Sample records for hydrogen-based transportation economy

  1. Transportation Fuels and the Hydrogen Economy

    NASA Astrophysics Data System (ADS)

    Gabbard, Alex

    2004-11-01

    An energy analysis of transportation fuels is performed for comparing automobiles and fuels currently in the marketplace as real world benchmarks projected as "hydrogen economy" requirements. Comparisons are made for ideal case average energy values at Standard Temperature and Pressure (STP) at 20°C, 1 atmosphere with no loses. "Real world" benchmarks currently in the marketplace illuminate the challenges to be met if an equivalent "hydrogen economy" is to become reality. The idea of a "hydrogen economy" is that, at some time in the future, world energy needs will be supplied in part or totally from hydrogen; in part as compared to the current "petroleum economy" that is the source of most of the world's transportation fuels and only a portion of total energy use, or hydrogen as the source of all energy consumption.

  2. Hydrogen: Its Future Role in the Nation's Energy Economy

    ERIC Educational Resources Information Center

    Winsche, W. E.; And Others

    1973-01-01

    Advocates the development of a hydrogen fuel economy as an alternative to the predominately electric economy based upon nuclear plants and depleting fossil fuel supplies. Evaluates the economic and environmental benefits of hydrogen energy delivery systems in the residential and transportation sectors. (JR)

  3. Analysis of the holistic impact of the Hydrogen Economy on the coal industry

    NASA Astrophysics Data System (ADS)

    Lusk, Shannon Perry

    As gas prices soar and energy demand continues to grow amidst increasingly stringent environmental regulations and an assortment of global pressures, implementing alternative energy sources while considering their linked economic, environmental and societal impacts becomes a more pressing matter. The Hydrogen Economy has been proposed as an answer to meeting the increasing energy demand for electric power generation and transportation in an environmentally benign way. Based on current hydrogen technology development, the most practical feedstock to fuel the Hydrogen Economy may prove to be coal via hydrogen production at FutureGen plants. The planned growth of the currently conceived Hydrogen Economy will cause dramatic impacts, some good and some bad, on the economy, the environment, and society, which are interlinked. The goal of this research is to provide tools to inform public policy makers in sorting out policy options related to coal and the Hydrogen Economy. This study examines the impact of a transition to a Hydrogen Economy on the coal industry by creating FutureGen penetration models, forecasting coal MFA's which clearly provide the impact on coal production and associated environmental impacts, and finally formulating a goal programming model that seeks the maximum benefit to society while analyzing the trade-offs between environmental, social, and economical concerns related to coal and the Hydrogen Economy.

  4. Clean energy and the hydrogen economy.

    PubMed

    Brandon, N P; Kurban, Z

    2017-07-28

    In recent years, new-found interest in the hydrogen economy from both industry and academia has helped to shed light on its potential. Hydrogen can enable an energy revolution by providing much needed flexibility in renewable energy systems. As a clean energy carrier, hydrogen offers a range of benefits for simultaneously decarbonizing the transport, residential, commercial and industrial sectors. Hydrogen is shown here to have synergies with other low-carbon alternatives, and can enable a more cost-effective transition to de-carbonized and cleaner energy systems. This paper presents the opportunities for the use of hydrogen in key sectors of the economy and identifies the benefits and challenges within the hydrogen supply chain for power-to-gas, power-to-power and gas-to-gas supply pathways. While industry players have already started the market introduction of hydrogen fuel cell systems, including fuel cell electric vehicles and micro-combined heat and power devices, the use of hydrogen at grid scale requires the challenges of clean hydrogen production, bulk storage and distribution to be resolved. Ultimately, greater government support, in partnership with industry and academia, is still needed to realize hydrogen's potential across all economic sectors.This article is part of the themed issue 'The challenges of hydrogen and metals'. © 2017 The Author(s).

  5. Liquid Organic Hydrogen Carriers (LOHCs): Toward a Hydrogen-free Hydrogen Economy.

    PubMed

    Preuster, Patrick; Papp, Christian; Wasserscheid, Peter

    2017-01-17

    The need to drastically reduce CO 2 emissions will lead to the transformation of our current, carbon-based energy system to a more sustainable, renewable-based one. In this process, hydrogen will gain increasing importance as secondary energy vector. Energy storage requirements on the TWh scale (to bridge extended times of low wind and sun harvest) and global logistics of renewable energy equivalents will create additional driving forces toward a future hydrogen economy. However, the nature of hydrogen requires dedicated infrastructures, and this has prevented so far the introduction of elemental hydrogen into the energy sector to a large extent. Recent scientific and technological progress in handling hydrogen in chemically bound form as liquid organic hydrogen carrier (LOHC) supports the technological vision that a future hydrogen economy may work without handling large amounts of elemental hydrogen. LOHC systems are composed of pairs of hydrogen-lean and hydrogen-rich organic compounds that store hydrogen by repeated catalytic hydrogenation and dehydrogenation cycles. While hydrogen handling in the form of LOHCs allows for using the existing infrastructure for fuels, it also builds on the existing public confidence in dealing with liquid energy carriers. In contrast to hydrogen storage by hydrogenation of gases, such as CO 2 or N 2 , hydrogen release from LOHC systems produces pure hydrogen after condensation of the high-boiling carrier compounds. This Account highlights the current state-of-the-art in hydrogen storage using LOHC systems. It first introduces fundamental aspects of a future hydrogen economy and derives therefrom requirements for suitable LOHC compounds. Molecular structures that have been successfully applied in the literature are presented, and their property profiles are discussed. Fundamental and applied aspects of the involved hydrogenation and dehydrogenation catalysis are discussed, characteristic differences for the catalytic conversion of

  6. Designing a gradual transition to a hydrogen economy in Spain

    NASA Astrophysics Data System (ADS)

    Brey, J. J.; Brey, R.; Carazo, A. F.; Contreras, I.; Hernández-Díaz, A. G.; Gallardo, V.

    The lack of sustainability of the current Spanish energy system makes it necessary to study the adoption of alternative energy models. One of these is what is known as the hydrogen economy. In this paper, we aim to plan, for the case of Spain, an initial phase for transition to this energy model making use of the potential offered by each Spanish region. Specifically, the target pursued is to satisfy at least 15% of energy demand for transport by 2010 through renewable sources. We plan to attain this target gradually, establishing intermediate stages consisting of supplying 5 and 10% of the energy demand for transport by 2006 and 2008, respectively. The results obtained allow us to determine, for each region, the hydrogen production and consumption, the renewable energy sources used to obtain hydrogen and the transport requirements between regions.

  7. Develop Improved Materials to Support the Hydrogen Economy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Michael C. Martin

    The Edison Materials Technology Center (EMTEC) solicited and funded hydrogen infrastructure related projects that have a near term potential for commercialization. The subject technology of each project is related to the US Department of Energy hydrogen economy goals as outlined in the multi-year plan titled, 'Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan.' Preference was given to cross cutting materials development projects that might lead to the establishment of manufacturing capability and job creation. The Edison Materials Technology Center (EMTEC) used the US Department of Energy hydrogen economy goals to find and fund projects withmore » near term commercialization potential. An RFP process aligned with this plan required performance based objectives with go/no-go technology based milestones. Protocols established for this program consisted of a RFP solicitation process, white papers and proposals with peer technology and commercialization review (including DoE), EMTEC project negotiation and definition and DoE cost share approval. Our RFP approach specified proposals/projects for hydrogen production, hydrogen storage or hydrogen infrastructure processing which may include sensor, separator, compression, maintenance, or delivery technologies. EMTEC was especially alert for projects in the appropriate subject area that have cross cutting materials technology with near term manufacturing and commercialization opportunities.« less

  8. The Hydrogen Economy as a Technological Bluff

    ERIC Educational Resources Information Center

    Vanderburg, Willem H.

    2006-01-01

    The hydrogen economy is a technological bluff in its implied assurance that, despite the accelerating pace at which we are depleting the remaining half of our fossil fuels, our energy future is secure. Elementary thermodynamic considerations are developed to show that a hydrogen economy is about as feasible as a perpetual motion machine. Hydrogen…

  9. Effects of a Transition to a Hydrogen Economy on Employment in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolley, George S.; Jones, Donald W. Mintz, Marianne M.; Smith, Barton A.

    2008-07-01

    The U.S. Department of Energy report, Effects of a Transition to a Hydrogen Economy on Employment in the United States Report to Congress, estimates the effects on employment of a U.S. economy transformation to hydrogen between 2020 and 2050. The report includes study results on employment impacts from hydrogen market expansion in the transportation, stationary, and portable power sectors and highlights possible skill and education needs. This study is in response to Section 1820 of the Energy Policy Act of 2005 (Public Law 109-58) (EPACT). Section 1820, “Overall Employment in a Hydrogen Economy,” requires the Secretary of Energy to carrymore » out a study of the effects of a transition to a hydrogen economy on several employment [types] in the United States. As required by Section 1820, the present report considers: • Replacement effects of new goods and services • International competition • Workforce training requirements • Multiple possible fuel cycles, including usage of raw materials • Rates of market penetration of technologies • Regional variations based on geography • Specific recommendations of the study Both the Administration’s National Energy Policy and the Department’s Strategic Plan call for reducing U.S. reliance on imported oil and reducing greenhouse gas emissions. The National Energy Policy also acknowledges the need to increase energy supplies and use more energy-efficient technologies and practices. President Bush proposed in his January 2003 State of the Union Address to advance research on hydrogen so that it has the potential to play a major role in America’s future energy system. Consistent with these aims, EPACT 2005 authorizes a research, development, and demonstration program for hydrogen and fuel cell technology. Projected results for the national employment impacts, projections of the job creation and job replacement underlying the total employment changes, training implications, regional employment impacts

  10. Public Acceptance of Hydrogen in the Netherlands: Two Surveys that Demystify Public Views on a Hydrogen Economy

    ERIC Educational Resources Information Center

    Zachariah-Wolff, J. Leslie; Hemmes, Kas

    2006-01-01

    Interest in a hydrogen economy has grown significantly in the past decade. However, the success of old technologies that are being re-engineered to work on hydrogen, as well as the creation of new hydrogen-based technologies, hinges upon public interest in and demand for such technologies. With increasing investments in the research and…

  11. Hydrogen Research for Spaceport and Space-Based Applications: Hydrogen Production, Storage, and Transport. Part 3

    NASA Technical Reports Server (NTRS)

    Anderson, Tim; Balaban, Canan

    2008-01-01

    The activities presented are a broad based approach to advancing key hydrogen related technologies in areas such as fuel cells, hydrogen production, and distributed sensors for hydrogen-leak detection, laser instrumentation for hydrogen-leak detection, and cryogenic transport and storage. Presented are the results from research projects, education and outreach activities, system and trade studies. The work will aid in advancing the state-of-the-art for several critical technologies related to the implementation of a hydrogen infrastructure. Activities conducted are relevant to a number of propulsion and power systems for terrestrial, aeronautics and aerospace applications. Hydrogen storage and in-space hydrogen transport research focused on developing and verifying design concepts for efficient, safe, lightweight liquid hydrogen cryogenic storage systems. Research into hydrogen production had a specific goal of further advancing proton conducting membrane technology in the laboratory at a larger scale. System and process trade studies evaluated the proton conducting membrane technology, specifically, scale-up issues.

  12. Hydrogen: Its Future Role in the Nation's Energy Economy.

    PubMed

    Winsche, W E; Hoffman, K C; Salzano, F J

    1973-06-29

    electrolysis, from coal, and directly from thermal energy could be found that are less expensive than those now available; inexpensive fuel cells could be developed, and high-temperature turbines could be used for the efficient conversion of hydrogen (and oxygen) to electricity. The use of hydrogen as an automotive fuel would be a key factor in the development of a hydrogen energy economy, and safe storage techniques for carrying sufficient quantities of hydrogen in automotive systems can certainly be developed. The use of hydrogen in automobiles would significantly reduce urban pollution because the dispersed fossil fuel emissions would be replaced by radioactive wastes generated at large central stations. The conversion of internal or external combustion engines for combustion of hydrogen fuel would probably have less economic impact on the automotive industry than the mass introduction of electric automobiles. However, this is a subject that requires more detailed study. All of the safety aspects of hydrogen utilization will have to be examined, especially the problems of safety in the domestic use and the long distance transport of hydrogen in pipelines at high pressures. It is our opinion that the various energy planning agencies should now begin to outline the mode of implementing hydrogen energy delivery systems in the energy economy. The initial transition to hydrogen energy derived from available fossil fuels such as coal should be considered together with the long range view of all the hydrogen being derived eventually from nuclear energy. By the year 1985 when petroleum imports may be in excess of the domestic supply, these plans could set the stage for the transition period from fossil to a predominantly nuclear energy economy able to supply abundant synthetic fuels such as hydrogen. Synthetic fuels will obviously be more expensive than fuels now derived from petroleum; however, there may be no other viable choice. Thus, it is essential that the analysis and

  13. Analysis of hydrogen as a Transportation Fuel FY17 Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratt, Richard M.; Luzi, Francesco; Wilcox Freeburg, Eric D.

    benefits the California drayage truck application with hybrid-hydrogen retrofits being repaid within seven years. Class 8 trucks could also take advantage of these low-cost, but regional hydrogen supplies. In addition, the IVYS electrolyzer-based hydrogen generation product showed the potential to deliver hydrogen economically in an urban or freeway off-ramp setting to a limited number of passenger vehicles in areas with low-cost electricity. These positive, manually developed results show the need to develop more advanced tools to provide an expanded evaluation of the economics of hydrogen-based fuel applications. The use cases evaluated showed significant potential for hydrogen-fueled vehicles to have a sustainable impact as a transportation fuel. The positive impact is not limited to transportation fuels, but also grid resilience and flexibility through the use of controllable and variable electrolyzer output to rapidly adjust to changing grid conditions and enable greater integration of solar and wind generated power. This capability would directly enable alternative fuel vehicles to impact energy consumption, GHG emissions, and the economy at the regional and national levels.« less

  14. The hydrogen issue.

    PubMed

    Armaroli, Nicola; Balzani, Vincenzo

    2011-01-17

    Hydrogen is often proposed as the fuel of the future, but the transformation from the present fossil fuel economy to a hydrogen economy will need the solution of numerous complex scientific and technological issues, which will require several decades to be accomplished. Hydrogen is not an alternative fuel, but an energy carrier that has to be produced by using energy, starting from hydrogen-rich compounds. Production from gasoline or natural gas does not offer any advantage over the direct use of such fuels. Production from coal by gasification techniques with capture and sequestration of CO₂ could be an interim solution. Water splitting by artificial photosynthesis, photobiological methods based on algae, and high temperatures obtained by nuclear or concentrated solar power plants are promising approaches, but still far from practical applications. In the next decades, the development of the hydrogen economy will most likely rely on water electrolysis by using enormous amounts of electric power, which in its turn has to be generated. Producing electricity by burning fossil fuels, of course, cannot be a rational solution. Hydroelectric power can give but a very modest contribution. Therefore, it will be necessary to generate large amounts of electric power by nuclear energy of by renewable energies. A hydrogen economy based on nuclear electricity would imply the construction of thousands of fission reactors, thereby magnifying all the problems related to the use of nuclear energy (e.g., safe disposal of radioactive waste, nuclear proliferation, plant decommissioning, uranium shortage). In principle, wind, photovoltaic, and concentrated solar power have the potential to produce enormous amounts of electric power, but, except for wind, such technologies are too underdeveloped and expensive to tackle such a big task in a short period of time. A full development of a hydrogen economy needs also improvement in hydrogen storage, transportation and distribution

  15. The hydrogen value chain: applying the automotive role model of the hydrogen economy in the aerospace sector to increase performance and reduce costs

    NASA Astrophysics Data System (ADS)

    Frischauf, Norbert; Acosta-Iborra, Beatriz; Harskamp, Frederik; Moretto, Pietro; Malkow, Thomas; Honselaar, Michel; Steen, Marc; Hovland, Scott; Hufenbach, Bernhard; Schautz, Max; Wittig, Manfred; Soucek, Alexander

    2013-07-01

    Hydrogen will assume a key role in Europe's effort to adopt its energy dependent society to satisfy its needs without releasing vast amounts of greenhouse gases. The paradigm shift is so paramount that one speaks of the "Hydrogen Economy", as the energy in this new and ecological type of economy is to be distributed by hydrogen. However, H2 is not a primary energy source but rather an energy carrier, a means of storing, transporting and distributing energy, which has to be generated by other means. Various H2 storage methods are possible; however industries' favourite is the storage of gaseous hydrogen in high pressure tanks. The biggest promoter of this storage methodology is the automotive industry, which is currently preparing for the generation change from the fossil fuel internal combustion engines to hydrogen based fuel cells. The current roadmaps foresee a market roll-out by 2015, when the hydrogen supply infrastructure is expected to have reached a critical mass. The hydrogen economy is about to take off as being demonstrated by various national mobility strategies, which foresee several millions of electric cars driving on the road in 2020. Fuel cell cars are only one type of "electric car", battery electric as well as hybrid cars - all featuring electric drive trains - are the others. Which type of technology is chosen for a specific application depends primarily on the involved energy storage and power requirements. These considerations are very similar to the ones in the aerospace sector, which had introduced the fuel cell already in the 1960s. The automotive sector followed only recently, but has succeeded in moving forward the technology to a level, where the aerospace sector is starting considering to spin-in terrestrial hydrogen technologies into its technology portfolio. Target areas are again high power/high energy applications like aviation, manned spaceflight and exploration missions, as well as future generation high power telecommunication

  16. 40 CFR 600.304-12 - Fuel economy label-special requirements for hydrogen fuel cell vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements for hydrogen fuel cell vehicles. 600.304-12 Section 600.304-12 Protection of Environment... MOTOR VEHICLES Fuel Economy Labeling § 600.304-12 Fuel economy label—special requirements for hydrogen fuel cell vehicles. Fuel economy labels for hydrogen fuel cell vehicles must meet the specifications...

  17. 40 CFR 600.304-12 - Fuel economy label-special requirements for hydrogen fuel cell vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for hydrogen fuel cell vehicles. 600.304-12 Section 600.304-12 Protection of Environment... MOTOR VEHICLES Fuel Economy Labeling § 600.304-12 Fuel economy label—special requirements for hydrogen fuel cell vehicles. Fuel economy labels for hydrogen fuel cell vehicles must meet the specifications...

  18. 40 CFR 600.304-12 - Fuel economy label-special requirements for hydrogen fuel cell vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for hydrogen fuel cell vehicles. 600.304-12 Section 600.304-12 Protection of Environment... MOTOR VEHICLES Fuel Economy Labeling § 600.304-12 Fuel economy label—special requirements for hydrogen fuel cell vehicles. Fuel economy labels for hydrogen fuel cell vehicles must meet the specifications...

  19. Synthetic fuels for ground transportation with special emphasis on hydrogen

    NASA Technical Reports Server (NTRS)

    Singh, J. J.

    1975-01-01

    The role of various synthetic fuels, for ground transportation in the United States, was examined for the near term (by 1985) and the longer term applications (1985-2000 and beyond 2000). Feasible options include synthetic oil, methanol, electric propulsion, and hydrogen. It is concluded that (1) the competition during the next 50 years will be for the fuels of all types, rather than among the fuels; (2) extensive domestic oil and gas exploration should be initiated concurrent with the development of several alternate fuels and related ancillaries; and (3) hydrogen, as an automotive fuel, seems to be equivalent to gasoline for optimum fuel to air mixtures. As a pollution free, high energy density fuel, hydrogen deserves consideration as the logical replacement for the hydrocarbons. Several research and development requirements, essential for the implementation of hydrogen economy for ground transportation, were identified. Extensive engineering development and testing activities should be initiated to establish hydrogen as the future automotive fuel, followed by demonstration projects and concerted efforts at public education.

  20. The hydrogen economy: a threat or an opportunity for lead-acid batteries?

    NASA Astrophysics Data System (ADS)

    Rand, D. A. J.; Dell, R. M.

    There is mounting concern over the sustainability of global energy supplies. Among the key drivers are: (i) global warming, ocean surface acidification and air pollution, which imply the need to control and reduce anthropogenic emissions of greenhouse gases, especially emissions from transportation and thermal power stations; (ii) the diminishing reserves of oil and natural gas; (iii) the need for energy security adapted to each country, such as decreasing the dependence on fossil fuel imports (in particular, the vulnerability to volatile oil prices) from regions where there is political or economic instability; (iv) the expected growth in world population with the ever-increasing aspiration for an improved standard-of-living for all, especially in developing and poor nations. Hydrogen is being promoted world-wide as a total panacea for energy problems. As a versatile carrier for storing and transporting energy from any one of a myriad of sources to an electricity generator, it is argued that hydrogen will eventually replace, or at least greatly reduce, the reliance on fossil fuels. Not unexpectedly, the building of a 'hydrogen economy' presents great scientific and technological challenges in production, delivery, storage, conversion, and end-use. In addition, there are many policy, regulatory, economic, financial, investment, environmental and safety questions to be addressed. Notwithstanding these obstacles, it is indeed plausible that hydrogen will become increasingly deployed and will compete with traditional systems of energy storage and supply. Moreover, the case for hydrogen will be greatly strengthened if fuel cells, which are the key enabling technology, become more reliable, more durable, and less expensive. This paper examines the prospects for hydrogen as a universal energy-provider and considers the impact that its introduction might have on the present deployment of lead-acid batteries in mobile, stationary and road transportation applications.

  1. Environmental and Health Benefits and Risks of a Global Hydrogen Economy

    NASA Astrophysics Data System (ADS)

    Dubey, M.; Horowitz, L. W.; Rahn, T. A.; Kinnison, D. E.

    2003-12-01

    Rapid development in hydrogen fuel-cell technologies will create a strong impetus for a massive hydrogen supply and distribution infrastructure in the coming decades. Hydrogen provides an efficient energy carrier that promises to enhance urban and regional air quality that will benefit human health. It could also reduce risks of climate change if large-scale hydrogen production by renewable or nuclear energy sources becomes viable. While it is well known that the byproduct of energy produced from hydrogen is water vapor, it is not well known that the storage and transfer of hydrogen is inevitably accompanied by measurable leakage of hydrogen. Unintended consequences of hydrogen leakage include reduction in global oxidative capacity, changes in tropospheric ozone, and increase in stratospheric water that would exacerbate halogen induced ozone losses as well as impact the earth's radiation budget and climate. Stratospheric ozone depletion would increase exposure to harmful ultraviolet radiation and increased risk to melanoma. We construct plausible global hydrogen energy use and leak scenarios and assess their impacts using global 3-D simulations by the Model for Ozone And Related Trace species (MOZART). The hydrogen fluxes and photochemistry in our model successfully reproduce the contemporary hydrogen cycle as observed by a network of remote global stations. Our intent is to determine environmentally tolerable leak rates and also facilitate a gradual phasing in of a hydrogen economy over the next several decades as the elimination of the use of halocarbons gradually reduces halogen induced stratospheric ozone loss rates. We stress that the future evolution of microbial soil sink of hydrogen that determines its current lifetime (about 2 years) is the principal source of uncertainty in our assessment. We propose global monitoring of hydrogen and its deuterium content to define a baseline and track its budget to responsibly prepare for a global hydrogen economy.

  2. A solar-hydrogen economy for U.S.A.

    NASA Astrophysics Data System (ADS)

    Bockris, J. Om.; Veziroglu, T. N.

    The benefits, safety, production, distribution, storage, and uses, as well as the economics of a solar and hydrogen based U.S. energy system are described. Tropical and subtropical locations for the generation plants would provide power from photovoltaics, heliostat arrays, OTEC plants, or genetically engineered algae to produce hydrogen by electrolysis, direct thermal conversion, thermochemical reactions, photolysis, or hybrid systems. Either pipelines for gas transport or supertankers for liquefied hydrogen would distribute the fuel, with storage in underground reservoirs, aquifers, and pressurized bladders at sea. The fuel would be distributed to factories, houses, gas stations, and airports. It can be used in combustion engines, gas turbines, and jet engines, and produces water vapor as an exhaust gas. The necessary research effort to define and initiate construction of technically and economically viable solar-hydrogen plants is projected to be 3 yr, while the technical definition of fusion power plants, the other nondepletable energy system, is expected to take 25 yr.

  3. Transportation satellite accounts : a look at transportation's role in the economy.

    DOT National Transportation Integrated Search

    2011-01-01

    To provide a more comprehensive measure of transportation services and their contribution to the national economy, the U.S. Department of Transportations Bureau of Transportation Statistics (BTS) and the U.S. Department of Commerces Bureau of E...

  4. Hydrogen transport membranes

    DOEpatents

    Mundschau, Michael V.

    2005-05-31

    Composite hydrogen transport membranes, which are used for extraction of hydrogen from gas mixtures are provided. Methods are described for supporting metals and metal alloys which have high hydrogen permeability, but which are either too thin to be self supporting, too weak to resist differential pressures across the membrane, or which become embrittled by hydrogen. Support materials are chosen to be lattice matched to the metals and metal alloys. Preferred metals with high permeability for hydrogen include vanadium, niobium, tantalum, zirconium, palladium, and alloys thereof. Hydrogen-permeable membranes include those in which the pores of a porous support matrix are blocked by hydrogen-permeable metals and metal alloys, those in which the pores of a porous metal matrix are blocked with materials which make the membrane impervious to gases other than hydrogen, and cermets fabricated by sintering powders of metals with powders of lattice-matched ceramic.

  5. Fuel cell commercialization: The key to a hydrogen economy

    NASA Astrophysics Data System (ADS)

    Zegers, P.

    With the current level of global oil production, oil reserves will be sufficient for 40 years. However, due to the fact that the global GDP will have increased by a factor seven in 2050, oil reserves are likely to be exhausted in a much shorter time period. The EU and car industry aim at a reduction of the consumption of oil, at energy savings (with a key role for fuel cells) and an increased use of hydrogen from natural gas and, possibly, coal, in the medium term. The discovery of huge methane resources as methane hydrates (20 times those of oil, gas and coal together) in oceans at 1000-3000 m depth could be of major importance. In the long term, the EU aims at a renewable energy-based energy supply. The European Hydrogen and Fuel Cell Technology Platform is expected to play a major role in bringing about a hydrogen economy. The availability of commercial fuel cells is here a prerequisite. However, after many years of research, fuel cells have not yet been commercialized. If they will not succeed to enter the market within 5 years there is a real danger that activities aiming at a hydrogen society will peter out. In a hydrogen strategy, high priority should therefore be given to actions which will bring about fuel cell commercialization within 5 years. They should include the identification of fuel cell types and (niche) markets which are most favorable for a rapid market introduction. These actions should include focused short-term RTD aiming at cost reduction and increased reliability.

  6. Round-the-clock power supply and a sustainable economy via synergistic integration of solar thermal power and hydrogen processes

    PubMed Central

    Gençer, Emre; Mallapragada, Dharik S.; Maréchal, François; Tawarmalani, Mohit; Agrawal, Rakesh

    2015-01-01

    We introduce a paradigm—“hydricity”—that involves the coproduction of hydrogen and electricity from solar thermal energy and their judicious use to enable a sustainable economy. We identify and implement synergistic integrations while improving each of the two individual processes. When the proposed integrated process is operated in a standalone, solely power production mode, the resulting solar water power cycle can generate electricity with unprecedented efficiencies of 40–46%. Similarly, in standalone hydrogen mode, pressurized hydrogen is produced at efficiencies approaching ∼50%. In the coproduction mode, the coproduced hydrogen is stored for uninterrupted solar power production. When sunlight is unavailable, we envision that the stored hydrogen is used in a “turbine”-based hydrogen water power (H2WP) cycle with the calculated hydrogen-to-electricity efficiency of 65–70%, which is comparable to the fuel cell efficiencies. The H2WP cycle uses much of the same equipment as the solar water power cycle, reducing capital outlays. The overall sun-to-electricity efficiency of the hydricity process, averaged over a 24-h cycle, is shown to approach ∼35%, which is nearly the efficiency attained by using the best multijunction photovoltaic cells along with batteries. In comparison, our proposed process has the following advantages: (i) It stores energy thermochemically with a two- to threefold higher density, (ii) coproduced hydrogen has alternate uses in transportation/chemical/petrochemical industries, and (iii) unlike batteries, the stored energy does not discharge over time and the storage medium does not degrade with repeated uses. PMID:26668380

  7. Round-the-clock power supply and a sustainable economy via synergistic integration of solar thermal power and hydrogen processes.

    PubMed

    Gençer, Emre; Mallapragada, Dharik S; Maréchal, François; Tawarmalani, Mohit; Agrawal, Rakesh

    2015-12-29

    We introduce a paradigm-"hydricity"-that involves the coproduction of hydrogen and electricity from solar thermal energy and their judicious use to enable a sustainable economy. We identify and implement synergistic integrations while improving each of the two individual processes. When the proposed integrated process is operated in a standalone, solely power production mode, the resulting solar water power cycle can generate electricity with unprecedented efficiencies of 40-46%. Similarly, in standalone hydrogen mode, pressurized hydrogen is produced at efficiencies approaching ∼50%. In the coproduction mode, the coproduced hydrogen is stored for uninterrupted solar power production. When sunlight is unavailable, we envision that the stored hydrogen is used in a "turbine"-based hydrogen water power (H2WP) cycle with the calculated hydrogen-to-electricity efficiency of 65-70%, which is comparable to the fuel cell efficiencies. The H2WP cycle uses much of the same equipment as the solar water power cycle, reducing capital outlays. The overall sun-to-electricity efficiency of the hydricity process, averaged over a 24-h cycle, is shown to approach ∼35%, which is nearly the efficiency attained by using the best multijunction photovoltaic cells along with batteries. In comparison, our proposed process has the following advantages: (i) It stores energy thermochemically with a two- to threefold higher density, (ii) coproduced hydrogen has alternate uses in transportation/chemical/petrochemical industries, and (iii) unlike batteries, the stored energy does not discharge over time and the storage medium does not degrade with repeated uses.

  8. Hydrogen transport and hydrogen embrittlement in stainless steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perng, T.P.

    1985-01-01

    In order to understand the kinetics of gaseous hydrogen-induced slow crack growth (SCG) in metastable austenitic stainless steels, hydrogen permeation and/or cracking velocity were measured and compared for three types of stainless steels. These included austenitic, ferritic, and duplex (..gamma../..cap alpha..) alloys. Deformation in AISI 301 resulted in various amounts of ..cap alpha..' martensite, which enhanced the effective hydrogen diffusivity and permeability. No phase transformation was observed in deformed AISI 310. The effective hydrogen diffusivity in this alloy was slightly reduced after plastic deformation, presumably by dislocation trapping. In either the dynamic or static tensile test, AISI 301 exhibited themore » greatest hydrogen embrittlement and therefore the highest SCG velocity among all the alloys tested in this work. The SCG velocity was believed to be controlled by the rate of accumulation of hydrogen in the embrittlement region ahead of the crack tip and therefore could be explained with the hydrogen transport parameters measured from the permeation experiments. The relatively high SCG velocity in AISI 301 was probably due to the fast transport of hydrogen through the primarily stress-induced ..cap alpha..' phase around the crack. No SCG was observed in AISI 310. The presence of H/sub 2/O vapor was found to reduce both the hydrogen permeation and SCG velocity.« less

  9. Effects of a transition to a hydrogen economy on employment in the United States Report to Congress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2008-07-01

    DOE's Effects of a Transition to a Hydrogen Economy on Employment in the United States Report to Congress estimates the employment effects of a transformation of the U.S. economy to the use of hydrogen in the 2020 to 2050 timeframe. This report fulfills requirements of section 1820 of the Energy Policy Act of 2005.

  10. The transportation economy : just in time.

    DOT National Transportation Integrated Search

    2012-07-01

    The purpose of this project was to produce a short educational video, targeted at middle school and high school students, illustrating the critical role transportation plays in our modern economy. This report documents the production of a 6.5-minute ...

  11. Plasmonic hydrogen sensor based on integrated microring resonator

    NASA Astrophysics Data System (ADS)

    Yi, Ya Sha; Wu, Da Chuan

    2017-12-01

    We have proposed and demonstrated numerically an ultrasmall and highly sensitive plasmonic hydrogen sensor based on an integrated microring resonator, with a footprint size as small as 4×4 μm2. With a palladium (Pd) or platinum (Pt) hydrogen-sensitive layer coated on the inner surface of the microring resonator and the excitation of surface plasmon modes at the interface from the microring resonator waveguide, the device is highly sensitive to low hydrogen concentration variation, and the sensitivity is at least one order of magnitude larger than that of the optical fiber-based hydrogen sensor. We have also investigated the tradeoff between the portion coverage of the Pd/Pt layer and the sensitivity, as well as the width of the hydrogen-sensitive layer. This ultrasmall plasmonic hydrogen sensor holds promise for the realization of a highly compact sensor with integration capability for applications in hydrogen fuel economy.

  12. Modelling of hydrogen transport in silicon solar cell structures under equilibrium conditions

    NASA Astrophysics Data System (ADS)

    Hamer, P.; Hallam, B.; Bonilla, R. S.; Altermatt, P. P.; Wilshaw, P.; Wenham, S.

    2018-01-01

    This paper presents a model for the introduction and redistribution of hydrogen in silicon solar cells at temperatures between 300 and 700 °C based on a second order backwards difference formula evaluated using a single Newton-Raphson iteration. It includes the transport of hydrogen and interactions with impurities such as ionised dopants. The simulations lead to three primary conclusions: (1) hydrogen transport across an n-type emitter is heavily temperature dependent; (2) under equilibrium conditions, hydrogen is largely driven by its charged species, with the switch from a dominance of negatively charged hydrogen (H-) to positively charged hydrogen (H+) within the emitter region critical to significant transport across the junction; and (3) hydrogen transport across n-type emitters is critically dependent upon the doping profile within the emitter, and, in particular, the peak doping concentration. It is also observed that during thermal processes after an initial high temperature step, hydrogen preferentially migrates to the surface of a phosphorous doped emitter, drawing hydrogen out of the p-type bulk. This may play a role in several effects observed during post-firing anneals in relation to the passivation of recombination active defects and even the elimination of hydrogen-related defects in the bulk of silicon solar cells.

  13. Microalgal hydrogen production: prospects of an essential technology for a clean and sustainable energy economy.

    PubMed

    Bayro-Kaiser, Vinzenz; Nelson, Nathan

    2017-09-01

    Modern energy production is required to undergo a dramatic transformation. It will have to replace fossil fuel use by a sustainable and clean energy economy while meeting the growing world energy needs. This review analyzes the current energy sector, available energy sources, and energy conversion technologies. Solar energy is the only energy source with the potential to fully replace fossil fuels, and hydrogen is a crucial energy carrier for ensuring energy availability across the globe. The importance of photosynthetic hydrogen production for a solar-powered hydrogen economy is highlighted and the development and potential of this technology are discussed. Much successful research for improved photosynthetic hydrogen production under laboratory conditions has been reported, and attempts are underway to develop upscale systems. We suggest that a process of integrating these achievements into one system to strive for efficient sustainable energy conversion is already justified. Pursuing this goal may lead to a mature technology for industrial deployment.

  14. Costs of Storing and Transporting Hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amos, W. A.

    An analysis was performed to estimate the costs associated with storing and transporting hydrogen. These costs can be added to a hydrogen production cost to determine the total delivered cost of hydrogen. Storage methods analyzed included compressed gas, liquid hydrogen, metal hydride, and underground storage. Major capital and operating costs were considered over a range of production rates and storage times.

  15. High Efficiency Solar Thermochemical Reactor for Hydrogen Production.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDaniel, Anthony H.

    2017-09-30

    This research and development project is focused on the advancement of a technology that produces hydrogen at a cost that is competitive with fossil-based fuels for transportation. A twostep, solar-driven WS thermochemical cycle is theoretically capable of achieving an STH conversion ratio that exceeds the DOE target of 26% at a scale large enough to support an industrialized economy [1]. The challenge is to transition this technology from the laboratory to the marketplace and produce hydrogen at a cost that meets or exceeds DOE targets.

  16. Transport hysteresis and hydrogen isotope effect on confinement

    NASA Astrophysics Data System (ADS)

    Itoh, S.-I.; Itoh, K.

    2018-03-01

    A Gedankenexperiment on hydrogen isotope effect is developed, using the transport model with transport hysteresis. The transport model with hysteresis is applied to case where the modulational electron cyclotron heating is imposed near the mid-radius of the toroidal plasmas. The perturbation propagates either outward or inward, being associated with the clockwise (CW) hysteresis or counter-clockwise (CCW) hysteresis, respectively. The hydrogen isotope effects on the CW and CCW hysteresis are investigated. The local component of turbulence-driven transport is assumed to be the gyro-Bohm diffusion. While the effect of hydrogen mass number is screened in the response of CW hysteresis, it is amplified in CCW hysteresis. This result motivates the experimental studies to compare CW and CCW cases in order to obtain further insight into the physics of hydrogen isotope effects.

  17. EVermont Renewable Hydrogen Production and Transportation Fueling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garabedian, Harold T.

    2008-03-30

    A great deal of research funding is being devoted to the use of hydrogen for transportation fuel, particularly in the development of fuel cell vehicles. When this research bears fruit in the form of consumer-ready vehicles, will the fueling infrastructure be ready? Will the required fueling systems work in cold climates as well as they do in warm areas? Will we be sure that production of hydrogen as the energy carrier of choice for our transit system is the most energy efficient and environmentally friendly option? Will consumers understand this fuel and how to handle it? Those are questions addressedmore » by the EVermont Wind to Wheels Hydrogen Project: Sustainable Transportation. The hydrogen fueling infrastructure consists of three primary subcomponents: a hydrogen generator (electrolyzer), a compression and storage system, and a dispenser. The generated fuel is then used to provide transportation as a motor fuel. EVermont Inc., started in 1993 by then governor Howard Dean, is a public-private partnership of entities interested in documenting and advancing the performance of advanced technology vehicles that are sustainable and less burdensome on the environment, especially in areas of cold climates, hilly terrain and with rural settlement patterns. EVermont has developed a demonstration wind powered hydrogen fuel producing filling system that uses electrolysis, compression to 5000 psi and a hydrogen burning vehicle that functions reliably in cold climates. And that fuel is then used to meet transportation needs in a hybrid electric vehicle whose internal combustion engine has been converted to operate on hydrogen Sponsored by the DOE EERE Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program, the purpose of the project is to test the viability of sustainably produced hydrogen for use as a transportation fuel in a cold climate with hilly terrain and rural settlement patterns. Specifically, the project addresses the challenge of building a

  18. An issue paper on the use of hydrogen getters in transportation packaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NIGREY,PAUL J.

    2000-02-01

    The accumulation of hydrogen is usually an undesirable occurrence because buildup in sealed systems pose explosion hazards under certain conditions. Hydrogen scavengers, or getters, can avert these problems by removing hydrogen from such environments. This paper provides a review of a number of reversible and irreversible getters that potentially could be used to reduce the buildup of hydrogen gas in containers for the transport of radioactive materials. In addition to describing getters that have already been used for such purposes, novel getters that might find application in future transport packages are also discussed. This paper also discusses getter material poisoning,more » the use of getters in packaging, the effects of radiation on getters, the compatibility of getters with packaging, design considerations, regulatory precedents, and makes general recommendations for the materials that have the greatest applicability in transport packaging. At this time, the Pacific Northwest National Laboratory composite getter, DEB [1,4-(phenylethylene)benzene] or similar polymer-based getters, and a manganese dioxide-based getter appear to be attractive candidates that should be further evaluated. These getters potentially can help prevent pressurization from radiolytic reactions in transportation packaging.« less

  19. CO2-based hydrogen storage - Hydrogen generation from formaldehyde/water

    NASA Astrophysics Data System (ADS)

    Trincado, Monica; Grützmacher, Hansjörg; Prechtl, Martin H. G.

    2018-04-01

    Formaldehyde (CH2O) is the simplest and most significant industrially produced aldehyde. The global demand is about 30 megatons annually. Industrially it is produced by oxidation of methanol under energy intensive conditions. More recently, new fields of application for the use of formaldehyde and its derivatives as, i.e. cross-linker for resins or disinfectant, have been suggested. Dialkoxymethane has been envisioned as a combustion fuel for conventional engines or aqueous formaldehyde and paraformaldehyde may act as a liquid organic hydrogen carrier molecule (LOHC) for hydrogen generation to be used for hydrogen fuel cells. For the realization of these processes, it requires less energy-intensive technologies for the synthesis of formaldehyde. This overview summarizes the recent developments in low-temperature reductive synthesis of formaldehyde and its derivatives and low-temperature formaldehyde reforming. These aspects are important for the future demands on modern societies' energy management, in the form of a methanol and hydrogen economy, and the required formaldehyde feedstock for the manufacture of many formaldehyde-based daily products.

  20. Hydrogen for the subsonic transport. [aircraft design and fuel requirements

    NASA Technical Reports Server (NTRS)

    Korycinski, P. F.; Snow, D. B.

    1975-01-01

    Relations between air travel and fuel requirements are examined. Alternate fuels considered in connection with problems related to a diminishing supply of petroleum include synthetic jet fuel, methane, and hydrogen. A cruise flight of a subsonic aircraft on a hydrogen-fueled jet engine was demonstrated in 1957. However, more development work is required to provide a sound engineering base for a complete air transportation system using hydrogen as fuel. Aircraft designs for alternate fuels are discussed, giving attention to hydrogen-related technology already available and new developments which are needed.

  1. Penetration of hydrogen-based energy system and its potential for causing global environmental change: Scoping risk analysis based on life cycle thinking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kikuchi, Ryunosuke

    2006-03-15

    A hydrogen-based economy seems superficially to be environmentally friendly, and many people have worked toward its realization. Today hydrogen is mainly produced by decarbonizing fossil fuels (e.g. natural gas), and in the future decarbonization of both fossil fuels and biomass will play a leading role in the production of hydrogen. The main purpose of this paper is to suggest the identification of potential environmental risks in terms of 'life cycle thinking' (which considers all aspects from production to utilization) with regard to the hydrogen-based economy to come. Hydrogen production by decarbonization results in CO{sub 2} emissions. The final destination ofmore » the recovered CO{sub 2} is uncertain. Furthermore, there is a possibility that hydrogen molecules will escape to the atmosphere, posing risks that could occasion global environmental changes such as depletion of stratospheric ozone, temperature change in the stratosphere and change of the hydrides cycle through global vaporization. Based on the results of simulation, requirements regarding the following items are proposed to minimize potential risks: hydrogen source, production and storage loss.« less

  2. Hydrogen energy systems studies. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogden, J.M.; Kreutz, T.; Kartha, S.

    1996-08-13

    The results of previous studies suggest that the use of hydrogen from natural gas might be an important first step toward a hydrogen economy based on renewables. Because of infrastructure considerations (the difficulty and cost of storing, transmitting and distributing hydrogen), hydrogen produced from natural gas at the end-user`s site could be a key feature in the early development of hydrogen energy systems. In the first chapter of this report, the authors assess the technical and economic prospects for small scale technologies for producing hydrogen from natural gas (steam reformers, autothermal reformers and partial oxidation systems), addressing the following questions:more » (1) What are the performance, cost and emissions of small scale steam reformer technology now on the market? How does this compare to partial oxidation and autothermal systems? (2) How do the performance and cost of reformer technologies depend on scale? What critical technologies limit cost and performance of small scale hydrogen production systems? What are the prospects for potential cost reductions and performance improvements as these technologies advance? (3) How would reductions in the reformer capital cost impact the delivered cost of hydrogen transportation fuel? In the second chapter of this report the authors estimate the potential demand for hydrogen transportation fuel in Southern California.« less

  3. Hydrogen Production from Nuclear Energy

    NASA Astrophysics Data System (ADS)

    Walters, Leon; Wade, Dave

    2003-07-01

    During the past decade the interest in hydrogen as transportation fuel has greatly escalated. This heighten interest is partly related to concerns surrounding local and regional air pollution from the combustion of fossil fuels along with carbon dioxide emissions adding to the enhanced greenhouse effect. More recently there has been a great sensitivity to the vulnerability of our oil supply. Thus, energy security and environmental concerns have driven the interest in hydrogen as the clean and secure alternative to fossil fuels. Remarkable advances in fuel-cell technology have made hydrogen fueled transportation a near-term possibility. However, copious quantities of hydrogen must be generated in a manner independent of fossil fuels if environmental benefits and energy security are to be achieved. The renewable technologies, wind, solar, and geothermal, although important contributors, simply do not comprise the energy density required to deliver enough hydrogen to displace much of the fossil transportation fuels. Nuclear energy is the only primary energy source that can generate enough hydrogen in an energy secure and environmentally benign fashion. Methods of production of hydrogen from nuclear energy, the relative cost of hydrogen, and possible transition schemes to a nuclear-hydrogen economy will be presented.

  4. A hydrogen energy carrier. Volume 1: Summary. [for meeting energy requirements

    NASA Technical Reports Server (NTRS)

    Savage, R. L. (Editor); Blank, L. (Editor); Cady, T. (Editor); Cox, K. E. (Editor); Murray, R. (Editor); Williams, R. D. (Editor)

    1973-01-01

    The production, technology, transportation, and implementation of hydrogen into the energy system are discussed along with the fossil fuel cycle, hydrogen fuel cycle, and the demands for energy. The cost of hydrogen production by coal gasification; electrolysis by nuclear energy, and solar energy are presented. The legal aspects of a hydrogen economy are also discussed.

  5. ESTEEM - Encouraging School Transportation Effective Energy Management - Fuel Economy Management Handbook for Directors of Pupil Transportation, School District Administrators, Transportation Department Management.

    ERIC Educational Resources Information Center

    BRI Systems, Inc., Phoenix, AZ.

    This publication is a guide for school districts to reduce pupil transportation costs and save energy. The information presented is based upon: (1) energy saving programs implemented by school districts; (2) government and industry research efforts in fuel economy; (3) the successful experiences of commercial trucking fleets to save fuel; and (4)…

  6. Reaping Environmental Benefits of a Global Hydrogen Economy: How Large, Fow Soon, and at What Risks?

    NASA Astrophysics Data System (ADS)

    Dubey, M. K.; Horowitz, L. W.; Rahn, T. A.; Kinnison, D. E.

    2004-12-01

    The Western world has taken an aggressive posture to transition to a global hydrogen economy. While numerous technical challenges need to be addressed to achieve this it is timely to examine the environmental benefits and risks of this transition. Hydrogen provides an efficient energy carrier that promises to enhance urban and regional air quality that will benefit human health. It could also reduce risks of climate change if large-scale hydrogen production by renewable or nuclear energy sources becomes viable. While it is well known that the byproduct of energy produced from hydrogen is water vapor, it is not well known that the storage and transfer of hydrogen is inevitably accompanied by measurable leakage of hydrogen. Unintended consequences of hydrogen leakage include reduction in global oxidative capacity, changes in tropospheric ozone, and increase in stratospheric water that would exacerbate halogen induced ozone losses as well as impact the earth's radiation budget and climate. We construct plausible global hydrogen energy use and leak scenarios and assess their impacts using global 3-D simulations by the Model for Ozone And Related Trace species (MOZART). The hydrogen fluxes and photochemistry in our model successfully reproduce the contemporary hydrogen cycle as observed by a network of remote global stations. Our intent is to determine environmentally tolerable leak rates and also facilitate a gradual phasing in of a hydrogen economy over the next several decades as the elimination of the use of halocarbons gradually reduces halogen induced stratospheric ozone loss rates. We stress that the leak rates in global hydrogen infrastructure and the future evolution of microbial soil sink of hydrogen that determines its current lifetime (about 2 years) are principal sources of uncertainty in our assessment.

  7. Transportation and the economy national and state perspectives

    DOT National Transportation Integrated Search

    1998-05-01

    In the past months, many years of research and data collection have begun paying off in a rich series of analytical studies paving the way for a strong, rigorous and quantitative explanation of transportation's role in the economy and the power of tr...

  8. Hydrogen transport behavior of beryllium

    NASA Astrophysics Data System (ADS)

    Anderl, R. A.; Hankins, M. R.; Longhurst, G. R.; Pawelko, R. J.; Macaulay-Newcombe, R. G.

    1992-12-01

    Beryllium is being evaluated for use as a plasma-facing material in the International Thermonuclear Experimental Reactor (ITER). One concern in the evaluation is the retention and permeation of tritium implanted into the plasma-facing surface. We performed laboratory-scale studies to investigate mechanisms that influence hydrogen transport and retention in beryllium foil specimens of rolled powder metallurgy product and rolled ingot cast beryllium. Specimen characterization was accomplished using scanning electron microscopy, Auger electron spectroscopy, and Rutherford backscattering spectrometry (RBS) techniques. Hydrogen transport was investigated using ion-beam permeation experiments and nuclear reaction analysis (NRA). Results indicate that trapping plays a significant role in permeation, re-emission, and retention, and that surface processes at both upstream and downstream surfaces are also important.

  9. Low-CO(2) electricity and hydrogen: a help or hindrance for electric and hydrogen vehicles?

    PubMed

    Wallington, T J; Grahn, M; Anderson, J E; Mueller, S A; Williander, M I; Lindgren, K

    2010-04-01

    The title question was addressed using an energy model that accounts for projected global energy use in all sectors (transportation, heat, and power) of the global economy. Global CO(2) emissions were constrained to achieve stabilization at 400-550 ppm by 2100 at the lowest total system cost (equivalent to perfect CO(2) cap-and-trade regime). For future scenarios where vehicle technology costs were sufficiently competitive to advantage either hydrogen or electric vehicles, increased availability of low-cost, low-CO(2) electricity/hydrogen delayed (but did not prevent) the use of electric/hydrogen-powered vehicles in the model. This occurs when low-CO(2) electricity/hydrogen provides more cost-effective CO(2) mitigation opportunities in the heat and power energy sectors than in transportation. Connections between the sectors leading to this counterintuitive result need consideration in policy and technology planning.

  10. The Palm Desert renewable [hydrogen] transportation system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chamberlin, C.E.; Lehman, P.

    1998-08-01

    This paper describes the Schatz Energy Research Center (SERC) progress on the Palm Desert Renewable Hydrogen Transportation System Project for the period June 1997 through May 1998. The project began in March 1996. The goal of the Palm Desert Project is to develop a clean and sustainable transportation system for a community. The project demonstrates the practical utility of hydrogen as a transportation fuel and the proton exchange membrane (PEM) fuel cell as a vehicle power system. The project includes designing and building 4 fuel cell powered vehicles, a solar hydrogen generating and refueling station, and a fuel cell vehiclemore » diagnostic center. Over this last year, SERC has built a fuel cell powered neighborhood electric vehicle and delivered it to the City of Palm Desert. The design of the hydrogen refueling station is near completion and it is anticipated that construction will be complete in the fall of 1998. The vehicles are currently being refueled at a temporary refueling station. The diagnostic center is being designed and maintenance procedures as well as computer diagnostic programs for the fuel cell vehicles are being developed. City employees are driving the vehicles daily and monitoring data are being collected. The drivers are pleased with the performance of the vehicles.« less

  11. Reshoring and its impact on transportation infrastructure & US economy.

    DOT National Transportation Integrated Search

    2016-12-01

    Reshoring is expected to have a tremendous impact on the United States (US) economy and on the utilization of the existing : transportation infrastructures of the country. It is an immense need to identify the potential companies in the US that will ...

  12. Public transportation and the nation's economy : a quantitative analysis of public transportation's economic impact

    DOT National Transportation Integrated Search

    1999-10-01

    The relationship between the strength and competitiveness of the nation's economy and the extent, condition and performance of the nation's transportation system is a topic of critical interest. There is mounting evidence that we, as a nation, are se...

  13. 49 CFR 537.9 - Determination of fuel economy values and average fuel economy.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 6 2014-10-01 2014-10-01 false Determination of fuel economy values and average fuel economy. 537.9 Section 537.9 Transportation Other Regulations Relating to Transportation... ECONOMY REPORTS § 537.9 Determination of fuel economy values and average fuel economy. (a) Vehicle...

  14. 49 CFR 537.9 - Determination of fuel economy values and average fuel economy.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 6 2012-10-01 2012-10-01 false Determination of fuel economy values and average fuel economy. 537.9 Section 537.9 Transportation Other Regulations Relating to Transportation... ECONOMY REPORTS § 537.9 Determination of fuel economy values and average fuel economy. (a) Vehicle...

  15. 49 CFR 537.9 - Determination of fuel economy values and average fuel economy.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 6 2013-10-01 2013-10-01 false Determination of fuel economy values and average fuel economy. 537.9 Section 537.9 Transportation Other Regulations Relating to Transportation... ECONOMY REPORTS § 537.9 Determination of fuel economy values and average fuel economy. (a) Vehicle...

  16. 49 CFR 537.9 - Determination of fuel economy values and average fuel economy.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 6 2011-10-01 2011-10-01 false Determination of fuel economy values and average fuel economy. 537.9 Section 537.9 Transportation Other Regulations Relating to Transportation... ECONOMY REPORTS § 537.9 Determination of fuel economy values and average fuel economy. (a) Vehicle...

  17. A review on on-board challenges of magnesium-based hydrogen storage materials for automobile applications

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Wasikur

    2017-06-01

    The attempt of the review is to realize on-board hydrogen storage technologies concerning magnesium based solid-state matrix to allow fuel cell devices to facilitate sufficient storage capacity, cost, safety and performance requirements to be competitive with current vehicles. Hydrogen, a potential and clean fuel, can be applied in the state-of-the-art technology of `zero emission' vehicles. Hydrogen economy infrastructure both for stationary and mobile purposes is complicated due to its critical physico-chemical properties and materials play crucial roles in every stage of hydrogen production to utilization in fuel cells in achieving high conversion efficiency, safety and robustness of the technologies involved. Moreover, traditional hydrogen storage facilities are rather complicated due to its anomalous properties such as highly porous solids and polymers have intrinsic microporosity, which is the foremost favorable characteristics of fast kinetics and reversibility, but the major drawback is the low storage capacity. In contrast, metal hydrides and complex hydrides have high hydrogen storage capacity but thermodynamically unfavorable. Therefore, hydrogen storage is a real challenge to realize `hydrogen economy' that will solve the critical issues of humanity such as energy depletion, greenhouse emission, air pollution and ultimately climate change. Magnesium based materials, particularly magnesium hydride (MgH2) has been proposed as a potential hydrogen storage material due to its high gravimetric and volumetric capacity as well as environmentally benign properties to work the grand challenge out.

  18. Hydrogen transport behavior of metal coatings for plasma-facing components

    NASA Astrophysics Data System (ADS)

    Anderl, R. A.; Holland, D. F.; Longhurst, G. R.

    1990-12-01

    Plasma-facing components for experimental and commercial fusion reactor studies may include cladding or coatings of refractory metals like tungsten on metallic structural substrates such as copper, vanadium alloys and austenitic stainless steel. Issues of safety and fuel economy include the potential for inventory buildup and permeation of tritium implanted into the plasma-facing surface. This paper reports on laboratory-scale studies with 3 keV D +3 ion beams to investigate the hydrogen transport behavior in tungsten coatings on substrates of copper. These experiments entailed measurements of the deuterium re-emission and permeation rates for tungsten, copper, and tungsten-coated copper specimens at temperatures ranging from 638 to 825 K and implanting particle fluxes of approximately 5 × 10 19 D/m 2 s. Diffusion constants and surface recombination coefficients with enhancement factors due to sputtering were obtained from these measurements. These data may be used in calculations to estimate permeation rates and inventory buildups for proposed diverter designs.

  19. Investigating Elevated Concentrations of Hydrogen in the LAX region

    NASA Astrophysics Data System (ADS)

    Rund, P.; Hughes, S.; Blake, D. R.

    2017-12-01

    The growing interest in hydrogen (H2) fuel cell vehicles has created a need to study the atmospheric H2 budget. While there is resounding agreement that hydrogen would escape into the atmosphere due to fuel transport/storage processes, there is disagreement over the amount that would be leaked in a hydrogen fuel economy. Leakage rate estimates range from 2% to 10% for total hydrogen production and transport. A hydrogen based energy infrastructure seems a viable clean alternative to oil because, theoretically, the only waste products are H2O and heat. However, hydrogen leads to the formation of water vapor, polar stratospheric clouds, and a decrease in stratospheric temperatures, which contribute to the depletion of stratospheric ozone. Whole air samples (WAS) collected aboard the NASA Sherpa C-23 during the Student Airborne Research Program (SARP) showed elevated concentrations of hydrogen near LAX (950 ± 110 ppbv) compared to global average concentrations of 560 ± 20 ppbv. Trace gas analysis along with wind trajectories obtained with the NOAA HySPLIT models indicate that the source of elevated mixing ratios was leakage from H2 fuel stations in the surrounding areas. Correlation and ratio analyses eliminate the potential for common photochemical sources of H2 in the LAX area. This project could elucidate new and potential factors that contribute to the global atmospheric hydrogen budget.

  20. Correlation of microstructure and thermo-mechanical properties of a novel hydrogen transport membrane

    NASA Astrophysics Data System (ADS)

    Zhang, Yongjun

    A key part of the FutureGen concept is to support the production of hydrogen to fuel a "hydrogen economy," with the use of clean burning hydrogen in power-producing fuel cells, as well as for use as a transportation fuel. One of the key technical barriers to FutureGen deployment is reliable and efficient hydrogen separation technology. Most Hydrogen Transport Membrane (HTM) research currently focuses on separation technology and hydrogen flux characterization. No significant work has been performed on thermo-mechanical properties of HTMs. The objective of the thesis is to understand the structure-property correlation of HTM and to characterize (1) thermo mechanical properties under different reducing environments and thermal cycles (thermal shock), and (2) evaluate the stability of the novel HTM material. A novel HTM cermet bulk sample was characterized for its physical and mechanical properties at both room temperature and at elevated temperature up to 1000°C. Micro-structural properties and residual stresses were evaluated in order to understand the changing mechanism of the microstructure and its effects on the mechanical properties of materials. A correlation of the microstructural and thermo mechanical properties of the HTM system was established for both HTM and the substrate material. Mechanical properties of both selected structural ceramics and the novel HTM cermet bulk sample are affected mainly by porosity and microstructural features, such as grain size and pore size-distribution. The Young's Modulus (E-value) is positively correlated to the flexural strength for materials with similar crystallographic structure. However, for different crystallographic materials, physical properties are independent of mechanical properties. Microstructural properties, particularly, grain size and crystallographic structure, and thermodynamic properties are the main factors affecting the mechanical properties at both room and high temperatures. The HTM cermet behaves

  1. Life cycle assessment of the production of hydrogen and transportation fuels from corn stover via fast pyrolysis

    NASA Astrophysics Data System (ADS)

    Zhang, Yanan; Hu, Guiping; Brown, Robert C.

    2013-06-01

    This life cycle assessment evaluates and quantifies the environmental impacts of the production of hydrogen and transportation fuels from the fast pyrolysis and upgrading of corn stover. Input data for this analysis come from Aspen Plus modeling, a GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model database and a US Life Cycle Inventory Database. SimaPro 7.3 software is employed to estimate the environmental impacts. The results indicate that the net fossil energy input is 0.25 MJ and 0.23 MJ per km traveled for a light-duty vehicle fueled by gasoline and diesel fuel, respectively. Bio-oil production requires the largest fossil energy input. The net global warming potential (GWP) is 0.037 kg CO2eq and 0.015 kg CO2eq per km traveled for a vehicle fueled by gasoline and diesel fuel, respectively. Vehicle operations contribute up to 33% of the total positive GWP, which is the largest greenhouse gas footprint of all the unit processes. The net GWPs in this study are 88% and 94% lower than for petroleum-based gasoline and diesel fuel (2005 baseline), respectively. Biomass transportation has the largest impact on ozone depletion among all of the unit processes. Sensitivity analysis shows that fuel economy, transportation fuel yield, bio-oil yield, and electricity consumption are the key factors that influence greenhouse gas emissions.

  2. Biotechnological Perspectives of Pyrolysis Oil for a Bio-Based Economy.

    PubMed

    Arnold, Stefanie; Moss, Karin; Henkel, Marius; Hausmann, Rudolf

    2017-10-01

    Lignocellulosic biomass is an important feedstock for a potential future bio-based economy. Owing to its compact structure, suitable decomposition technologies will be necessary to make it accessible for biotechnological conversion. While chemical and enzymatic hydrolysis are currently established methods, a promising alternative is provided by fast pyrolysis. The main resulting product thereof, referred to as pyrolysis oil, is an energy-rich and easily transportable liquid. Many of the identified constituents of pyrolysis oil, however, have previously been reported to display adverse effects on microbial growth. In this Opinion we discuss relevant biological, biotechnological, and technological challenges that need to be addressed to establish pyrolysis oil as a reliable microbial feedstock for a bio-based economy of the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Alternative transportation fuels: Infrastructure requirements and environmental impacts for ethanol and hydrogen

    NASA Astrophysics Data System (ADS)

    Wakeley, Heather L.

    Alternative fuels could replace a significant portion of the 140 billion gallons of annual US gasoline use. Considerable attention is being paid to processes and technologies for producing alternative fuels, but an enormous investment in new infrastructure will be needed to have substantial impact on the demand for petroleum. The economics of production, distribution, and use, along with environmental impacts of these fuels, will determine the success or failure of a transition away from US petroleum dependence. This dissertation evaluates infrastructure requirements for ethanol and hydrogen as alternative fuels. It begins with an economic case study for ethanol and hydrogen in Iowa. A large-scale linear optimization model is developed to estimate average transportation distances and costs for nationwide ethanol production and distribution systems. Environmental impacts of transportation in the ethanol life cycle are calculated using the Economic Input-Output Life Cycle Assessment (EIO-LCA) model. An EIO-LCA Hybrid method is developed to evaluate impacts of future fuel production technologies. This method is used to estimate emissions for hydrogen production and distribution pathways. Results from the ethanol analyses indicate that the ethanol transportation cost component is significant and is the most variable. Costs for ethanol sold in the Midwest, near primary production centers, are estimated to be comparable to or lower than gasoline costs. Along with a wide range of transportation costs, environmental impacts for ethanol range over three orders of magnitude, depending on the transport required. As a result, intensive ethanol use should be encouraged near ethanol production areas. Fossil fuels are likely to remain the primary feedstock sources for hydrogen production in the near- and mid-term. Costs and environmental impacts of hydrogen produced from natural gas and transported by pipeline are comparable to gasoline. However, capital costs are prohibitive and

  4. NASA Hydrogen Research for Spaceport and Space Based Applications

    NASA Technical Reports Server (NTRS)

    Anderson, Tim

    2006-01-01

    The activities presented are a broad based approach to advancing key hydrogen related technologies in areas such as hydrogen production, distributed sensors for hydrogen-leak detection, laser instrumentation for hydrogen-leak detection, and cryogenic transport and storage. Presented are the results form 15 research projects, education, and outreach activities, system and trade studies, and project management. The work will aid in advancing the state-of-the-art for several critical technologies related to the implementation of a hydrogen infrastructure. Activities conducted are relevant to a number of propulsion and power systems for terrestrial, aeronautics, and aerospace applications.

  5. Boron-Based Hydrogen Storage: Ternary Borides and Beyond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vajo, John J.

    DOE continues to seek reversible solid-state hydrogen materials with hydrogen densities of ≥11 wt% and ≥80 g/L that can deliver hydrogen and be recharged at moderate temperatures (≤100 °C) and pressures (≤100 bar) enabling incorporation into hydrogen storage systems suitable for transportation applications. Boron-based hydrogen storage materials have the potential to meet the density requirements given boron’s low atomic weight, high chemical valance, and versatile chemistry. However, the rates of hydrogen exchange in boron-based compounds are thus far much too slow for practical applications. Although contributing to the high hydrogen densities, the high valance of boron also leads to slowmore » rates of hydrogen exchange due to extensive boron-boron atom rearrangements during hydrogen cycling. This rearrangement often leads to multiple solid phases occurring over hydrogen release and recharge cycles. These phases must nucleate and react with each other across solid-solid phase boundaries leading to energy barriers that slow the rates of hydrogen exchange. This project sought to overcome the slow rates of hydrogen exchange in boron-based hydrogen storage materials by minimizing the number of solid phases and the boron atom rearrangement over a hydrogen release and recharge cycle. Two novel approaches were explored: 1) developing matched pairs of ternary borides and mixed-metal borohydrides that could exchange hydrogen with only one hydrogenated phase (the mixed-metal borohydride) and only one dehydrogenated phase (the ternary boride); and 2) developing boranes that could release hydrogen by being lithiated using lithium hydride with no boron-boron atom rearrangement.« less

  6. 49 CFR 537.9 - Determination of fuel economy values and average fuel economy.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Determination of fuel economy values and average fuel economy. 537.9 Section 537.9 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AUTOMOTIVE FUEL ECONOMY REPORTS § 537.9 Determination of fuel...

  7. FY17 Transportation and Hydrogen Systems Center Journal Publication Highlights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NREL's Transportation and Hydrogen Systems Center published 39 journal articles in fiscal year 2017 highlighting recent research in advanced vehicle technology, alternative fuels, and hydrogen systems.

  8. Some early perspectives on ground requirements of liquid hydrogen air transports

    NASA Technical Reports Server (NTRS)

    Korycinski, P. F.

    1976-01-01

    The paper examines the problem of liquid-hydrogen (LH2) subsonic long-range air transport from the perspectives of airplane manufacturers, the airline operator, the air terminal authority and the LH2 supplier. Emphasis is placed on identifying common problems and interfaces that are likely to occur in preparing for commercial airline operations of LH2 subsonic air transport in the 1990-1995 period. General considerations are discussed relative to sources and cost of gaseous hydrogen, hydrogen liquefaction, and LH2 availability. The fact that hydrogen sustains combustion at altitudes substantially higher than hydrocarbon fuels suggests that air transport can be designed to operate at higher enroute air traffic flight levels. This can be an advantage if only to relieve traffic congestion on heavily traveled routes. Pertinent interfaces in planning for the use of LH2 in air transportation are identified, including productivity and profitability, passenger-fuel compatibility, and lightning and electrical discharges.

  9. Impact of hydrogen refueling configurations and market parameters on the refueling cost of hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddi, Krishna; Elgowainy, Amgad; Rustagi, Neha

    The cost of hydrogen in early fuel cell electric vehicle (FCEV) markets is dominated by the cost of refueling stations, mainly due to the high cost of refueling equipment, small station capacities, lack of economies of scale, and low utilization of the installed refueling capacity. Using the hydrogen delivery scenario analysis model (HDSAM), this study estimates the impacts of these factors on the refueling cost for different refueling technologies and configurations, and quantifies the potential reduction in future hydrogen refueling cost compared to today’s cost in the United States. The current hydrogen refueling station levelized cost, for a 200 kg/daymore » dispensing capacity, is in the range of 6–8 dollars/kg H 2 when supplied with gaseous hydrogen, and 8–9 dollars/kg H 2 for stations supplied with liquid hydrogen. After adding the cost of hydrogen production, packaging, and transportation to the station’s levelized cost, the current cost of hydrogen at dispensers for FCEVs in California is in the range of 13–15 dollars/kg H 2. The refueling station capacity utilization strongly influences the hydrogen refueling cost. The underutilization of station capacity in early FCEV markets, such as in California, results in a levelized station cost that is approximately 40% higher than it would be in a scenario where the station had been fully utilized since it began operating. In future mature hydrogen FCEV markets, with a large demand for hydrogen, the refueling station’s levelized cost can be reduced to 2 dollars/kg H 2 as a result of improved capacity utilization and reduced equipment cost via learning and economies of scale.« less

  10. Impact of hydrogen refueling configurations and market parameters on the refueling cost of hydrogen

    DOE PAGES

    Reddi, Krishna; Elgowainy, Amgad; Rustagi, Neha; ...

    2017-06-30

    The cost of hydrogen in early fuel cell electric vehicle (FCEV) markets is dominated by the cost of refueling stations, mainly due to the high cost of refueling equipment, small station capacities, lack of economies of scale, and low utilization of the installed refueling capacity. Using the hydrogen delivery scenario analysis model (HDSAM), this study estimates the impacts of these factors on the refueling cost for different refueling technologies and configurations, and quantifies the potential reduction in future hydrogen refueling cost compared to today’s cost in the United States. The current hydrogen refueling station levelized cost, for a 200 kg/daymore » dispensing capacity, is in the range of 6–8 dollars/kg H 2 when supplied with gaseous hydrogen, and 8–9 dollars/kg H 2 for stations supplied with liquid hydrogen. After adding the cost of hydrogen production, packaging, and transportation to the station’s levelized cost, the current cost of hydrogen at dispensers for FCEVs in California is in the range of 13–15 dollars/kg H 2. The refueling station capacity utilization strongly influences the hydrogen refueling cost. The underutilization of station capacity in early FCEV markets, such as in California, results in a levelized station cost that is approximately 40% higher than it would be in a scenario where the station had been fully utilized since it began operating. In future mature hydrogen FCEV markets, with a large demand for hydrogen, the refueling station’s levelized cost can be reduced to 2 dollars/kg H 2 as a result of improved capacity utilization and reduced equipment cost via learning and economies of scale.« less

  11. The impact of hydrogenation on the thermal transport of silicene

    NASA Astrophysics Data System (ADS)

    Liu, Zeyu; Wu, Xufei; Luo, Tengfei

    2017-06-01

    Silicene, the silicon counterpart of graphene, has been identified as a promising 2D material for electronics applications. The reported very low thermal conductivity of silicene can potentially pose challenges on the thermal management of such nanoelectronics, which can in turn influence the device performance and reliability. Although the thermal conductivity of silicene has been studied, the impact of hydrogenation of silicene, which can happen spontaneously due to the resultant lower energy state, on its thermal transport ability is not clear. In this paper, we use first-principles calculations and iterative solution of phonon Boltzmann transport equation (BTE) to investigate and compare the thermal transport property of silicene and hydrogenated silicene. Surprisingly, we predict that the hydrogenation can lead to a large increase in thermal conductivity (from 22.5 W m-1 K-1 for silicene to 78.0 W m-1 K-1 for hydrogenated silicene at 300 K). We also find that the main contributor for such an improvement is the transverse acoustic phonon modes, and the reasons are the reduced anharmonicity as well as the reduced three-phonon scattering phase space after hydrogenation. This research may help better understand thermal transport in functionalized 2D materials and inspire new strategies to manipulate their thermal properties, which is of critical importance for designing high performance and reliable nanoelectronic devices.

  12. A Process-Based Transport-Distance Model of Aeolian Transport

    NASA Astrophysics Data System (ADS)

    Naylor, A. K.; Okin, G.; Wainwright, J.; Parsons, A. J.

    2017-12-01

    We present a new approach to modeling aeolian transport based on transport distance. Particle fluxes are based on statistical probabilities of particle detachment and distributions of transport lengths, which are functions of particle size classes. A computational saltation model is used to simulate transport distances over a variety of sizes. These are fit to an exponential distribution, which has the advantages of computational economy, concordance with current field measurements, and a meaningful relationship to theoretical assumptions about mean and median particle transport distance. This novel approach includes particle-particle interactions, which are important for sustaining aeolian transport and dust emission. Results from this model are compared with results from both bulk- and particle-sized-specific transport equations as well as empirical wind tunnel studies. The transport-distance approach has been successfully used for hydraulic processes, and extending this methodology from hydraulic to aeolian transport opens up the possibility of modeling joint transport by wind and water using consistent physics. Particularly in nutrient-limited environments, modeling the joint action of aeolian and hydraulic transport is essential for understanding the spatial distribution of biomass across landscapes and how it responds to climatic variability and change.

  13. Tunneling readout of hydrogen-bonding based recognition

    PubMed Central

    Chang, Shuai; He, Jin; Kibel, Ashley; Lee, Myeong; Sankey, Otto; Zhang, Peiming; Lindsay, Stuart

    2009-01-01

    Hydrogen bonding has a ubiquitous role in electron transport1,2 and in molecular recognition, with DNA base-pairing being the best known example.3 Scanning tunneling microscope (STM) images4 and measurements of the decay of tunnel-current as a molecular junction is pulled apart by the STM tip, 5 are sensitive to hydrogen-bonded interactions. Here we show that these tunnel-decay signals can be used to measure the strength of hydrogen bonding in DNA basepairs. Junctions that are held together by three hydrogen bonds per basepair (e.g., guanine-cytosine interactions) are stiffer than junctions held together by two hydrogen bonds per basepair (e.g., adenine-thymine interactions). Similar, but less-pronounced, effects are observed on the approach of the tunneling probe, implying that hydrogen-bond dependent attractive forces also have a role in determining the rise of current. These effects provide new mechanisms for making sensors that transduce a molecular recognition event into an electronic signal. PMID:19421214

  14. Reviving the carbohydrate economy via multi-product lignocellulose biorefineries.

    PubMed

    Zhang, Y-H Percival

    2008-05-01

    Before the industrial revolution, the global economy was largely based on living carbon from plants. Now the economy is mainly dependent on fossil fuels (dead carbon). Biomass is the only sustainable bioresource that can provide sufficient transportation fuels and renewable materials at the same time. Cellulosic ethanol production from less costly and most abundant lignocellulose is confronted with three main obstacles: (1) high processing costs (dollars /gallon of ethanol), (2) huge capital investment (dollars approximately 4-10/gallon of annual ethanol production capacity), and (3) a narrow margin between feedstock and product prices. Both lignocellulose fractionation technology and effective co-utilization of acetic acid, lignin and hemicellulose will be vital to the realization of profitable lignocellulose biorefineries, since co-product revenues would increase the margin up to 6.2-fold, where all purified lignocellulose co-components have higher selling prices (> approximately 1.0/kg) than ethanol ( approximately 0.5/kg of ethanol). Isolation of large amounts of lignocellulose components through lignocellulose fractionation would stimulate R&D in lignin and hemicellulose applications, as well as promote new markets for lignin- and hemicellulose-derivative products. Lignocellulose resource would be sufficient to replace significant fractionations (e.g., 30%) of transportation fuels through liquid biofuels, internal combustion engines in the short term, and would provide 100% transportation fuels by sugar-hydrogen-fuel cell systems in the long term.

  15. Potential of hydrogen fuel for future air transportation systems.

    NASA Technical Reports Server (NTRS)

    Small, W. J.; Fetterman, D. E.; Bonner, T. F., Jr.

    1973-01-01

    Recent studies have shown that hydrogen fuel can yield spectacular improvements in aircraft performance in addition to its more widely discussed environmental advantages. The characteristics of subsonic, supersonic, and hypersonic transport aircraft using hydrogen fuel are discussed, and their performance and environmental impact are compared to that of similar aircraft using conventional fuel. The possibilities of developing hydrogen-fueled supersonic and hypersonic vehicles with sonic boom levels acceptable for overland flight are also explored.

  16. Nanoplasmonic hydrogen sensing

    NASA Astrophysics Data System (ADS)

    Wadell, Carl; Syrenova, Svetlana; Langhammer, Christoph

    2014-09-01

    In this review we discuss the evolution of surface plasmon resonance and localized surface plasmon resonance based hydrogen sensors. We put particular focus on how they are used to study metal-hydrogen interactions at the nanoscale, both at the ensemble and the single nanoparticle level. Such efforts are motivated by a fundamental interest in understanding the role of nanosizing on metal hydride formation processes. However, nanoplasmonic hydrogen sensors are not only of academic interest but may also find more practical use as all-optical gas detectors in industrial and medical applications, as well in a future hydrogen economy, where hydrogen is used as a carbon free energy carrier.

  17. Hydrogen fuel dispensing station for transportation vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, S.P.N.; Richmond, A.A.

    1995-07-01

    A technical and economic assessment is being conducted of a hydrogen fuel dispensing station to develop an understanding of the infrastructure requirements for supplying hydrogen fuel for mobile applications. The study includes a process design of a conceptual small-scale, stand-alone, grassroots fuel dispensing facility (similar to the present-day gasoline stations) producing hydrogen by steam reforming of natural gas. Other hydrogen production processes (such as partial oxidation of hydrocarbons and water electrolysis) were reviewed to determine their suitability for manufacturing the hydrogen. The study includes an assessment of the environmental and other regulatory permitting requirements likely to be imposed on amore » hydrogen fuel dispensing station for transportation vehicles. The assessment concludes that a dispensing station designed to produce 0.75 million standard cubic feet of fuel grade (99.99%+ purity) hydrogen will meet the fuel needs of 300 light-duty vehicles per day. Preliminary economics place the total capital investment (in 1994 US dollars) for the dispensing station at $4.5 million and the annual operating costs at around $1 million. A discounted cash-flow analysis indicates that the fuel hydrogen product price (excluding taxes) to range between $1.37 to $2.31 per pound of hydrogen, depending upon the natural gas price, the plant financing scenario, and the rate of return on equity capital. A report on the assessment is due in June 1995. This paper presents a summary of the current status of the assessment.« less

  18. Stratospheric cooling and polar ozone loss due to H2 emissions of a global hydrogen economy

    NASA Astrophysics Data System (ADS)

    Feck, T.; Grooß, J.-U.; Riese, M.; Vogel, B.

    2009-04-01

    "Green" hydrogen is seen as a major element of the future energy supply to reduce greenhouse gas emissions substantially. However, due to the possible interactions of hydrogen (H2) with other atmospheric constituents there is a need to analyse the implications of additional atmospheric H2 that could result from hydrogen leakage of a global hydrogen infrastructure. Emissions of molecular H2 can occur along the whole hydrogen process chain which increase the tropospheric H2 burden. Across the tropical tropopause H2 reaches the stratosphere where it is oxidised and forms water vapour (H2O). This causes increased IR-emissions into space and hence a cooling of the stratosphere. Both effects, the increase of stratospheric H2O and the cooling, enhances the potential of chlorine activation on liquid sulfate aerosol and polar stratospheric clouds (PSCs), which increase polar ozone destruction. Hence a global hydrogen economy could provoke polar ozone loss and could lead to a substantial delay of the current projected recovery of the stratospheric ozone layer. Our investigations show that even if 90% of the current global fossil primary energy input could be replaced by hydrogen and approximately 9.5% of the product gas would leak to the atmosphere, the ozone loss would be increased between 15 to 26 Dobson Units (DU) if the stratospheric CFC loading would retain unchanged. A consistency check of the used approximation methods with the Chemical Lagrangian Model of the Stratosphere (CLaMS) shows that this additional ozone loss can probably be treated as an upper limit. Towards more realistic future H2 leakage rate assumptions (< 3%) the additional ozone loss would be rather small (? 10 DU). However, in all cases the full damage would only occur if stratospheric CFC-levels would retain unchanged. Due to the CFC-prohibition as a result of the Montreal Protocol the forecasts suggest a decline of the stratospheric CFC loading about 50% until 2050. In this case our calculations

  19. Hydrogen use projections and supply options

    NASA Technical Reports Server (NTRS)

    Manvi, R.; Fujita, T.

    1976-01-01

    Two projections of future hydrogen demand, based on the Ford technical fix and the Westinghouse nuclear electric economy energy supply and demand scenarios, are analyzed. It is suggested that hydrogen use will increase during the remainder of this century by at least a factor of five, and perhaps by a factor of twenty. Primary energy sources for producing hydrogen are discussed in terms of the transition from low to high demand for hydrogen.

  20. The economic impact of commercial space transportation on the U.S. economy

    DOT National Transportation Integrated Search

    2001-02-01

    The first study of the U.S. commercial launch industry's effect : on the nation's economy, this report is a quantitative analysis of the extent to which commercial space transportation is responsible directly and indirectly for supporting a variety o...

  1. NASA Space Program experience in hydrogen transportation and handling

    NASA Technical Reports Server (NTRS)

    Bain, A. L.

    1976-01-01

    This paper portrays the experience gained in the transportation and handling of hydrogen in support of the Apollo launch site at Kennedy Space Center (KSC), Fla., one of NASA's prime hydrogen users in the Space Program. The objective of the paper is basically to reveal the types of systems involved in handling hydrogen, safety practices, operational techniques, other general experience information, and primarily to convey the routinism by which this potential fuel of the future has already been handled in significant quantities for a number of years.

  2. Hydrogen Research for Spaceport and Space-Based Applications: Hydrogen Sensors and Systems. Part 2

    NASA Technical Reports Server (NTRS)

    Anderson, Tim; Balaban, Canan

    2008-01-01

    The activities presented are a broad based approach to advancing key hydrogen related technologies in areas such as fuel cells, hydrogen production, and distributed sensors for hydrogen-leak detection, laser instrumentation for hydrogen-leak detection, and cryogenic transport and storage. Presented are the results from research projects, education and outreach activities, system and trade studies. The work will aid in advancing the state-of-the-art for several critical technologies related to the implementation of a hydrogen infrastructure. Activities conducted are relevant to a number of propulsion and power systems for terrestrial, aeronautics and aerospace applications. Sensor systems research was focused on hydrogen leak detection and smart sensors with adaptive feedback control for fuel cells. The goal was to integrate multifunction smart sensors, low-power high-efficiency wireless circuits, energy harvesting devices, and power management circuits in one module. Activities were focused on testing and demonstrating sensors in a realistic environment while also bringing them closer to production and commercial viability for eventual use in the actual operating environment.

  3. Case studies of transportation investment to identify the impacts on the local and state economy.

    DOT National Transportation Integrated Search

    2013-01-01

    This project provides case studies of the impact of transportation investments on local economies. We use multiple : approaches to measure impacts since the effects of transportation projects can vary according to the size of a : project and the size...

  4. Energy Conversion Chain Analysis of Sustainable Energy Systems: A Transportation Case Study

    ERIC Educational Resources Information Center

    Evans, Robert L.

    2008-01-01

    In general terms there are only three primary energy sources: fossil fuels, renewable energy, and nuclear fission. For fueling road transportation, there has been much speculation about the use of hydrogen as an energy carrier, which would usher in the "hydrogen economy." A parallel situation would use a simple battery to store electricity…

  5. Palladium on Nitrogen-Doped Mesoporous Carbon: A Bifunctional Catalyst for Formate-Based, Carbon-Neutral Hydrogen Storage.

    PubMed

    Wang, Fanan; Xu, Jinming; Shao, Xianzhao; Su, Xiong; Huang, Yanqiang; Zhang, Tao

    2016-02-08

    The lack of safe, efficient, and economical hydrogen storage technologies is a hindrance to the realization of the hydrogen economy. Reported herein is a reversible formate-based carbon-neutral hydrogen storage system that is established over a novel catalyst comprising palladium nanoparticles supported on nitrogen-doped mesoporous carbon. The support was fabricated by a hard template method and nitridated under a flow of ammonia. Detailed analyses demonstrate that this bicarbonate/formate redox equilibrium is promoted by the cooperative role of the doped nitrogen functionalities and the well-dispersed, electron-enriched palladium nanoparticles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Hydrogen Transport and Rationalization of Porosity Formation during Welding of Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Huang, Jianglin; Warnken, Nils; Gebelin, Jean-Christophe; Strangwood, Martin; Reed, Roger C.

    2012-02-01

    The transport of hydrogen during fusion welding of the titanium alloy Ti-6Al4V is analyzed. A coupled thermodynamic/kinetic treatment is proposed for the mass transport within and around the weld pool. The modeling indicates that hydrogen accumulates in the weld pool as a consequence of the thermodynamic driving forces that arise; a region of hydrogen depletion exists in cooler, surrounding regions in the heat-affected zone and beyond. Coupling with a hydrogen diffusion-controlled bubble growth model is used to simulate bubble growth in the melt and, thus, to make predictions of the hydrogen concentration barrier needed for pore formation. The effects of surface tension of liquid metal and the radius of preexisting microbubble size on the barrier are discussed. The work provides insights into the mechanism of porosity formation in titanium alloys.

  7. Department of Transportation, National Highway Traffic Safety Administration : light truck average fuel economy standard, model year 1999

    DOT National Transportation Integrated Search

    1997-04-18

    Section 32902(a) of title 49, United States Code, requires the Secretary of Transportation to prescribe by regulation, at least 18 months in advance of each model year, average fuel economy standards (known as "Corporate Average Fuel Economy" or "CAF...

  8. A Renewably Powered Hydrogen Generation and Fueling Station Community Project

    NASA Technical Reports Server (NTRS)

    Lyons, Valerie J.; Sekura, Linda S.; Prokopius, Paul; Theirl, Susan

    2009-01-01

    The proposed project goal is to encourage the use of renewable energy and clean fuel technologies for transportation and other applications while generating economic development. This can be done by creating an incubator for collaborators, and creating a manufacturing hub for the energy economy of the future by training both white- and blue-collar workers for the new energy economy. Hydrogen electrolyzer fueling stations could be mass-produced, shipped and installed in collaboration with renewable energy power stations, or installed connected to the grid with renewable power added later.

  9. 49 CFR 531.5 - Fuel economy standards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Fuel economy standards. 531.5 Section 531.5 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PASSENGER AUTOMOBILE AVERAGE FUEL ECONOMY STANDARDS § 531.5 Fuel economy standards. (a) Except as provided...

  10. Towards a carbon-negative sustainable bio-based economy.

    PubMed

    Vanholme, Bartel; Desmet, Tom; Ronsse, Frederik; Rabaey, Korneel; Van Breusegem, Frank; De Mey, Marjan; Soetaert, Wim; Boerjan, Wout

    2013-01-01

    The bio-based economy relies on sustainable, plant-derived resources for fuels, chemicals, materials, food and feed rather than on the evanescent usage of fossil resources. The cornerstone of this economy is the biorefinery, in which renewable resources are intelligently converted to a plethora of products, maximizing the valorization of the feedstocks. Innovation is a prerequisite to move a fossil-based economy toward sustainable alternatives, and the viability of the bio-based economy depends on the integration between plant (green) and industrial (white) biotechnology. Green biotechnology deals with primary production through the improvement of biomass crops, while white biotechnology deals with the conversion of biomass into products and energy. Waste streams are minimized during these processes or partly converted to biogas, which can be used to power the processing pipeline. The sustainability of this economy is guaranteed by a third technology pillar that uses thermochemical conversion to valorize waste streams and fix residual carbon as biochar in the soil, hence creating a carbon-negative cycle. These three different multidisciplinary pillars interact through the value chain of the bio-based economy.

  11. Towards a carbon-negative sustainable bio-based economy

    PubMed Central

    Vanholme, Bartel; Desmet, Tom; Ronsse, Frederik; Rabaey, Korneel; Breusegem, Frank Van; Mey, Marjan De; Soetaert, Wim; Boerjan, Wout

    2013-01-01

    The bio-based economy relies on sustainable, plant-derived resources for fuels, chemicals, materials, food and feed rather than on the evanescent usage of fossil resources. The cornerstone of this economy is the biorefinery, in which renewable resources are intelligently converted to a plethora of products, maximizing the valorization of the feedstocks. Innovation is a prerequisite to move a fossil-based economy toward sustainable alternatives, and the viability of the bio-based economy depends on the integration between plant (green) and industrial (white) biotechnology. Green biotechnology deals with primary production through the improvement of biomass crops, while white biotechnology deals with the conversion of biomass into products and energy. Waste streams are minimized during these processes or partly converted to biogas, which can be used to power the processing pipeline. The sustainability of this economy is guaranteed by a third technology pillar that uses thermochemical conversion to valorize waste streams and fix residual carbon as biochar in the soil, hence creating a carbon-negative cycle. These three different multidisciplinary pillars interact through the value chain of the bio-based economy. PMID:23761802

  12. CLEAN HYDROGEN TECHNOLOGY FOR 3-WHEEL TRANSPORTATION IN INDIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishna Sapru

    2005-11-15

    Hydrogen is a clean burning, non-polluting transportation fuel. It is also a renewable energy carrier that can be produced from non-fossil fuel resources such as solar, wind and biomass. Utilizing hydrogen as an alternative fuel for vehicles will diversify the resources of energy, and reduce dependence on oil in the transportation sector. Additionally, clean burning hydrogen fuel will also alleviate air pollution that is a very severe problem in many parts of world, especially major metropolitan areas in developing countries, such as India and China. In our efforts to foster international collaborations in the research, development, and demonstration of hydrogenmore » technologies, through a USAID/DOE cost-shared project, Energy Conversion Devices, Inc.,(www.ovonic.com) a leading materials and alternative energy company, in collaboration with Bajaj Auto Limited, India's largest three-wheeler taxi manufacturer, has successfully developed and demonstrated prototype hydrogen ICE three-wheelers in the United States and India. ECD's proprietary Ovonic solid-state hydrogen storage technology is utilized on-board to provide a means of compact, low pressure, and safe hydrogen fuel. These prototype hydrogen three-wheelers have demonstrated comparable performance to the original CNG version of the vehicle, achieving a driving range of 130 km. The hydrogen storage system capable of storing 1 kg hydrogen can be refilled to 80% of its capacity in about 15 minutes at a pressure of 300 psi. The prototype vehicles developed under this project have been showcased and made available for test rides to the public at exhibits such as the 16th NHA annual meeting in April 2005, Washington, DC, and the SIAM (Society of Indian Automotive Manufacturers) annual conference in August 2005, New Delhi, India. Passengers have included members of the automotive industry, founders of both ECD and Bajaj, members of the World Bank, the Indian Union Minister for Finance, the President of the Asia

  13. Hydrogenation effects on carrier transport in boron-doped ultrananocrystalline diamond/amorphous carbon films prepared by coaxial arc plasma deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katamune, Yūki, E-mail: yuki-katamune@kyudai.jp; Takeichi, Satoshi; Ohmagari, Shinya

    2015-11-15

    Boron-doped ultrananocrystalline diamond/hydrogenated amorphous carbon composite (UNCD/a-C:H) films were deposited by coaxial arc plasma deposition with a boron-blended graphite target at a base pressure of <10{sup −3} Pa and at hydrogen pressures of ≤53.3 Pa. The hydrogenation effects on the electrical properties of the films were investigated in terms of chemical bonding. Hydrogen-scattering spectrometry showed that the maximum hydrogen content was 35 at. % for the film produced at 53.3-Pa hydrogen pressure. The Fourier-transform infrared spectra showed strong absorptions by sp{sup 3} C–H bonds, which were specific to the UNCD/a-C:H, and can be attributed to hydrogen atoms terminating the dangling bondsmore » at ultrananocrystalline diamond grain boundaries. Temperature-dependence of the electrical conductivity showed that the films changed from semimetallic to semiconducting with increasing hydrogen pressure, i.e., with enhanced hydrogenation, probably due to hydrogenation suppressing the formation of graphitic bonds, which are a source of carriers. Carrier transport in semiconducting hydrogenated films can be explained by a variable-range hopping model. The rectifying action of heterojunctions comprising the hydrogenated films and n-type Si substrates implies carrier transport in tunneling.« less

  14. Missouri S&T hydrogen transportation test bed equipment & construction.

    DOT National Transportation Integrated Search

    2010-08-01

    Investments through the National University Transportation Center at Missouri University of Science and Technology have really scored on the Centers mission areas and particularly Transition-state fuel vehicle infrastructure leading to a hydrogen ...

  15. Malaysia Transitions toward a Knowledge-Based Economy

    ERIC Educational Resources Information Center

    Mustapha, Ramlee; Abdullah, Abu

    2004-01-01

    The emergence of a knowledge-based economy (k-economy) has spawned a "new" notion of workplace literacy, changing the relationship between employers and employees. The traditional covenant where employees expect a stable or lifelong employment will no longer apply. The retention of employees will most probably be based on their skills…

  16. Innovation in biological production and upgrading of methane and hydrogen for use as gaseous transport biofuel.

    PubMed

    Xia, Ao; Cheng, Jun; Murphy, Jerry D

    2016-01-01

    Biofuels derived from biomass will play a major role in future renewable energy supplies in transport. Gaseous biofuels have superior energy balances, offer greater greenhouse gas emission reductions and produce lower pollutant emissions than liquid biofuels. Biogas derived through fermentation of wet organic substrates will play a major role in future transport systems. Biogas (which is composed of approximately 60% methane/hydrogen and 40% carbon dioxide) requires an upgrading process to reduce the carbon dioxide content to less than 3% before it is used as compressed gas in transport. This paper reviews recent developments in fermentative biogas production and upgrading as a transport fuel. Third generation gaseous biofuels may be generated using marine-based algae via two-stage fermentation, cogenerating hydrogen and methane. Alternative biological upgrading techniques, such as biological methanation and microalgal biogas upgrading, have the potential to simultaneously upgrade biogas, increase gaseous biofuel yield and reduce carbon dioxide emission. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Safety Standard for Hydrogen and Hydrogen Systems: Guidelines for Hydrogen System Design, Materials Selection, Operations, Storage and Transportation. Revision

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The NASA Safety Standard, which establishes a uniform process for hydrogen system design, materials selection, operation, storage, and transportation, is presented. The guidelines include suggestions for safely storing, handling, and using hydrogen in gaseous (GH2), liquid (LH2), or slush (SLH2) form whether used as a propellant or non-propellant. The handbook contains 9 chapters detailing properties and hazards, facility design, design of components, materials compatibility, detection, and transportation. Chapter 10 serves as a reference and the appendices contained therein include: assessment examples; scaling laws, explosions, blast effects, and fragmentation; codes, standards, and NASA directives; and relief devices along with a list of tables and figures, abbreviations, a glossary and an index for ease of use. The intent of the handbook is to provide enough information that it can be used alone, but at the same time, reference data sources that can provide much more detail if required.

  18. Computer programs for thermodynamic and transport properties of hydrogen

    NASA Technical Reports Server (NTRS)

    Hall, W. J.; Mc Carty, R. D.; Roder, H. M.

    1968-01-01

    Computer program subroutines provide the thermodynamic and transport properties of hydrogen in tabular form. The programs provide 18 combinations of input and output variables. This program is written in FORTRAN 4 for use on the IBM 7044 or CDC 3600 computers.

  19. Estimating changes in urban ozone concentrations due to life cycle emissions from hydrogen transportation systems

    NASA Astrophysics Data System (ADS)

    Wang, Guihua; Ogden, Joan M.; Chang, Daniel P. Y.

    Hydrogen has been proposed as a low polluting alternative transportation fuel that could help improve urban air quality. This paper examines the potential impact of introducing a hydrogen-based transportation system on urban ambient ozone concentrations. This paper considers two scenarios, where significant numbers of new hydrogen vehicles are added to a constant number of gasoline vehicles. In our scenarios hydrogen fuel cell vehicles (HFCVs) are introduced in Sacramento, California at market penetrations of 9% and 20%. From a life cycle analysis (LCA) perspective, considering all the emissions involved in producing, transporting, and using hydrogen, this research compares three hypothetical natural gas to hydrogen pathways: (1) on-site hydrogen production; (2) central hydrogen production with pipeline delivery; and (3) central hydrogen production with liquid hydrogen truck delivery. Using a regression model, this research shows that the daily maximum temperature correlates well with atmospheric ozone formation. However, increases in initial VOC and NO x concentrations do not necessarily increase the peak ozone concentration, and may even cause it to decrease. It is found that ozone formation is generally limited by NO x in the summer and is mostly limited by VOC in the fall in Sacramento. Of the three hydrogen pathways, the truck delivery pathway contributes the most to ozone precursor emissions. Ozone precursor emissions from the truck pathway at 9% market penetration can cause additional 3-h average VOC (or NO x) concentrations up to approximately 0.05% (or 1%) of current pollution levels, and at 20% market penetration up to approximately 0.1% (or 2%) of current pollution levels. However, all of the hydrogen pathways would result in very small (either negative or positive) changes in ozone air quality. In some cases they will result in worse ozone air quality (mostly in July, August, and September), and in some cases they will result in better ozone air quality

  20. LARGE-SCALE HYDROGEN PRODUCTION FROM NUCLEAR ENERGY USING HIGH TEMPERATURE ELECTROLYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James E. O'Brien

    2010-08-01

    Hydrogen can be produced from water splitting with relatively high efficiency using high-temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high-temperature process heat. When coupled to an advanced high temperature nuclear reactor, the overall thermal-to-hydrogen efficiency for high-temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. Demandmore » for hydrogen is increasing rapidly for refining of increasingly low-grade petroleum resources, such as the Athabasca oil sands and for ammonia-based fertilizer production. Large quantities of hydrogen are also required for carbon-efficient conversion of biomass to liquid fuels. With supplemental nuclear hydrogen, almost all of the carbon in the biomass can be converted to liquid fuels in a nearly carbon-neutral fashion. Ultimately, hydrogen may be employed as a direct transportation fuel in a “hydrogen economy.” The large quantity of hydrogen that would be required for this concept should be produced without consuming fossil fuels or emitting greenhouse gases. An overview of the high-temperature electrolysis technology will be presented, including basic theory, modeling, and experimental activities. Modeling activities include both computational fluid dynamics and large-scale systems analysis. We have also demonstrated high-temperature electrolysis in our laboratory at the 15 kW scale, achieving a hydrogen production rate in excess of 5500 L/hr.« less

  1. Homogeneous Catalysis for Sustainable Hydrogen Storage in Formic Acid and Alcohols.

    PubMed

    Sordakis, Katerina; Tang, Conghui; Vogt, Lydia K; Junge, Henrik; Dyson, Paul J; Beller, Matthias; Laurenczy, Gábor

    2018-01-24

    Hydrogen gas is a storable form of chemical energy that could complement intermittent renewable energy conversion. One of the main disadvantages of hydrogen gas arises from its low density, and therefore, efficient handling and storage methods are key factors that need to be addressed to realize a hydrogen-based economy. Storage systems based on liquids, in particular, formic acid and alcohols, are highly attractive hydrogen carriers as they can be made from CO 2 or other renewable materials, they can be used in stationary power storage units such as hydrogen filling stations, and they can be used directly as transportation fuels. However, to bring about a paradigm change in our energy infrastructure, efficient catalytic processes that release the hydrogen from these molecules, as well as catalysts that regenerate these molecules from CO 2 and hydrogen, are required. In this review, we describe the considerable progress that has been made in homogeneous catalysis for these critical reactions, namely, the hydrogenation of CO 2 to formic acid and methanol and the reverse dehydrogenation reactions. The dehydrogenation of higher alcohols available from renewable feedstocks is also described. Key structural features of the catalysts are analyzed, as is the role of additives, which are required in many systems. Particular attention is paid to advances in sustainable catalytic processes, especially to additive-free processes and catalysts based on Earth-abundant metal ions. Mechanistic information is also presented, and it is hoped that this review not only provides an account of the state of the art in the field but also offers insights into how superior catalytic systems can be obtained in the future.

  2. Hydrogen Fuel Cell Vehicle Fuel Economy Testing at the U.S. EPA National Vehicle and Fuel Emissions Laboratory (SAE Paper 2004-01-2900)

    EPA Science Inventory

    The introduction of hydrogen fuel cell vehicles and their new technology has created the need for development of new fuel economy test procedures and safety procedures during testing. The United States Environmental Protection Agency-National Vehicle Fuels and Emissions Laborato...

  3. The TiAl channel mechanism for enhanced (de)hydrogenation kinetics in Mg-based films

    NASA Astrophysics Data System (ADS)

    Hao, Shiqiang

    2010-09-01

    The transport properties of hydrogen in metal additives are very important for understanding the enhanced kinetic processes of (de)hydrogenation in metal hydrides. Based on the first-principles calculations, we found that the H2 dissociation rates on TiAl surfaces are very facile and the dissociated H diffusion in TiAl lattice is much faster than that in host material MgH2. We propose that the "catalytic" effect of additives Ti and Al is the H transport channel within the Mg and MgH2 host materials for the enhanced reaction kinetics.

  4. Hydrogen Induced Intergranular Cracking of Nickel-Base Alloys.

    DTIC Science & Technology

    1982-02-01

    alloys are discussed. Experimental The steel used in the present investigation is a fully bainitic 2 1/4 Cr-lMo pressure vessel steel , ASTM A542 Class 3...Appendix A describes recent experiments performed in order to study the influence of plastic deformation on hydrogen transport in a 214 Cr-lMo steel (8...PLASTIC DEFORMATION ON HYDROGEN TRANSPORT IN 2 1/4 Cr-lMo STEEL M. Kurkela, G.S. Frankel, and R.M. Latanision Department of Materials Science and

  5. Spin Transport Measurements in Hydrogenated Graphene Devices

    NASA Astrophysics Data System (ADS)

    Koon, Gavin; Balakrishnan, Jayakumar; Oezyilmaz, Barbaros

    2013-03-01

    Graphene with all its extraordinary properties still fall short when it comes to manipulation of electron spins. Chemically modified Graphene has been explored by many to further enhance Graphene properties, tailoring it to suit desired application purposes. Here we study the effects of hydrogenation rate on graphene spin transport, spin relaxation time and length in this defected system. These findings are important for future theoretical and experimental studies on other adatoms modified Graphene.

  6. Emissions and Fuel Economy Analysis | Transportation Research | NREL

    Science.gov Websites

    Emissions and Fuel Economy Analysis Emissions and Fuel Economy Analysis Photo of a man hooking up economy and emissions equipment stand at the ReFUEL Laboratory. Photo by Dennis Schroeder, NREL NREL's emissions and fuel economy projects help address greenhouse gas and pollutant emissions by advancing the

  7. Modulating the spin transport behaviors in ZBNCNRs by edge hydrogenation and position of BN chain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouyang, Jun; Long, Mengqiu, E-mail: mqlong@csu.edu.cn, E-mail: ygao@csu.edu.cn; Zhang, Dan

    2016-03-15

    Using the density functional theory and the nonequilibrium Green’s function method, we study the spin transport behaviors in zigzag boron-nitrogen-carbon nanoribbons (ZBNCNRs) by modulating the edge hydrogenation and the position of B-N nanoribbons (BNNRs) chain. The different edge hydrogenations of the ZBNCNRs and the different position relationships of the BNNRs have been considered systematically. Our results show that the metallic, semimetallic and semiconductive properties of the ZBNCNRs can be modulated by the different edge hydrogenations and different position relationships of BN chains. And our proposaled ZBNCNRs devices act as perfect spin-filters with nearly 100% spin polarization. These effects would havemore » potential applications for boron-nitrogen-carbon-based nanomaterials in spintronics nano-devices.« less

  8. Effects of External Hydrogen on Hydrogen Transportation and Distribution Around the Fatigue Crack Tip in Type 304 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Chen, Xingyang; Zhou, Chengshuang; Cai, Xiao; Zheng, Jinyang; Zhang, Lin

    2017-10-01

    The effects of external hydrogen on hydrogen transportation and distribution around the fatigue crack tip in type 304 stainless steel were investigated by using hydrogen microprint technique (HMT) and thermal desorption spectrometry. HMT results show that some silver particles induced by hydrogen release are located near the fatigue crack and more silver particles are concentrated around the crack tip, which indicates that hydrogen accumulates in the vicinity of the crack tip during the crack growth in hydrogen gas environment. Along with the crack propagation, strain-induced α' martensite forms around the crack tip and promotes hydrogen invasion into the matrix, which will cause the crack initiation and propagation at the austenite/ α' martensite interface. In addition, the hydrogen content in the vicinity of the crack tip is higher than that at the crack edge far away from the crack tip, which is related to the stress state and strain-induced α' martensite.

  9. Transport properties of liquid metal hydrogen under high pressures

    NASA Technical Reports Server (NTRS)

    Brown, R. C.; March, N. H.

    1972-01-01

    A theory is developed for the compressibility and transport properties of liquid metallic hydrogen, near to its melting point and under high pressure. The interionic force law is assumed to be of the screened Coulomb type, because hydrogen has no core electrons. The random phase approximation is used to obtain the structure factor S(k) of the system in terms of the Fourier transform of this force law. The long wavelenth limit of the structure factor S(o) is related to the compressibility, which is much lower than that of alkali metals at their melting points. The diffusion constant at the melting point is obtained in terms of the Debye frequency, using a frequency spectrum analogous with the phonon spectrum of a solid. A similar argument is used to obtain the combined shear and bulk viscosities, but these depend also on S(o). The transport coefficients are found to be about the same size as those of alkali metals at their melting points.

  10. The effect of hydrogen content on ballistic transport behaviors in the Ni-Nb-Zr-H glassy alloys.

    PubMed

    Fukuhara, Mikio; Umemori, Yoshimasa

    2012-01-01

    The electronic transport behaviors of (Ni(0.39)Nb(0.25)Zr(0.35))(100-) (x)H(x) (0 ≤ x < 23.5) glassy alloys with subnanostructural icosahedral Zr(5)Nb(5)Ni(3) clusters have been studied as a function of hydrogen content. These alloys show semiconducting, electric current-induced voltage (Coulomb) oscillation and ballistic transport behaviors. Coulomb oscillation and ballistic transport occur at hydrogen contents between 6.7 and 13.5 at% and between 13.5 and 21.2 at%, respectively. These results suggest that the localization effect of hydrogen in the clusters plays an important role in various electron transport phenomena.

  11. The Effect of Hydrogen Content on Ballistic Transport Behaviors in the Ni-Nb-Zr-H Glassy Alloys

    PubMed Central

    Fukuhara, Mikio; Umemori, Yoshimasa

    2012-01-01

    The electronic transport behaviors of (Ni0.39Nb0.25Zr0.35)100−xHx (0 ≤ x < 23.5) glassy alloys with subnanostructural icosahedral Zr5Nb5Ni3 clusters have been studied as a function of hydrogen content. These alloys show semiconducting, electric current-induced voltage (Coulomb) oscillation and ballistic transport behaviors. Coulomb oscillation and ballistic transport occur at hydrogen contents between 6.7 and 13.5 at% and between 13.5 and 21.2 at%, respectively. These results suggest that the localization effect of hydrogen in the clusters plays an important role in various electron transport phenomena. PMID:22312246

  12. Florida Hydrogen Initiative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Block, David L

    2013-06-30

    The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuelmore » Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety

  13. Multi-fuel reformers for fuel cells used in transportation: Assessment of hydrogen storage technologies

    NASA Astrophysics Data System (ADS)

    1994-03-01

    This report documents a portion of the work performed on Multi-fuel Reformers for Fuel Cells Used in Transportation. One objective of this program is to develop advanced fuel processing systems to reform methanol, ethanol, natural gas, and other hydrocarbons into hydrogen for use in transportation fuel cell systems, while a second objective is to develop better systems for on-board hydrogen storage. This report examines techniques and technology available for storage of pure hydrogen on board a vehicle as pure hydrogen of hydrides. The report focuses separately on near and far-term technologies, with particular emphasis on the former. Development of lighter, more compact near-term storage systems is recommended to enhance competitiveness and simplify fuel cell design. The far-term storage technologies require substantial applied research in order to become serious contenders.

  14. Differential equation of exospheric lateral transport and its application to terrestrial hydrogen

    NASA Technical Reports Server (NTRS)

    Hodges, R. R., Jr.

    1973-01-01

    The differential equation description of exospheric lateral transport of Hodges and Johnson is reformulated to extend its utility to light gases. Accuracy of the revised equation is established by applying it to terrestrial hydrogen. The resulting global distributions for several static exobase models are shown to be essentially the same as those that have been computed by Quessette using an integral equation approach. The present theory is subsequently used to elucidate the effects of nonzero lateral flow, exobase rotation, and diurnal tidal winds on the hydrogen distribution. Finally it is shown that the differential equation of exospheric transport is analogous to a diffusion equation. Hence it is practical to consider exospheric transport as a continuation of thermospheric diffusion, a concept that alleviates the need for an artificial exobase dividing thermosphere and exosphere.

  15. Ionic Transport through Chemically Functionalized Hydrogen Peroxide-Sensitive Asymmetric Nanopores.

    PubMed

    Ali, Mubarak; Ahmed, Ishtiaq; Nasir, Saima; Ramirez, Patricio; Niemeyer, Christof M; Mafe, Salvador; Ensinger, Wolfgang

    2015-09-09

    We describe the fabrication of a chemical-sensitive nanofluidic device based on asymmetric nanopores whose transport characteristics can be modulated upon exposure to hydrogen peroxide (H2O2). We show experimentally and theoretically that the current-voltage curves provide a suitable method to monitor the H2O2-mediated change in pore surface characteristics from the electronic readouts. We demonstrate also that the single pore characteristics can be scaled to the case of a multipore membrane whose electric outputs can be readily controlled. Because H2O2 is an agent significant for medical diagnostics, the results should be useful for sensing nanofluidic devices.

  16. An experimental study of ammonia borane based hydrogen storage systems

    NASA Astrophysics Data System (ADS)

    Deshpande, Kedaresh A.

    2011-12-01

    Hydrogen is a promising fuel for the future, capable of meeting the demands of energy storage and low pollutant emission. Chemical hydrides are potential candidates for chemical hydrogen storage, especially for automobile applications. Ammonia borane (AB) is a chemical hydride being investigated widely for its potential to realize the hydrogen economy. In this work, the yield of hydrogen obtained during neat AB thermolysis was quantified using two reactor systems. First, an oil bath heated glass reactor system was used with AB batches of 0.13 gram (+/- 0.001 gram). The rates of hydrogen generation were measured. Based on these experimental data, an electrically heated steel reactor system was designed and constructed to handle up to 2 grams of AB per batch. A majority of components were made of stainless-steel. The system consisted of an AB reservoir and feeder, a heated reactor, a gas processing unit and a system control and monitoring unit. An electronic data acquisition system was used to record experimental data. The performance of the steel reactor system was evaluated experimentally through batch reactions of 30 minutes each, for reaction temperatures in the range from 373 K to 430 K. The experimental data showed exothermic decomposition of AB accompanied by rapid generation of hydrogen during the initial period of the reaction. 90% of the hydrogen was generated during the initial 120 seconds after addition of AB to the reactor. At 430 K, the reaction produced 12 wt.% of hydrogen. The heat diffusion in the reactor system and the process of exothermic decomposition of AB were coupled in a two-dimensional model. Neat AB thermolysis was modeled as a global first order reactions based on Arrhenius theory. The values of equation constants were derived from curve fit of experimental data. The pre-exponential constant and the activation energy were estimated to be 4 s-1 (+/- 0.4 s-1) and 13000 J mol -1 s-1 (+/- 1050 J mol-1 s -1) respectively. The model was solved

  17. Investigation and Mitigation of Degradation in Hydrogen Fuel Cells

    NASA Astrophysics Data System (ADS)

    Mandal, Pratiti

    The ever increasing demand of petroleum in the transport sector has led to depletion of low cost/low risk reserves, increased level of pollution, and greenhouse gas emissions that take a heavy toll on the environment as well as the national economy. There is an urgent need to utilize alternative energy resources along with an efficient and affordable energy conversion system to arrest environmental degradation. Polymer electrolyte fuel cells (PEFCs) show great promise in this regard, they use hydrogen gas as a fuel that electrochemically reacts with air to produce electrical energy and water as the by product. In a fuel cell electric vehicle (FCEV), these zero tail pipe emission systems offer high efficiency and power density for medium-heavy duty and long range transportation. However, PEFC technology is currently challenged by its limited durability when subjected to harsh and adverse operating conditions and transients that arises during the normal course of vehicle operation. The hydrogen-based fuel cell power train for electric vehicles must achieve high durability while maintaining high power efficiency and fuel economy in order to equal the range and lifetime of an internal-combustion engine vehicle. The technology also needs to meet the cost targets to make FCEVs a commercial success. In this dissertation, one of the degradation phenomena that severely impede the durability of the system has been investigated. In scenarios where the cell becomes locally starved of hydrogen fuel, "cell reversal" occurs, which causes the cell to consume itself through carbon corrosion and eventually fail. Carbon corrosion in the anode disrupts the original structure of the electrode and can cause undesirable outcomes like catalyst particle migration, aggregation, loss of structural and chemical integrity. Through a comprehensive study using advanced electrochemical diagnostics and high resolution 3D imaging, a new understanding to extend PEFC life time and robustness by

  18. Electrochemical performance and transport properties of a Nafion membrane in a hydrogen-bromine cell environment

    NASA Technical Reports Server (NTRS)

    Baldwin, Richard S.

    1987-01-01

    The overall energy conversion efficiency of a hydrogen-bromine energy storage system is highly dependent upon the characteristics and performance of the ion-exchange membrane utilized as a half-cell separator. The electrochemical performance and transport properties of a duPont Nafion membrane in an aqueous HBr-Br2 environment were investigated. Membrane conductivity data are presented as a function of HBr concentration and temperature for the determination of ohmic voltage losses across the membrane in an operational cell. Diffusion-controlled bromine permeation rates and permeabilities are presented as functions of solution composition and temperature. Relationships between the degree of membrane hydration and the membrane transport characteristics are discussed. The solution chemistry of an operational hydrogen-bromine cell undergoing charge from 45% HBr to 5% HBr is discussed, and, based upon the experimentally observed bromine permeation behavior, predicted cell coulombic losses due to bromine diffusion through the membrane are presented as a function of the cell state-of-charge.

  19. Proton and hydrogen transport through two-dimensional monolayers

    NASA Astrophysics Data System (ADS)

    Seel, Max; Pandey, Ravindra

    2016-06-01

    Diffusion of protons and hydrogen atoms in representative two-dimensional materials is investigated. Specifically, density functional calculations were performed on graphene, hexagonal boron nitride (h-BN), phosphorene, silicene, and molybdenum disulfide (MoS2) monolayers to study the surface interaction and penetration barriers for protons and hydrogen atoms employing finite cluster models. The calculated barrier heights correlate approximately with the size of the opening formed by the three-fold open sites in the monolayers considered. They range from 1.56 eV (proton) and 4.61 eV (H) for graphene to 0.12 eV (proton) and 0.20 eV (H) for silicene. The results indicate that only graphene and h-BN monolayers have the potential for membranes with high selective permeability. The MoS2 monolayer behaves differently: protons and H atoms become trapped between the outer S layers in the Mo plane in a well with a depth of 1.56 eV (proton) and 1.5 eV (H atom), possibly explaining why no proton transport was detected, suggesting MoS2 as a hydrogen storage material instead. For graphene and h-BN, off-center proton penetration reduces the barrier to 1.38 eV for graphene and 0.11 eV for h-BN. Furthermore, Pt acting as a substrate was found to have a negligible effect on the barrier height. In defective graphene, the smallest barrier for proton diffusion (1.05 eV) is found for an oxygen-terminated defect. Therefore, it seems more likely that thermal protons can penetrate a monolayer of h-BN but not graphene and defects are necessary to facilitate the proton transport in graphene.

  20. Storage of Renewable Energy by Reduction of CO2 with Hydrogen.

    PubMed

    Züttel, Andreas; Mauron, Philippe; Kato, Shunsuke; Callini, Elsa; Holzer, Marco; Huang, Jianmei

    2015-01-01

    The main difference between the past energy economy during the industrialization period which was mainly based on mining of fossil fuels, e.g. coal, oil and methane and the future energy economy based on renewable energy is the requirement for storage of the energy fluxes. Renewable energy, except biomass, appears in time- and location-dependent energy fluxes as heat or electricity upon conversion. Storage and transport of energy requires a high energy density and has to be realized in a closed materials cycle. The hydrogen cycle, i.e. production of hydrogen from water by renewable energy, storage and use of hydrogen in fuel cells, combustion engines or turbines, is a closed cycle. However, the hydrogen density in a storage system is limited to 20 mass% and 150 kg/m(3) which limits the energy density to about half of the energy density in fossil fuels. Introducing CO(2) into the cycle and storing hydrogen by the reduction of CO(2) to hydrocarbons allows renewable energy to be converted into synthetic fuels with the same energy density as fossil fuels. The resulting cycle is a closed cycle (CO(2) neutral) if CO(2) is extracted from the atmosphere. Today's technology allows CO(2) to be reduced either by the Sabatier reaction to methane, by the reversed water gas shift reaction to CO and further reduction of CO by the Fischer-Tropsch synthesis (FTS) to hydrocarbons or over methanol to gasoline. The overall process can only be realized on a very large scale, because the large number of by-products of FTS requires the use of a refinery. Therefore, a well-controlled reaction to a specific product is required for the efficient conversion of renewable energy (electricity) into an easy to store liquid hydrocarbon (fuel). In order to realize a closed hydrocarbon cycle the two major challenges are to extract CO(2) from the atmosphere close to the thermodynamic limit and to reduce CO(2) with hydrogen in a controlled reaction to a specific hydrocarbon. Nanomaterials with

  1. Investigating fuel-cell transport limitations using hydrogen limiting current

    DOE PAGES

    Spingler, Franz B.; Phillips, Adam; Schuler, Tobias; ...

    2017-03-09

    Reducing mass-transport losses in polymer-electrolyte fuel cells (PEFCs) is essential to increase their power density and reduce overall stack cost. At the same time, cost also motivates the reduction in expensive precious-metal catalysts, which results in higher local transport losses in the catalyst layers. Here, we use a hydrogen-pump limiting-current setup to explore the gas-phase transport losses through PEFC catalyst layers and various gas-diffusion and microporous layers. It is shown that the effective diffusivity in the gas-diffusion layers is a strong function of liquid saturation. Additionally, it is shown how the catalyst layer unexpectedly contributes significantly to the overall measuredmore » transport resistance. This is especially true for low catalyst loadings. It is also shown how the various losses can be separated into different mechanisms including diffusional processes and mass-dependent and independent ones, where the data suggests that a large part of the transport resistance in catalyst layers cannot be attributed to a gas-phase diffusional process. The technique is promising for deconvoluting transport losses in PEFCs.« less

  2. A cislunar transportation system fuelled by lunar resources

    NASA Astrophysics Data System (ADS)

    Sowers, G. F.

    2016-11-01

    A transportation system for a self sustaining economy in cislunar space is discussed. The system is based on liquid oxygen (LO2), liquid hydrogen (LH2) propulsion whose fuels are derived from ice mined at the polar regions of the Moon. The elements of the transportation system consist of the Advanced Cryogenic Evolved Stage (ACES) and the XEUS lander, both being developed by United Launch Alliance (ULA). The main propulsion elements and structures are common between ACES and XEUS. Both stages are fully reusable with refueling of their LO2/LH2 propellants. Utilization of lunar sourced propellants has the potential to dramatically lower the cost of transportation within the cislunar environs. These lower costs dramatically lower the barriers to entry of a number of promising cislunar based activities including space solar power. One early application of the architecture is providing lunar sourced propellant to refuel ACES for traditional spacecraft deployment missions. The business case for this application provides an economic framework for a potential lunar water mining operation.

  3. Simulation of Liquid Level, Temperature and Pressure Inside a 2000 Liter Liquid Hydrogen Tank During Truck Transportation

    NASA Astrophysics Data System (ADS)

    Takeda, Minoru; Nara, Hiroyuki; Maekawa, Kazuma; Fujikawa, Shizuichi; Matsuno, Yu; Kuroda, Tsuneo; Kumakura, Hiroaki

    Hydrogen is an ultimate energy source because only water is produced after the chemical reaction of hydrogen and oxygen. In the near future, a large amount of hydrogen, produced using sustainable/renewable energy, is expected to be consumed. Since liquid hydrogen (LH2) has the advantage of high storage efficiency, it is expected to be the ultimate medium for the worldwide storage and transportation of large amounts of hydrogen. To make a simulation model of the sloshing of LH2 inside a 2000 liter tank, simulation analyses of LH2 surface oscillation, temperature and pressure inside the tank during a truck transportation have been carried out using a multipurpose software ANSYS CFX. Numerical results are discussed in comparison with experimental results.

  4. Living in the Classroom: The Currency-Based Token Economy.

    ERIC Educational Resources Information Center

    Payne, James S.; And Others

    Various types of token economies and contingency contract systems are emerging throughout private and public educational programs. The basic idea of this book is that a token economy based on currency creates a real-life situation for children in the classroom. The goal of this book is to help the teacher establish a currency-based token economy…

  5. Polyaniline as a material for hydrogen storage applications.

    PubMed

    Attia, Nour F; Geckeler, Kurt E

    2013-07-12

    The main challenge of commercialization of the hydrogen economy is the lack of convenient and safe hydrogen storage materials, which can adsorb and release a significant amount of hydrogen at ambient conditions. Finding and designing suitable cost-effective materials are vital requirements to overcome the drawbacks of investigated materials. Because of its outstanding electronic, thermal, and chemical properties, the electrically conducting polyaniline (PANI) has a high potential in hydrogen storage applications. In this review, the progress in the use of different structures of conducting PANI, its nanocomposites as well as activated porous materials based on PANI as hydrogen storage materials is presented and discussed. The effect of the unique electronic properties based on the π-electron system in the backbone of these materials in view of the hydrogen uptake and the relevant mechanisms are highlighted. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Synthesis of polyetherimide / halloysite nanotubes (PEI/HNTs) based nanocomposite membrane towards hydrogen storage

    NASA Astrophysics Data System (ADS)

    Muthu, R. Naresh; Rajashabala, S.; Kannan, R.

    2018-04-01

    Even though hydrogen is considered as green and clean energy sources of future, the blooming of hydrogen economy mainly relies on the development of safe and efficient hydrogen storage medium. The present work is aimed at the synthesis and characterization of polyetherimide/acid treated halloysite nanotubes (PEI/A-HNTs) nanocomposite membranes for solid state hydrogen storage medium, where phase inversion technique was adopted for the synthesis of nanocomposite membrane. The synthesized PEI/A-HNTs nanocomposite membranes were characterized by XRD, FTIR, SEM, EDX, CHNS elemental analysis and TGA. Hydrogenation studies were performed using a Sievert's-like hydrogenation setup. The important conclusions arrived from the present work are the PEI/A-HNTs nanocomposite membranes have better performance with a maximum hydrogen storage capacity of 3.6 wt% at 100 °C than pristine PEI. The adsorbed hydrogen possesses the average binding energy of 0.31 eV which lies in the recommended range of US- DOE 2020 targets. Hence it is expected that the PEI/A-HNTs nanocomposite membranes may have bright extent in the scenario of hydrogen fuel cell applications.

  7. Trade study: Liquid hydrogen transportation - Kennedy Space Center. [cost and operational effectivenss of shipping methods.

    NASA Technical Reports Server (NTRS)

    Gray, D. J.

    1978-01-01

    Cryogenic transportation methods for providing liquid hydrogen requirements are examined in support of shuttle transportation system launch operations at Kennedy Space Center, Florida, during the time frames 1982-1991 in terms of cost and operational effectiveness. Transportation methods considered included sixteen different options employing mobile semi-trailer tankers, railcars, barges and combinations of each method. The study concludes that the most effective method of delivering liquid hydrogen from the vendor production facility in New Orleans to Kennedy Space Center includes maximum utilization of existing mobile tankers and railcars supplemented by maximum capacity mobile tankers procured incrementally in accordance with shuttle launch rates actually achieved.

  8. Hybrid life-cycle assessment of natural gas based fuel chains for transportation.

    PubMed

    Strømman, Anders Hammer; Solli, Christian; Hertwich, Edgar G

    2006-04-15

    This research compares the use of natural gas, methanol, and hydrogen as transportation fuels. These three fuel chains start with the extraction and processing of natural gas in the Norwegian North Sea and end with final use in Central Europe. The end use is passenger transportation with a sub-compact car that has an internal combustion engine for the natural gas case and a fuel cell for the methanol and hydrogen cases. The life cycle assessment is performed by combining a process based life-cycle inventory with economic input-output data. The analysis shows that the potential climate impacts are lowest for the hydrogen fuel scenario with CO2 deposition. The hydrogen fuel chain scenario has no significant environmental disadvantage compared to the other fuel chains. Detailed analysis shows that the construction of the car contributes significantly to most impact categories. Finally, it is shown how the application of a hybrid inventory model ensures a more complete inventory description compared to standard process-based life-cycle assessment. This is particularly significant for car construction which would have been significantly underestimated in this study using standard process life-cycle assessment alone.

  9. Hydrogen Basics | NREL

    Science.gov Websites

    greenhouse effect. Hydrogen has very high energy for its weight, but very low energy for its volume, so new make a hydrogen economy a reality include: Fuel Cells - Improving fuel cell technology and materials needed for fuel cells. Production - Developing technology to efficiently and cost-effectively make

  10. Emergy-based ecological account for the Chinese economy in 2004

    NASA Astrophysics Data System (ADS)

    Jiang, M. M.; Zhou, J. B.; Chen, B.; Chen, G. Q.

    2008-12-01

    This paper provides an integrated study on the ecological account for the Chinese economy in 2004 based on emergy synthesis theory. The detailed flows of the Chinese economy is diagramed, accounted and analyzed in categories using the biophysically based ecological accounting. Through calculating environmental and economic inputs within and outside the Chinese economy, this paper discusses the Chinese international exchange, describes the resource structure, and assesses its sustainability as a whole. Also, the comparison of systematic indicators, such as emergy/dollar ratio, environmental load ratio, and emergy self-support ratio, with those of the other countries is tabled and explored to illustrate the general status of the Chinese economy in the world. Take, for example, the environmental load ratio, which was 9.29 in China 2004, it reveals that the Chinese economy put high pressure on the local environment compared with those of the environment-benign countries, such as Brazil (0.75), Australia (0.86) and New Zealand (0.81). In addition, in this paper, the accounting method of tourism is adjusted based on the previous researches.

  11. Fuel Cell Development for NASA's Human Exploration Program: Benchmarking with "The Hydrogen Economy"

    NASA Technical Reports Server (NTRS)

    Scott, John H.

    2007-01-01

    The theoretically high efficiency and low temperature operation of hydrogen-oxygen fuel cells has motivated them to be the subject of much study since their invention in the 19th Century, but their relatively high life cycle costs kept them as a "solution in search of a problem" for many years. The first problem for which fuel cells presented a truly cost effective solution was that of providing a power source for NASA's human spaceflight vehicles in the 1960 s. NASA thus invested, and continues to invest, in the development of fuel cell power plants for this application. This development program continues to place its highest priorities on requirements for minimum system mass and maximum durability and reliability. These priorities drive fuel cell power plant design decisions at all levels, even that of catalyst support. However, since the mid-1990's, prospective environmental regulations have driven increased governmental and industrial interest in "green power" and the "Hydrogen Economy." This has in turn stimulated greatly increased investment in fuel cell development for a variety of commercial applications. This investment is bringing about notable advances in fuel cell technology, but, as these development efforts place their highest priority on requirements for minimum life cycle cost and field safety, these advances are yielding design solutions quite different at almost every level from those needed for spacecraft applications. This environment thus presents both opportunities and challenges for NASA's Human Exploration Program

  12. Protonic transport through solitons in hydrogen-bonded systems

    NASA Astrophysics Data System (ADS)

    Kavitha, L.; Jayanthi, S.; Muniyappan, A.; Gopi, D.

    2011-09-01

    We offer an alternative route for investigating soliton solutions in hydrogen-bonded (HB) chains. We invoke the modified extended tangent hyperbolic function method coupled with symbolic computation to solve the governing equation of motion for proton dynamics. We investigate the dynamics of proton transfer in HB chains through bell-shaped soliton excitations, which trigger the bio-energy transport in most biological systems. This solitonic mechanism of proton transfer could play functional roles in muscular contraction, enzymatic activity and oxidative phosphorylation.

  13. Advancement of Systems Designs and Key Engineering Technologies for Materials Based Hydrogen Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Hassel, Bart A.

    UTRC lead the development of the Simulink Framework model that enables a comparison of different hydrogen storage systems on a common basis. The Simulink Framework model was disseminated on the www.HSECoE.org website that is hosted by NREL. UTRC contributed to a better understanding of the safety aspects of the proposed hydrogen storage systems. UTRC also participated in the Failure Mode and Effect Analysis of both the chemical- and the adsorbent-based hydrogen storage system during Phase 2 of the Hydrogen Storage Engineering Center of Excellence. UTRC designed a hydrogen storage system with a reversible metal hydride material in a compacted formmore » for light-duty vehicles with a 5.6 kg H2 storage capacity, giving it a 300 miles range. It contains a heat exchanger that enables efficient cooling of the metal hydride material during hydrogen absorption in order to meet the 3.3 minute refueling time target. It has been shown through computation that the kinetics of hydrogen absorption of Ti-catalyzed NaAlH4 was ultimately limiting the rate of hydrogen absorption to 85% of the material capacity in 3.3 minutes. An inverse analysis was performed in order to determine the material property requirements in order for a metal hydride based hydrogen storage system to meet the DOE targets. Work on metal hydride storage systems was halted after the Phase 1 to Phase 2 review due to the lack of metal hydride materials with the required material properties. UTRC contributed to the design of a chemical hydrogen storage system by developing an adsorbent for removing the impurity ammonia from the hydrogen gas, by developing a system to meter the transport of Ammonia Borane (AB) powder to a thermolysis reactor, and by developing a gas-liquid-separator (GLS) for the separation of hydrogen gas from AB slurry in silicone oil. Stripping impurities from hydrogen gas is essential for a long life of the fuel cell system on board of a vehicle. Work on solid transport of AB was halted

  14. AN INTEGRATED ASSESSMENT OF THE IMPACTS OF HYDROGEN ECONOMY ON TRANSPORTATION, ENERGY USE, AND AIR EMISSIONS

    EPA Science Inventory

    This paper presents an analysis of the potential energy, economic and environmental implications of hydrogen fuel cell vehicle (H2-FCV) penetration into the U.S. light duty vehicle fleet. The approach, which uses the U.S. EPA MARKet ALlocation technology database and model, allow...

  15. Thermodynamic Properties and Transport Coefficients of Nitrogen, Hydrogen and Helium Plasma Mixed with Silver Vapor

    NASA Astrophysics Data System (ADS)

    Zhou, Xue; Cui, Xinglei; Chen, Mo; Zhai, Guofu

    2016-05-01

    Species composites of Ag-N2, Ag-H2 and Ag-He plasmas in the temperature range of 3,000-20,000 K and at 1 atmospheric pressure were calculated by using the minimization of Gibbs free energy. Thermodynamic properties and transport coefficients of nitrogen, hydrogen and helium plasmas mixed with a variety of silver vapor were then calculated based on the equilibrium composites and collision integral data. The calculation procedure was verified by comparing the results obtained in this paper with the published transport coefficients on the case of pure nitrogen plasma. The influences of the silver vapor concentration on composites, thermodynamic properties and transport coefficients were finally analyzed and summarized for all the three types of plasmas. Those physical properties were important for theoretical study and numerical calculation on arc plasma generated by silver-based electrodes in those gases in sealed electromagnetic relays and contacts. supported by National Natural Science Foundation of China (Nos. 51277038 and 51307030)

  16. Storing Renewable Energy in the Hydrogen Cycle.

    PubMed

    Züttel, Andreas; Callini, Elsa; Kato, Shunsuke; Atakli, Züleyha Özlem Kocabas

    2015-01-01

    An energy economy based on renewable energy requires massive energy storage, approx. half of the annual energy consumption. Therefore, the production of a synthetic energy carrier, e.g. hydrogen, is necessary. The hydrogen cycle, i.e. production of hydrogen from water by renewable energy, storage and use of hydrogen in fuel cells, combustion engines or turbines is a closed cycle. Electrolysis splits water into hydrogen and oxygen and represents a mature technology in the power range up to 100 kW. However, the major technological challenge is to build electrolyzers in the power range of several MW producing high purity hydrogen with a high efficiency. After the production of hydrogen, large scale and safe hydrogen storage is required. Hydrogen is stored either as a molecule or as an atom in the case of hydrides. The maximum volumetric hydrogen density of a molecular hydrogen storage is limited to the density of liquid hydrogen. In a complex hydride the hydrogen density is limited to 20 mass% and 150 kg/m(3) which corresponds to twice the density of liquid hydrogen. Current research focuses on the investigation of new storage materials based on combinations of complex hydrides with amides and the understanding of the hydrogen sorption mechanism in order to better control the reaction for the hydrogen storage applications.

  17. Divvy Economies Based On (An Abstract) Temperature

    NASA Astrophysics Data System (ADS)

    Collins, Dennis G.

    2004-04-01

    The Leontief Input-Output economic system can provide a model for a one-parameter family of economic systems based on an abstract temperature T. In particular, given a normalized input-output matrix R and taking R= R(1), a family of economic systems R(1/T)=R(α) is developed that represents heating (T>1) and cooling (T<1) of the economy relative to T=1. .The economy for a given value of T represents the solution of a constrained maximum entropy problem.

  18. Hydrogen Research for Spaceport and Space-Based Applications: Fuel Cell Projects

    NASA Technical Reports Server (NTRS)

    Anderson, Tim; Balaban, Canan

    2008-01-01

    The activities presented are a broad based approach to advancing key hydrogen related technologies in areas such as fuel cells, hydrogen production, and distributed sensors for hydrogen-leak detection, laser instrumentation for hydrogen-leak detection, and cryogenic transport and storage. Presented are the results from research projects, education and outreach activities, system and trade studies. The work will aid in advancing the state-of-the-art for several critical technologies related to the implementation of a hydrogen infrastructure. Activities conducted are relevant to a number of propulsion and power systems for terrestrial, aeronautics and aerospace applications. Fuel cell research focused on proton exchange membranes (PEM), solid oxide fuel cells (SOFC). Specific technologies included aircraft fuel cell reformers, new and improved electrodes, electrolytes, interconnect, and seals, modeling of fuel cells including CFD coupled with impedance spectroscopy. Research was conducted on new materials and designs for fuel cells, along with using embedded sensors with power management electronics to improve the power density delivered by fuel cells. Fuel cell applications considered were in-space operations, aviation, and ground-based fuel cells such as; powering auxiliary power units (APUs) in aircraft; high power density, long duration power supplies for interplanetary missions (space science probes and planetary rovers); regenerative capabilities for high altitude aircraft; and power supplies for reusable launch vehicles.

  19. Detroit Commuter Hydrogen Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, Jerry; Prebo, Brendan

    2010-07-31

    with luggage. By collecting fuel use data for the two H2ICE buses, with both written driver logs and onboard telemetry devices, and for two conventional propane-gasoline powered buses in the same service, comparisons of operating efficiency and maintenance requirements were completed. Public opinion about the concept of hydrogen fuel was sampled with a rider survey throughout the demonstration. The demonstration was very effective in adding to the understanding of the application of hydrogen as a transportation fuel. The two 9 passenger H2ICE buses accumulated nearly 50,000 miles and carried 14,285 passengers. Data indicated the H2ICE bus fuel economy to be 9.4 miles/ gallon of gasoline equivalent (m/GGE) compared to the 10 passenger propane-gasoline bus average of 9.8 m/GGE over 32,400 miles. The 23- passenger bus averaged 7.4 m/GGE over 40,700 miles. Rider feedback from 1050 on-board survey cards was overwhelmingly positive with 99.6% indicating they would ride again on a hydrogen powered vehicle. Minimal maintenance was required for theses buses during the demonstration project, but a longer duration demonstration would be required to more adequately assess this aspect of the concept.« less

  20. The hydrogen embrittlement of titanium-based alloys

    NASA Astrophysics Data System (ADS)

    Tal-Gutelmacher, Ervin; Eliezer, Dan

    2005-09-01

    Titanium-based alloys provide an excellent combination of a high strength/weight ratio and good corrosion behavior, which makes these alloys among the most important advanced materials for a variety of aerospace, marine, industrial, and commercial applications. Although titanium is considered to be reasonably resistant to chemical attack, severe problems can arise when titanium-based alloys come in contact with hydrogen-containing environments, where they can pick up large amounts of hydrogen, especially at elevated temperatures. The severity and the extent of the hydrogen interaction with titanium-based alloys are directly related to the microstructure and composition of the titanium alloys. This paper addresses the hydrogen embrittlement of titanium-based alloys. The hydrogen-titanium interaction is reviewed, including the solubility of hydrogen in α and β phases of titanium and hydride formation. Also, the paper summarizes the detrimental effects of hydrogen in different titanium alloys.

  1. Hydrogenation and hydrodeoxygenation of biomass-derived oxygenates to liquid alkanes for transportation fuels.

    PubMed

    Sun, Shaohui; Yang, Ruishu; Wang, Xin; Yan, Shaokang

    2018-04-01

    An attractive approach for the production of transportation fuels from renewable biomass resources is to convert oxygenates into alkanes. In this paper, C 5 -C 20 alkanes formed via the hydrogenation and hydrodeoxygenation of the oligomers of furfuryl alcohol(FA) can be used as gasoline, diesel and jet fuel fraction. The first step of the process is the oligomers of FA convert into hydrogenated products over Raney Ni catalyst in a batch reactor. The second step of the process converts hydrogenated products to alkanes via hydrodeoxygenation over different bi-functional catalysts include hydrogenation and acidic deoxidization active sites. After this process, the oxygen content decreased from 22.1 wt% in the oligomers of FA to 0.58 wt% in the hydrodeoxygenation products.

  2. Application of CFRP with High Hydrogen Gas Barrier Characteristics to Fuel Tanks of Space Transportation System

    NASA Astrophysics Data System (ADS)

    Yonemoto, Koichi; Yamamoto, Yuta; Okuyama, Keiichi; Ebina, Takeo

    In the future, carbon fiber reinforced plastics (CFRPs) with high hydrogen gas barrier performance will find wide applications in all industrial hydrogen tanks that aim at weight reduction; the use of such materials will be preferred to the use of conventional metallic materials such as stainless steel or aluminum. The hydrogen gas barrier performance of CFRP will become an important issue with the introduction of hydrogen-fuel aircraft. It will also play an important role in realizing fully reusable space transportation system that will have high specific tensile CFRP structures. Such materials are also required for the manufacture of high-pressure hydrogen gas vessels for use in the fuel cell systems of automobiles. This paper introduces a new composite concept that can be used to realize CFRPs with high hydrogen gas barrier performance for applications in the cryogenic tanks of fully reusable space transportation system by the incorporation of a nonmetallic crystal layer, which is actually a dense and highly oriented clay crystal laminate. The preliminary test results show that the hydrogen gas barrier characteristics of this material after cryogenic heat shocks and cyclic loads are still better than those of other polymer materials by approximately two orders of magnitude.

  3. Extremophile mediated hydrogen production for hydrogenation of substrates in aqueous media

    NASA Astrophysics Data System (ADS)

    Anjom, Mouzhgun

    Catalytic hydrogenation reactions are pervasive throughout our economy, from production of margarine as food, liquid fuels for transportation and chiral drugs such as L-DOPA. H2 production from non-fossil fuel feedstocks is highly desirable for transition to the "Hydrogen Economy". Also, the rates of hydrogenation reactions that involve a substrate, H 2 gas and a catalyst are often limited by the solubility of H2 in solvent. The present research thus envisioned designing water-soluble catalysts that could effectively utilize biologically produced H2 in a coupled system to hydrogenate substrates in homogeneous mode (two-phase system). Biological production of H2 as an end product or byproduct of the metabolism of organisms that operate under strict anaerobic conditions has been proposed. However, contrary to what was previously observed, Thermotoga neapolitana, belonging to the order of Thermotogales efficiently produces H2 gas under microaerobic conditions (Van Ooteghem et al. 2004). For H2 production by T. neapolitana in the bacterial growth medium (DSM 5068) at an optimum temperature of 70 C, our results in batch mode show that: (1) H2 was produced from glucose though with 16% efficiency, the rest goes to biomass production, (2) H2 gas was produced even when the cultures were inoculated under microaerobic conditions (up to 8% (v/v) O2) suggesting a protective mechanism for one or more [Fe-Fe] hydrogenases in T. neapolitana, (3) H2 production was pH dependent but addition of simple, non-toxic physiological buffering additives such as Methylene succinic acid increased H2 production and (4) H2 production rate varied linearly in the 100--6800 kPa pressure range. We then screened various water-soluble metal catalysts in batch mode and selected the RhCl3.3H2O/TPPTS (TPPTS is a water-soluble ligand) system that achieved 86% hydrogenation of Methylene succinic acid (an olefin) in an aqueous medium pressurized with preformed H2. When water was replaced with the DSM 5068

  4. Hydrogen-powered flight

    NASA Technical Reports Server (NTRS)

    Smith, Timothy D.

    2005-01-01

    As the Nation moves towards a hydrogen economy the shape of aviation will change dramatically. To accommodate a switch to hydrogen the aircraft designs, propulsion, and power systems will look much different than the systems of today. Hydrogen will enable a number of new aircraft capabilities from high altitude long endurance remotely operated aircraft (HALE ROA) that will fly weeks to months without refueling to clean, zero emissions transport aircraft. Design and development of new hydrogen powered aircraft have a number of challenges which must be addressed before an operational system can become a reality. While the switch to hydrogen will be most outwardly noticeable in the aircraft designs of the future, other significant changes will be occurring in the environment. A switch to hydrogen for aircraft will completely eliminate harmful greenhouse gases such as carbon monoxide (CO), carbon dioxide (CO2), sulfur oxides (SOx), unburnt hydrocarbons and smoke. While these aircraft emissions are a small percentage of the amount produced on a daily basis, their placement in the upper atmosphere make them particularly harmful. Another troublesome gaseous emission from aircraft is nitrogen oxides (NOx) which contribute to ozone depletion in the upper atmosphere. Nitrogen oxide emissions are produced during the combustion process and are primarily a function of combustion temperature and residence time. The introduction of hydrogen to a gas turbine propulsion system will not eliminate NOx emissions; however the wide flammability range will make low NOx producing, lean burning systems feasible. A revolutionary approach to completely eliminating NOx would be to fly all electric aircraft powered by hydrogen air fuel cells. The fuel cells systems would only produce water, which could be captured on board or released in the lower altitudes. Currently fuel cell systems do not have sufficient energy densities for use in large aircraft, but the long term potential of eliminating

  5. Frontiers, Opportunities and Challenges for a Hydrogen Economy

    NASA Astrophysics Data System (ADS)

    Turner, John

    2015-03-01

    Energy carriers are the staple for powering the society we live in. Coal, oil, natural gas, gasoline and diesel all carry energy in chemical bonds, used in almost all areas of our civilization. But these carriers have a limited-use lifetime on this planet. They are finite, contribute to climate change and carry significant geopolitical issues. If mankind is to maintain and grow our societies, new energy carriers must be developed and deployed into our energy infrastructure. Hydrogen is the simplest of all the energy carriers and when refined from water using renewable energies like solar and wind, represents a sustainable energy carrier, viable for millennia to come. This talk with discuss the challenges for sustainable production of hydrogen, along with the promise and possible pathways for implementing hydrogen into our energy infrastructure.

  6. 49 CFR 531.5 - Fuel economy standards.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PASSENGER AUTOMOBILE AVERAGE FUEL ECONOMY STANDARDS § 531.5 Fuel... automobiles shall comply with the fleet average fuel economy standards in Table I, expressed in miles per... passenger automobile fleet shall comply with the fleet average fuel economy level calculated for that model...

  7. 49 CFR 531.5 - Fuel economy standards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PASSENGER AUTOMOBILE AVERAGE FUEL ECONOMY STANDARDS § 531.5 Fuel... automobiles shall comply with the fleet average fuel economy standards in Table I, expressed in miles per... passenger automobile fleet shall comply with the fleet average fuel economy level calculated for that model...

  8. Rapid water transportation through narrow one-dimensional channels by restricted hydrogen bonds.

    PubMed

    Ohba, Tomonori; Kaneko, Katsumi; Endo, Morinobu; Hata, Kenji; Kanoh, Hirofumi

    2013-01-29

    Water plays an important role in controlling chemical reactions and bioactivities. For example, water transportation through water channels in a biomembrane is a key factor in bioactivities. However, molecular-level mechanisms of water transportation are as yet unknown. Here, we investigate water transportation through narrow and wide one-dimensional (1D) channels on the basis of water-vapor adsorption rates and those determined by molecular dynamics simulations. We observed that water in narrow 1D channels was transported 3-5 times faster than that in wide 1D channels, although the narrow 1D channels provide fewer free nanospaces for water transportation. This rapid transportation is attributed to the formation of fewer hydrogen bonds between water molecules adsorbed in narrow 1D channels. The water-transportation mechanism provides the possibility of rapid communication through 1D channels and will be useful in controlling reactions and activities in water systems.

  9. 49 CFR 531.5 - Fuel economy standards.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PASSENGER AUTOMOBILE AVERAGE FUEL ECONOMY STANDARDS § 531.5 Fuel... automobiles shall comply with the average fuel economy standards in Table I, expressed in miles per gallon, in... passenger automobile fleet shall comply with the fuel economy level calculated for that model year according...

  10. 49 CFR 531.5 - Fuel economy standards.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PASSENGER AUTOMOBILE AVERAGE FUEL ECONOMY STANDARDS § 531.5 Fuel... automobiles shall comply with the average fuel economy standards in Table I, expressed in miles per gallon, in... passenger automobile fleet shall comply with the fuel economy level calculated for that model year according...

  11. Excited configurations of hydrogen in the BaTiO3 -xHx perovskite lattice associated with hydrogen exchange and transport

    NASA Astrophysics Data System (ADS)

    Ito, T. U.; Koda, A.; Shimomura, K.; Higemoto, W.; Matsuzaki, T.; Kobayashi, Y.; Kageyama, H.

    2017-01-01

    Excited configurations of hydrogen in the oxyhydride BaTiO3 -xHx (x =0.1 -0.5 ), which are considered to be involved in its hydrogen transport and exchange processes, were investigated by positive muon spin relaxation spectroscopy using muonium (Mu) as a pseudoisotope of hydrogen. Muons implanted into the BaTiO3 -xHx perovskite lattice were mainly found in two qualitatively different metastable states. One was assigned to a highly mobile interstitial protonic state, which is commonly observed in perovskite oxides. The other was found to form an entangled two spin-1/2 system with the nuclear spin of an H- ion at the anion site. The structure of the (H,Mu) complex agrees well with that of a neutralized center containing two H- ions at a doubly charged oxygen vacancy, which was predicted to form in the SrTiO3 -δ perovskite lattice by a computational study [Y. Iwazaki et al., APL Mater. 2, 012103 (2014), 10.1063/1.4854355]. Above 100 K, interstitial Mu+ diffusion and retrapping to a deep defect were observed, which could be a rate-limiting step of macroscopic Mu/H transport in the BaTiO3 -xHx lattice.

  12. The Knowledge-Based Economy and E-Learning: Critical Considerations for Workplace Democracy

    ERIC Educational Resources Information Center

    Remtulla, Karim A.

    2007-01-01

    The ideological shift by nation-states to "a knowledge-based economy" (also referred to as "knowledge-based society") is causing changes in the workplace. Brought about by the forces of globalisation and technological innovation, the ideologies of the "knowledge-based economy" are not limited to influencing the…

  13. 40 CFR 600.311-12 - Determination of values for fuel economy labels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... value from paragraph (a) of this section, in miles per kW-hour. (4) For hydrogen fuel cell vehicles... for hydrogen fuel cell vehicles. MPG = The combined fuel economy value from paragraph (a) of this... hydrogen fuel cell vehicles. Average Annual Miles = The estimated annual mileage figure provided by EPA, in...

  14. 40 CFR 600.311-12 - Determination of values for fuel economy labels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... value from paragraph (a) of this section, in miles per kW-hour. (4) For hydrogen fuel cell vehicles... for hydrogen fuel cell vehicles. MPG = The combined fuel economy value from paragraph (a) of this... hydrogen fuel cell vehicles. Average Annual Miles = The estimated annual mileage figure provided by EPA, in...

  15. A study of subsonic transport aircraft configurations using hydrogen (H2) and methane (CH4) as fuel

    NASA Technical Reports Server (NTRS)

    Snow, D. B.; Avery, B. D.; Bodin, L. A.; Baldasare, P.; Washburn, G. F.

    1974-01-01

    The acceptability of alternate fuels for future commercial transport aircraft are discussed. Using both liquid hydrogen and methane, several aircraft configurations are developed and energy consumption, aircraft weights, range and payload are determined and compared to a conventional Boeing 747-100 aircraft. The results show that liquid hydrogen can be used to reduce aircraft energy consumption and that methane offers no advantage over JP or hydrogen fuel.

  16. Transportation statistics annual report, 2013

    DOT National Transportation Integrated Search

    2014-01-01

    The Transportation Statistics Annual Report : describes the Nations transportation system, : the systems performance, its contributions to : the economy, and its effects on people and the : environment. This 18th edition of the report is : base...

  17. Transportation statistics annual report, 2015

    DOT National Transportation Integrated Search

    2016-01-01

    The Transportation Statistics Annual Report : describes the Nations transportation system, : the systems performance, its contributions to : the economy, and its effects on people and the : environment. This 20th edition of the report is : base...

  18. Investigation of diamond deposition by chemical vapor transport with hydrogen

    NASA Astrophysics Data System (ADS)

    Piekarczyk, Wladyslaw; Messier, Russell F.; Roy, Rustum; Engdahl, Chris

    1990-12-01

    The carbon-hydrogen chemical vapor transport system was examined in accordance with a four-stage transport model. A result of this examination is that graphite co-deposition could be avoided when diamond is deposited from gas solutions under-saturated with respect to diamond. Actual deposition experiments showed that this unusual requirement can be fulfilled but only for the condition that the transport distance between the carbon source and the substrate surface is short. In such a case diamond can be deposited equally from super-saturated as well as from under-saturated gas solutions. On the basis of thermodynamic considerations a possible explanation of this unusual phenomenon is given. It is shown that there is a possibility of deposition of diamond from both super-saturated as well as under-saturated gas solutions but only on the condition that they are in a non-equilibrium state generally called the activated state. A model of the diamond deposition process consisting of two steps is proposed. In the first step diamond and graphite are deposited simultaneously. The most important carbon deposition reaction is C2H2(g) + 2 H(g) C(diamond graphite) + CH(g). The amount of co-deposited graphite is not a direct function of the saturation state of the gas phase. In the second step graphite is etched according to the most probable reaction C(graphite) + 4 H(g) CH4(g). Atomic hydrogen in a super-equilibrium concentration is necessary not only to etch graphite but also to precipitate and graphite. 1.

  19. Method of making a hydrogen transport membrane, and article

    DOEpatents

    Schwartz, Joseph M.; Corpus, Joseph M.; Lim, Hankwon

    2015-07-21

    The present invention relates to a method of manufacturing a hydrogen transport membrane and the composite article itself. More specifically, the invention relates to producing a membrane substrate, wherein the ceramic substrate is coated with a metal oxide slurry, thereby eliminating the need for an activation step prior to plating the ceramic membrane through an electroless plating process. The invention also relates to modifying the pore size and porosity of the substrate by oxidation or reduction of the particles deposited by the metal oxide slurry.

  20. Controlled Hydrogen Fleet and Infrastructure Demonstration Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Scott Staley

    2010-03-31

    This program was undertaken in response to the US Department of Energy Solicitation DE-PS30-03GO93010, resulting in this Cooperative Agreement with the Ford Motor Company and BP to demonstrate and evaluate hydrogen fuel cell vehicles and required fueling infrastructure. Ford initially placed 18 hydrogen fuel cell vehicles (FCV) in three geographic regions of the US (Sacramento, CA; Orlando, FL; and southeast Michigan). Subsequently, 8 advanced technology vehicles were developed and evaluated by the Ford engineering team in Michigan. BP is Ford's principal partner and co-applicant on this project and provided the hydrogen infrastructure to support the fuel cell vehicles. BP ultimatelymore » provided three new fueling stations. The Ford-BP program consists of two overlapping phases. The deliverables of this project, combined with those of other industry consortia, are to be used to provide critical input to hydrogen economy commercialization decisions by 2015. The program's goal is to support industry efforts of the US President's Hydrogen Fuel Initiative in developing a path to a hydrogen economy. This program was designed to seek complete systems solutions to address hydrogen infrastructure and vehicle development, and possible synergies between hydrogen fuel electricity generation and transportation applications. This project, in support of that national goal, was designed to gain real world experience with Hydrogen powered Fuel Cell Vehicles (H2FCV) 'on the road' used in everyday activities, and further, to begin the development of the required supporting H2 infrastructure. Implementation of a new hydrogen vehicle technology is, as expected, complex because of the need for parallel introduction of a viable, available fuel delivery system and sufficient numbers of vehicles to buy fuel to justify expansion of the fueling infrastructure. Viability of the fuel structure means widespread, affordable hydrogen which can return a reasonable profit to the fuel provider

  1. Transportation Statistics Annual Report, 2017

    DOT National Transportation Integrated Search

    2018-01-01

    The Transportation Statistics Annual Report describes the Nations transportation system, : the systems performance, its contributions to the economy, and its effects on people and the environment. This 22nd edition of the report is based on inf...

  2. Value Creation in the Knowledge-Based Economy

    ERIC Educational Resources Information Center

    Liu, Fang-Chun

    2013-01-01

    Effective investment strategies help companies form dynamic core organizational capabilities allowing them to adapt and survive in today's rapidly changing knowledge-based economy. This dissertation investigates three valuation issues that challenge managers with respect to developing business-critical investment strategies that can have…

  3. The potential impact of hydrogen energy use on the atmosphere

    NASA Astrophysics Data System (ADS)

    van Ruijven, B. J.; Lamarque, J. F.; van Vuuren, D. P.; Kram, T.; Eerens, H.

    2009-04-01

    Energy models show very different trajectories for future energy systems (partly as function of future climate policy). One possible option is a transition towards a hydrogen-based energy system. The potential impact of such hydrogen economy on atmospheric emissions is highly uncertain. On the one hand, application of hydrogen in clean fuel cells reduces emissions of local air pollutants, like SOx and NOx. On the other hand, emissions of hydrogen from system leakages are expected to change the atmospheric concentrations and behaviour (see also Price et al., 2007; Sanderson et al., 2003; Schultz et al., 2003; Tromp et al., 2003). The uncertainty arises from several sources: the expected use of hydrogen, the intensity of leakages and emissions, and the atmospheric chemical behaviour of hydrogen. Existing studies to the potential impacts of a hydrogen economy on the atmosphere mostly use hydrogen emission scenarios that are based on simple assumptions. This research combines two different modelling efforts to explore the range of impacts of hydrogen on atmospheric chemistry. First, the potential role of hydrogen in the global energy system and the related emissions of hydrogen and other air pollutants are derived from the global energy system simulation model TIMER (van Vuuren, 2007). A set of dedicated scenarios on hydrogen technology development explores the most pessimistic and optimistic cases for hydrogen deployment (van Ruijven et al., 2008; van Ruijven et al., 2007). These scenarios are combined with different assumptions on hydrogen emission factors. Second, the emissions from the TIMER model are linked to the NCAR atmospheric model (Lamarque et al., 2005; Lamarque et al., 2008), in order to determine the impacts on atmospheric chemistry. By combining an energy system model and an atmospheric model, we are able to consistently explore the boundaries of both hydrogen use, emissions and impacts on atmospheric chemistry. References: Lamarque, J.-F., Kiehl, J. T

  4. High-Yield Hydrogen Production from Starch and Water by a Synthetic Enzymatic Pathway

    PubMed Central

    Zhang, Y.-H. Percival; Evans, Barbara R.; Mielenz, Jonathan R.; Hopkins, Robert C.; Adams, Michael W.W.

    2007-01-01

    Background The future hydrogen economy offers a compelling energy vision, but there are four main obstacles: hydrogen production, storage, and distribution, as well as fuel cells. Hydrogen production from inexpensive abundant renewable biomass can produce cheaper hydrogen, decrease reliance on fossil fuels, and achieve zero net greenhouse gas emissions, but current chemical and biological means suffer from low hydrogen yields and/or severe reaction conditions. Methodology/Principal Findings Here we demonstrate a synthetic enzymatic pathway consisting of 13 enzymes for producing hydrogen from starch and water. The stoichiometric reaction is C6H10O5 (l)+7 H2O (l)→12 H2 (g)+6 CO2 (g). The overall process is spontaneous and unidirectional because of a negative Gibbs free energy and separation of the gaseous products with the aqueous reactants. Conclusions Enzymatic hydrogen production from starch and water mediated by 13 enzymes occurred at 30°C as expected, and the hydrogen yields were much higher than the theoretical limit (4 H2/glucose) of anaerobic fermentations. Significance The unique features, such as mild reaction conditions (30°C and atmospheric pressure), high hydrogen yields, likely low production costs ($∼2/kg H2), and a high energy-density carrier starch (14.8 H2-based mass%), provide great potential for mobile applications. With technology improvements and integration with fuel cells, this technology also solves the challenges associated with hydrogen storage, distribution, and infrastructure in the hydrogen economy. PMID:17520015

  5. The production of hydrogen fuel from renewable sources and its role in grid operations

    NASA Astrophysics Data System (ADS)

    Barton, John; Gammon, Rupert

    Understanding the scale and nature of hydrogen's potential role in the development of low carbon energy systems requires an examination of the operation of the whole energy system, including heat, power, industrial and transport sectors, on an hour-by-hour basis. The Future Energy Scenario Assessment (FESA) software model used for this study is unique in providing a holistic, high resolution, functional analysis, which incorporates variations in supply resulting from weather-dependent renewable energy generators. The outputs of this model, arising from any given user-definable scenario, are year round supply and demand profiles that can be used to assess the market size and operational regime of energy technologies. FESA was used in this case to assess what - if anything - might be the role for hydrogen in a low carbon economy future for the UK. In this study, three UK energy supply pathways were considered, all of which reduce greenhouse gas emissions by 80% by 2050, and substantially reduce reliance on oil and gas while maintaining a stable electricity grid and meeting the energy needs of a modern economy. All use more nuclear power and renewable energy of all kinds than today's system. The first of these scenarios relies on substantial amounts of 'clean coal' in combination with intermittent renewable energy sources by year the 2050. The second uses twice as much intermittent renewable energy as the first and virtually no coal. The third uses 2.5 times as much nuclear power as the first and virtually no coal. All scenarios clearly indicate that the use of hydrogen in the transport sector is important in reducing distributed carbon emissions that cannot easily be mitigated by Carbon Capture and Storage (CCS). In the first scenario, this hydrogen derives mainly from steam reformation of fossil fuels (principally coal), whereas in the second and third scenarios, hydrogen is made mainly by electrolysis using variable surpluses of low-carbon electricity. Hydrogen

  6. Nickel-Based Superalloy Resists Embrittlement by Hydrogen

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan; Chen, PoShou

    2008-01-01

    A nickel-based superalloy that resists embrittlement by hydrogen more strongly than does nickel alloy 718 has been developed. Nickel alloy 718 is the most widely used superalloy. It has excellent strength and resistance to corrosion as well as acceptably high ductility, and is recognized as the best alloy for many high-temperature applications. However, nickel alloy 718 is susceptible to embrittlement by hydrogen and to delayed failure and reduced tensile properties in gaseous hydrogen. The greater resistance of the present nickel-based superalloy to adverse effects of hydrogen makes this alloy a superior alternative to nickel alloy 718 for applications that involve production, transfer, and storage of hydrogen, thereby potentially contributing to the commercial viability of hydrogen as a clean-burning fuel. The table shows the composition of the present improved nickel-based superalloy in comparison with that of nickel alloy 718. This composition was chosen to obtain high resistance to embrittlement by hydrogen while maintaining high strength and exceptional resistance to oxidation and corrosion. The most novel property of this alloy is that it resists embrittlement by hydrogen while retaining tensile strength greater than 175 kpsi (greater than 1.2 GPa). This alloy exhibits a tensile elongation of more than 20 percent in hydrogen at a pressure of 5 kpsi (approximately equal to 34 MPa) without loss of ductility. This amount of elongation corresponds to 50 percent more ductility than that exhibited by nickel alloy 718 under the same test conditions.

  7. Financing the construction of transport infrastructure as the basis for sustainable development of the regional economy

    NASA Astrophysics Data System (ADS)

    Nidziy, Elena

    2017-10-01

    Dependence of the regional economic development from efficiency of financing of the construction of transport infrastructure is analyzed and proved in this article. Effective mechanism for infrastructure projects financing, public and private partnership, is revealed and its concrete forms are formulated. Here is proposed an optimal scenario for financing for the transport infrastructure, which can lead to positive transformations in the economy. Paper considers the advantages and risks of public and private partnership for subjects of contractual relations. At that, components for the assessment of economic effect of the implementation of infrastructure projects were proposed simultaneously with formulation of conditions for minimization risks. Results of the research could be used for solution of persistent problems in the development of transport infrastructure, issues of financial assurance of construction of infrastructure projects at the regional level.

  8. A Technical and Economic Review of Solar Hydrogen Production Technologies

    ERIC Educational Resources Information Center

    Wilhelm, Erik; Fowler, Michael

    2006-01-01

    Hydrogen energy systems are being developed to replace fossil fuels-based systems for transportation and stationary application. One of the challenges facing the widespread adoption of hydrogen as an energy vector is the lack of an efficient, economical, and sustainable method of hydrogen production. In the short term, hydrogen produced from…

  9. Clean Cities: Building Partnerships to Reduce Petroleum Use in Transportation (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2012-03-01

    This fact sheet provides an overview of the U.S. Department of Energy's Clean Cities program, which builds partnerships to reduce petroleum use in transportation in communities across the country. The U.S. Department of Energy's Clean Cities initiative advances the nation's economic, environmental, and energy security by supporting local actions to reduce petroleum consumption in transportation. Clean Cities accomplishes this work through the activities of nearly 100 local coalitions. These coalitions provide resources and technical assistance in the deployment of alternative and renewable fuels, idle-reduction measures, fuel economy improvements, and new transportation technologies, as they emerge. Clean Cities overarching goal ismore » to reduce U.S. petroleum use by 2.5 billion gallons per year by 2020. To achieve this goal, Clean Cities employs three strategies: (1) Replace petroleum with alternative and renewable fuels, including natural gas, propane, electricity, ethanol, biodiesel, and hydrogen; (2) Reduce petroleum consumption through smarter driving practices and fuel economy improvements; and (3) Eliminate petroleum use through idle reduction and other fuel-saving technologies and practices.« less

  10. Carbon Dioxide-Free Hydrogen Production with Integrated Hydrogen Separation and Storage.

    PubMed

    Dürr, Stefan; Müller, Michael; Jorschick, Holger; Helmin, Marta; Bösmann, Andreas; Palkovits, Regina; Wasserscheid, Peter

    2017-01-10

    An integration of CO 2 -free hydrogen generation through methane decomposition coupled with hydrogen/methane separation and chemical hydrogen storage through liquid organic hydrogen carrier (LOHC) systems is demonstrated. A potential, very interesting application is the upgrading of stranded gas, for example, gas from a remote gas field or associated gas from off-shore oil drilling. Stranded gas can be effectively converted in a catalytic process by methane decomposition into solid carbon and a hydrogen/methane mixture that can be directly fed to a hydrogenation unit to load a LOHC with hydrogen. This allows for a straight-forward separation of hydrogen from CH 4 and conversion of hydrogen to a hydrogen-rich LOHC material. Both, the hydrogen-rich LOHC material and the generated carbon on metal can easily be transported to destinations of further industrial use by established transport systems, like ships or trucks. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. GIS-based preliminary wind-hydrogen energy assessment: A case study for Pakistan

    NASA Astrophysics Data System (ADS)

    Hussain Siyal, Shahid; Hopper, Miles; Lefvert, Adrian; Mentis, Dimitris; Korkovelos, Alexandros; Lopez De Briñas Gorosabel, Oier; Varela González, Cristina; Howells, Mark

    2017-04-01

    While the world is making progress on incorporating renewables in the electricity grid, the transport sector is still widely locked into using gasoline and diesel fuels. Simultaneously, wind energy is encountering resistance due to its intermittent nature. Wind to hydrogen energy conversion poses a solution to this problem, using wind powered electrolysis to produce hydrogen which can fuel the transport sector. In this report a preliminary assessment for wind to hydrogen energy conversion potential of Pakistan was made considering two different turbines; Vestas V82 and V112. Using available wind speed data, processed in ArcGIS, the hydrogen potential was calculated. Finally, the economic feasibility and potential environmental savings were assessed. From the results it was concluded that Pakistan has a good potential for wind to hydrogen conversion, with 63,807 and 80,232 ktons of hydrogen per year from the V82 and V112 turbines. This corresponds to 2,105 and 2,647 TWh of energy per year respectively. Only using 2% of that potential could give emissions savings of up to 11.43 and 14.37 MtCO2-eq, which would give good reason for more in-depth studies to evaluate the feasibility of a project in Pakistan.

  12. Hydrogen is a preferred intermediate in the energy-conserving electron transport chain of Methanosarcina barkeri.

    PubMed

    Kulkarni, Gargi; Kridelbaugh, Donna M; Guss, Adam M; Metcalf, William W

    2009-09-15

    Methanogens use an unusual energy-conserving electron transport chain that involves reduction of a limited number of electron acceptors to methane gas. Previous biochemical studies suggested that the proton-pumping F(420)H(2) dehydrogenase (Fpo) plays a crucial role in this process during growth on methanol. However, Methanosarcina barkeri Delta fpo mutants constructed in this study display no measurable phenotype on this substrate, indicating that Fpo plays a minor role, if any. In contrast, Delta frh mutants lacking the cytoplasmic F(420)-reducing hydrogenase (Frh) are severely affected in their ability to grow and make methane from methanol, and double Delta fpo/Delta frh mutants are completely unable to use this substrate. These data suggest that the preferred electron transport chain involves production of hydrogen gas in the cytoplasm, which then diffuses out of the cell, where it is reoxidized with transfer of electrons into the energy-conserving electron transport chain. This hydrogen-cycling metabolism leads directly to production of a proton motive force that can be used by the cell for ATP synthesis. Nevertheless, M. barkeri does have the flexibility to use the Fpo-dependent electron transport chain when needed, as shown by the poor growth of the Delta frh mutant. Our data suggest that the rapid enzymatic turnover of hydrogenases may allow a competitive advantage via faster growth rates in this freshwater organism. The mutant analysis also confirms the proposed role of Frh in growth on hydrogen/carbon dioxide and suggests that either Frh or Fpo is needed for aceticlastic growth of M. barkeri.

  13. 40 CFR 600.210-08 - Calculation of fuel economy values for labeling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... electric vehicles, fuel cell vehicles, plug-in hybrid electric vehicles and vehicles equipped with hydrogen... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Calculation of fuel economy values for... (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for...

  14. 40 CFR 600.210-08 - Calculation of fuel economy values for labeling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... electric vehicles, fuel cell vehicles, plug-in hybrid electric vehicles and vehicles equipped with hydrogen... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Calculation of fuel economy values for... (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for...

  15. Hydrogen: the future energy carrier.

    PubMed

    Züttel, Andreas; Remhof, Arndt; Borgschulte, Andreas; Friedrichs, Oliver

    2010-07-28

    Since the beginning of the twenty-first century the limitations of the fossil age with regard to the continuing growth of energy demand, the peaking mining rate of oil, the growing impact of CO2 emissions on the environment and the dependency of the economy in the industrialized world on the availability of fossil fuels became very obvious. A major change in the energy economy from fossil energy carriers to renewable energy fluxes is necessary. The main challenge is to efficiently convert renewable energy into electricity and the storage of electricity or the production of a synthetic fuel. Hydrogen is produced from water by electricity through an electrolyser. The storage of hydrogen in its molecular or atomic form is a materials challenge. Some hydrides are known to exhibit a hydrogen density comparable to oil; however, these hydrides require a sophisticated storage system. The system energy density is significantly smaller than the energy density of fossil fuels. An interesting alternative to the direct storage of hydrogen are synthetic hydrocarbons produced from hydrogen and CO2 extracted from the atmosphere. They are CO2 neutral and stored like fossil fuels. Conventional combustion engines and turbines can be used in order to convert the stored energy into work and heat.

  16. Hydrogenated TiO2 Thin Film for Accelerating Electron Transport in Highly Efficient Planar Perovskite Solar Cells.

    PubMed

    Yao, Xin; Liang, Junhui; Li, Yuelong; Luo, Jingshan; Shi, Biao; Wei, Changchun; Zhang, Dekun; Li, Baozhang; Ding, Yi; Zhao, Ying; Zhang, Xiaodan

    2017-10-01

    Intensive studies on low-temperature deposited electron transport materials have been performed to improve the efficiency of n-i-p type planar perovskite solar cells to extend their application on plastic and multijunction device architectures. Here, a TiO 2 film with enhanced conductivity and tailored band edge is prepared by magnetron sputtering at room temperature by hydrogen doping (HTO), which accelerates the electron extraction from perovskite photoabsorber and reduces charge transfer resistance, resulting in an improved short circuit current density and fill factor. The HTO film with upward shifted Fermi level guarantees a smaller loss on V OC and facilitates the growth of high-quality absorber with much larger grains and more uniform size, leading to devices with negligible hysteresis. In comparison with the pristine TiO 2 prepared without hydrogen doping, the HTO-based device exhibits a substantial performance enhancement leading to an efficiency of 19.30% and more stabilized photovoltaic performance maintaining 93% of its initial value after 300 min continuous illumination in the glove box. These properties permit the room-temperature magnetron sputtered HTO film as a promising electron transport material for flexible and tandem perovskite solar cell in the future.

  17. Hydrogen-Resistant Fe/Ni/Cr-Base Superalloy

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Chen, Po-Shou; Panda, Binayak

    1994-01-01

    Strong Fe/Ni/Cr-base hydrogen- and corrosion-resistant alloy developed. Superalloy exhibits high strength and exceptional resistance to embrittlement by hydrogen. Contains two-phase microstructure consisting of conductivity precipitated phase in conductivity matrix phase. Produced in wrought, weldable form and as castings, alloy maintains high ductility and strength in air and hydrogen. Strength exceeds previously known Fe/Cr/Ni hydrogen-, oxidation-, and corrosion-resistant alloys. Provides higher strength-to-weight ratios for lower weight in applications as storage vessels and pipes that must contain hydrogen.

  18. Prospects for hydrogen storage in graphene.

    PubMed

    Tozzini, Valentina; Pellegrini, Vittorio

    2013-01-07

    Hydrogen-based fuel cells are promising solutions for the efficient and clean delivery of electricity. Since hydrogen is an energy carrier, a key step for the development of a reliable hydrogen-based technology requires solving the issue of storage and transport of hydrogen. Several proposals based on the design of advanced materials such as metal hydrides and carbon structures have been made to overcome the limitations of the conventional solution of compressing or liquefying hydrogen in tanks. Nevertheless none of these systems are currently offering the required performances in terms of hydrogen storage capacity and control of adsorption/desorption processes. Therefore the problem of hydrogen storage remains so far unsolved and it continues to represent a significant bottleneck to the advancement and proliferation of fuel cell and hydrogen technologies. Recently, however, several studies on graphene, the one-atom-thick membrane of carbon atoms packed in a honeycomb lattice, have highlighted the potentialities of this material for hydrogen storage and raise new hopes for the development of an efficient solid-state hydrogen storage device. Here we review on-going efforts and studies on functionalized and nanostructured graphene for hydrogen storage and suggest possible developments for efficient storage/release of hydrogen under ambient conditions.

  19. 40 CFR 600.208-08 - Calculation of FTP-based and HFET-based fuel economy values for a model type.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Calculation of FTP-based and HFET-based fuel economy values for a model type. 600.208-08 Section 600.208-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations fo...

  20. Agricultural transportation research and service agenda

    DOT National Transportation Integrated Search

    1993-02-01

    The purpose of this paper is to provide a plan for research and service that serves the transportation needs of North Dakota's rural, resource-based economy. A description of the unique characteristics of North Dakota's transportation environment are...

  1. The Transportation Leapfrog: Using Smart Phones to Collect Driving Data and Model Fuel Economy in India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gopal, Anand; Schewel, Laura; Saxena, Samveg

    Car ownership in India is expected to skyrocket in the coming decades, strongly driven by rising incomes. This phenomenon provides unprecedented opportunities for automakers and equally unprecedented social and environmental challenges. Policymakers, urban planners and civil society see this car boom leading to an explosion in problems related to congestion, infrastructure, air pollution, safety, higher oil imports and climate change. For all these stakeholders to take effective action, good data on how people use their cars, their demand for mobility and their behavior in mobility is essential. Unfortunately, there is very little data on the Indian transport sector as amore » whole and virtually none on real-world vehicle performance and use. The rapid development of high quality mobile telecommunications infrastructure provides India with the opportunity to leapfrog the West in cheaply collecting vast amounts of useful data from transportation. In this paper, we describe a pilot project in which we use commercial smart phone apps to collect per second car driving data from the city of Pune, instantly upload it through 3G and prepare it for analysis using advanced noise filtering algorithms for less than $1 per day per car. We then use our data in an Autonomie simulation to show that India’s currently planned fuel economy test procedures will result in over-estimates of fuel economy of approximately 35% for a typical Indian car when it is operated in real world conditions. Supporting better driving cycle development is just one of many applications for smart phone derived data in Indian transportation.« less

  2. Hydrogen sensors based on catalytic metals

    NASA Astrophysics Data System (ADS)

    Beklemyshev, V. I.; Berezine, V.; Bykov, Victor A.; Kiselev, L.; Makhonin, I.; Pevgov, V.; Pustovoy, V.; Semynov, A.; Sencov, Y.; Shkuropat, I.; Shokin, A.

    1999-11-01

    On the base of microelectronical and micromechanical technology were designed and developed converters of hydrogen concentration to electrical signals. The devices of controlling concentration of hydrogen in the air were developed. These devices were applied for ensuring fire and explosion security of complex technological teste of missile oxygen-hydrogen engine, developed for cryogenic accelerations block. The sensor block of such device was installed directly on the armor-plate, to which was attached tested engine.

  3. Silicon based multilayer photoelectrodes for photoelectrolysis of water to produce hydrogen from the sun

    NASA Astrophysics Data System (ADS)

    Faruque, Faisal

    The main objective of this work is to study different materials for the direct photosynthesis of hydrogen from water. A variety of photocatalysts such as titanium dioxide, titanium oxy-nitride, silicon carbide, and gallium nitride are being investigated by others for the clean production of hydrogen for fuel cells and hydrogen economy. Our approach was to deposit suitable metallic regions on photocatalyst nanoparticles to direct the efficient synthesis of hydrogen to a particular site for convenient collection. We studied different electrode metals such as gold, platinum, titanium, palladium, and tungsten. We also studied different solar cell materials such as silicon (p- and n-types), silicon carbide and titanium dioxide semiconductors in order to efficiently generate electrons under illumination. We introduced a novel silicon-based multilayer photosynthesis device to take advantage of suitable properties of silicon and tungsten to efficiently produce hydrogen. The device consisted of a silicon (0.5mm) substrate, a deposited atomic layer of Al2O 3 (1nm), a doped polysilicon (0.1microm), and finally a tungsten nanoporous (5-10nm) layer acting as an interface electrode with water. The Al2O 3 layer was introduced to reduce leakage current and to prevent the spreading of the diffused p-n junction layer between the silicon and doped polysilicon layers. The surface of the photoelectrode was coated with nanotextured tungsten nanopores (TNP), which increased the surface area of the electrodes to the electrolyte, assisting in electron-hole mobility, and acting as a photocatalyst. The reported device exhibited a fill factor (%FF) of 27.22% and solar-to-hydrogen conversion efficiency of 0.03174%. This thesis describes the structures of the device, and offers a characterization and comparison between different photoelectrodes.

  4. Fuel Cell and Hydrogen Technologies Program | Hydrogen and Fuel Cells |

    Science.gov Websites

    NREL Fuel Cell and Hydrogen Technologies Program Fuel Cell and Hydrogen Technologies Program Through its Fuel Cell and Hydrogen Technologies Program, NREL researches, develops, analyzes, and validates fuel cell and hydrogen production, delivery, and storage technologies for transportation

  5. Conversion to a Hydrogen Fuel Transportation Industry, Incremental Route or Direct Route

    DTIC Science & Technology

    2005-03-18

    applications and direct use applications . Hydrogen fuel cells reverse the hydrolysis process by taking oxygen from the air to produce water, heat and an...exploring platinum/ ruthenium catalysts that are more resistant to CO. PEM fuel cells are used primarily for transportation applications and some stationary...21 vi vii LIST OF ILLUSTRATIONS FIGURE 1 EPOCH OF FOSSIL FUELS IN HUMAN HISTORY

  6. Hydrogen-based power generation from bioethanol steam reforming

    NASA Astrophysics Data System (ADS)

    Tasnadi-Asztalos, Zs.; Cormos, C. C.; Agachi, P. S.

    2015-12-01

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO2 emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  7. Long Term Hydrogen Vehicle Fleet Operational Assessment

    DTIC Science & Technology

    2011-03-21

    presented in Table 2. Also included in Table 2 is the average fuel economy in miles per gallon of gasoline equivalent ( gge ) and kilometers per gge ...calculated by applying the conversion factor of one gge being equivalent to 0.997 kilograms of hydrogen [4...Number Average Fuel Economy mi/kg (km/kg) Average Fuel Economy mi/ gge (km/ gge ) 1 26.9 (43.3) 26.8 (43.1) 2 25.0 (40.2) 24.9

  8. [PLASMALEMMAL ION TRANSPORT IN POLLEN TUBES IS REGULATED BY HYDROGEN PEROXIDE].

    PubMed

    Maksimov, N M; Breygina, M A; Yermakov, I P

    2015-01-01

    Pollen tube growth is a key step in the life cycle of seed plants, which defines the success of sexual reproduction. One of the most important contributions to this process is made by ion transport through plasmalemma, which is tightly coordinated in time and space. Different classes of signaling molecules are involved in the regulation of transmembrane ion transport including reactive oxygen species as it has been recently demonstrated. Here, using subprotoplasts isolated from pollen tubes, we have demonstrated a connection between hydrogen peroxide, on one side, and two groups of targets on the plasma membrane, on the other side: nifedipine-sensitive Ca(2+)-permeable channels and transport systems controlling membrane potential. H2O2 interaction with these targets causes the increase in cytoplasmic Ca2+ concentration and plasmalemma hyperpolarization. One of the consequences of target modification was acceleration of cell wall regeneration.

  9. Unravelling emotional viewpoints on a bio-based economy using Q methodology.

    PubMed

    Sleenhoff, Susanne; Cuppen, Eefje; Osseweijer, Patricia

    2015-10-01

    A transition to a bio-based economy will affect society and requires collective action from a broad range of stakeholders. This includes the public, who are largely unaware of this transition. For meaningful public engagement people's emotional viewpoints play an important role. However, what the public's emotions about the transition are and how they can be taken into account is underexposed in public engagement literature and practice. This article aims to unravel the public's emotional views of the bio-based economy as a starting point for public engagement. Using Q methodology with visual representations of a bio-based economy we found four emotional viewpoints: (1) compassionate environmentalist, (2) principled optimist, (3) hopeful motorist and (4) cynical environmentalist. These provide insight into the distinct and shared ways through which members of the public connect with the transition. Implications for public engagement are discussed. © The Author(s) 2014.

  10. Optical hydrogen sensors based on metal-hydrides

    NASA Astrophysics Data System (ADS)

    Slaman, M.; Westerwaal, R.; Schreuders, H.; Dam, B.

    2012-06-01

    For many hydrogen related applications it is preferred to use optical hydrogen sensors above electrical systems. Optical sensors reduce the risk of ignition by spark formation and are less sensitive to electrical interference. Currently palladium and palladium alloys are used for most hydrogen sensors since they are well known for their hydrogen dissociation and absorption properties at relatively low temperatures. The disadvantages of palladium in sensors are the low optical response upon hydrogen loading, the cross sensitivity for oxygen and carbon, the limited detection range and the formation of micro-cracks after some hydrogen absorption/desorption cycles. In contrast to Pd, we find that the use of magnesium or rear earth bases metal-hydrides in optical hydrogen sensors allow tuning of the detection levels over a broad pressure range, while maintaining a high optical response. We demonstrate a stable detection layer for detecting hydrogen below 10% of the lower explosion limit in an oxygen rich environment. This detection layer is deposited at the bare end of a glass fiber as a micro-mirror and is covered with a thin layer of palladium. The palladium layer promotes the hydrogen uptake at room temperature and acts as a hydrogen selective membrane. To protect the sensor for a long time in air a final layer of a hydrophobic fluorine based coating is applied. Such a sensor can be used for example as safety detector in automotive applications. We find that this type of fiber optic hydrogen sensor is also suitable for hydrogen detection in liquids. As example we demonstrate a sensor for detecting a broad range of concentrations in transformer oil. Such a sensor can signal a warning when sparks inside a high voltage power transformer decompose the transformer oil over a long period.

  11. 49 CFR 525.11 - Termination of exemption; amendment of alternative average fuel economy standard.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Termination of exemption; amendment of alternative average fuel economy standard. 525.11 Section 525.11 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EXEMPTIONS FROM AVERAGE FUEL ECONOMY STANDARDS...

  12. Diamond deposition by chemical vapor transport with hydrogen in a closed system

    NASA Astrophysics Data System (ADS)

    Piekarczyk, W.; Messier, R.; Roy, R.; Engdahl, C.

    1990-11-01

    The carbon-hydrogen chemical vapor transport system was examined in accordance with a four-stage transport model. A result of this examination is that graphite co-deposition could be avoided when diamond is deposited from gas solutions undersaturated with regard to diamond. Actual deposition experiments showed that this unusual requirement can be fulfilled but only for the condition that the transport distance between the carbon source and the substrate surface is short. In such a case diamond can be deposited equally from supersaturated as well as from undersaturated gas solutions. On the basis of thermodynamic considerations, a possible explanation of this unusual phenomenon is given. It is shown that there is a possibility of deposition of diamond from both supersaturated and undersaturated gas solutions but only on the condition that they are in a non-equilibrium state generally called the activated state. A model of the diamond deposition process consisting of two steps is proposed. In the first step diamond and graphite are deposited simultaneously. The most important carbon deposition reaction is C 2H 2(g)+2H(g) = C(diamond+graphite) +CH 4(g). The amount of co-deposited graphite is not a direct function of the saturation state of the gas phase. In the second step graphite is etched according to the most probable reaction C(graphite)+4H(g) = CH 4(g). Atomic hydrogen in a concentration exceeding equilibrium is necessary not only to etch graphite, but also to precipitate diamond and graphite.

  13. Hydrogen-based power generation from bioethanol steam reforming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tasnadi-Asztalos, Zs., E-mail: tazsolt@chem.ubbcluj.ro; Cormos, C. C., E-mail: cormos@chem.ubbcluj.ro; Agachi, P. S.

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production frommore » renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO{sub 2} emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.« less

  14. Hydrogen System Component Validation | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    Meeting (June 2017) Hydrogen Component Validation: 2016 Annual Progress Report, Danny Terlip, Excerpt from the 2016 DOE Annual Progress Report (February 2017) Hydrogen Component Validation: 2016 Annual Merit Transportation Decisions, NREL Fact Sheet (June 2016) Hydrogen Component Validation: 2015 Annual Progress Report

  15. A novel liquid organic hydrogen carrier system based on catalytic peptide formation and hydrogenation

    PubMed Central

    Hu, Peng; Fogler, Eran; Diskin-Posner, Yael; Iron, Mark A.; Milstein, David

    2015-01-01

    Hydrogen is an efficient green fuel, but its low energy density when stored under high pressure or cryogenically, and safety issues, presents significant disadvantages; hence finding efficient and safe hydrogen carriers is a major challenge. Of special interest are liquid organic hydrogen carriers (LOHCs), which can be readily loaded and unloaded with considerable amounts of hydrogen. However, disadvantages include high hydrogen pressure requirements, high reaction temperatures for both hydrogenation and dehydrogenation steps, which require different catalysts, and high LOHC cost. Here we present a readily reversible LOHC system based on catalytic peptide formation and hydrogenation, using an inexpensive, safe and abundant organic compound with high potential capacity to store and release hydrogen, applying the same catalyst for loading and unloading hydrogen under relatively mild conditions. Mechanistic insight of the catalytic reaction is provided. We believe that these findings may lead to the development of an inexpensive, safe and clean liquid hydrogen carrier system. PMID:25882348

  16. Building a knowledge based economy in Russia using guided entrepreneurship

    NASA Astrophysics Data System (ADS)

    Reznik, Boris N.; Daniels, Marc; Ichim, Thomas E.; Reznik, David L.

    2005-06-01

    Despite advanced scientific and technological (S&T) expertise, the Russian economy is presently based upon manufacturing and raw material exports. Currently, governmental incentives are attempting to leverage the existing scientific infrastructure through the concept of building a Knowledge Based Economy. However, socio-economic changes do not occur solely by decree, but by alteration of approach to the market. Here we describe the "Guided Entrepreneurship" plan, a series of steps needed for generation of an army of entrepreneurs, which initiate a chain reaction of S&T-driven growth. The situation in Russia is placed in the framework of other areas where Guided Entrepreneurship has been successful.

  17. Effect of exogenous hydrogen peroxide on iodide transport and iodine organification in FRTL-5 rat thyroid cells.

    PubMed

    Chen, G; Pekary, A E; Sugawara, M; Hershman, J M

    1993-07-01

    Hydrogen peroxide plays an important role in the regulation of iodination and thyroid hormone formation. In the present study, the effect of exogenous H2O2 on 125I transport and organification was investigated in FRTL-5 rat thyroid cells. Less than 20 passages after subcloning, cells in 24-well plates (6 x 10(4) cells/well) were maintained in a thyrotropin (TSH)-containing medium (6H) for 3 days. A TSH-free medium (5H) was then used for the next 7 days. A 1-h exposure to H2O2 stimulated 125I transport and 125I organification at 0.1-0.5 mmol/l H2O2 and had a toxic effect on FRTL-5 cell at 5 mmol/l. Hydrogen peroxide (0.5 mmol/l) augmented the iodide transport and iodine organification induced by TSH (333 U/l) by two- and threefold, respectively. The biphasic effect of H2O2 was blocked totally by 5-200 micrograms/l of catalase. Catalase by itself did not influence TSH-mediated 125I transport and 125I organification. Hydrogen peroxide (0.5 mmol/l) added to cells in 5H medium increased Na+K(+)-ATPase activity twofold. Ouabain (1 mmol/l), an inhibitor of Na+K(+)-ATPase, completely inhibited the twofold increase in 125I transport induced by 0.5 mmol/l H2O2 but only inhibited H2O2-induced 125I organification by 28%. Methimazole (1 mmol/l), an inhibitor of thyroid peroxidase, had no effect on H2O2-mediated 125I transport but totally blocked the fivefold rise in 125I organification induced by 0.5 mmol/l H2O2. The effect of H2O2 on intracellular cyclic adenosine monophosphate (cAMP) levels also was studied.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Availability of hydrogen for lunar base activities

    NASA Technical Reports Server (NTRS)

    Bustin, Roberta

    1990-01-01

    Hydrogen will be needed on a lunar base to make water for consumables, to provide fuel, and to serve as reducing agent in the extraction of oxygen from lunar minerals. The abundance and distribution of solar wind implanted hydrogen were studied. Hydrogen was found in all samples studied with concentrations varying widely depending on soil maturity, grain size, and mineral composition. Seven cores returned from the moon were studied. Although hydrogen was implanted in the upper surface layer of the regolith, it was found throughout the cores due to micrometeorite reworking of the soil.

  19. Hydrogen Fuel Cells | Transportation Research | NREL

    Science.gov Websites

    Leading Role Hydrogen, a flexible, clean energy-carrying intermediate, has the potential to be a " webinar focused on the role that hydrogen at grid scale could play in our nation's energy future

  20. Transportation Economic Trends

    DOT National Transportation Integrated Search

    2016-12-12

    Transportation plays a vital role in the American economy: it makes economic activity possible, and serves as a major economic activity in its own right. This report is BTSs first stand-alone volume on transportation and the economy, and uses a va...

  1. Study of the application of hydrogen fuel to long-range subsonic transport aircraft, volume 2

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.; Morris, R. E.; Lange, R. H.; Moore, J. W.

    1975-01-01

    The feasibility, practicability, and potential advantages/disadvantages of using liquid hydrogen as fuel in long range, subsonic transport aircraft of advanced design were studied. Both passenger and cargo-type aircraft were investigated. To provide a valid basis for comparison, conventional hydrocarbon (Jet A) fueled aircraft were designed to perform identical missions using the same advanced technology and meeting the same operational constraints. The liquid hydrogen and Jet A fueled aircraft were compared on the basis of weight, size, energy utilization, cost, noise, emissions, safety, and operational characteristics. A program of technology development was formulated.

  2. Life-cycle assessment of diesel, natural gas and hydrogen fuel cell bus transportation systems

    NASA Astrophysics Data System (ADS)

    Ally, Jamie; Pryor, Trevor

    The Sustainable Transport Energy Programme (STEP) is an initiative of the Government of Western Australia, to explore hydrogen fuel cell technology as an alternative to the existing diesel and natural gas public transit infrastructure in Perth. This project includes three buses manufactured by DaimlerChrysler with Ballard fuel cell power sources operating in regular service alongside the existing natural gas and diesel bus fleets. The life-cycle assessment (LCA) of the fuel cell bus trial in Perth determines the overall environmental footprint and energy demand by studying all phases of the complete transportation system, including the hydrogen infrastructure, bus manufacturing, operation, and end-of-life disposal. The LCAs of the existing diesel and natural gas transportation systems are developed in parallel. The findings show that the trial is competitive with the diesel and natural gas bus systems in terms of global warming potential and eutrophication. Emissions that contribute to acidification and photochemical ozone are greater for the fuel cell buses. Scenario analysis quantifies the improvements that can be expected in future generations of fuel cell vehicles and shows that a reduction of greater than 50% is achievable in the greenhouse gas, photochemical ozone creation and primary energy demand impact categories.

  3. Renewable Hydrogen Carrier - Carbohydrate: Constructing the Carbon-Neutral Carbohydrate Economy

    DTIC Science & Technology

    2011-01-31

    temperature. High fructose corn syrup , low-cost sucrose replacement, is made by stabilized glucose isomerase, which can work at ~60 °C for even about two...sustainable production, high -density storage, costly infrastructure, to eliminating safety concern. The use of renewable carbohydrate as a high -density...100% selectivity of enzymes, modest reaction conditions, and high -purity of generated hydrogen, carbohydrate is a promising hydrogen carrier for end

  4. Predicting Individual Fuel Economy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Zhenhong; Greene, David L

    2011-01-01

    To make informed decisions about travel and vehicle purchase, consumers need unbiased and accurate information of the fuel economy they will actually obtain. In the past, the EPA fuel economy estimates based on its 1984 rules have been widely criticized for overestimating on-road fuel economy. In 2008, EPA adopted a new estimation rule. This study compares the usefulness of the EPA's 1984 and 2008 estimates based on their prediction bias and accuracy and attempts to improve the prediction of on-road fuel economies based on consumer and vehicle attributes. We examine the usefulness of the EPA fuel economy estimates using amore » large sample of self-reported on-road fuel economy data and develop an Individualized Model for more accurately predicting an individual driver's on-road fuel economy based on easily determined vehicle and driver attributes. Accuracy rather than bias appears to have limited the usefulness of the EPA 1984 estimates in predicting on-road MPG. The EPA 2008 estimates appear to be equally inaccurate and substantially more biased relative to the self-reported data. Furthermore, the 2008 estimates exhibit an underestimation bias that increases with increasing fuel economy, suggesting that the new numbers will tend to underestimate the real-world benefits of fuel economy and emissions standards. By including several simple driver and vehicle attributes, the Individualized Model reduces the unexplained variance by over 55% and the standard error by 33% based on an independent test sample. The additional explanatory variables can be easily provided by the individuals.« less

  5. Availability of hydrogen for lunar base activities

    NASA Technical Reports Server (NTRS)

    Bustin, Roberta; Gibson, Everett K., Jr.

    1992-01-01

    Hydrogen will be needed on a lunar base to make water for consumables, to provide fuel, and to serve as a reducing agent in the extraction of oxygen from lunar minerals. This study was undertaken in order to learn more about the abundance and distribution of solar-wind-implanted hydrogen. Hydrogen was found in all samples studied, with concentrations, varying widely depending on soil maturity, grain size, and mineral composition. Seven cores returned from the Moon were studied. Although hydrogen was implanted in the upper surface layer of the regolith, it was found throughout the cores due to micrometeorite reworking of the soil.

  6. Sensitive Capacitive-type Hydrogen Sensor Based on Ni Thin Film in Different Hydrogen Concentrations.

    PubMed

    Pour, Ghobad Behzadi; Aval, Leila Fekri; Eslami, Shahnaz

    2018-04-01

    Hydrogen sensors are micro/nano-structure that are used to locate hydrogen leaks. They are considered to have fast response/recovery time and long lifetime as compared to conventional gas sensors. In this paper, fabrication of sensitive capacitive-type hydrogen gas sensor based on Ni thin film has been investigated. The C-V curves of the sensor in different hydrogen concentrations have been reported. Dry oxidation was done in thermal chemical vapor deposition furnace (TCVD). For oxidation time of 5 min, the oxide thickness was 15 nm and for oxidation time 10 min, it was 20 nm. The Ni thin film as a catalytic metal was deposited on the oxide film using electron gun deposition. Two MOS sensors were compared with different oxide film thickness and different hydrogen concentrations. The highest response of the two MOS sensors with 15 nm and 20 nm oxide film thickness in 4% hydrogen concentration was 87.5% and 65.4% respectively. The fast response times for MOS sensors with 15 nm and 20 nm oxide film thickness in 4% hydrogen concentration was 8 s and 21 s, respectively. By increasing the hydrogen concentration from 1% to 4%, the response time for MOS sensor (20nm oxide thickness), was decreased from 28s to 21s. The recovery time was inversely increased from 237s to 360s. The experimental results showed that the MOS sensor based on Ni thin film had a quick response and a high sensitivity.

  7. Hydrogen-bonded structures from adamantane-based catechols

    NASA Astrophysics Data System (ADS)

    Kawahata, Masatoshi; Matsuura, Miku; Tominaga, Masahide; Katagiri, Kosuke; Yamaguchi, Kentaro

    2018-07-01

    Adamantane-based bis- and tris-catechols were synthesized to examine the effect of hydrogen bonds on the arrangement and packing of the components in the crystalline state. Single-crystal X-ray crystallographic analysis revealed that hydrogen bonds formed by the hydroxyl groups of catechol groups play essential roles in the production of various types of unique structures. 1,3-Bis(3,4-dihydroxyphenyl)adamantane (1) provided hydrogen-bonded network structures composed of helical chains in crystal from chloroform/methanol, and layer structures in crystal from ethyl acetate/hexane. The complexation of 1 with 1,3,5-trinitrobenzene or 1,2,4,5-tetracyanobenzene resulted in the formation of co-crystals, respectively. One-dimensional hydrogen-bonded structures were constructed from the adamantane-based molecules, which participated in charge-transfer interactions with guests. 1,3,5-Tris(3,4-dihydroxyphenyl)adamantane also afforded crystal, and the components were assembled into infinite polymers.

  8. On the transport coefficients of hydrogen in the inertial confinement fusion regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, Flavien; Recoules, Vanina; Decoster, Alain

    2011-05-15

    Ab initio molecular dynamics is used to compute the thermal and electrical conductivities of hydrogen from 10 to 160 g cm{sup -3} and temperatures up to 800 eV, i.e., thermodynamical conditions relevant to inertial confinement fusion (ICF). The ionic structure is obtained using molecular dynamics simulations based on an orbital-free treatment for the electrons. The transport properties were computed using ab initio simulations in the DFT/LDA approximation. The thermal and electrical conductivities are evaluated using Kubo-Greenwood formulation. Particular attention is paid to the convergence of electronic transport properties with respect to the number of bands and atoms. These calculations aremore » then used to check various analytical models (Hubbard's, Lee-More's and Ichimaru's) widely used in hydrodynamics simulations of ICF capsule implosions. The Lorenz number, which is the ratio between thermal and electrical conductivities, is also computed and compared to the well-known Wiedemann-Franz law in different regimes ranging from the highly degenerate to the kinetic one. This allows us to deduce electrical conductivity from thermal conductivity for analytical model. We find that the coupling of Hubbard and Spitzer models gives a correct description of the behavior of electrical and thermal conductivities in the whole thermodynamic regime.« less

  9. Hydrogen Highways: Lessons on the Energy Technology-Policy Interface

    ERIC Educational Resources Information Center

    Waegel, Alex; Byrne, John; Tobin, Daniel; Haney, Bryan

    2006-01-01

    The hydrogen economy has received increasing attention recently. Common reasons cited for investigating hydrogen energy options are improved energy security, reduced environmental impacts, and its contribution to a transition to sustainable energy sources. In anticipation of these benefits, national and local initiatives have been launched in the…

  10. Fuel economy of hybrid fuel-cell vehicles

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Rajesh K.; Wang, X.; Rousseau, A.

    The potential improvement in fuel economy of a mid-size fuel-cell vehicle by combining it with an energy storage system has been assessed. An energy management strategy is developed and used to operate the direct hydrogen, pressurized fuel-cell system in a load-following mode and the energy storage system in a charge-sustaining mode. The strategy places highest priority on maintaining the energy storage system in a state where it can supply unanticipated boost power when the fuel-cell system alone cannot meet the power demand. It is found that downsizing a fuel-cell system decreases its efficiency on a drive cycle which is compensated by partial regenerative capture of braking energy. On a highway cycle with limited braking energy the increase in fuel economy with hybridization is small but on the stop-and-go urban cycle the fuel economy can improve by 27%. On the combined highway and urban drive cycles the fuel economy of the fuel-cell vehicle is estimated to increase by up to 15% by hybridizing it with an energy storage system.

  11. Postponing aging and prolonging life expectancy with the knowledge-based economy.

    PubMed

    Kristjuhan, Ulo

    2012-04-01

    People are interested in the aging phenomenon and hope that scientists are doing as much as they can to solve the mysteries of aging. However, this is not the case. A lot of knowledge is produced for local interests in curing specific disorders; aging is studied much less. Today's economy is undergoing a transition to a knowledge-based economy. Knowledge of aging should be integrated into the economies of contemporary societies. Aging research and intervention can ensure better health, primarily among middle-aged and older people, and prolong life. There are many reasons why postponing aging and rejuvenation research is not as widespread as it should be. Developed countries should create economic stimuli for such studies and intervention.

  12. Hydrogen and Fuel Cell Technology | Transportation Research | NREL

    Science.gov Websites

    Outlines Safety Considerations for Hydrogen Technologies While safety requirements for industrial uses of vehicles have created the need for additional safety requirements. The new Hydrogen Technologies Safety hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects

  13. 40 CFR 600.206-08 - Calculation and use of FTP-based and HFET-based fuel economy values for vehicle configurations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... fuel economy values from the tests performed using gasoline or diesel test fuel. (ii) Calculate the city, highway, and combined fuel economy values from the tests performed using alcohol or natural gas test fuel. (b) If only one equivalent petroleum-based fuel economy value exists for an electric...

  14. 40 CFR 600.206-08 - Calculation and use of FTP-based and HFET-based fuel economy values for vehicle configurations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... fuel economy values from the tests performed using gasoline or diesel test fuel. (ii) Calculate the city, highway, and combined fuel economy values from the tests performed using alcohol or natural gas test fuel. (b) If only one equivalent petroleum-based fuel economy value exists for an electric...

  15. Hydrogen peroxide scavenger, catalase, alleviates ion transport dysfunction in murine colitis.

    PubMed

    Barrett, Kim E; McCole, Declan F

    2016-11-01

    Reactive oxygen species (ROS) such as hydrogen peroxide (H 2 O 2 ) contribute to epithelial damage and ion transport dysfunction (key events in inflammatory diarrhoea) in inflammatory bowel disease (IBD). The aim of this study was to identify if H 2 O 2 mediates suppression of colonic ion transport function in the murine dextran sulfate sodium (DSS) colitis model by using the H 2 O 2 degrading enzyme, catalase. Colitis was induced by administering DSS (4%) in drinking water for 5 days followed by 3 days on normal H 2 O. Mice were administered either pegylated catalase or saline at day -1, 0 and +1 of DSS treatment. Ion transport responses to the Ca 2+ -dependent agonist, carbachol (CCh), or the cAMP-dependent agonist, forskolin, were measured across distal colonic mucosa mounted in Ussing chambers. Parameters of DSS-induced inflammation (loss in body weight, decreased colon length, altered stool consistency), were only partially alleviated by catalase while histology was only minimally improved. However, catalase significantly reversed the DSS-induced reduction in baseline ion transport as well as colonic I sc responses to CCh. However, ion transport responses to forskolin were not significantly restored. Catalase also reduced activation of ERK MAP kinase in the setting of colitis, and increased expression of the Na + -K + -2Cl - cotransporter, NKCC1, consistent with restoration of ion transport function. Ex vivo treatment of inflamed colonic mucosae with catalase also partially restored ion transport function. Therefore, catalase partially prevents, and rescues, the loss of ion transport properties in DSS colitis even in the setting of unresolved tissue inflammation. These findings indicate a prominent role for ROS in ion transport dysfunction in colitis and may suggest novel strategies for the treatment of inflammatory diarrhoea. © 2016 John Wiley & Sons Australia, Ltd.

  16. Network analysis of Chinese provincial economies

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoqi; An, Haizhong; Liu, Xiaojia

    2018-02-01

    Global economic system is a huge network formed by national subnetworks that contains the provincial networks. As the second largest world economy, China has "too big to fail" impact on the interconnected global economy. Detecting the critical sectors and vital linkages inside Chinese economic network is meaningful for understanding the origin of this Chinese impact. Different from tradition network research at national level, this paper focuses on the provincial networks and inter-provincial network. Using Chinese inter-regional input-output table to construct 30 provincial input-output networks and one inter-provincial input-output network, we identify central sectors and vital linkages, as well as analyze economic structure similarity. Results show that (1) Communication Devices sector in Guangdong and that in Jiangsu, Transportation and Storage sector in Shanghai play critical roles in Chinese economy. (2) Advanced manufactures and services industry occupy the central positions in eastern provincial economies, while Construction sector, Heavy industry, and Wholesale and Retail Trades sector are influential in middle and western provinces. (3) The critical monetary flow paths in Chinese economy are Communication Devices sector to Communication Devices sector in Guangdong, Metals Mining sector to Iron and Steel Smelting sector in Henan, Communication Devices sector to Communication Devices sector in Jiangsu, as well as Petroleum Mining sector in Heilongjiang to Petroleum Processing sector in Liaoning. (4) Collective influence results suggest that Finance sector, Transportation and Storage sector, Production of Electricity and Heat sector, and Rubber and Plastics sector in Hainan are strategic influencers, despite being weakly connected. These sectors and input-output relations are worthy of close attention for monitoring Chinese economy.

  17. PNNL Development and Analysis of Material-Based Hydrogen Storage Systems for the Hydrogen Storage Engineering Center of Excellence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, Kriston P.; Alvine, Kyle J.; Johnson, Kenneth I.

    The Hydrogen Storage Engineering Center of Excellence is a team of universities, industrial corporations, and federal laboratories with the mandate to develop lower-pressure, materials-based, hydrogen storage systems for hydrogen fuel cell light-duty vehicles. Although not engaged in the development of new hydrogen storage materials themselves, it is an engineering center that addresses engineering challenges associated with the currently available hydrogen storage materials. Three material-based approaches to hydrogen storage are being researched: 1) chemical hydrogen storage materials 2) cryo-adsorbents, and 3) metal hydrides. As a member of this Center, Pacific Northwest National Laboratory (PNNL) has been involved in the design andmore » evaluation of systems developed with each of these three hydrogen storage materials. This report is a compilation of the work performed by PNNL for this Center.« less

  18. Materials towards carbon-free, emission-free and oil-free mobility: hydrogen fuel-cell vehicles--now and in the future.

    PubMed

    Hirose, Katsuhiko

    2010-07-28

    In the past, material innovation has changed society through new material-induced technologies, adding a new value to society. In the present world, engineers and scientists are expected to invent new materials to solve the global problem of climate change. For the transport sector, the challenge for material engineers is to change the oil-based world into a sustainable world. After witnessing the recent high oil price and its adverse impact on the global economy, it is time to accelerate our efforts towards this change. Industries are tackling global energy issues such as oil and CO2, as well as local environmental problems, such as NO(x) and particulate matter. Hydrogen is the most promising candidate to provide carbon-free, emission-free and oil-free mobility. As such, engineers are working very hard to bring this technology into the real society. This paper describes recent progress of vehicle technologies, as well as hydrogen-storage technologies to extend the cruise range and ensure the easiness of refuelling and requesting material scientists to collaborate with industry to fight against global warming.

  19. 40 CFR 600.206-08 - Calculation and use of FTP-based and HFET-based fuel economy values for vehicle configurations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., highway, and combined fuel economy values from the tests performed using gasoline or diesel test fuel. (ii) Calculate the city, highway, and combined fuel economy values from the tests performed using alcohol or natural gas test fuel. (b) If only one equivalent petroleum-based fuel economy value exists for an...

  20. Air pollution and climate-forcing impacts of a global hydrogen economy.

    PubMed

    Schultz, Martin G; Diehl, Thomas; Brasseur, Guy P; Zittel, Werner

    2003-10-24

    If today's surface traffic fleet were powered entirely by hydrogen fuel cell technology, anthropogenic emissions of the ozone precursors nitrogen oxide (NOx) and carbon monoxide could be reduced by up to 50%, leading to significant improvements in air quality throughout the Northern Hemisphere. Model simulations of such a scenario predict a decrease in global OH and an increased lifetime of methane, caused primarily by the reduction of the NOx emissions. The sign of the change in climate forcing caused by carbon dioxide and methane depends on the technology used to generate the molecular hydrogen. A possible rise in atmospheric hydrogen concentrations is unlikely to cause significant perturbations of the climate system.

  1. Study of the application of hydrogen fuel to long-range subsonic transport aircraft. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.; Morris, R. E.; Lange, R. H.; Moore, J. W.

    1975-01-01

    The feasibility of using liquid hydrogen as fuel in advanced designs of long range, subsonic transport aircraft is assessed. Both passenger and cargo type aircraft are investigated. Comparisons of physical, performance, and economic parameters of the LH2 fueled designs with conventionally fueled aircraft are presented. Design studies are conducted to determine appropriate characteristics for the hydrogen related systems required on board the aircraft. These studies included consideration of material, structural, and thermodynamic requirements of the cryogenic fuel tanks and fuel systems with the structural support and thermal protection systems.

  2. Well-to-Wheels Water Consumption: Tracking the Virtual Flow of Water into Transportation

    NASA Astrophysics Data System (ADS)

    Lampert, D. J.; Elgowainy, A.; Hao, C.

    2015-12-01

    Water and energy resources are fundamental to life on Earth and essential for the production of consumer goods and services in the economy. Energy and water resources are heavily interdependent—energy production consumes water, while water treatment and distribution consume energy. One example of this so-called energy-water nexus is the consumption of water associated with the production of transportation fuels. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is an analytical tool that can be used to compare the environmental impacts of different transportation fuels on a consistent basis. In this presentation, the expansion of GREET to perform life cycle water accounting or the "virtual flow" of water into transportation and other energy sectors and the associated implications will be discussed. The results indicate that increased usage of alternative fuels may increase freshwater resource consumption. The increased water consumption must be weighed against the benefits of decreased greenhouse gas and fossil energy consumption. Our analysis highlights the importance of regionality, co-product allocation, and consistent system boundaries when comparing the water intensity of alternative transportation fuel production pathways such as ethanol, biodiesel, compressed natural gas, hydrogen, and electricity with conventional petroleum-based fuels such as diesel and gasoline.

  3. Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    Cells A hydrogen-powered fuel cell electric vehicle driving past NREL's hydrogen fueling station NREL's hydrogen and fuel cell research and development (R&D) focuses on developing, integrating, and demonstrating hydrogen production and delivery, hydrogen storage, and fuel cell technologies for transportation

  4. Comparison of hydrogen gas embrittlement of austenitic and ferritic stainless steels

    NASA Astrophysics Data System (ADS)

    Perng, T. P.; Altstetter, C. J.

    1987-01-01

    Hydrogen-induced slow crack growth (SCG) was compared in austenitic and ferritic stainless steels at 0 to 125 °Cand 11 to 216 kPa of hydrogen gas. No SCG was observed for AISI 310, while AISI 301 was more susceptible to hydrogen embrittlement and had higher cracking velocity than AL 29-4-2 under the same test conditions. The kinetics of crack propagation was modeled in terms of the hydrogen transport in these alloys. This is a function of temperature, microstructure, and stress state in the embrittlement region. The relatively high cracking velocity of AISI 301 was shown to be controlled by the fast transport of hydrogen through the stress-induced α' martensite at the crack tip and low escape rate of hydrogen through the γ phase in the surrounding region. Faster accumulation rates of hydrogen in the embrittlement region were expected for AISI 301, which led to higher cracking velocities. The mechanism of hydrogen-induced SCG was discussed based upon the concept of hydrogen-enhanced plasticity.

  5. Hydrogen bonding and transportation properties of water confined in the single-walled carbon nanotube in the pulse-field

    NASA Astrophysics Data System (ADS)

    Zhou, Min; Hu, Ying; Liu, Jian-chuan; Cheng, Ke; Jia, Guo-zhu

    2017-10-01

    In this paper, molecular dynamics simulations were performed to investigate the transportation and hydrogen bonding dynamics of water confined in (6, 6) single-walled carbon nanotube (SWCNT) in the absence and presence of time-dependent pulse-field. The effects of pulse-field range from microwave to ultraviolet frequency on the diffusivity and hydrogen bonding of confined water were analyzed. The significant confinement effect due to the narrow space inside SWCNT was observed.

  6. The Ignorance of the Knowledge-Based Economy. The Iconoclast.

    ERIC Educational Resources Information Center

    McMurtry, John

    1996-01-01

    Castigates the supposed "knowledge-based economy" as simply a public relations smokescreen covering up the free market exploitation of people and resources serving corporate interests. Discusses the many ways that private industry, often with government collusion, has controlled or denied dissemination of information to serve its own interests.…

  7. Sustainable Transportation Basics | Transportation Research | NREL

    Science.gov Websites

    Transportation Basics Sustainable Transportation Basics Compare Vehicle Technologies 3-D introduction to sustainable transportation. NREL research supports development of electric, hybrid, hydrogen

  8. Biotechnology as the engine for the Knowledge-Based Bio-Economy.

    PubMed

    Aguilar, Alfredo; Bochereau, Laurent; Matthiessen, Line

    2010-01-01

    The European Commission has defined the Knowledge-Based Bio-Economy (KBBE) as the process of transforming life science knowledge into new, sustainable, eco-efficient and competitive products. The term "Bio-Economy" encompasses all industries and economic sectors that produce, manage and otherwise exploit biological resources and related services. Over the last decades biotechnologies have led to innovations in many agricultural, industrial, medical sectors and societal activities. Biotechnology will continue to be a major contributor to the Bio-Economy, playing an essential role in support of economic growth, employment, energy supply and a new generation of bio-products, and to maintain the standard of living. The paper reviews some of the main biotechnology-related research activities at European level. Beyond the 7th Framework Program for Research and Technological Development (FP7), several initiatives have been launched to better integrate FP7 with European national research activities, promote public-private partnerships and create better market and regulatory environments for stimulating innovation.

  9. The NASA Hydrogen Energy Systems Technology study - A summary

    NASA Technical Reports Server (NTRS)

    Laumann, E. A.

    1976-01-01

    This study is concerned with: hydrogen use, alternatives and comparisons, hydrogen production, factors affecting application, and technology requirements. Two scenarios for future use are explained. One is called the reference hydrogen use scenario and assumes continued historic uses of hydrogen along with additional use for coal gasification and liquefaction, consistent with the Ford technical fix baseline (1974) projection. The expanded scenario relies on the nuclear electric economy (1973) energy projection and assumes the addition of limited new uses such as experimental hydrogen-fueled aircraft, some mixing with natural gas, and energy storage by utilities. Current uses and supply of hydrogen are described, and the technological requirements for developing new methods of hydrogen production are discussed.

  10. Development of novel active transport membrande devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laciak, D.V.

    1994-11-01

    Air Products has undertaken a research program to fabricate and evaluate gas separation membranes based upon promising ``active-transport`` (AT) materials recently developed in our laboratories. Active Transport materials are ionic polymers and molten salts which undergo reversible interaction or reaction with ammonia and carbon dioxide. The materials are useful for separating these gases from mixtures with hydrogen. Moreover, AT membranes have the unique property of possessing high permeability towards ammnonia and carbon dioxide but low permeability towards hydrogen and can thus be used to permeate these components from a gas stream while retaining hydrogen at high pressure.

  11. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerald P. Huffman

    2004-03-31

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogenmore » from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center (Tank & Automotive Command--TACOM), and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the six months of the subject contract from October 1, 2002 through March 31, 2003. The results are presented in thirteen detailed reports on research projects headed by various faculty members at each of the five CFFS Universities. Additionally, an Executive Summary has been prepared that summarizes the principal results of all of these projects during the six-month reporting period.« less

  12. Growing a market economy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basu, N.; Pryor, R.J.

    1997-09-01

    This report presents a microsimulation model of a transition economy. Transition is defined as the process of moving from a state-enterprise economy to a market economy. The emphasis is on growing a market economy starting from basic microprinciples. The model described in this report extends and modifies the capabilities of Aspen, a new agent-based model that is being developed at Sandia National Laboratories on a massively parallel Paragon computer. Aspen is significantly different from traditional models of the economy. Aspen`s emphasis on disequilibrium growth paths, its analysis based on evolution and emergent behavior rather than on a mechanistic view ofmore » society, and its use of learning algorithms to simulate the behavior of some agents rather than an assumption of perfect rationality make this model well-suited for analyzing economic variables of interest from transition economies. Preliminary results from several runs of the model are included.« less

  13. First experiment on liquid hydrogen transportation by ship inside Osaka bay

    NASA Astrophysics Data System (ADS)

    Maekawa, K.; Takeda, M.; Hamaura, T.; Suzuki, K.; Miyake, Y.; Matsuno, Y.; Fujikawa, S.; Kumakura, H.

    2017-12-01

    A project to import a large amount of liquid hydrogen (LH2) from Australia by a cargo carrier, which is equipped with two 1250 m3 tanks, is underway in Japan. It is important to understand sloshing and boil-off characteristics inside the LH2 tank during marine transportation. However, the LH2 sloshing and boil-off characteristics on the sea have not yet been clarified. First experiment on the LH2 transportation of 20 liter with magnesium diboride (MgB2) level sensors by the training ship “Fukae-maru”, which has 50 m long and 449 ton gross weight, was carried out successfully inside Osaka bay on February 2, 2017. In the experiment, synchronous measurements of liquid level, temperature, pressure, ship motions, and accelerations as well as the rapid depressurization test were done. The increase rate of the temperature and the pressure inside the LH2 tank were discussed under the rolling and the pitching conditions.

  14. Microbial detection method based on sensing molecular hydrogen

    NASA Technical Reports Server (NTRS)

    Wilkins, J. R.; Stoner, G. E.; Boykin, E. H.

    1974-01-01

    A simple method for detecting bacteria, based on the time of hydrogen evolution, was developed and tested against various members of the Enterobacteriaceae group. The test system consisted of (1) two electrodes, platinum and a reference electrode, (2) a buffer amplifier, and (3) a strip-chart recorder. Hydrogen evolution was measured by an increase in voltage in the negative (cathodic) direction. A linear relationship was established between inoculum size and the time hydrogen was detected (lag period). Lag times ranged from 1 h for 1 million cells/ml to 7 h for 1 cell/ml. For each 10-fold decrease in inoculum, length of the lag period increased 60 to 70 min. Based on the linear relationship between inoculum and lag period, these results indicate the potential application of the hydrogen-sensing method for rapidly detecting coliforms and other gas-producing microorganisms in a variety of clinical, food, and other samples.

  15. Hydrogen-based electrochemical energy storage

    DOEpatents

    Simpson, Lin Jay

    2013-08-06

    An energy storage device (100) providing high storage densities via hydrogen storage. The device (100) includes a counter electrode (110), a storage electrode (130), and an ion conducting membrane (120) positioned between the counter electrode (110) and the storage electrode (130). The counter electrode (110) is formed of one or more materials with an affinity for hydrogen and includes an exchange matrix for elements/materials selected from the non-noble materials that have an affinity for hydrogen. The storage electrode (130) is loaded with hydrogen such as atomic or mono-hydrogen that is adsorbed by a hydrogen storage material such that the hydrogen (132, 134) may be stored with low chemical bonding. The hydrogen storage material is typically formed of a lightweight material such as carbon or boron with a network of passage-ways or intercalants for storing and conducting mono-hydrogen, protons, or the like. The hydrogen storage material may store at least ten percent by weight hydrogen (132, 134) at ambient temperature and pressure.

  16. Systems and methods for selective hydrogen transport and measurement

    DOEpatents

    Glatzmaier, Gregory C

    2013-10-29

    Systems and methods for selectively removing hydrogen gas from a hydrogen-containing fluid volume are disclosed. An exemplary system includes a proton exchange membrane (PEM) selectively permeable to hydrogen by exclusively conducting hydrogen ions. The system also includes metal deposited as layers onto opposite sides or faces of the PEM to form a membrane-electrode assembly (MEA), each layer functioning as an electrode so that the MEA functions as an electrochemical cell in which the ionic conductors are hydrogen ions, and the MEA functioning as a hydrogen selective membrane (HSM) when located at the boundary between a hydrogen-containing fluid volume and a second fluid.

  17. 40 CFR 600.206-08 - Calculation and use of FTP-based and HFET-based fuel economy values for vehicle configurations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Calculation and use of FTP-based and HFET-based fuel economy values for vehicle configurations. 600.206-08 Section 600.206-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel...

  18. Transportation Services Index and the economy

    DOT National Transportation Integrated Search

    2007-12-01

    The March 2005 release of the Transportation Services Index (TSI), an economic measure of freight and passenger movements,1 marked the Bureau of Transportation Statistics' (BTS') entry into the company of federal statistical agencies that produce mon...

  19. [Market economy, health economy?].

    PubMed

    De Wever, A

    2002-09-01

    After the definition of the economy and its different types, we have to stress the political economy which integrates pure economy and society. The economical science will gradually introduce the health economy of which the definition urges to seek for a better distribution between public and private means to do more and better for the public health. The market economy is different from the state economy. She is principally conducted by the supply and demand law. The consumer's behaviour in a competitive market has some characteristics which favour the balance of this market. The healthcare market put also a health supply and demand forward but not with the same values. The needs, the supply, the consumption and the consumer's behaviour are different in this particular market which quickly evolves and progressively goes closer to the market economy. Is the healthcare an economical good or duty? The choices' criteria and the priorities are changeable. The role of the valuation studies in health economy is to try to clarify them and to favour a better use of the limited resources to the unlimited needs.

  20. 40 CFR 600.208-12 - Calculation of FTP-based and HFET-based fuel economy and carbon-related exhaust emission values...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Calculation of FTP-based and HFET-based fuel economy and carbon-related exhaust emission values for a model type. 600.208-12 Section 600.208-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR...

  1. Development of a Microwave Regenerative Sorbent-Based Hydrogen Purifier

    NASA Technical Reports Server (NTRS)

    Wheeler, Richard R., Jr.; Dewberry, Ross H.; McCurry, Bryan D.; Abney, Morgan B.; Greenwood, Zachary W.

    2016-01-01

    This paper describes the design and fabrication of a Microwave Regenerative Sorbent-based Hydrogen Purifier (MRSHP). This unique microwave powered technology was developed for the purification of a hydrogen stream produced by the Plasma Pyrolysis Assembly (PPA). The PPA is a hydrogen recovery (from methane) post processor for NASA's Sabatier-based carbon dioxide reduction process. Embodied in the Carbon dioxide Reduction Assembly (CRA), currently aboard the International Space Station (ISS), the Sabatier reaction employs hydrogen to catalytically recover oxygen, in the form of water, from respiratory carbon dioxide produced by the crew. This same approach is base-lined for future service in the Air Revitalization system on extended missions into deep space where resupply is not practical. Accordingly, manned exploration to Mars may only become feasible with further closure of the air loop as afforded by the greater hydrogen recovery permitted by the PPA with subsequent hydrogen purification. By utilizing the well-known high sorbate loading capacity of molecular sieve 13x, coupled with microwave dielectric heating phenomenon, MRSHP technology is employed as a regenerative filter for a contaminated hydrogen gas stream. By design, freshly regenerated molecular sieve 13x contained in the MRSHP will remove contaminants from the effluent of a 1-CM scale PPA for several hours prior to breakthrough. By reversing flow and pulling a relative vacuum the MRSHP prototype then uses 2.45 GHz microwave power, applied through a novel coaxial antenna array, to rapidly heat the sorbent bed and drive off the contaminants in a short duration vacuum/thermal contaminant desorption step. Finally, following rapid cooling via room temperature cold plates, the MRSHP is again ready to serve as a hydrogen filter.

  2. Closing the gap between socioeconomic and financial implications of residential and community level hydrogen-based energy systems: Incentives needed for a bridge to the future

    NASA Astrophysics Data System (ADS)

    Verduzco, Laura E.

    The use of hydrogen as an energy carrier has the potential to decrease the amount of pollutants emitted to the atmosphere, significantly reduce our dependence on imported oil and resolve geopolitical issues related to energy consumption. The current status of hydrogen technology makes it prohibitive and financially risky for most investors to commit the money required for large-scale hydrogen production. Therefore, alternative strategies such as small and medium-scale hydrogen applications should be implemented during the early stages of the transition to the hydrogen economy in order to test potential markets and technology readiness. While many analysis tools have been built to estimate the requirements of the transition to a hydrogen economy, few have focused on small and medium-scale hydrogen production and none has paired financial with socioeconomic costs at the residential level. The computer-based tool (H2POWER) presented in this study calculates the capacity, cost and socioeconomic impact of the systems needed to meet the energy demands of a home or a community using home and neighborhood refueling units, which are systems that can provide electricity and heat to meet the energy demands of either (1) a home and automobile or (2) a cluster of homes and a number of automobiles. The financial costs of the production, processing and delivery sub-systems that conform the refueling units are calculated using cost data of existing technology and normalizing them to calculate capital and net present cost. The monetary value of the externalities (socioeconomic analysis) caused by each system is calculated by H2POWER through a statistical analysis of the cost associated to various externalities. Additionally, H2POWER calculates the financial impact of different penalties and incentives (such as net metering, low interest loans, fuel taxes, and emission penalties) on the cost of the system from the point of view of a developer and a homeowner. In order to assess the

  3. The Hydrogen Peroxide Scavenger, Catalase, Alleviates Ion Transport Dysfunction in Murine Colitis

    PubMed Central

    Barrett, Kim E.; McCole, Declan F.

    2016-01-01

    Reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) contribute to epithelial damage and ion transport dysfunction (key events in inflammatory diarrhea) in inflammatory bowel disease (IBD). The aim of this study was to identify if H2O2 mediates suppression of colonic ion transport function in the murine dextran sulfate sodium (DSS) colitis model by using the H2O2 degrading enzyme, catalase. Colitis was induced by administering DSS (4%) in drinking water for 5 days followed by 3 days on normal H2O. Mice were administered either pegylated-catalase or saline at day −1, 0 and +1 of DSS treatment. Ion transport responses to the Ca2+-dependent agonist, carbachol (CCh), or the cAMP-dependent agonist, forskolin, were measured across distal colonic mucosa mounted in Ussing chambers. Parameters of DSS-induced inflammation (loss in body weight, decreased colon length, altered stool consistency), were only partially alleviated by catalase while histology was only minimally improved. However, catalase significantly reversed the DSS-induced reduction in baseline ion transport as well as colonic Isc responses to CCh. However, ion transport responses to forskolin were not significantly restored. Catalase also reduced activation of ERK MAP kinase in the setting of colitis, and increased expression of the Na+-K+-2Cl− cotransporter, NKCC1, consistent with restoration of ion transport function. Ex vivo treatment of inflamed colonic mucosae with catalase also partially restored ion transport function. Therefore, catalase partially prevents, and rescues, the loss of ion transport properties in DSS colitis even in the setting of unresolved tissue inflammation. These findings indicate a prominent role for ROS in ion transport dysfunction in colitis and may suggest novel strategies for the treatment of inflammatory diarrhea. PMID:27543846

  4. Installation of Ohio's First Electrolysis-Based Hydrogen Fueling Station

    NASA Technical Reports Server (NTRS)

    Scheidegger, Brianne T.; Lively, Michael L.

    2012-01-01

    This paper describes progress made towards the installation of a hydrogen fueling station in Northeast Ohio. In collaboration with several entities in the Northeast Ohio area, the NASA Glenn Research Center is installing a hydrogen fueling station that uses electrolysis to generate hydrogen on-site. The installation of this station is scheduled for the spring of 2012 at the Greater Cleveland Regional Transit Authority s Hayden bus garage in East Cleveland. This will be the first electrolysis-based hydrogen fueling station in Ohio.

  5. Hybrid and conventional hydrogen engine vehicles that meet EZEV emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aceves, S.M.; Smith, J.R.

    In this paper, a time-dependent engine model is used for predicting hydrogen engine efficiency and emissions. The model uses basic thermodynamic equations for the compression and expansion processes, along with an empirical correlation for heat transfer, to predict engine indicated efficiency. A friction correlation and a supercharger/turbocharger model are then used to calculate brake thermal efficiency. The model is validated with many experimental points obtained in a recent evaluation of a hydrogen research engine. A The validated engine model is then used to calculate fuel economy and emissions for three hydrogen-fueled vehicles: a conventional, a parallel hybrid, and a seriesmore » hybrid. All vehicles use liquid hydrogen as a fuel. The hybrid vehicles use a flywheel for energy storage. Comparable ultra capacitor or battery energy storage performance would give similar results. This paper analyzes the engine and flywheel sizing requirements for obtaining a desired level of performance. The results indicate that hydrogen lean-burn spark-ignited engines can provide a high fuel economy and Equivalent Zero Emission Vehicle (EZEV) levels in the three vehicle configurations being analyzed.« less

  6. A hydrogen-based subsurface microbial community dominated by methanogens

    USGS Publications Warehouse

    Chapelle, F.H.; O'Neil, Kyle; Bradley, P.M.; Methe, B.A.; Ciufo, S.A.; Knobel, L.L.; Lovley, D.R.

    2002-01-01

    The search for extraterrestrial life may be facilitated if ecosystems can be found on Earth that exist under conditions analogous to those present on other planets or moons. It has been proposed, on the basis of geochemical and thermodynamic considerations, that geologically derived hydrogen might support subsurface microbial communities on Mars and Europa in which methanogens form the base of the ecosystem1-5. Here we describe a unique subsurface microbial community in which hydrogen-consuming, methane-producing Archaea far outnumber the Bacteria. More than 90% of the 16s ribosomal DNA sequences recovered from hydrothermal waters circulating through deeply buried igneous rocks in Idaho are related to hydrogen-using methanogenic microorganisms. Geochemical characterization indicates that geothermal hydrogen, not organic carbon, is the primary energy source for this methanogen-dominated microbial community. These results demonstrate that hydrogen-based methanogenic communities do occur in Earth's subsurface, providing an analogue for possible subsurface microbial ecosystems on other planets.

  7. Hydrogen Gas Sensors Based on Semiconductor Oxide Nanostructures

    PubMed Central

    Gu, Haoshuang; Wang, Zhao; Hu, Yongming

    2012-01-01

    Recently, the hydrogen gas sensing properties of semiconductor oxide (SMO) nanostructures have been widely investigated. In this article, we provide a comprehensive review of the research progress in the last five years concerning hydrogen gas sensors based on SMO thin film and one-dimensional (1D) nanostructures. The hydrogen sensing mechanism of SMO nanostructures and some critical issues are discussed. Doping, noble metal-decoration, heterojunctions and size reduction have been investigated and proved to be effective methods for improving the sensing performance of SMO thin films and 1D nanostructures. The effect on the hydrogen response of SMO thin films and 1D nanostructures of grain boundary and crystal orientation, as well as the sensor architecture, including electrode size and nanojunctions have also been studied. Finally, we also discuss some challenges for the future applications of SMO nanostructured hydrogen sensors. PMID:22778599

  8. A Computational and Theoretical Study of Conductance in Hydrogen-bonded Molecular Junctions

    NASA Astrophysics Data System (ADS)

    Wimmer, Michael

    This thesis is devoted to the theoretical and computational study of electron transport in molecular junctions where one or more hydrogen bonds are involved in the process. While electron transport through covalent bonds has been extensively studied, in recent work the focus has been shifted towards hydrogen-bonded systems due to their ubiquitous presence in biological systems and their potential in forming nano-junctions between molecular electronic devices and biological systems. This analysis allows us to significantly expand our comprehension of the experimentally observed result that the inclusion of hydrogen bonding in a molecular junction significantly impacts its transport properties, a fact that has important implications for our understanding of transport through DNA, and nano-biological interfaces in general. In part of this work I have explored the implications of quasiresonant transport in short chains of weakly-bonded molecular junctions involving hydrogen bonds. I used theoretical and computational analysis to interpret recent experiments and explain the role of Fano resonances in the transmission properties of the junction. In a different direction, I have undertaken the study of the transversal conduction through nucleotide chains that involve a variable number of different hydrogen bonds, e.g. NH˙˙˙O, OH˙˙˙O, and NH˙˙˙N, which are the three most prevalent hydrogen bonds in biological systems and organic electronics. My effort here has focused on the analysis of electronic descriptors that allow a simplified conceptual and computational understanding of transport properties. Specifically, I have expanded our previous work where the molecular polarizability was used as a conductance descriptor to include the possibility of atomic and bond partitions of the molecular polarizability. This is important because it affords an alternative molecular description of conductance that is not based on the conventional view of molecular orbitals as

  9. Oxygen transport membrane reactor based method and system for generating electric power

    DOEpatents

    Kelly, Sean M.; Chakravarti, Shrikar; Li, Juan

    2017-02-07

    A carbon capture enabled system and method for generating electric power and/or fuel from methane containing sources using oxygen transport membranes by first converting the methane containing feed gas into a high pressure synthesis gas. Then, in one configuration the synthesis gas is combusted in oxy-combustion mode in oxygen transport membranes based boiler reactor operating at a pressure at least twice that of ambient pressure and the heat generated heats steam in thermally coupled steam generation tubes within the boiler reactor; the steam is expanded in steam turbine to generate power; and the carbon dioxide rich effluent leaving the boiler reactor is processed to isolate carbon. In another configuration the synthesis gas is further treated in a gas conditioning system configured for carbon capture in a pre-combustion mode using water gas shift reactors and acid gas removal units to produce hydrogen or hydrogen-rich fuel gas that fuels an integrated gas turbine and steam turbine system to generate power. The disclosed method and system can also be adapted to integrate with coal gasification systems to produce power from both coal and methane containing sources with greater than 90% carbon isolation.

  10. Teaching Business Strategy for an Emerging Economy: An Internet-Based Simulation.

    ERIC Educational Resources Information Center

    Miller, Van V.

    2003-01-01

    Describes an Internet-based simulation used in a course about business strategy in an emerging economy. The simulation, when coupled with today's dominant strategy paradigm, the Resource Based View, appears to yield a course design that attracts students while emphasizing the actual substance which is crucial in such a course. (EV)

  11. 40 CFR 600.206-12 - Calculation and use of FTP-based and HFET-based fuel economy and carbon-related exhaust emission...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Calculation and use of FTP-based and HFET-based fuel economy and carbon-related exhaust emission values for vehicle configurations. 600.206-12 Section 600.206-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST...

  12. Thermodynamic Tuning of Mg-Based Hydrogen Storage Alloys: A Review

    PubMed Central

    Zhu, Min; Lu, Yanshan; Ouyang, Liuzhang; Wang, Hui

    2013-01-01

    Mg-based hydrides are one of the most promising hydrogen storage materials because of their relatively high storage capacity, abundance, and low cost. However, slow kinetics and stable thermodynamics hinder their practical application. In contrast to the substantial progress in the enhancement of the hydrogenation/dehydrogenation kinetics, thermodynamic tuning is still a great challenge for Mg-based alloys. At present, the main strategies to alter the thermodynamics of Mg/MgH2 are alloying, nanostructuring, and changing the reaction pathway. Using these approaches, thermodynamic tuning has been achieved to some extent, but it is still far from that required for practical application. In this article, we summarize the advantages and disadvantages of these strategies. Based on the current progress, finding reversible systems with high hydrogen capacity and effectively tailored reaction enthalpy offers a promising route for tuning the thermodynamics of Mg-based hydrogen storage alloys. PMID:28788353

  13. Empirical Method to Estimate Hydrogen Embrittlement of Metals as a Function of Hydrogen Gas Pressure at Constant Temperature

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2010-01-01

    High pressure Hydrogen (H) gas has been known to have a deleterious effect on the mechanical properties of certain metals, particularly, the notched tensile strength, fracture toughness and ductility. The ratio of these properties in Hydrogen as compared to Helium or Air is called the Hydrogen Environment Embrittlement (HEE) Index, which is a useful method to classify the severity of H embrittlement and to aid in the material screening and selection for safety usage H gas environment. A comprehensive world-wide database compilation, in the past 50 years, has shown that the HEE index is mostly collected at two conveniently high H pressure points of 5 ksi and 10 ksi near room temperature. Since H embrittlement is directly related to pressure, the lack of HEE index at other pressure points has posed a technical problem for the designers to select appropriate materials at a specific H pressure for various applications in aerospace, alternate and renewable energy sectors for an emerging hydrogen economy. Based on the Power-Law mathematical relationship, an empirical method to accurately predict the HEE index, as a function of H pressure at constant temperature, is presented with a brief review on Sievert's law for gas-metal absorption.

  14. Silicon Carbide-Based Hydrogen Gas Sensors for High-Temperature Applications

    PubMed Central

    Kim, Seongjeen; Choi, Jehoon; Jung, Minsoo; Joo, Sungjae; Kim, Sangchoel

    2013-01-01

    We investigated SiC-based hydrogen gas sensors with metal-insulator-semiconductor (MIS) structure for high temperature process monitoring and leak detection applications in fields such as the automotive, chemical and petroleum industries. In this work, a thin tantalum oxide (Ta2O5) layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC) was used as a substrate for high-temperature applications. We fabricated Pd/Ta2O5/SiC-based hydrogen gas sensors, and the dependence of their I-V characteristics and capacitance response properties on hydrogen concentrations were analyzed in the temperature range from room temperature to 500 °C. According to the results, our sensor shows promising performance for hydrogen gas detection at high temperatures. PMID:24113685

  15. Silicon carbide-based hydrogen gas sensors for high-temperature applications.

    PubMed

    Kim, Seongjeen; Choi, Jehoon; Jung, Minsoo; Joo, Sungjae; Kim, Sangchoel

    2013-10-09

    We investigated SiC-based hydrogen gas sensors with metal-insulator-semiconductor (MIS) structure for high temperature process monitoring and leak detection applications in fields such as the automotive, chemical and petroleum industries. In this work, a thin tantalum oxide (Ta2O5) layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC) was used as a substrate for high-temperature applications. We fabricated Pd/Ta2O5/SiC-based hydrogen gas sensors, and the dependence of their I-V characteristics and capacitance response properties on hydrogen concentrations were analyzed in the temperature range from room temperature to 500 °C. According to the results, our sensor shows promising performance for hydrogen gas detection at high temperatures.

  16. 49 CFR 173.163 - Hydrogen fluoride.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Hydrogen fluoride. 173.163 Section 173.163... Hydrogen fluoride. (a) Hydrogen fluoride (hydrofluoric acid, anhydrous) must be packaged as follows: (1) In... filling ratio of 0.84. (b) A cylinder removed from hydrogen fluoride service must be condemned in...

  17. 49 CFR 173.163 - Hydrogen fluoride.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Hydrogen fluoride. 173.163 Section 173.163... Hydrogen fluoride. (a) Hydrogen fluoride (hydrofluoric acid, anhydrous) must be packaged as follows: (1) In... filling ratio of 0.84. (b) A cylinder removed from hydrogen fluoride service must be condemned in...

  18. 49 CFR 173.163 - Hydrogen fluoride.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Hydrogen fluoride. 173.163 Section 173.163... Hydrogen fluoride. (a) Hydrogen fluoride (hydrofluoric acid, anhydrous) must be packaged as follows: (1) In... filling ratio of 0.84. (b) A cylinder removed from hydrogen fluoride service must be condemned in...

  19. 49 CFR 173.163 - Hydrogen fluoride.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Hydrogen fluoride. 173.163 Section 173.163... Hydrogen fluoride. (a) Hydrogen fluoride (hydrofluoric acid, anhydrous) must be packaged as follows: (1) In... filling ratio of 0.84. (b) A cylinder removed from hydrogen fluoride service must be condemned in...

  20. 49 CFR 173.163 - Hydrogen fluoride.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Hydrogen fluoride. 173.163 Section 173.163... Hydrogen fluoride. (a) Hydrogen fluoride (hydrofluoric acid, anhydrous) must be packaged as follows: (1) In... filling ratio of 0.84. (b) A cylinder removed from hydrogen fluoride service must be condemned in...

  1. Fuel Economy Label and CAFE Data Inventory

    EPA Pesticide Factsheets

    The Fuel Economy Label and CAFE Data asset contains measured summary fuel economy estimates and test data for light-duty vehicle manufacturers by model for certification as required under the Energy Policy and Conservation Act of 1975 (EPCA) and The Energy Independent Security Act of 2007 (EISA) to collect vehicle fuel economy estimates for the creation of Economy Labels and for the calculation of Corporate Average Fuel Economy (CAFE). Manufacturers submit data on an annual basis, or as needed to document vehicle model changes.The EPA performs targeted fuel economy confirmatory tests on approximately 15% of vehicles submitted for validation. Confirmatory data on vehicles is associated with its corresponding submission data to verify the accuracy of manufacturer submissions beyond standard business rules. Submitted data comes in XML format or as documents, with the majority of submissions being sent in XML, and includes descriptive information on the vehicle itself, fuel economy information, and the manufacturer's testing approach. This data may contain proprietary information (CBI) such as information on estimated sales or other data elements indicated by the submitter as confidential. CBI data is not publically available; however, within the EPA data can accessed under the restrictions of the Office of Transportation and Air Quality (OTAQ) CBI policy [RCS Link]. Datasets are segmented by vehicle model/manufacturer and/or year with corresponding fuel economy, te

  2. Simple and Efficient System for Combined Solar Energy Harvesting and Reversible Hydrogen Storage.

    PubMed

    Li, Lu; Mu, Xiaoyue; Liu, Wenbo; Mi, Zetian; Li, Chao-Jun

    2015-06-24

    Solar energy harvesting and hydrogen economy are the two most important green energy endeavors for the future. However, a critical hurdle to the latter is how to safely and densely store and transfer hydrogen. Herein, we developed a reversible hydrogen storage system based on low-cost liquid organic cyclic hydrocarbons at room temperature and atmospheric pressure. A facile switch of hydrogen addition (>97% conversion) and release (>99% conversion) with superior capacity of 7.1 H2 wt % can be quickly achieved over a rationally optimized platinum catalyst with high electron density, simply regulated by dark/light conditions. Furthermore, the photodriven dehydrogenation of cyclic alkanes gave an excellent apparent quantum efficiency of 6.0% under visible light illumination (420-600 nm) without any other energy input, which provides an alternative route to artificial photosynthesis for directly harvesting and storing solar energy in the form of chemical fuel.

  3. Plant cell wall sugars: sweeteners for a bio-based economy.

    PubMed

    Van de Wouwer, Dorien; Boerjan, Wout; Vanholme, Bartel

    2018-02-12

    Global warming and the consequent climate change is one of the major environmental challenges we are facing today. The driving force behind the rise in temperature is our fossil-based economy, which releases massive amounts of the greenhouse gas carbon dioxide into the atmosphere. In order to reduce greenhouse gas emission, we need to scale down our dependency on fossil resources, implying that we need other sources for energy and chemicals to feed our economy. Here, plants have an important role to play; by means of photosynthesis, plants capture solar energy to split water and fix carbon derived from atmospheric carbon dioxide. A significant fraction of the fixed carbon ends up as polysaccharides in the plant cell wall. Fermentable sugars derived from cell wall polysaccharides form an ideal carbon source for the production of bio-platform molecules. However, a major limiting factor in the use of plant biomass as feedstock for the bio-based economy is the complexity of the plant cell wall and its recalcitrance towards deconstruction. To facilitate the release of fermentable sugars during downstream biomass processing, the composition and structure of the cell wall can be engineered. Different strategies to reduce cell wall recalcitrance will be described in this review. The ultimate goal is to obtain a tailor-made biomass, derived from plants with a cell wall optimized for particular industrial or agricultural applications, without affecting plant growth and development. This article is protected by copyright. All rights reserved.

  4. 49 CFR 525.11 - Termination of exemption; amendment of alternative average fuel economy standard.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... average fuel economy standard. 525.11 Section 525.11 Transportation Other Regulations Relating to... EXEMPTIONS FROM AVERAGE FUEL ECONOMY STANDARDS § 525.11 Termination of exemption; amendment of alternative average fuel economy standard. (a) Any exemption granted under this part for an affected model year does...

  5. 49 CFR 525.11 - Termination of exemption; amendment of alternative average fuel economy standard.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... average fuel economy standard. 525.11 Section 525.11 Transportation Other Regulations Relating to... EXEMPTIONS FROM AVERAGE FUEL ECONOMY STANDARDS § 525.11 Termination of exemption; amendment of alternative average fuel economy standard. (a) Any exemption granted under this part for an affected model year does...

  6. 49 CFR 525.11 - Termination of exemption; amendment of alternative average fuel economy standard.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... average fuel economy standard. 525.11 Section 525.11 Transportation Other Regulations Relating to... EXEMPTIONS FROM AVERAGE FUEL ECONOMY STANDARDS § 525.11 Termination of exemption; amendment of alternative average fuel economy standard. (a) Any exemption granted under this part for an affected model year does...

  7. 49 CFR 525.11 - Termination of exemption; amendment of alternative average fuel economy standard.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... average fuel economy standard. 525.11 Section 525.11 Transportation Other Regulations Relating to... EXEMPTIONS FROM AVERAGE FUEL ECONOMY STANDARDS § 525.11 Termination of exemption; amendment of alternative average fuel economy standard. (a) Any exemption granted under this part for an affected model year does...

  8. 36 CFR 212.10 - Maximum economy National Forest System roads.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Maximum economy National Forest System roads. 212.10 Section 212.10 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE TRAVEL MANAGEMENT Administration of the Forest Transportation System § 212.10 Maximum economy National Forest System roads. The Chie...

  9. Theory of ion transport with fast acid-base equilibrations in bioelectrochemical systems.

    PubMed

    Dykstra, J E; Biesheuvel, P M; Bruning, H; Ter Heijne, A

    2014-07-01

    Bioelectrochemical systems recover valuable components and energy in the form of hydrogen or electricity from aqueous organic streams. We derive a one-dimensional steady-state model for ion transport in a bioelectrochemical system, with the ions subject to diffusional and electrical forces. Since most of the ionic species can undergo acid-base reactions, ion transport is combined in our model with infinitely fast ion acid-base equilibrations. The model describes the current-induced ammonia evaporation and recovery at the cathode side of a bioelectrochemical system that runs on an organic stream containing ammonium ions. We identify that the rate of ammonia evaporation depends not only on the current but also on the flow rate of gas in the cathode chamber, the diffusion of ammonia from the cathode back into the anode chamber, through the ion exchange membrane placed in between, and the membrane charge density.

  10. Safe Detection System for Hydrogen Leaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lieberman, Robert A.; Beshay, Manal

    2012-02-29

    Hydrogen is an "environmentally friendly" fuel for future transportation and other applications, since it produces only pure ("distilled") water when it is consumed. Thus, hydrogen-powered vehicles are beginning to proliferate, with the total number of such vehicles expected to rise to nearly 100,000 within the next few years. However, hydrogen is also an odorless, colorless, highly flammable gas. Because of this, there is an important need for hydrogen safety monitors that can warn of hazardous conditions in vehicles, storage facilities, and hydrogen production plants. To address this need, IOS has developed a unique intrinsically safe optical hydrogen sensing technology, andmore » has embodied it in detector systems specifically developed for safety applications. The challenge of using light to detect a colorless substance was met by creating chemically-sensitized optical materials whose color changes in the presence of hydrogen. This reversible reaction provides a sensitive, reliable, way of detecting hydrogen and measuring its concentration using light from low-cost LEDs. Hydrogen sensors based on this material were developed in three completely different optical formats: point sensors ("optrodes"), integrated optic sensors ("optical chips"), and optical fibers ("distributed sensors") whose entire length responds to hydrogen. After comparing performance, cost, time-to-market, and relative market need for these sensor types, the project focused on designing a compact optrode-based single-point hydrogen safety monitor. The project ended with the fabrication of fifteen prototype units, and the selection of two specific markets: fuel cell enclosure monitoring, and refueling/storage safety. Final testing and development of control software for these markets await future support.« less

  11. Investigation of Novel Membrane Technologies for Hydrogen Separation

    NASA Astrophysics Data System (ADS)

    Van Cleave, William M., III

    The production of hydrogen gas via its separation from multicomponent syngas derived from biomass is an important process in the burgeoning carbon-neutral hydrogen economy. Current methods utilize membranes made from expensive materials such as palladium or bulky pressure vessels that use adsorption properties. Holey graphene and doped perovskite ceramics are alternative membrane materials that are relatively inexpensive and easily produced. A range of holey graphene membranes was produced using dry pressing and other techniques, including high temperature reduction, to examine the efficiency of this material. Experimental results using these holey graphene membranes are presented from a lab-scale facility designed to test various membrane types. These results showed decreasing flux and increasing selectivity as membrane thickness increased. Comparison with results from literature indicate these membranes exhibit higher overall flux but lower selectivity when compared to palladium-based membrane technologies.

  12. Universities and the Knowledge-Based Economy: Perceptions from a Developing Country

    ERIC Educational Resources Information Center

    Bano, Shah; Taylor, John

    2015-01-01

    This paper considers the role of universities in the creation of a knowledge-based economy (KBE) in a developing country, Pakistan. Some developing countries have moved quickly to develop a KBE, but progress in Pakistan is much slower. Higher education plays a crucial role as part of the triple helix model for innovation. Based on the perceptions…

  13. The Development of Fuel Cell Technology for Electric Power Generation - From Spacecraft Applications to the Hydrogen Economy

    NASA Technical Reports Server (NTRS)

    Scott, John H.

    2005-01-01

    The fuel cell uses a catalyzed reaction between a fuel and an oxidizer to directly produce electricity. Its high theoretical efficiency and low temperature operation made it a subject of much study upon its invention ca. 1900, but its relatively high life cycle costs kept it as "solution in search of a problem" for its first half century. The first problem for which fuel cells presented a cost effective solution was, starting in the 1960's that of a power source for NASA's manned spacecraft. NASA thus invested, and continues to invest, in the development of fuel cell power plants for this application. However, starting in the mid-1990's, prospective environmental regulations have driven increased governmental and industrial interest in "green power" and the "Hydrogen Economy." This has in turn stimulated greatly increased investment in fuel cell development for a variety of terrestrial applications. This investment is bringing about notable advances in fuel cell technology, but these advances are often in directions quite different from those needed for NASA spacecraft applications. This environment thus presents both opportunities and challenges for NASA's manned space program.

  14. Electronic transport coefficients from ab initio simulations and application to dense liquid hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holst, Bastian; French, Martin; Redmer, Ronald

    2011-06-15

    Using Kubo's linear response theory, we derive expressions for the frequency-dependent electrical conductivity (Kubo-Greenwood formula), thermopower, and thermal conductivity in a strongly correlated electron system. These are evaluated within ab initio molecular dynamics simulations in order to study the thermoelectric transport coefficients in dense liquid hydrogen, especially near the nonmetal-to-metal transition region. We also observe significant deviations from the widely used Wiedemann-Franz law, which is strictly valid only for degenerate systems, and give an estimate for its valid scope of application toward lower densities.

  15. Metal-mediated DNA base pairing: alternatives to hydrogen-bonded Watson-Crick base pairs.

    PubMed

    Takezawa, Yusuke; Shionoya, Mitsuhiko

    2012-12-18

    With its capacity to store and transfer the genetic information within a sequence of monomers, DNA forms its central role in chemical evolution through replication and amplification. This elegant behavior is largely based on highly specific molecular recognition between nucleobases through the specific hydrogen bonds in the Watson-Crick base pairing system. While the native base pairs have been amazingly sophisticated through the long history of evolution, synthetic chemists have devoted considerable efforts to create alternative base pairing systems in recent decades. Most of these new systems were designed based on the shape complementarity of the pairs or the rearrangement of hydrogen-bonding patterns. We wondered whether metal coordination could serve as an alternative driving force for DNA base pairing and why hydrogen bonding was selected on Earth in the course of molecular evolution. Therefore, we envisioned an alternative design strategy: we replaced hydrogen bonding with another important scheme in biological systems, metal-coordination bonding. In this Account, we provide an overview of the chemistry of metal-mediated base pairing including basic concepts, molecular design, characteristic structures and properties, and possible applications of DNA-based molecular systems. We describe several examples of artificial metal-mediated base pairs, such as Cu(2+)-mediated hydroxypyridone base pair, H-Cu(2+)-H (where H denotes a hydroxypyridone-bearing nucleoside), developed by us and other researchers. To design the metallo-base pairs we carefully chose appropriate combinations of ligand-bearing nucleosides and metal ions. As expected from their stronger bonding through metal coordination, DNA duplexes possessing metallo-base pairs exhibited higher thermal stability than natural hydrogen-bonded DNAs. Furthermore, we could also use metal-mediated base pairs to construct or induce other high-order structures. These features could lead to metal-responsive functional

  16. Transport policy and health inequalities: a health impact assessment of Edinburgh's transport policy.

    PubMed

    Gorman, D; Douglas, M J; Conway, L; Noble, P; Hanlon, P

    2003-01-01

    Health impact assessment (HIA) can be used to examine the relationships between inequalities and health. This HIA of Edinburgh's transport policy demonstrates how HIA can examine how different transport policies can affect different population groupings to varying degrees. In this case, Edinburgh's economy is based on tourism, financial services and Government bodies. These need a good transport infrastructure, which maintains a vibrant city centre. A transport policy that promotes walking, cycling and public transport supports this and is also good for health. The HIA suggested that greater spend on public transport and supporting sustainable modes of transport was beneficial to health, and offered scope to reduce inequalities. This message was understood by the City Council and influenced the development of the city's transport and land-use strategies. The paper discusses how HIA can influence public policy.

  17. Evaluating Social and National Education Textbooks Based on the Criteria of Knowledge-Based Economy from the Perspectives of Elementary Teachers in Jordan

    ERIC Educational Resources Information Center

    Al-Edwan, Zaid Suleiman; Hamaidi, Diala Abdul Hadi

    2011-01-01

    Knowledge-based economy is a new implemented trend in the field of education in Jordan. The ministry of education in Jordan attempts to implement this trend's philosophy in its textbooks. This study examined the extent to which the (1st-3rd grade) social and national textbooks reflect knowledge-based economy criteria from the perspective of…

  18. Proton conducting ceramic membranes for hydrogen separation

    DOEpatents

    Elangovan, S [South Jordan, UT; Nair, Balakrishnan G [Sandy, UT; Small, Troy [Midvale, UT; Heck, Brian [Salt Lake City, UT

    2011-09-06

    A multi-phase proton conducting material comprising a proton-conducting ceramic phase and a stabilizing ceramic phase. Under the presence of a partial pressure gradient of hydrogen across the membrane or under the influence of an electrical potential, a membrane fabricated with this material selectively transports hydrogen ions through the proton conducting phase, which results in ultrahigh purity hydrogen permeation through the membrane. The stabilizing ceramic phase may be substantially structurally and chemically identical to at least one product of a reaction between the proton conducting phase and at least one expected gas under operating conditions of a membrane fabricated using the material. In a barium cerate-based proton conducting membrane, one stabilizing phase is ceria.

  19. The performance of NASA research hydrogen masers

    NASA Technical Reports Server (NTRS)

    Reinhardt, V. S.; Rueger, L. J.

    1980-01-01

    Field operable hydrogen masers based on prior maser designs are presented. These units incorporate improvements in magnetic shielding, lower noise electronics, better thermal control, and have a microprocessor for operation, monitoring, and diagnostic functions. They are ruggedly built for transportability and ease of service anywhere in the world.

  20. Influence of Hydrogen Sulfide Exposure on the Transport and Structural Properties of the Metal–Organic Framework ZIF-8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Akshita; Tymi?ska, Nina; Zhu, Guanghui

    In this paper, the interaction between hydrogen sulfide and ZIF-8 was studied via structural characterizations and guest molecule diffusion measurements. It was found that hydrogen sulfide reacts with the ZIF-8 external particle surface to form a surface barrier that excludes the uptake of larger molecules (ethanol) and slows down the uptake of smaller molecules (carbon dioxide). Nonetheless, bulk transport properties were unaltered, as supported by pulsed field gradient nuclear magnetic resonance studies. Dispersion-corrected density functional theory calculations revealed that H 2S is consumed by reactions occurring at the ZIF external surface. These reactions result in water and defect formation, bothmore » of which were found to be exothermic and independent of both crystallographic facets ({001} and {110}) and surface termination. Finally, we concluded that these surface reactions lead to structural and chemical changes to the ZIF-8 external surface that generate surface barriers to molecular transport.« less

  1. Influence of Hydrogen Sulfide Exposure on the Transport and Structural Properties of the Metal–Organic Framework ZIF-8

    DOE PAGES

    Dutta, Akshita; Tymi?ska, Nina; Zhu, Guanghui; ...

    2018-03-09

    In this paper, the interaction between hydrogen sulfide and ZIF-8 was studied via structural characterizations and guest molecule diffusion measurements. It was found that hydrogen sulfide reacts with the ZIF-8 external particle surface to form a surface barrier that excludes the uptake of larger molecules (ethanol) and slows down the uptake of smaller molecules (carbon dioxide). Nonetheless, bulk transport properties were unaltered, as supported by pulsed field gradient nuclear magnetic resonance studies. Dispersion-corrected density functional theory calculations revealed that H 2S is consumed by reactions occurring at the ZIF external surface. These reactions result in water and defect formation, bothmore » of which were found to be exothermic and independent of both crystallographic facets ({001} and {110}) and surface termination. Finally, we concluded that these surface reactions lead to structural and chemical changes to the ZIF-8 external surface that generate surface barriers to molecular transport.« less

  2. Methodical approaches to providing sustainable development of the transport industry management system based on self-organization

    NASA Astrophysics Data System (ADS)

    Belyantseva, Oksana; Panenkov, Andrey; Safonova, Nataliya

    2017-10-01

    Current conditions of the cognitive economy formation demand to take into account the leading role of information, knowledge and human capital in the development of the transport industry management system. The article substantiates the conceptual approach to the self-organization of a management system on the basis of innovative changes. Human capital is the key aspect of self-organization, so the directions of improving the workforce quality are justified. Basing on the information-innovative genesis of the process of self-organization, the authors justified the necessity of preventing asymmetric information. For this pupose the actions against the resistance to innovations were proposed. The implementation of certain measures contributes to the effective development of the transport management system.

  3. Hydrogen-vacancy-dislocation interactions in α-Fe

    NASA Astrophysics Data System (ADS)

    Tehranchi, A.; Zhang, X.; Lu, G.; Curtin, W. A.

    2017-02-01

    Atomistic simulations of the interactions between dislocations, hydrogen atoms, and vacancies are studied to assess the viability of a recently proposed mechanism for the formation of nanoscale voids in Fe-based steels in the presence of hydrogen. Quantum-mechanics/molecular-mechanics method calculations confirm molecular statics simulations based on embedded atom method (EAM) potential showing that individual vacancies on the compressive side of an edge dislocation can be transported with the dislocation as it glides. Molecular dynamics simulations based on EAM potential then show, however, that vacancy clusters in the glide plane of an approaching dislocation are annihilated or reduced in size by the creation of a double-jog/climb process that is driven by the huge reduction in energy accompanying vacancy annihilation. The effectiveness of annihilation/reduction processes is not reduced by the presence of hydrogen in the vacancy clusters because typical V-H cluster binding energies are much lower than the vacancy formation energy, except at very high hydrogen content in the cluster. Analysis of a range of configurations indicates that hydrogen plays no special role in stabilizing nanovoids against jog formation processes that shrink voids. Experimental observations of nanovoids on the fracture surfaces of steels must be due to as-yet undetermined processes.

  4. Tuning electronic transport in epitaxial graphene-based van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chuan; Li, Jun; de La Barrera, Sergio C.; Eichfeld, Sarah M.; Nie, Yifan; Addou, Rafik; Mende, Patrick C.; Wallace, Robert M.; Cho, Kyeongjae; Feenstra, Randall M.; Robinson, Joshua A.

    2016-04-01

    Two-dimensional tungsten diselenide (WSe2) has been used as a component in atomically thin photovoltaic devices, field effect transistors, and tunneling diodes in tandem with graphene. In some applications it is necessary to achieve efficient charge transport across the interface of layered WSe2-graphene, a semiconductor to semimetal junction with a van der Waals (vdW) gap. In such cases, band alignment engineering is required to ensure a low-resistance, ohmic contact. In this work, we investigate the impact of graphene electronic properties on the transport at the WSe2-graphene interface. Electrical transport measurements reveal a lower resistance between WSe2 and fully hydrogenated epitaxial graphene (EGFH) compared to WSe2 grown on partially hydrogenated epitaxial graphene (EGPH). Using low-energy electron microscopy and reflectivity on these samples, we extract the work function difference between the WSe2 and graphene and employ a charge transfer model to determine the WSe2 carrier density in both cases. The results indicate that WSe2-EGFH displays ohmic behavior at small biases due to a large hole density in the WSe2, whereas WSe2-EGPH forms a Schottky barrier junction.Two-dimensional tungsten diselenide (WSe2) has been used as a component in atomically thin photovoltaic devices, field effect transistors, and tunneling diodes in tandem with graphene. In some applications it is necessary to achieve efficient charge transport across the interface of layered WSe2-graphene, a semiconductor to semimetal junction with a van der Waals (vdW) gap. In such cases, band alignment engineering is required to ensure a low-resistance, ohmic contact. In this work, we investigate the impact of graphene electronic properties on the transport at the WSe2-graphene interface. Electrical transport measurements reveal a lower resistance between WSe2 and fully hydrogenated epitaxial graphene (EGFH) compared to WSe2 grown on partially hydrogenated epitaxial graphene (EGPH). Using low

  5. Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems

    NASA Astrophysics Data System (ADS)

    Chalk, Steven G.; Miller, James F.

    Reducing or eliminating the dependency on petroleum of transportation systems is a major element of US energy research activities. Batteries are a key enabling technology for the development of clean, fuel-efficient vehicles and are key to making today's hybrid electric vehicles a success. Fuel cells are the key enabling technology for a future hydrogen economy and have the potential to revolutionize the way we power our nations, offering cleaner, more efficient alternatives to today's technology. Additionally fuel cells are significantly more energy efficient than combustion-based power generation technologies. Fuel cells are projected to have energy efficiency twice that of internal combustion engines. However before fuel cells can realize their potential, significant challenges remain. The two most important are cost and durability for both automotive and stationary applications. Recent electrocatalyst developments have shown that Pt alloy catalysts have increased activity and greater durability than Pt catalysts. The durability of conventional fluorocarbon membranes is improving, and hydrocarbon-based membranes have also shown promise of equaling the performance of fluorocarbon membranes at lower cost. Recent announcements have also provided indications that fuel cells can start from freezing conditions without significant deterioration. Hydrogen storage systems for vehicles are inadequate to meet customer driving range expectations (>300 miles or 500 km) without intrusion into vehicle cargo or passenger space. The United States Department of Energy has established three centers of Excellence for hydrogen storage materials development. The centers are focused on complex metal hydrides that can be regenerated onboard a vehicle, chemical hydrides that require off-board reprocessing, and carbon-based storage materials. Recent developments have shown progress toward the 2010 DOE targets. In addition DOE has established an independent storage material testing center

  6. A National MagLev Transportation System

    NASA Technical Reports Server (NTRS)

    Wright, Michael R.

    2003-01-01

    The case for a national high-speed magnetic-levitation (MagLev) transportation system is presented. Focus is on current issues facing the country, such as national security, the economy, transportation, technology, and the environment. NASA s research into MagLev technology for launch assist is also highlighted. Further, current socio-cultural norms regarding motor-vehicle-based transportation systems are questioned in light of the problems currently facing the U.S. The multidisciplinary benefits of a long-distance MagLev system support the idea that such a system would be an important element of a truly multimodal U.S. transportation infrastructure.

  7. Popular Education in Solidarity Economy

    ERIC Educational Resources Information Center

    de Melo Neto, José Francisco; da Costa, Francisco Xavier Pereira

    2015-01-01

    This article seeks to show the relation between popular education and solidarity economy in experiences of solidarity economy enterprises in Brazil. It is based on diverse experiences which have occurred in various sectors of this economy, highlighting those experiences which took place in João Pessoa with the creation of a Cooperative of Workers…

  8. Hydrogen and deuterium transport and inventory parameters through W and W-alloys for fusion reactor applications

    NASA Astrophysics Data System (ADS)

    Benamati, G.; Serra, E.; Wu, C. H.

    2000-12-01

    The aim of this work is to measure the hydrogen/deuterium transport and inventory parameters in relevant structural and/or armour materials for the International Thermonuclear Experimental Reactor (ITER) divertor such as W and W-alloys. The W-alloys: W, W + 1% La 2O 3 and W + 5% Re have been investigated. The materials were supplied from the Metallwerk Plansee GmbH (Austria). Measurements were conducted using a time-dependent permeation method over the temperature range 673-873 K with hydrogen and deuterium pressures in the range 10-100 kPa (100-1000 mbar). The samples were also characterized using optical microscopy, SEM and energy dispersive spectroscopy (EDS) in order to investigate the composition, microstructure and morphology of the surfaces and cross-sections through the samples.

  9. Computer programs for thermodynamic and transport properties of hydrogen (tabcode-II)

    NASA Technical Reports Server (NTRS)

    Roder, H. M.; Mccarty, R. D.; Hall, W. J.

    1972-01-01

    The thermodynamic and transport properties of para and equilibrium hydrogen have been programmed into a series of computer routines. Input variables are the pair's pressure-temperature and pressure-enthalpy. The programs cover the range from 1 to 5000 psia with temperatures from the triple point to 6000 R or enthalpies from minus 130 BTU/lb to 25,000 BTU/lb. Output variables are enthalpy or temperature, density, entropy, thermal conductivity, viscosity, at constant volume, the heat capacity ratio, and a heat transfer parameter. Property values on the liquid and vapor boundaries are conveniently obtained through two small routines. The programs achieve high speed by using linear interpolation in a grid of precomputed points which define the surface of the property returned.

  10. The development of hydrogen sensor technology at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Neudeck, Philip G.; Jefferson, G. D.; Madzsar, G. C.; Liu, C. C.; Wu, Q. H.

    1993-01-01

    The detection of hydrogen leaks in aerospace applications, especially those involving hydrogen fuel propulsion systems, is of extreme importance for reasons of reliability, safety, and economy. Motivated by leaks occurring in liquid hydrogen lines supplying the main engine of the Space Shuttle, NASA Lewis has initiated a program to develop point-contact hydrogen sensors which address the needs of aerospace applications. Several different approaches are being explored. They include the fabrication of PdAg Schottky diode structures, the characterization of PdCr as a hydrogen sensitive alloy, and the use of SiC as a semiconductor for hydrogen sensors. This paper discusses the motivation behind and present status of each of the major components of the NASA LeRC hydrogen sensor program.

  11. A quasi-Delphi study on technological barriers to the uptake of hydrogen as a fuel for transport applications-Production, storage and fuel cell drivetrain considerations

    NASA Astrophysics Data System (ADS)

    Hart, David; Anghel, Alexandra T.; Huijsmans, Joep; Vuille, François

    The introduction of hydrogen in transport, particularly using fuel cell vehicles, faces a number of technical and non-technical hurdles. However, their relative importance is unclear, as are the levels of concern accorded them within the expert community conducting research and development within this area. To understand what issues are considered by experts working in the field to have significant potential to slow down or prevent the introduction of hydrogen technology in transport, a study was undertaken, primarily during 2007. Three key technology areas within hydrogen transport were selected - hydrogen storage, fuel cell drivetrains, and small-scale hydrogen production - and interviews with selected experts conducted. Forty-nine experts from 34 organisations within the fuel cell, automotive, industrial gas and other related industries participated, in addition to some key academic and government figures. The survey was conducted in China, Japan, North America and Europe, and analysed using conventional mathematical techniques to provide weighted and averaged rankings of issues viewed as important by the experts. It became clear both from the interviews and the subsequent analysis that while a primary concern in China was fundamental technical performance, in the other regions cost and policy were rated more highly. Although a few individual experts identified possible technical showstoppers, the overall message was that pre-commercial hydrogen fuel cell vehicles could realistically be on the road in tens of thousands within 5 years, and that full commercialisation could take place within 10-15 years, without the need for radical technical breakthroughs. Perhaps surprisingly, the performance of hydrogen storage technologies was not viewed as a showstopper, though cost was seen as a significant challenge. Overall, however, coherent policy development was more frequently identified as a major issue to address.

  12. Transportation programs : challenges facing the department of transportation and congress.

    DOT National Transportation Integrated Search

    2009-03-01

    A safe, efficient, and convenient : transportation system is integral to : the health of our economy and : quality of life. Our nations vast : transportation system of airways, : railways, roads, transit systems, : and waterways has served this : ...

  13. Measuring transportation in the U.S. economy

    DOT National Transportation Integrated Search

    1998-01-01

    This paper argues that the System of National Accounts (SNA) is the most appropriate framework for comparable economic measures of national transportation, and shows that within the SNA transportation can be represented as an industry, as a component...

  14. 40 CFR 600.206-12 - Calculation and use of FTP-based and HFET-based fuel economy and carbon-related exhaust emission...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... exhaust emission values from the tests performed using gasoline or diesel test fuel. (ii) Calculate the city, highway, and combined fuel economy and carbon-related exhaust emission values from the tests performed using alcohol or natural gas test fuel. (b) If only one equivalent petroleum-based fuel economy...

  15. Silicon Carbide-Based Hydrogen and Hydrocarbon Gas Detection

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Neudeck, Philip G.; Chen, Liang-Yu; Knight, D.; Liu, C. C.; Wu, Q. H.R

    1995-01-01

    Hydrogen and hydrocarbon detection in aeronautical applications is important for reasons of safety and emissions control. The use of silicon carbide as a semiconductor in a metal-semiconductor or metal-insulator-semiconductor structure opens opportunities to measure hydrogen and hydrocarbons in high temperature environments beyond the capabilities of silicon-based devices. The purpose of this paper is to explore the response and stability of Pd-SiC Schottky diodes as gas sensors in the temperature range from 100 to 400 C. The effect of heat treating on the diode properties as measured at 100 C is explored. Subsequent operation at 400 C demonstrates the diodes' sensitivity to hydrogen and hydrocarbons. It is concluded that the Pd-SiC Schottky diode has potential as a hydrogen and hydrocarbon sensor over a wide range of temperatures but further studies are necessary to determine the diodes' long term stability.

  16. Hydrogen Fuel Cell Engines and Related Technologies

    NASA Astrophysics Data System (ADS)

    2001-12-01

    The Hydrogen Fuel Cell Engines and Related Technologies report documents the first training course ever developed and made available to the transportation community and general public on the use hydrogen fuel cells in transportation. The course is designed to train a new generation of technicians in gaining a more complete understanding of the concepts, procedures, and technologies involved with hydrogen fuel cell use in transportation purposes. The manual contains 11 modules (chapters). The first eight modules cover (1) hydrogen properties, use and safety; and (2) fuel cell technology and its systems, fuel cell engine design and safety, and design and maintenance of a heavy duty fuel cell bus engine. The different types of fuel cells and hybrid electric vehicles are presented, however, the system descriptions and maintenance procedures focus on proton-exchange-membrane (PEM) fuel cells with respect to heavy duty transit applications. Modules 9 and 10 are intended to provide a better understanding of the acts, codes, regulations and guidelines concerning the use of hydrogen, as well as the safety guidelines for both hydrogen maintenance and fueling facilities. Module 11 presents a glossary and conversions.

  17. 2010 Annual Progress Report: DOE Hydrogen Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.

  18. Transportation Technology: Rail Transport and Logistics

    ERIC Educational Resources Information Center

    Lang, Aaron B.

    2011-01-01

    Transportation can simply be defined as the movement of goods, services, and people from one location to another. Without an efficient means to transport goods from place to place, the economy would be nothing like it is today. Throughout the history of the United States, American railroads have paved the way toward creating a nation of great…

  19. Publications | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    , and demonstration activities in hydrogen and fuel cells. NREL Publications Database Access the full library of our publications. Search the database View all NREL publications about hydrogen and fuel cell research. Transportation and Hydrogen Newsletter Get semi-monthly updates on NREL's research, development

  20. Pocket guide to transportation, 2000

    DOT National Transportation Integrated Search

    1999-12-01

    The Bureau of Transportation Statistics compiled the data in this guide from multiple sources. The guide is divided into five sections: (1) transportation system extent, (2) transportation and safety, (3) mobility, (4) transportation and the economy,...

  1. Understanding Your Local Economy: Economic Base Analysis and Local Development Strategies. Community Economics.

    ERIC Educational Resources Information Center

    Weber, Bruce A.; And Others

    Community decision makers selecting an economic development strategy most appropriate for their local community must begin with an understanding of how their local economy functions, what its economic base is, and how changes in that base may affect local economic structure and performance. The economic base approach emphasizes the roles of…

  2. A comparison of hydrogen, methanol and gasoline as fuels for fuel cell vehicles: implications for vehicle design and infrastructure development

    NASA Astrophysics Data System (ADS)

    Ogden, Joan M.; Steinbugler, Margaret M.; Kreutz, Thomas G.

    All fuel cells currently being developed for near term use in electric vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, or hydrocarbon fuels derived from crude oil (e.g., gasoline, diesel, or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, we present modeling results comparing three leading options for fuel storage onboard fuel cell vehicles: (a) compressed gas hydrogen storage, (b) onboard steam reforming of methanol, (c) onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. We have developed a fuel cell vehicle model, including detailed models of onboard fuel processors. This allows us to compare the vehicle performance, fuel economy, weight, and cost for various vehicle parameters, fuel storage choices and driving cycles. The infrastructure requirements are also compared for gaseous hydrogen, methanol and gasoline, including the added costs of fuel production, storage, distribution and refueling stations. The delivered fuel cost, total lifecycle cost of transportation, and capital cost of infrastructure development are estimated for each alternative. Considering both vehicle and infrastructure issues, possible fuel strategies leading to the commercialization of fuel cell vehicles are discussed.

  3. Embrittlement of nickel-, cobalt-, and iron-base superalloys by exposure to hydrogen

    NASA Technical Reports Server (NTRS)

    Gray, H. R.

    1975-01-01

    Five nickel-base alloys (Inconel 718, Udimet 700, Rene 41, Hastelloy X, and TD-NiCr), one cobalt-base alloy (L-605), and an iron-base alloy (A-286) were exposed in hydrogen at 0.1 MN/sq m (15 psi) at several temperatures in the range from 430 to 980 C for as long as 1000 hours. These alloys were embrittled to varying degrees by such exposures in hydrogen. Embrittlement was found to be: (1) sensitive to strain rate, (2) reversible, (3) caused by large concentrations of absorbed hydrogen, and (4) not associated with any detectable microstructural changes in the alloys. These observations are consistent with a mechanism of internal reversible hydrogen embrittlement.

  4. Political economies and environmental futures for the sharing economy

    NASA Astrophysics Data System (ADS)

    Frenken, Koen

    2017-05-01

    The sudden rise of the sharing economy has sparked an intense public debate about its definition, its effects and its future regulation. Here, I attempt to provide analytical guidance by defining the sharing economy as the practice that consumers grant each other temporary access to their under-utilized physical assets. Using this definition, the rise of the sharing economy can be understood as occurring at the intersection of three salient economic trends: peer-to-peer exchange, access over ownership and circular business models. I shortly discuss some of the environmental impacts of online sharing platforms and then articulate three possible futures of the sharing economy: a capitalist future cumulating in monopolistic super-platforms allowing for seamless services, a state-led future that shifts taxation from labour to capital and redistributes the gains of sharing from winners to losers, and a citizen-led future based on cooperatively owned platforms under democratic control. The nature and size of the social and environmental impacts are expected to differ greatly in each of the three scenarios. This article is part of the themed issue 'Material demand reduction'.

  5. Acoustic Shaping: Enabling Technology for a Space-Based Economy

    NASA Astrophysics Data System (ADS)

    Komerath, N. M.; Matos, C. A.; Coker, A.; Wanis, S.; Hausaman, J.; Ames, R. G.; Tan, X. Y.

    1999-01-01

    This abstract presents three points for discussion: (1) Key to the development of civilization in space, is a space-based marketplace, where the need to compete in earth-based markets is removed, along with the constraint of launch costs from Earth. (2) A body of technical results, obtained by the authors' team, indicates promise for non-contact manufacturing in space, of low-cost items required for human presence in space. This is presented along with various other techniques which hold promise. (3) The economics of starting a space-based production company are heavily dependent on the presence of a rudimentary infrastructure. A national-level investment in space-based infrastructure, would be an essential catalyst for the development of a space-based economy. Some suggestions for the beginnings of this infrastructure are repeated from the literature.

  6. The calculation of transport properties in quantum liquids using the maximum entropy numerical analytic continuation method: Application to liquid para-hydrogen

    PubMed Central

    Rabani, Eran; Reichman, David R.; Krilov, Goran; Berne, Bruce J.

    2002-01-01

    We present a method based on augmenting an exact relation between a frequency-dependent diffusion constant and the imaginary time velocity autocorrelation function, combined with the maximum entropy numerical analytic continuation approach to study transport properties in quantum liquids. The method is applied to the case of liquid para-hydrogen at two thermodynamic state points: a liquid near the triple point and a high-temperature liquid. Good agreement for the self-diffusion constant and for the real-time velocity autocorrelation function is obtained in comparison to experimental measurements and other theoretical predictions. Improvement of the methodology and future applications are discussed. PMID:11830656

  7. Web-Based Activity Within a Sexual Health Economy: Observational Study.

    PubMed

    Turner, Katy Me; Zienkiewicz, Adam K; Syred, Jonathan; Looker, Katharine J; de Sa, Joia; Brady, Michael; Free, Caroline; Holdsworth, Gillian; Baraitser, Paula

    2018-03-07

    Regular testing for sexually transmitted infections (STIs) is important to maintain sexual health. Self-sampling kits ordered online and delivered in the post may increase access, convenience, and cost-effectiveness. Sexual health economies may target limited resources more effectively by signposting users toward Web-based or face-to-face services according to clinical need. The aim of this paper was to investigate the impact of two interventions on testing activity across a whole sexual health economy: (1) the introduction of open access Web-based STI testing services and (2) a clinic policy of triage and signpost online where users without symptoms who attended clinics for STI testing were supported to access the Web-based service instead. Data on attendances at all specialist public sexual health providers in an inner-London area were collated into a single database. Each record included information on user demographics, service type accessed, and clinical activity provided, including test results. Clinical activity was categorized as a simple STI test (could be done in a clinic or online), a complex visit (requiring face-to-face consultation), or other. Introduction of Web-based services increased total testing activity across the whole sexual health economy by 18.47% (from 36,373 to 43,091 in the same 6-month period-2014-2015 and 2015-2016), suggesting unmet need for testing in the area. Triage and signposting shifted activity out of the clinic onto the Web-based service, with simple STI testing in the clinic decreasing from 16.90% (920/5443) to 12.25% (511/4172) of total activity, P<.001, and complex activity in the clinic increasing from 69.15% (3764/5443) to 74.86% (3123/4172) of total activity, P<.001. This intervention created a new population of online users with different demographic and clinical profiles from those who use Web-based services spontaneously. Some triage and signposted users (29.62%, 375/1266) did not complete the Web-based testing

  8. Progress on first-principles-based materials design for hydrogen storage.

    PubMed

    Park, Noejung; Choi, Keunsu; Hwang, Jeongwoon; Kim, Dong Wook; Kim, Dong Ok; Ihm, Jisoon

    2012-12-04

    This article briefly summarizes the research activities in the field of hydrogen storage in sorbent materials and reports our recent works and future directions for the design of such materials. Distinct features of sorption-based hydrogen storage methods are described compared with metal hydrides and complex chemical hydrides. We classify the studies of hydrogen sorbent materials in terms of two key technical issues: (i) constructing stable framework structures with high porosity, and (ii) increasing the binding affinity of hydrogen molecules to surfaces beyond the usual van der Waals interaction. The recent development of reticular chemistry is summarized as a means for addressing the first issue. Theoretical studies focus mainly on the second issue and can be grouped into three classes according to the underlying interaction mechanism: electrostatic interactions based on alkaline cations, Kubas interactions with open transition metals, and orbital interactions involving Ca and other nontransitional metals. Hierarchical computational methods to enable the theoretical predictions are explained, from ab initio studies to molecular dynamics simulations using force field parameters. We also discuss the actual delivery amount of stored hydrogen, which depends on the charging and discharging conditions. The usefulness and practical significance of the hydrogen spillover mechanism in increasing the storage capacity are presented as well.

  9. Progress on first-principles-based materials design for hydrogen storage

    PubMed Central

    Park, Noejung; Choi, Keunsu; Hwang, Jeongwoon; Kim, Dong Wook; Kim, Dong Ok; Ihm, Jisoon

    2012-01-01

    This article briefly summarizes the research activities in the field of hydrogen storage in sorbent materials and reports our recent works and future directions for the design of such materials. Distinct features of sorption-based hydrogen storage methods are described compared with metal hydrides and complex chemical hydrides. We classify the studies of hydrogen sorbent materials in terms of two key technical issues: (i) constructing stable framework structures with high porosity, and (ii) increasing the binding affinity of hydrogen molecules to surfaces beyond the usual van der Waals interaction. The recent development of reticular chemistry is summarized as a means for addressing the first issue. Theoretical studies focus mainly on the second issue and can be grouped into three classes according to the underlying interaction mechanism: electrostatic interactions based on alkaline cations, Kubas interactions with open transition metals, and orbital interactions involving Ca and other nontransitional metals. Hierarchical computational methods to enable the theoretical predictions are explained, from ab initio studies to molecular dynamics simulations using force field parameters. We also discuss the actual delivery amount of stored hydrogen, which depends on the charging and discharging conditions. The usefulness and practical significance of the hydrogen spillover mechanism in increasing the storage capacity are presented as well. PMID:23161910

  10. Economic Analysis Framework for Freight Transportation Based on Florida Statewide Multi-Modal Freight Model

    DOT National Transportation Integrated Search

    2018-02-01

    Freight transportation plays a vital role in local and regional economy. The markets and businesses from different regions and locations can be connected through freight movements. But it is difficult to quantify the economic contribution of freight ...

  11. Elastic and transport cross sections for inert gases in a hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Krstic, Predrag

    2005-05-01

    Accurate elastic differential and integral scattering and transport cross sections have been computed using a fully quantum-mechanical approach for hydrogen ions (H^+, D^+ and T^+) colliding with Neon, Krypton and Xenon, in the center of mass energy range 0.1 to 200 eV. The momentum transfer and viscosity cross sections have been extended to higher keV collision energies using a classical, three-body scattering method. The results were compared with previously calculated values for Argon and Helium, as well as with simple analytical models. The cross sections, tabulated and available through the world wide web (www-cfadc.phy.ornl.gov) are of significance in fusion plasma modeling, gaseous electronics and other plasma applications.

  12. New insights into designing metallacarborane based room temperature hydrogen storage media.

    PubMed

    Bora, Pankaj Lochan; Singh, Abhishek K

    2013-10-28

    Metallacarboranes are promising towards realizing room temperature hydrogen storage media because of the presence of both transition metal and carbon atoms. In metallacarborane clusters, the transition metal adsorbs hydrogen molecules and carbon can link these clusters to form metal organic framework, which can serve as a complete storage medium. Using first principles density functional calculations, we chalk out the underlying principles of designing an efficient metallacarborane based hydrogen storage media. The storage capacity of hydrogen depends upon the number of available transition metal d-orbitals, number of carbons, and dopant atoms in the cluster. These factors control the amount of charge transfer from metal to the cluster, thereby affecting the number of adsorbed hydrogen molecules. This correlation between the charge transfer and storage capacity is general in nature, and can be applied to designing efficient hydrogen storage systems. Following this strategy, a search for the best metallacarborane was carried out in which Sc based monocarborane was found to be the most promising H2 sorbent material with a 9 wt.% of reversible storage at ambient pressure and temperature.

  13. Hydrogen bond disruption in DNA base pairs from (14)C transmutation.

    PubMed

    Sassi, Michel; Carter, Damien J; Uberuaga, Blas P; Stanek, Christopher R; Mancera, Ricardo L; Marks, Nigel A

    2014-09-04

    Recent ab initio molecular dynamics simulations have shown that radioactive carbon does not normally fragment DNA bases when it decays. Motivated by this finding, density functional theory and Bader analysis have been used to quantify the effect of C → N transmutation on hydrogen bonding in DNA base pairs. We find that (14)C decay has the potential to significantly alter hydrogen bonds in a variety of ways including direct proton shuttling (thymine and cytosine), thermally activated proton shuttling (guanine), and hydrogen bond breaking (cytosine). Transmutation substantially modifies both the absolute and relative strengths of the hydrogen bonding pattern, and in two instances (adenine and cytosine), the density at the critical point indicates development of mild covalent character. Since hydrogen bonding is an important component of Watson-Crick pairing, these (14)C-induced modifications, while infrequent, may trigger errors in DNA transcription and replication.

  14. Final Technical Report for GO17004 Regulatory Logic: Codes and Standards for the Hydrogen Economy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakarado, Gary L.

    The objectives of this project are to: develop a robust supporting research and development program to provide critical hydrogen behavior data and a detailed understanding of hydrogen combustion and safety across a range of scenarios, needed to establish setback distances in building codes and minimize the overall data gaps in code development; support and facilitate the completion of technical specifications by the International Organization for Standardization (ISO) for gaseous hydrogen refueling (TS 20012) and standards for on-board liquid (ISO 13985) and gaseous or gaseous blend (ISO 15869) hydrogen storage by 2007; support and facilitate the effort, led by the NFPA,more » to complete the draft Hydrogen Technologies Code (NFPA 2) by 2008; with experimental data and input from Technology Validation Program element activities, support and facilitate the completion of standards for bulk hydrogen storage (e.g., NFPA 55) by 2008; facilitate the adoption of the most recently available model codes (e.g., from the International Code Council [ICC]) in key regions; complete preliminary research and development on hydrogen release scenarios to support the establishment of setback distances in building codes and provide a sound basis for model code development and adoption; support and facilitate the development of Global Technical Regulations (GTRs) by 2010 for hydrogen vehicle systems under the United Nations Economic Commission for Europe, World Forum for Harmonization of Vehicle Regulations and Working Party on Pollution and Energy Program (ECE-WP29/GRPE); and to Support and facilitate the completion by 2012 of necessary codes and standards needed for the early commercialization and market entry of hydrogen energy technologies.« less

  15. Growing the Idaho economy : moving into the future.

    DOT National Transportation Integrated Search

    2010-08-13

    A report on transportation and the possible future economy of the State of Idaho from 2010 to 2030, including : current assets to leverage, driving forces shaping the future, long-range economic opportunities for Idaho including : four future scenari...

  16. Low-Temperature Carrier Transport in Ionic-Liquid-Gated Hydrogen-Terminated Silicon

    NASA Astrophysics Data System (ADS)

    Sasama, Yosuke; Yamaguchi, Takahide; Tanaka, Masashi; Takeya, Hiroyuki; Takano, Yoshihiko

    2017-11-01

    We fabricated ionic-liquid-gated field-effect transistors on the hydrogen-terminated (111)-oriented surface of undoped silicon. Ion implantation underneath electrodes leads to good ohmic contacts, which persist at low temperatures down to 1.4 K. The sheet resistance of the channel decreases by more than five orders of magnitude as the gate voltage is changed from 0 to -1.6 V at 220 K. This is caused by the accumulation of hole carriers. The sheet resistance shows thermally activated behavior at temperatures below 10 K, which is attributed to hopping transport of the carriers. The activation energy decreases towards zero with increasing carrier density, suggesting the approach to an insulator-metal transition. We also report the variation of device characteristics induced by repeated sweeps of the gate voltage.

  17. Development & optimization of a rule-based energy management strategy for fuel economy improvement in hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Asfoor, Mostafa

    The gradual decline of oil reserves and the increasing demand for energy over the past decades has resulted in automotive manufacturers seeking alternative solutions to reduce the dependency on fossil-based fuels for transportation. A viable technology that enables significant improvements in the overall energy conversion efficiencies is the hybridization of conventional vehicle drive systems. This dissertation builds on prior hybrid powertrain development at the University of Idaho. Advanced vehicle models of a passenger car with a conventional powertrain and three different hybrid powertrain layouts were created using GT-Suite. These different powertrain models were validated against a variety of standard driving cycles. The overall fuel economy, energy consumption, and losses were monitored, and a comprehensive energy analysis was performed to compare energy sources and sinks. The GT-Suite model was then used to predict the formula hybrid SAE vehicle performance. Inputs to this model were a numerically predicted engine performance map, an electric motor torque curve, vehicle geometry, and road load parameters derived from a roll-down test. In this case study, the vehicle had a supervisory controller that followed a rule-based energy management strategy to insure a proper power split during hybrid mode operation. The supervisory controller parameters were optimized using discrete grid optimization method that minimized the total amount of fuel consumed during a specific urban driving cycle with an average speed of approximately 30 [mph]. More than a 15% increase in fuel economy was achieved by adding supervisory control and managing power split. The vehicle configuration without the supervisory controller displayed a fuel economy of 25 [mpg]. With the supervisory controller this rose to 29 [mpg]. Wider applications of this research include hybrid vehicle controller designs that can extend the range and survivability of military combat platforms. Furthermore, the

  18. A Review of Fatigue Crack Growth for Pipeline Steels Exposed to Hydrogen

    PubMed Central

    Nanninga, N.; Slifka, A.; Levy, Y.; White, C.

    2010-01-01

    Hydrogen pipeline systems offer an economical means of storing and transporting energy in the form of hydrogen gas. Pipelines can be used to transport hydrogen that has been generated at solar and wind farms to and from salt cavern storage locations. In addition, pipeline transportation systems will be essential before widespread hydrogen fuel cell vehicle technology becomes a reality. Since hydrogen pipeline use is expected to grow, the mechanical integrity of these pipelines will need to be validated under the presence of pressurized hydrogen. This paper focuses on a review of the fatigue crack growth response of pipeline steels when exposed to gaseous hydrogen environments. Because of defect-tolerant design principles in pipeline structures, it is essential that designers consider hydrogen-assisted fatigue crack growth behavior in these applications. PMID:27134796

  19. Hydrogen and water reactor safety: proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-01-01

    Separate abstracts were prepared for papers presented in the following areas of interest: 1) hydrogen research programs; 2) hydrogen behavior during light water reactor accidents; 3) combustible gas generation; 4) hydrogen transport and mixing; 5) combustion modeling and experiments; 6) accelerated flames and detonations; 7) combustion mitigation and control; and 8) equipment survivability.

  20. Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem

    PubMed Central

    Spear, John R.; Walker, Jeffrey J.; McCollom, Thomas M.; Pace, Norman R.

    2005-01-01

    The geochemical energy budgets for high-temperature microbial ecosystems such as occur at Yellowstone National Park have been unclear. To address the relative contributions of different geochemistries to the energy demands of these ecosystems, we draw together three lines of inference. We studied the phylogenetic compositions of high-temperature (>70°C) communities in Yellowstone hot springs with distinct chemistries, conducted parallel chemical analyses, and carried out thermodynamic modeling. Results of extensive molecular analyses, taken with previous results, show that most microbial biomass in these systems, as reflected by rRNA gene abundance, is comprised of organisms of the kinds that derive energy for primary productivity from the oxidation of molecular hydrogen, H2. The apparent dominance by H2-metabolizing organisms indicates that H2 is the main source of energy for primary production in the Yellowstone high-temperature ecosystem. Hydrogen concentrations in the hot springs were measured and found to range up to >300 nM, consistent with this hypothesis. Thermodynamic modeling with environmental concentrations of potential energy sources also is consistent with the proposed microaerophilic, hydrogen-based energy economy for this geothermal ecosystem, even in the presence of high concentrations of sulfide. PMID:15671178

  1. Transportation Energy Data Book: Edition 28

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary

    2009-06-01

    The Transportation Energy Data Book: Edition 28 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with U.S Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program and the Hydrogen, Fuel Cells, and Infrastructure Technologies Program. Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latestmore » edition of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; and Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.« less

  2. Hydrogen technology survey: Thermophysical properties

    NASA Technical Reports Server (NTRS)

    Mccarty, R. D.

    1975-01-01

    The thermodynamic functions, transport properties, and physical properties of both liquid and gaseous hydrogen are presented. The low temperature regime is emphasized. The tabulation of the properties of normal hydrogen in both Si and engineering units is given along with the tabulation of parahydrogen.

  3. Hydrogen Generation Via Fuel Reforming

    NASA Astrophysics Data System (ADS)

    Krebs, John F.

    2003-07-01

    Reforming is the conversion of a hydrocarbon based fuel to a gas mixture that contains hydrogen. The H2 that is produced by reforming can then be used to produce electricity via fuel cells. The realization of H2-based power generation, via reforming, is facilitated by the existence of the liquid fuel and natural gas distribution infrastructures. Coupling these same infrastructures with more portable reforming technology facilitates the realization of fuel cell powered vehicles. The reformer is the first component in a fuel processor. Contaminants in the H2-enriched product stream, such as carbon monoxide (CO) and hydrogen sulfide (H2S), can significantly degrade the performance of current polymer electrolyte membrane fuel cells (PEMFC's). Removal of such contaminants requires extensive processing of the H2-rich product stream prior to utilization by the fuel cell to generate electricity. The remaining components of the fuel processor remove the contaminants in the H2 product stream. For transportation applications the entire fuel processing system must be as small and lightweight as possible to achieve desirable performance requirements. Current efforts at Argonne National Laboratory are focused on catalyst development and reactor engineering of the autothermal processing train for transportation applications.

  4. Method of production of pure hydrogen near room temperature from aluminum-based hydride materials

    DOEpatents

    Pecharsky, Vitalij K.; Balema, Viktor P.

    2004-08-10

    The present invention provides a cost-effective method of producing pure hydrogen gas from hydride-based solid materials. The hydride-based solid material is mechanically processed in the presence of a catalyst to obtain pure gaseous hydrogen. Unlike previous methods, hydrogen may be obtained from the solid material without heating, and without the addition of a solvent during processing. The described method of hydrogen production is useful for energy conversion and production technologies that consume pure gaseous hydrogen as a fuel.

  5. 40 CFR 600.207-08 - Calculation and use of vehicle-specific 5-cycle-based fuel economy values for vehicle...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... economy values from the tests performed using gasoline or diesel test fuel. (ii)(A) Calculate the 5-cycle city and highway fuel economy values from the tests performed using alcohol or natural gas test fuel...-specific 5-cycle-based fuel economy values for vehicle configurations. 600.207-08 Section 600.207-08...

  6. 40 CFR 600.207-08 - Calculation and use of vehicle-specific 5-cycle-based fuel economy values for vehicle...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... economy values from the tests performed using gasoline or diesel test fuel. (ii)(A) Calculate the 5-cycle city and highway fuel economy values from the tests performed using alcohol or natural gas test fuel...-specific 5-cycle-based fuel economy values for vehicle configurations. 600.207-08 Section 600.207-08...

  7. 40 CFR 600.206-12 - Calculation and use of FTP-based and HFET-based fuel economy, CO2 emissions, and carbon-related...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... values from the tests performed using gasoline or diesel test fuel. (ii) Calculate the city, highway, and combined fuel economy, CO2 emissions, and carbon-related exhaust emission values from the tests performed using alcohol or natural gas test fuel. (b) If only one equivalent petroleum-based fuel economy value...

  8. 40 CFR 600.206-12 - Calculation and use of FTP-based and HFET-based fuel economy, CO2 emissions, and carbon-related...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... values from the tests performed using gasoline or diesel test fuel. (ii) Calculate the city, highway, and combined fuel economy, CO2 emissions, and carbon-related exhaust emission values from the tests performed using alcohol or natural gas test fuel. (b) If only one equivalent petroleum-based fuel economy value...

  9. 40 CFR 600.206-12 - Calculation and use of FTP-based and HFET-based fuel economy, CO2 emissions, and carbon-related...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... values from the tests performed using gasoline or diesel test fuel. (ii) Calculate the city, highway, and combined fuel economy, CO2 emissions, and carbon-related exhaust emission values from the tests performed using alcohol or natural gas test fuel. (b) If only one equivalent petroleum-based fuel economy value...

  10. New insights into designing metallacarborane based room temperature hydrogen storage media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bora, Pankaj Lochan; Singh, Abhishek K.

    Metallacarboranes are promising towards realizing room temperature hydrogen storage media because of the presence of both transition metal and carbon atoms. In metallacarborane clusters, the transition metal adsorbs hydrogen molecules and carbon can link these clusters to form metal organic framework, which can serve as a complete storage medium. Using first principles density functional calculations, we chalk out the underlying principles of designing an efficient metallacarborane based hydrogen storage media. The storage capacity of hydrogen depends upon the number of available transition metal d-orbitals, number of carbons, and dopant atoms in the cluster. These factors control the amount of chargemore » transfer from metal to the cluster, thereby affecting the number of adsorbed hydrogen molecules. This correlation between the charge transfer and storage capacity is general in nature, and can be applied to designing efficient hydrogen storage systems. Following this strategy, a search for the best metallacarborane was carried out in which Sc based monocarborane was found to be the most promising H{sub 2} sorbent material with a 9 wt.% of reversible storage at ambient pressure and temperature.« less

  11. Political economies and environmental futures for the sharing economy.

    PubMed

    Frenken, Koen

    2017-06-13

    The sudden rise of the sharing economy has sparked an intense public debate about its definition, its effects and its future regulation. Here, I attempt to provide analytical guidance by defining the sharing economy as the practice that consumers grant each other temporary access to their under-utilized physical assets. Using this definition, the rise of the sharing economy can be understood as occurring at the intersection of three salient economic trends: peer-to-peer exchange, access over ownership and circular business models. I shortly discuss some of the environmental impacts of online sharing platforms and then articulate three possible futures of the sharing economy: a capitalist future cumulating in monopolistic super-platforms allowing for seamless services, a state-led future that shifts taxation from labour to capital and redistributes the gains of sharing from winners to losers, and a citizen-led future based on cooperatively owned platforms under democratic control. The nature and size of the social and environmental impacts are expected to differ greatly in each of the three scenarios.This article is part of the themed issue 'Material demand reduction'. © 2017 The Authors.

  12. Political economies and environmental futures for the sharing economy

    PubMed Central

    2017-01-01

    The sudden rise of the sharing economy has sparked an intense public debate about its definition, its effects and its future regulation. Here, I attempt to provide analytical guidance by defining the sharing economy as the practice that consumers grant each other temporary access to their under-utilized physical assets. Using this definition, the rise of the sharing economy can be understood as occurring at the intersection of three salient economic trends: peer-to-peer exchange, access over ownership and circular business models. I shortly discuss some of the environmental impacts of online sharing platforms and then articulate three possible futures of the sharing economy: a capitalist future cumulating in monopolistic super-platforms allowing for seamless services, a state-led future that shifts taxation from labour to capital and redistributes the gains of sharing from winners to losers, and a citizen-led future based on cooperatively owned platforms under democratic control. The nature and size of the social and environmental impacts are expected to differ greatly in each of the three scenarios. This article is part of the themed issue ‘Material demand reduction’. PMID:28461431

  13. Hydrogen Safety Issues Compared to Safety Issues with Methane and Propane

    NASA Astrophysics Data System (ADS)

    Green, M. A.

    2006-04-01

    The hydrogen economy is not possible if the safety standards currently applied to liquid hydrogen and hydrogen gas by many laboratories are applied to devices that use either liquid or gaseous hydrogen. Methane and propane are commonly used by ordinary people without the special training. This report asks, "How is hydrogen different from flammable gasses that are commonly being used all over the world?" This report compares the properties of hydrogen, methane and propane and how these properties may relate to safety when they are used in both the liquid and gaseous state. Through such an analysis, sensible safety standards for the large-scale (or even small-scale) use of liquid and gaseous hydrogen systems can be developed. This paper is meant to promote discussion of issues related to hydrogen safety so that engineers designing equipment can factor sensible safety standards into their designs.

  14. Hydrogen Safety Issues Compared to Safety Issues with Methane andPropane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Michael A.

    The hydrogen economy is not possible if the safety standards currently applied to liquid hydrogen and hydrogen gas by many laboratories are applied to devices that use either liquid or gaseous hydrogen. Methane and propane are commonly used by ordinary people without the special training. This report asks, 'How is hydrogen different from flammable gasses that are commonly being used all over the world?' This report compares the properties of hydrogen, methane and propane and how these properties may relate to safety when they are used in both the liquid and gaseous state. Through such an analysis, sensible safety standardsmore » for the large-scale (or even small-scale) use of liquid and gaseous hydrogen systems can be developed. This paper is meant to promote discussion of issues related to hydrogen safety so that engineers designing equipment can factor sensible safety standards into their designs.« less

  15. Freight transportation improvements and the economy

    DOT National Transportation Integrated Search

    2004-06-01

    This report summarizes the results of the Federal Highway Administrations (FHWAs) work on the economic benefits of transportation improvements using macroeconomic, microeconomic, and general equilibrium approaches. Detailed information is provi...

  16. Hydrogen interactions with metals

    NASA Technical Reports Server (NTRS)

    Mclellan, R. B.; Harkins, C. G.

    1975-01-01

    Review of the literature on the nature and extent of hydrogen interactions with metals and the role of hydrogen in metal failure. The classification of hydrogen-containing systems is discussed, including such categories as covalent hydrides, volatile hydrides, polymeric hydrides, and transition metal hydride complexes. The use of electronegativity as a correlating parameter in determining hydride type is evaluated. A detailed study is made of the thermodynamics of metal-hydrogen systems, touching upon such aspects as hydrogen solubility, the positions occupied by hydrogen atoms within the solvent metal lattice, the derivation of thermodynamic functions of solid solutions from solubility data, and the construction of statistical models for hydrogen-metal solutions. A number of theories of hydrogen-metal bonding are reviewed, including the rigid-band model, the screened-proton model, and an approach employing the augmented plane wave method to solve the one-electron energy band problem. Finally, the mechanism of hydrogen embrittlement is investigated on the basis of literature data concerning stress effects and the kinetics of hydrogen transport to critical sites.

  17. Advanced chemical hydride-based hydrogen generation/storage system for fuel cell vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breault, R.W.; Rolfe, J.

    1998-08-01

    Because of the inherent advantages of high efficiency, environmental acceptability, and high modularity, fuel cells are potentially attractive power supplies. Worldwide concerns over clean environments have revitalized research efforts on developing fuel cell vehicles (FCV). As a result of intensive research efforts, most of the subsystem technology for FCV`s are currently well established. These include: high power density PEM fuel cells, control systems, thermal management technology, and secondary power sources for hybrid operation. For mobile applications, however, supply of hydrogen or fuel for fuel cell operation poses a significant logistic problem. To supply high purity hydrogen for FCV operation, Thermomore » Power`s Advanced Technology Group is developing an advanced hydrogen storage technology. In this approach, a metal hydride/organic slurry is used as the hydrogen carrier and storage media. At the point of use, high purity hydrogen will be produced by reacting the metal hydride/organic slurry with water. In addition, Thermo Power has conceived the paths for recovery and regeneration of the spent hydride (practically metal hydroxide). The fluid-like nature of the spent hydride/organic slurry will provide a unique opportunity for pumping, transporting, and storing these materials. The final product of the program will be a user-friendly and relatively high energy storage density hydrogen supply system for fuel cell operation. In addition, the spent hydride can relatively easily be collected at the pumping station and regenerated utilizing renewable sources, such as biomass, natural, or coal, at the central processing plants. Therefore, the entire process will be economically favorable and environmentally friendly.« less

  18. Production of biofuels and biomolecules in the framework of circular economy: A regional case study.

    PubMed

    Jacquet, Nicolas; Haubruge, Eric; Richel, Aurore

    2015-12-01

    Faced to the economic and energetic context of our society, it is widely recognised that an alternative to fossil fuels and oil-based products will be needed in the nearest future. In this way, development of urban biorefinery could bring many solutions to this problem. Study of the implementation of urban biorefinery highlights two sustainable configurations that provide solutions to the Walloon context by promoting niche markets, developing circular economy and reducing transport of supply feedstock. First, autonomous urban biorefineries are proposed, which use biological waste for the production of added value molecules and/or finished products and are energetically self-sufficient. Second, integrated urban biorefineries, which benefit from an energy supply from a nearby industrial activity. In the Walloon economic context, these types of urban biorefineries could provide solutions by promoting niche markets, developing a circular economy model, optimise the transport of supply feedstock and contribute to the sustainable development. © The Author(s) 2015.

  19. Hydrogen generation using silicon nanoparticles and their mixtures with alkali metal hydrides

    NASA Astrophysics Data System (ADS)

    Patki, Gauri Dilip

    Hydrogen is a promising energy carrier, for use in fuel cells, engines, and turbines for transportation or mobile applications. Hydrogen is desirable as an energy carrier, because its oxidation by air releases substantial energy (thermally or electrochemically) and produces only water as a product. In contrast, hydrocarbon energy carriers inevitably produce CO2, contributing to global warming. While CO2 capture may prove feasible in large stationary applications, implementing it in transportation and mobile applications is a daunting challenge. Thus a zero-emission energy carrier like hydrogen is especially needed in these cases. Use of H2 as an energy carrier also brings new challenges such as safe handling of compressed hydrogen and implementation of new transport, storage, and delivery processes and infrastructure. With current storage technologies, hydrogen's energy per volume is very low compared to other automobile fuels. High density storage of compressed hydrogen requires combinations of high pressure and/or low temperature that are not very practical. An alternative for storage is use of solid light weight hydrogenous material systems which have long durability, good adsorption properties and high activity. Substantial research has been conducted on carbon materials like activated carbon, carbon nanofibers, and carbon nanotubes due to their high theoretical hydrogen capacities. However, the theoretical values have not been achieved, and hydrogen uptake capacities in these materials are below 10 wt. %. In this thesis we investigated the use of silicon for hydrogen generation. Hydrogen generation via water oxidation of silicon had been ignored due to slow reaction kinetics. We hypothesized that the hydrogen generation rate could be improved by using high surface area silicon nanoparticles. Our laser-pyrolysis-produced nanoparticles showed surprisingly rapid hydrogen generation and high hydrogen yield, exceeding the theoretical maximum of two moles of H2 per

  20. Observing the economy

    NASA Astrophysics Data System (ADS)

    Rosenbaum, Stan

    2009-07-01

    In "The (unfortunate) complexity of the economy" (April pp28-32) Jean-Philippe Bouchaud presents clear evidence that traditional assumptions of rational markets have to be abandoned. The old investor slogan "buy on promise, sell on rumour" quickly magnifies a downturn into a crisis, which triggers two questions. If physics-based models are applied (beyond understanding and prediction) to actual market decisions, does this make the economy more or less stable? And, is this cause for stronger regulation?

  1. Three Forms of the Knowledge Economy: Learning, Creativity and Openness

    ERIC Educational Resources Information Center

    Peters, Michael A.

    2010-01-01

    This paper outlines and reviews three forms and associated discourses of the "knowledge economy": the "learning economy", based on the work of Bengt-Ake Lundvall; the "creative economy" based on the work of Charles Landry, John Howkins and Richard Florida; and the "open knowledge economy" based on the work of Yochai Benkler and others. Arguably,…

  2. Development Of A Centrifugal Hydrogen Pipeline Gas Compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Bella, Francis A.

    2015-04-16

    Concepts NREC (CN) has completed a Department of Energy (DOE) sponsored project to analyze, design, and fabricate a pipeline capacity hydrogen compressor. The pipeline compressor is a critical component in the DOE strategy to provide sufficient quantities of hydrogen to support the expected shift in transportation fuels from liquid and natural gas to hydrogen. The hydrogen would be generated by renewable energy (solar, wind, and perhaps even tidal or ocean), and would be electrolyzed from water. The hydrogen would then be transported to the population centers in the U.S., where fuel-cell vehicles are expected to become popular and necessary tomore » relieve dependency on fossil fuels. The specifications for the required pipeline hydrogen compressor indicates a need for a small package that is efficient, less costly, and more reliable than what is available in the form of a multi-cylinder, reciprocating (positive displacement) compressor for compressing hydrogen in the gas industry.« less

  3. Program Gives Data On Physical Properties Of Hydrogen

    NASA Technical Reports Server (NTRS)

    Roder, H. M.; Mccarty, R. D.; Hall, W. J.

    1994-01-01

    TAB II computer program provides values of thermodynamic and transport properties of hydrogen in useful format. Also, provides values for equilibrium hydrogen and para-hydrogen. Program fast, moderately accurate, and operates over wide ranges of input variables. Written in FORTRAN 77.

  4. Government Transportation Financial Statistics, 2001

    DOT National Transportation Integrated Search

    2002-01-01

    Transportation plays a vital role in the U.S. economy, providing jobs and income and supporting : economic activity. As measured by transportation-related final demand, in 1998 transportation : contributed $930.5 billion in constant 1996 dollars or a...

  5. Aerobic Hydrogen Production via Nitrogenase in Azotobacter vinelandii CA6

    PubMed Central

    Noar, Jesse; Loveless, Telisa; Navarro-Herrero, José Luis; Olson, Jonathan W.

    2015-01-01

    The diazotroph Azotobacter vinelandii possesses three distinct nitrogenase isoenzymes, all of which produce molecular hydrogen as a by-product. In batch cultures, A. vinelandii strain CA6, a mutant of strain CA, displays multiple phenotypes distinct from its parent: tolerance to tungstate, impaired growth and molybdate transport, and increased hydrogen evolution. Determining and comparing the genomic sequences of strains CA and CA6 revealed a large deletion in CA6's genome, encompassing genes related to molybdate and iron transport and hydrogen reoxidation. A series of iron uptake analyses and chemostat culture experiments confirmed iron transport impairment and showed that the addition of fixed nitrogen (ammonia) resulted in cessation of hydrogen production. Additional chemostat experiments compared the hydrogen-producing parameters of different strains: in iron-sufficient, tungstate-free conditions, strain CA6's yields were identical to those of a strain lacking only a single hydrogenase gene. However, in the presence of tungstate, CA6 produced several times more hydrogen. A. vinelandii may hold promise for developing a novel strategy for production of hydrogen as an energy compound. PMID:25911479

  6. Biogas and Hydrogen Systems Market Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milbrandt, Anelia; Bush, Brian; Melaina, Marc

    2016-03-31

    This analysis provides an overview of the market for biogas-derived hydrogen and its use in transportation applications. It examines the current hydrogen production technologies from biogas, capacity and production, infrastructure, potential and demand, as well as key market areas. It also estimates the production cost of hydrogen from biogas and provides supply curves at a national level and at point source.

  7. Hydrogen Infrastructure Testing and Research Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2017-04-10

    Learn about the Hydrogen Infrastructure Testing and Research Facility (HITRF), where NREL researchers are working on vehicle and hydrogen infrastructure projects that aim to enable more rapid inclusion of fuel cell and hydrogen technologies in the market to meet consumer and national goals for emissions reduction, performance, and energy security. As part of NREL’s Energy Systems Integration Facility (ESIF), the HITRF is designed for collaboration with a wide range of hydrogen, fuel cell, and transportation stakeholders.

  8. TRANSPORTATION ECONOMIC TRENDS 2017

    DOT National Transportation Integrated Search

    2018-01-05

    The report has eight chapters: - Chapter 1 introduces the Transportation Services Index, a monthly summary of freight and passenger movement. - Chapter 2 explains what transportation contributes to the American economy. - Chapter 3 examines the costs...

  9. 14 CFR 420.66 - Separation distance requirements for storage of hydrogen peroxide, hydrazine, and liquid hydrogen...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Separation distance requirements for storage of hydrogen peroxide, hydrazine, and liquid hydrogen and any incompatible energetic liquids stored within an intraline distance. 420.66 Section 420.66 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION...

  10. 14 CFR 420.66 - Separation distance requirements for storage of hydrogen peroxide, hydrazine, and liquid hydrogen...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Separation distance requirements for storage of hydrogen peroxide, hydrazine, and liquid hydrogen and any incompatible energetic liquids stored within an intraline distance. 420.66 Section 420.66 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION...

  11. Antimatter Economy

    NASA Astrophysics Data System (ADS)

    Hansen, Norm

    2004-05-01

    The Antimatter Economy will bring every country into the 21st century without destroying our environment and turn the Star Trek dream into reality by using antimatter from comets. At the April 2002 joint meeting of the American Physical Society and American Astronomical Society, I announced that comets were composed of antimatter, there were 109 antimatter elements, and the Periodic Table of Elements had been updated to include the antimatter elements. When matter and antimatter come together, energy is produce according to Einstein's equation of mass times the speed of light squared or E = mc2. Antimatter energy creates incredible opportunities for humanity. People in spacecraft will travel to the moon in hours, planets in days, and stars in weeks. Antimatter power will replace fossil plants and produce hydrogen from off-peak electrical power. Hydrogen will supplant gas in cars, trucks, and other vehicles. The billions of ton of coal, billions of barrels of oil, and trillions of cubic feet of natural gas will be used to make trillions of dollars of products to bring countries into the 21st century. Within this millennium, the Worlds Gross National Product will increase from 30 trillion to 3,000 trillion plus 1,500 trillion from space commercialization bringing the Total Gross National Product to 4,500 trillion. Millions of businesses and billions of jobs will be created. However, the real benefits will come from taking billions of people out of poverty and empowering them to pursue their dreams of life, liberty and pursuit of happiness. Please visit www.AntimatterEnergy.com.

  12. U.S. Geographic Analysis of the Cost of Hydrogen from Electrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saur, G.; Ainscough, C.

    2011-12-01

    This report summarizes U.S. geographic analysis of the cost of hydrogen from electrolysis. Wind-based water electrolysis represents a viable path to renewably-produced hydrogen production. It might be used for hydrogen-based transportation fuels, energy storage to augment electricity grid services, or as a supplement for other industrial hydrogen uses. This analysis focuses on the levelized production, costs of producing green hydrogen, rather than market prices which would require more extensive knowledge of an hourly or daily hydrogen market. However, the costs of hydrogen presented here do include a small profit from an internal rate of return on the system. The costmore » of renewable wind-based hydrogen production is very sensitive to the cost of the wind electricity. Using differently priced grid electricity to supplement the system had only a small effect on the cost of hydrogen; because wind electricity was always used either directly or indirectly to fully generate the hydrogen. Wind classes 3-6 across the U.S. were examined and the costs of hydrogen ranged from $3.74kg to $5.86/kg. These costs do not quite meet the 2015 DOE targets for central or distributed hydrogen production ($3.10/kg and $3.70/kg, respectively), so more work is needed on reducing the cost of wind electricity and the electrolyzers. If the PTC and ITC are claimed, however, many of the sites will meet both targets. For a subset of distributed refueling stations where there is also inexpensive, open space nearby this could be an alternative to central hydrogen production and distribution.« less

  13. Monitoring Report - Automobile Voluntary Fuel Economy Improvement Program

    DOT National Transportation Integrated Search

    1976-04-01

    On October 8, 1974, President Ford announced the goal of a 40% improvement in fuel economy of automobiles to be achieved in the 1980 new car fleet compared to 14.0 MPH for 1974. The Secretary of Transportation was given the lead in developing the pro...

  14. Hydrogen production from coal using a nuclear heat source

    NASA Technical Reports Server (NTRS)

    Quade, R. N.

    1976-01-01

    A strong candidate for hydrogen production in the intermediate time frame of 1985 to 1995 is a coal-based process using a high-temperature gas-cooled reactor (HTGR) as a heat source. Expected process efficiencies in the range of 60 to 70% are considerably higher than all other hydrogen production processes except steam reforming of a natural gas. The process involves the preparation of a coal liquid, hydrogasification of that liquid, and steam reforming of the resulting gaseous or light liquid product. A study showing process efficiency and cost of hydrogen vs nuclear reactor core outlet temperature has been completed, and shows diminishing returns at process temperatures above about 1500 F. A possible scenario combining the relatively abundant and low-cost Western coal deposits with the Gulf Coast hydrogen users is presented which provides high-energy density transportation utilizing coal liquids and uranium.

  15. Active hydrogen evolution through lattice distortion in metallic MoTe2

    NASA Astrophysics Data System (ADS)

    Seok, Jinbong; Lee, Jun-Ho; Cho, Suyeon; Ji, Byungdo; Kim, Hyo Won; Kwon, Min; Kim, Dohyun; Kim, Young-Min; Oh, Sang Ho; Wng Kim, Sung; Lee, Young Hee; Son, Young-Woo; Yang, Heejun

    2017-06-01

    Engineering surface atoms of transition metal dichalcogenides (TMDs) is a promising way to design catalysts for efficient electrochemical reactions including the hydrogen evolution reaction (HER). However, materials processing based on TMDs, such as vacancy creation or edge exposure, for active HER, has resulted in insufficient atomic-precision lattice homogeneity and a lack of clear understanding of HER over 2D materials. Here, we report a durable and effective HER at atomically defined reaction sites in 2D layered semimetallic MoTe2 with intrinsic turnover frequency (TOF) of 0.14 s-1 at 0 mV overpotential, which cannot be explained by the traditional volcano plot analysis. Unlike former electrochemical catalysts, the rate-determining step of the HER on the semimetallic MoTe2, hydrogen adsorption, drives Peierls-type lattice distortion that, together with a surface charge density wave, unexpectedly enhances the HER. The active HER using unique 2D features of layered TMDs enables an optimal design of electrochemical catalysts and paves the way for a hydrogen economy.

  16. The 34th Annual Fall Meeting of the American Physiological Society and the International Conference on Hydrogen Ion Transport in Epithelia.

    ERIC Educational Resources Information Center

    Physiologist, 1983

    1983-01-01

    Provided are abstracts of papers presented at the annual American Physiological Society meeting and International Conference on Hydrogen Ion Transport in Epithelia. Papers are grouped by such topic areas as lung fluid balance, renal cardiovascular integration, smooth muscle physiology, neuroendocrines (pituitary), exercise physiology, mechanics of…

  17. Evaluation of a hydrogen peroxide-based system for high-level disinfection of vaginal ultrasound probes.

    PubMed

    Johnson, Stephen; Proctor, Matthew; Bluth, Edward; Smetherman, Dana; Baumgarten, Katherine; Troxclair, Laurie; Bienvenu, Michele

    2013-10-01

    Because of the complex process and the risk of errors associated with the glutaraldehyde-based solutions previously used at our institution for disinfection, our department has implemented a new method for high-level disinfection of vaginal ultrasound probes: the hydrogen peroxide-based Trophon system (Nanosonics, Alexandria, New South Wales, Australia). The aim of this study was to compare the time difference, safety, and sonographers' satisfaction between the glutaraldehyde-based Cidex (CIVCO Medical Solutions, Kalona, IA) and the hydrogen peroxide-based Trophon disinfection systems. The Institutional Review Board approved a 14-question survey administered to the 13 sonographers in our department. Survey questions addressed a variety of aspects of the disinfection processes with graded responses over a standardized 5-point scale. A process diagram was developed for each disinfection method with segmental timing analysis, and a cost analysis was performed. Nonvariegated analysis of the survey data with the Wilcoxon signed rank test showed a statistical difference in survey responses in favor of the hydrogen peroxide-based system over the glutaraldehyde-based system regarding efficiency (P = .0013), ease of use (P = .0013), ability to maintain work flow (P = .026), safety (P = .0026), fixing problems (P = .0158), time (P = .0011), and overall satisfaction (P = .0018). The glutaraldehyde-based system took 32 minutes versus 14 minutes for the hydrogen peroxide-based system; the hydrogen peroxide-based system saved on average 7.5 hours per week. The cost of the hydrogen peroxide-based system and weekly maintenance pays for itself if 1.5 more ultrasound examinations are performed each week. The hydrogen peroxide-based disinfection system was proven to be more efficient and viewed to be easier and safer to use than the glutaraldehyde-based system. The adoption of the hydrogen peroxide-based system led to higher satisfaction among sonographers.

  18. Analysis of Published Hydrogen Vehicle Safety Research

    DOT National Transportation Integrated Search

    2010-02-01

    Hydrogen-fueled vehicles (HFVs) offer the promise of providing safe, clean, and efficient transportation in a setting of rising fuel prices and tightening environmental regulations. However, the technologies needed to store or manufacture hydrogen on...

  19. Retail Infrastructure Costs Comparison for Hydrogen and Electricity for Light-Duty Vehicles: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melaina, M.; Sun, Y.; Bush, B.

    2014-08-01

    Both hydrogen and plug-in electric vehicles offer significant social benefits to enhance energy security and reduce criteria and greenhouse gas emissions from the transportation sector. However, the rollout of electric vehicle supply equipment (EVSE) and hydrogen retail stations (HRS) requires substantial investments with high risks due to many uncertainties. We compare retail infrastructure costs on a common basis - cost per mile, assuming fueling service to 10% of all light-duty vehicles in a typical 1.5 million person city in 2025. Our analysis considers three HRS sizes, four distinct types of EVSE and two distinct EVSE scenarios. EVSE station costs, includingmore » equipment and installation, are assumed to be 15% less than today's costs. We find that levelized retail capital costs per mile are essentially indistinguishable given the uncertainty and variability around input assumptions. Total fuel costs per mile for battery electric vehicle (BEV) and plug-in hybrid vehicle (PHEV) are, respectively, 21% lower and 13% lower than that for hydrogen fuel cell electric vehicle (FCEV) under the home-dominant scenario. Including fuel economies and vehicle costs makes FCEVs and BEVs comparable in terms of costs per mile, and PHEVs are about 10% less than FCEVs and BEVs. To account for geographic variability in energy prices and hydrogen delivery costs, we use the Scenario Evaluation, Regionalization and Analysis (SERA) model and confirm the aforementioned estimate of cost per mile, nationally averaged, but see a 15% variability in regional costs of FCEVs and a 5% variability in regional costs for BEVs.« less

  20. Gadolinium nanoparticle based switchable mirrors: quenching of hydrogenation-dehydrogenation hysteresis.

    PubMed

    Aruna, I; Mehta, B R; Malhotra, L K

    2007-06-01

    A continuous and reversible 'structural, optical, and electronic' transition between the reflecting metallic dihydride and transparent semiconducting trihydride states observed in rare earth metals on hydrogenation make these materials and their hydrides suitable for switchable mirror, sensing, and other technological applications. Recently Pd capped Gd nanoparticle based 'new generation' switchable mirrors have been fabricated with extended color neutrality, better optical contrast, and faster kinetics in comparison to the polycrystalline, epitaxial, alloy, and multilayer films. The present report aims at investigating the effect of nanoparticle nature on the hydrogenation-dehydrogenation hysteresis in switchable mirrors by carrying out in situ measurement of optical transmittance and electrode potentials during electrochemical hydrogen loading-deloading of Gd nanoparticle samples. Interestingly, Gd nanoparticle samples were observed to exhibit quenched hysteresis. The quenching of hysteresis in hydrogen-induced properties has been attributed to the absence of structural transition upon hydrogenation, reduction in topographical interlocking of the grains and elimination of lateral clamping of the slack nanoparticle layer to the substrate.

  1. Learning and Innovation in the Knowledge-Based Economy: Beyond Clusters and Qualifications

    ERIC Educational Resources Information Center

    James, Laura; Guile, David; Unwin, Lorna

    2013-01-01

    For over a decade policy-makers have claimed that advanced industrial societies should develop a knowledge-based economy (KBE) in response to economic globalisation and the transfer of manufacturing jobs to lower cost countries. In the UK, this vision shaped New Labour's policies for vocational education and training (VET), higher education and…

  2. Cuboid Ni2 P as a Bifunctional Catalyst for Efficient Hydrogen Generation from Hydrolysis of Ammonia Borane and Electrocatalytic Hydrogen Evolution.

    PubMed

    Du, Yeshuang; Liu, Chao; Cheng, Gongzhen; Luo, Wei

    2017-11-16

    The design of high-performance catalysts for hydrogen generation is highly desirable for the upcoming hydrogen economy. Herein, we report the colloidal synthesis of nanocuboid Ni 2 P by the thermal decomposition of nickel chloride hexahydrate (NiCl 2 ⋅6 H 2 O) and trioctylphosphine. The obtained nanocuboid Ni 2 P was characterized by using powder X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and inductively coupled plasma atomic emission spectroscopy. For the first time, the as-synthesized nanocuboid Ni 2 P is used as a bifunctional catalyst for hydrogen generation from the hydrolysis of ammonia borane and electrocatalytic hydrogen evolution. Owing to the strong synergistic electronic effect between Ni and P, the as-synthesized Ni 2 P exhibits catalytic performance that is superior to its counterpart without P doping. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Homoepitaxial graphene tunnel barriers for spin transport

    NASA Astrophysics Data System (ADS)

    Friedman, Adam

    Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions (magnetic field, temperature, etc.) usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. We demonstrate successful tunneling, charge, and spin transport with a fluorinated graphene tunnel barrier on a graphene channel. We show that while spin transport stops short of room temperature, spin polarization efficiency values are the highest of any graphene spin devices. We also demonstrate that hydrogenation of graphene can also be used to create a tunnel barrier. We begin with a four-layer stack of graphene and hydrogenate the top few layers to decouple them from the graphene transport channel beneath. We demonstrate successful tunneling by measuring non-linear IV curves and a weakly temperature dependent zero-bias resistance. We demonstrate lateral transport of spin currents in non-local spin-valve structures and determine spin lifetimes with the non-local Hanle effect to be commensurate with previous studies. The measured spin polarization efficiencies for hydrogenated graphene are higher than most oxide tunnel barriers on graphene, but not as high as with fluorinated graphene tunnel barriers. However, here we show that spin transport persists up to room temperature. Our results for the hydrogenated graphene tunnel barriers are compared with fluorinated tunnel barriers and we discuss the

  4. Modeling Issues and Results for Hydrogen Isotopes in NIF Materials

    NASA Astrophysics Data System (ADS)

    Grossman, Arthur A.; Doerner, R. P.; Luckhardt, S. C.; Seraydarian, R.; Sze, D.; Burnham, A.

    1998-11-01

    The TMAP4 (G. Longhurst, et al. INEL 1992) model of hydrogen isotope transport in solid materials includes a particle diffusion calculation with Fick's Law modified for Soret Effect (Thermal Diffusion or Thermomigration), coupled to heat transport calculations which are needed because of the strong temperature dependence of diffusivity. These TMAP4 calculations applied to NIF show that high temperatures approaching the melting point and strong thermal gradients of 10^6 K/cm are reached in the first micron of wall material during the SXR pulse. These strong thermal gradients can drive hydrogen isotope migration up or down the thermal gradient depending on the sign of the heat of transport (Soret coefficient) which depends on whether the material dissolves hydrogen endothermically or exothermically. Two candidates for NIF wall material-boron carbide and stainless steel are compared. Boron carbide dissolves hydrogen exothermically so it may drive Soret migration down the thermal gradient deeper into the material, although the thermal gradient is not as large and hydrogen is not as mobile as in stainless steel. Stainless steel dissolves hydrogen endothermically, with a negative Soret coefficient which can drive hydrogen up the thermal gradient and out of the wall.

  5. Theoretical electrical conductivity of hydrogen-bonded benzamide-derived molecules and single DNA bases.

    PubMed

    Chen, Xiang

    2013-09-01

    A benzamide molecule is used as a "reader" molecule to form hydrogen bonds with five single DNA bases, i.e., four normal single DNA bases A,T,C,G and one for 5methylC. The whole molecule is then attached to the gold surface so that a meta-molecule junction is formed. We calculate the transmission function and conductance for the five metal-molecule systems, with the implementation of density functional theory-based non-equilibrium Green function method. Our results show that each DNA base exhibits a unique conductance and most of them are on the pS level. The distinguishable conductance of each DNA base provides a way for the fast sequencing of DNA. We also investigate the dependence of conductivity of such a metal-molecule system on the hydrogen bond length between the "reader" molecule and DNA base, which shows that conductance follows an exponential decay as the hydrogen bond length increases, i.e., the conductivity is highly sensitive to the change in hydrogen bond length.

  6. MIS-based sensors with hydrogen selectivity

    DOEpatents

    Li,; Dongmei, [Boulder, CO; Medlin, J William [Boulder, CO; McDaniel, Anthony H [Livermore, CA; Bastasz, Robert J [Livermore, CA

    2008-03-11

    The invention provides hydrogen selective metal-insulator-semiconductor sensors which include a layer of hydrogen selective material. The hydrogen selective material can be polyimide layer having a thickness between 200 and 800 nm. Suitable polyimide materials include reaction products of benzophenone tetracarboxylic dianhydride 4,4-oxydianiline m-phenylene diamine and other structurally similar materials.

  7. Hydrogen fuel cell engines and related technologies

    DOT National Transportation Integrated Search

    2001-12-01

    The manual documents the first training course developed on the use of hydrogen fuel cells in transportation. The manual contains eleven modules covering hydrogen properties, use and safety; fuel cell technology and its systems, fuel cell engine desi...

  8. Transportation statistics annual report, 2012

    DOT National Transportation Integrated Search

    2013-01-01

    The Transportation Statistics Annual Report : describes the Nations transportation : system, the systems performance, its contributions : to the economy, and its effects on the : environment. This 17th edition of the report, : covering 2011 and...

  9. Effect of the Lateral Exospheric Transport on the Horizontal Hydrogen Distribution Near the Exobase of Mars

    NASA Astrophysics Data System (ADS)

    Chaufray, J.-Y.; Yelle, R. V.; Gonzalez-Galindo, F.; Forget, F.; Lopez-Valverde, M.; Leblanc, F.; Modolo, R.

    2018-03-01

    We simulate the hydrogen density near the exobase of Mars, using the 3-D Martian Global Circulation Model of Laboratoire de Météorologie Dynamique, coupled to an exospheric ballistic model to compute the downward ballistic flux. The simulated hydrogen distribution near the exobase obtained at two different seasons—Ls = 180° and Ls = 270°—is close to Zero Net Ballistic Flux equilibrium. In other words, the hydrogen density near the exobase adjusts to have a balance between the local upward ballistic and the downward ballistic flux due to a short lateral migration time in the exosphere compared to the vertical diffusion time. This equilibrium leads to a hydrogen density n near the exobase directly controlled by the exospheric temperature T by the relation nT5/2 = constant. This relation could be used to extend 1-D hydrogen exospheric model of Mars used to derive the hydrogen density and escape flux at Mars from Lyman-α observations to 3-D model based on observed or modeled exospheric temperature near the exobase, without increasing the number of free parameters.

  10. Design of a Hydrogen Community for Santa Monica

    DTIC Science & Technology

    2011-01-01

    transportation of hydrogen fuel have been discussed. Cascade simulations were conducted for different compressor capacities and storage bank configurations...been discussed. Cascade simulations were conducted for different compressor capacities and storage bank configurations. Hydrogen dispensing using...tanks (Storage capacity of 198 kg of H2 at 350 and 700 bar), four compressors which assist in dispensing 400 kg of hydrogen in 14 hours, two hydrogen

  11. The effectiveness of policy on consumer choices for private road passenger transport emissions reductions in six major economies

    NASA Astrophysics Data System (ADS)

    Mercure, J.-F.; Lam, A.

    2015-06-01

    The effectiveness of fiscal policy to influence vehicle purchases for emissions reductions in private passenger road transport depends on its ability to incentivise consumers to make choices oriented towards lower emissions vehicles. However, car purchase choices are known to be strongly socially determined, and this sector is highly diverse due to significant socio-economic differences between consumer groups. Here, we present a comprehensive dataset and analysis of the structure of the 2012 private passenger vehicle fleet-years in six major economies across the World (UK, USA, China, India, Japan and Brazil) in terms of price, engine size and emissions distributions. We argue that choices and aggregate elasticities of substitution can be predicted using this data, enabling us to evaluate the effectiveness of potential fiscal and technological change policies on fleet-year emissions reductions. We provide tools to do so based on the distributive structure of prices and emissions in segments of a diverse market, both for conventional as well as unconventional engine technologies. We find that markets differ significantly between nations, and that correlations between engine sizes, emissions and prices exist strongly in some markets and not strongly in others. We furthermore find that markets for unconventional engine technologies have patchy coverages of varying levels. These findings are interpreted in terms of policy strategy.

  12. Actions of Hydrogen Sulfide on Sodium Transport Processes across Native Distal Lung Epithelia (Xenopus laevis)

    PubMed Central

    Erb, Alexandra; Althaus, Mike

    2014-01-01

    Hydrogen sulfide (H2S) is well known as a highly toxic environmental chemical threat. Prolonged exposure to H2S can lead to the formation of pulmonary edema. However, the mechanisms of how H2S facilitates edema formation are poorly understood. Since edema formation can be enhanced by an impaired clearance of electrolytes and, consequently, fluid across the alveolar epithelium, it was questioned whether H2S may interfere with transepithelial electrolyte absorption. Electrolyte absorption was electrophysiologically measured across native distal lung preparations (Xenopus laevis) in Ussing chambers. The exposure of lung epithelia to H2S decreased net transepithelial electrolyte absorption. This was due to an impairment of amiloride-sensitive sodium transport. H2S inhibited the activity of the Na+/K+-ATPase as well as lidocaine-sensitive potassium channels located in the basolateral membrane of the epithelium. Inhibition of these transport molecules diminishes the electrochemical gradient which is necessary for transepithelial sodium absorption. Since sodium absorption osmotically facilitates alveolar fluid clearance, interference of H2S with the epithelial transport machinery provides a mechanism which enhances edema formation in H2S-exposed lungs. PMID:24960042

  13. A Review of Hydrogen Production by Photosynthetic Organisms Using Whole-Cell and Cell-Free Systems.

    PubMed

    Martin, Baker A; Frymier, Paul D

    2017-10-01

    Molecular hydrogen is a promising currency in the future energy economy due to the uncertain availability of finite fossil fuel resources and environmental effects from their combustion. It also has important uses in the production of fertilizers and platform chemicals as well as in upgrading conventional fuels. Conventional methods for producing molecular hydrogen from natural gas produce carbon dioxide and use a finite resource as feedstock. However, these issues can be overcome by using light energy from the Sun combined with microorganisms and their molecular machinery capable of photosynthesis. In the presence of light, the proteins involved in photosynthesis coupled with appropriate catalysts in higher plants, algae, and cyanobacteria can produce molecular hydrogen, and optimization via genetic modifications and biomolecular engineering further improves production rates. In this review, we will discuss techniques that have been utilized to improve rates of hydrogen production in biological systems based on the protein machinery of photosynthesis coupled with appropriate catalysts. We will also suggest areas for improvement and future directions for work in the field.

  14. Moving freight in the new economy : payoffs, perils and paradoxes.

    DOT National Transportation Integrated Search

    2000-09-26

    The infusion of information technology in all industrial processes has elevated the performance of the U.S. economy to new heights. Yet our transportation system is still guided by many of the obsolete infrastructure investment and pricing paradigms ...

  15. Hydrogen separation process

    DOEpatents

    Mundschau, Michael [Longmont, CO; Xie, Xiaobing [Foster City, CA; Evenson, IV, Carl; Grimmer, Paul [Longmont, CO; Wright, Harold [Longmont, CO

    2011-05-24

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  16. The development of ecological environment in China based on the system dynamics method from the society, economy and environment perspective.

    PubMed

    Guang, Yang; Ge, Song; Han, Liu

    2016-01-01

    The harmonious development in society, economy and environment are crucial to regional sustained boom. However, the society, economy and environment are not respectively independent, but both mutually promotes one which, or restrict mutually complex to have the long-enduring overall process. The present study is an attempt to investigate the relationship and interaction of society, economy and environment in China based on the data from 2004 to 2013. The principal component analysis (PCA) model was employed to identify the main factors effecting the society, economy and environment subsystems, and SD (system dynamics) method used to carry out dynamic assessment for future state of sustainability from society, economy and environment perspective with future indicator values. Sustainable development in China was divided in the study into three phase from 2004 to 2013 based competitive values of these three subsystems. According to the results of PCA model, China is in third phase, and the economy growth is faster than the environment development, while the social development still maintained a steady and rapid growth, implying that the next step for sustainable development in China should focus on society development, especially the environment development.

  17. Manufacturing Competitiveness and Supply Chain Analyses for Hydrogen Refueling Stations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayyas, Ahmad T; Garland, Nancy

    This slide deck was presented in the monthly FCTO webinar series (May 2017). The goal of this presentation was to share our latest results and remarks on the manufacturing competitiveness analysis of the hydrogen refueling stations (HRS). Manufacturing cost models were developed for major systems in the HRS such as compressors, storage tanks, chillers, heat exchangers, and dispensers. In addition to the cost models, we also discussed important remarks from our analysis for the international trade flows and global supply chain for the hydrogen refueling stations. The last part of the presentation also highlights effect of economies of scale andmore » high production volumes on lowering the cost of the hydrogen at the pump.« less

  18. Estimation of Hydrogen-Exchange Protection Factors from MD Simulation Based on Amide Hydrogen Bonding Analysis.

    PubMed

    Park, In-Hee; Venable, John D; Steckler, Caitlin; Cellitti, Susan E; Lesley, Scott A; Spraggon, Glen; Brock, Ansgar

    2015-09-28

    Hydrogen exchange (HX) studies have provided critical insight into our understanding of protein folding, structure, and dynamics. More recently, hydrogen exchange mass spectrometry (HX-MS) has become a widely applicable tool for HX studies. The interpretation of the wealth of data generated by HX-MS experiments as well as other HX methods would greatly benefit from the availability of exchange predictions derived from structures or models for comparison with experiment. Most reported computational HX modeling studies have employed solvent-accessible-surface-area based metrics in attempts to interpret HX data on the basis of structures or models. In this study, a computational HX-MS prediction method based on classification of the amide hydrogen bonding modes mimicking the local unfolding model is demonstrated. Analysis of the NH bonding configurations from molecular dynamics (MD) simulation snapshots is used to determine partitioning over bonded and nonbonded NH states and is directly mapped into a protection factor (PF) using a logistics growth function. Predicted PFs are then used for calculating deuteration values of peptides and compared with experimental data. Hydrogen exchange MS data for fatty acid synthase thioesterase (FAS-TE) collected for a range of pHs and temperatures was used for detailed evaluation of the approach. High correlation between prediction and experiment for observable fragment peptides is observed in the FAS-TE and additional benchmarking systems that included various apo/holo proteins for which literature data were available. In addition, it is shown that HX modeling can improve experimental resolution through decomposition of in-exchange curves into rate classes, which correlate with prediction from MD. Successful rate class decompositions provide further evidence that the presented approach captures the underlying physical processes correctly at the single residue level. This assessment is further strengthened in a comparison of

  19. Estimation of Hydrogen-Exchange Protection Factors from MD Simulation Based on Amide Hydrogen Bonding Analysis

    PubMed Central

    Park, In-Hee; Venable, John D.; Steckler, Caitlin; Cellitti, Susan E.; Lesley, Scott A.; Spraggon, Glen; Brock, Ansgar

    2015-01-01

    Hydrogen exchange (HX) studies have provided critical insight into our understanding of protein folding, structure and dynamics. More recently, Hydrogen Exchange Mass Spectrometry (HX-MS) has become a widely applicable tool for HX studies. The interpretation of the wealth of data generated by HX-MS experiments as well as other HX methods would greatly benefit from the availability of exchange predictions derived from structures or models for comparison with experiment. Most reported computational HX modeling studies have employed solvent-accessible-surface-area based metrics in attempts to interpret HX data on the basis of structures or models. In this study, a computational HX-MS prediction method based on classification of the amide hydrogen bonding modes mimicking the local unfolding model is demonstrated. Analysis of the NH bonding configurations from Molecular Dynamics (MD) simulation snapshots is used to determine partitioning over bonded and non-bonded NH states and is directly mapped into a protection factor (PF) using a logistics growth function. Predicted PFs are then used for calculating deuteration values of peptides and compared with experimental data. Hydrogen exchange MS data for Fatty acid synthase thioesterase (FAS-TE) collected for a range of pHs and temperatures was used for detailed evaluation of the approach. High correlation between prediction and experiment for observable fragment peptides is observed in the FAS-TE and additional benchmarking systems that included various apo/holo proteins for which literature data were available. In addition, it is shown that HX modeling can improve experimental resolution through decomposition of in-exchange curves into rate classes, which correlate with prediction from MD. Successful rate class decompositions provide further evidence that the presented approach captures the underlying physical processes correctly at the single residue level. This assessment is further strengthened in a comparison of

  20. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications. Hydrogen vehicle safety report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, C.E.

    1997-05-01

    This report reviews the safety characteristics of hydrogen as an energy carrier for a fuel cell vehicle (FCV), with emphasis on high pressure gaseous hydrogen onboard storage. The authors consider normal operation of the vehicle in addition to refueling, collisions, operation in tunnels, and storage in garages. They identify the most likely risks and failure modes leading to hazardous conditions, and provide potential countermeasures in the vehicle design to prevent or substantially reduce the consequences of each plausible failure mode. They then compare the risks of hydrogen with those of more common motor vehicle fuels including gasoline, propane, and naturalmore » gas.« less

  1. A Theme-Based Course: Hydrogen as the Fuel of the Future

    ERIC Educational Resources Information Center

    Shultz, Mary Jane; Kelly, Matthew; Paritsky, Leonid; Wagner, Julia

    2009-01-01

    A theme-based course focusing on the potential role of hydrogen as a future fuel is described. Numerous topics included in typical introductory courses can be directly related to the issue of hydrogen energy. Beginning topics include Avogadro's number, the mole, atomic mass, gas laws, and the role of electrons in chemical transformations. Reaction…

  2. Molecular evolution and expression of oxygen transport genes in livebearing fishes (Poeciliidae) from hydrogen sulfide rich springs.

    PubMed

    Barts, Nicholas; Greenway, Ryan; Passow, Courtney N; Arias-Rodriguez, Lenin; Kelley, Joanna L; Tobler, Michael

    2018-04-01

    Hydrogen sulfide (H 2 S) is a natural toxicant in some aquatic environments that has diverse molecular targets. It binds to oxygen transport proteins, rendering them non-functional by reducing oxygen-binding affinity. Hence, organisms permanently inhabiting H 2 S-rich environments are predicted to exhibit adaptive modifications to compensate for the reduced capacity to transport oxygen. We investigated 10 lineages of fish of the family Poeciliidae that have colonized freshwater springs rich in H 2 S-along with related lineages from non-sulfidic environments-to test hypotheses about the expression and evolution of oxygen transport genes in a phylogenetic context. We predicted shifts in the expression of and signatures of positive selection on oxygen transport genes upon colonization of H 2 S-rich habitats. Our analyses indicated significant shifts in gene expression for multiple hemoglobin genes in lineages that have colonized H 2 S-rich environments, and three hemoglobin genes exhibited relaxed selection in sulfidic compared to non-sulfidic lineages. However, neither changes in gene expression nor signatures of selection were consistent among all lineages in H 2 S-rich environments. Oxygen transport genes may consequently be predictable targets of selection during adaptation to sulfidic environments, but changes in gene expression and molecular evolution of oxygen transport genes in H 2 S-rich environments are not necessarily repeatable across replicated lineages.

  3. Safety in new uses of hydrogen energy

    NASA Astrophysics Data System (ADS)

    Knowlton, R. E.

    The paper presents the results of two projects of the Canadian Hydrogen Safety Committee: one concerned with the safety of hydrogen as a ground transportation fuel (with emphasis on LH2), and the other concerned with finding new uses for hydrogen energy. Bulk storage distribution, retail storage, refueling, and in-vehicle use of LH2 are discussed together with the hazards of LH2 use. Applications discussed include: (1) small submarines (with 3-11 crew members) for under-ice operations and for maintenance of installations; (2) mine vehicles; (3) the use of radiant heat from H2-O2 flames to disperse fog by radiant heat transfer; and (4) the use of slush hydrogen both as a fuel and for superconducting motors and magnets. The latter concept could become the basis for a high-speed passenger transport system with linear motors and magnetic levitation.

  4. Optical cascaded Fabry-Perot interferometer hydrogen sensor based on vernier effect

    NASA Astrophysics Data System (ADS)

    Li, Yina; Zhao, Chunliu; Xu, Ben; Wang, Dongning; Yang, Minghong

    2018-05-01

    An optical cascaded Fabry-Perot interferometer hydrogen sensor based on vernier effect has been proposed and achieved. The proposed sensor, which total length is ∼594 μm, is composed of a segment of large mode area fiber (LMAF) and a segment of hollow-core fiber (HCF). The proposed sensor is coated with the Pt-loaded WO3/SiO2 powder which will result in the increase of local temperature of the sensor head when exposed to hydrogen atmosphere. Thus the hydrogen sensor can be achieved by monitoring the change of resonant envelope wavelength. The hydrogen sensitivity is -1.04 nm/% within the range of 0 % -2.4 % which is greatly improved because of the vernier effect. The response time is ∼80 s. Due to its compact configuration, the proposed sensor provides a feasible and miniature structure to achieve detection of hydrogen.

  5. A biosensor for hydrogen peroxide detection based on electronic properties of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Majidi, Roya

    2013-01-01

    Density functional theory has been used to study the effect of hydrogen peroxide on the electronic properties of single walled carbon nanotubes. The metallic and semiconducting carbon nanotubes have been considered in the presence of different number of hydrogen peroxide. The results indicate that hydrogen peroxide has no significant effect on the metallic nanotube and these nanotubes remain to be metallic. In contrast, the electronic properties of the semiconducting nanotubes are so sensitive to hydrogen peroxide. The energy band gap of these nanotubes is decreased by increasing the number of hydrogen peroxide. The electronic sensivity of the carbon nanotubes to hydrogen peroxide opens new insights into developing biosensors based on the single walled carbon nanotubes.

  6. 2016 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satyapal, Sunita

    In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.

  7. 2012 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.

  8. 2015 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popovich, Neil

    In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.

  9. Center for Electrocatalysis, Transport Phenomena, and Materials (CETM) for Innovative Energy Storage - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soloveichik, Grigorii

    2015-11-30

    EFRC vision. The direct use of organic hydrides in fuel cells as virtual hydrogen carriers that generate stable organic molecules, protons, and electrons upon electro-oxidation and can be electrochemically charged by re-hydrogenating the oxidized carrier was the major focus of the Center for Electrocatalysis, Transport Phenomena and Materials for Innovative Energy Storage (EFRC-ETM). Compared to a hydrogen-on-demand design that includes thermal decomposition of organic hydrides in a catalytic reactor, the proposed approach is much simpler and does not require additional dehydrogenation catalysts or heat exchangers. Further, this approach utilizes the advantages of a flow battery (i.e., separation of power andmore » energy, ease of transport and storage of liquid fuels) with fuels that have system energy densities similar to current hydrogen PEM fuel cells. EFRC challenges. Two major EFRC challenges were electrocatalysis and transport phenomena. The electrocatalysis challenge addresses fundamental processes which occur at a single molecular catalyst (microscopic level) and involve electron and proton transfer between the hydrogen rich and hydrogen depleted forms of organic liquid fuel and the catalyst. To form stable, non-radical dehydrogenation products from the organic liquid fuel, it is necessary to ensure fast transport of at least two electrons and two protons (per double bond formation). The same is true for the reverse hydrogenation reaction. The transport phenomena challenge addresses transport of electrons to/from the electrocatalyst and the current collector as well as protons across the polymer membrane. Additionally it addresses prevention of organic liquid fuel, water and oxygen transport through the PEM. In this challenge, the transport of protons or molecules involves multiple sites or a continuum (macroscopic level) and water serves as a proton conducting medium for the majority of known sulfonic acid based PEMs. Proton transfer in the presence of

  10. Rapid Catalyst Capture Enables Metal-Free para-Hydrogen-Based Hyperpolarized Contrast Agents.

    PubMed

    Barskiy, Danila A; Ke, Lucia A; Li, Xingyang; Stevenson, Vincent; Widarman, Nevin; Zhang, Hao; Truxal, Ashley; Pines, Alexander

    2018-05-10

    Hyperpolarization techniques based on the use of para-hydrogen provide orders of magnitude signal enhancement for magnetic resonance spectroscopy and imaging. The main drawback limiting widespread applicability of para-hydrogen-based techniques in biomedicine is the presence of organometallic compounds (the polarization transfer catalysts) in solution with hyperpolarized contrast agents. These catalysts are typically complexes of platinum-group metals, and their administration in vivo should be avoided. Herein, we show how extraction of a hyperpolarized compound from an organic phase to an aqueous phase combined with a rapid (less than 10 s) Ir-based catalyst capture by metal scavenging agents can produce pure para-hydrogen-based hyperpolarized contrast agents, as demonstrated by high-resolution nuclear magnetic resonance (NMR) spectroscopy and inductively coupled plasma atomic emission spectroscopy (ICP-AES). The presented methodology enables fast and efficient means of producing pure hyperpolarized aqueous solutions for biomedical and other uses.

  11. Lunar-derived titanium alloys for hydrogen storage

    NASA Technical Reports Server (NTRS)

    Love, S.; Hertzberg, A.; Woodcock, G.

    1992-01-01

    Hydrogen gas, which plays an important role in many projected lunar power systems and industrial processes, can be stored in metallic titanium and in certain titanium alloys as an interstitial hydride compound. Storing and retrieving hydrogen with titanium-iron alloy requires substantially less energy investment than storage by liquefaction. Metal hydride storage systems can be designed to operate at a wide range of temperatures and pressures. A few such systems have been developed for terrestrial applications. A drawback of metal hydride storage for lunar applications is the system's large mass per mole of hydrogen stored, which rules out transporting it from earth. The transportation problem can be solved by using native lunar materials, which are rich in titanium and iron.

  12. Hydrogen Storage | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    research. An International Multi-Laboratory Investigation of Carbon-Based Hydrogen Sorbent Materials Carbon Nanotube Anions, Journal of Materials Research (2012) Manipulation of Hydrogen Binding Energy and Spectroscopy, Journal of Physical Chemistry C (2012) Reactions and Reversible Hydrogenation of Single-Walled

  13. Dynamics of Molecular Hydrogen in Hypersaline Microbial Mars

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; Bebout, Brad M.; Visscher, Pieter T.; DesMarais, David J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Early Earth microbial communities that centered around the anaerobic decomposition of organic molecular hydrogen as a carrier of electrons, regulator of energy metabolism, and facilitator of syntroph'c microbial interactions. The advent of oxygenic photosynthetic organisms added a highly dynamic and potentially dominant term to the hydrogen economy of these communities. We have examined the daily variations of hydrogen concentrations in cyanobacteria-dominated microbial mats from hypersaline ponds in Baja California Sur, Mexico. These mats bring together phototrophic and anaerobic bacteria (along with virtually all other trophic groups) in a spatially ordered and chemically dynamic matrix that provides a good analog for early Earth microbial ecosystems. Hydrogen concentrations in the photic zone of the mat can be three orders of magnitude or more higher than in the photic zone, which are, in turn, an order of magnitude higher than in the unconsolidated sediments underlying the mat community. Within the photic zone, hydrogen concentrations can fluctuate dramatically during the diel (24 hour day-night) cycle, ranging from less than 0.001% during the day to nearly 10% at night. The resultant nighttime flux of hydrogen from the mat to the environment was up to 17% of the daytime oxygen flux. The daily pattern observed is highly dependent on cyanobacterial species composition within the mat, with Lyngbya-dominated systems having a much greater dynamic range than those dominated by Microcoleus; this may relate largely to differing degrees of nitrogen-fixing and fermentative activity in the two mats. The greatest H2 concentrations and fluxes were observed in the absence of oxygen, suggesting an important potential feedback control in the context of the evolution of atmospheric composition. The impact of adding this highly dynamic photosynthetic term to the hydrogen economy of early microbial ecosystems must have been substantial. From an evolutionary standpoint, the H2

  14. Journal of Transportation and Statistics

    DOT National Transportation Integrated Search

    2006-01-01

    The journal serves the transportation community by increasing the understanding of the role of transportation in society, its function in the economy, and its interactions with the environment. In addition, the JTS provides a forum for the latest dev...

  15. Advancing the hydrogen safety knowledge base

    DOE PAGES

    Weiner, S. C.

    2014-08-29

    The International Energy Agency's Hydrogen Implementing Agreement (IEA HIA) was established in 1977 to pursue collaborative hydrogen research and development and information exchange among its member countries. Information and knowledge dissemination is a key aspect of the work within IEA HIA tasks, and case studies, technical reports and presentations/publications often result from the collaborative efforts. The work conducted in hydrogen safety under Task 31 and its predecessor, Task 19, can positively impact the objectives of national programs even in cases for which a specific task report is not published. As a result, the interactions within Task 31 illustrate how technologymore » information and knowledge exchange among participating hydrogen safety experts serve the objectives intended by the IEA HIA.« less

  16. Electrochemical Hydrogen Peroxide Generator

    NASA Technical Reports Server (NTRS)

    Tennakoon, Charles L. K.; Singh, Waheguru; Anderson, Kelvin C.

    2010-01-01

    Two-electron reduction of oxygen to produce hydrogen peroxide is a much researched topic. Most of the work has been done in the production of hydrogen peroxide in basic media, in order to address the needs of the pulp and paper industry. However, peroxides under alkaline conditions show poor stabilities and are not useful in disinfection applications. There is a need to design electrocatalysts that are stable and provide good current and energy efficiencies to produce hydrogen peroxide under acidic conditions. The innovation focuses on the in situ generation of hydrogen peroxide using an electrochemical cell having a gas diffusion electrode as the cathode (electrode connected to the negative pole of the power supply) and a platinized titanium anode. The cathode and anode compartments are separated by a readily available cation-exchange membrane (Nafion 117). The anode compartment is fed with deionized water. Generation of oxygen is the anode reaction. Protons from the anode compartment are transferred across the cation-exchange membrane to the cathode compartment by electrostatic attraction towards the negatively charged electrode. The cathode compartment is fed with oxygen. Here, hydrogen peroxide is generated by the reduction of oxygen. Water may also be generated in the cathode. A small amount of water is also transported across the membrane along with hydrated protons transported across the membrane. Generally, each proton is hydrated with 3-5 molecules. The process is unique because hydrogen peroxide is formed as a high-purity aqueous solution. Since there are no hazardous chemicals or liquids used in the process, the disinfection product can be applied directly to water, before entering a water filtration unit to disinfect the incoming water and to prevent the build up of heterotrophic bacteria, for example, in carbon based filters. The competitive advantages of this process are: 1. No consumable chemicals are needed in the process. The only raw materials

  17. Hydrogen storage and fuel cells

    NASA Astrophysics Data System (ADS)

    Liu, Di-Jia

    2018-01-01

    Global warming and future energy supply are two major challenges facing American public today. To overcome such challenges, it is imperative to maximize the existing fuel utilization with new conversion technologies while exploring alternative energy sources with minimal environmental impact. Hydrogen fuel cell represents a next-generation energy-efficient technology in transportation and stationary power productions. In this presentation, a brief overview of the current technology status of on-board hydrogen storage and polymer electrolyte membrane fuel cell in transportation will be provided. The directions of the future researches in these technological fields, including a recent "big idea" of "H2@Scale" currently developed at the U. S. Department of Energy, will also be discussed.

  18. Comparison between response dynamics in transition economies and developed economies

    NASA Astrophysics Data System (ADS)

    Tenenbaum, Joel; Horvatić, Davor; Bajić, Slavica Cosović; Pehlivanović, Bećo; Podobnik, Boris; Stanley, H. Eugene

    2010-10-01

    In developed economies, the sign of the price increment influences the volatility in an asymmetric fashion—negative increments tend to result in larger volatility (increments with larger magnitudes), while positive increments result in smaller volatility. We explore whether this asymmetry extends from developed economies to European transition economies and, if so, how such asymmetry changes over time as these transition economies develop and mature. We analyze eleven European transition economies and compare the results with those obtained by analyzing U.S. market indices. Specifically, we calculate parameters that quantify both the volatility asymmetry and the strength of its dependence on prior increments. We find that, like their developed economy counterparts, almost all transition economy indices exhibit a significant volatility asymmetry, and the parameter γ characterizing asymmetry fluctuates more over time for transition economies. We also investigate how the association between volatility and volatility asymmetry varies by type of market. We test the hypothesis of a negative correlation between volatility and volatility asymmetry. We find that, for developed economies, γ experiences local minima during (i) “Black Monday” on October 19, 1987, (ii) the dot-com bubble crash in 2002, and (iii) the 2007-2009 global crisis while for transition economies, γ experiences local maxima during times of economic crisis.

  19. Embedded system based on PWM control of hydrogen generator with SEPIC converter

    NASA Astrophysics Data System (ADS)

    Fall, Cheikh; Setiawan, Eko; Habibi, Muhammad Afnan; Hodaka, Ichijo

    2017-09-01

    The objective of this paper is to design and to produce a micro electrical plant system based on fuel cell for teaching material-embedded systems in technical vocational training center. Based on this, the student can experience generating hydrogen by fuel cells, controlling the rate of hydrogen generation by the duty ration of single-ended primary-inductor converter(SEPIC), drawing the curve rate of hydrogen to duty ratio, generating electrical power by using hydrogen, and calculating the fuel cell efficiency when it is used as electrical energy generator. This project is of great importance insofar as students will need to acquire several skills to be able to realize it such as continuous DC DC conversion and the scientific concept behind the converter, the regulation of systems with integral proportional controllers, the installation of photovoltaic cells, the use of high-tech sensors, microcontroller programming, object-oriented programming, mastery of the fuel cell syste

  20. Wireless Hydrogen Smart Sensor Based on Pt/Graphene-Immobilized Radio-Frequency Identification Tag.

    PubMed

    Lee, Jun Seop; Oh, Jungkyun; Jun, Jaemoon; Jang, Jyongsik

    2015-08-25

    Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus, appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen-gas leak detection and surveillance systems are needed; additionally, the ability to monitor large areas (e.g., cities) via wireless networks is becoming increasingly important. In this report, we introduce a radio frequency identification (RFID)-based wireless smart-sensor system, composed of a Pt-decorated reduced graphene oxide (Pt_rGO)-immobilized RFID sensor tag and an RFID-reader antenna-connected network analyzer to detect hydrogen gas. The Pt_rGOs, produced using a simple chemical reduction process, were immobilized on an antenna pattern in the sensor tag through spin coating. The resulting Pt_rGO-based RFID sensor tag exhibited a high sensitivity to hydrogen gas at unprecedentedly low concentrations (1 ppm), with wireless communication between the sensor tag and RFID-reader antenna. The wireless sensor tag demonstrated flexibility and a long lifetime due to the strong immobilization of Pt_rGOs on the substrate and battery-independent operation during hydrogen sensing, respectively.

  1. Highly efficient hydrogen storage system based on ammonium bicarbonate/formate redox equilibrium over palladium nanocatalysts.

    PubMed

    Su, Ji; Yang, Lisha; Lu, Mi; Lin, Hongfei

    2015-03-01

    A highly efficient, reversible hydrogen storage-evolution process has been developed based on the ammonium bicarbonate/formate redox equilibrium over the same carbon-supported palladium nanocatalyst. This heterogeneously catalyzed hydrogen storage system is comparable to the counterpart homogeneous systems and has shown fast reaction kinetics of both the hydrogenation of ammonium bicarbonate and the dehydrogenation of ammonium formate under mild operating conditions. By adjusting temperature and pressure, the extent of hydrogen storage and evolution can be well controlled in the same catalytic system. Moreover, the hydrogen storage system based on aqueous-phase ammonium formate is advantageous owing to its high volumetric energy density. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Solar-hydrogen generation and solar concentration (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chinello, Enrico; Modestino, Miguel A.; Schüttauf, Jan-Willem; Lambelet, David; Delfino, Antonio; Dominé, Didier; Faes, Antonin; Despeisse, Matthieu; Bailat, Julien; Psaltis, Demetri; Fernandez Rivas, David; Ballif, Christophe; Moser, Christophe

    2016-09-01

    We successfully demonstrated and reported the highest solar-to-hydrogen efficiency with crystalline silicon cells and Earth-abundant electrocatalysts under unconcentrated solar radiation. The combination of hetero-junction silicon cells and a 3D printed Platinum/Iridium-Oxide electrolyzer has been proven to work continuously for more than 24 hours in neutral environment, with a stable 13.5% solar-to-fuel efficiency. Since the hydrogen economy is expected to expand to a global scale, we demonstrated the same efficiency with an Earth-abundant electrolyzer based on Nickel in a basic medium. In both cases, electrolyzer and photovoltaic cells have been specifically sized for their characteristic curves to intersect at a stable operating point. This is foreseen to guarantee constant operation over the device lifetime without performance degradation. The next step is to lower the production cost of hydrogen by making use of medium range solar concentration. It permits to limit the photoabsorbing area, shown to be the cost-driver component. We have recently modeled a self-tracking solar concentrator, able to capture sunlight within the acceptance angle range +/-45°, implementing 3 custom lenses. The design allows a fully static device, avoiding the external tracker that was necessary in a previously demonstrated +/-16° angular range concentrator. We will show two self-tracking methods. The first one relies on thermal expansion whereas the second method relies on microfluidics.

  3. Hydrogen Sensors Using Nitride-Based Semiconductor Diodes: The Role of Metal/Semiconductor Interfaces

    PubMed Central

    Irokawa, Yoshihiro

    2011-01-01

    In this paper, I review my recent results in investigating hydrogen sensors using nitride-based semiconductor diodes, focusing on the interaction mechanism of hydrogen with the devices. Firstly, effects of interfacial modification in the devices on hydrogen detection sensitivity are discussed. Surface defects of GaN under Schottky electrodes do not play a critical role in hydrogen sensing characteristics. However, dielectric layers inserted in metal/semiconductor interfaces are found to cause dramatic changes in hydrogen sensing performance, implying that chemical selectivity to hydrogen could be realized. The capacitance-voltage (C–V) characteristics reveal that the work function change in the Schottky metal is not responsible mechanism for hydrogen sensitivity. The interface between the metal and the semiconductor plays a critical role in the interaction of hydrogen with semiconductor devises. Secondly, low-frequency C–V characterization is employed to investigate the interaction mechanism of hydrogen with diodes. As a result, it is suggested that the formation of a metal/semiconductor interfacial polarization could be attributed to hydrogen-related dipoles. In addition, using low-frequency C–V characterization leads to clear detection of 100 ppm hydrogen even at room temperature where it is hard to detect hydrogen by using conventional current-voltage (I–V) characterization, suggesting that low-frequency C–V method would be effective in detecting very low hydrogen concentrations. PMID:22346597

  4. Review of Supported Pd-Based Membranes Preparation by Electroless Plating for Ultra-Pure Hydrogen Production

    PubMed Central

    Alique, David; Martinez-Diaz, David; Sanz, Raul

    2018-01-01

    In the last years, hydrogen has been considered as a promising energy vector for the oncoming modification of the current energy sector, mainly based on fossil fuels. Hydrogen can be produced from water with no significant pollutant emissions but in the nearest future its production from different hydrocarbon raw materials by thermochemical processes seems to be more feasible. In any case, a mixture of gaseous compounds containing hydrogen is produced, so a further purification step is needed to purify the hydrogen up to required levels accordingly to the final application, i.e., PEM fuel cells. In this mean, membrane technology is one of the available separation options, providing an efficient solution at reasonable cost. Particularly, dense palladium-based membranes have been proposed as an ideal chance in hydrogen purification due to the nearly complete hydrogen selectivity (ideally 100%), high thermal stability and mechanical resistance. Moreover, these membranes can be used in a membrane reactor, offering the possibility to combine both the chemical reaction for hydrogen production and the purification step in a unique device. There are many papers in the literature regarding the preparation of Pd-based membranes, trying to improve the properties of these materials in terms of permeability, thermal and mechanical resistance, poisoning and cost-efficiency. In this review, the most relevant advances in the preparation of supported Pd-based membranes for hydrogen production in recent years are presented. The work is mainly focused in the incorporation of the hydrogen selective layer (palladium or palladium-based alloy) by the electroless plating, since it is one of the most promising alternatives for a real industrial application of these membranes. The information is organized in different sections including: (i) a general introduction; (ii) raw commercial and modified membrane supports; (iii) metal deposition insights by electroless-plating; (iv) trends in

  5. Unusual para-substituent effects on the intramolecular hydrogen-bond in hydrazone-based switches.

    PubMed

    Su, Xin; Lõkov, Märt; Kütt, Agnes; Leito, Ivo; Aprahamian, Ivan

    2012-11-04

    A "V"-shaped Hammett plot shows that resonance-assisted hydrogen bonding does not dictate the strength of the intramolecular hydrogen bond in the E isomers of hydrazone-based switches because it involves an aromatic pyridyl ring.

  6. English and the Knowledge Economy: A Critical Analysis

    ERIC Educational Resources Information Center

    Collin, Ross

    2014-01-01

    This article focuses on knowledge economy discourse and considers the appeal of this discourse to English educators. Knowledge economy discourse is defined as a mode of thought and expression that assumes a broad-based economy driven by innovation will soon emerge in the USA. This discourse, it is argued, offers English teachers solutions to some…

  7. Midwest Transportation Consortium annual progress report : October 2001.

    DOT National Transportation Integrated Search

    2001-10-01

    From the Director: Transportation assets are tremendously important from the perspective the performance of our national, : state, and regional economies. Few people comprehend the great impact it has on the overall economy. : Literally trillions of ...

  8. Mixed ionic and electronic conducting membranes for hydrogen generation and separation

    NASA Astrophysics Data System (ADS)

    Cui, Hengdong

    Dense mixed ionic and electronic conducting (MIEC) membranes are receiving increasing attention due to their potential for application as gas separation membranes to separate oxygen from air. The objective of this work is to study a novel, chemically-assisted separation process that utilizes oxygen-ion and electron-conducting MIECs for generating and separating hydrogen from steam. This research aims at exploring new routes and materials for high-purity hydrogen production for use in fuel cells and hydrogen-based internal combustion (IC) engines. In this approach, hydrocarbon fuel such as methane is fed to one side of the membrane, while steam is fed to the other side. The MIEC membrane separation process involves steam dissociation and oxidation of the fuel. The oxygen ions formed as a result of steam dissociation are transported across the membrane in a coupled transport process with electrons being transported in the opposite direction. Upon reaching the fuel side of the membrane, the oxygen ions oxidize the hydrocarbon. This process results in hydrogen production on the steam side of the membrane. The oxygen partial pressure gradient across the membrane is the driving force for this process. In this work, a novel, dual-phase composite MIEC membrane system comprising of rare-earth doped ceria with high oxygen ion conductivity and donor-doped strontium titanate with high electronic conductivity were investigated. The chemical diffusion coefficient and surface exchange coefficient have been measured using the electrical conductivity relaxation (ECR) technique. These two parameters control the rate of oxygen permeation across the membrane. The permeation data have been fit with a kinetic model that incorporates oxygen surface exchange on two sides of the membrane and bulk transport of oxygen through the membrane. This material has higher bulk diffusion coefficient and surface exchange reaction rate compared to other known MIEC conductors under the process

  9. Magnetic and transport properties of heat-treated polyparaphenylene-based carbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, M.J.; Kobayashi, N.; Dresselhaus, M.S.

    1998-07-01

    Electron spin resonance (ESR), magnetic susceptibility, and transport measurements were recently performed on a set of heat-treated polyparaphenylene (PPP)-based carbon samples, which are of significant interest as novel carbon-based anode electrodes in Li-ion batteries. Attention is focused on the evolution of the carbonaceous structures formed at low heat-treatment temperatures (T{sub HT}) in the regime of 600 C {le} T{sub HT} {le} 800 C, where percolative transport behavior is observed. At the percolation threshold, T{sub HT}{sup c} {approx} 700 C the coexistence of two spin centers with peak-to-peak Lorentzian linewidths of {Delta}H{sub pp}(300K) = 0.5 and 5.0 G is observed. Themore » relatively high ratio of hydrogen carbon (H/C) near T{sub HT}{sup c} is believed to influence the ESR results through an unresolved hyperfine interaction. Curie-Weiss temperatures are found from measurements of [I{sub pp}({Delta}H{sub pp}){sup 2}]{sup {minus}1}, where I{sub pp} is the peak-to-peak lineheight, yielding results that are in agreement with static susceptibility, {chi}(T), measurements. At low T{sub HT}, PPP-based materials exhibit a large amount of disorder and this is evidenced by the high density of localized spins, N{sub C}, which is obtained from a Curie-Weiss fit to {chi}(T), assuming a spin quantum number of S = {1/2}. A model explaining the microstructure and high electrochemical doping capacity of PPP samples heat-treated to 700 C can be related to Li-ion battery performance.« less

  10. Hydrogen production from algal biomass - Advances, challenges and prospects.

    PubMed

    Show, Kuan-Yeow; Yan, Yuegen; Ling, Ming; Ye, Guoxiang; Li, Ting; Lee, Duu-Jong

    2018-06-01

    Extensive effort is being made to explore renewable energy in replacing fossil fuels. Biohydrogen is a promising future fuel because of its clean and high energy content. A challenging issue in establishing hydrogen economy is sustainability. Biohydrogen has the potential for renewable biofuel, and could replace current hydrogen production through fossil fuel thermo-chemical processes. A promising source of biohydrogen is conversion from algal biomass, which is abundant, clean and renewable. Unlike other well-developed biofuels such as bioethanol and biodiesel, production of hydrogen from algal biomass is still in the early stage of development. There are a variety of technologies for algal hydrogen production, and some laboratory- and pilot-scale systems have demonstrated a good potential for full-scale implementation. This work presents an elucidation on development in biohydrogen encompassing biological pathways, bioreactor designs and operation and techno-economic evaluation. Challenges and prospects of biohydrogen production are also outlined. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Agent-Based Model Approach to Complex Phenomena in Real Economy

    NASA Astrophysics Data System (ADS)

    Iyetomi, H.; Aoyama, H.; Fujiwara, Y.; Ikeda, Y.; Souma, W.

    An agent-based model for firms' dynamics is developed. The model consists of firm agents with identical characteristic parameters and a bank agent. Dynamics of those agents are described by their balance sheets. Each firm tries to maximize its expected profit with possible risks in market. Infinite growth of a firm directed by the ``profit maximization" principle is suppressed by a concept of ``going concern". Possibility of bankruptcy of firms is also introduced by incorporating a retardation effect of information on firms' decision. The firms, mutually interacting through the monopolistic bank, become heterogeneous in the course of temporal evolution. Statistical properties of firms' dynamics obtained by simulations based on the model are discussed in light of observations in the real economy.

  12. An investigation of the effect of surface impurities on the adsorption kinetics of hydrogen chemisorbed onto iron

    NASA Technical Reports Server (NTRS)

    Shanabarger, Mickey R.

    1993-01-01

    The goal of this program was to develop an understanding of heterogeneous kinetic processes for those molecular species which produce gaseous hydrogen degradation of the mechanical properties of metallic structural materials. Although hydrogen degradation of metallic materials is believed to result from dissolved protonic hydrogen, the heterogeneous hydrogen interface transport processes often dominate the kinetics of degradation. The initial step in the interface transport process is the dissociative chemisorption of the molecular species at the metal surface followed by hydrogen absorption into and transport through the bulk. The interaction of hydrogen with the surfaces of alpha-2(Ti3Al) titanium aluminide, gamma(TiAl) titanium aluminide, and beryllium were studied.

  13. Pursuing Innovation: Benchmarking Milwaukee's Transition to a Knowledge-Based Economy. Metro Milwaukee Innovation Index 2010

    ERIC Educational Resources Information Center

    Million, Laura; Dickman, Anneliese; Henken, Rob

    2010-01-01

    While the Milwaukee region's economic base is rooted in its manufacturing history, many believe that the region's future prosperity will be tied to its ability to successfully transition its economy into one that is based on knowledge and innovation. Indeed, fostering innovation has become the call to action for business and political leaders…

  14. Hydrogen induced fracture characteristics of single crystal nickel-based superalloys

    NASA Technical Reports Server (NTRS)

    Chen, Po-Shou; Wilcox, Roy C.

    1990-01-01

    A stereoscopic method for use with x ray energy dispersive spectroscopy of rough surfaces was adapted and applied to the fracture surfaces single crystals of PWA 1480E to permit rapid orientation determinations of small cleavage planes. The method uses a mathematical treatment of stereo pair photomicrographs to measure the angle between the electron beam and the surface normal. One reference crystal orientation corresponding to the electron beam direction (crystal growth direction) is required to perform this trace analysis. The microstructure of PWA 1480E was characterized before fracture analysis was performed. The fracture behavior of single crystals of the PWA 1480E nickel-based superalloy was studied. The hydrogen-induced fracture behavior of single crystals of the PWA 1480E nickel-based superalloy was also studied. In order to understand the temperature dependence of hydrogen-induced embrittlement, notched single crystals with three different crystal growth orientations near zone axes (100), (110), and (111) were tensile tested at 871 C (1600 F) in both helium and hydrogen atmospheres at 34 MPa. Results and conclusions are given.

  15. 2011 Annual Progress Report: DOE Hydrogen and Fuel Cells Program (Book)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    In the past year, the DOE Hydrogen and Fuel Cells Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.

  16. Malaysia Collaborates with the New York Academy of Sciences to Develop an Innovation-Based Economy

    PubMed Central

    Wahome, Michel; Rubinstein, Ellis

    2011-01-01

    If Malaysia is to become a high-income country by 2020, it will have to transform into a knowledge-based, innovation economy. This goal will be achieved by developing an atmosphere conducive to experimentation and entrepreneurship at home; while reaching out to partners across the globe. One of Malaysia’s newest partnerships is with the New York Academy of Sciences. The Academy has expertise in innovation and higher education and a long history of promoting science, education, and science-based solutions through a global network of scientists, industry-leaders, and policy-makers. Malaysia’s Prime Minister, Dato’ Sri Mohd Najib Tun Abdul Razak, leveraged the Academy’s network to convene a science, technology, and innovation advisory council. This council would provide practical guidance to establish Malaysia as an innovation-based economy. Three initial focus areas, namely palm-oil biomass utilisation, establishment of smart communities, and capacity building in science and engineering, were established to meet short-term and long-term targets. PMID:22135594

  17. Malaysia collaborates with the new york academy of sciences to develop an innovation-based economy.

    PubMed

    Wahome, Michel; Rubinstein, Ellis

    2011-07-01

    If Malaysia is to become a high-income country by 2020, it will have to transform into a knowledge-based, innovation economy. This goal will be achieved by developing an atmosphere conducive to experimentation and entrepreneurship at home; while reaching out to partners across the globe. One of Malaysia's newest partnerships is with the New York Academy of Sciences. The Academy has expertise in innovation and higher education and a long history of promoting science, education, and science-based solutions through a global network of scientists, industry-leaders, and policy-makers. Malaysia's Prime Minister, Dato' Sri Mohd Najib Tun Abdul Razak, leveraged the Academy's network to convene a science, technology, and innovation advisory council. This council would provide practical guidance to establish Malaysia as an innovation-based economy. Three initial focus areas, namely palm-oil biomass utilisation, establishment of smart communities, and capacity building in science and engineering, were established to meet short-term and long-term targets.

  18. 40 CFR 600.207-08 - Calculation and use of vehicle-specific 5-cycle-based fuel economy values for vehicle...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Calculation and use of vehicle-specific 5-cycle-based fuel economy values for vehicle configurations. 600.207-08 Section 600.207-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fue...

  19. Does the economy affect teenage substance use?

    PubMed

    Arkes, Jeremy

    2007-01-01

    This research examines how teenage drug and alcohol use responds to changes in the economy. In contrast to the recent literature confirming pro-cyclical alcohol use among adults, this research offers strong evidence that a weaker economy leads to greater teenage marijuana and hard-drug use and some evidence that a weaker economy also leads to higher teenage alcohol use. The findings are based on logistic models with state and year fixed effects, using teenagers from the NLSY-1997. The evidence also indicates that teenagers are more likely to sell drugs in weaker economies. This suggests one mechanism for counter-cyclical drug use - that access to illicit drugs is easier when the economy is weaker. These results also suggest that the strengthening economy in the 1990s mitigated what would otherwise have been much larger increases in teenage drug use. Copyright (c) 2006 John Wiley & Sons, Ltd.

  20. Influence of hydrogen oxidation kinetics on hydrogen environment embrittlement

    NASA Technical Reports Server (NTRS)

    Walter, R. J.; Kendig, M. W.; Meisels, A. P.

    1992-01-01

    Results are presented from experiments performed to determine the roles of hydrogen absorption and hydrogen electron transfer on the susceptibility of Fe- and Ni-base alloys to ambient-temperature hydroen embrittlement. An apparent independence is noted between hydrogen environment embrittlement and internal hydrogen embrittlement. The experiments were performed on Inconel 718, Incoloy 903, and A286. The electrochemical results obtained indicate that Inconel 718 either adsorbs hydrogen more rapidly and/or the electrochemical oxidation of the adsorbed hydrogen occurred more rapidly than in the other two materials.

  1. An Empirical Study of the Impact of the Air Transportation Industry Energy Conservation and Emission Reduction Projects on the Local Economy in China.

    PubMed

    Chen, Yuxiu; Yu, Jian; Li, Li; Li, Linlin; Li, Long; Zhou, Jie; Tsai, Sang-Bing; Chen, Quan

    2018-04-20

    Green development has been of particular interest to a range of industries worldwide, one of which being the air transportation industry (ATI). The energy conservation and emission reduction (ECER) projects of the ATI have a huge impact on the local economy. In this study, the input-output method was used to analyze the indirect economic impact of the implementation of the ECER projects of the ATI on the local economy of the Beijing-Tianjin-Hebei (BTH) region. We examined the direct benefits, backward spread effects, forward spread effects, and consumption multiplier effects. The final results showed that the comprehensive economic income from 2011⁻2013 in the BTH region reached RMB 4.74 billion. The results revealed that the ECER projects commissioned by the ATI were worth investing from both the economic and social benefits perspectives. To increase the green development effects and promote the sustainable development of the ATI, the special funds provided by the Civil Aviation Administration of China should be invested intensively in basic green technology research and setting green regulating and governance rules.

  2. An Empirical Study of the Impact of the Air Transportation Industry Energy Conservation and Emission Reduction Projects on the Local Economy in China

    PubMed Central

    Chen, Yuxiu; Yu, Jian; Li, Li; Li, Linlin; Li, Long; Zhou, Jie; Chen, Quan

    2018-01-01

    Green development has been of particular interest to a range of industries worldwide, one of which being the air transportation industry (ATI). The energy conservation and emission reduction (ECER) projects of the ATI have a huge impact on the local economy. In this study, the input-output method was used to analyze the indirect economic impact of the implementation of the ECER projects of the ATI on the local economy of the Beijing-Tianjin-Hebei (BTH) region. We examined the direct benefits, backward spread effects, forward spread effects, and consumption multiplier effects. The final results showed that the comprehensive economic income from 2011–2013 in the BTH region reached RMB 4.74 billion. The results revealed that the ECER projects commissioned by the ATI were worth investing from both the economic and social benefits perspectives. To increase the green development effects and promote the sustainable development of the ATI, the special funds provided by the Civil Aviation Administration of China should be invested intensively in basic green technology research and setting green regulating and governance rules. PMID:29677160

  3. Hyperspherical Symmetry of Hydrogenic Orbitals and Recoupling Coefficients among Alternative Bases

    NASA Astrophysics Data System (ADS)

    Aquilanti, Vincenzo; Cavalli, Simonetta; Coletti, Cecilia

    1998-04-01

    Fock's representation of momentum space hydrogenic orbitals in terms of harmonics on the hypersphere S3 of a four-dimensional space is extended to classify alternative bases. These orbitals are of interest for Sturmian expansions of use in atomic and molecular structure calculations and for the description of atoms in fields. Because of the correspondence between the S3 manifold and the SU\\(2\\) group, new sum rules are established which are of relevance for the connection, not only among hydrogen atom orbitals in different bases, but also among the usual vector coupling coefficients and rotation matrix elements.

  4. Polymers for hydrogen infrastructure and vehicle fuel systems :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barth, Rachel Reina; Simmons, Kevin L.; San Marchi, Christopher W.

    2013-10-01

    This document addresses polymer materials for use in hydrogen service. Section 1 summarizes the applications of polymers in hydrogen infrastructure and vehicle fuel systems and identifies polymers used in these applications. Section 2 reviews the properties of polymer materials exposed to hydrogen and/or high-pressure environments, using information obtained from published, peer-reviewed literature. The effect of high pressure on physical and mechanical properties of polymers is emphasized in this section along with a summary of hydrogen transport through polymers. Section 3 identifies areas in which fuller characterization is needed in order to assess material suitability for hydrogen service.

  5. In-use fuel economy of hybrid-electric school buses in Iowa.

    PubMed

    Hallmark, Shauna; Sperry, Bob; Mudgal, Abhisek

    2011-05-01

    Although it is much safer and more fuel-efficient to transport children to school in buses than in private vehicles, school buses in the United States still consume 822 million gal of diesel fuel annually, and school transportation costs can account for a significant portion of resource-constrained school district budgets. Additionally, children in diesel-powered school buses may be exposed to higher levels of particulates and other pollutants than children in cars. One solution to emission and fuel concerns is use of hybrid-electric school buses, which have the potential to reduce emissions and overall lifecycle costs compared with conventional diesel buses. Hybrid-electric technologies are available in the passenger vehicle market as well as the transit bus market and have a track record indicating fuel economy and emissions benefits. This paper summarizes the results of an in-use fuel economy evaluation for two plug-in hybrid school buses deployed in two different school districts in Iowa. Each school district selected a control bus with a route similar to that of the hybrid bus. Odometer readings, fuel consumption, and maintenance needs were recorded for each bus. The buses were deployed in 2008 and data were collected through May 2010. Fuel consumption was calculated for each school district. In Nevada, IA, the overall average fuel economy was 8.23 mpg for the hybrid and 6.35 mpg for the control bus. In Sigourney, IA, the overall average fuel economy was 8.94 mpg for the hybrid and 6.42 mpg for the control bus. The fuel consumption data were compared for the hybrid and control buses using a Wilcoxon signed rank test. Results indicate that fuel economy for the Nevada hybrid bus was 29.6% better than for the Nevada control bus, and fuel economy for the Sigourney hybrid bus was 39.2% higher than for the Sigourney control bus. Both differences were statistically significant.

  6. A statistical mechanical theory of proton transport kinetics in hydrogen-bonded networks based on population correlation functions with applications to acids and bases.

    PubMed

    Tuckerman, Mark E; Chandra, Amalendu; Marx, Dominik

    2010-09-28

    Extraction of relaxation times, lifetimes, and rates associated with the transport of topological charge defects in hydrogen-bonded networks from molecular dynamics simulations is a challenge because proton transfer reactions continually change the identity of the defect core. In this paper, we present a statistical mechanical theory that allows these quantities to be computed in an unbiased manner. The theory employs a set of suitably defined indicator or population functions for locating a defect structure and their associated correlation functions. These functions are then used to develop a chemical master equation framework from which the rates and lifetimes can be determined. Furthermore, we develop an integral equation formalism for connecting various types of population correlation functions and derive an iterative solution to the equation, which is given a graphical interpretation. The chemical master equation framework is applied to the problems of both hydronium and hydroxide transport in bulk water. For each case it is shown that the theory establishes direct links between the defect's dominant solvation structures, the kinetics of charge transfer, and the mechanism of structural diffusion. A detailed analysis is presented for aqueous hydroxide, examining both reorientational time scales and relaxation of the rotational anisotropy, which is correlated with recent experimental results for these quantities. Finally, for OH(-)(aq) it is demonstrated that the "dynamical hypercoordination mechanism" is consistent with available experimental data while other mechanistic proposals are shown to fail. As a means of going beyond the linear rate theory valid from short up to intermediate time scales, a fractional kinetic model is introduced in the Appendix in order to describe the nonexponential long-time behavior of time-correlation functions. Within the mathematical framework of fractional calculus the power law decay ∼t(-σ), where σ is a parameter of the

  7. STME Hydrogen Mixer Study

    NASA Technical Reports Server (NTRS)

    Blumenthal, Rob; Kim, Dongmoon; Bache, George

    1992-01-01

    The hydrogen mixer for the Space Transportation Main Engine is used to mix cold hydrogen bypass flow with warm hydrogen coolant chamber gas, which is then fed to the injectors. It is very important to have a uniform fuel temperature at the injectors in order to minimize mixture ratio problems due to the fuel density variations. In addition, the fuel at the injector has certain total pressure requirements. In order to achieve these objectives, the hydrogen mixer must provide a thoroughly mixed fluid with a minimum pressure loss. The AEROVISC computational fluid dynamics (CFD) code was used to analyze the STME hydrogen mixer, and proved to be an effective tool in optimizing the mixer design. AEROVISC, which solves the Reynolds Stress-Averaged Navier-Stokes equations in primitive variable form, was used to assess the effectiveness of different mixer designs. Through a parametric study of mixer design variables, an optimal design was selected which minimized mixed fuel temperature variation and fuel mixer pressure loss. The use of CFD in the design process of the STME hydrogen mixer was effective in achieving an optimal mixer design while reducing the amount of hardware testing.

  8. High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel A. Mosher; Xia Tang; Ronald J. Brown

    2007-07-27

    This final report describes the motivations, activities and results of the hydrogen storage independent project "High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides" performed by the United Technologies Research Center under the Department of Energy Hydrogen Program, contract # DE-FC36-02AL67610. The objectives of the project were to identify and address the key systems technologies associated with applying complex hydride materials, particularly ones which differ from those for conventional metal hydride based storage. This involved the design, fabrication and testing of two prototype systems based on the hydrogen storage material NaAlH4. Safety testing, catalysis studies, heat exchangermore » optimization, reaction kinetics modeling, thermochemical finite element analysis, powder densification development and material neutralization were elements included in the effort.« less

  9. Environmental fatigue of an Al-Li-Cu alloy. Part 3: Modeling of crack tip hydrogen damage

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Gangloff, Richard P.

    1992-01-01

    Environmental fatigue crack propagation rates and microscopic damage modes in Al-Li-Cu alloy 2090 (Parts 1 and 2) are described by a crack tip process zone model based on hydrogen embrittlement. Da/dN sub ENV equates to discontinuous crack advance over a distance, delta a, determined by dislocation transport of dissolved hydrogen at plastic strains above a critical value; and to the number of load cycles, delta N, required to hydrogenate process zone trap sites that fracture according to a local hydrogen concentration-tensile stress criterion. Transgranular (100) cracking occurs for process zones smaller than the subgrain size, and due to lattice decohesion or hydride formation. Intersubgranular cracking dominates when the process zone encompasses one or more subgrains so that dislocation transport provides hydrogen to strong boundary trapping sites. Multi-sloped log da/dN-log delta K behavior is produced by process zone plastic strain-hydrogen-microstructure interactions, and is determined by the DK dependent rates and proportions of each parallel cracking mode. Absolute values of the exponents and the preexponential coefficients are not predictable; however, fractographic measurements theta sub i coupled with fatigue crack propagation data for alloy 2090 established that the process zone model correctly describes fatigue crack propagation kinetics. Crack surface films hinder hydrogen uptake and reduce da/dN and alter the proportions of each fatigue crack propagation mode.

  10. Transportation legislative data base : state radioactive materials transportation statute compilation, 1989-1993

    DOT National Transportation Integrated Search

    1994-04-30

    The Transportation Legislative Data Base (TLDB) is a computer-based information service containing summaries of federal, state and certain local government statutes and regulations relating to the transportation of radioactive materials in the United...

  11. Storing and transporting energy

    DOEpatents

    McClaine, Andrew W.; Brown, Kenneth

    2010-09-07

    Among other things, hydrogen is released from water at a first location using energy from a first energy source; the released hydrogen is stored in a metal hydride slurry; and the metal hydride slurry is transported to a second location remote from the first location.

  12. Modeling of composite hydrogen storage cylinders using finite element analysis

    DOT National Transportation Integrated Search

    2008-02-01

    Pressurized hydrogen storage cylinders are critical components of hydrogen transportation systems. Composite cylinders have pressure/thermal relief devices that are activated in case of an emergency. The difficulty in accurately analyzing the behavio...

  13. Heterolytic Activation of Hydrogen Promoted by Ruthenium Nanoparticles immobilized on Basic Supports and Hydrogenation of Aromatic Compounds

    NASA Astrophysics Data System (ADS)

    Fang, Minfeng

    Despite the aggressive development and deployment of new renewable and nuclear technologies, petroleum-derived transportation fuels---gasoline, diesel and jet fuels---will continue to dominate the markets for decades. Environmental legislation imposes severe limits on the tolerable proportion of aromatics, sulfur and nitrogen contents in transportation fuels, which is difficult to achieve with current refining technologies. Catalytic hydrogenation plays an important role in the production of cleaner fuels, both as a direct means to reduce the aromatics and as a key step in the hydrodenitrogenation (HDN) and hydrodesulfurization (HDS) processes. However, conventional catalysts require drastic conditions and/or are easily poisoned by S or N aromatics. Therefore, there is still a need for new efficient catalysts for hydrogenation reactions relevant to the production of cleaner fossil fuels. Our catalyst design involves metallic nanoparticles intimately associated with a basic support, with the aim of creating a nanostructure capable of promoting the heterolytic activation of hydrogen and ionic hydrogenation mechanisms, as a strategy to avoid catalyst poisoning and enhance catalytic activity. We have designed and prepared a new nanostructured catalytic material composed of RuNPs immobilized on the basic polymer P4VPy. We have demonstrated that the Ru/P4VPy catalyst can promote heterolytic hydrogen activation and a unique surface ionic hydrogenation mechanism for the efficient hydrogenation of N-aromatics. This is the first time these ionic hydrogenation pathways have been demonstrated on solid surfaces. For the RuNPs surfaces without basic sites in close proximity, the conventional homolytic H2 splitting is otherwise involved. Using the mechanistic concepts from Ru/P4VPy, we have designed and prepared the Ru/MgO catalyst, with the aim to improve the catalytic efficiency for the hydrogenation of heteroatom aromatics operating by the ionic hydrogenation mechanism. The Ru

  14. Chemoselective Hydrogenation of Aldehydes under Mild, Base-Free Conditions: Manganese Outperforms Rhenium

    PubMed Central

    2018-01-01

    Several hydride Mn(I) and Re(I) PNP pincer complexes were applied as catalysts for the homogeneous chemoselective hydrogenation of aldehydes. Among these, [Mn(PNP-iPr)(CO)2(H)] was found to be one of the most efficient base metal catalysts for this process and represents a rare example which permits the selective hydrogenation of aldehydes in the presence of ketones and other reducible functionalities, such as C=C double bonds, esters, or nitriles. The reaction proceeds at room temperature under base-free conditions with catalyst loadings between 0.1 and 0.05 mol% and a hydrogen pressure of 50 bar (reaching TONs of up to 2000). A mechanism which involves an outer-sphere hydride transfer and reversible PNP ligand deprotonation/protonation is proposed. Analogous isoelectronic and isostructural Re(I) complexes were only poorly active. PMID:29755828

  15. The initiation of homeless youth into the street economy.

    PubMed

    Gwadz, Marya Viorst; Gostnell, Karla; Smolenski, Carol; Willis, Brian; Nish, David; Nolan, Theresa C; Tharaken, Maya; Ritchie, Amanda S

    2009-04-01

    Homeless youth (HY) who lack employment in the formal economy typically turn to the street economy (e.g., prostitution, drug selling) for survival. Guided by the theory of social control, the present paper explores factors influencing HY's initiation into the street economy. Eighty HY (ages 15-23) were recruited from four community-based organizations. All participated in structured interviews and 25% participated in qualitative interviews. Almost all HY had participated in the street (81%) and formal economies (69%). Five main factors simultaneously influenced initiation into the street economy: social control/bonds, barriers to the formal economy (e.g., homelessness, educational deficits, mental health problems, incarceration, stigma), tangible and social/emotional benefits of the street economy, severe economic need, and the active recruitment of HY into the street economy by others. Qualitative and quantitative data sources were congruent. Intervention efforts are needed at multiple levels of influence to promote HY's success in the formal economy.

  16. Impact of a future H2-based road transportation sector on the composition and chemistry of the atmosphere - Part 1: Tropospheric composition and air quality

    NASA Astrophysics Data System (ADS)

    Wang, D.; Jia, W.; Olsen, S. C.; Wuebbles, D. J.; Dubey, M. K.; Rockett, A. A.

    2013-07-01

    Vehicles burning fossil fuel emit a number of substances that change the composition and chemistry of the atmosphere, and contribute to global air and water pollution and climate change. For example, nitrogen oxides and volatile organic compounds (VOCs) emitted as byproducts of fossil fuel combustion are key precursors to ground-level ozone and aerosol formation. In addition, on-road vehicles are major CO2 emitters. In order to tackle these problems, molecular hydrogen (H2) has been proposed as an energy carrier to substitute for fossil fuels in the future. However, before implementing any such strategy it is crucial to evaluate its potential impacts on air quality and climate. Here, we evaluate the impact of a future (2050) H2-based road transportation sector on tropospheric chemistry and air quality for several possible growth and technology adoption scenarios. The growth scenarios are based on the high and low emissions Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios, A1FI and B1, respectively. The technological adoption scenarios include H2 fuel cell and H2 internal combustion engine options. The impacts are evaluated with the Community Atmospheric Model Chemistry global chemistry transport model (CAM-Chem). Higher resolution simulations focusing on the contiguous United States are also carried out with the Community Multiscale Air Quality Modeling System (CMAQ) regional chemistry transport model. For all scenarios future air quality improves with the adoption of a H2-based road transportation sector; however, the magnitude and type of improvement depend on the scenario. Model results show that the adoption of H2 fuel cells would decrease tropospheric burdens of ozone (7%), CO (14%), NOx (16%), soot (17%), sulfate aerosol (4%), and ammonium nitrate aerosol (12%) in the A1FI scenario, and would decrease those of ozone (5%), CO (4%), NOx (11%), soot (7%), sulfate aerosol (4%), and ammonium nitrate aerosol (9%) in the B1 scenario

  17. Modelling of hydrogen permeability of membranes for high-purity hydrogen production

    NASA Astrophysics Data System (ADS)

    Zaika, Yury V.; Rodchenkova, Natalia I.

    2017-11-01

    High-purity hydrogen is required for clean energy and a variety of chemical technology processes. Different alloys, which may be well-suited for use in gas-separation plants, were investigated by measuring specific hydrogen permeability. One had to estimate the parameters of diffusion and sorption to numerically model the different scenarios and experimental conditions of the material usage (including extreme ones), and identify the limiting factors. This paper presents a nonlinear mathematical model taking into account the dynamics of sorption-desorption processes and reversible capture of diffusing hydrogen by inhomogeneity of the material’s structure, and also modification of the model when the transport rate is high. The results of numerical modelling allow to obtain information about output data sensitivity with respect to variations of the material’s hydrogen permeability parameters. Furthermore, it is possible to analyze the dynamics of concentrations and fluxes that cannot be measured directly. Experimental data for Ta77Nb23 and V85Ni15 alloys were used to test the model. This work is supported by the Russian Foundation for Basic Research (Project No. 15-01-00744).

  18. Note: Dissolved hydrogen detection in power transformer oil based on chemically etched fiber Bragg grating.

    PubMed

    Jiang, Jun; Ma, Guo-ming; Song, Hong-tu; Zhou, Hong-yang; Li, Cheng-rong; Luo, Ying-ting; Wang, Hong-bin

    2015-10-01

    A fiber Bragg grating (FBG) sensor based on chemically etched cladding to detect dissolved hydrogen is proposed and studied in this paper. Low hydrogen concentration tests have been carried out in mixed gases and transformer oil to investigate the repeatability and sensitivity. Moreover, to estimate the influence of etched cladding thickness, a physical model of FBG-based hydrogen sensor is analyzed. Experimental results prove that thin cladding chemically etched by HF acid solution improves the response to hydrogen detection in oil effectively. At last, the sensitivity of FBG sensor chemically etched 16 μm could be as high as 0.060 pm/(μl/l), increased by more than 30% in comparison to un-etched FBG.

  19. Light Truck Capabilities, Utility Requirements, and Uses : Implications for Fuel Economy. Final Report

    DOT National Transportation Integrated Search

    1996-04-01

    In April 1994, NHTSA issued an Advanced Notice of Proposed Rule Making (ANPRM) requesting information regarding light truck fuel economy capabilities for model years 1998 through 2006. Subsequently, in the Department of Transportation Appropriations ...

  20. Investigation of the Alkaline Electrochemical Interface and Development of Composite Metal/Metal-Oxides for Hydrogen and Oxygen Electrodes

    NASA Astrophysics Data System (ADS)

    Bates, Michael

    Understanding the fundamentals of electrochemical interfaces will undoubtedly reveal a path forward towards a society based on clean and renewable energy. In particular, it has been proposed that hydrogen can play a major role as an energy carrier of the future. To fully utilize the clean energy potential of a hydrogen economy, it is vital to produce hydrogen via water electrolysis, thus avoiding co-production of CO2 inherent to reformate hydrogen. While significant research efforts elsewhere are focused on photo-chemical hydrogen production from water, the inherent low efficiency of this method would require a massive land-use footprint to achieve sufficient hydrogen production rates to integrate hydrogen into energy markets. Thus, this research has primarily focused on the water splitting reactions on base-metal catalysts in the alkaline environment. Development of high-performance base-metal catalysts will help move alkaline water electrolysis to the forefront of hydrogen production methods, and when paired with solar and wind energy production, represents a clean and renewable energy economy. In addition to the water electrolysis reactions, research was conducted to understand the de-activation of reversible hydrogen electrodes in the corrosive environment of the hydrogen-bromine redox flow battery. Redox flow batteries represent a promising energy storage option to overcome the intermittency challenge of wind and solar energy production methods. Optimization of modular and scalable energy storage technology will allow higher penetration of renewable wind and solar energy into the grid. In Chapter 1, an overview of renewable energy production methods and energy storage options is presented. In addition, the fundamentals of electrochemical analysis and physical characterization of the catalysts are discussed. Chapter 2 reports the development of a Ni-Cr/C electrocatalyst with unprecedented mass-activity for the hydrogen evolution reaction (HER) in alkaline

  1. Hydrogen Analysis with the Sandia ParaChoice Model.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levinson, Rebecca Sobel; West, Todd H.

    2017-07-01

    In the coming decades, light-duty vehicle options and their supporting infrastructure must undergo significant transformations to achieve aggressive national targets for reducing petroleum consumption and lowering greenhouse gas emissions. FCEVs, battery and hybrid electric vehicles, and biofuels are among the promising advanced technology options. This project examines the market penetration of FCEVs in a range of market segments, and in different energy, technology, and policy futures. Analyses are conducted in the context of varying hydrogen production and distribution pathways, as well as public infrastructure availability, fuel (gasoline, ethanol, hydrogen) and electricity costs, vehicle costs and fuel economies to better understandmore » under what conditions, and for which market segments, FCEVs can best compete with battery electric and other alternative fuel vehicles.« less

  2. High liquid fuel yielding biofuel processes and a roadmap for the future transportation

    NASA Astrophysics Data System (ADS)

    Singh, Navneet R.

    In a fossil-fuel deprived world when crude oil will be scarce and transportation need cannot be met with electricity and transportation liquid fuel must be produced, biomass derived liquid fuels can be a natural replacement. However, the carbon efficiency of the currently known biomass to liquid fuel conversion processes ranges from 35-40%, yielding 90 ethanol gallon equivalents (ege) per ton of biomass. This coupled with the fact that the efficiency at which solar energy is captured by biomass (<1%) is significantly lower than H 2 (10-27%) and electricity (20-42%), implies that sufficient land area is not available to meet the need for the entire transportation sector. To counter this dilemma, a number of processes have been proposed in this work: a hybrid hydrogen-carbon (H2CAR) process based on biomass gasification followed by the Fischer-Tropsch process such that 100% carbon efficiency is achieved yielding 330 ege/ton biomass using hydrogen derived from a carbon-free energy. The hydrogen requirement for the H2CAR process is 0.33 kg/liter of diesel. To decrease the hydrogen requirement associated with the H2CAR process, a hydrogen bio-oil (H2Bioil) process based on biomass fast-hydropyrolysis/hydrodeoxygenation is proposed which can achieve liquid fuel yield of 215 ege/ton consuming 0.11 kg hydrogen per liter of oil. Due to the lower hydrogen consumption of the H2Bioil process, synergistically integrated transition pathways are feasible where hot syngas derived from coal gasification (H2Bioil-C) or a natural gas reformer (H 2Bioil-NG) is used to supply the hydrogen and process heat for the biomass fast-hydropyrolysis/hydrodeoxygenation. Another off-shoot of the H2Bioil process is the H2Bioil-B process, where hydrogen required for the hydropyrolysis is obtained from gasification of a fraction of the biomass. H2Bioil-B achieves the highest liquid fuel yield (126-146 ege/ton of biomass) reported in the literature for any self-contained conversion of biomass to

  3. Trimodal Control of Ion-Transport Activity on Cyclo-oligo-(1→6)-β-D-glucosamine-Based Artificial Ion-Transport Systems.

    PubMed

    Roy, Arundhati; Saha, Tanmoy; Gening, Marina L; Titov, Denis V; Gerbst, Alexey G; Tsvetkov, Yury E; Nifantiev, Nikolay E; Talukdar, Pinaki

    2015-11-23

    Cyclo-oligo-(1→6)-β-D-glucosamines functionalized with hydrophobic tails are reported as a new class of transmembrane ion-transport system. These macrocycles with hydrophilic cavities were introduced as an alternative to cyclodextrins, which are supramolecular systems with hydrophobic cavities. The transport activities of these glycoconjugates were manipulated by altering the oligomericity of the macrocycles, as well as the length and number of attached tails. Hydrophobic tails of 3 different sizes were synthesized and coupled with each glucosamine scaffold through the amide linkage to obtain 18 derivatives. The ion-transport activity increased from di- to tetrameric glucosamine macrocycles, but decreased further when flexible pentameric glucosamine was introduced. The ion-transport activity also increased with increasing length of attached linkers. For a fixed length of linkers, the transport activity decreased when the number of such tails was reduced. All glycoconjugates displayed a uniform anion-selectivity sequence: Cl(-) >Br(-) >I(-) . From theoretical studies, hydrogen bonding between the macrocycle backbone and the anion bridged through water molecules was observed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Probing Hydrogen Diffusion under High Pressure

    NASA Astrophysics Data System (ADS)

    Bove, L. E.; Klotz, S.; Strassle, T.; Saitta, M.

    2012-12-01

    The study of the microscopic mechanism governing hydrogen and hydrogen-based liquids (as water, ammonia and methane) diffusion is crucial for a variety of scientific issues spanning most of natural sciences. As an example, characterizing hydrogen diffusion in a confined medium, like in porous systems or zeolites, is fundamental in problems relating to environment, hydrogen storage and industrial applications [1]. The presence of water diffusion in the minerals of the Earth's mantle have strong incidence on the processes governing volcanic eruptions and intermediate-depth seismicity. As last example, knowing in details the microscopic dynamics of hydrogen-based simple liquids under extreme conditions is essential in order to interpret observations and develop models of planet interiors [2]. On the other hand, water and other simple hydrogen-based liquids have always been key systems in the development of modern condensed-matter physics, because of their simple electronic structure and the peculiar properties deriving from the hydrogen-bond network. Their high compressibility and chemical reactivity have made these systems very challenging to study experimentally under static high P-T conditions. In the last few years, a large effort has been undertaken by several groups around the world [2] to extend the static and dynamic techniques to high temperatures and pressures, a program in which our group has been actively involved [3-6]. However, while the structure of water and other hydrogenated liquids of geological interest, is now known up to almost 20 GPa, the study of their transport properties greatly lags behind. We have recently developed a new large-volume gasket-anvil ensemble for the Paris-Edinburgh press based on a novel toroidal design [7], which allows to perform quasi elastic neutron scattering measurements on hydrogen based liquids up to one order of magnitude higher pressures (5 GPa) respect to what was achievable with standard methods [8]. The large

  5. Waste to chemicals for a circular economy.

    PubMed

    Iaquaniello, Gaetano; Centi, Gabriele; Annarita Salladini, Annarita; Palo, Emma; Perathoner, Siglinda

    2018-06-25

    The implementation of a circular economy is a fundamental step to create a greater and more sustainable future for a better use of resources and energy. Wastes and in particular municipal solid waste represent an untapped source of carbon (and hydrogen) to produce a large range of chemicals from methane to alcohols (as methanol or ethanol) or urea. The waste to chemical (WtC) process and related economics are assessed in this concept article to show the validity of such solution both from an economic point of view and from an environmental perspective considering the sensible reduction in greenhouse gas emissions with respect to conventional production from fossil fuels. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Key Factors in Planning a Sustainable Energy Future Including Hydrogen and Fuel Cells

    ERIC Educational Resources Information Center

    Hedstrom, Lars; Saxe, Maria; Folkesson, Anders; Wallmark, Cecilia; Haraldsson, Kristina; Bryngelsson, Marten; Alvfors, Per

    2006-01-01

    In this article, a number of future energy visions, especially those basing the energy systems on hydrogen, are discussed. Some often missing comparisons between alternatives, from a sustainability perspective, are identified and then performed for energy storage, energy transportation, and energy use in vehicles. It is shown that it is important…

  7. United States transportation fuel economics (1975 - 1995)

    NASA Technical Reports Server (NTRS)

    Alexander, A. D., III

    1975-01-01

    The United States transportation fuel economics in terms of fuel resources options, processing alternatives, and attendant economics for the period 1975 to 1995 are evaluated. The U.S. energy resource base is reviewed, portable fuel-processing alternatives are assessed, and selected future aircraft fuel options - JP fuel, liquid methane, and liquid hydrogen - are evaluated economically. Primary emphasis is placed on evaluating future aircraft fuel options and economics to provide guidance for future strategy of NASA in the development of aviation and air transportation research and technology.

  8. Polymeric hydrogen diffusion barrier, high-pressure storage tank so equipped, method of fabricating a storage tank and method of preventing hydrogen diffusion

    DOEpatents

    Lessing, Paul A [Idaho Falls, ID

    2008-07-22

    An electrochemically active hydrogen diffusion barrier which comprises an anode layer, a cathode layer, and an intermediate electrolyte layer, which is conductive to protons and substantially impermeable to hydrogen. A catalytic metal present in or adjacent to the anode layer catalyzes an electrochemical reaction that converts any hydrogen that diffuses through the electrolyte layer to protons and electrons. The protons and electrons are transported to the cathode layer and reacted to form hydrogen. The hydrogen diffusion barrier is applied to a polymeric substrate used in a storage tank to store hydrogen under high pressure. A storage tank equipped with the electrochemically active hydrogen diffusion barrier, a method of fabricating the storage tank, and a method of preventing hydrogen from diffusing out of a storage tank are also disclosed.

  9. Polymeric hydrogen diffusion barrier, high-pressure storage tank so equipped, method of fabricating a storage tank and method of preventing hydrogen diffusion

    DOEpatents

    Lessing, Paul A.

    2004-09-07

    An electrochemically active hydrogen diffusion barrier which comprises an anode layer, a cathode layer, and an intermediate electrolyte layer, which is conductive to protons and substantially impermeable to hydrogen. A catalytic metal present in or adjacent to the anode layer catalyzes an electrochemical reaction that converts any hydrogen that diffuses through the electrolyte layer to protons and electrons. The protons and electrons are transported to the cathode layer and reacted to form hydrogen. The hydrogen diffusion barrier is applied to a polymeric substrate used in a storage tank to store hydrogen under high pressure. A storage tank equipped with the electrochemically active hydrogen diffusion barrier, a method of fabricating the storage tank, and a method of preventing hydrogen from diffusing out of a storage tank are also disclosed.

  10. 49 CFR 173.195 - Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Hydrogen cyanide, anhydrous, stabilized... Hazardous Materials Other Than Class 1 and Class 7 § 173.195 Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution). (a) Hydrogen cyanide, anhydrous, stabilized, must be packed in...

  11. 49 CFR 173.195 - Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Hydrogen cyanide, anhydrous, stabilized... Hazardous Materials Other Than Class 1 and Class 7 § 173.195 Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution). (a) Hydrogen cyanide, anhydrous, stabilized, must be packed in...

  12. 49 CFR 173.195 - Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Hydrogen cyanide, anhydrous, stabilized... Hazardous Materials Other Than Class 1 and Class 7 § 173.195 Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution). (a) Hydrogen cyanide, anhydrous, stabilized, must be packed in...

  13. 49 CFR 173.195 - Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Hydrogen cyanide, anhydrous, stabilized... Hazardous Materials Other Than Class 1 and Class 7 § 173.195 Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution). (a) Hydrogen cyanide, anhydrous, stabilized, must be packed in...

  14. 49 CFR 173.195 - Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Hydrogen cyanide, anhydrous, stabilized... Hazardous Materials Other Than Class 1 and Class 7 § 173.195 Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution). (a) Hydrogen cyanide, anhydrous, stabilized, must be packed in...

  15. A first-principles study of hydrogen storage capacity based on Li-Na-decorated silicene.

    PubMed

    Sheng, Zhe; Wu, Shujing; Dai, Xianying; Zhao, Tianlong; Hao, Yue

    2018-05-23

    Surface decoration with alkali metal adatoms has been predicted to be promising for silicene to obtain high hydrogen storage capacity. Herein, we performed a detailed study of the hydrogen storage properties of Li and Na co-decorated silicene (Li-Na-decorated silicene) based on first-principles calculations using van der Waals correction. The hydrogen adsorption behaviors, including the adsorption order, the maximum capacity, and the corresponding mechanism were analyzed in detail. Our calculations show that up to three hydrogen molecules can firmly bind to each Li atom and six for each Na atom, respectively. The hydrogen storage capacity is estimated to be as high as 6.65 wt% with a desirable average adsorption energy of 0.29 eV/H2. It is confirmed that both the charge-induced electrostatic interaction and the orbital hybridizations play a great role in hydrogen storage. Our results may enhance our fundamental understanding of the hydrogen storage mechanism, which is of great importance for the practical application of Li-Na-decorated silicene in hydrogen storage.

  16. Photocatalysts Based on Cobalt-Chelating Conjugated Polymers for Hydrogen Evolution from Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Lianwei; Hadt, Ryan G.; Yao, Shiyu

    Developing photocatalytic systems for water splitting to generate oxygen and hydrogen is one of the biggest chemical challenges in solar energy utilization. In this work, we report the first example of heterogeneous photocatalysts for hydrogen evolution based on in-chain cobalt-chelating conjugated polymers. Four conjugated polymers chelated with earth abundant cobalt ions were synthesized and found to evolve hydrogen photocatalytically from water. These polymers are designed to combine functions of the conjugated backbone as light-harvesting antenna and electron transfer conduit with the in-chain bipyridyl chelated transition metal centers as catalytic active sites. In addition, these polymers are soluble in organic solvents,more » enabling effective interactions with the substrates as well as detailed characterization. We also found a polymer-dependent optimal cobalt chelating concentration at which the highest photocatalytic hydrogen production (PHP) activity can be achieved.« less

  17. Hydrogen treatment as a detergent of electronic trap states in lead chalcogenide nanoparticles

    DOE PAGES

    Vörös, Márton; Brawand, Nicholas P.; Galli, Giulia

    2016-11-15

    Lead chalcogenide (PbX) nanoparticles are promising materials for solar energy conversion. However, the presence of trap states in their electronic gap limits their usability, and developing a universal strategy to remove trap states is a persistent challenge. Using calculations based on density functional theory, we show that hydrogen acts as an amphoteric impurity on PbX nanoparticle surfaces; hydrogen atoms may passivate defects arising from ligand imbalance or off-stoichiometric surface terminations irrespective of whether they originate from cation or anion excess. In addition, we show, using constrained density functional theory calculations, that hydrogen treatment of defective nanoparticles is also beneficial formore » charge transport in films. We also find that hydrogen adsorption on stoichiometric nanoparticles leads to electronic doping, preferentially n-type. Lastly, our findings suggest that postsynthesis hydrogen treatment of lead chalcogenide nanoparticle films is a viable approach to reduce electronic trap states or to dope well-passivated films.« less

  18. Exercise economy in skiing and running

    PubMed Central

    Losnegard, Thomas; Schäfer, Daniela; Hallén, Jostein

    2014-01-01

    Substantial inter-individual variations in exercise economy exist even in highly trained endurance athletes. The variation is believed to be determined partly by intrinsic factors. Therefore, in the present study, we compared exercise economy in V2-skating, double poling, and uphill running. Ten highly trained male cross-country skiers (23 ± 3 years, 180 ± 6 cm, 75 ± 8 kg, VO2peak running: 76.3 ± 5.6 mL·kg−1·min−1) participated in the study. Exercise economy and VO2peak during treadmill running, ski skating (V2 technique) and double poling were compared based on correlation analysis. There was a very large correlation in exercise economy between V2-skating and double poling (r = 0.81) and large correlations between V2-skating and running (r = 0.53) and double poling and running (r = 0.58). There were trivial to moderate correlations between exercise economy and the intrinsic factors VO2peak (r = 0.00–0.23), cycle rate (r = 0.03–0.46), body mass (r = −0.09–0.46) and body height (r = 0.11–0.36). In conclusion, the inter-individual variation in exercise economy could be explained only moderately by differences in VO2peak, body mass and body height. Apparently other intrinsic factors contribute to the variation in exercise economy between highly trained subjects. PMID:24478718

  19. Hydrogen Production Cost Analysis | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    Analysis Hydrogen Production Cost Analysis This interactive map displays the results of a 2011 NREL analysis on the cost of hydrogen from electrolysis at potential sites across the United States. NREL analyzed the cost of hydrogen production via wind-based water electrolysis at 42 potential sites in 11

  20. Palladium configuration dependence of hydrogen detection sensitivity based on graphene FET for breath analysis

    NASA Astrophysics Data System (ADS)

    Sakamoto, Yuri; Uemura, Kohei; Ikuta, Takashi; Maehashi, Kenzo

    2018-04-01

    We have succeeded in fabricating a hydrogen gas sensor based on palladium-modified graphene field-effect transistors (FETs). The negative-voltage shift in the transfer characteristics was observed with exposure to hydrogen gas, which was explained by the change in work function. The hydrogen concentration dependence of the voltage shift was investigated using graphene FETs with palladium deposited by three different evaporation processes. The results indicate that the hydrogen detection sensitivity of the palladium-modified graphene FETs is strongly dependent on the palladium configuration. Therefore, the palladium-modified graphene FET is a candidate for breath analysis.

  1. Hydrogen storage materials discovery via high throughput ball milling and gas sorption.

    PubMed

    Li, Bin; Kaye, Steven S; Riley, Conor; Greenberg, Doron; Galang, Daniel; Bailey, Mark S

    2012-06-11

    The lack of a high capacity hydrogen storage material is a major barrier to the implementation of the hydrogen economy. To accelerate discovery of such materials, we have developed a high-throughput workflow for screening of hydrogen storage materials in which candidate materials are synthesized and characterized via highly parallel ball mills and volumetric gas sorption instruments, respectively. The workflow was used to identify mixed imides with significantly enhanced absorption rates relative to Li2Mg(NH)2. The most promising material, 2LiNH2:MgH2 + 5 atom % LiBH4 + 0.5 atom % La, exhibits the best balance of absorption rate, capacity, and cycle-life, absorbing >4 wt % H2 in 1 h at 120 °C after 11 absorption-desorption cycles.

  2. A thermodynamic description for water, hydrogen fluoride and hydrogen dissolutions in cryolite-base molten salts.

    PubMed

    Wang, Kun; Chartrand, Patrice

    2018-06-15

    This paper presents a quantitative thermodynamic description for water, hydrogen fluoride and hydrogen dissolutions in cryolite-base molten salts, which is of technological importance to the Hall-Héroult electrolytic aluminum extraction cell. The Modified Quasichemical Model in the Quadruplet Approximation (MQMQA), as used to treat a large variety of molten salt systems, was adopted to thermodynamically describe the present liquid phase; all solid solutions were modeled using the Compound Energy Formalism (CEF); the gas phase was thermodynamically treated as an ideal mixture of all possible species. The model parameters were mainly obtained by critical evaluations and optimizations of thermodynamic and phase equilibrium data available from relative experimental measurements and theoretical predictions (first-principles calculations and empirical estimations) for the lower-order subsystems. These optimized model parameters were thereafter merged within the Kohler/Toop interpolation scheme, facilitating the prediction of gas solubility (H2O, HF and H2) in multicomponent cryolite-base molten salts using the FactSage thermochemical software. Several interesting diagrams were finally obtained in order to provide useful information for the industrial partners dedicated to the Hall-Héroult electrolytic aluminum production or other molten-salt technologies (the purification process and electroslag refining).

  3. 40 CFR 600.208-08 - Calculation of FTP-based and HFET-based fuel economy values for a model type.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... may use fuel economy data from tests conducted on these vehicle configuration(s) at high altitude to...) Calculate the city, highway, and combined fuel economy values from the tests performed using gasoline or diesel test fuel. (ii) Calculate the city, highway, and combined fuel economy values from the tests...

  4. 40 CFR 600.208-08 - Calculation of FTP-based and HFET-based fuel economy values for a model type.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... tests conducted on these vehicle configuration(s) at high altitude to calculate the fuel economy for the... combined fuel economy values from the tests performed using gasoline or diesel test fuel. (ii) Calculate the city, highway, and combined fuel economy values from the tests performed using alcohol or natural...

  5. 40 CFR 600.208-08 - Calculation of FTP-based and HFET-based fuel economy values for a model type.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... tests conducted on these vehicle configuration(s) at high altitude to calculate the fuel economy for the... combined fuel economy values from the tests performed using gasoline or diesel test fuel. (ii) Calculate the city, highway, and combined fuel economy values from the tests performed using alcohol or natural...

  6. US Department of Energy Hybrid Electric Vehicle Battery and Fuel Economy Testing

    NASA Astrophysics Data System (ADS)

    Karner, Donald; Francfort, James

    The advanced vehicle testing activity (AVTA), part of the US Department of Energy's FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August 1995 in support of the AVTA goal to provide benchmark data for technology modelling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full-size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and internal combustion engine vehicles powered by hydrogen. Currently, the AVTA is conducting a significant evaluation of hybrid electric vehicles (HEVs) produced by major automotive manufacturers. The results are posted on the AVTA web page maintained by the Idaho National Laboratory. Through the course of this testing, the fuel economy of HEV fleets has been monitored and analyzed to determine the 'real world' performance of their hybrid energy systems, particularly the battery. The initial fuel economy of these vehicles has typically been less than that determined by the manufacturer and also varies significantly with environmental conditions. Nevertheless, the fuel economy and, therefore, battery performance, has remained stable over the life of a given vehicle (160 000 miles).

  7. The impact of a future H2-based road transportation sector on the composition and chemistry of the atmosphere - Part 1: Tropospheric composition and air quality

    NASA Astrophysics Data System (ADS)

    Wang, D.; Jia, W.; Olsen, S. C.; Wuebbles, D. J.; Dubey, M. K.; Rockett, A. A.

    2012-08-01

    Vehicles burning fossil fuel emit a number of substances that change the composition and chemistry of the atmosphere, and contribute to global air and water pollution and climate change. For example, nitrogen oxides and volatile organic compounds (VOCs) emitted as byproducts of fossil fuel combustion are key precursors to ground-level ozone and aerosol formation. In addition, on-road vehicles are major CO2 emitters. In order to tackle these problems, molecular hydrogen (H2) has been proposed as an energy carrier to substitute for fossil fuel in the future. However, before implementing any such strategy it is crucial to evaluate its potential impacts on air quality and climate. Here we evaluate the impact of a future (2050) H2-based road transportation sector on tropospheric chemistry and air quality for several possible growth and technology adoption scenarios. The growth scenarios are based on the high and low emissions Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios, A1FI and B1, respectively. The technological adoption scenarios include H2 fuel cell and H2 internal combustion engine options. The impacts are evaluated with the Community Atmospheric Model Chemistry global chemistry transport model (CAM-Chem). Higher resolution simulations focusing on the contiguous United States are also carried out with the Community Multiscale Air Quality Modeling System (CMAQ) regional chemistry transport model. For all scenarios future air quality improves with the adoption of a H2-based road transportation sector, however, the magnitude and type of improvement depend on the scenario. Model results show that with the adoption of H2 fuel cells decreases tropospheric burdens of ozone (7%), CO (14%), NOx (16%), soot (17%), sulfate aerosol (4%), and ammonium nitrate aerosol (12%) in the A1FI scenario, and decreases those of ozone (5%), CO (4%), NOx (11%), soot (7%), sulfate aerosol (4%), and ammonium nitrate aerosol (9 %) in the B1 scenario. The

  8. The benefits of bad economies: Business cycles and time-based work-life conflict.

    PubMed

    Barnes, Christopher M; Lefter, Alexandru M; Bhave, Devasheesh P; Wagner, David T

    2016-04-01

    Recent management research has indicated the importance of family, sleep, and recreation as nonwork activities of employees. Drawing from entrainment theory, we develop an expanded model of work-life conflict to contend that macrolevel business cycles influence the amount of time employees spend on both work and nonwork activities. Focusing solely on working adults, we test this model in a large nationally representative dataset from the Bureau of Labor Statistics that spans an 8-year period, which includes the "Great Recession" from 2007 through 2009. We find that during economic booms, employees work more and therefore spend less time with family, sleeping, and recreating. In contrast, in recessionary economies, employees spend less time working and therefore more time with family, sleeping, and recreating. Thus, we extend the theory on time-based work-to-family conflict, showing that there are potential personal and relational benefits for employees in recessionary economies. (c) 2016 APA, all rights reserved).

  9. Transportation cost index : a comprehensive performance measure for transportation and land and its application in OR, FL, and UT : final report.

    DOT National Transportation Integrated Search

    2017-04-01

    MAP-21 and state laws are placing increasing emphasis on using comprehensive transportation performance measures that include mobility, : safety, economy, livability, equity, and environmental to guide transportation decision-making. One of the tough...

  10. Mass Transport through Nanostructured Membranes: Towards a Predictive Tool

    PubMed Central

    Darvishmanesh, Siavash; Van der Bruggen, Bart

    2016-01-01

    This study proposes a new mechanism to understand the transport of solvents through nanostructured membranes from a fundamental point of view. The findings are used to develop readily applicable mathematical models to predict solvent fluxes and solute rejections through solvent resistant membranes used for nanofiltration. The new model was developed based on a pore-flow type of transport. New parameters found to be of fundamental importance were introduced to the equation, i.e., the affinity of the solute and the solvent for the membrane expressed as the hydrogen-bonding contribution of the solubility parameter for the solute, solvent and membrane. A graphical map was constructed to predict the solute rejection based on the hydrogen-bonding contribution of the solubility parameter. The model was evaluated with performance data from the literature. Both the solvent flux and the solute rejection calculated with the new approach were similar to values reported in the literature. PMID:27918434

  11. Universal roles of hydrogen in electrochemical performance of graphene: high rate capacity and atomistic origins

    PubMed Central

    Ye, Jianchao; Ong, Mitchell T.; Heo, Tae Wook; Campbell, Patrick G.; Worsley, Marcus A.; Liu, Yuanyue; Shin, Swanee J.; Charnvanichborikarn, Supakit; Matthews, Manyalibo J.; Bagge-Hansen, Michael; Lee, Jonathan R.I.; Wood, Brandon C.; Wang, Y. Morris

    2015-01-01

    Atomic hydrogen exists ubiquitously in graphene materials made by chemical methods. Yet determining the effect of hydrogen on the electrochemical performance of graphene remains a significant challenge. Here we report the experimental observations of high rate capacity in hydrogen-treated 3-dimensional (3D) graphene nanofoam electrodes for lithium ion batteries. Structural and electronic characterization suggests that defect sites and hydrogen play synergistic roles in disrupting sp2 graphene to facilitate fast lithium transport and reversible surface binding, as evidenced by the fast charge-transfer kinetics and increased capacitive contribution in hydrogen-treated 3D graphene. In concert with experiments, multiscale calculations reveal that defect complexes in graphene are prerequisite for low-temperature hydrogenation, and that the hydrogenation of defective or functionalized sites at strained domain boundaries plays a beneficial role in improving rate capacity by opening gaps to facilitate easier Li penetration. Additional reversible capacity is provided by enhanced lithium binding near hydrogen-terminated edge sites. These findings provide qualitative insights in helping the design of graphene-based materials for high-power electrodes. PMID:26536830

  12. Paradoxical roles of hydrogen in electrochemical performance of graphene: High rate capacity and atomistic origins

    DOE PAGES

    Ye, Jianchao C.; Ong, Mitchell T.; Heo, Tae Wook; ...

    2015-11-05

    Atomic hydrogen exists ubiquitously in graphene materials made by chemical methods. Yet determining the effect of hydrogen on the electrochemical performance of graphene remains a significant challenge. Here we report the experimental observations of high rate capacity in hydrogen-treated 3-dimensional (3D) graphene nanofoam electrodes for lithium ion batteries. Structural and electronic characterization suggests that defect sites and hydrogen play synergistic roles in disrupting sp 2 graphene to facilitate fast lithium transport and reversible surface binding, as evidenced by the fast charge-transfer kinetics and increased capacitive contribution in hydrogen-treated 3D graphene. In concert with experiments, multiscale calculations reveal that defect complexesmore » in graphene are prerequisite for low-temperature hydrogenation, and that the hydrogenation of defective or functionalized sites at strained domain boundaries plays a beneficial role in improving rate capacity by opening gaps to facilitate easier Li penetration. Additional reversible capacity is provided by enhanced lithium binding near hydrogen-terminated edge sites. Furthermore, these findings provide qualitative insights in helping the design of graphene-based materials for high-power electrodes.« less

  13. Hydrogen storage and delivery: the carbon dioxide - formic acid couple.

    PubMed

    Laurenczy, Gábor

    2011-01-01

    Carbon dioxide and the carbonates, the available natural C1 sources, can be easily hydrogenated into formic acid and formates in water; the rate of this reduction strongly depends on the pH of the solution. This reaction is catalysed by ruthenium(II) pre-catalyst complexes with a large variety of water-soluble phosphine ligands; high conversions and turnover numbers have been realised. Although ruthenium(II) is predominant in these reactions, the iron(II) - tris[(2-diphenylphosphino)-ethyl]phosphine (PP3) complex is also active, showing a new perspective to use abundant and inexpensive iron-based compounds in the CO2 reduction. In the catalytic hydrogenation cycles the in situ formed metal hydride complexes play a key role, their structures with several other intermediates have been proven by multinuclear NMR spectroscopy. In the other hand safe and convenient hydrogen storage and supply is the fundamental question for the further development of the hydrogen economy; and carbon dioxide has been recognised to be a viable H2 vector. Formic acid--containing 4.4 weight % of H2, that is 53 g hydrogen per litre--is suitable for H2 storage; we have shown that in aqueous solutions it can be selectively decomposed into CO-free (CO < 10 ppm) CO2 and H2. The reaction takes place under mild experimental conditions and it is able to generate high pressure H2 (up to 600 bar). The cleavage of HCOOH is catalysed by several hydrophilic Ru(II) phosphine complexes (meta-trisulfonated triphenylphosphine, mTPPTS, being the most efficient one), either in homogeneous systems or as immobilised catalysts. We have also shown that the iron(II)--hydrido tris[(2-diphenylphosphino)ethyl]phosphine complex catalyses with an exceptionally high rate and efficiency (turnover frequency, TOF = 9425 h(-1)mol(-1); turnover number, TON = 92400) the formic acid cleavage, in environmentally friendly propylene carbonate solution, opening the way to use cheap, non-noble metal based catalysts for this

  14. Status of research and development on photoelectrochemical hydrogen production in Korea

    NASA Astrophysics Data System (ADS)

    Kim, Jong Won; Lee, Jae S.; Baeg, Jin-Ook

    2010-08-01

    Conversion of solar energy into hydrogen is one of the most promising renewable energy technologies. Photocatalytic production of hydrogen from water, H2S and organic wastes using semiconductors is one of the potential strategies for converting the sunlight energy into chemical energy. Korea government paid great attention to the hydrogen economy and launched the HERC (Hydrogen Energy R&D Center) for supporting the R&D topics on hydrogen related technologies. The key issue for realizing the commercial application of solar water splitting hydrogen production technique is to find an efficient, stable and low-cost photocatalyst. Our research groups have continuously investigated to find oxide and composite photocatalysts for photoelectrochemical cell with high efficiency using computational design and synthesis method. But, fundamental research on semiconductor doping for band gap shifting and surface chemistry modification is still required. Various reaction media containing sacrificial agents should be developed to match with high activity photocatalysts to further improve the system efficiency. Water containing organic/inorganic waste and sea water are particularly suggested in the consideration that all these water sources are the most available water on the earth to the final commercial application of photocatalytic water splitting technique.

  15. Hydrogen peroxide inhibits Ca2+-dependent chloride secretion across colonic epithelial cells via distinct kinase signaling pathways and ion transport proteins

    PubMed Central

    Chappell, Alfred E.; Bunz, Michael; Smoll, Eric; Dong, Hui; Lytle, Christian; Barrett, Kim E.; McCole, Declan F.

    2018-01-01

    Reactive oxygen species (ROS) are key mediators in a number of inflammatory conditions, including inflammatory bowel disease (IBD). ROS, including hydrogen peroxide (H2O2), modulate intestinal epithelial ion transport and are believed to contribute to IBD-associated diarrhea. Intestinal crypt fluid secretion, driven by electrogenic Cl− secretion, hydrates and sterilizes the crypt, thus reducing bacterial adherence. Here, we show that pathophysiological concentrations of H2O2 inhibit Ca2+-dependent Cl− secretion across T84 colonic epithelial cells by elevating cytosolic Ca2+, which contributes to activation of two distinct signaling pathways. One involves recruitment of the Ca2+-responsive kinases, Src and Pyk-2, as well as extracellular signal-regulated kinase (ERK). A separate pathway recruits p38 MAP kinase and phosphoinositide 3-kinase (PI3-K) signaling. The ion transport response to Ca2+-dependent stimuli is mediated in part by K+ efflux through basolateral K+ channels and Cl− uptake by the Na+-K+-2Cl− cotransporter, NKCC1. We demonstrate that H2O2 inhibits Ca2+-dependent basolateral K+ efflux and also inhibits NKCC1 activity independently of inhibitory effects on apical Cl− conductance. Thus, we have demonstrated that H2O2 inhibits Ca2+-dependent Cl− secretion through multiple negative regulatory signaling pathways and inhibition of specific ion transporters. These findings increase our understanding of mechanisms by which inflammation disturbs intestinal epithelial function and contributes to intestinal pathophysiology.—Chappell, A. E., Bunz, M., Smoll, E., Dong, H., Lytle, C., Barrett, K. E., McCole, D. F. Hydrogen peroxide inhibits Ca2+-dependent chloride secretion across colonic epithelial cells via distinct kinase signaling pathways and ion transport proteins. FASEB J. 22, 000–000 (2008) PMID:18211955

  16. Review of alternate automotive engine fuel economy. Final report January-October 78

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, D.; Bolt, J.A.; Huber, P.

    This study assessed the potential of alternate automotive engines to meet the fuel economy goals and emission levels of the 1980-1990 period. As part of NHTSA's continuing research in support of the Department of Transportation fuel economy activities, this study reviewed those developments offering viable substitutes for the current spark ignition engine systems. Categories assessed included stratified charge, diesels, turbo charging, rotary/Wankel engines, and the developmental gas turbine and Stirling cycle engines. Results of past and on-going research through 1978 were reviewed along with the development and production status of various alternate engine technologies proposed for automobiles and light trucksmore » through the 1980s. Assessment was then made of the potential fuel economy improvement as a percentage of 1978 baseline data.« less

  17. Developing a sustainable freight transportation framework with the consideration of improving safety and minimizing carbon emissions.

    DOT National Transportation Integrated Search

    2011-09-01

    Despite the difficulties of the American economy in recent years the transportation sector continues to expand. Freight transportation alone has been projected to increase enormously even if the economy as a whole only manages a very moderate growth....

  18. Numerical estimation of ultrasonic production of hydrogen: Effect of ideal and real gas based models.

    PubMed

    Kerboua, Kaouther; Hamdaoui, Oualid

    2018-01-01

    Based on two different assumptions regarding the equation describing the state of the gases within an acoustic cavitation bubble, this paper studies the sonochemical production of hydrogen, through two numerical models treating the evolution of a chemical mechanism within a single bubble saturated with oxygen during an oscillation cycle in water. The first approach is built on an ideal gas model, while the second one is founded on Van der Waals equation, and the main objective was to analyze the effect of the considered state equation on the ultrasonic hydrogen production retrieved by simulation under various operating conditions. The obtained results show that even when the second approach gives higher values of temperature, pressure and total free radicals production, yield of hydrogen does not follow the same trend. When comparing the results released by both models regarding hydrogen production, it was noticed that the ratio of the molar amount of hydrogen is frequency and acoustic amplitude dependent. The use of Van der Waals equation leads to higher quantities of hydrogen under low acoustic amplitude and high frequencies, while employing ideal gas law based model gains the upper hand regarding hydrogen production at low frequencies and high acoustic amplitudes. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Hydrogen pickup mechanism of zirconium alloys

    NASA Astrophysics Data System (ADS)

    Couet, Adrien

    Although the optimization of zirconium based alloys has led to significant improvements in hydrogen pickup and corrosion resistance, the mechanisms by which such alloy improvements occur are still not well understood. In an effort to understand such mechanisms, a systematic study of the alloy effect on hydrogen pickup is conducted, using advanced characterization techniques to rationalize precise measurements of hydrogen pickup. The hydrogen pick-up fraction is accurately measured for a specially designed set of commercial and model alloys to investigate the effects of alloying elements, microstructure and corrosion kinetics on hydrogen uptake. Two different techniques to measure hydrogen concentrations were used: a destructive technique, Vacuum Hot Extraction, and a non-destructive one, Cold Neutron Prompt Gamma Activation Analysis. The results indicate that hydrogen pickup varies not only from alloy to alloy but also during the corrosion process for a given alloy. For instance Zircaloy type alloys show high hydrogen pickup fraction and sub-parabolic oxidation kinetics whereas ZrNb alloys show lower hydrogen pickup fraction and close to parabolic oxidation kinetics. Hypothesis is made that hydrogen pickup result from the need to balance charge during the corrosion reaction, such that the pickup of hydrogen is directly related to (and indivisible of) the corrosion mechanism and decreases when the rate of electron transport or oxide electronic conductivity sigmao xe through the protective oxide increases. According to this hypothesis, alloying elements (either in solid solution or in precipitates) embedded in the oxide as well as space charge variations in the oxide would impact the hydrogen pick-up fraction by modifying sigmaox e, which drives oxidation and hydriding kinetics. Dedicated experiments and modelling were performed to assess and validate these hypotheses. In-situ electrochemical impedance spectroscopy (EIS) experiments were performed on Zircaloy-4 tubes

  20. Homoepitaxial graphene tunnel barriers for spin transport

    NASA Astrophysics Data System (ADS)

    Friedman, Adam L.; van't Erve, Olaf M. J.; Robinson, Jeremy T.; Whitener, Keith E.; Jonker, Berend T.

    2016-05-01

    Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. Here, we demonstrate that hydrogenation or fluorination of graphene can be used to create a tunnel barrier. We demonstrate successful tunneling by measuring non-linear IV curves and a weakly temperature dependent zero-bias resistance. We demonstrate lateral transport of spin currents in non-local spin-valve structures, and determine spin lifetimes with the non-local Hanle effect. We compare the results for hydrogenated and fluorinated tunnel and we discuss the possibility that ferromagnetic moments in the hydrogenated graphene tunnel barrier affect the spin transport of our devices.

  1. Hydrogen peroxide biosensor based on a myoglobin/hydrophilic room temperature ionic liquid film.

    PubMed

    Safavi, Afsaneh; Farjami, Fatemeh

    2010-07-01

    The composite film based on Nafion and hydrophilic room temperature ionic liquid (RTIL) 1-butyl-3-methyl-imidazolium chloride ([bmim]Cl) was used as an immobilization matrix to entrap myoglobin (Mb). The study of ionic liquid (IL)-Mb interaction by ultraviolet-visible (UV-vis) spectroscopy showed that Mb retains its native conformation in the presence of IL. The immobilized Mb displayed a pair of well-defined cyclic voltammetric peaks with a formal potential (E(o)(')) of -0.35 V in a 0.1 M phosphate buffer solution (PBS) of pH 7.0. The immobilized Mb exhibited excellent electrocatalytic response to the reduction of hydrogen peroxide, based on which a mediator-free amperometric biosensor for hydrogen peroxide was designed. The linear range for the determination of hydrogen peroxide was from 1.0 to 180 microM with a detection limit of 0.14 microM at a signal/noise ratio of 3. The apparent Michaelis constant (K(m)(app)) for the electrocatalytic reaction was 22.6 microM. The stability, repeatability, and selectivity of the sensor were evaluated. The proposed biosensor has a lower detection limit than many other IL-heme protein-based biosensors and is free from common interference in hydrogen peroxide biosensors. 2010 Elsevier Inc. All rights reserved.

  2. The Informal Economy: Recent Trends, Future Directions.

    PubMed

    Chen, Martha Alter

    2016-08-01

    Informal employment represents more than half of nonagricultural employment in most developing regions, contributes to the overall economy, and provides pathways to reduction of poverty and inequality. Support to the informal economy should include the expansion of occupational health and safety to include informal workers, based on an analysis of their work places and work risks. The paper presents main schools of thought and argues for a holistic understanding of the different segments of the informal work force and for policies and interventions tailored to the needs and constraints of these different segments. The paper recommends a policy approach which seeks to extend social protection, including occupational health and safety services, to informal workers, and to increase the productivity of informal enterprises and informal workers through an enabling environment and support services. The paper calls for a new paradigm of a hybrid economy which would value and integrate the informal economy alongside the formal economies. © The Author(s) 2016.

  3. Automotive fuel economy and emissions program

    NASA Technical Reports Server (NTRS)

    Dowdy, M. W.; Baisley, R. L.

    1978-01-01

    Experimental data were generated to support an assessment of the relationship between automobile fuel economy and emissions control systems. Tests were made at both the engine and vehicle levels. Detailed investigations were made on cold-start emissions devices, exhaust gas recirculation systems, and air injection reactor systems. Based on the results of engine tests, an alternative emission control system and modified control strategy were implemented and tested in the vehicle. With the same fuel economy and NOx emissions as the stock vehicle, the modified vehicle reduced HC and CO emissions by about 20 percent. By removing the NOx emissions constraint, the modified vehicle demonstrated about 12 percent better fuel economy than the stock vehicle.

  4. Magnetic liquefier for hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1992-12-31

    This document summarizes work done at the Astronautics Technology Center of the Astronautics Corporation of America (ACA) in Phase 1 of a four phase program leading to the development of a magnetic liquefier for hydrogen. The project involves the design, fabrication, installation, and operation of a hydrogen liquefier providing significantly reduced capital and operating costs, compared to present liquefiers. To achieve this goal, magnetic refrigeration, a recently developed, highly efficient refrigeration technology, will be used for the liquefaction process. Phase 1 project tasks included liquefier conceptual design and analysis, preliminary design of promising configurations, design selection, and detailed design ofmore » the selected design. Fabrication drawings and vendor specifications for the selected design were completed during detailed design. The design of a subscale, demonstration magnetic hydrogen liquefier represents a significant advance in liquefaction technology. The cost reductions that can be realized in hydrogen liquefaction in both the subscale and, more importantly, in the full-scale device are expected to have considerable impact on the use of liquid hydrogen in transportation, chemical, and electronic industries. The benefits to the nation from this technological advance will continue to have importance well into the 21st century.« less

  5. Productivity growth in transportation

    DOT National Transportation Integrated Search

    2003-12-01

    From 1990 to 2000, labor productivity rose in all : transportation modes, but only exceeded the productivity : growth rate for the overall economy in : three railroads, local trucking, and pipelines. : From 1990 to 1999, rail transportati...

  6. Ab initio investigation on hydrogen adsorption capability in Zn and Cu-based metal organic frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanuwijaya, V. V., E-mail: viny.veronika@gmail.com; Hidayat, N. N., E-mail: avantgarde.vee@gmail.com; Agusta, M. K., E-mail: kemal@fti.itb.ac.id

    2015-09-30

    One of the biggest challenge in material technology for hydrogen storage application is to increase hydrogen uptake in room temperature and pressure. As a class of highly porous material, Metal-Organic Frameworks (MOF) holds great potential with its tunable structure. However, little is known about the effect of metal cluster to its hydrogen storage capability. Investigation on this matter has been carried out carefully on small cluster of Zn and Cu-based MOF using first principles method. The calculation of two distinct building units of MOFs, namely octahedral and paddle-wheel models, have been done with B3LYP density functional method using 6-31G(d,p) andmore » LANL2DZ basis sets. From geometry optimization of Zn-based MOF linked by benzene-dicarboxylate (MOF-5), it is found that hydrogen tends to keep distance from metal cluster group and stays above benzene ring. In the other hand, hydrogen molecule prefers to stay atop of the exposed Cu atom in Cu-based MOF system linked by the same linker group (Cu-bdc). Calculated hydrogen binding enthalpies for Zn and Cu octahedral cages at ZnO{sub 3} sites are 1.64kJ/mol and 2.73kJ/mol respectively, while hydrogen binding enthalpies for Zn and Cu paddle-wheel cages calculated on top of metal atoms are found to be at 6.05kJ/mol and 6.10kJ/mol respectively. Major difference between Zn-MOF-5 and Cu-bdc hydrogen uptake performance might be caused by unsaturated metal sites present in Cu-bdc system and the influence of their geometric structures, although a small difference on binding energy in the type of transition metal used is also observed. The comparison between Zn and Cu-based MOF may contribute to a comprehensive understanding of metal clusters and the importance of selecting best transition metal for design and synthesis of metal-organic frameworks.« less

  7. Engineering Development of Ceramic Membrane Reactor System for Converting Natural Gas to Hydrogen and Synthesis Gas for Liquid Transportation Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Air Products and Chemicals

    2008-09-30

    An Air Products-led team successfully developed ITM Syngas technology from the concept stage to a stage where a small-scale engineering prototype was about to be built. This technology produces syngas, a gas containing carbon monoxide and hydrogen, by reacting feed gas, primarily methane and steam, with oxygen that is supplied through an ion transport membrane. An ion transport membrane operates at high temperature and oxygen ions are transported through the dense membrane's crystal lattice when an oxygen partial pressure driving force is applied. This development effort solved many significant technical challenges and successfully scaled-up key aspects of the technology tomore » prototype scale. Throughout the project life, the technology showed significant economic benefits over conventional technologies. While there are still on-going technical challenges to overcome, the progress made under the DOE-funded development project proved that the technology was viable and continued development post the DOE agreement would be warranted.« less

  8. Hydrogen

    PubMed Central

    Bockris, John O’M.

    2011-01-01

    The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan). Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs) by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech. PMID:28824125

  9. US Department of Energy Hybrid Vehicle Battery and Fuel Economy Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donald Karner; J.E. Francfort

    2005-09-01

    The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy’s FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August, 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles. Currently, the AVTA is conducting significant tests of hybrid electric vehicles (HEV). This testing has included all HEVs produced by major automotive manufacturers and spans over 1.3more » million miles. The results of all testing are posted on the AVTA web page maintained by the Idaho National Laboratory. Through the course of this testing, the fuel economy of HEV fleets has been monitored and analyzed to determine the "real world" performance of their hybrid energy systems, particularly the battery. While the initial "real world" fuel economy of these vehicles has typically been less than that evaluated by the manufacturer and varies significantly with environmental conditions, the fuel economy and, therefore, battery performance, has remained stable over vehicle life (160,000 miles).« less

  10. Hydrogen uptake characteristics of mischmetal based alloy

    NASA Astrophysics Data System (ADS)

    Jain, Ankur; Jain, R. K.; Jain, I. P.

    Hydrogen storage properties of Mm 39.2Ni 42.1Mn 4.9Al 1.25Co 10.2Fe 2.35 alloy have been systematically studied in the present work. An attempt is made to relate the content of hydrogen with change in resistance. It is found that the resistance of material increases with the increase in value of H/ M due to hydrogen absorption. Pressure composition (P-C-T) isotherm using water displacement method has been investigated in the temperature and pressure ranges of 308 ≤ T ≤ 338 K and 0.5 ≤ P ≤ 10 bar, respectively. The P-C isotherms show the presence of two single α and β regions one mixed α + β phase. The maximum H (wt%) was found to be around 1.53 at 308 K and around 6 bar. Since enthalpy is an index of thermochemical stability of metal hydride the thermo dynamical parameters viz., the relative partial molar enthalpy (Δ H) and relative partial molar entropy (Δ S) of dissolved hydrogen have been calculated by plotting the Van't Hoff plot. The variation of Δ H and Δ S with the hydrogen concentration confirm the phase boundaries.

  11. Experimental Proof of the Bifunctional Mechanism for the Hydrogen Oxidation in Alkaline Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jingkun; Ghoshal, Shraboni; Bates, Michael K.

    Realization of the hydrogen economy relies on effective hydrogen production, storage, and utilization. The slow kinetics of hydrogen evolution and oxidation reaction (HER/HOR) in alkaline media limits many practical applications involving hydrogen generation and utilization, and how to overcome this fundamental limitation remains debatable. Here we present a kinetic study of the HOR on representative catalytic systems in alkaline media. Electrochemical measurements show that the HOR rate of Pt-Ru/C and Ru/C systems is decoupled to their hydrogen binding energy (HBE), challenging the current prevailing HBE mechanism. The alternative bifunctional mechanism is verified by combined electrochemical and in situ spectroscopic data,more » which provide convincing evidence for the presence of hydroxy groups on surface Ru sites in the HOR potential region and its key role in promoting the rate-determining Volmer step. The conclusion presents important references for design and selection of HOR catalysts.« less

  12. Experimental Proof of the Bifunctional Mechanism for the Hydrogen Oxidation in Alkaline Media

    DOE PAGES

    Li, Jingkun; Ghoshal, Shraboni; Bates, Michael K.; ...

    2017-10-16

    Realization of the hydrogen economy relies on effective hydrogen production, storage, and utilization. The slow kinetics of hydrogen evolution and oxidation reaction (HER/HOR) in alkaline media limits many practical applications involving hydrogen generation and utilization, and how to overcome this fundamental limitation remains debatable. Here we present a kinetic study of the HOR on representative catalytic systems in alkaline media. Electrochemical measurements show that the HOR rate of Pt-Ru/C and Ru/C systems is decoupled to their hydrogen binding energy (HBE), challenging the current prevailing HBE mechanism. The alternative bifunctional mechanism is verified by combined electrochemical and in situ spectroscopic data,more » which provide convincing evidence for the presence of hydroxy groups on surface Ru sites in the HOR potential region and its key role in promoting the rate-determining Volmer step. The conclusion presents important references for design and selection of HOR catalysts.« less

  13. Circular economy and waste to energy

    NASA Astrophysics Data System (ADS)

    Rada, E. C.; Ragazzi, M.; Torretta, V.; Castagna, G.; Adami, L.; Cioca, L. I.

    2018-05-01

    Waste management in European Union has long being regulated by the 4Rs principle, i.e. reduction, reuse, recycling, recovery, with landfill disposal as the last option. This vision recently led the European Union (especially since 2015) to the introduction of virtuous goals based on the rejection of linear economy in favour of circular economy strongly founded on materials recovery. In this scenario, landfill disposal option will disappear, while energy recovery may appear controversial when not applied to biogas production from anaerobic digestion. The present work aims to analyse the effects that circular economy principles introduced in the European Union context will have on the thermochemical waste treatment plants design. Results demonstrate that indirect combustion (gasification + combustion) along with integrated vitrification of the non-combustible fraction of treated waste will have a more relevant role in the field of waste treatment than in the past, thanks to the compliance of this option with the principles of circular economy.

  14. Vgi Based Urban Public Transport

    NASA Astrophysics Data System (ADS)

    Teymurian, F.; Alesheikh, A. A.; Alimohammadi, A.; Sadeghi-Niaraki, A.

    2013-09-01

    in constant contact with the system can have detailed and updated information about the problems, solutions and they are affected by the related implemented policies. Thus user involvement is an essential part in public transport decision making process. Although GIS in transportation (GIS-T) has been used for data collection, spatial analysis, and spatial modeling, due to recent promotions, GIS-T is moving towards the use of capabilities of VGI to user-centric services. The main goals of this paper are two as follows: First is to survey and review the key concepts of the geo-collaboration, to introduce and present fields to utilizing the VGI in the public transportation system to improve the performance of that system. The Second goal is to propose a VGI-based public transport conceptual framework. in this paper in the first part capabilities of VGI is explored, and areas of public transport that can utilize the public involvement is assessed and classified. Then, by surveying the related works in this context, a classification based on the models of participation is provided. Finally, a VGI-based conceptual framework for organizing a public participation for performance measurement of urban public transport for Tehran city is proposed. Results of this paper show that utilizing VGI presents an efficient solution for public transport problems.

  15. Hydrogen transport membranes for dehydrogenation reactions

    DOEpatents

    Balachandran,; Uthamalingam, [Hinsdale, IL

    2008-02-12

    A method of converting C.sub.2 and/or higher alkanes to olefins by contacting a feedstock containing C.sub.2 and/or higher alkanes with a first surface of a metal composite membrane of a sintered homogenous mixture of an Al oxide or stabilized or partially stabilized Zr oxide ceramic powder and a metal powder of one or more of Pd, Nb, V, Zr, Ta and/or alloys or mixtures thereof. The alkanes dehydrogenate to olefins by contact with the first surface with substantially only atomic hydrogen from the dehydrogenation of the alkanes passing through the metal composite membrane. Apparatus for effecting the conversion and separation is also disclosed.

  16. The Seven Challenges for Transitioning into a Bio-based Circular Economy in the Agri-food Sector.

    PubMed

    Borrello, Massimiliano; Lombardi, Alessia; Pascucci, Stefano; Cembalo, Luigi

    2016-01-01

    Closed-loop agri-food supply chains have a high potential to reduce environmental and economic costs resulting from food waste disposal. This paper illustrates an alternative to the traditional supply chain of bread based on the principles of a circular economy. Six circular interactions among seven actors (grain farmers, bread producers, retailers, compostable packaging manufacturers, insect breeders, livestock farmers, consumers) of the circular filière are created in order to achieve the goal of "zero waste". In the model, two radical technological innovations are considered: insects used as animal feed and polylactic acid compostable packaging. The main challenges for the implementation of the new supply chain are identified. Finally, some recent patents related to bread sustainable production, investigated in the current paper, are considered. Recommendations are given to academics and practitioners interested in the bio-based circular economy model approach for transforming agri-food supply chains.

  17. Dynamic conductivity and partial ionization in dense fluid hydrogen

    NASA Astrophysics Data System (ADS)

    Zaghoo, Mohamed

    2018-04-01

    A theoretical description for optical conduction experiments in dense fluid hydrogen is presented. Different quantum statistical approaches are used to describe the mechanism of electronic transport in hydrogen's high-temperature dense phase. We show that at the onset of the metallic transition, optical conduction could be described by a strong rise in atomic polarizability, due to increased ionization, whereas in the highly degenerate limit, the Ziman weak scattering model better accounts for the observed saturation of reflectance. The inclusion of effects of partial ionization in the highly degenerate region provides great agreement with experimental results. Hydrogen's fluid metallic state is revealed to be a partially ionized free-electron plasma. Our results provide some of the first theoretical transport models that are experimentally benchmarked, as well as an important guide for future studies.

  18. Intermetallic nickel silicide nanocatalyst—A non-noble metal–based general hydrogenation catalyst

    PubMed Central

    Pohl, Marga-Martina; Agapova, Anastasiya

    2018-01-01

    Hydrogenation reactions are essential processes in the chemical industry, giving access to a variety of valuable compounds including fine chemicals, agrochemicals, and pharmachemicals. On an industrial scale, hydrogenations are typically performed with precious metal catalysts or with base metal catalysts, such as Raney nickel, which requires special handling due to its pyrophoric nature. We report a stable and highly active intermetallic nickel silicide catalyst that can be used for hydrogenations of a wide range of unsaturated compounds. The catalyst is prepared via a straightforward procedure using SiO2 as the silicon atom source. The process involves thermal reduction of Si–O bonds in the presence of Ni nanoparticles at temperatures below 1000°C. The presence of silicon as a secondary component in the nickel metal lattice plays the key role in its properties and is of crucial importance for improved catalytic activity. This novel catalyst allows for efficient reduction of nitroarenes, carbonyls, nitriles, N-containing heterocycles, and unsaturated carbon–carbon bonds. Moreover, the reported catalyst can be used for oxidation reactions in the presence of molecular oxygen and is capable of promoting acceptorless dehydrogenation of unsaturated N-containing heterocycles, opening avenues for H2 storage in organic compounds. The generality of the nickel silicide catalyst is demonstrated in the hydrogenation of over a hundred of structurally diverse unsaturated compounds. The wide application scope and high catalytic activity of this novel catalyst make it a nice alternative to known general hydrogenation catalysts, such as Raney nickel and noble metal–based catalysts. PMID:29888329

  19. Intermetallic nickel silicide nanocatalyst-A non-noble metal-based general hydrogenation catalyst.

    PubMed

    Ryabchuk, Pavel; Agostini, Giovanni; Pohl, Marga-Martina; Lund, Henrik; Agapova, Anastasiya; Junge, Henrik; Junge, Kathrin; Beller, Matthias

    2018-06-01

    Hydrogenation reactions are essential processes in the chemical industry, giving access to a variety of valuable compounds including fine chemicals, agrochemicals, and pharmachemicals. On an industrial scale, hydrogenations are typically performed with precious metal catalysts or with base metal catalysts, such as Raney nickel, which requires special handling due to its pyrophoric nature. We report a stable and highly active intermetallic nickel silicide catalyst that can be used for hydrogenations of a wide range of unsaturated compounds. The catalyst is prepared via a straightforward procedure using SiO 2 as the silicon atom source. The process involves thermal reduction of Si-O bonds in the presence of Ni nanoparticles at temperatures below 1000°C. The presence of silicon as a secondary component in the nickel metal lattice plays the key role in its properties and is of crucial importance for improved catalytic activity. This novel catalyst allows for efficient reduction of nitroarenes, carbonyls, nitriles, N-containing heterocycles, and unsaturated carbon-carbon bonds. Moreover, the reported catalyst can be used for oxidation reactions in the presence of molecular oxygen and is capable of promoting acceptorless dehydrogenation of unsaturated N-containing heterocycles, opening avenues for H 2 storage in organic compounds. The generality of the nickel silicide catalyst is demonstrated in the hydrogenation of over a hundred of structurally diverse unsaturated compounds. The wide application scope and high catalytic activity of this novel catalyst make it a nice alternative to known general hydrogenation catalysts, such as Raney nickel and noble metal-based catalysts.

  20. The potential of organic polymer-based hydrogen storage materials.

    PubMed

    Budd, Peter M; Butler, Anna; Selbie, James; Mahmood, Khalid; McKeown, Neil B; Ghanem, Bader; Msayib, Kadhum; Book, David; Walton, Allan

    2007-04-21

    The challenge of storing hydrogen at high volumetric and gravimetric density for automotive applications has prompted investigations into the potential of cryo-adsorption on the internal surface area of microporous organic polymers. A range of Polymers of Intrinsic Microporosity (PIMs) has been studied, the best PIM to date (a network-PIM incorporating a triptycene subunit) taking up 2.7% H(2) by mass at 10 bar/77 K. HyperCrosslinked Polymers (HCPs) also show promising performance as H(2) storage materials, particularly at pressures >10 bar. The N(2) and H(2) adsorption behaviour at 77 K of six PIMs and a HCP are compared. Surface areas based on Langmuir plots of H(2) adsorption at high pressure are shown to provide a useful guide to hydrogen capacity, but Langmuir plots based on low pressure data underestimate the potential H(2) uptake. The micropore distribution influences the form of the H(2) isotherm, a higher concentration of ultramicropores (pore size <0.7 nm) being associated with enhanced low pressure adsorption.