Science.gov

Sample records for hydrogen-deuterium exchange studies

  1. Dual Studies on a Hydrogen-Deuterium Exchange of Resorcinol and the Subsequent Kinetic Isotope Effect

    ERIC Educational Resources Information Center

    Giles, Richard; Kim, Iris; Chao, Weyjuin Eric; Moore, Jennifer; Jung, Kyung Woon

    2014-01-01

    An efficient laboratory experiment has been developed for undergraduate students to conduct hydrogen-deuterium (H-D) exchange of resorcinol by electrophilic aromatic substitution using D[subscript 2]O and a catalytic amount of H[subscript 2]SO[subscript 4]. The resulting labeled product is characterized by [superscript 1]H NMR. Students also

  2. Dual Studies on a Hydrogen-Deuterium Exchange of Resorcinol and the Subsequent Kinetic Isotope Effect

    ERIC Educational Resources Information Center

    Giles, Richard; Kim, Iris; Chao, Weyjuin Eric; Moore, Jennifer; Jung, Kyung Woon

    2014-01-01

    An efficient laboratory experiment has been developed for undergraduate students to conduct hydrogen-deuterium (H-D) exchange of resorcinol by electrophilic aromatic substitution using D[subscript 2]O and a catalytic amount of H[subscript 2]SO[subscript 4]. The resulting labeled product is characterized by [superscript 1]H NMR. Students also…

  3. Infrared spectroscopic study of photoreceptor membrane and purple membrane. Protein secondary structure and hydrogen deuterium exchange

    SciTech Connect

    Downer, N.W.; Bruchman, T.J.; Hazzard, J.H.

    1986-03-15

    Infrared spectroscopy in the interval from 1800 to 1300 cm-1 has been used to investigate the secondary structure and the hydrogen/deuterium exchange behavior of bacteriorhodopsin and bovine rhodopsin in their respective native membranes. The amide I' and amide II' regions from spectra of membrane suspensions in D2O were decomposed into constituent bands by use of a curve-fitting procedure. The amide I' bands could be fit with a minimum of three theoretical components having peak positions at 1664, 1638, and 1625 cm-1 for bacteriorhodopsin and 1657, 1639, and 1625 cm-1 for rhodopsin. For both of these membrane proteins, the amide I' spectrum suggests that alpha-helix is the predominant form of peptide chain secondary structure, but that a substantial amount of beta-sheet conformation is present as well. The shape of the amide I' band was pH-sensitive for photoreceptor membranes, but not for purple membrane, indicating that membrane-bound rhodopsin undergoes a conformation change at acidic pH. Peptide hydrogen exchange of bacteriorhodopsin and rhodopsin was monitored by observing the change in the ratio of integrated absorbance (Aamide II'/Aamide I') during the interval from 1.5 to 25 h after membranes were introduced into buffered D2O. The fraction of peptide groups in a very slowly exchanging secondary structure was estimated to be 0.71 for bacteriorhodopsin at pD 7. The corresponding fraction in vertebrate rhodopsin was estimated to be less than or equal to 0.60. These findings are discussed in relationship to previous studies of hydrogen exchange behavior and to structural models for both proteins.

  4. Dual Studies on a HydrogenDeuterium Exchange of Resorcinol and the Subsequent Kinetic Isotope Effect

    PubMed Central

    2015-01-01

    An efficient laboratory experiment has been developed for undergraduate students to conduct hydrogendeuterium (HD) exchange of resorcinol by electrophilic aromatic substitution using D2O and a catalytic amount of H2SO4. The resulting labeled product is characterized by 1H NMR. Students also visualize a significant kinetic isotope effect (kH/kD ? 3 to 4) by adding iodine tincture to solutions of unlabeled resorcinol and the HD exchange product. This method is highly adaptable to fit a target audience and has been successfully implemented in a pedagogical capacity with second-year introductory organic chemistry students as part of their laboratory curriculum. It was also adapted for students at the advanced high school level. PMID:25132687

  5. Study of the conformational change of adsorbed proteins on biomaterial surfaces using hydrogen-deuterium exchange with mass spectroscopy.

    PubMed

    Kim, Jinku

    2016-05-01

    There is no doubt that protein adsorption plays a crucial role in determining biocompatibility of biomaterials. Despite the information of the identity and composition of blood plasma/serum proteins adsorbed on surfaces of biomaterials to understand which proteins are involved in blood/biomaterial interactions, it still does not provide information about the conformations and orientations of adsorbed protein, which are very important in determining biological responses to biomaterials. Therefore, our laboratory has developed an experimental technology to probe protein conformations on materials that is applicable to mixtures of proteins. Herein, the new application of hydrogen/deuterium (H/D) exchange combined with mass spectrometry was applied to determine conformational changes of adsorbed proteins at biomaterial surfaces. The results suggest that there may be a significant conformational change in adsorbed proteins at 'low' bulk concentrations that leads to a large change in the kinetics of H/D exchange as compared to 'high' bulk concentrations. This technique may eventually be useful for the study of the kinetics of protein conformational changes. PMID:26896658

  6. Using Hydrogen/Deuterium Exchange Mass Spectrometry to Study Conformational Changes in Granulocyte Colony Stimulating Factor upon PEGylation

    NASA Astrophysics Data System (ADS)

    Wei, Hui; Ahn, Joomi; Yu, Ying Qing; Tymiak, Adrienne; Engen, John R.; Chen, Guodong

    2012-03-01

    PEGylation is the covalent attachment of polyethylene glycol to proteins, and it can be used to alter immunogenicity, circulating half life and other properties of therapeutic proteins. To determine the impact of PEGylation on protein conformation, we applied hydrogen/deuterium exchange mass spectrometry (HDX MS) to analyze granulocyte colony stimulating factor (G-CSF) upon PEGylation as a model system. The combined use of HDX automation technology and data analysis software allowed reproducible and robust measurements of the deuterium incorporation levels for peptic peptides of both PEGylated and non-PEGylated G-CSF. The results indicated that significant differences in deuterium incorporation were induced by PEGylation of G-CSF, although the overall changes observed were quite small. PEGylation did not result in gross conformational rearrangement of G-CSF. The data complexity often encountered in HDX MS measurements was greatly reduced through a data processing and presentation format designed to facilitate the comparison process. This study demonstrates the practical utility of HDX MS for comparability studies, process monitoring, and protein therapeutic characterization in the biopharmaceutical industry.

  7. Application of hydrogen/deuterium exchange mass spectrometry to study protein tyrosine phosphatase dynamics, ligand binding, and substrate specificity

    PubMed Central

    Zhou, Bo; Zhang, Zhong-Yin

    2007-01-01

    Protein tyrosine phosphatases (PTPs) are signaling enzymes that control a diverse array of cellular processes. Further insight into the specific functional roles of PTPs in cellular signaling requires detailed understanding of the molecular basis for substrate recognition by the PTPs. A central question is how PTPs discriminate between multiple structurally diverse substrates that they encounter in the cell. Although x-ray crystallography is capable of revealing the intimate structural details for molecular interaction, structures of higher order PTPsubstrate complexes are often difficult to obtain. Hydrogen/deuterium exchange mass spectrometry (H/DX-MS) is a powerful tool for mapping protein-protein interfaces, as well as identifying conformational and dynamic perturbations in proteins. In addition, H/DX-MS enables analysis of large protein complexes at physiological concentrations and provides insight into the solution behavior of these complexes that can not be gleaned from crystal structures. We have utilized H/DX-MS to probe PTP dynamics, ligand binding, and the structural basis of substrate recognition. In this article, we review general principles of H/DX-MS technology as applied to study protein-protein interactions and dynamics. We also provide protocols for H/DX-MS successfully used in our laboratory to define the molecular basis of ERK2 substrate recognition by MKP3. Many of the aspects that we cover in detail should be applicable to the study of other PTPs with their specific targets. PMID:17532509

  8. Patterns of structural dynamics in RACK1 protein retained throughout evolution: A hydrogen-deuterium exchange study of three orthologs

    PubMed Central

    Tarnowski, Krzysztof; Fituch, Kinga; Szczepanowski, Roman H; Dadlez, Michal; Kaus-Drobek, Magdalena

    2014-01-01

    RACK1 is a member of the WD repeat family of proteins and is involved in multiple fundamental cellular processes. An intriguing feature of RACK1 is its ability to interact with at least 80 different protein partners. Thus, the structural features enabling such interactomic flexibility are of great interest. Several previous studies of the crystal structures of RACK1 orthologs described its detailed architecture and confirmed predictions that RACK1 adopts a seven-bladed ?-propeller fold. However, this did not explain its ability to bind to multiple partners. We performed hydrogen-deuterium (H-D) exchange mass spectrometry on three orthologs of RACK1 (human, yeast, and plant) to obtain insights into the dynamic properties of RACK1 in solution. All three variants retained similar patterns of deuterium uptake, with some pronounced differences that can be attributed to RACK1's divergent biological functions. In all cases, the most rigid structural elements were confined to B-C turns and, to some extent, strands B and C, while the remaining regions retained much flexibility. We also compared the average rate constants for H-D exchange in different regions of RACK1 and found that amide protons in some regions exchanged at least 1000-fold faster than in others. We conclude that its evolutionarily retained structural architecture might have allowed RACK1 to accommodate multiple molecular partners. This was exemplified by our additional analysis of yeast RACK1 dimer, which showed stabilization, as well as destabilization, of several interface regions upon dimer formation. PMID:24591271

  9. Hydrogen-deuterium exchange in imidazole as a tool for studying histidine phosphorylation.

    PubMed

    Cebo, Małgorzata; Kielmas, Martyna; Adamczyk, Justyna; Cebrat, Marek; Szewczuk, Zbigniew; Stefanowicz, Piotr

    2014-12-01

    Isotope exchange at the histidine C2 atom of imidazole in D2O solution is well known to occur at a significantly slower rate than the exchange of amide protons. Analysis of the kinetics of this isotope-exchange reaction is proposed herein as a method of detecting histidine phosphorylation. This modification of His-containing peptides is challenging to pinpoint because of its instability under acidic conditions as well as during CID-MS analysis. In this work, we investigated the effect of phosphorylation of the histidine side chain in peptides on deuterium-hydrogen exchange (DHX) in the imidazole. The results demonstrate that phosphorylation dramatically slows the rate of the DHX reaction. This phenomenon can be applied to detect phosphorylation of peptides at the histidine residue (e.g., in enzymatic digests). We also found that the influence of the peptide sequence on the exchange kinetics is relatively small. A CID fragmentation experiment revealed that there was no detectable hydrogen scrambling in peptides deuterated at C2 of the imidazole ring. Therefore, MS/MS can be used to directly identify the locations of deuterium ions incorporated into peptides containing multiple histidine moieties. PMID:25354888

  10. Hydrogen-Deuterium Exchange of Meteoritic Dicarboxylic Acids During Aqueous Extraction

    NASA Technical Reports Server (NTRS)

    Fuller, M.; Huang, Y.

    2002-01-01

    This study examines the extent of hydrogen-deuterium exchange on dicarboxylic acids during aqueous extraction. Deuterium enrichment was observed to be a function of diacid structure as well as delta-D. Additional information is contained in the original extended abstract.

  11. Hydrogen-deuterium exchange in structural biology

    NASA Astrophysics Data System (ADS)

    Schoenborn, B. P.; Ramakrishnan, V.; Schneider, D.

    1986-03-01

    The large difference in neutron scattering length of hydrogen and deuterium atoms provides a unique tool to study biological macromolecules. These molecules exist in an aqueous environment and have an atomic composition of about 50% hydrogen atoms with the rest being mainly carbon, oxygen and nitrogen. By simply changing the ratio of hydrogen to deuterium the contrast of a sample constituent can be changed without altering the chemical composition. The scattering difference between the hydrogen isotopes has now been used to study structural details of proteins, viruses, nucleic acid protein complexes and membranes. The use of small-angle scattering analysis from proteins in solution is a particularly good example of the power of this new technique. From the first experiments with myoglobin, hemoglobin and TMV solutions in 1968 at the HFBR in Brookhaven it became, however, soon evident that the flux was low and the detection system of a conventional spectrometer was inadequate to measure precisely small differences in the scattering pattern. Since these solution scattering patterns are circularly symmetrical, a development of multidetector systems was the first step to alleviate the need for better data. From an early five detector system [1] the development of linear and two-dimensional position sensitive detectors continues to this day [2-6]. Today, position sensitive area-detectors with an efficiency of 80% and 1.3 mm resolution with an active area of 50 cm × 50 cms are available. These detectors have a counting rate capability of 2 × 10 5 neutrons/s. Other instrumentation developments to facilitate the study of biomolecules include (1) cold moderators, (2) thin film multilayer monochromators [7-9], (3) neutron guides made either of multilayer supermirrors or coated with 58Ni [10,11], (4) various crystal and mirror focusing devices [12,13]. Some of these features have been incorporated in a small-angle neutron spectrometer at the High Flux Beam Reactor at the Brookhaven National Laboratory. This spectrometer has a unique combination of features such as a high resolution area-detector, adjustable wavelength bandwidth and automated sample changer.

  12. Probing protein ensemble rigidity and hydrogen-deuterium exchange.

    PubMed

    Sljoka, Adnan; Wilson, Derek

    2013-10-01

    Protein rigidity and flexibility can be analyzed accurately and efficiently using the program floppy inclusion and rigid substructure topography (FIRST). Previous studies using FIRST were designed to analyze the rigidity and flexibility of proteins using a single static (snapshot) structure. It is however well known that proteins can undergo spontaneous sub-molecular unfolding and refolding, or conformational dynamics, even under conditions that strongly favor a well-defined native structure. These (local) unfolding events result in a large number of conformers that differ from each other very slightly. In this context, proteins are better represented as a thermodynamic ensemble of 'native-like' structures, and not just as a single static low-energy structure. Working with this notion, we introduce a novel FIRST-based approach for predicting rigidity/flexibility of the protein ensemble by (i) averaging the hydrogen bonding strengths from the entire ensemble and (ii) by refining the mathematical model of hydrogen bonds. Furthermore, we combine our FIRST-ensemble rigidity predictions with the ensemble solvent accessibility data of the backbone amides and propose a novel computational method which uses both rigidity and solvent accessibility for predicting hydrogen-deuterium exchange (HDX). To validate our predictions, we report a novel site specific HDX experiment which characterizes the native structural ensemble of Acylphosphatase from hyperthermophile Sulfolobus solfataricus (Sso AcP). The sub-structural conformational dynamics that is observed by HDX data, is closely matched with the FIRST-ensemble rigidity predictions, which could not be attained using the traditional single 'snapshot' rigidity analysis. Moreover, the computational predictions of regions that are protected from HDX and those that undergo exchange are in very good agreement with the experimental HDX profile of Sso AcP. PMID:24104456

  13. Recombinant Nepenthesin II for Hydrogen/Deuterium Exchange Mass Spectrometry.

    PubMed

    Yang, Menglin; Hoeppner, Morgan; Rey, Martial; Kadek, Alan; Man, Petr; Schriemer, David C

    2015-07-01

    The pitcher secretions of the Nepenthes genus of carnivorous plants contain a proteolytic activity that is very useful for hydrogen/deuterium exchange mass spectrometry (HX-MS). Our efforts to reconstitute pitcher fluid activity using recombinant nepenthesin I (one of two known aspartic proteases in the fluid) revealed a partial cleavage profile and reduced enzymatic stability in certain HX-MS applications. We produced and characterized recombinant nepenthesin II to determine if it complemented nepenthesin I in HX-MS applications. Nepenthesin II shares many properties with nepenthesin I, such as fast digestion at reduced temperature and pH, and broad cleavage specificity, but in addition, it cleaves C-terminal to tryptophan. Neither enzyme reproduces the C-terminal proline cleavage we observed in the natural extract. Nepenthesin II is considerably more resistant to chemical denaturants and reducing agents than nepenthesin I, and it possesses a stability profile that is similar to that of pepsin. Higher stability combined with the slightly broader cleavage specificity makes nepenthesin II a useful alternative to pepsin and a more complete replacement for pitcher fluid in HX-MS applications. PMID:25993527

  14. A Hydrogen-Deuterium Exchange Study on Nickel-based Binary-Ternary Amorphous and Crystalline Membranes

    NASA Astrophysics Data System (ADS)

    Adibhatla, Anasuya

    Hydrogen is a major role player in current global sustainable energy scenario. Research around the world is carried out to harness hydrogen from all possible sources. One of these sources is water gas shift reaction after the coal gasification process. Sustainable infrastructure can be viable in countries like USA and Australia, making this process viable. Various methods are used to harness this hydrogen from the water gas. One of these methods is the use of inorganic membranes based on Pd, Ag, Ni, Zr and other transition metals. Pd addition to the membranes makes the membranes more expensive for commercial use. Various bulk properties like hydrogen permeation and absorption are studied on Pd and Pd-based alloys. Alternate alloys based on Ni, V, Ta etc are being studied to substitute the use of Pd making this technology more cost efficient. A current balance in research in this area is fund to exist by coating the non-precious metal membranes with Pd to improve the surface interaction with hydrogen. The nature of membranes used for hydrogen separation is important aspect for the overall performance. Crystalline materials provide better bulk properties, however, are not durable under high temperature and hydrogen pressure. In this research, non-Pd coated Ni-based amorphous membranes were made by melt spin technique, which have been studied for their surface properties. Gas phase H2-D2 exchange reaction has been carried out on the membrane surface. This provides a measure of catalytic activity of the above mentioned membranes. More studies included the crystallographic phase change determination, bulk hydrogen solubility measurements, surface conduction measurements and surface morphological studies. During this research, it has been observed that crystalline materials provide more surface activity for hydrogen than their amorphous counterparts. Ni64Zr36 alloy has been shown to exhibit similar kinetic rates as metallic Ni. Also, microkinetic analysis was performed to determine the heat of hydrogen absorption and desorption on the alloy surface. Electrochemical Impedance Spectroscopy was conducted on the membranes to determine the surface resistance and it was found that Ni64Zr36 as-spun ribbon displayed highest resistance while Ni60Ta20Zr20 showed lowest resistance. Absorption studies on Ni60V 40 binary alloy and Ni60V20Zr20 ternary alloy indicated that the addition of Zr to these non-coated alloys increased the hydrogen solubility in the bulk. SEM and TEM analyses showed the presence of possible nano crystalline phases in Ni64Zr36 membrane. XRD and SEM studies conducted on post treated samples showed the possible phase segregation of Ni and ZrO2. Ni60Nb40 did not show any phase transformations after hydrogen heat treated unlike its ternary composition, Ni60Nb20Zr20. It is noteworthy to mention that bubbles were observed during SEM on Ni 64Zr36 post-treated sample on the surface due to possible hydrogen trapping and subsequent release of hydrogen gas.

  15. RNA-induced conformational changes in a viral coat protein studied by hydrogen/deuterium exchange mass spectrometry

    PubMed Central

    Morton, Victoria L.; Burkitt, William; O’Connor, Gavin; Stonehouse, Nicola J.; Stockley, Peter G.; Ashcroft, Alison E.

    2016-01-01

    A detailed knowledge of the capsid assembly pathways of viruses from their coat protein building blocks is required to devise novel therapeutic strategies to inhibit such assembly. In the quest for understanding how assembly of single-stranded RNA viruses is achieved at the molecular level, HDX-MS has been used to locate regions of a coat protein dimer that exhibit conformational/dynamical changes, and hence changes in their HDX kinetics, upon binding to a genomic RNA stem-loop known to trigger assembly initiation. The HDX-MS data highlight specific areas within the coat protein dimer that alter their exchange kinetics in the presence of the RNA. These include the known RNA-binding sites, β-strands E and G, which have a lower susceptibility to HDX when ligand-bound, as may have been expected. In contrast, several exposed regions are unaffected by ligand binding. Significantly in this example, the loop between β-strands F and G exhibits reduced HDX propensity when the RNA is bound, consistent with previous inferences from NMR and normal mode analysis that suggested a local conformational change at this loop induced by dynamic allostery. These results demonstrate the potential utility of HDX to probe conformational and dynamical changes within non-covalently bound protein-ligand complexes which are of widespread importance in many biomolecular systems. PMID:20877857

  16. Structural Analysis of Diheme Cytochrome c by HydrogenDeuterium Exchange Mass Spectrometry and Homology Modeling

    PubMed Central

    2015-01-01

    A lack of X-ray or nuclear magnetic resonance structures of proteins inhibits their further study and characterization, motivating the development of new ways of analyzing structural information without crystal structures. The combination of hydrogendeuterium exchange mass spectrometry (HDX-MS) data in conjunction with homology modeling can provide improved structure and mechanistic predictions. Here a unique diheme cytochrome c (DHCC) protein from Heliobacterium modesticaldum is studied with both HDX and homology modeling to bring some definition of the structure of the protein and its role. Specifically, HDX data were used to guide the homology modeling to yield a more functionally relevant structural model of DHCC. PMID:25138816

  17. Conformational dynamics of human FXR-LBD ligand interactions studied by hydrogen/deuterium exchange mass spectrometry: insights into the antagonism of the hypolipidemic agent Z-guggulsterone.

    PubMed

    Yang, Liping; Broderick, David; Jiang, Yuan; Hsu, Victor; Maier, Claudia S

    2014-09-01

    Farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily of transcription factors that plays a key role in the regulation of bile acids, lipid and glucose metabolisms. The regulative function of FXR is governed by conformational changes of the ligand binding domain (LBD) upon ligand binding. Although FXR is a highly researched potential therapeutic target, only a limited number of FXR-agonist complexes have been successfully crystallized and subsequently yielded high resolution structures. There is currently no structural information of any FXR-antagonist complexes publically available. We therefore explored the use of amide hydrogen/deuterium exchange (HDX) coupled with mass spectrometry for characterizing conformational changes in the FXR-LBD upon ligand binding. Ligand-specific deuterium incorporation profiles were obtained for three FXR ligand chemotypes: GW4064, a synthetic non-steroidal high affinity agonist; the bile acid chenodeoxycholic acid (CDCA), the endogenous low affinity agonist of FXR; and Z-guggulsterone (GG), an in vitro antagonist of the steroid chemotype. A comparison of the HDX profiles of their ligand-bound FXR-LBD complexes revealed a unique mode of interaction for GG. The conformational features of the FXR-LBD-antagonist interaction are discussed. PMID:24953769

  18. Conformational dynamics of human FXR-LBD ligand interactions studied by hydrogen/deuterium exchange mass spectrometry: Insights into the antagonism of the hypolipidemic agent Z-guggulsterone

    PubMed Central

    Yang, Liping; Broderick, David; Jiang, Yuan; Hsu, Victor; Maier, Claudia S.

    2014-01-01

    Farnesoid X Receptor (FXR) is a member of the nuclear receptor superfamily of transcription factors that plays a key role in the regulation of bile acids, lipid and glucose metabolisms. The regulative function of FXR is governed by conformational changes of the ligand binding domain (LBD) upon ligand binding. Although FXR is a highly researched potential therapeutic target, only a limited number of FXR-agonist complexes have been successfully crystallized and subsequently yielded high resolution structures. There is currently no structural information of any FXR-antagonist complexes publically available. We therefore explored the use of amide hydrogen/deuterium exchange (HDX) coupled with mass spectrometry for characterizing conformational changes in the FXR-LBD upon ligand binding. Ligand-specific deuterium incorporation profiles were obtained for three FXR ligand chemotypes: GW4064, a synthetic non-steroidal high affinity agonist; the bile acid chenodeoxycholic acid (CDCA), the endogenous low affinity agonist of FXR; and Z-guggulsterone (GG), an in vitro antagonist of the steroid chemotype. Comparison of the HDX profiles of their ligand-bound FXR-LBD complexes revealed a unique mode of interaction for GG. The conformational features of the FXR-LBD-antagonist interaction are discussed. PMID:24953769

  19. Localized hydration in lyophilized myoglobin by hydrogen-deuterium exchange mass spectrometry. 2. Exchange kinetics.

    PubMed

    Sophocleous, Andreas M; Topp, Elizabeth M

    2012-04-01

    Solid-state hydrogen-deuterium exchange with mass spectrometric analysis (ssHDX) is a promising method for characterizing proteins in amorphous solids. Though analysis of HDX kinetics is informative and well-established in solution, application of these methods to solid samples is complicated by possible heterogeneities in the solid. The studies reported here provide a detailed analysis of the kinetics of hydration and ssHDX for equine myoglobin (Mb) in solid matrices containing sucrose or mannitol. Water sorption was rapid relative to ssHDX, indicating that ssHDX kinetics was not limited by bulk water transport. Deuterium uptake in solids was well-characterized by a biexponential model; values for regression parameters provided insight into differences between the two solid matrices. Analysis of the widths of peptide mass envelopes revealed that, in solution, an apparent EX2 mechanism prevails, consistent with native conformation of the protein. In contrast, in mannitol-containing samples, a smaller non-native subpopulation exchanges by an EX1-like mechanism. Together, the results indicate that the analysis of ssHDX kinetic data and of the widths of peptide mass envelopes is useful in screening solid formulations of protein drugs for the presence of non-native species that cannot be detected by amide I FTIR. PMID:22352990

  20. HDX match software for the data analysis of top-down ECD-FTMS hydrogen/deuterium exchange experiments.

    PubMed

    Petrotchenko, Evgeniy V; Borchers, Christoph H

    2015-11-01

    Hydrogen/deuterium exchange (HDX) combined with mass spectrometry is a powerful technique for studying protein structure. The recently developed top-down ECD-FTMS HDX approach (Pan J. et al., JACS, 2008) allows determination of the hydrogen/deuterium exchange of a protein's amide bonds, down to the single residue resolution. One of the existing limitations of this technology has been the laborious manual analysis of the MS/MS spectra. Here we present a software program for processing the data from these experiments. This program assigns the c- and z-fragment ion series of the protein, and calculates the number of the exchanged amide protons for each fragment by fitting the theoretically predicted isotopic envelopes of the deuterated fragments to the experimental data. Graphical Abstract ?. PMID:26162650

  1. HDX Match Software for the Data Analysis of Top-Down ECD-FTMS Hydrogen/Deuterium Exchange Experiments

    NASA Astrophysics Data System (ADS)

    Petrotchenko, Evgeniy V.; Borchers, Christoph H.

    2015-11-01

    Hydrogen/deuterium exchange (HDX) combined with mass spectrometry is a powerful technique for studying protein structure. The recently developed top-down ECD-FTMS HDX approach (Pan J. et al., JACS, 2008) allows determination of the hydrogen/deuterium exchange of a protein's amide bonds, down to the single residue resolution. One of the existing limitations of this technology has been the laborious manual analysis of the MS/MS spectra. Here we present a software program for processing the data from these experiments. This program assigns the c- and z-fragment ion series of the protein, and calculates the number of the exchanged amide protons for each fragment by fitting the theoretically predicted isotopic envelopes of the deuterated fragments to the experimental data.

  2. Kinetics of hydrogen/deuterium exchanges in cometary ices

    NASA Astrophysics Data System (ADS)

    Faure, Mathilde; Quirico, Eric; Faure, Alexandre; Schmitt, Bernard; Theul, Patrice; Marboeuf, Ulysse

    2015-11-01

    The D/H composition of volatile molecules composing cometary ices brings key constraints on the origin of comets, on the extent of their presolar heritage, as well as on the origin of atmospheres and hydrospheres of terrestrial planets. Nevertheless, the D/H composition may have been modified to various extents in the nucleus when a comet approaches the Sun and experiences deep physical and chemical modifications in its subsurface. We question here the evolution of the D/H ratio of organic species by proton exchanges with water ice. We experimentally studied the kinetics of D/H exchanges on the ice mixtures H2O:CD3OD, H2O:CD3ND2 and D2O:HCN. Our results show that fast exchanges occur on the -OH and -NH2 chemical groups, which are processed through hydrogen bonds exchanges with water and by the molecular mobility triggered by structural changes, such as glass transition or crystallization. D/H exchanges kinetic is best described by a second-order kinetic law with activation energies of 4300 900 K and 3300 100 K for H2O:CD3OD and H2O:CD3ND2 ice mixtures, respectively. The corresponding pre-exponential factors ln(A(s-1)) are 25 7 and 20 1, respectively. No exchange was observed in the case of HCN trapped in D2O ice. These results strongly suggest that upon thermal heating (1) -OH and -NH2 chemical groups of any organic molecules loose their primordial D/H composition and equilibrate with water ice, (2) HCN does not experience proton transfer and keeps a primordial D/H composition and (3) C-H chemical groups are not isotopically modified.

  3. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 1. Peptides to Proteins

    NASA Astrophysics Data System (ADS)

    Donohoe, Gregory C.; Khakinejad, Mahdiar; Valentine, Stephen J.

    2015-04-01

    Ion mobility spectrometry (IMS) coupled with hydrogen deuterium exchange (HDX)-mass spectrometry (MS) has been used to study the conformations of negatively-charged peptide and protein ions. Results are presented for ion conformers of angiotensin 1, a synthetic peptide (SP), bovine insulin, ubiquitin, and equine cytochrome c. In general, the SP ion conformers demonstrate a greater level of HDX efficiency as a greater proportion of the sites undergo HDX. Additionally, these ions exhibit the fastest rates of exchange. Comparatively, the angiotensin 1 ions exhibit a lower rate of exchange and HDX level presumably because of decreased accessibility of exchange sites by charge sites. The latter are likely confined to the peptide termini. Insulin ions show dramatically reduced HDX levels and exchange rates, which can be attributed to decreased conformational flexibility resulting from the disulfide bonds. For the larger ubiquitin and protein ions, increased HDX is observed for larger ions of higher charge state. For ubiquitin, a conformational transition from compact to more elongated species (from lower to higher charge states) is reflected by an increase in HDX levels. These results can be explained by a combination of interior site protection by compact conformers as well as decreased access by charge sites. The elongated cytochrome c ions provide the largest HDX levels where higher values correlate with charge state. These results are consistent with increased exchange site accessibility by additional charge sites. The data from these enhanced IMS-HDX experiments are described in terms of charge site location, conformer rigidity, and interior site protection.

  4. Localizing Carbohydrate Binding Sites in Proteins Using Hydrogen/Deuterium Exchange Mass Spectrometry.

    PubMed

    Zhang, Jingjing; Kitova, Elena N; Li, Jun; Eugenio, Luiz; Ng, Kenneth; Klassen, John S

    2016-01-01

    The application of hydrogen/deuterium exchange mass spectrometry (HDX-MS) to localize ligand binding sites in carbohydrate-binding proteins is described. Proteins from three bacterial toxins, the B subunit homopentamers of Cholera toxin and Shiga toxin type 1 and a fragment of Clostridium difficile toxin A, and their interactions with native carbohydrate receptors, GM1 pentasaccharides (?-Gal-(1?3)-?-GalNAc-(1?4)[?-Neu5Ac-(2?3)]-?-Gal-(1?4)-Glc), Pk trisaccharide (?-Gal-(1?4)-?-Gal-(1?4)-Glc) and CD-grease (?-Gal-(1?3)-?-Gal-(1?4)-?-GlcNAcO(CH2)8CO2CH3), respectively, served as model systems for this study. Comparison of the differences in deuterium uptake for peptic peptides produced in the absence and presence of ligand revealed regions of the proteins that are protected against deuterium exchange upon ligand binding. Notably, protected regions generally coincide with the carbohydrate binding sites identified by X-ray crystallography. However, ligand binding can also result in increased deuterium exchange in other parts of the protein, presumably through allosteric effects. Overall, the results of this study suggest that HDX-MS can serve as a useful tool for localizing the ligand binding sites in carbohydrate-binding proteins. However, a detailed interpretation of the changes in deuterium exchange upon ligand binding can be challenging because of the presence of ligand-induced changes in protein structure and dynamics. Graphical Abstract ?. PMID:26423923

  5. Localizing Carbohydrate Binding Sites in Proteins Using Hydrogen/Deuterium Exchange Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Jingjing; Kitova, Elena N.; Li, Jun; Eugenio, Luiz; Ng, Kenneth; Klassen, John S.

    2015-09-01

    The application of hydrogen/deuterium exchange mass spectrometry (HDX-MS) to localize ligand binding sites in carbohydrate-binding proteins is described. Proteins from three bacterial toxins, the B subunit homopentamers of Cholera toxin and Shiga toxin type 1 and a fragment of Clostridium difficile toxin A, and their interactions with native carbohydrate receptors, GM1 pentasaccharides (?-Gal-(1?3)-?-GalNAc-(1?4)[?-Neu5Ac-(2?3)]-?-Gal-(1?4)-Glc), Pk trisaccharide (?-Gal-(1?4)-?-Gal-(1?4)-Glc) and CD-grease (?-Gal-(1?3)-?-Gal-(1?4)-?-GlcNAcO(CH2)8CO2CH3), respectively, served as model systems for this study. Comparison of the differences in deuterium uptake for peptic peptides produced in the absence and presence of ligand revealed regions of the proteins that are protected against deuterium exchange upon ligand binding. Notably, protected regions generally coincide with the carbohydrate binding sites identified by X-ray crystallography. However, ligand binding can also result in increased deuterium exchange in other parts of the protein, presumably through allosteric effects. Overall, the results of this study suggest that HDX-MS can serve as a useful tool for localizing the ligand binding sites in carbohydrate-binding proteins. However, a detailed interpretation of the changes in deuterium exchange upon ligand binding can be challenging because of the presence of ligand-induced changes in protein structure and dynamics.

  6. HYDROGEN-DEUTERIUM EXCHANGE IN PHOTOLYZED METHANE-WATER ICES

    SciTech Connect

    Weber, Amanda S.; Hodyss, Robert; Johnson, Paul V.; Willacy, Karen; Kanik, Isik

    2009-09-20

    Previous work has concluded that H-D exchange occurs readily in polycyclic aromatic hydrocarbons frozen in deuterated water (D{sub 2}O) irradiated with ultraviolet light. Here, we examine H-D exchange in methane-water ices following exposure to ultraviolet radiation and analyze the products formed as a result. We find that H-D exchange also occurs in methane-water ices by means of ultraviolet photolysis. Exchange proceeds through a radical mechanism that implies that almost all organic species will undergo significant H-D exchange with the matrix in water ices exposed to ultraviolet radiation. Given sufficient energetic processing of the ice, the H/D ratio of an ice matrix may be transferred to the organic species in the ice.

  7. 2D IR cross peaks reveal hydrogen-deuterium exchange with single residue specificity.

    PubMed

    Dunkelberger, Emily B; Woys, Ann Marie; Zanni, Martin T

    2013-12-12

    A form of chemical exchange, hydrogen-deuterium exchange (HDX), has long been used as a method for studying the secondary and tertiary structure of peptides and proteins using mass spectrometry and NMR spectroscopy. Using two-dimensional infrared (2D IR) spectroscopy, we resolve cross peaks between the amide II band and a (13)C(18)O isotope-labeled amide I band, which we show measures HDX with site-specific resolution. By rapidly scanning 2D IR spectra using mid-IR pulse shaping, we monitor the kinetics of HDX exchange on-the-fly. For the antimicrobial peptide ovispirin bound to membrane bilayers, we find that the amide II peak decays with a biexponential with rate constants of 0.54 0.02 and 0.12 0.01 min(-1), which is a measure of the overall HDX in the peptide. The cross peaks between Ile-10-labeled ovispirin and the amide II mode, which specifically monitor HDX kinetics at Ile-10, decay with a single rate constant of 0.36 0.1 min(-1). Comparing this exchange rate to theoretically determined exchange rates of Ile-10 for ovispirin in a solution random coil configuration, the exchange rate at Ile-10 is at least 100 times slower, consistent with the known ?-helix structure of ovispirin in bilayers. Because backbone isotope labels produce only a very small shift of the amide II band, site-specific HDX cannot be measured with FTIR spectroscopy, which is why 2D IR spectroscopy is needed for these measurements. PMID:23659731

  8. Structural analysis of the interleukin-8/glycosaminoglycan interactions by amide hydrogen/deuterium exchange mass spectrometry.

    PubMed

    Hofmann, Tommy; Samsonov, Sergey A; Pichert, Annelie; Lemmnitzer, Katharina; Schiller, Jrgen; Huster, Daniel; Pisabarro, M Teresa; von Bergen, Martin; Kalkhof, Stefan

    2015-11-01

    The recruitment of different chemokines and growth factors by glycosaminoglycans (GAGs) such as chondroitin sulfate or hyaluronan plays a critical role in wound healing processes. Thus, there is a special interest in the design of artificial extracellular matrices with improved properties concerning GAG interaction with common regulating proteins. In this study, amide hydrogen/deuterium (H/D) exchange mass spectrometry (HDX MS) combined with molecular modeling and docking experiments was used to obtain structural models of proinflammatory chemokine interleukin-8 (IL-8) in complex with hexameric chondroitin sulfate. Experiments on the intact protein showed a difference in deuterium labeling of IL-8 due to chondroitin sulfate binding. The extent of deuteration was reduced from 24% to 13% after 2min exchange time, which corresponds to a reduced exchange of approximately 10 backbone amides. By local HDX MS experiments, H/D exchange information on the complete sequence of IL-8 could be obtained. A significantly reduced H/D exchange, especially of the C-terminal ?-helical region comprising amino acids 70-77 and to the loop comprising amino acids 27-29 was observed in the presence of chondroitin sulfate. HDX MS data were used to model the IL-8/chondroitin sulfate complex. The binding interface of IL-8 and chondroitin sulfate determined this way correlated excellently with the corresponding NMR based atomistic model previously published. Our results demonstrate that HDX-MS in combination with molecular modeling is a valuable approach for the analysis of protein/GAG complexes at physiological pH, temperature, and salt concentration. The fact that HDX-MS requires only micrograms of protein and GAGs makes it a very promising technique to address protein-GAG interactions. PMID:25726910

  9. Localizing Carbohydrate Binding Sites in Proteins Using Hydrogen/Deuterium Exchange Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Jingjing; Kitova, Elena N.; Li, Jun; Eugenio, Luiz; Ng, Kenneth; Klassen, John S.

    2016-01-01

    The application of hydrogen/deuterium exchange mass spectrometry (HDX-MS) to localize ligand binding sites in carbohydrate-binding proteins is described. Proteins from three bacterial toxins, the B subunit homopentamers of Cholera toxin and Shiga toxin type 1 and a fragment of Clostridium difficile toxin A, and their interactions with native carbohydrate receptors, GM1 pentasaccharides (β-Gal-(1→3)-β-GalNAc-(1→4)[α-Neu5Ac-(2→3)]-β-Gal-(1→4)-Glc), Pk trisaccharide (α-Gal-(1→4)-β-Gal-(1→4)-Glc) and CD-grease (α-Gal-(1→3)-β-Gal-(1→4)-β-GlcNAcO(CH2)8CO2CH3), respectively, served as model systems for this study. Comparison of the differences in deuterium uptake for peptic peptides produced in the absence and presence of ligand revealed regions of the proteins that are protected against deuterium exchange upon ligand binding. Notably, protected regions generally coincide with the carbohydrate binding sites identified by X-ray crystallography. However, ligand binding can also result in increased deuterium exchange in other parts of the protein, presumably through allosteric effects. Overall, the results of this study suggest that HDX-MS can serve as a useful tool for localizing the ligand binding sites in carbohydrate-binding proteins. However, a detailed interpretation of the changes in deuterium exchange upon ligand binding can be challenging because of the presence of ligand-induced changes in protein structure and dynamics.

  10. Differential hydrogen/deuterium exchange mass spectrometry analysis of protein–ligand interactions

    PubMed Central

    Chalmers, Michael J; Busby, Scott A; Pascal, Bruce D; West, Graham M; Griffin, Patrick R

    2011-01-01

    Functional regulation of ligand-activated receptors is driven by alterations in the conformational dynamics of the protein upon ligand binding. Differential hydrogen/deuterium exchange (HDX) coupled with mass spectrometry has emerged as a rapid and sensitive approach for characterization of perturbations in conformational dynamics of proteins following ligand binding. While this technique is sensitive to detecting ligand interactions and alterations in receptor dynamics, it also can provide important mechanistic insights into ligand regulation. For example, HDX has been used to determine a novel mechanism of ligand activation of the nuclear receptor peroxisome proliferator activated receptor-γ, perform detailed analyses of binding modes of ligands within the ligand-binding pocket of two estrogen receptor isoforms, providing insight into selectivity, and helped classify different types of estrogen receptor-α ligands by correlating their pharmacology with the way they interact with the receptor based solely on hierarchical clustering of receptor HDX signatures. Beyond small-molecule–receptor interactions, this technique has also been applied to study protein–protein complexes, such as mapping antibody–antigen interactions. In this article, we summarize the current state of the differential HDX approaches and the future outlook. We summarize how HDX analysis of protein–ligand interactions has had an impact on biology and drug discovery. PMID:21329427

  11. Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometric (LC/ESI-MS/MS) Study for the Identification and Characterization of In Vivo Metabolites of Cisplatin in Rat Kidney Cancer Tissues: Online Hydrogen/Deuterium (H/D) Exchange Study.

    PubMed

    Bandu, Raju; Ahn, Hyun Soo; Lee, Joon Won; Kim, Yong Woo; Choi, Seon Hee; Kim, Hak Jin; Kim, Kwang Pyo

    2015-01-01

    In vivo rat kidney tissue metabolites of an anticancer drug, cisplatin (cis-diamminedichloroplatinum [II]) (CP) which is used for the treatment of testicular, ovarian, bladder, cervical, esophageal, small cell lung, head and neck cancers, have been identified and characterized by using liquid chromatography positive ion electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) in combination with on line hydrogen/deuterium exchange (HDX) experiments. To identify in vivo metabolites, kidney tissues were collected after intravenous administration of CP to adult male Sprague-Dawley rats (n = 3 per group). The tissue samples were homogenized and extracted using newly optimized metabolite extraction procedure which involves liquid extraction with phosphate buffer containing ethyl acetate and protein precipitation with mixed solvents of methanol-water-chloroform followed by solid-phase clean-up procedure on Oasis HLB 3cc cartridges and then subjected to LC/ESI-HRMS analysis. A total of thirty one unknown in vivo metabolites have been identified and the structures of metabolites were elucidated using LC-MS/MS experiments combined with accurate mass measurements. Online HDX experiments have been used to further support the structural characterization of metabolites. The results showed that CP undergoes a series of ligand exchange biotransformation reactions with water and other nucleophiles like thio groups of methionine, cysteine, acetylcysteine, glutathione and thioether. This is the first research approach focused on the structure elucidation of biotransformation products of CP in rats, and the identification of metabolites provides essential information for further pharmacological and clinical studies of CP, and may also be useful to develop various effective new anticancer agents. PMID:26244343

  12. Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometric (LC/ESI-MS/MS) Study for the Identification and Characterization of In Vivo Metabolites of Cisplatin in Rat Kidney Cancer Tissues: Online Hydrogen/Deuterium (H/D) Exchange Study

    PubMed Central

    Bandu, Raju; Ahn, Hyun Soo; Lee, Joon Won; Kim, Yong Woo; Choi, Seon Hee; Kim, Hak Jin; Kim, Kwang Pyo

    2015-01-01

    In vivo rat kidney tissue metabolites of an anticancer drug, cisplatin (cis-diamminedichloroplatinum [II]) (CP) which is used for the treatment of testicular, ovarian, bladder, cervical, esophageal, small cell lung, head and neck cancers, have been identified and characterized by using liquid chromatography positive ion electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) in combination with on line hydrogen/deuterium exchange (HDX) experiments. To identify in vivo metabolites, kidney tissues were collected after intravenous administration of CP to adult male Sprague-Dawley rats (n = 3 per group). The tissue samples were homogenized and extracted using newly optimized metabolite extraction procedure which involves liquid extraction with phosphate buffer containing ethyl acetate and protein precipitation with mixed solvents of methanol-water-chloroform followed by solid-phase clean-up procedure on Oasis HLB 3cc cartridges and then subjected to LC/ESI-HRMS analysis. A total of thirty one unknown in vivo metabolites have been identified and the structures of metabolites were elucidated using LC-MS/MS experiments combined with accurate mass measurements. Online HDX experiments have been used to further support the structural characterization of metabolites. The results showed that CP undergoes a series of ligand exchange biotransformation reactions with water and other nucleophiles like thio groups of methionine, cysteine, acetylcysteine, glutathione and thioether. This is the first research approach focused on the structure elucidation of biotransformation products of CP in rats, and the identification of metabolites provides essential information for further pharmacological and clinical studies of CP, and may also be useful to develop various effective new anticancer agents. PMID:26244343

  13. Localized Hydration in Lyophilized Myoglobin by Hydrogen-Deuterium Exchange Mass Spectrometry. 1. Exchange Mapping

    PubMed Central

    Sophocleous, Andreas M.; Zhang, Jun; Topp, Elizabeth M.

    2012-01-01

    The local effects of hydration on myoglobin (Mb) in solid matrices containing mannitol or sucrose (1:1 w/w, protein:additive) were mapped using hydrogen-deuterium exchange with mass spectrometric analysis (HDX-MS) at 5°C and compared to solution controls. Solid powders were exposed to D2O(g) at controlled activity (aw) followed by reconstitution and analysis of the intact protein and peptides produced by pepsin digestion. HDX varied with matrix type, aw, and position along the protein backbone. HDX was less in sucrose matrices than in mannitol matrices at all aw while the difference in solution was negligible. Differences in HDX in the two matrices were detectable despite similarities in their bulk water content. The extent of exchange in solids is proposed as a measure of the hydration of exchangeable amide groups, as well as protein conformation and dynamics; pepsin digestion allows these effects to be mapped with peptide-level resolution. PMID:22352965

  14. NMR-Based Detection of Hydrogen/Deuterium Exchange in Liposome-Embedded Membrane Proteins

    PubMed Central

    Yao, Xuejun; Drr, Ulrich H. N.; Gattin, Zrinka; Laukat, Yvonne; Narayanan, Rhagavendran L.; Brckner, Ann-Kathrin; Meisinger, Chris; Lange, Adam; Becker, Stefan; Zweckstetter, Markus

    2014-01-01

    Membrane proteins play key roles in biology. Determination of their structure in a membrane environment, however, is highly challenging. To address this challenge, we developed an approach that couples hydrogen/deuterium exchange of membrane proteins to rapid unfolding and detection by solution-state NMR spectroscopy. We show that the method allows analysis of the solvent protection of single residues in liposome-embedded proteins such as the 349-residue Tom40, the major protein translocation pore in the outer mitochondrial membrane, which has resisted structural analysis for many years. PMID:25375235

  15. Isomerization and Oxidation in the Complementarity-Determining Regions of a Monoclonal Antibody: A Study of the Modification-Structure-Function Correlations by Hydrogen-Deuterium Exchange Mass Spectrometry.

    PubMed

    Yan, Yuetian; Wei, Hui; Fu, Ya; Jusuf, Sutjano; Zeng, Ming; Ludwig, Richard; Krystek, Stanley R; Chen, Guodong; Tao, Li; Das, Tapan K

    2016-02-16

    Chemical modifications can potentially change monoclonal antibody's (mAb) local or global conformation and therefore impact their efficacy as therapeutic drugs. Modifications in the complementarity-determining regions (CDRs) are especially important because they can impair the binding affinity of an antibody for its target and therefore drug potency as a result. In order to understand the impact on mAb attributes induced by specific chemical modifications within the CDR, hydrogen-deuterium exchange mass spectrometry (HDX MS) was used to interrogate the conformational impact of Asp isomerization and Met oxidation in the CDRs of a model monoclonal antibody (mAb1). Our results indicate that despite their proximity to each other, Asp54 isomerization and Met56 oxidation in CDR2 in the heavy chain of mAb1 result in opposing conformational impacts on the local and nearby regions, leading directly to different alterations on antibody-antigen binding affinity. This study revealed direct evidence of local and global conformational changes caused by two of the most common degradation pathways in the CDRs of a mAb and identified correlations between chemical modification, structure, and function of the therapeutic monoclonal antibody. PMID:26824491

  16. Hydrogen/deuterium exchange on aromatic rings during atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Davies, Noel W; Smith, Jason A; Molesworth, Peter P; Ross, John J

    2010-04-15

    It has been demonstrated that substituted indoles fully labelled with deuterium on the aromatic ring can undergo substantial exchange back to partial and even fully protonated forms during atmospheric pressure chemical ionisation (APCI) liquid chromatography/mass spectrometry (LC/MS). The degree of this exchange was strongly dependent on the absolute quantity of analyte, the APCI desolvation temperature, the nature of the mobile phase, the mobile phase flow rate and the instrument used. Hydrogen/deuterium (H/D) exchange on several other aromatic ring systems during APCI LC/MS was either undetectable (nitrobenzene, aniline) or extremely small (acetanilide) compared to the effect observed for substituted indoles. This observation has major implications for quantitative assays using deuterium-labelled internal standards and for the detection of deuterium-labelled products from isotopically labelled feeding experiments where there is a risk of back exchange to the protonated form during the analysis. PMID:20213724

  17. Pulsed hydrogendeuterium exchange mass spectrometry probes conformational changes in amyloid beta (A?) peptide aggregation

    PubMed Central

    Zhang, Ying; Rempel, Don L.; Zhang, Jun; Sharma, Anuj K.; Mirica, Liviu M.; Gross, Michael L.

    2013-01-01

    Probing the conformational changes of amyloid beta (A?) peptide aggregation is challenging owing to the vast heterogeneity of the resulting soluble aggregates. To investigate the formation of these aggregates in solution, we designed an MS-based biophysical approach and applied it to the formation of soluble aggregates of the A?42 peptide, the proposed causative agent in Alzheimers disease. The approach incorporates pulsed hydrogendeuterium exchange coupled with MS analysis. The combined approach provides evidence for a self-catalyzed aggregation with a lag phase, as observed previously by fluorescence methods. Unlike those approaches, pulsed hydrogendeuterium exchange does not require modified A?42 (e.g., labeling with a fluorophore). Furthermore, the approach reveals that the center region of A?42 is first to aggregate, followed by the C and N termini. We also found that the lag phase in the aggregation of soluble species is affected by temperature and Cu2+ ions. This MS approach has sufficient structural resolution to allow interrogation of A? aggregation in physiologically relevant environments. This platform should be generally useful for investigating the aggregation of other amyloid-forming proteins and neurotoxic soluble peptide aggregates. PMID:23959898

  18. Thermostability of endo-1,4-beta-xylanase II from Trichoderma reesei studied by electrospray ionization Fourier-transform ion cyclotron resonance MS, hydrogen/deuterium-exchange reactions and dynamic light scattering.

    PubMed Central

    Jänis, J; Rouvinen, J; Leisola, M; Turunen, O; Vainiotalo, P

    2001-01-01

    Endo-1,4-beta-xylanase II (XYNII) from Trichoderma reesei is a 21 kDa enzyme that catalyses the hydrolysis of xylan, the major plant hemicellulose. It has various applications in the paper, food and feed industries. Previous thermostability studies have revealed a significant decrease in enzymic activity of the protein at elevated temperatures in citrate buffer [Tenkanen, Puls and Poutanen (1992) Enzyme Microb. Technol. 14, 566-574]. Here, thermostability of XYNII was investigated using both conventional and nanoelectrospray ionization Fourier-transform ion cyclotron resonance MS and hydrogen/deuterium (H/D)-exchange reactions. In addition, dynamic light scattering (DLS) was used as a comparative method to observe possible changes in both tertiary and quaternary structures of the protein. We observed a significant irreversible conformational change and dimerization when the protein was exposed to heat. H/D exchange revealed two distinct monomeric protein populations in a narrow transition temperature region. The conformational change in both the water and buffered solutions occurred in the same temperature region where enzymic-activity loss had previously been observed. Approx. 10-30% of the protein was specifically dimerized when exposed to the heat treatment. However, adding methanol to the solution markedly lowered the transition temperature of conformational change as well as increased the dimerization up to 90%. DLS studies in water confirmed the change in conformation observed by electrospray ionization MS. We propose that the conformational change is responsible for the loss of enzymic activity at temperatures over 50 degrees C and that the functioning of the active site in the enzyme is unfeasible in a new, more labile solution conformation. PMID:11368772

  19. Nepenthesin from Monkey Cups for Hydrogen/Deuterium Exchange Mass Spectrometry*

    PubMed Central

    Rey, Martial; Yang, Menglin; Burns, Kyle M.; Yu, Yaping; Lees-Miller, Susan P.; Schriemer, David C.

    2013-01-01

    Studies of protein dynamics, structure and interactions using hydrogen/deuterium exchange mass spectrometry (HDX-MS) have sharply increased over the past 510 years. The predominant technology requires fast digestion at pH 23 to retain deuterium label. Pepsin is used almost exclusively, but it provides relatively low efficiency under the constraints of the experiment, and a selectivity profile that renders poor coverage of intrinsically disordered regions. In this study we present nepenthesin-containing secretions of the pitcher plant Nepenthes, commonly called monkey cups, for use in HDX-MS. We show that nepenthesin is at least 1400-fold more efficient than pepsin under HDX-competent conditions, with a selectivity profile that mimics pepsin in part, but also includes efficient cleavage C-terminal to forbidden residues K, R, H, and P. High efficiency permits a solution-based analysis with no detectable autolysis, avoiding the complication of immobilized enzyme reactors. Relaxed selectivity promotes high coverage of disordered regions and the ability to tune the mass map for regions of interest. Nepenthesin-enriched secretions were applied to an analysis of protein complexes in the nonhomologous end-joining DNA repair pathway. The analysis of XRCC4 binding to the BRCT domains of Ligase IV points to secondary interactions between the disordered C-terminal tail of XRCC4 and remote regions of the BRCT domains, which could only be identified with a nepenthesin-based workflow. HDX data suggest that stalk-binding to XRCC4 primes a BRCT conformation in these remote regions to support tail interaction, an event which may be phosphoregulated. We conclude that nepenthesin is an effective alternative to pepsin for all HDX-MS applications, and especially for the analysis of structural transitions among intrinsically disordered proteins and their binding partners. PMID:23197791

  20. Nepenthesin from monkey cups for hydrogen/deuterium exchange mass spectrometry.

    PubMed

    Rey, Martial; Yang, Menglin; Burns, Kyle M; Yu, Yaping; Lees-Miller, Susan P; Schriemer, David C

    2013-02-01

    Studies of protein dynamics, structure and interactions using hydrogen/deuterium exchange mass spectrometry (HDX-MS) have sharply increased over the past 5-10 years. The predominant technology requires fast digestion at pH 2-3 to retain deuterium label. Pepsin is used almost exclusively, but it provides relatively low efficiency under the constraints of the experiment, and a selectivity profile that renders poor coverage of intrinsically disordered regions. In this study we present nepenthesin-containing secretions of the pitcher plant Nepenthes, commonly called monkey cups, for use in HDX-MS. We show that nepenthesin is at least 1400-fold more efficient than pepsin under HDX-competent conditions, with a selectivity profile that mimics pepsin in part, but also includes efficient cleavage C-terminal to "forbidden" residues K, R, H, and P. High efficiency permits a solution-based analysis with no detectable autolysis, avoiding the complication of immobilized enzyme reactors. Relaxed selectivity promotes high coverage of disordered regions and the ability to "tune" the mass map for regions of interest. Nepenthesin-enriched secretions were applied to an analysis of protein complexes in the nonhomologous end-joining DNA repair pathway. The analysis of XRCC4 binding to the BRCT domains of Ligase IV points to secondary interactions between the disordered C-terminal tail of XRCC4 and remote regions of the BRCT domains, which could only be identified with a nepenthesin-based workflow. HDX data suggest that stalk-binding to XRCC4 primes a BRCT conformation in these remote regions to support tail interaction, an event which may be phosphoregulated. We conclude that nepenthesin is an effective alternative to pepsin for all HDX-MS applications, and especially for the analysis of structural transitions among intrinsically disordered proteins and their binding partners. PMID:23197791

  1. The hydrogen-deuterium exchange at α-carbon atom in N,N,N-trialkylglycine residue: ESI-MS studies.

    PubMed

    Rudowska, Magdalena; Wojewska, Dominika; Kluczyk, Alicja; Bąchor, Remigiusz; Stefanowicz, Piotr; Szewczuk, Zbigniew

    2012-06-01

    Derivatization of peptides as quaternary ammonium salts (QAS) is a known method for sensitive detection by electrospray ionization tandem mass spectrometry. Hydrogens at α-carbon atom in N,N,N-trialkylglycine residue can be easily exchanged by deuterons. The exchange reaction is base-catalyzed and is dramatically slow at lower pH. Introduced deuterons are stable in acidic aqueous solution and are not back-exchanged during LC-MS analysis. Increased ionization efficiency, provided by the fixed positive charge on QAS group, as well as the deuterium labeling, enables the analysis of trace amounts of peptides. PMID:22403022

  2. The Hydrogen-Deuterium Exchange at α-Carbon Atom in N,N,N-Trialkylglycine Residue: ESI-MS Studies

    NASA Astrophysics Data System (ADS)

    Rudowska, Magdalena; Wojewska, Dominika; Kluczyk, Alicja; Bąchor, Remigiusz; Stefanowicz, Piotr; Szewczuk, Zbigniew

    2012-06-01

    Derivatization of peptides as quaternary ammonium salts (QAS) is a known method for sensitive detection by electrospray ionization tandem mass spectrometry. Hydrogens at α-carbon atom in N, N, N-trialkylglycine residue can be easily exchanged by deuterons. The exchange reaction is base-catalyzed and is dramatically slow at lower pH. Introduced deuterons are stable in acidic aqueous solution and are not back-exchanged during LC-MS analysis. Increased ionization efficiency, provided by the fixed positive charge on QAS group, as well as the deuterium labeling, enables the analysis of trace amounts of peptides.

  3. Aspartic protease nepenthesin-1 as a tool for digestion in hydrogen/deuterium exchange mass spectrometry.

    PubMed

    Kadek, Alan; Mrazek, Hynek; Halada, Petr; Rey, Martial; Schriemer, David C; Man, Petr

    2014-05-01

    Hydrogen/deuterium exchange coupled to mass spectrometry (HXMS) utilizes enzymatic digestion of proteins to localize the information about altered exchange patterns in protein structure. The ability of the protease to produce small peptides and overlapping fragments and provide sufficient coverage of the protein sequence is essential for localizing regions of interest. Recently, it was shown that there is an interesting group of proteolytic enzymes from carnivorous pitcher plants of the genus Nepenthes. In this report, we describe successful immobilization and the use of one of these enzymes, nepenthesin-1, in HXMS workflow. In contrast to pepsin, it has different cleavage specificities, and despite its high inherent susceptibility to reducing and denaturing agents, it is very stable upon immobilization and withstands even high concentration of guanidine hydrochloride and reducing agents. We show that denaturing agents can alter digestion by reducing protease activity and/or substrate solubility, and additionally, they influence the trapping of proteolytic peptides onto the reversed phase resin. PMID:24661217

  4. Structural changes of ultrasonicated bovine serum albumin revealed by hydrogen-deuterium exchange and mass spectrometry.

    PubMed

    Zhang, Qiuting; Tu, Zongcai; Wang, Hui; Huang, Xiaoqin; Sha, Xiaomei; Xiao, Hui

    2014-11-01

    The structural changes of bovine serum albumin (BSA) under high-intensity ultrasonication were investigated by fluorescence spectroscopy and mass spectrometry. Evidence for the ultrasonication-induced conformational changes of BSA was provided by the intensity changes and maximum-wavelength shift in fluorescence spectrometry. Matrix-assisted laser desorption-ionization time-of-flight mass spectroscopy (MALDI-TOF MS) revealed the increased intensity of the peak at the charge state +5 and a newly emerged peak at charge state +6, indicating that the protein became unfolded after ultrasonication. Prevalent unfolding of BSA after ultrasonication was revealed by hydrogen-deuterium exchange coupled with mass spectrometry (HDX-MS). Increased intensity and duration of ultrasonication further promoted the unfolding of the protein. The unfolding induced by ultrasonication goes through an intermediate state similar to that induced by a low concentration of denaturant. PMID:25224638

  5. Investigating the Interaction between the Neonatal Fc Receptor and Monoclonal Antibody Variants by Hydrogen/Deuterium Exchange Mass Spectrometry*

    PubMed Central

    Jensen, Pernille Foged; Larraillet, Vincent; Schlothauer, Tilman; Kettenberger, Hubert; Hilger, Maximiliane; Rand, Kasper D.

    2015-01-01

    The recycling of immunoglobulins by the neonatal Fc receptor (FcRn) is of crucial importance in the maintenance of antibody levels in plasma and is responsible for the long half-lives of endogenous and recombinant monoclonal antibodies. From a therapeutic point of view there is great interest in understanding and modulating the IgGFcRn interaction to optimize antibody pharmacokinetics and ultimately improve efficacy and safety. Here we studied the interaction between a full-length human IgG1 and human FcRn via hydrogen/deuterium exchange mass spectrometry and targeted electron transfer dissociation to map sites perturbed by binding on both partners of the IgGFcRn complex. Several regions in the antibody Fc region and the FcRn were protected from exchange upon complex formation, in good agreement with previous crystallographic studies of FcRn in complex with the Fc fragment. Interestingly, we found that several regions in the IgG Fab region also showed reduced deuterium uptake. Our findings indicate the presence of hitherto unknown FcRn interaction sites in the Fab region or a possible conformational link between the IgG Fc and Fab regions upon FcRn binding. Further, we investigated the role of IgG glycosylation in the conformational response of the IgGFcRn interaction. Removal of antibody glycans increased the flexibility of the FcRn binding site in the Fc region. Consequently, FcRn binding did not induce a similar conformational stabilization of deglycosylated IgG as observed for the wild-type glycosylated IgG. Our results provide new molecular insight into the IgGFcRn interaction and illustrate the capability of hydrogen/deuterium exchange mass spectrometry to advance structural proteomics by providing detailed information on the conformation and dynamics of large protein complexes in solution. PMID:25378534

  6. Influence of domain interactions on conformational mobility of the progesterone receptor detected by hydrogen/deuterium exchange mass spectrometry

    PubMed Central

    Goswami, Devrishi; Callaway, Celetta; Pascal, Bruce D.; Kumar, Raj; Edwards, Dean P.; Griffin, Patrick R.

    2015-01-01

    Structural and functional details of the N-terminal activation function 1 (AF1) of most nuclear receptors are poorly understood due to the highly dynamic intrinsically disordered nature of this domain. A hydrogen/deuterium exchange (HDX) mass spectrometry based investigation of TATA box binding protein (TBP) interaction with various domains of progesterone receptor (PR) demonstrate that agonist bound PR interaction with TBP via AF1 impacts the mobility of the C-terminal AF2. Results from HDX and other biophysical studies involving agonist and antagonist bound full length PR and isolated PR domains reveals the molecular mechanism underlying synergistic transcriptional activation mediated by AF1 and AF2, dominance of PR-B isoform over PR-A, and the necessity of AF2 for full AF1-mediated transcriptional activity. These results provide a comprehensive picture elaborating the underlying mechanism of PR-TBP interactions as a model for studying NR-transcription factor functional interactions. PMID:24909783

  7. Peptide-Column Interactions and Their Influence on Back Exchange Rates in Hydrogen/Deuterium Exchange-MS

    NASA Astrophysics Data System (ADS)

    Sheff, Joey G.; Rey, Martial; Schriemer, David C.

    2013-07-01

    Hydrogen/deuterium exchange (HDX) methods generate useful information on protein structure and dynamics, ideally at the individual residue level. Most MS-based HDX methods involve a rapid proteolytic digestion followed by LC/MS analysis, with exchange kinetics monitored at the peptide level. Localizing specific sites of HDX is usually restricted to a resolution the size of the host peptide because gas-phase processes can scramble deuterium throughout the peptide. Subtractive methods may improve resolution, where deuterium levels of overlapping and nested peptides are used in a subtractive manner to localize exchange to smaller segments. In this study, we explore the underlying assumption of the subtractive method, namely, that the measured back exchange kinetics of a given residue is independent of its host peptide. Using a series of deuterated peptides, we show that secondary structure can be partially retained under quenched conditions, and that interactions between peptides and reversed-phase LC columns may both accelerate and decelerate residue HDX, depending upon peptide sequence and length. Secondary structure is induced through column interactions in peptides with a solution-phase propensity for structure, which has the effect of slowing HDX rates relative to predicted random coil values. Conversely, column interactions can orient random-coil peptide conformers to accelerate HDX, the degree to which correlates with peptide charge in solution, and which can be reversed by using stronger ion pairing reagents. The dependency of these effects on sequence and length suggest that subtractive methods for improving structural resolution in HDX-MS will not offer a straightforward solution for increasing exchange site resolution.

  8. Probing the dynamic regulation of peripheral membrane proteins using hydrogen deuterium exchange-MS (HDX-MS).

    PubMed

    Vadas, Oscar; Burke, John E

    2015-10-01

    Many cellular signalling events are controlled by the selective recruitment of protein complexes to membranes. Determining the molecular basis for how lipid signalling complexes are recruited, assembled and regulated on specific membrane compartments has remained challenging due to the difficulty of working in conditions mimicking native biological membrane environments. Enzyme recruitment to membranes is controlled by a variety of regulatory mechanisms, including binding to specific lipid species, protein-protein interactions, membrane curvature, as well as post-translational modifications. A powerful tool to study the regulation of membrane signalling enzymes and complexes is hydrogen deuterium exchange-MS (HDX-MS), a technique that allows for the interrogation of protein dynamics upon membrane binding and recruitment. This review will highlight the theory and development of HDX-MS and its application to examine the molecular basis of lipid signalling enzymes, specifically the regulation and activation of phosphoinositide 3-kinases (PI3Ks). PMID:26517882

  9. Characterizing rapid, activity-linked conformational transitions in proteins via sub-second hydrogen deuterium exchange mass spectrometry.

    PubMed

    Resetca, Diana; Wilson, Derek J

    2013-11-01

    This review outlines the application of time-resolved electrospray ionization mass spectrometry (TRESI-MS) and hydrogen-deuterium exchange (HDX) to study rapid, activity-linked conformational transitions in proteins. The method is implemented on a microfluidic chip which incorporates all sample-handling steps required for a 'bottom-up' HDX workflow: a capillary mixer for sub-second HDX labeling, a static mixer for HDX quenching, a microreactor for rapid protein digestion, and on-chip electrospray. By combining short HDX labeling pulses with rapid digestion, this approach provides a detailed characterization of the structural transitions that occur during protein folding, ligand binding, post-translational modification and catalytic turnover in enzymes. This broad spectrum of applications in areas largely inaccessible to conventional techniques means that microfluidics-enabled TRESI-MS/HDX is a unique and powerful approach for investigating the dynamic basis of protein function. PMID:23663649

  10. Start2Fold: a database of hydrogen/deuterium exchange data on protein folding and stability

    PubMed Central

    Pancsa, Rita; Varadi, Mihaly; Tompa, Peter; Vranken, Wim F.

    2016-01-01

    Proteins fulfil a wide range of tasks in cells; understanding how they fold into complex three-dimensional (3D) structures and how these structures remain stable while retaining sufficient dynamics for functionality is essential for the interpretation of overall protein behaviour. Since the 1950's, solvent exchange-based methods have been the most powerful experimental means to obtain information on the folding and stability of proteins. Considerable expertise and care were required to obtain the resulting datasets, which, despite their importance and intrinsic value, have never been collected, curated and classified. Start2Fold is an openly accessible database (http://start2fold.eu) of carefully curated hydrogen/deuterium exchange (HDX) data extracted from the literature that is open for new submissions from the community. The database entries contain (i) information on the proteins investigated and the underlying experimental procedures and (ii) the classification of the residues based on their exchange protection levels, also allowing for the instant visualization of the relevant residue groups on the 3D structures of the corresponding proteins. By providing a clear hierarchical framework for the easy sharing, comparison and (re-)interpretation of HDX data, Start2Fold intends to promote a better understanding of how the protein sequence encodes folding and structure as well as the development of new computational methods predicting protein folding and stability. PMID:26582925

  11. Start2Fold: a database of hydrogen/deuterium exchange data on protein folding and stability.

    PubMed

    Pancsa, Rita; Varadi, Mihaly; Tompa, Peter; Vranken, Wim F

    2016-01-01

    Proteins fulfil a wide range of tasks in cells; understanding how they fold into complex three-dimensional (3D) structures and how these structures remain stable while retaining sufficient dynamics for functionality is essential for the interpretation of overall protein behaviour. Since the 1950's, solvent exchange-based methods have been the most powerful experimental means to obtain information on the folding and stability of proteins. Considerable expertise and care were required to obtain the resulting datasets, which, despite their importance and intrinsic value, have never been collected, curated and classified. Start2Fold is an openly accessible database (http://start2fold.eu) of carefully curated hydrogen/deuterium exchange (HDX) data extracted from the literature that is open for new submissions from the community. The database entries contain (i) information on the proteins investigated and the underlying experimental procedures and (ii) the classification of the residues based on their exchange protection levels, also allowing for the instant visualization of the relevant residue groups on the 3D structures of the corresponding proteins. By providing a clear hierarchical framework for the easy sharing, comparison and (re-)interpretation of HDX data, Start2Fold intends to promote a better understanding of how the protein sequence encodes folding and structure as well as the development of new computational methods predicting protein folding and stability. PMID:26582925

  12. Structural Insights into Fibrinogen Dynamics Using Amide Hydrogen/Deuterium Exchange Mass Spectrometry

    PubMed Central

    Marsh, James J.; Guan, Henry S.; Li, Sheng; Chiles, Peter G.; Tran, Danny; Morris, Timothy A.

    2013-01-01

    We determined the amide hydrogen/deuterium exchange profile of native human fibrinogen under physiologic conditions. After optimization of the quench and proteolysis conditions, more than 1,200 peptides were identified by mass spectrometry, spanning more than 90% of the constituent A?, B?, and ? chain amino acid sequences. The compact central and distal globular regions of fibrinogen were well protected from deuterium exchange, with the exception of the unfolded amino-terminal segments of the A? and B? chains extending from the central region, and the short ? chain tail extending from each distal globular region. The triple-helical coiled-coil regions, which bridge the central region to each distal region, were also well protected with the exception of a moderately fast-exchanging area in the middle of each coiled coil adjacent to the ? chain carbohydrate attachment site. These dynamic regions appear to provide flexibility to the fibrinogen molecule. The ? chain out loop contained within each coiled-coil also exchanged rapidly. The ?C domain (A? 392610) exchanged rapidly, with the exception of a short segment sandwiched between a conserved disulfide linkage in the N-terminal ?C subdomain. This latter finding is consistent with a mostly disordered structure for the ?C domain in native fibrinogen. Analysis of the dysfibrinogen B? 235 Pro/Leu, which exhibits abnormal fibrin structure, revealed enhanced deuterium exchange surrounding the Pro/Leu substitution site as well as in the vicinity of the high affinity calcium binding site and the A knob polymerization pocket within the ?C domain. The implication of these changes with respect to fibrin structure is discussed. PMID:23875785

  13. Guanine nucleotide induced conformational change of Cdc42 revealed by hydrogen/deuterium exchange mass spectrometry.

    PubMed

    Yang, Sheng-Wei; Ting, Hsiu-Chi; Lo, Yi-Ting; Wu, Ting-Yuan; Huang, Hung-Wei; Yang, Chia-Jung; Chan, Jui-Fen Riva; Chuang, Min-Chieh; Hsu, Yuan-Hao Howard

    2016-01-01

    Cdc42 regulates pathways related to cell division. Dysregulation of Cdc42 can lead to cancer, cardiovascular diseases and neurodegenerative diseases. GTP induced activation mechanism plays an important role in the activity and biological functions of Cdc42. P-loop, Switch I and Switch II are critical regions modulating the enzymatic activity of Cdc42. We applied amide hydrogen/deuterium exchange coupled with liquid chromatography mass spectrometry (HDXMS) to investigate the dynamic changes of apo-Cdc42 after GDP, GTP and GMP-PCP binding. The natural substrate GTP induced significant decreases of deuteration in P-loop and Switch II, moderate changes of deuteration in Switch I and significant changes of deuteration in the ?7 helix, a region far away from the active site. GTP binding induced similar effects on H/D exchange to its non-hydrolysable analog, GMP-PCP. HDXMS results indicate that GTP binding blocked the solvent accessibility in the active site leading to the decrease of H/D exchange rate surrounding the active site, and further triggered a conformational change resulting in the drastic decrease of H/D exchange rate at the remote ?7 helix. Comparing the deuteration levels in three activation states of apo-Cdc42, Cdc42-GDP and Cdc42-GMP-PCP, the apo-Cdc42 has the most flexible structure, which can be stabilized by guanine nucleotide binding. The rates of H/D exchange of Cdc42-GDP are between the GMP-PCP-bound and the apo form, but more closely to the GMP-PCP-bound form. Our results show that the activation of Cdc42 is a process of conformational changes involved with P-loop, Switch II and ?7 helix for structural stabilization. PMID:26542736

  14. Optimization and Application of APCI Hydrogen-Deuterium Exchange Mass Spectrometry (HDX MS) for the Speciation of Nitrogen Compounds.

    PubMed

    Acter, Thamina; Cho, Yunju; Kim, Sungji; Ahmed, Arif; Kim, Byungjoo; Kim, Sunghwan

    2015-09-01

    A systematic study was performed to investigate the utility of atmospheric pressure chemical ionization hydrogen-deuterium exchange mass spectrometry (APCI HDX MS) to identify the structures of nitrogen-containing aromatic compounds. First, experiments were performed to determine the optimized experimental conditions, with dichloromethane and CH(3)OD found to be good cosolvents for APCI HDX. In addition, a positive correlation between the heated capillary temperature and the observed HDX signal was observed, and it was suggested that the HDX reaction occurred when molecules were contained in the solvent cluster. Second, 20 standard nitrogen-containing compounds were analyzed to investigate whether speciation could be determined based on the different types of ions produced from nitrogen-containing compounds with various functional groups. The number of exchanges occurring within the compounds correlated well with the number of active hydrogen atoms attached to nitrogen, and it was confirmed that APCI HDX MS could be used to determine speciation. The results obtained by APCI HDX MS were combined with the subsequent investigation of the double bond equivalence distribution and indicated that resins of shale oil extract contained mostly pyridine type nitrogen compounds. This study confirmed that APCI HDX MS can be added to previously reported chemical ionization, electrospray ionization, and atmospheric pressure photo ionization-based HDX methods, which can be used for structural elucidation by mass spectrometry. PMID:26115964

  15. Optimization and Application of APCI Hydrogen-Deuterium Exchange Mass Spectrometry (HDX MS) for the Speciation of Nitrogen Compounds

    NASA Astrophysics Data System (ADS)

    Acter, Thamina; Cho, Yunju; Kim, Sungji; Ahmed, Arif; Kim, Byungjoo; Kim, Sunghwan

    2015-09-01

    A systematic study was performed to investigate the utility of atmospheric pressure chemical ionization hydrogen-deuterium exchange mass spectrometry (APCI HDX MS) to identify the structures of nitrogen-containing aromatic compounds. First, experiments were performed to determine the optimized experimental conditions, with dichloromethane and CH3OD found to be good cosolvents for APCI HDX. In addition, a positive correlation between the heated capillary temperature and the observed HDX signal was observed, and it was suggested that the HDX reaction occurred when molecules were contained in the solvent cluster. Second, 20 standard nitrogen-containing compounds were analyzed to investigate whether speciation could be determined based on the different types of ions produced from nitrogen-containing compounds with various functional groups. The number of exchanges occurring within the compounds correlated well with the number of active hydrogen atoms attached to nitrogen, and it was confirmed that APCI HDX MS could be used to determine speciation. The results obtained by APCI HDX MS were combined with the subsequent investigation of the double bond equivalence distribution and indicated that resins of shale oil extract contained mostly pyridine type nitrogen compounds. This study confirmed that APCI HDX MS can be added to previously reported chemical ionization, electrospray ionization, and atmospheric pressure photo ionization-based HDX methods, which can be used for structural elucidation by mass spectrometry.

  16. Proton nuclear magnetic resonance spectroscopy of human transferrin N-terminal half-molecule: titration and hydrogen-deuterium exchange

    SciTech Connect

    Valcour, A.A.; Woodworth, R.C.

    1987-06-02

    The binding of Ga(III) to the proteolytically derived N-terminal half-molecule of human transferrin (HTF/2N) was studied by proton nuclear magnetic resonance spectroscopy. The pH-dependent titration curves of the histidinyl C(2) proton chemical shifts were altered upon formation of the GaIIIHTF/2N(C/sub 2/O/sub 4/) ternary complex. Two high-pK'a histidines failed to titrate when the metal and synergistic anion formed a complex with the protein. These results implicated two histidinyl residues as direct ligands to the metal. The rates of hydrogen-deuterium exchange for the C(2) protons of certain histidinyl residues were substantially decreased by metal ion binding. The two ligand histidines were protected from exchange, and a third, low-pK'a, histidinyl residue was protected. We propose that this third histidinyl residue is involved in anion binding and may serve as the base in the putative proton-relay scheme proposed for complex formation.

  17. Measuring the hydrogen/deuterium exchange of proteins at high spatial resolution by mass spectrometry: overcoming gas-phase hydrogen/deuterium scrambling.

    PubMed

    Rand, Kasper D; Zehl, Martin; Jrgensen, Thomas J D

    2014-10-21

    Proteins are dynamic molecules that exhibit conformational flexibility to function properly. Well-known examples of this are allosteric regulation of protein activity and ligand-induced conformational changes in protein receptors. Detailed knowledge of the conformational properties of proteins is therefore pertinent to both basic and applied research, including drug development, since the majority of drugs target protein receptors and a growing number of drugs introduced to the market are therapeutic peptides or proteins. X-ray crystallography provides a static picture at atomic resolution of the lowest-energy structure of the native ensemble. There is a growing need for sensitive analytical tools to explore all of the significant molecular structures in the conformational landscape of proteins. Hydrogen/deuterium exchange monitored by mass spectrometry (HDX-MS) has recently emerged as a powerful method for characterizing protein conformational dynamics. The basis of this method is the fact that backbone amides in stable hydrogen-bonded structures (e.g., ?-helices and ?-sheets) are protected against exchange with the aqueous solvent. All protein structures are dynamic, however, and eventually all of the protecting hydrogen bonds will transiently break as the protein--according to thermodynamic principles--cycles through partially unfolded states that correspond to excited free energy levels. As a result, all of the backbone amides will eventually become temporarily solvent-exposed and exchange-competent over time. Consequently, a folded protein in D2O will gradually incorporate deuterium into its backbone amides, and the kinetics of the process can be readily monitored by mass spectrometry. The deuterium uptake kinetics for the intact protein (global exchange kinetics) represents the sum of the exchange kinetics for the individual backbone amides. Local exchange kinetics is typically achieved by using pepsin digestion under quench conditions (i.e., under cold acidic conditions where the amide hydrogen exchange rate is slowed by many orders of magnitude). The ability to localize the individual deuterated residues (the spatial resolution) is determined by the size (typically ?7-15 residues) and the number of peptic peptides. These peptides provide a relatively coarse-grained picture of the protein dynamics. A fundamental understanding of the relationship between protein function/dysfunction and conformational dynamics requires in many cases higher resolution and ultimately single-residue resolution. In this Account, we summarize our efforts to achieve single-residue deuterium levels in proteins by electron-based or laser-induced gas-phase fragmentation methods. A crucial analytical requirement for this approach is that the pattern of deuterium labeling from solution is retained in the gas-phase fragment ions. It is therefore essential to control and minimize any occurrence of gas-phase randomization of the solution deuterium label (H/D scrambling) during the MS experiment. For this purpose, we have developed model peptide probes to accurately measure the onset and extent of H/D scrambling. Our analytical procedures to control the occurrence of H/D scrambling are detailed along with the physical parameters that induce it during MS analysis. In light of the growing use of gas-phase dissociation experiments to measure the HDX of proteins in order to obtain a detailed characterization and understanding of the dynamic conformations and interactions of proteins at the molecular level, we discuss the perspectives and challenges of future high-resolution HDX-MS methodology. PMID:25171396

  18. Influence of Murchison Minerals on Hydrogen-Deuterium Exchange of Amino Acids

    NASA Astrophysics Data System (ADS)

    Lerner, N. R.

    1993-07-01

    The amino acids found on the Murchison meteorite are deuterium enriched. For the glycine-alanine fraction, delta D = +2448 per mil, and for the alpha-amino isobutyric acid fraction, delta D = +149 per mil [1]. In order to retain such levels of deuterium enrichment, the amino acids found in Murchison must have not only retained the deuterium enrichment of their interstellar precursors (delta D > +1500 per mil [2]) during synthesis, as has been recently shown [3], but they must have also retained their deuterium label during the aqueous alteration phase [4]. By measuring the rates of deuterium exchange of amino acids with D(sub)2O, limits can be set on the length of time and the conditions under which the Murchison parent body experienced an aqueous environment. The rates of hydrogen-deuterium exchange of nondeuterated glycine, alanine, alpha-amino isobutyric acid, and amino diacetic acid have been measured in D(sub)2O as a function of temperature, pH, and the presence of Murchison minerals. In addition to the amino and carboxylic hydrogens, only the alpha- hydrogens of glycine, alanine, and amino diacetic acid are found to exchange. Even for solutions maintained for weeks at temperatures as high as 120 degrees C, no exchange was observed with the hydrogens of the methyl groups of alanine or alpha-amino isobutyric acid. The rate of exchange for alpha-hydrogens of amino acids is first-order with respect to the amino acid concentration. Increasing the pH of the solution markedly increases the rate of exchange. For example, at 115 degrees C and pH 4.0, 7.0, and 10 the rates are 14, 30, and 125 yr^-1 respectively for glycine and 2.0, 3.5, and 14 yr^-1 respectively for alanine. In a pH-6.0 D(sub)2O solution of amino acids containing Murchison dust the rates are 135 yr^-1 for glycine and 32 yr^-1 for alanine, rates close to those for the pH 10 solution. Activation energies for exchange were obtained from Arrhenius plots constructed from measurements made between 70 degrees C and 155 degrees C in solutions containing Murchison dust. For both glycine and alanine the activation energy is -25 kcal/mole. Using this value, we have calculated the half-lives for complete exchange of the alpha-hydrogens of glycine and alanine for the temperature range thought to have existed on the parent body during aqueous alteration [5]. The half-lives at 0 degrees C and 20 degrees C are 7500 yr and 300 yr respectively for glycine and 55,000 yr and 2100 yr respectively for alanine. Murchison amino acid fraction IV [1] was known to contain impurities and hence the measured delta D value represents a lower limit for alpha-amino isobutyric acid. Assuming that all the deuterium recovered from fraction IV came from alpha-amino isobutryric acid, and that one atom of nitrogen is recovered for each molecule of alpha-amino isobutyric acid, a maximum delta D value of +2600 per mil can be calculated for this amino acid. This is comparable to delta D for the glycine-alanine fraction, which is mainly glycine [6]. In an aqueous environment glycine loses deuterium relatively rapidly while alpha-amino isobutyric acid does not undergo exchange. Hence the similarity in the delta D values of both fractions indicates that the period of aqueous alteration is less than the half-life for hydrogen-deuterium exchange of glycine. References: [1] Pizzarello S. et al. (1991) GCA, 55, 905-910. [2] Zinner E. (1988) In Meteorites and the Early Solar System (J. R. Kerridge and M. S. Matthews, eds.), 956-983, Univ. of Arizona. [3] Lerner N. R. et al. (1993) GCA, in press. [4] Bunch T. E. and Chang S. (1980) GCA, 44, 1543-1577. [5] Clayton R. N. and Mayeda T. K. (1984) EPSL, 67, 151-161. [6] Shock E. L. and Shulte M. D. (1990) GCA, 54, 3159-3173.

  19. Characterization of Stress-Exposed Granulocyte Colony Stimulating Factor Using ELISA and Hydrogen/Deuterium Exchange Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Tsuchida, Daisuke; Yamazaki, Katsuyoshi; Akashi, Satoko

    2014-10-01

    Information on the higher-order structure is important in the development of biopharmaceutical drugs. Recently, hydrogen/deuterium exchange coupled with mass spectrometry (HDX-MS) has been widely used as a tool to evaluate protein conformation, and unique automated systems for HDX-MS are now commercially available. To investigate the potential of this technique for the prediction of the activity of biopharmaceuticals, granulocyte colony stimulating factor (G-CSF), which had been subjected to three different stress types, was analyzed using HDX-MS and through comparison with receptor-binding activity. It was found that HDX-MS, in combination with ion mobility separation, was able to identify conformational changes in G-CSF induced by stress, and a good correlation with the receptor-binding activity was demonstrated, which cannot be completely determined by conventional peptide mapping alone. The direct evaluation of biological activity using bioassay is absolutely imperative in biopharmaceutical development, but HDX-MS can provide the alternative information in a short time on the extent and location of the structural damage caused by stresses. Furthermore, the present study suggests the possibility of this system being a versatile evaluation method for the preservation stability of biopharmaceuticals.

  20. Polar Aprotic Modifiers for Chromatographic Separation and Back-Exchange Reduction for Protein Hydrogen/Deuterium Exchange Monitored by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Valeja, Santosh G.; Emmett, Mark R.; Marshall, Alan G.

    2012-04-01

    Hydrogen/deuterium exchange monitored by mass spectrometry is an important non-perturbing tool to study protein structure and protein-protein interactions. However, water in the reversed-phase liquid chromatography mobile phase leads to back-exchange of D for H during chromatographic separation of proteolytic peptides following H/D exchange, resulting in incorrect identification of fast-exchanging hydrogens as unexchanged hydrogens. Previously, fast high-performance liquid chromatography (HPLC) and supercritical fluid chromatography have been shown to decrease back-exchange. Here, we show that replacement of up to 40% of the water in the LC mobile phase by the modifiers, dimethylformamide (DMF) and N-methylpyrrolidone (NMP) (i.e., polar organic modifiers that lack rapid exchanging hydrogens), significantly reduces back-exchange. On-line LC micro-ESI FT-ICR MS resolves overlapped proteolytic peptide isotopic distributions, allowing for quantitative determination of the extent of back-exchange. The DMF modified solvent composition also improves chromatographic separation while reducing back-exchange relative to conventional solvent.

  1. Polar Aprotic Modifiers for Chromatographic Separation and Back-Exchange Reduction for Protein Hydrogen/Deuterium Exchange Monitored by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    PubMed Central

    Valeja, Santosh G.; Emmett, Mark R.; Marshall, Alan G.

    2013-01-01

    Hydrogen/deuterium exchange monitored by mass spectrometry is an important non-perturbing tool to study protein structure and protein–protein interactions. However, water in the reversed-phase liquid chromatography mobile phase leads to back-exchange of D for H during chromatographic separation of proteolytic peptides following H/D exchange, resulting in incorrect identification of fast-exchanging hydrogens as unexchanged hydrogens. Previously, fast high-performance liquid chromatography (HPLC) and supercritical fluid chromatography have been shown to decrease back-exchange. Here, we show that replacement of up to 40% of the water in the LC mobile phase by the modifiers, dimethylformamide (DMF) and N-methylpyrrolidone (NMP) (i.e., polar organic modifiers that lack rapid exchanging hydrogens), significantly reduces back-exchange. On-line LC micro-ESI FT-ICR MS resolves overlapped proteolytic peptide isotopic distributions, allowing for quantitative determination of the extent of back-exchange. The DMF modified solvent composition also improves chromatographic separation while reducing back-exchange relative to conventional solvent. PMID:22298288

  2. IL-1beta epitope mapping using site-directed mutagenesis and hydrogen-deuterium exchange mass spectrometry analysis.

    PubMed

    Lu, Jirong; Witcher, Derrick R; White, Melissa A; Wang, Xiliang; Huang, Lihua; Rathnachalam, Radhakrishnan; Beals, John M; Kuhstoss, Stuart

    2005-08-23

    Hu007, a humanized IgG1 monoclonal antibody, binds and neutralizes human, cynomolgus, and rabbit IL-1beta but only weakly binds to mouse and rat IL-1beta. Biacore experiments demonstrated that Hu007 and the type-I IL-1 receptor competed for binding to IL-1beta. Increasing salt concentrations decrease the association rate with only moderate effects on the dissociation rate, suggesting that long-range electrostatics are critical for formation of the initial complex. To understand the ligand-binding specificity of Hu007, we have mapped the critical residues involved in the recognition of IL-1beta. Selected residues in cynomolgus IL-1beta were mutated to the corresponding residues in mouse IL-1beta, and the effects of the changes on binding were evaluated by surface plasmon resonance measurements using Biacore. Specifically, substitution of F150S decreased binding affinity by 100-fold, suggesting the importance of hydrophobic interactions in stabilizing the antibody/antigen complex. Substitution of three amino acids near the N- and C-terminal regions of cIL-1beta with those found in mouse IL-1beta (V3I/S5Q/F150S) decreased the binding affinity of Hu007 to IL-1beta by about 1000-fold. Conversely, mutating the corresponding residues in mouse IL-1beta to the human sequence resulted in an increase in binding affinity of about 1000-fold. Hydrogen-deuterium exchange/mass spectrometry analysis confirmed that these regions of IL-1beta were protected from exchange because of antibody binding. The results from this study demonstrate that Hu007 binds to a region located in the open end of the beta-barrel structure of IL-1beta and blocks binding of IL-1beta to its receptor. PMID:16101294

  3. Screen-printed digital microfluidics combined with surface acoustic wave nebulization for hydrogen-deuterium exchange measurements.

    PubMed

    Monkkonen, Lucas; Edgar, J Scott; Winters, Daniel; Heron, Scott R; Mackay, C Logan; Masselon, Christophe D; Stokes, Adam A; Langridge-Smith, Patrick R R; Goodlett, David R

    2016-03-25

    An inexpensive digital microfluidic (DMF) chip was fabricated by screen-printing electrodes on a sheet of polyimide. This device was manually integrated with surface acoustic wave nebulization (SAWN) MS to conduct hydrogen/deuterium exchange (HDX) of peptides. The HDX experiment was performed by DMF mixing of one aqueous droplet of angiotensin II with a second containing various concentrations of D2O. Subsequently, the degree of HDX was measured immediately by SAWN-MS. As expected for a small peptide, the isotopically resolved mass spectrum for angiotensin revealed that maximum deuterium exchange was achieved using 50% D2O. Additionally, using SAWN-MS alone, the global HDX kinetics of ubiquitin were found to be similar to published NMR data and back exchange rates for the uncooled apparatus using high inlet capillary temperatures was less than 6%. PMID:26826755

  4. Effective Application of Bicelles for Conformational Analysis of G Protein-Coupled Receptors by Hydrogen/Deuterium Exchange Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Duc, Nguyen Minh; Du, Yang; Thorsen, Thor S.; Lee, Su Youn; Zhang, Cheng; Kato, Hideaki; Kobilka, Brian K.; Chung, Ka Young

    2015-05-01

    G protein-coupled receptors (GPCRs) have important roles in physiology and pathology, and 40% of drugs currently on the market target GPCRs for the treatment of various diseases. Because of their therapeutic importance, the structural mechanism of GPCR signaling is of great interest in the field of drug discovery. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) is a useful tool for analyzing ligand binding sites, the protein-protein interaction interface, and conformational changes of proteins. However, its application to GPCRs has been limited for various reasons, including the hydrophobic nature of GPCRs and the use of detergents in their preparation. In the present study, we tested the application of bicelles as a means of solubilizing GPCRs for HDX-MS studies. GPCRs (e.g., β2-adrenergic receptor [β2AR], μ-opioid receptor, and protease-activated receptor 1) solubilized in bicelles produced better sequence coverage (greater than 90%) than GPCRs solubilized in n-dodecyl-β-D-maltopyranoside (DDM), suggesting that bicelles are a more effective method of solubilization for HDX-MS studies. The HDX-MS profile of β2AR in bicelles showed that transmembrane domains (TMs) undergo lower deuterium uptake than intracellular or extracellular regions, which is consistent with the fact that the TMs are highly ordered and embedded in bicelles. The overall HDX-MS profiles of β2AR solubilized in bicelles and in DDM were similar except for intracellular loop 3. Interestingly, we detected EX1 kinetics, an important phenomenon in protein dynamics, at the C-terminus of TM6 in β2AR. In conclusion, we suggest the application of bicelles as a useful method for solubilizing GPCRs for conformational analysis by HDX-MS.

  5. Effective application of bicelles for conformational analysis of G protein-coupled receptors by hydrogen/deuterium exchange mass spectrometry.

    PubMed

    Duc, Nguyen Minh; Du, Yang; Thorsen, Thor S; Lee, Su Youn; Zhang, Cheng; Kato, Hideaki; Kobilka, Brian K; Chung, Ka Young

    2015-05-01

    G protein-coupled receptors (GPCRs) have important roles in physiology and pathology, and 40% of drugs currently on the market target GPCRs for the treatment of various diseases. Because of their therapeutic importance, the structural mechanism of GPCR signaling is of great interest in the field of drug discovery. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) is a useful tool for analyzing ligand binding sites, the protein-protein interaction interface, and conformational changes of proteins. However, its application to GPCRs has been limited for various reasons, including the hydrophobic nature of GPCRs and the use of detergents in their preparation. In the present study, we tested the application of bicelles as a means of solubilizing GPCRs for HDX-MS studies. GPCRs (e.g., β2-adrenergic receptor [β2AR], μ-opioid receptor, and protease-activated receptor 1) solubilized in bicelles produced better sequence coverage (greater than 90%) than GPCRs solubilized in n-dodecyl-β-D-maltopyranoside (DDM), suggesting that bicelles are a more effective method of solubilization for HDX-MS studies. The HDX-MS profile of β2AR in bicelles showed that transmembrane domains (TMs) undergo lower deuterium uptake than intracellular or extracellular regions, which is consistent with the fact that the TMs are highly ordered and embedded in bicelles. The overall HDX-MS profiles of β2AR solubilized in bicelles and in DDM were similar except for intracellular loop 3. Interestingly, we detected EX1 kinetics, an important phenomenon in protein dynamics, at the C-terminus of TM6 in β2AR. In conclusion, we suggest the application of bicelles as a useful method for solubilizing GPCRs for conformational analysis by HDX-MS. PMID:25740347

  6. Structural basis of specific interactions of Lp-PLA2 with HDL revealed by hydrogen deuterium exchange mass spectrometry.

    PubMed

    Cao, Jian; Hsu, Yuan-Hao; Li, Sheng; Woods, Virgil L; Dennis, Edward A

    2013-01-01

    Lipoprotein-associated phospholipase A(2) (Lp-PLA(2)), specifically Group VIIA PLA(2), is a member of the phospholipase A(2) superfamily and is found mainly associated with LDL and HDL in human plasma. Lp-PLA(2) is considered as a risk factor, a potential biomarker, a target for therapy in the treatment of cardiovascular disease, and evidence suggests that the level of Lp-PLA(2) in plasma is associated with the risk of future cardiovascular and stroke events. The differential location of the enzyme in LDL/HDL lipoproteins has been suggested to affect Lp-PLA(2) function and/or its physiological role and an abnormal distribution of the enzyme may correlate with diseases. Although a mutagenesis study suggested that a surface helix (residues 362-369) mediates the association between Lp-PLA(2) and HDL, the molecular details and mechanism of association has remained unknown. We have now employed hydrogen deuterium exchange mass spectrometry to characterize the interaction between recombinant human Lp-PLA(2) and human HDL. We have found that specific residues 113-120, 192-204, and 360-368 likely mediate HDL binding. In a previous study, we showed that residues 113-120 are important for Lp-PLA(2)-liposome interactions. We now find that residues 192-204 show a decreased deuteration level when Lp-PLA(2) is exposed to apoA-I, but not apoA-II, the most abundant apoproteins in HDL, and additionally, residues 360-368 are only affected by HDL.The results suggest that apoA-I and phospholipid membranes play crucial roles in Lp-PLA(2) localization to HDL. PMID:23089916

  7. Differential isotopic enrichment to facilitate characterization of asymmetric multimeric proteins using hydrogen/deuterium exchange mass spectrometry

    PubMed Central

    Pascal, Bruce D.; Bauman, Joseph D.; Patel, Disha; Arnold, Eddy; Griffin, Patrick R.

    2015-01-01

    Hydrogen/deuterium exchange (HDX) coupled to mass spectrometry has emerged as a powerful tool for analyzing the conformational dynamics of protein-ligand and protein-protein interactions. Recent advances in instrumentation and methodology have expanded the utility of HDX for the analysis of large and complex proteins; however, asymmetric dimers with shared amino acid sequence present a unique challenge for HDX because assignment of peptides with identical sequence to their subunit of origin remains ambiguous. Here we report the use of differential isotopic labeling to facilitate HDX analysis of multimers using HIV-1 reverse transcriptase (RT) as a model. RT is an asymmetric heterodimer of 51 kDa (p51) and 66 kDa (p66) subunits. The first 440 residues of p51 and p66 are identical. In this study differentially labeled RT was reconstituted from isotopically enriched (15N-labeled) p51 and unlabeled p66. In order to enable detection of 15N-deuterated RT peptides, the software HDX Workbench was modified to follow a 100% 15N model. Our results demonstrated that 15N enrichment of p51 did not affect its conformational dynamics compared to unlabeled p51, but 15N-labeled p51 did show different conformational dynamics than p66 in the RT heterodimer. Differential HDX-MS of isotopically labeled RT in the presence of the nonnucleoside reverse transcriptase inhibitor (NNRTI) efavirenz (EFV) showed subunit-specific perturbation in the rate of HDX consistent with previously published results and the RT-EFV co-crystal structure. PMID:25763479

  8. Antibody structural integrity of site-specific antibody-drug conjugates investigated by hydrogen/deuterium exchange mass spectrometry.

    PubMed

    Pan, Lucy Yan; Salas-Solano, Oscar; Valliere-Douglass, John F

    2015-06-01

    We present the results of a hydrogen/deuterium exchange mass spectrometric (HDX-MS) investigation of an antibody-drug conjugate (ADC) comprised of drug-linkers conjugated to cysteine residues that have been engineered into heavy chain (HC) fragment crystallizable (Fc) domain at position 239. A side-by-side comparison of the HC Ser239 wild type (wt) monoclonal antibody (mAb) and the engineered Cys239 mAb indicates that site directed mutagenesis of Ser239 to cysteine has no impact on the HDX kinetics of the mAb. According to the crystal structure of a homologous immunoglobulin G1 (IgG1) antibody (PDB: 1HZH ), the backbone amide of Ser239 is hydrogen-bonded to Val264 backbone amide in the wt-mAb studied here. Replacing Ser239 with a Cys residue does not alter the exchange kinetics of the backbone amide of Val264 suggesting that either Ser or Cys at position 239 has similar amide-hydrogen bonding with Val264. However, a small segment in CH2 domain of the ADC ((264)VDVS) was found to have a slightly increased HDX rate compared to the wt- and C239-mAb constructs. The slightly increased HDX rate of the segment (264)VDVS in ADCs indicates that the further modification of Cys239 with drug-linkers only attenuates the local backbone amide hydrogen-bonding network between Cys239 and Val264. All other regions which are proximal to the site of drug conjugation are unaffected. The results demonstrate that the site-specific drug conjugation at the engineered Cys residue at the position 239 of HC does not impact the structural integrity of antibodies. The results also highlight the utility of applying HDX-MS to ADCs to gain a molecular level insight into the impact of site-specific conjugation technologies on the higher-order structure (HOS) of mAbs. The methodology can be applied generally to site-specific ADC modalities to understand the individual contributions of site-mutagenesis and drug-linker conjugation on the HOS of therapeutic candidate ADCs. PMID:25938577

  9. Simultaneous reduction and digestion of proteins with disulfide bonds for hydrogen/deuterium exchange monitored by mass spectrometry.

    PubMed

    Zhang, Hui-Min; McLoughlin, Shaun M; Frausto, Stephen D; Tang, Hengli; Emmett, Mark R; Marshall, Alan G

    2010-02-15

    Proteolyzed peptides provide the basis for mass-analyzed hydrogen/deuterium exchange (HDX) for mapping solvent access to various segments of solution-phase proteins. Aspergillus saitoi protease type XIII and porcine pepsin can generate peptides of overlapping sequences and high sequence coverage. However, if disulfide bonds are present, proteolysis can be severely limited, particularly in the vicinity of the disulfide linkage(s). Disulfide bonds cannot be reduced before or during the H/D exchange reaction without affecting the protein higher-order structure. Here, we demonstrate simultaneous quench/digestion/reduction following H/D exchange, for subsequent mass analysis. Proteolysis is conducted in the presence of tris(2-carboxyethyl)phosphine hydrochloride (TCEP.HCl) and urea, and all other steps of the H/D exchange and analysis are maintained. This method yields dramatically increased sequence coverage and localization of solvent-exposed segments for mass-analyzed solution-phase H/D exchange of proteins containing disulfide bonds. PMID:20099838

  10. NMR-Based Amide Hydrogen-Deuterium Exchange Measurements for Complex Membrane Proteins: Development and Critical Evaluation

    NASA Astrophysics Data System (ADS)

    Czerski, Lech; Vinogradova, Olga; Sanders, Charles R.

    2000-01-01

    A method for measuring site-specific amide hydrogen-deuterium exchange rates for membrane proteins in bilayers is reported and evaluated. This method represents an adaptation and extension of the approach of Dempsey and co-workers (Biophys. J. 70, 1777-1788 (1996)) and is based on reconstituting 15N-labeled membrane proteins into phospholipid bilayers, followed by lyophilization and rehydration with D2O or H2O (control). Following incubation for a time t under hydrated conditions, samples are again lyophilized and then solubilized in an organic solvent system, where 1H-15N HSQC spectra are recorded. Comparison of spectra from D2O-exposed samples to spectra from control samples yields the extent of the H-D exchange which occurred in the bilayers during time t. Measurements are site specific if specific 15N labeling is used. The first part of this paper deals with the search for a suitable solvent system in which to solubilize complex membrane proteins in an amide "exchange-trapped" form for NMR quantitation of amide peak intensities. The second portion of the paper documents application of the overall procedure to measuring site-specific amide exchange rates in diacylglycerol kinase, a representative integral membrane protein. Both the potential usefulness and the significant limitations of the new method are documented.

  11. Mapping Protein-Ligand Interactions with Proteolytic Fragmentation, Hydrogen/Deuterium Exchange-Mass Spectrometry.

    PubMed

    Gallagher, Elyssia S; Hudgens, Jeffrey W

    2016-01-01

    Biological processes are the result of noncovalent, protein-ligand interactions, where the ligands range from small organic and inorganic molecules to lipids, nucleic acids, peptides, and proteins. Amide groups within proteins constantly exchange protons with water. When immersed in heavy water (D2O), mass spectrometry (MS) can measure the change of mass associated with the hydrogen to deuterium exchange (HDX). Protein-ligand interactions modify the hydrogen exchange rates of amide protons, and the measurement of the amide exchange rates can provide rich information regarding the dynamical structure of the protein-ligand complex. This chapter describes a protocol for conducting bottom-up, continuous uptake, proteolytic fragmentation HDX-MS experiments that can help identify and map the interacting peptides of a protein-ligand interface. This tutorial outlines the fundamental theory governing hydrogen exchange; provides practical information regarding the preparation of protein samples and solutions; and describes the exchange reaction, reaction quenching, enzymatic digestion, chromatographic separation, and peptide analysis by MS. Tables list representative combinations of fluidic components used by HDX-MS researchers and summarize the available HDX-MS analysis software packages. Additionally, two HDX-MS case studies are used to illustrate protein-ligand interactions involving: (1) a continuous sequence of interacting residues and (2) a set of discontinuously numbered residues, residing spatially near each other. PMID:26791987

  12. Combining Ion Mobility Spectrometry with Hydrogen-Deuterium Exchange and Top-Down MS for Peptide Ion Structure Analysis

    NASA Astrophysics Data System (ADS)

    Khakinejad, Mahdiar; Kondalaji, Samaneh Ghassabi; Maleki, Hossein; Arndt, James R.; Donohoe, Gregory C.; Valentine, Stephen J.

    2014-12-01

    The gas-phase conformations of electrosprayed ions of the model peptide KKDDDDIIKIIK have been examined by ion mobility spectrometry (IMS) and hydrogen deuterium exchange (HDX)-tandem mass spectrometry (MS/MS) techniques. [M+4H]4+ ions exhibit two conformers with collision cross sections of 418 Å2 and 471 Å2. [M+3H]3+ ions exhibit a predominant conformer with a collision cross section of 340 Å2 as well as an unresolved conformer (shoulder) with a collision cross section of ~367 Å2. Maximum HDX levels for the more compact [M+4H]4+ ions and the compact and partially-folded [M+3H]3+ ions are ~12.9, ~15.5, and ~14.9, respectively. Ion structures obtained from molecular dynamics simulations (MDS) suggest that this ordering of HDX level results from increased charge-site/exchange-site density for the more compact ions of lower charge. Additionally, a new model that includes two distance calculations (charge site to carbonyl group and carbonyl group to exchange site) for the computer-generated structures is shown to better correlate to the experimentally determined per-residue deuterium uptake. Future comparisons of IMS-HDX-MS data with structures obtained from MDS are discussed with respect to novel experiments that will reveal the HDX rates of individual residues.

  13. Gas-Phase Hydrogen-Deuterium Exchange Labeling of Select Peptide Ion Conformer Types: a Per-Residue Kinetics Analysis

    NASA Astrophysics Data System (ADS)

    Khakinejad, Mahdiar; Kondalaji, Samaneh Ghassabi; Tafreshian, Amirmahdi; Valentine, Stephen J.

    2015-07-01

    The per-residue, gas-phase hydrogen deuterium exchange (HDX) kinetics for individual amino acid residues on selected ion conformer types of the model peptide KKDDDDDIIKIIK have been examined using ion mobility spectrometry (IMS) and HDX-tandem mass spectrometry (MS/MS) techniques. The [M + 4H]4+ ions exhibit two major conformer types with collision cross sections of 418 Å2 and 446 Å2; the [M + 3H]3+ ions also yield two different conformer types having collision cross sections of 340 Å2 and 367 Å2. Kinetics plots of HDX for individual amino acid residues reveal fast- and slow-exchanging hydrogens. The contributions of each amino acid residue to the overall conformer type rate constant have been estimated. For this peptide, N- and C-terminal K residues exhibit the greatest contributions for all ion conformer types. Interior D and I residues show decreased contributions. Several charge state trends are observed. On average, the D residues of the [M + 3H]3+ ions show faster HDX rate contributions compared with [M + 4H]4+ ions. In contrast the interior I8 and I9 residues show increased accessibility to exchange for the more elongated [M + 4H]4+ ion conformer type. The contribution of each residue to the overall uptake rate showed a good correlation with a residue hydrogen accessibility score model calculated using a distance from charge site and initial incorporation site for nominal structures obtained from molecular dynamic simulations (MDS).

  14. Polarized Fourier transform infrared spectroscopy of bacteriorhodopsin. Transmembrane alpha helices are resistant to hydrogen/deuterium exchange

    SciTech Connect

    Earnest, T.N.; Herzfeld, J.; Rothschild, K.J. )

    1990-12-01

    The secondary structure of bacteriorhodopsin has been investigated by polarized Fourier transform infrared spectroscopy combined with hydrogen/deuterium exchange, isotope labeling and resolution enhancement methods. Oriented films of purple membrane were measured at low temperature after exposure to H2O or D2O. Resolution enhancement techniques and isotopic labeling of the Schiff base were used to assign peaks in the amide I region of the spectrum. alpha-helical structure, which exhibits strong infrared dichroism, undergoes little H/D exchange, even after 48 h of D2O exposure. In contrast, non-alpha-helical structure, which exhibits little dichroism, undergoes rapid H/D exchange. A band at 1,640 cm-1, which has previously been assigned to beta-sheet structure, is found to be due in part to the C = N stretching vibration of protonated Schiff base of the retinylidene chromophore. We conclude that the membrane spanning regions of bR consist predominantly of alpha-helical structure whereas most beta-type structure is located in surface regions directly accessible to water.

  15. Recombinant immobilized rhizopuspepsin as a new tool for protein digestion in hydrogen/deuterium exchange mass spectrometry.

    PubMed

    Rey, Martial; Man, Petr; Brandolin, Grard; Forest, Eric; Pelosi, Ludovic

    2009-11-01

    Hydrogen/deuterium (H/D) exchange coupled to mass spectrometry is nowadays routinely used to probe protein interactions or conformational changes. The method has many advantages, e.g. very low sample consumption, but offers limited spatial resolution. One way to higher resolution leads through the use of different proteases or their combinations. In the present work we describe recombinant production, purification and use of aspartic protease zymogen from Rhizopus chimensis, protease type XVIII (EC 3.4.23.6), commonly referred to as rhizopuspepsinogen (Rpg). The enzyme was expressed in Escherichia coli, refolded and purified to homogeneity. A typical yield was approximately 100 mg of pure enzyme per 1 L of original bacterial culture. The kinetics of protease activation, i.e. removal of the propeptide achieved by autolysis in an acidic environment, was followed by mass spectrometry. The digestion efficiency was tested for the protease in solution as well as for the immobilized enzyme. Apomyoglobin was successfully digested under all conditions tested and the protease displayed very low or no autodigestion. The results outperformed those obtained with commercial protease where the digestion of apomyoglobin was incomplete and accompanied by many contaminating peptides. Taken together, the recombinant protease type XVIII can be considered as a new and highly efficient tool for H/D exchange followed by mass spectrometry. PMID:19827048

  16. Fast Comparative Structural Characterization of Intact Therapeutic Antibodies Using Hydrogen-Deuterium Exchange and Electron Transfer Dissociation.

    PubMed

    Pan, Jingxi; Zhang, Suping; Chou, Albert; Hardie, Darryl B; Borchers, Christoph H

    2015-06-16

    Higher-order structural characterization plays an important role in many stages of therapeutic antibody production. Herein, we report a new top-down mass spectrometry approach for characterizing the higher-order structure of intact antibodies, by combining hydrogen/deuterium exchange (HDX), subzero temperature chromatography, and electron transfer dissociation on the Orbitrap mass spectrometer. Individual IgG domain-level deuteration information was obtained for 6 IgG domains on Herceptin (HER), which included the antigen binding sites. This is the first time that top-down HDX has been applied to an intact protein as large as 150 kDa, which has never been done before on any instrument. Ligand-binding induced structural differences in HER were determined to be located only on the variable region of the light chain. Global glycosylation profile of antibodies and HDX property of the glycoforms were also determined by accurate intact mass measurements. Although the presence of disulfide bonds prevent the current approach from being able to obtain amino acid level structural information within the disulfide-linked regions, the advantages such as minimal sample manipulation, fast workflow, very low level of back exchange, and simple data analysis, make it well-suited for fast comparative structural evaluation of intact antibodies. PMID:25927482

  17. Characterization of IgG1 Conformation and Conformational Dynamics by Hydrogen/Deuterium Exchange Mass Spectrometry

    SciTech Connect

    Houde, Damian; Arndt, Joseph; Domeier, Wayne; Berkowitz, Steven; Engen, John R.

    2009-04-22

    Protein function is dictated by protein conformation. For the protein biopharmaceutical industry, therefore, it is important to have analytical tools that can detect changes in protein conformation rapidly, accurately, and with high sensitivity. In this paper we show that hydrogen/deuterium exchange mass spectrometry (H/DX-MS) can play an important role in fulfilling this need within the industry. H/DX-MS was used to assess both global and local conformational behavior of a recombinant monoclonal IgG1 antibody, a major class of biopharmaceuticals. Analysis of exchange into the intact, glycosylated IgG1 (and the Fab and Fc regions thereof) showed that the molecule was folded, highly stable, and highly amenable to analysis by this method using less than a nanomole of material. With improved chromatographic methods, peptide identification algorithms and data-processing steps, the analysis of deuterium levels in peptic peptides produced after labeling was accomplished in 1--2 days. On the basis of peptic peptide data, exchange was localized to specific regions of the antibody. Changes to IgG1 conformation as a result of deglycosylation were determined by comparing exchange into the glycosylated and deglycosylated forms of the antibody. Two regions of the IgG1 (residues 236-253 and 292-308) were found to have altered exchange properties upon deglycosylation. These results are consistent with previous findings concerning the role of glycosylation in the interaction of IgG1 with Fc receptors. Moreover, the data clearly illustrate how H/DX-MS can provide important characterization information on the higher order structure of antibodies and conformational changes that these molecules may experience upon modification.

  18. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 2. Assessing Charge Site Location and Isotope Scrambling.

    PubMed

    Khakinejad, Mahdiar; Ghassabi Kondalaji, Samaneh; Donohoe, Gregory C; Valentine, Stephen J

    2016-03-01

    Ion mobility spectrometry (IMS) coupled with gas-phase hydrogen deuterium exchange (HDX)-mass spectrometry (MS) and molecular dynamic simulations (MDS) has been used for structural investigation of anions produced by electrospraying a sample containing a synthetic peptide having the sequence KKDDDDDIIKIIK. In these experiments the potential of the analytical method for locating charge sites on ions as well as for utilizing collision-induced dissociation (CID) to reveal the degree of deuterium uptake within specific amino acid residues has been assessed. For diffuse (i.e., more elongated) [M - 2H](2-) ions, decreased deuterium content along with MDS data suggest that the D4 and D6 residues are charge sites, whereas for the more diffuse [M - 3H](3-) ions, the data suggest that the D4, D7, and the C-terminus are deprotonated. Fragmentation of mobility-selected, diffuse [M - 2H](2-) ions to determine deuterium uptake at individual amino acid residues reveals a degree of deuterium retention at incorporation sites. Although the diffuse [M - 3H](3-) ions may show more HD scrambling, it is not possible to clearly distinguish HD scrambling from the expected deuterium uptake based on a hydrogen accessibility model. The capability of the IMS-HDX-MS/MS approach to provide relevant details about ion structure is discussed. Additionally, the ability to extend the approach for locating protonation sites on positively-charged ions is presented. Graphical Abstract ᅟ. PMID:26802030

  19. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 3. Estimating Surface Area Exposure by Deuterium Uptake

    NASA Astrophysics Data System (ADS)

    Khakinejad, Mahdiar; Ghassabi Kondalaji, Samaneh; Donohoe, Gregory C.; Valentine, Stephen J.

    2015-11-01

    Gas-phase hydrogen deuterium exchange (HDX), collision cross section (CCS) measurement, and molecular dynamics simulation (MDS) techniques were utilized to develop and compare three methods for estimating the relative surface area exposure of separate peptide chains within bovine insulin ions. Electrosprayed [M - 3H]3- and [M - 5H]5- insulin ions produced a single conformer type with respective collision cross sections of 528 5 2 and 808 2 2. [M - 4H]4- ions were comprised of more compact (? = 676 3 2) and diffuse (i.e., more elongated, ? = 779 3 2) ion conformer types. Ions were subjected to HDX in the drift tube using D2O as the reagent gas. Collision-induced dissociation was used to fragment mobility-selected, isotopically labeled [M - 4H]4- and [M - 5H]5- ions into the protein subchains. Deuterium uptake levels of each chain can be explained by limited inter-chain isotopic scrambling upon collisional activation. Using nominal ion structures from MDS and a hydrogen accessibility model, the deuterium uptake for each chain was correlated to its exposed surface area. In separate experiments, the per-residue deuterium content for the protonated and deprotonated ions of the synthetic peptide KKDDDDDIIKIIK were compared. The differences in deuterium content indicated the regional HDX accessibility for cations versus anions. Using ions of similar conformational type, this comparison highlights the complementary nature of HDX data obtained from positive- and negative-ion analysis.

  20. Substrate binding affinity of Pseudomonas aeruginosa membrane-bound lytic transglycosylase B by hydrogen-deuterium exchange MALDI MS.

    PubMed

    Reid, Christopher W; Brewer, Dyanne; Clarke, Anthony J

    2004-09-01

    Lytic transglycosylases cleave the beta-(1-->4)-glycosidic bond in the bacterial cell wall heteropolymer, peptidoglycan, between the N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc) residues with the concomitant formation of a 1,6-anhydromuramoyl residue. With 72% amino acid sequence identity between the enzymes, the theoretical structure of the membrane-bound lytic transglycosylase B (MltB) from Psuedomonas aeruginosa was modeled on the known crystal structure of Escherichia coli Slt35, the soluble derivative of its MltB. Of the twelve residues in Slt35 known to make contacts with peptidoglycan derivatives in Slt35, nine exist in the same position in the P. aeruginosa homologue, with two others only slightly displaced. To probe the binding properties of an engineered soluble form of the P. aeruginosa MltB, a SUPREX method involving hydrogen/deuterium exchange coupled with MALDI mass spectrometry detection was developed. Dissociation constants were calculated for a series of peptidoglycan components and compared to those obtained by difference UV absorption spectroscopy. These data indicated that GlcNAc alone does not bind to MltB with any measurable affinity but it does contribute to the binding of GlcNAc-MurNAc-dipeptide. With the MurNAc series of ligands, significant binding contributions are made through both the N-acetyl and C-3 lactyl moieties of the aminosugar with additional contributions to binding provided by associated peptides. PMID:15366937

  1. Conformational Analysis of Proteins in Highly Concentrated Solutions by Dialysis-Coupled Hydrogen/Deuterium Exchange Mass Spectrometry.

    PubMed

    Houde, Damian; Nazari, Zeinab E; Bou-Assaf, George M; Weiskopf, Andrew S; Rand, Kasper D

    2016-04-01

    When highly concentrated, an antibody solution can exhibit unusual behaviors, which can lead to unwanted properties, such as increased levels of protein aggregation and unusually high viscosity. Molecular modeling, along with many indirect biophysical measurements, has suggested that the cause for these phenomena can be due to short range electrostatic and/or hydrophobic protein-protein interactions. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) is a useful tool for investigating protein conformation, dynamics, and interactions. However, "traditional" continuous dilution labeling HDX-MS experiments have limited utility for the direct analysis of solutions with high concentrations of protein. Here, we present a dialysis-based HDX-MS (di-HDX-MS) method as an alternative HDX-MS labeling format, which takes advantage of passive dialysis rather than the classic dilution workflow. We applied this approach to a highly concentrated antibody solution without dilution or significant sample manipulation, prior to analysis. Such a method could pave the way for a deeper understanding of the unusual behavior of proteins at high concentrations, which is highly relevant for development of biopharmaceuticals in industry. Graphical Abstract ᅟ. PMID:26860088

  2. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 2. Assessing Charge Site Location and Isotope Scrambling

    NASA Astrophysics Data System (ADS)

    Khakinejad, Mahdiar; Ghassabi Kondalaji, Samaneh; Donohoe, Gregory C.; Valentine, Stephen J.

    2016-01-01

    Ion mobility spectrometry (IMS) coupled with gas-phase hydrogen deuterium exchange (HDX)-mass spectrometry (MS) and molecular dynamic simulations (MDS) has been used for structural investigation of anions produced by electrospraying a sample containing a synthetic peptide having the sequence KKDDDDDIIKIIK. In these experiments the potential of the analytical method for locating charge sites on ions as well as for utilizing collision-induced dissociation (CID) to reveal the degree of deuterium uptake within specific amino acid residues has been assessed. For diffuse (i.e., more elongated) [M - 2H]2- ions, decreased deuterium content along with MDS data suggest that the D4 and D6 residues are charge sites, whereas for the more diffuse [M - 3H]3- ions, the data suggest that the D4, D7, and the C-terminus are deprotonated. Fragmentation of mobility-selected, diffuse [M - 2H]2- ions to determine deuterium uptake at individual amino acid residues reveals a degree of deuterium retention at incorporation sites. Although the diffuse [M - 3H]3- ions may show more HD scrambling, it is not possible to clearly distinguish HD scrambling from the expected deuterium uptake based on a hydrogen accessibility model. The capability of the IMS-HDX-MS/MS approach to provide relevant details about ion structure is discussed. Additionally, the ability to extend the approach for locating protonation sites on positively-charged ions is presented.

  3. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 3. Estimating Surface Area Exposure by Deuterium Uptake.

    PubMed

    Khakinejad, Mahdiar; Ghassabi Kondalaji, Samaneh; Donohoe, Gregory C; Valentine, Stephen J

    2016-03-01

    Gas-phase hydrogen deuterium exchange (HDX), collision cross section (CCS) measurement, and molecular dynamics simulation (MDS) techniques were utilized to develop and compare three methods for estimating the relative surface area exposure of separate peptide chains within bovine insulin ions. Electrosprayed [M - 3H](3-) and [M - 5H](5-) insulin ions produced a single conformer type with respective collision cross sections of 528 5(2) and 808 2(2). [M - 4H](4-) ions were comprised of more compact (? = 676 3(2)) and diffuse (i.e., more elongated, ? = 779 3(2)) ion conformer types. Ions were subjected to HDX in the drift tube using D2O as the reagent gas. Collision-induced dissociation was used to fragment mobility-selected, isotopically labeled [M - 4H](4-) and [M - 5H](5-) ions into the protein subchains. Deuterium uptake levels of each chain can be explained by limited inter-chain isotopic scrambling upon collisional activation. Using nominal ion structures from MDS and a hydrogen accessibility model, the deuterium uptake for each chain was correlated to its exposed surface area. In separate experiments, the per-residue deuterium content for the protonated and deprotonated ions of the synthetic peptide KKDDDDDIIKIIK were compared. The differences in deuterium content indicated the regional HDX accessibility for cations versus anions. Using ions of similar conformational type, this comparison highlights the complementary nature of HDX data obtained from positive- and negative-ion analysis. Graphical Abstract ?. PMID:26620531

  4. Activity-regulating structural changes and autoantibody epitopes in transglutaminase 2 assessed by hydrogen/deuterium exchange.

    PubMed

    Iversen, Rasmus; Mysling, Simon; Hnida, Kathrin; Jrgensen, Thomas J D; Sollid, Ludvig M

    2014-12-01

    The multifunctional enzyme transglutaminase 2 (TG2) is the target of autoantibodies in the gluten-sensitive enteropathy celiac disease. In addition, the enzyme is responsible for deamidation of gluten peptides, which are subsequently targeted by T cells. To understand the regulation of TG2 activity and the enzyme's role as an autoantigen in celiac disease, we have addressed structural properties of TG2 in solution by using hydrogen/deuterium exchange monitored by mass spectrometry. We demonstrate that Ca(2+) binding, which is necessary for TG2 activity, induces structural changes in the catalytic core domain of the enzyme. Cysteine oxidation was found to abolish these changes, suggesting a mechanism whereby disulfide bond formation inactivates the enzyme. Further, by using TG2-specific human monoclonal antibodies generated from intestinal plasma cells of celiac disease patients, we observed that binding of TG2 by autoantibodies can induce structural changes that could be relevant for the pathogenesis. Detailed mapping of two of the main epitopes targeted by celiac disease autoantibodies revealed that they are located adjacent to each other in the N-terminal part of the TG2 molecule. PMID:25404341

  5. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 3. Estimating Surface Area Exposure by Deuterium Uptake

    NASA Astrophysics Data System (ADS)

    Khakinejad, Mahdiar; Ghassabi Kondalaji, Samaneh; Donohoe, Gregory C.; Valentine, Stephen J.

    2016-03-01

    Gas-phase hydrogen deuterium exchange (HDX), collision cross section (CCS) measurement, and molecular dynamics simulation (MDS) techniques were utilized to develop and compare three methods for estimating the relative surface area exposure of separate peptide chains within bovine insulin ions. Electrosprayed [M - 3H]3- and [M - 5H]5- insulin ions produced a single conformer type with respective collision cross sections of 528 ± 5 Å2 and 808 ± 2 Å2. [M - 4H]4- ions were comprised of more compact (Ω = 676 ± 3 Å2) and diffuse (i.e., more elongated, Ω = 779 ± 3 Å2) ion conformer types. Ions were subjected to HDX in the drift tube using D2O as the reagent gas. Collision-induced dissociation was used to fragment mobility-selected, isotopically labeled [M - 4H]4- and [M - 5H]5- ions into the protein subchains. Deuterium uptake levels of each chain can be explained by limited inter-chain isotopic scrambling upon collisional activation. Using nominal ion structures from MDS and a hydrogen accessibility model, the deuterium uptake for each chain was correlated to its exposed surface area. In separate experiments, the per-residue deuterium content for the protonated and deprotonated ions of the synthetic peptide KKDDDDDIIKIIK were compared. The differences in deuterium content indicated the regional HDX accessibility for cations versus anions. Using ions of similar conformational type, this comparison highlights the complementary nature of HDX data obtained from positive- and negative-ion analysis.

  6. Applications of hydrogen deuterium exchange (HDX) for the characterization of conformational dynamics in light-activated photoreceptors

    PubMed Central

    Lindner, Robert; Heintz, Udo; Winkler, Andreas

    2015-01-01

    Rational design of optogenetic tools is inherently linked to the understanding of photoreceptor function. Structural analysis of elements involved in signal integration in individual sensor domains provides an initial idea of their mode of operation, but understanding how local structural rearrangements eventually affect signal transmission to output domains requires inclusion of the effector regions in the characterization. However, the dynamic nature of these assemblies renders their structural analysis challenging and therefore a combination of high- and low-resolution techniques is required to appreciate functional aspects of photoreceptors. This review focuses on the potential of hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) for complementing the structural characterization of photoreceptors. In this respect, the ability of HDX-MS to provide information on conformational dynamics and the possibility to address multiple functionally relevant states in solution render this methodology ideally suitable. We highlight recent examples demonstrating the potential of HDX-MS and discuss how these results can help to improve existing optogenetic systems or guide the design of novel optogenetic tools. PMID:26157802

  7. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 2. Assessing Charge Site Location and Isotope Scrambling

    NASA Astrophysics Data System (ADS)

    Khakinejad, Mahdiar; Ghassabi Kondalaji, Samaneh; Donohoe, Gregory C.; Valentine, Stephen J.

    2016-03-01

    Ion mobility spectrometry (IMS) coupled with gas-phase hydrogen deuterium exchange (HDX)-mass spectrometry (MS) and molecular dynamic simulations (MDS) has been used for structural investigation of anions produced by electrospraying a sample containing a synthetic peptide having the sequence KKDDDDDIIKIIK. In these experiments the potential of the analytical method for locating charge sites on ions as well as for utilizing collision-induced dissociation (CID) to reveal the degree of deuterium uptake within specific amino acid residues has been assessed. For diffuse (i.e., more elongated) [M - 2H]2- ions, decreased deuterium content along with MDS data suggest that the D4 and D6 residues are charge sites, whereas for the more diffuse [M - 3H]3- ions, the data suggest that the D4, D7, and the C-terminus are deprotonated. Fragmentation of mobility-selected, diffuse [M - 2H]2- ions to determine deuterium uptake at individual amino acid residues reveals a degree of deuterium retention at incorporation sites. Although the diffuse [M - 3H]3- ions may show more HD scrambling, it is not possible to clearly distinguish HD scrambling from the expected deuterium uptake based on a hydrogen accessibility model. The capability of the IMS-HDX-MS/MS approach to provide relevant details about ion structure is discussed. Additionally, the ability to extend the approach for locating protonation sites on positively-charged ions is presented.

  8. Thermodynamic and kinetic characterization of hydrogen-deuterium exchange in beta-phase palladium.

    PubMed

    Luo, Weifang; Cowgill, Donald F; Causey, Rion A

    2009-10-01

    A Sieverts' apparatus coupled with a residual gas analyzer (RGA) is an effective method to detect composition variations during isotopic exchange. This experimental setup provides a tool for the thermodynamic and kinetic characterization of H-D isotope exchange on Pd. The H or D concentrations in the gas and solid phases during the exchanges starting from (H(2) + Pd(x)D) and (D(2) + Pd(x)H) in beta-phase Pd were monitored over a temperature range from 173 to 298 K. The equilibrium properties, i.e., the H-D separation factors alpha and equilibrium constants K(HD), were obtained and found to be very close to those in the literature. The values of equilibrium constant reported here are the only experimental K(HD) data for H-D-Pd system. The H-D exchange rates on beta-Pd were measured for both exchange directions. A comprehensive kinetic model is proposed that correlates the exchange rate and the driving force composed of the reactant concentrations and the extent of deviation from equilibrium. The rate constants were obtained using this model for two exchange directions. The rates for the two exchange directions were found to be close to each other at 173 K, but they differ with temperature increase in such a way that the (D(2) + Pd(x)H) has a higher rate than (H(2) + Pd(x)D). The exchange activation energies obtained are 2.0 and 3.5 kJ/mol for the (H(2) + Pd(x)D) and (D(2) + Pd(x)H) directions, respectively. The difference in activation energies results from the difference in the energy states of (H(2) + Pd(x)D) and (D(2) + Pd(x)D). The calculated exchange profiles using this model agree with the experimental values reasonably well. PMID:19735117

  9. Hydrogen/Deuterium Exchange and Electron-Transfer Dissociation Mass Spectrometry Determine the Interface and Dynamics of Apolipoprotein E Oligomerization

    PubMed Central

    Huang, Richard Y-C.; Garai, Kanchan; Frieden, Carl; Gross, Michael L.

    2011-01-01

    Apolipoprotein E, a 34 kDa protein, plays a key role in triglyceride and cholesterol metabolism. Of the three common isoforms (ApoE2, 3 and 4), only ApoE4 is a risk factor for Alzheimers Disease. All three isoforms of wild-type ApoE self-associate to form oligomers, a process that may have functional consequences. Although the C-terminal domain, residues 216299, of ApoE is believed to mediate self-association, the specific residues involved in this process are not known. Here we report the use of hydrogen/deuterium exchange (H/DX) coupled with enzymatic digestion to identify those regions in the sequence of full-length apoE involved in oligomerization. For this determination, we compared the results of H/DX of the wild-type proteins and those of monomeric forms obtained by modifying four residues in the C-terminal domain. The three wild type and mutant isoforms show similar structures based on their similar H/DX kinetics and extents of exchange. Regions of the C-terminus (residues 230270) of the ApoE isoforms show significant differences of deuterium uptake between oligomeric and monomeric forms, confirming that oligomerization occurs at these regions. To achieve single amino acid resolution, we examined the extents of H/DX by using electron transfer dissociation (ETD) fragmentation of peptides representing selected regions of both the monomeric and the oligomeric forms of ApoE4. From these experiments, we could identify the specific residues involved in ApoE oligomerization. In addition, our results verify that ApoE4 is composed of a compact structure at its N-terminal domain. Regions of C-terminal domain, however, appear to lack defined structure. PMID:21899263

  10. Synthesis, Spectroscopy, and Hydrogen/Deuterium Exchange in High-Spin Iron(II) Hydride Complexes

    PubMed Central

    2015-01-01

    Very few hydride complexes are known in which the metals have a high-spin electronic configuration. We describe the characterization of several high-spin iron(II) hydride/deuteride isotopologues and their exchange reactions with one another and with H2/D2. Though the hydride/deuteride signal is not observable in NMR spectra, the choice of isotope has an influence on the chemical shifts of distant protons in the dimers through the paramagnetic isotope effect on chemical shift. This provides the first way to monitor the exchange of H and D in the bridging positions of these hydride complexes. The rate of exchange depends on the size of the supporting ligand, and this is consistent with the idea that H2/D2 exchange into the hydrides occurs through the dimeric complexes rather than through a transient monomer. The understanding of H/D exchange mechanisms in these high-spin iron hydride complexes may be relevant to postulated nitrogenase mechanisms. PMID:24555749

  11. Construct Optimization for Protein NMR Structure Analysis Using Amide Hydrogen / Deuterium Exchange Mass Spectrometry

    PubMed Central

    Sharma, Seema; Zheng, Haiyan; Huang, Yuanpeng J.; Ertekin, Asli; Hamuro, Yoshitomo; Rossi, Paolo; Tejero, Roberto; Acton, Thomas B.; Xiao, Rong; Jiang, Mei; Zhao, Li; Ma, Li-Chung; Swapna, G. V. T.; Aramini, James M.; Montelione, Gaetano T.

    2009-01-01

    Disordered or unstructured regions of proteins, while often very important biologically, can pose significant challenges for resonance assignment and three-dimensional structure determination of the ordered regions of proteins by NMR methods. In this paper, we demonstrate the application of 1H/2H exchange mass spectrometry (DXMS) for the rapid identification of disordered segments of proteins and design of protein constructs that are more suitable for structural analysis by NMR. In this benchmark study, DXMS is applied to five NMR protein targets chosen from the Northeast Structural Genomics project. These data were then used to design optimized constructs for three partially disordered proteins. Truncated proteins obtained by deletion of disordered N- and C-terminal tails were evaluated using 1H-15N HSQC and 1H-15N heteronuclear NOE NMR experiments to assess their structural integrity. These constructs provide significantly improved NMR spectra, with minimal structural perturbations to the ordered regions of the protein structure. As a representative example, we compare the solution structures of the full length and DXMS-based truncated construct for a 77-residue partially disordered DUF896 family protein YnzC from Bacillus subtilis, where deletion of the disordered residues (ca. 40% of the protein) does not affect the native structure. In addition, we demonstrate that throughput of the DXMS process can be increased by analyzing mixtures of up to four proteins without reducing the sequence coverage for each protein. Our results demonstrate that DXMS can serve as a central component of a process for optimizing protein constructs for NMR structure determination. PMID:19306341

  12. Hydrogen-deuterium exchange of aromatic amines and amides using deuterated trifluoroacetic acid

    PubMed Central

    Giles, Richard; Lee, Amy; Jung, Erica; Kang, Aaron; Jung, Kyung Woon

    2014-01-01

    The H-D exchange of aromatic amines and amides, including pharmaceutically relevant compounds such as acetaminophen and diclofenac, was investigated using CF3COOD as both the sole reaction solvent and source of deuterium label. The described method is amenable to efficient deuterium incorporation for a wide variety of substrates possessing both electron-donating and electron-withdrawing substituents. Best results were seen with less basic anilines and highly activated acetanilides, reflecting the likelihood of different mechanistic pathways. PMID:25641994

  13. Analysis of Protein Conformation and Dynamics by Hydrogen/Deuterium Exchange MS

    PubMed Central

    Engen, John R.

    2009-01-01

    synopsis Recent technological advances hydrogen exchange MS have led to improvements in the techniques ability to analyze the shape and movements of proteins. John Engen of Northeastern University gives a much needed update on the field. The cover, created by Engen, shows proteins swimming in an H2O/D2O solution with a sample mass spectrum in the background. PMID:19788312

  14. Comparative Analysis of Oxy-Hemoglobin and Aquomet-Hemoglobin by Hydrogen/Deuterium Exchange Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Sowole, Modupeola A.; Konermann, Lars

    2013-07-01

    The function of hemoglobin (Hb) as oxygen transporter is mediated by reversible O2 binding to Fe(2+) heme in each of the ? and ? subunits. X-ray crystallography revealed different subunit arrangements in oxy-Hb and deoxy-Hb. The deoxy state is stabilized by additional contacts, causing a rigidification that results in strong protection against hydrogen/deuterium exchange (HDX). Aquomet-Hb is a dysfunctional degradation product with four water-bound Fe(3+) centers. Heme release from aquomet-Hb is relatively facile, triggering oxidative damage of membrane lipids. Aquomet-Hb crystallizes in virtually the same conformation as oxy-Hb. Hence, it is commonly implied that the solution-phase properties of aquomet-Hb should resemble those of the oxy state. This work compares the structural dynamics of oxy-Hb and aquomet-Hb by HDX mass spectrometry (MS). It is found that the aquomet state exhibits a solution-phase structure that is significantly more dynamic, as manifested by elevated HDX levels. These enhanced dynamics affect the aquomet ? and ? subunits in a different fashion. The latter undergoes global destabilization, whereas the former shows elevated HDX levels only in the heme binding region. It is proposed that these enhanced dynamics play a role in facilitating heme release from aquomet-Hb. Our findings should be of particular interest to the MS community because oxy-Hb and aquomet-Hb serve as widely used test analytes for probing the relationship between biomolecular structure in solution and in the gas phase. We are not aware of any prior comparative HDX/MS experiments on oxy-Hb and aquomet-Hb.

  15. Hydrogen-deuterium exchange on plasma-exposed W and SS surface

    NASA Astrophysics Data System (ADS)

    Takagi, Ikuji; Nomura, Shinji; Minamimoto, Toshihiro; Akiyoshi, Masafumi; Kobayashi, Taishi; Sasaki, Takayuki

    2015-08-01

    The desorption cross section for hydrogen isotopes adsorbed on stainless steel (SS) and tungsten (W) has been evaluated experimentally to provide basic information on tritium exchange. One side of a sample sheet was alternately exposed to H and D plasma, and deuterium density on the surface was repeatedly observed using nuclear reaction analysis (NRA) under continuous plasma exposure. From the time dependent change in the deuterium density, the desorption cross sections for SS and W were estimated to be 6.9 ± 2.3 × 10-23 m2 and 4.6 ± 1.0 × 10-23 m2, respectively. No significant differences in the cross section between H and D plasma were observed. Recombinative desorption was found to dominate the desorption process owing to the low incident energy of hydrogen atoms.

  16. Rapid refinement of crystallographic protein construct definition employing enhanced hydrogen/deuterium exchange MS.

    PubMed

    Pantazatos, Dennis; Kim, Jack S; Klock, Heath E; Stevens, Raymond C; Wilson, Ian A; Lesley, Scott A; Woods, Virgil L

    2004-01-20

    Crystallographic efforts often fail to produce suitably diffracting protein crystals. Unstructured regions of proteins play an important role in this problem and considerable advantage can be gained in removing them. We have developed a number of enhancements to amide hydrogen/high-throughput and high-resolution deuterium exchange MS (DXMS) technology that allow rapid identification of unstructured regions in proteins. To demonstrate the utility of this approach for improving crystallization success, DXMS analysis was attempted on 24 Thermotoga maritima proteins with varying crystallization and diffraction characteristics. Data acquisition and analysis for 21 of these proteins was completed in 2 weeks and resulted in the localization and prediction of several unstructured regions within the proteins. When compared with those targets of known structure, the DXMS method correctly localized even small regions of disorder. DXMS analysis was then correlated with the propensity of such targets to crystallize and was further used to define truncations that improved crystallization. Truncations that were defined solely on DXMS analysis demonstrated greatly improved crystallization and have been used for structure determination. This approach represents a rapid and generalized method that can be applied to structural genomics or other targets in a high-throughput manner. PMID:14715906

  17. Structure-dependent degradation of polar compounds in weathered oils observed by atmospheric pressure photo-ionization hydrogen/deuterium exchange ultrahigh resolution mass spectrometry.

    PubMed

    Islam, Ananna; Kim, Donghwi; Yim, Un Hyuk; Shim, Won Joon; Kim, Sunghwan

    2015-10-15

    The resin fractions of fresh mixtures of three oils spilled during the M/V Hebei Spirit oil spill, as well as weathered oils collected at weathering stages II and IV from the oil spill site were analyzed and compared by atmospheric pressure photo-ionization hydrogen/deuterium exchange mass spectrometry (HDX MS). The significantly decreased abundance of N(+) and [N-H+D](+) ions suggested that secondary and tertiary amine-containing compounds were preferentially degraded during the early stage of weathering. [N+H](+) and [N+D](+) ions previously attributed to pyridine-type compounds degraded more slowly than secondary and tertiary amine-containing compounds. The preferential degradation of nitrogen-containing compounds was confirmed by photo-degradation experiments using 15 standard compounds. In addition, significant increases of [S1O1+H](+) and [S1O1+D](+) ions with higher DBE values were observed from fresh oil mixtures as compared to stages II and IV samples, and that could be linked with the decrease of higher DBE compounds of the S1 class. This study presented convincing arguments and evidence demonstrating that secondary and tertiary amines were more vulnerable to photo-degradation than compounds containing pyridine, and hence, preferential degradation depending on chemical structures must be considered in the production of hazardous or toxic components. PMID:25913675

  18. Assessment of differences in the conformational flexibility of hepatitis B virus core-antigen and e-antigen by hydrogen deuterium exchange-mass spectrometry

    PubMed Central

    Bereszczak, Jessica Z; Watts, Norman R; Wingfield, Paul T; Steven, Alasdair C; Heck, Albert J R

    2014-01-01

    Hepatitis B virus core-antigen (capsid protein) and e-antigen (an immune regulator) have almost complete sequence identity, yet the dimeric proteins (termed Cp149d and Cp(?10)149d, respectively) adopt quite distinct quaternary structures. Here we use hydrogen deuterium exchange-mass spectrometry (HDX-MS) to study their structural properties. We detect many regions that differ substantially in their HDX dynamics. Significantly, whilst all regions in Cp(?10)149d exchange by EX2-type kinetics, a number of regions in Cp149d were shown to exhibit a mixture of EX2- and EX1-type kinetics, hinting at conformational heterogeneity in these regions. Comparison of the HDX of the free Cp149d with that in assembled capsids (Cp149c) indicated increased resistance to exchange at the C-terminus where the inter-dimer contacts occur. Furthermore, evidence of mixed exchange kinetics were not observed in Cp149c, implying a reduction in flexibility upon capsid formation. Cp(?10)149d undergoes a drastic structural change when the intermolecular disulphide bridge is reduced, adopting a Cp149d-like structure, as evidenced by the detected HDX dynamics being more consistent with Cp149d in many, albeit not all, regions. These results demonstrate the highly dynamic nature of these similar proteins. To probe the effect of these structural differences on the resulting antigenicity, we investigated binding of the antibody fragment (Fab E1) that is known to bind a conformational epitope on the four-helix bundle. Whilst Fab E1 binds to Cp149c and Cp149d, it does not bind non-reduced and reduced Cp(?10)149d, despite unhindered access to the epitope. These results imply a remarkable sensitivity of this epitope to its structural context. PMID:24715628

  19. Structural basis of specific interactions of Lp-PLA2 with HDL revealed by hydrogen deuterium exchange mass spectrometry[S

    PubMed Central

    Cao, Jian; Hsu, Yuan-Hao; Li, Sheng; Woods, Virgil L.; Dennis, Edward A.

    2013-01-01

    Lipoprotein-associated phospholipase A2 (Lp-PLA2), specifically Group VIIA PLA2, is a member of the phospholipase A2 superfamily and is found mainly associated with LDL and HDL in human plasma. Lp-PLA2 is considered as a risk factor, a potential biomarker, a target for therapy in the treatment of cardiovascular disease, and evidence suggests that the level of Lp-PLA2 in plasma is associated with the risk of future cardiovascular and stroke events. The differential location of the enzyme in LDL/HDL lipoproteins has been suggested to affect Lp-PLA2 function and/or its physiological role and an abnormal distribution of the enzyme may correlate with diseases. Although a mutagenesis study suggested that a surface helix (residues 362369) mediates the association between Lp-PLA2 and HDL, the molecular details and mechanism of association has remained unknown. We have now employed hydrogen deuterium exchange mass spectrometry to characterize the interaction between recombinant human Lp-PLA2 and human HDL. We have found that specific residues 113120, 192204, and 360368 likely mediate HDL binding. In a previous study, we showed that residues 113120 are important for Lp-PLA2-liposome interactions. We now find that residues 192204 show a decreased deuteration level when Lp-PLA2 is exposed to apoA-I, but not apoA-II, the most abundant apoproteins in HDL, and additionally, residues 360368 are only affected by HDL.The results suggest that apoA-I and phospholipid membranes play crucial roles in Lp-PLA2 localization to HDL. PMID:23089916

  20. Hydrogen/Deuterium Exchange Mass Spectrometry and Site-Directed Disulfide Cross-Linking Suggest an Important Dynamic Interface between the Two Lysostaphin Domains

    PubMed Central

    Lu, Hai-Rong; Gu, Mei-Gang; Huang, Qiang; Huang, Jin-Jiang; Lu, Wan-Ying; Lu, Hong

    2013-01-01

    Lysostaphin is a peptidoglycan hydrolase secreted by Staphylococcus simulans. It can specifically lyse Staphylococcus aureus and is being tested as a novel antibacterial agent. The protein contains an N-terminal catalytic domain and a C-terminal cell wall targeting domain. Although the two domains from homologous enzymes were structurally determined, the structural organization of lysostaphin domains remains unknown. We used hydrogen/deuterium exchange mass spectrometry (H/DX-MS) and site-directed disulfide cross-linking to probe the interface between the lysostaphin catalytic and targeting domains. H/DX-MS-mediated comparison of peptides from full-length lysostaphin and the separated domains identified four peptides of lower solvent accessibility in the full-length protein. Cross-linking analysis using cysteine pair substitutions within those peptides showed that two pairs of cysteines can form disulfide bonds, supporting the domain association role of the targeted peptides. The cross-linked mutant exhibited a binding capacity to S. aureus that was similar to that of the wild-type protein but reduced bacteriolytic activity probably because of restraint in conformation. The diminished activity was further reduced with increasing NaCl concentrations that can cause contractions of bacterial peptidoglycan. The lytic activity, however, could be fully recovered by reducing the disulfide bonds. These results suggest that lysostaphin may require dynamic association of the two domains for coordinating substrate binding and target cleavage on the elastic peptidoglycan. Our study will help develop site-specific PEGylated lysostaphin to treat systemic S. aureus infections. PMID:23380729

  1. Automated data reduction for hydrogen/deuterium exchange experiments, enabled by high-resolution Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Kazazic, Sasa; Zhang, Hui-Min; Schaub, Tanner M; Emmett, Mark R; Hendrickson, Christopher L; Blakney, Gregory T; Marshall, Alan G

    2010-04-01

    Mass analysis of proteolytic fragment peptides following hydrogen/deuterium exchange offers a general measure of solvent accessibility/hydrogen bonding (and thus conformation) of solution-phase proteins and their complexes. The primary problem in such mass analyses is reliable and rapid assignment of mass spectral peaks to the correct charge state and degree of deuteration of each fragment peptide, in the presence of substantial overlap between isotopic distributions of target peptides, autolysis products, and other interferant species. Here, we show that at sufficiently high mass resolving power (m/Delta m(50%) > or = 100,000), it becomes possible to resolve enough of those overlaps so that automated data reduction becomes possible, based on the actual elemental composition of each peptide without the need to deconvolve isotopic distributions. We demonstrate automated, rapid, reliable assignment of peptide masses from H/D exchange experiments, based on electrospray ionization FT-ICR mass spectra from H/D exchange of solution-phase myoglobin. Combined with previously demonstrated automated data acquisition for such experiments, the present data reduction algorithm enhances automation (and thus expands generality and applicability) for high-resolution mass spectrometry-based analysis of H/D exchange of solution-phase proteins. PMID:20116280

  2. Investigation of the structural stability of the human acidic fibroblast growth factor by hydrogen-deuterium exchange.

    PubMed

    Chi, Ya-Hui; Kumar, Thallampuranam Krishnaswamy S; Kathir, Karuppanan Muthusamy; Lin, Dong-Hai; Zhu, Guang; Chiu, Ing-Ming; Yu, Chin

    2002-12-24

    The conformational stability of the human acidic fibroblast growth factor (hFGF-1) is investigated using amide proton exchange and temperature-dependent chemical shifts, monitored by two-dimensional NMR spectroscopy. The change in free energy of unfolding (DeltaG(u)) of hFGF-1 is estimated to be 5.00 +/- 0.09 kcal.mol(-)(1). Amide proton-exchange rates of 74 residues (in hFGF-1) have been unambiguously measured, and the exchange process occurs predominately according to the conditions of the EX2 limit. The exchange rates of the fast-exchanging amide protons exposed to the solvent have been measured using the clean SEA-HSQC technique. The amide proton protection factor and temperature coefficient estimates show reasonably good correlation. Residues in beta-strands II and VI appear to constitute the stability core of the protein. Among the 12 beta-strands constituting the beta-barrel architecture of hFGF-1, beta-strand XI, located in the heparin binding domain, exhibits the lowest average protection factor value. Amide protons involved in the putative folding nucleation site in hFGF-1, identified by quench-flow NMR studies, do not represent the slow-exchanging core. Residues in portions of hFGF-1 experiencing high conformational flexibility mostly correspond to those involved in receptor recognition and binding. PMID:12484774

  3. Nucleotide- and activator-dependent structural and dynamic changes of Arp2/3 complex monitored by hydrogen/deuterium exchange and mass spectrometry

    PubMed Central

    Zencheck, Wendy D.; Xiao, Hui; Nolen, Bradley J.; Angeletti, Ruth; Pollard, Thomas D.; Almo, Steven C.

    2010-01-01

    Arp2/3 complex plays a central role in the de novo nucleation of filamentous actin as branches on existing filaments. To form a new actin filament the complex must bind ATP, protein activators (e.g. Wiskott-Aldrich syndrome proteins, WASp) and the side of an actin filament. Amide Hydrogen/Deuterium exchange (HDX) coupled with mass spectrometry (MS) was used to examine the structural and dynamic properties of the mammalian Arp2/3 complex in the presence of both ATP and the activating peptide segment from WASp. Changes in the rate of hydrogen exchange indicate that ATP binding causes conformational rearrangements of Arp2 and Arp3 that are transmitted allosterically to the ArpC1, ArpC2, ArpC4 and ArpC5 subunits. These data are consistent with the closure of nucleotide-binding cleft of Arp3 upon ATP binding, resulting in structural rearrangements that propagate throughout the complex. Binding of the VCA domain of WASp to ATP-Arp2/3 further modulates the rates of hydrogen exchange in these subunits, indicating that a global conformational reorganization is occurring. These effects may include the direct binding of activators to Arp3, Arp2 and ARPC1; alterations in the relative orientations of Arp2 and Arp3; and the long-range transmission of activator-dependent signals to segments proposed to be involved in binding the F-actin mother filament. PMID:19298826

  4. Hydrogen-deuterium exchange between TpRu(PMe3)(L)X (L = PMe3 and X = OH, OPh, Me, Ph, or NHPh; L = NCMe and X = Ph) and deuterated arene solvents: evidence for metal-mediated processes.

    PubMed

    Feng, Yuee; Lail, Marty; Foley, Nicholas A; Gunnoe, T Brent; Barakat, Khaldoon A; Cundari, Thomas R; Petersen, Jeffrey L

    2006-06-21

    At elevated temperatures (90-130 degrees C), complexes of the type TpRu(PMe3)2X (X = OH, OPh, Me, Ph, or NHPh; Tp = hydridotris(pyrazolyl)borate) undergo regioselective hydrogen-deuterium (H/D) exchange with deuterated arenes. For X = OH or NHPh, H/D exchange occurs at hydroxide and anilido ligands, respectively. For X = OH, OPh, Me, Ph, or NHPh, isotopic exchange occurs at the Tp 4-positions with only minimal deuterium incorporation at the Tp 3- or 5-positions or PMe3 ligands. For TpRu(PMe3)(NCMe)Ph, the H/D exchange occurs at 60 degrees C at all three Tp positions and the phenyl ring. TpRu(PMe3)2Cl, TpRu(PMe3)2OTf (OTf = trifluoromethanesulfonate), and TpRu(PMe3)2SH do not initiate H/D exchange in C6D6 after extended periods of time at elevated temperatures. Mechanistic studies indicate that the likely pathway for the H/D exchange involves ligand dissociation (PMe3 or NCMe), Ru-mediated activation of an aromatic C-D bond, and deuteration of basic nondative ligand (hydroxide or anilido) or Tp positions via net D+ transfer. PMID:16771513

  5. The calcium-modulated structures of calmodulin and S100b proteins are useful to monitor hydrogen/deuterium exchange efficiency using matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    PubMed

    Pingerelli, Peter L; Ozols, Victor V; Saleem, Haroon; Anderson, Carly R; Burns, Richard S

    2009-01-01

    Hydrogen/deuterium exchange (HDX) using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF) is a sensitive, salt-tolerant and high-throughput method useful to probe protein conformation and molecular interactions. However, a drawback of the MALDI HDX technique is that sample preparation methods can typically result in higher levels of artificial deuterium in-exchange and/or hydrogen back- exchange just prior to or during mass analysis; this may impair data reproducibility and impede structural and kinetic data interpretation. While methods to minimize effects of back-exchange during protein analyte deposition on MALDI plates have been reported, this study presents a readily available, highly sensitive protein control set to facilitate rapid MALDI HDX protocol workup. The Ca(2+)-induced solvent accessible surface area (ASA) changes of calmodulin (CaM) and S100 proteins were employed to monitor and optimize HDX protocol efficiency. Under non- stringent room temperature conditions, the Ca(2+)-induced deuterium exchange of CaM, DeltaD(ca2+ -apo), MH(+) shifts -17 to -24 Da, while S100 DeltaD(ca2+ -apo) MH(+) shifts +8 to +12 Da. By comparing the divergent CaM and S100 Ca(2+)-induced deuterium mass shift differences, HDX sample workup and MALDI plate spotting conditions can easily be monitored. PMID:19940340

  6. Correlating excipient effects on conformational and storage stability of an IgG1 monoclonal antibody with local dynamics as measured by hydrogen/deuterium-exchange mass spectrometry.

    PubMed

    Manikwar, Prakash; Majumdar, Ranajoy; Hickey, John M; Thakkar, Santosh V; Samra, Hardeep S; Sathish, Hasige A; Bishop, Steven M; Middaugh, C Russell; Weis, David D; Volkin, David B

    2013-07-01

    The effects of sucrose and arginine on the conformational and storage stability of an IgG1 monoclonal antibody (mAb) were monitored by differential scanning calorimetry (DSC) and size-exclusion chromatography (SEC), respectively. Excipient effects on protein physical stability were then compared with their effects on the local flexibility of the mAb in solution at pH 6, 25°C using hydrogen/deuterium-exchange mass spectrometry (H/D-MS). Compared with a 0.1 M NaCl control, sucrose (0.5 M) increased conformational stability (T(m) values), slowed the rate of monomer loss, reduced the formation of insoluble aggregates, and resulted in a global trend of small decreases in local flexibility across most regions of the mAb. In contrast, the addition of arginine (0.5 M) decreased the mAb's conformational stability, increased the rate of loss of monomer with elevated levels of soluble and insoluble aggregates, and led to significant increases in the local flexibility in specific regions of the mAb, most notably within the constant domain 2 of the heavy chain (C(H)2). These results provide new insights into the effect of sucrose and arginine on the local dynamics of IgG1 domains as well as preliminary correlations between local flexibility within specific segments of the C(H)2 domain (notably heavy chain 241-251) and the mAb's overall physical stability. PMID:23620222

  7. Identification of Pharmacological Chaperones for Gaucher Disease and Characterization of Their Effects on ?-Glucocerebrosidase by Hydrogen/Deuterium Exchange Mass Spectrometry

    PubMed Central

    Tropak, Michael B.; Kornhaber, Gregory J.; Rigat, Brigitte A.; Maegawa, Gustavo H.; Buttner, Justin D.; Blanchard, Jan E.; Murphy, Cecilia; Tuske, Steven J.; Coales, Stephen J.; Hamuro, Yoshitomo; Brown, Eric D.

    2010-01-01

    Point mutations in ?-glucocerebrosidase (GCase) can result in a deficiency of both GCase activity and protein in lysosomes thereby causing Gaucher Disease (GD). Enzyme inhibitors such as isofagomine, acting as pharmacological chaperones (PCs), increase these levels by binding and stabilizing the native form of the enzyme in the endoplasmic reticulum (ER), and allow increased lysosomal transport of the enzyme. A high-throughput screen of the 50 000-compound Maybridge library identified two, non-carbohydrate-based inhibitory molecules, a 2,4-diamino-5-substituted quinazoline (IC50 5 ?M) and a 5-substituted pyridinyl-2-furamide (IC50 8 ?M). They raised the levels of functional GCase 1.52.5-fold in N370S or F213I GD fibroblasts. Immunofluorescence confirmed that treated GD fibroblasts had decreased levels of GCase in their ER and increased levels in lysosomes. Changes in protein dynamics, monitored by hydrogen/deuterium-exchange mass spectrometry, identified a domain III active-site loop (residues 243249) as being significantly stabilized upon binding of isofagomine or either of these two new compounds; this suggests a common mechanism for PC enhancement of intracellular transport. PMID:18972510

  8. Load-dependent destabilization of the γ-rotor shaft in FOF1 ATP synthase revealed by hydrogen/deuterium-exchange mass spectrometry.

    PubMed

    Vahidi, Siavash; Bi, Yumin; Dunn, Stanley D; Konermann, Lars

    2016-03-01

    FoF1 is a membrane-bound molecular motor that uses proton-motive force (PMF) to drive the synthesis of ATP from ADP and Pi. Reverse operation generates PMF via ATP hydrolysis. Catalysis in either direction involves rotation of the γε shaft that connects the α3β3 head and the membrane-anchored cn ring. X-ray crystallography and other techniques have provided insights into the structure and function of FoF1 subcomplexes. However, interrogating the conformational dynamics of intact membrane-bound FoF1 during rotational catalysis has proven to be difficult. Here, we use hydrogen/deuterium exchange mass spectrometry to probe the inner workings of FoF1 in its natural membrane-bound state. A pronounced destabilization of the γ C-terminal helix during hydrolysis-driven rotation was observed. This behavior is attributed to torsional stress in γ, arising from γ⋅⋅⋅α3β3 interactions that cause resistance during γ rotation within the apical bearing. Intriguingly, we find that destabilization of γ occurs only when FoF1 operates against a PMF-induced torque; the effect disappears when PMF is eliminated by an uncoupler. This behavior resembles the properties of automotive engines, where bearings inflict greater forces on the crankshaft when operated under load than during idling. PMID:26884184

  9. Predicting Protein Aggregation during Storage in Lyophilized Solids Using Solid State Amide Hydrogen/Deuterium Exchange with Mass Spectrometric Analysis (ssHDX-MS)

    PubMed Central

    2015-01-01

    Solid state amide hydrogen/deuterium exchange with mass spectrometric analysis (ssHDX-MS) was used to assess the conformation of myoglobin (Mb) in lyophilized formulations, and the results correlated with the extent of aggregation during storage. Mb was colyophilized with sucrose (1:1 or 1:8 w/w), mannitol (1:1 w/w), or NaCl (1:1 w/w) or in the absence of excipients. Immediately after lyophilization, samples of each formulation were analyzed by ssHDX-MS and Fourier transform infrared spectroscopy (FTIR) to assess Mb conformation, and by dynamic light scattering (DLS) and size exclusion chromatography (SEC) to determine the extent of aggregation. The remaining samples were then placed on stability at 25 °C and 60% RH or 40 °C and 75% RH for up to 1 year, withdrawn at intervals, and analyzed for aggregate content by SEC and DLS. In ssHDX-MS of samples immediately after lyophilization (t = 0), Mb was less deuterated in solids containing sucrose (1:1 and 1:8 w/w) than in those containing mannitol (1:1 w/w), NaCl (1:1 w/w), or Mb alone. Deuterium uptake kinetics and peptide mass envelopes also indicated greater Mb structural perturbation in mannitol, NaCl, or Mb-alone samples at t = 0. The extent of deuterium incorporation and kinetic parameters related to rapidly and slowly exchanging amide pools (Nfast, Nslow), measured at t = 0, were highly correlated with the extent of aggregation on storage as measured by SEC. In contrast, the extent of aggregation was weakly correlated with FTIR band intensity and peak position measured at t = 0. The results support the use of ssHDX-MS as a formulation screening tool in developing lyophilized protein drug products. PMID:24816133

  10. Evidence for site-specific intra-ionic hydrogen/deuterium exchange in the low-energy collision-induced dissociation product ion spectra of protonated small molecules generated by electrospray ionisation.

    PubMed

    Holman, Stephen W; Wright, Patricia; Wells, Neil J; Langley, G John

    2010-04-01

    The experimental investigation of site-specific intra-ionic hydrogen/deuterium (H/D) exchange in the low-energy collision-induced dissociation (CID) product ion spectra of protonated small molecules generated by electrospray ionisation (ESI) is presented. The observation of intra-ionic H/D exchange in such ions under low-energy CID conditions has hitherto been rarely reported. The data suggest that the intra-ionic H/D exchange takes place in a site-specific manner between the ionising deuteron, localised at either a tertiary amine or a tertiary amine-N-oxide, and a gamma-hydrogen relative to the nitrogen atom. Nuclear magnetic resonance (NMR) spectroscopy measurements showed that no H/D exchange takes place in solution, indicating that the reaction occurs in the gas phase. The compounds analysed in this study suggested that electron-withdrawing groups bonded to the carbon atom bearing the gamma-hydrogen can preclude exchange. The effect of the electron-withdrawing group appears dependent upon its electronegativity, with lower chi value groups still allowing exchange to take place. However, the limited dataset available in this study prevented robust conclusions being drawn regarding the effect of the electron-withdrawing group. The observation of site-specific intra-ionic H/D exchange has application in the area of structural elucidation, where it could be used to introduce an isotopic label into the carbon skeleton of a molecule containing specific structural features. This could increase the throughput, and minimise the cost, of such studies due to the obviation of the need to produce a deuterium-labelled analogue by synthetic means. PMID:20069530

  11. Structure and Dynamics of NBD1 from CFTR Characterized Using Crystallography and Hydrogen/Deuterium Exchange Mass Spectrometry

    SciTech Connect

    Lewis, H.A.; Wang, C.; Zhao, X.; Hamuro, Y.; Conners, K.; Kearins, M.C.; Lu, F.; Sauder, J.M.; Molnar, K.S.; Coales, S.J.; Maloney, P.C.; Guggino, W.B.; Wetmore, D.R.; Weber, P.C.; Hunt, J.F.

    2012-04-30

    The {Delta}F508 mutation in nucleotide-binding domain 1 (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR) is the predominant cause of cystic fibrosis. Previous biophysical studies on human F508 and {Delta}F508 domains showed only local structural changes restricted to residues 509-511 and only minor differences in folding rate and stability. These results were remarkable because {Delta}F508 was widely assumed to perturb domain folding based on the fact that it prevents trafficking of CFTR out of the endoplasmic reticulum. However, the previously reported crystal structures did not come from matched F508 and {Delta}F508 constructs, and the {Delta}F508 structure contained additional mutations that were required to obtain sufficient protein solubility. In this article, we present additional biophysical studies of NBD1 designed to address these ambiguities. Mass spectral measurements of backbone amide {sup 1}H/{sup 2}H exchange rates in matched F508 and {Delta}F508 constructs reveal that {Delta}F508 increases backbone dynamics at residues 509-511 and the adjacent protein segments but not elsewhere in NBD1. These measurements also confirm a high level of flexibility in the protein segments exhibiting variable conformations in the crystal structures. We additionally present crystal structures of a broader set of human NBD1 constructs, including one harboring the native F508 residue and others harboring the {Delta}F508 mutation in the presence of fewer and different solubilizing mutations. The only consistent conformational difference is observed at residues 509-511. The side chain of residue V510 in this loop is mostly buried in all non-{Delta}F508 structures but completely solvent exposed in all {Delta}F508 structures. These results reinforce the importance of the perturbation {Delta}F508 causes in the surface topography of NBD1 in a region likely to mediate contact with the transmembrane domains of CFTR. However, they also suggest that increased exposure of the 509-511 loop and increased dynamics in its vicinity could promote aggregation in vitro and aberrant intermolecular interactions that impede trafficking in vivo.

  12. Effect of Fc-Glycan Structure on the Conformational Stability of IgG Revealed by Hydrogen/Deuterium Exchange and Limited Proteolysis.

    PubMed

    Fang, Jing; Richardson, Jason; Du, Zhimei; Zhang, Zhongqi

    2016-02-16

    Human therapeutic immunoglobulin gamma (IgG) molecules contain an N-glycan on each of their Fc CH2 domains. These glycans include high-mannose, hybrid, and complex types. Recombinant IgG molecules containing high-mannose glycans have been shown to clear faster in human blood, and exhibit decreased thermal stability. The molecular mechanism behind these observations, however, is not well understood. In this work, we used hydrogen/deuterium exchange combined with mass spectrometry (HDX MS), as well as proteolytic degradation under a native-like condition, to assess the impact of different glycoforms on the molecular structure and stability of recombinant IgG1 and IgG2 molecules expressed from Chinese hamster ovary cells. Our HDX MS data indicate that the conformation of these IgG molecules was indeed influenced by the glycan structure. IgG molecules containing high-mannose and hybrid glycans showed more conformational flexibility in the CH2 domain. This conclusion was further supported by the analysis of glycopeptides released from these molecules by trypsin digestion under a native-like condition. The higher CH2 conformational flexibility of IgG molecules with high-mannose and hybrid glycans contributes to their decreased thermal stability. IgG molecules containing sialylated glycans in the CH2 domain exhibited similar enzymatic degradation behavior as high-mannose glycans, suggesting decreased CH2-domain stability compared to shorter complex glycans, likely resulting from steric effect that decreased the glycan-CH2 domain interaction. PMID:26812426

  13. Approach to characterization of the higher order structure of disulfide-containing proteins using hydrogen/deuterium exchange and top-down mass spectrometry.

    PubMed

    Wang, Guanbo; Kaltashov, Igor A

    2014-08-01

    Top-down hydrogen/deuterium exchange (HDX) with mass spectrometric (MS) detection has recently matured to become a potent biophysical tool capable of providing valuable information on higher order structure and conformational dynamics of proteins at an unprecedented level of structural detail. However, the scope of the proteins amenable to the analysis by top-down HDX MS still remains limited, with the protein size and the presence of disulfide bonds being the two most important limiting factors. While the limitations imposed by the physical size of the proteins gradually become more relaxed as the sensitivity, resolution and dynamic range of modern MS instrumentation continue to improve at an ever accelerating pace, the presence of the disulfide linkages remains a much less forgiving limitation even for the proteins of relatively modest size. To circumvent this problem, we introduce an online chemical reduction step following completion and quenching of the HDX reactions and prior to the top-down MS measurements of deuterium occupancy of individual backbone amides. Application of the new methodology to the top-down HDX MS characterization of a small (99 residue long) disulfide-containing protein ?2-microglobulin allowed the backbone amide protection to be probed with nearly a single-residue resolution across the entire sequence. The high-resolution backbone protection pattern deduced from the top-down HDX MS measurements carried out under native conditions is in excellent agreement with the crystal structure of the protein and high-resolution NMR data, suggesting that introduction of the chemical reduction step to the top-down routine does not trigger hydrogen scrambling either during the electrospray ionization process or in the gas phase prior to the protein ion dissociation. PMID:24988145

  14. A Binding Site on IL-17A for Inhibitory Macrocycles Revealed by Hydrogen/Deuterium Exchange Mass Spectrometry.

    PubMed

    Espada, Alfonso; Broughton, Howard; Jones, Spencer; Chalmers, Michael J; Dodge, Jeffrey A

    2016-03-10

    Computational assessment of the IL-17A structure identified two distinct binding pockets, the β-hairpin pocket and the α-helix pocket. The β-hairpin pocket was hypothesized to be the site of binding for peptide macrocycles. Support for this hypothesis was obtained using HDX-MS which revealed protection to exchange only within the β-hairpin pocket. This data represents the first direct structural evidence of a small molecule binding site on IL-17A that functions to disrupt the interaction with its receptor. PMID:26854023

  15. Dimerization of the type IV pilin from Pseudomonas aeruginosa strain K122-4 results in increased helix stability as measured by time-resolved hydrogen-deuterium exchange

    PubMed Central

    Lento, Cristina; Wilson, Derek J.; Audette, Gerald F.

    2015-01-01

    Truncated pilin monomers from Pseudomonas aeruginosa strain K122-4 (ΔK122) have been shown to enter a monomer-dimer equilibrium in solution prior to oligomerization into protein nanotubes. Here, we examine the structural changes occurring between the monomeric and dimeric states of ΔK122 using time-resolved hydrogen-deuterium exchange mass spectrometry. Based on levels of deuterium uptake, the N-terminal α-helix and the loop connecting the second and third strands of the anti-parallel β-sheet contribute significantly to pilin dimerization. Conversely, the antiparallel β-sheet and αβ loop region exhibit increased flexibility, while the receptor binding domain retains a rigid conformation in the equilibrium state. PMID:26798830

  16. Isotopic effect study in the LHCD and LHH experiments in hydrogen/deuterium plasmas of the FT-2 tokamak

    SciTech Connect

    Lashkul, S. I.; Altukhov, A. B.; Gusakov, E. Z.; Dyachenko, V. V.; Esipov, L. A.; Irzak, M. A.; Kantor, M. Yu.; Kouprienko, D. V.; Saveliev, A. N.; Shatalin, S. V.; Stepanov, A. Yu.

    2014-02-12

    Results of comparative experimental studies of the efficiency of lower hybrid current drive (LHCD) and lower hybrid heating (LHH) in the FT-2 tokamak in hydrogen and deuterium plasmas are presented. In the new comparative experimental runs in deuterium/hydrogen plasmas suppression of the LHCD and beginning of the interaction of LH waves with ions is controlled by the plasma density rise. Role of parametric instabilities in CD switch-off is considered. In order to analyze the experimentally observed effect of LHCD the GRILL3D and FRTC codes has been used.

  17. Controlling hydrogen scrambling in multiply charged protein ions during collisional activation: implications for top-down hydrogen/deuterium exchange MS utilizing collisional activation in the gas phase.

    PubMed

    Abzalimov, Rinat R; Kaltashov, Igor A

    2010-02-01

    Hydrogen exchange in solution combined with ion fragmentation in the gas phase followed by MS detection emerged in recent years as a powerful tool to study higher order protein structure and dynamics. However, a certain type of ion chemistry in the gas phase, namely, internal rearrangement of labile hydrogen atoms (the so-called hydrogen scrambling), is often cited as a factor limiting the utility of this experimental technique. Although several studies have been carried out to elucidate the roles played by various factors in the occurrence and the extent of hydrogen scrambling, there is still no consensus as to what experimental protocol should be followed to avoid or minimize it. In this study we employ fragmentation of mass-selected subpopulations of protein ions to assess the extent of internal proton mobility prior to dissociation. A unique advantage of tandem MS is that it not only provides a means to map the deuterium content of protein ions whose overall levels of isotope incorporation can be precisely defined by controlling the mass selection window, but also correlates this spatial isotope distribution with such global characteristic as the protein ion charge state. Hydrogen scrambling does not occur when the charge state of the precursor protein ions selected for fragmentation is high. Fragment ions derived from both N- and C-terminal parts of the protein are equally unaffected by scrambling. However, spatial distribution of deuterium atoms obtained by fragmenting low-charge-density protein ions is consistent with a very high degree of scrambling prior to the dissociation events. The extent of hydrogen scrambling is also high when multistage fragmentation is used to probe deuterium incorporation locally. Taken together, the experimental results provide a coherent picture of intramolecular processes occurring prior to the dissociation event and provide guidance for the design of experiments whose outcome is unaffected by hydrogen scrambling. PMID:20055445

  18. Hydrogen/Deuterium Exchange Reflects Binding of Human Centrin 2 to Ca2+ and Xeroderma Pigmentosum Group C Peptide: An Example of EX1 Kinetics

    PubMed Central

    Sperry, Justin B.; Ryan, Zachary C.; Kumar, Rajiv; Gross, Michael L.

    2012-01-01

    Xeroderma pigmentosum (XP) is a genetic disease affecting 1 in 10,000-100,000 and predisposes people to early-age skin cancer, a disease that is increasing. Those with XP have decreased ability to repair UV-induced DNA damage, leading to increased susceptibility of cancerous non-melanomas and melanomas. A vital, heterotrimeric protein complex is linked to the nucleotide excision repair pathway for the damaged DNA. The complex consists of XPC protein, human centrin 2, and RAD23B. One of the members, human centrin 2, is a ubiquitous, acidic, Ca2+-binding protein belonging to the calmodulin superfamily. The XPC protein contains a sequence motif specific for binding to human centrin 2. We report here the Ca2+-binding properties of human centrin 2 and its interaction with the XPC peptide motif. We utilized a region-specific H/D exchange protocol to localize the interaction of the XPC peptide with the C-terminal domain of centrin, the binding of which is different than that of calmodulin complexes. The binding dynamics of human centrin 2 to the XPC peptide in the absence and presence of Ca2+ are revealed by the observation of EX1 H/D exchange regime, indicating that a locally unfolded population exists in solution and undergoes fast H/D exchange. PMID:23439742

  19. A comparative neutronic feasibility study for a hydrogen, deuterium and helium cold neutron sources situated in the center of a nuclear reactor core

    NASA Astrophysics Data System (ADS)

    Chatila, Malek

    A tool was developed to calculate the average cold neutron flux that could be generated for a spherically shaped cold neutron source situated in the center of a nuclear reactor core. The tool also estimates the subsequent nuclear heating of the cold source. The results were compared for three different cold source mediums; hydrogen, deuterium and helium. The tool utilizes the consistent energy dependent P1 equations to generate the fast neutron energy spectrum, the Grueling-Goertzel equations to generate the slow spectrum and the Proton Gas Model to generate the cold energy spectrum. These spectrums are then used to collapse the group constants into three energy groups. The cold flux that can be generated in different mediums is then calculated by utilizing the three energy group constants in SN-6, 2 regions calculations.

  20. ETD in a Traveling Wave Ion Guide at Tuned Z-Spray Ion Source Conditions Allows for Site-Specific Hydrogen/Deuterium Exchange Measurements

    PubMed Central

    Rand, Kasper D.; Pringle, Steven D.; Morris, Michael; Engen, John R.; Brown, Jeffery M.

    2012-01-01

    The recent application of electron transfer dissociation (ETD) to measure the hydrogen exchange of proteins in solution at single-residue resolution (HX-ETD) paves the way for mass spectrometry-based analyses of biomolecular structure at an unprecedented level of detail. The approach requires that activation of polypeptide ions prior to ETD is minimal so as to prevent undesirable gas-phase randomization of the deuterium label from solution (i.e., hydrogen scrambling). Here we explore the use of ETD in a traveling wave ion guide of a quadrupole-time-of-flight (Q-TOF) mass spectrometer with a “Z-spray” type ion source, to measure the deuterium content of individual residues in peptides. We systematically identify key parameters of the Z-spray ion source that contribute to collisional activation and define conditions that allow ETD experiments to be performed in the traveling wave ion guide without gas-phase hydrogen scrambling. We show that ETD and supplemental collisional activation in a subsequent traveling wave ion guide allows for improved extraction of residue-specific deuterium contents in peptides with low charge. Our results demonstrate the feasibility, and illustrate the advantages of performing HX-ETD experiments on a high-resolution Q-TOF instrument equipped with traveling wave ion guides. Determination of parameters of the Z-spray ion source that contribute to ion heating are similarly pertinent to a growing number of MS applications that also rely on an energetically gentle transfer of ions into the gas-phase, such as the analysis of biomolecular structure by native mass spectrometry in combination with gas-phase ion-ion/ion-neutral reactions or ion mobility spectrometry. PMID:21952892

  1. "TOF2H": A precision toolbox for rapid, high density/high coverage hydrogen-deuterium exchange mass spectrometry via an LC-MALDI approach, covering the data pipeline from spectral acquisition to HDX rate analysis

    PubMed Central

    Nikamanon, Pornpat; Pun, Elroy; Chou, Wayne; Koter, Marek D; Gershon, Paul D

    2008-01-01

    Background Protein-amide proton hydrogen-deuterium exchange (HDX) is used to investigate protein conformation, conformational changes and surface binding sites for other molecules. To our knowledge, software tools to automate data processing and analysis from sample fractionating (LC-MALDI) mass-spectrometry-based HDX workflows are not publicly available. Results An integrated data pipeline (Solvent Explorer/TOF2H) has been developed for the processing of LC-MALDI-derived HDX data. Based on an experiment-wide template, and taking an ab initio approach to chromatographic and spectral peak finding, initial data processing is based on accurate mass-matching to fully deisotoped peaklists accommodating, in MS/MS-confirmed peptide library searches, ambiguous mass-hits to non-target proteins. Isotope-shift re-interrogation of library search results allows quick assessment of the extent of deuteration from peaklist data alone. During raw spectrum editing, each spectral segment is validated in real time, consistent with the manageable spectral numbers resulting from LC-MALDI experiments. A semi-automated spectral-segment editor includes a semi-automated or automated assessment of the quality of all spectral segments as they are pooled across an XIC peak for summing, centroid mass determination, building of rates plots on-the-fly, and automated back exchange correction. The resulting deuterium uptake rates plots from various experiments can be averaged, subtracted, re-scaled, error-barred, and/or scatter-plotted from individual spectral segment centroids, compared to solvent exposure and hydrogen bonding predictions and receive a color suggestion for 3D visualization. This software lends itself to a "divorced" HDX approach in which MS/MS-confirmed peptide libraries are built via nano or standard ESI without source modification, and HDX is performed via LC-MALDI using a standard MALDI-TOF. The complete TOF2H package includes additional (eg LC analysis) modules. Conclusion "TOF2H" provides a comprehensive HDX data analysis package that has accelerated the processing of LC-MALDI-based HDX data in the authors' lab from weeks to hours. It runs in a standard MS Windows (XP or Vista) environment, and can be downloaded or obtained from the authors at no cost. PMID:18803853

  2. Hydrogen-Deuterium Exchange Mass Spectrometry Reveals Unique Conformational and Chemical Transformations Occurring upon [4Fe-4S] Cluster Binding in the Type 2 L-Serine Dehydratase from Legionella pneumophila.

    PubMed

    Yan, Yuetian; Grant, Gregory A; Gross, Michael L

    2015-09-01

    The type 2 L-serine dehydratase from Legionella pneumophila (lpLSD) contains a [4Fe-4S](2+) cluster that acts as a Lewis acid to extract the hydroxyl group of L-serine during the dehydration reaction. Surprisingly, the crystal structure shows that all four of the iron atoms in the cluster are coordinated with protein cysteinyl residues and that the cluster is buried and not exposed to solvent. If the crystal structure of lpLSD accurately reflects the structure in solution, then substantial rearrangement at the active site is necessary for the substrate to enter. Furthermore, repair of the oxidized protein when the cluster has degraded would presumably entail exposure of the buried cysteine ligands. Thus, the conformation required for the substrate to enter may be similar to those required for a new cluster to enter the active site. To address this, hydrogen-deuterium exchange combined with mass spectrometry (HDX MS) was used to probe the conformational changes that occur upon oxidative degradation of the Fe-S cluster. The regions that show the most significant differential HDX are adjacent to the cluster location in the holoenzyme or connect regions that are adjacent to the cluster. The observed decrease in flexibility upon cluster binding provides direct evidence that the "tail-in-mouth" conformation observed in the crystal structure also occurs in solution and that the C-terminal peptide is coordinated to the [4Fe-4S] cluster in a precatalytic conformation. This observation is consistent with the requirement of an activation step prior to catalysis and the unusually high level of resistance to oxygen-induced cluster degradation. Furthermore, peptide mapping of the apo form under nonreducing conditions revealed the formation of disulfide bonds between C396 and C485 and possibly between C343 and C385. These observations provide a picture of how the cluster loci are stabilized and poised to receive the cluster in the apo form and the requirement for a reduction step during cluster formation. PMID:26266572

  3. Hydrogen-Exchange Mass Spectrometry for the Study of Intrinsic Disorder in Proteins

    PubMed Central

    Balasubramaniam, Deepa; Komives, Elizabeth A.

    2012-01-01

    Amide hydrogen/deuterium exchange detected by mass spectrometry (HXMS) is seeing wider use for the identification of intrinsically disordered parts of proteins. In this review, we discuss examples of how discovery of intrinsically disordered regions and their removal can aid in structure determination, biopharmaceutical quality control, the characterization of how posttranslational modifications affect weak structuring of disordered regions, the study of coupled folding and binding, and the characterization of amyloid formation. PMID:23099262

  4. Excited state muon transfer in hydrogen/deuterium mixtures

    SciTech Connect

    Lauss, B.; Ackerbauer, P.; Breunlich, W.H.; Gartner, B.; Jeitler, M.; Kammel, P.; Marton, J.; Prymas, W.; Zmeskal, J.; Chatellard, D.; Egger, J.; Jeannet, E.; Daniel, H.; Kosak, A.; Hartmann, F.J.; Petitjean, C.

    1996-06-01

    We report the first direct observation of excited state muon transfer in hydrogen/deuterium mixtures by direct measurement of {ital q}{sub 1{ital s}}, the probability that a {mu}{ital p} atom, which is initially formed in an excited state, reaches the 1{ital s} ground state. The dependence of {ital q}{sub 1{ital s}} on deuterium concentration {ital c}{sub {ital d}} was measured for two different densities at cryogenic temperatures using charge coupled devices to detect the muonic x rays. First results based on the analysis of the {ital K}{sub {alpha}} lines of the two isotopes are presented. {copyright} {ital 1996 The American Physical Society.}

  5. Diffusion of hydrogen, deuterium, and tritium in niobium

    SciTech Connect

    Matusiewicz, Gerald Robert

    1981-01-01

    The diffusion of hydrogen in niobium was investigated over the temperature range 148 to 500 degrees Kelvin, using measurements of the elastic after effect caused by long range diffusion (the Gorsky Effect). Relaxation curves for pure annealed niobium were generally not of the single exponential form expected from the Gorsky Effect theory, but were described well by a sum of two exponential curves with different amplitudes and relaxation times. The effects of oxygen and nitrogen interstitials on the diffusion were studied and were not in agreement with conventional trapping models. Deuterium and tritium diffusion in niobium were also studied, and a non-classical isotope effect was observed. Hydrogen diffusion coefficients in several Nb-Ta alloys were measured, and the diffusivity in all these alloys exhibited a non-Arrhenius temperature dependence. Experimental results were compared to several models for diffusion and trapping. A model is presented which can account for the form of the relaxation curves observed in pure, annealed niobium.

  6. Computation of hyperfine energies of hydrogen, deuterium and tritium quantum dots

    NASA Astrophysics Data System (ADS)

    Çakır, Bekir; Özmen, Ayhan; Yakar, Yusuf

    2016-01-01

    The hyperfine energies and hyperfine constants of the ground and excited states of hydrogen, deuterium and tritium quantum dots(QDs) are calculated. Quantum genetic algorithm (QGA) and Hartree-Fock-Roothaan (HFR) methods are employed to calculate the unperturbed wave functions and energy eigenvalues. The results show that in the medium and strong confinement regions the hyperfine energy and hyperfine constant are strongly affected by dot radius, impurity charge, electron spin orientation, impurity spin and impurity magnetic moment. Besides, in all dot radii, the hyperfine splitting and hyperfine constant of the confined hydrogen and tritium atoms are approximately equivalent to each other and they are greater than the confined deuterium atom.

  7. The ground state properties of spin-aligned atomic hydrogen, deuterium, and tritium

    NASA Technical Reports Server (NTRS)

    Etters, R. D.; Dugan, J. V., Jr.; Palmer, R. W.

    1975-01-01

    The internal energy, pressure, and compressibility of ground-state, spin-aligned atomic hydrogen, deuterium, and tritium are calculated assuming that all pair interactions occur via the atomic triplet (spin-aligned) potential. The conditions required to obtain atomic hydrogen and its isotopes in bulk are discussed; such a development would be of value in propulsion systems because of the light mass and energetic recombination of atomic hydrogen. Results show that atomic triplet hydrogen and deuterium remain gaseous at 0 K, and that tritium forms a liquid with a binding energy of approximately -0.75 K per atom at a molar volume of 130 cu cm per mole. The pair distribution function for these systems is calculated, and the predicted superfluid behavior of atomic triplet hydrogen and tritium is briefly discussed.

  8. H/D exchange and mass spectrometry in the studies of protein conformation and dynamics: Is there a need for a top-down approach?

    PubMed Central

    Kaltashov, Igor A.; Bobst, Cedric E.; Abzalimov, Rinat R.

    2009-01-01

    Hydrogen/deuterium exchange (HDX) combined with mass spectrometry (MS) detection has matured in recent years to become a powerful tool in structural biology and biophysics. Several limitations of this technique can and will be addressed by tapping into ever expanding arsenal of methods to manipulate ions in the gas phase offered by mass spectrometry. PMID:19694441

  9. Quantum interference effects in laser spectroscopy of muonic hydrogen, deuterium, and helium-3

    NASA Astrophysics Data System (ADS)

    Amaro, Pedro; Franke, Beatrice; Krauth, Julian J.; Diepold, Marc; Fratini, Filippo; Safari, Laleh; Machado, Jorge; Antognini, Aldo; Kottmann, Franz; Indelicato, Paul; Pohl, Randolf; Santos, Jos Paulo

    2015-08-01

    Quantum interference between energetically close states is theoretically investigated, with the state structure being observed via laser spectroscopy. In this work, we focus on hyperfine states of selected hydrogenic muonic isotopes, and on how quantum interference affects the measured Lamb shift. The process of photon excitation and subsequent photon decay is implemented within the framework of nonrelativistic second-order perturbation theory. Due to its experimental interest, calculations are performed for muonic hydrogen, deuterium, and helium-3. We restrict our analysis to the case of photon scattering by incident linear polarized photons and the polarization of the scattered photons not being observed. We conclude that while quantum interference effects can be safely neglected in muonic hydrogen and helium-3, in the case of muonic deuterium there are resonances with close proximity, where quantum interference effects can induce shifts up to a few percent of the linewidth, assuming a pointlike detector. However, by taking into account the geometry of the setup used by the CREMA collaboration, this effect is reduced to less than 0.2% of the linewidth in all possible cases, which makes it irrelevant at the present level of accuracy.

  10. A polarized hydrogen//deuterium atomic beam source for internal target experiments

    NASA Astrophysics Data System (ADS)

    Szczerba, D.; van Buuren, L. D.; van den Brand, J. F. J.; Bulten, H. J.; Ferro-Luzzi, M.; Klous, S.; Kolster, H.; Lang, J.; Mul, F.; Poolman, H. R.; Simani, M. C.

    2000-12-01

    A high-brightness hydrogen/deuterium atomic beam source is presented. The apparatus, previously used in electron scattering experiments with tensor-polarized deuterium (Ferro-Luzzi et al., Phys. Rev. Lett. 77 (1996) 2630; van den Brand et al., Phys. Rev. Lett. 78 (1997) 1235; Zhou et al., Phys. Rev. Lett. 82 (1998) 687; Bouwhuis et al., Phys. Rev. Lett. 82 (1999) 3755), was configured as a source for internal target experiments to measure single- and double-polarization observables, with either polarized hydrogen or vector/tensor polarized deuterium. The atomic beam intensity was enhanced by a factor of 2.5 by optimizing the Stern-Gerlach focusing system using high tip-field (1.5 T) rare-earth permanent magnets, and by increasing the pumping speed in the beam-formation chamber. Fluxes of (5.90.2)10 16 1H/s were measured in a ?12 mm122 mm compression tube with its entrance at a distance of 27 cm from the last focusing element. The total output flux amounted to (7.60.2)10 16 1H/s.

  11. Performance of a hydrogen/deuterium polarized gas target in a storage ring

    NASA Astrophysics Data System (ADS)

    van Buuren, L. D.; Szczerba, D.; van den Brand, J. F. J.; Bulten, H. J.; Ferro-Luzzi, M.; Klous, S.; Kolster, H.; Lang, J.; Mul, F. A.; Poolman, H. R.; Simani, M. C.

    2001-12-01

    The performance of a high-density polarized hydrogen/deuterium gas target internal to a medium-energy electron storage ring is presented. Compared to our previous electron scattering experiments with tensor-polarized deuterium at NIKHEF (Zhou et al., Nucl. Instr. and Meth. A 378 (1996) 40; Ferro-Luzzi et al., Phys. Rev. Lett. 77 (1996) 2630; Van den Brand et al., Phys. Rev. Lett. 78 (1997) 1235; Bouwhuis et al., Phys. Rev. Lett. 82 (1999) 687; Zhou et al., Phys. Rev. Lett. 82 (1999) 687) the target figure of merit, ( polarization) 2 luminosity, was improved by more than an order of magnitude. The target density was increased by upgrading the flux of nuclear-polarized atoms injected into the storage cell and by using a longer (60 cm) and colder (70 K) storage cell. A maximal target thickness of 1.2 (1.1)0.110 14 nuclei/ cm2 was achieved with deuterium (hydrogen). With typical beam currents of 110 mA, this corresponds to a luminosity of about 8.4 (7.8)0.810 31e- nuclei cm -2 s-1. By reducing the molecular background and using a stronger target guide field, a higher polarization was achieved. The target was used in combination with a 720 MeV polarized electron beam stored in the AmPS ring (NIKHEF) to measure spin observables in electron-proton and electron-deuteron scattering. Scattered electrons were detected in a large acceptance magnetic spectrometer. Ejected hadrons were detected in a single time-of-flight scintillator array. The product of beam and target vector polarization, PePt, was determined from the known spin-correlation parameters of e' p quasi-elastic (or elastic) scattering. With the deuterium (hydrogen) target, values up to PePt=0.490.03 (0.320.03) were obtained with an electron beam polarization of Pe=0.620.04 (0.560.03) as measured with a Compton backscattering polarimeter (Passchier et al., Nucl. Instr. and Meth. A 414 (1998) 4988). From this, we deduce a cell-averaged target polarization of Pt=0.780.07 (0.580.07), including the dilution by unpolarized molecules.

  12. Investigation of the role of the micro-porous layer in polymer electrolyte fuel cells with hydrogen deuterium contrast neutron radiography.

    PubMed

    Cho, Kyu Taek; Mench, Matthew M

    2012-03-28

    In this study, the high resolution hydrogen-deuterium contrast radiography method was applied to elucidate the impact of the micro-porous layer (MPL) on water distribution in the porous fuel cell media. At the steady state, deuterium replaced hydrogen in the anode stream, and the large difference in neutron attenuation of the D(2)O produced at the cathode was used to track the produced water. It was found that the water content peaked in the cathode-side diffusion media (DM) for the cell without MPL, but with an MPL on the anode and cathode DM, the peak water amount was pushed toward the anode, resulting in a relatively flattened water profile through components and demonstrating a liquid barrier effect. Additionally, the dynamic water behavior in diffusion media was analyzed to understand the effect of a MPL and operating conditions. The water content in the DM changed with applied current, although there is a significant amount of residual liquid content that does not appear to be part of capillary channels. The effect of the MPL on irreducible saturation in DM and cell performance was also investigated. PMID:22337210

  13. Isotope exchange between gaseous hydrogen and uranium hydride powder

    NASA Astrophysics Data System (ADS)

    Shugard, Andrew D.; Buffleben, George M.; Johnson, Terry A.; Robinson, David B.

    2014-04-01

    Isotope exchange between gaseous hydrogen and solid uranium hydride has been studied by flowing hydrogen (deuterium) gas through packed powder beds of uranium deuteride (hydride). We used a residual gas analyzer system to perform real-time analysis of the effluent gas composition. We also developed an exchange and transport model and, by fitting it to the experimental data, extracted kinetic parameters for the isotope exchange reaction. Our results suggest that, from approximately 70 to 700 kPa and 25 to 400 C, the gas-to-solid exchange rate is controlled by hydrogen and deuterium transport within the ?0.7 ?m diameter uranium hydride particles. We use our kinetic parameters to show that gas chromatographic separation of hydrogen and deuterium using uranium hydride could be feasible.

  14. Stainless-Steel Ball-Milling Method for Hydro-/Deutero-genation using H2 O/D2 O as a Hydrogen/Deuterium Source.

    PubMed

    Sawama, Yoshinari; Kawajiri, Takahiro; Niikawa, Miki; Goto, Ryota; Yabe, Yuki; Takahashi, Tohru; Marumoto, Takahisa; Itoh, Miki; Kimura, Yuuichi; Monguchi, Yasunari; Kondo, Shin-Ichi; Sajiki, Hironao

    2015-11-01

    A one-pot continuous-flow method for hydrogen (deuterium) generation and subsequent hydrogenation (deuterogenation) was developed using a stainless-steel (SUS304)-mediated ball-milling approach. SUS304, especially zero-valent Cr and Ni as constituents of the SUS304, and mechanochemical processing played crucial roles in the development of the reactions. PMID:26493945

  15. Measurements of kinetic isotope effects and hydrogen/deuterium distributions over methane oxidative coupling catalysts

    SciTech Connect

    Nelson, P.F.; Lukey, C.A. ); Cant, N.W. )

    1989-11-01

    The kinetic isotope effect for CH{sub 4} compared to that for CD{sub 4} has been measured for the oxidative coupling reaction of methane over Li/MgO, SrCO{sub 3}, and Sm{sub 2}O{sub 3} catalysts in a flow reactor. Each catalyst gave results consistent with C-H bond breaking being the slow step. For temperatures between 680-780 C over Li/MgO, k{sub H}/k{sub D} decreased slightly with temperature. The isotope effect for ethane production was more sensitive to the level of conversion and declined from 1.8 at low conversion to near unity under conditions where the ethylene to ethane ratio was high ({approximately}1). Selectivities to hydrocarbons were lower with CD{sub 4} and did not change with decreased flow rates, implying that either CO{sub x} and C{sub 2} products arise by totally separate slow steps or, if a common step with CH{sub 3} radicals is involved, then CO{sub x} formation occurs on the catalyst. Experiments with CH{sub 4}/CD{sub 4} mixtures showed that CH{sub 3}CD{sub 3} and CH{sub 2}CD{sub 2} were the dominant mixed products. The distribution of the ethanes always reflected the relative concentrations of CH{sub 3} and CD{sub 3} determined by the kinetic isotope effect. At low ethylene to total C{sub 2} ratios ({approximately}0.2) this was also true for ethylene; but at higher ratios substantial exchange to produce ethylenes other than C{sub 2}H{sub 4}, CH{sub 2}CD{sub 2}, and C{sub 2}D{sub 4} occurred. The concentration of the exchanged methanes correlated with total methane conversion but was dependent on the surface. Exchange in the ethylenes also correlated with exchange in the methanes and purely gas phase processes appear at least partially responsible. H{sub 2}:HD:D{sub 2} ratios are always at equilibrium and exchange also occurs between CD{sub 4} and H{sub 2}.

  16. A critical compilation of experimental data on spectral lines and energy levels of hydrogen, deuterium, and tritium

    SciTech Connect

    Kramida, A.E.

    2010-11-15

    For more than 50 years, Charlotte Moore's compilation of atomic energy levels and its subsequent revisions have been the standard source of reference data for the spectra of hydrogen and its isotopes. In those publications, theoretical data based on quantum-electrodynamic calculations have been given. This reflects the fact that the theory of the hydrogen spectrum has been perfected to an extent far exceeding the capabilities of the best measurements. However, rapid advances in the techniques of laser spectroscopy and optical frequency metrology have recently put experiments on a par with theory in terms of precision. This calls for construction of new comprehensive data sets for H, D, and T that summarize the latest experimental work and can be directly compared with the modern theoretical reference data. The present work compiles several tens of recent measurements of the hydrogen, deuterium, and tritium fine and hyperfine structure intervals and presents sets of energy levels and Ritz wavelengths derived from those measurements. Data exist for the fine structure of energy levels of hydrogen and deuterium up to principal quantum number n = 12. For higher lying levels, there are many observed lines with unresolved fine structure. From those observations, level centers (centers of the fine structure) are derived by a least-squares optimization, and Ritz wavelengths of series with upper levels up to n = 40 are obtained. For tritium, the n = 2 and 3 energy level intervals are derived from experimental observations.

  17. Determination of hydrogen/deuterium ratio with neutron measurements on MAST.

    PubMed

    Klimek, I; Cecconello, M; Sharapov, S E; Harrison, J; Ericsson, G

    2014-11-01

    On MAST, compressional Alfvn eigenmodes can be destabilized by the presence of a sufficiently large population of energetic particles in the plasma. This dependence was studied in a series of very similar discharges in which increasing amounts of hydrogen were puffed into a deuterium plasma. A simple method to estimate the isotopic ratio nH/nD using neutron emission measurements is here described. The inferred isotopic ratio ranged from 0.0 to 0.6 and no experimental indication of changes in radial profile of nH/nD were observed. These findings are confirmed by TRANSP/NUBEAM simulations of the neutron emission. PMID:25430288

  18. Determination of hydrogen/deuterium ratio with neutron measurements on MAST

    NASA Astrophysics Data System (ADS)

    Klimek, I.; Cecconello, M.; Sharapov, S. E.; Harrison, J.; Ericsson, G.

    2014-11-01

    On MAST, compressional Alfvn eigenmodes can be destabilized by the presence of a sufficiently large population of energetic particles in the plasma. This dependence was studied in a series of very similar discharges in which increasing amounts of hydrogen were puffed into a deuterium plasma. A simple method to estimate the isotopic ratio nH/nD using neutron emission measurements is here described. The inferred isotopic ratio ranged from 0.0 to 0.6 and no experimental indication of changes in radial profile of nH/nD were observed. These findings are confirmed by TRANSP/NUBEAM simulations of the neutron emission.

  19. Palladium(0)-Catalyzed Methylcyclopropanation of Norbornenes with Vinyl Bromides and Mechanism Study.

    PubMed

    Mao, Jiangang; Xie, Hujun; Bao, Weiliang

    2015-08-01

    An unusual methylcyclopropanation from [2 + 1] cycloadditions of vinyl bromides to norbornenes catalyzed by Pd(OAc)2/PPh3 in the presence of CH3ONa and CH3OH has been established. A methylcyclopropane subunit was installed by a 3-fold domino procedure involving a key protonation course. Preliminary deuterium-labeling studies revealed that the proton came from methyl of CH3OH and also exposed an additional hydrogen/deuterium exchange process. These two proton-concerned reactions were fully chemoselective. PMID:26197032

  20. Detection of weak hydrogen bonding to fluoro and nitro groups in solution using H/D exchange.

    PubMed

    Shugrue, C R; DeFrancisco, J R; Metrano, A J; Brink, B D; Nomoto, R S; Linton, B R

    2016-02-21

    Hydrogen/deuterium (H/D) exchange can be a sensitive technique for measuring the strength of hydrogen bonding to neutral organic nitro and fluoro groups. The slower rates of reaction in comparison to suitable controls suggest that hydrogen bonding is present, albeit rather weak. PMID:26782121

  1. Tuning a High Transmission Ion Guide to Prevent Gas-Phase Proton Exchange During H/D Exchange MS Analysis

    NASA Astrophysics Data System (ADS)

    Guttman, Miklos; Wales, Thomas E.; Whittington, Dale; Engen, John R.; Brown, Jeffery M.; Lee, Kelly K.

    2016-01-01

    Hydrogen/deuterium exchange (HDX) mass spectrometry (MS) for protein structural analysis has been adopted for many purposes, including biopharmaceutical development. One of the benefits of examining amide proton exchange by mass spectrometry is that it can readily resolve different exchange regimes, as evidenced by either binomial or bimodal isotope patterns. By careful analysis of the isotope pattern during exchange, more insight can be obtained on protein behavior in solution. However, one must be sure that any observed bimodal isotope patterns are not artifacts of analysis and are reflective of the true behavior in solution. Sample carryover and certain stationary phases are known as potential sources of bimodal artifacts. Here, we describe an additional undocumented source of deuterium loss resulting in artificial bimodal patterns for certain highly charged peptides. We demonstrate that this phenomenon is predominantly due to gas-phase proton exchange between peptides and bulk solvent within the initial stages of high-transmission conjoined ion guides. Minor adjustments of the ion guide settings, as reported here, eliminate the phenomenon without sacrificing signal intensity. Such gas-phase deuterium loss should be appreciated for all HDX-MS studies using such ion optics, even for routine studies not focused on interpreting bimodal spectra.

  2. Tuning a High Transmission Ion Guide to Prevent Gas-Phase Proton Exchange During H/D Exchange MS Analysis.

    PubMed

    Guttman, Miklos; Wales, Thomas E; Whittington, Dale; Engen, John R; Brown, Jeffery M; Lee, Kelly K

    2016-04-01

    Hydrogen/deuterium exchange (HDX) mass spectrometry (MS) for protein structural analysis has been adopted for many purposes, including biopharmaceutical development. One of the benefits of examining amide proton exchange by mass spectrometry is that it can readily resolve different exchange regimes, as evidenced by either binomial or bimodal isotope patterns. By careful analysis of the isotope pattern during exchange, more insight can be obtained on protein behavior in solution. However, one must be sure that any observed bimodal isotope patterns are not artifacts of analysis and are reflective of the true behavior in solution. Sample carryover and certain stationary phases are known as potential sources of bimodal artifacts. Here, we describe an additional undocumented source of deuterium loss resulting in artificial bimodal patterns for certain highly charged peptides. We demonstrate that this phenomenon is predominantly due to gas-phase proton exchange between peptides and bulk solvent within the initial stages of high-transmission conjoined ion guides. Minor adjustments of the ion guide settings, as reported here, eliminate the phenomenon without sacrificing signal intensity. Such gas-phase deuterium loss should be appreciated for all HDX-MS studies using such ion optics, even for routine studies not focused on interpreting bimodal spectra. Graphical Abstract ᅟ. PMID:26810432

  3. Quantitative Assessment of Protein Structural Models by Comparison of H/D Exchange MS Data with Exchange Behavior Accurately Predicted by DXCOREX

    PubMed Central

    Liu, Tong; Pantazatos, Dennis; Li, Sheng; Hamuro, Yoshitomo; Hilser, Vincent J.; Woods, Virgil L.

    2013-01-01

    Peptide amide hydrogen/deuterium exchange mass spectrometry (DXMS) data are often used to qualitatively support models for protein structure. We have developed and validated a method (DXCOREX) by which exchange data can be used to quantitatively assess the accuracy of 3-D models of protein structure. The method utilizes the COREX algorithm to predict a proteins amide hydrogen exchange rates by reference to a hypothesized structure, and these values are used to generate a virtual data set (deuteron incorporation per peptide) that can be quantitatively compared to the deuteration level of the peptide probes measured by hydrogen exchange experimentation. The accuracy of DXCOREX was established in studies performed with thirteen proteins for which both high-resolution structures and experimental data were available. The DXCOREX-calculated and experimental data for each protein was highly correlated. We then employed correlation analysis of DXCOREX-calculated vs. DXMS experimental data to assess the accuracy of a recently proposed structural model for the catalytic domain of a Ca2+- independent phospholipase A2. The models calculated exchange behavior was highly correlated with the experimental exchange results available for the protein, supporting the accuracy of the proposed model. This method of analysis will substantially increase the precision with which experimental hydrogen exchange data can help decipher challenging questions regarding protein structure and dynamics. PMID:22012689

  4. Quantitative Assessment of Protein Structural Models by Comparison of H/D Exchange MS Data with Exchange Behavior Accurately Predicted by DXCOREX

    NASA Astrophysics Data System (ADS)

    Liu, Tong; Pantazatos, Dennis; Li, Sheng; Hamuro, Yoshitomo; Hilser, Vincent J.; Woods, Virgil L.

    2012-01-01

    Peptide amide hydrogen/deuterium exchange mass spectrometry (DXMS) data are often used to qualitatively support models for protein structure. We have developed and validated a method (DXCOREX) by which exchange data can be used to quantitatively assess the accuracy of three-dimensional (3-D) models of protein structure. The method utilizes the COREX algorithm to predict a protein's amide hydrogen exchange rates by reference to a hypothesized structure, and these values are used to generate a virtual data set (deuteron incorporation per peptide) that can be quantitatively compared with the deuteration level of the peptide probes measured by hydrogen exchange experimentation. The accuracy of DXCOREX was established in studies performed with 13 proteins for which both high-resolution structures and experimental data were available. The DXCOREX-calculated and experimental data for each protein was highly correlated. We then employed correlation analysis of DXCOREX-calculated versus DXMS experimental data to assess the accuracy of a recently proposed structural model for the catalytic domain of a Ca2+-independent phospholipase A2. The model's calculated exchange behavior was highly correlated with the experimental exchange results available for the protein, supporting the accuracy of the proposed model. This method of analysis will substantially increase the precision with which experimental hydrogen exchange data can help decipher challenging questions regarding protein structure and dynamics.

  5. HK97 Maturation Studied by Crystallography and H/[superscript 2]H Exchange Reveals the Structural Basis for Exothermic Particle Transitions

    SciTech Connect

    Gertsman, Ilya; Komives, Elizabeth A.; Johnson, John E.

    2010-03-22

    HK97 is an exceptionally amenable system for characterizing major conformational changes associated with capsid maturation in double-stranded DNA bacteriophage. HK97 undergoes a capsid expansion of {approx}20%, accompanied by major subunit rearrangements during genome packaging. A previous 3.44-{angstrom}-resolution crystal structure of the mature capsid Head II and cryo-electron microscopy studies of other intermediate expansion forms of HK97 suggested that, primarily, rigid-body movements facilitated the maturation process. We recently reported a 3.65-{angstrom}-resolution structure of the preexpanded particle form Prohead II (P-II) and found that the capsid subunits undergo significant refolding and twisting of the tertiary structure to accommodate expansion. The P-II study focused on major twisting motions in the P-domain and on refolding of the spine helix during the transition. Here we extend the crystallographic comparison between P-II and Head II, characterizing the refolding events occurring in each of the four major domains of the capsid subunit and their effect on quaternary structure stabilization. In addition, hydrogen/deuterium exchange, coupled to mass spectrometry, was used to characterize the structural dynamics of three distinct capsid intermediates: P-II, Expansion Intermediate, and the nearly mature Head I. Differences in the solvent accessibilities of the seven quasi-equivalent capsid subunits, attributed to differences in secondary and quaternary structures, were observed in P-II. Nearly all differences in solvent accessibility among subunits disappear after the first transition to Expansion Intermediate. We show that most of the refolding is coupled to this transformation, an event associated with the transition from asymmetric to symmetric hexamers.

  6. Cryogenic tritium-hydrogen-deuterium and deuterium-tritium layer implosions with high density carbon ablators in near-vacuum hohlraums

    NASA Astrophysics Data System (ADS)

    Meezan, N. B.; Berzak Hopkins, L. F.; Le Pape, S.; Divol, L.; MacKinnon, A. J.; Döppner, T.; Ho, D. D.; Jones, O. S.; Khan, S. F.; Ma, T.; Milovich, J. L.; Pak, A. E.; Ross, J. S.; Thomas, C. A.; Benedetti, L. R.; Bradley, D. K.; Celliers, P. M.; Clark, D. S.; Field, J. E.; Haan, S. W.; Izumi, N.; Kyrala, G. A.; Moody, J. D.; Patel, P. K.; Ralph, J. E.; Rygg, J. R.; Sepke, S. M.; Spears, B. K.; Tommasini, R.; Town, R. P. J.; Biener, J.; Bionta, R. M.; Bond, E. J.; Caggiano, J. A.; Eckart, M. J.; Gatu Johnson, M.; Grim, G. P.; Hamza, A. V.; Hartouni, E. P.; Hatarik, R.; Hoover, D. E.; Kilkenny, J. D.; Kozioziemski, B. J.; Kroll, J. J.; McNaney, J. M.; Nikroo, A.; Sayre, D. B.; Stadermann, M.; Wild, C.; Yoxall, B. E.; Landen, O. L.; Hsing, W. W.; Edwards, M. J.

    2015-06-01

    High Density Carbon (or diamond) is a promising ablator material for use in near-vacuum hohlraums, as its high density allows for ignition designs with laser pulse durations of <10 ns. A series of Inertial Confinement Fusion (ICF) experiments in 2013 on the National Ignition Facility [Moses et al., Phys. Plasmas 16, 041006 (2009)] culminated in a deuterium-tritium (DT) layered implosion driven by a 6.8 ns, 2-shock laser pulse. This paper describes these experiments and comparisons with ICF design code simulations. Backlit radiography of a tritium-hydrogen-deuterium (THD) layered capsule demonstrated an ablator implosion velocity of 385 km/s with a slightly oblate hot spot shape. Other diagnostics suggested an asymmetric compressed fuel layer. A streak camera-based hot spot self-emission diagnostic (SPIDER) showed a double-peaked history of the capsule self-emission. Simulations suggest that this is a signature of low quality hot spot formation. Changes to the laser pulse and pointing for a subsequent DT implosion resulted in a higher temperature, prolate hot spot and a thermonuclear yield of 1.8 × 1015 neutrons, 40% of the 1D simulated yield.

  7. Cryogenic tritium-hydrogen-deuterium and deuterium-tritium layer implosions with high density carbon ablators in near-vacuum hohlraums

    SciTech Connect

    Meezan, N. B. Hopkins, L. F. Berzak; Pape, S. Le; Divol, L.; MacKinnon, A. J.; Döppner, T.; Ho, D. D.; Jones, O. S.; Khan, S. F.; Ma, T.; Milovich, J. L.; Pak, A. E.; Ross, J. S.; Thomas, C. A.; Benedetti, L. R.; Bradley, D. K.; Celliers, P. M.; Clark, D. S.; Field, J. E.; Haan, S. W.; and others

    2015-06-15

    High Density Carbon (or diamond) is a promising ablator material for use in near-vacuum hohlraums, as its high density allows for ignition designs with laser pulse durations of <10 ns. A series of Inertial Confinement Fusion (ICF) experiments in 2013 on the National Ignition Facility [Moses et al., Phys. Plasmas 16, 041006 (2009)] culminated in a deuterium-tritium (DT) layered implosion driven by a 6.8 ns, 2-shock laser pulse. This paper describes these experiments and comparisons with ICF design code simulations. Backlit radiography of a tritium-hydrogen-deuterium (THD) layered capsule demonstrated an ablator implosion velocity of 385 km/s with a slightly oblate hot spot shape. Other diagnostics suggested an asymmetric compressed fuel layer. A streak camera-based hot spot self-emission diagnostic (SPIDER) showed a double-peaked history of the capsule self-emission. Simulations suggest that this is a signature of low quality hot spot formation. Changes to the laser pulse and pointing for a subsequent DT implosion resulted in a higher temperature, prolate hot spot and a thermonuclear yield of 1.8 × 10{sup 15} neutrons, 40% of the 1D simulated yield.

  8. Exchange Studies as Actor-Networks: Following Korean Exchange Students in Swedish Higher Education

    ERIC Educational Resources Information Center

    Ahn, Song-ee

    2011-01-01

    This article explores how Korean exchange students organized their studies during exchange programs in Swedish higher education. For most students, the programs became a disordered period in relation to their education. The value of exchange studies seems mainly to be extra-curricular. Drawing upon actor network theory, the article argues that the…

  9. Erosion and redeposition behavior of selected NET-candidate materials under high-flux hydrogen, deuterium plasma bombardment in pisces

    NASA Astrophysics Data System (ADS)

    Franconi, E.; Hirooka, Y.; Conn, R. W.; Leung, W. K.; Labombard, B.; Nygren, R. E.

    1989-04-01

    Plasma erosion and redeposition behavior of selected candidate materials for plasma-facing components in the NET-machine have been investigated using the PISCES-A facility. Materials studied include SiC-impregnated graphite, 2D graphite weaves with and without CVD-SiC coatings, and isotropic graphite. These specimens were exposed to continuous hydrogen or deuterium plasmas under the following conditions: electron temperature range from 5 to 35 eV; plasma density range from 5 10 11 to 1 10 12 cm -3; flux range from 5 10 17 to 2 10 18 ions cm -2 s -1; fluence of the order from 10 21 to 10 22 ions/cm 2; bombarding energies of 50 and 100 eV; target temperature range from 300 to 1000C. The erosion yield of SiC-impregnated graphite due to deuterium plasma bombardment is found to be a factor of 2 to 3 less than that of isotropic graphite materials. A further factor of 2-3 reduction in the erosion yield is observed in when redeposition associated with reionization of sputtered particle becomes significant. From post-bombardment surface analysis with AES, the surface composition in terms of the Si/C of SiC-impregnated graphite ratio is found to increase from 0.15 to 0.7 after hydrogen plasma bombardment to a fluence around 4 10 21 ions/cm 2 at 350 C. However, the final surface composition appears to remain unchanged up to 4 10 22 ions/cm 2, the highest fluence in the present study. Significant surface morphological modifications of SiC-impregnated graphite are observed after the high-fluence plasma exposure. Several structural problems such as coating-substrate adhesion have been pointed out for SiC-coated 2D graphite weave.

  10. On the role of atomic metastability in the production of Balmer line radiation from cold atomic hydrogen, deuterium and hydrogenic ion impurities in fusion edge plasmas

    NASA Astrophysics Data System (ADS)

    Hey, J. D.

    2012-03-01

    Published arguments, which assign an important role to atomic metastability in the production of narrow Zeeman component radiation from the boundary region of fusion plasmas, are examined critically in relation to l-redistribution by proton and electron collisions, and mixing of unperturbed atomic states by the ion microfield and microfield gradient. It is concluded that these important processes indeed severely constrain the contribution from metastable states to the generation of the hydrogen Balmer spectra, for electron concentrations above 1012 cm-3, as pointed out before by the present author (Hey et al 1999 J. Phys. B: At. Mol. Opt. Phys. 32 3555). The analysis of collision-induced l-redistribution represents an extension of that used previously (Hey et al 1996 Contrib. Plasma Phys. 36 583), applicable up to higher electron densities. For comparison purposes, we also consider the question of metastability of ionized helium in a low-temperature plasma, and that of some common hydrogenic impurities (C5+ and Ne9+) in a hydrogen (deuterium) fusion plasma. While for low nuclear charge Z the metastability of 2s1/2 levels is quenched by the plasma environment, it is much reduced in high-Z ions owing to the rapid increase with Z of the two-photon electric dipole (2E1) and magnetic dipole (M1) spontaneous transition rates to the ground state, whereas the role of the plasma in these cases is less important. The main new principle elaborated in this work is the sensitivity of atomic line strengths, and hence collision strengths, to perturbation by the plasma environment for transitions between fine-structure sublevels of the same principal quantum number. As the plasma microfield strength grows, allowed transitions diminish in strength, while forbidden transitions grow. However, owing to violation of the parity selection rule, there is an overall loss of collision strength available to transitions, resulting from the appearance of significant self-strength contributions, in accord with the sum rules for the line strengths, which remain valid over the range of fields considered. Thus, the relative effectiveness per perturber of both electron and ion collisions, for inducing population transfer between fine-structure sublevels, diminishes as the sublevels evolve from a fine-structure dominated to a Stark-effect-dominated regime. In the concluding discussion, we mention that this finding may have a bearing on discrepancies claimed between Stark broadening theory developed by Griem (1967 Astrophys. J. 148 547) and by Watson (2006 J. Phys.B: At. Mol. Opt. Phys. 39 1889), and the measurements of Bell and co-workers (2000 Publ. Astron. Soc. Pac. 112 1236; 2011 Astrophys. Space Sci. 335 451) for high-n radio recombination lines from galactic H II regions. In the absence of detailed modelling to test this suggestion, however, it would be premature to attempt to draw any firm conclusions along these lines. This manuscript is dedicated to the memory of my esteemed colleague Dr. rer. nat. Manfred Korten (1940-2010).

  11. The use of spin desalting columns in DMSO-quenched H/D-exchange NMR experiments

    PubMed Central

    Chandak, Mahesh S; Nakamura, Takashi; Takenaka, Toshio; Chaudhuri, Tapan K; Yagi-Utsumi, Maho; Chen, Jin; Kato, Koichi; Kuwajima, Kunihiro

    2013-01-01

    Dimethylsulfoxide (DMSO)-quenched hydrogen/deuterium (H/D)-exchange is a powerful method to characterize the H/D-exchange behaviors of proteins and protein assemblies, and it is potentially useful for investigating non-protected fast-exchanging amide protons in the unfolded state. However, the method has not been used for studies on fully unfolded proteins in a concentrated denaturant or protein solutions at high salt concentrations. In all of the current DMSO-quenched H/D-exchange studies of proteins so far reported, lyophilization was used to remove D2O from the protein solution, and the lyophilized protein was dissolved in the DMSO solution to quench the H/D exchange reactions and to measure the amide proton signals by two-dimensional nuclear magnetic resonance (2D NMR) spectra. The denaturants or salts remaining after lyophilization thus prevent the measurement of good NMR spectra. In this article, we report that the use of spin desalting columns is a very effective alternative to lyophilization for the medium exchange from the D2O buffer to the DMSO solution. We show that the medium exchange by a spin desalting column takes only about 10 min in contrast to an overnight length of time required for lyophilization, and that the use of spin desalting columns has made it possible to monitor the H/D-exchange behavior of a fully unfolded protein in a concentrated denaturant. We report the results of unfolded ubiquitin in 6.0M guanidinium chloride. PMID:23339068

  12. Hydrogen Isotope Exchange of Chlorinated Ethylenes in Aqueous Solution: Possibly a Termolecular Liquid Phase Reaction.

    PubMed

    Gabričević, Mario; Lente, Gábor; Fábián, István

    2015-12-24

    This work reports an experimental study of the hydrogen/deuterium exchange in the basic aqueous solutions of trichloroethylene, trans-1,2-dichloroethylene, and cis-1,2-dichloroethylene using (1)H NMR as a monitoring method. 1,1-Dichlorethylene was also investigated but found not to exchange hydrogen isotopes with water. The kinetics of isotope exchange features two different pathways, the first is first order with respect to hydroxide ion, whereas the second is second order. The first pathway is interpreted as a straightforward bimolecular reaction between chloroethylene and hydroxide ion, which leads to the deprotonation of chloroethylene. The second pathway involves a transition state with the association of one molecule of the chloroethylene and two hydroxide ions. It is shown that the second pathway could involve the formation of a precursor complex composed of one chloroethylene molecule and one hydroxide ion, but a direct termolecular elementary reaction is also feasible, which is shown by deriving a theoretical highest limit for the rate constants of termolecular reactions in solution. PMID:26618984

  13. Signatures of the electron saddle swaps mechanism in the photon spectra following charge-exchange collisions

    NASA Astrophysics Data System (ADS)

    Otranto, Sebastian

    2014-10-01

    During the last few years, several experimental and theoretical studies have focused on state selective charge exchange processes between charged ions and alkali metals. These data are of particular importance for the tokamak nuclear fusion reactor program, since diagnostics on the plasma usually rely on charge-exchange spectroscopy. In this sense, alkali metals, have been proposed as potential alternatives to excited hydrogen/deuterium for which laboratory experiments are not feasible at present. In this talk, we present our recent work involving ion collisions with alkali metals. Oscillatory structures in the angular differential charge-exchange cross sections obtained using the MOTRIMS technique are correctly described by classical trajectory Monte Carlo simulations. These oscillations are found to originate from the number of swaps the electron undergoes around the projectile-target potential saddle before capture takes place and are very prominent at impact energies below 10 keV/amu. Moreover, cross sections of higher order of differentiability also indicate that the swaps leave distinctive signatures in the (n,l)-state selective cross sections and in the photon line emission cross sections. Oscillatory structures for the x-ray hardness ratio parameter are also predicted. In collaboration with Ronnie Hoekstra, Zernike Institute for Advanced Materials, University of Groningen and Ronald Olson, Department of Physics, Missouri University of Science and Technology.

  14. Kinetics of deuterium exchange on resorcinol in D{sub 2}O at high pressure and high temperature

    SciTech Connect

    Bai, S.; Palmer, B.J.; Yonker, C.R.

    2000-01-13

    The kinetics of deuteration of resorcinol in pure D{sub 2}O were studied for the first time using a flow-through capillary tubular reactor with on-line, proton, and deuterium NMR detection at high temperatures and high pressure. The global rate constants for hydrogen/deuterium (H/D) exchange were determined from temperatures of 200--450 C (723 K) at a pressure of {approximately}400 bar (the critical temperature and pressure of water are 374.2 C and 218.3 bar, respectively). The H/D exchange rate in resorcinol (1,3-dihydroxybenzene) under these extreme conditions was determined using proton NMR as a function of the resorcinol residence time in a capillary tubular reactor, which also served as a high-pressure NMR cell. The {sup 1}H and {sup 2}H NMR results indicate that H/D exchange in resorcinol for the ring protons was observed at temperatures as low as 200 C. The kinetics of H/D exchange in resorcinol and the activation energy was extracted from the experimental {sup 1}H NMR data.

  15. Columnar studies with selective ion exchange

    SciTech Connect

    McGarvey, F.X.; Gottlieb, M.C.

    1981-12-01

    Secondary recovery of oil using water or steam injection to pressurize the strata has highlighted the water softening process using acidic cation exchangers which are regenerated with brine followed by a polishing weakly acidic cation exchanger. Development of a program to produce bries with low hardness suitable for secondary oil recovery is described. Results of laboratory tests with various resins for softening brines are presented. Calculations for a typical plant using Ionac SR-1 to soften a 25% brine are included. (BLM)

  16. EXCHANGE

    SciTech Connect

    Boltz, J.C.

    1992-09-01

    EXCHANGE is published monthly by the Idaho National Engineering Laboratory (INEL), a multidisciplinary facility operated for the US Department of Energy (DOE). The purpose of EXCHANGE is to inform computer users about about recent changes and innovations in both the mainframe and personal computer environments and how these changes can affect work being performed at DOE facilities.

  17. Hydrogen isotope exchanges between water and methanol in interstellar ices

    NASA Astrophysics Data System (ADS)

    Faure, A.; Faure, M.; Theulé, P.; Quirico, E.; Schmitt, B.

    2015-12-01

    The deuterium fractionation of gas-phase molecules in hot cores is believed to reflect the composition of interstellar ices. The deuteration of methanol is a major puzzle, however, because the isotopologue ratio [CH2DOH]/[CH3OD], which is predicted to be equal to 3 by standard grain chemistry models, is much larger (~20) in low-mass hot corinos and significantly lower (~1) in high-mass hot cores. This dichotomy in methanol deuteration between low-mass and massive protostars is currently not understood. In this study, we report a simplified rate equation model of the deuterium chemistry occurring in the icy mantles of interstellar grains. We apply this model to the chemistry of hot corinos and hot cores, with IRAS 16293-2422 and the Orion KL Compact Ridge as prototypes, respectively. The chemistry is based on a statistical initial deuteration at low temperature followed by a warm-up phase during which thermal hydrogen/deuterium (H/D) exchanges occur between water and methanol. The exchange kinetics is incorporated using laboratory data. The [CH2DOH]/[CH3OD] ratio is found to scale inversely with the D/H ratio of water, owing to the H/D exchange equilibrium between the hydroxyl (-OH) functional groups of methanol and water. Our model is able to reproduce the observed [CH2DOH]/[CH3OD] ratios provided that the primitive fractionation of water ice [HDO]/[H2O] is ~2% in IRAS 16293-2422 and ~0.6% in Orion KL. We conclude that the molecular D/H ratios measured in hot cores may not be representative of the original mantles because molecules with exchangeable deuterium atoms can equilibrate with water ice during the warm-up phase.

  18. Commercial Ion Exchange Resin Vitrification Studies

    SciTech Connect

    Cicero-Herman, C.A

    2002-06-28

    In the nuclear industry, ion exchange resins are used for purification of aqueous streams. The major contaminants of the resins are usually the radioactive materials that are removed from the aqueous streams. The use of the ion exchange resins creates a waste stream that can be very high in both organic and radioactive constituents. Therefore, disposal of the spent resin often becomes an economic problem because of the large volumes of resin produced and the relatively few technologies that are capable of economically stabilizing this waste. Vitrification of this waste stream presents a reasonable disposal alternative because of its inherent destruction capabilities, the volume reductions obtainable, and the durable product that it produces.

  19. High temperature heat exchanger studies for applications to gas turbines

    NASA Astrophysics Data System (ADS)

    Min, June Kee; Jeong, Ji Hwan; Ha, Man Yeong; Kim, Kui Soon

    2009-12-01

    Growing demand for environmentally friendly aero gas-turbine engines with lower emissions and improved specific fuel consumption can be met by incorporating heat exchangers into gas turbines. Relevant researches in such areas as the design of a heat exchanger matrix, materials selection, manufacturing technology, and optimization by a variety of researchers have been reviewed in this paper. Based on results reported in previous studies, potential heat exchanger designs for an aero gas turbine recuperator, intercooler, and cooling-air cooler are suggested.

  20. Cooperative Atmosphere-Surface Exchange Study-1999.

    NASA Astrophysics Data System (ADS)

    Moeng, Chin-Hoh; Poulos, Gregory S.; Lemone, Margaret A.

    2003-10-01

    Surface-station, radiosonde, and Doppler minisodar data from the Cooperative Atmosphere-Surface Exchange Study-1997 (CASES-97) field project, collected in a 60-km-wide array in the lower Walnut River watershed (terrain variation 150 m) southeast of Wichita, Kansas, are used to study the relationship of the change of the 2-m potential temperature 2m with station elevation ze, 2m/ze ,ze to the ambient wind and thermal stratification /z ,z during fair-weather nights. As in many previous studies, predawn 2m varies linearly with ze, and ,ze ,z over a depth h that represents the maximum elevation range of the stations. Departures from the linear 2m-elevation relationship (,ze line) are related to vegetation (cool for vegetation, warm for bare ground), local terrain (drainage flows from nearby hills, although a causal relationship is not established), and the formation of a cold pool at lower elevations on some days.The near-surface flow and its evolution are functions of the Froude number Fr = S/(Nh), where S is the mean wind speed from the surface to h, and N is the corresponding Brunt-Visl frequency. The near-surface wind is coupled to the ambient flow for Fr = 3.3, based on where the straight line relating ,ze to ln Fr intersects the ln Fr axis. Under these conditions, 2m is constant horizontally even though ,z > 0, suggesting that near-surface air moves up- and downslope dry adiabatically. However, 2m cools (or warms) everywhere at the same rate. The lowest Froude numbers are associated with drainage flows, while intermediate values characterize regimes with intermediate behavior. The evolution of 2m horizontal variability ? through the night is also a function of the predawn Froude number. For the nights with the lowest Fr, the ? maximum occurs in the last 1-3 h before sunrise. For nights with Fr 3.3 (,ze 0) and for intermediate values, ? peaks 2-3 h after sunset. The standard deviations relative to the ,ze line reach their lowest values in the last hours of darkness. Thus, it is not surprising that the relationships of ,ze to Fr and ,z based on data through the night show more scatter, and ,ze 0.5,z in contrast to the predawn relationship. However, ,ze

  1. Quadrupole ion trap study of ion-ion chemistry of multiple-charged ions

    SciTech Connect

    Herron, W.J.; Goeringer, D.E.; McLuckey, S.A.

    1995-12-31

    The gas phase ion chemistry of multiply-charged biological polymers, such as oligonucleotides and proteins is a new and growing field of research. Understanding the gas phase chemistry of these species is important both to obtaining information on ion mass, structure and reactivity and to determining the relationship between gas phase and condensed phase chemistry. Gas phase ion chemistry studies to date have principally emphasized unimolecular fragmentation following some form of activation and ion-molecule chemistry, primarily proton transfer and hydrogen/deuterium exchange. The experiments described here constitute an important first step in understanding the ion-ion chemistry associated with the reactions of multiply-charged ions with oppositely charged ions in the gas phase.

  2. Protein-like proton exchange in a synthetic host cavity.

    PubMed

    Hart-Cooper, William M; Sgarlata, Carmelo; Perrin, Charles L; Toste, F Dean; Bergman, Robert G; Raymond, Kenneth N

    2015-12-15

    The mechanism of proton exchange in a metal-ligand enzyme active site mimic (compound 1) is described through amide hydrogen-deuterium exchange kinetics. The type and ratio of cationic guest to host in solution affect the rate of isotope exchange, suggesting that the rate of exchange is driven by a host whose cavity is occupied by water. Rate constants for acid-, base-, and water-mediated proton exchange vary by orders of magnitude depending on the guest, and differ by up to 200 million-fold relative to an alanine polypeptide. These results suggest that the unusual microenvironment of the cavity of 1 can dramatically alter the reactivity of associated water by magnitudes comparable to that of enzymes. PMID:26621709

  3. Microscopic insight into role of protein flexibility during ion exchange chromatography by nuclear magnetic resonance and quartz crystal microbalance approaches.

    PubMed

    Hao, Dongxia; Ge, Jia; Huang, Yongdong; Zhao, Lan; Ma, Guanghui; Su, Zhiguo

    2016-03-18

    Driven by the prevalent use of ion exchange chromatography (IEC) for polishing therapeutic proteins, many rules have been formulated to summarize the different dependencies between chromatographic data and various operational parameters of interest based on statically determined interactions. However, the effects of the unfolding of protein structures and conformational stability are not as well understood. This study focuses on how the flexibility of proteins perturbs retention behavior at the molecular scale using microscopic characterization approaches, including hydrogen-deuterium (H/D) exchange detected by NMR and a quartz crystal microbalance (QCM). The results showed that a series of chromatographic retention parameters depended significantly on the adiabatic compressibility and structural flexibility of the protein. That is, softer proteins with higher flexibility tended to have longer retention times and stronger affinities on SP Sepharose adsorbents. Tracing the underlying molecular mechanism using NMR and QCM indicated that an easily unfolded flexible protein with a more compact adsorption layer might contribute to the longer retention time on adsorbents. The use of NMR and QCM provided a previously unreported approach for elucidating the effect of protein structural flexibility on binding in IEC systems. PMID:26896917

  4. Studies of inertial deposition of particles onto heat exchanger elements

    SciTech Connect

    Fuhs, S.E.

    1988-01-01

    This thesis examines gas-side fouling mechanisms in heat exchangers that involve the inertial impaction of small particles onto tubular exchanger surfaces. An aerosol processes wind tunnel was constructed that facilitates quantitative studies of particle interactions with heat-exchanger surfaces. Three sets of experiments were performed. First, single heat-exchanger tubes were exposed to a cross flow of particle-laden air. Stainless steel tubes coated with a thin layer of grease to ensure that particle collisions resulted in capture were used to verify a numerical model for the inertial transport of ammonium fluorescein particles to the tube surface. Particle bound was quantified for the case of clean tubes and solid particles. Second, the transient deposition of particles onto single heat-exchanger tubes in cross flow was studied. It was found that a steady-state condition could be reached for cases in which particle bounce occurred. Finally, the deposition patterns for the aerosol particles as they passed through a tube bank were studied. The quantities of aerosol deposited on various tubes depended on tube surface condition, tube position within the tube bank, and the overall geometry of the bank. Using these findings, heat exchangers can be designed that will resist gas-side fouling.

  5. Proton translocation in cytochrome c oxidase: insights from proton exchange kinetics and vibrational spectroscopy.

    PubMed

    Ishigami, Izumi; Hikita, Masahide; Egawa, Tsuyoshi; Yeh, Syun-Ru; Rousseau, Denis L

    2015-01-01

    Cytochrome c oxidase is the terminal enzyme in the electron transfer chain. It reduces oxygen to water and harnesses the released energy to translocate protons across the inner mitochondrial membrane. The mechanism by which the oxygen chemistry is coupled to proton translocation is not yet resolved owing to the difficulty of monitoring dynamic proton transfer events. Here we summarize several postulated mechanisms for proton translocation, which have been supported by a variety of vibrational spectroscopic studies. We recently proposed a proton translocation model involving proton accessibility to the regions near the propionate groups of the heme a and heme a3 redox centers of the enzyme based by hydrogen/deuterium (H/D) exchange Raman scattering studies (Egawa et al., PLoS ONE 2013). To advance our understanding of this model and to refine the proton accessibility to the hemes, the H/D exchange dependence of the heme propionate group vibrational modes on temperature and pH was measured. The H/D exchange detected at the propionate groups of heme a3 takes place within a few seconds under all conditions. In contrast, that detected at the heme a propionates occurs in the oxidized but not the reduced enzyme and the H/D exchange is pH-dependent with a pKa of ~8.0 (faster at high pH). Analysis of the thermodynamic parameters revealed that, as the pH is varied, entropy/enthalpy compensation held the free energy of activation in a narrow range. The redox dependence of the possible proton pathways to the heme groups is discussed. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems. PMID:25268561

  6. Proton Translocation in Cytochrome c Oxidase: Insights from Proton Exchange Kinetics and Vibrational Spectroscopy

    PubMed Central

    Ishigami, Izumi; Hikita, Masahide; Egawa, Tsuyoshi; Yeh, Syun-Ru; Rousseau, Denis L.

    2014-01-01

    Cytochrome c oxidase is the terminal enzyme in the electron transfer chain. It reduces oxygen to water and harnesses the released energy to translocate protons across the inner mitochondrial membrane. The mechanism by which the oxygen chemistry is coupled to proton translocation is not yet resolved owing to the difficulty of monitoring dynamic proton transfer events. Here we summarize several postulated mechanisms for proton translocation, which have been supported by a variety of vibrational spectroscopic studies. We recently proposed a proton translocation model involving proton accessibility to the regions near the propionate groups of the heme a and heme a3 redox centers of the enzyme based by hydrogen/deuterium (H/D) exchange Raman scattering studies (Egawa et al., PLOS ONE 2013). To advance our understanding of this model and to refine the proton accessibility to the hemes, the H/D exchange dependence of the heme propionate group vibrational modes on temperature and pH was measured. The H/D exchange detected at the propionate groups of heme a3 takes place within a few seconds under all conditions. In contrast, that detected at the heme a propionates occurs in the oxidized but not the reduced enzyme and the H/D exchange is pH-dependent with a pKa of ~8.0 (faster at high pH). Analysis of the thermodynamic parameters revealed that, as the pH is varied, entropy/enthalpy compensation held the free energy of activation in a narrow range. The redox dependence of the possible proton pathways to the heme groups is discussed. PMID:25268561

  7. Ligand exchange in quaternary alloyed nanocrystals--a spectroscopic study.

    PubMed

    Gabka, Grzegorz; Bujak, Piotr; Giedyk, Kamila; Kotwica, Kamil; Ostrowski, Andrzej; Malinowska, Karolina; Lisowski, Wojciech; Sobczak, Janusz W; Pron, Adam

    2014-11-14

    Exchange of initial, predominantly stearate ligands for pyridine in the first step and butylamine (BA) or 11-mercaptoundecanoic acid (MUA) in the second one was studied for alloyed quaternary Cu-In-Zn-S nanocrystals. The NMR results enabled us to demonstrate, for the first time, direct binding of the pyridine labile ligand to the nanocrystal surface as evidenced by paramagnetic shifts of the three signals attributed to its protons to 7.58, 7.95 and 8.75 ppm. XPS investigations indicated, in turn, a significant change in the composition of the nanocrystal surface upon the exchange of initial ligands for pyridine, which being enriched in indium in the 'as prepared' form became enriched in zinc after pyridine binding. This finding indicated that the first step of ligand exchange had to involve the removal of the surface layer enriched in indium with simultaneous exposure of a new, zinc-enriched layer. In the second ligand exchange step (replacement of pyridine with BA or MUA) the changes in the nanocrystal surface compositions were much less significant. The presence of zinc in the nanocrystal surface layer turned out necessary for effective binding of pyridine as shown by a comparative study of ligand exchange in Cu-In-Zn-S, Ag-In-Zn-S and CuInS2, carried out by complementary XPS and NMR investigations. PMID:25252174

  8. A piloted simulation study of data link ATC message exchange

    NASA Technical Reports Server (NTRS)

    Waller, Marvin C.; Lohr, Gary W.

    1989-01-01

    Data link Air Traffic Control (ATC) and Air Traffic Service (ATS) message and data exchange offers the potential benefits of increased flight safety and efficiency by reducing communication errors and allowing more information to be transferred between aircraft and ground facilities. Digital communication also presents an opportunity to relieve the overloading of ATC radio frequencies which hampers message exchange during peak traffic hours in many busy terminal areas. A piloted simulation study to develop pilot factor guidelines and assess potential flight crew benefits and liabilities from using data link ATC message exchange was completed. The data link ATC message exchange concept, implemented on an existing navigation computer Control Display Unit (CDU) required maintaining a voice radio telephone link with an appropriate ATC facility. Flight crew comments, scanning behavior, and measurements of time spent in ATC communication activities for data link ATC message exchange were compared to similar measures for simulated conventional voice radio operations. The results show crew preference for the quieter flight deck environment and a perception of lower communication workload.

  9. Use of SAR in Regional Methane Exchange Studies

    NASA Technical Reports Server (NTRS)

    Morrissey, L. A.; Livingston, G. P.; Durden, S. L.

    1994-01-01

    Significant sources of uncertainty in global trace gas budgets are due to lack of knowledge concerning the areal and temporal extent of source and sink areas. Synthetic aperture radar (SAR) is particularly suited to studies of northern ecosystems because of its all-weather operating capability which enables the acquisition of seasonal data. As key controls on methane exchange, the ability to differentiate major vegetation communities, inundation, and leaf area index (LAI) with satellite and airborne SAR data would increase the accuracy and precision of regional and seasonal estimates of methane exchange. The utility of SAR data for monitoring key controls on methane emissions from Arctic and boreal ecosystems is examined.

  10. HEAT EXCHANGER DESIGN STUDIES FOR AN LHC INNER TRIPLET UPGRADE

    SciTech Connect

    Rabehl, R. J.; Huang, Y.

    2008-03-16

    A luminosity upgrade of the CERN Large Hadron Collider (LHC) is planned to coincide with the expected end of life of the existing inner triplet quadrupole magnets. The upgraded inner triplet will have much larger heat loads to be removed from the magnets by the cryogenics system. A number of cryogenics design studies have been completed under the LHC Accelerator Research Program (LARP), including investigations of required heat exchanger characteristics to transfer this heat from the pressurized He II bath to the saturated He II system. This paper discusses heat exchangers both external to the magnet cold mass and internal to the magnet cold mass. A possible design for a heat exchanger external to the magnet cold mass is also presented.

  11. TRACER STUDY OF VERTICAL EXCHANGE BY CUMULUS CLOUDS

    EPA Science Inventory

    The exchange of material by convective cloud processes between the mixed layer and the overlying free troposphere is examined. The paper describes results of a field experiment that was conducted in Lexington, Kentucky during the period from July 20 to August 24, 1983 to study th...

  12. Distinguishing direct binding interactions from allosteric effects in the proteaseHK97 prohead I ? domain complex by amide H/D exchange mass spectrometry

    PubMed Central

    Krishnamurthy, S; Veesler, D; Khayat, R; Snijder, J; Huang, Rk; Heck, AJR; Johnson, Je; Anand, GS

    2014-01-01

    A major question in mapping protein-ligand or protein-protein interactions in solution is to distinguish direct-binding interactions from long-range conformational changes at allosteric sites. We describe here the applicability of amide hydrogen deuterium exchange mass spectrometry (HDXMS) in addressing this important question using the bacteriophage HK97 capsid proteins interactions with their processing protease. HK97 is a lambda-like dsDNA bacteriophage that is ideal for studies of particle assembly and maturation. Its capsid precursor protein is composed of two main regions, the scaffolding protein (?-domain, residues 2-103), and the coat subunit (residues 104-385), which spontaneously forms a mixture of hexamers and pentamers upon association. Activation of the viral protease, which occurs after particle assembly, is initiated by the protease mediated digestion of the scaffolding domains to yield Prohead-2. This irreversible step is obligatory for activation of the virus maturation pathway. Here we provide an addendum to our previous study of Prohead I and Prohead I+pro (a transient complex of Prohead I and the protease) where we investigated the interactions between the ? domain and the packaged protease using HDXMS. Our results revealed two sites on the ? domain: one set of contiguous peptides that showed decreased exchange at the protease binding site at early time points of deuterium labeling and another separate set of continuous peptides that showed decreased exchange at later time points. Even though this cannot reveal the time scales of molecular processes governing binding and allostery, we believe this differential pattern of exchange across deuteration times can allow spatial distinction between binding sites and long range conformational changes with allosteric implications. This partitioning can be discerned from the lag between noncontiguous regions on a protein showing maximal changes in deuterium exchange and highlights a powerful application of HDXMS in distinguishing direct binding in transient protein-protein interactions from allosteric changes.

  13. Conformational characterization of the charge variants of a human IgG1 monoclonal antibody using H/D exchange mass spectrometry

    PubMed Central

    Tang, Liangjie; Sundaram, Shanmuuga; Zhang, Jingming; Carlson, Ping; Matathia, Alice; Parekh, Babita; Zhou, Qinwei; Hsieh, Ming-Ching

    2013-01-01

    MAb1, a human IgG1 monoclonal antibody produced in a NS0 cell line, exhibits charge heterogeneity because of the presence of variants formed by processes such as N-terminal glutamate cyclization, C-terminal lysine truncation, deamidation, aspartate isomerization and sialylation in the carbohydrate moiety. Four major charge variants of MAb1 were isolated and the conformations of these charge variants were studied using hydrogen/deuterium exchange mass spectrometry, including the H/D exchange time course (HX-MS) and the stability of unpurified proteins from rates of H/D exchange (SUPREX) techniques. HX-MS was used to evaluate the conformation and solution dynamics of MAb1 charge variants by measuring their deuterium buildup over time at the peptide level. The SUPREX technique evaluated the unfolding profile and relative stability of the charge variants by measuring the exchange properties of globally protected amide protons in the presence of a chemical denaturant. The H/D exchange profiles from both techniques were compared among the four charge variants of MAb1. The two techniques together offered extensive understanding about the local and subglobal/global unfolding of the charge variants of MAb1. Our results demonstrated that all four charge variants of MAb1 were not significantly different in conformation, solution dynamics and chemical denaturant-induced unfolding profile and stability, which aids in understanding the biofunctions of the molecules. The analytical strategy used for conformational characterization may also be applicable to comparability studies done for antibody therapeutics. PMID:23222183

  14. Conformational characterization of the charge variants of a human IgG1 monoclonal antibody using H/D exchange mass spectrometry.

    PubMed

    Tang, Liangjie; Sundaram, Shanmuuga; Zhang, Jingming; Carlson, Ping; Matathia, Alice; Parekh, Babita; Zhou, Qinwei; Hsieh, Ming-Ching

    2013-01-01

    MAb1, a human IgG1 monoclonal antibody produced in a NS0 cell line, exhibits charge heterogeneity because of the presence of variants formed by processes such as N-terminal glutamate cyclization, C-terminal lysine truncation, deamidation, aspartate isomerization and sialylation in the carbohydrate moiety. Four major charge variants of MAb1 were isolated and the conformations of these charge variants were studied using hydrogen/deuterium exchange mass spectrometry, including the H/D exchange time course (HX-MS) and the stability of unpurified proteins from rates of H/D exchange (SUPREX) techniques. HX-MS was used to evaluate the conformation and solution dynamics of MAb1 charge variants by measuring their deuterium buildup over time at the peptide level. The SUPREX technique evaluated the unfolding profile and relative stability of the charge variants by measuring the exchange properties of globally protected amide protons in the presence of a chemical denaturant. The H/D exchange profiles from both techniques were compared among the four charge variants of MAb1. The two techniques together offered extensive understanding about the local and subglobal/global unfolding of the charge variants of MAb1. Our results demonstrated that all four charge variants of MAb1 were not significantly different in conformation, solution dynamics and chemical denaturant-induced unfolding profile and stability, which aids in understanding the biofunctions of the molecules. The analytical strategy used for conformational characterization may also be applicable to comparability studies done for antibody therapeutics. PMID:23222183

  15. Separation of organic ion exchange resins from sludge -- engineering study

    SciTech Connect

    Duncan, J.B.

    1998-08-25

    This engineering study evaluates the use of physical separation technologies to separate organic ion exchange resin from KE Basin sludge prior to nitric acid dissolution. This separation is necessitate to prevent nitration of the organics in the acid dissolver. The technologies under consideration are: screening, sedimentation, elutriation. The recommended approach is to first screen the Sludge and resin 300 microns then subject the 300 microns plus material to elutriation.

  16. Ultrahigh vacuum scanning tunneling microscopy nanofabrication and hydrogen/deuterium desorption from silicon surfaces: implications for complementary metal oxide semiconductor technology

    NASA Astrophysics Data System (ADS)

    Lyding, J. W.; Hess, K.; Abeln, G. C.; Thompson, D. S.; Moore, J. S.; Hersam, M. C.; Foley, E. T.; Lee, J.; Chen, Z.; Hwang, S. T.; Choi, H.; Avouris, Ph.; Kizilyalli, I. C.

    1998-06-01

    The development of ultrahigh vacuum-scanning tunneling microscopy (UHV-STM)-based nanofabrication capability for hydrogen passivated silicon surfaces has opened new opportunities for selective chemical processing, down to the atomic scale. The chemical contrast between clean and H-passivated Si(100) surfaces has been used to achieve nanoscale selective oxidation, nitridation, molecular functionalization, and metallization by thermal chemical vapor deposition (CVD). Further understanding of the hydrogen desorption mechanisms has been gained by extending the studies to deuterated surfaces. In these experiments, it was discovered that deuterium is nearly two orders of magnitude more difficult to desorb than hydrogen in the electronic desorption regime. This giant isotope effect provided the basis for an idea that has since led to the extension of complementary metal oxide semiconductor (CMOS) transistor lifetimes by factors of 10 or greater. Low temperature hydrogen and deuterium desorption experiments were performed to gain further insight into the underlying physical mechanisms. The desorption shows no temperature dependence in the high energy electronic desorption regime. However, in the low energy vibrational heating regime, hydrogen is over two orders of magnitude easier to desorb at 11 K than at room temperature. The enhanced desorption in the low temperature vibrational regime has enabled the quantification of a dramatic increase in the deuterium isotope effect at low voltages. These results may have direct implications for low voltage and/or low temperature scaled CMOS operation.

  17. John Locke's seed lists: a case study in botanical exchange.

    PubMed

    Harris, Stephen A; Anstey, Peter R

    2009-12-01

    This paper gives a detailed analysis of four seed lists in the journals of John Locke. These lists provide a window into a fascinating open network of botanical exchange in the early 1680s which included two of the leading botanists of the day, Pierre Magnol of Montpellier and Jacob Bobart the Younger of Oxford. The provenance and significance of the lists are assessed in relation to the relevant extant herbaria and plant catalogues from the period. The lists and associated correspondence provide the main evidence for Locke's own important, though modest contribution to early modern botany, a contribution which he would have regarded as a small part of the broader project of constructing a natural history of plants. They also provide a detailed case study of the sort of open and informal network of knowledge exchange in the early modern period that is widely recognised by historians of science, but all too rarely illustrated. PMID:19917484

  18. Competing Noncovalent Host-guest Interactions and H/D Exchange: Reactions of Benzyloxycarbonyl-Proline Glycine Dipeptide Variants with ND3

    NASA Astrophysics Data System (ADS)

    Miladi, Mahsan; Olaitan, Abayomi D.; Zekavat, Behrooz; Solouki, Touradj

    2015-11-01

    A combination of density functional theory calculations, hydrogen/deuterium exchange (HDX) reactions, ion mobility-mass spectrometry, and isotope labeling tandem mass spectrometry was used to study gas-phase "host-guest" type interactions of a benzyloxycarbonyl (Z)-capped proline (P) glycine (G) model dipeptide (i.e., Z-PG) and its various structural analogues with ND3. It is shown that in a solvent-free environment, structural differences between protonated and alkali metal ion (Na+, K+, or Cs+)-complexed species of Z-PG affect ND3 adduct formation. Specifically, [Z-PG + H]+ and [Z-PG-OCH3 + H]+ formed gas-phase ND3 adducts ([Z-PG (or Z-PG-OCH3) + H + ND3]+) but no ND3 adducts were observed for [Z-PG + alkali metal]+ or [Z-PG + H - CO2]+. Experimentally measured and theoretically calculated collision cross sections (CCSs) of protonated and alkali metal ion-complexed Z-PG species showed similar trends that agreed with the observed structural differences from molecular modeling results. Moreover, results from theoretical ND3 affinity calculations were consistent with experimental HDX observations, indicating a more stable ND3 adduct for [Z-PG + H]+ compared to [Z-PG + alkali metal]+ species. Molecular modeling and experimental MS results for [Z-PG + H]+ and [Z-PG + alkali metal]+ suggest that optimized cation-π and hydrogen bonding interactions of carbonyl groups in final products are important for ND3 adduct formation.

  19. Combining H/D exchange mass spectroscopy and computational docking reveals extended DNA-binding surface on uracil-DNA glycosylase.

    PubMed

    Roberts, Victoria A; Pique, Michael E; Hsu, Simon; Li, Sheng; Slupphaug, Geir; Rambo, Robert P; Jamison, Jonathan W; Liu, Tong; Lee, Jun H; Tainer, John A; Ten Eyck, Lynn F; Woods, Virgil L

    2012-07-01

    X-ray crystallography provides excellent structural data on protein-DNA interfaces, but crystallographic complexes typically contain only small fragments of large DNA molecules. We present a new approach that can use longer DNA substrates and reveal new protein-DNA interactions even in extensively studied systems. Our approach combines rigid-body computational docking with hydrogen/deuterium exchange mass spectrometry (DXMS). DXMS identifies solvent-exposed protein surfaces; docking is used to create a 3-dimensional model of the protein-DNA interaction. We investigated the enzyme uracil-DNA glycosylase (UNG), which detects and cleaves uracil from DNA. UNG was incubated with a 30 bp DNA fragment containing a single uracil, giving the complex with the abasic DNA product. Compared with free UNG, the UNG-DNA complex showed increased solvent protection at the UNG active site and at two regions outside the active site: residues 210-220 and 251-264. Computational docking also identified these two DNA-binding surfaces, but neither shows DNA contact in UNG-DNA crystallographic structures. Our results can be explained by separation of the two DNA strands on one side of the active site. These non-sequence-specific DNA-binding surfaces may aid local uracil search, contribute to binding the abasic DNA product and help present the DNA product to APE-1, the next enzyme on the DNA-repair pathway. PMID:22492624

  20. Combining H/D exchange mass spectroscopy and computational docking reveals extended DNA-binding surface on uracil-DNA glycosylase

    PubMed Central

    Roberts, Victoria A.; Pique, Michael E.; Hsu, Simon; Li, Sheng; Slupphaug, Geir; Rambo, Robert P.; Jamison, Jonathan W.; Liu, Tong; Lee, Jun H.; Tainer, John A.; Ten Eyck, Lynn F.; Woods, Virgil L.

    2012-01-01

    X-ray crystallography provides excellent structural data on proteinDNA interfaces, but crystallographic complexes typically contain only small fragments of large DNA molecules. We present a new approach that can use longer DNA substrates and reveal new proteinDNA interactions even in extensively studied systems. Our approach combines rigid-body computational docking with hydrogen/deuterium exchange mass spectrometry (DXMS). DXMS identifies solvent-exposed protein surfaces; docking is used to create a 3-dimensional model of the proteinDNA interaction. We investigated the enzyme uracil-DNA glycosylase (UNG), which detects and cleaves uracil from DNA. UNG was incubated with a 30 bp DNA fragment containing a single uracil, giving the complex with the abasic DNA product. Compared with free UNG, the UNGDNA complex showed increased solvent protection at the UNG active site and at two regions outside the active site: residues 210220 and 251264. Computational docking also identified these two DNA-binding surfaces, but neither shows DNA contact in UNGDNA crystallographic structures. Our results can be explained by separation of the two DNA strands on one side of the active site. These non-sequence-specific DNA-binding surfaces may aid local uracil search, contribute to binding the abasic DNA product and help present the DNA product to APE-1, the next enzyme on the DNA-repair pathway. PMID:22492624

  1. Interlayer diffusion studies of a Laves phase exchange spring superlattice.

    PubMed

    Wang, C; Kohn, A; Wang, S G; Ward, R C C

    2011-03-23

    Rare earth Laves phase (RFe(2)) superlattice structures grown at different temperatures are studied using x-ray reflectivity (XRR), x-ray diffraction, and transmission electron microscopy. The optimized molecular beam epitaxy growth condition is matched with the XRR simulation, showing minimum diffusion/roughness at the interfaces. Electron microscopy characterization reveals that the epitaxial growth develops from initial 3D islands to a high quality superlattice structure. Under this optimum growth condition, chemical analysis by electron energy loss spectroscopy with high spatial resolution is used to study the interface. The analysis shows that the interface roughness is between 0.6 and 0.8 nm and there is no significant interlayer diffusion. The locally sharp interface found in this work explains the success of simple structural models in predicting the magnetic reversal behavior of Laves exchange spring superlattices. PMID:21358021

  2. Studying MHC class I peptide loading and exchange in vitro.

    PubMed

    Bouvier, Marlene

    2013-01-01

    In the endoplasmic reticulum (ER), MHC class I molecules associate with several specialized proteins, forming a large macromolecular complex referred to as the "peptide-loading complex" (PLC). In the PLC, antigenic peptides undergo a stringent selection process for binding onto MHC class I molecules. This ensures that the immune system elicits robust CD8+ T-cell responses to viruses and solid tumors. The ability to reconstitute in vitro MHC class I molecules in association with key proteins of the PLC provides a mean for studying at the molecular level how antigenic peptides are selected for presentation to CD8+ T-cells. Here, we describe practical procedures for generating a cell-free system involving MHC class I molecules and tapasin, a critical protein of the PLC, that can be used as a versatile tool for biochemical and mechanistic studies of peptide loading and exchange. PMID:23329480

  3. Mass Spectrometric Approaches to Study Protein Structure and Interactions in Lyophilized Powders

    PubMed Central

    Topp, Elizabeth M.

    2015-01-01

    Amide hydrogen/deuterium exchange (ssHDX-MS) and side-chain photolytic labeling (ssPL-MS) followed by mass spectrometric analysis can be valuable for characterizing lyophilized formulations of protein therapeutics. Labeling followed by suitable proteolytic digestion allows the protein structure and interactions to be mapped with peptide-level resolution. Since the protein structural elements are stabilized by a network of chemical bonds from the main-chains and side-chains of amino acids, specific labeling of atoms in the amino acid residues provides insight into the structure and conformation of the protein. In contrast to routine methods used to study proteins in lyophilized solids (e.g., FTIR), ssHDX-MS and ssPL-MS provide quantitative and site-specific information. The extent of deuterium incorporation and kinetic parameters can be related to rapidly and slowly exchanging amide pools (Nfast, Nslow) and directly reflects the degree of protein folding and structure in lyophilized formulations. Stable photolytic labeling does not undergo back-exchange, an advantage over ssHDX-MS. Here, we provide detailed protocols for both ssHDX-MS and ssPL-MS, using myoglobin (Mb) as a model protein in lyophilized formulations containing either trehalose or sorbitol. PMID:25938927

  4. An Effective Deuterium Exchange Method for Neutron Crystal Structure Analysis with Unfolding-Refolding Processes.

    PubMed

    Kita, Akiko; Morimoto, Yukio

    2016-02-01

    A method of hydrogen/deuterium (H/D) exchange with an unfolding-refolding process has been applied to hen egg-white lysozyme (HWL), and accurate evaluation of its deuteration was carried out by time-of-flight mass spectroscopy. Neutron crystallography requires a suitable crystal with enough deuterium exchanged in the protein to decrease incoherent scattering from hydrogens. It is very expensive to prepare a fully deuterated protein, and therefore a simple H/D exchange technique is desirable for this purpose. Acid or base addition to protein solutions with heating effectively increased the number of deuterium up to more than 20% of that of all hydrogen atoms, and refolded structures were determined by X-ray structure analysis at 1.8 resolution. Refolded HWL had increased deuterium content in its protein core and its native structure, determined at atomic resolution, was fully preserved. PMID:26718545

  5. Ion temperatures in HIP-1 and SUMMA from charge-exchange neutral optical emission spectra

    NASA Technical Reports Server (NTRS)

    Patch, R. W.; Lauver, M. R.

    1976-01-01

    Ion temperatures were obtained from observations of the H sub alpha, D sub alpha, and He 587.6 nm lines emitted from hydrogen, deuterium, and helium plasmas in the SUMMA and HIP-1 mirror devices at Lewis Research Center. Steady state discharges were formed by applying a radially inward dc electric field between cylindrical or annular anodes and hollow cathodes located at the peaks of the mirrors. The ion temperatures were found from the Doppler broadening of the charge-exchange components of spectral lines. A statistical method was developed for obtaining scaling relations of ion temperature as a function of current, voltage, and magnetic flux density. Derivations are given that take into account triangular monochromator slit functions, loss cones, and superimposed charge-exchange processes. In addition, the Doppler broadening was found to be sensitive to the influence of drift on charge-exchange cross section. The effects of finite ion-cyclotron radius, cascading, and delayed emission are reviewed.

  6. Monte Carlo study of double exchange interaction in manganese oxide

    NASA Astrophysics Data System (ADS)

    Naa, Christian Fredy; Suprijadi, Viridi, Sparisoma; Fasquelle, Didier; Djamal, Mitra

    2015-09-01

    In this paper we study the magnetoresistance properties attributed by double exchange (DE) interaction in manganese oxide by Monte Carlo simulation. We construct a model based on mixed-valence Mn3+ and Mn4+ on the general system of Re2/3Ae1/3MnO3 in two dimensional system. The conduction mechanism is based on probability of eg electrons hopping from Mn3+ to Mn4+. The resistivity dependence on temperature and the external magnetic field are presented and the validity with related experimental results are discussed. We use the resistivity power law to fit our data on metallic region and basic activated behavior on insulator region. On metallic region, we found our result agree well with the quantum theory of DE interaction. From general arguments, we found our simulation agree qualitatively with experimental results.

  7. Fragmentation of doubly-protonated peptide ion populations labeled by H/D exchange with CD3OD

    NASA Astrophysics Data System (ADS)

    Herrmann, Kristin A.; Kuppannan, Krishna; Wysocki, Vicki H.

    2006-03-01

    Doubly-protonated bradykinin (RPPGFSPFR) and an angiotensin III analogue (RVYIFPF) were subjected to hydrogen/deuterium (H/D) exchange with CD3OD in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. A bimodal distribution of deuterium incorporation was present for bradykinin after H/D exchange for 90 s at a CD3OD pressure of 4 10-7 Torr, indicating the existence of at least two distinct populations. Bradykinin ion populations corresponding to 0-2 and 5-11 deuteriums (i.e., D0, D1, D2, D5, D6, D7, D8, D9, D10, and D11) were each monoisotopically selected and fragmented via sustained off-resonance irradiation (SORI) collision-induced dissociation (CID). The D0-D2 ion populations, which correspond to the slower exchanging population, consistently require lower SORI amplitude to achieve a similar precursor ion survival yield as the faster-reacting (D5-D11) populations. These results demonstrate that conformation/protonation motif has an effect on fragmentation efficiency for bradykinin. Also, the partitioning of the deuterium atoms into fragment ions suggests that the C-terminal arginine residue exchanges more rapidly than the N-terminal arginine. Total deuterium incorporation in the b1/y8 and b2/y7 ion pairs matches very closely the theoretical values for all ion populations studied, indicating that the ions of a complementary pair are likely formed during the same fragmentation event, or that no scrambling occurs upon SORI. Deuterium incorporation into the y1/a8 pseudo-ion pair does not closely match the expected theoretical values. The other peptide, doubly-protonated RVYIFPF, has a trimodal distribution of deuterium incorporation upon H/D exchange with CD3OD at a pressure of 1 10-7 Torr for 600 s, indicating at least three distinct ion populations. After 90 s of H/D exchange where at least two distinct populations are detected, the D0-D7 ion populations were monoisotopically selected and fragmented via SORI-CID over a range of SORI amplitudes. The precursor ion survival yield as a function of SORI amplitude falls into two distinct behaviors corresponding to slower- and faster-reacting ion populations. The slower-reacting population requires larger SORI amplitudes to achieve the same precursor ion survival yield as the faster exchanging population. Total deuterium incorporation into the y2/b5 ion pairs matches closely the theoretical values over all ion populations and SORI amplitudes studied. This result indicates the y2 and b5 ions are likely formed by the same mechanism over the SORI amplitudes studied.

  8. Technology Solutions Case Study: Foundation Heat Exchanger, Oak Ridge, Tennessee

    SciTech Connect

    2014-03-01

    The foundation heat exchanger, developed by Oak Ridge National Laboratory, is a new concept for a cost-effective horizontal ground heat exchanger that can be connected to water-to-water or water-to-air heat pump systems for space conditioning as well as domestic water heating.

  9. TGA and DTA studies of solvent-exchanged gels

    SciTech Connect

    Leeb, K.; Durakpasa, H.; Breiter, M.W.

    1994-12-31

    Sols were prepared in the system TMOS:H{sub 2}O:SOLV:HCl with molar ratios of 1:4:3:0.0005 for SOLV = MEOH, ETOH and DMF. The gelation and aging of these sols took place in cuvettes covered by parafilm. The gels were removed from the cuvettes 14 days after gelation. Solvent exchange was carried out in each of the three solvents for a period of 14 days. Starting with fresh solvent, the exchange was repeated three times. TGA and DTA curves were taken with pieces of the original gels and of gels after the 2nd and 3rd solvent exchange. The TGA curves display a considerable weight loss in the temperature range of solvent evaporation. A small step is observed at higher temperatures if MEOH or ETOH represent the exchange solvent. The DTA curves allow a distinction what mixtures of solvents are present. The effectiveness of the solvent exchange can be evaluated.

  10. Protein structural dynamics at the gas/water interface examined by hydrogen exchange mass spectrometry.

    PubMed

    Xiao, Yiming; Konermann, Lars

    2015-08-01

    Gas/water interfaces (such as air bubbles or foam) are detrimental to the stability of proteins, often causing aggregation. This represents a potential problem for industrial processes, for example, the production and handling of protein drugs. Proteins possess surfactant-like properties, resulting in a high affinity for gas/water interfaces. The tendency of previously buried nonpolar residues to maximize contact with the gas phase can cause significant structural distortion. Most earlier studies in this area employed spectroscopic tools that could only provide limited information. Here we use hydrogen/deuterium exchange (HDX) mass spectrometry (MS) for probing the conformational dynamics of the model protein myoglobin (Mb) in the presence of N(2) bubbles. HDX/MS relies on the principle that unfolded and/or highly dynamic regions undergo faster deuteration than tightly folded segments. In bubble-free solution Mb displays EX2 behavior, reflecting the occurrence of short-lived excursions to partially unfolded conformers. A dramatically different behavior is seen in the presence of N(2) bubbles; EX2 dynamics still take place, but in addition the protein shows EX1 behavior. The latter results from interconversion of the native state with conformers that are globally unfolded and long-lived. These unfolded species likely correspond to Mb that is adsorbed to the surface of gas bubbles. N(2) sparging also induces aggregation. To explain the observed behavior we propose a simple model, that is, "semi-unfolded" ? "native" ? "globally unfolded" ? "aggregated". This model quantitatively reproduces the experimentally observed kinetics. To the best of our knowledge, the current study marks the first exploration of surface denaturation phenomena by HDX/MS. PMID:25761782

  11. Study on heat transfer of heat exchangers in the Stirling engine - Performance of heat exchangers in the test Stirling engine

    NASA Astrophysics Data System (ADS)

    Kanzaka, Mitsuo; Iwabuchi, Makio

    1992-11-01

    The heat transfer performance of the actual heat exchangers obtained from the experimental results of the test Stirling engine is presented. The heater for the test engine has 120 heat transfer tubes that consist of a bare-tube part and a fin-tube part. These tubes are located around the combustion chamber and heated by the combustion gas. The cooler is the shell-and-tube-type heat exchanger and is chilled by water. It is shown that the experimental results of heat transfer performance of the heater and cooler of the test Stirling engine are in good agreement with the results calculated by the correlation proposed in our previous heat transfer study under the periodically reversing flow condition. Our correlation is thus confirmed to be applicable to the evaluation of the heat transfer coefficient and the thermal design of the heat exchangers in the Stirling engine.

  12. Study of transient behavior of finned coil heat exchangers

    NASA Technical Reports Server (NTRS)

    Rooke, S. P.; Elissa, M. G.

    1993-01-01

    The status of research on the transient behavior of finned coil cross-flow heat exchangers using single phase fluids is reviewed. Applications with available analytical or numerical solutions are discussed. Investigation of water-to-air type cross-flow finned tube heat exchangers is examined through the use of simplified governing equations and an up-wind finite difference scheme. The degenerate case of zero air-side capacitance rate is compared with available exact solution. Generalization of the numerical model is discussed for application to multi-row multi-circuit heat exchangers.

  13. Study of transient behavior of finned coil heat exchangers

    NASA Astrophysics Data System (ADS)

    Rooke, S. P.; Elissa, M. G.

    1993-11-01

    The status of research on the transient behavior of finned coil cross-flow heat exchangers using single phase fluids is reviewed. Applications with available analytical or numerical solutions are discussed. Investigation of water-to-air type cross-flow finned tube heat exchangers is examined through the use of simplified governing equations and an up-wind finite difference scheme. The degenerate case of zero air-side capacitance rate is compared with available exact solution. Generalization of the numerical model is discussed for application to multi-row multi-circuit heat exchangers.

  14. XAFS Studies of Silver Environments in Ion-Exchanged Glasses

    SciTech Connect

    Yang, X. C.; Dubiel, M.

    2007-02-02

    The X-ray absorption fine structure (XAFS) technique was used to analyze the structural geometry of Ag atoms introduced into soda-lime silicate glass and soda aluminosilicate glass by ion-exchange methods. The results show that Ag+ ions in aluminosilicate glass are coordinated by about two oxygens and the nearest-neighbor Ag-O distance increases when the Ag+-for-Na+ ion-exchange ratio is larger than 0.47. When the exchange ratio is low, the introduced Ag+ ions are stabilized at the non-bridge oxygen (NBO) site with a Ag-O distance of 2.20 A, and the Na+ ions in the AlO4 site are exchanged by Ag+ ions after full replacement of the NBO sites with a Ag-O distance of 2.28 A. The disorder of Ag-O coordination increases with increasing ion-exchange ratio in aluminosilicate glass where Ag+ ions are coordinated by NBO and bridge oxygen (BO)

  15. Analytical Study on Thermal and Mechanical Design of Printed Circuit Heat Exchanger

    SciTech Connect

    Su-Jong Yoon; Piyush Sabharwall; Eung-Soo Kim

    2013-09-01

    The analytical methodologies for the thermal design, mechanical design and cost estimation of printed circuit heat exchanger are presented in this study. In this study, three flow arrangements of parallel flow, countercurrent flow and crossflow are taken into account. For each flow arrangement, the analytical solution of temperature profile of heat exchanger is introduced. The size and cost of printed circuit heat exchangers for advanced small modular reactors, which employ various coolants such as sodium, molten salts, helium, and water, are also presented.

  16. Experimental Studies on Coherent Synchrotron Radiation at an Emittance Exchange Beamline

    SciTech Connect

    Thangaraj, J.C.T.; Thurman-Keup, R.; Ruan, J.; Johnson, A.S.; Lumpkin, A.H.; Santucci, J.; /Fermilab

    2012-04-01

    One of the goals of the Fermilab A0 photoinjector is to experimentally investigate the transverse to longitudinal emittance exchange (EEX) principle. Coherent synchrotron radiation in the emittance exchange line could limit the performance of the emittance exchanger at short bunch lengths. In this paper, we present experimental and simulation studies of the coherent synchrotron radiation (CSR) in the emittance exchange line at the A0 photoinjector. We report on time-resolved CSR studies using a skew-quadrupole technique. We also demonstrate the advantages of running the EEX with an energy chirped beam.

  17. Positional isotope exchange studies on enzyme using NMR spectroscopy

    SciTech Connect

    Matsunaga, T.O.

    1987-01-01

    The isotopically enriched compounds, /sup 18/O-..beta..,..gamma..-ATP and /sup 18/O bridge-labeled pyrophosphate, synthesized previously in this laboratory, were used to investigate and measure the exchange vs. turnover of substrates and products from their central complexes in four selected enzyme systems. Using hi-field /sup 31/P NMR, we were able to differentiate between /sup 18/O labeled in the bridge vs. the non-bridge positions by virtue of the isotope shift upon the phosphorus nuclei. The bridge to non-bridge scrambling of the label was quantitated and the exchange vs. turnover ratios under a variety of conditions was determined. Using the substrate inhibitor carboxycreatinine, PIX experiments with /sup 18/O-..beta..,..gamma..-ATP and creatine kinase were conducted. It was shown that carboxycreatinine and creatine kinase promoted exchange of the /sup 18/O label as determined by NMR. We have concluded that carboxycreatinine is either a substrate that catalyzes very slow turnover or it catalyzes exchange by a dissociative (SN/sub 1//sub P/) type of mechanism

  18. In ESI-source H/D exchange under atmospheric pressure for peptides and proteins of different molecular weights from 1 to 66?kDa: the role of the temperature of the desolvating capillary on H/D exchange.

    PubMed

    Kostyukevich, Yury; Kononikhin, Alexey; Popov, Igor; Spasskiy, Alexander; Nikolaev, Eugene

    2015-01-01

    Transition of proteins from the solution to the gas phase during electrospray ionization remains a challenging problem despite the large amount of attention it has received during the past few decades. One of the major questions relates to the extent to which proteins in the gas phase retain their condensed phase structures. We have used in-electrospray source hydrogen/deuterium exchange to determine the number of deuterium incorporations as a function of protein mass, charge state and temperature of the desolvating capillary where the reaction occurs. All experiments were performed on a Thermo LTQ FT Ultra equipped with a 7-T superconducting magnet. Ions were generated by an IonMax Electrospray ion source operated in the positive ESI mode. Deuterium exchange was performed by introducing a droplet of D2 O beneath the ESI capillary. We systematically investigated gas phase hydrogen/deuterium (H/D) exchange under atmospheric pressure for peptides and proteins of different molecular weights from 1 to 66?kDa. We observed that almost all proteins demonstrate similar exchange rates for all charge states and that these rates increase exponentially with the temperature of the desolvating capillary. We did not observe any clear correlation of the number of H/D exchanges with the value of the cross section for a corresponding charge state. We have demonstrated the possibility of performing in-ESI source H/D exchange of large proteins under atmospheric pressure. The simplicity of the experimental setup makes it a useful experimental technique that can be applied for the investigation of gas phase conformations of proteins. PMID:25601674

  19. Analytical Study on Multi-stream Heat Exchanger Include Longitudinal Heat Conduction and Parasitic Heat Loads

    NASA Astrophysics Data System (ADS)

    Zhu, Weiping; Xie, Xiujuan; Yang, Huihui; Li, Laifeng; Gong, Linghui

    High performance heat exchangers are critical component in many cryogenic systems and its performance is typically very sensitive to longitudinal heat conduction, parasitic heat loads and property variations. This paper gives an analytical study on 1-D model for multi-stream parallel-plate fin heat exchanger by using the method of decoupling transformations. The results obtained in the present paper are valuable for the reference on optimization for heat exchanger design.

  20. Conformational lability in the class II MHC 310 helix and adjacent extended strand dictate HLA-DM susceptibility and peptide exchange

    PubMed Central

    Painter, Corrie A.; Negroni, Maria P.; Kellersberger, Katherine A.; Zavala-Ruiz, Zarixia; Evans, James E.; Stern, Lawrence J.

    2011-01-01

    HLA-DM is required for efficient peptide exchange on class II MHC molecules, but its mechanism of action is controversial. We trapped an intermediate state of class II MHC HLA-DR1 by substitution of ?F54, resulting in a protein with increased HLA-DM binding affinity, weakened MHC-peptide hydrogen bonding as measured by hydrogen-deuterium exchange mass spectrometry, and increased susceptibility to DM-mediated peptide exchange. Structural analysis revealed a set of concerted conformational alterations at the N-terminal end of the peptide-binding site. These results suggest that interaction with HLA-DM is driven by a conformational change of the MHC II protein in the region of the ?-subunit 310 helix and adjacent extended strand region, and provide a model for the mechanism of DM-mediated peptide exchange. PMID:22084083

  1. Experimental study of coherent synchrotron radiation in the emittance exchange line at the A0-photoinjector

    SciTech Connect

    Thangaraj, Jayakar C.T.; Thurman-Keup, R.; Johnson, A.; Lumpkin, A.H.; Edwards, H.; Ruan, J.; Santucci, J.; Sun, Y.E.-; Church, M.; Piot, P.; /Fermilab /Northern Illinois U.

    2010-08-01

    Next generation accelerators will require a high current, low emittance beam with a low energy spread. Such accelerators will employ advanced beam conditioning systems such as emittance exchanger to manipulate high brightness beams. One of the goals of the Fermilab A0 photoinjector is to investigate the transverse to longitudinal emittance exchange principle. Coherent synchrotron radiation could limit high current operation of the emittance exchanger. In this paper, we report on the preliminary experimental and simulation study of the coherent synchroton radiation (CSR) in the emittance exchange line at A0 photoinjector.

  2. Experimental Study of Coherent Synchrotron Radiation in the Emittance Exchange Line at the A0-Photoinjector

    SciTech Connect

    Thangaraj, Jayakar C. T.; Thurman-Keup, R.; Johnson, A.; Lumpkin, A. H.; Edwards, H.; Ruan, J.; Santucci, J.; Sun, Y. E.; Church, M.; Piot, P.

    2010-11-04

    Next generation accelerators will require a high current, low emittance beam with a low energy spread. Such accelerators will employ advanced beam conditioning systems such as emittance exchangers to manipulate high brightness beams. One of the goals of the Fermilab A0 photoinjector is to investigate the transverse to longitudinal emittance exchange principle. Coherent synchrotron radiation could limit high current operation of the emittance exchanger. In this paper, we report on the preliminary experimental and simulation study of the coherent synchroton radiation (CSR) in the emittance exchange line at the A0 photoinjector.

  3. Conformational changes and orientation of Humicola lanuginosa lipase on a solid hydrophobic surface: an in situ interface Fourier transform infrared-attenuated total reflection study.

    PubMed Central

    Noinville, Sylvie; Revault, Madeleine; Baron, Marie-Hlne; Tiss, Ali; Yapoudjian, Stphane; Ivanova, Margarita; Verger, Robert

    2002-01-01

    This study was done to better understand how lipases are activated at an interface. We investigated the conformational and solvation changes occurring during the adsorption of Humicola lanuginosa lipase (HLL) onto a hydrophobic surface using Fourier transform infrared-attenuated total reflection spectroscopy. The hydrophobic surfaces were obtained by coating silicon attenuated total reflection crystal with octadecyltrichlorosilane. Analysis of vibrational spectra was used to compare the conformation of HLL adsorbed at the aqueous-solid interface with its conformation in solution. X-ray crystallography has shown that HLL exists in two conformations, the closed and open forms. The conformational changes in HLL caused by adsorption onto the surface were compared with those occurring in three reference proteins, bovine serum albumin, lysozyme, and alpha-chymotrypsin. Adsorbed protein layers were prepared using proteins solutions of 0.005 to 0.5 mg/mL. The adsorptions of bovine serum albumin, lysozyme, and alpha-chymotrypsin to the hydrophobic support were accompanied by large unfoldings of ordered structures. In contrast, HLL underwent no secondary structure changes at first stage of adsorption, but there was a slight folding of beta-structures as the lipase monolayer became complete. Solvation studies using deuterated buffer showed an unusual hydrogen/deuterium exchange of the peptide CONH groups of the adsorbed HLL molecules. This exchange is consistent with the lipase being in the native open conformation at the water/hydrophobic interface. PMID:11964257

  4. Feasibility Study of Secondary Heat Exchanger Concepts for the Advanced High Temperature Reactor

    SciTech Connect

    Piyush Sabharwall

    2011-09-01

    The work reported herein represents a significant step in the preliminary design of heat exchanger options (material options, thermal design, selection and evaluation methodology with existing challenges). The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production using either a subcritical or supercritical Rankine cycle.

  5. Isotope dilution study of exchangeable oxygen in premium coal samples

    SciTech Connect

    Finseth, D.

    1987-01-01

    A difficulty with improving the ability to quantitate water in coal is that truly independent methods do not always exist. The true value of any analytical parameter is always easier to determine if totally independent methods exist to determine that parameter. This paper describes the possibility of using a simple isotope dilution technique to determine the water content of coal and presents a comparison of these isotope dilution measurements with classical results for the set of Argonne coals from the premium coal sample program. Isotope dilution is a widely used analytical method and has been applied to the analysis of water in matrices as diverse as chicken fat, living humans, and coal. Virtually all of these applications involved the use of deuterium as the diluted isotope. This poses some problems if the sample contains a significant amount of exchangeable organic hydrogen and one is interested in discriminating exchangeable organic hydrogen from water. This is a potential problem in the coal system. To avoid this potential problem /sup 18/O was used as the diluted isotope in this work.

  6. Continuation of Studies on Development of ODS Heat Exchanger Tubing

    SciTech Connect

    Lawrence Brown; David Workman; Bimal Kad; Gaylord Smith; Archie Robertson; Ian Wright

    2008-04-15

    The Department of Energy (DOE), National Energy Technology Center (NETL), has initiated a strategic plan for the development of advanced technologies needed to design and build fossil fuel plants with very high efficiency and environmental performance. These plants, referred to as 'Vision 21' and FutureGen programs by DOE, will produce electricity, chemicals, fuels, or a combination of these products, and possibly secondary products such as steam/heat for industrial use. MA956 is a prime candidate material being considered for a high temperature heat exchanger in the 'Vision 21' and FutureGen programs. This material is an oxide dispersion strengthened (ODS) alloy; however, there are some gaps in the data required to commit to the use of these alloys in a full-size plant. To fill the technology gaps for commercial production and use of the material for 'Advanced Power Generation Systems' this project has performed development activity to significant increase in circumferential strength of MA956 as compared to currently available material, investigated bonding technologies for bonding tube-to-tube joints through joining development, and performed tensile, creep and fire-side corrosion tests to validate the use and fabrication processes of MA956 to heat exchanger tubing applications. Development activities within this projected has demonstrated increased circumferential strength of MA956 tubes through flow form processing. Of the six fabrication technologies for bonding tube-to-tube joints, inertia friction welding (IFW) and flash butt welding (FBW) were identified as processes for joining MA956 tubes. Tensile, creep, and fire-side corrosion test data were generated for both base metal and weld joints. The data can be used for design of future systems employing MA956. Based upon the positive development activities, two test probes were designed and fabricated for field exposure testing at 1204 C ({approx}2200 F) flue gas. The probes contained tube portions with FBW and IFW welded MA956. Field testing of the probes and remaining heat exchanger design activity will be performed by Oak Ridge National Laboratory under DOE Contract DE-AC05-00OR22725.

  7. Individual basepair stability of DNA and RNA studied by NMR-detected solvent exchange.

    PubMed

    Steinert, Hannah S; Rinnenthal, Jrg; Schwalbe, Harald

    2012-06-01

    In this study, we have optimized NMR methodology to determine the thermodynamic parameters of basepair opening in DNA and RNA duplexes by characterizing the temperature dependence of imino proton exchange rates of individual basepairs. Contributions of the nuclear Overhauser effect to exchange rates measured with inversion recovery experiments are quantified, and the influence of intrinsic and external catalysis exchange mechanisms on the imino proton exchange rates is analyzed. Basepairs in DNA and RNA have an approximately equal stability, and the enthalpy and entropy values of their basepair dissociation are correlated linearly. Furthermore, the compensation temperature, T(c), which is derived from the slope of the correlation, coincides with the melting temperature, and duplex unfolding occurs at that temperature where all basepairs are equally thermodynamically stable. The impact of protium-deuterium exchange of the imino hydrogen on the free energy of RNA basepair opening is investigated, and it is found that two AU basepairs show distinct fractionation factors. PMID:22713572

  8. ATP-induced dimerization of the F0F1 ? subunit from Bacillus PS3: a hydrogen exchange-mass spectrometry study.

    PubMed

    Rodriguez, Antony D; Dunn, Stanley D; Konermann, Lars

    2014-06-24

    F0F1 ATP synthase harnesses a transmembrane electrochemical gradient for the production of ATP. When operated in reverse, this multiprotein complex catalyzes ATP hydrolysis. In bacteria, the ? subunit is involved in regulating this ATPase activity. Also, ? is essential for coupling ATP hydrolysis (or synthesis) to proton translocation. The ? subunit consists of a ? sandwich and two C-terminal helices, ?1 and ?2. The protein can switch from a compact fold to an alternate conformation where ?1 and ?2 are separated, resulting in an extended structure. ? from the thermophile Bacillus PS3 (T?) binds ATP with high affinity such that this protein may function as an intracellular ATP level sensor. ATP binding to isolated T? triggers a major conformational transition. Earlier data were interpreted in terms of an ATP + T?extended ? ATPT?compact transition that may mimic aspects of the regulatory switching within F0F1 (Yagi et al. (2007) Proc. Natl. Acad. Sci. U.S.A., 104, 1123311238). In this work, we employ complementary biophysical techniques for examining the ATP-induced conformational switching of isolated T?. CD spectroscopy confirmed the occurrence of a large-scale conformational transition upon ATP binding, consistent with the formation of stable helical structure. Hydrogen/deuterium exchange (HDX) mass spectrometry revealed that this transition is accompanied by a pronounced stabilization in the vicinity of the ATP-binding pocket. Surprisingly, dramatic stabilization is also seen in the ?8??9 region, which is remote from the site of ATP interaction. Analytical ultracentrifugation uncovered a previously unrecognized feature of T?: a high propensity to undergo dimerization in the presence of ATP. Comparison with existing crystallography data strongly suggests that the unexpected ?8??9 HDX protection is due to newly formed proteinprotein contacts. Hence, ATP binding to isolated T? proceeds according to 2ATP + 2T?extended ? (ATPT?compact)2. Implications of this dimerization propensity for the possible role of T? as an antibiotic target are discussed. PMID:24870150

  9. Study of thermal energy storage using fluidized bed heat exchangers

    NASA Technical Reports Server (NTRS)

    Weast, T. E.; Shannon, L. J.; Ananth, K. P.

    1980-01-01

    The technical and economic feasibility of fluid bed heat exchangers (FBHX) for thermal energy storage (TES) in waste heat recovery applications is assessed by analysis of two selected conceptual systems, the rotary cement kiln and the electric arc furnace. It is shown that the inclusion of TES in the energy recovery system requires that the difference in off-peak and on-peak energy rates be large enough so that the value of the recovered energy exceeds the value of the stored energy by a wide enough margin to offset parasitic power and thermal losses. Escalation of on-peak energy rates due to fuel shortages could make the FBHX/TES applications economically attractive in the future.

  10. Two-photon exchange effect studied with neural networks

    SciTech Connect

    Graczyk, Krzysztof M.

    2011-09-15

    An approach to the extraction of the two-photon exchange (TPE) correction from elastic ep scattering data is presented. The cross-section, polarization transfer (PT), and charge asymmetry data are considered. It is assumed that the TPE correction to the PT data is negligible. The form factors and TPE correcting term are given by one multidimensional function approximated by the feedforward neural network (NN). To find a model-independent approximation, the Bayesian framework for the NNs is adapted. A large number of different parametrizations is considered. The most optimal model is indicated by the Bayesian algorithm. The obtained fit of the TPE correction behaves linearly in {epsilon} but it has a nontrivial Q{sup 2} dependence. A strong dependence of the TPE fit on the choice of parametrization is observed.

  11. Separation and identification of degradation products in eprinomectin formulation using LC, LTQ FT-MS, H/D exchange, and NMR.

    PubMed

    Awasthi, Atul; Razzak, Majid; Al-Kassas, Raida; Greenwood, David R; Harvey, Joanne; Garg, Sanjay

    2012-04-01

    The aim of this study was to evaluate the suitability of the compendial active pharmaceutical ingredient (API) method for the analysis of finished products and characterization of degradation products in eprinomectin (EPM) samples. Heat stressed sample tests revealed a limitation of the API method in distinguishing an impurity merging with the principal analyte peak. A new selective, specific and sensitive method was therefore developed for the determination of EPM in formulations that separates its degradation products currently undetectable with the official method. The determination was carried out by reversed-phase HPLC using an isocratic solvent elution. The method was validated and found to be precise, accurate and specific; the detector response was linear over 50-150 ?g/ml (EPM) and 0.1-3 ?g/ml (degradation product) range of concentrations. Two major degradation products detected with the new method were isolated from sample matrices and characterized using LC-PDA, high resolution FT-ICR MS, NMR and hydrogen/deuterium exchange (HX-MS) studies. FTMS analysis showed accurate mass of molecular ion peaks for EPM and its two degradation products at m/z 914.52505 (mass error ? 1 ppm) with almost identical fragmentation patterns. Given the isomeric nature of the compounds, all three were further evaluated by H, C, 1D NOESY and 2D (COSY) NMR experiments. The interpretation of experimental data positively identified Unknown 1 as the 2-epimer of EPM and Unknown 2 as the structural isomer ?2,3-EPM containing a conjugated enoate. The new HPLC method and identification exercise is useful for analysis of EPM and its degradation products. PMID:22341479

  12. Solvent Influenced Fluxionality Studied by Ultrafast Chemical Exchange Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ross, Matthew; Kubarych, Kevin

    2012-02-01

    Two-dimensional infrared spectroscopy (2DIR) allows unprecedentedly detailed understanding of the dynamics of chemical systems in the condensed phase. Carbonyl vibrations of small transition metal complexes report intramolecular dynamics and solvent-solute interactions due to their strong oscillator strengths and moderate environmental sensitivity. We studed the fluxional dynamics of iron pentacarbonyl (Fe(CO)5), which is unique in that it contains nearly perfectly uncoupled vibrational modes. We seek to probe the ``molecularity'' of condensed phase activated barrier crossings beyond the continuum Kramers theory picture. Using 2DIR chemical exchange spectroscopy, we show how the dynamics of Berry pseudorotation, the only significant mechanism for vibrational mode mixing on our experimental timescale, is sensitive to interactions with the environment. In a wide range of solvents, we have investigated the effects of hydrogen bonding with alcohols and friction from high viscosity alkanes. In addition, we have monitored vibrational energy redistribution as a solvation shell probe. Moreover, recently implemented mid-infrared pulse shaper based methods allow increased flexibility in experimental design, enabling experimental techniques that are not possible using passive optics.

  13. Hydrogen exchange study of membrane-bound rhodopsin. II. Light-induced protein structure change.

    PubMed

    Downer, N W; Englander, S W

    1977-11-25

    Hydrogen exchange studies of rhodopsin in disc membranes demonstrated that photolysis induces changes in the protein itself. Two different altered forms were detected. A late photointermediate in the bleaching sequence, which can be identified with metarhodopsin II, displays accelerated exchange. Subsequently, at the stage of fully bleached opsin, exchange becomes even slower than in rhodopsin. These changes involve only a small fraction of the protein's internally hydrogen-bonded peptide groups. The unusually large fraction of exposed peptide hydrogens observed previously for rhodopsin is unaltered in the photolyzed forms. PMID:21190

  14. Numerical Study on Crossflow Printed Circuit Heat Exchanger for Advanced Small Modular Reactors

    SciTech Connect

    Yoon, Su-Jong; Sabharwall, Piyush; Kim, Eung-Soo

    2014-03-01

    Various fluids such as water, gases (helium), molten salts (FLiNaK, FLiBe) and liquid metal (sodium) are used as a coolant of advanced small modular reactors (SMRs). The printed circuit heat exchanger (PCHE) has been adopted as the intermediate and/or secondary heat exchanger of SMR systems because this heat exchanger is compact and effective. The size and cost of PCHE can be changed by the coolant type of each SMR. In this study, the crossflow PCHE analysis code for advanced small modular reactor has been developed for the thermal design and cost estimation of the heat exchanger. The analytical solution of single pass, both unmixed fluids crossflow heat exchanger model was employed to calculate a two dimensional temperature profile of a crossflow PCHE. The analytical solution of crossflow heat exchanger was simply implemented by using built in function of the MATLAB program. The effect of fluid property uncertainty on the calculation results was evaluated. In addition, the effect of heat transfer correlations on the calculated temperature profile was analyzed by taking into account possible combinations of primary and secondary coolants in the SMR systems. Size and cost of heat exchanger were evaluated for the given temperature requirement of each SMR.

  15. Competing noncovalent host-guest interactions and H/D exchange: reactions of benzyloxycarbonyl-proline glycine dipeptide variants with ND3.

    PubMed

    Miladi, Mahsan; Olaitan, Abayomi D; Zekavat, Behrooz; Solouki, Touradj

    2015-11-01

    A combination of density functional theory calculations, hydrogen/deuterium exchange (HDX) reactions, ion mobility-mass spectrometry, and isotope labeling tandem mass spectrometry was used to study gas-phase "host-guest" type interactions of a benzyloxycarbonyl (Z)-capped proline (P) glycine (G) model dipeptide (i.e., Z-PG) and its various structural analogues with ND3. It is shown that in a solvent-free environment, structural differences between protonated and alkali metal ion (Na(+), K(+), or Cs(+))-complexed species of Z-PG affect ND3 adduct formation. Specifically, [Z-PG + H](+) and [Z-PG-OCH3 + H](+) formed gas-phase ND3 adducts ([Z-PG (or Z-PG-OCH3) + H + ND3](+)) but no ND3 adducts were observed for [Z-PG + alkali metal](+) or [Z-PG + H - CO2](+). Experimentally measured and theoretically calculated collision cross sections (CCSs) of protonated and alkali metal ion-complexed Z-PG species showed similar trends that agreed with the observed structural differences from molecular modeling results. Moreover, results from theoretical ND3 affinity calculations were consistent with experimental HDX observations, indicating a more stable ND3 adduct for [Z-PG + H](+) compared to [Z-PG + alkali metal](+) species. Molecular modeling and experimental MS results for [Z-PG + H](+) and [Z-PG + alkali metal](+) suggest that optimized cation-? and hydrogen bonding interactions of carbonyl groups in final products are important for ND3 adduct formation. Graphical Abstract ?. PMID:26289383

  16. New data on Cu-exchanged phillipsite: a multi-methodological study

    NASA Astrophysics Data System (ADS)

    Gatta, G. Diego; Cappelletti, Piergiulio; de'Gennaro, Bruno; Rotiroti, Nicola; Langella, Alessio

    2015-10-01

    The cation exchange capacity of a natural phillipsite-rich sample from the Neapolitan Yellow Tuff, Southern Italy (treated in order to obtain a 95 wt% zeolite-rich sample composed mainly of phillipsite and minor chabazite) for Cu was evaluated using the batch exchange method. The sample had previously been exchanged into its monocationic form (Na), and then used for the equilibrium studies of the exchange reaction 2Na+ ? Cu2+. Reversibility ion exchange tests were performed. The isotherm displays an evident hysteresis loop. Interestingly, the final Cu-exchanged polycrystalline material was green-bluish. Natural, Na- and Cu-exchanged forms were analyzed by X-ray powder diffraction, and the Cu-phillipsite was also investigated by transmission electron microscopy (TEM). Structure refinement of Cu-phillipsite was performed by the Rietveld method using synchrotron data, and it indicates a small, but significant, fraction of Cu sharing with Na two-three independent extra-framework sites. The TEM experiment shows sub-spherical nano-clusters of crystalline species (with average size of 5 nm) lying on the surfaces of zeolite crystals or dispersed in the amorphous fraction, with electron diffraction patterns corresponding to those of CuO (tenorite-like structure) and Cu(OH)2 (spertiniite-like structure). X-ray and TEM investigations show that Cu is mainly concentrated in different species (crystalline or amorphous) within the sample, not only in phillipsite. The experimental findings based on X-ray and TEM investigations, along with the hysteresis loop of the ion exchange tests, are discussed and some general considerations about the mechanisms of exchange reactions involving divalent cations with high hydration energy are provided.

  17. In situ NRA study of hydrogen isotope exchange in self-ion damaged tungsten exposed to neutral atoms

    NASA Astrophysics Data System (ADS)

    Markelj, S.; Zalonik, A.; Schwarz-Selinger, T.; Ogorodnikova, O. V.; Vavpeti?, P.; Pelicon, P.; ?ade, I.

    2016-02-01

    Isotope exchange was studied in-situ by Nuclear Reaction Analysis in the bulk of self-ion damaged tungsten at 600K. Both variations of isotope exchange of H by D and of D by H were measured. The deuterium isothermal desorption was also studied and evaluated in order to be able to resolve the self-desorption from the isotope exchange at 600K. The isotope exchange was also studied on the surface by Elastic Recoil Detection Analysis at 480K and 380K. The exchange mechanism was effective both on the surface and in the bulk of damaged tungsten. A simple model was introduced to describe the exchange efficiency on the surface and in the bulk obtaining the exchange cross sections on the surface and in bulk. In both cases an isotope effect was observed, where the exchange of H atoms by D atoms was more efficient than for the reverse sequence.

  18. Coming to Canada to Study: Factors that Influence Student's Decisions to Participate in International Exchange

    ERIC Educational Resources Information Center

    Massey, Jennifer; Burrow, Jeff

    2012-01-01

    Increasing numbers of students are participating in study abroad programs. Outcomes associated with these programs have been studied extensively, but relatively little is known about what motivates and influences students to participate. This study investigated factors that motivate and influence students to study on exchange and explored how…

  19. Coming to Canada to Study: Factors that Influence Student's Decisions to Participate in International Exchange

    ERIC Educational Resources Information Center

    Massey, Jennifer; Burrow, Jeff

    2012-01-01

    Increasing numbers of students are participating in study abroad programs. Outcomes associated with these programs have been studied extensively, but relatively little is known about what motivates and influences students to participate. This study investigated factors that motivate and influence students to study on exchange and explored how

  20. Brillouin light scattering study of spin waves in NiFe/Co exchange spring bilayer films

    SciTech Connect

    Haldar, Arabinda; Banerjee, Chandrima; Laha, Pinaki; Barman, Anjan

    2014-04-07

    Spin waves are investigated in Permalloy(Ni{sub 80}Fe{sub 20})/Cobalt(Co) exchange spring bilayer thin films using Brillouin light scattering (BLS) experiment. The magnetic hysteresis loops measured by magneto-optical Kerr effect show a monotonic decrease in coercivity of the bilayer films with increasing Py thickness. BLS study shows two distinct modes, which are modelled as Damon-Eshbach and perpendicular standing wave modes. Linewidths of the frequency peaks are found to increase significantly with decreasing Py layer thickness. Interfacial roughness causes to fluctuate exchange coupling at the nanoscale regimes and the effect is stronger for thinner Py films. A quantitative analysis of the magnon linewidths shows the presence of strong local exchange coupling field which is much larger compared to macroscopic exchange field.

  1. A Prospective Study on Exchange Transfusion in Neonatal Unconjugated Hyperbilirubinemia - in a Tertiary Care Hospital, Nepal.

    PubMed

    Malla, T; Singh, S; Poudyal, P; Sathian, B; Bk, G; Malla, K K

    2015-01-01

    Background An exchange transfusion involves replacing patient's blood with donor blood in order to remove abnormal blood components and circulating toxins while maintaining adequate circulating blood volume. Objective To observe the incidence, causes of jaundice requiring Exchange and any adverse event of exchange transfusion in newborns with unconjugated hyperbilirubinemia. Method Prospective study undertaken at Neonatal Intensive Care Unit (NICU) of Manipal Teaching Hospital, Pokhara, Nepal from March 2014 to April 2015. For both mothers and neonates blood group and Rh typing and for all newborns pre and post exchange complete blood count with peripheral smear, serum bilirubin, hemoglobin, calcium, potassium, random blood sugar, C-reactive protein and blood culture and where ever required Direct Coombs test, reticulocyte count, G6PD activity and thyroid function test were done. The incidence, indications, positive outcome, complications and mortality were noted. Result Out of 481 cases of unconjugated hyperbilirubinemia 29(6%) required exchange transfusion. 55.2% Pathological Jaundice [13.8% ABO incompatibility, sepsis and hypothyroidism was commonest causes] and 44.8% exaggerated physiological jaundice [27.6% with no underlying pathology, 10.3% preterms 3.4% cephalhematoma] required exchange transfusion. Post transfusion, bilirubin level decreased significantly (p< 0.001). The commonest adverse events noted were anemia (89.7% / p< 0.018), hyperglycemia(51.7% / p< 0.001), hypocalcaemia (48.3% /p< 0.001)), sepsis(10.3%), hypernatremia (13.8%), hyperkalaemia, bradycardia, apnea and feed intolerance (6.9%). None of them had kernicterus and there was no mortalities. Conclusion Exchange transfusion is an effective procedure to decrease bilirubin levels but is associated with many complications. Hypothyroidism was one of the commonest cause of jaundice requiring Exchange transfusion. PMID:26643826

  2. The Experimental Study on Heat Transfer Characteristics of The External Heat Exchanger

    NASA Astrophysics Data System (ADS)

    Ji, X. Y.; Lu, X. F.; Yang, L.; Liu, H. Z.

    Using the external heat exchanger in large-scale CFB boilers can control combustion and heat transfer separately, make the adjustments of bed temperature and steam temperature convenient. The state of gas-solid two phase flow in the external heat exchanger is bubbling fluidized bed, but differs from the regular one as there is a directional flow in it. Consequently, the temperature distribution changes along the flow direction. In order to study the heat transfer characteristics of the water cooled tubes in the bubbling fluidized bed and ensure the uniformity of heat transfer in the external heat exchanger, a physical model was set up according to the similarity principle and at the geometric ratio of 1?28 to an external heat exchanger of a 300MW CFB boiler. The model was connected with an electrically heated CFB test-bed which provides the circulating particles. The influencing factors and the distribution rule of the particles' heat transfer coefficient in the external heat exchanger were assessed by measuring the temperature changes of the water in the tubes and different parts of particles flow along the flow direction. At the end, an empirical correlation of particles' heat transfer coefficient in external heat exchanger was given by modifying the Veedendery empirical correlation.

  3. Multivalency in the gas phase: H/D exchange reactions unravel the dynamic "rock 'n' roll" motion in dendrimer-dendrimer complexes.

    PubMed

    Qi, Zhenhui; Schlaich, Christoph; Schalley, Christoph A

    2013-10-25

    Noncovalent dendrimer-dendrimer complexes were successfully ionized by electrospray ionization of partly protonated amino-terminated polypropylene amine (POPAM) and POPAM dendrimers fully functionalized with benzo[21]crown-7 on all branches. Hydrogen/deuterium exchange (HDX) experiments conducted on dendrimer-dendrimer complexes in the high vacuum of a mass spectrometer give rise to a complete exchange of all labile NH hydrogen atoms. As crown ethers represent noncovalent protective groups against HDX reactions on the ammonium group to which they are coordinated, this result provides evidence for a very dynamic binding situation: each crown is mobile enough to move from one ammonium binding site to another. Schematically, one might compare this motion with two rock 'n' roll dancers that swirl around each other without completely losing all contact at any time. Although the multivalent attachment certainly increases the overall affinity, the "microdynamics" of individual site binding and dissociation remains fast. PMID:24105808

  4. Preliminary time-of-flight neutron diffraction studies of Escherichia coli ABC transport receptor phosphate-binding protein at the Protein Crystallography Station.

    PubMed

    Sippel, K H; Bacik, J; Quiocho, F A; Fisher, S Z

    2014-06-01

    Inorganic phosphate is an essential molecule for all known life. Organisms have developed many mechanisms to ensure an adequate supply, even in low-phosphate conditions. In prokaryotes phosphate transport is instigated by the phosphate-binding protein (PBP), the initial receptor for the ATP-binding cassette (ABC) phosphate transporter. In the crystal structure of the PBP-phosphate complex, the phosphate is completely desolvated and sequestered in a deep cleft and is bound by 13 hydrogen bonds: 12 to protein NH and OH donor groups and one to a carboxylate acceptor group. The carboxylate plays a key recognition role by accepting a phosphate hydrogen. PBP phosphate affinity is relatively consistent across a broad pH range, indicating the capacity to bind monobasic (H2PO4-) and dibasic (HPO4(2-)) phosphate; however, the mechanism by which it might accommodate the second hydrogen of monobasic phosphate is unclear. To answer this question, neutron diffraction studies were initiated. Large single crystals with a volume of 8 mm3 were grown and subjected to hydrogen/deuterium exchange. A 2.5 Å resolution data set was collected on the Protein Crystallography Station at the Los Alamos Neutron Science Center. Initial refinement of the neutron data shows significant nuclear density, and refinement is ongoing. This is the first report of a neutron study from this superfamily. PMID:24915101

  5. Experimental study of a novel manifold structure of micro-channel heat exchanger

    NASA Astrophysics Data System (ADS)

    Xu, Bo; Xu, Kunhao; Wei, Wei; Han, Qing; Chen, Jiangping

    2013-07-01

    Refrigerant flow distribution with phase change heat transfer was experimentally studied for a micro-channel heat exchanger having horizontal headers. In order to solve the problem of maldistribution, a novel manifold structure with orifice and bypass tube was proposed and experimentally studied compared to the conventional structure. Tests were conducted with downward flow for mass flux from 70 to 110 kg m-2s-1 (air side flow velocity from 1 to 2ms-1). The surface temperature distribution of the heat exchanger recorded by thermal imager and the square deviation of it were used to judge the uniformity of flow distribution. It is shown that as mass flux increased, better flow distribution is obtained (small square deviation of temperature distribution means better flow distribution: conventional structure from 32 to 27, novel structure from 19 to 14), and flow distribution of the novel structure was much better than that of the conventional one. The heat transfer performances of the two heat exchangers were also studied. The cooling capacity of the novel heat exchanger was 14.8% higher than that of the conventional because of the better flow distribution. And the refrigerant pressure drop was 120% higher because of bigger mass flow and the resistance of the orifice. It's worth noting that the air pressure drop of novel heat exchanger was also higher (about 28.3%)than that of the conventional one, even when they have same fin and flat tube structure. From the pictures of the heat exchanger surfaces, it was found that some surface area of the conventional heat exchanger was not wet because of the low mass flow and high superheat, which leaded to a poor performance and relatively small air pressure drop.

  6. Web-Based Exchange of Views Enhances "Global Studies"

    ERIC Educational Resources Information Center

    Ahamer, Gilbert; Kumpfmuller, Karl A.; Hohenwarter, Michaela

    2011-01-01

    Purpose: The aim of this article is to present the development-oriented Master's curriculum "Global Studies" (GS) at the University of Graz, Austria, as an example of interdisciplinary academic training with the purpose of fostering inter-"cultural" understanding. It aims to show that scientific disciplines can be understood as "cultures of

  7. SuperLig Ion Exchange Resin Swelling and Buoyancy Study

    SciTech Connect

    Hassan, N.M.

    2000-07-27

    The objective of this study was to achieve a fundamental understanding of SuperLig resin swelling and shrinking characteristics, which lead to channeling and early breakthrough during loading cycles. The density of salt solution that causes resin floating was also determined to establish a limit for operation. Specific tests performed include (a) pH dependence, (b) ionic strength dependence and (c) buoyancy effect vs. simulant composition.

  8. Heat Exchanger Design Options and Tritium Transport Study for the VHTR System

    SciTech Connect

    Chang H. Oh; Eung S. Kim

    2008-09-01

    This report presents the results of a study conducted to consider heat exchanger options and tritium transport in a very high temperature reactor (VHTR) system for the Next Generation Nuclear Plant Project. The heat exchanger options include types, arrangements, channel patterns in printed circuit heat exchangers (PCHE), coolant flow direction, and pipe configuration in shell-and-tube designs. Study considerations include: three types of heat exchanger designs (PCHE, shell-and-tube, and helical coil); single- and two-stage unit arrangements; counter-current and cross flow configurations; and straight pipes and U-tube designs in shell-and-tube type heat exchangers. Thermal designs and simple stress analyses were performed to estimate the heat exchanger options, and the Finite Element Method was applied for more detailed calculations, especially for PCHE designs. Results of the options study show that the PCHE design has the smallest volume and heat transfer area, resulting in the least tritium permeation and greatest cost savings. It is theoretically the most reliable mechanically, leading to a longer lifetime. The two-stage heat exchanger arrangement appears to be safer and more cost effective. The recommended separation temperature between first and second stages in a serial configuration is 800oC, at which the high temperature unit is about one-half the size of the total heat exchanger core volume. Based on simplified stress analyses, the high temperature unit will need to be replaced two or three times during the plant’s lifetime. Stress analysis results recommend the off-set channel pattern configuration for the PCHE because stress reduction was estimated at up to 50% in this configuration, resulting in a longer lifetime. The tritium transport study resulted in the development of a tritium behavior analysis code using the MATLAB Simulink code. In parallel, the THYTAN code, previously performed by Ohashi and Sherman (2007) on the Peach Bottom data, was revived and verified. The 600 MWt VHTR core input file developed in preparation for the transient tritium analysis of VHTR systems was replaced with the original steady-state inputs for future calculations. A Finite Element Method analysis was performed using COMSOL Multiphysics software to accurately predict tritium permeation through the PCHE type heat exchanger walls. This effort was able to estimate the effective thickness for tritium permeations and develop a correlation for general channel configurations, which found the effective thickness to be much shorter than the average channel distance because of dead spots on the channel side.

  9. Theoretical study of electron exchange in Mg2+-B collisions

    NASA Astrophysics Data System (ADS)

    Amami, M.; Zaidi, A.; Moussa, A.; Lahmar, S.; Bacchus-Montabonel, M.-C.

    2015-03-01

    The electron capture of Mg2+ ions in collisions with boron atoms has been investigated using ab initio quantum chemical approaches. The potential energies of the electronic states implicated in the process together with the non adiabatic coupling matrix elements have been calculated by multi-reference configuration interaction methods. Total and partial cross sections for the charge transfer reaction are determined in the (1-600) keV impact energy range by means of semi-classical approaches. A detailed analysis of the electron capture mechanism taking into account radial and rotational interactions has been performed and compared to previous studies on collision systems involving the Mg2+ projectile ion.

  10. 77 FR 48491 - Regulatory New Drug Review: Solutions for Study Data Exchange Standards; Notice of Meeting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-14

    ... HUMAN SERVICES Food and Drug Administration 21 CFR Chapter I Regulatory New Drug Review: Solutions for... feedback from this meeting and other information, an evaluation of the cost-benefit of a migration to a new..., a migration to a new study data exchange standard? 9. FDA encourages sponsors to design study...

  11. Quantitative Synthesis and Component Analysis of Single-Participant Studies on the Picture Exchange Communication System

    ERIC Educational Resources Information Center

    Tincani, Matt; Devis, Kathryn

    2011-01-01

    The "Picture Exchange Communication System" (PECS) has emerged as the augmentative communication intervention of choice for individuals with autism spectrum disorder (ASD), with a supporting body of single-participant studies. This report describes a meta-analysis of 16 single-participant studies on PECS with percentage of nonoverlapping data…

  12. Studies of Tropical/Mid-Latitude Exchange Using UARS Observations

    NASA Technical Reports Server (NTRS)

    Avallone, Linnea

    2001-01-01

    At the time this proposal was submitted, recent publications had suggested an important role for transport of midlatitude air into the tropical lower stratosphere. Most of these studies had employed data that gave only a time-averaged picture, making it difficult to determine the nature of the transport processes responsible for the observed behavior. We proposed to analyze observations of long-lived trace gases, such as nitric acid, methane, nitrous oxide, and chlorofluorocarbons, made from the Upper Atmosphere Research Satellite, to investigate the seasonal behavior of mixing between the midlatitudes and tropics. We planned to construct probability distributions of the concentrations of these species over small altitude ranges and to compare them to expectations based on modeled mean concentrations and knowledge of instrument precision. Differences from expectation were to be analyzed with respect to meteorological parameters to determine whether wave activity may have induced apparent mixing.

  13. A review of studies on ion thruster beam and charge-exchange plasmas

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.

    1982-01-01

    Various experimental and analytical studies of the primary beam and charge-exchange plasmas of ion thrusters are reviewed. The history of plasma beam research is recounted, emphasizing experiments on beam neutralization, expansion of the beam, and determination of beam parameters such as electron temperature, plasma density, and plasma potential. The development of modern electron bombardment ion thrusters is treated, detailing experimental results. Studies on charge-exchange plasma are discussed, showing results such as the relationship between neutralizer emission current and plasma beam potential, ion energies as a function of neutralizer bias, charge-exchange ion current collected by an axially moving Faraday cup-RPA for 8-cm and 30-cm ion thrusters, beam density and potential data from a 15-cm ion thruster, and charge-exchange ion flow around a 30-cm thruster. A 20-cm thruster electrical configuration is depicted and facility effects are discussed. Finally, plasma modeling is covered in detail for plasma beam and charge-exchange plasma.

  14. Benefits and problems of electronic information exchange as perceived by health care professionals: an interview study

    PubMed Central

    2011-01-01

    Background Various countries are currently implementing a national electronic patient record (n-EPR). Despite the assumed positive effects of n-EPRs, their overall adoption remains low and meets resistance from health care providers. This study aims to increase our understanding of health care providers' attitude towards the n-EPR, by investigating their perceptions of the benefits and problems of electronic information exchange in health care and the n-EPR in particular. Methods The study was conducted in three Dutch health care settings: acute care, diabetes care, and ambulatory mental health care. Two health care organisations were included per setting. Between January and June 2010, interviews were conducted with 17 stakeholders working in these organisations. Relevant themes were deduced by means of thematic qualitative analysis. Results Health care providers perceived electronic information exchange to promote the efficiency and quality of care. The problems they perceived in electronic information exchange mainly concerned the confidentiality and safety of information exchange and the reliability and quality of patient data. Many problems perceived by health care providers did not specifically apply to the n-EPR, but to electronic information exchange in general. Conclusions The implementation of the Dutch n-EPR has mainly followed a top-down approach, thereby neglecting the fact that the perceptions and preferences of its users (health care providers) need to be addressed in order to achieve successful implementation. The results of this study provide valuable suggestions about how to promote health care providers' willingness to adopt electronic information exchange, which can be useful for other countries currently implementing an n-EPR. Apart from providing information about the benefits and usefulness of electronic information exchange, efforts should be focused on minimising the problems as perceived by health care providers. The safety and confidentiality of electronic information exchange can be improved by developing tools to evaluate the legitimacy of access to electronic records, by increasing health care providers' awareness of the need to be careful when using patient data, and by measures to limit access to sensitive patient data. Improving health care providers' recording behaviour is important to improve the reliability and quality of electronically exchanged patient data. PMID:21982395

  15. Modeling of temporal behavior of isotopic exchange between gaseous hydrogen and palladium hydride power

    SciTech Connect

    Melius, C F; Foltz, G W

    1987-01-01

    A parametric rate-equation model is described which depicts the time dependent behavior of the isotopic exchange process occurring between the solid and gas phases in gaseous hydrogen (deuterium) flows through packed-powder palladium deuteride (hydride) beds. The exchange mechanism is assumed to be rate-limited by processes taking place on the surface of the powder. The fundamental kinetic parameter of the model is the isotopic exchange probability, p, which is the probability that an isotopic exchange event occurs during a collision of a gas phase atom with the surface. Isotope effects between the gas and solid phases are explicitly included in terms of the isotope separation factor, ..cap alpha... Results of the model are compared with recent experimental measurements of isotope exchange in the ..beta..-phase hydrogen/palladium system and, using a literature value of ..cap alpha.. = 2.4, a good description of the experimental data is obtained for p approx. 10/sup -7/. In view of the importance of the isotope effects in the hydrogen/palladium system and the range of ..cap alpha.. values reported for the ..beta..-phase in the literature, the sensitivity of the model results to a variation in the value of ..cap alpha.. is examined.

  16. A comparison study of compact plate fin-and-tube heat exchangers

    SciTech Connect

    Chi, K.Y.; Chang, Y.P.; Wang, C.C.; Chang, Y.J.

    1998-12-31

    Experimental investigation of the heat transfer and friction characteristics of plate fin-and-tube heat exchangers having 7 mm (0.276 in.) tube was carried out. In the present study, eight samples of commercially available plate fin-and-tube heat exchangers were tested. The rest results indicated that the effect of fin pitch is negligible for four-row coils, and there is a detectable decrease of heat transfer performance with increase of fin pitch for two-row coil. In addition, the heat transfer enhancement ratios decrease with decrease of fin pitch.

  17. Isotope exchange study of the dissociation of metal humic substance complexes

    NASA Astrophysics Data System (ADS)

    Mizera, J.; Jansov, A.; Hvodov, I.; Bene, P.; Novk, F.

    2003-01-01

    Isotope exchange was employed to study dissociation of metal cations from their complexes with humic substances (HS). Dissociation of cation from HS controls the rate of isotope exchange between two identical metal-HS solutions (but for the presence of a radiotracer) divided by a dialysis membrane. The rate of isotope exchange of Eu/152Eu and Co/60Co in the systems with various HS was monitored as a function of pH, ionic strength, and the degree of HS loading with metal. The apparent rate of Eu-HS dissociation was found to be enhanced by decreasing pH, increasing ionic strength, and increasing metal loading. Co-HS dissociation was too fast to be followed by the method. For interpretation of the experimental kinetic data, the multiple first order law has been applied. Based on the results, a concept of HS as a mixture of two types of binding sites is discussed.

  18. Semi-aerobic stabilized landfill leachate treatment by ion exchange resin: isotherm and kinetic study

    NASA Astrophysics Data System (ADS)

    Zamri, Mohd Faiz Muaz Ahmad; Kamaruddin, Mohamad Anuar; Yusoff, Mohd Suffian; Aziz, Hamidi Abdul; Foo, Keng Yuen

    2015-03-01

    This study was carried out to investigate the treatability of ion exchange resin (Indion MB 6 SR) for the removal of chromium (VI), aluminium (III), zinc (II), copper (II), iron (II), and phosphate (PO4)3-, chemical oxygen demand (COD), ammonia nitrogen (NH3-N) and colour from semi-aerobic stabilized leachate by batch test. A range of ion exchange resin dosage was tested towards the removal efficiency of leachate parameters. It was observed that equilibrium data were best represented by the Langmuir model for metal ions and Freundlich was ideally fit for COD, NH3-N and colour. Intra particle diffusion model, pseudo first-order and pseudo second-order isotherm models were found ideally fit with correlation of the experimental data. The findings revealed that the models could describe the ion exchange kinetic behaviour efficiently, which further suggests comprehensive outlook for the future research in this field.

  19. Development of a Direct Contact Heat Exchanger, Phase 1 Study Report

    NASA Technical Reports Server (NTRS)

    Manvi, R.

    1978-01-01

    Electric power generation from geothermal brine requires, first, bringing the hot brine to the surface and then converting the heat to electric power. Binary conversion schemes were proposed, with the heat transfer between the brine and the working organic fluid taking place in a conventional tube and shell heat exchanger. If the brine is heavily laden with dissolved solids, however, solids buildup on the heat exchanger surfaces leads to a considerable degree of fouling and an accompanying drop in performance is experienced. A possible solution to this problem is the use of a direct contact exchanger with the secondary fluid power cycle. The proposed concept involves the formation of fluid sheets and bells as heat angles. Results of a study concerning the fluid mechanics of such surfaces are given.

  20. Study regarding the influence of the crimping angle on the performances of the heat exchangers

    NASA Astrophysics Data System (ADS)

    Irimie, O.; Bode, F.; Opruta, D.

    2013-04-01

    The aim of this study is to determine the geometry of a plate for heat exchanger with high heat flow and low values for pressure losses. For this, in Solid Work software, were designed three plate geometries with different crimping angles for the flow channels. Was analyzed the influence of the crimping angle β on the fluid distribution and heat transfer. Also, were compared the data resulted from Computational Fluid Dynamics numeric simulation with the experimental ones for the plate heat exchangers with gaskets. The analysis of the vortices and temperature field distribution was achieved with the aid of simulation software Fluent. In order to validate the numerical simulation's results experimental research were carried out on a heat exchangers stand

  1. Hydrogen exchange mass spectrometry of bacteriorhodopsin reveals light-induced changes in the structural dynamics of a biomolecular machine.

    PubMed

    Pan, Yan; Brown, Leonid; Konermann, Lars

    2011-12-21

    Many proteins act as molecular machines that are fuelled by a nonthermal energy source. Examples include transmembrane pumps and stator-rotor complexes. These systems undergo cyclic motions (CMs) that are being driven along a well-defined conformational trajectory. Superimposed on these CMs are thermal fluctuations (TFs) that are coupled to stochastic motions of the solvent. Here we explore whether the TFs of a molecular machine are affected by the occurrence of CMs. Bacteriorhodopsin (BR) is a light-driven proton pump that serves as a model system in this study. The function of BR is based on a photocycle that involves trans/cis isomerization of a retinal chromophore, as well as motions of transmembrane helices. Hydrogen/deuterium exchange (HDX) mass spectrometry was used to monitor the TFs of BR, focusing on the monomeric form of the protein. Comparative HDX studies were conducted under illumination and in the dark. The HDX kinetics of BR are dramatically accelerated in the presence of light. The isotope exchange rates and the number of backbone amides involved in EX2 opening transitions increase roughly 2-fold upon illumination. In contrast, light/dark control experiments on retinal-free protein produced no discernible differences. It can be concluded that the extent of TFs in BR strongly depends on photon-driven CMs. The light-induced differences in HDX behavior are ascribed to protein destabilization. Specifically, the thermodynamic stability of the dark-adapted protein is estimated to be 5.5 kJ mol(-1) under the conditions of our work. This value represents the free energy difference between the folded state F and a significantly unfolded conformer U. Illumination reduces the stability of F by 2.2 kJ mol(-1). Mechanical agitation caused by isomerization of the chromophore is transferred to the surrounding protein scaffold, and subsequently, the energy dissipates into the solvent. Light-induced retinal motions therefore act analogously to an internal heat source that promotes the occurrence of TFs. Overall, our data highlight the potential of HDX methods for probing the structural dynamics of molecular machines under "engine on" and "engine off" conditions. PMID:22043856

  2. A molecular dynamics study of bond exchange reactions in covalent adaptable networks.

    PubMed

    Yang, Hua; Yu, Kai; Mu, Xiaoming; Shi, Xinghua; Wei, Yujie; Guo, Yafang; Qi, H Jerry

    2015-08-21

    Covalent adaptable networks are polymers that can alter the arrangement of network connections by bond exchange reactions where an active unit attaches to an existing bond then kicks off its pre-existing peer to form a new bond. When the polymer is stretched, bond exchange reactions lead to stress relaxation and plastic deformation, or the so-called reforming. In addition, two pieces of polymers can be rejoined together without introducing additional monomers or chemicals on the interface, enabling welding and reprocessing. Although covalent adaptable networks have been researched extensively in the past, knowledge about the macromolecular level network alternations is limited. In this study, molecular dynamics simulations are used to investigate the macromolecular details of bond exchange reactions in a recently reported epoxy system. An algorithm for bond exchange reactions is first developed and applied to study a crosslinking network formed by epoxy resin DGEBA with the crosslinking agent tricarballylic acid. The trace of the active units is tracked to show the migration of these units within the network. Network properties, such as the distance between two neighboring crosslink sites, the chain angle, and the initial modulus, are examined after each iteration of the bond exchange reactions to provide detailed information about how material behaviors and macromolecular structure evolve. Stress relaxation simulations are also conducted. It is found that even though bond exchange reactions change the macroscopic shape of the network, microscopic network characteristic features, such as the distance between two neighboring crosslink sites and the chain angle, relax back to the unstretched isotropic state. Comparison with a recent scaling theory also shows good agreement. PMID:26166382

  3. Interpersonal Exchanges in Discussion Forums: A Study of Learning Communities in Distance Learning Settings

    ERIC Educational Resources Information Center

    Scherer Bassani, Patricia B.

    2011-01-01

    Cooperative relationships are the foundation of a model of online learning based on communities. The development of a community depends on the interaction between community members. This study is based on the belief that the dynamics of exchange of thought, from a Piagetian perspective, are one possibility for understanding the process of…

  4. DETERMINING CARBON ISOTOPE SIGNATURES FROM MICROMETEOROLOGICAL MEASUREMENTS: IMPLICATIONS FOR STUDYING BIOSPHERE-ATMOSPHERE EXCHANGE PROCESSES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years considerable effort has been focused on combining micrometeorological and stable isotope techniques to elucidate and study biosphere-atmosphere exchange processes. At the ecosystem scale, these methods are increasingly being used to address a number of challenging problems, including...

  5. Research on Study Abroad, Mobility, and Student Exchange in Comparative Education Scholarship

    ERIC Educational Resources Information Center

    Streitwieser, Bernhard T.; Le, Emily; Rust, Val

    2012-01-01

    For many years there has been research on study abroad, student mobility and international student exchange; however in the last two decades the volume and scope of this work has increased significantly. There are now specific academic journals, a host of new books each year, expansive reports by international research organizations, and an

  6. Collaborative E-Mail Exchange for Teaching Secondary ESL: A Case Study in Hong Kong.

    ERIC Educational Resources Information Center

    Greenfield, Roseanne

    2003-01-01

    Presents data from a qualitative case study examining secondary English-as-a-Second-Language students' attitudes toward and perceptions of a collaborative email exchanges between a Form 4 (10th grade) English-as-a-Second-Language class in Hong Kong and an 11th grade English class in Iowa. (Author/VWL)

  7. 77 FR 57055 - Regulatory New Drug Review: Solutions for Study Data Exchange Standards; Notice of Meeting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-17

    ..., 2012 (77 FR 48491). The document announced a meeting entitled ``Regulatory New Drug Review: Solutions for Study Data Exchange Standards.'' The document was published with an incorrect email address. This...Standards@fda.hhs.gov . SUPPLEMENTARY INFORMATION: In FR Doc. 2012-19748, appearing on page 48491 in...

  8. High pressure ESR studies of electron self-exchange reactions of organic radicals in solution.

    PubMed

    Rasmussen, Kenneth; Hussain, Tajamal; Landgraf, Stephan; Grampp, Gnter

    2012-01-12

    Simple electron self-exchange reactions are often used to study the role of the reaction medium on a chemical process, commonly implying the use of various solvents with different physical properties. In principle, similar studies may be conducted using a single solvent, changing its physical properties by application of elevated pressures, but so far only little information is available on pressure dependent exchange reactions. In this work, we have used a recently constructed high pressure apparatus for use with electron spin resonance (ESR) spectroscopy to investigate simple electron self-exchange reactions involving 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) and tetracyanoethylene (TCNE) and their respective radical anions as well as TMPPD and its radical cation in three different solvents. The self-exchange was observed by ESR line broadening experiments, yielding rate constants and volumes of activation. The experimental results were compared to theoretical calculations based on Marcus theory and taking into account solvent dynamic effects. The use of elevated pressures has enabled the study of solvent effects without commonly encountered problems like solubility issues or chemical reactions between solvent and solute which sometimes limit the range of useable solvents. PMID:22133086

  9. PILOT STUDY ON INTERNATIONAL EXCHANGE ON DIOXINS AND RELATED COMPOUNDS: INTERNATIONAL EXCHANGE OF RESEARCH AND TECHNOLOGY INFORMATION ON DIOXINS AND RELATED COMPOUNDS

    EPA Science Inventory

    The Pilot Study on International Information Exchange on Dioxins and Related Compounds was initiated in 1985 to apply the cooperative efforts of numerous nations to address the problems associated with CDDs, CDFs, and related compounds. he Pilot Study conducted activities to exam...

  10. Unfolding and aggregation of monoclonal antibodies on cation exchange columns: effects of resin type, load buffer, and protein stability.

    PubMed

    Guo, Jing; Carta, Giorgio

    2015-04-01

    The chromatographic behavior of a monoclonal antibody (mAb) that exhibits a pronounced two-peak elution behavior is studied for a range of strong cation exchange resins and with varying load buffer pH and composition. Six stationary phases are considered, including two tentacle-type resins (Fractogel EMD SO3-(M) and Eshmuno S), a resin with grafted polymeric surface extenders (Nuvia S), a resin with a bimodal pore size distribution (POROS HS 50), and two macroporous resins without polymer grafts (Source 30S and UNOsphere Rapid S). The two-peak elution behavior is very pronounced for the tentacle and polymer-grafted resins and for POROS HS 50, but is essentially absent for the two macroporous resins. The extent of this behavior decreases as the buffer pH and concentration increase and, consequently, mAb binding becomes weaker. Replacing sodium with arginine as the buffer counterion, which is expected to decrease the mAb binding strength, nearly completely eliminates the two-peak behavior, while replacing sodium with tetra-n-butylammonium hydroxide, which is expected to increase the mAb binding strength, dramatically exacerbate the effect. As shown by hydrogen-deuterium exchange mass spectrometry (HX-MS), the two-peak elution behavior is related to conformational changes that occur when the mAb binds. These changes result in increased solvent exposure of specific peptides in the Fc-region for either the Fractogel or the Nuvia resin. No significant conformational changes were seen by HX-MS when the mAb was bound to the UNOsphere resin or on the Fractogel resin when arginine was used in lieu of sodium as the load buffer counterion. Experiments with two additional mAbs on the Fractogel resin show that the two-peak elution behavior is dependent on the particular antibody. Circular dichroism suggests that the propensity of different mAbs to either precipitate directly or to form stabilizing intermolecular structures upon exposure to thermal stress can be related to their chromatographic behaviors. PMID:25739785

  11. Lead exchange in teeth and bone--a pilot study using stable lead isotopes.

    PubMed Central

    Gulson, B L; Gillings, B R

    1997-01-01

    Stable lead isotopes and lead concentrations were measured in the enamel and dentine of permanent (n = 37) and deciduous teeth (n = 14) from 47 European immigrants to Australia to determine whether lead exchange occurs in teeth and how it relates to lead exchange in bone. Enamel exhibits no exchange of its European-origin lead with lead from the Australian environment. In contrast, dentine lead exchanges with Australian lead to the extent of approximately 1% per year. In one subject, trabecular bone from the tooth socket exchanged almost all its European lead with Australian lead over a a 15-year period (turnover of approximately 6% per year), similar to the approximately 8% per year proposed for lead turnover in trabecular bone. The repository characteristics of intact circumpulpal dentine were investigated by analyses of four sets of contiguous slices from six teeth: 1) a set consisting of slices with intact circumpulpal dentine and cementum; 2) a set in which these areas were removed; 3) another set consisting of slices with intact circumpulpal dentine and cementum; and 4) a set without cementum. These analyses show relatively small differences in isotopic composition between contiguous slices except that circumpulpal dentine appears to be the dominant control on lead concentration. There is a significant correlation (R2 = 0.19, p = 0.01, n = 34) of dentine lead concentration and rate of exchange with residence time from the country of origin and Australian lead, but there is no such correlation with enamel lead concentration. Analyses of permanent and deciduous teeth of subjects from other countries who have resided in Australia for varying lengths of time should resolve some of the questions arising from this pilot study. Images Figure 1. PMID:9347897

  12. Beyond the Born Approximation: Two Photon Exchange in Nucleon Structure Studies

    NASA Astrophysics Data System (ADS)

    Averett, Todd

    2013-10-01

    Precision measurements of the electric form factor of the proton at Jefferson Lab have revealed a striking difference between Rosenbluth separation and polarization transfer data. Much of this discrepancy has been attributed to two-photon exchange, previously ignored in nucleon structure studies due to lack of precision in the data. Recently, experiments were conducted at Jefferson Lab where unpolarized electrons were scattered from neutrons polarized normal to the electron scattering plane. The polarized neutrons were produced by polarizing 3He nuclei using spin-exchange optical pumping. The single spin asymmetry for inclusive scattering, formed by flipping the target spin direction, is predicted to be exactly zero in the Born approximation by the Christ-Lee theorem. A non-zero asymmetry is an indication of contributions from two-photon exchange. This asymmetry provides a new tool to study the structure of the nucleon and to directly test models of two-photon exchange contributions. Results will be presented from measurements in the quasi-elastic and deep-inelastic regions.

  13. CFD Simulation Studies on the Performance of Rectangular Coil Heat Exchanger

    NASA Astrophysics Data System (ADS)

    Samsudeen, N.; Anantharaman, N.; Raviraj, Pol.

    2010-10-01

    The simulation studies are made to understand the concept of heat transfer by convection in a rectangular coiled type heat exchanger. The rectangular coil heat exchanger consists of inner and outer coil arrangements with several straight portions and bends so that the exterior flow is very similar to flow within tube-bundles. The present work focuses mainly on exploring the various flow pattern and temperature distribution through the pipe. Computer simulation studies were performed for four different angle of tube bundle inclination (0, 30, 60, and 90) with two set flow arrangements (inline and staggered arrangement) in the shell side of the heat exchanger. The simulation results show that the effect of the tube bundle inclination on the fluid velocity distribution and the heat transfer performance is observed maximum for the coil with tube bundle inclination angle between 30 degrees and 60 degrees with the staggered arrangement than with the inline arrangement due to proper mixing in the shell side and the outside flow over the tube bundle helps to create turbulence without increasing the velocity in the shell side of the heat exchanger.

  14. Experimental study of mixed convection heat transfer in vertical helically coiled tube heat exchangers

    SciTech Connect

    Ghorbani, N.; Taherian, H.; Gorji, M.; Mirgolbabaei, H.

    2010-10-15

    In this study the mixed convection heat transfer in a coil-in-shell heat exchanger for various Reynolds numbers, various tube-to-coil diameter ratios and different dimensionless coil pitch was experimentally investigated. The experiments were conducted for both laminar and turbulent flow inside coil. Effects of coil pitch and tube diameters on shell-side heat transfer coefficient of the heat exchanger were studied. Different characteristic lengths were used in various Nusselt number calculations to determine which length best fits the data and several equations were proposed. The particular difference in this study in comparison with the other similar studies was the boundary conditions for the helical coils. The results indicate that the equivalent diameter of shell is the best characteristic length. (author)

  15. Study of exchange bias behavior in Ni(Cr1-xFex)2O4

    NASA Astrophysics Data System (ADS)

    Barman, Junmoni; Ravi, S.

    2015-01-01

    Single phase samples of Ni(Cr1-xFex)2O4 were prepared by sol-gel method for x=0.0 to 0.1. Structural study at room temperature using X-ray diffraction shows that upon Fe substitution the crystal structure transforms from tetragonal cell with space group I41/amd to cubic cell with Fd 3 bar m space group. The ferrimagnetic transition temperature (TC) is found to increase from 73 K for x=0 to 187 K for x=0.1. Presence of large coercivity along with exchange bias phenomenon is observed as per M-H loop measurements. The origin of exchange bias is explained by considering the exchange anisotropy between the ferrimagnetic and the antiferromagnetic components. The temperature dependent behaviors of exchange bias field and the effective coercive field are found to be quite different, while the former one decreases exponentially but the latter one decreases in quadratic form with increase in temperature and both of them approach zero at TC.

  16. Conformations of cationized linear oligosaccharides revealed by FTMS combined with in-ESI H/D exchange.

    PubMed

    Kostyukevich, Yury; Kononikhin, Alexey; Popov, Igor; Nikolaev, Eugene

    2015-10-01

    Previously (Kostyukevich et al. Anal Chem 2014, 86, 2595), we have reported that oligosaccharides anions are produced in the electrospray in two different conformations, which differ by the rate of gas phase hydrogen/deuterium (H/D) exchange reaction. In the present paper, we apply the in-electrospray ionization (ESI) source H/D exchange approach for the investigation of the oligosaccharides cations formed by attaching of metal ions (Na, K) to the molecule. It was observed that the formation of different conformers can be manipulated by varying the temperature of the desolvating capillary of the ESI interphase. Separation of the conformers was performed using gas phase H/D approach. Because the conformers have different rates of the H/D exchange reaction, the deuterium distribution spectrum becomes bimodal. It was found that the conformation corresponding to the slow H/D exchange rate dominates in the spectrum when the capillary temperature is low (~200 °C), and the conformation corresponding to the fast H/D exchange rate dominates at high (~400 °C) temperatures. In the intermediate temperature region, two conformers are present simultaneously. It was also observed that large oligosaccharide requires higher temperature for the formation of another conformer. It was found that the presence of the conformers considerably depends on the solvent used for ESI and the pH. We have compared these results with the previously performed in-ESI source H/D exchange experiments with peptides and proteins. PMID:26456784

  17. Parametric Sensivity Study of Operating and Design Variables in Wellbore Heat Exchangers

    SciTech Connect

    G. Michael Shook; Gopi Nalla; Gregory L. Mines; K. Kit Bloomfield

    2004-05-01

    This report documents the results of an extensive sensitivity study conducted by the Idaho National Engineering and Environmental Laboratory. This study investigated the effects of various operating and design parameters on wellbore heat exchanger performance to determine conditions for optimal thermal energy extraction and evaluate the potential for using a wellbore heat exchanger model for power generation. Variables studied included operational parameters such as circulation rates, wellbore geometries and working fluid properties, and regional properties including basal heat flux and formation rock type. Energy extraction is strongly affected by fluid residence time, heat transfer contact area, and formation thermal properties. Water appears to be the most appropriate working fluid. Aside from minimal tubing insulation, tubing properties are second order effects. On the basis of the sensitivity study, a best case model was simulated and the results compared against existing low-temperature power generation plants. Even assuming ideal work conversion to electric power, a wellbore heat exchange model cannot generate 200 kW (682.4e+3 BTU/h) at the onset of pseudosteady state. Using realistic conversion efficiency, the method is unlikely to generate 50 kW (170.6e+3 BTU/h).

  18. Parametric Sensitivity Study of Operating and Design Variables in Wellbore Heat Exchangers

    SciTech Connect

    Nalla, G.; Shook, G.M.; Mines, G.L.; Bloomfield, K.K.

    2004-05-01

    This report documents the results of an extensive sensitivity study conducted by the Idaho National Engineering and Environmental Laboratory. This study investigated the effects of various operating and design parameters on wellbore heat exchanger performance to determine conditions for optimal thermal energy extraction and evaluate the potential for using a wellbore heat exchanger model for power generation. Variables studied included operational parameters such as circulation rates, wellbore geometries and working fluid properties, and regional properties including basal heat flux and formation rock type. Energy extraction is strongly affected by fluid residence time, heat transfer contact area, and formation thermal properties. Water appears to be the most appropriate working fluid. Aside from minimal tubing insulation, tubing properties are second order effects. On the basis of the sensitivity study, a best case model was simulated and the results compared against existing low-temperature power generation plants. Even assuming ideal work conversion to electric power, a wellbore heat exchange model cannot generate 200 kW (682.4e+3 BTU/h) at the onset of pseudosteady state. Using realistic conversion efficiency, the method is unlikely to generate 50 kW (170.6e+3 BTU/h).

  19. Science and Technology Policies Information Exchange System (SPINES) Feasibility Study. Science Policy Studies and Documents No. 33(1).

    ERIC Educational Resources Information Center

    Coblans, H.; And Others

    A feasibility study was made to define, within the conceptual framework and in accordance with the recommendations of the UNISIST program, the managerial, technical, legal, and financial framework for the setting up of an International Science and Technology Policies Information Exchange System (SPINES). This report describes in some detail the

  20. Experimental study on corrugated cross-flow air-cooled plate heat exchangers

    SciTech Connect

    Kim, Minsung; Baik, Young-Jin; Park, Seong-Ryong; Ra, Ho-Sang; Lim, Hyug

    2010-11-15

    Experimental study on cross-flow air-cooled plate heat exchangers (PHEs) was performed. The two prototype PHEs were manufactured in a stack of single-wave plates and double-wave plates in parallel. Cooling air flows through the PHEs in a crosswise direction against internal cooling water. The heat exchanger aims to substitute open-loop cooling towers with closed-loop water circulation, which guarantees cleanliness and compactness. In this study, the prototype PHEs were tested in a laboratory scale experiments. From the tests, double-wave PHE shows approximately 50% enhanced heat transfer performance compared to single-wave PHE. However, double-wave PHE costs 30% additional pressure drop. For commercialization, a wide channel design for air flow would be essential for reliable performance. (author)

  1. Numerical study of a round tube heat exchanger with louvered fins and delta winglets

    NASA Astrophysics Data System (ADS)

    Huisseune, H.; T'Joen, C.; De Jaeger, P.; Ameel, B.; De Paepe, M.

    2012-11-01

    Louvered fin and round tube heat exchangers are widely used in air conditioning devices and heat pumps. In this study the effect of punching delta winglet vortex generators in the louvered fin surface is studied numerically. The delta winglets are located in a common-flow-down orientation behind each tube of the staggered tube layout. It is shown that the generated vortices significantly reduce the size of the tube wakes. Three important heat transfer enhancement mechanisms can be distinguished: a better flow mixing, boundary layer thinning and a delay in flow separation from the tube surface. The compound heat exchanger has a better thermal hydraulic performance then when only louvers or only delta winglets are used. Comparison to other enhanced fin designs clearly shows its potential, especially for low Reynolds number applications.

  2. Application of two-dimensional exchange nuclear magnetic resonance techniques for the study of incommensurate solids

    NASA Astrophysics Data System (ADS)

    Muntean, Ligia Aurora

    This dissertation includes a study of atomic dynamics in incommensurate systems by specialized nuclear magnetic resonance (NMR) techniques, such as two-dimensional (2D) exchange NMR, and Hahn spin-echo decay. The atomic dynamics described by the diffusion-like motion of the modulation wave in incommensurate phases is one of the subjects of condensed matter physics that is not fully understood and has attracted a great deal of attention in recent years. Our Hahn spin-echo decay and 2D exchange and exchange-difference NMR experiments have contributed to understanding some of the aspects of this debated subject and have brought conclusive experimental evidence for the existence of the modulation wave diffusion in Rb2ZnCl 4 and BaNaNb5O15. We performed 87Rb NMR and 35Cl nuclear quadrupole resonance (NQR) Hahn spin echo magnetization decay measurements in the incommensurate (I) phase of Rb2ZnCl4. From these measurements we obtained values for the diffusion coefficients for 87Rb NMR and 35Cl NQR and found them to be similar. This fact strongly supports the existence of modulation wave diffusion in the I phase, that should affect both Rb and Cl ions comparably. We also used 87Rb 2D exchange-difference NMR to study atomic motions in the incommensurate (I) and paraelectric (P) phases, to elucidate the nature of the I-P transition. The P phase results are identified as normal modes arising from simultaneous reorientations of ZnCl4 tetrahedra and corresponding Rb ions displacements between two sites. These normal modes freeze out in the I phase and change to the diffusion-like motion of the modulation wave. This dissertation also includes a study of modulation wave dynamics in the I phase of barium sodium niobate (BSN) by 2D exchange NMR. The modulation wave diffusion has been previously inferred in BSN from a complementary experiment, the Hahn spin-echo decay. However, since this experiment cannot unambiguously distinguish between different types of motional mechanisms, the modulation wave diffusion interpretation of the Hahn echo experimental results could still be under question. Our 93Nb 2D exchange NMR data provide additional strong evidence for the existence of progressive diffusion-like motion of the modulation wave and rules out a two-site jump model in BSN.

  3. Comparative study of key exchange and authentication methods in application, transport and network level security mechanisms

    NASA Astrophysics Data System (ADS)

    Fathirad, Iraj; Devlin, John; Jiang, Frank

    2012-09-01

    The key-exchange and authentication are two crucial elements of any network security mechanism. IPsec, SSL/TLS, PGP and S/MIME are well-known security approaches in providing security service to network, transport and application layers; these protocols use different methods (based on their requirements) to establish keying materials and authenticates key-negotiation and participated parties. This paper studies and compares the authenticated key negotiation methods in mentioned protocols.

  4. An experimental study of the influence of the temperature difference field uniformity on cross-flow heat exchanger performance

    SciTech Connect

    Lu, B.; Lloyd, J.R.; Guo, Z.Y.; Zhou, S.Q.

    1996-12-31

    An experimental study of heat exchanger performance has been conducted utilizing a basic cross-flow heat exchanger configuration. Six different cross-flow, finned-tube heat exchanger flow configurations were tested in a specially designed wind tunnel system to investigate the importance of the Temperature Difference Uniformity on the effectiveness of heat exchanger performance. The Temperature Difference Field (TDF) and the Temperature Difference Uniformity Factor, {Phi}, were employed as design factors to characterize and evaluate heat exchanger thermal performance. A base heat exchanger configuration was established, and then five modifications on the base configuration were made in a systematic study to enhance the performance. The fluids were air on the outside, and hot water inside the tubes. The basic configurations included either 28 or 56 tubes in the bank. The results of the experiments have clearly demonstrated the importance of flow distribution and how it can be used to control the Temperature Difference Field; which, as a design parameter, is an important component of heat exchanger performance optimization. Heat exchanger effectiveness for the best flow distribution was found to increase by 4.3% over that of the conventional flow distribution with no associated increase in pressure drop. This promotes a new path for them to increase heat exchanger heat transfer effectiveness. Comments on further possible performance enhancement strategies are presented.

  5. Neutron Reflectivity Study in Py/CoO Exchange Bias System

    NASA Astrophysics Data System (ADS)

    Chen, San-Wen; Lu, Xiangshun; Sinha, Sunil; Berkowitz, Ami; Fullerton, Eric; Chan, Keith; Lauter, Valaria; Ambaye, Hailemariam; Blackburn, Elizabeth

    2011-03-01

    We have studied the permalloy-cobalt monoxide exchange bias system using polarized neutron reflectivity. Both polycrystalline and epitaxial single crystalline (with the (111) and (100) CoO planes at the interface) CoO films were studied. By fitting the reflectivity for both directions of the applied field relative to the cooling field, we are able to obtain both the nuclear and spin depth profiles, as well as locating the pinned spins which are responsible for the exchange bias effect. The pinned spins at the interface can be resolved in the polycrystalline sample, which is consistent with our previous study with resonant soft x-ray reflectivity. One could reasonably have expected a stronger exchange bias effect in the (111) single crystal CoO film, because it has more uncompensated spins at the interface. The neutron reflectivity, however, shows lesser pinned spins. In the presentation, we will show the difference between the magnetic density profiles of the samples involving polycrystalline, (111) and (100) single crystalline CoO films respectively.

  6. A Study of Jordanian University Students' Perceptions of Using Email Exchanges with Native English Keypals for Improving Their Writing Competency

    ERIC Educational Resources Information Center

    Mahfouz, Safi Mahmoud

    2010-01-01

    English foreign language learners generally tend to consider email exchanges with native speakers (NSs) as an effective tool for improving their foreign language proficiency. This study investigated Jordanian university students' perceptions of using email exchanges with native English keypals (NEKs) for improving their writing competency. A…

  7. UV Resonance Raman Spectral Hydrogen Exchange Studies of Poly-L-Lysine's Conformation

    NASA Astrophysics Data System (ADS)

    Ma, Lu; Asher, Sanford

    2009-03-01

    The rate of exchange of peptide backbone NH group with the hydrogen of aqueous solvents is sensitive to the peptide secondary structure. In this work, we use a continuous flow rapid mixing technique and study H/D exchange rates of the model peptide poly-l-lysine (PLL) using UV resonance Raman spectroscopy. Different conformational equilibria of PLL between the helical (?, 310, and ?-helix) and extended conformations (PPII and 2.51-helix) are obtained by controlling solvent pH and salt concentration. The AmII' band of the peptide backbone is used as the deuteration marker. The H/D change rate of PLL provides direct information of the stability of different conformations. Additionally, these results provide insight into backbone conformation fluctuations and how various factors affect the conformation.

  8. Charge-exchange erosion studies of accelerator grids in ion thrusters

    NASA Technical Reports Server (NTRS)

    Peng, Xiaohang; Ruyten, Wilhelmus M.; Keefer, Dennis

    1993-01-01

    A particle simulation model is developed to study the charge-exchange grid erosion in ion thrusters for both ground-based and space-based operations. Because the neutral gas downstream from the accelerator grid is different for space and ground operation conditions, the charge-exchange erosion processes are also different. Based on an assumption of now electric potential hill downstream from the ion thruster, the calculations show that the accelerator grid erosion rate for space-based operating conditions should be significantly less than experimentally observed erosion rates from the ground-based tests conducted at NASA Lewis Research Center (LeRC) and NASA Jet Propulsion Laboratory (JPL). To resolve this erosion issue completely, we believe that it is necessary to accurately measure the entire electric potential field downstream from the thruster.

  9. Optical study of electron-electron exchange interaction in CdTe/ZnTe quantum dots

    NASA Astrophysics Data System (ADS)

    Kazimierczuk, T.; Smole?ski, T.; Kobak, J.; Goryca, M.; Pacuski, W.; Golnik, A.; Fronc, K.; K?opotowski, ?.; Wojnar, P.; Kossacki, P.

    2013-05-01

    We present an experimental study of electron-electron exchange interaction in self-assembled CdTe/ZnTe quantum dots based on the photoluminescence measurements. The character and strength of this interaction are obtained by simultaneous observation of various recombination channels of a doubly negatively charged exciton X2-, including previously unrecognized emission lines related to the electron-singlet configuration in the final state. A typical value of the electron singlet-triplet splitting, which corresponds to the exchange integral of electron-electron interaction, has been determined as 20.4 meV with a spread of 1.4 meV across the wide population of quantum dots. We also evidence an unexpected decrease of energy difference between the singlet and triplet states under a magnetic field in Faraday geometry.

  10. Study by XPS of different conditioning processes to improve the cation exchange in clinoptilolite

    NASA Astrophysics Data System (ADS)

    Ruiz-Serrano, D.; Flores-Acosta, M.; Conde-Barajas, E.; Ramrez-Rosales, D.; Yez-Limn, J. M.; Ramrez-Bon, R.

    2010-09-01

    We report the X-ray photoelectron spectroscopy (XPS) analysis of natural clinoptilolite from a mine in Sonora, Mxico. From these measurements we determined the chemical state and binding energy of the elements in the zeolite framework and of those in the extra framework sites. The analysis was done on natural clinoptilolite and on cation-exchanged clinoptilolites with Na + and NH4+ ions. Complementary analysis by several experimental techniques was performed to determine the structural, chemical composition and chemical state modifications experimented by clinoptilolite samples processed by the two types of cation exchange. The clinoptilolite samples were studied by X-ray powder diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) to determine their structural composition, Energy Dispersive Spectroscopy (EDS) to measure the chemical composition and electronic paramagnetic resonance (EPR) spectroscopy to determine the chemical state of iron inside the natural zeolites.

  11. Kinetic Method for Hydrogen-Deuterium-Tritium Mixture Distillation Simulation

    SciTech Connect

    Sazonov, A.B.; Kagramanov, Z.G.; Magomedbekov, E.P.

    2005-07-15

    Simulation of hydrogen distillation plants requires mathematical procedures suitable for multicomponent systems. In most of the present-day simulation methods a distillation column is assumed to be composed of theoretical stages, or plates. However, in the case of a multicomponent mixture theoretical plate does not exist.An alternative kinetic method of simulation is depicted in the work. According to this method a system of mass-transfer differential equations is solved numerically. Mass-transfer coefficients are estimated with using experimental results and empirical equations.Developed method allows calculating the steady state of a distillation column as well as its any non-steady state when initial conditions are given. The results for steady states are compared with ones obtained via Thiele-Geddes theoretical stage technique and the necessity of using kinetic method is demonstrated. Examples of a column startup period and periodic distillation simulations are shown as well.

  12. Study of a market model with conservative exchanges on complex networks

    NASA Astrophysics Data System (ADS)

    Braunstein, Lidia A.; Macri, Pablo A.; Iglesias, J. R.

    2013-04-01

    Many models of market dynamics make use of the idea of conservative wealth exchanges among economic agents. A few years ago an exchange model using extremal dynamics was developed and a very interesting result was obtained: a self-generated minimum wealth or poverty line. On the other hand, the wealth distribution exhibited an exponential shape as a function of the square of the wealth. These results have been obtained both considering exchanges between nearest neighbors or in a mean field scheme. In the present paper we study the effect of distributing the agents on a complex network. We have considered archetypical complex networks: Erds-Rnyi random networks and scale-free networks. The presence of a poverty line with finite wealth is preserved but spatial correlations are important, particularly between the degree of the node and the wealth. We present a detailed study of the correlations, as well as the changes in the Gini coefficient, that measures the inequality, as a function of the type and average degree of the considered networks.

  13. Computational Studies of Water-Exchange Rates around Aqueous Mg2+ and Be2+

    SciTech Connect

    Dang, Liem X.

    2014-12-18

    The water-exchange mechanisms occurring around aqueous divalent Mg2+ and Be2+ ions were studied using molecular dynamics simulations and rate theory methods. Properties associated with the water-exchange process, such as ion-water potentials of mean force, time-dependent transmission coefficients, and rate constants, were examined along with transition rate theory and the reactive flux method, which includes the role of solvent friction. The effects of pressure on water-exchange rates and activation volumes also were studied. The simulated activation volume values and mechanism were different for Mg2+ and Be2+ because of the nature of their solvation shells. We found the agreement with experiments was improved up on solvent effects were taken into account. The Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences (BES), of the U.S. Department of Energy (DOE) funded this work. Battelle operates Pacific Northwest National Laboratory for DOE. The calculations were carried out using computer resources provided by BES.

  14. Long-term study of coherent exchange over spruce forest using wavelet analysis

    NASA Astrophysics Data System (ADS)

    Thomas, C.; Foken, T.

    2003-04-01

    Turbulent time series obtained over tall vegetated surfaces consist of high frequent turbulent signal and additional low frequent ramp-like patterns. These ramp patterns are called coherent structures and show well-organized and regular presence during solar insolation. In the last decade coherent structures have been analyzed in turbulent signals mainly focussing on temperature and horizontal wind speed data of single events or short-term periods under varying stability regimes. These studies concluded that the exchange of energy and matter between tall vegetation and the surfacer layer through coherent structures significantly contribute to the overall budget of the stand. Wavelet analysis has recently been found a powerful and objective tool for detecting and characterizing the coherent exchange. The underlying new concept of this study aims to get information on the long-term behaviour of coherent structures through application of wavelet analysis and their contribution to the energy, carbon and water budget of a mid-european spruce forest. Particular attention is paid to possible origins of coherent motion due to wind shear and roughness changes, their typical length scales in space and time and the behaviour of stationarity and intermittency parameters during the presence of coherent exchange.

  15. Engineering study for the treatment of spent ion exchange resin resulting from nuclear process applications

    SciTech Connect

    Place, B.G.

    1990-09-01

    This document is an engineering study of spent ion exchange resin treatment processes with the purpose of identifying one or more suitable treatment technologies. Classifications of waste considered include all classes of low-level waste (LLW), mixed LLW, transuranic (TRU) waste, and mixed TRU waste. A total of 29 process alternatives have been evaluated. Evaluation parameters have included economic parameters (both total life-cycle costs and capital costs), demonstrated operability, environmental permitting, operational availability, waste volume reduction, programmatic consistency, and multiple utilization. The results of this study suggest that there are a number of alternative process configurations that are suitable for the treatment of spent ion exchange resin. The determinative evaluation parameters were economic variables (total life-cycle cost or capital cost) and waste volume reduction. Immobilization processes are generally poor in volume reduction. Thermal volume reduction processes tend to have high capital costs. There are immobilization processes and thermal volume reduction processes that can treat all classifications of spent ion exchange resin likely to be encountered. 40 refs., 19 figs., 17 tabs.

  16. Study of junction flows in louvered fin round tube heat exchangers using the dye injection technique

    SciTech Connect

    Huisseune, H.; Willockx, A.; De Paepe, M.; T'Joen, C.; De Jaeger, P.

    2010-11-15

    Detailed studies of junction flows in heat exchangers with an interrupted fin design are rare. However, understanding these flow structures is important for design and optimization purposes, because the thermal hydraulic performance of heat exchangers is strongly related to the flow behaviour. In this study flow visualization experiments were performed in six scaled-up models of a louvered fin round tube heat exchanger. The models have three tube rows in a staggered layout and differ only in their fin spacing and louver angle. A water tunnel was designed and built and the flow visualizations were carried out using dye injection. At low Reynolds numbers the streakline follows the tube contours, while at higher Reynolds numbers a horseshoe vortex is developed ahead of the tubes. The two resulting streamwise vortex legs are destroyed by the downstream louvers (i.e. downstream the turnaround louver), especially at higher Reynolds numbers, smaller fin pitches and larger louver angles. Increasing the fin spacing results in a larger and stronger horseshoe vortex. This illustrates that a reduction of the fin spacing results in a dissipation of vortical motion by mechanical blockage and skin friction. Furthermore it was observed that the vortex strength and number of vortices in the second tube row is larger than in the first tube row. This is due to the thicker boundary layer in the second tube row, and the flow deflection, which is typical for louvered fin heat exchangers. Visualizations at the tube-louver junction showed that in the transition part between the angled louver and the flat landing a vortex is present underneath the louver surface which propagates towards the angled louver. (author)

  17. Experimental study of the airside performance of tube row spacing in finned tube heat exchangers

    NASA Astrophysics Data System (ADS)

    Halici, Fethi; Taymaz, Imdat

    2006-07-01

    Almost all of the studies in dehumidifying coils are experimental studies. In this study, effect of tube regulation space on heat and mass transfer and friction factor for heat exchangers made from aluminum fins and cooper tubes are identified experimentally. External surface heat transfer coefficient, Colburn factor and friction factor was calculated by the help of the computer program by using experimental values done. After the diagrams investigated, with the decreasing of tube row spacing the external surface heat transfer in the dry surface and friction factor increased. If wet and dry surfaces are compared, Colburn and friction factor in wet surfaces is larger than Colburn and friction factor in dry surfaces.

  18. Laboratory Studies of X-ray Spectra Formed by Charge Exchange

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, Peter; Ali, R.; Brown, G. V.; Koutroumpa, D.; Kelley, R. L.; Kilbourne, C.; Leutenegger, M. A.; Porter, F.

    2013-04-01

    Charge exchange between ions and neutral atoms or molecules has been accepted at an important soft producing process in our solar system. By extension, charge exchange may contribute to the X-ray emission of circumstellar material. It may also produce X-ray emission at the boundaries of supernova ejecta and star burst galaxies, or whenever hot plasma collides with neutral matter. X-ray spectra of K-shell and L-shell ions formed by charge exchange have now been studied in a variety of laboratory settings. These experiments have shown several characteristic features of line formation by charge exchange when compared to the X-ray emission produced by electron-impact excitation, e.g., enhancement emission of forbidden lines and of lines from levels with high principal quantum number. They have also shown a dependence on the interaction gas and on the energy of the ion-neutral collision. Moreover, the transfer of multiple electrons is typically preferred, provided the donor molecules or atoms have multiple valence-shell electrons. The laboratory measurements are in qualitative agreement with theory. However, the details of the observed X-ray spectra, especially those recorded with high spectral resolution, can differ substantially from predictions, especially for spectra produced at collision velocities equal to or lower than those found in thermal plasmas or produced with neutral gases other than atomic hydrogen. Puzzling discrepancies can be noted, such as enhanced emission from an upper level with the 'wrong' principal quantum number. Even more puzzling is a recent experiment in which two, co-mixed bare ion species of similar atomic number produce very different Lyman series emission upon charge exchange with a given neutral gas, defying both theoretical predictions and empirical scaling. Laboratory measurements have also shown that some of the characteristic features of charge exchange can be reproduced by radiative electron capture, i.e., by capture of a continuum electron. This process dominates in cold, photo-ionized plasmas, or when hot and cold plasmas mix. Work was performed under the auspices of the DOE by LLNL under contract DE-AC52-07NA27344 and supported in part by an award from NASA's APRA program.

  19. Health Information Exchange Implementation: Lessons Learned and Critical Success Factors From a Case Study

    PubMed Central

    2014-01-01

    Background Much attention has been given to the proposition that the exchange of health information as an act, and health information exchange (HIE), as an entity, are critical components of a framework for health care change, yet little has been studied to understand the value proposition of implementing HIE with a statewide HIE. Such an organization facilitates the exchange of health information across disparate systems, thus following patients as they move across different care settings and encounters, whether or not they share an organizational affiliation. A sociotechnical systems approach and an interorganizational systems framework were used to examine implementation of a health system electronic medical record (EMR) system onto a statewide HIE, under a cooperative agreement with the Office of the National Coordinator for Health Information Technology, and its collaborating organizations. Objective The objective of the study was to focus on the implementation of a health system onto a statewide HIE; provide insight into the technical, organizational, and governance aspects of a large private health system and the Virginia statewide HIE (organizations with the shared goal of exchanging health information); and to understand the organizational motivations and value propositions apparent during HIE implementation. Methods We used a formative evaluation methodology to investigate the first implementation of a health system onto the statewide HIE. Qualitative methods (direct observation, 36 hours), informal information gathering, semistructured interviews (N=12), and document analysis were used to gather data between August 12, 2012 and June 24, 2013. Derived from sociotechnical concepts, a Blended Value Collaboration Enactment Framework guided the data gathering and analysis to understand organizational stakeholders’ perspectives across technical, organizational, and governance dimensions. Results Several challenges, successes, and lessons learned during the implementation of a health system to the statewide HIE were found. The most significant perceived success was accomplishing the implementation, although many interviewees also underscored the value of a project champion with decision-making power. In terms of lessons learned, social reasons were found to be very significant motivators for early implementation, frequently outweighing economic motivations. It was clear that understanding the guides early in the project would have mitigated some of the challenges that emerged, and early communication with the electronic health record vendor so that they have a solid understanding of the undertaking was critical. An HIE implementations evaluation framework was found to be useful for assessing challenges, motivations, value propositions for participating, and success factors to consider for future implementations. Conclusions This case study illuminates five critical success factors for implementation of a health system onto a statewide HIE. This study also reveals that organizations have varied motivations and value proposition perceptions for engaging in the exchange of health information, few of which, at the early stages, are economically driven. PMID:25599991

  20. Experimental Study on Heat Transfer of Plate Heat Exchanger and Application to Waste Heat Power Generation

    NASA Astrophysics Data System (ADS)

    Tang, X. Y.; Zhu, D. S.; Guo, C. Q.

    2010-03-01

    According to investigation on the steel plant, a large amount of low thermal energy is emitted directly to the environment without any utilization. It is apparent that energy cogeneration and energy conversion become a problem concerned by all countries. At present, the utilization of thermal energy stored in slag washing water is mainly confined to transformation to heating rather than electricity generation. The working mechanism of electricity generation using slag washing water and experimental study on heat transfer characteristics of plate heat exchanger are presented in this paper. The experimental results show the non-linear relationship between heat transfer coefficient of plate heat exchanger made by different materials and different flow velocity of clean water in the pipe. When the flow velocity is greater than 1 m/s, K retains a certain value while the resistance coefficient increases dramatically. By comparison of experimental data, it is found that the heat resistance outside plate heat exchanger is the main factor that influences performance of plate heat transfer.

  1. A Comparative Data-Based Modeling Study on Respiratory CO2 Gas Exchange during Mechanical Ventilation

    PubMed Central

    Kim, Chang-Sei; Ansermino, J. Mark; Hahn, Jin-Oh

    2016-01-01

    The goal of this study is to derive a minimally complex but credible model of respiratory CO2 gas exchange that may be used in systematic design and pilot testing of closed-loop end-tidal CO2 controllers in mechanical ventilation. We first derived a candidate model that captures the essential mechanisms involved in the respiratory CO2 gas exchange process. Then, we simplified the candidate model to derive two lower-order candidate models. We compared these candidate models for predictive capability and reliability using experimental data collected from 25 pediatric subjects undergoing dynamically varying mechanical ventilation during surgical procedures. A two-compartment model equipped with transport delay to account for CO2 delivery between the lungs and the tissues showed modest but statistically significant improvement in predictive capability over the same model without transport delay. Aggregating the lungs and the tissues into a single compartment further degraded the predictive fidelity of the model. In addition, the model equipped with transport delay demonstrated superior reliability to the one without transport delay. Further, the respiratory parameters derived from the model equipped with transport delay, but not the one without transport delay, were physiologically plausible. The results suggest that gas transport between the lungs and the tissues must be taken into account to accurately reproduce the respiratory CO2 gas exchange process under conditions of wide-ranging and dynamically varying mechanical ventilation conditions. PMID:26870728

  2. Functional dynamics of hexameric helicase probed by hydrogen exchange and simulation.

    PubMed

    Radou, Gal; Dreyer, Frauke N; Tuma, Roman; Paci, Emanuele

    2014-08-19

    The biological function of large macromolecular assemblies depends on their structure and their dynamics over a broad range of timescales; for this reason, it is a significant challenge to investigate these assemblies using conventional experimental techniques. One of the most promising experimental techniques is hydrogen-deuterium exchange detected by mass spectrometry. Here, we describe to our knowledge a new computational method for quantitative interpretation of deuterium exchange kinetics and apply it to a hexameric viral helicase P4 that unwinds and translocates RNA into a virus capsid at the expense of ATP hydrolysis. Room-temperature dynamics probed by a hundred nanoseconds of all-atom molecular dynamics simulations is sufficient to predict the exchange kinetics of most sequence fragments and provide a residue-level interpretation of the low-resolution experimental results. The strategy presented here is also a valuable tool to validate experimental data, e.g., assignments, and to probe mechanisms that cannot be observed by x-ray crystallography, or that occur over timescales longer than those that can be realistically simulated, such as the opening of the hexameric ring. PMID:25140434

  3. Nucleotide exchange in dimeric MCAK induces longitudinal and lateral stress at microtubule ends to support depolymerization

    PubMed Central

    Burns, Kyle M.; Wagenbach, Mike; Wordeman, Linda; Schriemer, David C.

    2015-01-01

    Summary Members of the kinesin-13 sub-family use their motor domains in an unconventional fashion to initiate microtubule depolymerization at microtubule (MT) ends, suggesting unique conformational transitions for lattice engagement, end adaptation or both. Using hydrogen/deuterium exchange and electron microscopy, we explored conformational changes in kinesin-13 MCAK in its dimeric form and when bound to a depolymerization intermediate. ATP hydrolysis relaxes the conformation of the free dimer, notably in the neck and N-terminal domain. Exchanging dimeric MCAK with ATP at the MT plus end induces outward curvature in ?/?-tubulin, accompanied by a restructuring of the MCAK neck and N-terminus, as it returns to a closed state. Re-establishing a closed dimer state imparts a lateral separation of paired tubulin dimers, which may assist in depolymerization. Thus, full-length ADP-MCAK transitions from an open diffusion-competent configuration to a closed state upon plus-end mediated nucleotide exchange, which is primarily mediated by conformational changes in the N-terminal domains of the dimer. PMID:25066134

  4. Functional Dynamics of Hexameric Helicase Probed by Hydrogen Exchange and Simulation

    PubMed Central

    Radou, Gal; Dreyer, FraukeN.; Tuma, Roman; Paci, Emanuele

    2014-01-01

    The biological function of large macromolecular assemblies depends on their structure and their dynamics over a broad range of timescales; for this reason, it is a significant challenge to investigate these assemblies using conventional experimental techniques. One of the most promising experimental techniques is hydrogen-deuterium exchange detected by mass spectrometry. Here, we describe to our knowledge a new computational method for quantitative interpretation of deuterium exchange kinetics and apply it to a hexameric viral helicase P4 that unwinds and translocates RNA into a virus capsid at the expense of ATP hydrolysis. Room-temperature dynamics probed by a hundred nanoseconds of all-atom molecular dynamics simulations is sufficient to predict the exchange kinetics of most sequence fragments and provide a residue-level interpretation of the low-resolution experimental results. The strategy presented here is also a valuable tool to validate experimental data, e.g., assignments, and to probe mechanisms that cannot be observed by x-ray crystallography, or that occur over timescales longer than those that can be realistically simulated, such as the opening of the hexameric ring. PMID:25140434

  5. Homopolymer Adsorption on Hexagonal Surfaces: A Replica-Exchange Monte Carlo Study

    NASA Astrophysics Data System (ADS)

    Liewehr, B.; Bachmann, M.

    2016-01-01

    The adsorption behavior and thermodynamic properties of a coarse-grained flexible homopolymer, grafted on a hexagonal patterned surface, are investigated by means of parallel-tempering replica-exchange Monte Carlo simulations. In this study, the strength of the polymer-surface interaction, which is based on a standard Lennard-Jones potential, is changed systematically, mimicking different honeycomb-structured substrate materials. Utilizing specific order parameters, measured over a range of various temperatures and surface adsorption strengths, different structural phases are discriminated into classes of expanded, globular, droplet, and compact conformations. Finally, we construct the hyperphase diagram for a polymer with 55 monomers and discuss representative polymer structures.

  6. Magnetic switching dynamics due to ultrafast exchange scattering: A model study

    NASA Astrophysics Data System (ADS)

    Baral, Alexander; Schneider, Hans Christian

    2015-03-01

    We study the heat-induced magnetization dynamics in a toy model of a ferrimagnetic alloy, which includes localized spins antiferromagnetically coupled to an itinerant carrier system with a Stoner gap. We determine the one-particle spin-density matrix including exchange scattering between localized and itinerant bands as well as scattering with phonons. While a transient ferromagneticlike state can always be achieved by a sufficiently strong excitation, this transient ferromagneticlike state only leads to magnetization switching for model parameters that also yield a compensation point in the equilibrium M (T ) curve.

  7. Studies on PVA based nanocomposite Proton Exchange Membrane for Direct methanol fuel cell (DMFC) applications

    NASA Astrophysics Data System (ADS)

    Bahavan Palani, P.; Kannan, R.; Rajashabala, S.; Rajendran, S.; Velraj, G.

    2015-02-01

    Different concentrations of Poly (vinyl alcohol)/Montmorillonite (PVA/MMT) based proton exchange membranes (PEMs) have been prepared by solution casting method. The structural and electrical properties of these composite membranes have been characterized by using X-ray diffraction (XRD), Fourier transform infrared spectroscopic (FTIR) and AC impedance spectroscopic methods. The conductivity of the PEMs has been estimated for the different concentration of MMT. Water/Methanol uptake measurement were also analyzed for the prepared PEMs and presented. The proton conductivity studies were carried out at room temperature with 100% of humidity.

  8. Pb(II) biosorption using chitosan and chitosan derivatives beads: equilibrium, ion exchange and mechanism studies.

    PubMed

    Ngah, W S Wan; Fatinathan, S

    2010-01-01

    The study examined the adsorption of Pb(II) ions from aqueous solution onto chitosan, chitosan-GLA and chitosan-alginate beads. Several important parameters influencing the adsorption of Pb(II) ions such as initial pH, adsorbent dosage and different initial concentration of Pb(II) ions were evaluated. The mechanism involved during the adsorption process was explored based on ion exchange study and using spectroscopic techniques. The adsorption capacities obtained based on non-linear Langmuir isotherm for chitosan, chitosan-GLA and chitosan-alginate beads in single metal system were 34.98, 14.24 and 60.27 mg/g, respectively. However, the adsorption capacity of Pb(II) ions were reduced in the binary metal system due to the competitive adsorption between Pb(II) and Cu(II) ions. Based on the ion exchange study, the release of Ca2+, Mg2+, K+ and Na+ ions played an important role in the adsorption of Pb(II) ions by all three adsorbents but only at lower concentrations of Pb(II) ions. Infrared spectra showed that the binding between Pb(II) ions and the adsorbents involved mostly the nitrogen and oxygen atoms. All three adsorbents showed satisfactory adsorption capacities and can be considered as an efficient adsorbent for the removal of Pb(II) ions from aqueous solutions. PMID:20614774

  9. Experimental studies on coherent synchrotron radiaiton in the emittance exchange line at the Fermilab A0 Photoinjector

    SciTech Connect

    Thangaraj, J.C.T.; Keup, R.; Johnson, A.; ruan, J.; Piot, P.; Church, M.; Edwards, H.; Lumpkin, A.; Sun, Y.-E.; Santucci, J.; /Fermilab

    2011-03-01

    Future accelerators will employ advanced beam conditioning systems such as emittance exchangers to manipulate high brightness beams. Coherent synchrotron radiation (CSR) in the dipoles could limit the performance of the emittance exchanger. In this paper, we report the experimental studies on measuring CSR and its effects on the beam at the A0 photoinjector in the emittance exchange line. After reporting the CSR power measurements, we report on the diagnostic scheme based on a weak skew quad in the emittance exchange line to study the CSR effects on the beam and other beam dynamics. In this work, we have reported on CSR measurements and the effect of skew quad on the dogleg line with the 5-cell turned on and off. We plan to study CSR effects on the bunch with the 5-cell on at larger chirp. This is will not only increase the CSR self-effect but also reduce the beamsize at the screen for convenient beamsize measurements.

  10. Initial rate and isotope exchange studies of rat skeletal muscle hexokinase

    SciTech Connect

    Ganson, N.J.; Fromm, H.J.

    1985-10-05

    The kinetic mechanism of rat skeletal muscle hexokinase (hexokinase II) was investigated in light of a proposal by Cornish-Bowden and his co-workers. The authors investigated the mechanism of action of hexokinase II by studying initial rate kinetics in the nonphysiological direction and by isotope exchange at chemical equilibrium. The former experiments were carried out in the absence of inhibitors and then with AMP, which is a competitive inhibitor of ADP, and with glucose 1,6-bisphosphate, a competitive inhibitor of glucose-6-P. The findings from these experiments suggest that the kinetic mechanism is rapid equilibrium Random Bi Bi. Isotope exchange at equilibrium studies also supports the random nature of the muscle hexokinase reaction; however, they also suggest that the mechanism is partially ordered, i.e. there is a preferred pathway associated with the branched mechanism. Approximately two-thirds of the flux through the hexokinase reaction involves the glucose on first glucose-6-P off last branch of the Random Bi Bi mechanism. These results imply that the kinetic mechanism is steady state Random Bi Bi. There is some evidence to suggest that glucose-6-P binds to an allosteric site on muscle hexokinase, but none to suppose that ATP binds allosterically.

  11. H-D exchange in metal carbene complexes: Structure of cluster (μ-H)(μ-OCD3)Os3(CO)9{:C(CD3)NC2H8O}

    NASA Astrophysics Data System (ADS)

    Savkov, Boris; Maksakov, Vladimir; Kuratieva, Natalia

    2015-10-01

    X-ray and spectroscopic data for the new complex (μ-H)(μ-OCH3)Os3(CO)9{:C(CD3)NC2H8O} (2) obtained in the reaction of the (μ-H)(μ-Cl)Os3(CO)9{:C(CH3)NC2H8O} (1) with NaOCD3 in CD3OD solution are reported. It is shown that cluster 1 has the property of CH-acidity inherent of Fisher type carbenes. This had demonstrated using hydrogen deuterium exchange reaction in the presence of a strong base. Bridging chlorine to metoxide ligand substitution takes place during the reaction. The molecular structure of 2 is compared with known analogues.

  12. Exchange interaction in hexagonal MnRhP from first-principles studies

    SciTech Connect

    Liu, X. B. Zhang, Qiming; Ping Liu, J.; Yue, M.; Altounian, Z.

    2014-05-07

    Electronic structure and magnetic properties for MnRhP have been studied from a first-principles density functional calculation. The calculated lattice constants, a = 6.228 Å and c = 3.571 Å, are in good agreement with the experimental values of a = 6.223 Å and c = 3.585 Å. The calculated moment of Mn is 3.1 μ{sub B}/atom, resulting in a total moment of 3.0 μ{sub B}/atom due to small moments induced at Rh and P sites. The magnetic moment of Mn decreases with unit cell size. The exchange interactions are dominated by positive Mn-Mn exchange coupling (J{sub Mn−Mn}), implying a stable ferromagnetic ordering in Mn sublattice. In particular, J{sub Mn−Mn} shows a maximum value (1.5 mRy) at the the optimized unit cell size. The structural distortion or unit cell size change will affect J{sub Mn−Mn}, which is intimately related to the magneto-elastic and magneto-caloric effect.

  13. Experimental study of an integral catalytic combustor: Heat exchanger for Stirling engines

    NASA Technical Reports Server (NTRS)

    Bulzan, D. L.

    1982-01-01

    The feasibility of using catalytic combustion with heat removal for the Stirling engine to reduce exhaust emissions and also improve heat transfer to the working fluid was studied using spaced parallel plates. An internally air-cooled heat exchanger was placed between two noble metal catalytic plates. A preheated fuel-air mixture passed between the plates and reacted on the surface of the catalyzed plates. Heat was removed from the catalytic surface by radiation and convection to the aircooled heat exchangers to control temperature and minimize thermal nitrogen oxide emissions. Test conditions were inlet combustion air temperatures from 850 to 900 K, inlet velocities of about 10 m/s, equivalence ratios from 0.5 to 0.9, and pressures from 1.3x10 to the 5th power to 2.0x10 to the 5th power Pa. Propane fuel was used for all testing. Combustion efficiencies greater than 99.5 percent were measured. Nitrogen oxide emissions ranged from 1.7 to 3.3 g NO2/kg fuel. The results demonstrate the feasibility of the concept and indicate that further investigation of the concept is warranted.

  14. Experimental study on impact/fretting wear in heat exchanger tubes

    SciTech Connect

    Cha, J.H.; Wambsganss, M.W.; Jendrzejczyk, J.A.

    1987-08-01

    The objective of this study is to provide qualitative impact/fretting wear information for heat exchanger tubes through the performance of a series of tests involving the pertinent parameters: force between the tube and its support; tube to support plate hole clearance; tube support plate thickness; preload; and tube vibration frequency. The characteristics of impact/fretting wear relative to material combinations and fluid environment were also investigated. The test apparatus consists of a cantilevered tube with a simulated tube support plate at the ''free end.'' Tube vibration is induced by an electromagnetic exciter to simulate the flow-induced tube motion occurring in a real heat exchanger at the tube/tube support plate interface. Tests are conducted in air, water, and oil, all at room temperature. Removable wear rings are attached to the tube free end and simulated support fixture. Wear ring materials include carbon steel, 304 stainless steel, Inconel 600 and brass. Wear is measured by a weight loss technique and wear rates are calculated and reported as functions of the various pertinent parameters. Based on the test results, general conclusions are drawn.

  15. Experimental study on impact/fretting wear in heat exchanger tubes

    SciTech Connect

    Cha, J.H.; Wambsganss, M.W.; Jendrzejczyk, J.A.

    1986-01-01

    The objective of this study is to provide qualitative impact/fretting wear information for heat exchanger tubes through the performance of a series of tests involving the pertinent parameters: force between the tube and its support; tube to support plate hole clearance; tube support plate thickness; preload; and tube vibration frequency. The characteristics of impact/fretting wear relative to material combinations and fluid environment were also investigated. The test apparatus consists of a cantilevered tube with a simulated tube support plate at the ''free end''. Tube vibration is induced by an electromagnetic exciter to simulate the flow-induced tube motion occurring in a real heat exchanger at the tube/tube support plate interface. Tests are conducted in air, water, and oil, all at room temperature. Removable wear rings are attached to the tube free end and simulated support fixture. Wear ring materials include carbon steel, 304 stainless steel, Inconel 600 and brass. Wear is measured by a weight loss technique and wear rates are calculated and reported as functions of the various pertinent parameters. Based on the test results, general conclusions are drawn.

  16. Treadmill chamber for studies of respiratory gas exchange in the rat during exercise.

    PubMed

    Ardvol, A; Adn, C; Fernndez-Lpez, J A; Prez, J; Corts, J L; Binagui, D; Remesar, X; Alemany, M

    1995-05-01

    A treadmill for studying gas exchange in small mammals during exercise is presented. The system consists of a motor-driven running mat enclosed in a gastight chamber that receives a measured flow of air from a compressed air cylinder. The gas flow and temperature, pressure and instantaneous gas composition of the chamber (oxygen, carbon dioxide and water) are measured continuously and the data are computed to include the effects on chamber atmosphere of the rat activity, either running or at rest. The system is completed with a shock delivery grid that stimulates the rat to run. The calculations are based on the changes in the composition of the gas in the chamber (constantly stirred by a small electric fan) induced by the rat instead of relying on the alterations induced in the outflowing gas. The consumption of oxygen, and production of carbon dioxide and water by the rat are computed in real time, giving a very fast response to physiological change induced by exercise. The chamber is custom-made from an aluminium block and a plexiglass lid; all other components are available commercially. The system, as described, allows for a detailed analysis of respiratory gas (and water) exchange by rats under varying exercise conditions, there is practically no time lag between changes in respiratory gases and the detection of these changes, and the buffering effect of the chamber size is practically eliminated because of the calculation approach used. PMID:9338089

  17. A study of PV/T collector with honeycomb heat exchanger

    NASA Astrophysics Data System (ADS)

    Hussain, F.; Othman, M. Y. H.; Yatim, B.; Ruslan, H.; Sopian, K.; Ibarahim, Z.

    2013-11-01

    This paper present a study of a single pass photovoltaic/thermal (PV/T) solar collector combined with honeycomb heat exchanger. A PV/T system is a combination of photovoltaic panel and solar thermal components in one integrated system. In order to enhance the performance of the system, a honeycomb heat exchanger is installed horizontally into the channel located under the PV module. Air is used as the heat remover medium. The system is tested with and without the honeycomb at irradiance of 828 W/m2 and mass flow rate spanning from 0.02 kg/s to 0.13 kg/s. It is observed that the aluminum honeycomb is capable of enhancing the thermal efficiency of the system efficiently. At mass flow rate of 0.11 kg/s, the thermal efficiency of the system without honeycomb is 27% and with honeycomb is 87 %. Throughout the range of the mass flow rate, the electrical efficiency of the PV module improved by 0.1 %. The improved design is suitable to be further investigated as solar drying system and space heating.

  18. A study of isotopic exchange of hydrogen and deuterium in a LaNi 3Al 2 hydride bed

    NASA Astrophysics Data System (ADS)

    Fukada, S.; Matsuo, H.; Okunaga, T.; Mitsuishi, N.

    1992-10-01

    An experimental study was carried out on the isotopic exchange of hydrogen and deuterium in a LaNi 3Al 2 hydride bed. The exchange capacity of the LaNi 3Al 2 hydride for deuterium, the overall mass-transfer coefficient and the height equivalent to a theoretical plate (HETP) were obtained from the analysis of effluent curves for a pulse or step change of an influent deuterium concentration. The exchange capacity for deuterium was found to be almost constant between 200 and 300C and was around 1.7 in a D/metal ratio. The rate of the isotopic exchange was independent of the total hydrogen pressure, and a value of 31.8 kJ/mol was obtained for its activation energy. The minimum HETP value obtained was 0.5 cm at 300C and is smaller than that of a cryogenic distillation column for hydrogen isotopic separation.

  19. Conformational changes of ubiquitin during electrospray ionization as determined by in-ESI source H/D exchange combined with high-resolution MS and ECD fragmentation.

    PubMed

    Kostyukevich, Yury; Kononikhin, Alexey; Popov, Igor; Nikolaev, Eugene

    2014-10-01

    In the paper, we have demonstrated the possibility of performing hydrogen/deuterium (H/D) exchange of proteins in the region of gas-phase ion formation in an electrospray ion source by saturating the electrospray ionization source with vapors of a deuterating agent (D(2)O or MeOD). In this region, charged droplets are shrinking and the protein ions transfer into the gas phase. As a model protein, we have used ubiquitin whose ion mobility spectrometry and gas-phase H/D exchange in the vacuum part of a mass spectrometer demonstrated the presence of gas-phase conformers with different cross sections and H/D exchange rates. In our experiments, we observed monomodal deuterium distributions for all solvents, charge states, desolvating capillary temperature and types of deuterating agent. Also, we found that the number of H/D exchanges increases with an increasing desolvating capillary temperature and decreasing charge state. We observed that solution composition (49?:?50?:?1 H(2)O?:?MeOH?:?formic acid or 99?:?1 H(2)O?:?formic acid) influences the charge-state distribution but did not change the degree of H/D exchange for the same charge state. Electron-capture dissociation fragmentation shows that higher charge states contain a segment that is protected from access by the deuterating agent. PMID:25303388

  20. Seasonal carbon dioxide exchange between the regolith and atmosphere of Mars - Experimental and theoretical studies

    NASA Technical Reports Server (NTRS)

    Fanale, F. P.; Salvail, J. R.; Banerdt, W. B.; Saunders, R. S.; Johansen, L. A.

    1982-01-01

    CO2 penetration rate measurements have been made through basalt-clay soils under conditions simulating the penetration of the cap-induced seasonal CO2 pressure wave through the topmost regolith of Mars, and results suggest that existing theoretical models for the diffusion of a gas through a porous and highly adsorbing medium may be used to assess the importance of the Martian seasonal regolith-atmosphere CO2 exchange. The maximum effect of thermally driven exchange between the topmost seasonally (thermally) affected regolith and the atmosphere shows that, while this may be of greater importance than the isothermal exchange, the thermally driven exchange would be recognizable only if the pressure wave from CO2 exchanged at high latitudes did not propagate atmospherically faster than the rate at which the exchange itself occurred. This is an unreasonable assumption.

  1. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms

    PubMed Central

    Widdows, Kate L.; Panitchob, Nuttanont; Crocker, Ian P.; Please, Colin P.; Hanson, Mark A.; Sibley, Colin P.; Johnstone, Edward D.; Sengers, Bram G.; Lewis, Rohan M.; Glazier, Jocelyn D.

    2015-01-01

    Uptake of system L amino acid substrates into isolated placental plasma membrane vesicles in the absence of opposing side amino acid (zero-trans uptake) is incompatible with the concept of obligatory exchange, where influx of amino acid is coupled to efflux. We therefore hypothesized that system L amino acid exchange transporters are not fully obligatory and/or that amino acids are initially present inside the vesicles. To address this, we combined computational modeling with vesicle transport assays and transporter localization studies to investigate the mechanisms mediating [14C]l-serine (a system L substrate) transport into human placental microvillous plasma membrane (MVM) vesicles. The carrier model provided a quantitative framework to test the 2 hypotheses that l-serine transport occurs by either obligate exchange or nonobligate exchange coupled with facilitated transport (mixed transport model). The computational model could only account for experimental [14C]l-serine uptake data when the transporter was not exclusively in exchange mode, best described by the mixed transport model. MVM vesicle isolates contained endogenous amino acids allowing for potential contribution to zero-trans uptake. Both L-type amino acid transporter (LAT)1 and LAT2 subtypes of system L were distributed to MVM, with l-serine transport attributed to LAT2. These findings suggest that exchange transporters do not function exclusively as obligate exchangers.Widdows, K. L., Panitchob, N., Crocker, I. P., Please, C. P., Hanson, M. A., Sibley, C. P., Johnstone, E. D., Sengers, B. G., Lewis, R. M., Glazier, J. D. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms. PMID:25761365

  2. Heat transfer and flow studies of the liquid droplet heat exchanger

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.; Shariatmadar, A.

    1987-01-01

    This paper describes a lightweight, highly effective liquid droplet heat exchanger (LDHX) concept for thermal management in space. Heat is transferred by direct contact between fine droplets (100 to 300 micron diameter) of a low vapor pressure liquid and an inert working gas. Complete separation of the droplet and gas media in the microgravity environment is accomplished by configuring the LDHX as a vortex chamber. A quasi-one-dimensional, two-phase heat transfer model of the LDHX is developed and used to investigate the potential use of the LDHX for both heating and cooling the working gas in a 100-k W(e) Braytoan cycle. Experimental studies on a small scale LDHX chamber, using air and water as the two media, show excellent agreement with the theoretical model.

  3. Study of X(3872) from effective field theory with pion-exchange interaction.

    PubMed

    Wang, P; Wang, X G

    2013-07-26

    We study DD[over ¯]* (D*D[over ¯]) scattering in the framework of unitarized heavy meson chiral perturbation theory with pion exchange and a contact interaction. 3S1-3D1 mixing effects are taken into account. A loosely bound state X(3872), with the pole position being Mpole}=(3871.70-i0.39)  MeV, is found. The result is not sensitive to the strength of the contact interaction. Our calculation provides a theoretical confirmation of the existence of the 1++ state X(3872). The light quark mass dependence of the pole position indicates it has a predominately DD[over ¯]* (D*D[over ¯]) molecular nature. When the π mass is larger than 142 MeV, the pole disappears, which makes impossible the lattice simulation of this state at large quark mass. PMID:23931357

  4. Study of the operation temperature in the spin-exchange relaxation free magnetometer

    NASA Astrophysics Data System (ADS)

    Fang, Jiancheng; Li, Rujie; Duan, Lihong; Chen, Yao; Quan, Wei

    2015-07-01

    We study the influence of the cell temperature on the sensitivity of the spin-exchange relaxation free (SERF) magnetometer and analyze the possibility of operating at a low temperature. Utilizing a 25 25 25 mm3 Cs vapor cell with a heating temperature of 85 ?C, which is almost half of the value of potassium, we obtain a linewidth of 1.37 Hz and achieve a magnetic field sensitivity of 55 fT/Hz1/2 in a single channel. Theoretical analysis shows that fundamental sensitivity limits of this device with an active volume of 1 cm3 could approach 1 fT/Hz1/2. Taking advantage of the higher saturated vapor pressure, SERF magnetometer based on Cs opens up the possibility for low cost and portable sensors and is particularly appropriate for lower temperature applications.

  5. Kafirin adsorption on ion-exchange resins: isotherm and kinetic studies.

    PubMed

    Kumar, Prashant; Lau, Pei Wen; Kale, Sandeep; Johnson, Stuart; Pareek, Vishnu; Utikar, Ranjeet; Lali, Arvind

    2014-08-22

    Kafirin is a natural, hydrophobic and celiac safe prolamin protein obtained from sorghum seeds. Today kafirin is found to be useful in designing delayed delivery systems and coatings of pharmaceuticals and nutraceuticals where its purity is important and this can be obtained by adsorptive chromatography. This study is the first scientific insight into the isotherm and kinetic studies of kafirin adsorption on anion- and cation-exchange resins for practical applications in preparative scale chromatography. Adsorption isotherms of kafirin were determined for five anion- and two cation-exchange resins in batch systems. Isotherm parameters such as maximum binding capacity and dissociation constant were determined from Langmuir isotherm, and adsorptive capacity and affinity constant from Freundlich isotherm. Langmuir isotherm was found to fit the adsorption equilibrium data well. Batch uptake kinetics for kafirin adsorption on these resins was also carried out and critical parameters including the diffusion coefficient, film mass transfer coefficient, and Biot number for film-pore diffusion model were calculated. Both the isotherm and the kinetic parameters were considered for selection of appropriate resin for kafirin purification. UNOsphere Q (78.26 mg/ml) and Toyopearl SP-650M (57.4 mg/ml) were found to offer better kafirin binding capacities and interaction strength with excellent uptake kinetics under moderate operating conditions. With these adsorbents, film diffusion resistance was found to be major governing factor for adsorption (Bi<10 and ?<1). Based on designer objective function, UNOsphere Q was found be best adsorbent for binding of kafirin. The data presented is valuable for designing large scale preparative adsorptive chromatographic kafirin purification systems. PMID:25022481

  6. Study on passive momentum exchange landing gear using two-dimensional analysis

    NASA Astrophysics Data System (ADS)

    Watanabe, Tsubasa; Hara, Susumu; Otsuki, Masatsugu

    2014-12-01

    This paper discusses a landing response control system based on the momentum exchange principle for planetary exploration spacecraft. In the past, landing gear systems with cantilever designs that incorporate honeycomb materials to dissipate shock energy through plastic deformation have been used, but once tested before launch, the system cannot be used in a real mission. The sky crane system used for the Mars Science Laboratory by NASA can achieve a safe and precise landing, but it is highly complex. This paper introduces a momentum exchange impact damper (MEID) that absorbs the controlled object's momentum with extra masses called damper masses. The MEID is reusable, which makes it easy to ensure the landing gear's reliability. In this system, only passive elements such as springs are needed. A single-axis (SA) model has already been used to verify the effectiveness of MEIDs through simulations and experiments measuring the rebound height of the spacecraft. However, the SA model cannot address the rotational motion and tipping of the spacecraft. This paper presents a two-landing-gear-system (TLGS) model in which multiple MEIDs are equipped for two-dimensional analysis. Unlike in the authors' previous studies, in this study each MEID is launched when the corresponding landing gear lands and the MEIDs do not contain active actuators. This mechanism can be used to realize advanced control specifications, and it is simply compared with previous mechanisms including actuators, in which all of the MEIDs are launched simultaneously. If each MEID works when the corresponding gear lands, the rebound height of each gear can be minimized, and tipping can be prevented, as demonstrated by the results of our simulations.

  7. Element exchange between minerals at hydrothermal conditions: A case study with spinel

    NASA Astrophysics Data System (ADS)

    Jonas, L.; Muller, T.; Dohmen, R.

    2013-12-01

    It is generally believed that the presence of a fluid phase enhances the reactivity of minerals and promotes exchange reactions between minerals that are physically separated from each other. Two end-member mechanisms can be considered for the bulk equilibration of the mineral with the fluid: volume diffusion and dissolution-precipitation. A key parameter, which may control the overall kinetic behavior, is the solubility of the relevant elements within the fluid (e.g., [1]). We investigated the reaction mechanism of a model system to identify the role of the various parameters, in particular those controlling the solubility. Two polished spinel crystals (hercynite with xFe=0.6 and synthetic Mg-spinel) react in the presence of H2O at 750 C and 0.2 GPa in a welded-shut Au-capsule for 1-24 hrs. The crystals are physically separated by a tube of noble metal dividing the capsule into two connected chambers. The surface of the reacted crystals is analyzed using optical methods and SEM and the near surface chemistry is studied via RBS. From the latter we are able to extract Fe-concentration depth profiles. First results show an increasing surface concentration of Fe in Mg-spinel with time. The depth profiles for experiments up to 8 hours reveal a decrease of Fe-concentration within the first 100 nm from the surface towards the center of the Mg-spinel. The Fe depth profiles can be simulated with a simplified diffusion model, assuming a fixed surface concentration and their shapes indicate that the inter-diffusion coefficient in spinel is concentration dependent. Our derived Fe-Mg diffusion coefficient [D(Fe-Mg) ? 1x10-19 m2/s for pure MgAl2O4) and its compositional dependence is consistent with an independent experimental study using thin film diffusion couples that were annealed at dry conditions at 1 atm [2]. The observed kinetic behavior of the experimental system was simulated using the model of [1]. The model geometry is identical to the present experimental setup and for the mineral fluid interaction a pure exchange of elements is considered without any mass transfer. From the simulations we obtain constraints for the effective transport rate of Fe through the fluid, which is basically controlled by the diffusion coefficient in the fluid and the solubility of Fe. Our calculations suggest that the concentration of dissolved Fe is up to two orders of magnitude higher than predicted by theoretical solubility calculations. The reaction mechanism map reveals that the reaction is controlled by diffusion in both the solid and the fluid. These results highlight the importance of the concentration of dissolved species for the exchange process. The solubility of the mineral phases is an important factor controlling the development of compositional profiles and may even control the reaction mechanism. This study demonstrates that the following common wisdoms are wrong in the general case: (I) The presence of fluid enhances the rate of the overall exchange reaction. (II) The presence of H2O enhances diffusion in the solid phase. [1] Dohmen & Chakraborty (2003), AmMin, 88, pp. 1251-1270; [2] Vogt (2009), Msc-Thesis, Ruhr-Universitt Bochum, p.78

  8. Educators Exchange Program Report, 1998-99. Program Report and Evaluation Study.

    ERIC Educational Resources Information Center

    Fawson, Kenneth D.; Abina, Armando; Alvarez, Rafael; Armstrong, William B.; Buyukkaya, Sonia; Kardos, Althea; Schubert, Cynthia

    In 1998, the San Diego Community College District (SDCCD) completed a successful third cycle of Educators Exchange Program (EEP) activities. The goal of EEP is to promote binational cooperation, cultural understanding and economic development through faculty exchange and technical assistance programs. During the last six years of program…

  9. Kinetic and Mechanistic Studies of the Deuterium Exchange in Classical Keto-Enol Tautomeric Equilibrium Reactions

    ERIC Educational Resources Information Center

    Nichols, Michael A.; Waner, Mark J.

    2010-01-01

    An extension of the classic keto-enol tautomerization of beta-dicarbonyl compounds into a kinetic analysis of deuterium exchange is presented. It is shown that acetylacetone and ethyl acetoacetate undergo nearly complete deuterium exchange of the alpha-methylene carbon when dissolved in methanol-d[subscript 4]. The extent of deuteration may be

  10. Study of multi-electron ionization and charge exchange in HIBF

    NASA Astrophysics Data System (ADS)

    Wu, Linchun

    Beam ion stripping on background gases or plasma in a Heavy Ion Beam Fusion (HIBF) chamber increases the charge state of the beam and the diameter of the focus, complicating the final focusing on the focusing target. To model beam transport in the chamber, it is necessary to know the beam charge-state evolution, including both ionization and charge exchange dynamics. The main objective of this research is to explore theoretical approaches including scaling law. Improved models are developed to calculate multi-electron loss, especially ion stripping and charge exchange cross sections, for both near-term experiments and future power plant scale HIBF research. First, a new space-charge neutralization approach that uses electron injection is proposed for the ion beam transport in HIBF chamber. An analytical study was performed to illustrate the plasma dynamics and final neutralization effects with this technique. The results examine the effect of different injected electron profiles. Next, to improve the accuracy of such simulations, methods to improve cross sections of ionization and charge exchange are studied. Both classical and quantum mechanical approaches are examined. Attention is focused on the interaction by low-charge-state heavy ions. Multi-electron processes for dressed ions, including screening and anti-screening effects, internuclear forces, are given special attention, This analysis is complex and requires a combining several different theoretical approaches. Finally, a Classic Trajectory Monte Carlo (CTMC) model based on an improvement of Olson's n-body CTMC method is presented. This model solves the n-body ion-atom ionization problem in a regime of intent to HIBF. In the paper, a new and complete computational module for these interactions has been developed. The cross section data for Xe, Cs, and Bi ions colliding with various background gases (Xe, N2, Ar and Flibe) is presented. After the calculation of the cross section data, the predicted energy dependence of the beam ion and background gas target is analyzed and scaling laws are developed to give a larger range of energies. Due to the scarcity of prior experimental and theoretical data, comparisons between the calculated data and prior data is limited to selected cases, The cross section data is being implemented into the Large Scale Plasmas (LSP) code package, a beam transport code that is widely used for HIBF studies. This improved LSP package can be used to study the effects of ionization on neutralized drift compression and focusing in HIBF. This code package studied will provide further physical insight into current neutralized transport experiments, and future HIBF studies. In addition to the study of atomic effects for HIBF, plasma dynamics in a low-energy radio frequency (RF) discharge is studied through the implementation of a new Monte Carlo Collision (MCC) module developed for including into a Particle-In-Cell (PIC) package, The MCC module uses available cross section data for the light ion-atom collisions as the input. The results illustrate the collision effects on particle transport in the discharge.

  11. Studies of electron exchange collisions and polarized electron production in a flowing helium afterglow

    SciTech Connect

    Ratliff, J.M.

    1989-01-01

    A flowing helium afterglow apparatus has been used to study thermal-energy electron exchange collisions between spin-polarized electrons and 0{sub 2} or NO molecules. Penning ionization of CO{sub 2} by spin-polarized He(2{sup 3}S) metastable atoms is used to produce electrons which retain the spin orientation of the metastables, and which rapidly thermalize in the CO{sub 2}. The reactant gas (0{sub 2} or NO), when introduced into the flowstream, causes a decrease in the electron spin-polarization. The electrons are then extracted from the flowtube for measurement of the polarization they retain. The rate constant for the reaction e{sup {minus}}({up arrow}) + X {yields} e{sup {minus}}({down arrow}) + X can then be determined, given the amount of polarization decrease, reactant-gas density, and reaction time. The rates are found to be k(O{sub 2}) = (8 {plus minus} 3.5) {times} 10{sup {minus}11} cm{sup 3}/sec and k(NO) = (9 {plus minus} 4) {times} 10{sup {minus}11} cm{sup 3}/sec. An upper limit to the electron attachment rate for formation of an excited negative ion is derived from these measurements, and the contribution of exchange to the total scattering is discussed. In addition, a new, non-invasive technique for measuring electron-drift velocity in the flowtube is describe. Modifications of the afterglow apparatus and use of laser radiation for He(2{sup 3}S) spin-orientation enable it to produce an electron beam having moderate to high current and high spin polarization. Polarizations of 80% are achieved for currents up to 1{mu}A, with 60% polarization retained at 25{mu}A. This compares favorably with other polarized electron sources, making the afterglow apparatus a candidate for use as a beam source in high-energy electron accelerators.

  12. A computational study of an HCCI engine with direct injection during gas exchange

    SciTech Connect

    Su, Haiyun; Vikhansky, Alexander; Mosbach, Sebastian; Kraft, Markus; Bhave, Amit; Kim, Kyoung-Oh; Kobayashi, Tatsuo; Mauss, Fabian

    2006-10-15

    We present a new probability density function (PDF)-based computational model to simulate a homogeneous charge compression ignition (HCCI) engine with direct injection (DI) during gas exchange. This stochastic reactor model (SRM) accounts for the engine breathing process in addition to the closed-volume HCCI engine operation. A weighted-particle Monte Carlo method is used to solve the resulting PDF transport equation. While simulating the gas exchange, it is necessary to add a large number of stochastic particles to the ensemble due to the intake air and EGR streams as well as fuel injection, resulting in increased computational expense. Therefore, in this work we apply a down-sampling technique to reduce the number of stochastic particles, while conserving the statistical properties of the ensemble. In this method some of the most important statistical moments (e.g., concentration of the main chemical species and enthalpy) are conserved exactly, while other moments are conserved in a statistical sense. Detailed analysis demonstrates that the statistical error associated with the down-sampling algorithm is more sensitive to the number of particles than to the number of conserved species for the given operating conditions. For a full-cycle simulation this down-sampling procedure was observed to reduce the computational time by a factor of 8 as compared to the simulation without this strategy, while still maintaining the error within an acceptable limit. Following the detailed numerical investigation, the model, intended for volatile fuels only, is applied to simulate a two-stroke, naturally aspirated HCCI engine fueled with isooctane. The in-cylinder pressure and CO emissions predicted by the model agree reasonably well with the measured profiles. In addition, the new model is applied to estimate the influence of engine operating parameters such as the relative air-fuel ratio and early direct injection timing on HCCI combustion and emissions. The qualitative trends observed in the parametric variation study match well with experimental data in literature. (author)

  13. Resonance Raman Studies of Bovine and OCTOPUS Visual Pigments

    NASA Astrophysics Data System (ADS)

    Huang, Liewen

    1995-01-01

    We have regenerated bovine and octopus visual pigments with retinals containing isotopic labels at three positions, i.e., 8-^{13}C -11,12-D_2, 10-^{13 }C-11,12-D_2, 11- ^{13}C-11,12-D_2 , 14-^{13}C-11,12 -D_2, for the studies of bound chromophore ethylenic and Schiff base vibrational modes by resonance Raman spectroscopy. Also regenerated were octopus visual pigments with singly or doubly ^{13 }C labeled retinals, i.e., 9-^ {13}C, 10,11-^{13 }C_2, 12,13- ^{13}C_2, 13-^{13}C, 14,15- ^{13}C_2, 14,15-^{13}C_2 -ND, for the studies of vibrational modes in the fingerprint region. We have analyzed the resonance Raman spectra based upon the observation of the response of individual bands in the spectrum of rhodopsin, isorhodopsin, or bathorhodopsin to a particular label. The observed peaks in the fingerprint and ethylenic regions have been tentatively assigned to specific C-C and C=C stretches. We have also studied a model retinal protonated Schiff base analog and its isotopically labeled derivatives as well as calculations using ab initio methods. Based on the vibrational analysis, new criteria to determine the Schiff base C=N configuration from Raman spectroscopy have been developed, and the C=N configuration in octopus rhodopsin, isorhodopsin and bathorhodopsin has been determined. We have continued the resonance Raman study of the Schiff base hydrogen/deuterium exchange for rhodopsin and bacteriorhodopsin by employing the continuous-flow experiment. The exchange of a deuteron on the Schiff base with a proton is very fast, with half-times of 6.9 +/- 0.9 and 1.3 +/- 0.3 ms for rhodopsin and bacteriorhodopsin, respectively, faster than the proton-deuteron exchange rate of a protonated Schiff base in aqueous solution (16 +/- 2 ms). This anomalous result can be understand if a structural water molecule (or molecules) is present next to the protonated Schiff base in the two pigments.

  14. Theoretical and Experimental Studies of Energy Exchange from Jackrabbit Ears and Cylindrically Shaped Appendages

    PubMed Central

    Wathen, Patricia; Mitchell, John W.; Porter, Warren P.

    1971-01-01

    Convection properties of jackrabbit ears were examined in a wind tunnel and in the field in an attempt to study the possible thermal role of the large ears. This work was part of a study on energy exchange of appendages. Cylindrical copper models of various shapes, aluminum castings of domestic and jackrabbit ears, and an amputated jackrabbit ear were studied in a wind tunnel (a) to define the range for convective heat loss for appendages of various shapes, and (b) to study the effect on convection of model shape and orientation to the wind. Shape, i.e. length and closure, proved important. Orientation to the wind produced no consistent or significant variation in the convection coefficient. The convection coefficients from the ear castings fell within the range generated from the cylindrical models. The convection coefficients for the amputated rabbit ear fell partially within the range. Net thermal radiation loss at midday from the jackrabbit ears was found to be small. Convection from the ears, however, could account for the loss of over 100% of the animal's metabolic heat at an air temperature of 30°C. If air temperature exceeds body temperature, the animal must either store heat or resort to the evaporation of water. ImagesFIGURE 1FIGURE 2 PMID:5134209

  15. Exchange bias study of epitaxial LSMO/Cr2O3 thin film heterostructures integrated on Si(100)

    NASA Astrophysics Data System (ADS)

    Punugupati, Sandhyarani; Hunte, Frank; Narayan, Jagdish

    2015-03-01

    FM/AFM exchange bias continues to be an interesting phenomenon from both a fundamental physics and an applications point of view. Recent studies of multiferroic materials have also seen a revival of interest in the magnetoelectric (ME) and antiferromagnetic (AFM) material Cr2O3. The study of exchange bias in heterostructures consisting of ferromagnet (FM) and ME thin films provides an additional mechanism of switching the magnetization of the FM by the application of an electric field. La0.7Sr0.3MnO3 (LSMO) is a FM material with TC above room temperature and shows colossal magnetoresistance. We have studied exchange bias in epitaxial thin film heterostructures of LSMO/Cr2O3 grown on C-YSZ/Si(100) by the PLD technique. We present a detailed structural characterization of the films by XRD (2O and ?) and TEM which confirm that the films were grown epitaxially. The heterostructures exhibited exchange bias as measured by SQUID magnetometry. The effects of LSMO deposition conditions, crystal orientation, temperature, and cooling field on the exchange bias will be discussed. Part of this research is supported by the National Science Foundation and the Army Research Office.

  16. Aquatic flower-inspired cell culture platform with simplified medium exchange process for facilitating cell-surface interaction studies.

    PubMed

    Hong, Hyeonjun; Park, Sung Jea; Han, Seon Jin; Lim, Jiwon; Kim, Dong Sung

    2016-02-01

    Establishing fundamentals for regulating cell behavior with engineered physical environments, such as topography and stiffness, requires a large number of cell culture experiments. However, cell culture experiments in cell-surface interaction studies are generally labor-intensive and time-consuming due to many experimental tasks, such as multiple fabrication processes in sample preparation and repetitive medium exchange in cell culture. In this work, a novel aquatic flower-inspired cell culture platform (AFIP) is presented. AFIP aims to facilitate the experiments on the cell-surface interaction studies, especially the medium exchange process. AFIP was devised to capture and dispense cell culture medium based on interactions between an elastic polymer substrate and a liquid medium. Thus, the medium exchange can be performed easily and without the need of other instruments, such as a vacuum suction and pipette. An appropriate design window of AFIP, based on scaling analysis, was identified to provide a criterion for achieving stability in medium exchange as well as various surface characteristics of the petal substrates. The developed AFIP, with physically engineered petal substrates, was also verified to exchange medium reliably and repeatedly. A closed structure capturing the medium was sustained stably during cell culture experiments. NIH3T3 proliferation results also demonstrated that AFIP can be applied to the cell-surface interaction studies as an alternative to the conventional method. PMID:26683462

  17. Fouling of an anion exchange chromatography operation in a monoclonal antibody process: Visualization and kinetic studies

    PubMed Central

    Close, Edward J; Salm, Jeffrey R; Iskra, Timothy; Srensen, Eva; Bracewell, Daniel G

    2013-01-01

    Fouling of chromatographic resins over their operational lifetimes can be a significant problem for commercial bioseparations. In this article, scanning electron microscopy (SEM), batch uptake experiments, confocal laser scanning microscopy (CLSM) and small-scale column studies were applied to characterize a case study where fouling had been observed during process development. The fouling was found to occur on an anion exchange (AEX) polishing step following a protein A affinity capture step in a process for the purification of a monoclonal antibody. Fouled resin samples analyzed by SEM and batch uptake experiments indicated that after successive batch cycles, significant blockage of the pores at the resin surface occurred, thereby decreasing the protein uptake rate. Further studies were performed using CLSM to allow temporal and spatial measurements of protein adsorption within the resin, for clean, partially fouled and extensively fouled resin samples. These samples were packed within a miniaturized flowcell and challenged with fluorescently labeled albumin that enabled in situ measurements. The results indicated that the foulant has a significant impact on the kinetics of adsorption, severely decreasing the protein uptake rate, but only results in a minimal decrease in saturation capacity. The impact of the foulant on the kinetics of adsorption was further investigated by loading BSA onto fouled resin over an extended range of flow rates. By decreasing the flow rate during BSA loading, the capacity of the resin was recovered. These data support the hypothesis that the foulant is located on the particle surface, only penetrating the particle to a limited degree. The increased understanding into the nature of the fouling can help in the continued process development of this industrial example. Scanning electron microscopy (SEM), batch uptake experiments, confocal laser scanning microscopy (CLSM) and small-scale column experiments were applied to characterize a case study where fouling had been observed on an anion exchange chromatography in a monoclonal antibody process. The results suggest the foulant is located on the particle surface, resulting in a minimal decrease in saturation capacity, but having a significant impact on the kinetics of adsorption, severely decreasing protein uptake rate. PMID:23483524

  18. Modified capillary cell for foam film studies allowing exchange of the film-forming liquid.

    PubMed

    Wierenga, Peter A; Basheva, Elka S; Denkov, Nikolai D

    2009-06-01

    Many of the macroscopic properties of foams and emulsions are controlled by the mesoscopic properties of the thin films separating the bubbles or droplets. The properties of these films depend on contributions (1) from the adsorbed surface layers and (2) from the liquid that separates these adsorbed layers. To separate in the experimental studies the effects of these two contributions, we developed a new modified version of the capillary cell for foam film studies (originally developed by Scheludko and Exerowa (Scheludko, A.; Exerowa, D. Kolloid Z. 1959, 165, 148-151), which allows exchange of the film-forming liquid between the air-water surfaces. This modified cell allows one to distinguish between the role of the adsorbed species (e.g., proteins, particles, or long-chain synthetic polymers) and the species present in the film interior (e.g., particles, electrolytes, or surfactants). The film properties that can be studied in this way include film stability, rate of film thinning, and surface forces stabilizing the film. These properties are of significant interest in understanding and controlling the stability of dispersed systems. The experimental procedure and the capabilities of the modified cell are demonstrated in several examples. PMID:19397272

  19. First principle study of selective catalytic nitrogen oxide reduction over copper-exchanged zeolites

    NASA Astrophysics Data System (ADS)

    Sun, Donghai

    Cu-ZXM5 is as promising catalyst candidate for mobile source (auto truck) NOX emission control. The present work studies this phenomenon from different perspectives. Firstly, a methodology is developed to validate the proposed NO decomposition mechanism with a kinetic Reactor model. The Reactor model involves a plug flow reactor that simulates forty-two elementary reactions. The simulation operates at moderate temperatures (300-1000 K) and the results are compared with micro-reactor experimental results. Secondly, gas phase reaction of NO with NH3 in the thermal deNOX process is studied to reveal origins of ammonia's selectivity for NO over O2. The gas phase study does electronic comparison of the competing reactions of NH3 radical with NO and O2 respectively. NH3 selectivity lies in strongly bound H2NNO adduct that readily rearranges and decompose to N2 and H2O. The pronounced discrimination of NH3 against reaction with O2 is explored through comparison of the electronic structures of the H2NNO and H2NOO radical adducts and provides insight into the selectivity of NH3 in the surface reactions. Thirdly, thermal chemistry of selective catalytic reduction (SCR) of NOX with ammonia over Cu-exchanged zeolites is investigated with density functional theory (DFT). The catalytic reaction pathways are mapped out and compared with those in the gas phase reactions, which reveals that the major activation barriers are lowered in the catalytic reactions.

  20. Conformation study of ɛ-cyclodextrin: Replica exchange molecular dynamics simulations.

    PubMed

    Khuntawee, Wasinee; Rungrotmongkol, Thanyada; Wolschann, Peter; Pongsawasdi, Piamsook; Kungwan, Nawee; Okumura, Hisashi; Hannongbua, Supot

    2016-05-01

    There is growing interest in large-ring cyclodextrins (LR-CDs) which are known to be good host molecules for larger ligands. The isolation of a defined size LR-CD is an essential prerequisite for studying their structural properties. Unfortunately the purification procedure of these substances turned out to be very laborious. Finally the problem could be circumvented by a theoretical consideration: the highly advantageous replica exchange molecular dynamics (REMD) simulation (particularly suitable for studies of conformational changes) offers an ideal approach for studying the conformational change of ɛ-cyclodextrin (CD10), a smaller representative of LR-CDs. Three carbohydrate force fields and three solvent models were tested. The conformational behavior of CD10 was analyzed in terms of the flip (turn) of the glucose subunits within the macrocyclic ring. In addition a ranking of conformations with various numbers of turns was preformed. Our findings might be also helpful in the temperature controlled synthesis of LR-CDs as well as other experimental conditions, in particular for the host-guest reaction. PMID:26877001

  1. A numerical study of flow and thermal fields in finned tube heat exchangers (Effect of the tube diameter)

    SciTech Connect

    Torikoshi, Kunikazu; Xi, G.

    1995-12-31

    Enhancement of air-side heat transfer in heat exchangers used in air-conditioning machines can be considered as a way to solve the problem caused by use of alternative refrigerants. Related with this, the present study aims to investigate the flow and thermal fields in finned tube heat exchangers. In previous papers (Torikoshi et al., 1994 and Xi et al., 1994, 1995), numerical schemes that used a compound grid system for finned tube heat exchangers were described. The schemes were validated with experimental data. In the present paper, a three-dimensional unsteady numerical computation for a model of a two-row finned tube heat exchanger located in a uniform flow field has been performed to see the effect of tube diameter on the flow and thermal fields. Several features were found in the study. One interesting finding was that increasing the tube diameter almost does not improve heat transfer performance but increases the resistance of the fluid flow inside the heat exchanger.

  2. Tuning magnetic properties of antiferromagnetic chains by exchange interactions: ab initio studies.

    PubMed

    Tao, Kun; Guo, Qing; Jena, Puru; Xue, Desheng; Stepanyuk, Valeri S

    2015-10-21

    The possibility of using exchange interactions to manipulate the spin state of an antiferromagnetic nanostructure is explored using ab initio calculations. By considering M (M = Mn, Fe, Co) mono-atomic chains supported on Cu2N islands on a Cu(001) surface as a model system, it is demonstrated that two indistinguishable Nel states of an antiferromagnetic chain can be tailored into a preferred state by the exchange interaction with a magnetic STM tip. The magnitude and direction of the anisotropy for antiferromagnetic chains can also be tuned by exchange coupling upon varying the tip-chain separation. PMID:26387802

  3. Improving DNA data exchange: validation studies on a single 6 dye STR kit with 24 loci.

    PubMed

    Martín, Pablo; de Simón, Lourdes Fernández; Luque, Gracia; Farfán, María José; Alonso, Antonio

    2014-11-01

    The idea of developing a new multiplex STR amplification system was conceived in 2011 as an effective way to implement the new European standard set (ESS) of 12 STR markers adopted by The Council of the European Union in 2009 while maintaining an effective compatibility and information exchange with the historical DNA profiles contained in the Spanish national DNA database (around 200,000 DNA profiles) mainly based on the 13 CODIS core STR loci plus D19S433 and D2S1338 markers. With this goal in mind we proposed to test and validate a single STR amplification system for simultaneous analysis of 21 STR markers covering both CODIS and ESS core STR loci plus three additional markers (D19S433, D2S1338, and SE33) also contained in commonly used STR kits and national DNA databases. In 2012, we started the first beta-testing with a 6-dye STR kit prototype containing 24 loci (now known as the GlobalFiler™ PCR Amplification Kit) developed by Life Technologies in response to the CODIS Core Loci Working Group's recommendation to expand the CODIS Core Loci. This prototype included our proposal of 21 autosomal STR markers and two Y-chromosome markers (DYS391 and Y-indel) and maximizes concordance with established databases and previously analyzed samples by maintaining primer sequences of previous Identifiler(®)/NGM SElect™ kits for the 21 STR markers except for TPOX. This paper describes the validation studies conducted with the first commercial available 6-dye STR kit for casework using a 3500 genetic analyzer for fragment detection that included the analysis of the following parameters and aspects: analytical threshold, sensitivity & stochastic threshold, heterozygous balance, stutter threshold, precision and accuracy, repeatability and reproducibility, genotype concordance, DNA mixtures, species specificity, and stability studies with case type samples. The studies demonstrated that the GlobalFiler™ system provided equivalent overall performance to previous forensic STR PCR kits, but with enhanced discrimination power for a better match efficiency that would reduce the chance of adventitious matches during DNA data exchange among national DNA databases. PMID:25082138

  4. Heat Exchanger/Humidifier Trade Study and Conceptual Design for the Constellation Space Suit Portable Life Support System Ventilation Subsystem

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Sompayrac, Robert; Conger, Bruce; Chamberlain, Mateo

    2009-01-01

    As development of the Constellation Space Suit Element progresses, designing the most effective and efficient life support systems is critical. The baseline schematic analysis for the Portable Life Support System (PLSS) indicates that the ventilation loop will need some method of heat exchange and humidification prior to entering the helmet. A trade study was initiated to identify the challenges associated with conditioning the spacesuit breathing gas stream for temperature and water vapor control, to survey technological literature and resources on heat exchanger and humidifiers to provide solutions to the problems of conditioning the spacesuit breathing gas stream, and to propose potential candidate technologies to perform the heat exchanger and humidifier functions. This paper summarizes the results of this trade study and also describes the conceptual designs that NASA developed to address these issues.

  5. Heat Exchanger/Humidifier Trade Study and Conceptual Design for the Constellation Space Suit Portable Life Support System Ventilation Subsystem

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Conger, Bruce; Sompyrac, Robert; Chamberlain, Mateo

    2008-01-01

    As development of the Constellation Space Suit Element progresses, designing the most effective and efficient life support systems is critical. The baseline schematic analysis for the Portable Life Support System (PLSS) indicates that the ventilation loop will need some method of heat exchange and humidification prior to entering the helmet. A trade study was initiated to identify the challenges associated with conditioning the spacesuit breathing gas stream for temperature and water vapor control, to survey technological literature and resources on heat exchanger and humidifiers to provide solutions to the problems of conditioning the spacesuit breathing gas stream, and to propose potential candidate technologies to perform the heat exchanger and humidifier functions. This paper summarizes the results of this trade study and also describes the conceptual designs that NASA developed to address these issues.

  6. High-resolution Studies of Charge Exchange in Supernova Remnants with Magellan, XMM-Newton, and Micro-X

    NASA Astrophysics Data System (ADS)

    Heine, Sarah N.; Figueroa-Feliciano, Enectali; Castro, Daniel

    2015-01-01

    Charge exchange, the semi-resonant transfer of an electron from a neutral atom to an excited state in an energetic ion, can occur in plasmas where energetic ions are incident on a cold, at least partially neutral gas. Supernova remnants, especially in the immediate shock region, provide conditions conducive to charge exchange. The emission from post charge-exchange ions as the captured electron cascades down to the ground state, can shed light on the physical conditions of the shock and the immediate post-shock material, providing an important tool to understanding supernova explosions and their aftermath.I present a study of charge exchange in the galactic supernova remnant G296.1-0.5 in two bands: the optical and the X-ray. The optical study, performed using both imaging and spectroscopy from the IMACS instrument on the Magellan Baade Telescope at Las Companas Observatory, seeks to identify `Balmer-dominated shocks' in the remnant, which occur when charge exchange occurs between hot, post-shock protons and colder neutral hydrogen in the environment. The X-ray study probes line ratios in dispersed spectral data obtained with XMM-Newton RGS from an X-ray lobe in the NW of the remnant to hunt for signatures of charge exchange. The dispersed data are degraded by the extended nature of the source, blending many of the lines.We are working towards the future of spectroscopic studies in the X-ray for such extended sources with Micro-X: a sounding rocket-borne, high energy resolution X-ray telescope, utilizing an array of microcalorimeters to achieve high energy resolution for extended sources. I describe the design and commissioning of the payload and the steps toward launch, which is anticipated in the summer of 2015.

  7. Interaction of chlorinated ethylenes with chromium exchanged zeolite Y: An in situ FT-IR study

    SciTech Connect

    Chintawar, P.S.; Greene, H.L.

    1997-01-01

    The interaction of chlorinated ethylenes (vinyl chloride, 1,1 dichloroethylene, trichloroethylene, and perchloroethylene) with the surface of chromium exchanged zeolite Y (Cr-Y) catalyst has been studied by in situ FT-IR spectroscopy. The adsorptions were carried out on the in situ oxidized Cr-Y pellet at temperatures between 25 and 300{degrees}C in a dry nitrogen stream as a means of studying possible decomposition intermediates. The adsorption at 25{degrees}C was chiefly physical in nature although some dechlorination of the molecule was evident even at this temperature. At higher temperatures, between 100 and 300{degrees}C, an oxygen attack on the adsorbed molecule led to the formation of partially and/or fully oxygenated (but still adsorbed) species. These oxygenated species, including carboxylate and carbonate, were found to contain fewer chlorine atoms than the original feed molecule. The catalytic activity for the formation of these intermediates was found to diminish with increasing chlorine content of the feed molecule. Based on these results, a reaction pathway for the progressive catalytic oxidation of chlorinated ethylenes has been proposed. 32 refs., 12 figs., 3 tabs.

  8. Disturbance-free rapid solution exchange for magnetic tweezers single-molecule studies.

    PubMed

    Le, Shimin; Yao, Mingxi; Chen, Jin; Efremov, Artem K; Azimi, Sara; Yan, Jie

    2015-09-30

    Single-molecule manipulation technologies have been extensively applied to studies of the structures and interactions of DNA and proteins. An important aspect of such studies is to obtain the dynamics of interactions; however the initial binding is often difficult to obtain due to large mechanical perturbation during solution introduction. Here, we report a simple disturbance-free rapid solution exchange method for magnetic tweezers single-molecule manipulation experiments, which is achieved by tethering the molecules inside microwells (typical dimensions-diameter (D): 40-50 ?m, height (H): 100 ?m; H:D?2:1). Our simulations and experiments show that the flow speed can be reduced by several orders of magnitude near the bottom of the microwells from that in the flow chamber, effectively eliminating the flow disturbance to molecules tethered in the microwells. We demonstrate a wide scope of applications of this method by measuring the force dependent DNA structural transitions in response to solution condition change, and polymerization dynamics of RecA on ssDNA/SSB-coated ssDNA/dsDNA of various tether lengths under constant forces, as well as the dynamics of vinculin binding to ?-catenin at a constant force (< 5 pN) applied to the ?-catenin protein. PMID:26007651

  9. Disturbance-free rapid solution exchange for magnetic tweezers single-molecule studies

    PubMed Central

    Le, Shimin; Yao, Mingxi; Chen, Jin; Efremov, Artem K.; Azimi, Sara; Yan, Jie

    2015-01-01

    Single-molecule manipulation technologies have been extensively applied to studies of the structures and interactions of DNA and proteins. An important aspect of such studies is to obtain the dynamics of interactions; however the initial binding is often difficult to obtain due to large mechanical perturbation during solution introduction. Here, we report a simple disturbance-free rapid solution exchange method for magnetic tweezers single-molecule manipulation experiments, which is achieved by tethering the molecules inside microwells (typical dimensions–diameter (D): 40–50 μm, height (H): 100 μm; H:D∼2:1). Our simulations and experiments show that the flow speed can be reduced by several orders of magnitude near the bottom of the microwells from that in the flow chamber, effectively eliminating the flow disturbance to molecules tethered in the microwells. We demonstrate a wide scope of applications of this method by measuring the force dependent DNA structural transitions in response to solution condition change, and polymerization dynamics of RecA on ssDNA/SSB-coated ssDNA/dsDNA of various tether lengths under constant forces, as well as the dynamics of vinculin binding to α-catenin at a constant force (< 5 pN) applied to the α-catenin protein. PMID:26007651

  10. Custom-tailored adsorbers: A molecular dynamics study on optimal design of ion exchange chromatography material.

    PubMed

    Lang, Katharina M H; Kittelmann, Jrg; Pilgram, Florian; Osberghaus, Anna; Hubbuch, Jrgen

    2015-09-25

    The performance of functionalized materials, e.g., ion exchange resins, depends on multiple resin characteristics, such as type of ligand, ligand density, the pore accessibility for a molecule, and backbone characteristics. Therefore, the screening and identification process for optimal resin characteristics for separation is very time and material consuming. Previous studies on the influence of resin characteristics have focused on an experimental approach and to a lesser extent on the mechanistic understanding of the adsorption mechanism. In this in silico study, a previously developed molecular dynamics (MD) tool is used, which simulates any given biomolecule on resins with varying ligand densities. We describe a set of simulations and experiments with four proteins and six resins varying in ligand density, and show that simulations and experiments correlate well in a wide range of ligand density. With this new approach simulations can be used as pre-experimental screening for optimal adsorber characteristics, reducing the actual number of screening experiments, which results in a faster and more knowledge-based development of custom-tailored adsorbers. PMID:26319376

  11. Knowledge flow and exchange in interdisciplinary primary health care teams (PHCTs): an exploratory study

    PubMed Central

    Sibbald, Shannon L.; Wathen, C. Nadine; Kothari, Anita; Day, Adam M. B.

    2013-01-01

    Objective: Improving the process of evidence-based practice in primary health care requires an understanding of information exchange among colleagues. This study explored how clinically oriented research knowledge flows through multidisciplinary primary health care teams (PHCTs) and influences clinical decisions. Methods: This was an exploratory mixed-methods study with members of six PHCTs in Ontario, Canada. Quantitative data were collected using a questionnaire and analyzed with social network analysis (SNA) using UCINet. Qualitative data were collected using semi-structured interviews and analyzed with content analysis procedures using NVivo8. Results: It was found that obtaining research knowledge was perceived to be a shared responsibility among team members, whereas its application in patient care was seen as the responsibility of the team leader, usually the senior physician. PHCT members acknowledged the need for resources for information access, synthesis, interpretation, or management. Conclusion: Information sharing in interdisciplinary teams is a complex and multifaceted process. Specific interventions need to be improved such as formalizing modes of communication, better organizing knowledge-sharing activities, and improving the active use of allied health professionals. Despite movement toward team-based models, senior physicians are often gatekeepers of uptake of new evidence and changes in practice. PMID:23646028

  12. Exchange transfusion with fluorocarbon for studying synaptically evoked optical signal in rat cortex.

    PubMed

    Nomura, Y; Fujii, F; Sato, C; Nemoto, M; Tamura, M

    2000-02-01

    Optical imaging of intrinsic signal is a powerful technique for studying the functional organization of the brain [T. Bonhoeffer, D. S. Kim, D. Malonek, D. Shoham, A. Grinvald, Optical imaging of the layout of functional domains in area 17 and across the area 17/18 border in cat visual cortex, Eur. J. Neurosci. 7 (1995) 1973-1988; M. Hubener, D. Shoham, A. Grinvald, T. Bonhoeffer, Spatial relationships among three columnar systems in cat area 17, J. Neurosci. 17 (1997) 9270-9284; D. Malonek, A. Grinvald, Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping, Science 272 (1996) 551-554; A. Shmuel, A. Grinvald, Functional organization for direction of motion and its relationship to orientation maps in cat area 18, J. Neurosci. 16 (1996) 6945-6964] [1] [10] [14] [22]. Three components of intrinsic optical signal can be distinguished. Two of these components can be attributed either to changes in blood volume or to changes in oxygen consumption [R.D. Frostig, E.E. Lieke, D.Y. Ts'o, A. Grinvald, Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high resolution optical imaging of intrinsic signals, Proc. Natl. Acad. Sci. U. S. A. 87 (1990) 6082-6086] [7]. The origin of the third component is not yet clear but the component seems to be based on scattered light [H.U. Dodt, G. D'Arcangelo, E. Pestel, W. Zieglgansberger, The spread of excitation in neocortical columns visualized with infrared-dark field videomicroscopy, NeuroReport 7 (1996) 1553-1558; K. Holthoff, O.W. Witte, Intrinsic optical signals in rat neocortical slices measured with near-infrared dark-field microscopy reveal changes in extracellular space, J. Neurosci. 16 (1996) 2740-2749; B.A. MacVicar, D. Hochman, Imaging of synaptically evoked intrinsic optical signals in hippocampal slices, J. Neurosci. 11 (1991) 1458-1469; L. Trachsel, H.U. Dodt, W. Zieglgansberger, The intrinsic optical signal evoked by chiasm stimulation in the rat suprachiasmatic nuclei exhibits GABAergic day-night variation, Eur. J. Neurosci. 8 (1996) 319-328] [3] [9] [13] [24]. A spectral fitting method with three components is used for the analysis of intrinsic optical signal [M. Nemoto, Y. Nomura, C. Sato, M. Tamura, K. Houkin, I. Koyanagi, H. Abe, Analysis of optical signals evoked by peripheral nerve stimulation in rat somatosensory cortex: dynamic changes in hemoglobin concentration and oxygenation, J. Cereb. Blood Flow Metab. 19 (1999) 246-259] [17]. In order to validate the analysis, we need the knowledge on contribution of signal resulted from hemoglobin to total intrinsic optical signal. The exchange transfusion with fluorocarbon has the advantage that can change the spectral contribution of hemoglobin [M. Ferrari, M.A. Williams, D.A. Wilson, N.V. Thakor, R.J. Traystman, D.F. Hanley, Cat brain cytochrome-c oxidase redox changes induced by hypoxia after blood-fluorocarbon exchange transfusion, Am. J. Physiol. 269 (1995) H417-H424; A.L. Sylvia, C.A. Piantadosi, O(2) dependence of in vivo brain cytochrome redox responses and energy metabolism in bloodless rats, J. Cereb. Blood Flow Metab. 8 (1988) 163-172] [6] [23]. Here we describe a new method of the reduction of hemoglobin signal from somatosensory evoked optical intrinsic signal in rat cortex by the combination of exchange transfusion with fluorocarbon and imaging system of thinned skull cranial window. The method allows for the study of the synaptically evoked changes in light scattering as well as fluorescence of calcium indicator or voltage-sensitive dye without absorption of hemoglobin. PMID:10719260

  13. Experimental studies of alunite: II. Rates of alunite-water alkali and isotope exchange

    USGS Publications Warehouse

    Stoffregen, R.E.; Rye, R.O.; Wasserman, M.D.

    1994-01-01

    Rates of alkali exchange between alunite and water have been measured in hydrothermal experiments of 1 hour to 259 days duration at 150 to 400??C. Examination of run products by scanning electron microscope indicates that the reaction takes place by dissolution-reprecipitation. This exchange is modeled with an empirical rate equation which assumes a linear decrease in mineral surface area with percent exchange (f) and a linear dependence of the rate on the square root of the affinity for the alkali exchange reaction. This equation provides a good fit of the experimental data for f = 17% to 90% and yields log rate constants which range from -6.25 moles alkali m-2s-1 at 400??C to - 11.7 moles alkali m-2s-1 at 200??C. The variation in these rates with temperature is given by the equation log k* = -8.17(1000/T(K)) + 5.54 (r2 = 0.987) which yields an activation energy of 37.4 ?? 1.5 kcal/mol. For comparison, data from O'Neil and Taylor (1967) and Merigoux (1968) modeled with a pseudo-second-order rate expression give an activation energy of 36.1 ?? 2.9 kcal/mol for alkali-feldspar water Na-K exchange. In the absence of coupled alkali exchange, oxygen isotope exchange between alunite and water also occurs by dissolution-reprecipitation but rates are one to three orders of magnitude lower than those for alkali exchange. In fine-grained alunites, significant D-H exchange occurs by hydrogen diffusion at temperatures as low as 100??C. Computed hydrogen diffusion coefficients range from -15.7 to -17.3 cm2s-1 and suggest that the activation energy for hydrogen diffusion may be as low as 6 kcal/mol. These experiments indicate that rates of alkali exchange in the relatively coarse-grained alunites typical of hydrothermal ore deposits are insignificant, and support the reliability of K-Ar age data from such samples. However, the fine-grained alunites typical of low temperature settings may be susceptible to limited alkali exchange at surficial conditions which could cause alteration of their radiometric ages. Furthermore, the rapid rate of hydrogen diffusion observed at 100-150??C suggests that fine-grained alunites are susceptible to rapid D-H re-equilibration even at surficial conditions. ?? 1994.

  14. An experimental study on the thermal performance of ground heat exchanger

    SciTech Connect

    Lim, Kyoungbin; Lee, Sanghoon; Lee, Changhee

    2007-08-15

    A knowledge of ground thermal properties is most important for the proper design of large GHE (ground heat exchanger) systems. Thermal response tests have so far been used primarily not only for in situ determination of design data for GHE systems, but also for the evaluation of grout material, heat exchanger types and groundwater effects. The main purpose has been to determine in situ values of effective ground thermal conductivity, including the effect of groundwater flow and natural convection in boreholes. (author)

  15. Application of AVHRR vegetation index to study atmosphere-biosphere exchange of CO2

    NASA Technical Reports Server (NTRS)

    Fung, I. Y.; Tucker, C. J.; Prentice, K. C.

    1985-01-01

    The Advanced Very High Resolution Radiometer (AVHRR) satellite-borne sensor is presently used, together with field data, to determine the geographic distributions of the seasonal exchange of CO2 between the earth's atmosphere and the terrestrial biota. The exchange functions thus obtained are validated in virtue of the ability to reproduce the observed annual cycle of atmospheric CO2 in a three-dimensional tracer transport model. The AVHRR is carried by the TIROS-N series of polar-orbiting satellites.

  16. Material Studies Related to the Use of NaK Heat Exchangers Coupled to Stirling Heater Heads

    NASA Technical Reports Server (NTRS)

    Locci, Ivan E.; Bowman, Cheryl L.; Geng, Steven M.; Robbie, Malcolm G.

    2011-01-01

    NASA has been supporting design studies and technology development that could provide power to an outpost on the Moon, Mars, or an asteroid. Technology development efforts have included fabrication and evaluation of components used in a Stirling engine power conversion system. Destructive material evaluation was performed on a NaK shell heat exchanger that was developed by the NASA Glenn Research Center (GRC) and integrated with a commercial 1 kWe Stirling convertor from Sunpower Incorporated. The NaK Stirling test demonstrated Stirling convertor electrical power generation using a pumped liquid metal heat source under thermal conditions that represent the heat exchanger liquid metal loop in a Fission Power Systems (FPS) reactor. The convertors were operated for a total test time of 66 hr at a maximum temperature of 823 K. After the test was completed and NaK removed, the heat exchanger assembly was sectioned to evaluate any material interactions with the flowing liquid metal. Several dissimilar-metal braze joint options, crucial for the heat exchanger transfer path, were also investigated. A comprehensive investigation was completed and lessons learned for future heat exchanger development efforts are discussed.

  17. Effects of temperature and pH on the water exchange through erythrocyte membranes: nuclear magnetic resonance studies.

    PubMed

    Morariu, V V; Pop, V I; Popescu, O; Benga, G

    1981-01-01

    The temperature and pH dependence of water exchange has been studied on isolated erythrocytes suspended in isotonic buffered solutions. At pH 7.4 a break in the Arrhenius plot of water exchange time at around 26 degrees C was found. The mean value of the apparent activation energy of the water exchange time at temperatures higher than that of the discontinuity was 5.7 kcal/mole (+/- 0.4); at lower temperatures the values of the apparent activation energy were below 1.4 kcal/mole. The pH dependence of water exchange time of isolated erythrocytes revealed a marked increase of the water exchange time values in the acid range of pH; a much smaller variation of the same parameter occurs between pH 7.0 and 8.0. These finding could be correlated with other processes involving erythrocyte membranes that showed similar pH and temperature dependence and were considered to indicate state transitions in the membranes. It is suggested that the temperature and pH effects on water diffusion indicate that conformational changes and cooperative effects are implicated in the mechanism of this transport process. PMID:7277471

  18. Impact: a case study examining the closure of a large urban fixed site needle exchange in Canada

    PubMed Central

    2010-01-01

    Introduction In 2008, one of the oldest fixed site needle exchanges in a large urban city in Canada was closed due to community pressure. This service had been in existence for over 20 years. Case Description This case study focuses on the consequences of the switch to mobile needle exchange services immediately after the closure and examines the impact of the closure on changes in risk behavior related to drug use, needle distribution and access to services The context surrounding the closure was also examined. Discussion and Evaluation After the closure of the fixed site exchange, access to needle exchange services decreased as evidenced by the sharp decline in numbers of clients reached, and the numbers of needles distributed and collected monthly. Reports related to needle reuse and selling of syringes suggest changes in risk behaviors. Thousands of needles remain unaccounted for in the community. To date, a new fixed site has not been found. Conclusion Closing the fixed site needle exchange had an adverse effect on already vulnerable clients and reduced access to comprehensive harm reduction services. While official public policy supports a fixed site, politicization of the issue has meant a significant setback for harm reduction with reduced potential to meet public health targets related to reducing the spread of blood borne diseases. This situation is unacceptable from a public health perspective. PMID:20500870

  19. Low Mass MS/MS Fragments of Protonated Amino Acids Used for Distinction of Their 13C- Isotopomers in Metabolic Studies

    NASA Astrophysics Data System (ADS)

    Ma, Xin; Dagan, Shai; Somogyi, Árpád; Wysocki, Vicki H.; Scaraffia, Patricia Y.

    2013-04-01

    Glu, Gln, Pro, and Ala are the main amino acids involved in ammonia detoxification in mosquitoes. In order to develop a tandem mass spectrometry method (MS2) to monitor each carbon of the above isotopically-labeled 13C-amino acids for metabolic studies, the compositions and origins of atoms in fragments of the protonated amino acid should be first elucidated. Thus, various electrospray (ESI)-based MS2 tools were employed to study the fragmentation of these unlabeled and isotopically-labeled amino acids and better understand their dissociation pathways. A broad range of fragments, including previously-undescribed low m/z fragments was revealed. The formulae of the fragments (from m/z 130 down to m/z 27) were confirmed by their accurate masses. The structures and conformations of the larger fragments of Glu were also explored by ion mobility mass spectrometry (IM-MS) and gas-phase hydrogen/deuterium exchange (HDX) experiments. It was found that some low m/z fragments ( m/z 27-30) are common to Glu, Gln, Pro, and Ala. The origins of carbons in these small fragments are discussed and additional collision induced dissociation (CID) MS2 fragmentation pathways are proposed for them. It was also found that small fragments (≤ m/z 84) of protonated, methylated Glu, and methylated Gln are the same as those of the underivatized Glu and Gln. Taken together, the new approach of utilizing low m/z fragments can be applied to distinguish, identify, and quantify 13C-amino acids labeled at various positions, either in the backbone or side chain.

  20. Low Mass MS/MS Fragments of Protonated Amino Acids used for Distinction of their 13C- Isotopomers in Metabolic Studies

    PubMed Central

    Ma, Xin; Dagan, Shai; Somogyi, rpd; Wysocki, Vicki H.; Scaraffia, Patricia Y.

    2013-01-01

    Glu, Gln, Pro and Ala are the main amino acids involved in ammonia detoxification in mosquitoes. In order to develop a tandem mass spectrometry method (MS2) to monitor each carbon of the above isotopically-labeled 13C-amino acids for metabolic studies, the compositions and origins of atoms in fragments of the protonated amino acid should be first elucidated. Thus, various electrospray (ESI)-based MS2 tools were employed to study the fragmentation of these unlabeled and isotopically-labeled amino acids and better understand their dissociation pathways. A broad range of fragments, including previously-undescribed low m/z fragments was revealed. The formulae of the fragments (from m/z 130 down to m/z 27) were confirmed by their accurate masses. The structures and conformations of the larger fragments of Glu were also explored by ion mobility mass spectrometry (IM-MS) and gas-phase hydrogen/deuterium exchange (HDX) experiments. It was found that some low m/z fragments (m/z 27-30) are common to Glu, Gln, Pro and Ala. The origins of carbons in these small fragments are discussed and additional collision induced dissociation (CID) MS2 fragmentation pathways are proposed for them. It was also found that small fragments (? m/z 84) of protonated, methylated Glu and methylated Gln are the same as those of the underivatized Glu and Gln. Taken together, the new approach of utilizing low m/z fragments can be applied to distinguish, identify and quantify 13C-amino acids labeled at various positions, either in the backbone or side chain. PMID:23444051

  1. Ultrasonic relaxation studies of the exchange of butoxyethanol with mixed micelles in aqueous micellar solutions of ionic surfactants

    SciTech Connect

    Rao, N.P.; Verrall, R.E.

    1982-11-25

    Ultrasonic absorption measurements have been used to study the dynamics of micellar systems and to obtain semiquantitative information on the kinetic and thermodynamic parameters for the cosurfactant exchange process from mixed micelles of surfactant and cosurfactant. Ultrasonic relaxation parameters for the micellar systems containing water, surfactant (cetyltrimethylammonium bromide, myristyltrimethylammonium bromide, cetylpyridinium bromide, and Dowfax 2A1), and cosurfactant (butoxyethanol) are reported. The kinetic parameters for the exchange of butoxyethanol between the mixed micelles containing cetyltrimethylammonium bromide and myristyltrimethylammonium bromide are estimated and the results are discussed in light of the proposed mechanism.

  2. Theoretical study of a screened HartreeFock exchange potential using position-dependent atomic dielectric constants

    SciTech Connect

    Shimazaki, Tomomi; Nakajima, Takahito

    2015-02-21

    Dielectric-dependent screened HartreeFock (HF) exchange potential and Slater-formula have been reported, where the ratio of the HF exchange term mixed into potentials is inversely proportional to the dielectric constant of the target semiconductor. This study introduces a position-dependent dielectric constant method in which the dielectric constant is partitioned between the atoms in a semiconductor. These partitioned values differ depending on the electrostatic environment surrounding the atoms and lead to position-dependent atomic dielectric constants. These atomic dielectric constants provide atomic orbital-based matrix elements for the screened exchange potentials. Energy band structures of several semiconductors and insulators are also presented to validate this approach.

  3. One- and two-dimensional chemical exchange nuclear magnetic resonance studies of the creatine kinase catalyzed reaction

    SciTech Connect

    Gober, J.R.

    1988-01-01

    The equilibrium chemical exchange dynamics of the creatine kinase enzyme system were studied by one- and two-dimensional {sup 31}P NMR techniques. Pseudo-first-order reaction rate constants were measured by the saturation transfer method under an array of experimental conditions of pH and temperature. Quantitative one-dimensional spectra were collected under the same conditions in order to calculate the forward and reverse reaction rates, the K{sub eq}, the hydrogen ion stoichiometry, and the standard thermodynamic functions. The pure absorption mode in four quadrant two-dimensional chemical exchange experiment was employed so that the complete kinetic matrix showing all of the chemical exchange process could be realized.

  4. Experimental studies on pressure drop characteristics of cryogenic cross-counter flow coiled finned tube heat exchangers

    NASA Astrophysics Data System (ADS)

    Gupta, Prabhat Kumar; Kush, P. K.; Tiwari, Ashesh

    2010-04-01

    Cross-counter flow coiled finned tube heat exchangers used in medium capacity helium liquefiers/refrigerators were developed in our lab. These heat exchangers were developed using integrated low finned tubes. Experimental studies have been performed to know the pressure drop characteristics of tube side and shell side flow of these heat exchangers. All experiments were performed at room temperature in the Reynolds number range of 3000-30,000 for tube side and 25-155 for shell side. The results of present experiments indicate that available correlations for tube side can not be used for prediction of tube side pressure drop data due to complex surface formation at inner side of tube during formation of fins over the outer surface. Results also indicate that surface roughness effect becomes more pronounced as the value of di/ D m increases. New correlations based on present experimental data are proposed for predicting the friction factors for tube side and shell side.

  5. Experimental study of heat and mass transfer in a buoyant countercurrent exchange flow

    NASA Astrophysics Data System (ADS)

    Conover, Timothy Allan

    Buoyant Countercurrent Exchange Flow occurs in a vertical vent through which two miscible fluids communicate, the higher-density fluid, residing above the lower-density fluid, separated by the vented partition. The buoyancy- driven zero net volumetric flow through the vent transports any passive scalars, such as heat and toxic fumes, between the two compartments as the fluids seek thermodynamic and gravitational equilibrium. The plume rising from the vent into the top compartment resembles a pool fire plume. In some circumstances both countercurrent flows and pool fires can ``puff'' periodically, with distinct frequencies. One experimental test section containing fresh water in the top compartment and brine (NaCl solution) in the bottom compartment provided a convenient, idealized flow for study. This brine flow decayed in time as the concentrations approached equilibrium. A second test section contained fresh water that was cooled by heat exchangers above and heated by electrical elements below and operated steadily, allowing more time for data acquisition. Brine transport was reduced to a buoyancy- scaled flow coefficient, Q*, and heat transfer was reduced to an analogous coefficient, H*. Results for vent diameter D = 5.08 cm were consistent between test sections and with the literature. Some results for D = 2.54 cm were inconsistent, suggesting viscosity and/or molecular diffusion of heat become important at smaller scales. Laser Doppler Velocimetry was used to measure velocity fields in both test sections, and in thermal flow a small thermocouple measured temperature simultaneously with velocity. Measurement fields were restricted to the plume base region, above the vent proper. In baseline periodic flow, instantaneous velocity and temperature were ensemble averaged, producing a movie of the average variation of each measure during a puffing flow cycle. The temperature movie revealed the previously unknown cold core of the puff during its early development. The renewal-length model for puffing frequency of pool fire plumes was extended to puffing countercurrent flows by estimating inflow dilution. Puffing frequencies at several conditions were reduced to Strouhal number based on dilute plume density. Results for D = 5.08 cm compared favorably to published measurements of puffing pool fires, suggesting that the two different flows obey the same periodic dynamic process.

  6. Dynamic NMR study of ethene exchange in cationic CNN-type platinum(II) complexes.

    PubMed

    Plutino, M Rosaria; Fenech, Lucia; Stoccoro, Sergio; Rizzato, Silvia; Castellano, Carlo; Albinati, Alberto

    2010-01-18

    Cationic ethylene platinum(II) complexes of the type [Pt(CNN)(C(2)H(4))](+), containing a methyl fragment and different diimines (NN), or terdentate (kappaC-kappa(2)NN') anionic ligands, were synthesized and fully characterized both as solids and in solution [NN = 2,2'-dipyridylamine, 1; 2,2'-dipyridylsulfide, 2; 1,10-phenanthroline, 3; 4,7-diphenyl-1,10-phenanthroline, 4; 3,4,7,8-tetramethyl-1,10-phenanthroline, 5; 2,2'-bipyridine, 6; HC-NN = 6-tert-butyl-2,2'-bipyridine, 7; 6-neo-pentyl-2,2'-bipyridine, 8; 6-phenyl-2,2'-bipyridine, 9; 6-(alpha-methyl)benzyl-2,2'-bipyridine, 10; 6-(alpha-ethyl)benzyl-2,2'-bipyridine, 11; 6-(alpha,alpha-dimethyl)benzyl-2,2'-bipyridine, 12]. Crystals suitable for X-ray analysis of complexes 5 and 7 were obtained. Ethene exchange at the cyclometalated platinum(II) complexes 7, 8, and 10-12 was studied by (1)H NMR line-broadening experiments in chloroform-d, as a function of both temperature and olefin concentrations. For the other prepared complexes the process was too fast to be monitored on the NMR time scale even at the lowest temperature. The ethylene exchange rates show a linear dependence on the concentration of the free ligand, with a negligible k(1) term indicating that either a solvolytic or a dissociative pathway to the products is absent or negligible. The values of the second-order rate constants k(exc), as obtained by linear regression analysis of the experimental data at 298 K, are in a range of ca. 10(4)-10(5) s(-1) m(-1). The activation entropies are negative, ranging between -129 and -112 J K(-1) mol(-1), as expected for associative processes. The activation process is largely entropy controlled: the TDeltaS()() contribution to the free energy of activation is extremely large, amounting to more than 80% for all complexes, with a smaller enthalpy contribution. All the experimental findings evidence that the mechanism takes place via an associative attack by the entering olefin, through a well-ordered, stable pentacoordinated transition state with the two ethene molecules on the trigonal plane. The reactivity of [Pt(CNN)(C(2)H(4))](+) complexes is strongly dependent on the choice of coordinated 6-substituted-2,2'-bipyridines, especially when the terdentate anionic fragment is capable of generating steric crowding and congestion on the coordination plane. PMID:20000412

  7. Inhibiting the Na+/H+ exchanger reduces reperfusion injury: a small animal MRI study

    PubMed Central

    Ferrazzano, Peter; Shi, Yejie; Manhas, Namratta; Wang, Yanping; Hutchinson, Beth; Chen, Xinzhi; Chanana, Vishal; Gerdts, Josiah; Meyerand, Mary Elizabeth; Sun, Dandan

    2010-01-01

    We used magnetic resonance imaging (MRI) to assess the efficacy of Na+/H+ exchanger isoform 1 (NHE-1) inhibition following cerebral ischemia. Transient focal cerebral ischemia was induced in wild-type controls (NHE-1+/+), NHE-1 genetic knockdown mice (NHE-1+/?), and NHE-1+/+ mice treated with the selective NHE-1 inhibitor HOE642. Diffusion weighted imaging (DWI) revealed a brain lesion as early as 1 hour following reperfusion and illustrated significant protection in NHE-1+/? mice (16.2 +/? 7.9 mm3 in NHE-1+/? mice vs. 47.5 +/? 16.6 mm3 in NHE-1+/+ mice). Knockdown of NHE-1 showed significantly smaller infarct at 72 hours on T2 imaging (21.2 +/? 12.6 mm3 in NHE-1+/? mice vs. 64.6 +/? 2.5 mm3 in NHE-1+/+ mice). Administration of HOE642 prior to reperfusion or during early reperfusion reduced ischemic damage. Thus, high resolution T2 images can be used for consistent and precise calculation of lesion volumes, while changes of DWI are a sensitive early marker of ischemic injury. The results of this study demonstrate the therapeutic potential for inhibition of NHE-1 in treating cerebral ischemia. PMID:21196287

  8. Anion-exchange chromatographic study of the chlorine isotope effect accompanying hydration.

    PubMed

    Musashi, Masaaki; Oi, Takao; Eggenkamp, Hans G M; Yato, Yumio; Matsuo, Motoyuki

    2007-01-26

    The single-stage separation factor for chlorine isotopes ((35)Cl and (37)Cl) was determined to be 1.00034 by anion exchange chromatography on a 4.5-m column operated in reverse breakthrough manner at 25 degrees C. This value is in good agreement with those obtained in our previous works. It was confirmed that the lighter isotope ((35)Cl) was preferentially fractionated into the resin phase, whereas the heavier isotope ((37)Cl) partitioned into the aqueous phase. This observation, however, contradicts the experimental results for Cl isotope fractionation during NaCl precipitation and the recent theoretical results on Cl isotope fractionation: the (37)Cl isotope selectively enriched into the solid phase and not into the aqueous phase. This discrepancy is discussed based on the theory of isotope distribution between two phases. It is suggested that the chromatographic results reflect an isotope effect accompanying hydration rather than an isotope effect due to a phase change, whereas the reverse is the case for the results in the NaCl precipitation study. PMID:17141790

  9. The importance of the finite-temperature exchange-correlation for warm dense matter studies

    NASA Astrophysics Data System (ADS)

    Karasiev, V. V.; Trickey, S. B.

    2015-03-01

    Matter at extremely elevated temperature (thousands to millions Kelvin) under a wide range of pressures usually is treated by ab initio molecular dynamics driven by free-energy DFT. Whether in the Kohn-Sham or orbital-free forms, implementation requires a reliable exchange-correlation (XC) free energy approximation. Finite-temperature Hartree-Fock calculations suggest strongly that the explicit T-dependence of X is important. The recently developed first rung XC free-energy functional, the finite-T local density approximation (LDA), captures that explicit T-dependence for the homogeneous electron gas. We report study of the impact of explicit T-dependence in the LDA on the properties of matter in the warm dense regime and conclude that there is a need to develop a T-dependent and density gradient-dependent XC functional. Next, we analyze the finite-T gradient expansion for X and C, extract from it the appropriate reduced density gradients for X and C with explicit T-dependence, introduce the next-rung GGA XC free-energy functionals, and discuss their behavior and properties. Work supported by U.S. Dept. of Energy, Grant DE-SC0002139.

  10. Variable-ratio matching with fine balance in a study of the Peer Health Exchange.

    PubMed

    Pimentel, Samuel D; Yoon, Frank; Keele, Luke

    2015-12-30

    In some observational studies of treatment effects, matched samples are created so treated and control groups are similar in terms of observable covariates. Traditionally, such matched samples consist of matched pairs. However, alternative forms of matching may have desirable features. One strategy that may improve efficiency is to match a variable number of control units to each treated unit. Another strategy to improve balance is to adopt a fine balance constraint. Under a fine balance constraint, a nominal covariate is exactly balanced, but it does not require individually matched treated and control subjects for this variable. Here, we propose a method to allow for fine balance constraints when each treated unit is matched to a variable number of control units, which is not currently possible using existing matching network flow algorithms. Our approach uses the entire number to first determine the optimal number of controls for each treated unit. For each stratum of matched treated units, we can then apply a fine balance constraint. We then demonstrate that a matched sample for the evaluation of the Peer Health Exchange, an intervention in schools designed to decrease risky health behaviors among youths, using a variable number of controls and fine balance constraint is superior to simply using a variable-ratio match. Copyright 2015 John Wiley & Sons, Ltd. PMID:26182888

  11. Solar Wind Charge Exchange Studies Of Highly Charged Ions On Atomic Hydrogen

    SciTech Connect

    Draganic, I. N.; Havener, C. C.; Seely, D. G.; McCammon, D.

    2011-06-01

    Accurate studies of low-energy charge exchange (CX) are critical to understanding underlying soft X-ray radiation processes in the interaction of highly charged ions from the solar wind with the neutral atoms and molecules in the heliosphere, cometary comas, planetary atmospheres, interstellar winds, etc.. Particularly important are the CX cross sections for bare, H-like, and He-like ions of C, N, O and Ne, which are the dominant charge states for these heavier elements in the solar wind. Absolute total cross sections for single electron capture by H-like ions of C, N, O and fully-stripped O ions from atomic hydrogen have been measured in an expanded range of relative collision energies (5 eV/u-20 keV/u) and compared to previous H-oven measurements. The present measurements are performed using a merged-beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source installed on a high voltage platform at the Oak Ridge National Laboratory. For the collision energy range of 0.3 keV/u-3.3 keV/u, which corresponds to typical ion velocities in the solar wind, the new measurements are in good agreement with previous H-oven measurements. The experimental results are discussed in detail and compared with theoretical calculations where available.

  12. Solar Wind Charge Exchange Studies of Highly Charged Ions on Atomic Hydrogen

    SciTech Connect

    Draganic, Ilija N; Seely, D. G.; McCammon, D; Havener, Charles C

    2011-01-01

    Accurate studies of low energy charge exchange (CX) are critical to understanding underlying soft X ray radiation processes in the interaction of highly charged ions from the solar wind with the neutral atoms and molecules in the heliosphere, cometary comas, planetary atmospheres, interstellar winds, etc.. Particularly important are the CX cross sections for bare, H like, and He like ions of C, N, O and Ne, which are the dominant charge states for these heavier elements in the solar wind. Absolute total cross sections for single electron capture by H like ions of C, N, O and fully stripped O ions from atomic hydrogen have been measured in an expanded range of relative collision energies (5 eV u 20 keV u) and compared to previous H oven measurements. The present measurements are performed using a merged beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source installed on a high voltage platform at the Oak Ridge National Laboratory. For the collision energy range of 0.3 keV u 3.3 keV u, which corresponds to typical ion velocities in the solar wind, the new measurements are in good agreement with previous H oven measurements. The experimental results are discussed in detail and compared with theoretical calculations where available.

  13. Preliminary study of iron removal from hydrochloric pickling liquor by ion exchange

    SciTech Connect

    Maranon, E.; Suarez, F.; Alonso, F.; Fernandez, Y.; Sastre, H.

    1999-07-01

    Hydrochloric acid from exhausted pickling baths is a residue that has to be managed adequately because of its high pollutant potential. In this work, an ion exchange treatment for removing iron from the spent acid was studied in an attempt to make the re-utilization of said acid viable for industry while reducing the amount of waste generated. Several cationic, anionic, and chelating resins were tested. Cationic and chelating resins are able to remove Fe(II) that is present as a cation in the acid, whereas anionic resins are able to remove Fe(III) that forms anionic complexes with the chloride anion. The capacity of the cationic and chelating resins, although not high, does improve as the iron concentration in the hydrochloric acid increases and when the acid concentration decreases, because there is less competition between the ferrous cation and the protons. The anionic resins showed higher capacity for removing iron, especially the Lewatit MP-500, and this capacity also increased with iron concentration.

  14. A Numerical Study of Circulation and Water Exchange in the Arabian Gulf

    NASA Astrophysics Data System (ADS)

    Azhar, Muchamad Al; Temimi, Marouane; Zhao, Jun; Ghedira, Hosni

    2015-04-01

    Ocean circulation and water mass variability in semi-enclosed and marginal sea of the Arabian Gulf are numerically simulated using a three-dimensional model of Regional Ocean Modeling System (ROMS). The model is forced by relatively high-frequency of atmospheric forcing and tides. The numerical simulations are compared with a set data of moored and spatially distributed measurements of temperature, salinity, current velocity, and sea-surface height. The model results generally agree well with temporal variation of the observed current velocity during spring and neap tide, as well as seasonal variation of temperature and salinity in surface and sub-surface depths. Seasonal variability of water mass and circulation in the Arabian Gulf affected by the propagation of Indian Ocean Surface Water to the Arabian Gulf, air-sea heat fluxes, and mesoscale eddy activities are discussed. Sensitivity study using different source of atmospheric data for forcing of the model, as well as climatology data and global ocean model for specifying values in open boundaries of the model are conducted towards implementation of the model operationally. Further development of the model by coupling it with atmospheric model most likely will increase the skill of the model and provide better understanding on how the complex air-sea interaction affecting circulation and water mass exchange in this region.

  15. ANION EXCHANGE METHOD FOR THE DETERMINATION OF PLUTONIUM IN WATER: SINGLE-LABORATORY EVALUATION AND INTERLABORATORY COLLABORATIVE STUDY

    EPA Science Inventory

    This report gives the results of a single-laboratory evaluation and an interlaboratory collaborative study of a method for determining plutonium in water. The method was written for the analysis of 1-liter samples and involved coprecipitation, acid dissolution, anion exchange, el...

  16. A Longitudinal Study of the Moderating Role of Extraversion: Leader-Member Exchange, Performance, and Turnover during New Executive Development

    ERIC Educational Resources Information Center

    Bauer, Talya N.; Erdogan, Berrin; Liden, Robert C.; Wayne, Sandy J.

    2006-01-01

    Identifying factors that help or hinder new executives in "getting up to speed" quickly and remaining with an organization is vital to maximizing the effectiveness of executive development. The current study extends past research by examining extraversion as a moderator of relationships between leader-member exchange (LMX) and performance,…

  17. F- and H-Area Seepage Basins Water Treatment System Process Optimization and Alternative Chemistry Ion Exchange/Sorbent Material Screening Clearwell Overflow Study

    SciTech Connect

    Serkiz, S.M.

    2000-08-30

    This study investigated alternative ion exchange/sorbent materials and polishing chemistries designed to remove specific radionuclides not removed during the neutralization/precipitation/clarification process.

  18. Dynamics of heat, water, and soluble gas exchange in the human airways: 1. A model study.

    PubMed

    Tsu, M E; Babb, A L; Ralph, D D; Hlastala, M P

    1988-01-01

    In order to provide a means for analysis of heat, water, and soluble gas exchange with the airways during tidal ventilation, a one dimensional theoretical model describing heat and water exchange in the respiratory airways has been extended to include soluble gas exchange with the airway mucosa and water exchange with the mucous layer lining the airways. Not only do heat, water, and gas exchange occur simultaneously, but they also interact. Heating and cooling of the airway surface and mucous lining affects both evaporative water and soluble gas exchange. Water evaporation provides a major source of heat exchange. The model-predicted mean airway temperature profiles agree well with literature data for both oral and nasal breathing validating that part of the model. With model parameters giving the best fit to experimental data, the model shows: (a) substantial heat recovery in the upper airways, (b) minimal respiratory heat and water loss, and (c) low average mucous temperatures and maximal increases in mucous thickness. For resting breathing of room air, heat and water conservation appear to be more important than conditioning efficiency. End-tidal expired partial pressures of very soluble gases eliminated by the lungs are predicted to be lower than the alveolar partial pressures due to the absorption of the expired gases by the airway mucosa. The model may be usable for design of experiments to examine mechanisms associated with the local hydration and dehydration dynamics of the mucosal surface, control of bronchial perfusion, triggering of asthma, mucociliary clearance and deposition of inhaled pollutant gases. PMID:3228218

  19. Fouling of an anion exchange chromatography operation in a monoclonal antibody process: Visualization and kinetic studies.

    PubMed

    Close, Edward J; Salm, Jeffrey R; Iskra, Timothy; Srensen, Eva; Bracewell, Daniel G

    2013-09-01

    Fouling of chromatographic resins over their operational lifetimes can be a significant problem for commercial bioseparations. In this article, scanning electron microscopy (SEM), batch uptake experiments, confocal laser scanning microscopy (CLSM) and small-scale column studies were applied to characterize a case study where fouling had been observed during process development. The fouling was found to occur on an anion exchange (AEX) polishing step following a protein A affinity capture step in a process for the purification of a monoclonal antibody. Fouled resin samples analyzed by SEM and batch uptake experiments indicated that after successive batch cycles, significant blockage of the pores at the resin surface occurred, thereby decreasing the protein uptake rate. Further studies were performed using CLSM to allow temporal and spatial measurements of protein adsorption within the resin, for clean, partially fouled and extensively fouled resin samples. These samples were packed within a miniaturized flowcell and challenged with fluorescently labeled albumin that enabled in situ measurements. The results indicated that the foulant has a significant impact on the kinetics of adsorption, severely decreasing the protein uptake rate, but only results in a minimal decrease in saturation capacity. The impact of the foulant on the kinetics of adsorption was further investigated by loading BSA onto fouled resin over an extended range of flow rates. By decreasing the flow rate during BSA loading, the capacity of the resin was recovered. These data support the hypothesis that the foulant is located on the particle surface, only penetrating the particle to a limited degree. The increased understanding into the nature of the fouling can help in the continued process development of this industrial example. PMID:23483524

  20. A droplet microchip with substance exchange capability for the developmental study of C. elegans.

    PubMed

    Wen, Hui; Yu, Yue; Zhu, Guoli; Jiang, Lei; Qin, Jianhua

    2015-04-21

    The nematode Caenorhabditis elegans (C. elegans) has been widely used as a multicellular organism in developmental research due to its simplicity, short lifecycle, and its relevance to human genetics and biology. Droplet microfluidics is an attractive platform for the study of C. elegans in integrated mode with flexibility at the single animal resolution. However, it is still challenging to conduct the developmental study of worms within droplets initiating at the L1 larval stage, due to the small size, active movement, and the difficulty in achieving effective substance exchange within the droplets. Here, we present a multifunctional droplet microchip to address these issues and demonstrate the usefulness of this device for investigating post-embryonic development in individual C. elegans initiating at the larval L1 stage. The key components of this device consist of multiple functional units that enable parallel worm loading, droplet formation/trapping, and worm encapsulation in parallel. In particular, it exhibits superior functions in encapsulating and trapping individual larval L1 worms into droplets in a controlled way. Continuous food addition and expulsion of waste by mixing the static worm-in-droplet with moving medium plugs allows for the long-term culture of worms under a variety of conditions. We used this device to investigate the development processes of C. elegans in transgenic strains with deletion and overexpression of the hypoxia-inducible factor (HIF-1), a highly conserved transcript factor in regulating an organism's response to hypoxia. This microdevice may be a useful tool for the high throughput analysis of individual worms starting at the larval stage, and facilitates the study of developmental worms in response to multiple drugs or environmental toxins. PMID:25715864

  1. A comparison study of ionic polymer-metal composites (IPMCs) fabricated with Nafion and other ion exchange membranes

    NASA Astrophysics Data System (ADS)

    Park, Jiyeon; Palmre, Viljar; Kim, Kwang; Shin, Dongsuk; Kim, Daniel H.; Yim, Woosoon; Bae, Chulsung

    2013-04-01

    Ionic polymer-metal composites (IPMCs) have been and still are one of the best candidates with great potential to be used as actuators and sensors particularly in bioengineering where the environmental conditions are in an aqueous medium. Each component of an IPMC is important. However, the ion exchange membrane should be more emphasized because it is where ions migrate when electrical stimulation is applied and eventually it produces deformation of the IPMC. So far, the most commonly used ion exchange membrane is Nafion and many studies have been conducted with it for IPMC applications. There are a number of other commercially available ion exchange membranes now, but only a few studies have been done on those membranes to be used in IPMC applications. In this study, four commercially available membranes, (1) Nafion N115 (DuPont), (2) CMI7000S (Membranes International Inc.), (3) F-14100 (fumatech), (4) GEFC-700 (Golden Energy Fuel Cell) were selected and fabricated in IPMCs and their potentials as actuators were examined by conducting various characterizations such as water uptake, ion exchange capacity, SEM, DSC, blocking force and bending displacement.

  2. The study of RMB exchange rate complex networks based on fluctuation mode

    NASA Astrophysics Data System (ADS)

    Yao, Can-Zhong; Lin, Ji-Nan; Zheng, Xu-Zhou; Liu, Xiao-Feng

    2015-10-01

    In the paper, we research on the characteristics of RMB exchange rate time series fluctuation with methods of symbolization and coarse gaining. First, based on fluctuation features of RMB exchange rate, we define the first type of fluctuation mode as one specific foreign currency against RMB in four days' fluctuating situations, and the second type as four different foreign currencies against RMB in one day's fluctuating situation. With the transforming method, we construct the unique-currency and multi-currency complex networks. Further, through analyzing the topological features including out-degree, betweenness centrality and clustering coefficient of fluctuation-mode complex networks, we find that the out-degree distribution of both types of fluctuation mode basically follows power-law distributions with exponents between 1 and 2. The further analysis reveals that the out-degree and the clustering coefficient generally obey the approximated negative correlation. With this result, we confirm previous observations showing that the RMB exchange rate exhibits a characteristic of long-range memory. Finally, we analyze the most probable transmission route of fluctuation modes, and provide probability prediction matrix. The transmission route for RMB exchange rate fluctuation modes exhibits the characteristics of partially closed loop, repeat and reversibility, which lays a solid foundation for predicting RMB exchange rate fluctuation patterns with large volume of data.

  3. Study and verification of the superposition method used for determining the pressure losses of the heat exchangers

    NASA Astrophysics Data System (ADS)

    Petru, Michal; Kulhavy, Petr; Srb, Pavel; Rachitsky, Gary

    2015-05-01

    This paper deals with study of the pressure losses of the new heat convectors product line. For all devices connected to the heating circuit of the building, it`s required to declare a tabulated values of pressure drops. The heat exchangers are manufactured in a lot of different dimensions and atypical shapes. An individual assessment of the pressure losses for each type is very time consuming. Therefore based on the resulting data of the experiments and numerical models, an electronic database was created that can be used for calculating the total values of the pressure losses in the optionally assembled exchanger. The measurements are standardly performed by the manufacturer Licon heat hydrodynamic laboratory and the numerical models are carried out in COMSOL Multiphysics. Different variations of the convectors geometry cause non-linear process of energy losses, which is proportionately about 30% larger for the smaller exchanger than for the larger types. The results of the experiments and the numerical simulations were in a very good conjuncture. Considerable influence of the water temperature onto the total size of incurred energy losses has been proven. This is mainly caused by the different ranges of the Reynolds number depending on the viscosity of the used liquid. Concerning to the tested method of superposition, it is not possible to easily find the characteristic values appropriate for the each individual components of the heat exchanger. Every of the components behaves differently, depend on the complexity of the exchanger. However, the correction coefficient, depended on the matrix of the exchanger, that is suitable for the entire range of the developed product line has been found.

  4. Plasma-exchange treatment for severe carbamazepine intoxication: a case study.

    PubMed

    Kozanoglu, Ilknur; Kahveci, Suat; Asma, Suheyl; Yeral, Mahmut; Noyan, Aytul; Boga, Can; Ozdogu, Hakan

    2014-06-01

    Acute poisoning is an important cause of morbidity and mortality during childhood. This manuscript reports the positive outcome of a pediatric case with a history of accidental carbamazepine intake treated using plasma exchange. A 3-year-old male presented with severe carbamazepine intoxication. He was comatose and had generalized tonic clonic seizure, ventricular tachycardia, and hypotension. Although he did not respond to classical therapies, we performed two sessions of plasma exchange. The patient recovered rapidly and was discharged from the hospital six days from the time of carbamazepine ingestion with no complication or neurologic impairment. Plasma exchange can be performed safely in very small children, and it might be the first line treatment, particularly for intoxication with drugs that have high plasma-protein-binding properties. PMID:24136443

  5. Concurrent studies of enhanced heat transfer and materials in ocean thermal heat exchangers

    NASA Astrophysics Data System (ADS)

    Bothfus, R. R.

    1981-04-01

    Vertical shell and tube condensors and evaporators with axially ridged tubes produce high heat fluxes under OTEC conditions. Shell side pressure drop is inconsequential and there are only minimal problems associated with the operation of large exchangers. Yet the cost effectiveness of ridged tube units is reduced by added material and labor costs to the point where the possible advantages of these exchangers must lie in such areas as ease of cleaning and decreased buoyancy. Units built from vertically ridged plates or sheets give promise of reducing fabricating costs while retaining the thermal and hydrodynamic benefits of ridged tubes. The dynamics of closed OTEC power cycles are dominated by the dynamics of the evaporator and condenser. Mathematical modeling of several candidate exchangers shows the OTEC cycle to be stable and bypass valve control to be a relatively fast and smooth method of turbine speed control.

  6. Laboratory studies of exchange between a polar and a subpolar basin

    SciTech Connect

    Hunkins, K.

    1992-03-01

    Experiments on the exchange of a freshwater surface layer between two basins in a rotating tank demonstrate the contrasting roles of wind and buoyancy forces. Buoyancy-driven exchange occurs primarily in narrow boundary currents along the walls. Wind-driven exchange has a complex flow pattern with net transfer controlled by the sign of wind stress curl. Freshwater is transferred from the basin with positive curl to the one with negative curl. These results are related to freshwater flow from the Arctic Ocean to the Greenland Sea in which the southward flow of freshwater under buoyancy forces may be either increased or decreased by wind stress depending upon the sign of the curl. At present there is a negative stress curl over the Arctic Ocean which leads to a deep surface layer and no deep convection while opposite conditions in the Greenland Sea tend to remove the surface layer and allow deep convection.

  7. Study of exchange bias and training effect in NiCr2O4

    NASA Astrophysics Data System (ADS)

    Barman, Junmoni; Bora, Tribedi; Ravi, S.

    2015-07-01

    Single phase sample of NiCr2O4 crystallized in a tetragonal structure of I41/amd space group was prepared. Ferrimagnetic transition at TC=73 K along with a large irreversibility has been observed from the magnetization measurement. The sample exhibits exchange bias phenomenon and it is explained by considering the anisotropic exchange interaction between the ferrimagnetic and the antiferromagnetic components of magnetic moment. Presence of training effect is also observed. The exchange bias field (HEB) is found to decay exponentially with increase in temperature and however, the coercive field (HCeff) follows the empirical relation HCeff = HCeff [ 1 - T/TC']2 . The maximum experimental values of HEB and HCeff are found to be 313 Oe and 4839 Oe respectively.

  8. Syringe exchange as a social movement: a case study of harm reduction in Oakland, California.

    PubMed

    Bluthenthal, R N

    1998-04-01

    The federal ban on funding for syringe exchange programs (SEPs) has greatly hampered attempts to prevent the spread of HIV among injection drug users in the United States. State laws prohibiting the possession and/or distribution of syringes have made SEPs illegal. These factors have lent a unique social movement quality to harm reduction efforts in the United States. Using a social movement perspective, this paper explores dynamics of the implementation and defense of the syringe exchange program in Oakland, California. The advantages and disadvantages of the social movement aspects of harm reduction are discussed. PMID:9596381

  9. A simulation study to rescue the Na+/Ca2+ exchanger knockout mice.

    PubMed

    Sarai, Nobuaki; Kobayashi, Tsutomu; Matsuoka, Satoshi; Noma, Akinori

    2006-06-01

    The Na(+)/Ca(2+) exchanger (NCX) is the major Ca(2+) efflux system in cardiac myocytes, and thereby its global knockout is embryonically lethal. However, Henderson et al. (2004) found that mice with the cardiospecific knockout of NCX1 lived to adulthood. No adaptation was detected in expression levels of other proteins except for a 50% reduction in the L-type Ca(2+) current (I(CaL)) as revealed in electrophysiological studies. To predict mechanisms of survival, we simulated cardiac myocyte activity in the absence of NCX using a mathematical model of guinea pig ventricular myocytes. The NCX knockout resulted in contracture of the model cell because of a rise in the cytoplasmic Ca(2+) ([Ca(2+)](i)). However, up-regulation of the sarcolemmal Ca(2+) pump (PMCA) and/or down-regulation of I(CaL) enables steady rhythmic contractions even if NCX is totally excluded. The simulation predicted that the steady activities are maintained by a functional up-regulation of PMCA by about 2.3 times in addition to the down-regulation of I(CaL) to a half, as observed in the experiment. However, the model analysis predicted that the myocyte depending on PMCA for Ca(2+) extrusion is unstable against any changes in ionic fluxes and energetically unfavorable in comparison with the control. The reason for the instability is that the activity of PMCA driven by the ATP hydrolysis is hardly affected by changes in [Ca(2+)](i), but NCX has a reversal potential in the middle level of the action potential and is immediately affected by the Ca(2+) flux via NCX itself. The source code of the model is available at http://www.sim-bio.org/. PMID:16839455

  10. RESIDENTIAL AIR EXCHANGE RATES FOR USE IN INDOOR AIR AND EXPOSURE MODELING STUDIES

    EPA Science Inventory

    Data on air exchange rates are important inputs to indoor air quality models. ndoor air models, in turn, are incorporated into the structure of total human exposure models. ragmentary data on residential ventilation rates are available in various governmental reports, journal art...

  11. Study Abroad Programs: Elements of Effective International Student and Faculty Exchange Programs. CRB 09-006

    ERIC Educational Resources Information Center

    Martin, Pam

    2009-01-01

    As part of Assembly Concurrent Resolution 146 (Solorio), the California Research Bureau was asked to report on the programmatic and funding elements of an effective international student and faculty exchange program, including good practices nationally, with an emphasis on public higher education institutions in California and Mexico. The CRB

  12. Studying the Early Stages of Protein Aggregation Using Replica Exchange Molecular Dynamics Simulations.

    PubMed

    Shea, Joan-Emma; Levine, Zachary A

    2016-01-01

    The simulation of protein aggregation poses several computational challenges due to the disparate time and lengths scales that are involved. This chapter focuses on the use of atomistically detailed simulations to probe the initial steps of aggregation, with an emphasis on the Tau peptide as a model system, run under a replica exchange molecular dynamics protocol. PMID:26453216

  13. Study and development of a cryogenic heat exchanger for life support systems

    NASA Technical Reports Server (NTRS)

    Soliman, M. M.

    1973-01-01

    A prototype cryogenic heat exchanger for removal of waste heat from a spacecraft environmental control life support system was developed. The heat exchanger uses the heat sink capabilities of the cryogenic propellants and, hence, can operate over all mission phases from prelaunch to orbit, to post landing, with quiescent periods during orbit. A survey of candidate warm fluids resulted in the selection of E-2, a fluorocarbon compound, because of its low freezing point and high boiling point. The final design and testing of the heat exchanger was carried out, however, using Freon-21, which is similar to E-2 except for its low boiling point. This change was motivated by the desire for cost effectiveness of the experimental program. The transient performance of the heat exchanger was demonstrated by an analog simulation of the heat sink system. Under the realistic transient heat load conditions (20 sec ramp from minimum to maximum Freon-21 inlet temperature), the control system was able to maintain the warm fluid outlet temperature within + or - 3 F. For a 20-sec ramp from 0 F to -400 F in the hydrogen inlet temperature, at maximum heat load, the warm fluid outlet temperature was maintained within + or - 7 F.

  14. "Actually, I Wanted to Learn": Study-Related Knowledge Exchange on Social Networking Sites

    ERIC Educational Resources Information Center

    Wodzicki, Katrin; Schwammlein, Eva; Moskaliuk, Johannes

    2012-01-01

    Social media open up multiple options to add a new dimension to learning and knowledge processes. Particularly, social networking sites allow students to connect formal and informal learning settings. Students can find like-minded people and organize informal knowledge exchange for educational purposes. However, little is known about in which way

  15. EPR Studies of Spin-Spin Exchange Processes: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Eastman, Michael P.

    1982-01-01

    Theoretical background, experimental procedures, and analysis of experimental results are provided for an undergraduate physical chemistry experiment on electron paramagnetic resonance (EPR) linewidths. Source of line broadening observed in a spin-spin exchange process between radicals formed in aqueous solutions of potassium peroxylamine

  16. 1H NMR studies of electron exchange rate of Pseudomonas aeruginosa azurin.

    PubMed Central

    U?urbil, K; Mitra, S

    1985-01-01

    T1 values of the His-35 C-2 proton resonance of reduced Pseudomonas aeruginosa azurin were determined at 25 degrees C and pH values 4.5, 7.3, and 9.0 in the presence of different fractional amounts of oxidized azurin. The C-2 proton of His-35 undergoes very rapid spin relaxation in oxidized azurin because of its close proximity to the paramagnetic copper. In the presence of oxidized protein, the T1 values of this proton in reduced azurin depend on the lifetime of the reduced protein. From the T1 data, the electron self-exchange rate constant for azurin was calculated to be 1.4 X 10(4) M-1 X s-1, 4.3 X 10(3) M-1 X s-1, and 6.0 X 10(3) M-1 X s-1 at pH values 4.5, 7.3, and 9, respectively. At pH 7.3, the C-2 proton of His-35 is in slow exchange between the imidazole and imidazolium forms and gives rise to two separate resonances at 9.39 and 8.00 ppm. By using these two resonances, the electron self-exchange rate constants were determined separately for the two species of azurin for which the His-35 residue is in the imidazole or the imidazolium forms; results showed that both species participate in self-exchange of electrons with equal efficiency. PMID:2984677

  17. Promoting Intercultural Exchanges with Blogs and Podcasting: A Study of Spanish-American Telecollaboration

    ERIC Educational Resources Information Center

    Lee, Lina

    2009-01-01

    Blogs and podcasts open new ways for global communication and development of intercultural awareness. This article reports a Spanish-American telecollaborative project through which students created blogs and podcasts for intercultural exchanges in light of the sociocultural perspectives. The article outlines the methodology for the project

  18. "Actually, I Wanted to Learn": Study-Related Knowledge Exchange on Social Networking Sites

    ERIC Educational Resources Information Center

    Wodzicki, Katrin; Schwammlein, Eva; Moskaliuk, Johannes

    2012-01-01

    Social media open up multiple options to add a new dimension to learning and knowledge processes. Particularly, social networking sites allow students to connect formal and informal learning settings. Students can find like-minded people and organize informal knowledge exchange for educational purposes. However, little is known about in which way…

  19. Allelic Exchange.

    PubMed

    Lehman, McKenzie K; Bose, Jeffrey L; Bayles, Kenneth W

    2016-01-01

    Methods used to understand the function of a gene/protein are one of the hallmarks of modern molecular genetics. The ability to genetically manipulate bacteria has become a fundamental tool in studying these organisms and while basic cloning has become a routine task in molecular biology laboratories, generating directed mutations can be a daunting task. This chapter describes the method of allelic exchange in Staphylococcus aureus using temperature-sensitive plasmids that have successfully produced a variety of chromosomal mutations, including in-frame deletions, insertion of antibiotic-resistance cassettes, and even single-nucleotide point mutations. PMID:25646609

  20. Microcalorimetric study of adsorption and disassembling of virus-like particles on anion exchange chromatography media.

    PubMed

    Yu, Mengran; Zhang, Songping; Zhang, Yan; Yang, Yanli; Ma, Guanghui; Su, Zhiguo

    2015-04-01

    Chromatographic purification of virus-like particles (VLPs) is important to the development of modern vaccines. However, disassembly of the VLPs on the solid-liquid interface during chromatography process could be a serious problem. In this study, isothermal titration calorimetric (ITC) measurements, together with chromatography experiments, were performed on the adsorption and disassembling of multi-subunits hepatitis B virus surface antigen virus-like particles (HB-VLPs). Two gigaporous ion-exchange chromatography (IEC) media, DEAE-AP-280 nm and DEAE-POROS, were used. The application of gigaporous media with high ligand density led to significantly increased irreversible disassembling of HB-VLPs and consequently low antigen activity recovery during IEC process. To elucidate the thermodynamic mechanism of the effect of ligand density on the adsorption and conformational change of VLPs, a thermodynamic model was proposed. With this model, one can obtain the intrinsic molar enthalpy changes related to the binding of VLPs and the accompanying conformational change on the liquid-solid interface during its adsorption. This model assumes that, when intact HB-VLPs interact with the IEC media, the total adsorbed proteins contain two states, the intact formation and the disassembled formation; accordingly, the apparent adsorption enthalpy, ?appH, which can be directly measured from ITC experiments, presents the sum of three terms: (1) the intrinsic molar enthalpy change associated to the binding of intact HB-VLPs (?bindHintact), (2) the intrinsic molar enthalpy change associated to the binding of HB-VLPs disassembled formation (?bindHdis), and (3) the enthalpy change accompanying the disassembling of HB-VLPs (?confHdis). The intrinsic binding of intact HB-VLPs and the disassembled HB-VLPs to both kinds of gigaporous media (each of which has three different ligand densities), were all observed to be entropically driven as indicated by positive values of ?bindHintact and ?bindHdis; while the nagative ?confHdis values suggested a spontenous enthalpy-driven process for the forming of HB-VLPs disassembled formation at all conditions studied. As ligand density increases, ?confHdis became more negative, which was in agreement with the findings from chromatography experiments, that higher ligand density leads to more serious disassembling of HB-VLPs. Results from thermodynamic studies provided us insight understanding on the mechanism of adsorption and conformational change of VLPs, as well as the effect of ligand densities on the structural stability of VLPs during IEC process. PMID:25744549

  1. Swinger RNAs with sharp switches between regular transcription and transcription systematically exchanging ribonucleotides: Case studies.

    PubMed

    Seligmann, Herv

    2015-09-01

    During RNA transcription, DNA nucleotides A,C,G, T are usually matched by ribonucleotides A, C, G and U. However occasionally, this rule does not apply: transcript-DNA homologies are detectable only assuming systematic exchanges between ribonucleotides. Nine symmetric (X ? Y, e.g. A ? C) and fourteen asymmetric (X ? Y ? Z, e.g. A ? C ? G) exchanges exist, called swinger transcriptions. Putatively, polymerases occasionally stabilize in unspecified swinger conformations, possibly similar to transient conformations causing punctual misinsertions. This predicts chimeric transcripts, part regular, part swinger-transformed, reflecting polymerases switching to swinger polymerization conformation(s). Four chimeric Genbank transcripts (three from human mitochondrion and one murine cytosolic) are described here: (a) the 5' and 3' extremities reflect regular polymerization, the intervening sequence exchanges systematically between ribonucleotides (swinger rule G ? U, transcript (1), with sharp switches between regular and swinger sequences; (b) the 5' half is 'normal', the 3' half systematically exchanges ribonucleotides (swinger rule C ? G, transcript (2), with an intercalated sequence lacking homology; (c) the 3' extremity fits A ? G exchanges (10% of transcript length), the 5' half follows regular transcription; the intervening region seems a mix of regular and A ? G transcriptions (transcript 3); (d) murine cytosolic transcript 4 switches to A ? U + C ? G, and is fused with A ? U + C ? G swinger transformed precursor rRNA. In (c), each concomitant transcript 5' and 3' extremities match opposite genome strands. Transcripts 3 and 4 combine transcript fusions with partial swinger transcriptions. Occasional (usually sharp) switches between regular and swinger transcriptions reveal greater coding potential than detected until now, suggest stable polymerase swinger conformations. PMID:26163926

  2. A study on the surface shape and roughness of aluminum alloy for heat exchanger using ball end milling

    NASA Astrophysics Data System (ADS)

    Lee, E.; Kim, Y.; jeong, H.; Chung, H.

    2015-09-01

    Aluminum alloy is a material with a high strength-weight ratio and excellent thermal conductivity. It neither readily corrodes nor quickly weakens at low temperatures, but can be easily recycled. Because of these features, aluminum heat exchangers are widely used in aluminum alloy. In addition, the aluminum alloy used in other areas is expected to gradually increase. As a result, researchers have been continuously studying the cutting patterns of aluminium alloy. However, such studies are fewer than those on the cutting patterns of ordinary steel. Moreover, the research on ball end milling with aluminium alloys has not received much attention. Therefore, in this study, an attempt was made to find the optimal cutting pattern among the seven cutting patterns for the machining of the commonly used aluminum alloy using ball end milling for a heat exchanger. The optimal pattern was found by comparing the different shapes and surface roughness values produced by the seven patterns.

  3. Asymmetric Preorganization of Inverted Pair Residues in the Sodium-Calcium Exchanger

    PubMed Central

    Giladi, Moshe; Almagor, Lior; van Dijk, Liat; Hiller, Reuben; Man, Petr; Forest, Eric; Khananshvili, Daniel

    2016-01-01

    In analogy with many other proteins, Na+/Ca2+ exchangers (NCX) adapt an inverted twofold symmetry of repeated structural elements, while exhibiting a functional asymmetry by stabilizing an outward-facing conformation. Here, structure-based mutant analyses of the Methanococcus jannaschii Na+/Ca2+ exchanger (NCX_Mj) were performed in conjunction with HDX-MS (hydrogen/deuterium exchange mass spectrometry) to identify the structure-dynamic determinants of functional asymmetry. HDX-MS identified hallmark differences in backbone dynamics at ion-coordinating residues of apo-NCX_Mj, whereas Na+or Ca2+ binding to the respective sites induced relatively small, but specific, changes in backbone dynamics. Mutant analysis identified ion-coordinating residues affecting the catalytic capacity (kcat/Km), but not the stability of the outward-facing conformation. In contrast, distinct “noncatalytic” residues (adjacent to the ion-coordinating residues) control the stability of the outward-facing conformation, but not the catalytic capacity. The helix-breaking signature sequences (GTSLPE) on the α1 and α2 repeats (at the ion-binding core) differ in their folding/unfolding dynamics, while providing asymmetric contributions to transport activities. The present data strongly support the idea that asymmetric preorganization of the ligand-free ion-pocket predefines catalytic reorganization of ion-bound residues, where secondary interactions with adjacent residues couple the alternating access. These findings provide a structure-dynamic basis for ion-coupled alternating access in NCX and similar proteins. PMID:26876271

  4. Heat exchanges in fast, high-performance liquid chromatography. A complete thermodynamic study

    SciTech Connect

    Gritti, Fabrice; Guiochon, Georges A

    2008-01-01

    The successive physical transformations of the mobile phase that take place in very high pressure liquid chromatography were studied based on the formalism of classical thermodynamics. The eluent is initially under atmospheric pressure (P{sup 0}) and at ambient temperature (T{sub ext}). In a first step, it is compressed to a high pressure (P{sub max} of the order of 1 kbar) in the pump heads of the chromatograph. In a second step, the pressurized eluent is transferred to the inlet of the chromatographic column, along which, in a third step, it is decompressed to atmospheric pressure. Both the compression and the decompression of the fluid were considered to take place under conditions that can be either adiabatic or nonadiabatic and either reversible or irreversible. Applications of the first and second principles of thermodynamics allow the determination of the heat and energy exchanged between the eluent and the external surroundings during each transformation. Experimental data were acquired using acetonitrile as the mobile phase. The true state equation, {rho}(P, T), of liquid acetonitrile was used in the theoretical calculations. A series of four different flow rates (0.55, 0.85, 1.15, and 1.45 mL/min, corresponding to inlet pressures of 357.2, 559.5, 765.1, and 972.9 bar, respectively), were applied to a 2.1 x 100 mm column packed with 1.7-{micro}m bridged ethane-silicon hybrid particles. Thermocouples were used to measure the eluent temperature before and after its passage through the column. These data provide estimates of the variation of the internal energy of the eluent. The heat lost through the external wall of the column during the eluent decompression was estimated by measuring the surface temperature of the column tube under steady state. Both the compression and the decompression of acetonitrile were found to be nonadiabatic and irreversible transformations. The results showed that, during the eluent decompression, the heat released by the friction forces serves four different purposes: (1) it increases the eluent entropy at constant temperature (for 35%); (2) it increases the temperature of the eluent (for 5%); (3) it provides heat to the laboratory atmosphere (for 5%); and (4) it provides some work inside the column (for 5%). This quantitative heat balance description accounts well for the actual performance of the new, very high pressure liquid chromatographic technique.

  5. Spectroscopic studies of Fe(III) ion-exchanged ETS-10 and ETAS-10 molecular sieves

    SciTech Connect

    Sommerfeld, D.A.; Ellis, W.R. Jr.; Eyring, E.M.

    1992-11-26

    Two new titanium silicate molecular sieves, designated ETS-10 and ETAS-10, have been ion-exchanged with Fe(III). Both products exhibit prominent EPR signals, at g = 6.0 and 4.3, that are assigned to populations of ferric iron on the surface and in the interior cavities, respectively, of the molecular sieve microcrystals. Corollary XPS measurements on these samples indicate that a substantial fraction of the surface iron is present as Fe(II). Chemical modification procedures have been explored in an effort to produce ion-exchanged materials containing no exterior iron. Acid treatment (pH 1.0) proved to be an effective means of achieving this goal in the case of ETS-10-based materials. ETAS-10-based samples do not retain their crystallinity under these conditions. 35 refs., 4 figs., 2 tabs.

  6. Study of flow distribution and its improvement on the header of plate-fin heat exchanger

    NASA Astrophysics Data System (ADS)

    Wen, Jian; Li, Yanzhong

    2004-11-01

    In order to enhance the uniformity of flow distribution, an improved header configuration of plate-fin heat exchanger is put forward in this paper. Based on the analysis of the fluid flow maldistribution for the conventional header used in industry, a baffle with small holes of three different kinds of diameters is recommended to install in the header. The flow maldistribution parameter S is obtained under different header configuration. When the baffle is properly installed with an optimum length, with stagger arranged and suitably distributed holes from axial line to baffle boundary, the ratio of the maximum flow velocity to the minimum flow velocity drops from 3.44-3.04 to 1.57-1.68 for various Reynolds numbers. The numerical results indicate that the improved header configuration can effectively improve the performance. The conclusion of this paper is of great significance in the improvement of plate-fin heat exchanger.

  7. A model theoretical study on ligand exchange reactions of CooA.

    PubMed

    Ishida, Toshimasa; Aono, Shigetoshi

    2013-04-28

    Rr-CooA is a CO-sensor heme protein, where binding of CO with the heme group stimulates a transcriptional activator activity of CooA. In this process, the heme undergoes a series of ligand exchanges. In the ferric form, the heme has Cys75 and Pro2 as the axial ligands. In the reduced ferrous form, the heme has His77 instead of Cys75 as an axial ligand with Pro2. Only in the reduced form, CooA can bind CO that replaces Pro2. Model calculations are carried out to elucidate the ligand exchange reactions of CooA. The coordinated proline is found to be the neutral, protonated form. The ligand exchange of cysteine for histidine is reproduced by a relatively small model. This exchange would be mainly due to difference in stability of the non-bonding sulfur p-orbital in Cys75 between the ferric and ferrous states. The selectivity of gas molecules among CO, NO, and O2 in the proteins is explained by the relative stability of products for Rr-CooA. This is also the case for Ch-CooA, where the amino group of the N-terminus and a histidine are coordinated to the iron ion both in the ferric and ferrous states. The ability to bind the gas molecules is a little stronger in Rr-CooA than in Ch-CooA. In the ferric form of Rr-CooA, heme is deformed to a ruffled form whereas heme is planar in the ferrous form, which leads to a red-shifted Q-band in the former. PMID:23511331

  8. Oxygen-17 nuclear magnetic resonance kinetic study of water exchange on the lanthanide(III) aqua ions

    SciTech Connect

    Cossy, C.; Helm, L.; Merbach, A.E.

    1988-06-01

    A variable-temperature /sup 17/O NMR study of aqueous lanthanide solutions is reported. Chemical shift measurements on 0.3 m Ln(ClO/sub 4/)/sub 3//2 m HClO/sub 4/ solutions of 12 paramagnetic lanthanide ions are consistent with a constant hydration number along the series. This observation is reinforced by spectrophotometric measurements in acidified Nd(ClO/sub 4/)/sub 3/ solutions. A critical review of the previously published results on this topic suggests that the hydration number is nine for all lanthanide ions. The study was made on high-field NMR spectrometers, extending the accessible kinetic NMR window toward larger rate constants. By a combination of the chemical shifts and the longitudinal and the transverse relaxation rates, the water exchange activation parameters were obtained for six heavy lanthanide ions. The exchange rate constants calculated at 298.15 K are 5.0 /times/ 10/sup 8/ s/sup /minus/1/ for Tb/sup 3+/, 3.9 /times/ 10/sup 8/ s/sup /minus/1/ for Dy/sup 3+/, 1.9 /times/ 10/sup 8/ s/sup /minus/1/ for Ho/sup 3+/, 1.2 /times/ 10/sup 8/ s/sup /minus/1/ for Er/sup 3+/, 8.1 /times/ 10/sup 7/ s/sup /minus/1/ for Tm/sup 3+/, and 4.1 /times/ 10/sup 7/ s/sup /minus/1/ for Yb/sup 3+/. Unsuccessful attempts were made to study the water exchange on Nd/sup 3+/ and Eu/sup 3+/. The regular decrease of the k/sup 298/ value with ionic radius and the fairly constant negative activation entropies are interpreted as grounds for a similar exchange mechanism for the six ions successfully kinetically characterized. 45 references, 5 figures, 4 tables.

  9. IMPACT OF SMALL COLUMN ION EXCHANGE STREAMS ON DWPF GLASS FORMULATION MELT RATE STUDIES

    SciTech Connect

    Fox, K.; Miller, D.; Koopman, D.

    2011-04-26

    This study was undertaken to evaluate the potential impacts of the Small Column Ion Exchange (SCIX) streams - particularly the addition of Monosodium Titanate (MST) and Crystalline Silicotitanate (CST) - on the melt rate of simulated feed for the Defense Waste Processing Facility (DWPF). Additional MST was added to account for contributions from the Salt Waste Processing Facility (SWPF). The Savannah River National Laboratory (SRNL) Melt Rate Furnace (MRF) was used to evaluate four melter feed compositions: two with simulated SCIX and SWPF material and two without. The Slurry-fed Melt Rate Furnace (SMRF) was then used to compare two different feeds: one with and one without bounding concentrations of simulated SCIX and SWPF material. Analyses of the melter feed materials confirmed that they met their targeted compositions. Four feeds were tested in triplicate in the MRF. The linear melt rates were determined by using X-ray computed tomography to measure the height of the glass formed along the bottom of the beakers. The addition of the SCIX and SWPF material reduced the average measured melt rate by about 10% in MRF testing, although there was significant scatter in the data. Two feeds were tested in the SMRF. It was noted that the ground CST alone (ground CST with liquid in a bucket) was extremely difficult to resuspend during preparation of the feed with material from SCIX and SWPF. This feed was also more difficult to pump than the material without MST and CST due to settling occurring in the melter feed line, although the yield stress of both feeds was high relative to the DWPF design basis. Steady state feeding conditions were maintained for about five hours for each feed. There was a reduction in the feed and pour rates of approximately 15% when CST and MST were added to the feed, although there was significant scatter in the data. Analysis of samples collected from the SMRF pour stream showed that the composition of the glass changed as expected when MST and CST were added to the feed. These reductions in melt rate are consistent with previous studies that showed a negative impact of increased TiO{sub 2} concentrations on the rate of melting. The impact of agitating the melt pool via bubbling was not studied as part of this work, but may be of interest for further testing. It is recommended that additional melt rate testing be performed should a potential reduction in melt rate of 10-15% be considered an issue of concern, or should the anticipated composition of the glass with the addition of material from salt waste processing be modified significantly from the current projections, either due to changes in sludge batch preparation or changes in the composition or volume of SCIX and SWPF material.

  10. The Effectiveness of the Picture Exchange Communication System (PECS) for Children with Autism Spectrum Disorder (ASD): A South African Pilot Study

    ERIC Educational Resources Information Center

    Travis, Julia; Geiger, Martha

    2010-01-01

    This study investigated the effects of introducing the Picture Exchange Communication System (PECS) on the frequency of requesting and commenting and the length of verbal utterances of two children with autism spectrum disorder (ASD) who presented with some spoken language, but limited use of language in communicative exchanges. A mixed research

  11. Thermodynamic study of the interaction between linear plasmid DNA and an anion exchange support under linear and overloaded conditions.

    PubMed

    Aguilar, P A; Twarda, A; Sousa, F; Dias-Cabral, A C

    2014-11-01

    Anion-exchange chromatography has been successfully used in plasmid DNA (pDNA) purification. However, pDNA adsorption mechanism using this method is still not completely understood, and the prediction of the separation behavior is generally unreliable. Flow microcalorimetry (FMC) has proven its ability to provide an improved understanding of the driving forces and mechanisms involved in the adsorption process of biomolecules onto several chromatographic systems. Thus, using FMC, this study aims to understand the adsorption mechanism of linear pDNA (pVAX1-LacZ) onto the anion-exchange support Fast Flow (FF) Q-Sepharose. Static binding capacity studies have shown that the mechanism of pDNA adsorption onto Q-Sepharose follows a Langmuir isotherm. FMC experiments resulted in thermograms that comprised endothermic and exothermic heats. Endothermic heat major contributor was suggested to be the desolvation process. Exothermic heats were related to the interaction between pDNA and Q-Sepharose primary and secondary adsorption. Furthermore, FMC revealed that the overall adsorption process is exothermic, as expected for an anion-exchange interaction. Nevertheless, there are evidences of the presence of nonspecific effects, such as reorientation and electrostatic repulsive forces. PMID:25465014

  12. Trip time comparison of conventional and exchange container mode for solid waste collection a case study of Ilorin, Nigeria.

    PubMed

    Aremu, A S; Vijay, Ritesh; Adeleke, O O

    2013-01-01

    The use of hauled container system for municipal solid waste collection and transportation often results in socio-economic and environmental impacts which are linearly related to trip time. In this study, trip times for the conventional and exchange container mode of solid waste collection by the hauled container system were evaluated. A trip time model was developed for this evaluation through field studies. The model was applied on ten trips to collect solid waste bins and its transportation to disposal site in the city of Ilorin, Nigeria. The results of the model for both modes were compared and Showed that at 5 % significance level,.the trip time for the conventional mode was greater than the trip time for the exchange container mode. Also, the exchange container mode resulted in haul distance reduction by 3 to 15% and trip time reduction by 2.5 to 13 %. This reduction could help in improving logistics and also reduce the negative, impacts associated with collection operation. PMID:25464703

  13. Trip time comparison of conventional and exchange container mode for solid waste collection a case study of Ilorin, Nigeria.

    PubMed

    Aremu, A S; Vijay, Ritesh; Adeleke, O O

    2013-01-01

    The use of hauled container system for municipal solid waste collection and transportation often results in socio-economic and environmental impacts which are linearly related to trip time. In this study, trip times for the conventional and exchange container mode of solid waste collection by the hauled container system were evaluated. A trip time model was developed for this evaluation through field studies. The model was applied on ten trips to collect solid waste bins and its transportation to disposal site in the city of Ilorin, Nigeria. The results of the model for both modes were compared and Showed that at 5 % significance level,.the trip time for the conventional mode was greater than the trip time for the exchange container mode. Also, the exchange container mode resulted in haul distance reduction by 3 to 15% and trip time reduction by 2.5 to 13 %. This reduction could help in improving logistics and also reduce the negative, impacts associated with collection operation. PMID:25508334

  14. A Good Learning Opportunity, but Is It for Me? A Study of Swedish Students' Attitudes towards Exchange Studies in Higher Education

    ERIC Educational Resources Information Center

    Ahn, Song-ee

    2014-01-01

    This article describes students' involvement and interest in exchange programmes in Swedish higher education. Law and Engineering bachelor's programmes were chosen to exemplify an over-represented and under-represented group respectively in terms of international mobility in this context. The study combines interview and survey data. The…

  15. A Good Learning Opportunity, but Is It for Me? A Study of Swedish Students' Attitudes towards Exchange Studies in Higher Education

    ERIC Educational Resources Information Center

    Ahn, Song-ee

    2014-01-01

    This article describes students' involvement and interest in exchange programmes in Swedish higher education. Law and Engineering bachelor's programmes were chosen to exemplify an over-represented and under-represented group respectively in terms of international mobility in this context. The study combines interview and survey data. The

  16. Ion exchange and dehydration experimental studies of clinoptilolite: Implications to zeolite dating

    SciTech Connect

    WoldeGabriel, G.

    1995-02-01

    Variable effects were noted on the argon (Ar) and potassium (K) contents of clinoptilolite fractions used in ion-exchange and dehydration experiments. The K contents of clinoptilolite fractions were differently affected during cation exchange with Ca-, Cs-, K-, and Na-chloride solutions. Ar was generally less affected during these experiments, except for a Na-clinoptitolite fraction exchanged for five days. Loss of Ar during organic heavy-liquid treatment and cleaning using acetone and deionized water does occur, as indicated by comparing the amounts of radiogenic Ar of treated and untreated fractions. Moreover, a regular decrease in radiogenic Ar contents was noted in clinoptilolite fractions during dehydration experiments at different temperatures for 16 hours. Comparable losses do not occur from saturated samples that were heated in 100 C for more than five months. Water appears to play a vital role in stabilizing the clinoptilolite framework structure and in the retention of Ar. The radiogenic Ar depletion pattern noted in clinoptilolite fractions dehydrated in unsaturated environment at different temperatures is similar to variations in the amount of radiogenic Ar observed in clinoptilolite samples from the unsaturated zone of an altered tuff. These results can be used to evaluate the extent of zeolitic water (and hence Ar) retention in unsaturated geologic settings. The utility of alkali zeolites (e.g., phillipsite, clinoptilolite, and mordenite) from low-temperature, open-hydrologic alteration as potential dateable minerals was evaluated using the K/Ar method as part of the Yucca Mountain Site Characterization Project, which is evaluating Yucca Mountain, Nevada, as a potential high-level radioactive waste repository site.

  17. Droplet infiltration and OM composition of intact soil structural surfaces for studying mass exchange

    NASA Astrophysics Data System (ADS)

    Leue, Martin, ,, Dr.; Gerke, PD Horst H., ,, Dr.; Godow, Sophie Ch.; Ellerbrock, PD Ruth H., ,, Dr.

    2014-05-01

    During rapid percolation through macropores with local nonequilibrium conditions water and solute mass exchange with the porous matrix and sorption of reactive components is both taken place at the surface of preferential flow paths. Aggregate surfaces can be coated by illuviated clayey particles and biopores covered by plant residues or earthworm casts. By controlling wettability and sorption properties, the organic matter (OM) of surface coatings may also affect the transport properties of structured soils. Composition of OM in wall coatings was found spatially distributed at the mm-scale; thus, it remained unclear if water absorption by the soil matrix (i.e., mass exchange) was affected by locally-distributed OM. For samples with intact aggregate surfaces and biopore walls taken at clay-illuvial subsoil horizon of Luvisols developed from Loess and glacial till, the mm-scale spatial distribution of OM composition was measured using diffuse reflectance infrared spectroscopy (DRIFT). Spectra were analysed with respect to alkyl and carboxyl functional groups in OM to obtain an estimate for its potential wettability. The infiltration dynamic of water droplets was evaluated using contact angle measurements and droplet penetration time. The potential wettability of OM differed for coatings and burrow walls and was generally lower for the Loess-derived than for the till-derived samples. The droplet infiltration times were significantly lower only for the Loess Luvisol samples. The results suggest that mass exchange between flow path and matrix can be affected by OM composition of structural surfaces among other factors such as texture, moisture, and chemical status (pH).

  18. Electron paramagnetic resonance and magnetic susceptibility studies of dimanganese concanavalin A. Evidence for antiferromagnetic exchange coupling.

    PubMed

    Antanaitis, B C; Brown, R D; Chasteen, N D; Freedman, J H; Koenig, S H; Lilienthal, H R; Peisach, J; Brewer, C F

    1987-12-01

    The double Mn2+ complex of concanavalin A with bound saccharide (SMMPL) was examined by electron paramagnetic resonance (EPR) spectroscopy and magnetic susceptibility measurements. A room temperature X-band (9 GHz) EPR spectrum of SMMPL revealed a relatively weak, broad resonance in contrast to the spectrum with a six-line hyperfine-split pattern observed for the mononuclear, high-spin Mn2+ complex found in Ca2+-Mn2+-concanavalin A with saccharide present (SCMPL). The EPR spectrum of SMMPL at 77 K, however, consisted of a series of overlapping patterns of 11 hyperfine-split lines near g = 2.0 with members of each pattern separated by 47 G, half the value of the hyperfine splitting of SCMPL. These 11-line patterns are preserved at Q-band (35 GHz), indicating that the manganese ions in SMMPL form a spin-coupled, binuclear center. As expected for an exchange-coupled system, the EPR signal of SMMPL at 77 K saturates at a higher microwave power than those for SCMPL or Mn2+ aquoion. There is also a marked loss of EPR signal intensity for SMMPL between 4.2 and 1.4 K, which supports the view that the pair of manganese ions is exchanged-coupled. The temperature dependence of both the magnetic susceptibility and the low-temperature EPR spectral intensity can be explained by a model in which the two high-spin Mn2+ ions of SMMPL are antierromagnetically exchanged-coupled with an isotropic coupling constant J = 1.8 cm-1 (for the spin Hamiltonian Hex = JS1.S2). Zero-field splitting D' was estimated to be 375 G from the EPR spectrum.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2827763

  19. Studies on the application of temperature-responsive ion exchange polymers with whey proteins.

    PubMed

    Maharjan, Pankaj; Campi, Eva M; De Silva, Kirthi; Woonton, Brad W; Jackson, W Roy; Hearn, Milton T W

    2016-03-18

    Several new types of temperature-responsive ion exchange resins of different polymer composition have been prepared by grafting the products from the co-polymerisation of N-phenylacrylamide, N-iso-propylacrylamide and acrylic acid derivatives onto cross-linked agarose. Analysis of the binding isotherms for these different resins obtained under batch adsorption conditions indicated that the resin based on N-iso-propylacrylamide containing 5% (w/w) N-phenylacrylamide and 5% (w/w) acrylic acid resulted in the highest adsorption capacity, Bmax, for the whey protein, bovine lactoferrin, e.g. 14mg bovine lactoferrin/mL resin at 4°C and 62mg bovine lactoferrin/mL resin at 40°C, respectively. Under dynamic loading conditions at 40°C, 94% of the loaded bovine lactoferrin on a normalised mg protein per mL resin basis was adsorbed by this new temperature-responsive ion-exchanger, and 76% was eluted by a single cycle temperature shift to 4°C without varying the composition of the 10mM sodium dihydrogen phosphate buffer, pH 6.5, or the flow rate. The binding characteristics of these different ion exchange resins with bovine lactoferrin were also compared to results obtained using other resins based on N-isopropylacrylamide but contained N-tert-butylacrylamide rather than N-phenylacrylamide, where the corresponding dynamic capture and release properties for bovine lactoferrin required different temperature conditions of 20°C and 50°C, respectively for optimal desorption/adsorption. The cationic protein, bovine lactoperoxidase, was also adsorbed and desorbed with these temperature-responsive resins under similar conditions of changing temperature, whereas the anionic protein, bovine β-lactoglobulin, was not adsorbed under this regime of temperature conditions but instead eluted in the flow-through. PMID:26905884

  20. Study of the Heat-Transfer Processes of Tubular Elements of Ground Heat Exchangers

    NASA Astrophysics Data System (ADS)

    Kusaiynov, K.; Shuyushbayeva, N. N.; Shaimerdenova, K. M.; Nurgalieva, Zh. G.; Omarov, N. N.

    2015-05-01

    In this paper, consideration is given to the efficiency of utilization of the low-potential heat of the ground. Also, the advantages and distinctive features of polyethylene tubes used in vertical tubular elements of heat pumps are described. This paper gives the results of investigation of the heat transfer of tubular elements of ground heat exchangers. The dependences of the temperature distributions in the ground in the vicinity of a tube and the change in the temperature with time in dry and moist grounds are determined.

  1. Lead exchange into zeolite and clay minerals: A [sup 29]Si, [sub 27]Al, [sup 23]Na solid-state NMR study

    SciTech Connect

    Liang, J.J.; Sherriff, B.L. )

    1993-08-01

    Chabazite, vermiculite, montmorillonite, hectorite, and kaolinite were used to remove Pb, through ion exchange, from 0.01 M aqueous Pb(NO[sub 3])[sub 2] solutions. These minerals contained 27 (Na-chabazite), 16, 9, 9, and 0.5 wt % of Pb, respectively, after equilibration with the solutions. Ion exchange reached equilibrium within 24 h for Na-chabazite and vermiculite, but in less than 5 min for montmorillonite and hectorite. Na-chabazite took up more Pb than natural (Ca, Na)-chabazite (7 wt % Pb), whereas no such difference was observed in different cation forms of the clay minerals. Calcite impurities, associated with the clay minerals, effectively removed Pb from the aqueous solutions by the precipitation of cerussite (PbCO[sub 3]). [sup 29]Si, [sup 27]Al, and [sup 23]Na magic angle spinning (MAS) nuclear magnetic resonance (NMR), [sup 23]Na double rotation (DOR) NMR, and [sup 23]Na variable-temperature MAS NMR were used to study the ion exchange mechanisms. In Na-chabazite, cations in all three possible sites take part in the fast chemical exchange. The chemical exchange passes from the fast exchange regime to the slow regime at [minus]80 to [minus]100[degrees]C. One site contains a relatively low population of exchangeable cations. The other two more shielded sites contain most of the exchangeable cation. The exchangeable cations in chabazite and vermiculite were found to be close to the SiO[sub 4] and AlO[sub 4] tetrahedra, while those in the other clay minerals were more distant. Two sites (or groups of sites) for exchangeable cations were observed in hectorite. Lead tended to occupy the one which corresponds to the [minus]8 ppM peak on the [sup 23]Na MAS NMR spectrum. The behavior of the exchangeable cations in the interlayer sites was similar in all the clay minerals studied. 27 refs., 7 figs., 4 tabs.

  2. The Study of Energy and Water Exchanges above an Evergreen Forest in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Li, M.; Wei, G.

    2006-12-01

    Energy and water exchanges above forest ecosystems are fundamental processes for characterizing land- atmosphere interactions in earth hydrological cycles. The objective of this study is to improve our understanding of the influence of atmospheric forcing on the rate and magnitude of forest energy and water fluxes. The Lien-Hua-Chih (LHC) observation site (23o55'52" N, 120o53'39" E, 773 m elevation) was established in the summer of 2006 in a natural evergreen forest. It is located inside an experimental watershed (No.4 watershed, 8.39 ha) managed by the Taiwan Forestry Research Institute and the averaged canopy height is about 17 m. Soil moistures/temperatures were measured at -10 cm, -30 cm, -50 cm, -70 cm, and - 90 cm. Soil heat flux plate was placed at -5 cm. A drainage gauge was installed at -50 cm to collect infiltrated water. Temperature and relative humidity sensors were placed every 5 m from ground surface to the top of the tower at 20 m, where net radiation and wind speed/directions were also installed. Long-term data of low response instruments were recorded every 30-minute averaged from 10-minute samplings. A nearby weather station provides daily pan evaporation and precipitation data. Prior to the construction of observation tower, soil moistures/temperatures at multiple depths of three different sites were measured since the summer of 2004. By neglecting horizontal soil water flow (e.g., small surface gradient) and infiltration (e.g., normally 2~3 days after rainfalls), the loss of soil water is equivalent to the amount of evapotranspiration (ET). For those days right after rainfalls cease, the ET is estimated by potential ET due to high soil moisture content. Since the response of soil water variations is relatively slow to the fluctuations of atmospheric forcing, only daily ET is estimated from daily soil water loss. The annual precipitation (P) of 2005 was 2674 mm and the annual ET estimated from soil water losses was 664 mm. The amount of winter ET is larger than that of winter P and the ET/P ratio of spring is 28%. For wet seasons of summer and autumn, the ratios are 16% and 17%, respectively. Although the ET/P ratios of summer and autumn are low, the amounts of ETs are higher than that of spring due to high precipitation of typhoons and strong radiations in summer and autumn. In additional to low frequency instruments, an eddy covariance (EC) system, including a 3-D sonic anemometer Young 81000 and a Krypton Hygrometer KH20, were periodically practiced for LH and SH measurements above canopy at 25 m. During wet seasons (summer and autumn), fogs and afternoon thunderstorms often caused failures of the EC system. For those days right after rainfall, the ETs estimated by EC are often larger than those estimated from soil water losses due to the contributions of substantial amounts of ETs from interceptions.

  3. Probing the Binding Interfaces of Protein Complexes Using Gas-Phase H/D Exchange Mass Spectrometry.

    PubMed

    Mistarz, Ulrik H; Brown, Jeffery M; Haselmann, Kim F; Rand, Kasper D

    2016-02-01

    Fast gas-phase hydrogen/deuterium exchange mediated by ND3 gas and measured by mass spectrometry (gas-phase HDX-MS) is a largely unharnessed, fast, and sensitive method for probing primary- and higher-order polypeptide structure. Labeling of heteroatom-bound non-amide hydrogens in a sub-millisecond time span after electrospray ionization by ND3 gas can provide structural insights into protein conformers present in solution. Here, we have explored the use of gas-phase HDX-MS for probing the higher-order structure and binding interfaces of protein complexes originating from native solution conditions. Lysozyme ions bound by an oligosaccharide incorporated less deuterium than the unbound ion. Similarly, trypsin ions showed reduced deuterium uptake when bound by the peptide ligand vasopressin. Our results are in good agreement with crystal structures of the native protein complexes, and illustrate that gas-phase HDX-MS can provide a sensitive and simple approach to measure the number of heteroatom-bound non-amide side-chain hydrogens involved in the binding interface of biologically relevant protein complexes. PMID:26749447

  4. Open inquiry-based learning experiences: a case study in the context of energy exchange by thermal radiation

    NASA Astrophysics Data System (ADS)

    Pizzolato, Nicola; Fazio, Claudio; Rosario Battaglia, Onofrio

    2014-01-01

    An open inquiry (OI)-based teaching/learning experience, regarding a scientific investigation of the process of energy exchange by thermal radiation, is presented. A sample of upper secondary school physics teachers carried out this experience at the University of Palermo, Italy, in the framework of ESTABLISH, a FP7 European Project aimed at promoting and developing inquiry-based science education. The teachers had the opportunity to personally experience an OI-based learning activity, with the aim of exploring the pedagogical potentialities of this teaching approach to promote both the understanding of difficult concepts and a deeper view of scientific practices. The teachers were firstly engaged in discussions concerning real-life problematic situations, and then stimulated to design and carry out their own laboratory activities, aimed at investigating the process of energy exchange by thermal radiation. A scientific study on the energy exchange between a powered resistor and its surrounding environment, during the heating and cooling processes, was designed and performed. Here we report the phases of this experiment by following the teachers' perspective. A structured interview conducted both before and after the OI experience allowed us to analyze and point out the teachers' feedback from a pedagogical point of view. The advantages and limits of an OI-based approach to promote the development of more student-centred inquiry-oriented teaching strategies are finally discussed.

  5. A Single Disulfide Bond Disruption in the ?3 Integrin Subunit Promotes Thiol/Disulfide Exchange, a Molecular Dynamics Study

    PubMed Central

    Levin, Lihie; Zelzion, Ehud; Nachliel, Esther; Gutman, Menachem; Tsfadia, Yossi; Einav, Yulia

    2013-01-01

    The integrins are a family of membrane receptors that attach a cell to its surrounding and play a crucial function in cell signaling. The combination of internal and external stimuli alters a folded non-active state of these proteins to an extended active configuration. The ?3 subunit of the platelet ?IIb?3 integrin is made of well-structured domains rich in disulfide bonds. During the activation process some of the disulfides are re-shuffled by a mechanism requiring partial reduction of some of these bonds; any disruption in this mechanism can lead to inherent blood clotting diseases. In the present study we employed Molecular Dynamics simulations for tracing the sequence of structural fluctuations initiated by a single cysteine mutation in the ?3 subunit of the receptor. These simulations showed that in-silico protein mutants exhibit major conformational deformations leading to possible disulfide exchange reactions. We suggest that any mutation that prevents Cys560 from reacting with one of the Cys567Cys581 bonded pair, thus disrupting its ability to participate in a disulfide exchange reaction, will damage the activation mechanism of the integrin. This suggestion is in full agreement with previously published experiments. Furthermore, we suggest that rearrangement of disulfide bonds could be a part of a natural cascade of thiol/disulfide exchange reactions in the ?IIb?3 integrin, which are essential for the native activation process. PMID:23527123

  6. [A comparative study on chlorophyll content, chlorophyll fluorescence and diurnal course of leaf gas exchange of two ecotypes of banyan].

    PubMed

    Zhao, P; Sun, G; Zeng, X; Peng, S; Mo, X; Li, Y

    2000-06-01

    The morphological differences, chlorophyll contents, fluorescence and diurnal course of leaf gas exchange between terrestrial banyan and amphibious banyan were compared with pot culture. The amphibious banyan possesses well developed aerial and hydro-adventitious roots, and wider leaf with inclination of evolution toward mesophytic traits. The chlorophyll content of terrestrial banyan was higher than that of amphibious banyan. The diurnal course of leaf gas exchange indicated that net photosynthetic rate of terrestrial banyan was slightly higher than that of amphibious banyan grown in water, but much higher than that grown in soil. The amphibious banyan grown in water had the highest transpiration rate, the terrestrial banyan had a lower one, and the amphibious banyan grown in soil had the lowest. Linear regression analysis showed a positive correlation between net photosynthetic rate and stomatal conductance, implying that the stomatal conductance was dominant factor controlling the gas exchange. In this study, the term of intrinsic water use efficiency (net photosynthetic rate/stomatal conductance ratio, Intrinsic WUE) was applied to describe the photosynthesis and water properties, and the result showed that it was a more suitable measure compared to the usual WUE(net photosynthetic rate/transpiration rate). Among the three banyan plants examined, the amphibious banyan had the highest intrinsic WUE. PMID:11767625

  7. Enhancing the quality of H/D exchange measurements with mass spectrometry detection in disulfide-rich proteins using electron capture dissociation.

    PubMed

    Bobst, Cedric E; Kaltashov, Igor A

    2014-06-01

    Hydrogen/deuterium exchange (HDX) mass spectrometry (MS) has become a potent technique to probe higher-order structures, dynamics, and interactions of proteins. While the range of proteins amenable to interrogation by HDX MS continues to expand at an accelerating pace, there are still a few classes of proteins whose analysis with this technique remains challenging. Disulfide-rich proteins constitute one of such groups: since the reduction of thiol-thiol bonds must be carried out under suboptimal conditions (to minimize the back-exchange), it frequently results in incomplete dissociation of disulfide bridges prior to MS analysis, leading to a loss of signal, inadequate sequence coverage, and a dramatic increase in the difficulty of data analysis. In this work, the dissociation of disulfide-linked peptide dimers produced by peptic digestion of the 80 kDa glycoprotein transferrin in the course of HDX MS experiments is carried out using electron capture dissociation (ECD). ECD results in efficient cleavage of the thiol-thiol bonds in the gas phase on the fast LC time scale and allows the deuterium content of the monomeric constituents of the peptide dimers to be measured individually. The measurements appear to be unaffected by hydrogen scrambling, even when high collisional energies are utilized. This technique will benefit HDX MS measurements for any protein that contains one or more disulfides and the potential gain in sequence coverage and spatial resolution would increase with disulfide bond number. PMID:24820935

  8. Extraction of local hydrogen exchange data from HDX CAD MS measurements by deconvolution of isotopic distributions of fragment ions.

    PubMed

    Abzalimov, Rinat R; Kaltashov, Igor A

    2006-11-01

    Hydrogen/deuterium exchange (HDX) coupled to protein fragmentation either in solution (by means of proteolysis) or in the gas phase (using collisional activation of protein ions) and followed by mass spectral measurements of deuterium content of individual fragments has become one of the major experimental tools to probe protein structure and dynamics. One difficulty, which often arises in the course of interpretation of HDX MS data, is a need to separate deuterium contribution to the observed isotopic patterns from that of naturally occurring isotopes. Another frequently encountered problem, especially when HDX in solution is followed by protein ion fragmentation in the gas phase, is a need to determine the deuterium content of an internal protein segment based on the measured isotopic distributions of overlapping fragments. While several algorithms were developed in the past several years to address the first problem, the second one did not enjoy as much attention. Here we report a new algorithm based on a maximum entropy principle, which is capable of extracting local exchange data form the isotope distribution of overlapping fragments, as well as subtracting the background due to the presence of natural isotopes and residual deuterium in exchange buffers. The new method is tested with several proteins and appears to generate stable solutions even under unfavorable circumstances, e.g., when the resolving power of a mass analyzer is not sufficient to avoid signal interference or when the isotopic distributions of individual fragments are complex and cannot be approximated with simple binomial distributions. The latter feature makes the algorithm particularly useful when the exchange in solution is correlated or semicorrelated, paving the way to precise structural characterization of non-native protein states in solution. PMID:16934998

  9. A High-Resolution Modeling Study of the Bosphorus Strait Dynamics and Exchange Flows

    NASA Astrophysics Data System (ADS)

    Szer, Adil; Sannino, Gianmaria; zsoy, Emin

    2013-04-01

    An all-time modelling challenge aims to establish a sound understanding of the high energy environment of the Turkish Straits System, relating to inter-basin water and material transports and their influence on the sensitive ecosystems of the adjacent seas. As a first step in this direction, well resolved, high level, physically representative predictive models of the Bosphorus Strait exchange flow hydrodynamics are developed, adequately representing its complex topography, hydraulic controls, dissipative hydraulic jumps, mixing and turbulence mechanisms, with the application of appropriate basin boundary and initial conditions and judiciously selected numerical and physical model options. Both the ROMS and MITgcm models are used and compared for performance. Idealized and real case model results successfully reproduce observed flow features. The unique maximal exchange regime of the Bosphorus Strait, with hydraulic controls are demonstrated, although frictional effects, especially of the highly irregular lateral boundaries, are found to be extremely important, associated with mixing and entrainment and nonlinear dynamics determining the two-way fluxes as a function of sea-level changes across the strait. The intercomparison of ROMS and MITgcm results are extremely satisfactory in the basic elements of the flow, except for some small differences.

  10. Study on the heat-flow controllable heat exchanger (2nd report): Dehumidification in the greenhouse by the ventilation type dehumidifier with heat-flow controllable heat exchanger

    SciTech Connect

    Yanadori, Michio; Hamano, Masayoshi )

    1994-07-01

    A novel ventilation type dehumidifier with heat-flow controllable heat exchanger was installed on the wall of a greenhouse. Dehumidification and heat recovery experiments were conducted. The construction of the novel dehumidifier is simpler than that of the conventional dehumidifier with a compressor. It was found that the required input for the ventilation type dehumidifier was less than that of a conventional dehumidifier with compressor.

  11. Higher Education Exchange, 2008

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2008-01-01

    "Higher Education Exchange" publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic societies. Contributors to this issue of the "Higher Education Exchange" examine whether institutions of higher learning are doing anything to increase the capacity of citizens to shape their future.

  12. Higher Education Exchange, 2012

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2012-01-01

    "Higher Education Exchange" publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic societies. Contributors to this issue of the "Higher Education Exchange" examine whether institutions of higher learning are doing anything to increase the capacity of citizens to shape their future.

  13. Higher Education Exchange, 2005

    ERIC Educational Resources Information Center

    Brown, David W., Ed; Witte, Deborah, Ed.

    2005-01-01

    The "Higher Education Exchange" is part of a movement to strengthen higher education's democratic mission and foster a more democratic culture throughout American society. Working in this tradition, the "Higher Education Exchange" publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic…

  14. Higher Education Exchange, 2010

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2010-01-01

    "Higher Education Exchange" publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic societies. Contributors to this issue of the "Higher Education Exchange" examine whether institutions of higher learning are doing anything to increase the capacity of citizens to shape their future.…

  15. Higher Education Exchange, 2004

    ERIC Educational Resources Information Center

    Brown, David W., Ed; Witte, Deborah, Ed.

    2004-01-01

    The Higher Education Exchange is part of a movement to strengthen higher education's democratic mission and foster a more democratic culture throughout American society. Working in this tradition, the Higher Education Exchange publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic…

  16. Higher Education Exchange, 2011

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2011-01-01

    "Higher Education Exchange" publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic societies. Contributors to this issue of the "Higher Education Exchange" examine whether institutions of higher learning are doing anything to increase the capacity of citizens to shape their future.…

  17. Exchange integrals in magnetoelectric hexagonal ferrite (SrCo{sub 2}Ti{sub 2}Fe{sub 8}O{sub 19}): A density functional study

    SciTech Connect

    Feng, Min; Shao, Bin; Lu, Yuan; Zuo, Xu

    2014-05-07

    The exchange integrals in magnetoelectric hexagonal ferrite SrCo{sub 2}Ti{sub 2}Fe{sub 8}O{sub 19} have been calculated by using density functional theory. To get 10 inter-sublattice and 3 intra-sublattice exchange integrals, the electronic structures and total energies of 20 spin arrangements have been calculated with General Gradient Approximation (GGA) + U method. The dependence of exchange integrals on U has been studied. The comparison between the exchange integrals in SrFe{sub 12}O{sub 19} and those in SrCo{sub 2}Ti{sub 2}Fe{sub 8}O{sub 19} shows that substitution of Co and Ti decreases the most interactions involving the 12?k sites. The investigation based on our exchange integrals indicates that magnetic interaction between R and S blocks reduces significantly in SrCo{sub 2}Ti{sub 2}Fe{sub 8}O{sub 19}.

  18. Studies on the reaction of the 5'-phosphorimidazolide of adenosine with Cu(II)-exchanged hectorite

    NASA Astrophysics Data System (ADS)

    Porter, T. L.; Whitehorse, R.; Eastman, M. P.; Bain, E. D.

    1999-10-01

    The role of clay minerals in the prebiotic synthesis of nucleotide oligomers has received considerable attention in recent years. Scanning force microscopy and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry are used to identify oligomers of adenylic acid formed on the clay mineral Cu(II)-exchanged hectorite in simulated prebiotic cycling experiments. Electron-spin resonance and x-ray diffraction data indicate that the monomer (5'-phosphorimidazolide of adenosine, or ImpA) penetrates into the intergallery regions of the mineral substrate, and complexes the gallery Cu(II) cations. It is postulated that polymerization of the monomer is initiated in the clay intergallery regions, producing oligomers of adenylic acid up to 8 units in length or more.

  19. Water exchange through the Betic and Rifian corridors prior to the Messinian Salinity Crisis: A model study

    NASA Astrophysics Data System (ADS)

    Vara, Alba; Topper, Robin P. M.; Meijer, Paul Th.; Kouwenhoven, Tanja J.

    2015-05-01

    Although the present-day Mediterranean-Atlantic water exchange has been extensively studied, little is known about the dynamics of the Betic and Rifian corridors that existed before the Messinian Salinity Crisis. Due to the difficulties in studying the paleogeographic evolution of these corridors, physics-based knowledge of their behavior is essential to interpret observational evidence and to relate flow structures to gateway geometries. Here we present the first systematic model study of the water exchange through these gateways. We use the parallel version of the Princeton Ocean Model (sbPOM) and a set of idealized bathymetries based on a late Tortonian paleogeography. This analysis represents a major step forward in the understanding of the behavior of the double-gateway system constituted by the Late Miocene Betic and Rifian corridors. We demonstrate that the "siphon" scenario, involving inflow of cold upwelled Atlantic water through the Rifian corridor and outflow of Mediterranean water only via the Betic corridor, is unlikely from a physics perspective. It is shown that two exchange patterns are possible depending solely on the relative depth of the corridors. The implication of this is that geological evidence for the behavior of one corridor provides information about the dimensions of the other. We show that disappearance of outflow in one corridor does not necessarily imply its closure and we establish a guideline to determine how geological evidence can be interpreted as indicating one- or two-layer flow. Based on the model results, we propose new physics-based scenarios for the time interval defined for the siphon.

  20. Leach studies on cement-solidified ion exchange resins from decontamination processes at operating nuclear power stations

    SciTech Connect

    McIsaac, C.V.; Akers, D.W.; McConnell, J.W.; Morcos, N.

    1992-01-01

    The effects of varying pH and leachant compositions on the physical stability and leachability of radionuclides and chelating agents were determined for cement-solidified decontamination ion-exchange resin wastes collected from two operating commercial light water reactors. Small scale waste-form specimens were collected during waste solidifications performed at the Brunswick Steam Electric Plant Unit 1 and at the James A. FitzPatrick Nuclear Power Station. The collected specimens were leach tested, and their compressive strength was measured in accordance with the Nuclear Regulatory Commission's Technical Position on Waste Form'' (Revision 1), from the Low-Level Waste Management Branch. Leachates from these studies were analyzed for radionuclides, selected transition metals, and chelating agents to assess the leachability of these waste form constituents. Leachants used for the study were deionized water, simulated seawater, and groundwater compositions similar to those found at Barnwell, South Carolina and Hanford, Washington. Results of this study indicate that initial leachant pH does not affect leachate pH or releases from cement-solidified decontamination ion-exchange resin waste forms. However, differences in leachant composition and the presence of chelating agents may affect the releases of radionuclides and chelating agents. In addition, results from this study indicate that the cumulative releases of radionuclides and chelating agents observed for forms that disintegrated were similar to those for forms that maintained their general physical integrity.

  1. Leach studies on cement-solidified ion exchange resins from decontamination processes at operating nuclear power stations

    SciTech Connect

    McIsaac, C.V.; Akers, D.W.; McConnell, J.W.; Morcos, N.

    1992-08-01

    The effects of varying pH and leachant compositions on the physical stability and leachability of radionuclides and chelating agents were determined for cement-solidified decontamination ion-exchange resin wastes collected from two operating commercial light water reactors. Small scale waste-form specimens were collected during waste solidifications performed at the Brunswick Steam Electric Plant Unit 1 and at the James A. FitzPatrick Nuclear Power Station. The collected specimens were leach tested, and their compressive strength was measured in accordance with the Nuclear Regulatory Commission`s ``Technical Position on Waste Form`` (Revision 1), from the Low-Level Waste Management Branch. Leachates from these studies were analyzed for radionuclides, selected transition metals, and chelating agents to assess the leachability of these waste form constituents. Leachants used for the study were deionized water, simulated seawater, and groundwater compositions similar to those found at Barnwell, South Carolina and Hanford, Washington. Results of this study indicate that initial leachant pH does not affect leachate pH or releases from cement-solidified decontamination ion-exchange resin waste forms. However, differences in leachant composition and the presence of chelating agents may affect the releases of radionuclides and chelating agents. In addition, results from this study indicate that the cumulative releases of radionuclides and chelating agents observed for forms that disintegrated were similar to those for forms that maintained their general physical integrity.

  2. An experimental study of the temperature profiles and heat transfer coefficients in a heat pipe for a heat exchanger

    NASA Astrophysics Data System (ADS)

    Larkin, B. S.

    This paper describes an experimental study of a heat pipe to be used as a component in an air-to-air heat recovery heat exchanger. The two fluids used are water and Refrigerant 22, over a temperature range from 20 C to 100 C. Temperature profiles and heat transfer coefficients are given for heat fluxes from 500 watts to 1100 watts, showing the effect of the fluid quantity used. Results were obtained for a smooth surface and for a surface with a circumferential capillary groove. The heat pipe was inclined at 5-deg to the horizontal.

  3. Multiscale study of bacterial growth: Experiments and model to understand the impact of gas exchange on global growth

    NASA Astrophysics Data System (ADS)

    Lalanne-Aulet, David; Piacentini, Adalberto; Guillot, Pierre; Marchal, Philippe; Moreau, Gilles; Colin, Annie

    2015-11-01

    Using a millifluidics and macroscale setup, we study quantitatively the impact of gas exchange on bacterial growth. In millifluidic environments, the permeability of the incubator materials allows an unlimited oxygen supply by diffusion. Moreover, the efficiency of diffusion at small scales makes the supply instantaneous in comparison with the cell division time. In hermetic closed vials, the amount of available oxygen is low. The growth curve has the same trend but is quantitatively different from the millifluidic situation. The analysis of all the data allows us to write a quantitative modeling enabling us to capture the entire growth process.

  4. Exergy destruction analysis of a vortices generator in a gas liquid finned tube heat exchanger: an experimental study

    NASA Astrophysics Data System (ADS)

    Ghazikhani, M.; Khazaee, I.; Monazzam, S. M. S.; Takdehghan, H.

    2016-01-01

    In the present work, the effect of using different shapes of vortices generator (VG) on a gas liquid finned heat exchanger is investigated experimentally with irreversibility analysis. In this project the ambient air with mass flow rates of 0.047-0.072 kg/s is forced across the finned tube heat exchanger. Hot water with constant flow rate of 240 L/h is circulated inside heat exchanger tubes with inlet temperature range of 45-73 °C. The tests are carried out on the flat finned heat exchanger and then repeated on the VG finned heat exchanger. The results show that using the vortex generator can decrease the ratio of air side irreversibility to heat transfer (ASIHR) of the heat exchanger. Also the results show that the IASIHR is >1.05 for all air mass flow rates, which means that ASIHR for the initial heat exchanger is higher than 5 % greater than that of improved heat exchanger.

  5. Real-time monitoring of in situ gas-phase H/D exchange reactions of cations by atmospheric pressure helium plasma ionization mass spectrometry (HePI-MS).

    PubMed

    Attygalle, Athula B; Gangam, Rekha; Pavlov, Julius

    2014-01-01

    An enclosed atmospheric-pressure helium-plasma ionization (HePI-MS) source avoids, or minimizes, undesired back-exchange reactions usually encountered during deuterium incorporation experiments under ambient-pressure open-source conditions. A simple adaptation of an ESI source provides an economical way of conducting gas phase hydrogen/deuterium (H/D) exchange reactions (HDX) in real time without the need for complicated hardware modifications. For example, the spectrum of [(2)H8]toluene recorded under exposed ambient conditions showed the base peak at m/z 96 due to fast leaching of ring hydrogens because of interactions with H2O vapor present in the open source. Such D/H exchanges are rapidly reversed if the deuterium-depleted [(2)H8]toluene is exposed to D2O vapor. In addition to the enumeration of labile protons, our procedure enables the identification of protonation sites in molecules unambiguously, by the number of H/D exchanges observed in real time. For example, molecules such as tetrahydrofuran and pyridine protonate at the heteroatom and consequently undergo only one H/D exchange, whereas ethylbenzene, which protonates at a ring position of the aromatic ring, undergoes six H/D exchanges. In addition, carbocations generated in situ by in-source fragmentation of precursor protonated species, such as benzyl alcohol, do not undergo any rapid H/D exchanges. Because radical cations, second-generation cations (ions formed by losing a small molecule from a precursor ion), or those formed by hydride abstraction do not undergo rapid H/D exchanges, our technique provides a way to distinguish these ions from protonated molecules. PMID:24325360

  6. Kitchen Appliance Upgrades Improve Water Efficiency at DOD Exchange Facilities: Best Management Practice Case Study #11: Commercial Kitchen Equipment (Brochure)

    SciTech Connect

    Not Available

    2011-09-01

    The Exchange, formerly the Army and Air Force Exchange Service (AAFES), is a joint military activity and the U.S. Department of Defense?s (DOD) oldest and largest retailer. The Exchange is taking a leadership role in water efficiency improvements in their commercial kitchens by integrating water efficiency concepts into the organization?s overall sustainability plan and objectives.

  7. Study of frost growth on heat exchangers used as outdoor coils in air source heat pump systems

    NASA Astrophysics Data System (ADS)

    K P, Sankaranarayanan

    2011-12-01

    Scope and method of study. During winter heating operation, the outdoor coil of a heat pump acts as an evaporator and when the ambient temperature is near freezing, the moisture in the atmospheric air freezes on the coil surface. The frost growth affects the air flow and also adds resistance to heat transfer thus reducing the capacity and the efficiency of the heat pump. An experimental facility is designed and built to test a small scale heat exchanger working in frosting conditions. Tests are carried out using small scale fin-tube and microchannel heat exchanger over a range of glycol inlet temperatures, air velocities and ambient air RH. A semi-empirical frost model based on a scaling approach is developed and applied to both fin-tube heat and microchannel heat exchangers. The model is developed to handle non-uniformities in both refrigerant and air side. The frost model is integrated with a segment-by-segment heat exchanger calculation algorithm and is validated against experimental data. Frost growth model is also incorporated in a quasi-steady state system simulation algorithm. Findings and conclusions. From the experimental study it was observed that the temperature of the surface and air RH affected the rate of frost growth significantly while the air velocity did not have a great influence. It is demonstrated that a dry heat transfer correlation can be used during frost growth period by correctly accounting for frost thickness in the hydraulic diameter calculations. Ignoring the phenomenon of air redistribution was found to result in errors in the range of 20% to 50% in predicted frost thickness. Frost thickness predicted by the frost model is within 5% of the measured values for most of the cases. Frost mass accumulation predicted by the simple model is higher than the measured values due to a uniform thickness assumption in the model. An improved frost model based on 1-D finite volume discretization is also presented which improved the frost mass prediction to within 13% of measured values. The system simulation is validated against experimental results and found to match reasonable well. The discrepancy between simulation and experiments were due to the effects of system transience in the initial stages.

  8. TRENTA Facility for Trade-Off Studies Between Combined Electrolysis Catalytic Exchange and Cryogenic Distillation Processes

    SciTech Connect

    Cristescu, I.; Cristescu, I.R.; Doerr, L.; Glugla, M.; Hellriegel, G.; Schaefer, P.; Welte, S.; Kveton, O.; Murdoch, D

    2005-07-15

    One of the most used methods for tritium recovery from different sources of tritiated water is based on the combination between Combined Electrolysis Catalytic Exchange (CECE) and Cryogenic Distillation (CD) processes. The development, i.e. configuration, design and performance testing of critical components, of a tritium recovery system based on the combination CECE-CD is essential for both JET and ITER. For JET, a Water Detritiation System (WDS) is not only needed to process tritiated water which has already been accumulated from operation, but also for the tritiated water which will be generated during decommissioning. For ITER, the WDS is one of the key systems to control the tritium content in the effluents streams, to recover as much tritium as possible and consequently to minimize the impact on the environment. A cryogenic distillation facility with the aim to investigate the trade-off between CECE-CD, to validate different components and mathematical modelling software is current under development at Tritium Laboratory Karlsruhe (TLK) as an extension of the existing CECE facility.

  9. Study and development of sulfated zirconia based proton exchange fuel cell membranes

    NASA Astrophysics Data System (ADS)

    Kemp, Brittany Wilson

    With the increasing consumption of energy, fuel cells are among the most promising alternatives to fossil fuels, provided some technical challenges are overcome. Proton exchange membrane fuel cells (PEMFCs) have been investigated and improvements have been made, but the problem with NafionRTM, the main membrane for PEMFCs, has not been solved. NafionRTM restricts the membranes from operating at higher temperatures, thus preventing them from working in small electronics. The problem is to develop a novel fuel cell membrane that performs comparably to NafionRTM in PEMFCs. The membranes were fabricated by applying sulfated zirconia, via template wetting, to porous alumina membranes. The fabricated membranes showed a proton conductivity of 0.016 S/cm in comparison to the proton conductivity of Nafion RTM (0.05 S/cm). Both formic acid and methanol had a lower crossover flux through the sulfated zirconia membranes (formic acid- 2.89x10 -7 mols/cm2s and methanol-1.78x10-9 mols/cm2s) than through NafionRTM (formic acid-2.03x10 -8 mols/cm2s methanol-2.42x10-6 mols/cm 2s), indicating that a sulfated zirconia PEMFC may serve as a replacement for NafionRTM.

  10. Studies on biologically induced corrosion in heat exchanger systems at the Savannah River Plant, Aiken, SC

    SciTech Connect

    Pope, D.H.; Soracco, R.J.; Wilde, E.W.

    1982-07-01

    Biological fouling and corrosion of stainless steel tubes in the heat exchangers in nuclear reactors at the Savannah River Plant have caused decreased heat transfer efficiency and reduced operational life. This report addresses the microbiology and chemistry of the films present on these tubes, and the relation of this data to the corrosion of the tube material (304L stainless steel). Very few microorganisms other than bacteria were found in the biofilm. Bacteria capable of producing H/sub 2/S, organic acids, anaerobic conditions, and slime have all been isolated from these films. All of these have been implicated in corrosion processes. The most remarkable chemical finding was the inability to detect chloride in the film around areas of presumed chloride induced stress corrosion cracking. Three model systems were used to test the fouling and corrosion potential of metal specimens under a variety of environmental conditions including various biocide regimes. Using these systems, potential improvements in the use of chlorine as a biocidal agent have been observed. It was also shown that larger bacterial populations (including viable and killed cells) were associated with corroded areas as compared to noncorroded areas on the same specimen.

  11. Pulsed EPR studies of the exchangeable proton at the molybdenum center of dimethyl sulfoxide reductase.

    PubMed

    Raitsimring, Arnold M; Astashkin, Andrei V; Feng, Changjian; Enemark, John H; Nelson, Kimberly Johnson; Rajagopalan, K V

    2003-01-01

    Electron spin echo envelope modulation (ESEEM) spectroscopy has been used to determine the hyperfine ( hfi) and quadrupole ( nqi) interactions of the exchangeable deuteron (proton) at the Mo(V) site of DMSO reductase. The data obtained have been translated into structure-related parameters. It was found that isotropic hfi constant of the proton is not unique, but is distributed within a range of 26-36 MHz. From this hfi distribution, a 30 degrees -wide distribution of the OH bond orientations due to a rotation around the Mo-O bond was estimated. The angle between the axes of the nqi and anisotropic hfi tensors was found to be anomalously small in comparison with that expected from the Mo-O-D bond geometry. This peculiarity was attributed to the effect of spin density on the hydroxyl oxygen atom. The orientation of the Mo-OH fragment with respect to the g-frame was determined from the experimental orientations of the nqi and hfi tensor axes and a theoretical evaluation of the anisotropic hfi axis direction. PMID:12459903

  12. The grammar of exchange: a comparative study of reciprocal constructions across languages.

    PubMed

    Majid, Asifa; Evans, Nicholas; Gaby, Alice; Levinson, Stephen C

    2011-01-01

    Cultures are built on social exchange. Most languages have dedicated grammatical machinery for expressing this. To demonstrate that statistical methods can also be applied to grammatical meaning, we here ask whether the underlying meanings of these grammatical constructions are based on shared common concepts. To explore this, we designed video stimuli of reciprocated actions (e.g., "giving to each other") and symmetrical states (e.g., "sitting next to each other"), and with the help of a team of linguists collected responses from 20 languages around the world. Statistical analyses revealed that many languages do, in fact, share a common conceptual core for reciprocal meanings but that this is not a universally expressed concept. The recurrent pattern of conceptual packaging found across languages is compatible with the view that there is a shared non-linguistic understanding of reciprocation. But, nevertheless, there are considerable differences between languages in the exact extensional patterns, highlighting that even in the domain of grammar semantics is highly language-specific. PMID:21713188

  13. New selective anion-exchange resins for nitrate removal from contaminated drinking water and studies on analytical anion-exchange chromatography

    SciTech Connect

    Lockridge, J.E.

    1990-01-01

    New anion exchange resins, with superior selectivity for nitrate, have been developed. The resins are based on the covalent attachment of a quaternary phosphonium group to a polystyrene-divinylbenzene copolymer. Phosphonium resins of composition resin-R{sub 3}P{sup +}A{sup {minus}} where R is varied from methyl to pentyl were evaluated for nitrate/sulfate selectivity, capacity and nitrate decontamination of drinking water. A similar series for the quaternary ammonium exchangers was also evaluated. A mixed bed process, where nitrate removal and water softening is accomplished in a single column, was also evaluated. A small piece of silver wire, coated with an insoluble silver salt, works well as a selective potentiometric detector for halide ions in ion chromatography. Several coated electrodes were examined by electron microscopy and their response to various anions evaluated by flow injection analysis. Two methods for the determination of aluminum by anion chromatography are presented. In the first method, a standard excess of fluoride ion is added to the sample. In a second method, aluminum(III) is determined directly by anion chromatography when sodium phthalate is used as an eluent. 63 refs., 30 figs.

  14. Catalysts based on activated aluminum alloys. I. A study of copper-alumina catalysts by XPS and deuterium-hydrogen exchange

    SciTech Connect

    Yakerson, V.I.; Subbotin, A.N.; Gudkov, B.S.; Tkachenko, O.P.; Sarmurzina, R.G.

    1994-09-01

    Surface compositions and electron states of elements in copper-containing catalysts prepared by water treatment of copper-aluminum alloys activated by indium and gallium are studied by XPS. The copper contents in the surface layers of the catalysts is found to be less than that in the bulk. Fast isotopic H{sub 2}-D{sub 2} exchange at 70-200{degrees}C on reduced copper-containing samples and the absence of the exchange on copper-free samples indicate dissociative hydrogen adsorption on copper-containing active sites. The activation energy for the isotopic exchange is essentially dependent on the procedure of catalyst preparation.

  15. Influence of 8-Oxoguanosine on the Fine Structure of DNA Studied with Biasing-Potential Replica Exchange Simulations

    SciTech Connect

    Kara, Mahmut; Zacharias, Martin W.

    2013-03-05

    Chemical modification or radiation can cause DNA damage, which plays a crucial role for mutagenesis of DNA, carcinogenesis, and aging. DNA damage can also alter the fine structure of DNA that may serve as a recognition signal for DNA repair enzymes. A new, advanced sampling replica-exchange method has been developed to specifically enhance the sampling of conformational substates in duplex DNA during molecular dynamics (MD) simulations. The approach employs specific biasing potentials acting on pairs of pseudodihedral angles of the nucleic acid backbone that are added in the replica simulations to promote transitions of the most common substates of the DNA backbone. The sampled states can exchange with a reference simulation under the control of the original force field. The application to 7,8-dihydro-8oxo-guanosine, one of the most common oxidative damage in DNA indicated better convergence of sampled states during 10 ns simulations compared to 20 times longer standard MD simulations. It is well suited to study systematically the fine structure and dynamics of large nucleic acids under realistic conditions, including explicit solvent and ions. The biasing potential-replica exchange MD simulations indicated significant differences in the population of nucleic acid backbone substates in the case of 7,8-dihydro-8oxo-guanosine compared to a regular guanosine in the same sequence context. This concerns both the ratio of the B-DNA substates BI and BII associated with the backbone dihedral angles ε and z but also coupled changes in the backbone dihedral angles a and g. Such differences may play a crucial role in the initial recognition of damaged DNA by repair enzymes.

  16. Gas exchange

    MedlinePLUS Videos and Cool Tools

    ... into a left and right bronchus within the lungs and further divides into smaller and smaller branches ... exchange is the delivery of oxygen from the lungs to the bloodstream, and the elimination of carbon ...

  17. Study of Np(V) Sorption by Ionic Exchange on Na, K, Ca and Mg-Montmorillonite

    NASA Astrophysics Data System (ADS)

    Benedicto, A.; Begg, J.; Zhao, P.; Kersting, A. B.; Zavarin, M.

    2012-12-01

    The transport behavior of actinides in soil and ground water are highly influenced by clay minerals due to their ubiquity in the environment, reactivity and colloidal properties. Neptunium(V) has been introduced in the environment as a result of nuclear weapons testing [e.g. 1, 2] and is a radionuclide of potential interest for safety assessment of high level radioactive waste disposal because its long half-life and high toxicity [3]. Surface complexation and ionic exchange have been identified as Np(V) sorption mechanisms onto montmorillonite. At pH below 5, Np(V) sorption is mainly attributed to ionic exchange. This study examines Np(V) ion exchange on Na, K, Ca and Mg forms of montmorillonite. Experiments were carried out using 237Np concentrations between 2 x 10-8 M and 5 x 10-6 M at three different ionic strengths 0.1, 0.01 and 0.001M. The pH was maintained at 4.5. Np(V) sorption to montmorillonite homoionized with monovalent cations (Na and K) demonstrated a markedly different behavior to that observed for montmorillonite homoionized with divalent cations (Ca and Mg). Np sorption to Na and K-montmorillonite was greater than Np sorption to Ca and Mg-montmorillonite. Isotherms with Na and K-montmorillonite showed a strong dependence on ionic strength: the percentage of Np adsorbed was near zero at 0.1M ionic strength, but increased to 30% at 0.001 M ionic strength. This suggests ionic exchange is the main Np adsorption mechanism under the experimental conditions investigated. Dependence on ionic strength was not observed in the Np sorption isotherms for Ca and Mg-montmorillonite indicating a low exchange capacity between Np and divalent cations. Modeling of the sorption experimental data will allow determination of the Na+↔NpO2+ and K+↔NpO2+ ionic exchange constants on montmorillonite. References: [1] A. R. Felmy; K. J. Cantrell; S. D. Conradson, Phys. Chem. Earth 2010, 35, 292-297 [2] D. K. Smith; D. L. Finnegan; S. M. Bowen, J. Environ. Radioact. 2003, 67, (1), 35-51 [3] N. Kozai; T. Ohnuki; S. Muraoka, J. Nucl. Sci. Technol. 1993, 30, (11), 1153-1159 This work was funded by U. S. DOE Office of Biological & Environmental Sciences, Subsurface Biogeochemistry Research Program, and performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344. A. Benedicto was supported by a Spanish Ministry of Science and Innovation 'FPI' pre-doctoral contract in CIEMAT (Spain). LLNL-ABS-570160

  18. HEAT EXCHANGER

    DOEpatents

    Fox, T.H. III; Richey, T. Jr.; Winders, G.R.

    1962-10-23

    A heat exchanger is designed for use in the transfer of heat between a radioactive fiuid and a non-radioactive fiuid. The exchanger employs a removable section containing the non-hazardous fluid extending into the section designed to contain the radioactive fluid. The removable section is provided with a construction to cancel out thermal stresses. The stationary section is pressurized to prevent leakage of the radioactive fiuid and to maintain a safe, desirable level for this fiuid. (AEC)

  19. Study of the aggregation mechanism of polyglutamine peptides using replica exchange molecular dynamics simulations.

    PubMed

    Nakano, Miki; Ebina, Kuniyoshi; Tanaka, Shigenori

    2013-04-01

    Polyglutamine (polyQ, a peptide) with an abnormal repeat length is the causative agent of polyQ diseases, such as Huntington's disease. Although glutamine is a polar residue, polyQ peptides form insoluble aggregates in water, and the mechanism for this aggregation is still unclear. To elucidate the detailed mechanism for the nucleation and aggregation of polyQ peptides, replica exchange molecular dynamics simulations were performed for monomers and dimers of polyQ peptides with several chain lengths. Furthermore, to determine how the aggregation mechanism of polyQ differs from those of other peptides, we compared the results for polyQ with those of polyasparagine and polyleucine. The energy barrier between the monomeric and dimeric states of polyQ was found to be relatively low, and it was observed that polyQ dimers strongly favor the formation of antiparallel ?-sheet structures. We also found a characteristic behavior of the monomeric polyQ peptide: a turn at the eighth residue is always present, even when the chain length is varied. We previously showed that a structure including more than two sets of ?-turns is stable, so a long monomeric polyQ chain can act as an aggregation nucleus by forming several pairs of antiparallel ?-sheet structures within a single chain. Since the aggregation of polyQ peptides has some features in common with an amyloid fibril, our results shed light on the mechanism for the aggregation of polyQ peptides as well as the mechanism for the formation of general amyloid fibrils, which cause the onset of amyloid diseases. PMID:23288093

  20. New selective anion-exchange resins for nitrate removal from contaminated drinking water and studies on analytical anion-exchange chromatography

    SciTech Connect

    Lockridge, J.E.

    1989-01-01

    Phosphonium resins and ammonium resins of composition resin-R{sub 3}P{sup +}A{sup {minus}} where R is varied from methyl to pentyl were evaluated for nitrate/sulfate selectivity, capacity and nitrate decontamination of drinking water. Phosphonium resins were found to be more nitrate selective and have higher capacities than ammonium resins. A mixed bed process, where nitrate removal and water softening is accomplished in a single column, was also evaluated. A small piece of silver wire, coated with an insoluble silver salt, works well as a selective potentiometric detector for halide ions in ion chromatography. A silver-silver chloride electrode was found to be a selective and reproducible detector for chloride, bromide, iodide, thiocyanate and thiosulfate anions separated by ion chromatography. Calibration curves were non-linear and had slopes ranging from 40 to 60 mV/log concentrations. A working range of 0.05 to 2 mM was used. Two methods for the determination of aluminum by anion chromatography are presented. In the first method, a standard excess of fluoride ion is added to the sample. Evidence is given for the formation of a strong complex of neutral aluminum trifluoride which elutes very quickly from an anion exchange column. The excess fluoride is retained and can be determined. The aluminum concentration can then be related to the difference in fluoride peak height between the sample and standard. In a second method, Al(III) is determined directly by anion chromatography when sodium phthalate is used as an eluent. It was found that Al(III)-phthalate complexes thus formed would show some retention on an anion exchange column. The method is uniquely insensitive to the presence of many foreign cations. Al(III) was successfully determined, by this method, in a 40-fold molar excess of iron(III).

  1. Quantal Study of the Exchange Reaction for N + N2 using an ab initio Potential Energy Surface

    NASA Technical Reports Server (NTRS)

    Wang, Dunyou; Stallcop, James R.; Huo, Winifred M.; Dateo, Christopher E.; Schwenke, David W.; Partridge, Harry; Kwak, Dochan (Technical Monitor)

    2002-01-01

    The N + N2 exchange rate is calculated using a time-dependent quantum dynamics method on a newly determined ab initio potential energy surface (PES) for the ground A" state. This ab initio PES shows a double barrier feature in the interaction region with the barrier height at 47.2 kcal/mol, and a shallow well between these two barriers, with the minimum at 43.7 kcal/mol. A quantum dynamics wave packet calculation has been carried out using the fitted PES to compute the cumulative reaction probability for the exchange reaction of N + N2(J=O). The J - K shift method is then employed to obtain the rate constant for this reaction. The calculated rate constant is compared with experimental data and a recent quasi-classical calculation using a LEPS PES. Significant differences are found between the present and quasiclassical results. The present rate calculation is the first accurate 3D quantal dynamics study for N + N2 reaction system and the ab initio PES reported here is the first such surface for N3.

  2. Orientation and electronic structure of ion exchanged dye molecules on mica: An X-ray absorption study

    SciTech Connect

    Fischer, D.; Caseri, W.R.; Haehner, G.

    1998-02-15

    Dye molecules are frequently used to determine the specific surface area and the ion exchange capacity of high-surface-area materials such as mica. The organic molecules are often considered to be planar and to adsorb in a flat orientation. In the present study the authors have investigated the orientation and electronic structure of crystal violet (CV) and malachite green (MG) on muscovite mica, prepared by immersing the substrates for extended periods into aqueous solutions of the dyes of various concentrations. The K{sup +} ions of the mica surface are replaced by the organic cations via ion exchange. X-ray photoelectron spectroscopy reveals that only one amino group is involved in the interaction of CV and MG with the muscovite surface, i.e., certain resonance structures are abolished upon adsorption. With near edge X-ray absorption fine structure spectroscopy a significant tilt angle with respect to the surface was found for all investigated species. A flat orientation, as has often been proposed before, can effectively be ruled out. Hence, results are in marked contrast to the often quoted orientation and suggest that the specific surface areas determined with dyes may, in general, be overestimated.

  3. Comparative study on performance of a zigzag printed circuit heat exchanger with various channel shapes and configurations

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Moon; Kim, Kwang-Yong

    2013-07-01

    Comparative study has been performed with various channel cross-sectional shapes and channel configurations of a zigzag printed circuit heat exchanger (PCHE), which has been considered as a heat exchanging device for the gas turbine based generation systems. Three-dimensional Reynolds-averaged Navier-Stokes equations and heat transfer equations are solved to analyze conjugate heat transfer in the zigzag channels. The shear stress transport model with a low Reynolds number wall treatment is used as a turbulence closure. The global Nusselt number, Colburn j-factor, effectiveness, and friction factor are used to estimate the thermal-hydraulic performance of the PCHE. Four different shapes of channel cross section (semicircular, rectangular, trapezoidal, and circular) and four different channel configurations are tested to determine their effects on thermal-hydraulic performance. The rectangular channel shows the best thermal performance but the worst hydraulic performance, while the circular channel shows the worst thermal performance. The Colburn j-factor and friction factor are found to be inversely proportional to the Reynolds number in cold channels, while the effectiveness and global Nusselt number are proportional to the Reynolds number.

  4. Definition of amide protection factors for early kinetic intermediates in protein folding.

    PubMed

    Houry, W A; Sauder, J M; Roder, H; Scheraga, H A

    1998-04-14

    Hydrogen-deuterium exchange experiments have been used previously to investigate the structures of well defined states of a given protein. These include the native state, the unfolded state, and any intermediates that can be stably populated at equilibrium. More recently, the hydrogen-deuterium exchange technique has been applied in kinetic labeling experiments to probe the structures of transiently formed intermediates on the kinetic folding pathway of a given protein. From these equilibrium and nonequilibrium studies, protection factors are usually obtained. These protection factors are defined as the ratio of the rate of exchange of a given backbone amide when it is in a fully solvent-exposed state (usually obtained from model peptides) to the rate of exchange of that amide in some state of the protein or in some intermediate on the folding pathway of the protein. This definition is straightforward for the case of equilibrium studies; however, it is less clear-cut for the case of transient kinetic intermediates. To clarify the concept for the case of burst-phase intermediates, we have introduced and mathematically defined two different types of protection factors: one is P struc, which is more related to the structure of the intermediate, and the other is P app, which is more related to the stability of the intermediate. Kinetic hydrogen-deuterium exchange data from disulfide-intact ribonuclease A and from cytochrome c are discussed to explain the use and implications of these two definitions. PMID:9539731

  5. Subunit exchange of lens alpha-crystallin: a fluorescence energy transfer study with the fluorescent labeled alphaA-crystallin mutant W9F as a probe.

    PubMed

    Sun, T X; Akhtar, N J; Liang, J J

    1998-07-01

    A Trp-free alphaA-crystallin mutant (W9F) was prepared by site-directed mutation. This mutant appears to be identical to the wild-type in terms of conformation (secondary and tertiary structures). W9F was labeled with a sulfhydryl-specific fluorescent probe, 2-(4'-maleimidylanilino) naphthalene-6-sulfonate (MIANS), and used in a subunit exchange between alphaA- and alphaA-crystallins as well as between alphaA- and alphaB-crystallins, studied by measurement of fluorescence resonance energy transfer. Energy transfer was observed between Trp (donor, with emission maximum at 336 nm) of wild-type alphaA- or alphaB-crystallin and MIANS (acceptor, with absorption maximum at 313 nm) of labeled W9F when subunit exchange occurred. Time-dependent decrease of Trp and increase of MIANS fluorescence were recorded. The exchange was faster at 37 degrees C than at 25 degrees C. The energy transfer efficiency was greater between homogeneous subunits (alphaA-alphaA) than between heterogeneous subunits (alphaA-alphaB). A previous exchange study with isoelectric focusing indicated a complete but slow exchange between alphaA and alphaB subunits. The present study showed that the exchange was a fast process, and the different energy transfer efficiencies between alphaA-alphaA and alphaA-alphaB indicated that alphaA- and alphaB-crystallins were not necessarily structurally equivalent. PMID:9688580

  6. Magnetic properties of exchange biased and of unbiased oxide/permalloy thin layers: a ferromagnetic resonance and Brillouin scattering study.

    PubMed

    Zighem, F; Roussign, Y; Chrif, S-M; Moch, P; Ben Youssef, J; Paumier, F

    2010-10-13

    Microstrip ferromagnetic resonance and Brillouin scattering are used to provide a comparative determination of the magnetic parameters of thin permalloy layers interfaced with a non-magnetic (Al(2)O(3)) or with an antiferromagnetic oxide (NiO). It results from our microstructural study that no preferential texture is favoured in the observed polycrystalline sublayers. It is shown that the perpendicular anisotropy can be monitored using an interfacial surface energy term which is practically independent of the nature of the interface. In the interval of thicknesses investigated (5-25 nm) the saturation magnetization does not significantly differ from the reported one in bulk permalloy. In-plane uniaxial anisotropy and exchange bias anisotropy are also derived from the study of the dynamic magnetic excitations and compared with our independent evaluations using conventional magnetometry. PMID:21386581

  7. Magnetic properties of exchange biased and of unbiased oxide/permalloy thin layers: a ferromagnetic resonance and Brillouin scattering study

    NASA Astrophysics Data System (ADS)

    Zighem, F.; Roussign, Y.; Chrif, S.-M.; Moch, P.; Ben Youssef, J.; Paumier, F.

    2010-10-01

    Microstrip ferromagnetic resonance and Brillouin scattering are used to provide a comparative determination of the magnetic parameters of thin permalloy layers interfaced with a non-magnetic (Al2O3) or with an antiferromagnetic oxide (NiO). It results from our microstructural study that no preferential texture is favoured in the observed polycrystalline sublayers. It is shown that the perpendicular anisotropy can be monitored using an interfacial surface energy term which is practically independent of the nature of the interface. In the interval of thicknesses investigated (5-25 nm) the saturation magnetization does not significantly differ from the reported one in bulk permalloy. In-plane uniaxial anisotropy and exchange bias anisotropy are also derived from the study of the dynamic magnetic excitations and compared with our independent evaluations using conventional magnetometry.

  8. A portable hydro-thermo-mechanical loading cell for in situ small angle neutron scattering studies of proton exchange membranes

    NASA Astrophysics Data System (ADS)

    Yu, Dunji; An, Ke; Gao, Carrie Y.; Heller, William T.; Chen, Xu

    2013-10-01

    A portable hydro-thermo-mechanical loading cell has been designed to enable in situ small angle neutron scattering (SANS) studies of proton exchange membranes (PEMs) under immersed tensile loadings at different temperatures. The cell consists of three main parts as follows: a letter-paper-size motor-driven mechanical load frame, a SANS friendly reservoir that provides stable immersed and thermal sample conditions, and a data acquisition and control system. The ex situ tensile tests of Nafion 212 membranes demonstrated a satisfactory thermo-mechanical testing performance of the cell for either dry or immersed conditions at elevated temperatures. The in situ SANS tensile measurements on the Nafion 212 membranes immersed in D2O at 70 C proved the feasibility and capability of the cell for small angle scattering study on deformation behaviors of PEM and other polymer materials under hydro-thermo-mechanical loading.

  9. Heat exchanger

    SciTech Connect

    Mantegazza, M.; Bellemo, L.

    1993-07-20

    A heat exchange apparatus is described for cooling and recovering moisture from a gas, comprising, a first fluid circuit including an inlet section and an outlet section in which the gas to be cooled is conveyed, a second fluid circuit through which a refrigeration medium is conveyed, the inlet section of the first fluid circuit initially being disposed adjacent the second outlet section thereof so as to be in heat exchange relationship therewith, the inlet section thereafter extending adjacent the second fluid circuit so as to be in heat exchange relationship therewith, heat conducting fins extending between and connecting the inlet section of the first fluid circuit to the outlet section thereof and for connecting the inlet section of the first fluid section to the second fluid circuit, and a mass of particulate material placed between the fins, whereby the gas is initially cooled in heat exchange relationship with gas in the second section of the first fluid circuit and is thereafter further cooled by being in heat exchange relationship with the refrigeration medium.

  10. Synthesis and application of a novel GTP phosphonamide photoaffinity reagent: Study of exchangeable GTP-binding domain on tubulin

    SciTech Connect

    Chavan, A.J.

    1989-01-01

    The regulatory role played by nucleotides in various biochemical processes has been the topic of study for several years. This has led to the identification of several regulatory proteins which require guanosine triphosphate (GTP), a nucleotide, for their action. The G-protein family utilizes GTP and displays many common features in the mechanism of their action. Chapter 1 is an overview of several GTP-binding proteins including G-proteins. Tubulin, a structural protein also requires GTP for its assembly/disassembly process. The nature of interaction of GTP with tubulin, particularly at the exchangeable GTP-binding site has been under investigation for several years. Chapter 2 presents an overview of the structure of tubulin, and the studies leading up to the present understanding of the GTP-tubulin interaction. To study the exchangeable GTP-binding domain on tubulin which would complement the other techniques, and reagents used, the author synthesized a novel GTP phosphonamide photoaffinity reagent. Chapter 3 describes the synthesis of {sup 125}I-APTG (36). He utilized {sup 125}I-APTG to establish that it could act as a mimic to GTP. Using the combination of anion-exclusion chromatography, gel-filtration and reverse-phase HPLC techniques he isolated residues 65-79 on the {beta}-chain as the major peptide in the GTP-binding domain. He also isolate residues 65-79 and 353-370 on the {alpha}-chain as minor peptides supporting the hypothesis that the phosphate region is in close proximity of the {alpha}-subunit.

  11. Structure and dynamics of small soluble A?(1-40) oligomers studied by top-down hydrogen exchange mass spectrometry.

    PubMed

    Pan, Jingxi; Han, Jun; Borchers, Christoph H; Konermann, Lars

    2012-05-01

    A? peptides can assemble into amyloid fibrils, which represent one of the hallmarks of Alzheimer's disease. Recent studies, however, have focused on the behavior of small soluble A? oligomers that possess a much greater neurotoxicity than mature fibrils. The structural characterization of these oligomers remains difficult because of their highly dynamic and polymorphic nature. This work explores the behavior of A?(1-40) in a slightly basic solution (pH 9.3) at a low salt concentration (10 mM ammonium acetate). These conditions lead to the formation of small oligomers, without any signs of fibrillation for several hours. The structure and dynamics of these oligomers were characterized by circular dichroism spectroscopy, size exclusion chromatography, and millisecond time-resolved hydrogen exchange mass spectrometry (MS). Our results reveal rapid interconversion between A?(1-40) oligomers and monomers. The mole fraction of monomeric molecules is on the order of 40%. Oligomers consist of ~4 A?(1-40) molecules on average, and the resulting assemblies have a predominantly ?-sheet secondary structure. Hydrogen exchange proceeds in the EX1 regime. This feature allows the application of conformer-specific top-down MS. Electron capture dissociation is used for interrogating the deuteration behavior of the A?(1-40) oligomers. This approach provides a spatial resolution of ~2 residues. The backbone amide deuteration pattern uncovered in this way is consistent with a ?-turn-? motif for L17-M35. The N-terminus is involved in hydrogen bonding, as well, whereas protection gradually tapers off for C-terminal residues 35-40. Our data are consistent with earlier proposals, according to which A?(1-40) oligomers adopt a ?-barrel structure. In general terms, this study demonstrates how top-down MS with precursor ion selection can be employed for structural studies of specific protein conformers within a heterogeneous mix. PMID:22486153

  12. Studying temporal and spatial variations of groundwater-surface water exchange flux for the Slootbeek (Belgium) using the LPML method

    NASA Astrophysics Data System (ADS)

    Anibas, Christian; Schneideweind, Uwe; Vandersteen, Gerd; Huysmans, Marijke; Batelaan, Okke

    2015-04-01

    Knowledge of groundwater-surface water interaction is important for the assessment of water resources and for the investigation of fate and transport of contaminants and nutrients. In streams and rivers exchange fluxes of water are sensitive to local and regional factors such as riverbed hydraulic conductivity and hydraulic gradients. Field monitoring in time and space is therefore indispensible for assessing the variability of groundwater-surface water interaction. Not only the complexity of the examined processes demand novel data processing and characterization tools, the amount of acquired data also urges for new modeling tools. These tools should be easily applicable, allow for a fast computation, and utilize the maximum amount of available data for detailed analysis, including uncertainties. Such analytical tools should be combined with modern field equipment, data processing tools, geographical information systems and geostatistics for best results. A simple and cost effective methodology to estimate groundwater-surface water interaction is the use of temperature as an environmental tracer (ANDERSON, 2005). LPML (VANDERSTEEN et al., 2014) is one of the most advanced analytical 1D coupled water flow and heat transport models, combining a local polynomial method with a maximum likelihood estimator. It is flexible, fast and able to create time series of exchange fluxes, as well as model quality and parameter uncertainty. LPML determines frequency response functions from measured temperature time series and an analytical model, and applies a non-linear optimization technique. With this tool the variability of groundwater-surface water interaction of the Belgian stream Slootbeek was assessed. Multilevel temperature sensors were placed in seven locations to obtain temperature-time series. Located at the streambed top and at six depths below, several months worth of data was collected and analyzed. Results identified a high spatial and temporal variability of vertical exchange fluxes for the investigated stream section. Fluxes ranged from strong exfiltration of -450 mm/d to infiltration fluxes of 110 mm/d. Events of high stream stages strongly influenced groundwater-surface water interaction, changing the normally gaining reach into a losing one. Measurements of vertical hydraulic gradients were used for validation. It was possible to relate the flow system of Slootbeek to earlier studies performed in the catchment (e.g. ANIBAS et al., 2009) to further advance the understanding of the regional groundwater flow system. These results show that the presented LPML methodology is flexible, fast and able to create reliable time series of groundwater-surface water interaction and their uncertainties. References ANDERSON, M.P. (2005): Heat as a Groundwater Tracer. Ground Water 43 (6): 951-968. ANIBAS, C., FLECKENSTEIN, J.H., VOLZE, N., BUIS, K., VERHOEVEN, R., MEIRE, P., BATELAAN, O. (2009): Transient or steady-state? Using vertical temperature profiles to quantify groundwater-surface water exchange. Hydrological Processes 23(15) 2165-2177. VANDERSTEEN, G., SCHNEIDEWIND, U., ANIBAS, C., SCHMIDT, C., SEUNTJENS, P., BATELAAN, O. (2014): Determining groundwater-surface water exchange from temperature time series: Combining a local polynomial method with a maximum likelihood estimator. Water Resour. Res. DOI: 10.1002/2014wr015994.

  13. Exploring Knowledge Exchange between Senior and Future Leaders: A Grounded-Theory Study

    ERIC Educational Resources Information Center

    Gonzaga, Stephanie Young

    2009-01-01

    A grounded theory study examined senior leaders methods of knowledge sharing with junior leaders in a small commercial mortgage company. The study was designed to develop an emergent theory to explain the cultural elements that influenced the methods leaders used to transfer knowledge to junior people. The study identified a systemic value of

  14. Short-Term Faculty-Led Study Abroad Programs Enhance Cultural Exchange and Self-Awareness

    ERIC Educational Resources Information Center

    Gaia, A. Celeste

    2015-01-01

    Though many experts argue that semester or year abroad study is the optimal path, short-term programs meet the needs of students who would not otherwise study abroad and can be effective at increasing intercultural competency. The present study describes one type of short-term program--the embedded faculty-led model--and provides evidence that

  15. Studies of transient behavior of proton exchange membrane fuel cells (PEMFC)

    NASA Astrophysics Data System (ADS)

    Kim, Sunhoe

    The Proton Exchange Membrane Fuel Cell (PEMFC) is a technology with growing interest. The PEMFC is the most fascinating among other kinds of fuel cells for its high power density and zero emission pure water products. The use of PEMFCs will expose it to transient conditions. For instance, acceleration or deceleration in vehicle applications and turning on or off dishwashers in stationary applications may cause transient conditions of operation of PEMFCs. This dissertation presents experimental data that may be used to understand PEMFC behavior during these transients and these data may be used to verify the numerical simulations and models of PEMFC designs. The electrical load was changed with fixed inlet flowrates for the anode and cathode, and this caused hydrogen and air, stoichiometries to change. The transient experiments showed conditions and stoichiometric changes that gave the overshoot and undershoot behaviors. Data are presented to show the effects of voltage changes on the current response with four different cases of stoichiometry changes: from excess to normal, from normal to excess, from normal to starved, and from starved to normal. An overshoot behavior was observed when the cell stoichiometry changed from normal to starved condition. With a triple path flow field this overshoot was followed by an undershoot and this second order behavior is a result of, in this case, the air flowing back into the cell at the end of anode side to balance pressure. We named these phenomena as "vacuum effects" when the current density shows "undershoot" after "overshoot" behavior. For other conditions an undershoot behavior was observed when the voltage changed to cause a change from starved to normal conditions. In contrast, only exponential first order behavior was observed for voltage changes between excess and normal conditions. Various cell voltage ranges and change rates are presented to compare the overshoot and undershoot behaviors. Experiments were performed to explain the effect of different cell voltage ranges, from a region of kinetic limitation to a region of I-R limitations and from a region of mass transfer to I-R limitations. While these descriptions are qualitative, global, and do not reflect local limitations, the observed behaviors can be explained and grouped with these descriptions. The higher the cell voltage, indicating a change from kinetic to I-R limitation yields the larger the magnitude of overshoot peak. The effect of flow field designs is also presented for two different flow fields: single path and triple path. The structure of the flow field is shown to affect the transient behavior of PEMFC so that the triple path yields a smaller magnitude in the overshoot and undershoot peaks. The "vacuum effect" caused after the overshoot peak is quantified with the reservoir tube connected at the end of anode (hydrogen outlet). Different sizes and shapes of reservoir tubes affect the time dependent length of overshoot peaks as well as "undershoot" after overshoot. The bigger the reservoir tube size the longer the overshoot peak and the dimmer the "undershoot" after overshoot behavior. The anode dilution effect on the transient response is presented in this dissertation. Various concentrations of hydrogen diluted with nitrogen shows the different shapes of overshoot peaks.

  16. Mass transport studies in conventional and microfabricated free convection proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Modroukas, Dean

    This thesis presents the design, modeling and testing of both conventional and non-conventional free convection proton exchange membrane fuel cells (PEMFC) which are particularly attractive for low power (<100W), man portable applications. As part of this investigation, experimental data coupled with computational simulations has provided a deeper understanding into the mechanisms that limit operability. In particular, the low temperatures of operation (<50°C) and lack of forced air convection generate high levels of saturation within the cell thereby reducing the available catalytic sites. A 2-D, single- and two-phase computational model for an open-cathode, free convection PEMFC was developed. The two-phase modeling has provided significant insight into the mass transport limitations caused primarily by liquid water flooding while the single phase simulations present an upper limit in performance assuming product water exists only in vapor form. A set of parametric experiments were performed using conventional gas diffusion media (GDM) along with numerous 1cm2 stainless steel grid-based current collectors having open area ratios of 10%, 25% and 50%. These experiments provided a data set that was used to "tune" and validate the model. Single cell polarization data experienced limiting currents ranging from 190mA/cm2 to 600mA/cm 2 at operating cell temperatures of 38°C-45°C, depending on the open area ratio. The two-phase model captured the effect of current collector porosity as well as the increase in limiting current associated with rising cell temperature. Once validated, the model was used with confidence as a design tool for MEMS-based tailored mass transfer media (TMTM) that provide more advanced functionality than customary GDM. They were based on a microfabricated hydrophobic silicon mesh comprised of square pores with discrete zones made to be hydrophilic using a carbon-polyethylene oxide treatment. The TMTM were engineered to localize the removal of liquid water and allow saturation free transport of the gas phases to and from the catalyst layer. The hydrophilic zone spacing distance was varied (1250mum and 2500mum) while keeping the overall wetting to non-wetting area ratio at 12.5%. The TMTM were tested using conventional catalyst on membrane assemblies at low temperatures (ambient and 32.5°C) and were shown to efficiently segregate water and provide unobstructed reactant gas paths to the cell. The ability to control the wetting characteristics of these structures and provided enhanced evaporation to the surroundings has resulted in significant increases in steady state limiting current densities compared to untreated silicon structures (the latter of which delivered 100mA/cm2 and 133mA/cm 2 at 26.6°C and 33.1°C, respectively). Liquid water transport within the catalyst layer has been shown to be a function of the hydrophilic spacing where the TMTM having a hydrophilic separation distance of 1250mum delivered higher limiting current densities (148.9mA/cm2 and 250mA/cm2 for ambient and 32.5°C) than the larger separation distance of 2500mum (134mA/cm2 and 175mA/cm2 for ambient and 32.5°C). Limiting current performance improvements between the treated and untreated substrates ranged from 34-50% at ambient temperature to 32-88% at the 32.5°C operating temperature. In summary, the work presented herein will not only advance the state of the art in miniaturizing PEMFC's using MEMS technology but it will also open up a path for a more scientific approach to understanding multi-phase transport within porous fuel cell layers and interfaces.

  17. Perpendicular exchange bias behaviors of CoPt/IrMn and CoPt/FeMn bilayers: A comparative study

    SciTech Connect

    Tsai, C. Y.; Lin, K. F.; Hsu, Jen-Hwa

    2015-05-07

    In this study, FeMn was introduced as an antiferromagnetic (AFM) layer to couple with a single-layered Co{sub 49}Pt{sub 51} alloy thin film, and it was compared with a Co{sub 49}Pt{sub 51}/IrMn bilayer system in exchange bias (EB) effect, to explore the mechanism of spontaneous perpendicular exchange bias (PEB), which has been recently observed in CoPt/IrMn bilayers. Bilayers of CoPt/IrMn and CoPt/FeMn were prepared under the same conditions by sputtering at room temperature without any inducing field. Although PEB was observed in as-grown CoPt/FeMn bilayers, the loop shape and PEB behavior were found to exhibit different characteristics from those of CoPt/IrMn bilayers. The CoPt (5?nm)/FeMn (10?nm) bilayer has a sheared loop that is similar to a double-shifted loop and a much lower squareness ratio (SQR?=?0.52) and exchange bias field (H{sub e}?=?180?Oe) than the CoPt (5?nm)/IrMn (10?nm) system, which has a rectangular loop shape and a high SQR of 0.97 and large H{sub e} of 290?Oe. The two systems present entirely different dependences of PEB on the thickness of the AFM layer. CoPt/IrMn exhibits behavior that is typical of most EB systems, but for CoPt/FeMn, this dependence is more complicated with an unusual peak at an AFM layer thickness of 10?nm. Based on the dissimilar loop shapes and dependences of PEB on AFM thickness, the mechanisms of the spontaneously established PEB in these two systems are considered to differ. Investigations of cross-sectional transmission electron microscopy revealed no apparent difference between the interfacial microstructures of the two systems. X-ray diffraction studies demonstrated the ?111? texture of both systems. Therefore, different interfacial spin configurations may be responsible for the dissimilar PEB behaviors in these two FM/AFM bilayer systems.

  18. A new approach to measuring protein backbone protection with high spatial resolution using H/D exchange and electron capture dissociation

    PubMed Central

    Abzalimov, Rinat R.; Bobst, Cedric E.; Kaltashov, Igor A.

    2013-01-01

    Inadequate spatial resolution remains one of the most serious limitations of hydrogen/deuterium exchange mass spectrometry (HDX MS), especially when applied to larger proteins (over 30 kDa). Supplementing proteolytic fragmentation of the protein in solution with ion dissociation in the gas phase has been used successfully by several groups to obtain near-residue level resolution. However, the restrictions imposed by the LC/MS/MS mode of operation on the data acquisition time frame makes it difficult in many cases to obtain signal-to-noise ratio adequate for reliable assignment of the backbone amide protection levels at individual residues. This restriction is lifted in the present work by eliminating the LC separation step from the workflow and taking advantage of the high resolving power and dynamic range of a Fourier transform ion cyclotron resonance mass spectrometer (FT ICR MS). A residue-level resolution is demonstrated for a peptic fragment of a 37 kDa recombinant protein (N-lobe of human serum transferrin) using electron-capture dissociation as an ion fragmentation tool. The absence of hydrogen scrambling in the gas phase prior to ion dissociation is verified using redundant HDX MS data generated by FT ICR MS. The backbone protection pattern generated by direct HDX MS/MS is in excellent agreement with the known crystal structure of the protein, but also provides information on conformational dynamics, which is not available from the static X-ray structure. PMID:23978257

  19. Study of suspending agents for gadolinium(III)-exchanged hectorite. An oral magnetic resonance imaging contrast agent

    SciTech Connect

    Balkus, K.J. Jr.; Shi, J.

    1996-12-25

    Clays modified with paramagnetic ions have been shown to be effective magnetic resonance imaging contrast agents. The efficacy in part relies on the suspension of the small clay particles in aqueous solution. In this study a series of macromolecules were eveluated as suspending agents for Gd(III) ion exchanged hectorite clay in water. The room temperature relaxivities for the Gd-hectorite clays were enhanced by the addition of poly(ethylene oxide), poly(ethylene glycol), cyclodextrins, and cholic acid to aqueous suspensions. Additionally, there was no evidence of free Gd(III) in solution in the presence of these suspending agents. In contrast the combination of alginic acid or poly(sodium 4-styrenesulfonate) with the clays resulted in release of the Gd(III) into solution. Xanthan gum, which is often used as an emulsifier and stabilizer in food products, forms a viscous suspension but also reacts with free Gd(III) ions. 25 refs., 10 figs., 2 tabs.

  20. Heat exchanger

    SciTech Connect

    Drury, C.R.

    1988-02-02

    A heat exchanger having primary and secondary conduits in heat-exchanging relationship is described comprising: at least one serpentine tube having parallel sections connected by reverse bends, the serpentine tube constituting one of the conduits; a group of open-ended tubes disposed adjacent to the parallel sections, the open-ended tubes constituting the other of the conduits, and forming a continuous mass of contacting tubes extending between and surrounding the serpentine tube sections; and means securing the mass of tubes together to form a predetermined cross-section of the entirety of the mass of open-ended tubes and tube sections.

  1. Experimental study of a constrained vapor bubble fin heat exchanger in the absence of external natural convection.

    PubMed

    Basu, Sumita; Plawsky, Joel L; Wayner, Peter C

    2004-11-01

    In preparation for a microgravity flight experiment on the International Space Station, a constrained vapor bubble fin heat exchanger (CVB) was operated both in a vacuum chamber and in air on Earth to evaluate the effect of the absence of external natural convection. The long-term objective is a general study of a high heat flux, low capillary pressure system with small viscous effects due to the relatively large 3 x 3 x 40 mm dimensions. The current CVB can be viewed as a large-scale version of a micro heat pipe with a large Bond number in the Earth environment but a small Bond number in microgravity. The walls of the CVB are quartz, to allow for image analysis of naturally occurring interference fringes that give the pressure field for liquid flow. The research is synergistic in that the study requires a microgravity environment to obtain a low Bond number and the space program needs thermal control systems, like the CVB, with a large characteristic dimension. In the absence of natural convection, operation of the CVB may be dominated by external radiative losses from its quartz surface. Therefore, an understanding of radiation from the quartz cell is required. All radiative exchange with the surroundings occurs from the outer surface of the CVB when the temperature range renders the quartz walls of the CVB optically thick (lambda > 4 microns). However, for electromagnetic radiation where lambda < 2 microns, the walls are transparent. Experimental results obtained for a cell charged with pentane are compared with those obtained for a dry cell. A numerical model was developed that successfully simulated the behavior and performance of the device observed experimentally. PMID:15644365

  2. An Ethnographic Study of Elementary Teachers', Paraprofessionals', and Students' Language Exchanges during Reading

    ERIC Educational Resources Information Center

    Aaron-Stanton, Desiree

    2014-01-01

    This ethnographic study of language shows the importance of educators' appropriate use of linguistic, nonlinguistic, and paralinguistic communication techniques when working with elementary students within two classrooms who have behavioral and emotional disorders. This study focused on communication techniques used by teachers and

  3. A Media Course Commitment Study in a Canadian University: Empirical Validation of an Exchange Model.

    ERIC Educational Resources Information Center

    Schell, Bernadette H.; Thornton, John A.

    1985-01-01

    Presents a study on attraction of students to an open-university distance education program and their commitment to remain in the program over time. In this study, commitment is conjectured to be a function of program satisfaction, availability of educational alternatives, and investment of time, energy, money, and ego. (MBR)

  4. Web-based documentation system with exchange of DICOM RT for multicenter clinical studies in particle therapy

    NASA Astrophysics Data System (ADS)

    Kessel, Kerstin A.; Bougatf, Nina; Bohn, Christian; Engelmann, Uwe; Oetzel, Dieter; Bendl, Rolf; Debus, Jrgen; Combs, Stephanie E.

    2012-02-01

    Conducting clinical studies is rather difficult because of the large variety of voluminous datasets, different documentation styles, and various information systems, especially in radiation oncology. In this paper, we describe our development of a web-based documentation system with first approaches of automatic statistical analyses for transnational and multicenter clinical studies in particle therapy. It is possible to have immediate access to all patient information and exchange, store, process, and visualize text data, all types of DICOM images, especially DICOM RT, and any other multimedia data. Accessing the documentation system and submitting clinical data is possible for internal and external users (e.g. referring physicians from abroad, who are seeking the new technique of particle therapy for their patients). Thereby, security and privacy protection is ensured with the encrypted https protocol, client certificates, and an application gateway. Furthermore, all data can be pseudonymized. Integrated into the existing hospital environment, patient data is imported via various interfaces over HL7-messages and DICOM. Several further features replace manual input wherever possible and ensure data quality and entirety. With a form generator, studies can be individually designed to fit specific needs. By including all treated patients (also non-study patients), we gain the possibility for overall large-scale, retrospective analyses. Having recently begun documentation of our first six clinical studies, it has become apparent that the benefits lie in the simplification of research work, better study analyses quality and ultimately, the improvement of treatment concepts by evaluating the effectiveness of particle therapy.

  5. Neutralizing positive charges at the surface of a protein lowers its rate of amide hydrogen exchange without altering its structure or increasing its thermostability.

    PubMed

    Shaw, Bryan F; Arthanari, Haribabu; Narovlyansky, Max; Durazo, Armando; Frueh, Dominique P; Pollastri, Michael P; Lee, Andrew; Bilgicer, Basar; Gygi, Steven P; Wagner, Gerhard; Whitesides, George M

    2010-12-15

    This paper combines two techniques--mass spectrometry and protein charge ladders--to examine the relationship between the surface charge and hydrophobicity of a representative globular protein (bovine carbonic anhydrase II; BCA II) and its rate of amide hydrogen-deuterium (H/D) exchange. Mass spectrometric analysis indicated that the sequential acetylation of surface lysine-ε-NH3(+) groups--a type of modification that increases the net negative charge and hydrophobicity of the surface of BCA II without affecting its secondary or tertiary structure--resulted in a linear decrease in the aggregate rate of amide H/D exchange at pD 7.4, 15 °C. According to analysis with MS, the acetylation of each additional lysine generated between 1.4 and 0.9 additional hydrogens that are protected from H/D exchange during the 2 h exchange experiment at 15 °C, pD 7.4. NMR spectroscopy demonstrated that none of the hydrogen atoms which became protected upon acetylation were located on the side chain of the acetylated lysine residues (i.e., lys-ε-NHCOCH3) but were instead located on amide NHCO moieties in the backbone. The decrease in rate of exchange associated with acetylation paralleled a decrease in thermostability: the most slowly exchanging rungs of the charge ladder were the least thermostable (as measured by differential scanning calorimetry). This observation--that faster rates of exchange are associated with slower rates of denaturation--is contrary to the usual assumptions in protein chemistry. The fact that the rates of H/D exchange were similar for perbutyrated BCA II (e.g., [lys-ε-NHCO(CH2)2CH3]18) and peracetylated BCA II (e.g., [lys-ε-NHCOCH3]18) suggests that the electrostatic charge is more important than the hydrophobicity of surface groups in determining the rate of H/D exchange. These electrostatic effects on the kinetics of H/D exchange could complicate (or aid) the interpretation of experiments in which H/D exchange methods are used to probe the structural effects of non-isoelectric perturbations to proteins (i.e., phosphorylation, acetylation, or the binding of the protein to an oligonucleotide or to another charged ligand or protein). PMID:21090618

  6. Study the adsorption of sulfates by high cross-linked polystyrene divinylbenzene anion-exchange resin

    NASA Astrophysics Data System (ADS)

    Fathy, Mahmoud; Moghny, Th. Abdel; Awadallah, Ahmed E.; El-Bellihi, Abdel-Hameed A.-A.

    2014-11-01

    In response to rising concerns about the effect of sulfate on water quality, human health, and agriculture, many jurisdictions around the world are imposing tighter regulations for sulfate discharge. This is driving the need for environmental compliance in industries like mining, metal processing, pulp and paper, sewage treatment, and chemical manufacturing. The sulfate removal from synthetic water by high cross-linked polystyrene divinylbenzene resin was studied at batch experiments in this study. The effect of pH, contact time, sulfates concentration, and adsorbent dose on the sulfate sequestration was investigated. The optimum conditions were studied on Saline water as a case study. The results showed that with increasing of the absorbent amount; contact time, and pH improve the efficiency of sulfate removal. The maximum sulfates uptake was obtained in pH and contact time 3.0 and 120 min, respectively. Also, with increasing initial concentration of sulfates in water, the efficiency of sulfate removal decreased. The obtained results in this study were matched with Freundlich isotherm and pseudo-second-order kinetic. The maximum adsorption capacity (Qm) and constant rate were found 0.318 (mg/g) and 0.21 (mg/g.min), respectively. This study also showed that in the optimum conditions, the sulfate removal efficiency from Saline water by 0.1 mg/L sulfates was 65.64 %. Eventually, high cross-linked polystyrene divinylbenzene resin is recommended as a suitable and low cost absorbent to sulfate removal from aqueous solutions.

  7. Heat exchanger

    DOEpatents

    Wolowodiuk, Walter

    1976-01-06

    A heat exchanger of the straight tube type in which different rates of thermal expansion between the straight tubes and the supply pipes furnishing fluid to those tubes do not result in tube failures. The supply pipes each contain a section which is of helical configuration.

  8. Numerical study of heat transfer in two-row heat exchangers having extended fin surfaces

    SciTech Connect

    Sheui, T.W.H.; Tsai, S.F.; Chiang, T.P.

    1999-05-28

    This paper reports on a three-dimensional study of air through two-row cylinder tubes. The analysis is intended to present a comparison of numerical and experimental data to validate the laminar flow postulation. The current study explores the influence of four perforated fin surfaces on the pressure drop and heat transfer rate. To gain further insight into the three-dimensional vortical flow structure, the authors conduct a topological study of the velocity field. Examination of the surface flow topology and the flow patterns at cross-flow plumes sheds some light on the complex interaction of the cylinder tube with the mainstream flow. This study clearly reveals a saddle point in front of the first row of cylinder tubes. Also clearly revealed by the computed solutions is a flow reversal found in the wake of the tube. The character of the critical-point-induced flow is also addressed. This study shows that the addition of perforated fins is not without deficiency. There is, in fact, a trade-off between the benefit of having an improved heat transfer and the penalty of having an increased pressure drop.

  9. Study of Total Detection Efficiency (?) of Charge Exchange Analyzer (CXA) in TVD Tokamak

    NASA Astrophysics Data System (ADS)

    Kazemi, M.; Habibi, M.; Tafreshi, M.

    2013-02-01

    Diagnostic devices detection efficiency consist of many parameters. Contribution of each part in main detection efficiency need to study all aspect of devices and experimentally researches. In this paper experimental results and theoretical study merged to figure out the total detection efficiency of CXA. Most important primary parameters has been recognized (stripping foil thickness, incident energy, etc.) and effect of these parameters in related part studied. For CXA of TVD tokamak total detection efficiency presented and shown for 3 keV this parameter equal to .09 and stripping efficiency is equal 1.1 approximately. Choosing appropriate system for stripping of neutral beam is the most important factor in CXA diagnostic devices specially for high energy beams.

  10. The erythrocyte Na+/H+ exchangers of eel (Anguilla anguilla) and rainbow trout (Oncorhynchus mykiss): a comparative study

    PubMed

    Romero; Guizouarn; Pellissier; Garcia-Romeu; Motais

    1996-01-01

    Trout and eel red blood cell Na+/H+ exchangers show widely different regulatory properties. Catecholamines, cyclic AMP and phorbol esters, which activate the trout red cell antiporter, do not affect the eel exchanger. Unlike the trout red cell exchanger, the eel red cell exchanger is strongly activated by cell shrinkage, allowing a remarkable cell volume recovery. These different regulatory properties probably indicate the existence of different isoforms of the exchangers in nucleated erythrocytes, since sensitivity to catecholamines is known to be dependent upon the presence of protein kinase A consensus sites on the cytoplasmic domain of the antiporter. After shrinkage of eel erythrocytes, the Na+/H+ exchange rate gradually increases to reach a maximum value after about 10 min. The magnitude of activation is a graded function of cell shrinkage. Deactivation, like activation, is induced by a volume change and occurs after some delay (lag time). The response of the trout antiporter (betaNHE) to cell shrinkage is much reduced compared with that of the eel antiporter. In addition, the antiporter is deactivated prior to restoration of the normal control volume, leaving cell volume regulation notably defective. The trout red cell antiporter, which is desensitized and enters a refractory state following hormonal activation, is only deactivated (it can be reversibly reactivated) after shrinkage-induced activation. This dual control may occur by both phosphorylation-dependent and phosphorylation-independent mechanisms. In view of the similarities in the regulatory properties of eel and salamander (Amphiuma sp.) Na+/H+ exchangers, the expression of a putative K+/H+ exchange mediated by the N+/H+ exchanger was sought in eel erythrocytes. However, neither osmotic swelling nor calyculin-A-dependent phosphorylation revealed such a K+/H+ exchange. PMID:9318046

  11. Toward a Checklist for Exchange and Interpretation of Data froma Toxicology Study

    EPA Science Inventory

    With the advent of toxicogenomics came the need to share data across interdisciplinary teams and to deposit data associated with publications into public data repositories. Within a single institution, many variables associated with a study are standardized, for instance diet, an...

  12. Infrared and neutron scattering studies of ethene adsorbed onto partially exchanged zinc A zeolite

    SciTech Connect

    Howard, J.; Nicol, J.M.; Eckert, J.

    1984-08-01

    Infrared and inelastic neutron scattering studies of ethene adsorbed onto ZnNaA zeolite show that the adsorbed molecule occupies a single adsorption site. The C-H streching modes are not observed in the infrared data but are seen as a broad band in the neutron spectrum. Some low frequency adsorbate-adsorbent modes are assigned.

  13. A Longitudinal Study of Teachers' Professional Development through an International Exchange

    ERIC Educational Resources Information Center

    Purves, Ross; Jackson, Anita; Shaughnessy, Julie

    2005-01-01

    The Teachers' International Professional Development (TIPD) Programme was launched by the British Council in 2000 in response to a Government Green Paper on teacher training. This provides opportunities for teachers to participate in international study visits to gain first-hand experience of good practice. As part of this programme, eighteen

  14. LAB STUDY ON REGENERATION OF SPENT DOWEX 21K 16-20 MESH ION EXCHANGE RESIN

    SciTech Connect

    DUNCAN, J.B.

    2007-01-24

    Currently the effort to remove chromate from groundwater in the 100K and 100H Areas uses DOWEX 21K 16-20. This report addresses the procedure and results of a laboratory study for regeneration of the spent resin by sodium hydroxide, sulfuric acid, or sodium sulfate to determine if onsite regeneration by the Effluent Treatment Facility is a feasible option.

  15. 75 FR 77636 - Public Information Exchange on EPA Nanomaterial Case Studies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-13

    ...: Nanoscale Titanium Dioxide in Water Treatment and in Topical Sunscreen [External Review Draft] (U.S... Workshop: Developing a Comprehensive Environmental Assessment Research Strategy for Nanoscale Titanium... ( http://www.epa.gov/osp/bosc/pdf/nano1008rpt.pdf ). The Nanomaterial Case Studies: Nanoscale...

  16. Parametric studies on the three-layer microcirculatory model for surface tissue energy exchange.

    PubMed

    Dagan, Z; Weinbaum, S; Jiji, L M

    1986-02-01

    The new three-layer microvascular mathematical model for surface tissue heat transfer developed in, which is based on detailed vascular casts and tissue temperature measurements in the rabbit thigh, is used to investigate the thermal characteristics of surface tissue under a wide variety of physiological conditions. Studies are carried out to examine the effects of vascular configuration, arterial blood supply rate, distribution of capillary perfusion, cutaneous blood circulation and metabolic heat production on the average tissue temperature profile, the local arterial-venous blood temperature difference in the thermally significant countercurrent vessels, and surface heat flux. PMID:3959557

  17. Monte Carlo study of the multiple exchange model in solid 3He

    NASA Astrophysics Data System (ADS)

    Matsumoto, Kazuyuki

    1990-08-01

    By the mean field approximation, the Stipdonk and Hetherington's (SH) model which explains magnetism of solid 3He exhibits two successive phase transitions at H=O. Experimentally, there is only one phase transition, however. Then more detailed analysis is needed to remove this discrepancy. In this study, the Monte Carlo simulation have done for the SH model. From the result, we can see that this mismatch is due to inaccuracy of the mean field approximation. We have also determined the phase boundary (U2D2-PARA and U2D2-HFP) in the H-T phase diagram.

  18. Synchronous brain activity during cooperative exchange depends on gender of partner: A fNIRS-based hyperscanning study.

    PubMed

    Cheng, Xiaojun; Li, Xianchun; Hu, Yi

    2015-06-01

    Previous studies have shown that brain activity between partners is synchronized during cooperative exchange. Whether this neural synchronization depends on the gender of partner (i.e., opposite or same to the participant) is open to be explored. In current study, we used functional near-infrared spectroscopy (fNIRS) based hyperscanning to study cooperation in a two-person game (female-female, female-male, and male-male) while assaying brain-to-brain interactions. Cooperation was greater in male-male pairs than in female-female pairs, with intermediate cooperation levels for female-male pairs. More importantly, in dyads with partners with opposite gender (female-male pairs), we found significant task-related cross-brain coherence in frontal regions (i.e., frontopolar cortex, orbitofrontal cortex, and left dorsolateral prefrontal cortex) whereas the cooperation in same gender dyads (female-female pairs and male-male pairs) was not associated with such synchronization. Moreover, the changes of such interbrain coherence across task blocks were significantly correlated with change in degree of cooperation only in mixed-sex dyads. These findings suggested that different neural processes underlie cooperation between mixed-sex and same-sex dyadic interactions. PMID:25691124

  19. The ESA SMOS+SOS Project: Oceanography using SMOS for innovative air-sea exchange studies

    NASA Astrophysics Data System (ADS)

    Banks, Chris; Gommenginger, Christine; Boutin, Jacqueline; Reul, Nicolas; Martin, Matthew; Ash, Ellis; Reverdin, Gilles; Donlon, Craig

    2013-04-01

    We report on the work plan of the SMOS+Surface Ocean Salinity and Synergy (SMOS+SOS) project. SMOS+SOS is funded through the Support to Science Element (STSE) component of the European Space Agency's (ESA) Earth Observation Envelope Programme. The SMOS+SOS consortium consists of four organisations namely the National Oceanography Centre (UK), the LOCEAN/IFREMER/CATDS research team (France), the Met Office (UK) and Satellite Oceanographic Consultants Ltd (UK). The end of the SMOS+SOS project will be marked by a final open workshop most likely hosted by the UK Met Office in September/October 2014. The project is concerned with demonstrating the performance and scientific value of SMOS Sea Surface Salinity (SSS) products through a number of well-defined case studies. The case studies include: Amazon/Orinoco plumes (freshwater outflow); Agulhas and Gulf Stream (strong water mass boundary); Tropical Pacific/Atlantic (strong precipitation regime); sub-tropical North Atlantic (ie SPURS; strong evaporative regime); and Equatorial Pacific (equatorial upwelling). With SMOS measuring the SSS in the top cm of the ocean, validating SMOS against in situ salinity data taken typically at a few meters depth introduces assumptions about the vertical structure of salinity in the upper ocean. To address these issues, the project will examine and quantify discrepancies between SMOS and in situ surface salinity data at various depths in different regions characterised by strong precipitation or evaporation regimes. Equally, data editing and spatio-temporal averaging play a central role in determining the quality, errors and correlations in SMOS SSS data. The project will explore various processing and spatio-temporal averaging choices to define the SMOS SSS products that best address the needs of the oceanographic and data assimilation user community. One key aspect of this project is to determine how one can achieve useful accuracy/uncertainty in SSS without jeopardising SMOS's ability to capture rapidly-varying or small scale features such as rain cells or the mesoscale variability associated with river plumes and major western boundary currents. Finally, the study explores the ability of SMOS SSS to provide insights into new oceanographic processes when used in synergy with other data. Hence, synergy with Aquarius will be used to seek evidence of the possible impact of diurnal warming on the SMOS SSS data, and to explore differences in the salinity signatures of Tropical Instability Waves observed in the Pacific with SMOS and Aquarius.

  20. Parametric study of graphite foam fins and application in heat exchangers

    NASA Astrophysics Data System (ADS)

    Collins, Michael

    This thesis focuses on the simulation and experimental studies of finned graphite foam extended surfaces to test their heat transfer characteristics and potential applications in condensers. Different fin designs were developed to conduct a parametric study on the thermal effectiveness with respect to thickness, spacing and fin offset angle. Each fin design was computationally simulated to estimate the heat transfer under specific conditions. The simulations showed that this optimal fin configuration could conduct more than 297% the amount of thermal energy as compared to straight aluminum fins. Graphite foam fins were then implemented into a simulation of the condenser system. The condenser was simulated with six different orientations of baffles to examine the incoming vapor and resulting two-phase flow patterns. The simulations showed that using both horizontal and vertical baffling provided the configuration with the highest heat transfer and minimized the bypass regions where the vapor would circumvent the graphite foam. This baffle configuration increased the amount of vapor flow through the inner graphite fins and cold water pipes, which gave this configuration the highest heat transfer. The results from experimental tests using the condenser system confirmed that using three baffles will increase performance consistent with the simulation results. The experimental data showed that the condenser using graphite foam had five times the heat transfer compared to the condenser using only aluminum fins. Incorporating baffles into the condenser using graphite foam enabled this system to conduct nearly ten times more heat transfer than the condenser system which only had aluminum fins without baffles. The results from this research indicate that graphite foam is a far superior material heat transfer enhancement material for heat transfer compared to aluminum used as an extended surface. The longitudinal and horizontal baffles incorporated into the condenser system greatly enhanced the heat transfer because of the increased interaction with the porous graphite foam fins.

  1. Electrical conductivity and humidity sensing studies on synthetic organic-inorganic Poly-o-toluidine-titanium(IV)phosphate cation exchange nanocomposite

    NASA Astrophysics Data System (ADS)

    Khan, Asif Ali; Baig, Umair

    2013-01-01

    Electrically conductive Poly-o-toluidine-titanium(IV)phosphate (POT-TiP) cation exchange nanocomposite was synthesized by sol-gel mixing of organic polymer (Poly-o-toluidine) into inorganic precipitate of titanium(IV)phosphate (TiP). The material was characterized by using transmission electron microscopy (TEM), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The humidity sensing response of the nanocomposite was examined. It was found that the conductivity varied according to low humidity to high humidity. The composite showed good humidity response, ion-exchange capacity and electrical conductivity. Poly-o-toludine-TiP nanocomposite was also used to study electrical conductivity under isothermal conditions in the temperature range 50-130 C. The composite was found stable under ambient conditions below 90 C in terms of DC electrical conductivity retention. These studies suggest that the cation exchange nanocomposite could be a good sensing material for humidity.

  2. Microtube strip heat exchanger

    NASA Astrophysics Data System (ADS)

    Doty, F. D.

    1990-12-01

    Doty Scientific (DSI) believes their microtube-strip heat exchanger will contribute significantly to the following: (1) the closed Brayton cycles being pursued at MIT, NASA, and elsewhere; (2) reverse Brayton cycle cryocoolers, currently being investigated by NASA for space missions, being applied to MRI superconducting magnets; and (3) high-efficiency cryogenic gas separation schemes for CO2 removal from exhaust stacks. The goal of this current study is to show the potential for substantial progress in high-effectiveness, low-cost, gas-to-gas heat exchangers for diverse applications at temperatures from below 100 K to above 1000 K. To date, the highest effectiveness measured is about 98 percent and relative pressure drops below 0.1 percent with a specific conductance of about 45 W/kgK are reported. During the pre-award period DSI built and tested a 3-module heat exchanger bank using 103-tube microtube strip (MTS) modules. To add to their analytical capabilities, DSI has acquired computational fluid dynamics (CFD) software. This report describes the pre-award work and the status of the ten tasks of the current project, which are: analyze flow distribution and thermal stresses within individual modules; design a heat exchanger bank of ten modules with 400 microtube per module; obtain production quality tubestrip die and AISI 304 tubestrips; obtain production quality microtubing; construct revised MTS heat exchanger; construct dies and fixtures for prototype heat exchanger; construct 100 MTS modules; assemble 8 to 10 prototype MTS heat exchangers; test prototype MTS heat exchanger; and verify test through independent means.

  3. Heat exchanger

    NASA Technical Reports Server (NTRS)

    Holmes, R. F.; Keller, E. E. (inventors)

    1976-01-01

    An improved lightweight heat exchanger particularly suited for use in systems having low volume flow, high longitudinal gradient and high effectiveness requirements is described. The heat exchanger is characterized by a shell of an annular configuration, an endless plate of minimal thickness and of a substantially uniformly convoluted configuration disposed within the annular shell for defining a plurality of endless, juxtaposed passages, each having a low Reynold's number and being of an annular configuration. A pair of manifolds disposed 180 deg apart is mounted on the shell in communication with the passages through which counterflowing fluids are simultaneously introduced and extracted from the passageways for achieving a continuous transfer of heat through the convoluted plate.

  4. Electron paramagnetic resonance studies on conformation states and metal ion exchange properties of vanadium bromoperoxidase

    SciTech Connect

    de Boer, E.; Boon, K.; Wever, R.

    1988-03-08

    An electron paramagnetic resonance (EPR) study was carried out to examine structural aspects of vanadium-containing bromoperoxidase from the brown seaweed Ascophyllum nodosum. At high pH, the reduced form of bromoperoxidase showed an apparently axially symmetric EPR signal with 16 hyperfine lines. When the pH was lowered, a new EPR spectrum was formed. When EPR spectra of the reduced enzyme were recorded in the pH range from 4.2 to 8.4, it appeared that these changes were linked to a functional group with an apparent pK/sub a/ of about 5.4. In D/sub 2/O this value for the pK/sub a/ was 5.3. It is suggested that these effects arise from protonation of histidine or aspartate/glutamate residues near the metal ion. The values for the isotropic hyperfine coupling constant of the reduced enzyme at both high and low pH are also consistent with a ligand field containing nitrogen and/or oxygen donor atoms. When reduced bromoperoxidase was dissolved in D/sub 2/O or H/sub 2//sup 17/O instead of H/sub 2//sup 16/O, vanadium (IV) hyperfine line widths were markedly affected, demonstrating that water is a ligand of the metal ion. Together with previous work these findings suggest that vanadium (IV) is not involved in catalytic turnover and confirm the model in which the vanadium (V) ion of the native enzyme only serves to bind both hydrogen peroxide and bromide. After excess vanadate was added to a homogeneous preparation of purified bromoperoxidase, the extent of vanadium bound to the protein increased from 0.5 to 1.1, with a concomitant enhancement of enzymic activity. Finally, it is demonstrated that both vanadate (VO/sub 4//sup 3 -/) and molybdate (MoO/sub 4//sup 2 -/) compete for the same site on apobromoperoxidase.

  5. A QUANTUM MECHANICAL STUDY OF STRUCTURAL AND ELECTRONIC DILUTION EFFECTS IN PARAMAGNETIC CHEMICAL EXCHANGE SATURATION TRANSFER AGENTS

    PubMed Central

    Miller, Whelton A.; Moore, Preston B.

    2014-01-01

    We present a computational study of the effect of chemical modifications of the meta and para substituents in the coordinating pendant arm of a modified 1,4,7,10-tetraazacyclododecane-N, N, N?, N?-tetraamide (DOTAM) ligand on the Chemical Exchange Saturation Transfer (CEST) signal. Magnetic Resonance Imaging (MRI) is currently one of the most widely used techniques available. MRI has led to a new class of pharmaceuticals termed imagining or contrast agents. These agents usually work by incorporating lanthanide metals such as Gadolinium (Gd) and Europium (Eu). This allows the contrast agents to take advantage of the paramagnetic properties of the metals, which in turn enhances the signal detectable by MRI. The effect of simple electron-withdrawing (e.g., nitro) and electron-donating (e.g., methyl) substituents chemically attached to a modified chelate arm (pendant arm) is quantified by charge transfer interactions in the coordinated water-chelate system computed from quantum mechanics. This study attempts to reveal the origin of the substituent effect on the CEST signal and the electronic structure of the complex. We find that the extent of Charge Transfer (CT) depends on orbital orientations and overlaps. However, CT interactions occur simultaneously from all arms, which causes a dilution effect with respect to the pendant arm. PMID:25485283

  6. Study of Mesoscale Eddies in the Gulf of Lion and their role in the coastal-offshore exchanges.

    NASA Astrophysics Data System (ADS)

    Hu, Z. Y.; Doglioli, A. M.; Petrenko, A. A.; Compbell, R.; Diaz, F.; Dekeyser, I.

    2010-05-01

    The main objective of LAgrangian Transport EXperiment (LATEX) project (2008-2011) is to study the influence of mesoscale structures on shelf-offshore exchanges in the Gulf of Lion (GoL). The LATEX strategy combines use of data from Lagrangian drifters, satellite images and hull-mounted ADCP data with numerical modeling. In this work, we simulate the mesoscale structures, occurring at the interface between the continental slope and the coastal margin in the GoL, by using a realistic numerical model. Numerical studies show a clear influence of mesoscale eddies on matter and energies transfers between the coastal zone and open sea. The features of the eddies such as their size, position and behaviour issued from the numerical modeling help us set up the sampling strategy of the cruises. The in situ measurements allow us to validate the numerical results and furthermore, combined with the modeling results, to well understand the eddies's dynamics. A numerical Lagrangian diagnostic tool is applied to analyze the model outputs. Qualitative and quantitative simulations are made in order to evaluate the eddies' potential impact on the coastal-offshore transfer of matter and energy.

  7. Comprehensive Study of the Solubility, Thermochemistry, Ion Exchange, and Precipitation Kinetics of NO3 Cancrinite and NO33 Sodalite

    SciTech Connect

    Navrotsky, Alexandra; Liu, Qinyuan

    2004-12-01

    The precipitation of aluminosilicate phases from caustic nuclear wastes has proven to be problematic in a number of processes including radionuclide separations (cementation of columns by aluminosilicate phases), tank emptying (aluminosilicate tank heels), and condensation of wastes in evaporators (aluminosilicate precipitates in the evaporators, providing nucleation sites for growth of critical masses of radioactive actinide salts). In a collaboration between SNL and UCD, we have investigated why and how these phases form, and which conditions favor the formation of which phases. These studies have involved synthesis and characterization of aluminosilicate phases formed using a variety of synthesis techniques, kinetics of precipitation, structural investigations of aluminosilicate phases, thermodynamic calculations of aluminosilicate solubility, calorimetric studies of aluminosilicate precipitation, and a limited investigation of radionuclide partitioning and ion exchange processes (involving typical tank fluid chemistries and these materials). The predominant phases that are observed in the aluminosilicate precipitates from basic tanks wastes (i.e. Hanford, Savannah River Site ''SRS'' wastes) are the salt enclathrated zeolites: sodium nitrate, sodium carbonate and sodium hydroxide sodalite and cancrinite. These phases precipitate readily from the high ionic strength, highly basic solutions at ambient temperatures as well as at elevated temperatures, with or without the presence of an external Al and Si source (both are contained in the waste solutions), and upon interactions with reactive soil components such as clays.

  8. Study of Chemical Exchange on the Water-Sediment Interface in the Black Sea: New Russian Lander

    NASA Astrophysics Data System (ADS)

    Rozanov, Alexander

    2010-05-01

    Study of Chemical Exchange on the Water-Sediment Interface in the Black Sea: New Russian Lander A.G. Rozanov, A.V. Vershinin, A.V. Egorov P.P. Shirshov Institute of Oceanology of the Russian Academy of Sciences (IO RAS) Nakhimovskiy prosp. 36. Moscow. 117851. Russia. Email: rozanov@ocean.ru Key words: Black Sea, coastal bottom sediments, bottom water, pore water, chemical fluxes, lender. The results of the first applications of automatic bottom station (Lаnder IO RAS) for the study of chemical exchange at the water - sediment interface were obtained in the sediments of the north-western part of the Black Sea near Gelendzhik (The Blue Bay). Lander is equipped with bottom cameras, O2-sensors (optodes) and syringes for programmed water sampling from the cameras and outer water. Exposition of the lander for one day allows direct determination of fluxes of chemical elements through the interface between bottom water and the sediments. At the same time fluxes through the water-sediment interface were calculated from the differences in concentrations of these components in bottom water and pore water (Fick's law). Bottom sediments were presented by organogenic clays containing hydrogen sulphide under the surface. High activity of diagenetic processes has led to increased consumption of O2 by the sediments from the bottom water (130 mM/(m2 day) and high fluxes of nutrients (P: 0.8 - 2.2, Si; 1.4 - 5.0 mM/(m2 day) and metals (Mn: 0.4 - 0.6, Fe: 0.04 - 1.6 mM/(m2 day) from the sediments. The first figure in each interval was received from the Fick calculations, the second one - from the lender's data. The data obtained allow to give preference to direct measurements of fluxes (lander), compared with a calculation method, because the latter is not able to register bioturbation and other animal activity/. The first applications of the lander suggests the need for methodological improvements in both technical and with regard to chemical analytical support.

  9. Talk, trust and time: a longitudinal study evaluating knowledge translation and exchange processes for research on violence against women

    PubMed Central

    2011-01-01

    Background Violence against women (VAW) is a major public health problem. Translation of VAW research to policy and practice is an area that remains understudied, but provides the opportunity to examine knowledge translation and exchange (KTE) processes in a complex, multi-stakeholder context. In a series of studies including two randomized trials, the McMaster University VAW Research Program studied one key research gap: evidence about the effectiveness of screening women for exposure to intimate partner violence. This project developed and evaluated KTE strategies to share research findings with policymakers, health and community service providers, and women's advocates. Methods A longitudinal cross-sectional design, applying concurrent mixed data collection methods (surveys, interviews, and focus groups), was used to evaluate the utility of specific KTE strategies, including a series of workshops and a day-long Family Violence Knowledge Exchange Forum, on research sharing, uptake, and use. Results Participants valued the opportunity to meet with researchers, provide feedback on key messages, and make personal connections with other stakeholders. A number of factors specific to the knowledge itself, stakeholders' contexts, and the nature of the knowledge gap being addressed influenced the uptake, sharing, and use of the research. The types of knowledge use changed across time, and were specifically related to both the types of decisions being made, and to stage of decision making; most reported use was conceptual or symbolic, with few examples of instrumental use. Participants did report actively sharing the research findings with their own networks. Further examination of these second-order knowledge-sharing processes is required, including development of appropriate methods and measures for its assessment. Some participants reported that they would not use the research evidence in their decision making when it contradicted professional experiences, while others used it to support apparently contradictory positions. The online wiki-based 'community of interest' requested by participants was not used. Conclusions Mobilizing knowledge in the area of VAW practice and policy is complex and resource-intensive, and must acknowledge and respect the values of identified knowledge users, while balancing the objectivity of the research and researchers. This paper provides important lessons learned about these processes, including attending to the potential unintended consequences of knowledge sharing. PMID:21896170

  10. Analytical and experimental study of fluid friction and heat transfer in low Reynolds number flow heat exchangers

    NASA Astrophysics Data System (ADS)

    Muzychka, Yuri Stephan

    1999-11-01

    Analysis of fluid friction and heat transfer in low Reynolds number flow heat exchangers is undertaken. Three configurations typically utilized in compact heat exchangers are examined. These are: the plain non- circular duct of constant cross-sectional area, the offset or interrupted strip fin, and the turbulator strip. Analytical models for each of these geometries are developed by combining asymptotic solutions using simple non-linear superposition. Models for predicting the friction factor-Reynolds number product, f Re, and Nusselt number, Nu, in non-circular ducts for hydrodynamically fully developed flow (HFDF), hydrodynamically developing flow (HDF), thermally fully developed flow (TFDF), thermally developing flow (TDF), and simultaneously developing flow (SDF) are developed. Thermal and hydrodynamic entrance models are developed by combining the asymptotic solutions for small and large values of the dimensionless duct length. Through the use of a novel characteristic length, the square root of the cross-sectional flow area, scatter in the dimensionless data for fully developed laminar flows is considerably reduced. Most numerical and analytical data are predicted within +/-10% for HFDF and TFDF, +/-12% for HDF and TDF, and +/-15% for SDF for most non-circular ducts. Simple analytic models for predicting the Fanning friction factor, f, and Colburn j factor of two common enhancement devices, the offset strip fin and the turbulator strip are developed from fundamental solutions of fluid dynamics and heat transfer. Models for the offset strip fin are valid over the full range of Reynolds numbers for rectangular and other non-circular sub-channel cross- sections. Model predictions for the offset strip fin agree with published experimental data within +/-20%. Models for the turbulator strip are valid over the full Reynolds number range for both straight and curved turbulator profiles. Model predictions for the turbulator strip agree with new experimental data to within +/-20%. Finally, a detailed experimental study of the thermal and hydraulic characteristics of turbulator strips is undertaken. Simple design correlations are presented along with a performance evaluations of each device using the constant mass flow rate and constant pumping power criteria.

  11. Evaluation of the Efficiency of the Atraumatic Endotracheal Tube in the Pulmonary-Gas Exchange: an Experimental Study

    PubMed Central

    Antonelli, Raíssa Quaiatti; Moreira, Marcos Mello; Martins, Luiz Claudio; Negro, Maíra Soliani Del; Baldasso, Tiago Antonio; Tincani, Alfio José

    2015-01-01

    OBJECTIVE Mechanical ventilation is frequently necessary, in which case the use of an endotracheal tube is mandatory. The tube has an inflatable balloon in its distal extremity, whose aim is, among other functions, an efficient arterialization. However, serious injuries in the place of contact of the balloon with the trachea can be frequent. Some studies point out that balloons with permanent pressure may reduce this complication. Nevertheless, air scape, expressed by the inspiratory (IV) and expiratory volume (EV) variation (Δ IV-EV), may occur, possibly leading to hypoxemia. Thus, the goal of this study was to verify the efficiency of a modified endotracheal tube on arterializations compared to the traditional endotracheal tube. METHODS The modified endotracheal tube presents intermittent insufflation, with three drillings in the internal region of the cuff, allowing for insufflation in the inspiratory phase of the mechanical ventilation. Three animals were used for the control group, with a cuff pressure of 30 cmH2O, and seven pigs had the modified endotracheal tube. Each animal was kept under mechanical ventilation (FIO2=0.21) for 6 hours. Arterial and venous gases were measured every three hours (T0; T3; T6). RESULTS The gases confirmed the lack of hypoxia between the Groups, with a difference in the ΔIV-EV at T0 (P=0.0486). CONCLUSIONS In this study, the lack of hypoxia showed the efficiency of the modified endotracheal tube. However, new studies are necessary, particularly in diseased lungs, in order to evaluate the real efficiency of the mentioned device on the pulmonary gas exchange. PMID:26934410

  12. Measuring ligand exchange on the surface of gold nanoparticles: A study of competitive binding of ligands utilizing fluorescent resonance energy transfer

    NASA Astrophysics Data System (ADS)

    D'Unger, Daniel W.

    This study was conducted to track ligand exchange on the surface of metallic nanoparticles in order obtain a better understanding of binding strength of various functional groups. This study develops groundwork for further understanding ligand exchange as nanoparticles transition from engineered to natural systems. A problem exists in knowing the fate of these particles if they are released into natural systems, by accident or with intent. To gain a better understanding of what may occur we look at the binding strength of different ligands. This is done to gain knowledge of the possibility of displacement of ligands occurring in the environment. In order to monitor the binding strength of different ligands a new characterization technique utilizing the phenomena of Fluorescent Resonance Energy Transfer (FRET) is employed. This technique utilizes the quenching properties of gold nanoparticles and fluorescent-labeled ligands to monitor competitive binding between two ligands. The use of fluorescence allows for a sensitive measurement (on the nanomole scale) of ligand exchange on the surface of gold nanoparticles. This study was conducted in three different parts. The first one was conducted to monitor the competitive binding between bound ligands and incoming mono-functional ligands. This was accomplished by tagging five different functional ligands with a fluorescein-dye. As the fluorescein-terminated ligands exchange on the surface of gold nanoparticles a change in fluorescence intensity is observed. The second study was conducted in the same manner as the first, however this study monitored the effect of bi-functional ligands verse mono-functional ligands as well to monitor concentration effects. The third study conducted was done using a two-dye system. In these studies both the incoming and bound ligand were tagged with a fluorescent-dye. This was done to monitor direct exchange of ligands.

  13. Cation exchange capacity (Qv) estimation in shaly sand reservoirs: case studies in the Junggar Basin, northwest China

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Mao, Zhi-Qiang; Sun, Zhong-Chun; Luo, Xing-Ping; Deng, Ren-Shuang; Zhang, Ya-Hui; Ren, Bing

    2015-10-01

    Cation exchange capacity (Qv) is a key parameter in resistivity-based water saturation models of shaly sand reservoirs, and the accuracy of Qv calculation is crucial to the prediction of saturations of oil and gas. In this study, a theoretical expression of Qv in terms of shaly sand permeability (Kshaly-sand), total porosity (?t), and salinity of formation water (S) is deduced based on the capillary tube model and the physics volume model. Meanwhile, the classical Schlumberger-Doll research (SDR) model has been introduced to estimate Kshaly-sand. On this basis, a novel technique to estimate Qv from nuclear magnetic resonance (NMR) logs is proposed, and the corresponding model is also established, whose model parameters are calibrated by laboratory Qv and NMR measurements of 15 core samples from the Toutunhe formation of the Junggar Basin, northwest China. Based on the experimental data sets, this technique can be extended to reservoir conditions to estimate continuous Qv along the intervals. The processing results of field examples illustrate that the Qv calculated from field NMR logs are consistent with the analyzed results, with the absolute errors within the scope of??0.1?mmol?cm-3 for the majority of core samples.

  14. Study of operating conditions and cell design on the performance of alkaline anion exchange membrane based direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Prakash, G. K. Surya; Krause, Frederick C.; Viva, Federico A.; Narayanan, S. R.; Olah, George A.

    2011-10-01

    Direct methanol fuel cells using an alkaline anion exchange membrane (AAEM) were prepared, studied, and optimized. The effects of fuel composition and electrode materials were investigated. Membrane electrode assemblies fabricated with Tokuyama AAEM and commercial noble metal catalysts achieved peak power densities between 25 and 168 mW cm-2 depending on the operating temperature, fuel composition, and electrode materials used. Good electrode wettability at the anode was found to be very important for achieving high power densities. The performance of the best AAEM cells was comparable to Nafion-based cells under similar conditions. Factors limiting the performance of AAEM MEAs were found to be different from those of Nafion MEAs. Improved electrode kinetics for methanol oxidation in alkaline electrolyte at Pt-Ru are apparent at low current densities. At high current densities, rapid CO2 production converts the hydroxide anions, necessary for methanol oxidation, to bicarbonate and carbonate: consequently, the membrane and interfacial conductivity are drastically reduced. These phenomena necessitate the use of aqueous potassium hydroxide and wettable electrode materials for efficient hydroxide supply to the anode. However, aqueous hydroxide is not needed at the cathode. Compared to AAEM-based fuel cells, methanol fuel cells based on proton-conducting Nafion retain better performance at high current densities by providing the benefit of carbon dioxide rejection.

  15. Language and Development in Multilingual Settings: A Case Study of Knowledge Exchange and Teacher Education in South Africa

    NASA Astrophysics Data System (ADS)

    Rassool, Naz; Edwards, Viv; Bloch, Carole

    2006-12-01

    The quality of a country's human-resource base can be said to determine its level of success in social and economic development. This study focuses on some?of the major human-resource development issues that surround the implementation of South Africa's policy of multilingualism in education. It begins by discussing the relationship between knowledge, language, and human-resource, social and economic development within the global cultural economy. It then considers the situation in South Africa and, in particular, the implications of that country's colonial and neo-colonial past for attempts to implement the new policy. Drawing on the linguistic-diversity-in-education debate in the United Kingdom of the past three decades, it assesses the first phase of an in-service teacher-education programme that was carried out at the Project for Alternative Education in South Africa (PRAESA) based at the University of Cape Town. The authors identify key short- and long-term issues related to knowledge exchange in education in multilingual societies, especially concerning the use of African languages as mediums for teaching and learning.

  16. Synthesis of transport layers with controlled anisotropy and application thereof to study proton exchange membrane fuel cell performance

    NASA Astrophysics Data System (ADS)

    Todd, Devin; Mérida, Walter

    2016-04-01

    We report on a novel method for the synthesis of fibre-based proton exchange membrane (PEM) fuel cell porous transport layers (PTLs) with controllable fibre alignment. We also report the first application of such layers as diagnostics tools to probe the effect of within-plane PTL anisotropy upon PEM fuel cell performance. These structures are realized via adaptation of electrospinning technology. Electrospun layers with progressive anisotropy magnitude are produced and evaluated. This novel approach is distinguished from the state-of-the-art because an equivalent study using commercially available materials is impossible due to lack of structurally similar substrates with different anisotropies. The anisotropy is visualized via scanning electron microscopy, and quantified using electrical resistivity. The capacity is demonstrated to achieve fibre alignment, and the associated impact on transport properties. A framework is presented for assessing the in-situ performance, whereby transport layer orientation versus bipolar plate flow-field geometry is manipulated. While an effect upon the commercial baseline cannot be discerned, electrospun transport layers with greater anisotropy magnitude suggest greater sensitivity to orientation; where greater performance is obtained with fibres cross-aligned to flow-field channels. Our approach of electrospun transport enables deterministic structures by which fuel cell performance can be explained and optimized.

  17. Study of acetylene poisoning of Pt cathode on proton exchange membrane fuel cell spatial performance using a segmented cell system

    NASA Astrophysics Data System (ADS)

    Reshetenko, Tatyana V.; St-Pierre, Jean

    2015-08-01

    Acetylene is a welding fuel and precursor for organic synthesis, which requires considering it to be a possible air pollutant. In this work, the spatial performance of a proton exchange membrane fuel cell exposed to 300 ppm C2H2 and different operating currents was studied with a segmented cell system. The injection of C2H2 resulted in a cell performance decrease and redistribution of segments' currents depending on the operating conditions. Performance loss was 20-50 mV at 0.1-0.2 A cm-2 and was accompanied by a rapid redistribution of localized currents. Acetylene exposure at 0.4-1.0 A cm-2 led to a sharp voltage decrease to 0.07-0.13 V and significant changes in current distribution during a transition period, when the cell reached a voltage of 0.55-0.6 V. A recovery of the cell voltage was observed after stopping the C2H2 injection. Spatial electrochemical impedance spectroscopy (EIS) data showed different segments' behavior at low and high currents. It was assumed that acetylene oxidation occurs at high cell voltage, while it reduces at low cell potential. A detailed analysis of the current density distribution, its correlation with EIS data and possible C2H2 oxidation/reduction mechanisms are presented and discussed.

  18. A modeling study of water and salt exchange for a micro-tidal, stratified northern Gulf of Mexico estuary

    NASA Astrophysics Data System (ADS)

    Kim, Choong-Ki; Park, Kyeong

    2012-08-01

    A three-dimensional hydrodynamic model is applied to the Mobile Bay system to study water and salt exchange with the northern Gulf of Mexico via Main Pass (MP) and eastern Mississippi Sound via Pass-aux-Herons (PaH). On average, more water leaves the Bay through MP than through PaH, and the Bay gains salt through MP and loses about the same amount through PaH. However, the volume discharge rate Qf and salt transport rate FS vary greatly in response to wind and river discharge with the range of variation 1-2 orders of magnitude larger than the corresponding mean. Stratification plays a key role for salt transport through MP. During periods of large river discharge, the landward shear dispersive transport FE peaking during equatorial tides and the landward tidal oscillatory transport FT peaking during tropic tides, respectively, balance the seaward advective transport QfS0. During periods of relatively weak stratification, FS at MP is almost entirely determined by QfS0 and its variability is well correlated with north-south (along-estuary) wind, associated with the barotropic (water level) adjustment. At the shallow, weakly stratified PaH, FS is almost identical to QfS0, and Qf is well correlated with east-west wind, with the correlation becoming stronger during the dry period.

  19. DFT study of the glutathione peroxidase-like activity of phenylselenol incorporating solvent-assisted proton exchange.

    PubMed

    Bayse, Craig A

    2007-09-20

    Modeling of the glutathione peroxidase-like activity of phenylselenol has been accomplished using density-functional theory and solvent-assisted proton exchange (SAPE). SAPE is a modeling technique intended to mimic solvent participation in proton transfer associated with chemical reaction. Within this method, explicit water molecules incorporated into the gas-phase model allow relay of a proton through the water molecules from the site of protonation in the reactant to that in the product. The activation barriers obtained by SAPE for the three steps of the GPx-like mechanism of PhSeH fall within the limits expected for a catalytic system at physiological temperatures (DeltaG(1)++ = 19.1 kcal/mol; DeltaG(2)++= 6.6 kcal/mol; G(3)++ = 21.7 kcal/mol) and are significantly lower than studies which require direct proton transfer. The size of the SAPE network is also considered for the model of the reduction of the selenenic acid, step 2 of the GPx-like cycle. Use of a four-water network better accommodates the reaction pathway and reduces the activation barrier by 5 kcal/mol over the two-water model. PMID:17718544

  20. Microcalorimetric study of thermal unfolding of lysozyme in water/glycerol mixtures: An analysis by solvent exchange model

    NASA Astrophysics Data System (ADS)

    Spinozzi, Francesco; Ortore, Maria Grazia; Sinibaldi, Raffaele; Mariani, Paolo; Esposito, Alessandro; Cinelli, Stefania; Onori, Giuseppe

    2008-07-01

    Folded protein stabilization or destabilization induced by cosolvent in mixed aqueous solutions has been studied by differential scanning microcalorimetry and related to difference in preferential solvation of native and denatured states. In particular, the thermal denaturation of a model system formed by lysozyme dissolved in water in the presence of the stabilizing cosolvent glycerol has been considered. Transition temperatures and enthalpies, heat capacity, and standard free energy changes have been determined when applying a two-state denaturation model to microcalorimetric data. Thermodynamic parameters show an unexpected, not linear, trend as a function of solvent composition; in particular, the lysozyme thermodynamic stability shows a maximum centered at water molar fraction of about 0.6. Using a thermodynamic hydration model based on the exchange equilibrium between glycerol and water molecules from the protein solvation layer to the bulk, the contribution of protein-solvent interactions to the unfolding free energy and the changes of this contribution with solvent composition have been derived. The preferential solvation data indicate that lysozyme unfolding involves an increase in the solvation surface, with a small reduction of the protein-preferential hydration. Moreover, the derived changes in the excess solvation numbers at denaturation show that only few solvent molecules are responsible for the variation of lysozyme stability in relation to the solvent composition.