetic rats.

    PubMed

    El-Sayed, Shaimaa S; Zakaria, Mohamed N M; Abdel-Ghany, Rasha H; Abdel-Rahman, Abdel A

    2016-07-15

    Blunted cystathionine-γ lyase (CSE) activity (reduced endogenous H2S-level) is implicated in hypertension and myocardial dysfunction in diabetes. Here, we tested the hypothesis that CSE derived H2S mediates the cardiovascular protection conferred by the imidazoline I1 receptor agonist moxonidine in a diabetic rat model. We utilized streptozotocin (STZ; 55mg/kg i.p) to induce diabetes in male Wistar rats. Four weeks later, STZ-treated rats received vehicle, moxonidine (2 or 6mg/kg; gavage), CSE inhibitor DL-propargylglycine, (37.5mg/kg i.p) or DL-propargylglycine with moxonidine (6mg/kg) for 3 weeks. Moxonidine improved the glycemic state, and reversed myocardial hypertrophy, hypertension and baroreflex dysfunction in STZ-treated rats. Ex vivo studies revealed that STZ caused reductions in CSE expression/activity, H2S and nitric oxide (NO) levels and serum adiponectin and elevations in myocardial imidazoline I1 receptor expression, p38 and extracellular signal-regulated kinase, ERK1/2, phosphorylation and lipid peroxidation (expressed as malondialdehyde). Moxonidine reversed these biochemical responses, and suppressed the expression of death associated protein kinase-3. Finally, pharmacologic CSE inhibition (DL-propargylglycine) abrogated the favorable cardiovascular, glycemic and biochemical responses elicited by moxonidine. These findings present the first evidence for a mechanistic role for CSE derived H2S in the glycemic control and in the favorable cardiovascular effects conferred by imidazoline I1 receptor activation (moxonidine) in a diabetic rat model. PMID:27138707

  15. Molecularly engineered quantum dots for visualization of hydrogen sulfide.

    PubMed

    Yan, Yehan; Yu, Huan; Zhang, Yajiao; Zhang, Kui; Zhu, Houjuan; Yu, Tao; Jiang, Hui; Wang, Suhua

    2015-02-18

    Among various fluorescence nanomaterials, the II-VI semiconductor nanocrystals (usually called quantum dots, QDs) should be very promising in sensing application because of their high quantum yields, capability for surface property manipulation, and unlimited possible chemical reactions. Herein, we present a fluorescence probe for hydrogen sulfide, which was prepared by first encapsulating inorganic cadmium telluride (CdTe) QDs in silica nanospheres, and subsequently engineering the silica surface with functional molecules azidocoumarin-4-acetic acid reactive to hydrogen sulfide. The nanohybrid probe exhibited two fluorescence bands centered at 452 and 657 nm, respectively. The red fluorescence at 657 nm of the nanohybrid probe is stable against H2S, while the blue fluorescence is specifically sensitive to H2S. The probe showed a distinct fluorescence color evolution from light magenta to blue upon exposure to different amounts of H2S, and a detection limit of 7.0 nM was estimated in aqueous solution. We further applied the nanohybrid probe for visual detection of gaseous H2S with a low concentration of 0.5 ppm using glass indicating spots sensors, suggesting its potential application for gaseous H2S sensing. Such an efficient on-site visual determination of gaseous hydrogen sulfide (H2S) is highly demanded in on-site environmental monitoring and protection. PMID:25615270

  16. High temperature regenerable hydrogen sulfide removal agents

    DOEpatents

    Copeland, Robert J.

    1993-01-01

    A system for high temperature desulfurization of coal-derived gases using regenerable sorbents. One sorbent is stannic oxide (tin oxide, SnO.sub.2), the other sorbent is a metal oxide or mixed metal oxide such as zinc ferrite (ZnFe.sub.2 O.sub.4). Certain otherwise undesirable by-products, including hydrogen sulfide (H.sub.2 S) and sulfur dioxide (SO.sub.2) are reused by the system, and elemental sulfur is produced in the regeneration reaction. A system for refabricating the sorbent pellets is also described.

  17. Amorphous molybdenum sulfides as hydrogen evolution catalysts.

    PubMed

    Morales-Guio, Carlos G; Hu, Xile

    2014-08-19

    Providing energy for a population projected to reach 9 billion people within the middle of this century is one of the most pressing societal issues. Burning fossil fuels at a rate and scale that satisfy our near-term demand will irreversibly damage the living environment. Among the various sources of alternative and CO2-emission-free energies, the sun is the only source that is capable of providing enough energy for the whole world. Sunlight energy, however, is intermittent and requires an efficient storage mechanism. Sunlight-driven water splitting to make hydrogen is widely considered as one of the most attractive methods for solar energy storage. Water splitting needs a hydrogen evolution catalyst to accelerate the rate of hydrogen production and to lower the energy loss in this process. Precious metals such as Pt are superior catalysts, but they are too expensive and scarce for large-scale applications. In this Account, we summarize our recent research on the preparation, characterization, and application of amorphous molybdenum sulfide catalysts for the hydrogen evolution reaction. The catalysts can be synthesized by electrochemical deposition under ambient conditions from readily available and inexpensive precursors. The catalytic activity is among the highest for nonprecious catalysts. For example, at a loading of 0.2 mg/cm(2), the optimal catalyst delivers a current density of 10 mA/cm(2) at an overpotential of 160 mV. The growth mechanism of the electrochemically deposited film catalysts was revealed by an electrochemical quartz microcrystal balance study. While different electrochemical deposition methods produce films with different initial compositions, the active catalysts are the same and are identified as a "MoS(2+x)" species. The activity of the film catalysts can be further promoted by divalent Fe, Co, and Ni ions, and the origins of the promotional effects have been probed. Highly active amorphous molybdenum sulfide particles can also be prepared

  18. Microaeration for hydrogen sulfide removal in UASB reactor.

    PubMed

    Krayzelova, Lucie; Bartacek, Jan; Kolesarova, Nina; Jenicek, Pavel

    2014-11-01

    The removal of hydrogen sulfide from biogas by microaeration was studied in Up-flow Anaerobic Sludge Blanket (UASB) reactors treating synthetic brewery wastewater. A fully anaerobic UASB reactor served as a control while air was dosed into a microaerobic UASB reactor (UMSB). After a year of operation, sulfur balance was described in both reactors. In UASB, sulfur was mainly presented in the effluent as sulfide (49%) and in biogas as hydrogen sulfide (34%). In UMSB, 74% of sulfur was detected in the effluent (41% being sulfide and 33% being elemental sulfur), 10% accumulated in headspace as elemental sulfur and 9% escaped in biogas as hydrogen sulfide. The efficiency of hydrogen sulfide removal in UMSB was on average 73%. Microaeration did not cause any decrease in COD removal or methanogenic activity in UMSB and the elemental sulfur produced by microaeration did not accumulate in granular sludge. PMID:25270045

  19. Occupationally related hydrogen sulfide deaths in the United States from 1984 to 1994.

    PubMed

    Fuller, D C; Suruda, A J

    2000-09-01

    Alice Hamilton described fatal work injuries from acute hydrogen sulfide poisonings in 1925 in her book Industrial Poisons in the United States. There is no unique code for H2S poisoning in the International Classification of Diseases, 9th Revision; therefore, these deaths cannot be identified easily from vital records. We reviewed US Occupational Safety and Health Administration (OSHA) investigation records for the period 1984 to 1994 for mention of hazardous substance 1480 (hydrogen sulfide). There were 80 fatalities from hydrogen sulfide in 57 incidents, with 19 fatalities and 36 injuries among coworkers attempting to rescue fallen workers. Only 17% of the deaths were at workplaces covered by collective bargaining agreements. OSHA issued citations for violation of respiratory protection and confined space standards in 60% of the fatalities. The use of hydrogen sulfide detection equipment, air-supplied respirators, and confined space safety training would have prevented most of the fatalities. PMID:10998771

  20. Hydrogen sulfide and polysulfides as signaling molecules

    PubMed Central

    KIMURA, Hideo

    2015-01-01

    Hydrogen sulfide (H2S) is a familiar toxic gas that smells of rotten eggs. After the identification of endogenous H2S in the mammalian brain two decades ago, studies of this molecule uncovered physiological roles in processes such as neuromodulation, vascular tone regulation, cytoprotection against oxidative stress, angiogenesis, anti-inflammation, and oxygen sensing. Enzymes that produce H2S, such as cystathionine β-synthase, cystathionine γ-lyase, and 3-mercaptopyruvate sulfurtransferase have been studied intensively and well characterized. Polysulfides, which have a higher number of inner sulfur atoms than that in H2S, were recently identified as potential signaling molecules that can activate ion channels, transcription factors, and tumor suppressors with greater potency than that of H2S. This article focuses on our contribution to the discovery of these molecules and their metabolic pathways and mechanisms of action. PMID:25864468

  1. Chemical Foundations of Hydrogen Sulfide Biology

    PubMed Central

    Li, Qian; Lancaster, Jack R.

    2013-01-01

    Following nitric oxide (nitrogen monoxide) and carbon monoxide, hydrogen sulfide (or its newer systematic name sulfane, H2S) became the third small molecule that can be both toxic and beneficial depending on the concentration. In spite of its impressive therapeutic potential, the underlying mechanisms for its beneficial effects remain unclear. Any novel mechanism has to obey fundamental chemical principles. H2S chemistry was studied long before its biological relevance was discovered, however, with a few exceptions, these past works have received relatively little attention in the path of exploring the mechanistic conundrum of H2S biological functions. This review calls attention to the basic physical and chemical properties of H2S, focuses on the chemistry between H2S and its three potential biological targets: oxidants, metals and thiol derivatives, discusses the applications of these basics into H2S biology and methodology, and introduces the standard terminology to this youthful field. PMID:23850631

  2. Chemical foundations of hydrogen sulfide biology.

    PubMed

    Li, Qian; Lancaster, Jack R

    2013-11-30

    Following nitric oxide (nitrogen monoxide) and carbon monoxide, hydrogen sulfide (or its newer systematic name sulfane, H2S) became the third small molecule that can be both toxic and beneficial depending on the concentration. In spite of its impressive therapeutic potential, the underlying mechanisms for its beneficial effects remain unclear. Any novel mechanism has to obey fundamental chemical principles. H2S chemistry was studied long before its biological relevance was discovered, however, with a few exceptions, these past works have received relatively little attention in the path of exploring the mechanistic conundrum of H2S biological functions. This review calls attention to the basic physical and chemical properties of H2S, focuses on the chemistry between H2S and its three potential biological targets: oxidants, metals and thiol derivatives, discusses the applications of these basics into H2S biology and methodology, and introduces the standard terminology to this youthful field. PMID:23850631

  3. Hydrogen sulfide and polysulfides as signaling molecules.

    PubMed

    Kimura, Hideo

    2015-01-01

    Hydrogen sulfide (H2S) is a familiar toxic gas that smells of rotten eggs. After the identification of endogenous H2S in the mammalian brain two decades ago, studies of this molecule uncovered physiological roles in processes such as neuromodulation, vascular tone regulation, cytoprotection against oxidative stress, angiogenesis, anti-inflammation, and oxygen sensing. Enzymes that produce H2S, such as cystathionine β-synthase, cystathionine γ-lyase, and 3-mercaptopyruvate sulfurtransferase have been studied intensively and well characterized. Polysulfides, which have a higher number of inner sulfur atoms than that in H2S, were recently identified as potential signaling molecules that can activate ion channels, transcription factors, and tumor suppressors with greater potency than that of H2S. This article focuses on our contribution to the discovery of these molecules and their metabolic pathways and mechanisms of action. PMID:25864468

  4. Hydrogen sulfide exposure in an adult male

    PubMed Central

    Doujaiji, Bassam; Al-Tawfiq, Jaffar A.

    2010-01-01

    Hydrogen sulfide (H2S) is responsible for many incidents of occupational toxic exposure, especially in the petroleum industry. The clinical effects of H2S depend on its concentration and the duration of exposure. H2S is immediately fatal when concentrations are over 500-1000 parts per million (ppm) but exposure to lower concentrations, such as 10-500 ppm, can cause various respiratory symptoms that range from rhinitis to acute respiratory failure. H2S may also affect multiple organs, causing temporary or permanent derangements in the nervous, cardiovascular, renal, hepatic, and hematological systems. We present a case of occupational exposure to H2S leading to multi-organ involvement, acute respiratory failure, organizing pneumonia, and shock resembling acute sepsis. The patient also developed mild obstructive and restrictive pulmonary disease and peripheral neuropathy. PMID:20103963

  5. Hydrogen Production from Hydrogen Sulfide in IGCC Power Plants

    SciTech Connect

    Elias Stefanakos; Burton Krakow; Jonathan Mbah

    2007-07-31

    IGCC power plants are the cleanest coal-based power generation facilities in the world. Technical improvements are needed to help make them cost competitive. Sulfur recovery is one procedure in which improvement is possible. This project has developed and demonstrated an electrochemical process that could provide such an improvement. IGCC power plants now in operation extract the sulfur from the synthesis gas as hydrogen sulfide. In this project H{sub 2}S has been electrolyzed to yield sulfur and hydrogen (instead of sulfur and water as is the present practice). The value of the byproduct hydrogen makes this process more cost effective. The electrolysis has exploited some recent developments in solid state electrolytes. The proof of principal for the project concept has been accomplished.

  6. Solubility of hydrogen sulfide in n-methylpyrrolidone

    SciTech Connect

    Yarym-Agaev, N.L.; Matvienko, V.G.; Povalyaeva, N.V.

    1980-01-01

    The solubility of hydrogen sulfide in N-methylpyrrolidone was investigated over wide ranges of temperature and pressure. The dynamic variant of the gravimetric method was used at hydrogen sulfide pressures equal to or below atmospheric, and the static variant at higher pressures. In the dynamic variant of the gravimetric method hydrogen sulfide is passed through a known amount of solvent until saturation is reached, and the amount of gas dissolved is found from the weight increase. This method is particularly convenient in studies of highly soluble gases when the solvent has a low vapor pressure. If the vapor pressure of the solvent exceeded this value a correction for entrainment of solvent vapor by undissolved gas was applied. The study showed that the solubility of hydrogen sulfide in N-methylpyrrolidone rose steeply with increase of pressure and decrease of temperature and that it can be used as an effective absorbent of hydrogen sulfide in highly sulfurous natural gas. Since the solubility of hydrogen sulfide under atmospheric pressure is fairly high even at elevated temperatures, effective regeneration of N-methylpyrrolidone is possible by a combination of heating and blowing with an inert gas or by application of vacuum for removal of the hydrogen sulfide.

  7. NEAR-CONTINUOUS MEASUREMENT OF HYDROGEN SULFIDE AND CARBONYL SULFIDE BY AN AUTOMATIC GAS CHROMATOGRAPH

    EPA Science Inventory

    An automatic gas chromatograph with a flame photometric detector that samples and analyzes hydrogen sulfide and carbonyl sulfide at 30-s intervals is described. Temperature programming was used to elute trace amounts of carbon disulfide present in each injection from a Supelpak-S...

  8. Optimization of the superconducting phase of hydrogen sulfide

    SciTech Connect

    Degtyarenko, N. N.; Masur, E. A.

    2015-12-15

    The electron and phonon spectra, as well as the densities of electron and phonon states of the SH{sub 3} phase and the stable orthorhombic structure of hydrogen sulfide SH{sub 2}, are calculated for the pressure interval 100–225 GPa. It is found that the I4/mmm phase can be responsible for the superconducting properties of metallic hydrogen sulfide along with the SH{sub 3} phase. Sequential stages for obtaining and conservation of the SH{sub 2} phase are proposed. The properties of two (SH{sub 2} and SH{sub 3}) superconducting phases of hydrogen sulfide are compared.

  9. Microbial oxidation of mixtures of methylmercaptan and hydrogen sulfide.

    PubMed

    Subramaniyan, A; Kolhatkar, R; Sublette, K L; Beitle, R

    1998-01-01

    Refinery spent-sulfidic caustic, containing only inorganic sulfides, has previously been shown to be amenable to biotreatment with Thiobacillus denitrificans strain F with complete oxidation of sulfides to sulfate. However, many spent caustics contain mercaptans that cannot be metabolized by this strict autotroph. An aerobic enrichment culture was developed from mixed Thiobacilli and activated sludge that was capable of simultaneous oxidation of inorganic sulfide and mercaptans using hydrogen sulfide (H2S) and methylmercaptan (MeSH) gas feeds used to simulate the inorganic and organic sulfur of a spent-sulfidic caustic. The enrichment culture was also capable of biotreatment of an actual mercaptan-containing, spent-sulfidic caustic but at lower rates than predicted by operation on MeSH and H2S fed to the culture in the gas phase, indicating that the caustic contained other inhibitory components. PMID:18576062

  10. Method of washing hydrogen sulfide from coke oven gas by the ammonium sulfide method

    SciTech Connect

    Ritter, H.

    1985-05-21

    An improved coke oven gas washing process for removing hydrogen sulfide is proposed wherein the coke oven gas is treated in a hydrogen sulfide scrubber by counterflow with an aqueous ammonia wash water. A stream of aqueous weak ammonia liquor is cooled and sprayed through nozzles in the mid-region of the hydrogen sulfide scrubber. A quantity of aqueous ammonia liquor, corresponding to the quantity which is sprayed through the said nozzles, is withdrawn from the hydrogen sulfide scrubber at a level below the nozzles and is introduced into the top of the said hydrogen sulfide scrubber. Ammonia vapor released at the nozzles has a higher partial pressure than the ammonia partial pressure of the coke oven gas in the region of the nozzle. The aqueous ammonia liquor from the deacidifier is the source of the cooled aqueous ammonia liquor which is introduced through the nozzles. A portion of the aqueous ammonia liquor from the deacidifier is introduced directly into the top of the hydrogen sulfide scrubber as a portion of the required aqueous ammonia wash water.

  11. [Activity of hydrogen sulfide production enzymes in kidneys of rats].

    PubMed

    Mel'nyk, A V; Pentiuk, O O

    2009-01-01

    An experimental research of activity and kinetic descriptions of enzymes participating in formation of hydrogen sulfide in the kidney of rats has been carried out. It was established that cystein, homocystein and thiosulphate are the basic substrates for hydrogen sulfide synthesis. The higest activity for hydrogen sulfide production belongs to thiosulfate-dithiolsulfurtransferase and cysteine aminotransferase, less activity is characteristic of cystathionine beta-synthase and cystathio-nine gamma-lyase. The highest affinity to substrate is registered for thiosulfate-dithiolsulfurtransferase and cystathionine gamma-lyase. It is discovered that the substrate inhibition is typical of all hydrogen sulfide formation enzymes, although this characteristic is the most expressed thiosulfat-dithiolsulfurtransferase. PMID:20387629

  12. An Experiment in Autotrophic Fermentation: Microbial Oxidation of Hydrogen Sulfide.

    ERIC Educational Resources Information Center

    Sublette, Kerry L.

    1989-01-01

    Described is an experiment which uses an autotrophic bacterium to anaerobically oxidize hydrogen sulfide to sulfate in a batch-stirred tank reactor. Discusses background information, experimental procedure, and sample results of this activity. (CW)

  13. The hydrogen sulfide metabolite trimethylsulfonium is found in human urine

    NASA Astrophysics Data System (ADS)

    Lajin, Bassam; Francesconi, Kevin A.

    2016-06-01

    Hydrogen sulfide is the third and most recently discovered gaseous signaling molecule following nitric oxide and carbon monoxide, playing important roles both in normal physiological conditions and disease progression. The trimethylsulfonium ion (TMS) can result from successive methylation reactions of hydrogen sulfide. No report exists so far about the presence or quantities of TMS in human urine. We developed a method for determining TMS in urine using liquid chromatography-electrospray ionization-triple quadrupole mass spectrometry (LC-ESI-QQQ), and applied the method to establish the urinary levels of TMS in a group of human volunteers. The measured urinary levels of TMS were in the nanomolar range, which is commensurate with the steady-state tissue concentrations of hydrogen sulfide previously reported in the literature. The developed method can be used in future studies for the quantification of urinary TMS as a potential biomarker for hydrogen sulfide body pools.

  14. The hydrogen sulfide metabolite trimethylsulfonium is found in human urine.

    PubMed

    Lajin, Bassam; Francesconi, Kevin A

    2016-01-01

    Hydrogen sulfide is the third and most recently discovered gaseous signaling molecule following nitric oxide and carbon monoxide, playing important roles both in normal physiological conditions and disease progression. The trimethylsulfonium ion (TMS) can result from successive methylation reactions of hydrogen sulfide. No report exists so far about the presence or quantities of TMS in human urine. We developed a method for determining TMS in urine using liquid chromatography-electrospray ionization-triple quadrupole mass spectrometry (LC-ESI-QQQ), and applied the method to establish the urinary levels of TMS in a group of human volunteers. The measured urinary levels of TMS were in the nanomolar range, which is commensurate with the steady-state tissue concentrations of hydrogen sulfide previously reported in the literature. The developed method can be used in future studies for the quantification of urinary TMS as a potential biomarker for hydrogen sulfide body pools. PMID:27247020

  15. The hydrogen sulfide metabolite trimethylsulfonium is found in human urine

    PubMed Central

    Lajin, Bassam; Francesconi, Kevin A.

    2016-01-01

    Hydrogen sulfide is the third and most recently discovered gaseous signaling molecule following nitric oxide and carbon monoxide, playing important roles both in normal physiological conditions and disease progression. The trimethylsulfonium ion (TMS) can result from successive methylation reactions of hydrogen sulfide. No report exists so far about the presence or quantities of TMS in human urine. We developed a method for determining TMS in urine using liquid chromatography-electrospray ionization-triple quadrupole mass spectrometry (LC-ESI-QQQ), and applied the method to establish the urinary levels of TMS in a group of human volunteers. The measured urinary levels of TMS were in the nanomolar range, which is commensurate with the steady-state tissue concentrations of hydrogen sulfide previously reported in the literature. The developed method can be used in future studies for the quantification of urinary TMS as a potential biomarker for hydrogen sulfide body pools. PMID:27247020

  16. Removal of methanethiol, dimethyl sulfide, dimethyl disulfide, and hydrogen sulfide from contaminated air by Thiobacillus thioparus TK-m

    SciTech Connect

    Kanagawa, T.; Mikami, E.

    1989-03-01

    Methanethiol, dimethyl sulfide, dimethyl disulfide, and hydrogen sulfide were efficiently removed from contaminated air by Thiobacillus thioparus TK-m and oxidized to sulfate stoichiometrically. More than 99.99% of dimethyl sulfide was removed when the load was less than 4.0 g of dimethyl sulfide per g (dry cell weight) per day.

  17. Hydrogen Sulfide and Cellular Redox Homeostasis

    PubMed Central

    Xie, Zhi-Zhong; Liu, Yang; Bian, Jin-Song

    2016-01-01

    Intracellular redox imbalance is mainly caused by overproduction of reactive oxygen species (ROS) or weakness of the natural antioxidant defense system. It is involved in the pathophysiology of a wide array of human diseases. Hydrogen sulfide (H2S) is now recognized as the third “gasotransmitters” and proved to exert a wide range of physiological and cytoprotective functions in the biological systems. Among these functions, the role of H2S in oxidative stress has been one of the main focuses over years. However, the underlying mechanisms for the antioxidant effect of H2S are still poorly comprehended. This review presents an overview of the current understanding of H2S specially focusing on the new understanding and mechanisms of the antioxidant effects of H2S based on recent reports. Both inhibition of ROS generation and stimulation of antioxidants are discussed. H2S-induced S-sulfhydration of key proteins (e.g., p66Shc and Keap1) is also one of the focuses of this review. PMID:26881033

  18. Hydrogen Sulfide Signaling in the Gastrointestinal Tract

    PubMed Central

    2014-01-01

    Abstract Significance: The current literature regarding the effects of the gaseous signal molecule hydrogen sulfide (H2S) in the gastrointestinal system is reviewed. Bacterial, host and pharmaceutical-derived H2S are all considered and presented according to the physiological or pathophysiological effects of the gaseous signal molecule. These subjects include the toxicology of intestinal H2S with emphasis on bacterial-derived H2S, especially from sulfate-reducing bacteria, the role of endogenous and exogenous H2S in intestinal inflammation, and the roles of H2S in gastrointestinal motility, secretion and nociception. Recent Advances: While its pro- and anti-inflammatory, smooth muscle relaxant, prosecretory, and pro- and antinociceptive actions continue to remain the major effects of H2S in this system; recent findings have expanded the potential molecular targets for H2S in the gastrointestinal tract. Critical Issues: Numerous discrepancies remain in the literature, and definitive molecular targets in this system have not been supported by the use of competitive antagonism. Future Directions: Future work will hopefully resolve discrepancies in the literature and identify molecular targets and mechanisms of action for H2S. It is clear from the current literature that the long-appreciated relationship between H2S and the gastrointestinal tract continues to be strong as we endeavor to unravel its mysteries. Antioxid. Redox Signal. 20, 818–830. PMID:23582008

  19. Enamel surface changes caused by hydrogen sulfide

    PubMed Central

    Yamaguchi, Takao; Hanabusa, Masao; Hosoya, Noriyasu; Chiba, Toshie; Yoshida, Takumasa; Morito, Akiyuki

    2015-01-01

    Background: Volatile sulfur compounds (VSCs) produced inside the mouth are a well-known cause of halitosis. Recent studies have suggested that VSCs modify the pathology of periodontitis by encouraging the migration of bacterial toxins associated with increased permeability of gingival epithelia, and enhancing the production of matrix metalloproteinases in gingival connective tissue. Nonetheless, the effects on the enamel of direct exposure to VSCs within the oral cavity remain unclear. In the present study, we observed the effects of VSCs in the form of hydrogen sulfide (H2S) on enamel surfaces and determined their effects on restorations. Materials and Methods: Extracted human tooth and bovine tooth samples were divided into the H2S experimental side and the control side. We observed the effects of H2S on enamel surfaces using electron microscopy and conducted a shear test. Results: We found that exposure to H2S obscured the enamel surface's crystal structure. The surface also exhibited coarseness and reticular changes. Shear testing did not reveal any differences in bond strength. Conclusions: Our findings suggested that H2S occurring inside the mouth causes changes to the crystal structure of the enamel surface that can lead to tooth wear, but that it does not diminish the effects of dental bonding in adhesive restorations. PMID:26752833

  20. Hydrogen sulfide production from subgingival plaque samples.

    PubMed

    Basic, A; Dahlén, G

    2015-10-01

    Periodontitis is a polymicrobial anaerobe infection. Little is known about the dysbiotic microbiota and the role of bacterial metabolites in the disease process. It is suggested that the production of certain waste products in the proteolytic metabolism may work as markers for disease severity. Hydrogen sulfide (H2S) is a gas produced by degradation of proteins in the subgingival pocket. It is highly toxic and believed to have pro-inflammatory properties. We aimed to study H2S production from subgingival plaque samples in relation to disease severity in subjects with natural development of the disease, using a colorimetric method based on bismuth precipitation. In remote areas of northern Thailand, adults with poor oral hygiene habits and a natural development of periodontal disease were examined for their oral health status. H2S production was measured with the bismuth method and subgingival plaque samples were analyzed for the presence of 20 bacterial species with the checkerboard DNA-DNA hybridization technique. In total, 43 subjects were examined (age 40-60 years, mean PI 95 ± 6.6%). Fifty-six percent had moderate periodontal breakdown (CAL > 3 < 7 mm) and 35% had severe periodontal breakdown (CAL > 7 mm) on at least one site. Parvimonas micra, Filifactor alocis, Porphyromonas endodontalis and Fusobacterium nucleatum were frequently detected. H2S production could not be correlated to periodontal disease severity (PPD or CAL at sampled sites) or to a specific bacterial composition. Site 21 had statistically lower production of H2S (p = 0.02) compared to 16 and 46. Betel nut chewers had statistically significant lower H2S production (p = 0.01) than non-chewers. Rapid detection and estimation of subgingival H2S production capacity was easily and reliably tested by the colorimetric bismuth sulfide precipitation method. H2S may be a valuable clinical marker for degradation of proteins in the subgingival pocket. PMID:25280920

  1. Role of Hydrogen Sulfide in Ischemia-Reperfusion Injury

    PubMed Central

    Wu, Dongdong; Wang, Jun; Li, Hui; Xue, Mengzhou; Ji, Ailing; Li, Yanzhang

    2015-01-01

    Ischemia-reperfusion (I/R) injury is one of the major causes of high morbidity, disability, and mortality in the world. I/R injury remains a complicated and unresolved situation in clinical practice, especially in the field of solid organ transplantation. Hydrogen sulfide (H2S) is the third gaseous signaling molecule and plays a broad range of physiological and pathophysiological roles in mammals. H2S could protect against I/R injury in many organs and tissues, such as heart, liver, kidney, brain, intestine, stomach, hind-limb, lung, and retina. The goal of this review is to highlight recent findings regarding the role of H2S in I/R injury. In this review, we present the production and metabolism of H2S and further discuss the effect and mechanism of H2S in I/R injury. PMID:26064416

  2. Hydrogen Sulfide Preconditioning Protects Rat Liver against Ischemia/Reperfusion Injury by Activating Akt-GSK-3β Signaling and Inhibiting Mitochondrial Permeability Transition

    PubMed Central

    Zhang, Hao; Xu, Fengying; Zou, Zui; Liu, Meng; Wang, Quanxing; Miao, Mingyong; Shi, Xueyin

    2013-01-01

    Hydrogen sulfide (H2S) is the third most common endogenously produced gaseous signaling molecule, but its impact on hepatic ischemia/reperfusion (I/R) injury, especially on mitochondrial function, remains unclear. In this study, rats were randomized into Sham, I/R, ischemia preconditioning (IPC) or sodium hydrosulfide (NaHS, an H2S donor) preconditioning groups. To establish a model of segmental (70%) warm hepatic ischemia, the hepatic artery, left portal vein and median liver lobes were occluded for 60 min and then unclamped to allow reperfusion. Preconditioning with 12.5, 25 or 50 μmol/kg NaHS prior to the I/R insult significantly increased serum H2S levels, and, similar to IPC, NaHS preconditioning decreased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in the plasma and prevented hepatocytes from undergoing I/R-induced necrosis. Moreover, a sub-toxic dose of NaHS (25 μmol/kg) did not disrupt the systemic hemodynamics but dramatically inhibited mitochondrial permeability transition pore (MPTP) opening and thus prevented mitochondrial-related cell death and apoptosis. Mechanistic studies revealed that NaHS preconditioning markedly increased the expression of phosphorylated protein kinase B (p-Akt), phosphorylated glycogen synthase kinase-3 beta (p-GSK-3β) and B-cell lymphoma-2 (Bcl-2) and decreased the release of mitochondrial cytochrome c and cleaved caspase-3/9 levels. Therefore, NaHS administration prior to hepatic I/R ameliorates mitochondrial and hepatocellular damage through the inhibition of MPTP opening and the activation of Akt-GSK-3β signaling. Furthermore, this study provides experimental evidence for the clinical use of H2S to reduce liver damage after perioperative I/R injury. PMID:24058562

  3. Hydrogen sulfide preconditioning protects rat liver against ischemia/reperfusion injury by activating Akt-GSK-3β signaling and inhibiting mitochondrial permeability transition.

    PubMed

    Zhang, Qingqing; Fu, Hailong; Zhang, Hao; Xu, Fengying; Zou, Zui; Liu, Meng; Wang, Quanxing; Miao, Mingyong; Shi, Xueyin

    2013-01-01

    Hydrogen sulfide (H2S) is the third most common endogenously produced gaseous signaling molecule, but its impact on hepatic ischemia/reperfusion (I/R) injury, especially on mitochondrial function, remains unclear. In this study, rats were randomized into Sham, I/R, ischemia preconditioning (IPC) or sodium hydrosulfide (NaHS, an H2S donor) preconditioning groups. To establish a model of segmental (70%) warm hepatic ischemia, the hepatic artery, left portal vein and median liver lobes were occluded for 60 min and then unclamped to allow reperfusion. Preconditioning with 12.5, 25 or 50 μmol/kg NaHS prior to the I/R insult significantly increased serum H2S levels, and, similar to IPC, NaHS preconditioning decreased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in the plasma and prevented hepatocytes from undergoing I/R-induced necrosis. Moreover, a sub-toxic dose of NaHS (25 μmol/kg) did not disrupt the systemic hemodynamics but dramatically inhibited mitochondrial permeability transition pore (MPTP) opening and thus prevented mitochondrial-related cell death and apoptosis. Mechanistic studies revealed that NaHS preconditioning markedly increased the expression of phosphorylated protein kinase B (p-Akt), phosphorylated glycogen synthase kinase-3 beta (p-GSK-3β) and B-cell lymphoma-2 (Bcl-2) and decreased the release of mitochondrial cytochrome c and cleaved caspase-3/9 levels. Therefore, NaHS administration prior to hepatic I/R ameliorates mitochondrial and hepatocellular damage through the inhibition of MPTP opening and the activation of Akt-GSK-3β signaling. Furthermore, this study provides experimental evidence for the clinical use of H2S to reduce liver damage after perioperative I/R injury. PMID:24058562

  4. Hydrogen Sulfide as an Oxygen Sensor

    PubMed Central

    2015-01-01

    Abstract Significance Although oxygen (O2)-sensing cells and tissues have been known for decades, the identity of the O2-sensing mechanism has remained elusive. Evidence is accumulating that O2-dependent metabolism of hydrogen sulfide (H2S) is this enigmatic O2 sensor. Recent Advances The elucidation of biochemical pathways involved in H2S synthesis and metabolism have shown that reciprocal H2S/O2 interactions have been inexorably linked throughout eukaryotic evolution; there are multiple foci by which O2 controls H2S inactivation, and the effects of H2S on downstream signaling events are consistent with those activated by hypoxia. H2S-mediated O2 sensing has been demonstrated in a variety of O2-sensing tissues in vertebrate cardiovascular and respiratory systems, including smooth muscle in systemic and respiratory blood vessels and airways, carotid body, adrenal medulla, and other peripheral as well as central chemoreceptors. Critical Issues Information is now needed on the intracellular location and stoichometry of these signaling processes and how and which downstream effectors are activated by H2S and its metabolites. Future Directions Development of specific inhibitors of H2S metabolism and effector activation as well as cellular organelle-targeted compounds that release H2S in a time- or environmentally controlled way will not only enhance our understanding of this signaling process but also provide direction for future therapeutic applications. Antioxid. Redox Signal. 22, 377–397. “Nothing in Biology Makes Sense Except in the Light of Evolution” —Theodosius Dobzhansky (29) PMID:24801248

  5. Hydrogen Sulfide in Biochemistry and Medicine

    PubMed Central

    Predmore, Benjamin Lee; Lefer, David Joseph

    2012-01-01

    Abstract Significance: An abundance of experimental evidence suggests that hydrogen sulfide (H2S) plays a prominent role in physiology and pathophysiology. Many targets exist for H2S therapy. The molecular targets of H2S include proteins, enzymes, transcription factors, and membrane ion channels. Recent Advances: Novel H2S precursors are being synthesized and discovered that are capable of releasing H2S in a slow and sustained manner. This presents a novel and advantageous approach to H2S therapy for treatment of chronic conditions associated with a decline in endogenous H2S, such as diabetes and cardiovascular disease. Critical Issues: While H2S is cytoprotective at physiological concentrations, it is not universally cytoprotective, as it appears to have pro-apoptotic actions in cancer cells and is well known to be toxic at supraphysiological concentrations. Many of the pleiotropic effects of H2S on health are associated with the inhibition of inflammation and upregulation of prosurvival pathways. The powerful anti-inflammatory, cytoprotective, immunomodulating, and trophic effects of H2S on the vast majority of normal cells seem to be mediated mainly by its actions as an extremely versatile direct and indirect antioxidant and free radical scavenger. While the overall effects of H2S on transformed (i.e., malignant) cells can be characterized as pro-oxidant and pro-apoptotic, they contrast sharply with the cytoprotective effects on most normal cells. Future Directions: H2S has become a molecule of great interest, and several slow-releasing H2S prodrugs are currently under development. We believe that additional agents regulating H2S bioavailability will be developed during the next 10 years. Antioxid. Redox Signal. 17, 119–140. PMID:22432697

  6. Microbial control of hydrogen sulfide production

    SciTech Connect

    Montgomery, A.D.; Bhupathiraju, V.K.; Wofford, N.; McInerney, M.J.

    1995-12-31

    A sulfide-resistant strain of Thiobacillus denitrificans, strain F, prevented the accumulation of sulfide by Desulfovibrio desulfuricans when both organisms were grown in liquid medium. The wild-type strain of T. denitrificans did not prevent the accumulation of sulfide produced by D. desulfuricans. Strain F also prevented the accumulation of sulfide by a mixed population of sulfate-reducing bacteria enriched from an oil field brine. Fermentation balances showed that strain F stoichiometrically oxidized the sulfide produced by D. desulfuricans and the oil field brine enrichment to sulfate. The ability of a strain F to control sulfide production in an experimental system of cores and formation water from the Redfield, Iowa, natural gas storage facility was also investigated. A stable, sulfide-producing biofilm was established in two separate core systems, one of which was inoculated with strain F while the other core system (control) was treated in an identical manner, but was not inoculated with strain F. When formation water with 10 mM acetate and 5 mM nitrate was injected into both core systems, the effluent sulfide concentrations in the control core system ranged from 200 to 460 {mu}M. In the test core system inoculated with strain F, the effluent sulfide concentrations were lower, ranging from 70 to 110 {mu}M. In order to determine whether strain F could control sulfide production under optimal conditions for sulfate-reducing bacteria, the electron donor was changed to lactate and inorganic nutrients (nitrogen and phosphate sources) were added to the formation water. When nutrient-supplemented formation water with 3.1 mM lactate and 10 mM nitrate was used, the effluent sulfide concentrations of the control core system initially increased to about 3,800 {mu}M, and then decreased to about 1,100 {mu}M after 5 weeks. However, in the test core system inoculated with strain F, the effluent sulfide concentrations were much lower, 160 to 330 {mu}M.

  7. 40 CFR 721.10445 - 2-Propen-1-ol, reaction products with hydrogen sulfide, distn. residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.10445 2-Propen-1-ol, reaction products with...) The chemical substance identified as 2-propen-1-ol, reaction products with hydrogen sulfide, distn... 40 Protection of Environment 32 2013-07-01 2013-07-01 false 2-Propen-1-ol, reaction products...

  8. 40 CFR 721.10445 - 2-Propen-1-ol, reaction products with hydrogen sulfide, distn. residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.10445 2-Propen-1-ol, reaction products with...) The chemical substance identified as 2-propen-1-ol, reaction products with hydrogen sulfide, distn... 40 Protection of Environment 31 2014-07-01 2014-07-01 false 2-Propen-1-ol, reaction products...

  9. Determination of Hydrogen Sulfide in Fermentation Broths Containing SO21

    PubMed Central

    Acree, T. E.; Sonoff, Elisabeth P.; Splittstoesser, D. F.

    1971-01-01

    A procedure for the determination of hydrogen sulfide in fermentation broths containing up to 100 μg of SO2 per ml is described. The method involves the sparging of H2S from the broth into a cadmium hydroxide absorption solution, the formation of methylene blue from the absorbed sulfide, and the measuring of this color spectrophotometrically. The use of cadmium hydroxide instead of zinc acetate, the common absorbent, substantially reduced the interference of SO2 with the analysis. PMID:5111300

  10. Thermochemical hydrogen production via a cycle using barium and sulfur - Reaction between barium sulfide and water

    NASA Technical Reports Server (NTRS)

    Ota, K.; Conger, W. L.

    1977-01-01

    The reaction between barium sulfide and water, a reaction found in several sulfur based thermochemical cycles, was investigated kinetically at 653-866 C. Gaseous products were hydrogen and hydrogen sulfide. The rate determining step for hydrogen formation was a surface reaction between barium sulfide and water. An expression was derived for the rate of hydrogen formation.

  11. Hydrogen Sulfide Is a Signaling Molecule and a Cytoprotectant

    PubMed Central

    Shibuya, Norihiro; Kimura, Yuka

    2012-01-01

    Abstract Significance: Accumulating evidence shows that hydrogen sulfide may function as a signaling molecule in processes such as neuromodulation in the brain and smooth muscle relaxation in the vascular system. It also has a cytoprotective effect, since it can protect neurons and cardiac muscle from oxidative stress and ischemia-reperfusion injury, respectively. Hydrogen sulfide can also modulate inflammation, insulin release, and angiogenesis. Recent Advances: The regulation of the activity of 3-mercaptopyruvate sulfur transferase (3MST) along with cysteine aminotransferase (CAT), one of the H2S producing pathways, has been demonstrated. The production of H2S by the pathway, which is regulated by Ca2+ and facilitated by thioredoxin and dihydrolipoic acid, is also involved in H2S signaling as well as cytoprotection. Sulfur hydration of proteins by H2S has been proposed to modulate protein functions. H2S-sensitive fluorescent probes, which enable us to measure the localization of H2S in real time, have been developed. Critical Issues: The basal concentrations of H2S have recently been measured and found to be much lower than those initially reported. However, the concentration of H2S reached in stimulated cells, as well as the regulation of H2S producing enzymes is not well understood. It has been proposed that some of the effects of H2S on the regulation of enzymes and receptors might be explained through the properties of sulfane sulfur (S0), another form of active sulfur. Future Directions: The determination of H2S concentrations in activated cells using new methods including H2S-sensitive fluorescent probes, as well as the investigation of the effects of H2S using specific inhibitors, may provide better understanding of the physiological function of this molecule. Clarifying mechanisms of H2S activity may also facilitate the development of new therapeutic compounds. Antioxid. Redox Signal. 17, 45–57. PMID:22229673

  12. Micro-aeration for hydrogen sulfide removal from biogas

    NASA Astrophysics Data System (ADS)

    Duangmanee, Thanapong

    The presence of sulfur compounds (e.g. protein, sulfate, thiosulfate, sulfite, etc.) in the feed stream generates highly corrosive and odorous hydrogen sulfide during anaerobic digestion. The high sulfide level in the biogas stream is not only poisonous to many novel metal catalysts employed in thermo-catalytic processes but also reduces the quality of methane to produce renewable energy. This study used an innovative, low-maintenance, low-cost biological sulfide removal technology to remove sulfides simultaneously from both gas and liquid phase. ORP (Oxidation-Reduction-Potential) was used as the controlling parameter to precisely regulate air injection to the sulfide oxidizing unit (SOU). The microaeration technique provided just enough oxygen to partially oxidize sulfides to elemental sulfur without inhibiting methanogenesis. The SOU was equipped with a diffuser at the bottom for the dispersion of sulfide-laden biogas and injected air throughout the column. The SOU can be operated as a standalone unit or coupled with an anaerobic digester to simultaneously remove sulfide from the biogas and effluent. The integrated system was capable of reducing hydrogen sulfide in biogas from 2,450 to less than 2 ppmV with minimal sulfate production at the highest available sulfide loading rate of 0.24 kg/m3-day. More than 98% of sulfide removed was recovered as elemental sulfur. However, the standalone SOU was able to operate at high hydrogen sulfide loading of 1.46 kg/m 3-day at inlet sulfide concentration of 3000 ppmV and reduce the off-gas hydrogen sulfide concentrations to less than 10 ppmV. The experiment also revealed that the ORP controlled aeration was sensitive enough to prevent oxygen overdosing (dampening effect) during unexpected surges of aeration. Using generalized linear regression, a model predicting output H2S concentration based on input H2S concentrations, SOU medium heights, and biogas flow rates, was derived. With 95% confidence, output H2S concentration

  13. Removing hydrogen sulfide from geothermal gases: hypochlorite process reduces hydrogen sulfide emissions to acceptable levels. NTIS tech note

    SciTech Connect

    Not Available

    1981-10-01

    This citation summarizes a one-page announcement of technology available for utilization. A hypochlorite process has been proposed as an alternative to other methods for the removal of hydrogen sulfide from the exhaust gases of geothermal powerplants. An electrolytically-generated sodium hypochlorite solution converts the hydrogen sulfide to water, salt, and sulfur. The hypochlorite process appears to be less expensive than competing processes for most of the cases studied. ...FOR ADDITIONAL INFORMATION: Detailed information about the technology described may be obtained by ordering the NTIS report, order number: DOE/ER/1092-T7, price code: PC A03.

  14. Endogenous Hydrogen Sulfide Production Is Essential for Dietary Restriction Benefits

    PubMed Central

    Hine, Christopher; Harputlugil, Eylul; Zhang, Yue; Ruckenstuhl, Christoph; Lee, Byung Cheon; Brace, Lear; Longchamp, Alban; Trevino-Villarreal, Jose H.; Mejia, Pedro; Ozaki, C. Keith; Wang, Rui; Gladyshev, Vadim N.; Madeo, Frank; Mair, William B.; Mitchell, James R.

    2014-01-01

    Summary Dietary restriction (DR) without malnutrition encompasses numerous regimens with overlapping benefits including longevity and stress resistance, but unifying nutritional and molecular mechanisms remain elusive. In a mouse model of DR-mediated stress resistance, we found that sulfur amino acid (SAA) restriction increased expression of the transsulfuration pathway (TSP) enzyme cystathionine γ-lyase (CGL), resulting in increased hydrogen sulfide (H2S) production and protection from hepatic ischemia reperfusion injury. SAA supplementation, mTORC1 activation, or chemical/genetic CGL inhibition reduced H2S production and blocked DR-mediated stress resistance. In vitro, the mitochondrial protein SQR was required for H2S-mediated protection during nutrient/oxygen deprivation. Finally, TSP-dependent H2S production was observed in yeast, worm, fruit fly and rodent models of DR-mediated longevity. Together, these data are consistent with evolutionary conservation of TSP-mediated H2S as a novel mediator of DR benefits with broad implications for clinical translation. PMID:25542313

  15. Endogenous hydrogen sulfide production is essential for dietary restriction benefits.

    PubMed

    Hine, Christopher; Harputlugil, Eylul; Zhang, Yue; Ruckenstuhl, Christoph; Lee, Byung Cheon; Brace, Lear; Longchamp, Alban; Treviño-Villarreal, Jose H; Mejia, Pedro; Ozaki, C Keith; Wang, Rui; Gladyshev, Vadim N; Madeo, Frank; Mair, William B; Mitchell, James R

    2015-01-15

    Dietary restriction (DR) without malnutrition encompasses numerous regimens with overlapping benefits including longevity and stress resistance, but unifying nutritional and molecular mechanisms remain elusive. In a mouse model of DR-mediated stress resistance, we found that sulfur amino acid (SAA) restriction increased expression of the transsulfuration pathway (TSP) enzyme cystathionine γ-lyase (CGL), resulting in increased hydrogen sulfide (H2S) production and protection from hepatic ischemia reperfusion injury. SAA supplementation, mTORC1 activation, or chemical/genetic CGL inhibition reduced H2S production and blocked DR-mediated stress resistance. In vitro, the mitochondrial protein SQR was required for H2S-mediated protection during nutrient/oxygen deprivation. Finally, TSP-dependent H2S production was observed in yeast, worm, fruit fly, and rodent models of DR-mediated longevity. Together, these data are consistent with evolutionary conservation of TSP-mediated H2S as a mediator of DR benefits with broad implications for clinical translation. PAPERFLICK: PMID:25542313

  16. Biochemistry and therapeutic potential of hydrogen sulfide - reality or fantasy?

    PubMed

    Brodek, Paulina; Olas, Beata

    2016-01-01

    Hydrogen sulfide (H2S) is a signaling gasotransmitter, involved in different physiological and pathological processes. H2S regulates apoptosis, the cell cycle and oxidative stress. H2S exerts powerful effects on smooth muscle cells, endothelial cells, inflammatory cells, endoplasmic reticulum, mitochondria and nuclear transcription factors. H2S is known to be produced from L-cysteine, D-cysteine and L-homocysteine in the body. Four enzymes - cystathionine-b synthase (CBS), mercaptopyruvate sulfurtransferase (3-MST), cystathionine-γ lyase (CSE) and cysteine aminotransferase (CAT) - are involved in H2S synthesis. The biosynthetic pathway for the production of H2S from D-cysteine involves 3-MST and D-amino acid oxidase (DAO). The therapeutic potential of H2S is not clear. However, recently results have demonstrated that H2S has protective action for ischemic heart disease or hypertension, and protects against ischemia of the brain. This review summarizes the negative and the positive roles of H2S in various biological systems, for example the cardiovascular system and nervous system. We also discuss the function of classical, therapeutic and natural (for example garlic) donors of H2S in pre-clinical and clinical studies. PMID:27516569

  17. Hydrogen evolution from water through metal sulfide reactions.

    PubMed

    Saha, Arjun; Raghavachari, Krishnan

    2013-11-28

    Transition metal sulfides play an important catalytic role in many chemical reactions. In this work, we have conducted a careful computational study of the structures, electronic states, and reactivity of metal sulfide cluster anions M2S(X)(-) (M = Mo and W, X = 4-6) using density functional theory. Detailed structural analysis shows that these metal sulfide anions have ground state isomers with two bridging sulfide bonds, notably different in some cases from the corresponding oxides with the same stoichiometry. The chemical reactivity of these metal sulfide anions with water has also been carried out. After a thorough search on the reactive potential energy surface, we propose several competitive, energetically favorable, reaction pathways that lead to the evolution of hydrogen. Selectivity in the initial water addition and subsequent hydrogen migration are found to be the key steps in all the proposed reaction channels. Initial adsorption of water is most favored involving a terminal metal sulfur bond in Mo2S4(-) isomers whereas the most preferred orientation for water addition involves a bridging metal sulfur bond in the case of W2S4(-) and M2S5(-) isomers. In all the lowest energy H2 elimination steps, the interacting hydrogen atoms involve a metal hydride and a metal hydroxide (or thiol) group. We have also observed a higher energy reaction channel where the interacting hydrogen atoms in the H2 elimination step involve a thiol (-SH) and a hydroxyl (-OH) group. For all the reaction pathways, the Mo sulfide reactions involve a higher barrier than the corresponding W analogues. We observe for both metals that reactions of M2S4(-) and M2S5(-) clusters with water to liberate H2 are exothermic and involve modest free energy barriers. However, the reaction of water with M2S6(-) is highly endothermic with a considerable barrier due to saturation of the local bonding environment. PMID:24289348

  18. Estimation of bacterial hydrogen sulfide production in vitro

    PubMed Central

    Basic, Amina; Blomqvist, Susanne; Carlén, Anette; Dahlén, Gunnar

    2015-01-01

    Oral bacterial hydrogen sulfide (H2S) production was estimated comparing two different colorimetric methods in microtiter plate format. High H2S production was seen for Fusobacterium spp., Treponema denticola, and Prevotella tannerae, associated with periodontal disease. The production differed between the methods indicating that H2S production may follow different pathways. PMID:26130377

  19. Transformation of two chlorinated fumigants by hydrogen sulfide species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chlorinated fumigants chloropicrin and 1,3-dichloropropene (1,3-D) are extensively used to control soilborne pests. Transformation of these two pesticides by hydrogen sulfide species (H2S and HS-) was examined in well-defined anoxic aqueous solutions. Chloropicrin underwent an extremely rapid re...

  20. Estimation of bacterial hydrogen sulfide production in vitro.

    PubMed

    Basic, Amina; Blomqvist, Susanne; Carlén, Anette; Dahlén, Gunnar

    2015-01-01

    Oral bacterial hydrogen sulfide (H2S) production was estimated comparing two different colorimetric methods in microtiter plate format. High H2S production was seen for Fusobacterium spp., Treponema denticola, and Prevotella tannerae, associated with periodontal disease. The production differed between the methods indicating that H2S production may follow different pathways. PMID:26130377

  1. Hydrogen sulfide release from dairy manure storages containing gypsum bedding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recycled gypsum products can provide a cost-effective bedding alternative for dairy producers. Manufacturers report reduced odors, moisture and bacteria in the stall environment when compared to traditional bedding. Gypsum provides a sulfate source that can be converted to hydrogen sulfide under ana...

  2. DETERMINATION OF HYDROGEN SULFIDE IN REFINERY FUEL GASES

    EPA Science Inventory

    Several widely employed test methods for the iodimetric measurement of hydrogen sulfide in refinery fuel gases are shown to suffer from serious thiol interferences. An absorbing solution consisting of 0.16 M cadmium sulfate/sulfuric acid at pH 3.0 is shown to be effective for the...

  3. Nitrite as an antidote for acute hydrogen sulfide intoxication

    SciTech Connect

    Beck, J.F.; Bradbury, C.M.; Connors, A.J.; Donini, J.C.

    1981-11-01

    The detoxification of hydrogen sulfide (H/sub 2/S) by a heme catalyzed oxidation was examined as part of an on-going study of H/sub 2/S toxicity. Interlocking O/sub 2/ absorption and sulfide depletion data indicate that both oxyhemoglobin and methemoglobin are effective catalytic agents. Although the latter is more efficacious, the life time of excess sulfide in the presence of oxygen and either of the above is of the order of minutes. It has also been established that the formation of methemoglobin following nitrite administration occurs preferentially under oxygen poor conditions. Under an atmospheric or oxygen enriched environment, which favors sulfide depletion, the nitrite retards sulfide oxidation. Thus nitrite as an antidote for acute H/sub 2/S intoxication can only be effective within the first few minutes after the exposure, at which time resuscitation and/or ventilation of the victim is likely to produce conditions in which the nitrite actually slows sulfide removal.

  4. Biology and therapeutic potential of hydrogen sulfide and hydrogen sulfide-releasing chimeras

    PubMed Central

    Kashfi, Khosrow; Olson, Kenneth R.

    2012-01-01

    Hydrogen sulfide, H2S, is a colorless gas with a strong odor that until recently was only considered to be a toxic environmental pollutant with little or no physiological significance. However, the past few years have demonstrated its role in many biological systems and it is becoming increasingly clear that H2S is likely to join nitric oxide (NO) and carbon monoxide (CO) as a major player in mammalian biology. In this review, we have provided an overview of the chemistry and biology of H2S and have summarized the chemistry and biological activity of some natural and synthetic H2S-donating compounds. The naturally occurring compounds discussed include, garlic, sulforaphane, erucin, and iberin. The synthetic H2S donors reviewed include, GYY4137; cysteine analogs; S-propyl cysteine, S-allyl cysteine, S-propargyl cysteine, and N-acetyl cysteine. Dithiolethione and its NSAID and other chimeras such as, L-DOPA, sildenafil, aspirin, diclofenac, naproxen, ibuprofen, indomethacin, and mesalamine have also been reviewed in detail. The newly reported NOSH-aspirin that releases both NO and H2S has also been discussed. PMID:23103569

  5. Endogenously produced hydrogen sulfide is involved in porcine oocyte maturation in vitro.

    PubMed

    Nevoral, Jan; Žalmanová, Tereza; Zámostná, Kateřina; Kott, Tomáš; Kučerová-Chrpová, Veronika; Bodart, Jean-Francois; Gelaude, Armance; Procházka, Radek; Orsák, Matyáš; Šulc, Miloslav; Klein, Pavel; Dvořáková, Markéta; Weingartová, Ivona; Víghová, Aurélia; Hošková, Kristýna; Krejčová, Tereza; Jílek, František; Petr, Jaroslav

    2015-12-01

    Hydrogen sulfide, one of three known gasotransmitters, is involved in physiological processes, including reproductive functions. Oocyte maturation and surrounding cumulus cell expansion play an essential role in female reproduction and subsequent embryonic development. Although the positive effects of exogenous hydrogen sulfide on maturing oocytes are well known, the role of endogenous hydrogen sulfide, which is physiologically released by enzymes, has not yet been described in oocytes. In this study, we observed the presence of Cystathionine β-Synthase (CBS), Cystathionine γ-Lyase (CTH) and 3-Mercaptopyruvate Sulfurtransferase (3-MPST), hydrogen sulfide-releasing enzymes, in porcine oocytes. Endogenous hydrogen sulfide production was detected in immature and matured oocytes as well as its requirement for meiotic maturation. Individual hydrogen sulfide-releasing enzymes seem to be capable of substituting for each other in hydrogen sulfide production. However, meiosis suppression by inhibition of all hydrogen sulfide-releasing enzymes is not irreversible and this effect is a result of M-Phase/Maturation Promoting Factor (MPF) and Mitogen-Activated Protein Kinase (MAPK) activity inhibition. Futhermore, cumulus expansion expressed by hyaluronic acid (HA) production is affected by the inhibition of hydrogen sulfide production. Moreover, quality changes of the expanded cumuli are indicated. These results demonstrate hydrogen sulfide involvement in oocyte maturation as well as cumulus expansion. As such, hydrogen sulfide appears to be an important cell messenger during mammalian oocyte meiosis and adequate cumulus expansion. PMID:26456342

  6. Interactions between oxygen homeostasis, food availability, and hydrogen sulfide signaling

    PubMed Central

    Iranon, Nicole N.; Miller, Dana L.

    2012-01-01

    The ability to sense and respond to stressful conditions is essential to maintain organismal homeostasis. It has long been recognized that stress response factors that improve survival in changing conditions can also influence longevity. In this review, we discuss different strategies used by animals in response to decreased O2 (hypoxia) to maintain O2 homeostasis, and consider interactions between hypoxia responses, nutritional status, and H2S signaling. O2 is an essential environmental nutrient for almost all metazoans as it plays a fundamental role in development and cellular metabolism. However, the physiological response(s) to hypoxia depend greatly on the amount of O2 available. Animals must sense declining O2 availability to coordinate fundamental metabolic and signaling pathways. It is not surprising that factors involved in the response to hypoxia are also involved in responding to other key environmental signals, particularly food availability. Recent studies in mammals have also shown that the small gaseous signaling molecule hydrogen sulfide (H2S) protects against cellular damage and death in hypoxia. These results suggest that H2S signaling also integrates with hypoxia response(s). Many of the signaling pathways that mediate the effects of hypoxia, food deprivation, and H2S signaling have also been implicated in the control of lifespan. Understanding how these pathways are coordinated therefore has the potential to reveal new cellular and organismal homeostatic mechanisms that contribute to longevity assurance in animals. PMID:23233860

  7. Hydrogen Sulfide as a Potential Therapeutic Target in Fibrosis

    PubMed Central

    Zhang, Shufang; Pan, Chuli; Zhou, Feifei; Yuan, Zhi; Wang, Huiying; Cui, Wei; Zhang, Gensheng

    2015-01-01

    Hydrogen sulfide (H2S), produced endogenously by the activation of two major H2S-generating enzymes (cystathionine β-synthase and cystathionine γ-lyase), plays important regulatory roles in different physiologic and pathologic conditions. The abnormal metabolism of H2S is associated with fibrosis pathogenesis, causing damage in structure and function of different organs. A number of in vivo and in vitro studies have shown that both endogenous H2S level and the expressions of H2S-generating enzymes in plasma and tissues are significantly downregulated during fibrosis. Supplement with exogenous H2S mitigates the severity of fibrosis in various experimental animal models. The protective role of H2S in the development of fibrosis is primarily attributed to its antioxidation, antiapoptosis, anti-inflammation, proangiogenesis, and inhibition of fibroblasts activities. Future studies might focus on the potential to intervene fibrosis by targeting the pathway of endogenous H2S-producing enzymes and H2S itself. PMID:26078809

  8. Physiological Importance of Hydrogen Sulfide: Emerging Potent Neuroprotector and Neuromodulator.

    PubMed

    Panthi, Sandesh; Chung, Hyung-Joo; Jung, Junyang; Jeong, Na Young

    2016-01-01

    Hydrogen sulfide (H2S) is an emerging neuromodulator that is considered to be a gasotransmitter similar to nitrogen oxide (NO) and carbon monoxide (CO). H2S exerts universal cytoprotective effects and acts as a defense mechanism in organisms ranging from bacteria to mammals. It is produced by the enzymes cystathionine β-synthase (CBS), cystathionine ϒ-lyase (CSE), 3-mercaptopyruvate sulfurtransferase (MST), and D-amino acid oxidase (DAO), which are also involved in tissue-specific biochemical pathways for H2S production in the human body. H2S exerts a wide range of pathological and physiological functions in the human body, from endocrine system and cellular longevity to hepatic protection and kidney function. Previous studies have shown that H2S plays important roles in peripheral nerve regeneration and degeneration and has significant value during Schwann cell dedifferentiation and proliferation but it is also associated with axonal degradation and the remyelination of Schwann cells. To date, physiological and toxic levels of H2S in the human body remain unclear and most of the mechanisms of action underlying the effects of H2S have yet to be fully elucidated. The primary purpose of this review was to provide an overview of the role of H2S in the human body and to describe its beneficial effects. PMID:27413423

  9. Physiological Importance of Hydrogen Sulfide: Emerging Potent Neuroprotector and Neuromodulator

    PubMed Central

    Chung, Hyung-Joo

    2016-01-01

    Hydrogen sulfide (H2S) is an emerging neuromodulator that is considered to be a gasotransmitter similar to nitrogen oxide (NO) and carbon monoxide (CO). H2S exerts universal cytoprotective effects and acts as a defense mechanism in organisms ranging from bacteria to mammals. It is produced by the enzymes cystathionine β-synthase (CBS), cystathionine ϒ-lyase (CSE), 3-mercaptopyruvate sulfurtransferase (MST), and D-amino acid oxidase (DAO), which are also involved in tissue-specific biochemical pathways for H2S production in the human body. H2S exerts a wide range of pathological and physiological functions in the human body, from endocrine system and cellular longevity to hepatic protection and kidney function. Previous studies have shown that H2S plays important roles in peripheral nerve regeneration and degeneration and has significant value during Schwann cell dedifferentiation and proliferation but it is also associated with axonal degradation and the remyelination of Schwann cells. To date, physiological and toxic levels of H2S in the human body remain unclear and most of the mechanisms of action underlying the effects of H2S have yet to be fully elucidated. The primary purpose of this review was to provide an overview of the role of H2S in the human body and to describe its beneficial effects. PMID:27413423

  10. 30 CFR 250.490 - Hydrogen sulfide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Definitions. Terms used in this section have the following meanings: Facility means a vessel, a structure, or... structure(s), and the height of all such facilities and structures. You must equip the flare outlet with an..., reinforcing pads) which can be invaded by atomic hydrogen when H2S is present....

  11. Health assessment document for hydrogen sulfide: review draft

    SciTech Connect

    Ammann, H.M.; Bradow, F.; Fennell, D.; Griffin, R.; Kearney, B.

    1986-08-01

    Hydrogen sulfide is a highly toxic gas which is immediately lethal in concentrations greater than 2000 ppm. The toxic end-point is due to anoxia to brain and heart tissues which results from its interaction with the celluar enzyme cytochrome oxidase. Inhibition of the enzyme halts oxidative metabolism which is the primary energy source for cells. A second toxic end-point is the irritative effect of hydrogen sulfide on mucous membranes, particularly edema at sublethal doses (250 to 500 ppm) in which sufficient exposure occurs before conciousness is lost. Recovered victims of exposure report neurologic symptoms such as headache, fatigue, irritability, vertigo, and loss of libido. Long-term effects are similar to those caused by anoxia due to other toxic agents like CO, and probably are not due to specific H/sub 2/S effects. H/sub 2/S is not a cumulative poison. No mutagenic, carcinogenic, reproductive, or teratogenic effects have been reported in the literature.

  12. Hydrogen evolution from water through metal sulfide reactions

    SciTech Connect

    Saha, Arjun; Raghavachari, Krishnan

    2013-11-28

    Transition metal sulfides play an important catalytic role in many chemical reactions. In this work, we have conducted a careful computational study of the structures, electronic states, and reactivity of metal sulfide cluster anions M{sub 2}S{sub X}{sup −} (M = Mo and W, X = 4–6) using density functional theory. Detailed structural analysis shows that these metal sulfide anions have ground state isomers with two bridging sulfide bonds, notably different in some cases from the corresponding oxides with the same stoichiometry. The chemical reactivity of these metal sulfide anions with water has also been carried out. After a thorough search on the reactive potential energy surface, we propose several competitive, energetically favorable, reaction pathways that lead to the evolution of hydrogen. Selectivity in the initial water addition and subsequent hydrogen migration are found to be the key steps in all the proposed reaction channels. Initial adsorption of water is most favored involving a terminal metal sulfur bond in Mo{sub 2}S{sub 4}{sup −} isomers whereas the most preferred orientation for water addition involves a bridging metal sulfur bond in the case of W{sub 2}S{sub 4}{sup −} and M{sub 2}S{sub 5}{sup −} isomers. In all the lowest energy H{sub 2} elimination steps, the interacting hydrogen atoms involve a metal hydride and a metal hydroxide (or thiol) group. We have also observed a higher energy reaction channel where the interacting hydrogen atoms in the H{sub 2} elimination step involve a thiol (–SH) and a hydroxyl (–OH) group. For all the reaction pathways, the Mo sulfide reactions involve a higher barrier than the corresponding W analogues. We observe for both metals that reactions of M{sub 2}S{sub 4}{sup −} and M{sub 2}S{sub 5}{sup −} clusters with water to liberate H{sub 2} are exothermic and involve modest free energy barriers. However, the reaction of water with M{sub 2}S{sub 6}{sup −} is highly endothermic with a considerable

  13. Proceedings of the Hydrogen Sulfide Health Research and Risk Assessment Symposium October 31-November 2, 2000.

    PubMed

    Woodall, George M; Smith, Roy L; Granville, Geoff C

    2005-10-01

    The Hydrogen Sulfide Health Research and Risk Assessment Symposium came about for several reasons: (1) increased interest by the U.S. Environmental Protection Agency (EPA) and several state agencies in regulating hydrogen sulfide (H2S); (2) uncertainty about ambient exposure to H2S; (3) confusion and disagreement in the literature about possible health effects at low-level exposures; and (4) presentation of results of a series of recent animal bioassays. The American Petroleum Institute (API) proposed this symposium and the EPA became an early co-sponsor, with the Chemical Industry Institute of Toxicology (CIIT) and the American Forest & Paper Association (AF&PA) contributing expertise and funding assistance. The topics covered in this symposium included Animal Research, Human Research, Mode-of-Action and Dosimetry Issues, Environmental Exposure and Monitoring, Assessment and Regulatory Issues, and closed with a panel discussion. The overall goals of the symposium were to: gather together experts in H2S health effects research and individuals from governmental agencies charged with protecting the public health, provide a venue for reporting of recent research findings, identify gaps in the current information, and outline new research directions and promote research collaboration. During the course of the symposium, presenters provided comprehensive reviews of the state of knowledge for each topic. Several new research proposals discussed at the symposium have subsequently been initiated. This report provides a summary of the talks, poster presentations, and panel discussions that occurred at the Hydrogen Sulfide Health and Risk Assessment Symposium. PMID:16033755

  14. ISE Analysis of Hydrogen Sulfide in Cigarette Smoke

    NASA Astrophysics Data System (ADS)

    Li, Guofeng; Polk, Brian J.; Meazell, Liz A.; Hatchett, David W.

    2000-08-01

    Many advanced undergraduate analytical laboratory courses focus on exposing students to various modern instruments. However, students rarely have the opportunity to construct their own analytical tools for solving practical problems. We designed an experiment in which students are required to build their own analytical module, a potentiometric device composed of a Ag/AgCl reference electrode, a Ag/Ag2S ion selective electrode (ISE), and a pH meter used as voltmeter, to determine the amount of hydrogen sulfide in cigarette smoke. Very simple techniques were developed for constructing these electrodes. Cigarette smoke is collected by a gas washing bottle into a 0.1 M NaOH solution. The amount of sulfide in the cigarette smoke solution is analyzed by standard addition of sulfide solution while monitoring the response of the Ag/Ag2S ISE. The collected data are further evaluated using the Gran plot technique to determine the concentration of sulfide in the cigarette smoke solution. The experiment has been successfully incorporated into the lab course Instrumental Analysis at Georgia Institute of Technology. Students enjoy the idea of constructing an analytical tool themselves and applying their classroom knowledge to solve real-life problems. And while learning electrochemistry they also get a chance to visualize the health hazard imposed by cigarette smoking.

  15. Atomic layer deposition of aluminum sulfide thin films using trimethylaluminum and hydrogen sulfide

    SciTech Connect

    Sinha, Soumyadeep; Sarkar, Shaibal K.; Mahuli, Neha

    2015-01-15

    Sequential exposures of trimethylaluminum and hydrogen sulfide are used to deposit aluminum sulfide thin films by atomic layer deposition (ALD) in the temperature ranging from 100 to 200 °C. Growth rate of 1.3 Å per ALD cycle is achieved by in-situ quartz crystal microbalance measurements. It is found that the growth rate per ALD cycle is highly dependent on the purging time between the two precursors. Increased purge time results in higher growth rate. Surface limited chemistry during each ALD half cycle is studied by in-situ Fourier transformed infrared vibration spectroscopy. Time of flight secondary ion-mass spectroscopy measurement is used to confirm elemental composition of the deposited films.

  16. Targeting hydrogen sulfide as a promising therapeutic strategy for atherosclerosis.

    PubMed

    Xu, Suowen; Liu, Zhiping; Liu, Peiqing

    2014-03-15

    Physiological concentrations of nitric oxide (NO) and carbon monoxide (CO) have multiple protective effects in the cardiovascular system. Recent studies have implicated hydrogen sulfide (H2S) as a new member of vasculoprotective gasotransmitter family, behaving similarly to NO and CO. H2S has been demonstrated to inhibit multiple key aspects of atherosclerosis, including atherogenic modification of LDL, monocytes adhesion to the endothelial cells, macrophage-derived foam cell formation and inflammation, smooth muscle cell proliferation, neointimal hyperplasia, vascular calcification, and thrombogenesis. H2S also decreases plasma homocysteine levels in experimental animal models. In the human body, H2S production is predominantly catalyzed by cystathionine-β-synthase (CBS) and cystathionine γ-lyase (CSE). CSE is the primary H2S-producing enzyme in the vasculature. Growing evidence suggests that atherosclerosis is associated with vascular CSE/H2S deficiency and that H2S supplementation by exogenous H2S donors (such as NaHS and GYY4137) attenuates, and H2S synthesis suppression by inhibitors (such as D, L-propargylglycine) aggravates the development of atherosclerotic plaques. However, it remains elusive whether CSE deficiency plays a causative role in atherosclerosis. A recent study (Circulation. 2013; 127: 2523-2534) demonstrates that decreased endogenous H2S production by CSE genetic deletion accelerates atherosclerosis in athero-prone ApoE-/- mice, pinpointing that endogenously produced H2S by CSE activation may be of benefit in the prevention and treatment of atherosclerosis. This study will facilitate the development of H2S-based pharmaceuticals with therapeutic applications in atherosclerosis-related cardiovascular diseases. PMID:24491853

  17. Hydrogen sulfide improves neural function in rats following cardiopulmonary resuscitation

    PubMed Central

    LIN, JI-YAN; ZHANG, MIN-WEI; WANG, JIN-GAO; LI, HUI; WEI, HONG-YAN; LIU, RONG; DAI, GANG; LIAO, XIAO-XING

    2016-01-01

    The alleviation of brain injury is a key issue following cardiopulmonary resuscitation (CPR). Hydrogen sulfide (H2S) is hypothesized to be involved in the pathophysiological process of ischemia-reperfusion injury, and exerts a protective effect on neurons. The aim of the present study was to investigate the effects of H2S on neural functions following cardiac arrest (CA) in rats. A total of 60 rats were allocated at random into three groups. CA was induced to establish the model and CPR was performed after 6 min. Subsequently, sodium hydrosulfide (NaHS), hydroxylamine or saline was administered to the rats. Serum levels of H2S, neuron-specific enolase (NSE) and S100β were determined following CPR. In addition, neurological deficit scoring (NDS), the beam walking test (BWT), prehensile traction test and Morris water maze experiment were conducted. Neuronal apoptosis rates were detected in the hippocampal region following sacrifice. After CPR, as the H2S levels increased or decreased, the serum NSE and S100β concentrations decreased or increased, respectively (P<0.0w. The NDS results of the NaHS group were improved compared with those of the hydroxylamine group at 24 h after CPR (P<0.05). In the Morris water maze experiment, BWT and prehensile traction test the animals in the NaHS group performed best and rats in the hydroxylamine group performed worst. At day 7, the apoptotic index and the expression of caspase-3 were reduced in the hippocampal CA1 region, while the expression of Bcl-2 increased in the NaHS group; and results of the hydroxylamine group were in contrast. Therefore, the results of the present study indicate that H2S is able to improve neural function in rats following CPR. PMID:26893650

  18. Role of hydrogen sulfide in skeletal muscle biology and metabolism

    PubMed Central

    Veeranki, Sudhakar; Tyagi, Suresh C.

    2014-01-01

    Hydrogen sulfide (H2S) is a novel endogenous gaseous signal transducer (gasotransmittor). Its emerging role in multiple facets of inter- and intra-cellular signaling as a metabolic, inflammatory, neuro and vascular modulator has been increasingly realized. Although H2S is known for its effects as an anti-hypertensive, anti-inflammatory and anti-oxidant molecule, the relevance of these effects in skeletal muscle biology during health and during metabolic syndromes is unclear. H2S has been implicated in vascular relaxation and vessel tone enhancement, which might lead to mitigation of vascular complications caused by the metabolic syndromes. Metabolic complications may also lead to mitochondrial remodeling by interfering with fusion and fission, therefore, leading to mitochondrial mitophagy and skeletal muscle myopathy. Mitochondrial protection by H2S enhancing treatments may mitigate deterioration of muscle function during metabolic syndromes. In addition, H2S might upregulate uncoupling proteins and might also cause browning of white fat, resulting in suppression of imbalanced cytokine signaling caused by abnormal fat accumulation. Likewise, as a source for H+ ions, it has the potential to augment anaerobic ATP synthesis. However, there is a need for studies to test these putative H2S benefits in different patho-physiological scenarios before its full-fledged usage as a therapeutic molecule. The present review highlights current knowledge with regard to exogenous and endogenous H2S roles in skeletal muscle biology, metabolism, exercise physiology and related metabolic disorders, such as diabetes and obesity, and also provides future directions. PMID:25461301

  19. Biofiltration for control of carbon disulfide and hydrogen sulfide vapors

    SciTech Connect

    Fucich, W.J.; Yang, Y.; Togna, A.P.; Alibeckoff, D.

    1997-12-31

    A full-scale biofiltration system has been installed to control carbon disulfide (CS{sub 2}) and hydrogen sulfide (H{sub 2}S) vapor emissions at Nylonge Corporation (Nylonge), a cellulose sponge manufacturing facility in Elyria, Ohio. Both CS{sub 2} and H{sub 2}S are toxic and odorous. In addition, the US Environmental Protection Agency (EPA) has classified CS{sub 2} as one of the 189 hazardous air pollutants listed under Title 3 of the 1990 Clean Air Act Amendments. Nylonge evaluated several technologies to control CS{sub 2} and H{sub 2}S vapor emissions. After careful consideration of both removal efficiency requirements and cost, Nylonge selected biological treatment as the best overall technology for their application. A biological based technology has been developed to effectively degrade CS{sub 2} and H{sub 2}S vapors. Biofiltration is a process that aerobically converts particular vapor phase compounds into CO{sub 2}, biomass, and water vapor. In this process, microorganisms, in the form of a moistened biofilm layer, immobilized on an organic packing material, such as compost, peat, wood chips, etc., are used to catalyze beneficial chemical reactions. As a contaminated vapor stream passes through the biofilter bed, the contaminants are transferred to the biofilm and are degraded by the microorganisms. This paper describes the CS{sub 2} and H{sub 2}S biofiltration process and the full-scale biofilter system installed at Nylonge`s facility. The system was started in October of 1995, and is designed to treat a 30,000 CFM exhaust stream contaminated with CS{sub 2} and H{sub 2}S vapors.

  20. Utilization of Hyperbaric Oxygen Therapy and Induced Hypothermia After Hydrogen Sulfide Exposure

    PubMed Central

    Asif, Mir J.; Exline, Matthew C.

    2013-01-01

    Hydrogen sulfide is a toxic gas produced as a byproduct of organic waste and many industrial processes. Hydrogen sulfide exposure symptoms may vary from mild (dizziness, headaches, nausea) to severe lactic acidosis via its inhibition of oxidative phosphorylation, leading to cardiac arrhythmias and death. Treatment is generally supportive. We report the case of a patient presenting with cardiac arrest secondary to hydrogen sulfide exposure treated with both hyperbaric oxygen therapy and therapeutic hypothermia with great improvement in neurologic function. PMID:22004989

  1. Combined adsorption and oxidation mechanisms of hydrogen sulfide on granulated coal ash.

    PubMed

    Asaoka, Satoshi; Hayakawa, Shinjiro; Kim, Kyung-Hoi; Takeda, Kazuhiko; Katayama, Misaki; Yamamoto, Tamiji

    2012-07-01

    Hydrogen sulfide is highly toxic to benthic organisms and may cause blue tide with depletion of dissolved oxygen in water column due to its oxidation. The purpose of this study is to reveal the combined adsorption and oxidation mechanisms of hydrogen sulfide on granulated coal ash that is a byproduct from coal electric power stations to apply the material as an adsorbent for hydrogen sulfide in natural fields. Sulfur species were identified in both liquid and solid phases to discuss removal mechanisms of the hydrogen sulfide with the granulated coal ash. Batch experiments revealed that hydrogen sulfide decreased significantly by addition of the granulated coal ash and simultaneously the sulfate ion concentration increased. X-ray absorption fine structure analyses showed hydrogen sulfide was adsorbed onto the granulated coal ash and successively oxidized by manganese oxide (III) contained in the material. The oxidation reaction of hydrogen sulfide was coupling with reduction of manganese oxide. On the other hand, iron containing in the granulated coal ash was not involved in hydrogen sulfide oxidation, because the major species of iron in the granulated coal ash was ferrous iron that is not easily reduced by hydrogen sulfide. PMID:22487226

  2. GYY4137, a novel hydrogen sulfide-releasing molecule, likely protects against high glucose-induced cytotoxicity by activation of the AMPK/mTOR signal pathway in H9c2 cells.

    PubMed

    Wei, Wen-Bin; Hu, Xun; Zhuang, Xiao-Dong; Liao, Li-Zhen; Li, Wei-Dong

    2014-04-01

    Diabetic cardiomyopathy (DCM) has become a major cause of diabetes-related morbidity and mortality. Increasing evidences have proved that hydrogen sulfide (H2S) fulfills a positive role in regulating diabetic myocardial injury. The present study was designed to determine whether GYY4137, a novel H2S-releasing molecule, protected H9c2 cells against high glucose (HG)-induced cytotoxicity by activation of the AMPK/mTOR signal pathway. H9c2 cells were incubated in normal glucose (5.5 mM), 22, 33, and 44 mM glucose for 24 h to mimic the hyperglycemia in DCM in vitro. Then we added 50, 100, and 200 μM GYY4137, and measured the cell viability, lactate dehydrogenase (LDH) enzyme activity, and mitochondrial membrane potential (MMP). 0.5 mM 5-amino-4-imidazole-carboxamide riboside (AICAR, an AMPK activator) and 1 mM adenine 9-β-D-arabinofuranoside (Ara-A, an AMPK inhibitor) were used to identity whether the AMPK/mTOR signal pathway was involved in GYY4137-mediated cardioprotection. We demonstrated that HG decreased cell viability and increased LDH enzyme activity in a concentration-dependent manner. 33 mM HG treatment for 24 h was chosen as our model group for further study. Both 100 and 200 μM GYY4137 treatments significantly attenuated HG-induced cell viability decrement, LDH enzyme activity increase, and MMP collapse. AICAR had similar effects to GYY4137 treatment while Ara-A attenuated GYY4137-mediated cardioprotection. Importantly, both GYY4137 and AICAR increased AMPK phosphorylation and decreased mTOR phosphorylation compared with the HG model group while Ara-A attenuated GYY4137-mediated AMPK phosphorylation increase and mTOR phosphorylation decrement. In conclusion, we propose that GYY4137 likely protects against HG-induced cytotoxicity by activation of the AMPK/mTOR signal pathway in H9c2 cells. PMID:24374752

  3. Ammonia, hydrogen sulfide, carbon dioxide and particulate matter emissions from California high-rise layer houses

    NASA Astrophysics Data System (ADS)

    Lin, X.-J.; Cortus, E. L.; Zhang, R.; Jiang, S.; Heber, A. J.

    2012-01-01

    Ammonia and hydrogen sulfide are hazardous substances that are regulated by the U.S. Environmental Protection Agency through community right-to-know legislation (EPCRA, EPA, 2011). The emissions of ammonia and hydrogen sulfide from large commercial layer facilities are of concern to legislators and nearby neighbors. Particulate matter (PM 10 and PM 2.5) released from layer houses are two of seven criteria pollutants for which EPA has set National Ambient Air Quality Standards as required by the Clean Air Act. Therefore, it is important to quantify the baseline emissions of these pollutants. The emissions of ammonia, hydrogen sulfide, carbon dioxide and PM from two California high-rise layer houses were monitored for two years from October 2007 to October 2009. Each house had 32,500 caged laying hens. The monitoring site was setup in compliance with a U.S. EPA-approved quality assurance project plan. The results showed the average daily mean emission rates of ammonia, hydrogen sulfide and carbon dioxide were 0.95 ± 0.67 (standard deviation) g d -1 bird -1, 1.27 ± 0.78 mg d -1 bird -1 and 91.4 ± 16.5 g d -1 bird -1, respectively. The average daily mean emission rates of PM 2.5, PM 10 and total suspended particulate (TSP) were 5.9 ± 12.6, 33.4 ± 27.4, and 78.0 ± 42.7 mg d -1 bird -1, respectively. It was observed that ammonia emission rates in summer were lower than in winter because the high airflow stabilized the manure by drying it. The reductions due to lower moisture content were greater than the increases due to higher temperature. However, PM 10 emission rates in summer were higher than in winter because the drier conditions coupled with higher internal air velocities increased PM 10 release from feathers, feed and manure.

  4. Therapeutic application of hydrogen sulfide donors: the potential and challenges.

    PubMed

    Wu, Dan; Hu, Qingxun; Zhu, Yizhun

    2016-03-01

    Hydrogen sulfide (H2S), a colorless gas smelling of rotten egg, has long been considered a toxic gas and environment hazard. However, evidences show that H2S plays a great role in many physiological and pathological activities, and it exhibits different effects when applied at various doses. In this review, we summarize the chemistry and biomedical applications of H2S-releasing compounds, including inorganic salts, phosphorodithioate derivatives, derivatives of Allium sativum extracts, derivatives of thioaminoacids, and derivatives of antiinflammatory drugs. PMID:26597301

  5. Hydrogen sulfide catalysis of low rank coal liquefaction

    SciTech Connect

    Stenberg, V.I.; Baltisberger, R.J.; Ogawa, T.; Raman, K.; Woolsey, N.F.

    1982-01-01

    Data are presented for reduction of bibenzyl, diphenylmethane, and diphenyl sulfide by H/sub 2/S which indicate that the chemical reactions are of more than one type. The H/sub 2/S is more effective in the hydrocracking of bibenzyl to benzene and toluene than is H/sub 2/. H/sub 2/S also appears to be a hydrogen donor and forms aromatic-sulfur bonds which implies that the sulfur can attack aromatic rings. Various reactions are proposed for the formation of sulfur which catalyzes the conversion of diphenylmethane. (BLM)

  6. Spectroscopic investigations into the binding of hydrogen sulfide to synthetic picket-fence porphyrins.

    PubMed

    Hartle, Matthew D; Prell, James S; Pluth, Michael D

    2016-03-21

    The reversible binding of hydrogen sulfide (H2S) to hemeprotein sites has been attributed to several factors, likely working in concert, including the protected binding pocket environment, proximal hydrogen bond interactions, and iron ligation environment. To investigate the importance of a sterically-constrained, protected environment on sulfide reactivity with heme centers, we report here the reactivity of H2S and HS(-) with the picket-fence porphyrin system. Our results indicate that the picket-fence porphyrin does not bind H2S in the ferric or ferrous state. By contrast, reaction of the ferric scaffold with HS(-) results in reduction to the ferrous species, followed by ligation of one equivalent of HS(-), as evidenced by UV-vis, NMR spectroscopy and mass spectrometry studies. Measurement of the HS(-) binding affinities in the picket-fence or tetraphenyl porphyrin systems revealed identical binding. Taken together, these results suggest that the protected, sterically-constrained binding pocket alone is not the primary contributor for stabilization of ferric H2S/HS(-) species in model systems, but that other interactions, such as hydrogen bonding, must play a critical role in facilitation of reversible interactions in ferric hemes. PMID:26869340

  7. Control of microbially generated hydrogen sulfide in produced waters

    SciTech Connect

    Burger, E.D.; Vance, I.; Gammack, G.F.; Duncan, S.E.

    1995-12-31

    Production of hydrogen sulfide in produced waters due to the activity of sulfate-reducing bacteria (SRB) is a potentially serious problem. The hydrogen sulfide is not only a safety and environmental concern, it also contributes to corrosion, solids formation, a reduction in produced oil and gas values, and limitations on water discharge. Waters produced from seawater-flooded reservoirs typically contain all of the nutrients required to support SRB metabolism. Surface processing facilities provide a favorable environment in which SRB flourish, converting water-borne nutrients into biomass and H{sub 2}S. This paper will present results from a field trial in which a new technology for the biochemical control of SRB metabolism was successfully applied. A slip stream of water downstream of separators on a produced water handling facility was routed through a bioreactor in a side-steam device where microbial growth was allowed to develop fully. This slip stream was then treated with slug doses of two forms of a proprietary, nonbiocidal metabolic modifier. Results indicated that H{sub 2}S production was halted almost immediately and that the residual effect of the treatment lasted for well over one week.

  8. Modeling of Syngas Reactions and Hydrogen Generation Over Sulfides

    SciTech Connect

    Kamil Klier; Jeffery A. Spirko; Michael L. Neiman

    2002-09-17

    The objective of the research is to analyze pathways of reactions of hydrogen with oxides of carbon over sulfides, and to predict which characteristics of the sulfide catalyst (nature of metal, defect structure) give rise to the lowest barriers toward oxygenated hydrocarbon product. Reversal of these pathways entails the generation of hydrogen, which is also proposed for study. In this first year of study, adsorption reactions of H atoms and H{sub 2} molecules with MoS{sub 2}, both in molecular and solid form, have been modeled using high-level density functional theory. The geometries and strengths of the adsorption sites are described and the methods used in the study are described. An exposed MO{sup IV} species modeled as a bent MoS{sub 2} molecule is capable of homopolar dissociative chemisorption of H{sub 2} into a dihydride S{sub 2}MoH{sub 2}. Among the periodic edge structures of hexagonal MoS{sub 2}, the (1{bar 2}11) edge is most stable but still capable of dissociating H{sub 2}, while the basal plane (0001) is not. A challenging task of theoretically accounting for weak bonding of MoS{sub 2} sheets across the Van der Waals gap has been addressed, resulting in a weak attraction of 0.028 eV/MoS{sub 2} unit, compared to the experimental value of 0.013 eV/MoS{sub 2} unit.

  9. Catalysts for the selective oxidation of hydrogen sulfide to sulfur

    SciTech Connect

    Srinivas, Girish; Bai, Chuansheng

    2000-08-08

    This invention provides catalysts for the oxidation of hydrogen sulfide. In particular, the invention provides catalysts for the partial oxidation of hydrogen sulfide to elemental sulfur and water. The catalytically active component of the catalyst comprises a mixture of metal oxides containing titanium oxide and one or more metal oxides which can be selected from the group of metal oxides or mixtures of metal oxides of transition metals or lanthanide metals. Preferred metal oxides for combination with TiO.sub.2 in the catalysts of this invention include oxides of V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Mo, Tc, Ru, Rh, Hf, Ta, W, Au, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Catalysts which comprise a homogeneous mixture of titanium oxide and niobium (Nb) oxide are also provided. A preferred method for preparing the precursor homogenous mixture of metal hydroxides is by coprecipitation of titanium hydroxide with one or more other selected metal hydroxides. Catalysts of this invention have improved activity and/or selectivity for elemental sulfur production. Further improvements of activity and/or selectivity can be obtained by introducing relatively low amounts (up to about 5 mol %)of a promoter metal oxide (preferably of metals other than titanium and that of the selected second metal oxide) into the homogeneous metal/titanium oxide catalysts of this invention.

  10. 30 CFR 250.215 - What hydrogen sulfide (H2S) information must accompany the EP?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... methodologies outlined in 40 CFR part 68. ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What hydrogen sulfide (H2S) information must... Contents of Exploration Plans (ep) § 250.215 What hydrogen sulfide (H2S) information must accompany the...

  11. A STUDY TO EVALUATE CARBON MONOXIDE AND HYDROGEN SULFIDE CONTINUOUS EMISSION MONITORS AT AN OIL REFINERY

    EPA Science Inventory

    An eleven month field evaluation was done on five hydrogen sulfide and four carbon monoxide monitors located at an oil refinery. The hydrogen sulfide monitors sampled a fuel gas feed line and the carbon monoxide monitors sampled the emissions from a fluid cat cracker (FCC). Two o...

  12. Disequilibrium of hydrogen sulfide in ground water by aeration. Final report

    SciTech Connect

    Ritchey, J.D.

    1981-04-24

    This study examines removal of hydrogen sulfide gas by aeration as a result of bubbling air through water in the well before it is pumped out of the ground. The field study demonstrated that a substantial amount of hydrogen sulfide gas could be successfully removed by the method tested. Evaluation of water analyses indicated three processes that caused reduction in the concentration of hydrogen sulfide gas: (1) hydrogen sulfide gas was released from water to air by gas transfer--indicated by a strong 'rotten egg odor,' characteristic of hydrogen sulfide gas that was emitted from the wellhead; (2) hydrogen sulfide gas was oxidized to elemental sulfur--evidenced by an increase in dissolved oxygen measured in water samples and by clouding of pumped water; and (3) hydrogen sulfide gas was partially ionized--indicated by an increase in the pH and the redox potential of water samples. This field study demonstrates that in-well aeration is an effective method of hydrogen sulfide gas removal in domestic wells with potential application in larger installations.

  13. Catalytic reduction of CO with hydrogen sulfide. 4. Temperature-programmed desorption of methanethiol on anatase, rutile, and sulfided rutile

    SciTech Connect

    Beck, D.D.; White, J.M.; Ratcliffe, C.T.

    1986-07-03

    The interaction of methanethiol with anatase, rutile, and sulfided rutile was studied by temperature-programmed desorption. Dissociative adsorption occurs on rutile but is insignificant on anatase. Decomposition products are dominated by H/sub 2/ on rutile and by CH/sub 4/ on sulfided rutile. In both cases desorption occurs between 500 and 775 K. The 5- and 4-coordinate sites on the (110) face of rutile are proposed as the active sites for decomposition. The dominance of methane on a sulfided surface is attributed to the relatively large supply of highly mobile surface hydrogen atoms.

  14. An intercomparison of aircraft instrumentation for tropospheric measurements of carbonyl sulfide, hydrogen sulfide, and carbon disulfide

    NASA Technical Reports Server (NTRS)

    Gregory, Gerald L.; Davis, Douglas D.; Thornton, Donald C.; Johnson, James E.; Bandy, Alan R.; Saltzman, Eric S.; Andreae, Meinrat O.; Barrick, John D.

    1993-01-01

    This paper reports results of NASA's Chemical Instrumentation and Test Evaluation (CITE 3) during which airborne measurements for carbonyl sulfide (COS), hydrogen sulfide (H2S), and carbon disulfide (CS2) were intercompared. Instrumentation included a gas chromatograph using flame photometric detection (COS, H2S, and CS2), a gas chromatograph using mass spectrometric detection (COS) and CS2), a gas chromatograph using fluorination and subsequent SF6 detection via electron capture (COS and CS2), and the Natusch technique (H2S). The measurements were made over the Atlantic Ocean east of North and South America during flights from NASA's Wallops Flight Center, Virginia, and Natal, Brazil, in August/September 1989. Most of the intercomparisons for H2S and CS2 were at mixing ratios less than 25 pptv and less than 10 pptv, respectively, with a maximum mixing ratio of about 100 pptv and 50 pptv, respectively. Carbonyl sulfide intercomparisons were at mixing ratios between 400 and 600 pptv. Measurements were intercompared from data bases constructed from time periods of simultaneous or overlapping measurements. Agreement among the COS techniques averaged about 5%, and individual measurements were generally within 10%. For H2S and at mixing ratio greater than 25 pptv, the instruments agreed on average to about 15%. At mixing ratios less than 25 pptv the agreement was about 5 pptv. For CS2 (mixing ratios less than 50 pptv), two techniques agreed on average to about 4 pptv, and the third exhibited a bias (relative to the other two) that varied in the range of 3-7 pptv. CS2 mixing ratios over the ocean east of Natal as measured by the gas chromatograph-mass spectrometer technique were only a few pptv and were below the detection limits of the other two techniques. The CITE 3 data are used to estimate the current uncertainty associated with aircraft measurements of COS, H2S, and CS2 in the remote troposphere.

  15. An intercomparison of aircraft instrumentation for tropospheric measurements of carbonyl sulfide, hydrogen sulfide, and carbon disulfide

    NASA Astrophysics Data System (ADS)

    Gregory, Gerald L.; Davis, Douglas D.; Thornton, Donald C.; Johnson, James E.; Bandy, Alan R.; Saltzman, Eric S.; Andreae, Meinrat O.; Barrick, John D.

    1993-12-01

    This paper reports results of NASA's Chemical Instrumentation and Test Evaluation (CITE 3) during which airborne measurements for carbonyl sulfide (COS), hydrogen sulfide (H2S), and carbon disulfide (CS2) were intercompared. Instrumentation included a gas chromatograph using flame photometric detection (COS, H2S, and CS2), a gas chromatograph using mass spectrometric detection (COS and CS2), a gas chromatograph using fluorination and subsequent SF6 detection via electron capture (COS and CS2), and the Natusch technique (H2S). The measurements were made over the Atlantic Ocean east of North and South America during flights from NASA's Wallops Flight Center, Virginia, and Natal, Brazil, in August/September 1989. Most of the intercomparisons for H2S and CS2 were at mixing ratios <25 pptv and <10 pptv, respectively, with a maximum mixing ratio of about 100 pptv and 50 pptv, respectively. Carbonyl sulfide intercomparisons were at mixing ratios between 400 and 600 pptv. Measurements were intercompared from data bases constructed from time periods of simultaneous or overlapping measurements. Agreement among the COS techniques averaged about 5%, and individual measurements were generally within 10%. For H2S and at mixing ratio >25 pptv, the instruments agreed on average to about 15%. At mixing ratios <25 pptv the agreement was about 5 pptv. For CS2 (mixing ratios <50 pptv), two techniques agreed on average to about 4 pptv, and the third exhibited a bias (relative to the other two) that varied in the range of 3-7 pptv. CS2 mixing ratios over the ocean east of Natal as measured by the gas chromatograph-mass spectrometer technique were only a few pptv and were below the detection limits of the other two techniques. The CITE 3 data are used to estimate the current uncertainty associated with aircraft measurements of COS, H2S, and CS2 in the remote troposphere.

  16. Hydrogen Sulfide Production by Pseudomonas putrefaciens in Shrimp Experimentally Packed in Nitrogen1

    PubMed Central

    Lapin, R. M.; Koburger, J. A.

    1974-01-01

    Shrimp refrigerated in a nitrogen atmosphere develop off-odors not typical of normal spoilage. Investigations of this phenomenon showed that hydrogen sulfide developed in the headspace gas, and a large percentage of the microbial population present on the shrimp stored in nitrogen was capable of hydrogen sulfide production, in contrast to the flora on shrimp stored in air. The predominant hydrogen sulfide-producing organism, Pseudomonas putrefaciens, was present in low numbers on fresh shrimp but usually reached high numbers by day 8 of nitrogen storage. Further studies revealed that cysteine and cystine were the probable substrates in shrimp utilized by this organism for hydrogen sulfide production. When shrimp sterilized by irradiation were inoculated with P. putrefaciens and incubated in an atmosphere of nitrogen, hydrogen sulfide and the characteristic off-odors developed. PMID:4596748

  17. Airborne sulfur trace species intercomparison campaign: Sulfur dioxide, dimethylsulfide, hydrogen sulfide, carbon disulfide, and carbonyl sulfide

    NASA Technical Reports Server (NTRS)

    Gregory, Gerald L.; Hoell, James M., Jr.; Davis, Douglas D.

    1991-01-01

    Results from an airborne intercomparison of techniques to measure tropospheric levels of sulfur trace gases are presented. The intercomparison was part of the NASA Global Tropospheric Experiment (GTE) and was conducted during the summer of 1989. The intercomparisons were conducted on the Wallops Electra aircraft during flights from Wallops Island, Virginia, and Natal, Brazil. Sulfur measurements intercompared included sulfur dioxide (SO2), dimethylsulfide (DMS), hydrogen sulfide (H2S), carbon disulfide (CS2), and carbonyl sulfide (OCS). Measurement techniques ranged from filter collection systems with post-flight analyses to mass spectrometer and gas chromatograph systems employing various methods for measuring and identifying the sulfur gases during flight. Sampling schedules for the techniques ranged from integrated collections over periods as long as 50 minutes to one- to three-minute samples every ten or fifteen minutes. Several of the techniques provided measurements of more than one sulfur gas. Instruments employing different detection principles were involved in each of the sulfur intercomparisons. Also included in the intercomparison measurement scenario were a host of supporting measurements (i.e., ozone, nitrogen oxides, carbon monoxide, total sulfur, aerosols, etc.) for purposes of: (1) interpreting results (i.e., correlation of any noted instrument disagreement with the chemical composition of the measurement environment); and (2) providing supporting chemical data to meet CITE-3 science objectives of studying ozone/sulfur photochemistry, diurnal cycles, etc. The results of the intercomparison study are briefly discussed.

  18. Hydrogen sulfide can inhibit and enhance oxygenic photosynthesis in a cyanobacterium from sulfidic springs.

    PubMed

    Klatt, Judith M; Haas, Sebastian; Yilmaz, Pelin; de Beer, Dirk; Polerecky, Lubos

    2015-09-01

    We used microsensors to investigate the combinatory effect of hydrogen sulfide (H2 S) and light on oxygenic photosynthesis in biofilms formed by a cyanobacterium from sulfidic springs. We found that photosynthesis was both positively and negatively affected by H2 S: (i) H2 S accelerated the recovery of photosynthesis after prolonged exposure to darkness and anoxia. We suggest that this is possibly due to regulatory effects of H2 S on photosystem I components and/or on the Calvin cycle. (ii) H2 S concentrations of up to 210 μM temporarily enhanced the photosynthetic rates at low irradiance. Modelling showed that this enhancement is plausibly based on changes in the light-harvesting efficiency. (iii) Above a certain light-dependent concentration threshold H2 S also acted as an inhibitor. Intriguingly, this inhibition was not instant but occurred only after a specific time interval that decreased with increasing light intensity. That photosynthesis is most sensitive to inhibition at high light intensities suggests that H2 S inactivates an intermediate of the oxygen evolving complex that accumulates with increasing light intensity. We discuss the implications of these three effects of H2 S in the context of cyanobacterial photosynthesis under conditions with diurnally fluctuating light and H2 S concentrations, such as those occurring in microbial mats and biofilms. PMID:25630511

  19. Carbonyl sulfide removal with compost and wood chip biofilters, and in the presence of hydrogen sulfide.

    PubMed

    Sattler, Melanie L; Garrepalli, Divya R; Nawal, Chandraprakash S

    2009-12-01

    Carbonyl sulfide (COS) is an odor-causing compound and hazardous air pollutant emitted frequently from wastewater treatment facilities and chemical and primary metals industries. This study examined the effectiveness of biofiltration in removing COS. Specific objectives were to compare COS removal efficiency for various biofilter media; to determine whether hydrogen sulfide (H2S), which is frequently produced along with COS under anaerobic conditions, adversely impacts COS removal; and to determine the maximum elimination capacity of COS for use in biofilter design. Three laboratory-scale polyvinyl chloride biofilter columns were filled with up to 28 in. of biofilter media (aged compost, fresh compost, wood chips, or a compost/wood chip mixture). Inlet COS ranged from 5 to 46 parts per million (ppm) (0.10-9.0 g/m3 hr). Compost and the compost/wood chip mixture produced higher COS removal efficiencies than wood chips alone. The compost and compost/wood chip mixture had a shorter stabilization times compared with wood chips alone. Fresh versus aged compost did not impact COS removal efficiency. The presence of H2S did not adversely impact COS removal for the concentration ratios tested. The maximum elimination capacity is at least 9 g/m3 hr for COS with compost media. PMID:20066911

  20. Understanding hydrogen sulfide storage: probing conditions for sulfide release from hydrodisulfides.

    PubMed

    Bailey, T Spencer; Zakharov, Lev N; Pluth, Michael D

    2014-07-30

    Hydrogen sulfide (H2S) is an important biological signaling agent that exerts action on numerous (patho)physiological processes. Once generated, H2S can be oxidized to generate reductant-labile sulfane sulfur pools, which include hydrodisulfides/persulfides. Despite the importance of hydrodisulfides in H2S storage and signaling, little is known about the physical properties or chemical reactivity of these compounds. We report here the synthesis, isolation, and characterization (NMR, IR, Raman, HRMS, X-ray) of a small-molecule hydrodisulfide and highlight its reactivity with reductants, nucleophiles, electrophiles, acids, and bases. Our experimental results establish that hydrodisulfides release H2S upon reduction and that deprotonation results in disproportionation to the parent thiol and S(0), thus providing a mechanism for transsulfuration in the sulfane sulfur pool. PMID:25010540

  1. High temperature hydrogen sulfide removal with tin oxide

    SciTech Connect

    Karpuk, M.E.; Copeland, R.J.; Feinberg, D.; Wickham, D.; Windecker, B.; Yu, J.

    1993-09-01

    The system is based on the absorption of hydrogen sulfide (H{sub 2}S) by stannic (tin) oxide. Two sorbents are required, the first sorbent is tin oxide and the second sorbent is a zinc oxide based material (i.e., zinc ferrite or zinc titanate) which is regenerated by air producing SO{sub 2}. TDA`s process carries out a modified Claus reaction to reduce the SO{sub 2} from the second sorbent generation to elemental sulfur. In this case the sulfided stannic oxide forms stannous sulfide (SnS) which reduces the SO{sub 2}. The absorption by SnO{sub 2} could remove over 90% of the H{sub 2}S from typical coal gas streams, but we use zinc ferrite (or zinc titanate), (a) to reduce H{sub 2}S to less than 20 ppM and (b) as a source of SO{sub 2} in regeneration. Due to stoichiometry of regeneration we want to remove half of the H{sub 2}S by SnO{sub 2} and the remainder by the second sorbent. The reactions with stannic oxide minimize the heat released during H{sub 2}S removal and regeneration. The absorption by SnO{sub 2} is slightly endothermic and cools the gas stream by less that 5{degrees}F (2.8{degrees}C) during absorption. Regeneration with SO{sub 2} is exothermic but releases only 11% of the heat that is liberated in regenerating the ZnO. For a nominal 6.5:1 steam to air the regeneration of ZnO increases the temperature by {approx_equal}400{degrees}F. The regeneration of SnO{sub 2} increases the temperature by less than 50{degrees}F (28{degrees}C) in the same gas flow.

  2. Process for removal of hydrogen sulfide from gas streams

    SciTech Connect

    Hansford, R.C.; Hass, R.H.

    1981-01-06

    A process for the removal of H/sub 2/S from a feed gas, and the production of sulfur therefrom, is effected by oxidation with oxygen and/or SO/sub 2/ at temperatures between 250* and 450* F. The oxidation is conducted in the presence of an extremely stable oxidation catalyst comprising an oxide and/or sulfide of vanadium supported on a non-alkaline porous refractory oxide. Sulfur deposition and consequent catalyst deactivation are prevented by maintaining the partial pressure of free sulfur in the oxidation reactor below that necessary for condensation. H/sub 2/, CO, and light hydrocarbons present in the feed gas are not oxidized. Typical uses of the process include the removal of H/sub 2/S and the production of sulfur from sour natural gases or gases obtained from the gasification of coal. Feed gases which contain SO/sub 2/ and H/sub 2/S in mole ratios greater than 5, or which contain other gaseous sulfur compounds such as CO, CS/sub 2/, SO/sub 3/ and mercaptans, can be desulfurized by hydrogenating all of such sulfur components to H/sub 2/S and subsequently removing the H/sub 2/S from the hydrogenated feed gas by the oxidation process of the invention. This hydrogenation-oxidation combination is especially contemplated for the desulfurization of claus tail gases and stack gas effluents.

  3. Process for removal of hydrogen sulfide from gas streams

    SciTech Connect

    Hansford, R.C.; Hass, R.H.

    1982-01-19

    A process for the removal of H2S from a feed gas, and the production of sulfur therefrom, is effected by oxidation with oxygen and/or SO2 at temperatures between 250 and 450/sup 0/F. The oxidation is conducted in the presence of an extremely stable oxidation catalyst comprising an oxide and/or sulfide of vanadium supported on a non-alkaline porous refractory oxide. Sulfur deposition and consequent catalyst deactivation are prevented by maintaining the partial pressure of free sulfur in the oxidation reactor below that necessary for condensation. H2, CO, and light hydrocarbons present in the feed gas are not oxidized. Typical uses of the process include the removal of H2S and the production of sulfur from sour natural gases or gases obtained from the gasification of coal. Feed gases which contain SO2 and H2S in mole ratios greater than 5, or which contain other gaseous sulfur compounds such as CO CS2, SO3 and mercaptans, can be desulfurized by hydrogenating all of such sulfur components to H2S and subsequently removing the H2S from the hydrogenated feed gas by the oxidation process of the invention. This hydrogenation-oxidation combination is especially contemplated for the desulfurization of claus tail gases and stack gas effluents.

  4. The metallization and superconductivity of dense hydrogen sulfide

    NASA Astrophysics Data System (ADS)

    Li, Yinwei; Hao, Jian; Liu, Hanyu; Li, Yanling; Ma, Yanming

    2014-05-01

    Hydrogen sulfide (H2S) is a prototype molecular system and a sister molecule of water (H2O). The phase diagram of solid H2S at high pressures remains largely unexplored arising from the challenges in dealing with the pressure-induced weakening of S-H bond and larger atomic core difference between H and S. Metallization is yet achieved for H2O, but it was observed for H2S above 96 GPa. However, the metallic structure of H2S remains elusive, greatly impeding the understanding of its metallicity and the potential superconductivity. We have performed an extensive structural study on solid H2S at pressure ranges of 10-200 GPa through an unbiased structure prediction method based on particle swarm optimization algorithm. Besides the findings of candidate structures for nonmetallic phases IV and V, we are able to establish stable metallic structures violating an earlier proposal of elemental decomposition into sulfur and hydrogen [R. Rousseau, M. Boero, M. Bernasconi, M. Parrinello, and K. Terakura, Phys. Rev. Lett. 85, 1254 (2000)]. Our study unravels a superconductive potential of metallic H2S with an estimated maximal transition temperature of ˜80 K at 160 GPa, higher than those predicted for most archetypal hydrogen-containing compounds (e.g., SiH4, GeH4, etc.).

  5. High-temperature study of superconducting hydrogen and deuterium sulfide

    NASA Astrophysics Data System (ADS)

    Durajski, A. P.; Szczȩśniak, R.; Pietronero, L.

    2016-05-01

    Hydrogen-rich compounds are extensively explored as candidates for a high-temperature superconductors. Currently, the measured critical temperature of $203$ K in hydrogen sulfide (H$_3$S) is among the highest over all-known superconductors. In present paper, using the strong-coupling Eliashberg theory of superconductivity, we compared in detail the thermodynamic properties of two samples containing different hydrogen isotopes H$_3$S and D$_3$S at $150$ GPa. Our research indicates that it is possible to reproduce the measured values of critical temperature $203$ K and $147$ K for H$_3$S and D$_3$S by using a Coulomb pseudopotential of $0.123$ and $0.131$, respectively. However, we also discuss a scenario in which the isotope effect is independent of pressure and the Coulomb pseudopotential for D$_3$S is smaller than for H$_3$S. For both scenarios, the energy gap, specific heat, thermodynamic critical field and related dimensionless ratios are calculated and compared with other conventional superconductors. We shown that the existence of the strong-coupling and retardation effects in the systems analysed result in significant differences between values obtained within the framework of the Eliashberg formalism and the prediction of the Bardeen-Cooper-Schrieffer theory.

  6. Hydrogen sulfide at high pressure: change in stoichiometry

    NASA Astrophysics Data System (ADS)

    Goncharov, Alexander; Lobanov, Sergey; Kruglov, Ivan; Zhao, Xiao-Miao; Chen, Xiao-Jia; Oganov, Artem; Konopkova, Zuzana; Prakapenka, Vitali

    Hydrogen sulfide (H2S) was studied by x-ray synchrotron diffraction (XRD) and Raman spectroscopy up to 144 GPa at 180-295 K. We find that H2S compound become unstable with respect to formation of new compounds with different composition including pure S, H3S and HS2 depending on the thermodynamic P-T path. These results are supported by our quantum-mechanical variable-composition evolutionary simulations that show the stability of the above mentioned compounds at elevated pressures. The stability of H3S at high pressures, which we find a strong experimental and theoretical confirmation here, suggests that it is this material which is responsible for high-temperature superconducting properties reported previously. We thank DARPA, NSF, ISSP (Hefei, China), Government of Russian Federation, and Foreign Talents Introduction and Academic Exchange Program. Use of the Advanced Photon Source was supported by the U. S. Department of Energy Office of Science.

  7. Observation of superconductivity in hydrogen sulfide from nuclear resonant scattering.

    PubMed

    Troyan, Ivan; Gavriliuk, Alexander; Rüffer, Rudolf; Chumakov, Alexander; Mironovich, Anna; Lyubutin, Igor; Perekalin, Dmitry; Drozdov, Alexander P; Eremets, Mikhail I

    2016-03-18

    High-temperature superconductivity remains a focus of experimental and theoretical research. Hydrogen sulfide (H2S) has been reported to be superconducting at high pressures and with a high transition temperature. We report on the direct observation of the expulsion of the magnetic field in H2S compressed to 153 gigapascals. A thin (119)Sn film placed inside the H2S sample was used as a sensor of the magnetic field. The magnetic field on the (119)Sn sensor was monitored by nuclear resonance scattering of synchrotron radiation. Our results demonstrate that an external static magnetic field of about 0.7 tesla is expelled from the volume of (119)Sn foil as a result of the shielding by the H2S sample at temperatures between 4.7 K and approximately 140 K, revealing a superconducting state of H2S. PMID:26989248

  8. Endogenous hydrogen sulfide is involved in the pathogenesis of atherosclerosis

    SciTech Connect

    Qiao, Wang; Chaoshu, Tang; Hongfang, Jin; Junbao, Du

    2010-05-28

    Atherosclerosis is a chronic, complex, and progressive pathological process in large and medium sized arteries. The exact mechanism of this process remains unclear. Hydrogen sulfide (H{sub 2}S), a novel gasotransmitter, was confirmed as playing a major role in the pathogenesis of many cardiovascular diseases. It plays a role in vascular smooth muscle cell (VSMC) proliferation and apoptosis, participates in the progress of hyperhomocysteinemia (HHCY), inhibits atherogenic modification of LDL, interferes with vascular calcification, intervenes with platelet function, and there are interactions between H{sub 2}S and inflammatory processes. The role of H{sub 2}S in atherosclerotic pathogenesis highlights the mysteries of atherosclerosis and inspires the search for innovative therapeutic strategies. Here, we review the studies to date that have considered the role of H{sub 2}S in atherosclerosis.

  9. Working with nitric oxide and hydrogen sulfide in biological systems

    PubMed Central

    Yuan, Shuai; Kevil, Christopher G.

    2014-01-01

    Nitric oxide (NO) and hydrogen sulfide (H2S) are gasotransmitter molecules important in numerous physiological and pathological processes. Although these molecules were first known as environmental toxicants, it is now evident that that they are intricately involved in diverse cellular functions with impact on numerous physiological and pathogenic processes. NO and H2S share some common characteristics but also have unique chemical properties that suggest potential complementary interactions between the two in affecting cellular biochemistry and metabolism. Central among these is the interactions between NO, H2S, and thiols that constitute new ways to regulate protein function, signaling, and cellular responses. In this review, we discuss fundamental biochemical principals, molecular functions, measurement methods, and the pathophysiological relevance of NO and H2S. PMID:25550314

  10. Hydrogen Sulfide, Oxidative Stress and Periodontal Diseases: A Concise Review.

    PubMed

    Greabu, Maria; Totan, Alexandra; Miricescu, Daniela; Radulescu, Radu; Virlan, Justina; Calenic, Bogdan

    2016-01-01

    In the past years, biomedical research has recognized hydrogen sulfide (H₂S) not only as an environmental pollutant but also, along with nitric oxide and carbon monoxide, as an important biological gastransmitter with paramount roles in health and disease. Current research focuses on several aspects of H₂S biology such as the biochemical pathways that generate the compound and its functions in human pathology or drug synthesis that block or stimulate its biosynthesis. The present work addresses the knowledge we have to date on H₂S production and its biological roles in the general human environment with a special focus on the oral cavity and its involvement in the initiation and development of periodontal diseases. PMID:26805896

  11. Hydrogen Sulfide, Oxidative Stress and Periodontal Diseases: A Concise Review

    PubMed Central

    Greabu, Maria; Totan, Alexandra; Miricescu, Daniela; Radulescu, Radu; Virlan, Justina; Calenic, Bogdan

    2016-01-01

    In the past years, biomedical research has recognized hydrogen sulfide (H2S) not only as an environmental pollutant but also, along with nitric oxide and carbon monoxide, as an important biological gastransmitter with paramount roles in health and disease. Current research focuses on several aspects of H2S biology such as the biochemical pathways that generate the compound and its functions in human pathology or drug synthesis that block or stimulate its biosynthesis. The present work addresses the knowledge we have to date on H2S production and its biological roles in the general human environment with a special focus on the oral cavity and its involvement in the initiation and development of periodontal diseases. PMID:26805896

  12. Hydrogen sulfide poisoning: review of 5 years' experience.

    PubMed Central

    Burnett, W. W.; King, E. G.; Grace, M.; Hall, W. F.

    1977-01-01

    The workforce of Alberta, a province rich in fossil fuel, faces an increasing risk of exposure to hydrogen sulfide (H2S). Basic knowledge of the population exposed during the years 1969 to 1973 inclusive was accumulated to identify the immediate medical and management problems. Data were recorded from three sources of records: the Workers' Compensation Board of Alberta, the Alberta Hospital Services Commission and the provincial coroner's office. There were 221 cases of exposure to H2S. The overall mortality was 6%; 5% of victims were dead on arrival at hospital. Admission to hospital was required for 65% of the victims arriving at a hospital emergency room (78% of the 221). Acute problems were coma, dysequilibrium and respiratory insufficiency with pulmonary edema. Increased attention to cardiopulmonary resuscitation at the exposure site and during transportation to hospital is necessary to reduce the mortality from H2S exposure. No long-term adverse effects were apparent in the survivors. PMID:144553

  13. Sulfur as a Signaling Nutrient Through Hydrogen Sulfide

    PubMed Central

    Kabil, Omer; Vitvitsky, Victor; Banerjee, Ruma

    2015-01-01

    Hydrogen sulfide (H2S) has emerged as an important signaling molecule with beneficial effects on various cellular processes affecting, for example, cardiovascular and neurological functions. The physiological importance of H2S is motivating efforts to develop strategies for modulating its levels. However, advancement in the field of H2S-based therapeutics is hampered by fundamental gaps in our knowledge of how H2S is regulated, its mechanism of action, and its molecular targets. This review provides an overview of sulfur metabolism; describes recent progress that has shed light on the mechanism of H2S as a signaling molecule; and examines nutritional regulation of sulfur metabolism, which pertains to health and disease. PMID:25033061

  14. Release and control of hydrogen sulfide during sludge thermal drying

    SciTech Connect

    Weng, Huanxin; Dai, Zhixin; Ji, Zhongqiang; Gao, Caixia; Liu, Chongxuan

    2015-04-15

    The release of hydrogen sulfide (H2S) during sludge drying is a major environmental problem because of its toxicity to human health. A series of experiments were performed to investigate the mechanisms and factors controlling the H2S release. Results of this study show that: 1) the biomass and activity of sulfate-reducing bacteria (SRB) in sludge were the major factors controlling the amount of H2S release, 2) the sludge drying temperature had an important effect on both the extent and the timing of H2S release from the sludge, and 3) decreasing sludge pH increased the H2S release. Based on the findings from this study, a new system that integrates sludge drying and H2S gas treatment was developed to reduce the amount of H2S released from sludge treatments.

  15. Hydrogen sulfide at high pressure: Change in stoichiometry

    NASA Astrophysics Data System (ADS)

    Goncharov, Alexander F.; Lobanov, Sergey S.; Kruglov, Ivan; Zhao, Xiao-Miao; Chen, Xiao-Jia; Oganov, Artem R.; Konôpková, Zuzana; Prakapenka, Vitali B.

    2016-05-01

    Hydrogen sulfide (H2S ) was studied by x-ray synchrotron diffraction and Raman spectroscopy up to 150 GPa at 180-295 K and by quantum-mechanical variable-composition evolutionary simulations. The experiments show that H2S becomes unstable with respect to formation of compounds with different structure and composition, including Cccm and a body-centered cubic like (R 3 m or I m -3 m ) H3S , the latter one predicted previously to show a record-high superconducting transition temperature, a Tc of 203 K. These experiments provide experimental ground for understanding of this record-high Tc. The experimental results are supported by theoretical structure searches that suggest the stability of H3S , H4S3 , H5S8 , H3S5 , and H S2 compounds that have not been reported previously at elevated pressures.

  16. Hydrogen Sulfide Chemical Biology: Pathophysiological roles and detection

    PubMed Central

    Kolluru, Gopi K; Shen, Xinggui; Bir, Shyamal C.; Kevil, Christopher G.

    2014-01-01

    Hydrogen sulfide (H2S) is the most recent endogenous gasotransmitter that has been reported to serve many physiological and pathological functions in different tissues. Studies over the past decade have revealed that H2S can be synthesized through numerous pathways and its bioavailability regulated through its conversion into different biochemical forms. H2S exerts its biological effects in various manners including redox regulation of protein and small molecular weight thiols, polysulfides, thiosulfate/sulfite, iron-sulfur cluster proteins, and anti-oxidant properties that affect multiple cellular and molecular responses. However, precise measurement of H2S bioavailability and its associated biochemical and pathophysiological roles remains less well understood. In this review, we discuss recent understanding of H2S chemical biology, its relationship to tissue pathophysiological responses and possible therapeutic uses. PMID:23850632

  17. Hydrogen sulfide as a potential biomarker of asthma.

    PubMed

    Chung, Kian F

    2014-02-01

    Hydrogen sulfide (H2S), a gas characterized by the odor of rotten eggs, is produced by many cells in the airways and lungs, and may regulate physiologic and pathophysiologic processes. It plays a role in cellular signaling, and represents the third gasotransmitter after nitric oxide and carbon monoxide. Endogenous and exogenous H₂S have anti-inflammatory and anti-proliferative effects, with inhibitory effects in models of lung inflammation and fibrosis. Under certain conditions, H₂S may also be proinflammatory. It is generally a vasodilator and relaxant of airway and vascular smooth muscle cells. It acts as a reducing agent, being able to scavenge superoxide and peroxynitrite. H₂S is detectable in serum and in sputum supernatants with raised levels observed in asthmatics. The sputum levels correlated inversely with lung function. H₂S may play a role in the pathogenesis of asthma. PMID:24308655

  18. Detection of interstellar hydrogen sulfide in cold, dark clouds.

    PubMed

    Minh, Y C; Irvine, W M; Ziurys, L M

    1989-10-01

    We have detected interstellar hydrogen sulfide (H2S) toward the cold, dark clouds L134N and TMC 1. We derive total column densities of approximately 2.6 x 10(13) cm-2 and approximately 7.0 x 10(12) cm-2 at the SO peak of L134N and at the NH3 peak of TMC 1, respectively. Since the expected gas phase reactions leading to the formation of H2S are thought to be endothermic, grain surface reactions may play a major role in the synthesis of this species in cold, dark clouds. If the carbon abundance is high and grain surface reactions are the dominant formation route, H2CS would be expected to form instead of H2S, and the abundances of H2CS have been observed to be high where those of H2S are low in L134N and TMC 1. PMID:11538326

  19. Protein-based nanobiosensor for direct detection of hydrogen sulfide

    NASA Astrophysics Data System (ADS)

    Omidi, Meisam; Amoabediny, Ghasem; Yazdian, Fatemeh; Habibi-Rezaei, M.

    2015-01-01

    The chemically modified cytochrome c from equine heart, EC (232-700-9), was immobilized onto gold nanoparticles in order to develop a specific biosensing system for monitoring hydrogen sulfide down to the micromolar level, by means of a localized surface plasmon resonance spectroscopy. The sensing mechanism is based on the cytochrome-c conformational changes in the presence of H2S which alter the dielectric properties of the gold nanoparticles and the surface plasmon resonance peak undergoes a redshift. According to the experiments, it is revealed that H2S can be detected at a concentration of 4.0 μ \\text{M} (1.3 \\text{ppb}) by the fabricated biosensor. This simple, quantitative and sensitive sensing platform provides a rapid and convenient detection for H2S at concentrations far below the hazardous limit.

  20. Hydrogen sulfide accelerates wound healing in diabetic rats

    PubMed Central

    Wang, Guoguang; Li, Wei; Chen, Qingying; Jiang, Yuxin; Lu, Xiaohua; Zhao, Xue

    2015-01-01

    Aim: The aim of this study was to explore the role of hydrogen sulfide on wound healing in diabetic rats. Methods: Experimental diabetes in rats was induced by intraperitoneal injection of streptozotocin (STZ) (in 0.1 mol/L citrate buffer, Ph 4.5) at dose of 70 mg/kg. Diabetic and age-matched non-diabetic rats were randomly assigned to three groups: untreated diabetic controls (UDC), treated diabetic administrations (TDA), and non-diabetic controls (NDC). Wound Healing Model was prepared by making a round incision (2.0 cm in diameter) in full thickness. Rats from TDA receive 2% sodium bisulfide ointment on wound, and animals from UDC and NDC receive control cream. After treatment of 21 days with sodium bisulfide, blood samples were collected for determination of vascular endothelial growth factor (VEGF), intercellular cell adhesion molecule-1 (ICAM-1), antioxidant effects. Granulation tissues from the wound were processed for histological examination and analysis of western blot. Results: The study indicated a significant increase in levels of VEGF and ICAM-1 and a decline in activity of coagulation in diabetic rats treated with sodium bisulfide. Sodium bisulfide treatment raised the activity of superoxide dismutase (SOD) and heme oxygenase-1 (HO-1) protein expression, and decreased tumor necrosis factor α (TNF-α) protein expression in diabetic rats. Conclusions: The findings in present study suggested that hydrogen sulfide accelerates the wound healing in rats with diabetes. The beneficial effect of H2S may be associated with formation of granulation, anti-inflammation, antioxidant, and the increased level of vascular endothelial growth factor (VEGF). PMID:26191204

  1. Structural effects of naphthalimide-based fluorescent sensor for hydrogen sulfide and imaging in live zebrafish

    NASA Astrophysics Data System (ADS)

    Choi, Seon-Ae; Park, Chul Soon; Kwon, Oh Seok; Giong, Hoi-Khoanh; Lee, Jeong-Soo; Ha, Tai Hwan; Lee, Chang-Soo

    2016-05-01

    Hydrogen sulfide (H2S) is an important biological messenger, but few biologically-compatible methods are available for its detection in aqueous solution. Herein, we report a highly water-soluble naphthalimide-based fluorescent probe (L1), which is a highly versatile building unit that absorbs and emits at long wavelengths and is selective for hydrogen sulfide over cysteine, glutathione, and other reactive sulfur, nitrogen, and oxygen species in aqueous solution. We describe turn-on fluorescent probes based on azide group reduction on the fluorogenic ‘naphthalene’ moiety to fluorescent amines and intracellular hydrogen sulfide detection without the use of an organic solvent. L1 and L2 were synthetically modified to functional groups with comparable solubility on the N-imide site, showing a marked change in turn-on fluorescent intensity in response to hydrogen sulfide in both PBS buffer and living cells. The probes were readily employed to assess intracellular hydrogen sulfide level changes by imaging endogenous hydrogen sulfide signal in RAW264.7 cells incubated with L1 and L2. Expanding the use of L1 to complex and heterogeneous biological settings, we successfully visualized hydrogen sulfide detection in the yolk, brain and spinal cord of living zebrafish embryos, thereby providing a powerful approach for live imaging for investigating chemical signaling in complex multicellular systems.

  2. Structural effects of naphthalimide-based fluorescent sensor for hydrogen sulfide and imaging in live zebrafish.

    PubMed

    Choi, Seon-Ae; Park, Chul Soon; Kwon, Oh Seok; Giong, Hoi-Khoanh; Lee, Jeong-Soo; Ha, Tai Hwan; Lee, Chang-Soo

    2016-01-01

    Hydrogen sulfide (H2S) is an important biological messenger, but few biologically-compatible methods are available for its detection in aqueous solution. Herein, we report a highly water-soluble naphthalimide-based fluorescent probe (L1), which is a highly versatile building unit that absorbs and emits at long wavelengths and is selective for hydrogen sulfide over cysteine, glutathione, and other reactive sulfur, nitrogen, and oxygen species in aqueous solution. We describe turn-on fluorescent probes based on azide group reduction on the fluorogenic 'naphthalene' moiety to fluorescent amines and intracellular hydrogen sulfide detection without the use of an organic solvent. L1 and L2 were synthetically modified to functional groups with comparable solubility on the N-imide site, showing a marked change in turn-on fluorescent intensity in response to hydrogen sulfide in both PBS buffer and living cells. The probes were readily employed to assess intracellular hydrogen sulfide level changes by imaging endogenous hydrogen sulfide signal in RAW264.7 cells incubated with L1 and L2. Expanding the use of L1 to complex and heterogeneous biological settings, we successfully visualized hydrogen sulfide detection in the yolk, brain and spinal cord of living zebrafish embryos, thereby providing a powerful approach for live imaging for investigating chemical signaling in complex multicellular systems. PMID:27188400

  3. Structural effects of naphthalimide-based fluorescent sensor for hydrogen sulfide and imaging in live zebrafish

    PubMed Central

    Choi, Seon-Ae; Park, Chul Soon; Kwon, Oh Seok; Giong, Hoi-Khoanh; Lee, Jeong-Soo; Ha, Tai Hwan; Lee, Chang-Soo

    2016-01-01

    Hydrogen sulfide (H2S) is an important biological messenger, but few biologically-compatible methods are available for its detection in aqueous solution. Herein, we report a highly water-soluble naphthalimide-based fluorescent probe (L1), which is a highly versatile building unit that absorbs and emits at long wavelengths and is selective for hydrogen sulfide over cysteine, glutathione, and other reactive sulfur, nitrogen, and oxygen species in aqueous solution. We describe turn-on fluorescent probes based on azide group reduction on the fluorogenic ‘naphthalene’ moiety to fluorescent amines and intracellular hydrogen sulfide detection without the use of an organic solvent. L1 and L2 were synthetically modified to functional groups with comparable solubility on the N-imide site, showing a marked change in turn-on fluorescent intensity in response to hydrogen sulfide in both PBS buffer and living cells. The probes were readily employed to assess intracellular hydrogen sulfide level changes by imaging endogenous hydrogen sulfide signal in RAW264.7 cells incubated with L1 and L2. Expanding the use of L1 to complex and heterogeneous biological settings, we successfully visualized hydrogen sulfide detection in the yolk, brain and spinal cord of living zebrafish embryos, thereby providing a powerful approach for live imaging for investigating chemical signaling in complex multicellular systems. PMID:27188400

  4. Production of Hydrogen Sulfide by Streptomycetes and Methods for its Detection

    PubMed Central

    Küster, E.; Williams, S. T.

    1964-01-01

    The ability of streptomycetes to produce hydrogen sulfide is generally used for taxonomic purposes. It was found that the previously used method, the blackening of Peptone Iron Agar, does not clearly indicate formation of hydrogen sulfide. It was shown that the blackening of a lead acetate strip is the most accurate indicator for H2S-producing streptomycetes. A great variety of organic and inorganic sulfur compounds were examined and compared, and the choice of the most suitable sulfur source and method for the detection of hydrogen sulfide is discussed. PMID:14106940

  5. Metal-organic frameworks for the storage and delivery of biologically active hydrogen sulfide

    SciTech Connect

    Allan, Phoebe K; Wheatley, Paul S; Aldous, David; Mohideen, M Infas; Tang, Chiu; Hriljac, Joseph A; Megson, Ian L; Chapman, Karena W; De Weireld, Guy; Vaesen, Sebastian; Morris, Russell E

    2012-04-02

    Hydrogen sulfide is an extremely toxic gas that is also of great interest for biological applications when delivered in the correct amount and at the desired rate. Here we show that the highly porous metal-organic frameworks with the CPO-27 structure can bind the hydrogen sulfide relatively strongly, allowing the storage of the gas for at least several months. Delivered gas is biologically active in preliminary vasodilation studies of porcine arteries, and the structure of the hydrogen sulfide molecules inside the framework has been elucidated using a combination of powder X-ray diffraction and pair distribution function analysis.

  6. Methods for producing hydrogen (BI) sulfide and/or removing metals

    DOEpatents

    Truex, Michael J [Richland, WA; Peyton, Brent M [Pullman, WA; Toth, James J [Kennewick, WA

    2002-05-14

    The present invention is a process wherein sulfide production by bacteria is efficiently turned on and off, using pH adjustment. The adjustment of pH impacts sulfide production by bacteria by altering the relative amounts of H.sub.2 S and HS-- in solution and thereby control the inhibition of the bacterial metabolism that produces sulfide. This process can be used to make a bioreactor produce sulfide "on-demand" so that the production of sulfide can be matched to its use as a metal precipitation reagent. The present invention is of significance because it enables the use of a biological reactor, a cost effective sulfide production system, by making the biological reactor produce hydrogen sulfide "on demand", and therefore responsive to production schedules, waste stream generation rate, and health and safety requirements/goals.

  7. Mitigation of hydrogen sulfide emissions in The Geysers KGRA

    SciTech Connect

    Buell, R.

    1981-07-01

    Violations of the ambient air quality standard (AAQS) for hydrogen sulfide (H/sub 2/S) are currently being experienced in The Geysers KGRA and could significantly increase in the future. Attainment and maintenance of the H/sub 2/S AAQS is a potential constraint to optimum development of this resource. The availability of reliable H/sub 2/S controls and the development of a validated air dispersion model are critical to alleviating this constraint. The purpose of this report is to assess the performance capabilities for state-of-the-art controls, to identify potential cost-effective alternative controls, and to identify the California Energy Commission (CEC) staff's efforts to develop a validated air dispersion model. Currently available controls (Stretford, Hydrogen Peroxide, and EIC) are capable of abating H/sub 2/S emissions from a proposed facility to five lbs/hr. Alternative controls, such as condensate stripping and condensate pH control, appear to be promising, cost-effective control options.

  8. No facilitator required for membrane transport of hydrogen sulfide

    PubMed Central

    Mathai, John C.; Missner, Andreas; Kügler, Philipp; Saparov, Sapar M.; Zeidel, Mark L.; Lee, John K.; Pohl, Peter

    2009-01-01

    Hydrogen sulfide (H2S) has emerged as a new and important member in the group of gaseous signaling molecules. However, the molecular transport mechanism has not yet been identified. Because of structural similarities with H2O, it was hypothesized that aquaporins may facilitate H2S transport across cell membranes. We tested this hypothesis by reconstituting the archeal aquaporin AfAQP from sulfide reducing bacteria Archaeoglobus fulgidus into planar membranes and by monitoring the resulting facilitation of osmotic water flow and H2S flux. To measure H2O and H2S fluxes, respectively, sodium ion dilution and buffer acidification by proton release (H2S ⇆ H+ + HS−) were recorded in the immediate membrane vicinity. Both sodium ion concentration and pH were measured by scanning ion-selective microelectrodes. A lower limit of lipid bilayer permeability to H2S, PM,H2S ≥ 0.5 ± 0.4 cm/s was calculated by numerically solving the complete system of differential reaction diffusion equations and fitting the theoretical pH distribution to experimental pH profiles. Even though reconstitution of AfAQP significantly increased water permeability through planar lipid bilayers, PM,H2S remained unchanged. These results indicate that lipid membranes may well act as a barrier to water transport although they do not oppose a significant resistance to H2S diffusion. The fact that cholesterol and sphingomyelin reconstitution did not turn these membranes into an H2S barrier indicates that H2S transport through epithelial barriers, endothelial barriers, and membrane rafts also occurs by simple diffusion and does not require facilitation by membrane channels. PMID:19805349

  9. The Determination of Hydrogen Sulfide in Stack Gases, Iodometric Titration After Sulfite Removal.

    ERIC Educational Resources Information Center

    Robles, E. G.

    The determination of hydrogen sulfide in effluents from coal-fired furnaces and incinerators is complicated by the presence of sulfur oxides (which form acids). Organic compounds also may interfere with or prevent the formation of the cadmium sulfide precipitate or give false positive results because of reaction with iodine. The report presents a…

  10. Transient Kinetic Analysis of Hydrogen Sulfide Oxidation Catalyzed by Human Sulfide Quinone Oxidoreductase.

    PubMed

    Mishanina, Tatiana V; Yadav, Pramod K; Ballou, David P; Banerjee, Ruma

    2015-10-01

    The first step in the mitochondrial sulfide oxidation pathway is catalyzed by sulfide quinone oxidoreductase (SQR), which belongs to the family of flavoprotein disulfide oxidoreductases. During the catalytic cycle, the flavin cofactor is intermittently reduced by sulfide and oxidized by ubiquinone, linking H2S oxidation to the electron transfer chain and to energy metabolism. Human SQR can use multiple thiophilic acceptors, including sulfide, sulfite, and glutathione, to form as products, hydrodisulfide, thiosulfate, and glutathione persulfide, respectively. In this study, we have used transient kinetics to examine the mechanism of the flavin reductive half-reaction and have determined the redox potential of the bound flavin to be -123 ± 7 mV. We observe formation of an unusually intense charge-transfer (CT) complex when the enzyme is exposed to sulfide and unexpectedly, when it is exposed to sulfite. In the canonical reaction, sulfide serves as the sulfur donor and sulfite serves as the acceptor, forming thiosulfate. We show that thiosulfate is also formed when sulfide is added to the sulfite-induced CT intermediate, representing a new mechanism for thiosulfate formation. The CT complex is formed at a kinetically competent rate by reaction with sulfide but not with sulfite. Our study indicates that sulfide addition to the active site disulfide is preferred under normal turnover conditions. However, under pathological conditions when sulfite concentrations are high, sulfite could compete with sulfide for addition to the active site disulfide, leading to attenuation of SQR activity and to an alternate route for thiosulfate formation. PMID:26318450

  11. Thioethers as markers of hydrogen sulfide production in homocystinurias.

    PubMed

    Kožich, Viktor; Krijt, Jakub; Sokolová, Jitka; Melenovská, Petra; Ješina, Pavel; Vozdek, Roman; Majtán, Tomáš; Kraus, Jan P

    2016-07-01

    Two enzymes in the transsulfuration pathway of homocysteine -cystathionine beta-synthase (CBS) and gamma-cystathionase (CTH)-use cysteine and/or homocysteine to produce the important signaling molecule hydrogen sulfide (H2S) and simultaneously the thioethers lanthionine, cystathionine or homolanthionine. In this study we explored whether impaired flux of substrates for H2S synthesis and/or deficient enzyme activities alter production of hydrogen sulfide in patients with homocystinurias. As an indirect measure of H2S synthesis we determined by LC-MS/MS concentrations of thioethers in plasma samples from 33 patients with different types of homocystinurias, in 8 patient derived fibroblast cell lines, and as reaction products of seven purified mutant CBS enzymes. Since chaperoned recombinant mutant CBS enzymes retained capacity of H2S synthesis in vitro it can be stipulated that deficient CBS activity in vivo may impair H2S production. Indeed, in patients with classical homocystinuria we observed significantly decreased cystathionine and lanthionine concentrations in plasma (46% and 74% of median control levels, respectively) and significantly lower cystathionine in fibroblasts (8% of median control concentrations) indicating that H2S production from cysteine and homocysteine may be also impaired. In contrast, the grossly elevated plasma levels of homolanthionine in CBS deficient patients (32-times elevation compared to median of controls) clearly demonstrates a simultaneous overproduction of H2S from homocysteine by CTH. In the remethylation defects the accumulation of homocysteine and the increased flux of metabolites through the transsulfuration pathway resulted in elevation of cystathionine and homolanthionine (857% and 400% of median control values, respectively) indicating a possibility of an increased biosynthesis of H2S by both CBS and CTH. This study shows clearly disturbed thioether concentrations in homocystinurias, and modeling using these data indicates

  12. EMERSION IN THE MANGROVE FOREST FISH 'RIVULUS MARMORATUS': A UNIQUE RESPONSE TO HYDROGEN SULFIDE

    EPA Science Inventory

    The mangrove forest fish Rivulus marmoratus (Cyprinodontidae) has frequently been observed out of water, a phenomenon generally attributed to habitat drying. The authors tested the hypothesis that hydrogen sulfide, a substance characteristically found in their environment, can se...

  13. Is exogenous hydrogen sulfide a relevant tool to address physiological questions on hydrogen sulfide?

    PubMed

    Haouzi, Philippe

    2016-07-15

    This review challenges the use of solutions of dissolved exogenous H2S in the literature as a tool to determine the potential physiological functions of endogenous H2S as well as its putative therapeutic applications. Our major point of contention is that solutions of dissolved H2S are used in vitro at concentrations, within the high microM range, which are above the concentrations of dissolved H2S found in blood and tissues during lethal H2S exposure in vivo. In addition, since the levels of toxicity are extremely variable among cell types, a property that is seldom acknowledged, the physiological relevance of data obtained after local or in-vitro administrations of H2S at concentrations of few microM is far from certain. Conversely, the rate of disappearance of the dissolved pool of H2S in the body (being trapped or oxidized), which we found to be at least of several micromoles/kg/min, is so rapid in vivo that if relatively low quantities of H2S, i.e. few micromoles for instance, are administered, no change in H2S concentrations in the body is to be expected, unless toxic levels are used. Protocols looking at the effects of compounds slowly releasing H2S must also resolve a similar conundrum, as their effects must be reconciled with the unique ability of the blood and tissues to get rid of H2S and the steepness of the dose-toxic effects relationship. Only by developing a comprehensive framework in which H2S metabolism and toxicity will be used as a rationale to justify any experimental approach will we be able to bring definitive evidence supporting a protective role for exogenous H2S, if any, and its putative function as an endogenous mediator. PMID:27045466

  14. Hydrogen sulfide scavengers market assessment. Topical report, June 16-December 15, 1995

    SciTech Connect

    Houston, C.W.

    1996-03-01

    The report objective was to establish the dollar market size for removing low level concentrations of hydrogen sulfide from natural gas using commercially available scavengers, identify the key players, and determine significant trends in the industry. The study established the oilfield and refinery markets for the treating of natural gas, with hydrogen sulfide scavengers. The total North American market is estimated to be worth $172 million in 1995. Natural gas stream or vapor phase treating represents 85 percent of the total market.

  15. The Cardioprotective Actions of Hydrogen Sulfide in Acute Myocardial Infarction and Heart Failure

    PubMed Central

    Polhemus, David J.; Calvert, John W.; Butler, Javed; Lefer, David J.

    2014-01-01

    It has now become universally accepted that hydrogen sulfide (H2S), previously considered only as a lethal toxin, has robust cytoprotective actions in multiple organ systems. The diverse signaling profile of H2S impacts multiple pathways to exert cytoprotective actions in a number of pathological states. This paper will review the recently described cardioprotective actions of hydrogen sulfide in both myocardial ischemia/reperfusion injury and congestive heart failure. PMID:25045576

  16. Novel Composite Hydrogen-Permeable Membranes for Nonthermal Plasma Reactors for the Decomposition of Hydrogen Sulfide

    SciTech Connect

    Morris Argyle; John Ackerman; Suresh Muknahallipatna; Jerry Hamann; Stanislaw Legowski; Gui-Bing Zhao; Sanil John; Ji-Jun Zhang; Linna Wang

    2007-09-30

    The goal of this experimental project was to design and fabricate a reactor and membrane test cell to dissociate hydrogen sulfide (H{sub 2}S) in a nonthermal plasma and to recover hydrogen (H{sub 2}) through a superpermeable multi-layer membrane. Superpermeability of hydrogen atoms (H) has been reported by some researchers using membranes made of Group V transition metals (niobium, tantalum, vanadium, and their alloys), but it was not achieved at the moderate pressure conditions used in this study. However, H{sub 2}S was successfully decomposed at energy efficiencies higher than any other reports for the high H{sub 2}S concentration and moderate pressures (corresponding to high reactor throughputs) used in this study.

  17. Hydrogen sulfide: the third gasotransmitter in biology and medicine.

    PubMed

    Wang, Rui

    2010-05-01

    The last two decades have seen one of the greatest excitements and discoveries in science, gasotransmitters in biology and medicine. Leading the trend by nitric oxide and extending the trudge by carbon monoxide, here comes hydrogen sulfide (H(2)S) who builds up the momentum as the third gasotransmitter. Being produced by different cells and tissues in our body, H(2)S, alone or together with the other two gasotransmitters, regulates an array of physiological processes and plays important roles in the pathogenesis of various diseases from neurodegenerative diseases to diabetes or heart failure, to name a few. As a journal dedicated to serve the emergent and challenging field of H(2)S biology and medicine, Antioxidant and Redox Signaling assembles the most recent discoveries and most provoking ideas from leading scientists in H(2)S fields, which were communicated in the First International Conference of H(2)S in Biology and Medicine, and brings them to our readers in two Forum Issues. Through intellectual exchange and intelligent challenge with an open-mind approach, we can reasonably expect that sooner rather than later the exploration of metabolism and function of H(2)S will provide solutions for many of the biological mysteries of life and pave way for the arrival of many more gasotransmitters. PMID:19845469

  18. Updated cost estimates of meeting geothermal hydrogen sulfide emission regulations

    SciTech Connect

    Wells, K.D.; Currie, J.W.; Weakley, S.A.; Ballinger, M.Y.

    1981-08-01

    A means of estimating the cost of hydrogen sulfide (H/sub 2/S) emission control was investigated. This study was designed to derive H/sub 2/S emission abatement cost functions and illustrate the cost of H/sub 2/S emission abatement at a hydrothermal site. Four tasks were undertaken: document the release of H/sub 2/S associated with geothermal development; review H/sub 2/S environmental standards; develop functional relationships that may be used to estimate the most cose-effective available H/sub 2/S abatement process; and use the cost functions to generate abatement cost estimates for a specific site. The conclusions and recommendations derived from the research are presented. The definition of the term impacts as used in this research is discussed and current estimates of the highest expected H/sub 2/S concentrations of in geothermal reservoirs are provided. Regulations governing H/sub 2/S emissions are reviewed and a review of H/sub 2/S control technology and a summary of the control cost functions are included. A case study is presented to illustrate H/sub 2/S abatement costs at the Baca KGRA in New Mexico.

  19. Hydrogen Sulfide: A Therapeutic Candidate for Fibrotic Disease?

    PubMed Central

    Song, Kai; Li, Qian; Yin, Xiao-Ya; Lu, Ying; Liu, Chun-Feng; Hu, Li-Fang

    2015-01-01

    Fibrotic diseases including chronic kidney disease, liver cirrhosis, idiopathic pulmonary fibrosis, and chronic disease account for 45% mortality in the developed countries and pose a great threat to the global health. Many great targets and molecules have been reported to be involved in the initiation and/or progression of fibrosis, among which inflammation and oxidative stress are well-recognized modulation targets. Hydrogen sulfide (H2S) is the third gasotransmitter with potent properties in inhibiting inflammation and oxidative stress in various organs. Recent evidence suggests that plasma H2S level is decreased in various animal models of fibrotic diseases and supplement of exogenous H2S is able to ameliorate fibrosis in the kidney, lung, liver, and heart. This leads us to propose that modulation of H2S production may represent a promising therapeutic venue for the treatment of a variety of fibrotic diseases. Here, we summarize and discuss the current data on the role and underlying mechanisms of H2S in fibrosis diseases related to heart, liver, kidney, and other organs. PMID:26078807

  20. Epithelial Electrolyte Transport Physiology and the Gasotransmitter Hydrogen Sulfide

    PubMed Central

    Pouokam, Ervice; Althaus, Mike

    2016-01-01

    Hydrogen sulfide (H2S) is a well-known environmental chemical threat with an unpleasant smell of rotten eggs. Aside from the established toxic effects of high-dose H2S, research over the past decade revealed that cells endogenously produce small amounts of H2S with physiological functions. H2S has therefore been classified as a “gasotransmitter.” A major challenge for cells and tissues is the maintenance of low physiological concentrations of H2S in order to prevent potential toxicity. Epithelia of the respiratory and gastrointestinal tract are especially faced with this problem, since these barriers are predominantly exposed to exogenous H2S from environmental sources or sulfur-metabolising microbiota. In this paper, we review the cellular mechanisms by which epithelial cells maintain physiological, endogenous H2S concentrations. Furthermore, we suggest a concept by which epithelia use their electrolyte and liquid transport machinery as defence mechanisms in order to eliminate exogenous sources for potentially harmful H2S concentrations. PMID:26904165

  1. The Significance of Hydrogen Sulfide for Arabidopsis Seed Germination

    PubMed Central

    Baudouin, Emmanuel; Poilevey, Aurélie; Hewage, Nishodi Indiketi; Cochet, Françoise; Puyaubert, Juliette; Bailly, Christophe

    2016-01-01

    Hydrogen sulfide (H2S) recently emerged as an important gaseous signaling molecule in plants. In this study, we investigated the possible functions of H2S in regulating Arabidopsis seed germination. NaHS treatments delayed seed germination in a dose-dependent manner and were ineffective in releasing seed dormancy. Interestingly, endogenous H2S content was enhanced in germinating seeds. This increase was correlated with higher activity of three enzymes (L-cysteine desulfhydrase, D-cysteine desulfhydrase, and β-cyanoalanine synthase) known as sources of H2S in plants. The H2S scavenger hypotaurine and the D/L cysteine desulfhydrase inhibitor propargylglycine significantly delayed seed germination. We analyzed the germinative capacity of des1 seeds mutated in Arabidopsis cytosolic L-cysteine desulfhydrase. Although the mutant seeds do not exhibit germination-evoked H2S formation, they retained similar germination capacity as the wild-type seeds. In addition, des1 seeds responded similarly to temperature and were as sensitive to ABA as wild type seeds. Taken together, these data suggest that, although its metabolism is stimulated upon seed imbibition, H2S plays, if any, a marginal role in regulating Arabidopsis seed germination under standard conditions. PMID:27446159

  2. Hydrogen sulfide and endothelial dysfunction: relationship with nitric oxide.

    PubMed

    Altaany, Zaid; Moccia, Francesco; Munaron, Luca; Mancardi, Daniele; Wang, Rui

    2014-01-01

    The endothelium is a cellular monolayer that lines the inner surface of blood vessels and plays a central role in the maintenance of cardiovascular homeostasis by controlling platelet aggregation, vascular tone, blood fluidity and fibrinolysis, adhesion and transmigration of inflammatory cells, and angiogenesis. Endothelial dysfunctions are associated with various cardiovascular diseases, including atherosclerosis, hypertension, myocardial infarction, and cardiovascular complications of diabetes. Numerous studies have established the anti-inflammatory, anti-apoptotic, and anti-oxidant effects of hydrogen sulfide (H2S), the latest member to join the gasotransmitter family along with nitric oxide and carbon monoxide, on vascular endothelium. In addition, H2S may prime endothelial cells (ECs) toward angiogenesis and contribute to wound healing, besides to its well-known ability to relax vascular smooth muscle cells (VSMCs), and thereby reducing blood pressure. Finally, H2S may inhibit VSMC proliferation and platelet aggregation. Consistently, a deficit in H2S homeostasis is involved in the pathogenesis of atherosclerosis and of hyperglycaemic endothelial injury. Therefore, the application of H2S-releasing drugs or using gene therapy to increase endogenous H2S level may help restore endothelial function and antagonize the progression of cardiovascular diseases. The present article reviews recent studies on the role of H2S in endothelial homeostasis, under both physiological and pathological conditions, and its putative therapeutic applications. PMID:25005182

  3. Epithelial Electrolyte Transport Physiology and the Gasotransmitter Hydrogen Sulfide.

    PubMed

    Pouokam, Ervice; Althaus, Mike

    2016-01-01

    Hydrogen sulfide (H2S) is a well-known environmental chemical threat with an unpleasant smell of rotten eggs. Aside from the established toxic effects of high-dose H2S, research over the past decade revealed that cells endogenously produce small amounts of H2S with physiological functions. H2S has therefore been classified as a "gasotransmitter." A major challenge for cells and tissues is the maintenance of low physiological concentrations of H2S in order to prevent potential toxicity. Epithelia of the respiratory and gastrointestinal tract are especially faced with this problem, since these barriers are predominantly exposed to exogenous H2S from environmental sources or sulfur-metabolising microbiota. In this paper, we review the cellular mechanisms by which epithelial cells maintain physiological, endogenous H2S concentrations. Furthermore, we suggest a concept by which epithelia use their electrolyte and liquid transport machinery as defence mechanisms in order to eliminate exogenous sources for potentially harmful H2S concentrations. PMID:26904165

  4. Chemically Reversible Reactions of Hydrogen Sulfide with Metal Phthalocyanines

    PubMed Central

    2015-01-01

    Hydrogen sulfide (H2S) is an important signaling molecule that exerts action on various bioinorganic targets. Despite this importance, few studies have investigated the differential reactivity of the physiologically relevant H2S and HS– protonation states with metal complexes. Here we report the distinct reactivity of H2S and HS– with zinc(II) and cobalt(II) phthalocyanine (Pc) complexes and highlight the chemical reversibility and cyclability of each metal. ZnPc reacts with HS–, but not H2S, to generate [ZnPc-SH]−, which can be converted back to ZnPc by protonation. CoPc reacts with HS–, but not H2S, to form [CoIPc]−, which can be reoxidized to CoPc by air. Taken together, these results demonstrate the chemically reversible reaction of HS– with metal phthalocyanine complexes and highlight the importance of H2S protonation state in understanding the reactivity profile of H2S with biologically relevant metal scaffolds. PMID:24785654

  5. Chemically reversible reactions of hydrogen sulfide with metal phthalocyanines.

    PubMed

    Hartle, Matthew D; Sommer, Samantha K; Dietrich, Stephen R; Pluth, Michael D

    2014-08-01

    Hydrogen sulfide (H2S) is an important signaling molecule that exerts action on various bioinorganic targets. Despite this importance, few studies have investigated the differential reactivity of the physiologically relevant H2S and HS(-) protonation states with metal complexes. Here we report the distinct reactivity of H2S and HS(-) with zinc(II) and cobalt(II) phthalocyanine (Pc) complexes and highlight the chemical reversibility and cyclability of each metal. ZnPc reacts with HS(-), but not H2S, to generate [ZnPc-SH](-), which can be converted back to ZnPc by protonation. CoPc reacts with HS(-), but not H2S, to form [Co(I)Pc](-), which can be reoxidized to CoPc by air. Taken together, these results demonstrate the chemically reversible reaction of HS(-) with metal phthalocyanine complexes and highlight the importance of H2S protonation state in understanding the reactivity profile of H2S with biologically relevant metal scaffolds. PMID:24785654

  6. Kinetics and mechanisms of hydrogen sulfide adsorption by biochars.

    PubMed

    Shang, Guofeng; Shen, Guoqing; Liu, Liang; Chen, Qin; Xu, Zhiwei

    2013-04-01

    Three different biochars as cost-effective substitutes for activated carbon (AC) were tested for their hydrogen sulfide (H2S) adsorption ability. The biochars were produced from camphor (SC), bamboo (SB), and rice hull (SR) at 400°C by oxygen-limited pyrolysis. The surface area (SA), pH, and Fourier transform infrared spectras of the biochars and AC were compared. The maximum removal rates and the saturation constants were obtained using the Michaelis-Menten-type equation. The three biochars were found to be alkaline, and the SAs of the biochars were much smaller than that of the AC. The H2S breakthrough capacity was related to the local pH within the pore system of the biochar. The order observed in terms of both biochar and AC adsorption capacity was SR>SB>SC>AC. SR efficiently removed H2S within the inlet concentration range of 10-50 μL/L. Biochars derived from agricultural/forestry wastes are a promising H2S adsorbent with distinctive properties. PMID:23455220

  7. A reactor-receiver for solar thermolysis of hydrogen sulfide

    SciTech Connect

    Lee, C.S.; Fletcher, E.A.; Davidson, J.H.

    1995-10-01

    Use of concentrated solar energy as a source of heat for thermochemical dissociation of hydrogen sulfide is an intriguing method of storing solar energy in the form of hydrogen while eliminating the environmental burden of disposing of a waste product formed during processing of petroleum, coal and natural gas. The major technical challenge is the design of the interface between the solar source and the chemical reactor. As part of an ongoing effort, the authors describe a porous bed, alumina receiver-reactor and characterize and examine its important features. The authors used a one-dimensional, steady state model to predict temperature profiles in both solid and gas phases and the composition profiles in the gas. In this base-line example, with an insolation of 800 W, an inlet gas temperature of 1,000 K, a porosity of 0.5, and a mass flow rate of 0.25 kg/m{sup 2}s, surface temperature of the bed goes to about 1,690 K and the gas products emerge from a 5 cm deep bed at about 1,680 K at 0.95 atm. The gas achieved its equilibrium composition; the conversion of H{sub 2}S to H{sub 2} and S{sub 2} was 0.55. The reaction is the rate determining agent in the process. Thus, kinetics of the chemical reaction will play an essential role in determining what should be the characteristics of a practical device. Results also suggest that the optical characteristics and geometry of the solid substrate should be manipulated to optimize the performance of a commercial receiver-reactor.

  8. Organization of the Human Mitochondrial Hydrogen Sulfide Oxidation Pathway*♦

    PubMed Central

    Libiad, Marouane; Yadav, Pramod Kumar; Vitvitsky, Victor; Martinov, Michael; Banerjee, Ruma

    2014-01-01

    Sulfide oxidation is expected to play an important role in cellular switching between low steady-state intracellular hydrogen sulfide levels and the higher concentrations where the physiological effects are elicited. Yet despite its significance, fundamental questions regarding how the sulfide oxidation pathway is wired remain unanswered, and competing proposals exist that diverge at the very first step catalyzed by sulfide quinone oxidoreductase (SQR). We demonstrate that, in addition to sulfite, glutathione functions as a persulfide acceptor for human SQR and that rhodanese preferentially synthesizes rather than utilizes thiosulfate. The kinetic behavior of these enzymes provides compelling evidence for the flow of sulfide via SQR to glutathione persulfide, which is then partitioned to thiosulfate or sulfite. Kinetic simulations at physiologically relevant metabolite concentrations provide additional support for the organizational logic of the sulfide oxidation pathway in which glutathione persulfide is the first intermediate formed. PMID:25225291

  9. Can Hydrogen Sulfide Gas Be a Biosignature in a Habitable Exoplanet?

    NASA Astrophysics Data System (ADS)

    Hu, Renyu; Seager, S.; Bains, W.

    2011-05-01

    A group of microorganisms can disproportionate sulfite and elemental sulfur into sulfide and sulfate to obtain energy for a living. We explore if the sulfide produced by microorganisms can alter the atmospheric composition to manifest in the spectrum of a habitable exoplanet. We consider a dry (i.e., limited ocean cover) habitable planet of Earth size and mass, orbiting a Sun-like star. As on Earth, volcanoes release sulfur as sulfur dioxide and hydrogen sulfide, but the volcanic production of hydrogen sulfide is limited by the scarcity of water. In the meantime, in our scenario, microbes can flourish in the ocean and effectively make use of the energy gained from the sulfur disproportion and release sulfide as the metabolic byproduct. The metabolic sulfur disproportion can enhance the overall outgassing rate of hydrogen sulfide by nearly one order of magnitude over the non-biological emission. To study the atmospheric response to this enhancement, we build a one-dimensional chemical transport model that treats all O, H and S bearing species and the relevant photochemical and chemical reactions. The vertical transport is approximated with the eddy diffusion. We also consider the formation and the sedimentation of elemental sulfur aerosols and sulfate aerosols in the atmosphere and explore the effect of aerosol particle size on the chemistry and the radiative transfer. To establish hydrogen sulfide as a biosignature, we need to understand the atmospheric response to the sulfide outgassing, the spectral features of hydrogen sulfide and its photochemical products, and the volcanic release of H2S. The current work will address the first two problems, and the main uncertainty will remain at the possible false positives due to the volcanism.

  10. Mitochondrial adaptations to utilize hydrogen sulfide for energy and signaling.

    PubMed

    Olson, Kenneth R

    2012-10-01

    Sulfur is a versatile molecule with oxidation states ranging from -2 to +6. From the beginning, sulfur has been inexorably entwined with the evolution of organisms. Reduced sulfur, prevalent in the prebiotic Earth and supplied from interstellar sources, was an integral component of early life as it could provide energy through oxidization, even in a weakly oxidizing environment, and it spontaneously reacted with iron to form iron-sulfur clusters that became the earliest biological catalysts and structural components of cells. The ability to cycle sulfur between reduced and oxidized states may have been key in the great endosymbiotic event that incorporated a sulfide-oxidizing α-protobacteria into a host sulfide-reducing Archea, resulting in the eukaryotic cell. As eukaryotes slowly adapted from a sulfidic and anoxic (euxinic) world to one that was highly oxidizing, numerous mechanisms developed to deal with increasing oxidants; namely, oxygen, and decreasing sulfide. Because there is rarely any reduced sulfur in the present-day environment, sulfur was historically ignored by biologists, except for an occasional report of sulfide toxicity. Twenty-five years ago, it became evident that the organisms in sulfide-rich environments could synthesize ATP from sulfide, 10 years later came the realization that animals might use sulfide as a signaling molecule, and only within the last 4 years did it become apparent that even mammals could derive energy from sulfide generated in the gastrointestinal tract. It has also become evident that, even in the present-day oxic environment, cells can exploit the redox chemistry of sulfide, most notably as a physiological transducer of oxygen availability. This review will examine how the legacy of sulfide metabolism has shaped natural selection and how some of these ancient biochemical pathways are still employed by modern-day eukaryotes. PMID:22430869

  11. A Hypothesis: Hydrogen Sulfide Might Be Neuroprotective against Subarachnoid Hemorrhage Induced Brain Injury

    PubMed Central

    Yu, Yong-Peng; Chi, Xiang-Lin; Liu, Li-Jun

    2014-01-01

    Gases such as nitric oxide (NO) and carbon monoxide (CO) play important roles both in normal physiology and in disease. Recent studies have shown that hydrogen sulfide (H2S) protects neurons against oxidative stress and ischemia-reperfusion injury and attenuates lipopolysaccharides (LPS) induced neuroinflammation in microglia, exhibiting anti-inflammatory and antiapoptotic activities. The gas H2S is emerging as a novel regulator of important physiologic functions such as arterial diameter, blood flow, and leukocyte adhesion. It has been known that multiple factors, including oxidative stress, free radicals, and neuronal nitric oxide synthesis as well as abnormal inflammatory responses, are involved in the mechanism underlying the brain injury after subarachnoid hemorrhage (SAH). Based on the multiple physiologic functions of H2S, we speculate that it might be a promising, effective, and specific therapy for brain injury after SAH. PMID:24707204

  12. Homocysteine in renovascular complications: hydrogen sulfide is a modulator and plausible anaerobic ATP generator

    PubMed Central

    Sen, Utpal; Pushpakumar, Sathnur B.; Amin, Matthew A.; Tyagi, Suresh C.

    2014-01-01

    Homocysteine (Hcy) is a non-protein amino acid derived from dietary methionine. High levels of Hcy, known as hyperhomocysteinemia (HHcy) is known to cause vascular complications. In the mammalian tissue, Hcy is metabolized by transsulfuration enzymes to produce hydrogen sulfide (H2S). H2S, a pungent smelling gas was previously known for its toxic effects in the central nervous system, recent studies however has revealed protective effects in a variety of diseases including hypertension, diabetes, inflammation, atherosclerosis, and renal disease progression and failure. Interestingly, under stress conditions including hypoxia, H2S can reduce metabolic demand and also act as a substrate for ATP production. This review highlights some of the recent advances in H2S research as a potential therapeutic agent targeting renovascular diseases associated with HHcy. PMID:24963795

  13. Hydrogen Sulfide Regulates Inward-Rectifying K+ Channels in Conjunction with Stomatal Closure1[OPEN

    PubMed Central

    Papanatsiou, Maria; Scuffi, Denisse; Blatt, Michael R.; García-Mata, Carlos

    2015-01-01

    Hydrogen sulfide (H2S) is the third biological gasotransmitter, and in animals, it affects many physiological processes by modulating ion channels. H2S has been reported to protect plants from oxidative stress in diverse physiological responses. H2S closes stomata, but the underlying mechanism remains elusive. Here, we report the selective inactivation of current carried by inward-rectifying K+ channels of tobacco (Nicotiana tabacum) guard cells and show its close parallel with stomatal closure evoked by submicromolar concentrations of H2S. Experiments to scavenge H2S suggested an effect that is separable from that of abscisic acid, which is associated with water stress. Thus, H2S seems to define a unique and unresolved signaling pathway that selectively targets inward-rectifying K+ channels. PMID:25770153

  14. Chronic Ambient Hydrogen Sulfide Exposure and Cognitive Function

    PubMed Central

    Reed, Bruce R.; Crane, Julian; Garrett, Nick; Woods, David L.; Bates, Michael N.

    2014-01-01

    Background Exposures to hydrogen sulfide gas (H2S) have been inconclusively linked to a variety of negative cognitive outcomes. We investigated possible effects on cognitive function in an urban population with chronic, low-level exposure to H2S. Methods Participants were 1,637 adults, aged 18-65 years from Rotorua city, New Zealand, exposed to ambient H2S from geothermal sources. Exposures at homes and workplaces were estimated from data collected by summer and winter H2S monitoring networks across Rotorua in 2010/11. Metrics for H2S exposure at the time of participation and for exposure over the last 30 years were calculated. H2S exposure was modeled both as continuous variables and as quartiles of exposure covering the range of 0 – 64 ppb (0-88 μg/m3). Outcomes were neuropsychological tests measuring visual and verbal episodic memory, attention, fine motor skills, psychomotor speed and mood. Associations between cognition and measures of H2S exposure were investigated with multiple regression, while covarying demographics and factors known to be associated with cognitive performance. Results The consistent finding was of no association between H2S exposure and cognition. Quartiles of H2S exposure had a small association with simple reaction time: higher exposures were associated with faster response times. Similarly, for digit symbol, higher H2S exposures tended to be marginally associated with better performance. Conclusion The results provide evidence that chronic H2S exposure, at the ambient levels found in and around Rotorua, is not associated with impairment of cognitive function. PMID:24548790

  15. Is Hydrogen Sulfide-Induced Suspended Animation General Anesthesia?

    PubMed Central

    Li, Rosie Q.; McKinstry, Andrew R.; Moore, Jason T.; Caltagarone, Breanna M.; Eckenhoff, Maryellen F.; Eckenhoff, Roderic G.

    2012-01-01

    Hydrogen sulfide (H2S) depresses mitochondrial function and thereby metabolic rates in mice, purportedly resulting in a state of “suspended animation.” Volatile anesthetics also depress mitochondrial function, an effect that may contribute to their anesthetic properties. In this study, we ask whether H2S has general anesthetic properties, and by extension, whether mitochondrial effects underlie the state of anesthesia. We compared loss of righting reflex, electroencephalography, and electromyography in mice exposed to metabolically equipotent concentrations of halothane, isoflurane, sevoflurane, and H2S. We also studied combinations of H2S and anesthetics to assess additivity. Finally, the long-term effects of H2S were assessed by using the Morris water maze behavioral testing 2 to 3 weeks after exposures. Exposure to H2S decreases O2 consumption, CO2 production, and body temperature similarly to that of the general anesthetics, but fails to produce a loss of righting reflex or muscle atonia at metabolically equivalent concentrations. When combined, H2S antagonizes the metabolic effects of isoflurane, but potentiates the isoflurane-induced loss of righting reflex. We found no effect of prior H2S exposure on memory or learning. H2S (250 ppm), not itself lethal, produced delayed lethality when combined with subanesthetic concentrations of isoflurane. H2S cannot be considered a general anesthetic, despite similar metabolic suppression. Metabolic suppression, presumably via mitochondrial actions, is not sufficient to account for the hypnotic or immobilizing components of the anesthetic state. Combinations of H2S and isoflurane can be lethal, suggesting extreme care in the combination of these gases in clinical situations. PMID:22414854

  16. Sensory and Cognitive Effects of Acute Exposure to Hydrogen Sulfide

    PubMed Central

    Fiedler, Nancy; Kipen, Howard; Ohman-Strickland, Pamela; Zhang, Junfeng; Weisel, Clifford; Laumbach, Robert; Kelly-McNeil, Kathie; Olejeme, Kelechi; Lioy, Paul

    2008-01-01

    Background Some epidemiologic studies have reported compromised cognitive and sensory performance among individuals exposed to low concentrations of hydrogen sulfide (H2S). Objectives We hypothesized a dose–response increase in symptom severity and reduction in sensory and cognitive performance in response to controlled H2S exposures. Methods In separate exposure sessions administered in random order over three consecutive weeks, 74 healthy subjects [35 females, 39 males; mean age (± SD) = 24.7 ± 4.2; mean years of education = 16.5 ± 2.4], were exposed to 0.05, 0.5, and 5 ppm H2S. During each exposure session, subjects completed ratings and tests before H2S exposure (baseline) and during the final hour of the 2-hr exposure period. Results Dose–response reduction in air quality and increases in ratings of odor intensity, irritation, and unpleasantness were observed. Total symptom severity was not significantly elevated across any exposure condition, but anxiety symptoms were significantly greater in the 5-ppm than in the 0.05-ppm condition. No dose–response effect was observed for sensory or cognitive measures. Verbal learning was compromised during each exposure condition. Conclusions Although some symptoms increased with exposure, the magnitude of these changes was relatively minor. Increased anxiety was significantly related to ratings of irritation due to odor. Whether the effect on verbal learning represents a threshold effect of H2S or an effect due to fatigue across exposure requires further investigation. These acute effects in a healthy sample cannot be directly generalized to communities where individuals have other health conditions and concomitant exposures. PMID:18197303

  17. Eukaryotic and prokaryotic contributions to colonic hydrogen sulfide synthesis.

    PubMed

    Flannigan, Kyle L; McCoy, Kathy D; Wallace, John L

    2011-07-01

    Hydrogen sulfide (H(2)S) is an important modulator of many aspects of digestive function, both in health and disease. Colonic tissue H(2)S synthesis increases markedly during injury and inflammation and appears to contribute to resolution. Some of the bacteria residing in the colon can also produce H(2)S. The extent to which bacterial H(2)S synthesis contributes to what is measured as colonic H(2)S synthesis is not clear. Using conventional and germ-free mice, we have delineated the eukaryotic vs. prokaryotic contributions to colonic H(2)S synthesis, both in healthy and colitic mice. Colonic tissue H(2)S production is entirely dependent on the presence of the cofactor pyridoxal 5'-phosphate (vitamin B(6)), while bacterial H(2)S synthesis appears to occur independent of this cofactor. As expected, approximately one-half of the H(2)S produced by feces is derived from eukaryotic cells. While colonic H(2)S synthesis is markedly increased when the tissue is inflamed, and, in proportion to the extent of inflammation, fecal H(2)S synthesis does not change and tissue granulocytes do not appear to be the source of the elevated H(2)S production. Rats fed a B vitamin-deficient diet for 6 wk exhibited significantly diminished colonic H(2)S synthesis, but fecal H(2)S synthesis was not different from that of rats on the control diet. Our results demonstrate that H(2)S production by colonic bacteria does not contribute significantly to what is measured as colonic tissue H(2)S production, using the acetate trapping assay system employed in this study. PMID:21474649

  18. Hydrogen sulfide promotes calcium uptake in larval zebrafish.

    PubMed

    Kwong, Raymond W M; Perry, Steve F

    2015-07-01

    Hydrogen sulfide (H2S) can act as a signaling molecule for various ion channels and/or transporters; however, little is known about its potential involvement in Ca(2+) balance. Using developing zebrafish (Danio rerio) as an in vivo model system, the present study demonstrated that acute exposure to H2S donors increased Ca(2+) influx at 4 days postfertilization, while chronic (3-day) exposure caused a rise in whole body Ca(2+) levels. The mRNA expression of Ca(2+)-transport-related genes was unaffected by H2S exposure, suggesting that posttranscriptional modifications were responsible for the altered rates of Ca(2+) uptake. Indeed, treatment of fish with the protein kinase A inhibitor H-89 abolished the H2S-mediated stimulation of Ca(2+) influx, suggesting that H2S increased Ca(2+) influx by activating cAMP-protein kinase A pathways. Cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) are two key enzymes in the endogenous synthesis of H2S. Using an antisense morpholino knockdown approach, we demonstrated that Ca(2+) influx was reduced in CBS isoform b (CBSb)- but not in CSE-deficient fish. Interestingly, the reduction in Ca(2+) influx in CBSb-deficient fish was observed only in fish that were acclimated to low-Ca(2+) water (i.e., 25 μM Ca(2+); control: 250 μM Ca(2+)). Similarly, mRNA expression of cbsb but not cse was increased in fish acclimated to low-Ca(2+) water. Results from whole-mount immunohistochemistry further revealed that CBSb was expressed in Na(+)-K(+)-ATPase-rich cells, which are implicated in Ca(2+) uptake in zebrafish larvae. Collectively, the present study suggests a novel role for H2S in promoting Ca(2+) influx, particularly in a low-Ca(2+) environment. PMID:25948733

  19. MET17 and Hydrogen Sulfide Formation in Saccharomyces cerevisiae

    PubMed Central

    Spiropoulos, Apostolos; Bisson, Linda F.

    2000-01-01

    Commercial isolates of Saccharomyces cerevisiae differ in the production of hydrogen sulfide (H2S) during fermentation, which has been attributed to variation in the ability to incorporate reduced sulfur into organic compounds. We transformed two commercial strains (UCD522 and UCD713) with a plasmid overexpressing the MET17 gene, which encodes the bifunctional O-acetylserine/O-acetylhomoserine sulfhydrylase (OAS/OAH SHLase), to test the hypothesis that the level of activity of this enzyme limits reduced sulfur incorporation, leading to H2S release. Overexpression of MET17 resulted in a 10- to 70-fold increase in OAS/OAH SHLase activity in UCD522 but had no impact on the level of H2S produced. In contrast, OAS/OAH SHLase activity was not as highly expressed in transformants of UCD713 (0.5- to 10-fold) but resulted in greatly reduced H2S formation. Overexpression of OAS/OAH SHLase activity was greater in UCD713 when grown under low-nitrogen conditions, but the impact on reduction of H2S was greater under high-nitrogen conditions. Thus, there was not a good correlation between the level of enzyme activity and H2S production. We measured cellular levels of cysteine to determine the impact of overexpression of OAS/OAH SHLase activity on sulfur incorporation. While Met17p activity was not correlated with increased cysteine production, conditions that led to elevated cytoplasmic levels of cysteine also reduced H2S formation. Our data do not support the simple hypothesis that variation in OAS/OAH SHLase activity is correlated with H2S production and release. PMID:11010893

  20. Intermittent control procedures for the Geysers hydrogen sulfide emission abatement

    SciTech Connect

    Buick, B.D.; Mooney, M.L.

    1984-01-01

    Pacific Gas and Electric Company (PG and E) operates the world's largest geothermal steam electric power generation facility, currently about 1.140 megawatts (Mw). This facility is located about 80 miles north of San Francisco, California and is within a region referred to as the Known Geothermal Resource Area (KGRA). Pollutants resulting from this method of electric power generation are due to impurities in the geothermal steam. A major contaminate in the steam is hydrogen sulfide (H/sub 2/S), a regulated pollutant in California. The ambient air quality standard (AAQS) for this pollutant in California is 0.03 parts per million (ppM) averaged over one hour. H/sub 2/S is an invisible, unpleasant smelling gas present in varying concentrations in the geothermal steam. Its odor has been compared to the smell of rotten eggs. Since PG and E is increasingly relying on this source of electrical power generation, it has committed millions of dollars to the development, testing, acquisition, and installation of abatement equipment to reduce H/sub 2/S emissions during the past ten years. In order to reduce the number of exceeds of the AAQS during this developmental period, a predictive model was needed for interim abatement purposes. Most of the high hourly H/sub 2/S values occur with meteorological conditions having poor ventilation resulting from a combination of low wind speed and reduced mixing layer depths. This weather condition is most common during the months of June through October in California. A predictive model was developed from three years of hourly H/sub 2/S measurements of 0.03 ppM or greater in populated areas downwind of the generation facility and from observations of associated meteorological data.

  1. Genetic Targets of Hydrogen Sulfide in Ventilator-Induced Lung Injury – A Microarray Study

    PubMed Central

    Spassov, Sashko; Pfeifer, Dietmar; Strosing, Karl; Ryter, Stefan; Hummel, Matthias; Faller, Simone; Hoetzel, Alexander

    2014-01-01

    Recently, we have shown that inhalation of hydrogen sulfide (H2S) protects against ventilator-induced lung injury (VILI). In the present study, we aimed to determine the underlying molecular mechanisms of H2S-dependent lung protection by analyzing gene expression profiles in mice. C57BL/6 mice were subjected to spontaneous breathing or mechanical ventilation in the absence or presence of H2S (80 parts per million). Gene expression profiles were determined by microarray, sqRT-PCR and Western Blot analyses. The association of Atf3 in protection against VILI was confirmed with a Vivo-Morpholino knockout model. Mechanical ventilation caused a significant lung inflammation and damage that was prevented in the presence of H2S. Mechanical ventilation favoured the expression of genes involved in inflammation, leukocyte activation and chemotaxis. In contrast, ventilation with H2S activated genes involved in extracellular matrix remodelling, angiogenesis, inhibition of apoptosis, and inflammation. Amongst others, H2S administration induced Atf3, an anti-inflammatory and anti-apoptotic regulator. Morpholino mediated reduction of Atf3 resulted in elevated lung injury despite the presence of H2S. In conclusion, lung protection by H2S during mechanical ventilation is associated with down-regulation of genes related to oxidative stress and inflammation and up-regulation of anti-apoptotic and anti-inflammatory genes. Here we show that Atf3 is clearly involved in H2S mediated protection. PMID:25025333

  2. A Single Fluorescent Probe to Visualize Hydrogen Sulfide and Hydrogen Polysulfides with Different Fluorescence Signals.

    PubMed

    Chen, Wei; Pacheco, Armando; Takano, Yoko; Day, Jacob J; Hanaoka, Kenjiro; Xian, Ming

    2016-08-16

    Hydrogen sulfide (H2 S) and hydrogen polysulfides (H2 Sn , n>1) are endogenous regulators of many physiological processes. In order to better understand the symbiotic relationship and cellular cross-talk between H2 S and H2 Sn , it is highly desirable to develop single fluorescent probes which enable dual-channel discrimination between H2 S and H2 Sn . Herein, we report the rational design, synthesis, and evaluation of the first dual-detection fluorescent probe DDP-1 that can visualize H2 S and H2 Sn with different fluorescence signals. The probe showed high selectivity and sensitivity to H2 S and H2 Sn in aqueous media and in cells. PMID:27410794

  3. Hydrogen sulfide mitigates matrix metalloproteinase-9 activity and neurovascular permeability in hyperhomocysteinemic mice*

    PubMed Central

    Tyagi, Neetu; Givvimani, Srikanth; Qipshidze, Natia; Kundu, Soumi; Kapoor, Shray; Vacek, Jonathan C.; Tyagi, Suresh C.

    2010-01-01

    An elevated level of homocysteine (Hcy), known as hyperhomocysteinmia (HHcy), was associated with neurovascular diseases. At physiological levels, hydrogen sulfide (H2S) protected the neurovascular system. Because Hcy was also a precursor of hydrogen sulfide (H2S), we sought to test whether the H2S protected the brain during HHcy. Cystathionine-β-synthase heterozygous (CBS+/−) and wild type (WT) mice were supplemented with or without NaHS (30 µM/L, H2S donor) in drinking water. Blood flow and cerebral microvascular permeability in pial vessels were measured by intravital microscopy in WT, WT+NaHS, CBS−/+ and CBS−/+ + NaHS treated mice. The brain tissues were analyzed for matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinase (TIMP) by Western blot and RT-PCR. The mRNA levels of CBS and cystathionine gamma lyase (CSE, enzyme responsible for conversion of Hcy to H2S) genes were measured by RT-PCR. The results showed a significant increase in MMP-2, MMP-9, TIMP-3 protein and mRNA in CBS (−/+) mice, while H2S treatment mitigated this increase. Interstitial localization of MMPs was also apparent through Immunohistochemistry. A decrease in protein and mRNA expression of TIMP-4 was observed in CBS (−/+) mice. Microscopy data revealed increase in permeability in CBS (−/+) mice. These effects were ameliorated by H2S and suggested that physiological levels of H2S supplementation may have therapeutic potential against HHcy-induced microvascular permeability, in part, by normalizing the MMP/TIMP ratio in the brain. PMID:19913585

  4. 30 CFR 250.215 - What hydrogen sulfide (H2S) information must accompany the EP?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... methodologies outlined in 40 CFR part 68. ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What hydrogen sulfide (H2S) information must... CONTINENTAL SHELF Plans and Information Contents of Exploration Plans (ep) § 250.215 What hydrogen...

  5. Distributed fiber optic chemical sensor for hydrogen sulfide and chlorine detection

    NASA Astrophysics Data System (ADS)

    Mukamal, Harold; Cordero, Steven R.; Ruiz, David; Beshay, Manal; Lieberman, Robert A.

    2005-11-01

    Fiber optic sensors having their entire length as the sensing elements for chlorine or hydrogen sulfide are reported here. The chlorine fiber consists of a silica core and a chlorine-sensitive cladding, and the hydrogen sulfide fiber has a hydrogen sulfide sensitive cladding. Upon exposure to the corresponding challenge gas, the cladding very rapidly changes color resulting in attenuation of the light throughput of the fiber. A one-meter portion of the chlorine sensor fiber responds to 10 ppm chlorine in 20 seconds and to 1 ppm in several minutes. The attenuation after 10 minutes of exposure is very high, and is dependant on both chlorine concentration and fiber length. A ten-meter portion of the hydrogen sulfide sensor fiber responds to 100 ppm hydrogen sulfide in 30 seconds and to 10 ppm in 1 minute. The high sensitivity suggests that the propagating modes of the light interact strongly with the cladding, and that these interactions are massively increased (Beers Law) due to the extended sensor length. This approach will supersede the current method of having a collection of point-detectors to cover large areas.

  6. The partitioning of hydrogen sulfide in the condensers of Geysers Unit 15

    NASA Astrophysics Data System (ADS)

    Weres, O.

    1982-09-01

    Geysers Unit 15 was the first of the geothermal units equipped with surface condensers to go on line at The Geysers power plant of the Pacific Gas and Electric Company. Units 1 through 12 have contact condensers. The switch to surface condensers was motivated by considerations of hydrogen sulfide mission abatement. In the contact condensers, there is a large liquid-to-vapor ratio, and about 75% of the hydrogen sulfide that is present in the geothermal steam supply ends up dissolved in the cooling water. Once in the cooling water, it is emitted to the atmosphere from the cooling towers unless further, tertiary abatement is employed. It was reasoned that, because the liquid-to-vapor ratio in a surface condenser would be smaller by a factor of about twenty-five than in a contact condenser, most of the hydrogen sulfide would remain in the vapor phase and leave with the gas vented from the condenser rather than by dissolving in the condensate. Unit 15 is equipped with a Stretford Unit, which removes the hydrogen sulfide from the vent gas and converts it to elemental sulfur by reaction with air. Therefore, the fraction of the hydrogen sulfide that leaves the condenser with the vent gas is not emitted to the atmosphere.

  7. Conversion of ammonia into hydrogen and nitrogen by reaction with a sulfided catalyst

    DOEpatents

    Matthews, Charles W.

    1977-01-01

    A method is provided for removing ammonia from the sour water stream of a coal gasification process. The basic steps comprise stripping the ammonia from the sour water; heating the stripped ammonia to a temperature from between 400.degree. to 1,000.degree. F; passing the gaseous ammonia through a reactor containing a sulfided catalyst to produce elemental hydrogen and nitrogen; and scrubbing the reaction product to obtain an ammonia-free gas. The residual equilibrium ammonia produced by the reactor is recycled into the stripper. The ammonia-free gas may be advantageously treated in a Claus process to recover elemental sulfur. Iron sulfide or cobalt molybdenum sulfide catalysts are used.

  8. Sulfur transformations at the hydrogen sulfide/oxygen interface in stratified waters and in cyanobacterial mats

    NASA Technical Reports Server (NTRS)

    Cohen, Y.

    1985-01-01

    Stratified water bodies allow the development of several microbial plates along the water column. The microbial plates develop in relation to nutrient availability, light penetration, and the distribution of oxygen and sulfide. Sulfide is initially produced in the sediment by sulfate-reducing bacteria. It diffuses along the water column creating a zone of hydrogen sulfide/oxygen interface. In the chemocline of Solar Lake oxygen and sulfide coexist in a 0 to 10 cm layer that moves up and down during a diurnal cycle. The microbial plate at the chemocline is exposed to oxygen and hydrogen sulfide, alternating on a diurnal basis. The cyanobacteria occupying the interface switch from anoxygenic photosynthesis in the morning to oxygenic photosynthesis during the rest of the day which results in a temporal build up of elemental sulfur during the day and disappears at night due to both oxidation to thiosulfate and sulfate by thiobacilli, and reduction to hydrogen sulfide by Desulfuromonas sp. and anaerobically respiring cyanobacteria. Sulfate reduction was enhanced in the light at the surface of the cyanobacterial mats. Microsulfate reduction measurements showed enhanced activity of sulfate reduction even under high oxygen concentrations of 300 to 800 micrometer. Apparent aerobic SO sub 4 reduction activity is explained by the co-occurrence of H sub 2. The physiology of this apparent sulfate reduction activity is studied.

  9. Red soil as a regenerable sorbent for high temperature removal of hydrogen sulfide from coal gas.

    PubMed

    Ko, Tzu-Hsing; Chu, Hsin; Lin, Hsiao-Ping; Peng, Ching-Yu

    2006-08-25

    In this study, hydrogen sulfide (H(2)S) was removed from coal gas by red soil under high temperature in a fixed-bed reactor. Red soil powders were collected from the northern, center and southern of Taiwan. They were characterized by XRPD, porosity analysis and DCB chemical analysis. Results show that the greater sulfur content of LP red soils is attributed to the higher free iron oxides and suitable sulfidation temperature is around 773K. High temperature has a negative effect for use red soil as a desulfurization sorbent due to thermodynamic limitation in a reduction atmosphere. During 10 cycles of regeneration, after the first cycle the red soil remained stable with a breakthrough time between 31 and 36 min. Hydrogen adversely affects sulfidation reaction, whereas CO exhibits a positive effect due to a water-shift reaction. COS was formed during the sulfidation stage and this was attributed to the reaction of H(2)S and CO. Results of XRPD indicated that, hematite is the dominant active species in fresh red soil and iron sulfide (FeS) is a product of the reaction between hematite and hydrogen sulfide in red soils. The spinel phase FeAl(2)O(4) was found during regeneration, moreover, the amount of free iron oxides decreased after regeneration indicating the some of the free iron oxide formed a spinel phase, further reducting the overall desulfurization efficiency. PMID:16469434

  10. A solid oxide fuel cell system fed with hydrogen sulfide and natural gas

    NASA Astrophysics Data System (ADS)

    Lu, Yixin; Schaefer, Laura

    Hydrogen sulfide (H 2S) occurs naturally in crude petroleum, natural gas, volcanic gases, hot springs, and some lakes. Hydrogen sulfide can also result as a by-product from industrial activities, such as food processing, coke ovens, paper mills, tanneries, and petroleum refineries. Sometimes, it is considered to be an industrial pollutant. However, hydrogen can be decomposed from H 2S and then used as fuel for a solid oxide fuel cell (SOFC). This paper presents an examination of a simple hydrogen sulfide and natural gas-fed solid oxide fuel cell system. The possibility of utilization of hydrogen sulfide as a feedstock in a solid oxide fuel cell is discussed. A system configuration of an SOFC combined with an external H 2S decomposition device is proposed, where a certain amount of natural gas is supplied to the SOFC. The exhaust fuel gas of the SOFC is after-burned with exhaust air from the SOFC, and the heat of the combustion gas is utilized in the decomposition of H 2S in a decomposition reactor (DR) to produce hydrogen to feed the SOFC. The products are electricity and industry-usable sulfur. Through a mass and energy balance, a preliminary thermodynamic analysis of this system is performed, and the system efficiency is calculated. Also in this paper, the challenges in creating the proposed configuration are discussed, and the direction of future work is presented.

  11. Analysis of hypochlorite process for removal of hydrogen sulfide from geothermal gases

    SciTech Connect

    Not Available

    1980-04-01

    Sodium hypochlorite reacts readily with hydrogen sulfide to convert the sulfide ion into free sulfur in a neutral or acid solution and to the sulfate ion in an alkaline solution. Sodium hypochlorite can be generated on site by processing geothermal brine in electrolytic cells. An investigation to determine if this reaction could be economically used to remove hydrogen sulfide from geothermal noncondensible gases is reported. Two processes, the LO-CAT Process and the Stretford Process, were selected for comparison with the hypochlorite process. Three geothermal reservoirs were considered for evaluation: Niland KGRA, Baca KGRA, and The Geysers KGRA. Because of the wide variation in the amount of hydrogen sulfide present at The Geysers, two different gas analyses were considered for treatment. Plants were designed to process the effluent noncondensible gases from a 10 MW/sub e/ geothermal power plant. The effluent gas from each plant was to contain a maximum hydrogen sulfide concentration of 35 ppb. Capital costs were estimated for each of the processes at each of the four sites selected. Operating costs were also calculated for each of the processes at each of the sites. The results of these studies are shown.

  12. Organic silicon compounds anf hydrogen sulfide removal from biogas by mineral and adsorbent

    NASA Astrophysics Data System (ADS)

    Choi, J.

    2015-12-01

    Biogas utilized for energy production needs to be free from organic silicon compounds and hydrogen sulfide , as their burning has damaging effects on utilities and humans; organic silicon compounds and hydrogen sulfide can be found in biogas produced from biomass wastes, due to their massive industrial use in synthetic product,such as cosmetics, detergents and paints.Siloxanes and hydrogen sulfide removal from biogas can be carried out by various methods (Ajhar et al., 2010); aim of the present work is to find a single practical andeconomic way to drastically and simultaneously reduce both hydrogen sulfide and the siloxanes concentration to less than 1 ppm. Some commercial activated carbons previously selected (Monteleoneet al., 2011) as being effective in hydrogen sulfide up taking have been tested in an adsorption measurement apparatus, by flowing both hydrogen sulphide and volatile siloxane (Decamethycyclopentasiloxane or D5) in a nitrogen stream,typically 25-300 ppm D5 over N2, through an clay minerals, Fe oxides and Silica; the adsorption process was analyzed by varying some experimental parameters (concentration, grain size, bed height). The best silica shows an adsorption capacity of 0.2 g D5 per gram of silica. The next thermo gravimetric analysis (TGA) confirms the capacity data obtained experimentally by the breakthrough curve tests.The capacity results depend on D5 and hydrogen sulphide concentrations. A regenerative silica process is then carried out byheating the silica bed up to 200 ° C and flushing out the adsorbed D5 and hydrogen sulphide samples in a nitrogen stream in athree step heating procedure up to 200 ° C. The adsorption capacity is observed to degrade after cyclingthe samples through several adsorption-desorption cycles.

  13. 30 CFR 250.245 - What hydrogen sulfide (H2S) information must accompany the DPP or DOCD?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... analysis must be consistent with the EPA's risk management plan methodologies outlined in 40 CFR part 68. ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What hydrogen sulfide (H2S) information must... Development Operations Coordination Documents (docd) § 250.245 What hydrogen sulfide (H2S) information...

  14. 30 CFR 250.245 - What hydrogen sulfide (H2S) information must accompany the DPP or DOCD?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... analysis must be consistent with the EPA's risk management plan methodologies outlined in 40 CFR part 68. ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What hydrogen sulfide (H2S) information must... Documents (docd) § 250.245 What hydrogen sulfide (H2S) information must accompany the DPP or DOCD?...

  15. A TICT-based fluorescent probe for rapid and specific detection of hydrogen sulfide and its bio-imaging applications.

    PubMed

    Ren, Mingguang; Deng, Beibei; Kong, Xiuqi; Zhou, Kai; Liu, Keyin; Xu, Gaoping; Lin, Weiying

    2016-05-11

    By blocking the intramolecular twisted internal charge transfer (TICT) process, we designed and sythesized the first TICT-based fluorescent probe for hydrogen sulfide. The new probe exhibits high selectivity, good membrane-permeability and is suitable for visualization of exogenous and endogenous hydrogen sulfide in living cells. PMID:27090853

  16. Grain Boundary Passivation of Multicrystalline Silicon Using Hydrogen Sulfide as a Sulfur Source

    NASA Astrophysics Data System (ADS)

    Saha, Arunodoy

    Hydrogen sulfide (H2S) has been identified as a potential ingredient for grain boundary passivation of multicrystalline silicon. Sulfur is already established as a good surface passivation material for crystalline silicon (c-Si). Sulfur can be used both from solution and hydrogen sulfide gas. For multicrystalline silicon (mc-Si) solar cells, increasing efficiency is a major challenge because passivation of mc-Si wafers is more difficult due to its randomly orientated crystal grains and the principal source of recombination is contributed by the defects in the bulk of the wafer and surface. In this work, a new technique for grain boundary passivation for multicrystalline silicon using hydrogen sulfide has been developed which is accompanied by a compatible Aluminum oxide (Al2O3) surface passivation. Minority carrier lifetime measurement of the passivated samples has been performed and the analysis shows that success has been achieved in terms of passivation and compared to already existing hydrogen passivation, hydrogen sulfide passivation is actually better. Also the surface passivation by Al 2O3 helps to increase the lifetime even more after post-annealing and this helps to attain stability for the bulk passivated samples. Minority carrier lifetime is directly related to the internal quantum efficiency of solar cells. Incorporation of this technique in making mc-Si solar cells is supposed to result in higher efficiency cells. Additional research is required in this field for the use of this technique in commercial solar cells.

  17. Hydrogen sulfide selectivity with carbonyl sulfide removal to less than PPM levels

    SciTech Connect

    Bacon, T.R.; Pearce, R.L.; Foster, W.R. Jr.

    1986-01-01

    Changes in market conditions and plant operating economics require examination of traditional processes and operating practices in gas treating applications for upgrading to more stringent standards of efficiency in order to remain competitive while returning a satisfactory operating profit margin to the company. Anticipated reduction in solvent usage, improvements in Claus sulfur recovery unit performance and lower energy costs induced Ashland's Catlettsburg refinery to convert its entire sulfur removal system from monoethanolamine to methyldiethanolamine. One of the seven product streams being treated required extremely low carbonyl sulfide specifications. When the initial converted operations evidenced a need to improve the carbonyl sulfide removal, GAS/SPEC Tech Service produced an innovative solution which allowed for efficient operation which still achieved these objectives.

  18. Bile-acid-activated farnesoid X receptor regulates hydrogen sulfide production and hepatic microcirculation

    PubMed Central

    Renga, Barbara; Mencarelli, Andrea; Migliorati, Marco; Distrutti, Eleonora; Fiorucci, Stefano

    2009-01-01

    AIM: To investigate whether the farnesoid X receptor (FXR) regulates expression of liver cystathionase (CSE), a gene involved in hydrogen sulfide (H2S) generation. METHODS: The regulation of CSE expression in response to FXR ligands was evaluated in HepG2 cells and in wild-type and FXR null mice treated with 6-ethyl chenodeoxycholic acid (6E-CDCA), a synthetic FXR ligand. The analysis demonstrated an FXR responsive element in the 5’-flanking region of the human CSE gene. The function of this site was investigated by luciferase reporter assays, chromatin immunoprecipitation and electrophoretic mobility shift assays. Livers obtained from rats treated with carbon tetrachloride alone, or in combination with 6-ethyl chenodeoxycholic acid, were studied for hydrogen sulphide generation and portal pressure measurement. RESULTS: Liver expression of CSE is regulated by bile acids by means of an FXR-mediated mechanism. Western blotting, qualitative and quantitative polymerase chain reaction, as well as immunohistochemical analysis, showed that expression of CSE in HepG2 cells and in mice is induced by treatment with an FXR ligand. Administration of 6E-CDCA to carbon tetrachloride treated rats protected against the down-regulation of CSE expression, increased H2S generation, reduced portal pressure and attenuated the endothelial dysfunction of isolated and perfused cirrhotic rat livers. CONCLUSION: These results demonstrate that CSE is an FXR-regulated gene and provide a new molecular explanation for the pathophysiology of portal hypertension. PMID:19418582

  19. Living cells imaging for copper and hydrogen sulfide by a selective "on-off-on" fluorescent probe.

    PubMed

    Qian, Yong; Lin, Jie; Liu, Tianbao; Zhu, Hailiang

    2015-01-01

    A novel highly selective and sensitive fluorescent probe (NJ1) had been designed and synthesized for Cu(2+) detection by fluorescence quenching mechanism, and then the enhancement of fluorescence intensity with the addition of hydrogen sulfide in complex NJ1Cu aqueous solution at physiological conditions were described. This "on-off-on" type fluorescence recognition system was a reversible process, which could be utilized to monitor copper ion and hydrogen sulfide based on a complex NJ1Cu formation-Cu(2+) displacement approach. Importantly, this real-time recognition process of Cu(2+) and hydrogen sulfide exhibited excellent anti-interference ability. In addition, this new fluorescent probe also has potential utility for Cu(2+) and hydrogen sulfide detection in living cells, providing a potential tool for investigating copper ion and hydrogen sulfide in living systems or environment. PMID:25476371

  20. Bioconversion of high concentrations of hydrogen sulfide to elemental sulfur in airlift bioreactor.

    PubMed

    Zytoon, Mohamed Abdel-Monaem; AlZahrani, Abdulraheem Ahmad; Noweir, Madbuli Hamed; El-Marakby, Fadia Ahmed

    2014-01-01

    Several bioreactor systems are used for biological treatment of hydrogen sulfide. Among these, airlift bioreactors are promising for the bioconversion of hydrogen sulfide into elemental sulfur. The performance of airlift bioreactors is not adequately understood, particularly when directly fed with hydrogen sulfide gas. The objective of this paper is to investigate the performance of an airlift bioreactor fed with high concentrations of H2S with special emphasis on the effect of pH in combination with other factors such as H2S loading rate, oxygen availability, and sulfide accumulation. H2S inlet concentrations between 1,008 ppm and 31,215 ppm were applied and elimination capacities up to 113 g H2S m(-3) h(-1) were achieved in the airlift bioreactor under investigation at a pH range 6.5-8.5. Acidic pH values reduced the elimination capacity. Elemental sulfur recovery up to 95% was achieved under oxygen limited conditions (DO < 0.2 mg/L) and at higher pH values. The sulfur oxidizing bacteria in the bioreactor tolerated accumulated dissolved sulfide concentrations >500 mg/L at pH values 8.0-8.5, and near 100% removal efficiency was achieved. Overall, the resident microorganisms in the studied airlift bioreactor favored pH values in the alkaline range. The bioreactor performance in terms of elimination capacity and sulfur recovery was better at pH range 8-8.5. PMID:25147857

  1. Exposure to hydrogen sulfide, mercaptans and sulfur dioxide in pulp industry.

    PubMed

    Kangas, J; Jäppinen, P; Savolainen, H

    1984-12-01

    An hygienic survey for hydrogen sulfide, methyl mercaptan and its derivatives and sulfur dioxide in kraft mills and in sulfite mills revealed concentrations varying from 0 to 20 ppm hydrogen sulfide, 0 to 15 ppm methyl mercaptan and comparable amounts of dimethyl sulfide with dimethyl disulfide up to 1.5 ppm. The greatest emissions were detected at chip chutes and evaporation vacuum pumps. Batch operations yielded clearly higher sulfur dioxide concentrations (up to 20 ppm) as compared to a continuous ammonia-base digester. Furthermore, there was a strong correlation with the season in the sulfite mills where higher concentrations were found in the winter when natural ventilation was poorer. As to the health effects, the exposed workers complained of headaches and a decrease in concentration capacity more often than matched controls. The number of sick leaves was greater in the exposed workers than among the controls. PMID:6517022

  2. [Regulation of sulfates, hydrogen sulfide and heavy metals in technogenic reservoirs by sulfate-reducing bacteria].

    PubMed

    Hudz', S P; Peretiatko, T B; Moroz, O M; Hnatush, S O; Klym, I R

    2011-01-01

    Sulfate-reducing bacteria Desulfovibrio desulfuricans Ya-11 in the presence of sulfates and organic compounds in the medium reduce sulfates to hydrogen sulfide (dissimilatory sulfate reduction). Heavy metals in concentration over 2 mM inhibit this process. Pb2+, Zn2+, Ni2+, Co2+, Fe2+ and Cd2+ ions in concentration 1-1.5 mM display insignificant inhibiting effect on sulfate reduction process, and metals precipitate in the form of sulfides. At concentrations of heavy metals 2-3 mM one can observe a decrease of sulfates reduction intensity, and a percent of metals binding does not exceed 72%. Obtained results give reason to confirm, that sulfate-reducing bacteria play an important role in regulation of the level of sulfates, hydrogen sulfide and heavy metals in reservoirs and they may be used for purification of water environment from these compounds. PMID:21598657

  3. The Role of Water for Photodecomposition of Aqueous Hydrogen Sulfide Using Stratified Photocatalyst--Experimental Part

    SciTech Connect

    Arai, Takeo; Shinoda, Kozo; Tohji, Kazuyuki; Matsumoto, Takatoshi; Sakima, Shuhei; Nagashima, Umpei

    2006-05-15

    Splitting of hydrogen sulfide using sunlight is a useful reaction to produce hydrogen. Alkaline sulfide solution, which is prepared by dissolving hydrogen sulfide into alkaline water, is selected as the reaction medium of photocatalytic hydrogen generation reaction. In this system, the photocatalytic reaction is assumed to occur as follows: 2H{sub 2}O + 2e{sup -} {yields} H{sub 2} + 2OH{sup -} (1) 2S{sup 2-} + 2h{sup +} {yields} S{sub 2}{sup 2-} (2) However, as the reaction progresses white solids precipitate in the reaction medium. Furthermore, the HPLC analysis suggested that the ratio between the consumption of sulfide ion and the amount of hydrogen generation was about 3:2, which is not stoichiometric. Thus, in this paper, we characterized the white solid precipitate and tried to optimize the solution condition to prevent the precipitation of the same. From our study, the white solid precipitate was confirmed as sulfur derived from the oxidation of the disulfide ion. It was confirmed that the addition of sulfite ions prevented the oxidation of disulfide ions, which causes the precipitation. In the absence of sulfite ions and for sufide ion concentration less than 0.1M, the precipitation of sulfur occurs in a very short reaction time. On the other hand the hydrogen evolution rate retarded when the sulfide ion concentration is higher than 0.1M. This was due to the degradation of the stratified CdS particles. Thus, the optimal concentration of Na2S solution was determined to be around 0.1M.

  4. Emergence of Hydrogen Sulfide as an Endogenous Gaseous Signaling Molecule in Cardiovascular Disease

    PubMed Central

    Polhemus, David J.; Lefer, David J.

    2014-01-01

    Long recognized as a malodorous and highly toxic gas, recent experimental studies have revealed that hydrogen sulfide (H2S) is produced enzymatically in all mammalian species including man and exerts a number of critical actions to promote cardiovascular homeostasis and health. During the past 15 years, scientists have determined that H2S is produced by three endogenous enzymes and exerts powerful effects on endothelial cells, smooth muscle cells, inflammatory cells, mitochondria, endoplasmic reticulum, and nuclear transcription factors. These effects have been reported in multiple organ systems and the vast majority of data clearly indicate that H2S produced by the endogenous enzymes exerts cytoprotective actions. Recent preclinical studies investigating cardiovascular diseases have demonstrated that the administration of physiological or pharmacological levels of H2S attenuates myocardial injury, protects blood vessels, limits inflammation, and regulates blood pressure. H2S has emerged as a critical cardiovascular signaling molecule similar to nitric oxide (NO) and carbon monoxide (CO) with a profound impact on the heart and circulation (Figure 1). Our improved understanding of how H2S elicits protective actions, coupled with the very rapid development of novel H2S releasing agents, has resulted in heightened enthusiasm for the clinical translation of this ephemeral gaseous molecule. This review will examine our current state of knowledge regarding the actions of H2S within the cardiovascular system with an emphasis on the therapeutic potential and molecular crosstalk between H2S, NO, and CO. PMID:24526678

  5. C. elegans Aging Is Modulated by Hydrogen Sulfide and the sulfhydrylase/cysteine Synthase cysl-2

    PubMed Central

    Qabazard, Bedoor; Ahmed, Samanza; Li, Ling; Arlt, Volker M.; Moore, Philip K.; Stürzenbaum, Stephen R.

    2013-01-01

    Exogenous hydrogen sulfide (H2S) administration and endogenous H2S metabolism were explored in the nematode C. elegans. Chronic treatment with a slow-releasing H2S donor, GYY4137, extended median survival by 17-23% and increased tolerance towards oxidative and endoplasmic reticulum (ER) stress. Also, cysl-2, a sulfhydrylase/cysteine synthase in C. elegans, was transcriptionally upregulated by GYY4137 treatment and the deletion of cysl-2 resulted in a significant reduction in lifespan which was partially recovered by the supplementation of GYY4137. Likewise, a mammalian cell culture system, GYY4137 was able to protect bovine aortic endothelial cells (BAECs) from oxidative stress and (H2O2)-induced cell death. Taken together, this provides further support that H2S exerts a protective function which is consistent with the longevity dividend theory. Overall, this study underlines the therapeutic potential of a slow-releasing H2S donor as regulators of the aging and cellular stress pathways. PMID:24260346

  6. The role of hydrogen sulfide in pathologies of the vital organs and its clinical application.

    PubMed

    Jin, Z; Chan, H; Ning, J; Lu, K; Ma, D

    2015-04-01

    Hydrogen sulfide (H(2)S) is one of the more recently recognised gaseous transmitters that have been shown to be involved in a large range of cellular functions. While H(2)S generally has pro-survival and anti-apoptotic effects, at higher concentrations, this effect is reversed and it becomes anti-proliferative and pro-apoptotic instead. H(2)S is also involved in a number of organ specific functions such as thermoregulation, modulating myocardial activity and broncho-dilation. H(2)S has organ protective effects in ischaemia, acting as a vasodilator and negative inotrope to reduce blood pressure. H(2)S generally has a protective effect in acute inflammation and oxidative stress from causes such as allergy and toxins. In chronic organ pathology, low H(2)S levels have been observed in a number of different diseases, while there is evidence that H(2)S may be beneficial in a number of chronic organ degenerations. A number of studies on human tissue and cell line conducted in the recent years shows H(2)S exerting largely similar effects in humans as those in animals. This may indicate that the pharmacological potential of H(2)S modulators could have therapeutic value in a large range of acute conditions such as ischaemia, toxin exposure as well as chronic conditions such as hypertension, lung diseases and neurodegenerative disease. PMID:25903948

  7. Hydrogen sulfide ameliorates cardiovascular dysfunction induced by cecal ligation and puncture in rats.

    PubMed

    Abdelrahman, R S; El-Awady, M S; Nader, M A; Ammar, E M

    2015-10-01

    Hydrogen sulfide (H2S) is an endogenously produced gaseous messenger that participates in regulation of cardiovascular functions. This study evaluates the possible protective effect of H2S in cardiovascular dysfunction induced by cecal ligation and puncture (CLP) in rats. After 24 h of induction of CLP, heart rate (HR), mortality, cardiac and inflammation biomarkers (creatine kinase-MB (CK-MB) isozyme, cardiac troponin I (cTnI), C-reactive protein (CRP), and lactate dehydrogenase (LDH)), in vitro vascular reactivity, histopathological examination, and oxidative biomarkers (malondialdehyde (MDA), reduced glutathione (GSH), and superoxide dismutase (SOD)) were determined. CLP induced elevations in HR, mortality, serum CK-MB, cTnI, CRP, and LDH, in addition to impaired aortic contraction to potassium chloride and phenylephrine and relaxation to acetylcholine without affecting sodium nitroprusside responses. Moreover, CLP increased cardiac and aortic MDA and decreased SOD, without affecting GSH and caused a marked subserosal and interstitial inflammation in endocardium. Sodium hydrosulfide, but not the irreversible inhibitor of H2S synthesis dl-propargyl glycine, protected against CLP-induced changes in HR, mortality, cardiac and inflammatory biomarkers, oxidative stress, and myocardium histopathological changes without affecting vascular dysfunction. Our results confirm that H2S can attenuate CLP-induced cardiac, but not vascular, dysfunction possibly through its anti-inflammatory and antioxidant effects. PMID:25791320

  8. Hydrogen sulfide and nonmethane hydrocarbon emissions from broiler houses in the Southeastern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrogen sulfide (H2S) and nonmethane hydrocarbon (NMHC) emissions from two mechanically ventilated commercial broiler houses located in the Southeastern United States were continuously monitored over 12 flocks during the one-year period of 2006-2007 as a joint effort between Iowa State University a...

  9. Genetically Anchored Fluorescent Probes for Subcellular Specific Imaging of Hydrogen Sulfide

    PubMed Central

    Jiang, Xiqian; Sizovs, Antons; Wang, Meng C.; Provost, Christopher R.; Huang, Jia

    2016-01-01

    Imaging hydrogen sulfide (H2S) at the subcellular resolution will greatly improve the understanding of functions of this signaling molecule. Taking advantage of the protein labeling technologies, we report a general strategy for the development of organelle specific H2S probes, which enables sub-cellular H2S imaging essentially in any organelles of interest. PMID:26806071

  10. IRIS TOXICOLOGICAL REVIEW AND SUMMARY DOCUMENTS FOR HYDROGEN SULFIDE (EXTERNAL REVIEW DRAFT)

    EPA Science Inventory

    Hydrogen sulfide (H2S) is a colorless gas with a strong odor of rotten eggs. Its primary uses include the production of elemental sulfur and sulfuric acid, the manufacture of heavy water and other chemicals. Occupational exposure occurs primarily from its presence in petroleum, n...