Sample records for hydrogen-induced delayed cracking

  1. Hydrogen-Induced Delayed Cracking in TRIP-Aided Lean-Alloyed Ferritic-Austenitic Stainless Steels.

    PubMed

    Papula, Suvi; Sarikka, Teemu; Anttila, Severi; Talonen, Juho; Virkkunen, Iikka; Hänninen, Hannu

    2017-06-03

    Susceptibility of three lean-alloyed ferritic-austenitic stainless steels to hydrogen-induced delayed cracking was examined, concentrating on internal hydrogen contained in the materials after production operations. The aim was to study the role of strain-induced austenite to martensite transformation in the delayed cracking susceptibility. According to the conducted deep drawing tests and constant load tensile testing, the studied materials seem not to be particularly susceptible to delayed cracking. Delayed cracks were only occasionally initiated in two of the materials at high local stress levels. However, if a delayed crack initiated in a highly stressed location, strain-induced martensite transformation decreased the crack arrest tendency of the austenite phase in a duplex microstructure. According to electron microscopy examination and electron backscattering diffraction analysis, the fracture mode was predominantly cleavage, and cracks propagated along the body-centered cubic (BCC) phases ferrite and α'-martensite. The BCC crystal structure enables fast diffusion of hydrogen to the crack tip area. No delayed cracking was observed in the stainless steel that had high austenite stability. Thus, it can be concluded that the presence of α'-martensite increases the hydrogen-induced cracking susceptibility.

  2. Hydrogen-Induced Delayed Cracking in TRIP-Aided Lean-Alloyed Ferritic-Austenitic Stainless Steels

    PubMed Central

    Papula, Suvi; Sarikka, Teemu; Anttila, Severi; Talonen, Juho; Virkkunen, Iikka; Hänninen, Hannu

    2017-01-01

    Susceptibility of three lean-alloyed ferritic-austenitic stainless steels to hydrogen-induced delayed cracking was examined, concentrating on internal hydrogen contained in the materials after production operations. The aim was to study the role of strain-induced austenite to martensite transformation in the delayed cracking susceptibility. According to the conducted deep drawing tests and constant load tensile testing, the studied materials seem not to be particularly susceptible to delayed cracking. Delayed cracks were only occasionally initiated in two of the materials at high local stress levels. However, if a delayed crack initiated in a highly stressed location, strain-induced martensite transformation decreased the crack arrest tendency of the austenite phase in a duplex microstructure. According to electron microscopy examination and electron backscattering diffraction analysis, the fracture mode was predominantly cleavage, and cracks propagated along the body-centered cubic (BCC) phases ferrite and α’-martensite. The BCC crystal structure enables fast diffusion of hydrogen to the crack tip area. No delayed cracking was observed in the stainless steel that had high austenite stability. Thus, it can be concluded that the presence of α’-martensite increases the hydrogen-induced cracking susceptibility. PMID:28772975

  3. Hydrogen-Induced Cold Cracking in High-Frequency Induction Welded Steel Tubes

    NASA Astrophysics Data System (ADS)

    Banerjee, Kumkum

    2016-04-01

    Detailed investigation was carried out on 0.4C steel tubes used for the telescopic front fork of two-wheelers to establish the root cause for the occurrence of transverse cracks at the weld heat-affected zone of the tubes. Fractographic and microstructural observations provide evidences of delayed hydrogen-induced cracking. The beneficial microstructure for avoiding the transverse cracks was found to be the bainitic-martensitic, while martensitic structure was noted to be deleterious.

  4. Microstructural characterization of hydrogen induced cracking in TRIP-assisted steel by EBSD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laureys, A., E-mail: Aurelie.Laureys@UGent.be; Depover, T.; Petrov, R.

    2016-02-15

    The present work evaluates hydrogen induced cracking by performing an elaborate EBSD (Electron BackScatter Diffraction) study in a steel with transformation induced plasticity (TRIP-assisted steel). This type of steel exhibits a multiphase microstructure which undergoes a deformation induced phase transformation. Additionally, each microstructural constituent displays a different behavior in the presence of hydrogen. The aim of this study is to obtain a better understanding on the mechanisms governing hydrogen induced crack initiation and propagation in the hydrogen saturated multiphase structure. Tensile tests on notched samples combined with in-situ electrochemical hydrogen charging were conducted. The tests were interrupted at stresses justmore » after reaching the tensile strength, i.e. before macroscopic failure of the material. This allowed to study hydrogen induced crack initiation and propagation by SEM (Scanning Electron Microscopy) and EBSD. A correlation was found between the presence of martensite, which is known to be very susceptible to hydrogen embrittlement, and the initiation of hydrogen induced cracks. Initiation seems to occur mostly by martensite decohesion. High strain regions surrounding the hydrogen induced crack tips indicate that further crack propagation may have occurred by the HELP (hydrogen-enhanced localized plasticity) mechanism. Small hydrogen induced cracks located nearby the notch are typically S-shaped and crack propagation was dominantly transgranularly. The second stage of crack propagation consists of stepwise cracking by coalescence of small hydrogen induced cracks. - Highlights: • Hydrogen induced cracking in TRIP-assisted steel is evaluated by EBSD. • Tensile tests were conducted on notched hydrogen saturated samples. • Crack initiation occurs by a H-Enhanced Interface DEcohesion (HEIDE) mechanism. • Crack propagation involves growth and coalescence of small cracks. • Propagation is governed by the

  5. Gaseous hydrogen-induced cracking of Ti-5Al-2.5Sn.

    NASA Technical Reports Server (NTRS)

    Williams, D. P.; Nelson, H. G.

    1972-01-01

    Study of the kinetics of hydrogen-induced cracking in the Ti-5Al-2.5Sn titanium alloy, which has a structure of acicular alpha platelets in a beta matrix. The crack-growth rate at low stress-intensity levels was found to be exponentially dependent on stress intensity but essentially independent of temperature. The crack-growth rate at intermediate stress-intensity levels was found to be independent of stress intensity but dependent on temperature in such a way that crack-growth rate was controlled by a thermally activated mechanism having an activation energy of 5500 cal/mole and varied as the square root of the hydrogen pressure. The crack-growth rate at stress-intensity levels very near the fracture toughness is presumed to be independent of environment. The results are interpreted to suggest that crack growth at high stress intensities is controlled by normal, bulk failure mechanisms such as void coalescence and the like. At intermediate stress-intensity levels the transport of hydrogen to some interaction site along the alpha-beta boundary is the rate-controlling mechanism. The crack-growth behavior at low stress intensities suggests that the hydrogen interacts at this site to produce a strain-induced hydride which, in turn, induces crack growth by restricting plastic flow at the crack tip.

  6. Internal hydrogen-induced subcritical crack growth in austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Huang, J. H.; Altstetter, C. J.

    1991-11-01

    The effects of small amounts of dissolved hydrogen on crack propagation were determined for two austenitic stainless steel alloys, AISI 301 and 310S. In order to have a uniform distribution of hydrogen in the alloys, they were cathodically charged at high temperature in a molten salt electrolyte. Sustained load tests were performed on fatigue precracked specimens in air at 0 ‡C, 25 ‡C, and 50 ‡C with hydrogen contents up to 41 wt ppm. The electrical potential drop method with optical calibration was used to continuously monitor the crack position. Log crack velocity vs stress intensity curves had definite thresholds for subcritical crack growth (SCG), but stage II was not always clearly delineated. In the unstable austenitic steel, AISI 301, the threshold stress intensity decreased with increasing hydrogen content or increasing temperature, but beyond about 10 wt ppm, it became insensitive to hydrogen concentration. At higher concentrations, stage II became less distinct. In the stable stainless steel, subcritical crack growth was observed only for a specimen containing 41 wt ppm hydrogen. Fractographic features were correlated with stress intensity, hydrogen content, and temperature. The fracture mode changed with temperature and hydrogen content. For unstable austenitic steel, low temperature and high hydrogen content favored intergranular fracture while microvoid coalescence dominated at a low hydrogen content. The interpretation of these phenomena is based on the tendency for stress-induced phase transformation, the different hydrogen diffusivity and solubility in ferrite and austenite, and outgassing from the crack tip. After comparing the embrittlement due to internal hydrogen with that in external hydrogen, it is concluded that the critical hydrogen distribution for the onset of subcritical crack growth is reached at a location that is very near the crack tip.

  7. A film-rupture model of hydrogen-induced, slow crack growth in alpha-beta titanium

    NASA Technical Reports Server (NTRS)

    Nelson, H. G.

    1975-01-01

    The appearance of the terrace like fracture morphology of gaseous hydrogen induced crack growth in acicular alpha-beta titanium alloys is discussed as a function of specimen configuration, magnitude of applied stress intensity, test temperature, and hydrogen pressure. Although the overall appearance of the terrace structure remained essentially unchanged, a distinguishable variation is found in the size of the individual terrace steps, and step size is found to be inversely dependent upon the rate of hydrogen induced slow crack growth. Additionally, this inverse relationship is independent of all the variables investigated. These observations are quantitatively discussed in terms of the formation and growth of a thin hydride film along the alpha-beta boundaries and a qualitative model for hydrogen induced slow crack growth is presented, based on the film-rupture model of stress corrosion cracking.

  8. Fractographic analysis of gaseous hydrogen induced cracking in 18Ni maraging steel

    NASA Technical Reports Server (NTRS)

    Gangloff, R. P.; Wei, R. P.

    1978-01-01

    Electron microscope fractographic analysis supplemented an extensive study of the kinetics of gaseous hydrogen assisted cracking in 18Ni maraging steel. Temperature determined the crack path morphology in each steel which, in turn, was directly related to the temperature dependence of the crack growth rate. Crack growth in the low temperature regime proceeded along prior austenite grain boundaries. Increasing the temperature above a critical value produced a continuously increasing proportion of transgranular quasi-cleavage associated with lath martensite boundaries. The amount of transgranular cracking was qualitatively correlated with the degree of temperature-induced deviation from Arrhenius behavior. Fractographic observations are interpreted in terms of hypothesized mechanisms for gaseous hydrogen embrittlement. It is concluded that hydrogen segregation to prior austenite and lath martensite boundaries must be considered as a significant factor in developing mechanisms for gaseous embrittlement of high strength steels.

  9. Effects of External Hydrogen on Hydrogen Transportation and Distribution Around the Fatigue Crack Tip in Type 304 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Chen, Xingyang; Zhou, Chengshuang; Cai, Xiao; Zheng, Jinyang; Zhang, Lin

    2017-10-01

    The effects of external hydrogen on hydrogen transportation and distribution around the fatigue crack tip in type 304 stainless steel were investigated by using hydrogen microprint technique (HMT) and thermal desorption spectrometry. HMT results show that some silver particles induced by hydrogen release are located near the fatigue crack and more silver particles are concentrated around the crack tip, which indicates that hydrogen accumulates in the vicinity of the crack tip during the crack growth in hydrogen gas environment. Along with the crack propagation, strain-induced α' martensite forms around the crack tip and promotes hydrogen invasion into the matrix, which will cause the crack initiation and propagation at the austenite/ α' martensite interface. In addition, the hydrogen content in the vicinity of the crack tip is higher than that at the crack edge far away from the crack tip, which is related to the stress state and strain-induced α' martensite.

  10. Main factors causing intergranular and quasi-cleavage fractures at hydrogen-induced cracking in tempered martensitic steels

    NASA Astrophysics Data System (ADS)

    Kurokawa, Ami; Doshida, Tomoki; Hagihara, Yukito; Suzuki, Hiroshi; Takai, Kenichi

    2018-05-01

    Though intergranular (IG) and quasi-cleavage (QC) fractures have been widely recognized as typical fracture modes of the hydrogen-induced cracking in high-strength steels, the main factor has been unclarified yet. In the present study, the hydrogen content dependence on the main factor causing hydrogen-induced cracking has been examined through the fracture mode transition from QC to IG at the crack initiation site in the tempered martensitic steels. Two kinds of tempered martensitic steels were prepared to change the cohesive force due to the different precipitation states of Fe3C on the prior γ grain boundaries. A high amount of Si (H-Si) steel has a small amount of Fe3C on the prior austenite grain boundaries. Whereas, a low amount of Si (L-Si) steel has a large amount of Fe3C sheets on the grain boundaries. The fracture modes and initiations were observed using FE-SEM (Field Emission-Scanning Electron Microscope). The crack initiation sites of the H-Si steel were QC fracture at the notch tip under various hydrogen contents. While the crack initiation of the L-Si steel change from QC fracture at the notch tip to QC and IG fractures from approximately 10 µm ahead of the notch tip as increasing in hydrogen content. For L-Si steels, two possibilities are considered that the QC or IG fracture occurred firstly, or the QC and IG fractures occurred simultaneously. Furthermore, the principal stress and equivalent plastic strain distributions near the notch tip were calculated with FEM (Finite Element Method) analysis. The plastic strain was the maximum at the notch tip and the principle stress was the maximum at approximately 10 µm from the notch tip. The position of the initiation of QC and IG fracture observed using FE-SEM corresponds to the position of maximum strain and stress obtained with FEM, respectively. These findings indicate that the main factors causing hydrogen-induced cracking are different between QC and IG fractures.

  11. Quantitative observations of hydrogen-induced, slow crack growth in a low alloy steel

    NASA Technical Reports Server (NTRS)

    Nelson, H. G.; Williams, D. P.

    1973-01-01

    Hydrogen-induced slow crack growth, da/dt, was studied in AISI-SAE 4130 low alloy steel in gaseous hydrogen and distilled water environments as a function of applied stress intensity, K, at various temperatures, hydrogen pressures, and alloy strength levels. At low values of K, da/dt was found to exhibit a strong exponential K dependence (Stage 1 growth) in both hydrogen and water. At intermediate values of K, da/dt exhibited a small but finite K dependence (Stage 2), with the Stage 2 slope being greater in hydrogen than in water. In hydrogen, at a constant K, (da/dt) sub 2 varied inversely with alloy strength level and varied essentially in the same complex manner with temperature and hydrogen pressure as noted previously. The results of this study provide support for most of the qualitative predictions of the lattice decohesion theory as recently modified by Oriani. The lack of quantitative agreement between data and theory and the inability of theory to explain the observed pressure dependence of slow crack growth are mentioned and possible rationalizations to account for these differences are presented.

  12. Microstructure and yield strength effects on hydrogen and tritium induced cracking in HERF (high-energy-rate-forged) stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, M J; Tosten, M H

    1989-01-01

    Rising-load J-integral measurements and falling-load threshold stress intensity measurements were used to characterize hydrogen and tritium induced cracking in high-energy-rate-forged (HERF) 21-6-9 stainless steel. Samples having yield strengths in the range 517--930 MPa were thermally charged with either hydrogen or tritium and tested at room temperature in either air or high-pressure hydrogen gas. In general, the hydrogen isotopes reduced the fracture toughness by affecting the fracture process. Static recrystallization in the HERF microstructures affected the material's fracture toughness and its relative susceptibility to hydrogen and tritium induced fracture. In hydrogen-exposed samples, the reduction in fracture toughness was primarily dependent onmore » the susceptibility of the microstructure to intergranular fracture and only secondarily affected by strength in the range of 660 to 930 MPa. Transmission-electron microscopy observations revealed that the microstructures least susceptible to hydrogen-induced intergranular cracking contained patches of fully recrystallized grains. These grains are surrounded by highly deformed regions containing a high number density of dislocations. The microstructure can best be characterized as duplex'', with soft recrystallized grains embedded in a hard, deformed matrix. The microstructures most susceptible to hydrogen-induced intergranular fracture showed no well-developed recrystallized grains. The patches of recrystallized grains seemed to act as crack barriers to hydrogen-induced intergranular fracture. In tritium-exposed-and-aged samples, the amount of static recrystallization also affected the fracture toughness properties but to a lesser degree. 7 refs., 25 figs.« less

  13. Moisture-Induced Alumina Scale Spallation: The Hydrogen Factor

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2010-01-01

    For some time the oxidation community has been concerned with interfacial spallation of protective alumina scales, not just upon immediate cool down, but as a time-delayed phenomenon. Moisture-induced delayed spallation (MIDS) and desktop spallation (DTS) of thermal barrier coatings (TBCs) refer to this process. It is most apparent for relatively adherent alumina scales that have survived initial cool down in a dry environment, have built up considerable thickness and strain energy, and have been somewhat damaged, such as by cyclic oxidation cracking. Indeed, a "sensitive zone" can be described that maximizes the observed effect as a function of all the relevant factors. Moisture has been postulated to serve as a source of interfacial hydrogen embrittlement. Hydrogen is derived from reaction with aluminum in the alloy at an exposed interface. The purpose of this monograph is to trace the close analogy of this phenomenon to other hydrogen-induced effects, such as embrittlement of aluminides and blistering of alloys and anodic alumina films. A formalized, top-down, logic-tree structure is presented as a guide to this discussion. A theoretical basis for interfacial weakening by hydrogen is first cited, as are demonstrations of hydrogen detection as a reaction product or interfacial species. Further support is provided by critical experiments that recreate the moisture effect, but by isolating hydrogen from other potential causative factors. These experiments include tests in H 2-containing atmospheres or cathodic hydrogen charging. Accordingly, they strongly indicate that interfacial hydrogen, derived from moisture, is the key chemical species accounting for delayed alumina scale spallation.

  14. Effect of hydrogen on fatigue crack propagation in vanadium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, D.W.; Stoloff, N.S.

    The influence of hydrogen on fatigue crack propagation in unalloyed vanadium and several hydrogen-charged vanadium alloys has been investigated. The Paris--Erdogan equation, da/dN = C(..delta..K)/sup m/, was approximately obeyed for all alloys. Crack growth rates were lowest in vanadium and dilute vanadium-hydrogen alloys, and were not very sensitive to volume fraction of hydrides in more concentrated alloys. The crack growth exponent, m, is inversely proportional to the cyclic strain hardening rate, n', and the rate constant C is inversely proportional to the square of the ultimate tensile stress, sigma/sub UTS/: metallographic examination showed hydride reorientation and growth in the originallymore » hydrided alloys. No stress-induced hydrides were observed in V-H solid-solution alloys. Fractures in hydrided materials exhibited cleavage-like features, while striations were noted in unalloyed vanadium and dilute solid-solution alloys.« less

  15. Effect of hydrogen on fatigue crack propagation in vanadium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, D.W.; Stoloff, N.S.

    The influence of hydrogen on fatigue crack propagation in unalloyed vanadium and several hydrogen-charged vanadium alloys has been investigated. The Paris--Erdogan equation, da/dN = C(..delta..K)/sup m/, was approximately obeyed for all alloys. Crack growth rates were lowest in vanadium and dilute vanadium--hydrogen alloys, and were not very sensitive to volume fraction of hydrides in more concentrated alloys. The crack growth exponent, m, is inversely proportional to the cyclic strain hardening rate, n', and the rate constant C is inversely proportional to the square of the ultimate tensile stress, sigma/sub UTS/: metallographic examination showed hydride reorientation and growth in the originallymore » hydrided alloys. No stress-induced hydrides were observed in V--H solid-solution alloys. Fractures in hydrided materials exhibited cleavage-like features, while striations were noted in unalloyed vanadium and dilute solid-solution alloys.« less

  16. Effects of Residual Impurities on Hydrogen Assisted Cracking in High Strength Steels. Part II.

    DTIC Science & Technology

    1982-06-01

    source of hydrogen is the corrosion reaction of steel with aqueous hydrogen sulfide solutions encountered either in the production of crude oil and...autoradiography technique, it has been shown that in Armco iron and in maraging steel of hydrogen is trapped at prior austenite grain boundaries. Tritium...also play a deleterious role in hydrogen-induced cracking. In these ultra-high strength steels , the crack-tip stress level and the concomitant stress

  17. Hydrogen-induced slow crack growth of a plain carbon pipeline steel under conditions of cyclic loading

    NASA Technical Reports Server (NTRS)

    Nelson, H. G.

    1976-01-01

    The investigation described was aimed at establishing the degree of compatibility between a plain carbon pipeline-type steel and hydrogen and also hydrogen-rich environments containing small additions of H2S, O2, H2O, CO, CO2, CH4, and natural gas at pressures near 1 atm. Test were carried out under conditions of static and cyclic loading; the subcritical crack growth was monitored. The rates of crack growth observed in the hydrogen and hydrogen-rich environments are compared with the crack rate observed in a natural gas environment to determine the compatibility of the present natural gas transmission system with gaseous hydrogen transport.

  18. Thermodynamic analysis on the role of hydrogen in anodic stress corrosion cracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, L.; Mao, X.

    1995-11-01

    A synergistic effect of hydrogen and stress on a corrosion rate was analyzed with thermodynamics. The results showed that an interaction of stress and hydrogen could increase the corrosion rate remarkably. Stress corrosion cracking (SCC) of austenitic stainless steel (ASS) was investigated in boiling chloride solution to confirm the analysis. Hydrogen could be introduced into the specimen concentrated at the crack tip during SCC in boiling LiCl solution (143 C). The concentrating factor is about 3 which is consistent with calculated results according to stress induced diffusion.

  19. Evaluation of Heat-affected Zone Hydrogen-induced Cracking in High-strength Steels

    NASA Astrophysics Data System (ADS)

    Yue, Xin

    Shipbuilding is heavily reliant on welding as a primary fabrication technique. Any high performance naval steel must also possess good weldability. It is therefore of great practical importance to conduct weldability testing of naval steels. Among various weldability issues of high-strength steels, hydrogen-induced cracking (HIC) in the heat-affected zone (HAZ) following welding is one of the biggest concerns. As a result, in the present work, research was conducted to study the HAZ HIC susceptibility of several naval steels. Since the coarse-grained heat-affected zone (CGHAZ) is generally known to be the most susceptible to HIC in the HAZ region, the continuous cooling transformation (CCT) behavior of the CGHAZ of naval steels HSLA-65, HSLA-100, and HY-100 was investigated. The CGHAZ microstructure over a range of cooling rates was characterized, and corresponding CCT diagrams were constructed. It was found that depending on the cooling rate, martensite, bainite, ferrite and pearlite can form in the CGHAZ of HSLA-65. For HSLA-100 and HY-100, only martensite and bainite formed over the range of cooling rates that were simulated. The constructed CCT diagrams can be used as a reference to select welding parameters to avoid the formation of high-hardness martensite in the CGHAZ, in order to ensure resistance to hydrogen-induced cracking. Implant testing was conducted on the naval steels to evaluate their susceptibility to HAZ HIC. Stress vs. time to failure curves were plotted, and the lower critical stress (LCS), normalized critical stress ratio (NCSR) and embrittlement index (EI) for each steel were determined, which were used to quantitatively compare HIC susceptibility. The CGHAZ microstructure of the naval steels was characterized, and the HIC fracture behavior was studied. Intergranular (IG), quasi-cleavage (QC) and microvoid coalescence (MVC) fracture modes were found to occur in sequence during the crack initiation and propagation process. This was

  20. Moisture-Induced Alumina Scale Spallation: The Hydrogen Factor

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2009-01-01

    For some time our community has been concerned with interfacial spallation of protective alumina scales, not just upon immediate cooldown, but as a time-delayed phenomenon. Moisture-induced delayed spallation (MIDS) and desktop spallation (DTS) of TBC's refer to this process. It is most apparent for relatively adherent alumina scales that have survived cool down in a dry environment, built up considerable thickness and strain energy, and have been somewhat damaged, such as by cyclic oxidation cracking. Indeed, a "sweet zone" can be defined that maximizes the observed effect as a function of all the relevant factors. Moisture has been postulated to serve as a source of interfacial hydrogen embrittlement derived from reaction with aluminum in the alloy at an exposed interface. The purpose of this monograph is to trace the close analogy of this phenomenon to other hydrogen effects, such as embrittlement of aluminides and blistering of alloys and anodic alumina films. A formalized, top-down, logic tree structure is presented as a guide to this discussion. A theoretical basis for interfacial weakening by hydrogen is first cited, as are demonstrations of hydrogen as a reaction product or detected interfacial species. Further support is provided by critical experiments that produce the same moisture effect, but by isolating hydrogen from other potential causative factors. These experiments include tests in H2-containing atmospheres or cathodic hydrogen charging.

  1. Hydrogen Assisted Cracking of High Strength Steel Welds

    DTIC Science & Technology

    1988-05-01

    cracking of high strength steel welds. The microplasticity theory originally proposed by M Beachem is used to explain the effect of hydrogen on the var... microplasticity mechanism rather than embrittlement (B7). He suggests that the hydrogen in the lattice ahead of the crack tip assists whatever...intensity level on the observed fracture mode. This theory postu- lates that hydrogen will promote cracking by a microplasticity mechanism rather than

  2. A ’Hydrogen Partitioning’ Model for Hydrogen Assisted Crack Growth.

    DTIC Science & Technology

    1984-09-01

    the change in Stage II crack growth rate from Region A to Region C in the 18NI maraging steels . It cannot, however, explain the sudden drop off in...Neither partitioning of hydrogen nor adsorption equilibrium can account for the observed "high" temperature response of l8Ni maraging steel in hydrogen...ment and Stress Corrosion Cracking, American Society for Metals, Metals Park, OH, 1984, p. 103 (in press). 11. R. P. Wei: in Hydrogen Effects in

  3. Hydrogen-enhanced fatigue crack growth in steels and its frequency dependence

    NASA Astrophysics Data System (ADS)

    Matsunaga, Hisao; Takakuwa, Osamu; Yamabe, Junichiro; Matsuoka, Saburo

    2017-06-01

    In the context of the fatigue life design of components, particularly those destined for use in hydrogen refuelling stations and fuel cell vehicles, it is important to understand the hydrogen-induced, fatigue crack growth (FCG) acceleration in steels. As such, the mechanisms for acceleration and its influencing factors are reviewed and discussed in this paper, with a special focus on the peculiar frequency dependence of the hydrogen-induced FCG acceleration. Further, this frequency dependence is debated by introducing some potentially responsible elements, along with new experimental data obtained by the authors. This article is part of the themed issue 'The challenges of hydrogen and metals'.

  4. Hydrogen-enhanced fatigue crack growth in steels and its frequency dependence.

    PubMed

    Matsunaga, Hisao; Takakuwa, Osamu; Yamabe, Junichiro; Matsuoka, Saburo

    2017-07-28

    In the context of the fatigue life design of components, particularly those destined for use in hydrogen refuelling stations and fuel cell vehicles, it is important to understand the hydrogen-induced, fatigue crack growth (FCG) acceleration in steels. As such, the mechanisms for acceleration and its influencing factors are reviewed and discussed in this paper, with a special focus on the peculiar frequency dependence of the hydrogen-induced FCG acceleration. Further, this frequency dependence is debated by introducing some potentially responsible elements, along with new experimental data obtained by the authors.This article is part of the themed issue 'The challenges of hydrogen and metals'. © 2017 The Author(s).

  5. Effect of Grain Orientation and Boundary Distributions on Hydrogen-Induced Cracking in Low-Carbon-Content Steels

    NASA Astrophysics Data System (ADS)

    Masoumi, Mohammad; Coelho, Hana Livia Frota; Tavares, Sérgio Souto Maior; Silva, Cleiton Carvalho; de Abreu, Hamilton Ferreira Gomes

    2017-08-01

    Hydrogen-induced cracking (HIC) causes considerable economic losses in a wide range of steels exposed to corrosive environments. The effect of crystallographic texture and grain boundary distributions tailored by rolling at 850 °C in three different steels with a body-centered cube structure was investigated on HIC resistance. The x-ray and electron backscattered diffraction techniques were used to characterize texture evolutions during the rolling process. The findings revealed a significant improvement against HIC based on texture engineering. In addition, increasing the number of {111} and {110} grains, associated with minimizing the number of {001} grains in warm-rolled samples, reduced HIC susceptibility. Moreover, the results showed that boundaries associated with low {hkl} indexing and denser packing planes had more resistance against crack propagation.

  6. Hydrogen-Assisted Crack Propagation in Austenitic Stainless Steel Fusion Welds

    NASA Astrophysics Data System (ADS)

    Somerday, B. P.; Dadfarnia, M.; Balch, D. K.; Nibur, K. A.; Cadden, C. H.; Sofronis, P.

    2009-10-01

    The objective of this study was to characterize hydrogen-assisted crack propagation in gas-tungsten arc (GTA) welds of the nitrogen-strengthened, austenitic stainless steel 21Cr-6Ni-9Mn (21-6-9), using fracture mechanics methods. The fracture initiation toughness and crack growth resistance curves were measured using fracture mechanics specimens that were thermally precharged with 230 wppm (1.3 at. pct) hydrogen. The fracture initiation toughness and slope of the crack growth resistance curve for the hydrogen-precharged weld were reduced by as much as 60 and 90 pct, respectively, relative to the noncharged weld. A physical model for hydrogen-assisted crack propagation in the welds was formulated from microscopy evidence and finite-element modeling. Hydrogen-assisted crack propagation proceeded by a sequence of microcrack formation at the weld ferrite, intense shear deformation in the ligaments separating microcracks, and then fracture of the ligaments. One salient role of hydrogen in the crack propagation process was promoting microcrack formation at austenite/ferrite interfaces and within the ferrite. In addition, hydrogen may have facilitated intense shear deformation in the ligaments separating microcracks. The intense shear deformation could be related to the development of a nonuniform distribution of hydrogen trapped at dislocations between microcracks, which in turn created a gradient in the local flow stress.

  7. Environmentally induced crack propagation in Inconel alloys 600 and 690 under hydrogen supersaturated steam

    NASA Astrophysics Data System (ADS)

    Ali, Mehboob Muzzammil

    Intergranular stress corrosion cracking (IGSCC) of Inconel alloys 600 and 690 was investigated by exposing them to 300--400°C in deaerated hydrogen supersaturated steam. Crack growth rates were measured in-situ for the above alloys using modified wedge-opening-loaded (M-WOL) linear elastic fracture specimens under constant displacement conditions. The applied stress intensity factors (K) used varied from 29--90 MPam1/2. An activation energy of 120 kJ/mol was found for crack growth rates as a function of temperature. This activation energy is close to the one corresponding to grain boundary self diffusion of nickel. In addition, it was found that the apparent crack growth rates (da/dt) exhibited a linear dependence with KI, given by (da/dt) = A.KIn, where n = 1 in our case. Microstructurally, crack propagation in both the alloys was predominantly along the grain boundaries. It is suggested that high fugacity hydrogen was generated at the tip of the crack, as a result of the reaction of H2O with Cr2O3 on the fracture surface leading to IGSCC. It was found that the rates of crack propagation in both alloys 600 and 690 are very similar. Moreover, under the applied KIs, both alloys 600 and 690 show a similar tendency to crack intergranularly in a direction perpendicular to the applied stress. Crack branching was also exhibited by both the alloys 600 as well as 690. The difference in the crack growth rates of alloys 600 and 690 was found to be only about 2%, which indicates that the crack growth rates in these alloys is independent of the alloy chromium content and that, possibly very similar crack growth mechanisms are active in both the alloys 600 and 690 under similar conditions of KI and temperature. HREM images at the crack tip of alloy 690 exhibit two distinct regions---a crystalline region, and an adjacent amorphous region, which is likely to be either a hydroxide or an amorphous oxide layer. This layer is expected to result from passivation reactions as the

  8. The kinetic and mechanical aspects of hydrogen-induced failure in metals. Ph.D. Thesis, 1971

    NASA Technical Reports Server (NTRS)

    Nelson, H. G.

    1972-01-01

    Premature hydrogen-induced failure observed to occur in many metal systems involves three stages of fracture: (1) crack initiation, (2) stable slow crack growth, and (3) unstable rapid crack growth. The presence of hydrogen at some critical location on the metal surface or within the metal lattice was shown to influence one or both of the first two stages of brittle fracture but has a negligible effect on the unstable rapid crack growth stage. The relative influence of the applied parameters of time, temperature, etc., on the propensity of a metal to exhibit hydrogen induced premature failure was investigated.

  9. Effects of hydrogen on fatigue crack growth of iron aluminides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castagna, A.; Stoloff, N.S.

    Three Fe-Al alloys, FAP-Y, FA-129, and Fe-35a%Al, containing 16, 28, and 35a%Al, respectively, have been subjected to fatigue crack growth testing in moist air, in oxygen, and in gaseous hydrogen. In each case hydrogen and air were embrittling. Crack growth rates increased significantly as frequency decreased. Fatigue crack growth results have been compared with those for other structural iron-base alloys. Surprisingly, FAP-Y displays the highest crack growth rate of any alloy examined, except at very low levels of stress intensity range. The mechanisms for embrittlement by hydrogen and by moisture in air are discussed.

  10. Hydrogen enhanced crack growth in 18 Ni maraging steels

    NASA Technical Reports Server (NTRS)

    Hudak, S. J., Jr.; Wei, R. P.

    1976-01-01

    The kinetics of sustained-load subcritical crack growth for 18 Ni maraging steels in high-purity hydrogen are examined using the crack-tip stress intensity factor K as a measure of crack driving force. Crack growth rate as a function of stress intensity exhibited a clearly defined K-independent stage (Stage II). Crack growth rates in an 18 Ni (grade 250) maraging steel are examined for temperatures from -6 to +100 C. A critical temperature was observed above which crack growth rates became diminishingly small. At lower temperatures the activation energy for Stage II crack growth was found to be 16.7 plus or minus 3.3 kJ/mole. Temperature and hydrogen partial pressure are shown to interact in a complex manner to determine the apparent Kth (stress intensity level below which no observable crack growth occurs) and the crack growth behavior. Comparison of results on '250' and '300' grades of 18 Ni maraging steel indicate a significant influence of alloy composition and/or strength level on the crack growth behavior.

  11. The Influence of Hydrogen on the Evolving Microstructure During Fatigue Crack Growth in Metastable and Stable Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Nygren, Kelly Elizabeth

    The effect of high levels of internal hydrogen on the microstructure evolving during stage II fatigue crack growth was investigated through a series of tensile and fatigue studies in metastable (304) and stable (316, 316L) stainless steels. The first, a tensile study in 304 stainless steel, identified the underlying microstructure which resulted in the flat and quasi-cleavage features on the fracture surface of a hydrogen-charged tensile bar. The second study utilized single-edge notched tensile specimens loaded in fatigue, and compared the evolving microstructure ahead of a fatigue crack for cases of an uncharged, 10 wppm hydrogen-charged, and 104 wppm hydrogen-charged 304 and 316L alloy. The final fatigue study, a small fatigue crack growth study in round bars of 304 and 316, provided a contextual comparison of microstructures to previous results in literature. In the metastable 304 stainless steel, hydrogen is found to change the nature of the martensitic transformation and subsequent fracture path. This transformation is attributed to enhanced plasticity and hydrogen-dislocation interactions stabilizing the austenitic matrix and confining slip to particular close-packed planes. The martensite acts as a fast diffusion pathway for hydrogen, leading to final fracture along martensitic laths or cleavage planes. In 316L, the material deforms via slip and twinning and hydrogen does not induce a change in deformation mechanisms. Instead, the enhanced plasticity and hydrogen-dislocation interactions increase the degree of plasticity, leading to smaller dislocation cell sizes with thicker walls before the onset of twinning. The crack interacts with a heavily twinned structure superimposed on dislocation cells, resulting in a curvature of one twin-variant in the direction of crack growth and the formation of a refined region at the fracture surface. These structures are localized to the crack surface and limited in rotation in the presence of hydrogen. The presence of a

  12. Hydrogen assisted cracking and CO2 corrosion behaviors of low-alloy steel with high strength used for armor layer of flexible pipe

    NASA Astrophysics Data System (ADS)

    Liu, Zhenguang; Gao, Xiuhua; Du, Linxiu; Li, Jianping; Zhou, Xiaowei; Wang, Xiaonan; Wang, Yuxin; Liu, Chuan; Xu, Guoxiang; Misra, R. D. K.

    2018-05-01

    In this study, hydrogen induced cracking (HIC), sulfide stress corrosion cracking (SSCC) and hydrogen embrittlement (HE) were carried out to study hydrogen assisted cracking behavior (HIC, SSCC and HE) of high strength pipeline steel used for armor layer of flexible pipe in ocean. The CO2 corrosion behavior of designed steel with high strength was studied by using immersion experiment. The experimental results demonstrate that the corrosion resistance of designed steel with tempered martensite to HIC, SSCC and HE is excellent according to specific standards, which contributes to the low concentration of dislocation and vacancies previously formed in cold rolling process. The corrosion mechanism of hydrogen induced cracking of designed steel, which involves in producing process, microstructure and cracking behavior, is proposed. The designed steel with tempered martensite shows excellent corrosion resistance to CO2 corrosion. Cr-rich compound was first formed on the coupon surface exposed to CO2-saturated brine condition and chlorine, one of the corrosion ions in solution, was rich in the inner layer of corrosion products.

  13. Influence of dissolved hydrogen on the fatigue crack growth behaviour of AISI 4140 steel

    NASA Astrophysics Data System (ADS)

    Ramasagara Nagarajan, Varun

    hydrogen induced failure mechanism in this material during cyclic loading. The secondary objective of this investigation was to determine the role of inclusions and their influence in affecting the fatigue crack growth rate of this material. Compact tension and tensile specimens were prepared as per ASTM E-647, E-399 and E-8 standards. The specimens were tested in three different heat treated conditions i.e. annealed (as received) as well as two austempered conditions. These specimens were precharged with hydrogen (ex situ) using cathodic charging method at a constant current density at three different time periods ranging from 150 to 250 hours before conducting fatigue crack growth tests. Mode 1 type fatigue tests were then performed in ambient atmosphere at constant amplitude using load ratio R of 0.1. The near threshold fatigue crack growth rate, fatigue threshold and the fatigue crack growth rate in the linear region were determined. Fatigue crack growth behaviour of specimens without any dissolve hydrogen were then compared with the specimens with different concentration of dissolved hydrogen. The test results show that the dissolved hydrogen concentration increases with the increase in charging time in all three heat treated conditions and the hydrogen uptake shows a strong dependence on the microstructure of the alloy. It was also observed that the microstructure has a significant influence of on the fatigue crack growth and SCC behaviour of the alloy with dissolved hydrogen. As the dissolved hydrogen concentration increases, the fatigue threshold was found to decrease and the near threshold crack growth rate increases in all three heat treated conditions showing the deleterious effect of hydrogen, but to a different extent in each condition. Current test results also indicate that the fatigue crack growth rates in the linear region increases as the dissolved hydrogen content increases in all three heat treated conditions. It is also observed that increasing the

  14. Hydrogen Assisted Crack in Dissimilar Metal Welds for Subsea Service under Cathodic Protection

    NASA Astrophysics Data System (ADS)

    Bourgeois, Desmond

    Dissimilar metal welds (DMWs) are routinely used in the oil and gas industries for structural joining of high strength steels in order to eliminate the need for post weld heat treatment (PWHT) after field welding. There have been reported catastrophic failures in these DMWs, particularly the AISI 8630 steel - Alloy 625 DMW combination, during subsea service while under cathodic protection (CP). This is due to local embrittlement that occurs in susceptible microstructures that are present at the weld fusion boundary region. This type of cracking is known as hydrogen assisted cracking (HAC) and it is influenced by base/filler metal combination, and welding and PWHT procedures. DMWs of two material combinations (8630 steel -- Alloy 625 and F22 steel -- Alloy 625), produced with two welding procedures (BS1 and BS3) in as welded and PWHT conditions were investigated in this study. The main objectives included: 1) evaluation of the effect of materials composition, welding and PWHT procedures on the gradients of composition, microstructure, and properties in the dissimilar transition region and on the susceptibility to HAC; 2) investigation of the influence of microstructure on the HAC failure mechanism and identification of microstructural constituents acting as crack nucleation and propagation sites; 3) assessment of the applicability of two-step PWHT to improve the resistance to HAC in DMWs; 4) establishment of non-failure criterion for the delayed hydrogen cracking test (DHCT) that is applicable for qualification of DMWs for subsea service under cathodic protection (CP).

  15. Effects of microstructure banding on hydrogen assisted fatigue crack growth in X65 pipeline steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronevich, Joseph A.; Somerday, Brian P.; San Marchi, Chris W.

    Banded ferrite-pearlite X65 pipeline steel was tested in high pressure hydrogen gas to evaluate the effects of oriented pearlite on hydrogen assisted fatigue crack growth. Test specimens were oriented in the steel pipe such that cracks propagated either parallel or perpendicular to the banded pearlite. The ferrite-pearlite microstructure exhibited orientation dependent behavior in which fatigue crack growth rates were significantly lower for cracks oriented perpendicular to the banded pearlite compared to cracks oriented parallel to the bands. Thus the reduction of hydrogen assisted fatigue crack growth across the banded pearlite is attributed to a combination of crack-tip branching and impededmore » hydrogen diffusion across the banded pearlite.« less

  16. Effects of microstructure banding on hydrogen assisted fatigue crack growth in X65 pipeline steels

    DOE PAGES

    Ronevich, Joseph A.; Somerday, Brian P.; San Marchi, Chris W.

    2015-09-10

    Banded ferrite-pearlite X65 pipeline steel was tested in high pressure hydrogen gas to evaluate the effects of oriented pearlite on hydrogen assisted fatigue crack growth. Test specimens were oriented in the steel pipe such that cracks propagated either parallel or perpendicular to the banded pearlite. The ferrite-pearlite microstructure exhibited orientation dependent behavior in which fatigue crack growth rates were significantly lower for cracks oriented perpendicular to the banded pearlite compared to cracks oriented parallel to the bands. Thus the reduction of hydrogen assisted fatigue crack growth across the banded pearlite is attributed to a combination of crack-tip branching and impededmore » hydrogen diffusion across the banded pearlite.« less

  17. Mechanics of the Delayed Fracture of Viscoelastic Bodies with Cracks: Theory and Experiment (Review)

    NASA Astrophysics Data System (ADS)

    Kaminsky, A. A.

    2014-09-01

    Theoretical and experimental studies on the deformation and delayed fracture of viscoelastic bodies due to slow subcritical crack growth are reviewed. The focus of this review is on studies of subcritical growth of cracks with well-developed fracture process zones, the conditions that lead to their critical development, and all stages of slow crack growth from initiation to the onset of catastrophic growth. Models, criteria, and methods used to study the delayed fracture of viscoelastic bodies with through and internal cracks are analyzed. Experimental studies of the fracture process zones in polymers using physical and mechanical methods as well as theoretical studies of these zones using fracture mesomechanics models that take into account the structural and rheological features of polymers are reviewed. Particular attention is given to crack growth in anisotropic media, the effect of the aging of viscoelastic materials on their delayed fracture, safe external loads that do not cause cracks to propagate, the mechanism of multiple-flaw fracture of viscoelastic bodies with several cracks and, especially, processes causing cracks to coalesce into a main crack, which may result in a break of the body. Methods and results of solving two- and three-dimensional problems of the mechanics of delayed fracture of aging and non-aging viscoelastic bodies with cracks under constant and variable external loads, wedging, and biaxial loads are given

  18. Environmental fatigue of an Al-Li-Cu alloy. Part 1: Intrinsic crack propagation kinetics in hydrogenous environments

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Gangloff, Richard P.

    1991-01-01

    Deleterious environmental effects on steady-state, intrinsic fatigue crack propagation (FCP) rates (da/dN) in peak aged Al-Li-Cu alloy 2090 are established by electrical potential monitoring of short cracks with programmed constant delta K and K(sub max) loading. The da/dN are equally unaffected by vacuum, purified helium, and oxygen but are accelerated in order of decreasing effectiveness by aqueous 1 percent NaCl with anodic polarization, pure water vapor, moist air, and NaCl with cathodic polarization. While da/dN depends on delta K(sup 4.0) for the inert gases, water vapor and chloride induced multiple power-laws, and a transition growth rate 'plateau'. Environmental effects are strongest at low delta K. Crack tip damage is ascribed to hydrogen embrittlement because of the following: (1) accelerated da/dN due to part-per-million levels of H2O without condensation; (2) impeded molecular flow model predictions of the measured water vapor pressure dependence of da/dN as affected by mean crack opening; (3) the lack of an effect of film-forming O2; (4) the likelihood for crack tip hydrogen production in NaCl, and (5) the environmental and delta K-process zone volume dependencies of the microscopic cracking modes. For NaCl, growth rates decrease with decreasing loading frequency, with the addition of passivating Li2CO3, and upon cathodic polarization. These variables increase crack surface film stability to reduce hydrogen entry efficiency. The hydrogen environmental FCP resistance of 2090 is similar to other 2000 series alloys and is better than 7075.

  19. Role of hydrogen on the incipient crack tip deformation behavior in α-Fe: An atomistic perspective

    NASA Astrophysics Data System (ADS)

    Adlakha, I.; Solanki, K. N.

    2018-01-01

    A crack tip in α-Fe presents a preferential trap site for hydrogen, and sufficient concentration of hydrogen can change the incipient crack tip deformation response, causing a transition from a ductile to a brittle failure mechanism for inherently ductile alloys. In this work, the effect of hydrogen segregation around the crack tip on deformation in α-Fe was examined using atomistic simulations and the continuum based Rice-Thompson criterion for various modes of fracture (I, II, and III). The presence of a hydrogen rich region ahead of the crack tip was found to cause a decrease in the critical stress intensity factor required for incipient deformation for various crack orientations and modes of fracture examined here. Furthermore, the triaxial stress state ahead of the crack tip was found to play a crucial role in determining the effect of hydrogen on the deformation behavior. Overall, the segregation of hydrogen atoms around the crack tip enhanced both dislocation emission and cleavage behavior suggesting that hydrogen has a dual role during the deformation in α-Fe.

  20. Environmental fatigue of an Al-Li-Cu alloy. Part 3: Modeling of crack tip hydrogen damage

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Gangloff, Richard P.

    1992-01-01

    Environmental fatigue crack propagation rates and microscopic damage modes in Al-Li-Cu alloy 2090 (Parts 1 and 2) are described by a crack tip process zone model based on hydrogen embrittlement. Da/dN sub ENV equates to discontinuous crack advance over a distance, delta a, determined by dislocation transport of dissolved hydrogen at plastic strains above a critical value; and to the number of load cycles, delta N, required to hydrogenate process zone trap sites that fracture according to a local hydrogen concentration-tensile stress criterion. Transgranular (100) cracking occurs for process zones smaller than the subgrain size, and due to lattice decohesion or hydride formation. Intersubgranular cracking dominates when the process zone encompasses one or more subgrains so that dislocation transport provides hydrogen to strong boundary trapping sites. Multi-sloped log da/dN-log delta K behavior is produced by process zone plastic strain-hydrogen-microstructure interactions, and is determined by the DK dependent rates and proportions of each parallel cracking mode. Absolute values of the exponents and the preexponential coefficients are not predictable; however, fractographic measurements theta sub i coupled with fatigue crack propagation data for alloy 2090 established that the process zone model correctly describes fatigue crack propagation kinetics. Crack surface films hinder hydrogen uptake and reduce da/dN and alter the proportions of each fatigue crack propagation mode.

  1. Hydrogen accelerated fatigue crack growth of friction stir welded X52 steel pipe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronevich, Joseph Allen; Somerday, Brian P.; Feng, Zhili

    Friction stir welded steel pipelines were tested in high pressure hydrogen gas to examine the effects of hydrogen accelerated fatigue crack growth. Fatigue crack growth rate (da/dN) vs. stress-intensity factor range (ΔK) relationships were measured for an X52 friction stir welded pipe tested in 21 MPa hydrogen gas at a frequency of 1 Hz and R = 0.5. Tests were performed on three regions: base metal (BM), center of friction stir weld (FSW), and 15 mm off-center of the weld. For all three material regions, tests in hydrogen exhibited accelerated fatigue crack growth rates that exceeded an order of magnitudemore » compared to companion tests in air. Among tests in hydrogen, fatigue crack growth rates were modestly higher in the FSW than the BM and 15 mm off-center tests. Select regions of the fracture surfaces associated with specified ΔK levels were examined which revealed intergranular fracture in the BM and 15 mm off-center specimens but an absence of intergranular features in the FSW specimens. In conclusion, the X52 friction stir weld and base metal tested in hydrogen exhibited fatigue crack growth rate relationships that are comparable to those for conventional arc welded steel pipeline of similar strength found in the literature.« less

  2. Hydrogen accelerated fatigue crack growth of friction stir welded X52 steel pipe

    DOE PAGES

    Ronevich, Joseph Allen; Somerday, Brian P.; Feng, Zhili

    2016-11-17

    Friction stir welded steel pipelines were tested in high pressure hydrogen gas to examine the effects of hydrogen accelerated fatigue crack growth. Fatigue crack growth rate (da/dN) vs. stress-intensity factor range (ΔK) relationships were measured for an X52 friction stir welded pipe tested in 21 MPa hydrogen gas at a frequency of 1 Hz and R = 0.5. Tests were performed on three regions: base metal (BM), center of friction stir weld (FSW), and 15 mm off-center of the weld. For all three material regions, tests in hydrogen exhibited accelerated fatigue crack growth rates that exceeded an order of magnitudemore » compared to companion tests in air. Among tests in hydrogen, fatigue crack growth rates were modestly higher in the FSW than the BM and 15 mm off-center tests. Select regions of the fracture surfaces associated with specified ΔK levels were examined which revealed intergranular fracture in the BM and 15 mm off-center specimens but an absence of intergranular features in the FSW specimens. In conclusion, the X52 friction stir weld and base metal tested in hydrogen exhibited fatigue crack growth rate relationships that are comparable to those for conventional arc welded steel pipeline of similar strength found in the literature.« less

  3. A Review of Fatigue Crack Growth for Pipeline Steels Exposed to Hydrogen

    PubMed Central

    Nanninga, N.; Slifka, A.; Levy, Y.; White, C.

    2010-01-01

    Hydrogen pipeline systems offer an economical means of storing and transporting energy in the form of hydrogen gas. Pipelines can be used to transport hydrogen that has been generated at solar and wind farms to and from salt cavern storage locations. In addition, pipeline transportation systems will be essential before widespread hydrogen fuel cell vehicle technology becomes a reality. Since hydrogen pipeline use is expected to grow, the mechanical integrity of these pipelines will need to be validated under the presence of pressurized hydrogen. This paper focuses on a review of the fatigue crack growth response of pipeline steels when exposed to gaseous hydrogen environments. Because of defect-tolerant design principles in pipeline structures, it is essential that designers consider hydrogen-assisted fatigue crack growth behavior in these applications. PMID:27134796

  4. Hydrogen-assisted stable crack growth in iron-3 wt% silicon steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marrow, T.J.; Prangnell, P.; Aindow, M.

    1996-08-01

    Observations of internal hydrogen cleavage in Fe-3Si are reported. Hydrogen-assisted stable crack growth (H-SCG) is associated with cleavage striations of a 300 nm spacing, observed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). High resolution SEM revealed finer striations, previously undetected, with a spacing of approximately 30 nm. These were parallel to the coarser striations. Scanning tunneling microscopy (STM) also showed the fine striation spacing, and gave a striation height of approximately 15 nm. The crack front was not parallel to the striations. Transmission electron microscopy (TEM) of crack tip plastic zones showed {l_brace}112{r_brace} and {l_brace}110{r_brace} slip, withmore » a high dislocation density (around 10{sup 14}m{sup {minus}2}). The slip plane spacing was approximately 15--30 nm. Parallel arrays of high dislocation density were observed in the wake of the hydrogen cleavage crack. It is concluded that H-ScG in Fe-3Si occurs by periodic brittle cleavage on the {l_brace}001{r_brace} planes. This is preceded by dislocation emission. The coarse striations are produced by crack tip blunting and the fine striations by dislocations attracted by image forces to the fracture surface after cleavage. The effects of temperature, pressure and yield strength on the kinetics of H-SCG can be predicted using a model for diffusion of hydrogen through the plastic zone.« less

  5. Hydrogen Permeation in Cold-Rolled High-Mn Twinning-Induced Plasticity Steels

    NASA Astrophysics Data System (ADS)

    Han, Do Kyeong; Hwang, A. In; Byeon, Woo Jun; Noh, Seung Jeong; Suh, Dong-Woo

    2017-11-01

    Hydrogen permeation is investigated in cold-rolled Fe-0.6C-18Mn-(1.5Al) alloys. The hydrogen mobility is lower in cold-rolled alloys compared with annealed alloys. Al-containing alloy shows less deceleration of hydrogen mobility compared with the Al-free alloy. This is attributed to the reduced formation of mechanical twins and dislocations. Mechanical twins trap hydrogen strongly but are vulnerable to crack initiation; suppression of these is thought to be a major favorable influence of Al on hydrogen-induced mechanical degradation.

  6. Hydrogen adsorption and diffusion, and subcritical-crack growth in high strength steels and nickel base alloys

    NASA Technical Reports Server (NTRS)

    Wei, R. P.; Klier, K.; Simmons, G. W.; Chornet, E.

    1973-01-01

    Embrittlement, or the enhancement of crack growth by gaseous hydrogen in high strength alloys, is of primary interest in selecting alloys for various components in the space shuttle. Embrittlement is known to occur at hydrogen gas pressures ranging from fractions to several hundred atmospheres, and is most severe in the case of martensitic high strength steels. Kinetic information on subcritical crack growth in gaseous hydrogen is sparse at this time. Corroborative information on hydrogen adsorption and diffusion is inadequate to permit a clear determination of the rate controlling process and possible mechanism in hydrogen enhanced crack growth, and for estimating behavior over a range of temperatures and pressures. Therefore, coordinated studies of the kinetics of crack growth, and adsorption and diffusion of hydrogen, using identical materials, have been initiated. Comparable conditions of temperature and pressure will be used in the chemical and mechanical experiments. Inconel 718 alloy and 18Ni(200) maraging steel have been selected for these studies. Results from these studies are expected to provide not only a better understanding of the gaseous hydrogen embrittlement phenomenon itself, but also fundamental information on hydrogen adsorption and diffusion, and crack growth information that can be used directly for design.

  7. Hydrogen transport and hydrogen embrittlement in stainless steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perng, T.P.

    1985-01-01

    In order to understand the kinetics of gaseous hydrogen-induced slow crack growth (SCG) in metastable austenitic stainless steels, hydrogen permeation and/or cracking velocity were measured and compared for three types of stainless steels. These included austenitic, ferritic, and duplex (..gamma../..cap alpha..) alloys. Deformation in AISI 301 resulted in various amounts of ..cap alpha..' martensite, which enhanced the effective hydrogen diffusivity and permeability. No phase transformation was observed in deformed AISI 310. The effective hydrogen diffusivity in this alloy was slightly reduced after plastic deformation, presumably by dislocation trapping. In either the dynamic or static tensile test, AISI 301 exhibited themore » greatest hydrogen embrittlement and therefore the highest SCG velocity among all the alloys tested in this work. The SCG velocity was believed to be controlled by the rate of accumulation of hydrogen in the embrittlement region ahead of the crack tip and therefore could be explained with the hydrogen transport parameters measured from the permeation experiments. The relatively high SCG velocity in AISI 301 was probably due to the fast transport of hydrogen through the primarily stress-induced ..cap alpha..' phase around the crack. No SCG was observed in AISI 310. The presence of H/sub 2/O vapor was found to reduce both the hydrogen permeation and SCG velocity.« less

  8. Environmental fatigue of an Al-Li-Cu alloy. Part 2: Microscopic hydrogen cracking processes

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Gangloff, Richard P.

    1992-01-01

    Based on a fractographic analysis of fatigue crack propagation (FCP) in Al-Li-Cu alloy 2090 stressed in a variety of inert and embrittling environments, microscopic crack paths are identified and correlated with intrinsic da/dN-delta K kinetics. FCP rates in 2090 are accelerated by hydrogen producing environments (pure water vapor, moist air, and aqueous NaCl), as defined in Part 1. For these cases, subgrain boundary fatigue cracking (SGC) dominates for delta K values where the crack tip process zone, a significant fraction of the cyclic plastic zone, is sufficiently large to envelop 5 micron subgrains in the unrecrystallized microstructure. SGC may be due to strong hydrogen trapping at T1 precipitates concentrated at sub-boundaries. At low delta K, the plastic zone diameter is smaller than the subgrain size and FCP progresses along (100) planes due to either local lattice decohesion or aluminum-lithium hydride cracking. For inert environments (vacuum, helium, and oxygen), or at high delta K where the hydrogen effect on da/dN is small, FCP is along (111) slip planes; this mode does not transition with increasing delta K and plastic zone size. The SGC and (100) crystallographic cracking modes, and the governing influence of the crack tip process zone volume (delta K), support hydrogen embrittlement rather than a surface film rupture and anodic dissolution mechanism for environmental FCP. Multi-sloped log da/dN-log delta K behavior is produced by changes in process zone hydrogen-microstructure interactions, and not by purely micromechanical-microstructure interactions, in contradiction to microstructural distance-based fatigue models.

  9. Investigation of delayed cracking in pivot steel box girders.

    DOT National Transportation Integrated Search

    1997-01-01

    This report describes the results of an investigation to find the cause of the delayed cracking in the welds of the fracturecritical steel pivot box girders fabricated for the George P. Coleman Bridge. Through the use of different nondestructive meth...

  10. Hydrogen adsorption and diffusion, and subcritical-crack growth in high-strength steels and nickel base alloys

    NASA Technical Reports Server (NTRS)

    Wei, R. P.; Klier, K.; Simmons, G. W.

    1974-01-01

    Coordinated studies of the kinetics of crack growth and of hydrogen adsorption and diffusion were initiated to develop information that is needed for a clearer determination of the rate controlling process and possible mechanism for hydrogen enhanced crack growth, and for estimating behavior over a range of temperatures and pressures. Inconel 718 alloy and 18Ni(200) maraging steel were selected for these studies. 18Ni(250) maraging steel, 316 stainless steel, and iron single crystal of (111) orientation were also included in the chemistry studies. Crack growth data on 18Ni(250) maraging steel from another program are included for comparison. No sustained-load crack growth was observed for the Inconel 718 alloy in gaseous hydrogen. Gaseous hydrogen assisted crack growth in the 18Ni maraging steels were characterized by K-independent (Stage 2) extension over a wide range of hydrogen pressures (86 to 2000 torr or 12 kN/m2 to 266 kN/m2) and test temperatures (-60 C to +100 C). The higher strength 18Ni(250) maraging steel was more susceptible than the lower strength 200 grade. A transition temperature was observed, above which crack growth rates became diminishingly small.

  11. Accelerated Stress Corrosion Crack Initiation of Alloys 600 and 690 in Hydrogenated Supercritical Water

    NASA Astrophysics Data System (ADS)

    Moss, Tyler; Was, Gary S.

    2017-04-01

    The objective of this study is to determine whether stress corrosion crack initiation of Alloys 600 and 690 occurs by the same mechanism in subcritical and supercritical water. Tensile bars of Alloys 690 and 600 were strained in constant extension rate tensile experiments in hydrogenated subcritical and supercritical water from 593 K to 723 K (320 °C to 450 °C), and the crack initiation behavior was characterized by high-resolution electron microscopy. Intergranular cracking was observed across the entire temperature range, and the morphology, structure, composition, and temperature dependence of initiated cracks in Alloy 690 were consistent between hydrogenated subcritical and supercritical water. Crack initiation of Alloy 600 followed an Arrhenius relationship and did not exhibit a discontinuity or change in slope after crossing the critical temperature. The measured activation energy was 121 ± 13 kJ/mol. Stress corrosion crack initiation in Alloy 690 was fit with a single activation energy of 92 ± 12 kJ/mol across the entire temperature range. Cracks were observed to propagate along grain boundaries adjacent to chromium-depleted metal, with Cr2O3 observed ahead of crack tips. All measures of the SCC behavior indicate that the mechanism for stress corrosion crack initiation of Alloy 600 and Alloy 690 is consistent between hydrogenated subcritical and supercritical water.

  12. Aqueous chloride stress corrosion cracking of titanium - A comparison with environmental hydrogen embrittlement

    NASA Technical Reports Server (NTRS)

    Nelson, H. G.

    1974-01-01

    The physical characteristics of stress corrosion cracking of titanium in an aqueous chloride environment are compared with those of embrittlement of titanium by a gaseous hydrogen environment in an effort to help contribute to the understanding of the possible role of hydrogen in the complex stress corrosion cracking process. Based on previous studies, the two forms of embrittlement are shown to be similar at low hydrogen pressures (100 N/sq m) but dissimilar at higher hydrogen pressures. In an effort to quantify this comparison, tests were conducted in an aqueous chloride solution using the same material and test techniques as had previously been employed in a gaseous hydrogen environment. The results of these tests strongly support models based on hydrogen as the embrittling species in an aqueous chloride environment.

  13. Comparison of hydrogen gas embrittlement of austenitic and ferritic stainless steels

    NASA Astrophysics Data System (ADS)

    Perng, T. P.; Altstetter, C. J.

    1987-01-01

    Hydrogen-induced slow crack growth (SCG) was compared in austenitic and ferritic stainless steels at 0 to 125 °Cand 11 to 216 kPa of hydrogen gas. No SCG was observed for AISI 310, while AISI 301 was more susceptible to hydrogen embrittlement and had higher cracking velocity than AL 29-4-2 under the same test conditions. The kinetics of crack propagation was modeled in terms of the hydrogen transport in these alloys. This is a function of temperature, microstructure, and stress state in the embrittlement region. The relatively high cracking velocity of AISI 301 was shown to be controlled by the fast transport of hydrogen through the stress-induced α' martensite at the crack tip and low escape rate of hydrogen through the γ phase in the surrounding region. Faster accumulation rates of hydrogen in the embrittlement region were expected for AISI 301, which led to higher cracking velocities. The mechanism of hydrogen-induced SCG was discussed based upon the concept of hydrogen-enhanced plasticity.

  14. Aqueous chloride stress corrosion cracking of titanium: A comparison with environmental hydrogen embrittlement

    NASA Technical Reports Server (NTRS)

    Nelson, H. G.

    1973-01-01

    The physical characteristics of stress corrosion cracking of titanium in an aqueous chloride environment are compared with those of embrittlement of titanium by a gaseous hydrogen environment in an effort to help contribute to the understanding of the possible role of hydrogen in the complex stress corrosion cracking process. Based on previous studies, the two forms of embrittlement are shown to be similar at low hydrogen pressures (100 N/sqm) but dissimilar at higher hydrogen pressures. In an effort to quantify this comparison, tests were conducted in an aqueous chloride solution using the same material and test techniques as had previously been employed in a gaseous hydrogen environment. The results of these tests strongly support models based on hydrogen as the embrittling species in an aqueous chloride environment. Further, it is shown that if hydrogen is the causal species, the effective hydrogen fugacity at the surface of titanium exposed to an aqueous chloride environment is equivalent to a molecular hydrogen pressure of approximately 10 N/sqm.

  15. The role of hydrogen in hot-salt stress corrosion cracking of titanium-aluminum alloys

    NASA Technical Reports Server (NTRS)

    Ondrejcin, R. S.

    1971-01-01

    Additional support is presented for the previously proposed role of hydrogen as an embrittling agent in hot-salt stress corrosion cracking of titanium-aluminum alloys. The main source of hydrogen formed during the reactions of titanium alloys with hot salt was identified as water associated with the salt. Hydrogen is produced by the reaction of an intermediate (hydrogen halide) with the alloy rather than from metal-water reactions. The fracture mode of precracked tensile specimens was ductile when the specimens were tested in air, and brittle when tests were made in high-pressure hydrogen. Stressed titanium-aluminum alloys also were cracked by bombardment with hydrogen ions produced in a proton accelerator. The approximate concentrations of the hydrogen ions in the alloys were calculated.

  16. Moisture-Induced Spallation and Interfacial Hydrogen Embrittlement of Alumina Scales

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2005-01-01

    Thermal expansion mismatch stresses and interfacial sulfur activity are the major factors producing primary Al2O3 scale spallation on high temperature alloys. However, moisture-induced delayed spallation appears as a secondary, but often dramatic, illustration of an additional mechanistic detail. A historical review of delayed failure of alumina scales and TBC s on superalloys is presented herein. Similarities with metallic phenomena suggest that hydrogen embrittlement from ambient humidity, resulting from the reaction Al+3H2O=Al(OH)3+3H(+)+3e(-), is the operative mechanism. This proposal was tested by standard cathodic hydrogen charging in 1N H2SO4, applied to Rene N5 pre-oxidized at 1150 C for 1000 1-hr cycles, and monitored by weight change, induced current, and microstructure. Here cathodic polarization at -2.0 V abruptly stripped mature Al2O3 scales at the oxide-metal interface. Anodic polarization at +2.0 V, however, produced alloy dissolution. Finally, with no applied voltage, the electrolyte alone produced neither scale spallation nor alloy dissolution. These experiments thus highlight the detrimental effects of hydrogen charging on alumina scale adhesion. It is proposed that interfacial hydrogen embrittlement is produced by moist air and is the root cause of both moisture-induced, delayed scale spallation and desktop TBC failures.

  17. Assessing Hydrogen Assisted Cracking Modes in High Strength Steel Welds

    DTIC Science & Technology

    1988-12-01

    posed theoretical hydrogen assisted cracking mechanisms. It was found that the microplasticity theory of Beachem can best describe how the stress...precludes an internal pressure gradient as the driv- ing force for crack growth. The adsorption theory of Petch and Stables3 and further modifications4...the adsorption theory. In addition, fracture surfaces indicate rapid void formation and coales- cence at low temperatures where the rate of surface

  18. Intergranular stress corrosion cracking and selective internal oxidation of nickel-chromium-iron alloys in hydrogenated steam

    NASA Astrophysics Data System (ADS)

    Capell, Brent M.

    2005-07-01

    Selective internal oxidation (SIO) is a mechanism of grain boundary embrittlement through the formation of intergranular oxides of Cr2O3. SIO is proposed as a mechanism to explain intergranular stress corrosion cracking (IGSCC) of Ni-base alloys in pressurized water reactor environments. The purpose of this work is to investigate SIO through a series of experiments using controlled-purity alloys in a controlled, low-pressure steam environment in which the oxygen potential is varied. Five alloys; Ni-9Fe, Ni-5Cr, LCr (Ni-5Cr-9Fe), CD85 (Ni-16Cr-9Fe) and HCr (Ni-30Cr-9Fe), were used in corrosion coupon exposure tests and constant extension rate tensile (CERT) tests at 550°C and 400°C in an environment consisting of a controlled mixture of hydrogen, water vapor and argon. The hydrogen-to-water vapor partial pressure ratio (PPR) was varied between 0.001 and 0.9 to control the oxygen partial pressure. The Ni-9Fe, Ni-5Cr and LCr alloys formed a uniform Ni(OH)2 film at PPR values less than 0.09 while CD85 and HCr formed Cr2O 3 oxide films over the entire PPR range. Corrosion coupon results also show the formation of highly localized oxide particles at grain boundaries. Focused ion beam analysis revealed that intergranular oxides were observed at significant depths (>150 nm) down grain boundaries and the oxide morphology depended on the alloy composition and PPR value. Diffusion of oxygen along the grain boundary accounted for the growth of intergranular oxides. CERT test results showed that intergranular cracking was caused by creep-induced microvoid coalescence only at 550°C and did not depend on PPR. At 400°C, the cracking behavior depended on the PPR and resulted in a mixture of creep-induced microvoid coalescence and brittle intergranular failure. The cracked boundary fraction was higher at a PPR value where a Ni(OH)2 surface film formed. Alloy composition influenced cracking and the cracked boundary fraction decreased as the alloy chromium content increased. The

  19. Hydrogen-enhanced cracking revealed by in situ micro-cantilever bending test inside environmental scanning electron microscope

    NASA Astrophysics Data System (ADS)

    Deng, Yun; Hajilou, Tarlan; Barnoush, Afrooz

    2017-06-01

    To evaluate the hydrogen (H)-induced embrittlement in iron aluminium intermetallics, especially the one with stoichiometric composition of 50 at.% Al, a novel in situ micro-cantilever bending test was applied within an environmental scanning electron microscope (ESEM), which provides both a full process monitoring and a clean, in situ H-charging condition. Two sets of cantilevers were analysed in this work: one set of un-notched cantilevers, and the other set with focused ion beam-milled notch laying on two crystallographic planes: (010) and (110). The cantilevers were tested under two environmental conditions: vacuum (approximately 5 × 10-4 Pa) and ESEM (450 Pa water vapour). Crack initiation at stress-concentrated locations and propagation to cause catastrophic failure were observed when cantilevers were tested in the presence of H; while no cracking occurred when tested in vacuum. Both the bending strength for un-notched beams and the fracture toughness for notched beams were reduced under H exposure. The hydrogen embrittlement (HE) susceptibility was found to be orientation dependent: the (010) crystallographic plane was more fragile to HE than the (110) plane. This article is part of the themed issue 'The challenges of hydrogen and metals'.

  20. Hydrogen-enhanced-plasticity mediated decohesion for hydrogen-induced intergranular and ``quasi-cleavage'' fracture of lath martensitic steels

    NASA Astrophysics Data System (ADS)

    Nagao, Akihide; Dadfarnia, Mohsen; Somerday, Brian P.; Sofronis, Petros; Ritchie, Robert O.

    2018-03-01

    Hydrogen embrittlement of lath martenistic steels is characterized by intergranular and "quasi-cleavage" transgranular fracture. Recent transmission electron microscopy (TEM) analyses (Nagao et al., 2012a, 2014a, 2014b, 2014c) of samples lifted from beneath fracture surfaces through focused ion beam machining (FIB) revealed a failure mechanism that can be termed hydrogen-enhanced-plasticity mediated decohesion. Fracture occurs by the synergistic action of the hydrogen-enhanced localized plasticity and decohesion. In particular, intergranular cracking takes place by dislocation pile-ups impinging on prior austenite grain boundaries and "quasi-cleavage" is the case when dislocation pile-ups impinge on block boundaries. These high-angle boundaries, which have already weakened by the presence of hydrogen, debond by the pile-up stresses. The micromechanical model of Novak et al. (2010) is used to quantitatively describe and predict the hydrogen-induced failure of these steels. The model predictions verify that introduction of nanosized (Ti,Mo)C precipitates in the steel microstructure enhances the resistance to hydrogen embrittlement. The results are used to discuss microstructural designs that are less susceptible to hydrogen-induced failure in systems with fixed hydrogen content (closed systems).

  1. Fatigue crack sizing in rail steel using crack closure-induced acoustic emission waves

    NASA Astrophysics Data System (ADS)

    Li, Dan; Kuang, Kevin Sze Chiang; Ghee Koh, Chan

    2017-06-01

    The acoustic emission (AE) technique is a promising approach for detecting and locating fatigue cracks in metallic structures such as rail tracks. However, it is still a challenge to quantify the crack size accurately using this technique. AE waves can be generated by either crack propagation (CP) or crack closure (CC) processes and classification of these two types of AE waves is necessary to obtain more reliable crack sizing results. As the pre-processing step, an index based on wavelet power (WP) of AE signal is initially established in this paper in order to distinguish between the CC-induced AE waves and their CP-induced counterparts. Here, information embedded within the AE signal was used to perform the AE wave classification, which is preferred to the use of real-time load information, typically adopted in other studies. With the proposed approach, it renders the AE technique more amenable to practical implementation. Following the AE wave classification, a novel method to quantify the fatigue crack length was developed by taking advantage of the CC-induced AE waves, the count rate of which was observed to be positively correlated with the crack length. The crack length was subsequently determined using an empirical model derived from the AE data acquired during the fatigue tests of the rail steel specimens. The performance of the proposed method was validated by experimental data and compared with that of the traditional crack sizing method, which is based on CP-induced AE waves. As a significant advantage over other AE crack sizing methods, the proposed novel method is able to estimate the crack length without prior knowledge of the initial crack length, integration of AE data or real-time load amplitude. It is thus applicable to the health monitoring of both new and existing structures.

  2. Transenamel and transdentinal penetration of hydrogen peroxide applied to cracked or microabrasioned enamel.

    PubMed

    Briso, A L F; Lima, A P B; Gonçalves, R S; Gallinari, M O; dos Santos, P H

    2014-01-01

    The present study evaluated transenamel and transdentinal penetration of hydrogen peroxide during tooth whitening recognized in altered enamel by the presence of cracks or microabrasion. We used 72 experimental units (n=20) obtained from bovine incisors: GI-sound enamel; GII-teeth showing visible enamel cracks (4 mm to 5.7 mm in length); and GIII-microabrasioned enamel. The 12 remaining specimens were used to analyze the enamel surface morphology using scanning electron microscopy. The specimens were cylindrical and 5.7 mm in diameter and 3.5 mm thick. A product based on 35% hydrogen peroxide was used for bleaching, following the manufacturer's recommendations for use. To quantify the H2O2 penetration, the specimens were placed in artificial pulp chambers containing an acetate buffer solution. After bleaching, the solution was collected and adequately proportioned with leucocrystal violet, peroxidase enzyme, and deionized water. The resulting solution was evaluated using ultraviolet visible reflectance spectrophotometer equipment. The data were analyzed by analysis of variance (ANOVA) and Fisher's PLSD at a significance level of 0.05, and significant differences in the penetration of peroxide in different substrate conditions were observed (p<0.0001). The penetration of hydrogen peroxide was more intense in cracked teeth. The group in which the enamel was microabraded showed intermediate values when compared to the control group. Microabrasion and the presence of cracks in the enamel make this substrate more susceptible to penetration of hydrogen peroxide during in-office whitening.

  3. Crack injection in silver gold alloys

    NASA Astrophysics Data System (ADS)

    Chen, Xiying

    Stress corrosion cracking (SCC) is a materials degradation phenomena resulting from a combination of stress and a corrosive environment. Among the alphabet soup of proposed mechanism of SCC the most important are film-rupture, film-induced cleavage and hydrogen embrittlement. This work examines various aspects of film-induced cleavage in gold alloys for which the operation of hydrogen embrittlement processes can be strictly ruled out on thermodynamic grounds. This is so because in such alloys SCC occurs under electrochemical conditions within which water is stable to hydrogen gas evolution. The alloy system examined in this work is AgAu since the corrosion processes in this system occur by a dealloying mechanism that results in the formation of nanoporous gold. The physics behind the dealloying process as well as the resulting formation of nanoporous gold is today well understood. Two important aspects of the film-induced cleavage mechanism are examined in this work: dynamic fracture in monolithic nanoporous gold and crack injection. In crack injection there is a finite thickness dealloyed layer formed on a AgAu alloy sample and the question of whether or not a crack that nucleates within this layer can travel for some finite distance into the un-corroded parent phase alloy is addressed. Dynamic fracture tests were performed on single edge-notched monolithic nanoporous gold samples as well as "infinite strip" sample configurations for which the stress intensity remains constant over a significant portion of the crack length. High-speed photography was used to measure the crack velocity. In the dynamic fracture experiments cracks were observed to travel at speeds as large as 270 m/s corresponding to about 68% of the Raleigh wave velocity. Crack injection experiments were performed on single crystal Ag77Au23, polycrystalline Ag72Au28 and pure gold, all of which had thin nanoporous gold layers on the surface of samples. Through-thickness fracture was seen in both the

  4. Hydrogen-enhanced cracking revealed by in situ micro-cantilever bending test inside environmental scanning electron microscope.

    PubMed

    Deng, Yun; Hajilou, Tarlan; Barnoush, Afrooz

    2017-07-28

    To evaluate the hydrogen (H)-induced embrittlement in iron aluminium intermetallics, especially the one with stoichiometric composition of 50 at.% Al, a novel in situ micro-cantilever bending test was applied within an environmental scanning electron microscope (ESEM), which provides both a full process monitoring and a clean, in situ H-charging condition. Two sets of cantilevers were analysed in this work: one set of un-notched cantilevers, and the other set with focused ion beam-milled notch laying on two crystallographic planes: (010) and (110). The cantilevers were tested under two environmental conditions: vacuum (approximately 5 × 10 -4  Pa) and ESEM (450 Pa water vapour). Crack initiation at stress-concentrated locations and propagation to cause catastrophic failure were observed when cantilevers were tested in the presence of H; while no cracking occurred when tested in vacuum. Both the bending strength for un-notched beams and the fracture toughness for notched beams were reduced under H exposure. The hydrogen embrittlement (HE) susceptibility was found to be orientation dependent: the (010) crystallographic plane was more fragile to HE than the (110) plane.This article is part of the themed issue 'The challenges of hydrogen and metals'. © 2017 The Author(s).

  5. Validation of the role of bulk charging of hydrogen in the corrosion fatigue cracking of a low alloy steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffiths, A.J.; Hutchings, R.B.; Turnbull, A.

    1993-09-01

    The enhanced corrosion fatigue crack growth rates of low alloy steels cathodically protected in marine environments results from absorbed hydrogen atoms. Hydrogen atoms are generated at the crack tip, crack walls and the external surface of the specimen (bulk charging). In previous work, Turnbull and Saenz de Santa Maria developed a model to predict the rate of generation of hydrogen atoms at the tips of fatigue cracks for steels cathodically polarized in marine environments. The main prediction from this work was that the external surface of the specimen can be the dominant source of hydrogen atoms at potentials more negativemore » than about [minus]900 mV (SCE), at a cyclic frequency of 0.1 Hz and a stress ratio of 0.5. The relative importance of bulk charging depends on the specific test conditions and is influenced by the applied potential, bulk chemistry, cyclic frequency, specimen thickness, temperature and use of coatings. Since laboratory test times are usually short in relation to the time required for hydrogen transport measured crack growth rates may be lower than those occurring in practice, for which there is sufficient time for full hydrogen charging. The purpose of this study is to verify experimentally the importance of bulk charging. Since the sensitivity of cracking to variations in hydrogen concentration will be material dependent a high strength steel was selected in this initial study because of its sensitivity to hydrogen. This will enable validation of the basic premise that bulk charging can be important, prior to more extensive studies using lower strength alloys.« less

  6. Hydrogen Assisted Cracking in Pearlitic Steel Rods: The Role of Residual Stresses Generated by Fatigue Precracking

    PubMed Central

    Toribio, Jesús; Aguado, Leticia; Lorenzo, Miguel; Kharin, Viktor

    2017-01-01

    Stress corrosion cracking (SCC) of metals is an issue of major concern in engineering since this phenomenon causes many catastrophic failures of structural components in aggressive environments. SCC is even more harmful under cathodic conditions promoting the phenomenon known as hydrogen assisted cracking (HAC), hydrogen assisted fracture (HAF) or hydrogen embrittlement (HE). A common way to assess the susceptibility of a given material to HAC, HAF or HE is to subject a cracked rod to a constant extension rate tension (CERT) test until it fractures in this harsh environment. This paper analyzes the influence of a residual stress field generated by fatigue precracking on the sample’s posterior susceptibility to HAC. To achieve this goal, numerical simulations were carried out of hydrogen diffusion assisted by the stress field. Firstly, a mechanical simulation of the fatigue precracking was developed for revealing the residual stress field after diverse cyclic loading scenarios and posterior stress field evolution during CERT loading. Afterwards, a simulation of hydrogen diffusion assisted by stress was carried out considering the residual stresses after fatigue and the superposed rising stresses caused by CERT loading. Results reveal the key role of the residual stress field after fatigue precracking in the HAC phenomena in cracked steel rods as well as the beneficial effect of compressive residual stress. PMID:28772845

  7. Roles of molecular hydrogen and a hydrogen donor solvent in the cracking of moal model compounds with dispersed catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Toshimitsu; Ikenaga, Na-oki; Sakota, Takahiro

    1994-12-31

    It is of great importance to evaluate quantitative hydrogen transfer process by using coal model compounds with a hydrogen-donor solvent. Cronauer el al. showed that in the cracking of benzyl phenyl ether the hydrogen required to stabilize free radicals comes from a donor solvent or intramolecular rearrangement and not from gaseous hydrogen in the absence of a catalyst. Korobkov et al. and Schlosberg et al. showed that the thermolysis of benzyl phenyl ether and dibenzyl ether were accomplished by intramolecular rearrangements. Yokokawa et al. reported that tetralin retarded the catalyzed hydrocracking of coal model compounds containing C-C and C-O bonds.more » However, few studies dealt with quantitative discussion in the hydrogen transfer process from a hydrogen-donor solvent or molecular hydrogen to free radicals derived from a model compound except a series of studies by Nicole and co-workers. On the other hand, it is well known that the amount of naphthalene produced from tetralin decreases after the liquefaction of coal in tetralin with catalyst as compared to the liquefaction in the absence of catalysts. To account for this, two mechanisms are proposed. One is that the catalyst hydrogenates naphthalene produced from tetralin, and the other is that the catalyst promotes the direct hydrogen transfer from molecular hydrogen to free radicals. The purpose of this work is to elucidate the role of catalyst and tetralin by means of the quantitative treatment of the hydrogen transfer reaction stabilizing thermally decomposed free radicals. Cracking of benzyl phenyl ether (BPE), dibenzyl ether (DBE), 1,2-diphenylethane, and 1,3-diphenylpropane was studied in tetralin in the presence of highly disposed catalyst.« less

  8. Impairment of spatial working memory and oxidative stress induced by repeated crack cocaine inhalation in rats.

    PubMed

    Lipaus, Ingryd Fortes Souza; Gomes, Elisa Fraga; Martins, Cleciane Waldetário; E Silva, Cristina Martins; Pires, Rita Gomes Wanderley; Malgarin, Fernanda; Schuck, Patrícia Fernanda; Palacios, Ester Miyuki Nakamura; de Melo Rodrigues, Lívia Carla

    2018-06-20

    Crack cocaine is a highly toxic drug with great potential to induce addiction. It produces more intense effects than cocaine powder, with its use having grown worldwide. However, few studies have focused on the cognitive and biochemical consequences that result from crack cocaine inhalation. This study examined the effects of direct crack cocaine inhalation on spatial working memory and brain oxidative stress parameters in rats. Male adult Wistar rats, well-trained in an eight-arm radial maze (8-RM), underwent five sessions of crack cocaine inhalation (crack cocaine group) once a day or inhalation simulation (sham group), being tested in 1-h delayed tasks 24 h after the last inhalation. An additional inhalation session was carried out the following day, with the prefrontal cortex, hippocampus and striatum being removed five minutes afterwards in order to assess oxidative damage such as lipid peroxidation, thiobarbituric acid-reactive species (TBARS) levels, and advanced oxidation protein products (AOPP), as well as the activity of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). Animals from the crack cocaine group showed more errors (p <  0.01) in the 1-h post-delay performance in the 8-RM when compared to the sham group. The crack cocaine group showed decreased (p <  0.05) lipid peroxidation in the hippocampus and increased (p <  0.001) levels of AOPP and SOD activity (p < 0.05) in the striatum when compared to the sham group. Therefore, the repeated inhalation of crack cocaine impaired long-term spatial working memory and elicited oxidative stress in the hippocampus and striatum of rats. Copyright © 2018. Published by Elsevier B.V.

  9. Measurement of Fatigue Crack Growth Relationships in Hydrogen Gas for Pressure Swing Adsorber Vessel Steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somerday, Brian P.; Barney, Monica

    We measured the hydrogen-assisted fatigue crack growth rates (da/dN) for SA516 Grade 70 steel as a function of stress-intensity factor range (ΔK) and load-cycle frequency to provide life-prediction data relevant to pressure swing adsorber (PSA) vessels. For ΔK values up to 18.5 MPa m 1/2, the baseline da/dN versus ΔK relationship measured at 1Hz in 2.8 MPa hydrogen gas represents an upper bound with respect to crack growth rates measured at lower frequency. However, at higher ΔK values, we found that the baseline da/dN data had to be corrected to account for modestly higher crack growth rates at the lowermore » frequencies relevant to PSA vessel operation.« less

  10. Measurement of Fatigue Crack Growth Relationships in Hydrogen Gas for Pressure Swing Adsorber Vessel Steels

    DOE PAGES

    Somerday, Brian P.; Barney, Monica

    2014-12-04

    We measured the hydrogen-assisted fatigue crack growth rates (da/dN) for SA516 Grade 70 steel as a function of stress-intensity factor range (ΔK) and load-cycle frequency to provide life-prediction data relevant to pressure swing adsorber (PSA) vessels. For ΔK values up to 18.5 MPa m 1/2, the baseline da/dN versus ΔK relationship measured at 1Hz in 2.8 MPa hydrogen gas represents an upper bound with respect to crack growth rates measured at lower frequency. However, at higher ΔK values, we found that the baseline da/dN data had to be corrected to account for modestly higher crack growth rates at the lowermore » frequencies relevant to PSA vessel operation.« less

  11. Stress corrosion cracking of Zircaloys in unirradiated and irradiated CsI

    NASA Astrophysics Data System (ADS)

    Cox, B.; Surette, B. A.; Wood, J. C.

    1986-03-01

    Unirradiated split-ring specimens of Zircaloy fuel cladding, coated with CsI, cracked when stressed at elevated temperatures. The specimens have been reexamined fractographically and metallographically in order to confirm that the cause of cracking was stress corrosion (SCC) and not delayed hydride cracking (DHC). Further specimens have been cracked at 350°C by a solution of CsI in a fused mixture of nitrates of rubidium, cesium, strontium and barium, by a similar mechanism. CsI dissolved in a fused molybdate melt was not stable at 400°C, and rapidly evolved iodine, leaving a melt that was incapable of causing SCC. Irradiation of stressed split-ring specimens of Zircaloy fuel cladding in a γ-irradiator of 10 6 R/h and in the U-5 loop in the NRU reactor at an estimated 10 9 R/h caused SCC when the specimens were packed in dry CsI powder. Care had to be taken to dry the CsI, otherwise cracking occurred by a DHC mechanism from hydrogen absorbed from residual moisture in the CsI. Fractography showed that the crack surfaces obtained with dry CsI were typical of iodine-induced SCC rather than cesium-induced metal vapour embrittlement. Thus, if a transport process is provided for the iodide to obtain access to the zirconium surface, CsI is capable of causing SCC of Zircaloy. This transport process might be ionic diffusion in a fission product oxide melt in the fuel-clad gap, however, radiolysis of CsI to form a volatile iodine species in a radiation field is the more probable explanation of PCI failures.

  12. Overload retardation due to plasticity-induced crack closure

    NASA Technical Reports Server (NTRS)

    Fleck, N. A.; Shercliff, H. R.

    1989-01-01

    Experiments are reported which show that plasticity-induced crack closure can account for crack growth retardation following an overload. The finite element method is used to provide evidence which supports the experimental observations of crack closure. Finally, a simple model is presented which predicts with limited success the retardation transient following an overload.

  13. Hydrogen Induced Intergranular Cracking of Nickel-Base Alloys.

    DTIC Science & Technology

    1982-02-01

    alloys are discussed. Experimental The steel used in the present investigation is a fully bainitic 2 1/4 Cr-lMo pressure vessel steel , ASTM A542 Class 3...Appendix A describes recent experiments performed in order to study the influence of plastic deformation on hydrogen transport in a 214 Cr-lMo steel (8...PLASTIC DEFORMATION ON HYDROGEN TRANSPORT IN 2 1/4 Cr-lMo STEEL M. Kurkela, G.S. Frankel, and R.M. Latanision Department of Materials Science and

  14. Study on Corrosion-induced Crack Initiation and Propagation of Sustaining Loaded RCbeams

    NASA Astrophysics Data System (ADS)

    Zhong, X. P.; Li, Y.; Yuan, C. B.; Yang, Z.; Chen, Y.

    2018-05-01

    For 13 pieces of reinforced concrete beams with HRB500 steel bars under long-term sustained loads, at time of corrosion-induced initial crack of concrete, and corrosion-induced crack widths of 0.3mm and 1mm, corrosion of steel bars and time-varying behavior of corrosion-induced crack width were studied by the ECWD (Electro-osmosis - constant Current – Wet and Dry cycles) accelerated corrosion method. The results show that when cover thickness was between 30 and 50mm,corrosion rates of steel bars were between 0.8% and 1.7% at time of corrosion-induced crack, and decreased with increasing concrete cover thickness; when corrosion-induced crack width was 0.3mm, the corrosion rate decreased with increasing steel bar diameter, and increased with increasing cover thickness; its corrosion rate varied between 0.98% and 4.54%; when corrosion-induced crack width reached 1mm, corrosion rate of steel bars was between 4% and 4.5%; when corrosion rate of steel bars was within 5%, the maximum and average corrosion-induced crack and corrosion rate of steel bars had a good linear relationship. The calculation model predicting the maximum and average width of corrosion-induced crack is given in this paper.

  15. Effect of crack openings on carbonation-induced corrosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghantous, Rita Maria, E-mail: rita-maria.ghantous@yncrea.fr; LMDC, Université de Toulouse, INSA, UPS, Toulouse; Poyet, Stéphane

    Reinforced concrete is widely used in the construction of buildings, historical monuments, infrastructures and nuclear power plants. For a variety of reasons, many concrete structures are subject to unavoidable cracks that accelerate the diffusion of atmospheric carbon dioxide to the steel/concrete interface. Carbonation at the interface induces steel corrosion that could cause the development of new cracks in the structure, a determining factor for its durability. The aim of this article is to study the effect of existing cracks on the development of carbonation-induced corrosion. The results indicate that, after the initiation phase, the corrosion kinetics decreases with time andmore » the free corrosion potential increases independently of the crack opening. In addition, the corroded zone matches the carbonated one. The interpretation of these results allows the authors to conclude that, during the corrosion process, corrosion products seal the crack and act as a barrier to oxygen and water diffusion. Consequently, the influence of crack opening on corrosion development is masked and the corrosion development is limited.« less

  16. An Experimental Investigation of Hypergolic Ignition Delay of Hydrogen Peroxide with Fuel Mixtures

    NASA Technical Reports Server (NTRS)

    Blevins, John A.; Gostowski, Rudy; Chianese, Silvio

    2003-01-01

    An experimental evaluation of decomposition and ignition delay of hydrogen peroxide at concentrations of 80% to 98% with combinations of hydrocarbon fuels, tertiary amines and transition metal chelates will be presented in the proposed paper. The results will be compared to hydrazine ignition delays with hydrogen peroxide and nitric acid mixtures using the same test apparatus.

  17. Control of serpentinisation rate by reaction-induced cracking

    NASA Astrophysics Data System (ADS)

    Malvoisin, Benjamin; Brantut, Nicolas; Kaczmarek, Mary-Alix

    2017-10-01

    Serpentinisation of mantle rocks requires the generation and maintenance of transport pathways for water. The solid volume increase during serpentinisation can lead to stress build-up and trigger cracking, which ease fluid penetration into the rock. The quantitative effect of this reaction-induced cracking mechanism on reactive surface generation is poorly constrained, thus hampering our ability to predict serpentinisation rate in geological environments. Here we use a combined approach with numerical modelling and observations in natural samples to provide estimates of serpentinisation rate at mid-ocean ridges. We develop a micromechanical model to quantify the propagation of serpentinisation-induced cracks in olivine. The maximum crystallisation pressure deduced from thermodynamic calculations reaches several hundreds of megapascals but does not necessary lead to crack propagation if the olivine grain is subjected to high compressive stresses. The micromechanical model is then coupled to a simple geometrical model to predict reactive surface area formation during grain splitting, and thus bulk reaction rate. Our model reproduces quantitatively experimental kinetic data and the typical mesh texture formed during serpentinisation. We also compare the model results with olivine grain size distribution data obtained on natural serpentinised peridotites from the Marum ophiolite and the Papuan ultramafic belt (Papua New Guinea). The natural serpentinised peridotites show an increase of the number of olivine grains for a decrease of the mean grain size by one order of magnitude as reaction progresses from 5 to 40%. These results are in agreement with our model predictions, suggesting that reaction-induced cracking controls the serpentinisation rate. We use our model to estimate that, at mid-ocean ridges, serpentinisation occurs up to 12 km depth and reaction-induced cracking reduces the characteristic time of serpentinisation by one order of magnitude, down to values

  18. Hydrogen-facilitated corrosion and stress corrosion cracking of austenitic stainless steel of type 310

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao Lijie; Chu Wuyang; Miao Huijun

    1993-04-01

    The effects of hydrogen precharge and stress on anodic dissolution for Type 310 austenitic stainless steel (ASS) have been investigated. An experiment determining the effect of hydrogen on stress corrosion cracking (SCC) was carried out in a boiling 42% MgCl[sub 2] solution and in a 2.5 mol/l H[sub 2]SO[sub 4] + 1 mol/l HCl solution. The results showed that both hydrogen and stress would increase the dissolution rate, and the effects of hydrogen and stress on the dissolution rate were synergistic rather than simply additive. Hydrogen lowered the threshold stress and the shortened fracture time of SCC in a boilingmore » MgCl[sub 2] solution by a factor of 1/5 and 10, respectively.« less

  19. Haem oxygenase delays programmed cell death in wheat aleurone layers by modulation of hydrogen peroxide metabolism

    PubMed Central

    Wu, Mingzhu; Huang, Jingjing; Xu, Sheng; Ling, Tengfang; Xie, Yanjie; Shen, Wenbiao

    2011-01-01

    Haem oxygenase-1 (HO-1) confers protection against a variety of oxidant-induced cell and tissue injury in animals and plants. In this report, it is confirmed that programmed cell death (PCD) in wheat aleurone layers is stimulated by GA and prevented by ABA. Meanwhile, HO activity and HO-1 protein expression exhibited lower levels in GA-treated layers, whereas the hydrogen peroxide (H2O2) content was apparently increased. The pharmacology approach illustrated that scavenging or accumulating H2O2 either delayed or accelerated GA-induced PCD. Furthermore, pretreatment with the HO-1 specific inhibitor, zinc protoporphyrin IX (ZnPPIX), before exposure to GA, not only decreased HO activity but also accelerated GA-induced PCD significantly. The application of the HO-1 inducer, haematin, and the enzymatic reaction product of HO, carbon monoxide (CO) aqueous solution, both of which brought about a noticeable induction of HO expression, substantially prevented GA-induced PCD. These effects were reversed when ZnPPIX was added, suggesting that HO in vivo played a role in delaying PCD. Meanwhile, catalase (CAT) and ascorbate peroxidase (APX) activities or transcripts were enhanced by haematin, CO, or bilirubin (BR), the catalytic by-product of HO. This enhancement resulted in a decrease in H2O2 production and a delay in PCD. In addition, the antioxidants butylated hydroxytoluene (BHT), dithiothreitol (DTT), and ascorbic acid (AsA) were able not only to delay PCD but also to mimic the effects of haematin and CO on HO up-regulation. Overall, the above results suggested that up-regulation of HO expression delays PCD through the down-regulation of H2O2 production. PMID:20797999

  20. Hydrogen suppression of 'ductile' processes

    NASA Technical Reports Server (NTRS)

    Sisson, R. D., Jr.; Wilson, J. H.; Adler, T. A.; Mcnitt, R. P.; Louthan, M. R., Jr.

    1980-01-01

    Experimental results are reported for torsional fatigue specimens of high-strength steel 4370 and tensile bars of mild steel A-106 which present evidence of a hydrogen-induced strain-aided hardening effect. These results are consistent with the postulate that hydrogen suppresses ductile processes required for crack initiation at large plastic strains.

  1. Evaluation of Environmentally Assisted Cracking of Armour Wires in Flexible Pipes, Power Cables and Umbilicals

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiying

    Environmentally assisted cracking (EAC) of armour wires in flexible pipes, power cables and umbilicals is a major concern with the development of oil and gas fields and wind farms in harsh environments. Hydrogen induced cracking (HIC) or hydrogen embrittlement (HE) of steel armour wires used in deep-water and ultra-deep-water has been evaluated. Simulated tests have been carried out in simulated sea water, under conditions where the susceptibility is the highest, i.e. at room temperature, at the maximum negative cathodic potential and at the maximum stress level expected in service for 150 hours. Examinations of the tested specimens have not revealed cracking or blistering, and measurement of hydrogen content has confirmed hydrogen charging. In addition, sulphide stress cracking (SSC) and chloride stress cracking (CSC) of nickel-based alloy armour wires used in harsh down-hole environments has been evaluated. Simulated tests have been carried out in simulated solution containing high concentration of chloride, with high hydrogen sulphide partial pressure, at high stress level and at 120 °C for 720 hours. Examinations of the tested specimens have not revealed cracking or blistering. Subsequent tensile tests of the tested specimens at ambient pressure and temperature have revealed properties similar to the as-received specimens.

  2. Laser-induced cracks in ice due to temperature gradient and thermal stress

    NASA Astrophysics Data System (ADS)

    Yang, Song; Yang, Ying-Ying; Zhang, Jing-Yuan; Zhang, Zhi-Yan; Zhang, Ling; Lin, Xue-Chun

    2018-06-01

    This work presents the experimental and theoretical investigations on the mechanism of laser-induce cracks in ice. The laser-induced thermal gradient would generate significant thermal stress and lead to the cracking without thermal melting in the ice. The crack density induced by a pulsed laser in the ice critically depends on the laser scanning speed and the size of the laser spot on the surface, which determines the laser power density on the surface. A maximum of 16 cracks within an area of 17 cm × 10 cm can be generated when the laser scanning speed is at 10 mm/s and the focal point of the laser is right on the surface of the ice with a laser intensity of ∼4.6 × 107 W/cm2. By comparing the infrared images of the ice generated at various experimental conditions, it was found that a larger temperature gradient would result in more laser-induced cracks, while there is no visible melting of the ice by the laser beam. The data confirm that the laser-induced thermal stress is the main cause of the cracks created in the ice.

  3. Multiscale modelling and experimentation of hydrogen embrittlement in aerospace materials

    NASA Astrophysics Data System (ADS)

    Jothi, Sathiskumar

    Pulse plated nickel and nickel based superalloys have been used extensively in the Ariane 5 space launcher engines. Large structural Ariane 5 space launcher engine components such as combustion chambers with complex microstructures have usually been manufactured using electrodeposited nickel with advanced pulse plating techniques with smaller parts made of nickel based superalloys joined or welded to the structure to fabricate Ariane 5 space launcher engines. One of the major challenges in manufacturing these space launcher components using newly developed materials is a fundamental understanding of how different materials and microstructures react with hydrogen during welding which can lead to hydrogen induced cracking. The main objective of this research has been to examine and interpret the effects of microstructure on hydrogen diffusion and hydrogen embrittlement in (i) nickel based superalloy 718, (ii) established and (iii) newly developed grades of pulse plated nickel used in the Ariane 5 space launcher engine combustion chamber. Also, the effect of microstructures on hydrogen induced hot and cold cracking and weldability of three different grades of pulse plated nickel were investigated. Multiscale modelling and experimental methods have been used throughout. The effect of microstructure on hydrogen embrittlement was explored using an original multiscale numerical model (exploiting synthetic and real microstructures) and a wide range of material characterization techniques including scanning electron microscopy, 2D and 3D electron back scattering diffraction, in-situ and ex-situ hydrogen charged slow strain rate tests, thermal spectroscopy analysis and the Varestraint weldability test. This research shows that combined multiscale modelling and experimentation is required for a fundamental understanding of microstructural effects in hydrogen embrittlement in these materials. Methods to control the susceptibility to hydrogen induced hot and cold cracking and

  4. Influence of Microstructure on the Fatigue Crack Growth of A516 in Hydrogen

    NASA Technical Reports Server (NTRS)

    Wachob, Harry F.; Nelson, Howard G.

    1980-01-01

    Some day hydrogen may be used as a viable energy storage and transport medium within the United States. Hydrogen gas may be used to dilute and extend our present methane supply as a blend or may even be used in its pure elemental form as a primary fuel. Independent of the methods of production, storage, and distribution, the interaction of hydrogen with its containment material will play an integral role in the success of a hydrogen energy program. Presently, the selection of hydrogen containment materials can be made such that the material will remain reasonably free from environmental degradation; however, costly alloying additions are required. Unfortunately, high alloy steels are economically prohibitive when large-scale hydrogen energy storage, transmission, and conversion systems are desired. Therefore, in order to implement such hydrogen energy systems in the future, existing low-cost materials must be improved via mechanical, thermal, or thermo-mechanical processing methods or new low-cost materials which are compatible with hydrogen must be developed. Originally, low strength, low alloy steels at room temperature were thought to be immune to hydrogen gas embrittlement, since no sustained load crack growth is observed. However, results of Clark in HY8O and Nelson in SAE 1020 have shown that the fatigue crack growth rate can be greatly accelerated in the presence of hydrogen gas. In recent results reported by Louthan and Mucci, the smooth bar fatigue life of an A1068 pipeline steel was reduced up to a factor of ten when the tests were performed in a 13.8 MPa hydrogen environment. These results suggest that the selection of material for structures designed to operate in hydrogen under cyclic loads must include consideration of hydrogen/metal fatigue interaction. Although the hydrogen/metal fatigue interaction can be severe in low strength low alloy steels, the degree of degradation may be altered by the underlying ferrous microstructure. At present, no

  5. Replica-based Crack Inspection

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Smith, Stephen W.; Piascik, R. S.; Willard, Scott A.; Dawicke, David S.

    2007-01-01

    A surface replica-based crack inspection method has recently been developed for use in Space Shuttle main engine (SSME) hydrogen feedline flowliners. These flowliners exist to ensure favorable flow of liquid hydrogen over gimble joint bellows, and consist of two rings each containing 38 elongated slots. In the summer of 2002, multiple cracks ranging from 0.1 inches to 0.6 inches long were discovered; each orbiter contained at least one cracked flowliner. These long cracks were repaired and eddy current inspections ensured that no cracks longer than 0.075 inches were present. However, subsequent fracture-mechanics review of flight rationale required detection of smaller cracks, and was the driving force for development of higher-resolution inspection method. Acetate tape surface replicas have been used for decades to detect and monitor small cracks. However, acetate tape replicas have primarily been limited to laboratory specimens because complexities involved in making these replicas - requiring acetate tape to be dissolved with acetone - are not well suited for a crack inspection tool. More recently developed silicon-based replicas are better suited for use as a crack detection tool. A commercially available silicon-based replica product has been determined to be acceptable for use in SSME hydrogen feedlines. A method has been developed using this product and a scanning electron microscope for analysis, which can find cracks as small as 0.005 inches and other features (e.g., pits, scratches, tool marks, etc.) as small as 0.001 inches. The resolution of this method has been validated with dozens of cracks generated in a laboratory setting and this method has been used to locate 55 cracks (ranging in size from 0.040 inches to 0.004 inches) on space flight hardware. These cracks were removed by polishing away the cracked material and a second round of replicas confirmed the repair.

  6. Analytical insight into "breathing" crack-induced acoustic nonlinearity with an application to quantitative evaluation of contact cracks.

    PubMed

    Wang, Kai; Liu, Menglong; Su, Zhongqing; Yuan, Shenfang; Fan, Zheng

    2018-08-01

    To characterize fatigue cracks, in the undersized stage in particular, preferably in a quantitative and precise manner, a two-dimensional (2D) analytical model is developed for interpreting the modulation mechanism of a "breathing" crack on guided ultrasonic waves (GUWs). In conjunction with a modal decomposition method and a variational principle-based algorithm, the model is capable of analytically depicting the propagating and evanescent waves induced owing to the interaction of probing GUWs with a "breathing" crack, and further extracting linear and nonlinear wave features (e.g., reflection, transmission, mode conversion and contact acoustic nonlinearity (CAN)). With the model, a quantitative correlation between CAN embodied in acquired GUWs and crack parameters (e.g., location and severity) is obtained, whereby a set of damage indices is proposed via which the severity of the crack can be evaluated quantitatively. The evaluation, in principle, does not entail a benchmarking process against baseline signals. As validation, the results obtained from the analytical model are compared with those from finite element simulation, showing good consistency. This has demonstrated accuracy of the developed analytical model in interpreting contact crack-induced CAN, and spotlighted its application to quantitative evaluation of fatigue damage. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Getter materials for cracking ammonia

    DOEpatents

    Boffito, Claudio; Baker, John D.

    1999-11-02

    A method is provided for cracking ammonia to produce hydrogen. The method includes the steps of passing ammonia over an ammonia-cracking catalyst which is an alloy including (1) alloys having the general formula Zr.sub.1-x Ti.sub.x M.sub.1 M.sub.2, wherein M.sub.1 and M.sub.2 are selected independently from the group consisting of Cr, Mn, Fe, Co, and Ni, and x is between about 0.0 and about 1.0 inclusive; and between about 20% and about 50% Al by weight. In another aspect, the method of the invention is used to provide methods for operating hydrogen-fueled internal combustion engines and hydrogen fuel cells. In still another aspect, the present invention provides a hydrogen-fueled internal combustion engine and a hydrogen fuel cell including the above-described ammonia-cracking catalyst.

  8. Hydrogen Environment Assisted Cracking of Modern Ultra-High Strength Martensitic Steels

    NASA Astrophysics Data System (ADS)

    Pioszak, Greger L.; Gangloff, Richard P.

    2017-09-01

    Martensitic steels (Aermet®100, Ferrium®M54™, Ferrium®S53®, and experimental CrNiMoWV at ultra-high yield strength of 1550 to 1725 MPa) similarly resist hydrogen environment assisted cracking (HEAC) in aqueous NaCl. Cracking is transgranular, ascribed to increased steel purity and rare earth addition compared to intergranular HEAC in highly susceptible 300M. Nano-scale precipitates ((Mo,Cr)2C and (W,V)C) reduce H diffusivity and the K-independent Stage II growth rate by 2 to 3 orders of magnitude compared to 300M. However, threshold K TH is similarly low (8 to 15 MPa√m) for each steel at highly cathodic and open circuit potentials. Transgranular HEAC likely occurs along martensite packet and {110}α'-block interfaces, speculatively governed by localized plasticity and H decohesion. Martensitic transformation produces coincident site lattice interfaces; however, a connected random boundary network persists in 3D to negate interface engineering. The modern steels are near-immune to HEAC when mildly cathodically polarized, attributed to minimal crack tip H production and uptake. Neither reduced Co and Ni in M54 and CrNiMoWV nor increased Cr in S53 broadly degrade HEAC resistance compared to baseline AM100. The latter suggests that crack passivity dominates acidification to widen the polarization window for HEAC resistance. Decohesion models predict the applied potential dependencies of K TH and d a/d t II with a single-adjustable parameter, affirming the importance of steel purity and trap sensitive H diffusivity.

  9. Fracture mechanics and surface chemistry investigations of environment-assisted crack growth

    NASA Technical Reports Server (NTRS)

    Wei, R. P.; Klier, K.; Simmons, G. W.; Chou, Y. T.

    1984-01-01

    It is pointed out that environment-assisted subcritical crack growth in high-strength steels and other high-strength alloys (particularly in hydrogen and in hydrogenous environments) is an important technological problem of long standing. This problem is directly related to issues of structural integrity, durability, and reliability. The terms 'hydrogen embrittlement' and 'stress corrosion cracking' have been employed to describe the considered phenomenon. This paper provides a summary of contributions made during the past ten years toward the understanding of environmentally assisted crack growth. The processes involved in crack growth are examined, and details regarding crack growth and chemical reactions are discussed, taking into account crack growth in steels exposed to water/water vapor, the effect of hydrogen, reactions involving hydrogen sulfide, and aspects of fracture surface morphology and composition. Attention is also given to the modeling of crack growth response, crack growth in gas mixtures, and the interaction of solute atoms with the crack-tip stress field.

  10. Evolution of Residual-Strain Distribution through an Overload-Induced Retardation Period during Fatigue Crack Growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S. Y.; Sun, Yinan; An, Ke

    2010-01-01

    Neutron diffraction was employed to investigate the crack-growth retardation phenomenon after a single tensile overload by mapping both one-dimensional and two-dimensional residual-strain distributions around the crack tip in a series of compact-tension specimens representing various crack-growth stages through an overload-induced retardation period. The results clearly show a large compressive residual-strain field near the crack tip immediately after the overload. As the fatigue crack propagates through the overload-induced plastic zone, the compressive residual strains are gradually relaxed, and a new compressive residual-strain field is developed around the propagating crack tip, illustrating that the subsequent fatigue-induced plastic zone grows out of themore » large plastic zone caused by the overloading. The relationship between the overload-induced plastic zone and subsequent fatigue-induced plastic zone, and its influence on the residual-strain distributions in the perturbed plastic zone are discussed.« less

  11. Hydrogen Embrittlement

    NASA Technical Reports Server (NTRS)

    Woods, Stephen; Lee, Jonathan A.

    2016-01-01

    Hydrogen embrittlement (HE) is a process resulting in a decrease in the fracture toughness or ductility of a metal due to the presence of atomic hydrogen. In addition to pure hydrogen gas as a direct source for the absorption of atomic hydrogen, the damaging effect can manifest itself from other hydrogen-containing gas species such as hydrogen sulfide (H2S), hydrogen chloride (HCl), and hydrogen bromide (HBr) environments. It has been known that H2S environment may result in a much more severe condition of embrittlement than pure hydrogen gas (H2) for certain types of alloys at similar conditions of stress and gas pressure. The reduction of fracture loads can occur at levels well below the yield strength of the material. Hydrogen embrittlement is usually manifest in terms of singular sharp cracks, in contrast to the extensive branching observed for stress corrosion cracking. The initial crack openings and the local deformation associated with crack propagation may be so small that they are difficult to detect except in special nondestructive examinations. Cracks due to HE can grow rapidly with little macroscopic evidence of mechanical deformation in materials that are normally quite ductile. This Technical Memorandum presents a comprehensive review of experimental data for the effects of gaseous Hydrogen Environment Embrittlement (HEE) for several types of metallic materials. Common material screening methods are used to rate the hydrogen degradation of mechanical properties that occur while the material is under an applied stress and exposed to gaseous hydrogen as compared to air or helium, under slow strain rates (SSR) testing. Due to the simplicity and accelerated nature of these tests, the results expressed in terms of HEE index are not intended to necessarily represent true hydrogen service environment for long-term exposure, but rather to provide a practical approach for material screening, which is a useful concept to qualitatively evaluate the severity of

  12. Research on Crack-Filling Heat Treatment and Hydrogen Permeation Test of Self-healing Tritium Permeation Barriers

    NASA Astrophysics Data System (ADS)

    Liu, Dawei; Wang, Yan; Zhang, Ying; Ouyang, Taoyuan; Zhou, Tong; Fang, Xuanwei; Suo, Jinping

    2018-04-01

    A TiC + mixture (TiC/Al2O3 (1:1 wt.%)) +Al2O3 self-healing triple layer coating (TLC) was designed and manufactured by our group, and the crack-filling heat treatment process had been roughly explored in the past. In this work, the accelerating test with a thick TiC + mixture (TiC/Al2O3 (1:1 wt.%)) double-layer coating (DLC) was carried out. The DLC coating warped when the heat treatment temperature was lower than 550 °C, which was rare in similar researches, and it crushed into fan-shaped pieces when the treatment temperature was higher than 650 °C. The two different spalling failures were explained by weight gain, porosity and stress analyses. The heating rate had a significant effect. The bonding strength and hydrogen permeation of the TLC samples were also tested. Remaining at 650 °C for 40 h was proved to be an optimal crack-filling heat treatment process, considering the hydrogen resistance.

  13. Grain boundary selective oxidation and intergranular stress corrosion crack growth of high-purity nickel binary alloys in high-temperature hydrogenated water

    DOE PAGES

    Bruemmer, S. M.; Olszta, M. J.; Toloczko, M. B.; ...

    2017-11-26

    The effects of alloying elements in Ni-5at%X binary alloys on intergranular (IG) corrosion and stress corrosion cracking (SCC) have been assessed in 300–360 °C hydrogenated water at the Ni/NiO stability line. Alloys with Cr or Al additions exhibited grain boundary oxidation and IGSCC, while localized degradation was not observed for pure Ni, Ni-Cu or Ni-Fe alloys. Environment-enhanced crack growth was determined by comparing the response in water and N 2 gas. Lastly, results demonstrate that selective grain boundary oxidation of Cr and Al promoted IGSCC of these Ni alloys in hydrogenated water.

  14. Grain boundary selective oxidation and intergranular stress corrosion crack growth of high-purity nickel binary alloys in high-temperature hydrogenated water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruemmer, S. M.; Olszta, M. J.; Toloczko, M. B.

    The effects of alloying elements in Ni-5at%X binary alloys on intergranular (IG) corrosion and stress corrosion cracking (SCC) have been assessed in 300–360 °C hydrogenated water at the Ni/NiO stability line. Alloys with Cr or Al additions exhibited grain boundary oxidation and IGSCC, while localized degradation was not observed for pure Ni, Ni-Cu or Ni-Fe alloys. Environment-enhanced crack growth was determined by comparing the response in water and N 2 gas. Lastly, results demonstrate that selective grain boundary oxidation of Cr and Al promoted IGSCC of these Ni alloys in hydrogenated water.

  15. Grain boundary selective oxidation and intergranular stress corrosion crack growth of high-purity nickel binary alloys in high-temperature hydrogenated water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruemmer, S. M.; Olszta, M. J.; Toloczko, M. B.

    The effects of alloying elements in Ni-5at%X binary alloys on intergranular (IG) corrosion and stress corrosion cracking (SCC) have been assessed in 300-360°C hydrogenated water at the Ni/NiO stability line. Alloys with Cr or Al additions exhibited grain boundary oxidation and IGSCC, while localized degradation was not observed for pure Ni, Ni-Cu or Ni-Fe alloys. Environment-enhanced crack growth was determined by comparing the response in water and N2 gas. Results demonstrate that selective grain boundary oxidation of Cr and Al promoted IGSCC of these Ni alloys in hydrogenated water.

  16. Sensitivity Analysis of Fatigue Crack Growth Model for API Steels in Gaseous Hydrogen.

    PubMed

    Amaro, Robert L; Rustagi, Neha; Drexler, Elizabeth S; Slifka, Andrew J

    2014-01-01

    A model to predict fatigue crack growth of API pipeline steels in high pressure gaseous hydrogen has been developed and is presented elsewhere. The model currently has several parameters that must be calibrated for each pipeline steel of interest. This work provides a sensitivity analysis of the model parameters in order to provide (a) insight to the underlying mathematical and mechanistic aspects of the model, and (b) guidance for model calibration of other API steels.

  17. Lead induced stress corrosion cracking of Alloy 690 in high temperature water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, K.K.; Lim, J.K.; Moriya, Shinichi

    1995-12-31

    Recent investigations of cracked steam generator tubes at nuclear power plants concluded that lead significantly contributed to cracking the Alloy 600 materials. In order to investigate the stress corrosion cracking (SCC) behavior of Alloy 690, slow strain rate tests (SSRT) and anodic polarization measurements were performed. The SSRTs were conducted in a lead-chloride solution (PbCl{sub 2}) and in a chloride but lead free solution (NaCl) at pH of 3 and 4.5 at 288 C. The anodic polarization measurements were carried out at 30 C using the same solutions as in SSRT. The SSRT results showed that Alloy 690 was susceptiblemore » to SCC in both solutions. In the lead chloride solution, cracking had slight dependence on lead concentration and pH. Cracking tend to increase with a higher lead concentration and a lower pH and was mainly intergranular and was to be a few tens to hundreds micrometers in length. In the chloride only solution, cracking was similar to the lead induced SCC. The results of anodic polarization measurement and electron probe micro analysis (EPMA) helped to understand lead induced SCC. Lead was a stronger active corrosive element but had a minor affect on cracking susceptibility of the alloy. While, chloride was quite different from lead effect to SCC. A possible mechanism of lead induced SCC of Alloy 690 was also discussed based on the test results.« less

  18. Hydrogen-Induced Plastic Deformation in ZnO

    NASA Astrophysics Data System (ADS)

    Lukáč, F.; Čížek, J.; Vlček, M.; Procházka, I.; Anwand, W.; Brauer, G.; Traeger, F.; Rogalla, D.; Becker, H.-W.

    In the present work hydrothermally grown ZnO single crystals covered with Pd over-layer were electrochemically loaded with hydrogen and the influence of hydrogen on ZnO micro structure was investigated by positron annihilation spectroscopy (PAS). Nuclear reaction analysis (NRA) was employed for determination of depth profile of hydrogen concentration in the sample. NRA measurements confirmed that a substantial amount of hydrogen was introduced into ZnO by electrochemical charging. The bulk hydrogen concentration in ZnO determined by NRA agrees well with the concentration estimated from the transported charge using the Faraday's law. Moreover, a subsurface region with enhanced hydrogen concentration was found in the loaded crystals. Slow positron implantation spectroscopy (SPIS) investigations of hydrogen-loaded crystal revealed enhanced concentration of defects in the subsurface region. This testifies hydrogen-induced plastic deformation of the loaded crystal. Absorbed hydrogen causes a significant lattice expansion. At low hydrogen concentrations this expansion is accommodated by elastic straining, but at higher concentrations hydrogen-induced stress exceeds the yield stress in ZnO and plastic deformation of the loaded crystal takes place. Enhanced hydrogen concentration detected in the subsurface region by NRA is, therefore, due to excess hydrogen trapped at open volume defects introduced by plastic deformation. Moreover, it was found that hydrogen-induced plastic deformation in the subsurface layer leads to typical surface modification: formation of hexagonal shape pyramids on the surface due to hydrogen-induced slip in the [0001] direction.

  19. Shock-induced Plasticity and Brittle Cracks in Aluminum Nitride

    NASA Astrophysics Data System (ADS)

    Branicio, Paulo; Kalia, Rajiv

    2005-03-01

    Two hundred and nine million atom molecular-dynamics simulation of hypervelocity projectile impact in aluminum nitride reveals strong interplay between shock-induced structural phase transformation, plastic deformation and brittle cracks. The shock wave splits into an elastic precursor and a wurtzite-to-rocksalt structural transformation wave. When the elastic wave reflected from the boundary of the sample interacts with the transformation wave front, nanocavities are generated along the penetration path of the projectile and dislocations in adjacent regions. The nanocavities coalesce to form mode I brittle cracks while dislocations generate kink bands that give rise to mode II cracks. These simulations provide a microscopic view of defects associated with simultaneous tensile and shear cracking at the structural phase transformation boundary due to shock impact in high-strength ceramics.

  20. Catalytic cracking process

    DOEpatents

    Lokhandwala, Kaaeid A.; Baker, Richard W.

    2001-01-01

    Processes and apparatus for providing improved catalytic cracking, specifically improved recovery of olefins, LPG or hydrogen from catalytic crackers. The improvement is achieved by passing part of the wet gas stream across membranes selective in favor of light hydrocarbons over hydrogen.

  1. Crack growth induced by thermal-mechanical loading

    NASA Astrophysics Data System (ADS)

    John, R.; Hartman, G. A.; Gallagher, J. P.

    1992-06-01

    Advanced aerospace structures are often subjected to combined thermal and mechanical loads. The fracture-mechanics behavior of the structures may be altered by the thermal state existing around the crack. Hence, design of critical structural elements requires the knowledge of stress-intensity factors under both thermal and mechanical loads. This paper describes the development of an experimental technique to verify the thermal-stress-intensity factor generated by a temperature gradient around the crack. Thin plate specimens of a model material (AISI-SAE 1095 steel) were used for the heat transfer and thermal-mechanical fracture tests. Rapid thermal loading was achieved using high-intensity focused infrared spot heaters. These heaters were also used to generate controlled temperature rates for heat-transfer verification tests. The experimental results indicate that thermal loads can generate stress-intensity factors large enough to induce crack growth. The proposed thermal-stress-intensity factors appear to have the same effect as the conventional mechanical-stress-intensity factors with respect to fracture.

  2. The role of Hydrogen and Creep in Intergranular Stress Corrosion Cracking of Alloy 600 and Alloy 690 in PWR Primary Water Environments ? a Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rebak, R B; Hua, F H

    2004-07-12

    Intergranular attack (IGA) and intergranular stress corrosion cracking (IGSCC) of Alloy 600 in PWR steam generator environment has been extensively studied for over 30 years without rendering a clear understanding of the essential mechanisms. The lack of understanding of the IGSCC mechanism is due to a complex interaction of numerous variables such as microstructure, thermomechanical processing, strain rate, water chemistry and electrochemical potential. Hydrogen plays an important role in all these variables. The complexity, however, significantly hinders a clearer and more fundamental understanding of the mechanism of hydrogen in enhancing intergranular cracking via whatever mechanism. In this work, an attemptmore » is made to review the role of hydrogen based on the current understanding of grain boundary structure and chemistry and intergranular fracture of nickel alloys, effect of hydrogen on electrochemical behavior of Alloy 600 and Alloy 690 (e.g. the passive film stability, polarization behavior and open-circuit potential) and effect of hydrogen on PWSCC behavior of Alloy 600 and Alloy 690. Mechanistic studies on the PWSCC are briefly reviewed. It is concluded that further studies on the role of hydrogen on intergranular cracking in both inert and primary side environments are needed. These studies should focus on the correlation of the results obtained at different laboratories by different methods on materials with different metallurgical and chemical parameters.« less

  3. How to control hydrogen level in (super) duplex stainless steel weldments using the GTAW or GMAW process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mee, V.V.D.; Meelker, H.; Schelde, R.V.D.

    1999-01-01

    In this investigation, an attempt is made to further the understanding of factors influencing the hydrogen content in duplex stainless steel gas tungsten arc (GTA) and gas metal arc (GMA) welds as well as to what extent it affects hydrogen-induced cracking susceptibility. The results indicated that susceptibility to hydrogen cracking using the GTA or GMA process appears to be limited. In practice, maintaining a moisture level below 10 ppm in the shielding gas is of less importance than the choice of welding parameters. Even a moisture level of 1000 ppm in the shielding gas, in combination with the correct weldingmore » parameters, will result in a sufficient low hydrogen content in the weld. Similarly, a moisture level in the shielding gas below 10 ppm does not necessarily result in low hydrogen content in the weld metal. Although very high ferrite levels were combined with high restrain and high hydrogen content, none of the GMA and GTA welds cracked. Susceptibility to hydrogen cracking is concluded to be limited.« less

  4. An Experimental Investigation of Hypergolic Ignition Delay of Hydrogen Peroxide with Fuel Mixtures

    NASA Technical Reports Server (NTRS)

    Blevins, John A.; Gostowski, Rudy; Chianese, Silvio

    2003-01-01

    An experimental investigation of hypergolicity and ignition delay of fuel mixtures with hydrogen peroxide is presented. Example results of high speed photography and schleiren from drop tests are shown. Also, a discussion of the sensitivity to experimental parameters such as drop size and subsequent uncertainty considerations of ignition delay results is presented. It is shown that using the described setup on the mixtures presented, the precision uncertainty is on the order of 6% of average ignition delay and 5% of average decomposition delay. This represents sufficient repeatability for first order discrimination of ignition delay for propellant development and screening. Two mixtures, each using commonly available amines and transition metal compounds, are presented as examples that result in ignition delays on the order of 10 milliseconds.

  5. Effect of Low-Temperature Environment on Stress Corrosion Cracking Behavior of X80 Pipeline Steel in Simulated Alkaline Soil Solution

    NASA Astrophysics Data System (ADS)

    Xie, Fei; Wang, Dan; Wu, Ming; Yu, Chengxiang; Sun, Dongxu; Yang, Xu; Xu, Changhao

    2018-04-01

    The stress corrosion cracking (SCC) of X80 pipeline steel in simulated alkaline soil solution under different temperatures was investigated by slow-strain-rate testing, scanning electron microscopy and energy-dispersive spectroscopy. Results showed that the fracture was transgranular and brittle at 273 K to 278 K (0 °C to 5 °C), and the metal surface was dissolved by a large number of chloride ions. Furthermore, hydrogen embrittlement was caused by the hydrogen atom extended to the high-stress region. The fracture process was controlled by hydrogen-induced cracking, and SCC was highly sensitive at this stage. At 288 K to 298 K (15 °C to 25 °C), the fracture morphology was attributed to the mixed mode of ductile and brittle fractures, the fracture process was controlled by the mechanism of hydrogen-induced cracking and anodic dissolution, and the susceptibility to SCC decreased. When the temperature reached 308 K to 318 K (35 °C to 45 °C), the fracture was mainly intergranular and ductile, the fracture process was controlled by anodic dissolution, and SCC sensitivity was the smallest in this temperature range.

  6. Melatonin protects against clomiphene citrate-induced generation of hydrogen peroxide and morphological apoptotic changes in rat eggs.

    PubMed

    Tripathi, Anima; PremKumar, Karuppanan V; Pandey, Ashutosh N; Khatun, Sabana; Mishra, Surabhi Kirti; Shrivastav, Tulsidas G; Chaube, Shail K

    2011-09-30

    The present study was aimed to determine whether clomiphene citrate-induces generation of hydrogen peroxide in ovary, if so, whether melatonin could scavenge hydrogen peroxide and protect against clomiphene citrate-induced morphological apoptotic changes in rat eggs. For this purpose, forty five sexually immature female rats were given single intramuscular injection of 10 IU pregnant mare's serum gonadotropin for 48 h followed by single injections of 10 IU human chorionic gonadotropin and clomiphene citrate (10 mg/kg bw) with or without melatonin (20 mg/kg bw) for 16 h. The histology of ovary, ovulation rate, hydrogen peroxide concentration and catalase activity in ovary and morphological changes in ovulated eggs were analyzed. Co-administration of clomiphene citrate along with human chorionic gonadotropin significantly increased hydrogen peroxide concentration and inhibited catalase activity in ovary, inhibited ovulation rate and induced egg apoptosis. Supplementation of melatonin reduced hydrogen peroxide concentration and increased catalase activity in the ovary, delayed meiotic cell cycle progression in follicular oocytes as well as in ovulated eggs since extrusion of first polar body was still in progress even after ovulation and protected against clomiphene citrate-induced egg apoptosis. These results clearly suggest that the melatonin reduces oxidative stress by scavenging hydrogen peroxide produced in the ovary after clomiphene citrate treatment, slows down meiotic cell cycle progression in eggs and protects against clomiphene citrate-induced apoptosis in rat eggs. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Analysis of cracks induced by elevated temperature in rock using micro-focus X-ray CT

    NASA Astrophysics Data System (ADS)

    Cheon, D. S.; Park, E. S.

    2016-12-01

    Thermal energy storage facilities and deep borehole nuclear waste disposal in the underground are repeatedly applied by heat. The thermal stress induced by heat can generate micro-cracks and extend the existing micro-cracks of rocks. For long-term stabilities of the above facilities, the features of thermal induced cracks should be investigated. In this paper, we investigated occurred the features of thermal cracks using micro-focus X-ray CT before and after thermal experiments. Two different kinds of rock core specimens (limestone, granite) were heated within the furnace with the elevated temperatures of 250 °C, 400 °C and 550 °C. In thermal experiments, we heated rocks with the speed of 1.5 ºC /min to avoid thermal shock. Total 16 cases were subjected to X-ray imaging and post-processing to observe thermally induced fractures. Micro-cracks induced by thermal loading may not be extractable by a thresholding method such that the manual tracking within the ROI (Region of Interest) was implemented by using the VG Studio Software. Identified fractures were grouped by each object whose orientation was fitted by 3D plane. And then, its normal vector was computed and visualized. Nominal fractures (less than 10 voxel size) were excluded. Each fracture was projected on the 3D sphere and its volume was represented by color map. Thermal induced cracks in the limestone observed on CT images were very small. On the other hand, they could be more clearly observed in the granite. In case of limestone, the number of cracks is only 4 after heating up 550 °C and most of them occurred within the mineral. In case of granite, 157 cracks are detected both at the boundaries of minerals and within the mineral. In both rocks, the development of thermal cracks within a certain mineral was superior to them that occurred along the interface between minerals. After heating up to 550 °C the occurred cracks significantly increased. Crack volume was also similar pattern to the number of

  8. Acoustic emission investigation of cold cracking in gas metal-arc welding of AISI 4340 steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, C.K.; Kannatey-Asibu, E. Jr.; Barber, J.R.

    1995-06-01

    Acoustic emission (AE) has been used to investigate the propagation of a finite crack in a weldment subjected to nonuniform longitudinal residual stresses during gas metal arc welding (GMAW). Cold cracking in selected weldments was accelerated using the electrochemical method to cathodically charge the weldments with hydrogen in order to induce hydrogen embrittlement. Cold cracking was observed about 40 min after charging in the specimen subjected to hydrogen embrittlement, while it was observed two days after welding for the one that was left in the atmosphere. The AE signals were generated as the specimen cracked and were recorded, and themore » effects from structure and instrumentation were removed from the measured signals by deconvolution in the frequency domain. Most of the high-amplitude signal components were found to be clustered in the frequency range below 200 kHz. The experimentally obtained spectrum was compared with theoretical results derived in earlier work, and reasonable agreement with theoretical surface displacement in both time and frequency domains was obtained. The envelopes for both spectra were found to decrease with increasing frequency, while the fluctuations in each curve diminished at high frequencies.« less

  9. Prompt and delayed Coulomb explosion of doubly ionized hydrogen chloride molecules in intense femtosecond laser fields

    NASA Astrophysics Data System (ADS)

    Ma, Junyang; Li, Hui; Lin, Kang; Song, Qiying; Ji, Qinying; Zhang, Wenbin; Li, Hanxiao; Sun, Fenghao; Qiang, Junjie; Lu, Peifen; Gong, Xiaochun; Zeng, Heping; Wu, Jian

    2018-06-01

    We experimentally investigate the dissociative double ionization of hydrogen chloride (HCl) molecules in intense femtosecond laser pulses. In addition to the prompt dissociation channels which occur on femtosecond timescales, long-lived hydrogen chloride dications which Coulomb-explode in flight towards the detector are clearly identified in the photoion-photoion coincidence spectrum. Different pathways leading to these prompt and delayed dissociation channels involving various bound and repulsive states of the HCl dication are discussed based on the observed kinetic energy release and momentum distributions. Our results indicate that the specific features of the HCl dication potential energy curves are responsible for the generation of the delayed fragmentation channels, which are expected to be general processes for the hydrogen halides.

  10. Thermally induced transverse cracking in graphite-epoxy cross-ply laminates

    NASA Technical Reports Server (NTRS)

    Adams, D. S.; Bowles, D. E.; Herakovich, C. T.

    1986-01-01

    Thermally induced transverse cracking in T300/5208 graphite-epoxy cross-ply laminates was investigated experimentally and theoretically. The six laminate configurations studied were: 0/90(3)s, 0(2)/90(2)s, 0(3)/90s, 90/0(3)s, 90(2)/0(2)s, and 90(3)/0s. The thermal load required to initiate transverse cracking was determined experimentally and compared to a theoretical prediction. Experimental results for the accumulation of transverse cracks under cyclic thermal loading between - 250 and 250 F for up to 500 thermal cycles are presented. The calculated in situ transverse-lamina strength was determined to be at least 1.9 times the unidirectional-lamina transverse tensile strength. All laminate configurations exhibited an increase in crack density with increasing thermal cycles.

  11. Hydrogen Induced Stress Cracking of Materials Under Cathodic Protection

    NASA Astrophysics Data System (ADS)

    LaCoursiere, Marissa P.

    Hydrogen embrittlement of AISI 4340, InconelRTM 718, Alloy 686 and Alloy 59 was studied using slow strain rate tests of both smooth and notched cylindrical specimens. Two heat treatments of the AISI 4340 material were used as a standard for two levels of yield strength: 1479 MPa, and 1140 MPa. A subset of the 1140 MPa AISI 4340 material also underwent plasma nitriding. The InconelRTM 718 material was hardened following AMS 5663M to obtain a yield strength of 1091 MPa. The Alloy 686 material was obtained in the Grade 3 condition with a minimum yield strength of 1034 MPa. The Alloy 59 material was obtained with a cold worked condition similar to the Alloy 686 and with a minimum yield strength of 1034 MPa. Ninety-nine specimens were tested, including smooth cylindrical tensile test specimens and smooth and notched cylindrical slow strain rate tensile tests specimens. Testing included specimens that had been precharged with hydrogen in 3.5% NaCl at 50°C for 2 weeks (AISI 4340), 4 weeks (InconelRTM 718, Alloy 686, Alloy 59) and 16 weeks (InconelRTM 718, Alloy 686, Alloy 59) using a potentiostat to deliver a cathodic potential of -1100 mV vs. SCE. The strain rate over the gauge section for the smooth specimens and in the notch root for the notched specimens was 1 x 10-6 /s. It was found that the AISI 4340 was highly embrittled in simulated ocean water when compared to the nickel based superalloys. The higher strength AISI 4340 showed much more embrittlement, as expected. Testing of the AISI 4340 at both 20°C and 4°C showed that the temperature had no effect on the hydrogen embrittlement response. The InconelRTM 718 was highly embrittled when precharged, although it only showed low levels of embrittlement when unprecharged. Both the Alloy 686 and Alloy 59 showed minimal embrittlement in all conditions. Therefore, for the materials examined, the use of Alloy 686 and Alloy 59 for components in salt water environments when under a cathodic potential of -1100 mV vs. SCE is

  12. Corrosion Product Film-Induced Stress Facilitates Stress Corrosion Cracking

    PubMed Central

    Wang, Wenwen; Zhang, Zhiliang; Ren, Xuechong; Guan, Yongjun; Su, Yanjing

    2015-01-01

    Finite element analyses were conducted to clarify the role of corrosion product films (CPFs) in stress corrosion cracking (SCC). Flat and U-shaped edge-notched specimens were investigated in terms of the CPF-induced stress in the metallic substrate and the stress in the CPF. For a U-shaped edge-notched specimen, the stress field in front of the notch tip is affected by the Young’s modulus of the CPF and the CPF thickness and notch geometry. The CPF-induced tensile stress in the metallic substrate is superimposed on the applied load to increase the crack tip strain and facilitate localized plasticity deformation. In addition, the stress in the CPF surface contributes to the rupture of the CPFs. The results provide physical insights into the role of CPFs in SCC. PMID:26066367

  13. Characteristics of thermally-induced transverse cracks in graphite epoxy composite laminates

    NASA Technical Reports Server (NTRS)

    Adams, D. S.; Bowles, D. E.; Herakovich, C. T.

    1983-01-01

    The characteristics of thermally induced transverse cracks in T300/5208 graphite-epoxy cross-ply and quasi-isotropic laminates were investigated both experimentally and analytically. The formation of transverse cracks and the subsequent crack spacing present during cool down to -250 F (116K) and thermal cycling between 250 and -250 F (116 and 394K) was investigated. The state of stress in the vicinity of a transverse crack and the influence of transverse cracking on the laminate coefficient of thermal expansion (CTE) was predicted using a generalized plane strain finite element analysis and a modified shear lag analysis. A majority of the cross-ply laminates experienced transverse cracking during the initial cool down to -250 F whereas the quasi-isotropic laminates remained uncracked. The in situ transverse strength of the 90 degree layers was more than 1.9 times greater than the transverse strength of the unidirectional 90 degree material for all laminates investigated.

  14. PFC2D simulation of thermally induced cracks in concrete specimens

    NASA Astrophysics Data System (ADS)

    Liu, Xinghong; Chang, Xiaolin; Zhou, Wei; Li, Shuirong

    2013-06-01

    The appearance of cracks exposed to severe environmental conditions can be critical for concrete structures. The research is to validate Particle Flow Code(PFC2D) method in the context of concrete thermally-induced cracking simulations. First, concrete was discreted as meso-level units of aggregate, cement mortar and the interfaces between them. Parallel bonded-particle model in PFC2D was adapted to describe the constitutive relation of the cementing material. Then, the concrete mechanics meso-parameters were obtained through several groups of biaxial tests, in order to make the numerical results comply with the law of the indoor test. The concrete thermal meso-parameters were determined by compared with the parameters in the empirical formula through the simulations imposing a constant heat flow to the left margin of concrete specimens. At last, a case of 1000mm×500mm concrete specimen model was analyzed. It simulated the formation and development process of the thermally-induced cracks under the cold waves of different durations and temperature decline. Good agreements in fracture morphology and process were observed between the simulations, previous studies and laboratory data. The temperature decline limits during cold waves were obtained when its tensile strength was given as 3MPa. And it showed the feasibility of using PFC2D to simulate concrete thermally-induced cracking.

  15. Modelling and measurement of crack closure and crack growth following overloads and underloads

    NASA Technical Reports Server (NTRS)

    Dexter, R. J.; Hudak, S. J.; Davidson, D. L.

    1989-01-01

    Ignoring crack growth retardation following overloads can result in overly conservative life predictions in structures subjected to variable amplitude fatigue loading. Crack closure is believed to contribute to the crack growth retardation, although the specific closure mechanism is dabatable. The delay period and corresponding crack growth rate transients following overload and overload/underload cycles were systematically measured as a function of load ratio and overload magnitude. These responses are correlated in terms of the local 'driving force' for crack growth, i.e. the effective stress intensity factor range. Experimental results are compared with the predictions of a Dugdale-type (1960) crack closure model, and improvements in the model are suggested.

  16. Reflective cracking control : interim report - fourth year.

    DOT National Transportation Integrated Search

    1999-07-01

    Reflective cracking has long been considered a major problem associated with asphalt : pavements. Several methods including milling, crack sealing and fabric membranes have : been used in an attempt to eliminate or delay the reflective cracking proce...

  17. Prediction of thermal cycling induced cracking in polmer matrix composites

    NASA Technical Reports Server (NTRS)

    Mcmanus, Hugh L.

    1994-01-01

    The work done in the period August 1993 through February 1994 on the 'Prediction of Thermal Cycling Induced Cracking In Polymer Matrix Composites' program is summarized. Most of the work performed in this period, as well as the previous one, is described in detail in the attached Master's thesis, 'Analysis of Thermally Induced Damage in Composite Space Structures,' by Cecelia Hyun Seon Park. Work on a small thermal cycling and aging chamber was concluded in this period. The chamber was extensively tested and calibrated. Temperatures can be controlled very precisely, and are very uniform in the test chamber. Based on results obtained in the previous period of this program, further experimental progressive cracking studies were carried out. The laminates tested were selected to clarify the differences between the behaviors of thick and thin ply layers, and to explore other variables such as stacking sequence and scaling effects. Most specimens tested were made available from existing stock at Langley Research Center. One laminate type had to be constructed from available prepreg material at Langley Research Center. Specimens from this laminate were cut and prepared at MIT. Thermal conditioning was carried out at Langley Research Center, and at the newly constructed MIT facility. Specimens were examined by edge inspection and by crack configuration studies, in which specimens were sanded down in order to examine the distribution of cracks within the specimens. A method for predicting matrix cracking due to decreasing temperatures and/or thermal cycling in all plies of an arbitrary laminate was implemented as a computer code. The code also predicts changes in properties due to the cracking. Extensive correlations between test results and code predictions were carried out. The computer code was documented and is ready for distribution.

  18. Critical Issues in Hydrogen Assisted Cracking of Structural Alloys

    DTIC Science & Technology

    2006-01-01

    does not precipitate ? Does the HEAC mechanism explain environment-assisted (stress corrosion ) crack growth in high strength alloys stressed in moist...superalloys were cracked in high pressure (100-200 M~a) H2, while maraging and tempered-martensitic steels were cracked in low pressure (-100 kPa) H2...of IRAC in ultra-high strength AerMet®l00 steel demonstrates the role of crack tip stress in promoting H accumulation and embrittlement. The cracking

  19. Moisture contamination and welding parameter effects on flux cored arc welding diffusible hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiefer, J.J.

    1994-12-31

    Gas metal arc (GMAW) and flux cored arc (FCAW) welding are gas shielded semiautomatic processes widely used for achieving high productivity in steel fabrication. Contamination of the shielding has can occur due to poorly maintained gas distribution systems. Moisture entering as a gas contaminant is a source of hydrogen that can cause delayed cold cracking in welds. Limiting heat-affected zone hardness is one method of controlling cracking. Even this is based on some assumptions about the hydrogen levels in the weld. A study was conducted to investigate the effect of shielding gas moisture contamination and welding parameters on the diffusiblemore » hydrogen content of gas shielded flux cored arc welding. The total wire hydrogen of various electrodes was also tested and compared to the diffusible weld hydrogen. An empirical equation has been developed that estimates the diffusible hydrogen in weld metal for gas shielded flux cored arc welding. The equation is suitable for small diameter electrodes and welding parameter ranges commonly used for out-of-position welding. by combining this with the results from the total wire hydrogen tests, it is possible to estimate diffusible hydrogen directly from measured welding parameters, shielding gas dew point, and total hydrogen of the consumable. These equations are also useful for evaluating the effect of welding procedure variations from known baseline conditions.« less

  20. Hot Jet Ignition Delay Characterization of Methane and Hydrogen at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Tarraf Kojok, Ali

    This study contributes to a better understanding of ignition by hot combustion gases which finds application in internal combustion chambers with pre-chamber ignition as well as in wave rotor engine applications. The experimental apparatus consists of two combustion chambers: a pre chamber that generates the transient hot jet of gas and a main chamber which contains the main fuel air blend under study. Variables considered are three fuel mixtures (Hydrogen, Methane, 50% Hydrogen-Methane), initial pressure in the pre-chamber ranging from 1 to 2 atm, equivalence ratio of the fuel air mixture in the main combustion chamber ranging from 0.4 to 1.5, and initial temperature of the main combustion chamber mixture ranging from 297 K to 500 K. Experimental data makes use of 4 pressure sensors with a recorded sampling rate up to 300 kHz, as well as high speed Schlieren imaging with a recorded frame rate up to 20,833 frame per seconds. Results shows an overall increase in ignition delay with increasing equivalence ratio. High temperature of the main chamber blend was found not to affect hot jet ignition delay considerably. Physical mixing effects, and density of the main chamber mixture have a greater effect on hot jet ignition delay.

  1. Ignition characteristics of cracked JP-7 fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puri, Puneesh; Ma, Fuhua; Choi, Jeong-Yeol

    2005-09-01

    The ignition characteristics of cracked JP-7 fuel with both oxygen and air is studied over a wide range of pressures (1-20 atm), temperatures (1200-2000 K), and equivalence ratios (0.5-1.5). Correlations of ignition delay times, of the form t=Aexp(E/RT)[F]a[O2]b, are established using the Chemkin-II package and least-squares analysis. The effect of C3 hydrocarbons in cracked JP-7 fuel is examined by comparing ignition delay times for two different cracked compositions.

  2. Fracture Kinetics of Hydrogen Embrittled Niobium.

    DTIC Science & Technology

    1981-03-01

    Effects on Hydride Solvus 4...........4 2.3 Subcritical Crack Growth Behavior and Mechanism . . 6 2.4 Crack Propagation Measurements and Techniques... maraging steels in gaseous hydrogen, Hudak and Wei (18) ei has suggested that the KI independence of Stage II velocities is due to a rate limited...lattice decohesion model for hydrogen assisted cracking in steels . The occurrence of three stage behavior in hydrogen embrittled refractory alloys has

  3. Propellant Crack Tip Ignition and Propagation under Rapid Pressurization

    DTIC Science & Technology

    1982-10-01

    that the ignition-delay time decreases and the heat flux to the propellant surface increases as the pressurization rate is increased. The decrease in...leading to ignition. The model predicts the experimental obseriation that the ignition delay time decreases as the pressurization rate is increased...pressurization rate on both crack propagation velocity and time variation of crack shape was studied. Experimental results indicated that the crack velocity

  4. Cracking the Crack Dance: A Case Report on Cocaine-induced Choreoathetosis.

    PubMed

    Narula, Naureen; Siddiqui, Faraz; Katyal, Nakul; Krishnan, Nithya; Chalhoub, Michel

    2017-12-22

    Movement disorders represent one of the less common presentations of cocaine toxicity observed in clinical practice. Given the magnitude of crack cocaine use, it is vital to understand the underlying pathogenesis. We present a case of a patient who clinically exhibited cocaine-induced choreoathetosis. The diagnosis was confirmed after ruling out all other organic causes of de novo choreoathetoid movement. This case highlights the association of cocaine with choreoathetoid movements. We propose a preliminary understanding of the underlying pathogenesis, which may help intensivists better recognize this uncommon phenomenon.

  5. Volume analysis of heat-induced cracks in human molars: A preliminary study

    PubMed Central

    Sandholzer, Michael A.; Baron, Katharina; Heimel, Patrick; Metscher, Brian D.

    2014-01-01

    Context: Only a few methods have been published dealing with the visualization of heat-induced cracks inside bones and teeth. Aims: As a novel approach this study used nondestructive X-ray microtomography (micro-CT) for volume analysis of heat-induced cracks to observe the reaction of human molars to various levels of thermal stress. Materials and Methods: Eighteen clinically extracted third molars were rehydrated and burned under controlled temperatures (400, 650, and 800°C) using an electric furnace adjusted with a 25°C increase/min. The subsequent high-resolution scans (voxel-size 17.7 μm) were made with a compact micro-CT scanner (SkyScan 1174). In total, 14 scans were automatically segmented with Definiens XD Developer 1.2 and three-dimensional (3D) models were computed with Visage Imaging Amira 5.2.2. The results of the automated segmentation were analyzed with an analysis of variance (ANOVA) and uncorrected post hoc least significant difference (LSD) tests using Statistical Package for Social Sciences (SPSS) 17. A probability level of P < 0.05 was used as an index of statistical significance. Results: A temperature-dependent increase of heat-induced cracks was observed between the three temperature groups (P < 0.05, ANOVA post hoc LSD). In addition, the distributions and shape of the heat-induced changes could be classified using the computed 3D models. Conclusion: The macroscopic heat-induced changes observed in this preliminary study correspond with previous observations of unrestored human teeth, yet the current observations also take into account the entire microscopic 3D expansions of heat-induced cracks within the dental hard tissues. Using the same experimental conditions proposed in the literature, this study confirms previous results, adds new observations, and offers new perspectives in the investigation of forensic evidence. PMID:25125923

  6. Crack propagation in teeth: a comparison of perimortem and postmortem behavior of dental materials and cracks.

    PubMed

    Hughes, Cris E; White, Crystal A

    2009-03-01

    This study presents a new method for understanding postmortem heat-induced crack propagation patterns in teeth. The results demonstrate that patterns of postmortem heat-induced crack propagation differ from perimortem and antemortem trauma-induced crack propagation patterns. Dental material of the postmortem tooth undergoes dehydration leading to a shrinking and more brittle dentin material and a weaker dentin-enamel junction. Dentin intertubule tensile stresses are amplified by the presence of the pulp cavity, and initiates crack propagation from the internal dentin, through the dentin-enamel junction and lastly the enamel. In contrast, in vivo perimortem and antemortem trauma-induced crack propagation initiates cracking from the external surface of the enamel toward the dentin-enamel junction where the majority of the energy of the crack is dissipated, eliminating the crack's progress into the dentin. These unique patterns of crack propagation can be used to differentiate postmortem taphonomy-induced damage from antemortem and perimortem trauma in teeth.

  7. Gaseous hydrogen embrittlement of high strength steels

    NASA Technical Reports Server (NTRS)

    Gangloff, R. P.; Wei, R. P.

    1977-01-01

    The effects of temperature, hydrogen pressure, stress intensity, and yield strength on the kinetics of gaseous hydrogen assisted crack propagation in 18Ni maraging steels were investigated experimentally. It was found that crack growth rate as a function of stress intensity was characterized by an apparent threshold for crack growth, a stage where the growth rate increased sharply, and a stage where the growth rate was unchanged over a significant range of stress intensity. Cracking proceeded on load application with little or no detectable incubation period. Gaseous hydrogen embrittlement susceptibility increased with increasing yield strength.

  8. Prediction of thermal cycling induced cracking in polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Mcmanus, Hugh L.

    1993-01-01

    This report summarizes the work done in the period February 1993 through July 1993 on the 'Prediction of Thermal Cycling Induced Cracking In Polymer Matrix Composites' program. An oral presentation of this work was given to Langley personnel in September of 1993. This document was prepared for archival purposes. Progress studies have been performed on the effects of spatial variations in material strength. Qualitative agreement was found with observed patterns of crack distribution. These results were presented to NASA Langley personnel in November 1992. The analytical methodology developed by Prof. McManus in the summer of 1992 (under an ASEE fellowship) has been generalized. A method for predicting matrix cracking due to decreasing temperatures and/or thermal cycling in all plies of an arbitrary laminate has been implemented as a computer code. The code also predicts changes in properties due to the cracking. Experimental progressive cracking studies on a variety of laminates were carried out at Langley Research Center. Results were correlated to predictions using the new methods. Results were initially mixed. This motivated an exploration of the configuration of cracks within laminates. A crack configuration study was carried out by cutting and/or sanding specimens in order to examine the distribution of cracks within the specimens. These investigations were supplemented by dye-penetrant enhanced X-ray photographs. The behavior of thin plies was found to be different from the behavior of thicker plies (or ply groups) on which existing theories are based. Significant edge effects were also noted, which caused the traditional metric of microcracking (count of cracks on a polished edge) to be very inaccurate in some cases. With edge and configuration taken into account, rough agreement with predictions was achieved. All results to date were reviewed with NASA Langley personnel in September 1993.

  9. Microstructural studies of hydrogen damage in metastable stainless steels. Ph.D. Thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, S.

    1994-12-31

    The primary objective of this dissertation is to determine the role of microstructure in hydrogen-induced damage in austenitic stainless steels. Specific attention was focused on the interactions between hydrogen and the austenitic grain, twin boundaries and the matrix, and the associated phase transformations. An experimental program of research was conducted to determine the phase transformation and cracking path in hydrogen charged stainless steels. Normal-purity AISI 304 (Fe18CrYNi) and high-purity 305 (Fe18Cr12Ni) solution-annealet stainless steels were examined. The steels were cathodically charged with hydrogen at 1, 10 and 100 mA/sq cm at room temperature for 5 min. to 32 hours, inmore » an 1N H2SO4 solution with 0.25 g/l of NaAsO2 added as a hydrogen recombination poison. Resultant changes in microstructure and hydrogen damage due to charging and subsequent room temperature aging were studied by x-ray diffraction, optical microscope (in the Nomarski mode), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). A new phase in 305 stainless steel was observed, and was identified as an epsilon(*) (hcp) hydride due to hydrogen charging. Two new phases in 304 stainless steel were found as gamma(*) (fcc) and epsilon(*) hydrides from hydrogen charging. The hydride formation mechanisms during charging were: (1) gamma yields gamma(*) hydride and (2) gamma yields epsilon yields epsilon(*) hydride. These hydrides are unstable and decomposed during room temperature aging in air. The decomposition mechanisms were: (1) epsilon(*) hydride (hcp) yields expanded epsilon (hcp) phase yields a (bcc) phase; (2) gamma(*) hydride yields gamma phase. The grain and twin boundary cracks were the results of charging and identified as the preferred cracking sites. Transgranular crack initiation and growth accompanied the decomposition of hydrides and were controlled by hydrogen outgassing during room temperature aging.« less

  10. Acid-catalyzed hydrogenation during kerosene hydrodewaxing over H/ZSM-5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longstaff, D.C.; Hanson, F.V.

    1996-11-01

    Hydrogen addition to the products derived from cracking kerosene over H/ZSM-5 was observed at hydrogen pressures between 4.1-8.7 MPa and at 373-390{degrees}C. At low pressures, kerosene cracking over H/ZSM-5 yielded typical cracked products: aromatics, as well as low molecular weight saturates and olefins. Endothermic reactor temperature profiles were also observed, indicative of cracking reactions. At high hydrogen partial pressures product selectivity was altered in that kerosene cracking gave high yields of low molecular weight paraffins and low yields of olefins and aromatics. Reactor temperature profiles were exothermic, indicative of hydrocracking reactions. A mechanism for acid catalyzed hydrogenation is suggested. Althoughmore » hydrogenation was not observed at lower hydrogen pressures, hydrogen proved beneficial in maintaining catalyst activity at a stable level. Lost catalyst activity was restored by maintaining the catalyst under static hydrogen at 1.4 MPa and 370{degrees}C for 16h. 36 refs., 14 figs., 3 tabs.« less

  11. Oxidation products of Inconel alloys 600 and 690 in hydrogenated steam environments and their role in stress corrosion cracking

    NASA Astrophysics Data System (ADS)

    Ferguson, J. Bryce

    Inconel Alloys 600 and 690 are used extensively in components of Nuclear Pressurized Water Reactors (PWR) in the primary water loop which consists of H2 supersaturated steam. Alloy 600 has been found to crack intergranularly when exposed to primary water conditions. Alloy 690 was designed as a replacement and is generally regarded as immune to cracking. There is no consensus as to the mechanism which is responsible for cracking or the lack thereof in these alloys. In this work thermodynamic arguments for the stability of Ni and Cr compounds developed under pressurized water reactor environments ( PH2O and PH2 ) were experimentally tested. A mechanism is proposed to explain crack initiation and propagation alloy 600 along the grain boundaries where Cr2O3 has formed from the leaching of Cr from the matrix leaving behind a porous Ni-rich region. The mechanism is based on the thermodynamic potential for the transformation of a protective NiO surface layer into an amorphous non-protective Ni(OH)2 gel. This gel would also form along the grain boundaries and when hydrogenated steam reaches the porous Ni-rich regions. Crack initiation is then favored by tensile stressing of the grain boundary regions which can easily rupture the gelatinous film. The leaching of matrix Cr to form non-protective CrOOH gel at the crack tip followed by the exposure of fresh porous Ni to the environment also explains crack propagation in inconel alloy 600. The proposed crack initiation mechanism is not expected to occur in alloy 690 where a protective Cr2O 3 film covers the entire metal surface. However, crack propagation along the grain boundaries in alloy 600 and pre-cracked alloy 690 is expected to be active as hydroxide-forming reactions weaken the material at the grain boundaries.

  12. Moisture-Induced Delayed Alumina Scale Spallation on a Ni(Pt)Al Coating

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2009-01-01

    Delayed interfacial scale failure takes place after cooling for samples of a Ni(Pt)Al-coated CMSX4 single crystal superalloy, cycled at 1150 C for up to 2000 hr. One sample exhibited premature coating grain boundary wrinkling, alumina scale spallation to bare metal, and a final weight loss of 3.3 mg/cm2 . Spallation under ambient conditions was monitored with time after cooldown and was found to continue for 24 hr. This produced up to 0.05 mg/cm2 additional loss for each hold, accumulating 0.7 mg/cm 2 (20 percent of the total) over the course of the test. After test termination, water immersion produced an additional 0.15 mg/cm2 loss. (A duplicate sample produced much less wrinkling and time dependent spalling, maintaining a net weight gain.) The results are consistent with the general phenomena of moisture-induced delayed spallation (MIDS) of mature, distressed alumina scales formed on oxidation resistant M-Al alloys. Relative ambient humidity is discussed as the factor controlling adsorbed moisture, reaction with the substrate, and hydrogen effects on interface strength.

  13. Fatigue crack closure behavior at high stress ratios

    NASA Technical Reports Server (NTRS)

    Turner, C. Christopher; Carman, C. Davis; Hillberry, Ben M.

    1988-01-01

    Fatigue crack delay behavior at high stress ratio caused by single peak overloads was investigated in two thicknesses of 7475-T731 aluminum alloy. Closure measurements indicated no closure occurred before or throughout the overload plastic zones following the overload. This was further substantiated by comparing the specimen compliance following the overload with the compliance of a low R ratio test when the crack was fully open. Scanning electron microscope studies revealed that crack tunneling and possibly reinitiation of the crack occurred, most likely a result of crack-tip blunting. The number of delay cycles was greater for the thinner mixed mode stress state specimen than for the thicker plane strain stress state specimen, which is similar to low R ratio test results and may be due to a larger plastic zone for the mixed mode cased.

  14. Distant, delayed and ancient earthquake-induced landslides

    NASA Astrophysics Data System (ADS)

    Havenith, Hans-Balder; Torgoev, Almaz; Braun, Anika; Schlögel, Romy; Micu, Mihai

    2016-04-01

    On the basis of a new classification of seismically induced landslides we outline particular effects related to the delayed and distant triggering of landslides. Those cannot be predicted by state-of-the-art methods. First, for about a dozen events the 'predicted' extension of the affected area is clearly underestimated. The most problematic cases are those for which far-distant triggering of landslides had been reported, such as for the 1988 Saguenay earthquake. In Central Asia reports for such cases are known for areas marked by a thick cover of loess. One possible contributing effect could be a low-frequency resonance of the thick soils induced by distant earthquakes, especially those in the Pamir - Hindu Kush seismic region. Such deep focal and high magnitude (>>7) earthquakes are also found in Europe, first of all in the Vrancea region (Romania). For this area and others in Central Asia we computed landslide event sizes related to scenario earthquakes with M>7.5. The second particular and challenging type of triggering is the one delayed with respect to the main earthquake event: case histories have been reported for the Racha earthquake in 1991 when several larger landslides only started moving 2 or 3 days after the main shock. Similar observations were also made after other earthquake events in the U.S., such as after the 1906 San Francisco, the 1949 Tacoma, the 1959 Hebgen Lake and the 1983 Bora Peak earthquakes. Here, we will present a series of detailed examples of (partly monitored) mass movements in Central Asia that mainly developed after earthquakes, some even several weeks after the main shock: e.g. the Tektonik and Kainama landslides triggered in 1992 and 2004, respectively. We believe that the development of the massive failures is a consequence of the opening of tension cracks during the seismic shaking and their filling up with water during precipitations that followed the earthquakes. The third particular aspect analysed here is the use of large

  15. Crack growth through the thickness of thin-sheet Hydrided Zircaloy-4

    NASA Astrophysics Data System (ADS)

    Raynaud, Patrick A. C.

    means of digital image processing, so as to understand the influence of the hydride microstructure on fracture toughness, at the various test temperatures. Crack growth occurred through a microstructure which varied within the thickness of the thin-sheet Zircaloy-4 such that the hydrogen concentration and the radial hydride content decreased with increasing distance from the hydride blister. At 25°C, the fracture toughness was sensitive to the changes in hydride microstructure, such that the toughness KJi decreased from 39 MPa√m to 24 MPa√m with increasing hydrogen content and increasing the fraction of radial hydrides. The hydride particles present in the Zircaloy-4 substrate fractured ahead of the crack tip, and crack growth occurred by linking the crack-tip with the next hydride-induced primary void ahead of it. Unstable crack growth was observed at 25°C prior to any stable crack growth in the specimens where the hydrogen content was the highest. At 375°C as well as in most cases at 300°C, the hydride particles were resistant to cracking and the resistance to crack-growth initiation was very high. As a result, for this bend test procedure, crack extension was solely due to crack-tip blunting instead of crack growth in all tests at 375°C and in most cases at 300°C. The lower bound for fracture toughness at these temperatures, the parameter KJPmax, had values of K JPmax˜54MPa√m at both 300°C and 375°C. For cases where stable crack growth occurred at 300°C, the fracture toughness was K Ji˜58MPa√m and the tearing modulus was twice as high as that at 25°C. It is believed that the failure of hydrided Zircaloy-4 thin-wall cladding can be predicted using fracture mechanics analyses when failure occurs by crack growth. This failure mechanism was observed to occur in all cases at 25°C and in some cases at 300°C. However, at more elevated temperatures, such as 375°C, failure will likely occur by a mechanism other than crack growth, possibly by an

  16. Helium-induced weld cracking in irradiated 304 stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birchenall, A.K.

    1989-01-01

    This report consists of slide notes for presentation to The Metallurgical Society of the American Institute of Mining, Metallurgical and Petroleum Engineers (AIME). The meeting in question will be held October 3, 1989 in Indianapolis. This presentation will be the second of three consecutive talks contributed by SRL personnel dealing with helium-induced weld cracking.

  17. The ignition delay times of hydrogen/silan/air mixtures at low temperatures

    NASA Astrophysics Data System (ADS)

    Tropin, D. A.; Bochenkov, E. S.; Fedorov, A. V.

    2018-03-01

    In the paper the ignition delay times of hydrogen-silane-air mixtures at low pressures from 0.4 atm to 1 atm and mixture temperatures from 300 K to 900 K using the detailed kinetic mechanisms were calculated. It was shown that dependencies of ignition delay time on temperature are non-monotonic. In these dependences a region of "negative temperature coefficient" is presented. The effect of the mixture pressure and the silane concentration in the mixture on the length of this region was revealed. It was shown that the increasing of the silane concentration in the mixture, as well as the increasing the mixture pressure, leads to increasing of the "negative temperature coefficient" region length.

  18. Detection and Analysis of Enamel Cracks by Quantitative Light-induced Fluorescence Technology.

    PubMed

    Jun, Mi-Kyoung; Ku, Hye-Min; Kim, Euiseong; Kim, Hee-Eun; Kwon, Ho-Keun; Kim, Baek-Il

    2016-03-01

    The ability to accurately detect tooth cracks and quantify their depth would allow the prediction of crack progression and treatment success. The aim of this in vitro study was to determine the capabilities of quantitative light-induced fluorescence (QLF) technology in the detection of enamel cracks. Ninety-six extracted human teeth were selected for examining naturally existing or suspected cracked teeth surfaces using a photocuring unit. QLF performed with a digital camera (QLF-D) images were used to assess the ability to detect enamel cracks based on the maximum fluorescence loss value (ΔFmax, %), which was then analyzed using the QLF-D software. A histologic evaluation was then performed in which the samples were sectioned and observed with the aid of a polarized light microscope. The relationship between ΔFmax and the histology findings was assessed based on the Spearman rank correlation. The sensitivity and specificity were calculated to evaluate the validity of using QLF-D to analyze enamel inner-half cracks and cracks extending to the dentin-enamel junction. There was a strong correlation between the results of histologic evaluations of enamel cracks and the ΔFmax value, with a correlation coefficient of 0.84. The diagnostic accuracy of QLF-D had a sensitivity of 0.87 and a specificity of 0.98 for enamel inner-half cracks and a sensitivity of 0.90 and a specificity of 1.0 for cracks extending to the dentin-enamel junction. These results indicate that QLF technology would be a useful clinical tool for diagnosing enamel cracks, especially given that this is a nondestructive method. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Cryogenic hydrogen-induced air liquefaction technologies

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1990-01-01

    Extensively utilizing a special advanced airbreathing propulsion archives database, as well as direct contacts with individuals who were active in the field in previous years, a technical assessment of cryogenic hydrogen-induced air liquefaction, as a prospective onboard aerospace vehicle process, was performed and documented. The resulting assessment report is summarized. Technical findings are presented relating the status of air liquefaction technology, both as a singular technical area, and also that of a cluster of collateral technical areas including: compact lightweight cryogenic heat exchangers; heat exchanger atmospheric constituents fouling alleviation; para/ortho hydrogen shift conversion catalysts; hydrogen turbine expanders, cryogenic air compressors and liquid air pumps; hydrogen recycling using slush hydrogen as heat sink; liquid hydrogen/liquid air rocket-type combustion devices; air collection and enrichment systems (ACES); and technically related engine concepts.

  20. Numerical simulation of stress amplification induced by crack interaction in human femur bone

    NASA Astrophysics Data System (ADS)

    Alia, Noor; Daud, Ruslizam; Ramli, Mohammad Fadzli; Azman, Wan Zuki; Faizal, Ahmad; Aisyah, Siti

    2015-05-01

    This research is about numerical simulation using a computational method which study on stress amplification induced by crack interaction in human femur bone. Cracks in human femur bone usually occur because of large load or stress applied on it. Usually, the fracture takes longer time to heal itself. At present, the crack interaction is still not well understood due to bone complexity. Thus, brittle fracture behavior of bone may be underestimated and inaccurate. This study aims to investigate the geometrical effect of double co-planar edge cracks on stress intensity factor (K) in femur bone. This research focuses to analyze the amplification effect on the fracture behavior of double co-planar edge cracks, where numerical model is developed using computational method. The concept of fracture mechanics and finite element method (FEM) are used to solve the interacting cracks problems using linear elastic fracture mechanics (LEFM) theory. As a result, this study has shown the identification of the crack interaction limit (CIL) and crack unification limit (CUL) exist in the human femur bone model developed. In future research, several improvements will be made such as varying the load, applying thickness on the model and also use different theory or method in calculating the stress intensity factor (K).

  1. Cryogenic hydrogen-induced air-liquefaction technologies

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1990-01-01

    Extensive use of a special advanced airbreathing propulsion archives data base, as well as direct contacts with individuals who were active in the field in previous years, a technical assessment of cryogenic hydrogen induced air liquefaction, as a prospective onboard aerospace vehicle process, was performed and documented in 1986. The resulting assessment report is summarized. Technical findings relating the status of air liquefaction technology are presented both as a singular technical area, and also as that of a cluster of collateral technical areas including: Compact lightweight cryogenic heat exchangers; Heat exchanger atmospheric constituents fouling alleviation; Para/ortho hydrogen shift conversion catalysts; Hydrogen turbine expanders, cryogenic air compressors and liquid air pumps; Hydrogen recycling using slush hydrogen as heat sinks; Liquid hydrogen/liquid air rocket type combustion devices; Air Collection and Enrichment System (ACES); and Technically related engine concepts.

  2. Indentation studies on Y[sub 2]O[sub 3]-stabilized ZrO[sub 2]; 1: Development of indentation-induced cracks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaliszewski, M.S.; Behrens, G.; Heuer, A.H.

    1994-05-01

    The development of Vickers indent-induced cracks with increasing indent load has been studied in two Y[sub 2]O[sub 3]-stabilized ZrO[sub 2] ceramics. Such cracks form as radial or Palmqvist cracks at low loads, assume kidney'' shapes at intermediate loads, and finally form median (half-penny) cracks at high loads. The plastic zone directly beneath the indent is uncracked; a significant portion of the plasticity induced by indentation occurs by martensitic transformation.

  3. Fracture and crack growth resistance studies of 304 stainless steel weldments relating to retesting of cryogenic vessels

    NASA Technical Reports Server (NTRS)

    Hall, L. R.; Finger, R. W.

    1972-01-01

    Fracture and crack growth resistance characteristics of 304 stainless steel alloy weldments as relating to retesting of cryogenic vessels were examined. Welding procedures were typical of those used in full scale vessel fabrication. Fracture resistance survey tests were conducted in room temperature air, liquid nitrogen and liquid hydrogen. In air, both surface-flawed and center-cracked panels containing cracks in weld metal, fusion line, heat-affected zone, or parent metal were tested. In liquid nitrogen and liquid hydrogen, tests were conducted using center-cracked panels containing weld centerline cracks. Load-unload, sustained load, and cyclic load tests were performed in air or hydrogen gas, liquid nitrogen, and liquid hydrogen using surface-flawed specimens containing weld centerline cracks. Results were used to evaluate the effectiveness of periodic proof overloads in assuring safe and reliable operation of over-the-road cryogenic dewars.

  4. Characterization of asphaltene molecular structures by cracking under hydrogenation conditions and prediction of the viscosity reduction from visbreaking of heavy oils

    NASA Astrophysics Data System (ADS)

    Rueda Velasquez, Rosa Imelda

    The chemical building blocks that comprise petroleum asphaltenes were determined by cracking samples under conditions that minimized alterations to aromatic and cycloalkyl groups. Hydrogenation conditions that used tetralin as hydrogen-donor solvent, with an iron-based catalyst, allowed asphaltenes from different geological regions to yield 50-60 wt% of distillates (<538°C fraction), with coke yields below 10 wt%. Control experiments with phenanthrene and 5alpha-cholestane confirmed low hydrogenation catalytic activity, and preservation of the cycloalkyl structures. Quantitative recovery of cracking products and characterization of the distillates, by gas chromatography-field ionization--time of flight high resolution mass spectrometry, displayed remarkable similarity in molecular composition for the different asphaltenes. Paraffins and 1-3 ring aromatics were the most abundant building blocks. The diversity of molecules identified, and the high yield of paraffins were consistent with high heterogeneity and complexity of molecules, built up by smaller fragments attached to each other by bridges. The sum of material remaining as vacuum residue and coke was in the range of 35-45 wt%; this total represents the maximum amount of large clusters in asphaltenes that could not be converted to lighter compounds under the evaluated cracking conditions. These analytical data for Cold Lake asphaltenes were transformed into probability density functions that described the molecular weight distributions of the building blocks. These distributions were input for a Monte Carlo approach that allowed stochastic construction of asphaltenes and simulation of their cracking reactions to examine differences in the distributions of products associated to the molecular topology. The construction algorithm evidenced that a significant amount of asphaltenes would consist of 3-5 building blocks. The results did not show significant differences between linear and dendritic molecular

  5. Corrosion fatigue crack propagation in metals

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.

    1990-01-01

    This review assesses fracture mechanics data and mechanistic models for corrosion fatigue crack propagation in structural alloys exposed to ambient temperature gases and electrolytes. Extensive stress intensity-crack growth rate data exist for ferrous, aluminum and nickel based alloys in a variety of environments. Interactive variables (viz., stress intensity range, mean stress, alloy composition and microstructure, loading frequency, temperature, gas pressure and electrode potential) strongly affect crack growth kinetics and complicate fatigue control. Mechanistic models to predict crack growth rates were formulated by coupling crack tip mechanics with occluded crack chemistry, and from both the hydrogen embrittlement and anodic dissolution/film rupture perspectives. Research is required to better define: (1) environmental effects near threshold and on crack closure; (2) damage tolerant life prediction codes and the validity of similitude; (3) the behavior of microcrack; (4) probes and improved models of crack tip damage; and (5) the cracking performance of advanced alloys and composites.

  6. The Role of Traps in the Microstructural Control of Hydrogen Embrittlement of Steels.

    DTIC Science & Technology

    1984-04-01

    which hydrogen interacts with precipitate or other particles located on or near different structural features can in many cases directly control the...growth, can be and have been used to reduce the extent of hydrogen embrittlement in a number of ferrous alloys , ranging from low strength...sulfide induced crack at the extremity of an elongated MnS particle . Hence, round shaped second phase particles are desirable, which are achievable by

  7. Influence of fatigue crack wake length and state of stress on crack closure

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Fisher, D. M.

    1986-01-01

    The location of crack closure with respect to crack wake and specimen thickness under different loading conditions was determined. The rate of increase of K sub CL in the crack wake was found to be significantly higher for plasticity induced closure in comparison to roughness induced closure. Roughness induced closure was uniform throughout the thickness of the specimen while plasticity induced closure levels were 50 percent higher in the near surface region than in the midthickness. The influence of state of stress on low-high load interaction effects was also examined. Load interaction effects differed depending upon the state of stress and were explained in terms of delta K sub eff.

  8. Influence of fatigue crack wake length and state of stress on crack closure

    NASA Technical Reports Server (NTRS)

    Telesman, Jack; Fisher, Douglas M.

    1988-01-01

    The location of crack closure with respect to crack wake and specimen thickness under different loading conditions was determined. The rate of increase of K sub CL in the crack wake was found to be significantly higher for plasticity induced closure in comparison to roughness induced closure. Roughness induced closure was uniform throughout the thickness of the specimen while plasticity induced closure levels were 50 percent higher in the near surface region than in the midthickness. The influence of state of stress on low-high load interaction effects was also examined. Load interaction effects differed depending upon the state of stress and were explained in terms of delta K sub eff.

  9. Hydrogen leak detection using laser-induced breakdown spectroscopy.

    PubMed

    Ball, A J; Hohreiter, V; Hahn, D W

    2005-03-01

    Laser-induced breakdown spectroscopy (LIBS) is investigated as a technique for real-time monitoring of hydrogen gas. Two methodologies were examined: The use of a 100 mJ laser pulse to create a laser-induced breakdown directly in a sample gas stream, and the use of a 55 mJ laser pulse to create a laser-induced plasma on a solid substrate surface, with the expanding plasma sampling the gas stream. Various metals were analyzed as candidate substrate surfaces, including aluminum, copper, molybdenum, stainless steel, titanium, and tungsten. Stainless steel was selected, and a detailed analysis of hydrogen detection in binary mixtures of nitrogen and hydrogen at atmospheric pressure was performed. Both the gaseous plasma and the plasma initiated on the stainless steel surface generated comparable hydrogen emission signals, using the 656.28 Halpha emission line, and exhibited excellent signal linearity. The limit of detection is about 20 ppm (mass) as determined for both methodologies, with the solid-initiated plasma yielding a slightly better value. Overall, LIBS is concluded to be a viable candidate for hydrogen sensing, offering a combination of high sensitivity with a technique that is well suited to implementation in field environments.

  10. Experimental simulation of frost wedging-induced crack propagation in alpine rockwall

    NASA Astrophysics Data System (ADS)

    Jia, Hailiang; Leith, Kerry; Krautblatter, Michael

    2016-04-01

    Frost wedging is widely presumed to be the principal mechanism responsible for shattering jointed low-porosity rocks in high alpine rockwalls. The interaction of ice and rock physics regulates the efficacy of frost wedging. In order to better understand temporal aspects of this interaction, we present results of a series of laboratory experiments monitoring crack widening as a result of ice formation in an artificial crack (4mm wide, 80mm deep) cut 20 mm from the end of a rectangular granite block. Our results indicate that i) freezing direction plays a key role in determining the magnitude of crack widening; in short-term (1 day) experiments, maximum crack widening during top-down freezing (associated with 'autumn' conditions) was around 0.11mm, while inside-out freezing (resulting from 'spring' conditions) produced only 0.02 mm of deformation; ii) neither ice, nor water pressure (direct tension and hydraulic fracturing respectively) caused measurable irreversible crack widening during short-term tests, as the calculated maximum stress intensity at the crack tip was less than the fracture toughness of our granite sample; iii) development of ice pressure is closely related to the mechanical properties of the fracture in which it forms, and as such, the interaction of ice and rock is intrinsically dynamic; iv) irreversible crack widening (about 0.03mm) was only observed following a long-term (53 day) experiment representing a simplified transition from autumn to winter conditions. We suggest this is the result of stress corrosion aided by strong opening during freezing, and to a lesser degree by ice segregation up to one week after the initial freezing period, and downward migration of liquid water during the remainder of the test. Our results suggest the fundamental assumption of frost wedging, that rapid freezing from open ends of cracks can seal water inside the crack and thus cause damage through excessive stresses induced by volumetric expansion seems

  11. Prediction of thermal cycling induced matrix cracking

    NASA Technical Reports Server (NTRS)

    Mcmanus, Hugh L.

    1992-01-01

    Thermal fatigue has been observed to cause matrix cracking in laminated composite materials. A method is presented to predict transverse matrix cracks in composite laminates subjected to cyclic thermal load. Shear lag stress approximations and a simple energy-based fracture criteria are used to predict crack densities as a function of temperature. Prediction of crack densities as a function of thermal cycling is accomplished by assuming that fatigue degrades the material's inherent resistance to cracking. The method is implemented as a computer program. A simple experiment provides data on progressive cracking of a laminate with decreasing temperature. Existing data on thermal fatigue is also used. Correlations of the analytical predictions to the data are very good. A parametric study using the analytical method is presented which provides insight into material behavior under cyclical thermal loads.

  12. Delay induced stability switch, multitype bistability and chaos in an intraguild predation model.

    PubMed

    Shu, Hongying; Hu, Xi; Wang, Lin; Watmough, James

    2015-12-01

    In many predator-prey models, delay has a destabilizing effect and induces oscillations; while in many competition models, delay does not induce oscillations. By analyzing a rather simple delayed intraguild predation model, which combines both the predator-prey relation and competition, we show that delay in intraguild predation models promotes very complex dynamics. The delay can induce stability switches exhibiting a destabilizing role as well as a stabilizing role. It is shown that three types of bistability are possible: one stable equilibrium coexists with another stable equilibrium (node-node bistability); one stable equilibrium coexists with a stable periodic solution (node-cycle bistability); one stable periodic solution coexists with another stable periodic solution (cycle-cycle bistability). Numerical simulations suggest that delay can also induce chaos in intraguild predation models.

  13. Simulation Analysis of the Mutual Influence of the Stress Intensity Factor on the Multiple Blisters Caused by Hydrogen Induced Damage

    NASA Astrophysics Data System (ADS)

    Ji, Congwei; Zhang, Shaojie; Wang, Hehui

    2018-03-01

    Hydrogen blisters are taken as the research object by using the finite element software ABAQUS. The stress intensity factors of blister cracks are numerically calculated at varying depths and different edge distances for established three-dimensional finite element models of single-blister and double-blisters, respectively. The mutual influence of the stress intensity factors of the multiple blisters is obtained. It shows that the blister crack is easier to expand when the crack is closer to inner wall of the cylinder. What’s more, the crack growth rate increases firstly and then decreases as the increasing of the distance between two blisters cracks. The investigated result is of great reference value for predicting the trend of blister crack growth.

  14. Reduction of the 355-nm laser-induced damage initiators by removing the subsurface cracks in fused silica

    NASA Astrophysics Data System (ADS)

    Yang, Minghong; Qi, Hongji; Zhao, Yuanan; Yi, Kui

    2012-01-01

    The 355 nm laser-induced damage thresholds (LIDTs) of polished fused silica with and without the residual subsurface cracks were explored. HF based wet etching and magnetorheological finishing was used to remove the subsurface cracks. To isolate the effect of subsurface cracks, chemical leaching was used to eliminate the photoactive impurities in the polishing layer. Results show that the crack number density decreased from~103 to <1cm-2, and the LIDT was improved as high as 2.8-fold with both the subsurface cracks and the polishing layer being removed. Subsurface cracks play a significant role in laser damage at fluencies between 15~31 J/cm2 (355nm, 8ns). HF Etching of the cracks was shown to increase the damage performance as nearly high as that of the samples in which subsurface cracks are well controlled.

  15. Nanodiamond for hydrogen storage: temperature-dependent hydrogenation and charge-induced dehydrogenation.

    PubMed

    Lai, Lin; Barnard, Amanda S

    2012-02-21

    Carbon-based hydrogen storage materials are one of hottest research topics in materials science. Although the majority of studies focus on highly porous loosely bound systems, these systems have various limitations including use at elevated temperature. Here we propose, based on computer simulations, that diamond nanoparticles may provide a new promising high temperature candidate with a moderate storage capacity, but good potential for recyclability. The hydrogenation of nanodiamonds is found to be easily achieved, in agreement with experiments, though we find the stability of hydrogenation is dependent on the morphology of nanodiamonds and surrounding environment. Hydrogenation is thermodynamically favourable even at high temperature in pure hydrogen, ammonia, and methane gas reservoirs, whereas water vapour can help to reduce the energy barrier for desorption. The greatest challenge in using this material is the breaking of the strong covalent C-H bonds, and we have identified that the spontaneous release of atomic hydrogen may be achieved through charging of hydrogenated nanodiamonds. If the degree of induced charge is properly controlled, the integrity of the host nanodiamond is maintained, which indicates that an efficient and recyclable approach for hydrogen release may be possible. This journal is © The Royal Society of Chemistry 2012

  16. A kinetic model for thermally induced hydrogen and carbon isotope fractionation of individual n-alkanes in crude oil

    NASA Astrophysics Data System (ADS)

    Tang, Yongchun; Huang, Yongsong; Ellis, Geoffrey S.; Wang, Yi; Kralert, Paul G.; Gillaizeau, Bruno; Ma, Qisheng; Hwang, Rong

    2005-09-01

    A quantitative kinetic model has been proposed to simulate the large D and 13C isotope enrichments observed in individual n-alkanes (C 13-C 21) during artificial thermal maturation of a North Sea crude oil under anhydrous, closed-system conditions. Under our experimental conditions, average n-alkane δ 13C values increase by ˜4‰ and δD values increase by ˜50‰ at an equivalent vitrinite reflectance value of 1.5%. While the observed 13C-enrichment shows no significant dependence on hydrocarbon chain length, thermally induced D-enrichment increases with increasing n-alkane carbon number. This differential fractionation effect is speculated to be due to the combined effect of the greater extent of thermal cracking of higher molecular weight, n-alkanes compared to lower molecular weight homologues, and the generation of isotopically lighter, lower molecular weight compounds. This carbon-number-linked hydrogen isotopic fractionation behavior could form the basis of a new maturity indicator to quantitatively assess the extent of oil cracking in petroleum reservoirs. Quantum mechanical calculations of the average change in enthalpy (ΔΔH ‡) and entropy (ΔΔS ‡) as a result of isotopic substitution in n-alkanes undergoing homolytic cleavage of C-C bonds lead to predictions of isotopic fractionation that agree quite well with our experimental results. For n-C 20 ( n-icosane), the changes in enthalpy are calculated to be ˜1340 J mol -1 (320 cal mol -1) and 230 J mol -1 (55 cal mol -1) for D-H and 13C- 12C, respectively. Because the enthalpy term associated with hydrogen isotope fractionation is approximately six times greater than that for carbon, variations in δD values for individual long-chain hydrocarbons provide a highly sensitive measure of the extent of thermal alteration experienced by the oil. Extrapolation of the kinetic model to typical geological heating conditions predicts significant enrichment in 13C and D for n-icosane at equivalent vitrinite

  17. Fatigue crack propagation in aluminum-lithium alloys

    NASA Technical Reports Server (NTRS)

    Rao, K. T. V.; Ritchie, R. O.; Piascik, R. S.; Gangloff, R. P.

    1989-01-01

    The principal mechanisms which govern the fatigue crack propagation resistance of aluminum-lithium alloys are investigated, with emphasis on their behavior in controlled gaseous and aqueous environments. Extensive data describe the growth kinetics of fatigue cracks in ingot metallurgy Al-Li alloys 2090, 2091, 8090, and 8091 and in powder metallurgy alloys exposed to moist air. Results are compared with data for traditional aluminum alloys 2024, 2124, 2618, 7075, and 7150. Crack growth is found to be dominated by shielding from tortuous crack paths and resultant asperity wedging. Beneficial shielding is minimized for small cracks, for high stress ratios, and for certain loading spectra. While water vapor and aqueous chloride environments enhance crack propagation, Al-Li-Cu alloys behave similarly to 2000-series aluminum alloys. Cracking in water vapor is controlled by hydrogen embrittlement, with surface films having little influence on cyclic plasticity.

  18. Delayed Alumina Scale Spallation on Rene'n5+y: Moisture Effects and Acoustic Emission

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Morscher, Gregory N.

    2001-01-01

    The single crystal superalloy Rene'N5 (with or without Y-doping and hydrogen annealing) was cyclically oxidized at 1150 C for 1000 hours. After considerable scale growth (>= 500 hours), even the adherent alumina scales formed on Y-doped samples exhibited delayed interfacial spallation during subsequent water immersion tests, performed up to one year after oxidation. Spallation was characterized by weight loss, the amount of spalled area, and acoustic emission response. Hydrogen annealing (prior to oxidation) reduced spallation both before and after immersion, but without measurably reducing the bulk sulfur content of the Y-doped alloys. The duration and frequency of sequential, co-located acoustic emission events implied an interfacial crack growth rate at least 10(exp -3) m/s, but possibly higher than 10(exp 2) m/s. This is much greater than classic moisture-assisted slow crack growth rates in bulk alumina (10(exp -6) to 10(exp -3) m/s), which may still have occurred undetected by acoustic emission. An alternative failure sequence is proposed: an incubation process for preferential moisture ingress leads to a local decrease in interfacial toughness, thus allowing fast fracture driven by stored strain energy.

  19. Fatigue Crack Propagation from Notched Specimens of 304 SS in elevated Temperature Aqueous Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wire, G. L.; Mills, W. J.

    2002-08-01

    Fatigue crack propagation (FCP) rates for 304 stainless steel (304SS) were determined in 24 degree C and 288 degree C air and 288 degree C water using double-edged notch (DEN) specimens of 304 stainless steel (304 SS). Test performed at matched loading conditions in air and water at 288 degree C with 20-6- cc h[sub]2/kg h[sub]2O provided a direct comparison of the relative crack growth rates in air and water over a wide range of crack growth rates. The DEN crack extension ranged from short cracks (0.03-0.25 mm) to long cracks up to 4.06 mm, which are consistent with conventionalmore » deep crack tests. Crack growth rates of 304 SS in water were about 12 times the air rate. This 12X environmental enhancement persisted to crack extensions up to 4.06 mm, far outside the range associated with short crack effects. The large environmental degradation for 304 SS crack growth is consistent with the strong reduction of fatigue life in high hydrogen water. Further, very similar environmental effects w ere reported in fatigue crack growth tests in hydrogen water chemistry (HWC). Most literature data in high hydrogen water show only a mild environmental effect for 304 SS, of order 2.5 times air or less, but the tests were predominantly performed at high cyclic stress intensity or equivalently, high air rates. The environmental effect in low oxygen environments at low stress intensity depends strongly on both the stress ratio, R, and the load rise time, T[sub]r, as recently reported for austenitic stainless steel in BWR water. Fractography was performed for both tests in air and water. At 288 degree C in water, the fracture surfaces were crisply faceted with a crystallographic appearance, and showed striations under high magnification. The cleavage-like facets on the fracture surfaces suggest that hydrogen embrittlement is the primary cause of accelerated cracking.« less

  20. Tolerance of pentose utilising yeast to hydrogen peroxide-induced oxidative stress.

    PubMed

    Spencer, Jennifer; Phister, Trevor G; Smart, Katherine A; Greetham, Darren

    2014-03-17

    Bioethanol fermentations follow traditional beverage fermentations where the yeast is exposed to adverse conditions such as oxidative stress. Lignocellulosic bioethanol fermentations involve the conversion of pentose and hexose sugars into ethanol. Environmental stress conditions such as osmotic stress and ethanol stress may affect the fermentation performance; however, oxidative stress as a consequence of metabolic output can also occur. However, the effect of oxidative stress on yeast with pentose utilising capabilities has yet to be investigated. Assaying for the effect of hydrogen peroxide-induced oxidative stress on Candida, Pichia and Scheffersomyces spp. has demonstrated that these yeast tolerate hydrogen peroxide-induced oxidative stress in a manner consistent with that demonstrated by Saccharomyces cerevisiae. Pichia guillermondii appears to be more tolerant to hydrogen peroxide-induced oxidative stress when compared to Candida shehatae, Candida succiphila or Scheffersomyces stipitis. Sensitivity to hydrogen peroxide-induced oxidative stress increased in the presence of minimal media; however, addition of amino acids and nucleobases was observed to increase tolerance. In particular adenine increased tolerance and methionine reduced tolerance to hydrogen peroxide-induced oxidative stress.

  1. Tolerance of pentose utilising yeast to hydrogen peroxide-induced oxidative stress

    PubMed Central

    2014-01-01

    Background Bioethanol fermentations follow traditional beverage fermentations where the yeast is exposed to adverse conditions such as oxidative stress. Lignocellulosic bioethanol fermentations involve the conversion of pentose and hexose sugars into ethanol. Environmental stress conditions such as osmotic stress and ethanol stress may affect the fermentation performance; however, oxidative stress as a consequence of metabolic output can also occur. However, the effect of oxidative stress on yeast with pentose utilising capabilities has yet to be investigated. Results Assaying for the effect of hydrogen peroxide-induced oxidative stress on Candida, Pichia and Scheffersomyces spp. has demonstrated that these yeast tolerate hydrogen peroxide-induced oxidative stress in a manner consistent with that demonstrated by Saccharomyces cerevisiae. Pichia guillermondii appears to be more tolerant to hydrogen peroxide-induced oxidative stress when compared to Candida shehatae, Candida succiphila or Scheffersomyces stipitis. Conclusions Sensitivity to hydrogen peroxide-induced oxidative stress increased in the presence of minimal media; however, addition of amino acids and nucleobases was observed to increase tolerance. In particular adenine increased tolerance and methionine reduced tolerance to hydrogen peroxide-induced oxidative stress. PMID:24636079

  2. Hydrogen Permeability of Polymer Matrix Composites at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Grenoble, Ray W.; Gates, Thomas S

    2005-01-01

    This paper presents experimental methods and results of an ongoing study of the correlation between damage state and hydrogen gas permeability of laminated composite materials under mechanical strains and thermal loads. A specimen made from IM-7/977-2 composite material has been mechanically cycled at room temperature to induce microcrack damage. Crack density and tensile modulus were observed as functions of number of cycles. Damage development was found to occur most quickly in the off-axis plies near the outside of the laminate. Permeability measurements were made after 170,000 cycles and 430,000 cycles. Leak rate was found to depend on applied mechanical strain, crack density, and test temperature.

  3. Development of Press Hardening Steel with High Resistance to Hydrogen Embrittlement

    NASA Astrophysics Data System (ADS)

    Bian, Jian; Mohrbacher, Hardy; Lu, Hongzhou; Wang, Wenjun

    Press hardening has become the state-of-art technology in the car body manufacturing to enhance safety standard and to reduce CO2 emission of new vehicles. However the delayed cracking due to hydrogen embrittlement remains to be a critical issue. Generally press hardening steel is susceptible to hydrogen embrittlement due to ultra-high strength and martensitic microstructure. The hydrogen charging tests clearly demonstrate that only a few ppm of diffusible hydrogen is sufficient to cause such embrittlement. Currently the hydrogen embrittlement cannot be detected in the press hardened components and the embitteled components could collapse in the crash situation with fatal consequences arisen through dramatic loss in both strength and ductility. This paper introduces a new metallurgical solution to increase the resistance to hydrogen embrittlement of conventional press hardening steel based on 22MnB5 by Nb microalloying. In the hydrogen embrittlement and permeation tests the impact of Nb microalloying on the hydrogen embrittlement behavior was investigated under different hydrogen charging conditions and constant load. The test results revealed that Nb addition increases the resistance to hydrogen embrittlement due to reduced hydrogen diffusivity. The focus of this paper is to investigate the precipitation behavior of microalloying elements by using TEM and STEM and to find out the mechanisms leading to higher performance against hydrogen embrittlement of Nb alloyed steels.

  4. Effect of Nb on Delayed Fracture Resistance of Ultra-High Strength Martensitic Steels

    NASA Astrophysics Data System (ADS)

    Song, Rongjie; Fonstein, Nina; Pottore, Narayan; Jun, Hyun Jo; Bhattacharya, Debanshu; Jansto, Steve

    Ultra-high strength steels are materials of considerable interest for automotive and structural applications and are increasingly being used in those areas. Higher strength, however, makes steels more prone to hydrogen embrittlement (HE). The effects of Nb and other alloying elements on the hydrogen-induced delayed fracture resistance of cold rolled martensitic steels with ultra-high strength 2000 MPa were studied using an acid immersion test, thermal desorption analysis (TDA) and measuring of permeation. The microstructure was characterized by high resolution field emission Scanning Electron Microscopy (SEM) with Electron Backscattered Diffraction (EBSD) and Transmission Electron Microscopy (TEM). It was shown that the combined addition of Nb significantly improved the delayed fracture resistance of investigated steel. The addition of Nb to alloyed martensitic steels resulted in very apparent grain refinement of the prior austenite grain size. The Nb microalloyed steel contained a lower diffusible hydrogen content during thermal desorption analysis as compared to the base steel and had a higher trapped hydrogen amount after charging. The reason that Nb improved the delayed fracture resistance of steels can be attributed mostly to both hydrogen trapping and grain refinement.

  5. Life cycle assessment of hydrogenated biodiesel production from waste cooking oil using the catalytic cracking and hydrogenation method.

    PubMed

    Yano, Junya; Aoki, Tatsuki; Nakamura, Kazuo; Yamada, Kazuo; Sakai, Shin-ichi

    2015-04-01

    There is a worldwide trend towards stricter control of diesel exhaust emissions, however presently, there are technical impediments to the use of FAME (fatty acid methyl esters)-type biodiesel fuel (BDF). Although hydrogenated biodiesel (HBD) is anticipated as a new diesel fuel, the environmental performance of HBD and its utilization system have not been adequately clarified. Especially when waste cooking oil is used as feedstock, not only biofuel production but also the treatment of waste cooking oil is an important function for society. A life cycle assessment (LCA), including uncertainty analysis, was conducted to determine the environmental benefits (global warming, fossil fuel consumption, urban air pollution, and acidification) of HBD produced from waste cooking oil via catalytic cracking and hydrogenation, compared with fossil-derived diesel fuel or FAME-type BDF. Combined functional unit including "treatment of waste cooking oil" and "running diesel vehicle for household waste collection" was established in the context of Kyoto city, Japan. The calculation utilized characterization, damage, and integration factors identified by LIME2, which was based on an endpoint modeling method. The results show that if diesel vehicles that comply with the new Japanese long-term emissions gas standard are commonly used in the future, the benefit of FAME-type BDF will be relatively limited. Furthermore, the scenario that introduced HBD was most effective in reducing total environmental impact, meaning that a shift from FAME-type BDF to HBD would be more beneficial. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Measurement and interpretation of threshold stress intensity factors for steels in high-pressure hydrogen gas.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dadfarnia, Mohsen; Nibur, Kevin A.; San Marchi, Christopher W.

    2010-07-01

    Threshold stress intensity factors were measured in high-pressure hydrogen gas for a variety of low alloy ferritic steels using both constant crack opening displacement and rising crack opening displacement procedures. The sustained load cracking procedures are generally consistent with those in ASME Article KD-10 of Section VIII Division 3 of the Boiler and Pressure Vessel Code, which was recently published to guide design of high-pressure hydrogen vessels. Three definitions of threshold were established for the two test methods: K{sub THi}* is the maximum applied stress intensity factor for which no crack extension was observed under constant displacement; K{sub THa} ismore » the stress intensity factor at the arrest position for a crack that extended under constant displacement; and K{sub JH} is the stress intensity factor at the onset of crack extension under rising displacement. The apparent crack initiation threshold under constant displacement, K{sub THi}*, and the crack arrest threshold, K{sub THa}, were both found to be non-conservative due to the hydrogen exposure and crack-tip deformation histories associated with typical procedures for sustained-load cracking tests under constant displacement. In contrast, K{sub JH}, which is measured under concurrent rising displacement and hydrogen gas exposure, provides a more conservative hydrogen-assisted fracture threshold that is relevant to structural components in which sub-critical crack extension is driven by internal hydrogen gas pressure.« less

  7. Measurement and interpretation of threshold stress intensity factors for steels in high-pressure hydrogen gas.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nibur, Kevin A.

    2010-11-01

    Threshold stress intensity factors were measured in high-pressure hydrogen gas for a variety of low alloy ferritic steels using both constant crack opening displacement and rising crack opening displacement procedures. The sustained load cracking procedures are generally consistent with those in ASME Article KD-10 of Section VIII Division 3 of the Boiler and Pressure Vessel Code, which was recently published to guide design of high-pressure hydrogen vessels. Three definitions of threshold were established for the two test methods: K{sub THi}* is the maximum applied stress intensity factor for which no crack extension was observed under constant displacement; K{sub THa} ismore » the stress intensity factor at the arrest position for a crack that extended under constant displacement; and K{sub JH} is the stress intensity factor at the onset of crack extension under rising displacement. The apparent crack initiation threshold under constant displacement, K{sub THi}*, and the crack arrest threshold, K{sub THa}, were both found to be non-conservative due to the hydrogen exposure and crack-tip deformation histories associated with typical procedures for sustained-load cracking tests under constant displacement. In contrast, K{sub JH}, which is measured under concurrent rising displacement and hydrogen gas exposure, provides a more conservative hydrogen-assisted fracture threshold that is relevant to structural components in which sub-critical crack extension is driven by internal hydrogen gas pressure.« less

  8. Rock-Salt Growth-Induced (003) Cracking in a Layered Positive Electrode for Li-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hanlei; Omenya, Fredrick; Yan, Pengfei

    For the first time, the (003) cracking is observed and determined to be the major cracking mechanism for the primary particles of Ni-rich layered dioxides as the positive electrode for Li-ion batteries. Using transmission electron microscopy techniques, here we show that the propagation and fracturing of platelet-like rock-salt phase along the (003) plane of the layered oxide are the leading cause for the cracking of primary particles. The fracturing of the rock-salt platelet is induced by the stress discontinuity between the parent layered oxide and the rock-salt phase. The high nickel content is considered to be the key factor formore » the formation of the rock-salt platelet and thus the (003) cracking. The (003)-type cracking can be a major factor for the structural degradation and associated capacity fade of the layered positive electrode.« less

  9. Oral intake of hydrogen-rich water ameliorated chlorpyrifos-induced neurotoxicity in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Tingting; Zhao, Ling; Liu, Mengyu

    Chronic exposure to low-levels of organophosphate (OP) compounds, such as chlorpyrifos (CPF), induces oxidative stress and could be related to neurological disorders. Hydrogen has been identified as a novel antioxidant which could selectively scavenge hydroxyl radicals. We explore whether intake of hydrogen-rich water (HRW) can protect Wistar rats from CPF-induced neurotoxicity. Rats were gavaged daily with 6.75 mg/kg body weight (1/20 LD{sub 50}) of CPF and given HRW by oral intake. Nissl staining and electron microscopy results indicated that HRW intake had protective effects on the CPF-induced damage of hippocampal neurons and neuronal mitochondria. Immunostaining results showed that the increasedmore » glial fibrillary acidic protein (GFAP) expression in astrocytes induced by CPF exposure can be ameliorated by HRW intake. Moreover, HRW intake also attenuated CPF-induced oxidative stress as evidenced by enhanced level of MDA, accompanied by an increase in GSH level and SOD and CAT activity. Acetylcholinesterase (AChE) activity tests showed significant decrease in brain AChE activity after CPF exposure, and this effect can be ameliorated by HRW intake. An in vitro study demonstrated that AChE activity was more intense in HRW than in normal water with or without chlorpyrifos-oxon (CPO), the metabolically-activated form of CPF. These observations suggest that HRW intake can protect rats from CPF-induced neurotoxicity, and the protective effects of hydrogen may be mediated by regulating the oxidant and antioxidant status of rats. Furthermore, this work defines a novel mechanism of biological activity of hydrogen by directly increasing the AChE activity. - Highlights: • Hydrogen molecules protect rats from CPF-induced damage of hippocampal neurons. • The increased GFAP expression induced by CPF can also be ameliorated by hydrogen. • Hydrogen molecules attenuated the increase in CPF-induced oxidative stress. • Hydrogen molecules attenuated AChE inhibition in

  10. Electrochemical model of local corrosion at the tip of a loaded crack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreikiv, O.E.; Tym`yak, N.I.

    1994-07-01

    A model of electrochemical processes near a crack tip in a stressed metal subjected to corrosion with hydrogen depolarization is suggested. It is shown that, in order to describe the kinetics of hydrogenation of the prefracture area, it is necessary to take into account the type of passivation layer on the newly formed metal surface near the crack tip and the mechanism of its formation.

  11. Traction–separation relationships for hydrogen induced grain boundary embrittlement in nickel via molecular dynamics simulations

    DOE PAGES

    Barrows, Wesley; Dingreville, Rémi; Spearot, Douglas

    2015-10-19

    A statistical approach combined with molecular dynamics simulations is used to study the influence of hydrogen on intergranular decohesion. This methodology is applied to a Ni Σ3(112)[11¯0] symmetric tilt grain boundary. Hydrogenated grain boundaries with different H concentrations are constructed using an energy minimization technique with initial H atom positions guided by Monte Carlo simulation results. Decohesion behavior is assessed through extraction of a traction–separation relationship during steady-state crack propagation in a statistically meaningful approach, building upon prior work employing atomistic cohesive zone volume elements (CZVEs). A sensitivity analysis is performed on the numerical approach used to extract the traction–separationmore » relationships, clarifying the role of CZVE size, threshold parameters necessary to differentiate elastic and decohesion responses, and the numerical averaging technique. Results show that increasing H coverage at the Ni Σ3(112)[11¯0] grain boundary asymmetrically influences the crack tip velocity during propagation, leads to a general decrease in the work of separation required for crack propagation, and provides a reduction in the peak stress in the extracted traction–separation relationship. Furthermore the present framework offers a meaningful vehicle to pass atomistically derived interfacial behavior to higher length scale formulations for intergranular fracture.« less

  12. Time delay induced different synchronization patterns in repulsively coupled chaotic oscillators

    NASA Astrophysics Data System (ADS)

    Yao, Chenggui; Yi, Ming; Shuai, Jianwei

    2013-09-01

    Time delayed coupling plays a crucial role in determining the system's dynamics. We here report that the time delay induces transition from the asynchronous state to the complete synchronization (CS) state in the repulsively coupled chaotic oscillators. In particular, by changing the coupling strength or time delay, various types of synchronous patterns, including CS, antiphase CS, antiphase synchronization (ANS), and phase synchronization, can be generated. In the transition regions between different synchronous patterns, bistable synchronous oscillators can be observed. Furthermore, we show that the time-delay-induced phase flip bifurcation is of key importance for the emergence of CS. All these findings may light on our understanding of neuronal synchronization and information processing in the brain.

  13. Transient cracks and triple junctions induced by Cocos-Nazca propagating rift

    NASA Astrophysics Data System (ADS)

    Schouten, H.; Smith, D. K.; Zhu, W.; Montesi, L. G.; Mitchell, G. A.; Cann, J. R.

    2009-12-01

    The Galapagos triple junction is a ridge-ridge-ridge triple junction where the Cocos, Nazca, and Pacific plates meet around the Galapagos microplate (GMP). On the Cocos plate, north of the large gore that marks the propagating Cocos-Nazca (C-N) Rift, a 250-km-long and 50-km-wide band of NW-SE-trending cracks crosscuts the N-S-trending abyssal hills of the East Pacific Rise (EPR). These appear as a succession of minor rifts, accommodating some NE-SW extension of EPR-generated seafloor. The rifts successively intersected the EPR in triple junctions at distances of 50-100 km north of the tip of the C-N Rift. We proposed a simple crack interaction model to explain the location of the transient rifts and their junction with the EPR. The model predicts that crack locations are controlled by the stress perturbation along the EPR, induced by the dominant C-N Rift, and scaled by the distance of its tip to the EPR (Schouten et al., 2008). The model also predicts that tensile stresses are symmetric about the C-N Rift and thus, similar cracks should have occurred south of the C-N Rift prior to formation of the GMP about 1 Ma. There were no data at the time to test this prediction. In early 2009 (AT 15-41), we mapped an area on the Nazca plate south of the C-N rift out to 4 Ma. The new bathymetric data confirm the existence of a distinctive pattern of cracks south of the southern C-N gore that mirrors the pattern on the Cocos plate until about 1 Ma, and lends support to the crack interaction model. The envelope of the symmetric cracking pattern indicates that the distance between the C-N Rift tip and the EPR varied between 40 and 65 km during this time (1-4 Ma). The breakdown of the symmetry at 1 Ma accurately dates the onset of a southern plate boundary of the GMP, now Dietz Deep Rift. At present, the southern rift boundary of the GMP joins the EPR with a steep-sided, 80 km long ridge. This ridge releases the stress perturbation otherwise induced along the EPR by elastic

  14. The corrosion fatigue fractography of Ti-24Al-11Nb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y.; Wang, Y.B.; Chu, W.Y.

    1994-03-01

    Many researchers have studied the fracture behaviors and fractography of the Ti-24Al-11Nb alloy. While hydrogen induced delayed fracture could occur in this titanium aluminide in hydrogen gas at temperatures above 300[degree]C, there was no obvious difference in fractography of the alloy in hydrogen or air. The fractography of stress corrosion cracking in a solution was also similar to that of overloaded fracture in air. The recent work showed that hydrogen induced delayed fracture for a notched sample could occur during dynamic cathodic charging at the temperature. There were a lot of small dimples on the fracture surface near the notchmore » tip when K[sub I] neared the threshold k[sub IH]. This differed from that of an overloaded fracture. The fractography of corrosion fatigue in methanol or during dynamic charging for the Ti-24Al-11Nb alloy was studied in this paper.« less

  15. Fatigue crack closure: a review of the physical phenomena

    PubMed Central

    Pippan, R.

    2017-01-01

    Abstract Plasticity‐induced, roughness‐induced and oxide‐induced crack closures are reviewed. Special attention is devoted to the physical origin, the consequences for the experimental determination and the prediction of the effective crack driving force for fatigue crack propagation. Plasticity‐induced crack closure under plane stress and plane strain conditions require, in principle, a different explanation; however, both types are predictable. This is even the case in the transition region from the plane strain to the plane stress state and all types of loading conditions including constant and variable amplitude loading, the short crack case or the transition from small‐scale to large‐scale yielding. In contrast, the prediction of roughness‐induced and oxide‐induced closures is not as straightforward. PMID:28616624

  16. Study of Near-Threshold Fatigue Crack Propagation in Pipeline Steels in High Pressure Environments

    NASA Technical Reports Server (NTRS)

    Mitchell, M.

    1981-01-01

    Near threshold fatigue crack propagation in pipeline steels in high pressure environments was studied. The objective was to determine the level of threshold stress intensity for fatigue crack growth rate behavior in a high strength low alloy X60 pipeline-type steel. Complete results have been generated for gaseous hydrogen at ambient pressure, laboratory air at ambient pressure and approximately 60% relative humidity as well as vacuum of 0.000067 Pa ( 0.0000005 torr) at R-ratios = K(min)/K(max) of 0.1, 0.5, and 0.8. Fatigue crack growth rate behavior in gaseous hydrogen, methane, and methane plus 10 percent hydrogen at 6.89 MPa (100 psi) was determined.

  17. Maintained Physical Activity Induced Changes in Delay Discounting.

    PubMed

    Sofis, Michael J; Carrillo, Ale; Jarmolowicz, David P

    2017-07-01

    Those who discount the subjective value of delayed rewards less steeply are more likely to engage in physical activity. There is limited research, however, showing whether physical activity can change rates of delay discounting. In a two-experiment series, treatment and maintenance effects of a novel, effort-paced physical activity intervention on delay discounting were evaluated with multiple baseline designs. Using a lap-based method, participants were instructed to exercise at individualized high and low effort levels and to track their own perceived effort. The results suggest that treatment-induced changes in discounting were maintained at follow-up for 13 of 16 participants. In Experiment 2, there were statistically significant group-level improvements in physical activity and delay discounting when comparing baseline with both treatment and maintenance phases. Percentage change in delay discounting was significantly correlated with session attendance and relative pace (min/mile) improvement over the course of the 7-week treatment. Implications for future research are discussed.

  18. Experimental and numerical investigation of crack initiation and propagation in silicon nitride ceramic under rolling and cyclic contact

    NASA Astrophysics Data System (ADS)

    Raga, Rahul; Khader, Iyas; Zdeněk, Chlup; Kailer, Andreas

    2017-05-01

    The focus of the work was to investigate crack initiation and propagation mechanisms in silicon nitride undergoing non-conforming hybrid contact under various tribological conditions. In order to understand the prevailing modes of damage in silicon nitride, two distinct model experiments were proposed, namely, rolling contact and cyclic contact experiments. The rolling contact experiment was designed in order to mimic the contact conditions appearing in hybrid bearings at contact pressures ranging from 3 to 6 GPa. On the other hand, cyclic contact experiments with stresses ranging from 4 to 15 GPa under different media were carried out to study damage under localised stresses. In addition, the experimentally observed cracks were implemented in a finite element model to study the stress redistribution and correlate the generated stresses with the corresponding mechanisms. Crack propagation under rolling contact was attributed to two different mechanisms, namely, fatigue induced fracture and lubricant driven crack propagation. The numerical simulations shed light on the tensile stress driven surface and subsurface crack propagation mechanisms. On the other hand, the cyclic contact experiments showed delayed crack formation for lubricated cyclic contact. Ceramographic cross-sectional analysis showed crack patterns similar to Hertzian crack propagation under cyclic contact load.

  19. Comprehensive Understanding of Ductility Loss Mechanisms in Various Steels with External and Internal Hydrogen

    NASA Astrophysics Data System (ADS)

    Takakuwa, Osamu; Yamabe, Junichiro; Matsunaga, Hisao; Furuya, Yoshiyuki; Matsuoka, Saburo

    2017-11-01

    Hydrogen-induced ductility loss and related fracture morphologies are comprehensively discussed in consideration of the hydrogen distribution in a specimen with external and internal hydrogen by using 300-series austenitic stainless steels (Types 304, 316, 316L), high-strength austenitic stainless steels (HP160, XM-19), precipitation-hardened iron-based super alloy (A286), low-alloy Cr-Mo steel (JIS-SCM435), and low-carbon steel (JIS-SM490B). External hydrogen is realized by a non-charged specimen tested in high-pressure gaseous hydrogen, and internal hydrogen is realized by a hydrogen-charged specimen tested in air or inert gas. Fracture morphologies obtained by slow-strain-rate tensile tests (SSRT) of the materials with external or internal hydrogen could be comprehensively categorized into five types: hydrogen-induced successive crack growth, ordinary void formation, small-sized void formation related to the void sheet, large-sized void formation, and facet formation. The mechanisms of hydrogen embrittlement are broadly classified into hydrogen-enhanced decohesion (HEDE) and hydrogen-enhanced localized plasticity (HELP). In the HEDE model, hydrogen weakens interatomic bonds, whereas in the HELP model, hydrogen enhances localized slip deformations. Although various fracture morphologies are produced by external or internal hydrogen, these morphologies can be explained by the HELP model rather than by the HEDE model.

  20. Atomic Scale Structure of (001) Hydrogen-Induced Platelets in Germanium

    NASA Astrophysics Data System (ADS)

    David, Marie-Laure; Pizzagalli, Laurent; Pailloux, Fréderic; Barbot, Jean François

    2009-04-01

    An accurate characterization of the structure of hydrogen-induced platelets is a prerequisite for investigating both hydrogen aggregation and formation of larger defects. On the basis of quantitative high resolution transmission electron microscopy experiments combined with extensive first principles calculations, we present a model for the atomic structure of (001) hydrogen-induced platelets in germanium. It involves broken Ge-Ge bonds in the [001] direction that are dihydride passivated, vacancies, and trapped H2 molecules, showing that the species involved in platelet formation depend on the habit plane. This model explains all previous experimental observations.

  1. Generation of tunable infrared radiation by stimulated Raman scattering on hydrogen in a prism-lens optical delay line

    NASA Astrophysics Data System (ADS)

    Andreev, R. B.; Butylkin, V. S.; Evtiushkin, V. A.; Fisher, P. S.; Khabarov, V. V.

    1983-03-01

    The threshold of stimulated Raman scattering was lowered by filling an optical delay line with hydrogen. Pumping was by a tunable neodymium laser. Lens-prism combinations were used as phase correctors in the delay line. The dependences of the energy of the Stokes component on the pump energy determined experimentally for different numbers of transits through the delay line were compared with the results of a calculation allowing for the losses in the components of this line. When the frequency conversion was by a factor of at least 2 and the tuning range was wide (tens of percent), the optimal performance was obtained from the optical delay line when total-internal-reflection prisms and lenses were combined in a single component and oriented at the Brewster angle.

  2. Influence of gaseous hydrogen on metals

    NASA Technical Reports Server (NTRS)

    Walter, R. J.; Chandler, W. T.

    1973-01-01

    Tensile, fracture toughness, threshold stress intensity for sustained-load crack growth, and cyclic and sustained load crack growth rate measurements were performed on a number of alloys in high-pressure hydrogen and helium environments. The results of tensile tests performed in 34.5 MN/m2 (5000 psi) hydrogen indicated that Inconel 625 was considerable embrittled at ambient temperature but was not embrittled at 144 K (-200 F). The tensile properties of AISI 321 stainless steel were slightly reduced at ambient temperature and 144 K (-200 F). The tensile properties of Ti-5Al-2.5 Sn ELI were essentially unaffected by hydrogen at 144 K (-200 F). OFHC copper was not embrittled by hydrogen at ambient temperature or at 144 K (-200 F).

  3. Mechanical properties of several nickel alloys in hydrogen at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Warren, J. R.; Harris, J. A., Jr.; Vanwanderham, M. C.

    1977-01-01

    Tests were performed to determine low cycle fatigue and crack growth rate properties of one iron-base and two forms of one cast nickel-base alloy. The alloys were tested in various forms and/or heat-treat conditions that are proposed for use in a high-pressure hydrogen or a hydrogen-water vapor environment. Some general conclusions can be made comparing the results of tests in a hydrogen environment with those in a hydrogen-water vapor environment. The hydrogen-water vapor environment caused a 50 percent average reduction in fatigue life, indicating extreme degradation when compared with tests conducted in air, for Incoloy 903 at 1033 K (1400 F). Crack growth rates increased significantly for all materials with increasing test temperature. A very significant increase (three orders of magnitude) in crack growth rate occurred for Incoloy 903 tested in the hydrogen-water vapor environment when compared with testing done in hydrogen along at 922 K (1200 F).

  4. Creep and intergranular cracking behavior of nickel-chromium-iron-carbon alloys in 360 C water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angeliu, T.M.; Paraventi, D.J.; Was, G.S.

    1995-11-01

    Mechanical testing of controlled-purity Ni-x% Cr-9% Fe-y% C alloys at 360 C revealed an environmental enhancement in intergranular (IG) cracking and time-dependent deformation in high-purity (HP) and primary water (PW) over that exhibited in argon. Dimples on the IG facets indicated a creep void nucleation and growth failure mode. IG cracking was located primarily in the interior of the specimen and was not necessarily linked to the environment. Controlled-potential constant extension rate tensile (CERT) experiments showed increases in IG cracking as the applied potential decreased, suggesting that hydrogen was detrimental to the mechanical properties. It was proposed that the environment,more » through the presence of hydrogen, enhanced IG cracking by enhancing the matrix dislocation mobility. This conclusion was based on observations that dislocation creep controlled IG cracking of controlled-purity Ni-x% Cr-9% Fe-y% C in argon at 360 C. Grain-boundary cavitation (GBC) and sliding (GBS) results showed environmental enhancement of the creep rate primarily resulted from an increase in matrix plastic deformation. However, controlled-potential constant load tensile (CLT) experiments did not indicate a change in the creep rate as the applied potential decreased. While this result did not support hydrogen-assisted creep, the material already may have been saturated with hydrogen at these applied potentials, and thus, no effect was realized. Chromium and carbon decreased IG cracking in HP and PW by increasing the creep resistance. The surface film did not play a significant role in the creep or IG cracking behavior under the conditions investigated.« less

  5. Mechanisms mediating Nitroglycerin-induced Delayed Onset Hyperalgesia in the Rat

    PubMed Central

    Ferrari, Luiz F.; Levine, Jon D.; Green, Paul G.

    2016-01-01

    Nitroglycerin (glycerol trinitrate, GTN) induces headache in migraineurs, an effect that has been used both diagnostically and in the study of the pathophysiology of this neurovascular pain syndrome. An important feature of this headache is a delay from the administration of GTN to headache onset that, because of GTN’s very rapid metabolism, cannot be due to its pharmacokinetic profile. It has recently been suggested that activation of perivascular mast cells, which has been implicated in the pathophysiology of migraine, may contribute to this delay. We reported that hyperalgesia induced by intradermal GTN has a delay to onset of ~30 min in male and ~45 min in female rats. This hyperalgesia was greater in females, was prevented by pretreatment with the anti-migraine drug, sumatriptan, as well as by chronic pretreatment with the mast cell degranulator, compound 48/80. The acute administration of GTN and compound 48/80 both induced hyperalgesia that was prevented by pretreatment with octoxynol-9, which attenuates endothelial function, suggesting that GTN and mast cell-mediated hyperalgesia are endothelial cell-dependent. Furthermore, A-317491, a P2X3 antagonist, which inhibits endothelial cell-dependent hyperalgesia, also prevents GTN and mast cell-mediated hyperalgesia. We conclude that delayed onset mechanical hyperalgesia induced by GTN is mediated by activation of mast cells, which in turn release mediators that stimulate endothelial cells to release ATP, to act on P2X3, a ligand-gated ion channel, in perivascular nociceptors. A role of the mast and endothelial cell in GTN-induced hyperalgesia suggest potential novel risk factors and targets for the treatment of migraine. PMID:26779834

  6. Mechanisms mediating nitroglycerin-induced delayed-onset hyperalgesia in the rat.

    PubMed

    Ferrari, L F; Levine, J D; Green, P G

    2016-03-11

    Nitroglycerin (glycerol trinitrate, GTN) induces headache in migraineurs, an effect that has been used both diagnostically and in the study of the pathophysiology of this neurovascular pain syndrome. An important feature of this headache is a delay from the administration of GTN to headache onset that, because of GTN's very rapid metabolism, cannot be due to its pharmacokinetic profile. It has recently been suggested that activation of perivascular mast cells, which has been implicated in the pathophysiology of migraine, may contribute to this delay. We reported that hyperalgesia induced by intradermal GTN has a delay to onset of ∼ 30 min in male and ∼ 45 min in female rats. This hyperalgesia was greater in females, was prevented by pretreatment with the anti-migraine drug, sumatriptan, as well as by chronic pretreatment with the mast cell degranulator, compound 48/80. The acute administration of GTN and compound 48/80 both induced hyperalgesia that was prevented by pretreatment with octoxynol-9, which attenuates endothelial function, suggesting that GTN and mast cell-mediated hyperalgesia are endothelial cell-dependent. Furthermore, A-317491, a P2X3 antagonist, which inhibits endothelial cell-dependent hyperalgesia, also prevents GTN and mast cell-mediated hyperalgesia. We conclude that delayed-onset mechanical hyperalgesia induced by GTN is mediated by activation of mast cells, which in turn release mediators that stimulate endothelial cells to release ATP, to act on P2X3, a ligand-gated ion channel, in perivascular nociceptors. A role of the mast and endothelial cell in GTN-induced hyperalgesia suggests potential novel risk factors and targets for the treatment of migraine. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Crack cocaine inhalation induces schizophrenia-like symptoms and molecular alterations in mice prefrontal cortex.

    PubMed

    Areal, Lorena Bianchine; Herlinger, Alice Laschuk; Pelição, Fabrício Souza; Martins-Silva, Cristina; Pires, Rita Gomes Wanderley

    2017-08-01

    Crack cocaine (crack) addiction represents a major social and health burden, especially seeing as users are more prone to engage in criminal and violent acts. Crack users show a higher prevalence of psychiatric comorbidities - particularly antisocial personality disorders - when compared to powder cocaine users. They also develop cognitive deficits related mainly to executive functions, including working memory. It is noteworthy that stimulant drugs can induce psychotic states, which appear to mimic some symptoms of schizophrenia among users. Social withdraw and executive function deficits are, respectively, negative and cognitive symptoms of schizophrenia mediated by reduced dopamine (DA) tone in the prefrontal cortex (PFC) of patients. That could be explained by an increased expression of D2R short isoform (D2S) in the PFC of such patients and/or by hypofunctioning NMDA receptors in this region. Reduced DA tone has already been described in the PFC of mice exposed to crack smoke. Therefore, it is possible that behavioral alterations presented by crack users result from molecular and biochemical neuronal alterations akin to schizophrenia. Accordingly, we found that upon crack inhalation mice have shown decreased social interaction and working memory deficits analogous to schizophrenia's symptoms, along with increased D2S/D2L expression ratio and decreased expression of NR1, NR2A and NR2B NMDA receptor subunits in the PFC. Herein we propose two possible mechanisms to explain the reduced DA tone in the PFC elicited by crack consumption in mice, bringing also the first direct evidence that crack use may result in schizophrenia-like neurochemical, molecular and behavioral alterations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Chemical milling solution reveals stress corrosion cracks in titanium alloy

    NASA Technical Reports Server (NTRS)

    Braski, D. N.

    1967-01-01

    Solution of hydrogen flouride, hydrogen peroxide, and water reveals hot salt stress corrosion cracks in various titanium alloys. After the surface is rinsed in water, dried, and swabbed with the solution, it can be observed by the naked eye or at low magnification.

  9. Protective effect of inhalation of hydrogen gas on radiation-induced dermatitis and skin injury in rats

    PubMed Central

    Watanabe, Sadahiro; Fujita, Masanori; Ishihara, Masayuki; Tachibana, Shoichi; Yamamoto, Yoritsuna; Kaji, Tatsumi; Kawauchi, Toshio; Kanatani, Yasuhiro

    2014-01-01

    The effect of inhalation of hydrogen-containing gas (1.3% hydrogen + 20.8% oxygen + 77.9% nitrogen) (HCG) on radiation-induced dermatitis and on the healing of healing-impaired skin wounds in rats was examined using a rat model of radiation-induced skin injury. An X-ray dose of 20 Gy was irradiated onto the lower part of the back through two holes in a lead shield. Irradiation was performed before or after inhalation of HCG for 2 h. Inhalation of HCG significantly reduced the severity of radiodermatitis and accelerated healing-impaired wound repair. Staining with terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) and 8-hydroxy-2′-deoxyguanosine (8-OHdG) showed that the proportion of apoptotic keratinocytes and the level of staining in the X-irradiated skin of rats that pre-inhaled HCG were significantly lower than that of rats which did not pre-inhale HCG. Cutaneous full-thickness wounds were then created in the X-irradiated area to examine the time-course of wound healing. X-irradiation significantly increased the time required for wound healing, but the inhalation of HCG prior to the irradiation significantly decreased the delay in wound healing compared with the control and post-inhalation of HCG groups. Therefore, radiation-induced skin injury can potentially be alleviated by the pre-inhalation of HCG. PMID:25034733

  10. Crack deflection: Implications for the growth of long and short fatigue cracks

    NASA Astrophysics Data System (ADS)

    Suresh, S.

    1983-11-01

    The influences of crack deflection on the growth rates of nominally Mode I fatigue cracks are examined. Previous theoretical analyses of stress intensity solutions for kinked elastic cracks are reviewed. Simple elastic deflection models are developed to estimate the growth rates of nonlinear fatigue cracks subjected to various degrees of deflection, by incorporating changes in the effective driving force and in the apparent propagation rates. Experimental data are presented for intermediate-quenched and step-quenched conditions of Fe/2Si/0.1C ferrite-martensite dual phase steel, where variations in crack morphology alone influence considerably the fatigue crack propagation rates and threshold stress intensity range values. Such results are found to be in good quantitative agreement with the deflection model predictions of propagation rates for nonlinear cracks. Experimental information on crack deflection, induced by variable amplitude loading, is also provided for 2020-T651 aluminum alloy. It is demonstrated with the aid of elastic analyses and experiments that crack deflection models offer a physically-appealing rationale for the apparently slower growth rates of long fatigue cracks subjected to constant and variable amplitude loading and for the apparent deceleration and/or arrest of short cracks. The changes in the propagation rates of deflected fatigue cracks are discussed in terms of the local mode of crack advance, microstructure, effective driving force, growth mechanisms, mean stress, slip characteristics, and crack closure.

  11. Variation of stresses ahead of the internal cracks in ReNi{sub 5} powders during hydrogen charging and discharging cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biner, S.B.

    1998-07-01

    In this study, the evolution of the stress-states ahead of the penny shaped internal cracks in both spherical and disk shaped ReNi{sub 5} particles during hydrogen charging and discharging cycles were investigated using coupled diffusion/deformation FEM analyses. The results indicate that large tensile stresses, on the order of 20--50% of the modulus of elasticity, develop in the particles. The disk shaped particles, in addition to having faster charging/discharging cycles, may offer better resistance to fracture than the spherical particles.

  12. Recrystallization-Induced Surface Cracks of Carbon Ions Irradiated 6H-SiC after Annealing

    PubMed Central

    Ye, Chao; Ran, Guang; Zhou, Wei; Shen, Qiang; Feng, Qijie; Lin, Jianxin

    2017-01-01

    Single crystal 6H-SiC wafers with 4° off-axis [0001] orientation were irradiated with carbon ions and then annealed at 900 °C for different time periods. The microstructure and surface morphology of these samples were investigated by grazing incidence X-ray diffraction (GIXRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Ion irradiation induced SiC amorphization, but the surface was smooth and did not have special structures. During the annealing process, the amorphous SiC was recrystallized to form columnar crystals that had a large amount of twin structures. The longer the annealing time was, the greater the amount of recrystallized SiC would be. The recrystallization volume fraction was accorded with the law of the Johnson–Mehl–Avrami equation. The surface morphology consisted of tiny pieces with an average width of approximately 30 nm in the annealed SiC. The volume shrinkage of irradiated SiC layer and the anisotropy of newly born crystals during annealing process produced internal stress and then induced not only a large number of dislocation walls in the non-irradiated layer but also the initiation and propagation of the cracks. The direction of dislocation walls was perpendicular to the growth direction of the columnar crystal. The longer the annealing time was, the larger the length and width of the formed crack would be. A quantitative model of the crack growth was provided to calculate the length and width of the cracks at a given annealing time. PMID:29068408

  13. Recrystallization-Induced Surface Cracks of Carbon Ions Irradiated 6H-SiC after Annealing.

    PubMed

    Ye, Chao; Ran, Guang; Zhou, Wei; Shen, Qiang; Feng, Qijie; Lin, Jianxin

    2017-10-25

    Single crystal 6H-SiC wafers with 4° off-axis [0001] orientation were irradiated with carbon ions and then annealed at 900 °C for different time periods. The microstructure and surface morphology of these samples were investigated by grazing incidence X-ray diffraction (GIXRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Ion irradiation induced SiC amorphization, but the surface was smooth and did not have special structures. During the annealing process, the amorphous SiC was recrystallized to form columnar crystals that had a large amount of twin structures. The longer the annealing time was, the greater the amount of recrystallized SiC would be. The recrystallization volume fraction was accorded with the law of the Johnson-Mehl-Avrami equation. The surface morphology consisted of tiny pieces with an average width of approximately 30 nm in the annealed SiC. The volume shrinkage of irradiated SiC layer and the anisotropy of newly born crystals during annealing process produced internal stress and then induced not only a large number of dislocation walls in the non-irradiated layer but also the initiation and propagation of the cracks. The direction of dislocation walls was perpendicular to the growth direction of the columnar crystal. The longer the annealing time was, the larger the length and width of the formed crack would be. A quantitative model of the crack growth was provided to calculate the length and width of the cracks at a given annealing time.

  14. Characterization of Environmentally Assisted Cracking for Design: State of the Art.

    DTIC Science & Technology

    1982-01-01

    Barsom, J.M., Effect of cyclic stress form on corrosion fatigue crack propagation below Kiscc in a high yield strength steel , in Corrosion Fatigue... Effect of Prestressing on the Stress Corrosion Resistance of Two High Strength Steels , Boeing Document D6-25275, Boeing Company, Seattle, Washington...sT’e Residual stress Crack growth High strength steel Seawater Crack initiation Hydrogen embrittlement Stress corrosion Design Linear elastic fracture

  15. Effect of temperature on crack growth rates of stress corrosion cracks in metal alloys exposed to water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogt, H.; Speidel, M.O.

    1996-12-01

    The effect of temperature on stress corrosion crack growth rates was studied using four commercial alloys: an Al-Mg-Zn alloy (7000-Series), an Al-Cu alloy (2000-Series), a Mg-rare earth alloy and a Zr 2.5% Nb alloy. Stress Corrosion crack growth rate data were obtained using fracture mechanic specimens which were tested in high purity water in the temperature range of {minus}10 C to 320 C, depending on the alloy. Attention was directed towards region 2 behavior, where the crack propagation rate is independent of stress intensity but sensitive to test temperature. The experimental activation energies of the different alloys were compared withmore » literature on rate-controlling steps in order to identify the possible stress corrosion cracking mechanisms. The results were also compared with the activation energies obtained from general corrosion and hydrogen diffusion experiments.« less

  16. Delay-induced wave instabilities in single-species reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Otto, Andereas; Wang, Jian; Radons, Günter

    2017-11-01

    The Turing (wave) instability is only possible in reaction-diffusion systems with more than one (two) components. Motivated by the fact that a time delay increases the dimension of a system, we investigate the presence of diffusion-driven instabilities in single-species reaction-diffusion systems with delay. The stability of arbitrary one-component systems with a single discrete delay, with distributed delay, or with a variable delay is systematically analyzed. We show that a wave instability can appear from an equilibrium of single-species reaction-diffusion systems with fluctuating or distributed delay, which is not possible in similar systems with constant discrete delay or without delay. More precisely, we show by basic analytic arguments and by numerical simulations that fast asymmetric delay fluctuations or asymmetrically distributed delays can lead to wave instabilities in these systems. Examples, for the resulting traveling waves are shown for a Fisher-KPP equation with distributed delay in the reaction term. In addition, we have studied diffusion-induced instabilities from homogeneous periodic orbits in the same systems with variable delay, where the homogeneous periodic orbits are attracting resonant periodic solutions of the system without diffusion, i.e., periodic orbits of the Hutchinson equation with time-varying delay. If diffusion is introduced, standing waves can emerge whose temporal period is equal to the period of the variable delay.

  17. Effect of Boron Microalloying Element on Susceptibility to Hydrogen Embrittlement in High Strength Mooring Chain Steel

    NASA Astrophysics Data System (ADS)

    Li, H.; Cheng, X. Y.; Shen, H. P.; Su, L. C.; Zhang, S. Y.

    The susceptibility to hydrogen embrittlement in high strength mooring chain steel with different boron content (0, 0.003 %, 0.008 %) were investigated by electrochemical hydrogen charging technique and tensile test. The results revealed that appropriate boron content can effectively depress hydrogen induced embrittlement. Precharged with a low current density, this effect seemed to be unobvious. It gradually became clearly with the increasing current density. The increase of resistance to the hydrogen embrittlement for 3B and 8B after adding appropriate boron was attributed to three facts. The first was that the segregation of boron atoms along grain boundaries reduced the grain boundary segregation of phosphorus, which prohibited hydrogen concentration at the grain boundaries, depressing the possibility of the intergranular fracture due to H. The second was that the segregation of boron increased intergranular cohesion, enhanced grain boundary strength, and refined the final microstructure. The third was that the addition of boron changed the state of hydrogen traps, leading to the small amount of diffusible hydrogen. That is to say, hydrogen transferred to these defects by dislocations was accordingly decreased, which led to the low sensitive of hydrogen induced cracking.

  18. 40 CFR 63.140 - Process wastewater provisions-delay of repair.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... or a gap, crack, tear, or hole has been identified, is allowed if the repair is technically.... (b) Delay of repair of equipment for which a control equipment failure or a gap, crack, tear, or hole... equipment for which a control equipment failure or a gap, crack, tear, or hole has been identified is also...

  19. Catalytic cracking of a Wilmington vacuum oil gas and selected hydrotreated products: Topical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, J.W.; Zagula, E.J.

    1987-05-01

    The catalytic cracking of a Wilmington vacuum gas oil and the products from mild hydrotreating and severe hydrotreating of this gas oil was evaluated over a low metal equilibrium catalyst in a microconfined bed unit (MCBU). Two levels of catalytic cracking severity were evaluated for these three samples. The performance and product analysis showed that hydrotreating improves the quality of catalytic cracker feedstock and the resultant products. The results also indicated that a level of hydrotreating exists above which the quality of the liquid products and the yields of coke and heavy oil are not affected significantly by the severitymore » of the catalytic cracking process. As expected, the sulfur and nitrogen content of the liquid products (gasolines, light cycle oil, and heavy cycle oil) were found to decrease as the severity of the feed hydrotreating increased. The distribution of sulfur and nitrogen in the liquid products was found to be independent of cracking conditions or product yields for a given level of hydrogenation. Analysis of the gas products shows that the degree of hydrogen transfer increases with the severity of hydrogenation. As cracking severity increases, the apparent degree of hydrogen transfer decreases, and the concentration of olefinic compounds increases relative to the saturated compounds. In the future, these results will be compared to similar results from a Mayan vacuum gas oil. 10 refs., 17 figs., 10 tabs.« less

  20. Subcritical crack growth of selected aerospace pressure vessel materials

    NASA Technical Reports Server (NTRS)

    Hall, L. R.; Bixler, W. D.

    1972-01-01

    This experimental program was undertaken to determine the effects of combined cyclic/sustained loads, stress level, and crack shape on the fatigue crack growth rate behavior of cracks subjected to plane strain conditions. Material/environment combinations tested included: 2219-T87 aluminum plate in gaseous helium, room air, and 3.5% NaCl solution at room temperature, liquid nitrogen, and liquid hydrogen; 5Al-2.5 Sn (ELI) titanium plate in liquid nitrogen and liquid hydrogen and 6AL-4V (ELI) STA titanium plate in gaseous helium and methanol at room temperature. Most testing was accomplished using surface flawed specimens instrumented with a clip gage to continuously monitor crack opening displacements at the specimen surface. Tapered double cantilever beam specimens were also tested. Static fracture and ten hour sustained load tests were conducted to determine fracture toughness and apparent threshold stress intensity values. Cyclic tests were performed using sinusoidal loading profiles at 333 MHz (20 cpm) and trapezoidal loading profiles at both 8.3 MHz (0.5 cpm) and 3.3 MHz (0.2 cpm). Data were evaluated using modified linear elastic fracture mechanics parameters.

  1. Hydrogen saline prevents selenite-induced cataract in rats

    PubMed Central

    Yang, Chun-xiao; Ding, Tian-bing

    2013-01-01

    Purpose The aim of this study was to investigate the potential antioxidative effect and mechanism for the protective effects of hydrogen saline on selenite-induced cataract in rats. Methods Sprague-Dawley rat pups were divided into the following groups: control (Group A), selenite induced (Group B), and selenite plus hydrogen saline treated (Group C). Rat pups in Groups B and C received a single subcutaneous injection of sodium selenite (25 μmol/kg bodyweight) on postnatal day 12. Group C also received an intraperitoneal injection of H2 saline (5 ml/kg bodyweight) daily from postnatal day 8 to postnatal day 17. The development of cataract was assessed weekly by slit-lamp examination for 2 weeks. After sacrifice, extricated lenses were analyzed for activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione S-transferase, levels of malondialdehyde, reduced glutathione (GSH), and total sulfhydryl contents. Results The magnitude of lens opacification in Group B was significantly higher than in Group A (p<0.05), while Group C had less opacification than Group B (p<0.05). Compared with Group B, the mean activities of the antioxidant enzymes superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione S-transferase, levels of GSH, and total sulfhydryl contents were higher, whereas the level of malondialdehyde was lower following treatment with hydrogen saline(p<0.05). Conclusions This is an initial report showing that hydrogen saline can prevent selenite-induced cataract in rats. It acts via maintaining antioxidant enzymes and GSH, protecting the sulfhydryl group, and inhibiting lipid peroxidation. PMID:23922487

  2. Hydrogen Treatment Protects against Cell Death and Senescence Induced by Oxidative Damage.

    PubMed

    Han, A Lum; Park, Seong-Hoon; Park, Mi Sung

    2017-02-28

    Hydrogen has potential for preventive and therapeutic applications as an antioxidant. However, micro- and macroparticles of hydrogen in water disappear easily over time. In order to eliminate reactive oxygen species (ROS) related with the aging process, we used functional water containing nanoparticle hydrogen. Nanoparticle hydrogen does not disappear easily and collapse under water after long periods of time. We used murine embryonic fibroblasts that were isolated from 12.5-day embryos of C57BL/6 mice. We investigated the ability of nanoparticle hydrogen in water to suppress hydroxyurea-induced ROS production, cytotoxicity, and the accumulation of β-galactosidase (an indicator of aging), and promote cell proliferation. The accumulation of β-galactosidase in the cytoplasm and the appearance of abnormal nuclei were inhibited by daily treatment of cells with hydrogen water. When the aging process was accelerated by hydroxyurea-induced oxidative stress, the effect of hydrogen water was even more remarkable. Thus, this study showed the antioxidant and anti-senescence effects of hydrogen water. Nanoparticle hydrogen water is potentially a potent anti-aging agent.

  3. Remote detection of stress corrosion cracking: Surface composition and crack detection

    NASA Astrophysics Data System (ADS)

    Lissenden, Cliff J.; Jovanovic, Igor; Motta, Arthur T.; Xiao, Xuan; Le Berre, Samuel; Fobar, David; Cho, Hwanjeong; Choi, Sungho

    2018-04-01

    Chloride induced stress corrosion cracking (SCC) of austenitic stainless steel is a potential issue in long term dry storage of spent nuclear fuel canisters. In order for SCC to occur there must be a corrosive environment, a susceptible material, and a driving force. Because it is likely that the material in the heat affected zone (HAZ) of welded stainless steel structures has been sensitized as a result of chromium depletion at the grain boundaries and a thermal residual stress driving force is likely present if solution annealing is not performed, two issues are critical. Is the environment corrosive, i.e., are chlorides present in solution on the surface? And then, are there cracks that could propagate? Remote detection of chlorides on the surface can be accomplished by laser induced breakdown spectroscopy (LIBS), while cracks can be detected by shear horizontal guided waves generated by electromagnetic acoustic transducers (EMATs). Both are noncontact methods that are amenable to robotic delivery systems and harsh environments. The sensitivity to chlorine on stainless steel of a LIBS system that employs optical fiber for pulse delivery is demonstrated. Likewise, the ability of the EMAT system to detect cracks of a prescribed size and orientation is shown. These results show the potential for remote detection of Cl and cracks in dry storage spent fuel canisters.

  4. Study to minimize hydrogen embrittlement of ultrahigh-strength steels

    NASA Technical Reports Server (NTRS)

    Elsea, S. T.; Fletcher, E. E.; Groeneveld, T. P.

    1967-01-01

    Hydrogen-stress cracking in high-strength steels is influenced by hydrogen content of the material and its hydrogen absorption tendency. Non-embrittling cleaning, pickling, and electroplating processes are being studied. Protection from this hydrogen embrittlement is important to the aerospace and aircraft industries.

  5. Space Shuttle Main Engine High Pressure Fuel Turbopump Turbine Blade Cracking

    NASA Technical Reports Server (NTRS)

    Lee, Henry

    1988-01-01

    The analytical results from two-dimensional (2D) and three-dimensional (3D) finite element model investigations into the cracking of Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump (HPFTP) first- and second-stage turbine blades are presented. Specifically, the initiation causes for transverse cracks on the pressure side of the firststage blade fir tree lobes and face/corner cracks on the downstream fir tree face of the second-state blade are evaluated. Because the blade material, MAR-M-246 Hf (DS), is highly susceptible to hydrogen embrittlement in the -100 F to 400 F thermal environment, a steady-state condition (full power level = 109 percent) rather than a start-up or shut-down transient was considered to be the most likely candidate for generating a high-strain state in the fir tree areas. Results of the analyses yielded strain levels on both first- and second-stage blade fir tree regions that are of a magnitude to cause hydrogen assisted low cycle fatigue cracking. Also evident from the analysis is that a positive margin against fir tree cracking exists for the planned design modifications, which include shot peening for both first- and second-stage blade fir tree areas.

  6. Laser cutting sandwich structure glass-silicon-glass wafer with laser induced thermal-crack propagation

    NASA Astrophysics Data System (ADS)

    Cai, Yecheng; Wang, Maolu; Zhang, Hongzhi; Yang, Lijun; Fu, Xihong; Wang, Yang

    2017-08-01

    Silicon-glass devices are widely used in IC industry, MEMS and solar energy system because of their reliability and simplicity of the manufacturing process. With the trend toward the wafer level chip scale package (WLCSP) technology, the suitable dicing method of silicon-glass bonded structure wafer has become necessary. In this paper, a combined experimental and computational approach is undertaken to investigate the feasibility of cutting the sandwich structure glass-silicon-glass (SGS) wafer with laser induced thermal-crack propagation (LITP) method. A 1064 nm semiconductor laser cutting system with double laser beams which could simultaneously irradiate on the top and bottom of the sandwich structure wafer has been designed. A mathematical model for describing the physical process of the interaction between laser and SGS wafer, which consists of two surface heating sources and two volumetric heating sources, has been established. The temperature stress distribution are simulated by using finite element method (FEM) analysis software ABAQUS. The crack propagation process is analyzed by using the J-integral method. In the FEM model, a stationary planar crack is embedded in the wafer and the J-integral values around the crack front edge are determined using the FEM. A verification experiment under typical parameters is conducted and the crack propagation profile on the fracture surface is examined by the optical microscope and explained from the stress distribution and J-integral value.

  7. Reactivity of propene, n-butene, and isobutene in the hydrogen transfer steps of n-hexane cracking over zeolites of different structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukyanov, D.B.

    The reaction of n-hexane cracking over HZSM-5, HY zeolite and mordenite (HM) was studied in accordance with the procedure of the [beta]-test recently proposed for quantitative characterization of zeolite hydrogen transfer activity. It is shown that this procedure allows one to obtain quantitative data on propene, n-butene, and isobutene reactivities in the hydrogen transfer steps of the reaction. The results demonstrate that in the absence of steric constraints (large pore HY and HM zeolites) isobutene is approximately 5 times more reactive in hydrogen transfer than n-butene. The latter, in turn, is about 1.3 times more reactive than propene. With mediummore » pore HZSM-5, steric inhibition of the hydrogen transfer between n-hexane and isobutene is observed. This results in a sharp decrease in the isobutene reactivity: over HZSM-5 zeolites isobutene is only 1.2 times more reactive in hydrogen transfer than n-butene. On the basis of these data it is concluded that the [beta]-test measures the [open quotes]real[close quotes] hydrogen transfer activity of zeolites, i.e., the activity that summarizes the effects of the acidic and structural properties of zeolites. An attempt is made to estimate the [open quotes]ideal[close quotes] zeolite hydrogen transfer activity, i.e., the activity determined by the zeolite acidic properties only. The estimations obtained show that this activity is approximately 1.8 and 1.6 times higher for HM zeolite in comparison with HZSM-5 and HY zeolites, respectively. 16 refs., 4 figs., 2 tabs.« less

  8. Investigation of moisture-induced embrittlement of iron aluminides. Interim report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castagna, A.; Stoloff, N.S.

    Alloy FA-129 undergoes an increase in crack propagation rate and a loss of fracture toughness in moisture-bearing and hydrogen gas environments. A similar effect is seen on ductility of FA-129 in tensile tests. The embrittling effect in air is attributed to oxidation of aluminum in the alloy by water vapor to produce Al{sub 2}O{sub 3} and hydrogen gas. Alloy FAP-Y, which is disordered and contains only 16 a%Al is embrittled by hydrogen gas in a manner similar to that of FA-129. However, laboratory air had little effect on the crack growth rates, fracture toughness, or tensile ductility. The lower aluminummore » content apparently is insufficient to induce the Al-H{sub 2}O reaction. TEM and SEM analyses of microstructure and fracture surfaces were consistent with the change in fracture toughness with order and environment. Testing at elevated temperatures reduces crack growth rates in FA-129, and increases fracture toughness and ductility. This is consistent with the well documented peak in hydrogen embrittlement in structural alloys at or near room temperature. Elevated temperature affects the degree of embrittlement in a complex manner, possibly changing the rates of several of the processes involved.« less

  9. The creep and intergranular cracking behavior of Ni-Cr-Fe-C alloys in 360{degree}C water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angeliu, T.M.; Paraventi, D.J.; Was, G.S.

    1995-09-01

    Mechanical testing of controlled-purity Ni-xCr-9Fe-yC alloys at 360 C revealed an environmental enhancement in IG cracking and time-dependent deformation in high purity and primary water over that exhibited in argon. Dimples on the IG facets indicate a creep void nucleation and growth failure mode. IG cracking was primarily located at the interior of the specimen and not necessarily linked to direct contact with the environment. Controlled potential CERT experiments showed increases in IG cracking as the applied potential decreased, suggesting that hydrogen is detrimental to the mechanical properties. It is proposed that the environment, through the presence of hydrogen, enhancesmore » IG cracking by enhancing the matrix dislocation mobility. This is based on observations that dislocation-controlled creep controls the IG cracking of controlled-purity Ni-xCr-9Fe-yC in argon at 360 C and grain boundary cavitation and sliding results that show the environmental enhancement of the creep rate is primarily due to an increase in matrix plastic deformation. However, controlled potential CLT experiments did not exhibit a change in the creep rate as the applied potential decreased. While this does not clearly support hydrogen assisted creep, the material may already be saturated with hydrogen at these applied potentials and thus no effect was realized. Chromium and carbon decrease the IG cracking in high purity and primary water by increasing the creep resistance. The surface film does not play a significant role in the creep or IG cracking behavior under the conditions investigated.« less

  10. Long-term field monitoring of paving fabric interlayer systems to reduce reflective cracking.

    DOT National Transportation Integrated Search

    2016-06-01

    The formation of reflective cracking of pavement overlays has confronted highway engineers for many years. Stress-relieving interlayers, such as paving fabrics, have been used in an attempt to reduce or delay reflective cracking. The primary objectiv...

  11. BRIEF COMMUNICATIONS: Generation of tunable infrared radiation by stimulated Raman scattering on hydrogen in a prism-lens optical delay line

    NASA Astrophysics Data System (ADS)

    Andreev, R. B.; Butylkin, V. S.; Evtyushkin, V. A.; Fisher, P. S.; Khabarov, V. V.

    1983-03-01

    The threshold of stimulated Raman scattering was lowered by filling an optical delay line with hydrogen. Pumping was by a tunable neodymium laser. Lens-prism combinations were used as phase correctors in the delay line. The dependences of the energy of the Stokes component on the pump energy determined experimentally for different numbers of transits through the delay line were compared with the results of a calculation allowing for the losses in the components of this line. When the frequency conversion was by a factor of at least 2 and the tuning range was wide (tens of percent), the optimal performance was obtained from the optical delay line when total-internal-reflection prisms and lenses were combined in a single component and oriented at the Brewster angle.

  12. Hydrogen peroxide-induced reduction of delayed rectifier potassium current in hippocampal neurons involves oxidation of sulfhydryl groups.

    PubMed

    Hasan, Sonia M K; Redzic, Zoran B; Alshuaib, Waleed B

    2013-07-03

    This study examined the effect of H2O2 on the delayed rectifier potassium current (IKDR) in isolated hippocampal neurons. Whole-cell voltage-clamp experiments were performed on freshly dissociated hippocampal CA1 neurons of SD rats before and after treatment with H2O2. To reveal the mechanism behind H2O2-induced changes in IKDR, cells were treated with different oxidizing and reducing agents. External application of membrane permeable H2O2 reduced the amplitude and voltage-dependence of IKDR in a concentration dependent manner. Desferoxamine (DFO), an iron-chelator that prevents hydroxyl radical (OH) generation, prevented H2O2-induced reduction in IKDR. Application of the sulfhydryl-oxidizing agent 5,5 dithio-bis-nitrobenzoic acid (DTNB) mimicked the effect of H2O2. Sulfhydryl-reducing agents dithiothreitol (DTT) and glutathione (GSH) alone did not affect IKDR; however, DTT and GSH reversed and prevented the H2O2-induced inhibition of IKDR, respectively. Membrane impermeable agents GSH and DTNB showed effects only when added intracellularly identifying intracellular sulfhydryl groups as potential targets for hydroxyl-mediated oxidation. However, the inhibitory effects of DTNB and H2O2 at the positive test potentials were completely and partially abolished by DTT, respectively, suggesting an additional mechanism of action for H2O2, that is not shared by DTNB. In summary, this study provides evidence for the redox modulation of IKDR, identifies hydroxyl radical as an intermediate oxidant responsible for the H2O2-induced decrease in current amplitude and identifies intracellular sulfhydryl groups as an oxidative target. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. The Effect of Crack Orientation on the Nonlinear Interaction of a P-wave with an S-wave

    DOE PAGES

    TenCate, J. A.; Malcolm, A. E.; Feng, X.; ...

    2016-06-06

    Cracks, joints, fluids, and other pore-scale structures have long been hypothesized to be the cause of the large elastic nonlinearity observed in rocks. It is difficult to definitively say which pore-scale features are most important, however, because of the difficulty in isolating the source of the nonlinear interaction. In this work, we focus on the influence of cracks on the recorded nonlinear signal and in particular on how the orientation of microcracks changes the strength of the nonlinear interaction. We do this by studying the effect of orientation on the measurements in a rock with anisotropy correlated with the presencemore » and alignment of microcracks. We measure the nonlinear response via the traveltime delay induced in a low-amplitude P wave probe by a high-amplitude S wave pump. We find evidence that crack orientation has a significant effect on the nonlinear signal.« less

  14. Stress corrosion cracking of titanium alloys

    NASA Technical Reports Server (NTRS)

    May, R. C.; Beck, F. H.; Fontana, M. G.

    1971-01-01

    Experiments were conducted to study (1) the basic electrochemical behavior of titanium in acid chloride solutions and (2) the response of the metal to dynamic straining in the same evironment. The aim of this group of experiments was to simulate, as nearly as possible, the actual conditions which exist at the tip of a crack. One of the foremost theories proposed to explain the propagation of stress corrosion cracks is a hydrogen embrittlement theory involving the precipitation of embrittling titanium hydrides inside the metal near the crack tip. An initial survey of the basic electrochemical literature indicated that surface hydrides play a critical role in the electrochemistry of titanium in acid solutions. A comprehensive analysis of the effect of surface films, particularly hydrides, on the electrochemical behavior of titanium in these solution is presented.

  15. Laser-induced separation of hydrogen isotopes in the liquid phase

    DOEpatents

    Freund, Samuel M.; Maier, II, William B.; Beattie, Willard H.; Holland, Redus F.

    1980-01-01

    Hydrogen isotope separation is achieved by either (a) dissolving a hydrogen-bearing feedstock compound in a liquid solvent, or (b) liquefying a hydrogen-bearing feedstock compound, the liquid phase thus resulting being kept at a temperature at which spectral features of the feedstock relating to a particular hydrogen isotope are resolved, i.e., a clear-cut isotope shift is delineated, irradiating the liquid phase with monochromatic radiation of a wavelength which at least preferentially excites those molecules of the feedstock containing a first hydrogen isotope, inducing photochemical reaction in the excited molecules, and separating the reaction product containing the first isotope from the liquid phase.

  16. Hydrogen Assisted Cracking of High Strength Alloys

    DTIC Science & Technology

    2003-08-01

    maraging steels (Dautovich and Floreen, 1973, 1977; Gerberich et al., 1988; Yamaguchi, et al., 1997). This behavior is typically described by a...transgranular. A similar maximum in IG cracking susceptibility near the free corrosion potential was reported for 18Ni Maraging steel in neutral NaCl... steel in 133 kPa pure H2 parallels the behavior of AISI 4340 and the 18 Ni maraging steels , particularly in terms of a low temperature activation

  17. Advanced Flaw Manufacturing and Crack Growth Control

    NASA Astrophysics Data System (ADS)

    Kemppainen, M.; Pitkänen, J.; Virkkunen, I.; Hänninen, H.

    2004-02-01

    Advanced artificial flaw manufacturing method has become available. The method produces true fatigue cracks, which are representative of most service-induced cracks. These cracks can be used to simulate behaviour of realistic cracks under service conditions. This paper introduces studies of the effects of different thermal loading cycles to crack opening and residual stress state as seen at the surface of the sample and in the ultrasonic signal. In-situ measurements were performed under dynamic thermal fatigue loading of a 20 mm long artificial crack.

  18. Identification of Flaws Responsible for Crack Initiation and Micromechanisms of Slow Crack Growth in the Delayed Fracture of Alumina.

    DTIC Science & Technology

    1982-02-01

    ntsitycrOtained Alumina in 50 % Relative Humidity . 123 (1) the material constants under a certain environment, A, B, and n in eq. (2-14) and eq. (2-15), evalu... Fatigue Crack Growth," Int. Jour. Fract., 17 (1981) 235-247. 3. S.M. Wiederhorn, " Effects of Environment on the Fracture of Glass," Environment-Sensitive...Distribution of Alumina 4 1 34 2-11 Schematic Drawing of Variation in Effective Critical Stress Intensity Factor, KC ff with Crack Length Relative to Grain

  19. Global developmental delay with sodium valproate-induced gingival hyperplasia.

    PubMed

    Patil, Ravi B; Urs, Pallavi; Kiran, Shital; Bargale, Seema Dinesh

    2014-01-22

    Global developmental delay (GDD) refers to a disturbance in an individual child across one or more developmental domains, which include motor, cognition, daily activities, speech and language. The present case discusses a 5-year-old child with GDD associated with infantile spasms treated with sodium valproate. Delay in the widespread acquisition of skills, epilepsy and poor oral hygiene with gingival enlargement was the main concern to seek medical aid. This case is special as the child was suffering from GDD associated with sodium valproate-induced gingival enlargement.

  20. Dielectric cracking produced by electromigration in microelectronic interconnects

    NASA Astrophysics Data System (ADS)

    Chiras, S.; Clarke, D. R.

    2000-12-01

    The development of stress during electromigration along Al lines, constrained within a dielectric in a coplanar test configuration, is measured. It is shown that, above a certain threshold current density, cracking of the dielectric is induced in the vicinity of the anode. Cracking of the dielectric leads to loss of mechanical constraint on the aluminum conductor which, in turn, leads to increases in electrical resistance with continued current flow. The electromigration-induced stresses are determined from the measured frequency shifts induced in a novel ruby strain sensor embedded immediately beneath the interconnect line on a sapphire substrate. The transparency of the sapphire substrate also facilitated the observation of a hitherto unreported form of dielectric cracking, namely cracking from the interconnect along internal interfaces. The observations of dielectric cracking are in agreement with a recent fracture mechanics model. Analysis of the stress data, together with the results of finite element calculations of the strain energy release rate for crack extension, gives a quantitative estimate of the effective valence Z*(=1.3±0.2) for aluminum.

  1. Development of an Improved Crack Propagation Model for Corrosion-Induced Cover Cracking in RC Structures

    NASA Astrophysics Data System (ADS)

    Hilyati, S.; Nizam, Z. M.; Zurisman, M. A. A.; Azhar, A. T. S.

    2017-06-01

    During the last two decades, reinforced concrete (RC) has been extensively used in most of the world as one of the common construction material due to its advantages and durability. However, RC structures exposed to marine environments are subjected to chloride attack. Chlorides from seawater penetrate into RC structures are not only causing severe corrosion problems but also affect the durability and serviceability of such structures. This paper investigates the influence of transverse reinforcement and spacing of reinforcing bars on concrete cover cracking of two-way RC slab specimens using accelerated corrosion tests. The experimental program involved the testing of four RC slab specimens and was generally designed to observe the crack width and the time of crack to propagate. An improved model for predicting the timing of crack propagation based on the experimental data was then developed.

  2. Fretting Fatigue with Cylindrical-On-Flat Contact: Crack Nucleation, Crack Path and Fatigue Life

    PubMed Central

    Noraphaiphipaksa, Nitikorn; Manonukul, Anchalee; Kanchanomai, Chaosuan

    2017-01-01

    Fretting fatigue experiments and finite element analysis were carried out to investigate the influence of cylindrical-on-flat contact on crack nucleation, crack path and fatigue life of medium-carbon steel. The location of crack nucleation was predicted using the maximum shear stress range criterion and the maximum relative slip amplitude criterion. The prediction using the maximum relative slip amplitude criterion gave the better agreement with the experimental result, and should be used for the prediction of the location of crack nucleation. Crack openings under compressive bulk stresses were found in the fretting fatigues with flat-on-flat contact and cylindrical-on-flat contacts, i.e., fretting-contact-induced crack openings. The crack opening stress of specimen with flat-on-flat contact was lower than those of specimens with cylindrical-on-flat contacts, while that of specimen with 60-mm radius contact pad was lower than that of specimen with 15-mm radius contact pad. The fretting fatigue lives were estimated by integrating the fatigue crack growth curve from an initial propagating crack length to a critical crack length. The predictions of fretting fatigue life with consideration of crack opening were in good agreement with the experimental results. PMID:28772522

  3. Understanding the Interaction between a Steel Microstructure and Hydrogen

    PubMed Central

    Depover, Tom; Laureys, Aurélie; Wallaert, Elien

    2018-01-01

    The present work provides an overview of the work on the interaction between hydrogen (H) and the steel’s microstructure. Different techniques are used to evaluate the H-induced damage phenomena. The impact of H charging on multiphase high-strength steels, i.e., high-strength low-alloy (HSLA), transformation-induced plasticity (TRIP) and dual phase (DP) is first studied. The highest hydrogen embrittlement resistance is obtained for HSLA steel due to the presence of Ti- and Nb-based precipitates. Generic Fe-C lab-cast alloys consisting of a single phase, i.e., ferrite, bainite, pearlite or martensite, and with carbon contents of approximately 0, 0.2 and 0.4 wt %, are further considered to simplify the microstructure. Finally, the addition of carbides is investigated in lab-cast Fe-C-X alloys by adding a ternary carbide forming element to the Fe-C alloys. To understand the H/material interaction, a comparison of the available H trapping sites, the H pick-up level and the H diffusivity with the H-induced mechanical degradation or H-induced cracking is correlated with a thorough microstructural analysis. PMID:29710803

  4. Variation of stresses ahead of the internal cracks in ReNi{sub 5} powders during hydrogen charging and discharging cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biner, S.B.

    1997-12-31

    In this study, the evolution of the stress-states ahead of the penny shaped internal cracks in both spherical and disk shaped ReNi{sub 5} particles where Re denotes the rare earths La, Ce, and Misch-metals during hydrogen charging and discharging cycles were investigated using coupled diffusion/deformation FEM analyses. The results indicate that large tensile stresses, on the order of 20--30% of the modulus of elasticity, develop in the particles. The disk shaped particles, in addition to having faster charging/discharging cycles, may offer better resistance to fracture than the spherical particles.

  5. On Generating Fatigue Crack Growth Thresholds

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; Newman, James, Jr.; Forman, Royce G.

    2003-01-01

    The fatigue crack growth threshold, defining crack growth as either very slow or nonexistent, has been traditionally determined with standardized load reduction methodologies. These experimental procedures can induce load history effects that result in crack closure. This history can affect the crack driving force, i.e. during the unloading process the crack will close first at some point along the wake or blunt at the crack tip, reducing the effective load at the crack tip. One way to reduce the effects of load history is to propagate a crack under constant amplitude loading. As a crack propagates under constant amplitude loading, the stress intensity factor range, Delta K, will increase, as will the crack growth rate. da/dN. A fatigue crack growth threshold test procedure is experimentally validated that does not produce load history effects and can be conducted at a specified stress ratio, R. The authors have chosen to study a ductile aluminum alloy where the plastic deformations generated during testing may be of the magnitude to impact the crack opening.

  6. Biological Dimensions of Crack Morphology in Dryland Soils

    NASA Astrophysics Data System (ADS)

    DeCarlo, K. F.; Spiegel, M.; Caylor, K. K.

    2014-12-01

    Macropores and cracks have an integral role in soil hydrology, and the physicochemical factors that induce them have been the subject of much laboratory research. How these processes translate to field soils, however, is often obfuscated by the biological elements present that complicate its formation and dynamics. In this study, we investigated the biological influence of herbivores and vegetation on 3D crack morphology in a dryland swelling soil (black cotton/vertisol). Fieldwork was conducted at and near the Kenya Long-Term Exclosure Experiment (KLEE) plots in Mpala, central Kenya, where three different soil regions were identified: highly vegetated areas, animal trails, and termite mounds. Crack networks were physically characterized by pouring liquid resin into the soil and excavating them when dry, after which they were imaged and quantified using medical magnetic resonance imaging (MRI). Cracking intensity of each cast was corrected via soil moisture and bulk density measurements at 5 cm intervals over 30 cm. 3D characterization of the soil system shows that mechanical compaction is a major influence in the formation of extensive and deep cracks in animal trails, with megaherbivores (e.g. elephants) inducing the most extreme cracks. Bioturbation is seen as a major influence in the formation of shallower cracks in termite mounds, as termites loosen and aerate the soil and reduce the soil's cohesive properties. Highly vegetated soils show a large degree of variability: small, disconnected soil patches induced by vegetative cover and a larger root network results in smaller and shallower cracks, but full vegetative cover induces deep and irregular cracks, possibly due to diverted rainfall. Our results highlight the intricate connections between the biology and physics that dictate soil processes in a complex soil system at the field scale.

  7. Microcracking in Composite Laminates: Simulation of Crack-Induced Ultrasound Attenuation

    NASA Technical Reports Server (NTRS)

    Leckey, C. A. C.; Rogge, M. D.; Parker, F. R.

    2012-01-01

    Microcracking in composite laminates is a known precursor to the growth of inter-ply delaminations and larger scale damage. Microcracking can lead to the attenuation of ultrasonic waves due to the crack-induced scattering. 3D elastodynamic finite integration technique (EFIT) has been implemented to explore the scattering of ultrasonic waves due to microcracks in anisotropic composite laminates. X-ray microfocus computed tomography data was directly input into the EFIT simulation for these purposes. The validated anisotropic 3D EFIT code is shown to be a useful tool for exploring the complex multiple-scattering which arises from extensive microcracking.

  8. Preventing Cracking of Anodized Coatings

    NASA Technical Reports Server (NTRS)

    He, Charles C.; Heslin, Thomas M.

    1995-01-01

    Anodized coatings have been used as optical and thermal surfaces in spacecraft. Particulate contamination from cracked coatings is a concern for many applications. The major cause for the cracking is the difference in the coefficient of thermal expansion between the oxide coatings and the aluminum substrate. The loss of water when the coating is exposed to a vacuum also could induce cracking of the coating. Hot-water sealing was identified as the major cause for the cracking of the coatings because of the large temperature change when the parts were immersed in boiling water and the water was absorbed in the coating. when the hot-water sealing process was eliminated, the cracking resistance of the anodized coatings was greatly improved. Also, it was found that dyed black coatings were more susceptible than clear coatings to cracking during thermo-vacuum cyclings.

  9. Thermally induced evolution of hydrogenated amorphous carbon

    NASA Astrophysics Data System (ADS)

    Mangolini, Filippo; Rose, Franck; Hilbert, James; Carpick, Robert W.

    2013-10-01

    The thermally induced structural evolution of hydrogenated amorphous carbon (a-C:H) films was investigated in situ by X-ray photoelectron spectroscopy for annealing temperatures up to 500 °C. A model for the conversion of sp3- to sp2-hybridized carbon in a-C:H vs. temperature and time was developed and applied to determine the ranges of activation energies for the thermally activated processes occurring. The energies are consistent with ordering and clustering of sp2 carbon, scission of sp3 carbon-hydrogen bonds and formation of sp2 carbon, and direct transformation of sp3- to sp2-hybridized carbon.

  10. Hydrogen environment embrittlement of metals

    NASA Technical Reports Server (NTRS)

    Jewett, R. P.; Walter, R. J.; Chandler, W. T.; Frohmberg, R. P.

    1973-01-01

    Hydrogen environment embrittlement refers to metals stressed while exposed to a hydrogen atmosphere. Tested in air, even after exposure to hydrogen under pressure, this effect is not observed on similar specimens. Much high purity hydrogen is prepared by evaporation of liquid hydrogen, and thus has low levels for potential impurities which could otherwise inhibit or poison the absorbent reactions that are involved. High strength steels and nickel-base allows are rated as showing extreme embrittlement; aluminum alloys and the austenitic stainless steels, as well as copper, have negligible susceptibility to this phenomenon. The cracking that occurs appears to be a surface phenomenon, is unlike that of internal hydrogen embrittlement.

  11. The Role of Hydrogen-Enhanced Strain-Induced Lattice Defects on Hydrogen Embrittlement Susceptibility of X80 Pipeline Steel

    NASA Astrophysics Data System (ADS)

    Hattori, M.; Suzuki, H.; Seko, Y.; Takai, K.

    2017-08-01

    Studies to date have not completely determined the factors influencing hydrogen embrittlement of ferrite/bainite X80 pipeline steel. Hydrogen embrittlement susceptibility was evaluated based on fracture strain in tensile testing. We conducted a thermal desorption analysis to measure the amount of tracer hydrogen corresponding to that of lattice defects. Hydrogen embrittlement susceptibility and the amount of tracer hydrogen significantly increased with decreasing crosshead speed. Additionally, a significant increase in the formation of hydrogen-enhanced strain-induced lattice defects was observed immediately before the final fracture. In contrast to hydrogen-free specimens, the fracture surface of the hydrogen-charged specimens exhibited shallower dimples without nuclei, such as secondary phase particles. These findings indicate that the presence of hydrogen enhanced the formation of lattice defects, particularly just prior to the occurrence of final fracture. This in turn enhanced the formation of shallower dimples, thereby potentially causing premature fracture of X80 pipeline steel at lower crosshead speeds.

  12. Effects of Annealing Treatment Prior to Cold Rolling on Delayed Fracture Properties in Ferrite-Austenite Duplex Lightweight Steels

    NASA Astrophysics Data System (ADS)

    Sohn, Seok Su; Song, Hyejin; Kim, Jung Gi; Kwak, Jai-Hyun; Kim, Hyoung Seop; Lee, Sunghak

    2016-02-01

    Tensile properties of recently developed automotive high-strength steels containing about 10 wt pct of Mn and Al are superior to other conventional steels, but the active commercialization has been postponed because they are often subjected to cracking during formation or to the delayed fracture after formation. Here, the delayed fracture behavior of a ferrite-austenite duplex lightweight steel whose microstructure was modified by a batch annealing treatment at 1023 K (750 °C) prior to cold rolling was examined by HCl immersion tests of cup specimens, and was compared with that of an unmodified steel. After the batch annealing, band structures were almost decomposed as strong textures of {100}<011> α-fibers and {111}<112> γ-fibers were considerably dissolved, while ferrite grains were refined. The steel cup specimen having this modified microstructure was not cracked when immersed in an HCl solution for 18 days, whereas the specimen having unmodified microstructure underwent the delayed fracture within 1 day. This time delayed fracture was more critically affected by difference in deformation characteristics such as martensitic transformation and deformation inhomogeneity induced from concentration of residual stress or plastic strain, rather than the difference in initial microstructures. The present work gives a promise for automotive applications requiring excellent mechanical and delayed fracture properties as well as reduced specific weight.

  13. Attenuation of Cigarette Smoke-Induced Airway Mucus Production by Hydrogen-Rich Saline in Rats

    PubMed Central

    Zhang, Jingxi; Dong, Yuchao; Xu, Wujian; Li, Qiang

    2013-01-01

    Background Over-production of mucus is an important pathophysiological feature in chronic airway disease such as chronic obstructive pulmonary disease (COPD) and asthma. Cigarette smoking (CS) is the leading cause of COPD. Oxidative stress plays a key role in CS-induced airway abnormal mucus production. Hydrogen protected cells and tissues against oxidative damage by scavenging hydroxyl radicals. In the present study we investigated the effect of hydrogen on CS-induced mucus production in rats. Methods Male Sprague-Dawley rats were divided into four groups: sham control, CS group, hydrogen-rich saline pretreatment group and hydrogen-rich saline control group. Lung morphology and tissue biochemical changes were determined by immunohistochemistry, Alcian Blue/periodic acid-Schiff staining, TUNEL, western blot and realtime RT-PCR. Results Hydrogen-rich saline pretreatment attenuated CS-induced mucus accumulation in the bronchiolar lumen, goblet cell hyperplasia, muc5ac over-expression and abnormal cell apoptosis in the airway epithelium as well as malondialdehyde increase in the BALF. The phosphorylation of EGFR at Tyr1068 and Nrf2 up-regulation expression in the rat lungs challenged by CS exposure were also abrogated by hydrogen-rich saline. Conclusion Hydrogen-rich saline pretreatment ameliorated CS-induced airway mucus production and airway epithelium damage in rats. The protective role of hydrogen on CS-exposed rat lungs was achieved at least partly by its free radical scavenging ability. This is the first report to demonstrate that intraperitoneal administration of hydrogen-rich saline protected rat airways against CS damage and it could be promising in treating abnormal airway mucus production in COPD. PMID:24376700

  14. Environmental Enrichment Decreases Asphyxia-Induced Neurobehavioral Developmental Delay in Neonatal Rats

    PubMed Central

    Kiss, Peter; Vadasz, Gyongyver; Kiss-Illes, Blanka; Horvath, Gabor; Tamas, Andrea; Reglodi, Dora; Koppan, Miklos

    2013-01-01

    Perinatal asphyxia during delivery produces long-term disability and represents a major problem in neonatal and pediatric care. Numerous neuroprotective approaches have been described to decrease the effects of perinatal asphyxia. Enriched environment is a popular strategy to counteract nervous system injuries. The aim of the present study was to investigate whether enriched environment is able to decrease the asphyxia-induced neurobehavioral developmental delay in neonatal rats. Asphyxia was induced in ready-to-deliver mothers by removing the pups by caesarian section after 15 min of asphyxia. Somatic and neurobehavioral development was tested daily and motor coordination weekly. Our results show that rats undergoing perinatal asphyxia had a marked developmental delay and worse performance in motor coordination tests. However, pups kept in enriched environment showed a decrease in the developmental delay observed in control asphyctic pups. Rats growing up in enriched environment did not show decrease in weight gain after the first week and the delay in reflex appearance was not as marked as in control rats. In addition, the development of motor coordination was not as strikingly delayed as in the control group. Short-term neurofunctional outcome are known to correlate with long-term deficits. Our results thus show that enriched environment could be a powerful strategy to decrease the deleterious developmental effects of perinatal asphyxia. PMID:24232451

  15. Environmental enrichment decreases asphyxia-induced neurobehavioral developmental delay in neonatal rats.

    PubMed

    Kiss, Peter; Vadasz, Gyongyver; Kiss-Illes, Blanka; Horvath, Gabor; Tamas, Andrea; Reglodi, Dora; Koppan, Miklos

    2013-11-13

    Perinatal asphyxia during delivery produces long-term disability and represents a major problem in neonatal and pediatric care. Numerous neuroprotective approaches have been described to decrease the effects of perinatal asphyxia. Enriched environment is a popular strategy to counteract nervous system injuries. The aim of the present study was to investigate whether enriched environment is able to decrease the asphyxia-induced neurobehavioral developmental delay in neonatal rats. Asphyxia was induced in ready-to-deliver mothers by removing the pups by caesarian section after 15 min of asphyxia. Somatic and neurobehavioral development was tested daily and motor coordination weekly. Our results show that rats undergoing perinatal asphyxia had a marked developmental delay and worse performance in motor coordination tests. However, pups kept in enriched environment showed a decrease in the developmental delay observed in control asphyctic pups. Rats growing up in enriched environment did not show decrease in weight gain after the first week and the delay in reflex appearance was not as marked as in control rats. In addition, the development of motor coordination was not as strikingly delayed as in the control group. Short-term neurofunctional outcome are known to correlate with long-term deficits. Our results thus show that enriched environment could be a powerful strategy to decrease the deleterious developmental effects of perinatal asphyxia.

  16. Constant-load delayed fracture test of atmospherically corroded high strength steels

    NASA Astrophysics Data System (ADS)

    Akiyama, Eiji; Matsukado, Katsuhiro; Li, Songjie; Tsuzaki, Kaneaki

    2011-07-01

    Constant load tests of circumferentially notched round bar specimens of high strength steels after cyclic corrosion test and outdoor exposure have been performed to demonstrate that delayed fracture occurs when the hydrogen content from the environment, H E, exceeds the critical hydrogen content for delayed fracture, H C. During the constant load tests the humidity around the specimen was increased in stepwise manner to increase hydrogen entry. After fracture the specimen was kept at the humidity long enough to homogenize hydrogen in the specimen and to obtain more quantitative hydrogen content by thermal desorption analysis. H E of the fractured specimens was higher than H C, and H E of the specimens not fractured was lower than H C. This result confirms that the balance between H C and H E determines the occurrence of delayed fracture and that hydrogen-content-based evaluation of susceptibility to delayed fracture is reasonable. To certify the increase of H E with increase in humidity, electrochemical hydrogen permeation test was carried out. The hydrogen permeation current density was increased especially at 98%RH. Enhancement of hydrogen entry with increase in CCT number was also shown by the test.

  17. Factors that lead to the use of crack cocaine in combination with marijuana in Brazil: a qualitative study.

    PubMed

    Gonçalves, Janaina R; Nappo, Solange A

    2015-07-25

    In Brazil, crack cocaine use remains a healthcare challenge due to the rapid onset of its pleasurable effects, its ability to induce craving and addiction, and the fact that it is easily accessible. Delayed action on the part of the Brazilian Government in addressing the drug problem has led users to develop their own strategies for surviving the effects of crack cocaine use, particularly the drug craving and psychosis. In this context, users have sought the benefits of combining crack cocaine with marijuana. Our aim was to identify the reasons why users combine crack cocaine with marijuana and the health implications of doing so. The present study is a qualitative study, using in-depth interviews and criteria-based sampling, following 27 crack cocaine users who combined its use with marijuana. Participants were recruited using the snowball sampling technique, and the point of theoretical saturation was used to define the sample size. Data were analyzed using the content analysis technique. The interviewees reported that the combination of crack cocaine use with marijuana provided "protection" (reduced undesirable effects, improved sleep and appetite, reduced craving for crack cocaine, and allowed the patients to recover some quality of life). Combined use of cannabis as a strategy to reduce the effects of crack exhibited several significant advantages, particularly an improved quality of life, which "protected" users from the violence typical of the crack culture. Crack use is considered a serious public health problem in Brazil, and there are few solution strategies. Within that limited context, the combination of cannabis and crack deserves more thorough clinical investigation to assess its potential use as a strategy to reduce the damage associated with crack use.

  18. Delay-induced stochastic bifurcations in a bistable system under white noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Zhongkui, E-mail: sunzk@nwpu.edu.cn; Fu, Jin; Xu, Wei

    2015-08-15

    In this paper, the effects of noise and time delay on stochastic bifurcations are investigated theoretically and numerically in a time-delayed Duffing-Van der Pol oscillator subjected to white noise. Due to the time delay, the random response is not Markovian. Thereby, approximate methods have been adopted to obtain the Fokker-Planck-Kolmogorov equation and the stationary probability density function for amplitude of the response. Based on the knowledge that stochastic bifurcation is characterized by the qualitative properties of the steady-state probability distribution, it is found that time delay and feedback intensity as well as noise intensity will induce the appearance of stochasticmore » P-bifurcation. Besides, results demonstrated that the effects of the strength of the delayed displacement feedback on stochastic bifurcation are accompanied by the sensitive dependence on time delay. Furthermore, the results from numerical simulations best confirm the effectiveness of the theoretical analyses.« less

  19. Effect of irradiation-induced plastic flow localization on ductile crack resistance behavior of a 9%Cr tempered martensitic steel

    NASA Astrophysics Data System (ADS)

    Chaouadi, R.

    2008-01-01

    This paper examines the effect of irradiation-induced plastic flow localization on the crack resistance behavior. Tensile and crack resistance measurements were performed on Eurofer-97 that was irradiated at 300 °C to neutron doses ranging between 0.3 and 2.1 dpa. A severe degradation of crack resistance behavior is experimentally established at quasi-static loading, in contradiction with the Charpy impact data and the dynamic crack resistance measurements. This degradation is attributed to the dislocation channel deformation phenomenon. At quasi-static loading rate, scanning electron microscopy observations of the fracture surfaces revealed a significant change of fracture topography, mainly from equiaxed dimples (mode I) to shear dimples (mode I + II). With increasing loading rate, the high peak stresses that develop inside the process zone activate much more dislocation sources resulting in a higher density of cross cutting dislocation channels and therefore an almost unaffected crack resistance. These explanations provide a rational to all experimental observations.

  20. Fatigue crack growth rates in a pressure vessel steel under various conditions of loading and the environment

    NASA Astrophysics Data System (ADS)

    Hicks, P. D.; Robinson, F. P. A.

    1986-10-01

    Corrosion fatigue (CF) tests have been carried out on SA508 Cl 3 pressure vessel steel, in simulated P.W.R. environments. The test variables investigated included air and P.W.R. water environments, frequency variation over the range 1 Hz to 10 Hz, transverse and longitudinal crack growth directions, temperatures of 20 °C and 50 °C, and R-ratios of 0.2 and 0.7. It was found that decreasing the test frequency increased fatigue crack growth rates (FCGR) in P.W.R. environments, P.W.R. environment testing gave enhanced crack growth (vs air tests), FCGRs were greater for cracks growing in the longitudinal direction, slight increases in temperature gave noticeable accelerations in FCGR, and several air tests gave FCGR greater than those predicted by the existing ASME codes. Fractographic evidence indicates that FCGRs were accelerated by a hydrogen embrittlement mechanism. The presence of elongated MnS inclusions aided both mechanical fatigue and hydrogen embrittlement processes, thus producing synergistically fast FCGRs. Both anodic dissolution and hydrogen embrittlement mechanisms have been proposed for the environmental enhancement of crack growth rates. Electrochemical potential measurements and potentiostatic tests have shown that sample isolation of the test specimens from the clevises in the apparatus is not essential during low temperature corrosion fatigue testing.

  1. Fatigue of DIN 1.4914 martensitic stainless steel in a hydrogen environment

    NASA Astrophysics Data System (ADS)

    Shakib, J. I.; Ullmaier, H.; Little, E. A.; Faulkner, R. G.; Schmilz, W.; Chung, T. E.

    1994-09-01

    Fatigue tests at room temperature in vacuum, air and hydrogen have been carried out on specimens of DIN 1.4914 martensitic stainless steel in load-controlled, push-pull type experiments. Fatigue lifetimes in hydrogen are significantly lower than in both vacuum and air and the degradation is enhanced by lowering the test frequency or introducing hold times into the tension half-cycle. Fractographic examinations reveal hydrogen embrittlement effects in the form of internal cracking between fatigue striations together with surface modifications, particularly at low stress amplitudes. It is suggested that gaseous hydrogen can influence both fatigue crack initiation and propagation events in martensitic steels.

  2. Cryogenic hydrogen-induced air-liquefaction technologies for combined-cycle propulsion applications

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1992-01-01

    Given here is a technical assessment of the realization of cryogenic hydrogen induced air liquefaction technologies in a prospective onboard aerospace vehicle process setting. The technical findings related to the status of air liquefaction technologies are reviewed. Compact lightweight cryogenic heat exchangers, heat exchanger atmospheric constituent fouling alleviation measures, para/ortho-hydrogen shift-conversion catalysts, cryogenic air compressors and liquid air pumps, hydrogen recycling using slush hydrogen as a heat sink, liquid hydrogen/liquid air rocket-type combustion devices, and technically related engine concepts are discussed. Much of the LACE work is related to aerospaceplane propulsion concepts that were developed in the 1960's. Emphasis is placed on the Liquid Air Cycle Engine (LACE).

  3. First interactions between hydrogen and stress-induced reverse transformation of Ni-Ti superelastic alloy

    NASA Astrophysics Data System (ADS)

    Yokoyama, Ken'ichi; Hashimoto, Tatsuki; Sakai, Jun'ichi

    2017-11-01

    The first dynamic interactions between hydrogen and the stress-induced reverse transformation have been investigated by performing an unloading test on a Ni-Ti superelastic alloy subjected to hydrogen charging under a constant applied strain in the elastic deformation region of the martensite phase. Upon unloading the specimen, charged with a small amount of hydrogen, no change in the behaviour of the stress-induced reverse transformation is observed in the stress-strain curve, although the behaviour of the stress-induced martensite transformation changes. With increasing amount of hydrogen charging, the critical stress for the reverse transformation markedly decreases. Eventually, for a larger amount of hydrogen charging, the reverse transformation does not occur, i.e. there is no recovery of the superelastic strain. The residual martensite phase on the side surface of the unloaded specimen is confirmed by X-ray diffraction. Upon training before the unloading test, the properties of the reverse transformation slightly recover after ageing in air at room temperature. The present study indicates that to change the behaviour of the reverse transformation a larger amount of hydrogen than that for the martensite transformation is necessary. In addition, it is likely that a substantial amount of hydrogen in solid solution more strongly suppresses the reverse transformation than hydrogen trapped at defects, thereby stabilising the martensite phase.

  4. Delay-induced depinning of localized structures in a spatially inhomogeneous Swift-Hohenberg model

    NASA Astrophysics Data System (ADS)

    Tabbert, Felix; Schelte, Christian; Tlidi, Mustapha; Gurevich, Svetlana V.

    2017-03-01

    We report on the dynamics of localized structures in an inhomogeneous Swift-Hohenberg model describing pattern formation in the transverse plane of an optical cavity. This real order parameter equation is valid close to the second-order critical point associated with bistability. The optical cavity is illuminated by an inhomogeneous spatial Gaussian pumping beam and subjected to time-delayed feedback. The Gaussian injection beam breaks the translational symmetry of the system by exerting an attracting force on the localized structure. We show that the localized structure can be pinned to the center of the inhomogeneity, suppressing the delay-induced drift bifurcation that has been reported in the particular case where the injection is homogeneous, assuming a continuous wave operation. Under an inhomogeneous spatial pumping beam, we perform the stability analysis of localized solutions to identify different instability regimes induced by time-delayed feedback. In particular, we predict the formation of two-arm spirals, as well as oscillating and depinning dynamics caused by the interplay of an attracting inhomogeneity and destabilizing time-delayed feedback. The transition from oscillating to depinning solutions is investigated by means of numerical continuation techniques. Analytically, we use an order parameter approach to derive a normal form of the delay-induced Hopf bifurcation leading to an oscillating solution. Additionally we model the interplay of an attracting inhomogeneity and destabilizing time delay by describing the localized solution as an overdamped particle in a potential well generated by the inhomogeneity. In this case, the time-delayed feedback acts as a driving force. Comparing results from the later approach with the full Swift-Hohenberg model, we show that the approach not only provides an instructive description of the depinning dynamics, but also is numerically accurate throughout most of the parameter regime.

  5. Evaluation of hydrogen embrittlement and temper embrittlement by key curve method in instrumented Charpy test

    NASA Astrophysics Data System (ADS)

    Ohtsuka, N.; Shindo, Y.; Makita, A.

    2010-06-01

    Instrumented Charpy test was conducted on small sized specimen of 21/4Cr-1Mo steel. In the test the single specimen key curve method was applied to determine the value of fracture toughness for the initiation of crack extension with hydrogen free, KIC, and for hydrogen embrittlement cracking, KIH. Also the tearing modulus as a parameter for resistance to crack extension was determined. The role of these parameters was discussed at an upper shelf temperature and at a transition temperature. Then the key curve method combined with instrumented Charpy test was proven to be used to evaluate not only temper embrittlement but also hydrogen embrittlement.

  6. Observer design for compensation of network-induced delays in integrated communication and control systems

    NASA Technical Reports Server (NTRS)

    Luck, R.; Ray, A.

    1988-01-01

    A method for compensating the effects of network-induced delays in integrated communication and control systems (ICCS) is proposed, and a finite-dimensional time-invariant ICCS model is developed. The problem of analyzing systems with time-varying and stochastic delays is circumvented by the application of a deterministic observer. For the case of controller-to-actuator delays, the observed design must rely on an extended model which represents the delays as additional states.

  7. Engineering diagnostics for vortex-induced stay vanes cracks in a Francis turbine

    NASA Astrophysics Data System (ADS)

    D'Agostini Neto, Alexandre; Gissoni, Humberto, Dr.; Gonçalves, Manuel, Dr.; Cardoso, Rogério; Jung, Alexander, Dr.; Meneghini, Julio, Prof.

    2016-11-01

    Despite the fact that vortex-induced vibration (VIV) in hydraulic turbines components (especially in stay vanes) is a well-known phenomenon, it still remains challenging for operation and maintenance teams in several power plants around the world. Since the first publication of a similar problem in 1967, literature shows that at least 27 other turbines witnessed strong stay vane vibrations associated with vortex shedding. Recurrent stay vane cracks in a 250 MW Francis turbine in Brazil motivated an engineering study involving prototype measurements, structural and Computational Fluid Dynamics (CFD) analysis in order to determine a proper geometry modification that could eliminate the periodic vortex wake generated at the stay vanes trailing edge. First cracks appeared in 1978 just after the machine was put into operation. A study published in 1982 associated these cracks with dynamic excitations caused by the water flow at high flow conditions. New stay vane profiles were proposed and executed as well as improved welding recommendations. Cracks however, continued to appear requiring welding repairs roughly every two years. Although Voith Hydro was not the original equipment manufacturer for these units, the necessary information was available to study the issue and propose and execute new stay vane profiles. This paper details the approach taken for the study. First, indirect vibration measurements were used to determine vibration frequencies to help to characterize the affected mode shapes. These results were compared to finite element (FE) calculations. Strain gage measurements performed afterwards confirmed the conclusions of this analysis. Next, transient CFD calculations were run to reproduce the measured phenomenon and to serve as a basis for a new stay vane geometry. This modification was then implemented in the actual turbine stay vanes. A new set of indirect vibration measurements indicated the effectiveness of the proposed solution. Final confirmation

  8. Laser peening for reducing hydrogen embrittlement

    DOEpatents

    Hackel, Lloyd A.; Zaleski, Tania M.; Chen, Hao-Lin; Hill, Michael R.; Liu, Kevin K.

    2010-05-25

    A laser peening process for the densification of metal surfaces and sub-layers and for changing surface chemical activities provides retardation of the up-take and penetration of atoms and molecules, particularly Hydrogen, which improves the lifetime of such laser peened metals. Penetration of hydrogen into metals initiates an embrittlement that leaves the material susceptible to cracking.

  9. Hydrogen peroxide-induced apoptosis in human gingival fibroblasts

    PubMed Central

    Gutiérrez-Venegas, Gloria; Guadarrama-Solís, Adriana; Muñoz-Seca, Carmen; Arreguín-Cano, Juan Antonio

    2015-01-01

    In the process of bleaching vital, discolored teeth, low concentrations of hydrogen peroxide (H2O2) are effective alternatives to heat-activated 30% H2O2. However, interest has been expressed in the assessment of pathological effects of long-term exposure to bleaching agents such as irritation and ulceration of the gingival or other soft tissues. The aim of the present study was to determine the effect of hydrogen peroxide on apoptosis in human gingival fibroblasts (HGF). Cytochrome c, Bcl-2, Bax, Bid and caspase-3 protein expression were detected by Western blotting. HGF cell apoptosis induced by H2O2 was both dose and time dependent. The addition of H2O2 resulted in the release of cytochrome c to the cytosol, and an increase of Caspase-3 cleavage. Data suggest that oxidative stress-induced apoptosis in HGF is intrinsic pathway involved the release of apoptotic signal from mitochondria. PMID:26884825

  10. 2015 Accomplishments-Tritium aging studies on stainless steel. Effects of hydrogen isotopes, crack orientation, and specimen geometry on fracture toughness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, Michael J.

    This study reports on the effects of hydrogen isotopes, crack orientation, and specimen geometry on the fracture toughness of stainless steels. Fracture toughness variability was investigated for Type 21-6-9 stainless steel using the 7K0004 forging. Fracture toughness specimens were cut from the forging in two different geometric configurations: arc shape and disc shape. The fracture toughness properties were measured at ambient temperature before and after exposure to hydrogen gas and compared to prior studies. There are three main conclusions that can be drawn from the results. First, the fracture toughness properties of actual reservoir forgings and contemporary heats of steelmore » are much higher than those measured in earlier studies that used heats of steel from the 1980s and 1990s and forward extruded forgings which were designed to simulate reservoir microstructures. This is true for as-forged heats as well as forged heats exposed to hydrogen gas. Secondly, the study confirms the well-known observation that cracks oriented parallel to the forging grain flow will propagate easier than those oriented perpendicular to the grain flow. However, what was not known, but is shown here, is that this effect is more pronounced, particularly after hydrogen exposures, when the forging is given a larger upset. In brick forgings, which have a relatively low amount of upset, the fracture toughness variation with specimen orientation is less than 5%; whereas, in cup forgings, the fracture toughness is about 20% lower than that forging to show how specimen geometry affects fracture toughness values. The American Society for Testing Materials (ASTM) specifies minimum specimen section sizes for valid fracture toughness values. However, sub-size specimens have long been used to study tritium effects because of the physical limitation of diffusing hydrogen isotopes into stainless steel at mild temperatures so as to not disturb the underlying forged microstructure. This study

  11. Hydrogen-rich saline protects retina against glutamate-induced excitotoxic injury in guinea pig.

    PubMed

    Wei, Lihua; Ge, Li; Qin, Shucun; Shi, Yunzhi; Du, Changqing; Du, Hui; Liu, Liwei; Yu, Yang; Sun, Xuejun

    2012-01-01

    Molecular hydrogen (H(2)) is an efficient antioxidant that can selectively reduce hydroxyl radicals and inhibit oxidative stress-induced injuries. We investigated the protective effects and mechanism of hydrogen-rich saline in a glutamate-induced retinal injury model. Retinal excitotoxicity was induced in healthy guinea pigs by injecting glutamate into the vitreous cavity. After 30 min, hydrogen-rich saline was injected into the vitreous cavity, the peritoneal cavity or both. Seven days later, the retinal stress response was evaluated by examining the stress biomarkers, inducible nitric-oxide synthase (iNOS) and glucose-regulated protein 78 (GRP78). The impaired glutamate uptake was assessed by the expression of the excitatory amino acid transporter 1(EAAT-1). The retinal histopathological changes were investigated, focusing on the thicknesses of the entire retina and its inner layer, the number of cells in the retinal ganglion cell layer (GCL) and the ultrastructure of the retinal ganglion cells (RGCs) and glial cells. Compared with the glutamate-induced injury group, the hydrogen-rich saline treatment reduced the loss of cells in the GCL and thinning of the retina and attenuated cellular morphological damage. These improvements were greatest in animals that received H(2) injections into both the vitreous and the peritoneal cavities. The hydrogen-rich saline also inhibited the expression of glial fibrillary acidic protein (GFAP) in Müller cells, CD11b in microglia, and iNOS and GRP78 in glial cells. Moreover, the hydrogen-rich saline increased the expression of EAAT-1. In conclusion, the administration of hydrogen-rich saline through the intravitreal or/and intraperitoneal routes could reduce the retinal excitotoxic injury and promote retinal recovery. This result likely occurs by inhibiting the activation of glial cells, decreasing the production of the iNOS and GRP78 and promoting glutamate clearance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Hydrogen peroxide toxicity induces Ras signaling in human neuroblastoma SH-SY5Y cultured cells.

    PubMed

    Chetsawang, Jirapa; Govitrapong, Piyarat; Chetsawang, Banthit

    2010-01-01

    It has been reported that overproduction of reactive oxygen species occurs after brain injury and mediates neuronal cells degeneration. In the present study, we examined the role of Ras signaling on hydrogen peroxide-induced neuronal cells degeneration in dopaminergic neuroblastoma SH-SY5Y cells. Hydrogen peroxide significantly reduced cell viability in SH-SY5Y cultured cells. An inhibitor of the enzyme that catalyzes the farnesylation of Ras proteins, FTI-277, and a competitive inhibitor of GTP-binding proteins, GDP-beta-S significantly decreased hydrogen peroxide-induced reduction in cell viability in SH-SY5Y cultured cells. The results of this study might indicate that a Ras-dependent signaling pathway plays a role in hydrogen peroxide-induced toxicity in neuronal cells.

  13. Fatigue Crack Growth and Crack Bridging in SCS-6/Ti-24-11

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Kantzos, Pete; Telesman, Jack

    1995-01-01

    Interfacial damage induced by relative fiber/matrix sliding was found to occur in the bridged zone of unidirectional SCS-6/Ti-24Al-11Nb intermetallic matrix composite specimens subjected to fatigue crack growth conditions. The degree of interfacial damage was not uniform along the bridged crack wake. Higher damage zones were observed near the machined notch in comparison to the crack tip. The interfacial friction shear strength tau(sub f) measured in the crack wake using pushout testing revealed lower values than the as-received interface. Interfacial wear also reduced the strength of the bridging fibers. The reduction in fiber strength is thought to be a function of the magnitude of relative fiber/matrix displacements ind the degree of interfacial damage. Furthermore, two different fiber bridging models were used to predict the influence of bridging on the fatigue crack driving force. The shear lag model required a variable tau(sub f) in the crack wake (reflecting the degradation of the interface) before its predictions agreed with trends exhibited by the experimental data. The fiber pressure model did an excellent job in predicting both the FCG data and the DeltaCOD in the bridged zone even though it does not require a knowledge of tau(sub f).

  14. Capillary-induced crack healing between surfaces of nanoscale roughness.

    PubMed

    Soylemez, Emrecan; de Boer, Maarten P

    2014-10-07

    Capillary forces are important in nature (granular materials, insect locomotion) and in technology (disk drives, adhesion). Although well studied in equilibrium state, the dynamics of capillary formation merit further investigation. Here, we show that microcantilever crack healing experiments are a viable experimental technique for investigating the influence of capillary nucleation on crack healing between rough surfaces. The average crack healing velocity, v̅, between clean hydrophilic polycrystalline silicon surfaces of nanoscale roughness is measured. A plot of v̅ versus energy release rate, G, reveals log-linear behavior, while the slope |d[log(v̅)]/dG| decreases with increasing relative humidity. A simplified interface model that accounts for the nucleation time of water bridges by an activated process is developed to gain insight into the crack healing trends. This methodology enables us to gain insight into capillary bridge dynamics, with a goal of attaining a predictive capability for this important microelectromechanical systems (MEMS) reliability failure mechanism.

  15. Sulfide Stress Cracking and Electrochemical Corrosion of Precipitation Hardening Steel After Plasma Oxy-Nitriding

    NASA Astrophysics Data System (ADS)

    Granda-Gutiérrez, E. E.; Díaz-Guillén, J. C.; Díaz-Guillén, J. A.; González, M. A.; García-Vázquez, F.; Muñóz, R.

    2014-11-01

    In this paper, we present the results of a duplex plasma nitriding followed by an oxidizing stage process (which is also referred as oxy-nitriding) on the corrosion behavior of a 17-4PH precipitation hardening stainless steel. The formation of both, expanded martensite (b.c.t. α'N-phase) and chromium oxide (type Cr2O3) in the subsurface of oxy-nitrided samples at specific controlled conditions, leads in a noticeable increasing in the time-to-rupture during the sulfide stress cracking test, in comparison with an untreated reference sample. Oxy-nitriding improves the corrosion performance of the alloy when it is immersed in solutions saturated by sour gas, which extends the application potential of this type of steel in the oil and gas extraction and processing industry. The presence of the oxy-nitrided layer inhibits the corrosion process that occurs in the near-surface region, where hydrogen is liberated after the formation of iron sulfides, which finally produces a fragile fracture by micro-crack propagation; the obtained results suggest that oxy-nitriding slows this process, thus delaying the rupture of the specimen. Moreover, oxy-nitriding produces a hard, sour gas-resistant surface, but do not significantly affect the original chloride ion solution resistance of the material.

  16. Fatigue life and crack growth prediction methodology

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Phillips, E. P.; Everett, R. A., Jr.

    1993-01-01

    The capabilities of a plasticity-induced crack-closure model and life-prediction code to predict fatigue crack growth and fatigue lives of metallic materials are reviewed. Crack-tip constraint factors, to account for three-dimensional effects, were selected to correlate large-crack growth rate data as a function of the effective-stress-intensity factor range (delta(K(sub eff))) under constant-amplitude loading. Some modifications to the delta(K(sub eff))-rate relations were needed in the near threshold regime to fit small-crack growth rate behavior and endurance limits. The model was then used to calculate small- and large-crack growth rates, and in some cases total fatigue lives, for several aluminum and titanium alloys under constant-amplitude, variable-amplitude, and spectrum loading. Fatigue lives were calculated using the crack growth relations and microstructural features like those that initiated cracks. Results from the tests and analyses agreed well.

  17. Modeling time-dependent corrosion fatigue crack propagation in 7000 series aluminum alloys

    NASA Technical Reports Server (NTRS)

    Mason, Mark E.; Gangloff, Richard P.

    1994-01-01

    Stress corrosion cracking and corrosion fatigue experiments were conducted with the susceptible S-L orientation of AA7075-T651, immersed in acidified and inhibited NaCl solution, to provide a basis for incorporating environmental effects into fatigue crack propagation life prediction codes such as NASA FLAGRO. This environment enhances da/dN by five to ten-fold compared to fatigue in moist air. Time-based crack growth rates from quasi-static load experiments are an order of magnitude too small for accurate linear superposition prediction of da/dN for loading frequencies above 0.001 Hz. Alternate methods of establishing da/dt, based on rising-load or ripple-load-enhanced crack tip strain rate, do not increase da/dt and do not improve linear superposition. Corrosion fatigue is characterized by two regimes of frequency dependence; da/dN is proportional to f(exp -1) below 0.001 Hz and to F(exp 0) to F(exp -0.1) for higher frequencies. Da/dN increases mildly both with increasing hold-time at K(sub max) and with increasing rise-time for a range of loading waveforms. The mild time-dependence is due to cycle-time-dependent corrosion fatigue growth. This behavior is identical for S-L nd L-T crack orientations. The frequency response of environmental fatigue in several 7000 series alloys is variable and depends on undefined compositional or microstructural variables. Speculative explanations are based on the effect of Mg on occluded crack chemistry and embritting hydrogen uptake, or on variable hydrogen diffusion in the crack tip process zone. Cracking in the 7075/NaCl system is adequately described for life prediction by linear superposition for prolonged load-cycle periods, and by a time-dependent upper bound relationship between da/dN and delta K for moderate loading times.

  18. Effect of Hydrogen Charging on the Stress Corrosion Behavior of 2205 Duplex Stainless Steel Under 3.5 wt.% NaCl Thin Electrolyte Layer

    NASA Astrophysics Data System (ADS)

    Zhao, Tianliang; Liu, Zhiyong; Hu, Shanshan; Du, Cuiwei; Li, Xiaogang

    2017-05-01

    The effect of hydrogen charging on the stress corrosion cracking (SCC) behavior of 2205 duplex stainless steel (DSS) under 3.5 wt.% NaCl thin electrolyte layer was investigated on precharged samples through hydrogen determination, electrochemical measurement, and slow strain rate tensile test. Results show that hydrogen charging weakens the passive film without inducing any obvious trace of localized anodic dissolution. Therefore, hydrogen charging increases the SCC susceptibility of 2205 DSS mainly through mechanism of hydrogen embrittlement rather than mechanism of localized anodic dissolution. 2205 DSS shows a more susceptibility to hydrogen under the TEL when hydrogen charging current density (HCCD) is between 20 and 50 mA cm-2. The increasing trend is remarkable when hydrogen charging current density increases from 20 to 50 mA cm-2 and fades after 50 mA cm-2.

  19. How to induce multiple delays in coupled chaotic oscillators?

    NASA Astrophysics Data System (ADS)

    Bhowmick, Sourav K.; Ghosh, Dibakar; Roy, Prodyot K.; Kurths, Jürgen; Dana, Syamal K.

    2013-12-01

    Lag synchronization is a basic phenomenon in mismatched coupled systems, delay coupled systems, and time-delayed systems. It is characterized by a lag configuration that identifies a unique time shift between all pairs of similar state variables of the coupled systems. In this report, an attempt is made how to induce multiple lag configurations in coupled systems when different pairs of state variables attain different time shift. A design of coupling is presented to realize this multiple lag synchronization. Numerical illustration is given using examples of the Rössler system and the slow-fast Hindmarsh-Rose neuron model. The multiple lag scenario is physically realized in an electronic circuit of two Sprott systems.

  20. Firing patterns transition and desynchronization induced by time delay in neural networks

    NASA Astrophysics Data System (ADS)

    Huang, Shoufang; Zhang, Jiqian; Wang, Maosheng; Hu, Chin-Kun

    2018-06-01

    We used the Hindmarsh-Rose (HR) model (Hindmarsh and Rose, 1984) to study the effect of time delay on the transition of firing behaviors and desynchronization in neural networks. As time delay is increased, neural networks exhibit diversity of firing behaviors, including regular spiking or bursting and firing patterns transitions (FPTs). Meanwhile, the desynchronization of firing and unstable bursting with decreasing amplitude in neural system, are also increasingly enhanced with the increase of time delay. Furthermore, we also studied the effect of coupling strength and network randomness on these phenomena. Our results imply that time delays can induce transition and desynchronization of firing behaviors in neural networks. These findings provide new insight into the role of time delay in the firing activities of neural networks, and can help to better understand the firing phenomena in complex systems of neural networks. A possible mechanism in brain that can cause the increase of time delay is discussed.

  1. Gaseous hydrogen embrittlement of PH 13-8 Mo steel

    NASA Astrophysics Data System (ADS)

    Ding, Y. S.; Tsay, L. W.; Chiang, M. F.; Chen, C.

    2009-04-01

    In this study, notched tensile and fatigue crack growth tests in gaseous hydrogen were performed on PH 13-8 Mo stainless steel specimens at room temperature. These specimens were susceptible to hydrogen embrittlement (HE), but at different degrees, depending on the aging conditions or the microstructures of the alloys. In hydrogen, the accelerated fatigue crack growth rate (FCGR) usually accompanied a reduced notched tensile strength (NTS) of the specimens, i.e., the faster the FCGR the lower the NTS. It was proposed that the same fracture mechanism could be applied to these two different types of specimens, regardless of the loading conditions. Rapid fatigue crack growth and high NTS loss were found in the H800 (426 °C under-aged) and H900 (482 °C peak-aged) specimens. The HE susceptibility of the steel was reduced by increasing the aging temperature above 593 °C, which was attributed to the increased amount of austenite in the structure. Extensive quasi-cleavage fracture was observed for the specimens that were deteriorated severely by HE.

  2. Exogenous Hydrogen Peroxide Contributes to Heme Oxygenase-1 Delaying Programmed Cell Death in Isolated Aleurone Layers of Rice Subjected to Drought Stress in a cGMP-Dependent Manner.

    PubMed

    Wang, Guanghui; Xiao, Yu; Deng, Xiaojiang; Zhang, Heting; Li, Tingge; Chen, Huiping

    2018-01-01

    Hydrogen peroxide (H 2 O 2 ) is a reactive oxygen species (ROS) that plays a dual role in plant cells. Here, we discovered that drought (20% polyethylene glycol-6000, PEG)-triggered decreases of HO-1 transcript expression and HO activity. However, exogenous H 2 O 2 contributed toward the increase in HO-1 gene expression and activity of the enzyme under drought stress. Meanwhile, the HO-1 inducer hematin could mimic the effects of the H 2 O 2 scavengers ascorbic acid (AsA) and dimethylthiourea (DMTU) and the H 2 O 2 synthesis inhibitor diphenyleneiodonium (DPI) for scavenging or diminishing drought-induced endogenous H 2 O 2 . Conversely, the zinc protoporphyrin IX (ZnPPIX), an HO-1-specific inhibitor, reversed the effects of hematin. We further analyzed the endogenous H 2 O 2 levels and HO-1 transcript expression levels of aleurone layers treated with AsA, DMTU, and DPI in the presence of exogenous H 2 O 2 under drought stress, respectively. The results showed that in aleurone layers subjected to drought stress, when the endogenous H 2 O 2 level was inhibited, the effect of exogenous H 2 O 2 on the induction of HO-1 was enhanced. Furthermore, exogenous H 2 O 2 -activated HO-1 effectively enhanced amylase activity. Application of 8-bromoguanosine 3',5'-cyclic guanosine monophosphate (8-Br-cGMP) (the membrane permeable cGMP analog) promoted the effect of exogenous H 2 O 2 -delayed PCD of aleurone layers in response to drought stress. More importantly, HO-1 delayed the programmed cell death (PCD) of aleurone layers by cooperating with nitric oxide (NO), and the delayed effect of NO on PCD was achieved via mediation by cGMP under drought stress. In short, in rice aleurone layers, exogenous H 2 O 2 (as a signaling molecule) triggered HO-1 and delayed PCD via cGMP which possibly induced amylase activity under drought stress. In contrast, as a toxic by-product of cellular metabolism, the drought-generated H 2 O 2 promoted cell death.

  3. Development of a novel non-contact inspection technique to detect micro cracks under the surface of a glass substrate by thermal stress-induced light scattering method

    NASA Astrophysics Data System (ADS)

    Sakata, Yoshitaro; Terasaki, Nao; Nonaka, Kazuhiro

    2017-05-01

    Fine polishing techniques, such as a chemical mechanical polishing treatment, are important techniques in glass substrate manufacturing. However, these techniques may cause micro cracks under the surface of glass substrates because they used mechanical friction. A stress-induced light scattering method (SILSM), which was combined with light scattering method and mechanical stress effects, was proposed for inspecting surfaces to detect polishing-induced micro cracks. However, in the conventional SILSM, samples need to be loaded with physical contact, and the loading point is invisible in transparent materials. Here, we introduced a novel non-contact SILSM using a heating device. A glass substrate was heated first, and then the light scattering intensity of micro cracks was detected by a cooled charge-couple device camera during the natural cooling process. Results clearly showed during the decreasing surface temperature of a glass substrate, appropriate thermal stress is generated for detecting micro cracks by using the SILSM and light scattering intensity from micro cracks changes. We confirmed that non-contact thermal SILSM (T-SILSM) can detect micro cracks under the surface of transparent materials.

  4. General Overview: Atomistics of Environmentally-Induced Fracture.

    DTIC Science & Technology

    1981-05-01

    might be affected, recent field ion microscopy by Clum 35 suggests that hydrogen may reduce the work required to nucleate dislocations at the surface...and, hence, induces plasticity. Lynch 3 6 has proposed similar behavior based on the view that chemisorption facilitates dislocation nucleation at...that chemisorption may facilitate the nucleation of dislocations at crack tips, although the mechanism by which this might occur is unclear. The basis

  5. Isolated Mesoporous Microstructures Prepared by Stress Localization-Induced Crack Manipulation.

    PubMed

    Wooh, Sanghyuk; Lee, Soojin; Lee, Yunchan; Ryu, Ji Ho; Lee, Won Bo; Yoon, Hyunsik; Char, Kookheon

    2016-09-22

    Cracks observed in brittle materials are mostly regarded as defects or failures. However, they can be a valuable tool when implemented in a controlled way. Here, we introduce a strategy to control the crack propagation of mesoporous micropatterns (prisms and pyramids), which leads to the isolation of well-defined microstructures. Mesoporous micropatterns were fabricated by the soft imprinting technique with wet TiO 2 nanoparticle (NP) pastes, followed by sintering to remove organic components. Since the volume of the paste significantly shrinks during the sintering step, stress is localized at the edge of micropatterns, in good agreement with finite element method simulations, creating well-defined cracks and their propagation. It was demonstrated that the degree of stress localization is determined by the thickness of residual layers, NP size, and heating rate. After controlled crack propagation and delamination of microparticles from the substrates, mesoporous microwires and microparticles were successfully produced and functionalized from the isolated mesoporous prisms and pyramids. The method proposed in this study for controlled crack manipulation and delamination opens a door for straightforward and economical fabrication of well-defined mesoporous microparticles.

  6. Hydrogen induced fracture characteristics of single crystal nickel-based superalloys

    NASA Technical Reports Server (NTRS)

    Chen, Po-Shou; Wilcox, Roy C.

    1990-01-01

    A stereoscopic method for use with x ray energy dispersive spectroscopy of rough surfaces was adapted and applied to the fracture surfaces single crystals of PWA 1480E to permit rapid orientation determinations of small cleavage planes. The method uses a mathematical treatment of stereo pair photomicrographs to measure the angle between the electron beam and the surface normal. One reference crystal orientation corresponding to the electron beam direction (crystal growth direction) is required to perform this trace analysis. The microstructure of PWA 1480E was characterized before fracture analysis was performed. The fracture behavior of single crystals of the PWA 1480E nickel-based superalloy was studied. The hydrogen-induced fracture behavior of single crystals of the PWA 1480E nickel-based superalloy was also studied. In order to understand the temperature dependence of hydrogen-induced embrittlement, notched single crystals with three different crystal growth orientations near zone axes (100), (110), and (111) were tensile tested at 871 C (1600 F) in both helium and hydrogen atmospheres at 34 MPa. Results and conclusions are given.

  7. Near-IR imaging of cracks in teeth

    NASA Astrophysics Data System (ADS)

    Fried, William A.; Simon, Jacob C.; Lucas, Seth; Chan, Kenneth H.; Darling, Cynthia L.; Staninec, Michal; Fried, Daniel

    2014-02-01

    Dental enamel is highly transparent at near-IR wavelengths and several studies have shown that these wavelengths are well suited for optical transillumination for the detection and imaging of tooth decay. We hypothesize that these wavelengths are also well suited for imaging cracks in teeth. Extracted teeth with suspected cracks were imaged at several wavelengths in the near-IR from 1300-1700-nm. Extracted teeth were also examined with optical coherence tomography to confirm the existence of suspected cracks. Several teeth of volunteers were also imaged in vivo at 1300-nm to demonstrate clinical potential. In addition we induced cracks in teeth using a carbon dioxide laser and imaged crack formation and propagation in real time using near-IR transillumination. Cracks were clearly visible using near-IR imaging at 1300-nm in both in vitro and in vivo images. Cracks and fractures also interfered with light propagation in the tooth aiding in crack identification and assessment of depth and severity.

  8. Sub-grain induced crack deviation in multi-crystalline silicon

    NASA Astrophysics Data System (ADS)

    Zhao, Lv; Nelias, Daniel; Bardel, Didier; Wang, Meng; Marie, Benoit

    2017-06-01

    The fracture process in crystalline silicon is dictated by energy dissipation. Here, we show that sub-grains can deviate the crack path from the most energetically favorable ( 111) plane. Albeit a small misorientation across the sub-grain boundary is identified, upon entering into the sub-grain region, the crack either slightly deviates from the ideal ( 111) plane or directly chooses the secondly most favorable ( 110) one. We propose that the deviation is related to the dislocation core in the ( 111) crystal plane, which leads to a discontinuous atom debonding process and consequently a pronounced lattice trapping. In this circumstance, localized crystal defects prevail in the fracture process of silicon, while energetical criterion fails to interpret the crack path.

  9. Transply crack density detection by acousto-ultrasonics

    NASA Technical Reports Server (NTRS)

    Hemann, John H.; Bowles, Kenneth J.; Kautz, Harold; Cavano, Paul

    1987-01-01

    The acousto-ultrasonic method was applied to a PMR-15 8-harness, satin Celion 3000 fabric composite to determine the extent of transply cracking. A six-ply 0/90 laminate was also subjected to mechanical loading, which induced transply cracking. The stress wave factor (SWF) is defined as the energy contained in the received signal from a 2.25-MHz center frequency transducer. The correlation of the SWF with transply crack density is shown.

  10. Reduction of hydrogen peroxide-induced erythrocyte damage by Carica papaya leaf extract.

    PubMed

    Okoko, Tebekeme; Ere, Diepreye

    2012-06-01

    To investigate the in vitro antioxidant potential of Carica papaya (C. papaya) leaf extract and its effect on hydrogen peroxide-induced erythrocyte damage assessed by haemolysis and lipid peroxidation. Hydroxyl radical scavenging activities, hydrogen ion scavenging activity, metal chelating activity, and the ferrous ion reducing ability were assessed as antioxidant indices. In the other experiment, human erythrocytes were treated with hydrogen peroxide to induce erythrocyte damage. The extract (at various concentrations) was subsequently incubated with the erythrocytes and later analysed for haemolysis and lipid peroxidation as indices for erythrocyte damage. Preliminary investigation of the extract showed that the leaf possessed significant antioxidant and free radical scavenging abilities using in vitro models in a concentration dependent manner (P<0.05). The extract also reduced hydrogen peroxide induced erythrocyte haemolysis and lipid peroxidation significantly when compared with ascorbic acid (P<0.05). The IC50 values were 7.33 mg/mL and 1.58 mg/mL for inhibition of haemolysis and lipid peroxidation, respectively. In all cases, ascorbic acid (the reference antioxidant) possessed higher activity than the extract. The findings show that C. papaya leaves possess significant bioactive potential which is attributed to the phytochemicals which act in synergy. Thus, the leaves can be exploited for pharmaceutical and nutritional purposes.

  11. Intestinal electrical stimulation improves delayed gastric emptying and vomiting induced by duodenal distension in dogs.

    PubMed

    Xu, J; Chen, J D Z

    2008-03-01

    The aim of this study was to investigate the effects of short-pulse intestinal electrical stimulation (IES) on duodenal distention-induced delayed gastric emptying and vomiting in dogs and its possible mechanisms. The study was performed in 12 dogs with jejunal electrodes and a duodenal cannula in three separate experiments to investigate the effects of IES on duodenal distension (DD)-induced delayed gastric emptying and discomfort signs, vagal efferent activity, and jejunal tone. We found that: (i) IES significantly accelerated gastric emptying of liquid delayed by distension (18.05 +/- 4.06%vs. 7.18 +/- 1.99%, P = 0.036 at 60 min). (ii) IES significantly reduced vomiting and discomfort/pain induced by distension. The average signs score was 15.33 +/- 1.37 during distension which decreased to 6.50 +/- 0.91 (P = 0.0002) with IES. (iii) IES did not change vagal afferent activity, which was assessed by the spectral analysis of the heart rate variability. (iv) IES decreased jejunal tone. In conclusion, IES with parameters commonly used in gastric electrical stimulation for nausea and vomiting associated with gastroparesis improves DD-induced delayed gastric emptying and prevents DD-induced vomiting and discomfort signs. Further studies are warranted to investigate the therapeutic potential of IES for gastrointestinal symptoms associated with disturbances in motility and sensory function in small intestine.

  12. X-ray scattering to probe cracks in rubbers

    NASA Astrophysics Data System (ADS)

    Creton, Costantino; Demassieux, Quentin; Berghezan, Daniel

    Natural rubber is a well-known very tough elastomer and its toughness is generally attributed to its aptitude to crystallize under strain. Yet the mechanism linking the extent of strain induced crystallization to the toughness gamma is still unclear. We mapped by scanning microbeam X-ray diffraction (20 microns resolution), the strain induced crystallization near the crack tip of highly crosslinked and carbon-black filled natural rubbers. Experiments were carried out on static cracks loaded at different values of energy release rates G and for different filler and crosslinker concentrations. We specifically investigated the effect of the crosslinking density, the effect of thermal (oxygen-free) aging and the effect of temperature (between 23 and 100 °C). Several novel findings are reported : a significant amount of crystallization was still present at the crack tip at 100°C, thermal aging (in the absence of oxygen) greatly reduces the amount of crystallization at the crack tip without much effect on the room temperature resistance to fatigue crack propagation of the material, and an increase in crosslinking density reduces the extent of crystallinity at the crack tip for the same applied G. We acknowledge the financial support of Michelin.

  13. Experimental investigation of self-induced transparency and pulse delay in ruby.

    NASA Technical Reports Server (NTRS)

    Asher, I. M.

    1972-01-01

    We have investigated the self-induced transparency effect in ruby over a range of input energies which range from linear absorption to full transparency. The transmission, pulse delay, and pulse broadening were studied as a function of input energy. The transition region is narrower than that found in similar studies of the CO2/SF6 system; this is consistent with predictions based on ensembles of two-level systems. Included are the first pulse-delay and pulse-broadening curves to be obtained for the ruby system.

  14. Protective effects of molecular hydrogen on steroid-induced osteonecrosis in rabbits via reducing oxidative stress and apoptosis.

    PubMed

    Li, Jia; Ge, Zhaogang; Fan, Lihong; Wang, Kunzheng

    2017-02-02

    The objective of this study was to investigate the protective effects of molecular hydrogen, a novel and selective antioxidant, on steroid-induced osteonecrosis (ON) in a rabbit model. Sixty rabbits were randomly divided into two groups (model group and hydrogen group). Osteonecrosis was induced according to an established protocol of steroid-induced ON. Rabbits in the hydrogen group were treated with intraperitoneal injections of molecular hydrogen at 10 ml/kg body weight for seven consecutive days. Plasma levels of total cholesterol, triglycerides, soluble thrombomodulin(sTM), glutathione(GSH) and malondialdehyde(MDA) were measured before and after steroid administration. The presence or absence of ON was examined histopathologically. Oxidative injury and vascular injury were assessed in vivo by immunohistochemical staining of 8-hydoxy-2-deoxyguanosine(8-OHdG) and MDA, and ink artery infusion angiography. The terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assays were performed to measure apoptosis. The incidence of steroid-induced ON was significantly lower in hydrogen group (28.6%) than that in model group (68.0%). No statistically differences were observed on the levels of total cholesterol and triglycerides. Oxidative injury, vascular injury and apoptosis were attenuated in the hydrogen group compared with those in the model group in vivo. These results suggested that molecular hydrogen prevents steroid-induced osteonecrosis in rabbits by suppressing oxidative injury, vascular injury and apoptosis.

  15. Characteristics of lead induced stress corrosion cracking of alloy 690 in high temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, K.K.; Lim, J.K.; Watanabe, Yutaka

    1996-10-01

    Slow strain rate tests (SSRT) were conducted on alloy 690 in various lead chloride solutions and metal lead added to 100 ppm chloride solution at 288 C. The corrosion potential (rest potential) for the alloy was measured with SSRT tests. The cracking was observed by metallographic examination and electron probe micro analyzer. Also, the corrosion behavior of the alloy was evaluated by anodic polarized measurement at 30 C. Resulting from the tests, cracking was characterized by cracking behavior, crack length and crack growth rate, and lead effects on cracking. The cracking was mainly intergranular in mode, approximately from 60 ummore » to 450 um in crack length, and approximately 10{sup {minus}6} to 10{sup {minus}7} mmS-1 in crack velocity. The cracking was evaluated through the variation the corrosion potential in potential-time and lead behavior during SSRTs. The lead effect in corrosion was evaluated through active to passive transition behavior in anodic polarized curves. The corrosion reactions in the cracking region were confirmed by electron probe microanalysis. Alloy 690 is used for steam generation tubes in pressurized water reactors.« less

  16. Thermal Cracking to Improve the Qualification of the Waxes

    NASA Astrophysics Data System (ADS)

    He, B.; Agblevor, F. A.; Chen, C. G.; Feng, J.

    2018-05-01

    Thermal cracking of waxes at mild conditions (430-500°C) has been reconsidered as a possible refining technology for the production of fuels and chemicals. In this study, the more moderate thermal cracking was investigated to process Uinta Basin soft waxes to achieve the required pour point so that they can be pumped to the refineries. The best thermal cracking conditions were set 420°C and 20 minutes. The viscosity and density of the final liquid product were respectively achieved as 2.63 mP•s and 0.784 g/cm3 at 40°C. The result of FT-IR analysis of the liquid product indicated that the unsaturated hydrocarbons were produced after thermal cracking, which was corroborated by the 13C NMR spectrum. The GC analysis of the final gas product indicated that the hydrogen was produced; the dehydrogenation reaction was also proved by the elemental analysis and HHV results. The pour point of the final liquid product met the requirement.

  17. Performance evaluation of high-strength steel pipelines for high-pressure gaseous hydrogen transportation.

    DOT National Transportation Integrated Search

    2009-01-01

    Pipeline steels suffer significant degradation of their mechanical properties in high-pressure : gaseous hydrogen, including their fatigue cracking resistances to cyclic loading. The current : project work was conducted to produce fatigue crack growt...

  18. Spontaneous Cracking in Unfired Magnesia Compacts Upon Standing in Air

    NASA Technical Reports Server (NTRS)

    Davies, Myron O.; Grimes, Hubert H.; May, Charles E.

    1961-01-01

    Analytical-grade magnesium oxide powder without binder was compressed hydrostatically to 50,000 lb. per sq. in. to form compacts. When exposed to moist air immediately after pressing, these compacts developed irregularly shaped cracks. Controlled tests, in which these compacts were exposed for various lengths of time to various atmospheres, indicated that in general water vapor, carbon dioxide, and residual stresses had to be present if cracking was to occur. The probable cause of the cracking was the formation of a less dense and mechanically weak basic carbonate of magnesium at crystallite surface points of high stress concentration which developed during the compacting. The adsorption of dry CO2 at such sites prevented subsequent delayed fracture.

  19. Intrinsic fatigue crack propagation in aluminum-lithium alloys - The effect of gaseous environments

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Gangloff, Richard P.

    1989-01-01

    Gaseous environmental effects on intrinsic fatigue crack growth are significant for the Al-Li-Cu alloy 2090, peak aged. For both moderate Delta K-low R and low Delta K-high R regimes, crack growth rates decrease according to the environment order: purified water vapor, moist air, helium and oxygen. Gaseous environmental effects are pronounced near threshold and are not closure dominated. Here, embrittlement by low levels of H2O (ppm) supports hydrogen embrittlement and suggests that molecular transport controlled cracking, established for high Delta K-low R, is modified near threshold. Localized crack tip reaction sites or high R crack opening shape may enable the strong, environmental effect at low levels of Delta K. Similar crack growth in He and O2 eliminates the contribution of surface films to fatigue damage in alloy 2090. While 2090 and 7075 exhibit similar environmental trends, the Al-Li-Cu alloy is more resistant to intrinsic corrosion fatigue crack growth.

  20. SSME - Materials and Methods for Addressing High-Pressure Hydrogen Embrittlement

    NASA Technical Reports Server (NTRS)

    Matejczk, Daniel; Russell, Dale; Frandsen, Jon; Swanson, Greg

    2010-01-01

    From the humid, corrosion-friendly atmosphere of KSC, to the extreme heat of ascent, to the cold vacuum of space, the Space Shuttle faced one hostile environment after another. One of those harsh environments the hydrogen environment existed within the shuttle itself. Liquid hydrogen was the fuel that powered the shuttle s complex, powerful, and reusable main engine. Hydrogen provided the high specific impulse the bang per pound of fuel needed to perform the shuttle s heavy lifting duties. Hydrogen, however, was also a potential threat to the very metal of the propulsion system that used it. The diffusion of hydrogen atoms into a metal can make it more brittle and prone to cracking a process called hydrogen embrittlement. This effect can reduce the toughness of carefully selected and prepared materials. A concern that exposure to hydrogen might encourage crack growth was present from the beginning of the Space Shuttle Program, but the rationale for using hydrogen was compelling. This paper outlines the material characterization, anomaly resolution, and path to understanding of hydrogen embrittlement on superalloys through the course of the SSME program. Specific examples of nickel alloy turbine housings and single crystal turbine blades are addressed. The evolution of fracture mechanics analytical methods is also addressed.

  1. Charge induced enhancement of adsorption for hydrogen storage materials

    NASA Astrophysics Data System (ADS)

    Sun, Xiang

    2009-12-01

    . Direct measurement of the amount of hydrogen adsorption was also carried out with porous nickel oxides and magnesium oxides using the piezoelectric material PMN-PT as the charge supplier due to the pressure. The adsorption enhancement from the PMN-PT generated charges is obvious at hydrogen pressure between 0 and 60 bars, where the hydrogen uptake is increased at about 35% for nickel oxide and 25% for magnesium oxide. Computer simulation reveals that under the external electric field, the electron cloud of hydrogen molecules is pulled over to the adsorbent site and can overlap with the adsorbent electrons, which in turn enhances the adsorption energy. Experiments were also carried out to examine the effects of hydrogen spillover with charge induced enhancement. The results show that the overall storage capacity in nickel oxide increased remarkably by a factor of 4.

  2. Suppression of nanoindentation-induced phase transformation in crystalline silicon implanted with hydrogen

    NASA Astrophysics Data System (ADS)

    Jelenković, Emil V.; To, Suet

    2017-09-01

    In this paper the effect of hydrogen implantation in silicon on nanoindentation-induced phase transformation is investigated. Hydrogen ions were implanted in silicon through 300 nm thick oxide with double energy implantation (75 and 40 keV). For both energies implantation dose was 4 × 1016 cm-2. Some samples were thermally annealed at 400 °C. The micro-Raman spectroscopy was applied on nanoindentation imprints and the obtained results were related to the pop out/elbow appearances in nanoindentatioin unloading-displacement curves. The Raman spectroscopy revealed a suppression of Si-XII and Si-III phases and formation of a-Si in the indents of hydrogen implanted Si. The high-resolution x-ray diffraction measurements were taken to support the analysis of silicon phase formation during nanoindentation. Implantation induced strain, high hydrogen concentration, and platelets generation were found to be the factors that control suppression of c-Si phases Si-XII and Si-III, as well as a-Si phase enhancement during nanoindentation. [Figure not available: see fulltext.

  3. The effects of signalled and unsignalled lick-dependent delays on the development of schedule-induced drinking in rats.

    PubMed

    Pellon, R; Blackman, D E

    1991-02-01

    Food pellets were programmed to be delivered to rats every 60 sec (Fixed Time 60-sec schedule), and the development of schedule-induced drinking was measured in terms of the amount of water consumed and the number of licks per inter-pellet interval. For some rats (masters) 10-sec delays in food delivery were dependent on licks. Yoked-control rats received food at the same time as their masters and independently of their own behaviour. In Experiment 1, in which the delays were signalled by a blackout, the master rats began to drink, but this schedule-induced behaviour then decreased to levels lower than those shown by the yoked controls. When the signalled delays were discontinued, the drinking of the master rats recovered. In Experiment 2, in which the delays were not signalled, the master rats did not develop as much schedule-induced drinking as the yoked controls, and discontinuing the delays led to only small increases in drinking. These results support the view that schedule-induced drinking is subject to control by its consequences.

  4. Analyses of Fatigue Crack Growth and Closure Near Threshold Conditions for Large-Crack Behavior

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1999-01-01

    A plasticity-induced crack-closure model was used to study fatigue crack growth and closure in thin 2024-T3 aluminum alloy under constant-R and constant-K(sub max) threshold testing procedures. Two methods of calculating crack-opening stresses were compared. One method was based on a contact-K analyses and the other on crack-opening-displacement (COD) analyses. These methods gave nearly identical results under constant-amplitude loading, but under threshold simulations the contact-K analyses gave lower opening stresses than the contact COD method. Crack-growth predictions tend to support the use of contact-K analyses. Crack-growth simulations showed that remote closure can cause a rapid rise in opening stresses in the near threshold regime for low-constraint and high applied stress levels. Under low applied stress levels and high constraint, a rise in opening stresses was not observed near threshold conditions. But crack-tip-opening displacement (CTOD) were of the order of measured oxide thicknesses in the 2024 alloy under constant-R simulations. In contrast, under constant-K(sub max) testing the CTOD near threshold conditions were an order-of-magnitude larger than measured oxide thicknesses. Residual-plastic deformations under both constant-R and constant-K(sub max) threshold simulations were several times larger than the expected oxide thicknesses. Thus, residual-plastic deformations, in addition to oxide and roughness, play an integral part in threshold development.

  5. Simulations of Flow Through the SSME LH2 Feed Line and LPFP Inducer

    NASA Technical Reports Server (NTRS)

    Dorney, Daniel J.; Rothermel, Jeffry

    2003-01-01

    During a post-flight inspection of the liquid hydrogen feed lines leading the Space Shuttle main engines cracks were discover in slots on a flow liner just upstream of the low pressure fuel pump inducer. Numerical simulations have been performed for the feed line, the flow liner (including the slots and backing cavity) and the inducer. The predicted results have been compared with experimental data taken during hot-fire tests at NASA Stennis Space Center.

  6. Tests of HMA overlays using geosynthetics to reduce reflection cracking.

    DOT National Transportation Integrated Search

    2009-12-01

    The primary objective of this field phase of the research project was to evaluate geosynthetic : products placed under or within hot mix asphalt overlays to reduce the severity or delay the appearance of : reflection cracks and to calibrate and valid...

  7. Reduction of hydrogen peroxide-induced erythrocyte damage by Carica papaya leaf extract

    PubMed Central

    Okoko, Tebekeme; Ere, Diepreye

    2012-01-01

    Objective To investigate the in vitro antioxidant potential of Carica papaya (C. papaya) leaf extract and its effect on hydrogen peroxide-induced erythrocyte damage assessed by haemolysis and lipid peroxidation. Methods Hydroxyl radical scavenging activities, hydrogen ion scavenging activity, metal chelating activity, and the ferrous ion reducing ability were assessed as antioxidant indices. In the other experiment, human erythrocytes were treated with hydrogen peroxide to induce erythrocyte damage. The extract (at various concentrations) was subsequently incubated with the erythrocytes and later analysed for haemolysis and lipid peroxidation as indices for erythrocyte damage. Results Preliminary investigation of the extract showed that the leaf possessed significant antioxidant and free radical scavenging abilities using in vitro models in a concentration dependent manner (P<0.05). The extract also reduced hydrogen peroxide induced erythrocyte haemolysis and lipid peroxidation significantly when compared with ascorbic acid (P<0.05). The IC50 values were 7.33 mg/mL and 1.58 mg/mL for inhibition of haemolysis and lipid peroxidation, respectively. In all cases, ascorbic acid (the reference antioxidant) possessed higher activity than the extract. Conclusions The findings show that C. papaya leaves possess significant bioactive potential which is attributed to the phytochemicals which act in synergy. Thus, the leaves can be exploited for pharmaceutical and nutritional purposes. PMID:23569948

  8. [Protective effect of hydrogen against hyperoxia-induced type II alveolar epithelial cell injury].

    PubMed

    Yao, Lan; Xu, Feng; Luo, Chong; Yu, Pan; Dong, Xinxin; Sun, Xuejun; Liu, Chengjun

    2013-02-01

    To investigate the protective effect of hydrogen against hyperoxia-induced oxidative stress injury in premature rat type II alveolar epithelial cells (AECs). The type II AECs isolated from premature rats were randomly divided into air (21% oxygen) control group, hyperoxia (95% oxygen) control group, air + hydrogen group, and hyperoxia+ hydrogen group. The cells with hydrogen treatment were cultured in the presence of rich hydrogen. After the corresponding exposure for 24 h, the cell morphology was observed microscopically. MTT assay was used to evaluated the cell proliferation ability, and JC-1 fluorescence probe was used to detect the mitochondrial membrane potential (δφ) changes of the type II AECs. The concentration of maleic dialdehyde (MDA) and superoxide dismutase (SOD) activity in the cell supernatant were detected using colorimetric method. No significant differences were found in cell growth or measurements between air control and air + hydrogen groups. Compared with air control group, the cells exposed to hyperoxia showed significantly suppressed proliferation, reduced mitochondrial membrane potential, increased MDA content, and decreased SOD activity. Intervention with hydrogen resulted in significantly increased cell proliferation and SOD activity and lowered MDA content, and restored the mitochondrial membrane potential in the cells with hyperoxia exposure (P<0.05). Hydrogen can significantly reduce hyperoxia-induced oxidative stress injury in premature rat type II AECs, improve the cellular antioxidant capacity, stabilize the mitochondrial membrane potential, and reduce the inhibitory effect of hyperoxia on cell proliferation.

  9. Cyclic etching of tin-doped indium oxide using hydrogen-induced modified layer

    NASA Astrophysics Data System (ADS)

    Hirata, Akiko; Fukasawa, Masanaga; Nagahata, Kazunori; Li, Hu; Karahashi, Kazuhiro; Hamaguchi, Satoshi; Tatsumi, Tetsuya

    2018-06-01

    The rate of etching of tin-doped indium oxide (ITO) and the effects of a hydrogen-induced modified layer on cyclic, multistep thin-layer etching were investigated. It was found that ITO cyclic etching is possible by precisely controlling the hydrogen-induced modified layer. Highly selective etching of ITO/SiO2 was also investigated, and it was suggested that cyclic etching by selective surface adsorption of Si can precisely control the etch rates of ITO and SiO2, resulting in an almost infinite selectivity for ITO over SiO2 and in improved profile controllability.

  10. Predicting overload-affected fatigue crack growth in steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skorupa, M.; Skorupa, A.; Ladecki, B.

    1996-12-01

    The ability of semi-empirical crack closure models to predict the effect of overloads on fatigue crack growth in low-alloy steels has been investigated. With this purpose, the CORPUS model developed for aircraft metals and spectra has been checked first through comparisons between the simulated and observed results for a low-alloy steel. The CORPUS predictions of crack growth under several types of simple load histories containing overloads appeared generally unconservative which prompted the authors to formulate a new model, more suitable for steels. With the latter approach, the assumed evolution of the crack opening stress during the delayed retardation stage hasmore » been based on experimental results reported for various steels. For all the load sequences considered, the predictions from the proposed model appeared to be by far more accurate than those from CORPUS. Based on the analysis results, the capability of semi-empirical prediction concepts to cover experimentally observed trends that have been reported for sequences with overloads is discussed. Finally, possibilities of improving the model performance are considered.« less

  11. Determination of very low concentrations of hydrogen in zirconium alloys by neutron imaging

    NASA Astrophysics Data System (ADS)

    Buitrago, N. L.; Santisteban, J. R.; Tartaglione, A.; Marín, J.; Barrow, L.; Daymond, M. R.; Schulz, M.; Grosse, M.; Tremsin, A.; Lehmann, E.; Kaestner, A.; Kelleher, J.; Kabra, S.

    2018-05-01

    Zr-based alloys are used in nuclear power plants because of a unique combination of very low neutron absorption and excellent mechanical properties and corrosion resistance at operating conditions. However, Hydrogen (H) or Deuterium ingress due to waterside corrosion during operation can embrittle these materials. In particular, Zr alloys are affected by Delayed Hydride Cracking (DHC), a stress-corrosion cracking mechanism operating at very low H content (∼100-300 wt ppm), which involves the diffusion of H to the crack tip. H content in Zr alloys is commonly determined by destructive techniques such as inert gas fusion and vacuum extraction. In this work, we have used neutron imaging to non-destructively quantify the spatial distribution of H in Zr alloys specimens with a resolution of ∼5 wt ppm, an accuracy of ∼10 wt ppm and a spatial resolution of ∼25 μm × 5 mm x 10 mm. Non-destructive experiments performed on a comprehensive set of calibrated specimens of Zircaloy-2 and Zr2.5%Nb at four neutron facilities worldwide show the typical precision and repeatability of the technique. We have observed that the microstructure of the alloy plays an important role on the homogeneity of H across a specimen. We propose several strategies for performing H determinations without calibrated specimens, with the most precise results for neutrons having wavelengths longer than 5.7 Å.

  12. Generating Fatigue Crack Growth Thresholds with Constant Amplitude Loads

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; Newman, James C., J.; Forman, Royce G.

    2002-01-01

    The fatigue crack growth threshold, defining crack growth as either very slow or nonexistent, has been traditionally determined with standardized load reduction methodologies. Some experimental procedures tend to induce load history effects that result in remote crack closure from plasticity. This history can affect the crack driving force, i.e. during the unloading process the crack will close first at some point along the wake, reducing the effective load at the crack tip. One way to reduce the effects of load history is to propagate a crack under constant amplitude loading. As a crack propagates under constant amplitude loading, the stress intensity factor, K, will increase, as will the crack growth rate, da/dN. A fatigue crack growth threshold test procedure is developed and experimentally validated that does not produce load history effects and can be conducted at a specified stress ratio, R.

  13. Effect of Gas Tungsten Arc Welding Parameters on Hydrogen-Assisted Cracking of Type 321 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Rozenak, Paul; Unigovski, Yaakov; Shneck, Roni

    2016-05-01

    The susceptibility of AISI type 321 stainless steel welded by the gas tungsten arc welding (GTAW) process to hydrogen-assisted cracking (HAC) was studied in a tensile test combined with in situ cathodic charging. Specimen charging causes a decrease in ductility of both the as-received and welded specimens. The mechanical properties of welds depend on welding parameters. For example, the ultimate tensile strength and ductility increase with growing shielding gas (argon) rate. More severe decrease in the ductility was obtained after post-weld heat treatment (PWHT). In welded steels, in addition to discontinuous grain boundary carbides (M23C6) and dense distribution of metal carbides MC ((Ti, Nb)C) precipitated in the matrix, the appearance of delta-ferrite phase was observed. The fracture of sensitized specimens was predominantly intergranular, whereas the as-welded specimens exhibited mainly transgranular regions. High-dislocation density regions and stacking faults were found in delta-ferrite formed after welding. Besides, thin stacking fault plates and epsilon-martensite were found in the austenitic matrix after the cathodic charging.

  14. Hydrogen-rich saline ameliorates the severity of L-arginine-induced acute pancreatitis in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Han; Sun, Yan Ping; Li, Yang

    2010-03-05

    Molecular hydrogen, which reacts with the hydroxyl radical, has been considered as a novel antioxidant. Here, we evaluated the protective effects of hydrogen-rich saline on the L-arginine (L-Arg)-induced acute pancreatitis (AP). AP was induced in Sprague-Dawley rats by giving two intraperitoneal injections of L-Arg, each at concentrations of 250 mg/100 g body weight, with an interval of 1 h. Hydrogen-rich saline (>0.6 mM, 6 ml/kg) or saline (6 ml/kg) was administered, respectively, via tail vein 15 min after each L-Arg administration. Severity of AP was assessed by analysis of serum amylase activity, pancreatic water content and histology. Samples of pancreasmore » were taken for measuring malondialdehyde and myeloperoxidase. Apoptosis in pancreatic acinar cell was determined with terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling technique (TUNEL). Expression of proliferating cell nuclear antigen (PCNA) and nuclear factor kappa B (NF-{kappa}B) were detected with immunohistochemistry. Hydrogen-rich saline treatment significantly attenuated the severity of L-Arg-induced AP by ameliorating the increased serum amylase activity, inhibiting neutrophil infiltration, lipid oxidation and pancreatic tissue edema. Moreover, hydrogen-rich saline treatment could promote acinar cell proliferation, inhibit apoptosis and NF-{kappa}B activation. These results indicate that hydrogen treatment has a protective effect against AP, and the effect is possibly due to its ability to inhibit oxidative stress, apoptosis, NF-{kappa}B activation and to promote acinar cell proliferation.« less

  15. Corrosion pitting and environmentally assisted small crack growth

    PubMed Central

    Turnbull, Alan

    2014-01-01

    In many applications, corrosion pits act as precursors to cracking, but qualitative and quantitative prediction of damage evolution has been hampered by lack of insights into the process by which a crack develops from a pit. An overview is given of recent breakthroughs in characterization and understanding of the pit-to-crack transition using advanced three-dimensional imaging techniques such as X-ray computed tomography and focused ion beam machining with scanning electron microscopy. These techniques provided novel insights with respect to the location of crack development from a pit, supported by finite-element analysis. This inspired a new concept for the role of pitting in stress corrosion cracking based on the growing pit inducing local dynamic plastic strain, a critical factor in the development of stress corrosion cracks. Challenges in quantifying the subsequent growth rate of the emerging small cracks are then outlined with the potential drop technique being the most viable. A comparison is made with the growth rate for short cracks (through-thickness crack in fracture mechanics specimen) and long cracks and an electrochemical crack size effect invoked to rationalize the data. PMID:25197249

  16. Hydrogen protects auditory hair cells from cisplatin-induced free radicals.

    PubMed

    Kikkawa, Yayoi S; Nakagawa, Takayuki; Taniguchi, Mirei; Ito, Juichi

    2014-09-05

    Cisplatin is a widely used chemotherapeutic agent for the treatment of various malignancies. However, its maximum dose is often limited by severe ototoxicity. Cisplatin ototoxicity may require the production of reactive oxygen species (ROS) in the inner ear by activating enzymes specific to the cochlea. Molecular hydrogen was recently established as an antioxidant that selectively reduces ROS, and has been reported to protect the central nervous system, liver, kidney and cochlea from oxidative stress. The purpose of this study was to evaluate the potential of molecular hydrogen to protect cochleae against cisplatin. We cultured mouse cochlear explants in medium containing various concentrations of cisplatin and examined the effects of hydrogen gas dissolved directly into the media. Following 48-h incubation, the presence of intact auditory hair cells was assayed by phalloidin staining. Cisplatin caused hair cell loss in a dose-dependent manner, whereas the addition of hydrogen gas significantly increased the numbers of remaining auditory hair cells. Additionally, hydroxyphenyl fluorescein (HPF) staining of the spiral ganglion showed that formation of hydroxyl radicals was successfully reduced in hydrogen-treated cochleae. These data suggest that molecular hydrogen can protect auditory tissues against cisplatin toxicity, thus providing an additional strategy to protect against drug-induced inner ear damage. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Dual-memory processes in crack cocaine dependents: The effects of childhood neglect on recall.

    PubMed

    Tractenberg, Saulo G; Viola, Thiago W; Gomes, Carlos F A; Wearick-Silva, Luis Eduardo; Kristensen, Christian H; Stein, Lilian M; Grassi-Oliveira, Rodrigo

    2015-01-01

    Exposure to adversities during sensitive periods of neurodevelopment is associated with the subsequent development of substance dependence and exerts harmful, long-lasting effects upon memory functioning. In this study, we investigated the relationship between childhood neglect (CN) and memory using a dual-process model that quantifies recollective and non-recollective retrieval processes in crack cocaine dependents. Eighty-four female crack cocaine-dependent inpatients who did (N = 32) or did not (N = 52) report a history of CN received multiple opportunities to study and recall a short list composed of familiar and concrete words and then received a delayed-recall test. Crack cocaine dependents with a history of CN showed worse performance on free-recall tests than did dependents without a history of CN; this finding was associated with declines in recollective retrieval (direct access) rather than non-recollective retrieval. In addition, we found no evidence of group differences in forgetting rates between immediate- and delayed-recall tests. The results support developmental models of traumatology and suggest that neglect of crack cocaine dependents in early life disrupts the adult memory processes that support the retrieval of detailed representations of events from the past.

  18. Fractography and mechanisms of environmentally enhanced fatigue crack propagation of a reactor pressure vessel steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torronen, K.; Kemppainen, M.

    1981-10-01

    This paper describes the findings and interpretations of the fractographic survey conducted for the International Cyclic Crack Growth Rate (ICCGR) cooperative group round-robin specimens. Specimens of A533B pressure vessel steel were tested at several laboratories in the United States and elsewhere with the same nominal test parameters. A rather wide scatter of the results was found. A fractographic and metallographic survey was carried out in order to clarify the scatter and to evaluate the micromechanism of the crack growth. The fractographic findings are reported in detail and correlated to the crack growth behavior. A hydrogen-assisted crack propagation mechanism based onmore » the fractography is proposed and applied to the observed crack growth behavior.« less

  19. Computational Modeling of Micro-Crack Induced Attenuation in CFRP Composites

    NASA Technical Reports Server (NTRS)

    Roberts, R. A.; Leckey, C. A. C.

    2012-01-01

    A computational study is performed to determine the contribution to ultrasound attenuation in carbon fiber reinforced polymer composite laminates of linear elastic scattering by matrix micro-cracking. Multiple scattering approximations are benchmarked against exact computational approaches. Results support linear scattering as the source of observed increased attenuation in the presence of micro-cracking.

  20. Optimal antidiarrhea treatment for antitumor agent irinotecan hydrochloride (CPT-11)-induced delayed diarrhea.

    PubMed

    Takasuna, K; Hagiwara, T; Watanabe, K; Onose, S; Yoshida, S; Kumazawa, E; Nagai, E; Kamataki, T

    2006-10-01

    An antitumor camptothecin derivative CPT-11 has proven a broad spectrum of solid tumor malignancy, but its severe diarrhea has often limited its more widespread use. We have demonstrated from a rat model that intestinal beta-glucuronidase may play a key role in the development of CPT-11-induced delayed diarrhea by the deconjugation of the luminal SN-38 glucuronide, and the elimination of the intestinal microflora by antibiotics or dosing of TJ-14, a Kampo medicine that contains beta-glucuronidase inhibitor baicalin, exerted a protective effect. In the present study, we assessed the efficacy of several potential treatments in our rat model to clarify which is the most promising treatment for CPT-11-induced delayed diarrhea. Oral dosing (twice daily from days -1 to 4) of streptomycin 20 mg/kg and penicillin 10 mg/kg (Str/Pen), neomycin 20 mg/kg and bacitracin 10 mg/kg (Neo/Bac), both of which inhibited almost completely the fecal beta-glucuronidase activity, or TJ-14 1,000 mg/kg improved the decrease in body weight and the delayed diarrhea symptoms induced by CPT-11 (60 mg/kg i.v. from days 1 to 4) to a similar extent. The efficacy was less but significant in activated charcoal (1,000 mg/kg p.o. twice daily from days -1 to 4). In a separate experiment using rats bearing breast cancer (Walker 256-TC), TJ-14, Neo/Bac, and charcoal at the same dose regimen improved CPT-11-induced intestinal toxicity without reducing CPT-11's antitumor activity. In contrast, oral dosing (twice a day) of cyclosporin A (50 mg/kg), a P-glycoprotein and cMOAT/MRP2 inhibitor or valproic acid (200 mg/kg), a UDP-glucuronosyltranferase inhibitor, exacerbated the intestinal toxicity without modifying CPT-11's antitumor activity. The result clearly demonstrated the ability of Neo/Bac, Str/Pen, and TJ-14, less but significant ability of activated charcoal, to ameliorate CPT-11-induced delayed-onset diarrhea, suggesting the treatments decreasing the exposure of the intestines to the luminal SN-38

  1. Surface aspects of pitting and stress corrosion cracking

    NASA Technical Reports Server (NTRS)

    Truhan, J. S., Jr.; Hehemann, R. F.

    1977-01-01

    The pitting and stress corrosion cracking of a stable austenitic stainless steel in aqueous chloride environments were investigated using a secondary ion mass spectrometer as the primary experimental technique. The surface concentration of hydrogen, oxygen, the hydroxide, and chloride ion, magnesium or sodium, chromium and nickel were measured as a function of potential in both aqueous sodium chloride and magnesium chloride environments at room temperature and boiling temperatures. It was found that, under anodic conditions, a sharp increase in the chloride concentration was observed to occur for all environmental conditions. The increase may be associated with the formation of an iron chloride complex. Higher localized chloride concentrations at pits and cracks were also detected with an electron microprobe.

  2. Modeling the Interactions Between Multiple Crack Closure Mechanisms at Threshold

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Riddell, William T.; Piascik, Robert S.

    2003-01-01

    A fatigue crack closure model is developed that includes interactions between the three closure mechanisms most likely to occur at threshold; plasticity, roughness, and oxide. This model, herein referred to as the CROP model (for Closure, Roughness, Oxide, and Plasticity), also includes the effects of out-of plane cracking and multi-axial loading. These features make the CROP closure model uniquely suited for, but not limited to, threshold applications. Rough cracks are idealized here as two-dimensional sawtooths, whose geometry induces mixed-mode crack- tip stresses. Continuum mechanics and crack-tip dislocation concepts are combined to relate crack face displacements to crack-tip loads. Geometric criteria are used to determine closure loads from crack-face displacements. Finite element results, used to verify model predictions, provide critical information about the locations where crack closure occurs.

  3. Seeding Cracks Using a Fatigue Tester for Accelerated Gear Tooth Breaking

    NASA Technical Reports Server (NTRS)

    Nenadic, Nenad G.; Wodenscheck, Joseph A.; Thurston, Michael G.; Lewicki, David G.

    2011-01-01

    This report describes fatigue-induced seeded cracks in spur gears and compares them to cracks created using a more traditional seeding method, notching. Finite element analysis (FEA) compares the effective compliance of a cracked tooth to the effective compliance of a notched tooth where the crack and the notch are of the same depth. In this analysis, cracks are propagated to the desired depth using FRANC2D and effective compliances are computed in ANSYS. A compliance-based feature for detecting cracks on the fatigue tester is described. The initiated cracks are examined using both nondestructive and destructive methods. The destructive examination reveals variability in the shape of crack surfaces.

  4. Method for simultaneous recovery of hydrogen from water and from hydrocarbons

    DOEpatents

    Willms, R. Scott

    1996-01-01

    Method for simultaneous recovery of hydrogen and hydrogen isotopes from water and from hydrocarbons. A palladium membrane, when utilized in cooperation with a nickel catalyst in a reactor, has been found to drive reactions such as water gas shift, steam reforming and methane cracking to substantial completion by removing the product hydrogen from the reacting mixture. In addition, ultrapure hydrogen is produced, thereby eliminating the need for an additional processing step.

  5. Hydrogen Gas Inhalation Attenuates Seawater Instillation-Induced Acute Lung Injury via the Nrf2 Pathway in Rabbits.

    PubMed

    Diao, Mengyuan; Zhang, Sheng; Wu, Lifeng; Huan, Le; Huang, Fenglou; Cui, Yunliang; Lin, Zhaofen

    2016-12-01

    Seawater instillation-induced acute lung injury involves oxidative stress and apoptosis. Although hydrogen gas inhalation is reportedly protective in multiple types of lung injury, the effect of hydrogen gas inhalation on seawater instillation-induced acute lung injury remains unknown. This study investigated the effect of hydrogen gas on seawater instillation-induced acute lung injury and explored the mechanisms involved. Rabbits were randomly assigned to control, hydrogen (2 % hydrogen gas inhalation), seawater (3 mL/kg seawater instillation), and seawater + hydrogen (3 mL/kg seawater instillation + 2 % hydrogen gas inhalation) groups. Arterial partial oxygen pressure and lung wet/dry weight ratio were detected. Protein content in bronchoalveolar lavage fluid (BALF) and serum as well as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 levels were determined. Hematoxylin-eosin staining was used to monitor changes in lung specimens, and malondialdehyde (MDA) content and myeloperoxidase (MPO) activity were assayed. In addition, NF-E2-related factor (Nrf) 2 and heme oxygenase (HO)-1 mRNA and protein expression were measured, and apoptosis was assessed by measuring caspase-3 expression and using terminal deoxy-nucleotidyl transferase dUTP nick end-labeling (TUNEL) staining. Hydrogen gas inhalation markedly improved lung endothelial permeability and decreased both MDA content and MPO activity in lung tissue; these changes were associated with decreases in TNF-α, IL-1β, and IL-6 in BALF. Hydrogen gas also alleviated histopathological changes and cell apoptosis. Moreover, Nrf2 and HO-1 expressions were significantly activated and caspase-3 expression was inhibited. These results demonstrate that hydrogen gas inhalation attenuates seawater instillation-induced acute lung injury in rabbits and that the protective effects observed may be related to the activation of the Nrf2 pathway.

  6. Environment enhanced fatigue crack propagation in metals: Inputs to fracture mechanics life prediction models

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Kim, Sang-Shik

    1993-01-01

    This report is a critical review of both environment-enhanced fatigue crack propagation data and the predictive capabilities of crack growth rate models. This information provides the necessary foundation for incorporating environmental effects in NASA FLAGRO and will better enable predictions of aerospace component fatigue lives. The review presents extensive literature data on 'stress corrosion cracking and corrosion fatigue.' The linear elastic fracture mechanics approach, based on stress intensity range (Delta(K)) similitude with microscopic crack propagation threshold and growth rates, provides a basis for these data. Results are presented showing enhanced growth rates for gases (viz., H2 and H2O) and electrolytes (e.g. NaCl and H2O) in aerospace alloys including: C-Mn and heat treated alloy steels, aluminum alloys, nickel-based superalloys, and titanium alloys. Environment causes purely time-dependent accelerated fatigue crack growth above the monotonic load cracking threshold (KIEAC) and promotes cycle-time dependent cracking below (KIEAC). These phenomenon are discussed in terms of hydrogen embrittlement, dissolution, and film rupture crack tip damage mechanisms.

  7. Lamb wave line sensing for crack detection in a welded stiffener.

    PubMed

    An, Yun-Kyu; Kim, Jae Hong; Yim, Hong Jae

    2014-07-18

    This paper proposes a novel Lamb wave line sensing technique for crack detection in a welded stiffener. The proposed technique overcomes one of the biggest technical challenges of Lamb wave crack detection for real structure applications: crack-induced Lamb waves are often mixed with multiple reflections from complex waveguides. In particular, crack detection in a welded joint, one of the structural hot spots due to stress concentration, is accompanied by reflections from the welded joint as well as a crack. Extracting and highlighting crack-induced Lamb wave modes from Lamb wave responses measured at multi-spatial points along a single line can be accomplished through a frequency-wavenumber domain analysis. The advantages of the proposed technique enable us not only to enhance the crack detectability in the welded joint but also to minimize false alarms caused by environmental and operational variations by avoiding the direct comparison with the baseline data previously accumulated from the pristine condition of a target structure. The proposed technique is experimentally and numerically validated in vertically stiffened metallic structures, revealing that it successfully identifies and localizes subsurface cracks, regardless of the coexistence with the vertical stiffener.

  8. Corrosion and stress corrosion cracking in supercritical water

    NASA Astrophysics Data System (ADS)

    Was, G. S.; Ampornrat, P.; Gupta, G.; Teysseyre, S.; West, E. A.; Allen, T. R.; Sridharan, K.; Tan, L.; Chen, Y.; Ren, X.; Pister, C.

    2007-09-01

    Supercritical water (SCW) has attracted increasing attention since SCW boiler power plants were implemented to increase the efficiency of fossil-based power plants. The SCW reactor (SCWR) design has been selected as one of the Generation IV reactor concepts because of its higher thermal efficiency and plant simplification as compared to current light water reactors (LWRs). Reactor operating conditions call for a core coolant temperature between 280 °C and 620 °C at a pressure of 25 MPa and maximum expected neutron damage levels to any replaceable or permanent core component of 15 dpa (thermal reactor design) and 100 dpa (fast reactor design). Irradiation-induced changes in microstructure (swelling, radiation-induced segregation (RIS), hardening, phase stability) and mechanical properties (strength, thermal and irradiation-induced creep, fatigue) are also major concerns. Throughout the core, corrosion, stress corrosion cracking, and the effect of irradiation on these degradation modes are critical issues. This paper reviews the current understanding of the response of candidate materials for SCWR systems, focusing on the corrosion and stress corrosion cracking response, and highlights the design trade-offs associated with certain alloy systems. Ferritic-martensitic steels generally have the best resistance to stress corrosion cracking, but suffer from the worst oxidation. Austenitic stainless steels and Ni-base alloys have better oxidation resistance but are more susceptible to stress corrosion cracking. The promise of grain boundary engineering and surface modification in addressing corrosion and stress corrosion cracking performance is discussed.

  9. Development of chloride-induced corrosion in pre-cracked RC beams under sustained loading: Effect of load-induced cracks, concrete cover, and exposure conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Linwen; Université de Sherbrooke, Quebec; François, Raoul, E-mail: raoul.francois@insa-toulouse.fr

    2015-01-15

    This paper deals with corrosion initiation and propagation in pre-cracked reinforced concrete beams under sustained loading during exposure to a chloride environment. Specimen beams that were cast in 2010 were compared to specimens cast in 1984. The only differences between the two sets of beams were the casting direction in relation to tensile reinforcement and the exposure conditions in the salt-fog chamber. The cracking maps, corrosion maps, chloride profiles, and cross-sectional loss of one group of two beams cast in 2010 were studied and their calculated corrosion rates were compared to that of beams cast in 1984 in order tomore » investigate the factors influencing the natural corrosion process. Experimental results show that, after rapid initiation of corrosion at the crack tip, the corrosion process practically halted and the time elapsing before corrosion resumed depended on the exposure conditions and cover depth.« less

  10. Exogenous Hydrogen Peroxide Contributes to Heme Oxygenase-1 Delaying Programmed Cell Death in Isolated Aleurone Layers of Rice Subjected to Drought Stress in a cGMP-Dependent Manner

    PubMed Central

    Wang, Guanghui; Xiao, Yu; Deng, Xiaojiang; Zhang, Heting; Li, Tingge; Chen, Huiping

    2018-01-01

    Hydrogen peroxide (H2O2) is a reactive oxygen species (ROS) that plays a dual role in plant cells. Here, we discovered that drought (20% polyethylene glycol-6000, PEG)-triggered decreases of HO-1 transcript expression and HO activity. However, exogenous H2O2 contributed toward the increase in HO-1 gene expression and activity of the enzyme under drought stress. Meanwhile, the HO-1 inducer hematin could mimic the effects of the H2O2 scavengers ascorbic acid (AsA) and dimethylthiourea (DMTU) and the H2O2 synthesis inhibitor diphenyleneiodonium (DPI) for scavenging or diminishing drought-induced endogenous H2O2. Conversely, the zinc protoporphyrin IX (ZnPPIX), an HO-1-specific inhibitor, reversed the effects of hematin. We further analyzed the endogenous H2O2 levels and HO-1 transcript expression levels of aleurone layers treated with AsA, DMTU, and DPI in the presence of exogenous H2O2 under drought stress, respectively. The results showed that in aleurone layers subjected to drought stress, when the endogenous H2O2 level was inhibited, the effect of exogenous H2O2 on the induction of HO-1 was enhanced. Furthermore, exogenous H2O2-activated HO-1 effectively enhanced amylase activity. Application of 8-bromoguanosine 3′,5′-cyclic guanosine monophosphate (8-Br-cGMP) (the membrane permeable cGMP analog) promoted the effect of exogenous H2O2-delayed PCD of aleurone layers in response to drought stress. More importantly, HO-1 delayed the programmed cell death (PCD) of aleurone layers by cooperating with nitric oxide (NO), and the delayed effect of NO on PCD was achieved via mediation by cGMP under drought stress. In short, in rice aleurone layers, exogenous H2O2 (as a signaling molecule) triggered HO-1 and delayed PCD via cGMP which possibly induced amylase activity under drought stress. In contrast, as a toxic by-product of cellular metabolism, the drought-generated H2O2 promoted cell death. PMID:29449858

  11. Stress corrosion cracking of Ti-8Al-1 Mo-1V in molten salts

    NASA Technical Reports Server (NTRS)

    Smyrl, W. H.; Blackburn, M. J.

    1975-01-01

    The stress corrosion cracking (SCC) behavior of Ti-8Al-1 Mo-1V has been studied in several molten salt environments. Extensive data are reported for the alloy in highly pure LiCl-KCl. The influence of the metallurgical heat treatment and texture, and the mechanical microstructure show similarities with aqueous solutions at lower temperature. The fracture path and cracking modes are also similar to that found in other environments. The influence of H2O and H(-) in molten LiCl-KCl lead to the conclusion that hydrogen does not play a major role in crack extension in this environment.

  12. Hydrogen sulfide ameliorated L-NAME-induced hypertensive heart disease by the Akt/eNOS/NO pathway.

    PubMed

    Jin, Sheng; Teng, Xu; Xiao, Lin; Xue, Hongmei; Guo, Qi; Duan, Xiaocui; Chen, Yuhong; Wu, Yuming

    2017-12-01

    Reductions in hydrogen sulfide (H 2 S) production have been implicated in the pathogenesis of hypertension; however, no studies have examined the functional role of hydrogen sulfide in hypertensive heart disease. We hypothesized that the endogenous production of hydrogen sulfide would be reduced and exogenous hydrogen sulfide would ameliorate cardiac dysfunction in N ω -nitro- L-arginine methyl ester ( L-NAME)-induced hypertensive rats. Therefore, this study investigated the cardioprotective effects of hydrogen sulfide on L-NAME-induced hypertensive heart disease and explored potential mechanisms. The rats were randomly divided into five groups: Control, Control + sodium hydrosulfide (NaHS), L-NAME, L-NAME + NaHS, and L-NAME + NaHS + glibenclamide (Gli) groups. Systolic blood pressure was monitored each week. In Langendorff-isolated rat heart, cardiac function represented by ±LV dP/dt max and left ventricular developing pressure was recorded after five weeks of treatment. Hematoxylin and Eosin and Masson's trichrome staining and myocardium ultrastructure under transmission electron microscopy were used to evaluate cardiac remodeling. The plasma nitric oxide and hydrogen sulfide concentrations, as well as nitric oxide synthases and cystathionine-γ-lyase activity in left ventricle tissue were determined. The protein expression of p-Akt, Akt, p-eNOS, and eNOS in left ventricle tissue was analyzed using Western blot. After five weeks of L-NAME treatment, there was a time-dependent hypertension, cardiac remodeling, and dysfunction accompanied by a decrease in eNOS phosphorylation, nitric oxide synthase activity, and nitric oxide concentration. Meanwhile, cystathionine-γ-lyase activity and hydrogen sulfide concentration were also decreased. NaHS treatment significantly increased plasma hydrogen sulfide concentration and subsequently promoted the Akt/eNOS/NO pathway which inhibited the development of hypertension and attenuated cardiac remodeling and

  13. Effect of Measured Welding Residual Stresses on Crack Growth

    NASA Technical Reports Server (NTRS)

    Hampton, Roy W.; Nelson, Drew; Doty, Laura W. (Technical Monitor)

    1998-01-01

    Welding residual stresses in thin plate A516-70 steel and 2219-T87 aluminum butt weldments were measured by the strain-gage hole drilling and X-ray diffraction methods. The residual stress data were used to construct 3D strain fields which were modeled as thermally induced strains. These 3D strain fields were then analyzed with the WARP31) FEM fracture analysis code in order to predict their effect on fatigue and on fracture. For analyses of fatigue crack advance and subsequent verification testing, fatigue crack growth increments were simulated by successive saw-cuts and incremental loading to generate, as a function of crack length, effects on crack growth of the interaction between residual stresses and load induced stresses. The specimen experimental response was characterized and compared to the WARM linear elastic and elastic-plastic fracture mechanics analysis predictions. To perform the fracture analysis, the plate material's crack tearing resistance was determined by tests of thin plate M(T) specimens. Fracture analyses of these specimen were performed using WARP31D to determine the critical Crack Tip Opening Angle [CTOA] of each material. These critical CTOA values were used to predict crack tearing and fracture in the weldments. To verify the fracture predictions, weldment M(T) specimen were tested in monotonic loading to fracture while characterizing the fracture process.

  14. Quantity Effect of Radial Cracks on the Cracking Propagation Behavior and the Crack Morphology

    PubMed Central

    Chen, Jingjing; Xu, Jun; Liu, Bohan; Yao, Xuefeng; Li, Yibing

    2014-01-01

    In this letter, the quantity effect of radial cracks on the cracking propagation behavior as well as the circular crack generation on the impacted glass plate within the sandwiched glass sheets are experimentally investigated via high-speed photography system. Results show that the radial crack velocity on the backing glass layer decreases with the crack number under the same impact conditions during large quantities of repeated experiments. Thus, the “energy conversion factor” is suggested to elucidate the physical relation between the cracking number and the crack propagation speed. Besides, the number of radial crack also takes the determinative effect in the crack morphology of the impacted glass plate. This study may shed lights on understanding the cracking and propagation mechanism in laminated glass structures and provide useful tool to explore the impact information on the cracking debris. PMID:25048684

  15. Solvent induced temperature dependencies of NMR parameters of hydrogen bonded anionic clusters

    NASA Astrophysics Data System (ADS)

    Golubev, Nikolai S.; Shenderovich, Ilja G.; Tolstoy, Peter M.; Shchepkin, Dmitry N.

    2004-07-01

    The solvent induced temperature dependence of NMR parameters (proton and fluorine chemical shifts, the two-bond scalar spin coupling constant across the hydrogen bridge, 2hJFF) for dihydrogen trifluoride anion, (FH) 2F -, in a polar aprotic solvent, CDF 3/CDF 2Cl, is reported and discussed. The results are interpreted in terms of a simple electrostatic model, accounting a decrease of electrostatic repulsion of two negatively charged fluorine atoms on placing into a dielectric medium. The conclusion is drawn that polar medium causes some contraction of hydrogen bonds in ionic clusters combined with a decrease of hydrogen bond asymmetry.

  16. Protective Effects of Hydrogen-Rich Saline Against Lipopolysaccharide-Induced Alveolar Epithelial-to-Mesenchymal Transition and Pulmonary Fibrosis.

    PubMed

    Dong, Wen-Wen; Zhang, Yun-Qian; Zhu, Xiao-Yan; Mao, Yan-Fei; Sun, Xue-Jun; Liu, Yu-Jian; Jiang, Lai

    2017-05-19

    BACKGROUND Fibrotic change is one of the important reasons for the poor prognosis of patients with acute respiratory distress syndrome (ARDS). The present study investigated the effects of hydrogen-rich saline, a selective hydroxyl radical scavenger, on lipopolysaccharide (LPS)-induced pulmonary fibrosis. MATERIAL AND METHODS Male ICR mice were divided randomly into 5 groups: Control, LPS-treated plus vehicle treatment, and LPS-treated plus hydrogen-rich saline (2.5, 5, or 10 ml/kg) treatment. Twenty-eight days later, fibrosis was assessed by determination of collagen deposition, hydroxyproline, and type I collagen levels. Development of epithelial-to-mesenchymal transition (EMT) was identified by examining protein expressions of E-cadherin and α-smooth muscle actin (α-SMA). Transforming growth factor (TGF)-β1 content, total antioxidant capacity (T-AOC), malondialdehyde (MDA) content, catalase (CAT), and superoxide dismutase (SOD) activity were determined. RESULTS Mice exhibited increases in collagen deposition, hydroxyproline, type I collagen contents, and TGF-β1 production in lung tissues after LPS treatment. LPS-induced lung fibrosis was associated with increased expression of α-SMA, as well as decreased expression of E-cadherin. In addition, LPS treatment increased MDA levels but decreased T-AOC, CAT, and SOD activities in lung tissues, indicating that LPS induced pulmonary oxidative stress. Hydrogen-rich saline treatment at doses of 2.5, 5, or 10 ml/kg significantly attenuated LPS-induced pulmonary fibrosis. LPS-induced loss of E-cadherin in lung tissues was largely reversed, whereas the acquisition of α-SMA was dramatically decreased by hydrogen-rich saline treatment. In addition, hydrogen-rich saline treatment significantly attenuated LPS-induced oxidative stress. CONCLUSIONS Hydrogen-rich saline may protect against LPS-induced EMT and pulmonary fibrosis through suppressing oxidative stress.

  17. Hydrogen Sulfide Ameliorates Homocysteine-Induced Cognitive Dysfunction by Inhibition of Reactive Aldehydes Involving Upregulation of ALDH2.

    PubMed

    Li, Min; Zhang, Ping; Wei, Hai-Jun; Li, Man-Hong; Zou, Wei; Li, Xiang; Gu, Hong-Feng; Tang, Xiao-Qing

    2017-04-01

    Homocysteine, a risk factor for Alzheimer's disease, induces cognitive dysfunction. Reactive aldehydes play an important role in cognitive dysfunction. Aldehyde-dehydrogenase 2 detoxifies reactive aldehydes. Hydrogen sulfide, a novel neuromodulator, has neuroprotective effects and regulates learning and memory. Our previous work confirmed that the disturbance of hydrogen sulfide synthesis is invovled in homocysteine-induced defects in learning and memory. Therefore, the present work was to explore whether hydrogen sulfide ameliorates homocysteine-generated cognitive dysfunction and to investigate whether its underlying mechanism is related to attenuating accumulation of reactive aldehydes by upregulation of aldehyde-dehydrogenase 2. The cognitive function of rats was assessed by the Morris water maze test and the novel object recognition test. The levels of malondialdehyde, 4-hydroxynonenal, and glutathione as well as the activity of aldehyde-dehydrogenase 2 were determined by enzyme linked immunosorbent assay; the expression of aldehyde-dehydrogenase 2 was detected by western blot. The behavior experiments, Morris water maze test and novel objects recognition test, showed that homocysteine induced deficiency in learning and memory in rats, and this deficiency was reversed by treatment of NaHS (a donor of hydrogen sulfide). We demonstrated that NaHS inhibited homocysteine-induced increases in generations of MDA and 4-HNE in the hippocampus of rats and that hydrogen sulfide reversed homocysteine-induced decreases in the level of glutathione as well as the activity and expression of aldehyde-dehydrogenase 2 in the hippocampus of rats. Hydrogen sulfide ameliorates homocysteine-induced impairment in cognitive function by decreasing accumulation of reactive aldehydes as a result of upregulations of glutathione and aldehyde-dehydrogenase 2. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  18. Hydrogen Sulfide Ameliorates Homocysteine-Induced Cognitive Dysfunction by Inhibition of Reactive Aldehydes Involving Upregulation of ALDH2

    PubMed Central

    Li, Min; Zhang, Ping; Wei, Hai-jun; Li, Man-Hong; Li, Xiang; Gu, Hong-Feng

    2017-01-01

    Abstract Background: Homocysteine, a risk factor for Alzheimer’s disease, induces cognitive dysfunction. Reactive aldehydes play an important role in cognitive dysfunction. Aldehyde-dehydrogenase 2 detoxifies reactive aldehydes. Hydrogen sulfide, a novel neuromodulator, has neuroprotective effects and regulates learning and memory. Our previous work confirmed that the disturbance of hydrogen sulfide synthesis is invovled in homocysteine-induced defects in learning and memory. Therefore, the present work was to explore whether hydrogen sulfide ameliorates homocysteine-generated cognitive dysfunction and to investigate whether its underlying mechanism is related to attenuating accumulation of reactive aldehydes by upregulation of aldehyde-dehydrogenase 2. Methods: The cognitive function of rats was assessed by the Morris water maze test and the novel object recognition test. The levels of malondialdehyde, 4-hydroxynonenal, and glutathione as well as the activity of aldehyde-dehydrogenase 2 were determined by enzyme linked immunosorbent assay; the expression of aldehyde-dehydrogenase 2 was detected by western blot. Results: The behavior experiments, Morris water maze test and novel objects recognition test, showed that homocysteine induced deficiency in learning and memory in rats, and this deficiency was reversed by treatment of NaHS (a donor of hydrogen sulfide). We demonstrated that NaHS inhibited homocysteine-induced increases in generations of MDA and 4-HNE in the hippocampus of rats and that hydrogen sulfide reversed homocysteine-induced decreases in the level of glutathione as well as the activity and expression of aldehyde-dehydrogenase 2 in the hippocampus of rats. Conclusion: Hydrogen sulfide ameliorates homocysteine-induced impairment in cognitive function by decreasing accumulation of reactive aldehydes as a result of upregulations of glutathione and aldehyde-dehydrogenase 2. PMID:27988490

  19. Long-term treatment of hydrogen-rich saline abates testicular oxidative stress induced by nicotine in mice.

    PubMed

    Li, Shu; Lu, DanDan; Zhang, Yaling; Zhang, Yi

    2014-01-01

    The present study was designed to test the hypothesis that long-term treatment with hydrogen-rich saline abated testicular oxidative stress induced by nicotine in mice. The effects of hydrogen-rich saline (6 ml/kg, i.p.), vitamin C (60 mg/kg, i.p.) and vitamin E (100 mg/kg, i.p.) on reproductive system and testicular oxidative levels in nicotine-treated (4.5 mg/kg, s.b.) mice were investigated. It was found that vitamin C and vitamin E attenuated serum oxidative level, but did not lower testicular oxidative levels in mice subjected to chronic nicotine treatment, and did not improve the male reproductive damage and apoptosis induced by nicotine. Different from normal antioxidants, vitamin C and vitamin E, hydrogen-rich saline abated oxidative stress in testis, and protected against nicotine-induced male reproductive damages. Our results first demonstrated that long-term treatment with hydrogen-rich saline attenuated testicular oxidative level and improved male reproductive function in nicotine-treated mice.

  20. Corrosion fatigue crack growth behavior of titanium alloys in aqueous solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shipilov, S.A.

    1998-01-01

    The corrosion fatigue crack growth (FCG) behavior, the effect of applied potential on corrosion FCG rates, and the fracture surfaces of VT20 (near-{alpha}) and TS6 (near-{beta}) titanium alloys were studied. Environments were aqueous solutions of sodium chloride (NaCl), sodium hydroxide (NaOH), potassium hydroxide (KOH), ferric chloride (FeCl{sub 3}), and chromic acid (H{sub 2}CrO{sub 4}) with and without NaCl. Depending upon solution composition, corrosion FCG rates were found to be higher or lower than those in air. Cathodic polarization retarded the corrosion FCG, while anodic polarization accelerated insignificantly or almost did not influence it in most of the solutions investigated. However,more » cathodic polarization accelerated corrosion FCG in 0.6 M FeCl{sub 3} and 0.5 M to 2 M H{sub 2}CrO{sub 4} + 0.01 M to 0.1 M NaCl solutions by a dozen times when the maximum stress intensity (K{sub max}) exceeded certain critical values. When K{sub max} was lower than the critical values, the same cathodic polarization (with all other /conditions being equal) retarded corrosion FCG. Results suggested the accelerated crack growth at cathodic potentials resulted from hydrogen-induced cracking (HIC). Therefore, critical values of K{sub max}, as well as the stress intensity range ({Delta}K) were regarded as corresponding to the beginning of corrosion FCG according to a HIC mechanism and designated as K{sub HIC} and {Delta}K{sub HIC}.« less

  1. Creep and cracking of concrete hinges: insight from centric and eccentric compression experiments.

    PubMed

    Schlappal, Thomas; Schweigler, Michael; Gmainer, Susanne; Peyerl, Martin; Pichler, Bernhard

    2017-01-01

    Existing design guidelines for concrete hinges consider bending-induced tensile cracking, but the structural behavior is oversimplified to be time-independent. This is the motivation to study creep and bending-induced tensile cracking of initially monolithic concrete hinges systematically. Material tests on plain concrete specimens and structural tests on marginally reinforced concrete hinges are performed. The experiments characterize material and structural creep under centric compression as well as bending-induced tensile cracking and the interaction between creep and cracking of concrete hinges. As for the latter two aims, three nominally identical concrete hinges are subjected to short-term and to longer-term eccentric compression tests. Obtained material and structural creep functions referring to centric compression are found to be very similar. The structural creep activity under eccentric compression is significantly larger because of the interaction between creep and cracking, i.e. bending-induced cracks progressively open and propagate under sustained eccentric loading. As for concrete hinges in frame-like integral bridge construction, it is concluded (i) that realistic simulation of variable loads requires consideration of the here-studied time-dependent behavior and (ii) that permanent compressive normal forces shall be limited by 45% of the ultimate load carrying capacity, in order to avoid damage of concrete hinges under sustained loading.

  2. [A microstructural approach to fatigue crack processes in poly crystalline BCC materials]. Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerberich, W.W.

    1992-12-31

    Objective was to study fatigue where a combination of low temperature and cyclic loading produced cyclic cleavage in bcc Fe-base systems. Both dislocation dynamics and quasi-statics of crack growth were probed. This document reviews progress over the past 6 years: hydrogen embrittlement and cleavage, computations (stress near crack tip), dislocation emission from grain boundaries, fracture process zones, and understanding brittle fracture at the atomistic/dislocation scales and at the microscopic/macroscopic scale.

  3. Anaerobic hydrogen production with an efficient carrier-induced granular sludge bed bioreactor.

    PubMed

    Lee, Kuo-Shing; Wu, Ji-Fang; Lo, Yung-Sheng; Lo, Yung-Chung; Lin, Ping-Jei; Chang, Jo-Shu

    2004-09-05

    A novel bioreactor containing self-flocculated anaerobic granular sludge was developed for high-performance hydrogen production from sucrose-based synthetic wastewater. The reactor achieved an optimal volumetric hydrogen production rate of approximately 7.3 L/h/L (7,150 mmol/d/L) and a maximal hydrogen yield of 3.03 mol H2/mol sucrose when it was operated at a hydraulic retention time (HRT) of 0.5 h with an influent sucrose concentration of 20 g COD/L. The gas-phase hydrogen content and substrate conversion also exceeded 40 and 90%, respectively, under optimal conditions. Packing of a small quantity of carrier matrices on the bottom of the upflow reactor significantly stimulated sludge granulation that can be accomplished within 100 h. Among the four carriers examined, spherical activated carbon was the most effective inducer for granular sludge formation. The carrier-induced granular sludge bed (CIGSB) bioreactor was started up with a low HRT of 4-8 h (corresponding to an organic loading rate of 2.5-5 g COD/h/L) and enabled stable operations at an extremely low HRT (up to 0.5 h) without washout of biomass. The granular sludge was rapidly formed in CIGSB supported with activated carbon and reached a maximal concentration of 26 g/L at HRT = 0.5 h. The ability to maintain high biomass concentration at low HRT (i.e., high organic loading rate) highlights the key factor for the remarkable hydrogen production efficiency of the CIGSB processes.

  4. TRPA1 channel mediates organophosphate-induced delayed neuropathy

    PubMed Central

    Ding, Qiang; Fang, Sui; Chen, Xueqin; Wang, Youxin; Li, Jian; Tian, Fuyun; Xu, Xiang; Attali, Bernard; Xie, Xin; Gao, Zhaobing

    2017-01-01

    The organophosphate-induced delayed neuropathy (OPIDN), often leads to paresthesias, ataxia and paralysis, occurs in the late-stage of acute poisoning or after repeated exposures to organophosphate (OP) insecticides or nerve agents, and may contribute to the Gulf War Syndrome. The acute phase of OP poisoning is often attributed to acetylcholinesterase inhibition. However, the underlying mechanism for the delayed neuropathy remains unknown and no treatment is available. Here we demonstrate that TRPA1 channel (Transient receptor potential cation channel, member A1) mediates OPIDN. A variety of OPs, exemplified by malathion, activates TRPA1 but not other neuronal TRP channels. Malathion increases the intracellular calcium levels and upregulates the excitability of mouse dorsal root ganglion neurons in vitro. Mice with repeated exposures to malathion also develop local tissue nerve injuries and pain-related behaviors, which resembles OPIDN. Both the neuropathological changes and the nocifensive behaviors can be attenuated by treatment of TRPA1 antagonist HC030031 or abolished by knockout of Trpa1 gene. In the classic hens OPIDN model, malathion causes nerve injuries and ataxia to a similar level as the positive inducer tri-ortho-cresyl phosphate (TOCP), which also activates TRPA1 channel. Treatment with HC030031 reduces the damages caused by malathion or tri-ortho-cresyl phosphate. Duloxetine and Ketotifen, two commercially available drugs exhibiting TRPA1 inhibitory activity, show neuroprotective effects against OPIDN and might be used in emergency situations. The current study suggests TRPA1 is the major mediator of OPIDN and targeting TRPA1 is an effective way for the treatment of OPIDN. PMID:28894590

  5. Glutamine Deprivation Causes Hydrogen Peroxide-induced Interleukin-8 Expression via Jak1/Stat3 Activation in Gastric Epithelial AGS Cells

    PubMed Central

    Lee, Yun Mi; Kim, Mi Jung; Kim, Youngha; Kim, Hyeyoung

    2015-01-01

    Background: The Janus kinase (Jak)/Signal transducers of activated transcription (Stat) pathway is an upstream signaling pathway for NF-κB activation in Helicobacter pylori-induced interleukin (IL)-8 production in gastric epithelial AGS cells. H. pylori activates NADPH oxidase and produces hydrogen peroxide, which activates Jak1/Stat3 in AGS cells. Therefore, hydrogen peroxide may be critical for IL-8 production via Jak/Stat activation in gastric epithelial cells. Glutamine is depleted during severe injury and stress and contributes to the formation of glutathione (GSH), which is involved in conversion of hydrogen peroxide into water as a cofactor for GSH peroxidase. Methods: We investigated whether glutamine deprivation induces hydrogen peroxide-mediated IL-8 production and whether hydrogen peroxide activates Jak1/Stat3 to induce IL-8 in AGS cells. Cells were cultured in the presence or absence of glutamine or hydrogen peroxide, with or without GSH or a the Jak/Stat specific inhibitor AG490. Results: Glutamine deprivation decreased GSH levels, but increased levels of hydrogen peroxide and IL-8, an effect that was inhibited by treatment with GSH. Hydrogen peroxide induced the activation of Jak1/Stat3 time-dependently. AG490 suppressed hydrogen peroxide- induced activation of Jak1/Stat3 and IL-8 expression in AGS cells, but did not affect levels of reactive oxygen species in AGS cells. Conclusions: In gastric epithelial AGS cells, glutamine deprivation increases hydrogen peroxide levels and IL-8 expression, which may be mediated by Jak1/Stat3 activation. Glutamine supplementation may be beneficial for preventing gastric inflammation by suppressing hydrogen peroxide-mediated Jak1/Stat3 activation and therefore, reducing IL-8 production. Scavenging hydrogen peroxide or targeting Jak1/Stat3 may also prevent oxidant-mediated gastric inflammation. PMID:26473156

  6. Gamma radiation induces hydrogen absorption by copper in water

    NASA Astrophysics Data System (ADS)

    Lousada, Cláudio M.; Soroka, Inna L.; Yagodzinskyy, Yuriy; Tarakina, Nadezda V.; Todoshchenko, Olga; Hänninen, Hannu; Korzhavyi, Pavel A.; Jonsson, Mats

    2016-04-01

    One of the most intricate issues of nuclear power is the long-term safety of repositories for radioactive waste. These repositories can have an impact on future generations for a period of time orders of magnitude longer than any known civilization. Several countries have considered copper as an outer corrosion barrier for canisters containing spent nuclear fuel. Among the many processes that must be considered in the safety assessments, radiation induced processes constitute a key-component. Here we show that copper metal immersed in water uptakes considerable amounts of hydrogen when exposed to γ-radiation. Additionally we show that the amount of hydrogen absorbed by copper depends on the total dose of radiation. At a dose of 69 kGy the uptake of hydrogen by metallic copper is 7 orders of magnitude higher than when the absorption is driven by H2(g) at a pressure of 1 atm in a non-irradiated dry system. Moreover, irradiation of copper in water causes corrosion of the metal and the formation of a variety of surface cavities, nanoparticle deposits, and islands of needle-shaped crystals. Hence, radiation enhanced uptake of hydrogen by spent nuclear fuel encapsulating materials should be taken into account in the safety assessments of nuclear waste repositories.

  7. Phenomenological aspects of fatigue cracking in as-received and hardened F82H modified steel exposed to lithiated water with dissolved hydrogen at 240°C

    NASA Astrophysics Data System (ADS)

    Maday, Marie-Françoise

    2000-12-01

    The low cycle fatigue (LCF) behaviour of F82H modified steel with three different degrees of hardness produced by specific thermal treatments has been investigated at 240°C under load control, in oxygen-free lithiated solutions containing either no or 2 ppm dissolved hydrogen. In all cases, it was found that the aqueous environments reduced the fatigue life of the material and promoted fracture modes different from those observed in air tests; the fracture modes comprised intergranular and transgranular quasi-cleavage separations as well as microvoid coalescence, which depended on material conditions and water chemistry. All these features were ascribed to a hydrogen-assisted-cracking (HAC) phenomenon, as the basic mechanism for controlling the fatigue behaviour of various F82H heats in lithiated solutions. The observed differences in HAC paths are discussed from the standpoint of material microstructural and substructural parameters.

  8. Giant electrocaloric effect in a cracked ferroelectrics

    NASA Astrophysics Data System (ADS)

    Huang, Cheng; Yang, Hai-Bing; Gao, Cun-Fa

    2018-04-01

    The electrocaloric effect (ECE) is the temperature change in a material induced by electrical field variation under adiabatic condition. Considering an external electric load applied on a cracked ferroelectric solid, a non-uniform electric field would be induced at the crack tip, and thus, incompatible strain field and local stress concentration would be generated around it. Furthermore, the enormous strain energy and the electrostatic energy would affect the polarization switching of the ferroelectric solid, important for the electrocaloric response. In this paper, the large negative and positive ECEs in a ferroelectric sheet with a conducting crack are investigated by the phase field method with the consideration of time-dependent Ginzburg-Landau equation. The numerical calculations indicated that the polarization field generates a sharp rise during the domain transition from polydomain to monodomain under a certain electric load. Large negative ECEs, about -10.21 K and -7.55 K, are obtained at 135 °C and 85 °C, respectively. The domain transition temperature is much lower than the Curie temperature, which enlarges the existence scope of the large ECE in ferroelectrics. The results also imply that the domain transition from a multi-domain state to a single domain takes place with the minimization of total free energy, which involves the courses of the electric field, stress field, temperature, and polarization interaction. Therefore, the non-uniform distributions of the stress-electric fields induced by the crack play an important role in ECE.

  9. Noise and time delay induce critical point in a bistable system

    NASA Astrophysics Data System (ADS)

    Zhang, Jianqiang; Nie, Linru; Yu, Lilong; Zhang, Xinyu

    2014-07-01

    We study relaxation time Tc of time-delayed bistable system driven by two cross-correlated Gaussian white noises that one is multiplicative and the other is additive. By means of numerical calculations, the results indicate that: (i) Combination of noise and time delay can induce two critical points about the relaxation time at some certain noise cross-correlation strength λ under the condition that the multiplicative intensity D equals to the additive noise intensity α. (ii) For each fixed D or α, there are two symmetrical critical points which locates in the regions of positive and negative correlations, respectively. Namely, as λ equals to the critical value λc, Tc is independent of the delay time and the result of Tc versus τ is a horizontal line, but as |λ|>|λc| (or |λ|<|λc|), the relaxation time Tc monotonically increases (or decreases) with the delay time increasing. (iii) In the presence of D = α, the change of λc with D is two symmetrical curves about the axis of λc = 0, and the critical value λc is close to zero for a smaller D, which approaches to +1 or -1 for a greater D.

  10. Electromagnetic pulsed thermography for natural cracks inspection

    NASA Astrophysics Data System (ADS)

    Gao, Yunlai; Tian, Gui Yun; Wang, Ping; Wang, Haitao; Gao, Bin; Woo, Wai Lok; Li, Kongjing

    2017-02-01

    Emerging integrated sensing and monitoring of material degradation and cracks are increasingly required for characterizing the structural integrity and safety of infrastructure. However, most conventional nondestructive evaluation (NDE) methods are based on single modality sensing which is not adequate to evaluate structural integrity and natural cracks. This paper proposed electromagnetic pulsed thermography for fast and comprehensive defect characterization. It hybrids multiple physical phenomena i.e. magnetic flux leakage, induced eddy current and induction heating linking to physics as well as signal processing algorithms to provide abundant information of material properties and defects. New features are proposed using 1st derivation that reflects multiphysics spatial and temporal behaviors to enhance the detection of cracks with different orientations. Promising results that robust to lift-off changes and invariant features for artificial and natural cracks detection have been demonstrated that the proposed method significantly improves defect detectability. It opens up multiphysics sensing and integrated NDE with potential impact for natural understanding and better quantitative evaluation of natural cracks including stress corrosion crack (SCC) and rolling contact fatigue (RCF).

  11. Electromagnetic pulsed thermography for natural cracks inspection

    PubMed Central

    Gao, Yunlai; Tian, Gui Yun; Wang, Ping; Wang, Haitao; Gao, Bin; Woo, Wai Lok; Li, Kongjing

    2017-01-01

    Emerging integrated sensing and monitoring of material degradation and cracks are increasingly required for characterizing the structural integrity and safety of infrastructure. However, most conventional nondestructive evaluation (NDE) methods are based on single modality sensing which is not adequate to evaluate structural integrity and natural cracks. This paper proposed electromagnetic pulsed thermography for fast and comprehensive defect characterization. It hybrids multiple physical phenomena i.e. magnetic flux leakage, induced eddy current and induction heating linking to physics as well as signal processing algorithms to provide abundant information of material properties and defects. New features are proposed using 1st derivation that reflects multiphysics spatial and temporal behaviors to enhance the detection of cracks with different orientations. Promising results that robust to lift-off changes and invariant features for artificial and natural cracks detection have been demonstrated that the proposed method significantly improves defect detectability. It opens up multiphysics sensing and integrated NDE with potential impact for natural understanding and better quantitative evaluation of natural cracks including stress corrosion crack (SCC) and rolling contact fatigue (RCF). PMID:28169361

  12. Study of Solidification Cracking in a Transformation-Induced Plasticity-Aided Steel

    NASA Astrophysics Data System (ADS)

    Agarwal, G.; Kumar, A.; Gao, H.; Amirthalingam, M.; Moon, S. C.; Dippenaar, R. J.; Richardson, I. M.; Hermans, M. J. M.

    2018-04-01

    In situ high-temperature laser scanning confocal microscopy is applied to study solidification cracking in a TRIP steel. Solidification cracking was observed in the interdendritic region during the last stage of solidification. Atom probe tomography revealed notable enrichment of phosphorus in the last remaining liquid. Phase field simulations also confirm phosphorus enrichment leading to severe undercooling of more than 160 K in the interdendritic region. In the presence of tensile stress, an opening at the interdendritic region is difficult to fill with the remaining liquid due to low permeability and high viscosity, resulting in solidification cracking.

  13. A Crack Growth Evaluation Method for Interacting Multiple Cracks

    NASA Astrophysics Data System (ADS)

    Kamaya, Masayuki

    When stress corrosion cracking or corrosion fatigue occurs, multiple cracks are frequently initiated in the same area. According to section XI of the ASME Boiler and Pressure Vessel Code, multiple cracks are considered as a single combined crack in crack growth analysis, if the specified conditions are satisfied. In crack growth processes, however, no prescription for the interference between multiple cracks is given in this code. The JSME Post-Construction Code, issued in May 2000, prescribes the conditions of crack coalescence in the crack growth process. This study aimed to extend this prescription to more general cases. A simulation model was applied, to simulate the crack growth process, taking into account the interference between two cracks. This model made it possible to analyze multiple crack growth behaviors for many cases (e. g. different relative position and length) that could not be studied by experiment only. Based on these analyses, a new crack growth analysis method was suggested for taking into account the interference between multiple cracks.

  14. Hydrogen Suppresses Hypoxia/Reoxygenation-Induced Cell Death in Hippocampal Neurons Through Reducing Oxidative Stress.

    PubMed

    Wei, Rong; Zhang, Rufang; Xie, Yewei; Shen, Li; Chen, Fang

    2015-01-01

    Deep hypothermic circulatory arrest (DHCA) is a cerebral protection technique that has been used in the operations involving the aortic arch and brain aneurysm for decades. We previous showed that DHCA treated rats developed a significant oxidative stress and apoptosis in neurons. We here intend to investigate the protective the effect of hydrogen against oxidative stress-induced cell injury and the involved mechanisms using an in vitro experimental model of hypoxia/reoxygenation (H/R) on HT-22 cells. The model of H/R was established using an airtight culture container and the anaeropack. Measurement of mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) production was used H2DCFDA and JC-1 staining. Western blot was used for the quantification of Akt, p-Akt, Bcl-2, Bax and cleaved caspase-3 proteins. The microRNA (miRNA) profile in hippocampal neurons from rat model of DHCA was determined by miRNA deep sequencing. The elevation of ROS and reduction of MMP were significantly induced by the treatment with hypoxia for 18 h followed by reoxygenation for 6 h. Hydrogen treatment significantly reduced H/R-caused cell death. The levels of p-Akt (Ser 473) and Bcl-2 were significantly increased while Bax and cleaved caspase-3 were decreased by hydrogen treatment on the model of H/R. The expression of miR-200 family was significantly elevated in model of DHCA and H/R. Hydrogen administration inhibited the H/R-induced expression of miR-200 family in HT-22 cells. In addition, inhibition of miR-200 family suppressed H/R-caused cell death through reducing ROS production. These results suggest that H/R causes oxidative stress-induced cell death and that the hydrogen protects against H/R-induced cell death in HT22 cells, in part, due to reducing expression of miR-200 family. © 2015 S. Karger AG, Basel.

  15. Microbial healing of cracks in concrete: a review.

    PubMed

    Joshi, Sumit; Goyal, Shweta; Mukherjee, Abhijit; Reddy, M Sudhakara

    2017-11-01

    Concrete is the most widely used construction material of the world and maintaining concrete structures from premature deterioration is proving to be a great challenge. Early age formation of micro-cracking in concrete structure severely affects the serviceability leading to high cost of maintenance. Apart from conventional methods of repairing cracks with sealants or treating the concrete with adhesive chemicals to prevent the cracks from widening, a microbial crack-healing approach has shown promising results. The unique feature of the microbial system is that it enables self-healing of concrete. The effectiveness of microbially induced calcium carbonate precipitation (MICCP) in improving durability of cementitious building materials, restoration of stone monuments and soil bioclogging is discussed. Main emphasis has been laid on the potential of bacteria-based crack repair in concrete structure and the applications of different bacterial treatments to self-healing cracks. Furthermore, recommendations to employ the MICCP technology at commercial scale and reduction in the cost of application are provided in this review.

  16. The Measurement of Crack Tip Stresses by X-Ray Diffraction

    DTIC Science & Technology

    1978-03-01

    temperature (560*F), Shih and (34) Wei noticed a marked increase in delay cycles of Ti-6AI-4V over that seen at room temperature. Macha (41) tested IN 100...between room temperature and 560’F). Macha , on the other hand, reported no substantial changes in the yield strength of IN 100 at 1350*F and attri- buted...Temperature on Delay on Crack Growth Due to a High Stress Cycle," Int. J. of Frac. Mech., 8 (1972), p 99. 87 41. D.M. Macha , "FCG Retardation Behavior of IN

  17. Fatigue-Life Prediction Methodology Using Small-Crack Theory

    NASA Technical Reports Server (NTRS)

    Newmann, James C., Jr.; Phillips, Edward P.; Swain, M. H.

    1997-01-01

    This paper reviews the capabilities of a plasticity-induced crack-closure model to predict fatigue lives of metallic materials using 'small-crack theory' for various materials and loading conditions. Crack-tip constraint factors, to account for three-dimensional state-of-stress effects, were selected to correlate large-crack growth rate data as a function of the effective-stress-intensity factor range (delta K(eff)) under constant-amplitude loading. Some modifications to the delta k(eff)-rate relations were needed in the near-threshold regime to fit measured small-crack growth rate behavior and fatigue endurance limits. The model was then used to calculate small- and large-crack growth rates, and to predict total fatigue lives, for notched and un-notched specimens made of two aluminum alloys and a steel under constant-amplitude and spectrum loading. Fatigue lives were calculated using the crack-growth relations and microstructural features like those that initiated cracks for the aluminum alloys and steel for edge-notched specimens. An equivalent-initial-flaw-size concept was used to calculate fatigue lives in other cases. Results from the tests and analyses agreed well.

  18. Biaxial fatigue crack propagation behavior of perfluorosulfonic-acid membranes

    NASA Astrophysics Data System (ADS)

    Lin, Qiang; Shi, Shouwen; Wang, Lei; Chen, Xu; Chen, Gang

    2018-04-01

    Perfluorosulfonic-acid membranes have long been used as the typical electrolyte for polymer-electrolyte fuel cells, which not only transport proton and water but also serve as barriers to prevent reactants mixing. However, too often the structural integrity of perfluorosulfonic-acid membranes is impaired by membrane thinning or cracks/pinholes formation induced by mechanical and chemical degradations. Despite the increasing number of studies that report crack formation, such as crack size and shape, the underlying mechanism and driving forces have not been well explored. In this paper, the fatigue crack propagation behaviors of Nafion membranes subjected to biaxial loading conditions have been investigated. In particular, the fatigue crack growth rates of flat cracks in responses to different loading conditions are compared, and the impact of transverse stress on fatigue crack growth rate is clarified. In addition, the crack paths for slant cracks under both uniaxial and biaxial loading conditions are discussed, which are similar in geometry to those found after accelerated stress testing of fuel cells. The directions of initial crack propagation are calculated theoretically and compared with experimental observations, which are in good agreement. The findings reported here lays the foundation for understanding of mechanical failure of membranes.

  19. Time domain para hydrogen induced polarization.

    PubMed

    Ratajczyk, Tomasz; Gutmann, Torsten; Dillenberger, Sonja; Abdulhussaein, Safaa; Frydel, Jaroslaw; Breitzke, Hergen; Bommerich, Ute; Trantzschel, Thomas; Bernarding, Johannes; Magusin, Pieter C M M; Buntkowsky, Gerd

    2012-01-01

    Para hydrogen induced polarization (PHIP) is a powerful hyperpolarization technique, which increases the NMR sensitivity by several orders of magnitude. However the hyperpolarized signal is created as an anti-phase signal, which necessitates high magnetic field homogeneity and spectral resolution in the conventional PHIP schemes. This hampers the application of PHIP enhancement in many fields, as for example in food science, materials science or MRI, where low B(0)-fields or low B(0)-homogeneity do decrease spectral resolution, leading to potential extinction if in-phase and anti-phase hyperpolarization signals cannot be resolved. Herein, we demonstrate that the echo sequence (45°-τ-180°-τ) enables the acquisition of low resolution PHIP enhanced liquid state NMR signals of phenylpropiolic acid derivatives and phenylacetylene at a low cost low-resolution 0.54 T spectrometer. As low field TD-spectrometers are commonly used in industry or biomedicine for the relaxometry of oil-water mixtures, food, nano-particles, or other systems, we compare two variants of para-hydrogen induced polarization with data-evaluation in the time domain (TD-PHIP). In both TD-ALTADENA and the TD-PASADENA strong spin echoes could be detected under conditions when usually no anti-phase signals can be measured due to the lack of resolution. The results suggest that the time-domain detection of PHIP-enhanced signals opens up new application areas for low-field PHIP-hyperpolarization, such as non-invasive compound detection or new contrast agents and biomarkers in low-field Magnetic Resonance Imaging (MRI). Finally, solid-state NMR calculations are presented, which show that the solid echo (90y-τ-90x-τ) version of the TD-ALTADENA experiment is able to convert up to 10% of the PHIP signal into visible magnetization. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Quantifying incident-induced travel delays on freeways using traffic sensor data : phase II

    DOT National Transportation Integrated Search

    2010-12-01

    Traffic incidents cause approximately 50 percent of freeway congestion in metropolitan areas, resulting in extra travel time and fuel cost. Quantifying incident-induced delay (IID) will help people better understand the real costs of incidents, maxim...

  1. On the effect of hydrogen on the mechanical behavior of Beta-C titanium in aged condition

    NASA Astrophysics Data System (ADS)

    Alvarez, Anna-Maria

    The effect of hydrogen in solid solution on the mechanical behavior of the metastable beta-titanium alloy Beta-C was studied. The samples were aged at 482°C for 28 h prior to hydrogen charging in order to obtain a microstructure of alpha-precipitates in a beta-phase matrix. The kinetics and thermodynamics of hydrogen uptake in the alloy were studied in order to determine the required parameters to gas charge the samples with hydrogen, without altering the microstructure. The mechanical samples were hydrogen charged at 350°C to hydrogen concentrations between 0.6 and 24 at%. The samples were thereafter tested under tensile and alternating loading in order to study the effect of hydrogen on the tensile properties, fatigue properties and crack propagation rate. The fracture surfaces were then studied by using SEM, TEM and X-ray diffraction techniques. The macroscopic mechanical properties were compared with the micromechanisms of deformation and fracture in order to obtain information about the operating hydrogen-enhanced fracture mechanism. It was found that the tensile behavior was sensitive to hydrogen. A sharp ductile-to-brittle transition (DBT) occurred when hydrogen in solid solution reached a concentration of about 3.5 at%. TEM and X-ray analysis showed that stress-induced hydrides form in areas of low stress intensities at hydrogen concentrations above the DBT, and it is therefore believed that this is the cause of the hydrogen embrittlement in this alloy. However, at higher stress intensities, slip localization and enhanced slip band fracture were observed. Since slip localization and hydrogen-induced slip band fracture have previously been connected with a large decrease in ductility it can not be excluded that these effects of hydrogen affects the DBT. The cyclic stress strain behavior was not affected by hydrogen; the non-linear elastic behavior and the cyclic softening did not change with introduction of hydrogen up to a level of 10.8 at%. The fatigue

  2. The effects of metal ions on the DNA damage induced by hydrogen peroxide.

    PubMed

    Kobayashi, S; Ueda, K; Komano, T

    1990-01-01

    The effects of metal ions on DNA damage induced by hydrogen peroxide were investigated using two methods, agarose-gel electrophoretic analysis of supercoiled DNA and sequencing-gel analysis of single end-labeled DNA fragments of defined sequences. Hydrogen peroxide induced DNA damage when iron or copper ion was present. At least two classes of DNA damage were induced, one being direct DNA-strand cleavage, and the other being base modification labile to hot piperidine. The investigation of the damaged sites and the inhibitory effects of radical scavengers revealed that hydroxyl radical was the species which attacked DNA in the reaction of H2O2/Fe(II). On the other hand, two types of DNA damage were induced by H2O2/Cu(II). Type I damage was predominant and inhibited by potassium iodide, but type II was not. The sites of the base-modification induced by type I damage were similar to those by lipid peroxidation products and by ascorbate in the presence of Cu(II), suggesting the involvement of radical species other than free hydroxyl radical in the damaging reactions.

  3. Comparing the floquet stability of open and breathing fatigue cracks in an overhung rotordynamic system

    NASA Astrophysics Data System (ADS)

    Varney, Philip; Green, Itzhak

    2017-11-01

    Rotor cracks represent an uncommon but serious threat to rotating machines and must be detected early to avoid catastrophic machine failure. An important aspect of analyzing rotor cracks is understanding their influence on the rotor stability. It is well-known that the extent of rotor instability versus shaft speed is exacerbated by deeper cracks. Consequently, crack propagation can eventually result in an unstable response even if the shaft speed remains constant. Most previous investigations of crack-induced rotor instability concern simple Jeffcott rotors. This work advances the state-of-the-art by (a) providing a novel inertial-frame model of an overhung rotor, and (b) assessing the stability of the cracked overhung rotor using Floquet stability analysis. The rotor Floquet stability analysis is performed for both an open crack and a breathing crack, and conclusions are drawn regarding the importance of appropriately selecting the crack model. The rotor stability is analyzed versus crack depth, external viscous damping ratio, and rotor inertia. In general, this work concludes that the onset of instability occurs at lower shaft speeds for thick rotors, lower viscous damping ratios, and deeper cracks. In addition, when comparing commensurate cracks, the breathing crack is shown to induce more regions of instability than the open crack, though the open crack generally predicts an unstable response for shallower cracks than the breathing crack. Keywords: rotordynamics, stability, rotor cracks.

  4. An Industrial Perspective on Environmentally Assisted Cracking of Some Commercially Used Carbon Steels and Corrosion-Resistant Alloys

    NASA Astrophysics Data System (ADS)

    Ashida, Yugo; Daigo, Yuzo; Sugahara, Katsuo

    2017-08-01

    Commercial metals and alloys like carbon steels, stainless steels, and nickel-based super alloys frequently encounter the problem of environmentally assisted cracking (EAC) and resulting failure in engineering components. This article aims to provide a perspective on three critical industrial applications having EAC issues: (1) corrosion and cracking of carbon steels in automotive applications, (2) EAC of iron- and nickel-based alloys in salt production and processing, and (3) EAC of iron- and nickel-based alloys in supercritical water. The review focuses on current industrial-level understanding with respect to corrosion fatigue, hydrogen-assisted cracking, or stress corrosion cracking, as well as the dominant factors affecting crack initiation and propagation. Furthermore, some ongoing industrial studies and directions of future research are also discussed.

  5. Effects of hydrogen-rich saline on endotoxin-induced uveitis.

    PubMed

    Yan, Wei-Ming; Zhang, Lei; Chen, Tao; Zhao, Guan-Hua; Long, Pan; An, Jing; Zhang, Zuo-Ming

    2017-01-01

    The therapeutic effects of hydrogen-rich saline (HRS) have been reported for a wide range of diseases mainly via selectively reducing the amount of reactive oxygen species. Oxidative stress plays an important role in the pathogenesis of uveitis and endotoxin-induced uveitis (EIU). In this study, we investigated whether HRS can mitigate EIU in rats. Sprague-Dawley rats were randomly divided into Norm group, Model group, HRS group, dexamethasone (DEX) group, and rats in the latter three groups were injected with equal amount of lipopolysaccharide (LPS) to induce EIU of different severities (by 1 mg/kg of LPS, or 1/8 mg/kg of LPS). Rats in HRS group were injected with HRS intraperitoneally at three different modes to purse an ameliorating effect of EIU (10 mL/kg of HRS immediately after injection of 1 mg/kg of LPS, 20 mL/kg of HRS once a day for 1 week before injection of 1 mg/kg of LPS and at 0, 0.5, 1, 2, 6, 8, 12 hours after LPS administration, or 20 mL/kg of HRS once a day for 1 week before injection of 1/8 mg/kg of LPS, and at 0, 0.5, 1, 2, 6, 8, 12, 24 hours and once a day for 3 weeks after LPS administration). Rats of DEX group were injected with 1 mL/kg of DEX solution intraperitoneally immediately after LPS administration. Rats in Norm and Model groups did not receive any treatment. All rats were examined under slit lamp microscope and graded according to the clinical signs of uveitis. Electroretinogram, quantitative analysis of protein in aqueous humor (AqH) and histological examination of iris and ciliary body were also carried out. Our results showed that HRS did not obviously ameliorate the signs of uveitis under slit lamp examination and the inflammatory cells infiltration around iris and cilliary body of EIU induced by 1 mg/kg or 1/8 mg/kg of LPS ( P > 0.05), while DEX significantly reduced the inflammation reflected by the above two indicators ( P < 0.05). The impaired retinal function of mild EIU induced by 1/8 mg/kg of LPS, showed by delay of peak

  6. Concrete Cracking Prediction Including the Filling Proportion of Strand Corrosion Products.

    PubMed

    Wang, Lei; Dai, Lizhao; Zhang, Xuhui; Zhang, Jianren

    2016-12-23

    The filling of strand corrosion products during concrete crack propagation is investigated experimentally in the present paper. The effects of stirrups on the filling of corrosion products and concrete cracking are clarified. A prediction model of crack width is developed incorporating the filling proportion of corrosion products and the twisting shape of the strand. Experimental data on cracking angle, crack width, and corrosion loss obtained from accelerated corrosion tests of concrete beams are presented. The proposed model is verified by experimental data. Results show that the filling extent of corrosion products varies with crack propagation. The rust filling extent increases with the propagating crack until a critical width. Beyond the critical width, the rust-filling extent remains stable. Using stirrups can decrease the critical crack width. Stirrups can restrict crack propagation and reduce the rust filling. The tangent of the cracking angle increases with increasing corrosion loss. The prediction of corrosion-induced crack is sensitive to the rust-filling extent.

  7. Concrete Cracking Prediction Including the Filling Proportion of Strand Corrosion Products

    PubMed Central

    Wang, Lei; Dai, Lizhao; Zhang, Xuhui; Zhang, Jianren

    2016-01-01

    The filling of strand corrosion products during concrete crack propagation is investigated experimentally in the present paper. The effects of stirrups on the filling of corrosion products and concrete cracking are clarified. A prediction model of crack width is developed incorporating the filling proportion of corrosion products and the twisting shape of the strand. Experimental data on cracking angle, crack width, and corrosion loss obtained from accelerated corrosion tests of concrete beams are presented. The proposed model is verified by experimental data. Results show that the filling extent of corrosion products varies with crack propagation. The rust filling extent increases with the propagating crack until a critical width. Beyond the critical width, the rust-filling extent remains stable. Using stirrups can decrease the critical crack width. Stirrups can restrict crack propagation and reduce the rust filling. The tangent of the cracking angle increases with increasing corrosion loss. The prediction of corrosion-induced crack is sensitive to the rust-filling extent. PMID:28772367

  8. Calculations of hydrogen diffusivity in Zr-based alloys: Influence of alloying elements and effect of stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, J.; Jiang, C.; Zhang, Y.

    This report summarizes the progress on modeling hydrogen diffusivity in Zr-based alloys. The presence of hydrogen (H) can detrimentally affect the mechanical properties of many metals and alloys. To mitigate these detrimental effects requires fundamental understanding of the thermodynamics and kinetics governing H pickup and hydride formation. In this work, we focus on H diffusion in Zr-based alloys by studying the effects of alloying elements and stress, factors that have been shown to strongly affect H pickup and hydride formation in nuclear fuel claddings. A recently developed accelerated kinetic Monte Carlo method is used for the study. It is foundmore » that for the alloys considered here, H diffusivity depends weakly on composition, with negligible effect at high temperatures in the range of 600-1200 K. Therefore, the small variation in compositions of these alloys is likely not a major cause of the very different H pickup rates. In contrast, stress strongly affects H diffusivity. This effect needs to be considered for studying hydride formation and delayed hydride cracking.« less

  9. Effects of Internal and External Hydrogen on Inconel 718

    NASA Technical Reports Server (NTRS)

    Walter, R. J.; Frandsen, J. D.

    1999-01-01

    Internal hydrogen embrittlement (IHE) and hydrogen environment embrittlement (HEE) tensile and bend crack growth tests were performed on Inconel 718. For the IHE tests, the specimens were precharged to approximately 90 ppm hydrogen by exposure to 34.5 MPa H2 at 650 C. The HEE tests were performed in 34.5 MPa H2. Parameters evaluated were test temperature, strain rate for smooth and notch specimen geometries. The strain rate effect was very significant at ambient temperature for both IHE and HEE and decreased with increasing temperatures. For IHE, the strain rate effect was neglible at 260'C, and for HEE the strain rate effect was neglible at 400 C. At low temperatures, IHE was more severe than HEE, and at high temperatures HEE was more severe than IHE with a cross over temperature about 350 C. At 350 C, the equilibrium hydrogen concentration in Inconel 718 is about 50% lower than the hydrogen content of the precharged IHE specimens. Dislocation hydrogen sweeping of surface absorbed hydrogen was the likely transport mechanism for increasing the hydrogen concentration in the HEE tests sufficiently to produce the same degree of embrittlement as that of the more highly hydrogen charged IHE specimens. The main IHE fracture characteristic was formation of large, brittle flat facets, which decreased with increasing test temperature. The IHE fracture matrix surrounding the large facets ranged between brittle fine faceted to microvoid ductility depending upon strain rate, specimen geometry as well as temperature. The HEE fractures were characteristically fine featured, transgranular and brittle with a significant portion forming a "saw tooth" crystallographic pattern. Both IHE and HEE fractures were predominantly along the {1 1 1) slip and twin boundaries. With respect to embrittlement mechanism, it was postulated that dislocation hydrogen sweeping and hydrogen enhanced localized plasticity were active in HEE and IHE for concentrating hydrogen along (1 1 1) slip and twin

  10. Characterizing the effect of creep on stress corrosion cracking of cold worked Alloy 690 in supercritical water environment

    NASA Astrophysics Data System (ADS)

    Zhang, Lefu; Chen, Kai; Du, Donghai; Gao, Wenhua; Andresen, Peter L.; Guo, Xianglong

    2017-08-01

    The effect of creep on stress corrosion cracking (SCC) was studied by measuring crack growth rates (CGRs) of 30% cold worked (CW) Alloy 690 in supercritical water (SCW) and inert gas environments at temperatures ranging from 450 °C to 550 °C. The SCC crack growth rate under SCW environments can be regarded as the cracking induced by the combined effect of corrosion and creep, while the CGR in inert gas environment can be taken as the portion of creep induced cracking. Results showed that the CW Alloy 690 sustained high susceptibility to intergranular (IG) cracking, and creep played a dominant role in the SCC crack growth behavior, contributing more than 80% of the total crack growth rate at each testing temperature. The temperature dependence of creep induced CGRs follows an Arrhenius dependency, with an apparent activation energy (QE) of about 225 kJ/mol.

  11. Hydrogen peroxide prevents vascular calcification induced ROS production by regulating Nrf-2 pathway.

    PubMed

    Zhang, Wensong; Li, Yi; Ding, Hanlu; Du, Yaqin; Wang, Li

    2016-08-01

    Although vascular calcification in end-stage renal disease (ESRD) represents a ubiquitous human health problem, effective therapies with limited side effects are still lacking, and the precise mechanisms are not fully understood. The Nrf-2/ARE pathway is a pivotal to regulate anti-oxidative responses in vascular calcification upon ESRD. Although Nrf-2 plays a crucial role in atherosclerosis, pulmonary fibrosis, and brain ischemia, the effect of Nrf-2 and oxidative stress on vascular calcification in ESRD patients is still unclear. The aim of this research was to study the protective role of hydrogen peroxide in vascular calcification and the mechanism of Nrf-2 and oxidative stress on vascular calcification. Here we used the rat vascular smooth muscle cell model of β-glycerophosphate-induced calcification resembling vascular calcification in ESRD to investigate the therapeutic effect of 0.01 mM hydrogen peroxide on vascular calcification and further explores the possible underlying mechanisms. Our current report shows the in vitro role of 0.01 mM hydrogen peroxide in protecting against intracellular ROS accumulation upon vascular calcification. Both hydrogen peroxide and sulforaphane pretreatment reduced ROS production, increased the expression of Nrf-2, and decreased the expression of Runx2 following calcification. Our study demonstrates that 0.01 mM hydrogen peroxide can effectively protect rat aortic vascular smooth muscle cells against oxidative stress by preventing vascular calcification induced ROS production through Nrf-2 pathway. These data might define an antioxidant role of hydrogen peroxide in vascular calcification upon ESRD.

  12. Mechanical properties of turbine blade alloys in hydrogen at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Deluca, D. P.

    1981-01-01

    The mechanical properties of single crystal turbine blade alloys in a gaseous hydrogen environment were determined. These alloys are proposed for use in space propulsion systems in pure or partial high pressure hydrogen environments at elevated temperatures. Mechanical property tests included: tensile, creep, low fatigue (LCF), and crack growth. Specimens were in both transverse and longitudinal directions relative to the casting solidification direction. Testing was conducted on solid specimens exposed to externally pressurized environments of gaseous hydrogen and hydrogen-enriched steam.

  13. Fatigue crack tip deformation and fatigue crack propagation

    NASA Technical Reports Server (NTRS)

    Kang, T. S.; Liu, H. W.

    1972-01-01

    The effects of stress ratio, prestress cycling and plate thickness on the fatigue crack propagation rate are studied on 2024-T351 aluminum alloy. Fatigue crack propagation rate increases with the plate thickness and the stress ratio. Prestress cycling below the static yield strength has no noticeable effect on the fatigue crack propagation rate. However, prestress cycling above the static yield strength causes the material to strain harden and increases the fatigue crack propagation rate. Crack tip deformation is used to study the fatigue crack propagation. The crack tip strains and the crack opening displacements were measured from moire fringe patterns. The moire fringe patterns were obtained by a double exposure technique, using a very high density master grille (13,400 lines per inch).

  14. Surface Modification of Plastic Substrates Using Atomic Hydrogen

    NASA Astrophysics Data System (ADS)

    Heya, Akira; Matsuo, Naoto

    The surface properties of a plastic substrate were changed by a novel surface treatment called atomic hydrogen annealing (AHA). In this method, a plastic substrate was exposed to atomic hydrogen generated by cracking of hydrogen molecules on heated tungsten wire. Surface roughness was increased and halogen elements (F and Cl) were selectively etched by AHA. In addition, plastic surface was reduced by AHA. The surface can be modified by the recombination reaction of atomic hydrogen, the reduction reaction and selective etching of halogen atom. It is concluded that this method is a promising technique for improvement of adhesion between inorganic films and plastic substrates at low temperatures.

  15. A polarization independent electromagnetically induced transparency-like metamaterial with large group delay and delay-bandwidth product

    NASA Astrophysics Data System (ADS)

    Bagci, Fulya; Akaoglu, Baris

    2018-05-01

    In this study, a classical analogue of electromagnetically induced transparency (EIT) that is completely independent of the polarization direction of the incident waves is numerically and experimentally demonstrated. The unit cell of the employed planar symmetric metamaterial structure consists of one square ring resonator and four split ring resonators (SRRs). Two different designs are implemented in order to achieve a narrow-band and wide-band EIT-like response. In the unit cell design, a square ring resonator is shown to serve as a bright resonator, whereas the SRRs behave as a quasi-dark resonator, for the narrow-band (0.55 GHz full-width at half-maximum bandwidth around 5 GHz) and wide-band (1.35 GHz full-width at half-maximum bandwidth around 5.7 GHz) EIT-like metamaterials. The observed EIT-like transmission phenomenon is theoretically explained by a coupled-oscillator model. Within the transmission window, steep changes of the phase result in high group delays and the delay-bandwidth products reach 0.45 for the wide-band EIT-like metamaterial. Furthermore, it has been demonstrated that the bandwidth and group delay of the EIT-like band can be controlled by changing the incidence angle of electromagnetic waves. These features enable the proposed metamaterials to achieve potential applications in filtering, switching, data storing, and sensing.

  16. Environmentally assisted cracking in light water reactors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chopra, O. K.; Chung, H. M.; Clark, R. W.

    2007-11-06

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRs) from January to December 2002. Topics that have been investigated include: (a) environmental effects on fatigue crack initiation in carbon and low-alloy steels and austenitic stainless steels (SSs), (b) irradiation-assisted stress corrosion cracking (IASCC) of austenitic SSs in BWRs, (c) evaluation of causes and mechanisms of irradiation-assisted cracking of austenitic SS in PWRs, and (d) cracking in Ni-alloys and welds. A critical review of the ASME Code fatigue design margins and an assessment of the conservation in the currentmore » choice of design margins are presented. The existing fatigue {var_epsilon}-N data have been evaluated to define the effects of key material, loading, and environmental parameters on the fatigue lives of carbon and low-alloy steels and austenitic SSs. Experimental data are presented on the effects of surface roughness on fatigue crack initiation in these materials in air and LWR environments. Crack growth tests were performed in BWR environments on SSs irradiated to 0.9 and 2.0 x 10{sup 21} n x cm{sup -2}. The crack growth rates (CGRs) of the irradiated steels are a factor of {approx}5 higher than the disposition curve proposed in NUREG-0313 for thermally sensitized materials. The CGRs decreased by an order of magnitude in low-dissolved oxygen (DO) environments. Slow-strain-rate tensile (SSRT) tests were conducted in high-purity 289 C water on steels irradiated to {approx}3 dpa. The bulk S content correlated well with the susceptibility to intergranular SCC in 289 C water. The IASCC susceptibility of SSs that contain >0.003 wt. % S increased drastically. bend tests in inert environments at 23 C were conducted on broken pieces of SSRT specimens and on unirradiated specimens of the same materials after hydrogen charging. The results of the tests and a review of other data in the

  17. Hydrogen therapy may reduce the risks related to radiation-induced oxidative stress in space flight.

    PubMed

    Schoenfeld, Michael P; Ansari, Rafat R; Zakrajsek, June F; Billiar, Timothy R; Toyoda, Yoshiya; Wink, David A; Nakao, Atsunori

    2011-01-01

    Cosmic radiation is known to induce DNA and lipid damage associated with increased oxidative stress and remains a major concern in space travel. Hydrogen, recently discovered as a novel therapeutic medical gas in a variety of biomedical fields, has potent antioxidant and anti-inflammatory activities. It is expected that space mission activities will increase in coming years both in numbers and duration. It is therefore important to estimate and prevent the risks encountered by astronauts due to oxidative stress prior to developing clinical symptoms of disease. We hypothesize that hydrogen administration to the astronauts by either inhalation or drinking hydrogen-rich water may potentially yield a novel and feasible preventative/therapeutic strategy to prevent radiation-induced adverse events. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Prediction of reinforcement corrosion using corrosion induced cracks width in corroded reinforced concrete beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Inamullah; François, Raoul; Castel, Arnaud

    2014-02-15

    This paper studies the evolution of reinforcement corrosion in comparison to corrosion crack width in a highly corroded reinforced concrete beam. Cracking and corrosion maps of the beam were drawn and steel reinforcement was recovered from the beam to observe the corrosion pattern and to measure the loss of mass of steel reinforcement. Maximum steel cross-section loss of the main reinforcement and average steel cross-section loss between stirrups were plotted against the crack width. The experimental results were compared with existing models proposed by Rodriguez et al., Vidal et al. and Zhang et al. Time prediction models for a givenmore » opening threshold are also compared to experimental results. Steel cross-section loss for stirrups was also measured and was plotted against the crack width. It was observed that steel cross-section loss in the stirrups had no relationship with the crack width of longitudinal corrosion cracks. -- Highlights: •Relationship between crack and corrosion of reinforcement was investigated. •Corrosion results of natural process and then corresponds to in-situ conditions. •Comparison with time predicting model is provided. •Prediction of load-bearing capacity from crack pattern was studied.« less

  19. Environmental crack-growth behavior of high strength pressure vessel alloys

    NASA Technical Reports Server (NTRS)

    Forman, R. G.

    1975-01-01

    Results of sustained-load environmental crack growth threshold tests performed on six spacecraft pressure vessel alloys are presented. The alloys were Inconel 718, 6Al-4V titanium, A-286 steel, AM-350 stainless steel, cryoformed AISI 301 stainless steel; and cryoformed AISI 304L steel. The test environments for the program were air, pressurized gases of hydrogen, oxygen, nitrogen, and carbon dioxide, and liquid environments of distilled water, sea water, nitrogen tetroxide, hydrazine, aerozine 50, monomethyl hydrazine, and hydrogen peroxide. Surface flaw type specimens were used with flaws located in both base metal and weld metal.

  20. Stringer Bending Test Helps Diagnose and Prevent Cracks in the Space Shuttle's External Tank

    NASA Technical Reports Server (NTRS)

    Saxon, Joseph B.; Swanson, Gregory R.; Ondocsin, William P.; Wingate, Robert J.

    2012-01-01

    Space Shuttle Discovery's last mission, STS-133, was scheduled to launch on November 5, 2010. Just hours before liftoff, a hydrogen leak at an umbilical connection scrubbed the launch attempt. After the scrub, further inspection revealed a large crack in the foam insulation covering the External Tank, ET-137. Video replay of the launch attempt confirmed the crack first appeared as cryogenic propellants were being loaded into the ET. When the cracked foam was removed, technicians found the underlying stringer had two 9-inch-long cracks. Further inspection revealed a total of 5 of the 108 ET stringers had cracked. NASA and Lockheed Martin immediately launched an aggressive campaign to understand the cracks and repair the stringers in ET-137, targeting February 2011 as the new launch date for STS-133. Responsibilities for the various aspects of the investigation were widely distributed among NASA centers and organizations. This paper will focus on lab testing at Marshall Space Flight Center (MSFC) in Huntsville, Alabama that was intended to replicate the stringer failure and gauge the effect of proposed countermeasures.

  1. Enhanced stress corrosion cracking resistance and electrical conductivity of a T761 treated Al-Zn-Mg-Cu alloy thin plate

    NASA Astrophysics Data System (ADS)

    Chen, Xu; Zhai, Sudan; Gao, Di; Liu, Ye; Xu, Jing; Liu, Yang

    2018-01-01

    The stress corrosion cracking (SCC) behavior, electrical conductivity and mechanical properties of an Al-Zn-Mg-Cu alloy pre-stretched thin plate for wing skin were researched in this paper. The microstructures and SCC fracture surfaces of the alloy treated at different conditions were characterized by transmission electron microscopy, optical microscopy and scanning electron microscopy. Results indicated that with the increasing of aging temperature, the electrical conductivity and the elongation increased greatly, while the strength decreased gradually which were closely associated with the type and morphology of the precipitates. Compared with the T6 treated alloy, the SCC resistance of the T761 treated Al-Zn-Mg-Cu alloy was improved greatly. The SCC behavior of the T6 treated alloy was dominated by anodic dissolution theory, whereas the hydrogen induced cracking controlled the fracture behavior of the T761 treated alloy which was influenced by the morphology of grain boundary precipitates in this investigated alloy.

  2. Analysis of delamination in cross-ply laminates initiating from impact induced matrix cracking

    NASA Technical Reports Server (NTRS)

    Salpekar, S. A.

    1993-01-01

    Two-dimensional finite element analyses of (02/90(8)/02) glass/epoxy and graphite/epoxy composite laminates were performed to investigate some of the characteristics of damage development due to an impact load. A cross section through the thickness of the laminate with fixed ends, and carrying a transverse load in the center, was analyzed. Inclined matrix cracks, such as those produced by a low-velocity impact, were modeled in the 90 deg ply group. The introduction of the matrix cracks caused large interlaminar tensile and shear stresses in the vicinity of both crack tips in the 0/90 and 90/0 interfaces, indicating that matrix cracking may give rise to delamination. The ratio of Mode I to total strain energy release rate, G(I)/G(total), at the beginning of delamination, calculated at the two (top and bottom) matrix crack tips was 60 and 28 percent, respectively, in the glass/epoxy laminate. The corresponding ratio was 97 and 77 percent in the graphite/epoxy laminate. Thus, a significant Mode I component of strain energy release rate may be present at the delamination initiation due to an impact load. The value of strain energy release rate at either crack tip increased due to an increase in the delamination length at the other crack tip and may give rise to an unstable delamination growth under constant load.

  3. Towards a better understanding of the cracking behavior in soils

    USDA-ARS?s Scientific Manuscript database

    Understanding and modeling shrinkage-induced cracks helps bridge the gap between flow problem in the laboratory and at the field. Modeling flow at the field scale with Darcian fluxes developed at the laboratory scales is challenged with preferential flows attributed to the cracking behavior of soils...

  4. The long term effects of cathodic protection on corroding, pre-stressed concrete structures: Hydrogen embrittlement of the reinforcing steel

    NASA Astrophysics Data System (ADS)

    Enos, David George

    Assessment of the effect of cathodic protection on a chloride contaminated bridge pile involves the definition of the hydrogen embrittlement behavior of the pearlitic reinforcement combined with quantification of the local (i.e., at the steel/concrete interface) chemical and electrochemical conditions, both prior to and throughout the application of cathodic protection. The hydrogen embrittlement behavior of the reinforcement was assessed through a combination of Devanathan/Stachurski permeation experiments to quantify subsurface hydrogen concentrations, CsbH, as a function of the applied hydrogen overpotential, eta, and crack initiation tests for bluntly notched and fatigue pre-cracked tensile specimens employing elastic-plastic finite element analysis and linear elastic fracture mechanics, respectively. A threshold mobile lattice hydrogen concentration for embrittlement of 2×10sp{-7} mol/cmsp3 was established for bluntly notched and fatigue pre-cracked specimens. Crack initiation occurred by the formation of shear cracks oriented at an angle approaching 45sp° from the tensile axis, as proposed by Miller and Smith (Miller, 1970), in regions where both the longitudinal and shear stresses were maximized (i.e., near the notch root). These Miller cracks then triggered longitudinal splitting which continued until fast fracture of the remaining ligament occurred. Instrumented laboratory scale piles were constructed and partially immersed in ASTM artificial ocean water. With time, localized corrosion (crevicing) was initiated along the reinforcement, and was accompanied by an acidic shift in the pH of the occluded environment due to ferrous ion hydrolysis. Cathodic protection current densities from -0.1 muA/cmsp2 to -3.0 muA/cmsp2 were applied via a skirt anode located at the waterline. Current densities as low as 0.66 muA/cmsp2 were sufficient to deplete the dissolved oxygen concentration at the steel/concrete interface and result in the observance of hydrogen

  5. 2014 Accomplishments-Tritium aging studies on stainless steel: Fracture toughness properties of forged stainless steels-Effect of hydrogen, forging strain rate, and forging temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, Michael J.

    Forged stainless steels are used as the materials of construction for tritium reservoirs. During service, tritium diffuses into the reservoir walls and radioactively decays to helium-3. Tritium and decay helium cause a higher propensity for cracking which could lead to a tritium leak or delayed failure of a tritium reservoir. The factors that affect the tendency for crack formation and propagation include: Environment; steel type and microstructure; and, vessel configuration (geometry, pressure, residual stress). Fracture toughness properties are needed for evaluating the long-term effects of tritium on their structural properties. Until now, these effects have been characterized by measuring themore » effects of tritium on the tensile and fracture toughness properties of specimens fabricated from experimental forgings in the form of forward-extruded cylinders. A key result of those studies is that the long-term cracking resistance of stainless steels in tritium service depends greatly on the interaction between decay helium and the steels’ forged microstructure. New experimental research programs are underway and are designed to measure tritium and decay helium effects on the cracking properties of stainless steels using actual tritium reservoir forgings instead of the experimental forgings of past programs. The properties measured should be more representative of actual reservoir properties because the microstructure of the specimens tested will be more like that of the tritium reservoirs. The programs are designed to measure the effects of key forging variables on tritium compatibility and include three stainless steels, multiple yield strengths, and four different forging processes. The effects on fracture toughness of hydrogen and crack orientation were measured for type 316L forgings. In addition, hydrogen effects on toughness were measured for Type 304L block forgings having two different yield strengths. Finally, fracture toughness properties of type

  6. Fatigue Crack Growth in Peened Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; Hatamleh, Omar

    2008-01-01

    Friction stir welding induces residual stresses that accelerates fatigue crack growth in the weld nugget. Shot peening over the weld had little effect on growth rate. Laser peening over the weld retarded the growth rate: Final crack growth rate was comparable to the base, un-welded material. Crack tunneling evident from residual compressive stresses. 2195-T8 fracture surfaces were highly textured. Texturing makes comparisons difficult as the material system is affecting the data as much as the processing. Material usage becoming more common in space applications requiring additional work to develop useful datasets for damage tolerance analyses.

  7. Mechanisms of fatigue crack retardation following single tensile overloads in powder metallurgy aluminum alloys

    NASA Technical Reports Server (NTRS)

    Bray, G. H.; Reynolds, A. P.; Starke, E. A., Jr.

    1992-01-01

    In ingot metallurgy (IM) alloys, the number of delay cycles following a single tensile overload typically increases from a minimum at an intermediate baseline stress intensity range, Delta-K(B), with decreasing Delta-K(B) approaching threshold and increasing Delta-K(B) approaching unstable fracture to produce a characteristic 'U' shaped curve. Two models have been proposed to explain this behavior. One model is based on the interaction between roughness and plasticity-induced closure, while the other model only utilizes plasticity-induced closure. This article examines these models, using experimental results from constant amplitude and single overload fatigue tests performed on two powder metallurgy (PM) aluminum alloys, AL-905XL and AA 8009. The results indicate that the 'U'-shaped curve is primarily due to plasticity-induced closure, and that the plasticity-induced retardation effect is through-thickness in nature, occurring in both the surface and interior regions. However, the retardation effect is greater at the surface, because the increase in plastic strain at the crack tip and overload plastic zone size are larger in the plane-stress surface regions than in the plane-strain interior regions. These results are not entirely consistent with either of the proposed models.

  8. The influence of temperature on fatigue-crack growth in a mill annealed Ti-6Al-4V alloy

    NASA Technical Reports Server (NTRS)

    Wei, R. P.; Ritter, D. L.

    1972-01-01

    To understand the influence temperature on the rate of fatigue crack growth in high strength metal alloys, constant load amplitude, fatigue crack growth experiments were carried out using a 1/4-inch-thick (6.35 mm) mill annealed Ti-6Al-4V alloy plate as a model material. The rates of fatigue crack growth were determined as a function of temperature, ranging from room temperature to about 290 C (or, about 550 F/563K) and as a function of the crack tip stress intensity factor in a dehumidified high purity argon environment. Limited correlative experiments indicate that dehumidified oxygen and hydrogen have no effect on the rate of fatigue crack growth in this alloy, while distilled water increased the rate of crack growth slightly in the range tested. Companion fractographic examinations suggest that the mechanisms for fatigue crack growth in the various environments are essentially the same.

  9. Controlled drive-in and precipitation of hydrogen during plasma hydrogenation of silicon using a thin compressively strained SiGe layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okba, F.; Departement Optique et Mecanique de Precision, Faculte des Sciences de l'Ingenieur, Universite Ferhat Abbas, Setif 19000; Cherkashin, N.

    2010-07-19

    We have quantitatively studied by transmission electron microscopy the growth kinetics of platelets formed during the continuous hydrogenation of a Si substrate/SiGe/Si heterostructure. We have evidenced and explained the massive transfer of hydrogen from a population of platelets initially generated in the upper Si layer by plasma hydrogenation towards a population of larger platelets located in the SiGe layer. We demonstrate that this type of process can be used not only to precisely localize the micro-cracks, then the fracture line at a given depth but also to 'clean' the top layer from pre-existing defects.

  10. CPT-11-Induced Delayed Diarrhea Develops via Reduced Aquaporin-3 Expression in the Colon

    PubMed Central

    Kon, Risako; Tsubota, Yuika; Minami, Moe; Kato, Saki; Matsunaga, Yukari; Kimura, Hiroshi; Murakami, Yuta; Fujikawa, Tetsuya; Sakurai, Ryoya; Tomimoto, Rei; Machida, Yoshiaki; Ikarashi, Nobutomo; Sugiyama, Kiyoshi

    2018-01-01

    While irinotecan (CPT-11) has a potent anti-cancer effect, it also causes serious diarrhea as an adverse reaction. In this study, we analyzed the pathogenic mechanism of CPT-11-induced delayed diarrhea by focusing on water channel aquaporin-3 (AQP3) in the colon. When rats received CPT-11, the expression level of AQP3 was reduced during severe diarrhea. It was found that the expression levels of inflammatory cytokines and the loss of crypt cells were increased in the colon when CPT-11 was administered. When celecoxib, an anti-inflammatory drug, was concomitantly administered, both the diarrhea and the reduced expression of AQP3 induced by CPT-11 were suppressed. The inflammation in the rat colon during diarrhea was caused via activated macrophage by CPT-11. These results showed that when CPT-11 is administered, the expression level of AQP3 in the colon is reduced, resulting in delayed diarrhea by preventing water transport from the intestinal tract. It was also suggested that the reduced expression of AQP3 might be due to the inflammation that occurs following the loss of colonic crypt cells and to the damage caused by the direct activation of macrophages by CPT-11. Therefore, it was considered that anti-inflammatory drugs that suppress the reduction of AQP3 expression could prevent CPT-11-induced delayed diarrhea. PMID:29316651

  11. CPT-11-Induced Delayed Diarrhea Develops via Reduced Aquaporin-3 Expression in the Colon.

    PubMed

    Kon, Risako; Tsubota, Yuika; Minami, Moe; Kato, Saki; Matsunaga, Yukari; Kimura, Hiroshi; Murakami, Yuta; Fujikawa, Tetsuya; Sakurai, Ryoya; Tomimoto, Rei; Machida, Yoshiaki; Ikarashi, Nobutomo; Sugiyama, Kiyoshi

    2018-01-06

    While irinotecan (CPT-11) has a potent anti-cancer effect, it also causes serious diarrhea as an adverse reaction. In this study, we analyzed the pathogenic mechanism of CPT-11-induced delayed diarrhea by focusing on water channel aquaporin-3 (AQP3) in the colon. When rats received CPT-11, the expression level of AQP3 was reduced during severe diarrhea. It was found that the expression levels of inflammatory cytokines and the loss of crypt cells were increased in the colon when CPT-11 was administered. When celecoxib, an anti-inflammatory drug, was concomitantly administered, both the diarrhea and the reduced expression of AQP3 induced by CPT-11 were suppressed. The inflammation in the rat colon during diarrhea was caused via activated macrophage by CPT-11. These results showed that when CPT-11 is administered, the expression level of AQP3 in the colon is reduced, resulting in delayed diarrhea by preventing water transport from the intestinal tract. It was also suggested that the reduced expression of AQP3 might be due to the inflammation that occurs following the loss of colonic crypt cells and to the damage caused by the direct activation of macrophages by CPT-11. Therefore, it was considered that anti-inflammatory drugs that suppress the reduction of AQP3 expression could prevent CPT-11-induced delayed diarrhea.

  12. Neutrino-Induced Hydrogen Burning

    NASA Astrophysics Data System (ADS)

    Kishimoto, Chad T.; Fuller, George M.

    2006-07-01

    The principal hydrogen burning mechanisms that take place in stars have been elucidated and explored for many decades. However, the introduction of a prodigious flux of electron anti-neutrinos would significantly accelerate these mechanisms and change the path toward the production of an α particle. We discuss the nature of such changes in the hydrogen burning mechanisms, and the side effects spawned from such alterations.

  13. Analysis of delamination in cross ply laminates initiating from impact induced matrix cracking

    NASA Technical Reports Server (NTRS)

    Salpekar, S. A.

    1991-01-01

    Several two dimensional finite element analyses of (0 sub 2/90 sub 8/0 sub 2) glass/epoxy and graphite-epoxy composite laminates were performed to study some of the characteristics of damage development due to an impact load. A cross section through the thickness of the laminate with fixed ends, and carrying a transverse load in the center was analyzed. Inclined matrix cracks such as those produced by low velocity impact were modeled in the 90 deg ply group. The introduction of the matrix cracks caused large interlaminar tension and shear stresses in the vicinity of both crack tips in the 0/90 and 90/0 interfaces. The large interlaminar stresses at the ends of the matrix cracks indicate that matrix cracking may give rise to delamination. The ratio of mode I to total strain energy release rate at the beginning of delamination calculated at the two matrix crack tips was 60 and 28 pct., respectively, in the glass/epoxy laminate. The corresponding ratio was 97 and 77 pct. in the graphite-epoxy laminate. Thus, a significant mode I component of strain energy release rate may be present at the delamination initiation due to an impact load.

  14. Simultaneous visualization of water and hydrogen peroxide vapor using two-photon laser-induced fluorescence and photofragmentation laser-induced fluorescence.

    PubMed

    Larsson, Kajsa; Johansson, Olof; Aldén, Marcus; Bood, Joakim

    2014-01-01

    A concept based on a combination of photofragmentation laser-induced fluorescence (PF-LIF) and two-photon laser-induced fluorescence (LIF) is for the first time demonstrated for simultaneous detection of hydrogen peroxide (H2O2) and water (H2O) vapor. Water detection is based on two-photon excitation by an injection-locked krypton fluoride (KrF) excimer laser (248.28 nm), which induces broadband fluorescence (400-500 nm) from water. The same laser simultaneously photodissociates H2O2, whereupon the generated OH fragments are probed by LIF after a time delay of typically 50 ns, by a frequency-doubled dye laser (281.91 nm). Experiments in six different H2O2/H2O mixtures of known compositions show that both signals are linearly dependent on respective species concentration. For the H2O2 detection there is a minor interfering signal contribution from OH fragments created by two-photon photodissociation of H2O. Since the PF-LIF signal yield from H2O2 is found to be at least ∼24,000 times higher than the PF-LIF signal yield from H2O at room temperature, this interference is negligible for most H2O/H2O2 mixtures of practical interest. Simultaneous single-shot imaging of both species was demonstrated in a slightly turbulent flow. For single-shot imaging the minimum detectable H2O2 and H2O concentration is 10 ppm and 0.5%, respectively. The proposed measurement concept could be a valuable asset in several areas, for example, in atmospheric and combustion science and research on vapor-phase H2O2 sterilization in the pharmaceutical and aseptic food-packaging industries.

  15. Surface modifications of hydrogen storage alloy by heavy ion beams with keV to MeV irradiation energies

    NASA Astrophysics Data System (ADS)

    Abe, Hiroshi; Tokuhira, Shinnosuke; Uchida, Hirohisa; Ohshima, Takeshi

    2015-12-01

    This study deals with the effect of surface modifications induced from keV to MeV heavy ion beams on the initial reaction rate of a hydrogen storage alloy (AB5) in electrochemical process. The rare earth based alloys like this sample alloy are widely used as a negative electrode of Ni-MH (Nickel-Metal Hydride) battery. We aimed to improve the initial reaction rate of hydrogen absorption by effective induction of defects such as vacancies, dislocations, micro-cracks or by addition of atoms into the surface region of the metal alloys. Since defective layer near the surface can easily be oxidized, the conductive oxide layer is formed on the sample surface by O+ beams irradiation, and the conductive oxide layer might cause the improvement of initial reaction rate of hydriding. This paper demonstrates an effective surface treatment of heavy ion irradiation, which induces catalytic activities of rare earth oxides in the alloy surface.

  16. Hydrogen effects on materials for CNG/H2 blends.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farese, David; Keller, Jay O.; Somerday, Brian P.

    2010-09-01

    No concerns for Hydrogen-Enriched Compressed Natural gas (HCNG) in steel storage tanks if material strength is < 950 MPa. Recommend evaluating H{sub 2}-assisted fatigue cracking in higher strength steels at H{sub 2} partial pressure in blend. Limited fatigue testing on higher strength steel cylinders in H{sub 2} shows promising results. Impurities in Compressed Natural Gas (CNG) (e.g., CO) may provide extrinsic mechanism for mitigating H{sub 2}-assisted fatigue cracking in steel tanks.

  17. Enigmatic Moisture Effects on Al2O3 Scale and TBC Adhesion

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2008-01-01

    Alumina scale adhesion to high temperature alloys is known to be affected primarily by sulfur segregation and reactive element additions. However, adherent scales can become partially compromised by excessive strain energy and cyclic cracking. With time, exposure of such scales to moisture can lead to spontaneous interfacial decohesion, occurring while the samples are maintained at ambient conditions. Examples of this Moisture-Induced Delayed Spallation (MIDS) are presented for NiCrAl and single crystal superalloys, becoming more severe with sulfur level and cyclic exposure conditions. Similarly, delayed failure or Desk Top Spallation (DTS) results are reviewed for thermal barrier coatings (TBCs), culminating in the water drop failure test. Both phenomena are discussed in terms of moisture effects on bulk alumina and bulk aluminides. A mechanism is proposed based on hydrogen embrittlement and is supported by a cathodic hydrogen charging experiment. Hydroxylation of aluminum from the alloy interface appears to be the relevant basic reaction.

  18. Enigmatic Moisture Effects on Al2O3 Scale and TBC Adhesion

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2008-01-01

    Alumina scale adhesion to high temperature alloys is known to be affected primarily by sulfur segregation and reactive element additions. However adherent scales can become partially compromised by excessive strain energy and cyclic cracking. With time, exposure of such scales to moisture can lead to spontaneous interfacial decohesion, occurring while the samples are maintained at ambient conditions. Examples of this Moisture-Induced Delayed Spallation (MIDS) are presented for NiCrAl and single crystal superalloys, becoming more severe with sulfur level and cyclic exposure conditions. Similarly, delayed failure or Desk Top Spallation (DTS) results are reviewed for TBC s, culminating in the water drop failure test. Both phenomena are discussed in terms of moisture effects on bulk alumina and bulk aluminides. A mechanism is proposed based on hydrogen embrittlement and is supported by a cathodic hydrogen charging experiment. Hydroxylation of aluminum from the alloy interface appears to be the relevant basic reaction.

  19. Constitutive and damage material modeling in a high pressure hydrogen environment

    NASA Technical Reports Server (NTRS)

    Russell, D. A.; Fritzemeier, L. G.

    1991-01-01

    Numerous components in reusable space propulsion systems such as the SSME are exposed to high pressure gaseous hydrogen environments. Flow areas and passages in the fuel turbopump, fuel and oxidizer preburners, main combustion chamber, and injector assembly contain high pressure hydrogen either high in purity or as hydrogen rich steam. Accurate constitutive and damage material models applicable to high pressure hydrogen environments are therefore needed for engine design and analysis. Existing constitutive and cyclic crack initiation models were evaluated only for conditions of oxidizing environments. The main objective is to evaluate these models for applicability to high pressure hydrogen environments.

  20. Fatigue failure of hydrogen embrittled high strength steels

    NASA Technical Reports Server (NTRS)

    Kim, Y. G.; Aleszka, J.

    1975-01-01

    Results of an experimental investigation are presented concerning the fracture behavior of cathodically charged, quenched and tempered martensitic steels under cyclic load conditions. Introduction of H2 by cathodic charging reduced fatigue life by as much as 60%. It is proposed that subsurface transverse fatigue cracks nucleate simultaneously at multiple sites, such as at microcracks, voids, or inclusions. Fatigue crack growth then occurs on planes perpendicular to the major applied stress axis in the presence of the critical combination of applied external stress and hydrogen.

  1. The release of trapped gases from amorphous solid water films. I. "Top-down" crystallization-induced crack propagation probed using the molecular volcano.

    PubMed

    May, R Alan; Smith, R Scott; Kay, Bruce D

    2013-03-14

    In this (Paper I) and the companion paper (Paper II; R. May, R. Smith, and B. Kay, J. Chem. Phys. 138, 104502 (2013)), we investigate the mechanisms for the release of trapped gases from underneath amorphous solid water (ASW) films. In prior work, we reported the episodic release of trapped gases in concert with the crystallization of ASW, a phenomenon that we termed the "molecular volcano." The observed abrupt desorption is due to the formation of cracks that span the film to form a connected pathway for release. In this paper, we utilize the "molecular volcano" desorption peak to characterize the formation of crystallization-induced cracks. We find that the crack length distribution is independent of the trapped gas (Ar, Kr, Xe, CH4, N2, O2, or CO). Selective placement of the inert gas layer is used to show that cracks form near the top of the film and propagate downward into the film. Isothermal experiments reveal that, after some induction time, cracks propagate linearly in time with an Arrhenius dependent velocity corresponding to an activation energy of 54 kJ∕mol. This value is consistent with the crystallization growth rates reported by others and establishes a direct connection between crystallization growth rate and the crack propagation rate. A two-step model in which nucleation and crystallization occurs in an induction zone near the top of the film followed by the propagation of a crystallization∕crack front into the film is in good agreement with the temperature programmed desorption results.

  2. Hydrogen-Saturated Saline Protects Intensive Narrow Band Noise-Induced Hearing Loss in Guinea Pigs through an Antioxidant Effect

    PubMed Central

    Chen, Liwei; Yu, Ning; Lu, Yan; Wu, Longjun; Chen, Daishi; Guo, Weiwei; Zhao, Lidong; Liu, Mingbo; Yang, Shiming; Sun, Xuejun; Zhai, Suoqiang

    2014-01-01

    The purpose of the current study was to evaluate hydrogen-saturated saline protecting intensive narrow band noise-induced hearing loss. Guinea pigs were divided into three groups: hydrogen-saturated saline; normal saline; and control. For saline administration, the guinea pigs were given daily abdominal injections (1 ml/100 g) 3 days before and 1 h before narrow band noise exposure (2.5–3.5 kHz 130 dB SPL, 1 h). The guinea pigs in the control group received no treatment. The hearing function was assessed by the auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) recording. The changes of free radicals in the cochlea before noise exposure, and immediately and 7 days after noise exposure were also examined. By Scanning electron microscopy and succinate dehydrogenase staining, we found that pre-treatment with hydrogen-saturated saline significantly reduced noise-induced hair cell damage and hearing loss. We also found that the malondialdehyde, lipid peroxidation, and hydroxyl levels were significantly lower in the hydrogen-saturated saline group after noise trauma, indicating that hydrogen-saturated saline can decrease the amount of harmful free radicals caused by noise trauma. Our findings suggest that hydrogen-saturated saline is effective in preventing intensive narrow band noise-induced hearing loss through the antioxidant effect. PMID:24945316

  3. Laser Speckle Strain Imaging reveals the origin of delayed fracture in a soft solid

    PubMed Central

    Dussi, Simone; Frijns, Raoul A. M.; van der Gucht, Jasper; Sprakel, Joris

    2018-01-01

    Stresses well below the critical fracture stress can lead to highly unpredictable delayed fracture after a long period of seemingly quiescent stability. Delayed fracture is a major threat to the lifetime of materials, and its unpredictability makes it difficult to prevent. This is exacerbated by the lack of consensus on the microscopic mechanisms at its origin because unambiguous experimental proof of these mechanisms remains absent. We present an experimental approach to measure, with high spatial and temporal resolution, the local deformations that precipitate crack nucleation. We apply this method to study delayed fracture in an elastomer and find that a delocalized zone of very small strains emerges as a consequence of strongly localized damage processes. This prefracture deformation zone grows exponentially in space and time, ultimately culminating in the nucleation of a crack and failure of the material as a whole. Our results paint a microscopic picture of the elusive origins of delayed fracture and open the way to detect damage well before it manifests macroscopically. PMID:29736415

  4. High Strength Steel Weldment Reliability: Weld Metal Hydrogen Trapping.

    DTIC Science & Technology

    1998-02-01

    Reliability : Weld Metal Hydrogen Trapping submitted to : United States Army Research Office Materials Science Division P.O. Box 12211 Research Triangle...Conf. Proc. of Welding and Related Technologies for the XXIth Century, November 1998, Kiev, Ukraine : "Hydrogen Assisted Cracking in...appendices (see appendix IV). Next TTCP workshop will be held from 6th to 8th October 1998, at CANMET , Ottawa, Ontario, Canada. 20 III. Figures 18

  5. Mycophenolate mofetil prevents the delayed T cell response after pilocarpine-induced status epilepticus in mice

    PubMed Central

    Engelmann, Robby; Sellmann, Tina; Köhling, Rüdiger; Müller-Hilke, Brigitte

    2017-01-01

    Growing clinical and laboratory evidence corroborates a role for the immune system in the pathophysiology of epilepsy. In order to delineate the immune response following pilocarpine-induced status epilepticus (SE) in the mouse, we monitored the kinetics of leukocyte presence in the hippocampus over the period of four weeks. SE was induced following a ramping protocol of pilocarpine injection into 4–5 weeks old C57BL/6 mice. Brains were removed at days 1–4, 14 or 28 after SE, and the hippocampi were analyzed via flow cytometry, via quantitative reverse transcriptase PCR (qRT-PCR) and via immunohistochemistry. Epileptogenesis was confirmed by Timm staining of mossy fiber sprouting in the inner molecular layer of the dentate gyrus. The flow cytometry data revealed a biphasic immune response following pilocarpine-induced SE with a transient increase in activated CD11b+ and F4/80+ macrophages within the first four days replaced by an increase in CD3+ T-lymphocytes around day 28. This delayed T cell response was confirmed via qRT-PCR and via immunohistochemistry. In addition, qRT-PCR data could show that the delayed T cell response was associated with an increased CD8/CD4 ratio indicating a cytotoxic T cell response after SE. Intriguingly, early intervention with mycophenolate mofetil administration on days 0–3 after SE prevented this delayed T cell response. These results show an orchestrated immunological sequela and provide evidence that the delayed T cell response is sensitive to early immunomodulatory intervention. PMID:29182639

  6. Evaluation of performance of distributed delay model for chemotherapy-induced myelosuppression.

    PubMed

    Krzyzanski, Wojciech; Hu, Shuhua; Dunlavey, Michael

    2018-04-01

    The distributed delay model has been introduced that replaces the transit compartments in the classic model of chemotherapy-induced myelosuppression with a convolution integral. The maturation of granulocyte precursors in the bone marrow is described by the gamma probability density function with the shape parameter (ν). If ν is a positive integer, the distributed delay model coincides with the classic model with ν transit compartments. The purpose of this work was to evaluate performance of the distributed delay model with particular focus on model deterministic identifiability in the presence of the shape parameter. The classic model served as a reference for comparison. Previously published white blood cell (WBC) count data in rats receiving bolus doses of 5-fluorouracil were fitted by both models. The negative two log-likelihood objective function (-2LL) and running times were used as major markers of performance. Local sensitivity analysis was done to evaluate the impact of ν on the pharmacodynamics response WBC. The ν estimate was 1.46 with 16.1% CV% compared to ν = 3 for the classic model. The difference of 6.78 in - 2LL between classic model and the distributed delay model implied that the latter performed significantly better than former according to the log-likelihood ratio test (P = 0.009), although the overall performance was modestly better. The running times were 1 s and 66.2 min, respectively. The long running time of the distributed delay model was attributed to computationally intensive evaluation of the convolution integral. The sensitivity analysis revealed that ν strongly influences the WBC response by controlling cell proliferation and elimination of WBCs from the circulation. In conclusion, the distributed delay model was deterministically identifiable from typical cytotoxic data. Its performance was modestly better than the classic model with significantly longer running time.

  7. The Release of Trapped Gases from Amorphous Solid Water Films: I. “Top-Down” Crystallization-Induced Crack Propagation Probed using the Molecular Volcano

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, Robert A.; Smith, R. Scott; Kay, Bruce D.

    In this (Paper I) and the companion paper (Paper II) we investigate the mechanisms for the release of trapped gases from underneath of amorphous solid water (ASW) films. In prior work, we reported the episodic release of trapped gases in concert with the crystallization ASW, a phenomenon that we termed the "molecular volcano". The observed abrupt desorption is due to the formation of cracks that span the film to form a connected pathway for release. In this paper we utilize the "molecular volcano" desorption peak to characterize the formation of crystallization-induced cracks. We find that the crack length and distributionmore » are independent of the trapped gas (Ar, Kr, Xe, CH4, N2, O2 or CO). Selective placement of the inert gas layer is used to show that cracks form near the top of the film and propagate downward into the film. Isothermal experiments reveal that, after some induction time, cracks propagate linearly in time with an Arrhenius dependent velocity corresponding to an activation energy of 54 kJ/mol. This value is consistent with the crystallization growth rate reported by others and establishes a direct connection between crystallization growth rate and the crack propagation rate. A two-step model in which nucleation and crystallization occurs in an induction zone near the top of the film followed by the propagation of a crystallization/crack front into the film is in good agreement with the temperature programmed desorption results.« less

  8. Hydrogen in drinking water attenuates noise-induced hearing loss in guinea pigs.

    PubMed

    Lin, Ying; Kashio, Akinori; Sakamoto, Takashi; Suzukawa, Keigo; Kakigi, Akinobu; Yamasoba, Tatsuya

    2011-01-03

    It has been shown that molecular hydrogen acts as a therapeutic and preventive antioxidant by selectively reducing the hydroxyl radical, the most cytotoxic of the reactive oxygen species. In the present study, we tested the hypothesis that acoustic damage in guinea pigs can be attenuated by the consumption of molecular hydrogen. Guinea pigs received normal water or hydrogen-rich water for 14 days before they were exposed to 115 dB SPL 4-kHz octave band noise for 3h. Animals in each group underwent measurements for auditory brainstem response (ABR) or distortion-product otoacoustic emissions (DPOAEs) before the treatment (baseline) and immediately, 1, 3, 7, and 14 days after noise exposure. The ABR thresholds at 2 and 4 kHz were significantly better on post-noise days 1, 3, and 14 in hydrogen-treated animals when compared to the normal water-treated controls. Compared to the controls, the hydrogen-treated animals showed greater amplitude of DPOAE input/output growth functions during the recovery process, with statistical significance detected on post-noise days 3 and 7. These findings suggest that hydrogen can facilitate the recovery of hair cell function and attenuate noise-induced temporary hearing loss. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  9. Application of Viscoelastic Fracture Model and Non-uniform Crack Initiation at Clinically Relevant Notches in Crosslinked UHMWPE

    PubMed Central

    Sirimamilla, P. Abhiram; Furmanski, Jevan; Rimnac, Clare M.

    2012-01-01

    The mechanism of crack initiation from a clinically relevant notch is not well-understood for crosslinked ultra high molecular weight polyethylene (UHMWPE) used in total joint replacement components. Static mode driving forces, rather than the cyclic mode conditions typically associated with fatigue processes, have been shown to drive crack propagation in this material. Thus, in this study, crack initiation in a notched specimen under a static load was investigated. A video microscope was used to monitor the notch surface of the specimen and crack initiation time was measured from the video by identifying the onset of crack initiation at the notch. Crack initiation was considered using a viscoelastic fracture theory. It was found that the mechanism of crack initiation involved both single layer and a distributed multi-layer phenomenon and that multi-layer crack initiation delayed the crack initiation time for all loading conditions examined. The findings of this study support that the viscoelastic fracture theory governs fracture mechanics in crosslinked UHMWPE. The findings also support that crack initiation from a notch in UHMWPE is a more complex phenomenon than treated by traditional fracture theories for polymers. PMID:23127638

  10. Control of Hydrogen Environment Embrittlement of Ultra-High Strength Steel for Naval Application

    DTIC Science & Technology

    2005-07-01

    load cracking behavior of maraging steels in hydrogen. Corrosion , 29, 1973, 299-304. D.A. Jones, A.F. Jankowski and G.A. Davidson, "Diffusion of...short crack case. This behavior is relevant to small surface cracks in coated UHSS components such as a landing gear. IV.B. Effect of Steel Composition ...PRESSURE (k N /m 2) Figure 26. The effect of H2 pressure on the HEAC growth rate for a ultra-high strength 18Ni Maraging steel stressed in a highly

  11. Loss of BID Delays FASL-Induced Cell Death of Mouse Neutrophils and Aggravates DSS-Induced Weight Loss.

    PubMed

    Wicki, Simone; Gurzeler, Ursina; Corazza, Nadia; Genitsch, Vera; Wong, Wendy Wei-Lynn; Kaufmann, Thomas

    2018-02-28

    Neutrophils are key players in the early defense against invading pathogens. Due to their potent effector functions, programmed cell death of activated neutrophils has to be tightly controlled; however, its underlying mechanisms remain unclear. Fas ligand (FASL/CD95L) has been shown to induce neutrophil apoptosis, which is accelerated by the processing of the BH3-only protein BH3 interacting domain death agonist (BID) to trigger mitochondrial apoptotic events, and been attributed a regulatory role during viral and bacterial infections. Here, we show that, in accordance with previous works, mouse neutrophils underwent caspase-dependent apoptosis in response to FASL, and that this cell death was significantly delayed upon loss of BID. However, pan-caspase inhibition failed to protect mouse neutrophils from FASL-induced apoptosis and caused a switch to RIPK3-dependent necroptotic cell death. Intriguingly, such a switch was less evident in the absence of BID, particularly under inflammatory conditions. Delayed neutrophil apoptosis has been implicated in several auto-inflammatory diseases, including inflammatory bowel disease. We show that neutrophil and macrophage driven acute dextran sulfate sodium (DSS) induced colitis was slightly more aggravated in BID-deficient mice, based on significantly increased weight loss compared to wild-type controls. Taken together, our data support a central role for FASL > FAS and BID in mouse neutrophil cell death and further underline the anti-inflammatory role of BID.

  12. Loss of BID Delays FASL-Induced Cell Death of Mouse Neutrophils and Aggravates DSS-Induced Weight Loss

    PubMed Central

    Wicki, Simone; Gurzeler, Ursina; Corazza, Nadia; Genitsch, Vera

    2018-01-01

    Neutrophils are key players in the early defense against invading pathogens. Due to their potent effector functions, programmed cell death of activated neutrophils has to be tightly controlled; however, its underlying mechanisms remain unclear. Fas ligand (FASL/CD95L) has been shown to induce neutrophil apoptosis, which is accelerated by the processing of the BH3-only protein BH3 interacting domain death agonist (BID) to trigger mitochondrial apoptotic events, and been attributed a regulatory role during viral and bacterial infections. Here, we show that, in accordance with previous works, mouse neutrophils underwent caspase-dependent apoptosis in response to FASL, and that this cell death was significantly delayed upon loss of BID. However, pan-caspase inhibition failed to protect mouse neutrophils from FASL-induced apoptosis and caused a switch to RIPK3-dependent necroptotic cell death. Intriguingly, such a switch was less evident in the absence of BID, particularly under inflammatory conditions. Delayed neutrophil apoptosis has been implicated in several auto-inflammatory diseases, including inflammatory bowel disease. We show that neutrophil and macrophage driven acute dextran sulfate sodium (DSS) induced colitis was slightly more aggravated in BID-deficient mice, based on significantly increased weight loss compared to wild-type controls. Taken together, our data support a central role for FASL > FAS and BID in mouse neutrophil cell death and further underline the anti-inflammatory role of BID. PMID:29495595

  13. Experimental study on the crack detection with optimized spatial wavelet analysis and windowing

    NASA Astrophysics Data System (ADS)

    Ghanbari Mardasi, Amir; Wu, Nan; Wu, Christine

    2018-05-01

    In this paper, a high sensitive crack detection is experimentally realized and presented on a beam under certain deflection by optimizing spatial wavelet analysis. Due to the crack existence in the beam structure, a perturbation/slop singularity is induced in the deflection profile. Spatial wavelet transformation works as a magnifier to amplify the small perturbation signal at the crack location to detect and localize the damage. The profile of a deflected aluminum cantilever beam is obtained for both intact and cracked beams by a high resolution laser profile sensor. Gabor wavelet transformation is applied on the subtraction of intact and cracked data sets. To improve detection sensitivity, scale factor in spatial wavelet transformation and the transformation repeat times are optimized. Furthermore, to detect the possible crack close to the measurement boundaries, wavelet transformation edge effect, which induces large values of wavelet coefficient around the measurement boundaries, is efficiently reduced by introducing different windowing functions. The result shows that a small crack with depth of less than 10% of the beam height can be localized with a clear perturbation. Moreover, the perturbation caused by a crack at 0.85 mm away from one end of the measurement range, which is covered by wavelet transform edge effect, emerges by applying proper window functions.

  14. Test Analysis Correlation of the Single Stringer Bending Tests for the Space Shuttle ET-137 Intertank Stringer Crack Investigation

    NASA Technical Reports Server (NTRS)

    Phillips, Dawn R.; Saxon, Joseph B.; Wingate, Robert J.

    2012-01-01

    On November 5, 2010, Space Shuttle mission STS-133 was scrubbed due to a hydrogen leak at the Ground Umbilical Carrier Plate (GUCP). After the scrub, a crack in the foam thermal protection system (TPS) was observed on the External Tank (ET) near the interface between the liquid oxygen (LOX) tank and the Intertank. When the damaged foam was removed, two 9-in. long cracks were found on the feet of Intertank stringer S7-2, and the stringer failure was the cause of the TPS crack. An investigation was conducted to determine the root cause of the cracks, establish a remedy/repair for the stringers, and provide flight rationale for the damaged tank, ET-137. The Space Transportation System (STS) Super Lightweight ET (SLWT) is comprised of two propellant tanks (an aft liquid hydrogen (LH2) tank and a forward LOX tank) and an Intertank. The Intertank serves as the structural connection between the two propellant tanks and also functions to receive and distribute all thrust loads from the solid rocket boosters . The Intertank is a stiffened cylinder structure consisting of eight mechanically joined panels (two integrally-stiffened, machined thrust panels to react the booster loads and six stringer-stiffened skin panels). There are one main ring frame, four intermediate ring frames, and forward and aft flange chords that mate to the respective propellant tanks.. The skin/stringer panels utilize external hat-section stringers that are mechanically attached with rivets along most of their length and with specialty fasteners, such as GP Lockbolts and Hi-Loks, at the forward and aft ends where the stringers attach to the flange chords. During the STS-133 Intertank stringer crack investigation, cracks were found on a total of five stringers. All of the cracks were at the LOX end, in the feet of the stringers, and near the forward fasteners (GP Lockbolts). Video of tanking for the November 5 launch attempt was used to determine that the TPS failure, and thus the stringer failure

  15. Moisture-Induced Delamination Video of an Oxidized Thermal Barrier Coating

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Zhu, Dongming; Cuy, Michael D.

    2008-01-01

    PVD TBC coatings were thermally cycled to near-failure at 1150 C. Normal failure occurred after 200-300 1-hr cycles with only moderate weight gains (0.5 mg/cm2). Delamination and buckling was often delayed until well after cooldown (desktop spallation), but could be instantly induced by the application of water drops, as shown in an accompanying video-recording. Moisture therefore plays a primary role in delayed desktop TBC failure. Hydrogen embrittlement is proposed as the underlying mechanism.

  16. Delay feedback induces a spontaneous motion of two-dimensional cavity solitons in driven semiconductor microcavities

    NASA Astrophysics Data System (ADS)

    Tlidi, M.; Averlant, E.; Vladimirov, A.; Panajotov, K.

    2012-09-01

    We consider a broad area vertical-cavity surface-emitting laser (VCSEL) operating below the lasing threshold and subject to optical injection and time-delayed feedback. We derive a generalized delayed Swift-Hohenberg equation for the VCSEL system, which is valid close to the nascent optical bistability. We first characterize the stationary-cavity solitons by constructing their snaking bifurcation diagram and by showing clustering behavior within the pinning region of parameters. Then, we show that the delayed feedback induces a spontaneous motion of two-dimensional (2D) cavity solitons in an arbitrary direction in the transverse plane. We characterize moving cavity solitons by estimating their threshold and calculating their velocity. Numerical 2D solutions of the governing semiconductor laser equations are in close agreement with those obtained from the delayed generalized Swift-Hohenberg equation.

  17. Nature of hydrogen embrittlement of steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archakov, Yu. I.; Grebeshkova, I.D.

    1986-01-01

    The hydrogen embrittlement of metals is the result of the origin and development of microcracks, which are formed as the result of the occurence of internal stresses. The specific feature of the appearance of hydrogen embrittlement are the result of the physical properties of the metals and the character of their interaction with hydrogen. The tendency of metals toward hydrogen embrittlement is determined by the following characteristics: their capacity to dissolve hydrogen and its maximum solubility; the chemical activity of the metals and other phases in relation to hydrogen, that is, the capacity toward hydride formation and failure of themore » carbided sand oxides, and the tendency of the metal toward the occurence and propagation of cracks. The authors cite and discuss two general forms of action of hydrogen on metals, the physical action of hydrogen on metals and the physicochemical action when chemical interaction of hydrogen with the different phases and the individual components of the alloy on the surface and in the volume occurs. The tendency toward hydrogen embrittlement is shown to increase with an increase in the strength of the steel. In addition to the strength, this characteristic also depends upon the chemical composition and structural condition of the steel.« less

  18. Automatic crack detection method for loaded coal in vibration failure process.

    PubMed

    Li, Chengwu; Ai, Dihao

    2017-01-01

    In the coal mining process, the destabilization of loaded coal mass is a prerequisite for coal and rock dynamic disaster, and surface cracks of the coal and rock mass are important indicators, reflecting the current state of the coal body. The detection of surface cracks in the coal body plays an important role in coal mine safety monitoring. In this paper, a method for detecting the surface cracks of loaded coal by a vibration failure process is proposed based on the characteristics of the surface cracks of coal and support vector machine (SVM). A large number of cracked images are obtained by establishing a vibration-induced failure test system and industrial camera. Histogram equalization and a hysteresis threshold algorithm were used to reduce the noise and emphasize the crack; then, 600 images and regions, including cracks and non-cracks, were manually labelled. In the crack feature extraction stage, eight features of the cracks are extracted to distinguish cracks from other objects. Finally, a crack identification model with an accuracy over 95% was trained by inputting the labelled sample images into the SVM classifier. The experimental results show that the proposed algorithm has a higher accuracy than the conventional algorithm and can effectively identify cracks on the surface of the coal and rock mass automatically.

  19. Molecular mechanisms underlying the protective effects of hydrogen-saturated saline on noise-induced hearing loss.

    PubMed

    Chen, Liwei; Han, Mingkun; Lu, Yan; Chen, Daishi; Sun, Xuejun; Yang, Shiming; Sun, Wei; Yu, Ning; Zhai, Suoqiang

    2017-10-01

    This study aimed to explore the molecular mechanism of the protective effects of hydrogen-saturated saline on NIHL. Guinea pigs were divided into three groups: hydrogen-saturated saline; normal saline; and control. For saline administration, the guinea pigs were given daily abdominal injections 3 d before and 1 h before noise exposure. ABR were tested to examine cochlear physiology changes. The changes of 8-hydroxy-desoxyguanosine (8-HOdG), interleukin-1 (IL-1), interleukin-6 (IL-6), interleukin-10 (IL-10), tumor necrosis factor-α (TNF-α), intercellular cell adhesion molecule-1 (ICAM-1) and high mobility group box-1 protein (HMGB1) in the cochlea were also examined. The results showed that pre-treatment with hydrogen-saturated saline could significantly attenuate noise-induced hearing loss. The concentration of 8-HOdG was also significantly decreased in the hydrogen-saturated saline group compared with the normal saline group. After noise exposure, the concentrations of IL-1, IL-6, TNF-α, and ICAM-1 in the cochlea of guinea pigs in the hydrogen-saturated saline group were dramatically reduced compared to those in the normal saline group. The concentrations of HMGB-1 and IL-10 in the hydrogen-saturated saline group were significantly higher than in those in the normal saline group immediately and at 7 d after noise exposure. This study revealed for the first time the protective effects of hydrogen-saturated saline on noise-induced hearing loss (NIHL) are related to both the anti-oxidative activity and anti-inflammatory activity.

  20. Evaluation of ADD392124 for the Delayed Treatment of Nerve Agent-Induced Status Epilepticus Seizures

    DTIC Science & Technology

    2011-09-01

    Induced Status Epilepticus Seizures John H. McDonough Kerry E. Van Shura Megan E. Lyman Claire G. Eisner Amelia Mazza Robert K. Kan Tsung...TITLE AND SUBTITLE 5a. CONTRACT NUMBER Evaluation of ADD392124 for the delayed treatment of nerve agent-induced status epilepticus seizures 5b... status epilepticus seizures. We evaluated the ability of ADD392124 to control seizures induced by the nerve agent soman. Rats were exposed to a

  1. Novel xenon calibration scheme for two-photon absorption laser induced fluorescence of hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, Drew; Scime, Earl; Short, Zachary, E-mail: zdshort@mix.wvu.edu

    Two photon absorption laser induced fluorescence (TALIF) measurements of neutral hydrogen and its isotopes are typically calibrated by performing TALIF measurements on krypton with the same diagnostic system and using the known ratio of the absorption cross sections [K. Niemi et al., J. Phys. D 34, 2330 (2001)]. Here we present the measurements of a new calibration method based on a ground state xenon scheme for which the fluorescent emission wavelength is nearly identical to that of hydrogen, thereby eliminating chromatic effects in the collection optics and simplifying detector calibration. We determine that the ratio of the TALIF cross sectionsmore » of xenon and hydrogen is 0.024 ± 0.001.« less

  2. Hot-electron-induced hydrogen redistribution and defect generation in metal-oxide-semiconductor capacitors

    NASA Astrophysics Data System (ADS)

    Buchanan, D. A.; Marwick, A. D.; Dimaria, D. J.; Dori, L.

    1994-09-01

    Redistribution of hydrogen caused by hot-electron injection has been studied by hydrogen depth profiling with N-15 nuclear reaction analysis and electrical methods. Internal photoemission and Fowler-Nordheim injection were used for electron injection into large Al-gate and polysilicon-gate capacitors, respectively. A hydrogen-rich layer (about 10(exp 15) atoms/sq cm) observed at the Al/SiO2 interface was found to serve as the source of hydrogen during the hot-electron stress. A small fraction of the hydrogen released from this layer was found to be retrapped near the Si/SiO2 interface for large electron fluences in the Al-gate samples. Within the limit of detectability, about 10(exp 14)/sq cm, no hydrogen was measured using nuclear reaction analysis in the polysilicon-gate samples. The buildup of hydrogen at the Si/SiO2 interface exhibits a threshold at about 1 MV/cm, consistent with the threshold for electron heating in SiO2. In the 'wet' SiO2 films with purposely introduced excess hydrogen, the rate of hydrogen buildup at the Si/SiO2 interface is found to be significantly greater than that found in the 'dry' films. During electron injection, hydrogen redistribution was also confirmed via the deactivation of boron dopant in the silicon substrate. The generation rates of interface states, neutral electron traps, and anomalous positive charge are found to increase with increasing hydrogen buildup in the substrate and the initial hydrogen concentration in the film. It is concluded that the generation of defects is preceded by the hot-electron-induced release and transport of atomic hydrogen and it is the chemical reaction of this species within the metal-oxide-semiconductor structure that generates the electrically active defects.

  3. Specific limb abnormalities induced by hydrogen peroxide in tadpoles of Indian jumping frog, Polypedates maculatus.

    PubMed

    Mahapatra, P K; Mohanty-Hejmadi, P; Chainy, G B

    2001-11-01

    Hydrogen peroxide (H2O2), one of the reactive oxygen intermediates (ROI) and a potential inducer of nuclear transcription factors induces consistent type of abnormal limb development (truncated with bent skeletal elements) in the tadpoles of Indian jumping frog, Polypedates maculatus.

  4. Crack closure on rehydration of glass-ionomer materials.

    PubMed

    Sidhu, Sharanbir K; Pilecki, Peter; Sherriff, Martyn; Watson, Timothy F

    2004-10-01

    Moisture-sensitivity of immature glass-ionomer cements suggests that hydration-induced volumetric expansion might close and potentially heal established cracks. Crack closure in glass-ionomer cements (GICs) was observed following rehydration. Circular cavities were prepared in 15 teeth: 10 were restored with resin-modified GICs (5 with Fuji II LC and 5 with Photac-Fil) and 5 were restored with a conventional GIC (Fuji IX); all were dehydrated for 1 min with air and imaged immediately by confocal microscopy. Crack formation in each was located, after which water was placed on the surface and observed for 15 min via a CCD camera. Dehydration caused cracks with measurable gaps, while rehydration resulted in varying degrees of closure: closure was limited in the conventional GIC, and complete or near complete along part/s of the crack in the resin-modified GICs. In all, closure movement became imperceptible after the first 10 min. Statistical analysis indicated no significant difference between the closure behavior of all materials. However, the resin-modified GICs appeared to show a greater potential for closure of established cracks than the conventional GIC upon rehydration.

  5. Hydrogen Peroxide-Induced Secreted Frizzled-Related Protein 1 Gene Demethylation Contributes to Hydrogen Peroxide-Induced Apoptosis in Human U251 Glioma Cells.

    PubMed

    Xing, Zhiguo; Ni, Yaping; Zhao, Junjie; Ma, Xudong

    2017-05-01

    Glioblastoma multiforme is a type of central nervous system tumor with extremely poor prognosis. Previously, hydrogen peroxide (H 2 O 2 ), which promotes the oxidative stress response, has been reported to induce the apoptosis of glioma cells. Recently, secreted frizzled-related protein 1 (SFRP1) has been shown to be associated with various types of malignant tumors and with H 2 O 2 -induced oxidative stress in cardiomyocytes by negatively regulating the Wnt signaling pathway. This study aimed to explore SFRP1 expression and its roles in H 2 O 2 -induced apoptosis in human glioma cells. We found that the SFRP1 level was decreased in several human glioma cell lines, including U87, U251, and SW1783 cells. In U251 cells, SFRP1 could function as a cancer suppressor gene, and the growth of U251 cells could be inhibited not only by H 2 O 2 but also by the overexpression of SFRP1. Furthermore, we demonstrated that H 2 O 2 -induced SFRP1 gene demethylation partially contributed to H 2 O 2 -induced U251 cell apoptosis, which was verified by studies using an SFRP inhibitor (WAY-316606). Our research identified that H 2 O 2 -induced SFRP1 gene demethylation contributes to H 2 O 2 -induced apoptosis in human U251 glioma cells.

  6. A multiscale crack-bridging model of cellulose nanopaper

    NASA Astrophysics Data System (ADS)

    Meng, Qinghua; Li, Bo; Li, Teng; Feng, Xi-Qiao

    2017-06-01

    The conflict between strength and toughness is a long-standing challenge in advanced materials design. Recently, a fundamental bottom-up material design strategy has been demonstrated using cellulose nanopaper to achieve significant simultaneous increase in both strength and toughness. Fertile opportunities of such a design strategy aside, mechanistic understanding is much needed to thoroughly explore its full potential. To this end, here we establish a multiscale crack-bridging model to reveal the toughening mechanisms in cellulose nanopaper. A cohesive law is developed to characterize the interfacial properties between cellulose nanofibrils by considering their hydrogen bonding nature. In the crack-bridging zone, the hydrogen bonds between neighboring cellulose nanofibrils may break and reform at the molecular scale, rendering a superior toughness at the macroscopic scale. It is found that cellulose nanofibrils exhibit a distinct size-dependence in enhancing the fracture toughness of cellulose nanopaper. An optimal range of the length-to-radius ratio of nanofibrils is required to achieve higher fracture toughness of cellulose nanopaper. A unified law is proposed to correlate the fracture toughness of cellulose nanopaper with its microstructure and material parameters. The results obtained from this model agree well with relevant experiments. This work not only helps decipher the fundamental mechanisms underlying the remarkable mechanical properties of cellulose nanopaper but also provides a guide to design a wide range of advanced functional materials.

  7. STS-133 Space Shuttle External Tank Intertank Stringer Crack Investigation Stress Analysis

    NASA Technical Reports Server (NTRS)

    Steeve, Brian E.

    2012-01-01

    The first attempt to launch the STS-133 Space Shuttle mission in the fall of 2010 was halted due to indications of a gaseous hydrogen leak at the External Tank ground umbilical carrier plate seal. Subsequent inspection of the external tank (figure 1) hardware and recorded video footage revealed that the foam insulation covering the forward end of the intertank near the liquid oxygen tank had cracked severely enough to have been cause for halting the launch attempt on its own (figure 2). An investigation into the cause of the insulation crack revealed that two adjacent hat-section sheet metal stringers (figure 3) had cracks up to nine inches long in the forward ends of the stringer flanges, or feet, near the fasteners that attach the stringer to the skin of the intertank (figure 4). A repair of those two stringers was implemented and the investigation effort widened to understand the root cause of the stringer cracks and to determine whether there was sufficient flight rationale to launch with the repairs and the other installed stringers.

  8. Delayed rectifier potassium channels are involved in SO2 derivative-induced hippocampal neuronal injury.

    PubMed

    Li, Guangke; Sang, Nan

    2009-01-01

    Recent studies implicate the possible neurotoxicity of SO(2), however, its mechanisms remain unclear. In the present study, we investigated SO(2) derivative-induced effect on delayed rectifier potassium channels (I(K)) and cellular death/apoptosis in primary cultured hippocampal neurons. The results demonstrate that SO(2) derivatives (NaHSO(3) and Na(2)SO(3), 3:1M/M) effectively augmented I(K) and promoted the activation of delayed rectifier potassium channels. Also, SO(2) derivatives increased neuronal death percentage and contributed to the formation of DNA ladder in concentration-dependent manners. Interestingly, the neuronal death and DNA ladder formation, caused by SO(2) derivatives, could be attenuated by the delayed rectifier potassium channel blocker (tetraethylammonium, TEA), but not by the transient outward potassium channel blocker (4-aminopyridine, 4-AP). It implies that stimulating delayed rectifier potassium channels were involved in SO(2) derivative-caused hippocampal neuronal insults, and blocking these channels might be one of the possibly clinical treatment for SO(2)-caused neuronal dysfunction.

  9. Anisotropic Poroelasticity in a Rock With Cracks

    NASA Astrophysics Data System (ADS)

    Wong, Teng-Fong

    2017-10-01

    Deformation of a saturated rock in the field and laboratory may occur in a broad range of conditions, ranging from undrained to drained. The poromechanical response is often anisotropic, and in a brittle rock, closely related to preexisting and stress-induced cracks. This can be modeled as a rock matrix embedded with an anisotropic system of cracks. Assuming microisotropy, expressions for three of the poroelastic coefficients of a transversely isotropic rock were derived in terms of the crack density tensor. Together with published results for the five effective elastic moduli, this provides a complete micromechanical description of the eight independent poroelastic coefficients of such a cracked rock. Relatively simple expressions were obtained for the Skempton pore pressure tensor, which allow one to infer the crack density tensor from undrained measurement in the laboratory, and also to infer the Biot-Willis effective stress coefficients. The model assumes a dilute concentration of noninteractive penny-shaped cracks, and it shows good agreement with experimental data for Berea sandstone, with crack density values up to 0.6. Whereas predictions on the storage coefficient and normal components of the elastic stiffness tensor also seem reasonable, significant discrepancy between model and measurement was observed regarding the off-diagonal and shear components of the stiffness. A plausible model had been proposed for development of very strong anisotropy in the undrained response of a fault zone, and the model here placed geometric constraints on the associated fracture system.

  10. Time delay and long-range connection induced synchronization transitions in Newman-Watts small-world neuronal networks.

    PubMed

    Qian, Yu

    2014-01-01

    The synchronization transitions in Newman-Watts small-world neuronal networks (SWNNs) induced by time delay τ and long-range connection (LRC) probability P have been investigated by synchronization parameter and space-time plots. Four distinct parameter regions, that is, asynchronous region, transition region, synchronous region, and oscillatory region have been discovered at certain LRC probability P = 1.0 as time delay is increased. Interestingly, desynchronization is observed in oscillatory region. More importantly, we consider the spatiotemporal patterns obtained in delayed Newman-Watts SWNNs are the competition results between long-range drivings (LRDs) and neighboring interactions. In addition, for moderate time delay, the synchronization of neuronal network can be enhanced remarkably by increasing LRC probability. Furthermore, lag synchronization has been found between weak synchronization and complete synchronization as LRC probability P is a little less than 1.0. Finally, the two necessary conditions, moderate time delay and large numbers of LRCs, are exposed explicitly for synchronization in delayed Newman-Watts SWNNs.

  11. Time Delay and Long-Range Connection Induced Synchronization Transitions in Newman-Watts Small-World Neuronal Networks

    PubMed Central

    Qian, Yu

    2014-01-01

    The synchronization transitions in Newman-Watts small-world neuronal networks (SWNNs) induced by time delay and long-range connection (LRC) probability have been investigated by synchronization parameter and space-time plots. Four distinct parameter regions, that is, asynchronous region, transition region, synchronous region, and oscillatory region have been discovered at certain LRC probability as time delay is increased. Interestingly, desynchronization is observed in oscillatory region. More importantly, we consider the spatiotemporal patterns obtained in delayed Newman-Watts SWNNs are the competition results between long-range drivings (LRDs) and neighboring interactions. In addition, for moderate time delay, the synchronization of neuronal network can be enhanced remarkably by increasing LRC probability. Furthermore, lag synchronization has been found between weak synchronization and complete synchronization as LRC probability is a little less than 1.0. Finally, the two necessary conditions, moderate time delay and large numbers of LRCs, are exposed explicitly for synchronization in delayed Newman-Watts SWNNs. PMID:24810595

  12. Ion and laser microprobes applied to the measurement of corrosion produced hydrogen on a microscopic scale.

    NASA Technical Reports Server (NTRS)

    Gray, H. R.

    1972-01-01

    Use of an ion microprobe and a laser microprobe to measure concentrations of corrosion-produced hydrogen on a microscopic scale. Hydrogen concentrations of several thousand ppm were measured by both analytical techniques below corroded and fracture surfaces of hot salt stress corroded titanium alloy specimens. This extremely high concentration compares with only about 100 ppm hydrogen determined by standard vacuum fusion chemical analyses of bulk samples. Both the ion and laser microprobes were used to measure hydrogen concentration profiles in stepped intervals to substantial depths below the original corroded and fracture surfaces. For the ion microprobe, the area of local analysis was 22 microns in diameter and for the laser microprobe, the area of local analysis was about 300 microns in diameter. The segregation of hydrogen below fracture surfaces supports a previously proposed theory that corrosion-produced hydrogen is responsible for hot salt stress corrosion embrittlement and cracking of titanium alloys. These advanced analytical techniques suggest great potential for many areas of stress corrosion and hydrogen embrittlement research, quality control, and field inspection of corrosion problems. For example, it appears possible that a contour map of hydrogen distribution at notch roots and crack tips could be quantitatively determined. Such information would be useful in substantiating current theories of stress corrosion and hydrogen embrittlement.

  13. Investigation of Local Hydrogen Uptake in Rescaled Model Occluded Sites Using Crevice Scaling Laws

    DTIC Science & Technology

    2005-04-01

    13- 8 Mo . Under anodic polarization, there is a combination of x and G in a crevice or crack where the stainless steel would be passive and remain...2004). 8 . G.A. Young, Jr., J.R. Scully, "The Effects of Test Temperature , Temper and Alloyed Copper on Hydrogen Controlled Crack Growth of an A1-Zn-Mg...sharp crack tip.[16] Precipitation-aged hardened martensitic stainless steels (i.e., Fe-Cr-Ni- Mo alloys) that release hydrolysable Cr and Fe cations

  14. The influence of dislocation and hydrogen on thermal helium desorption behavior in Fe9Cr alloys

    NASA Astrophysics Data System (ADS)

    Zhu, Te; Jin, Shuoxue; Gong, Yihao; Lu, Eryang; Song, Ligang; Xu, Qiu; Guo, Liping; Cao, Xingzhong; Wang, Baoyi

    2017-11-01

    Transmutation helium may causes serious embrittlement which is considered to be due to helium from clustering as a bubble in materials. Suppression of transmutation helium can be achieved by introducing trapping sites such as dislocations and impurities in materials. Here, effects of intentionally-induced dislocations and hydrogen on helium migrate and release behaviors were investigated using thermal desorption spectrometry (TDS) technique applied to well-annealed and cold-worked Fe9Cr alloys irradiated by energetic helium/hydrogen ions. Synchronous desorption of helium and hydrogen was observed, and the microstructure states during helium release at different temperatures were analyzed. High thermally stable HenD type complexes formed in cold-worked specimens, resulting in the retardation of helium migration and release. The existence of hydrogen will strongly affect the thermal helium desorption which could be reflected in the TDS spectrum. It was confirmed that hydrogen retained in the specimens can result in obvious delay of helium desorption.

  15. The effects of hydrogen embrittlement by cathodic protection on the CTOD of buried natural gas pipeline

    NASA Astrophysics Data System (ADS)

    Kim, Cheol-man; Kim, Woo-sik; Kho, Young-tai

    2002-04-01

    For the corrosion protection of natural gas transmission pipelines, two methods are used, cathodic protection and a coating technique. In the case of cathodic protection, defects are embrittled by hydrogen occurring at crack tips or surfaces of materials. It is, however, very important to evaluate whether cracks in the embrittled area can grow or not, especially in weld metal. In this work, on the basis of elastic plastic fracture mechanics, we performed CTOD testing under various test conditions, such as potential and current density. The CTOD of the base steel and weld metal showed a strong dependence on the test conditions. The CTOD decreased with increasing cathodic potential and current density. The morphology of the fracture surface showed quasi-cleavage. Cathodic overprotection results in hydrogen embrittlement at the crack tip.

  16. Glutathione and antioxidant enzymes serve complementary roles in protecting activated hepatic stellate cells against hydrogen peroxide-induced cell death.

    PubMed

    Dunning, Sandra; Ur Rehman, Atta; Tiebosch, Marjolein H; Hannivoort, Rebekka A; Haijer, Floris W; Woudenberg, Jannes; van den Heuvel, Fiona A J; Buist-Homan, Manon; Faber, Klaas Nico; Moshage, Han

    2013-12-01

    In chronic liver disease, hepatic stellate cells (HSCs) are activated, highly proliferative and produce excessive amounts of extracellular matrix, leading to liver fibrosis. Elevated levels of toxic reactive oxygen species (ROS) produced during chronic liver injury have been implicated in this activation process. Therefore, activated hepatic stellate cells need to harbor highly effective anti-oxidants to protect against the toxic effects of ROS. To investigate the protective mechanisms of activated HSCs against ROS-induced toxicity. Culture-activated rat HSCs were exposed to hydrogen peroxide. Necrosis and apoptosis were determined by Sytox Green or acridine orange staining, respectively. The hydrogen peroxide detoxifying enzymes catalase and glutathione-peroxidase (GPx) were inhibited using 3-amino-1,2,4-triazole and mercaptosuccinic acid, respectively. The anti-oxidant glutathione was depleted by L-buthionine-sulfoximine and repleted with the GSH-analogue GSH-monoethylester (GSH-MEE). Upon activation, HSCs increase their cellular glutathione content and GPx expression, while MnSOD (both at mRNA and protein level) and catalase (at the protein level, but not at the mRNA level) decreased. Hydrogen peroxide did not induce cell death in activated HSCs. Glutathione depletion increased the sensitivity of HSCs to hydrogen peroxide, resulting in 35% and 75% necrotic cells at 0.2 and 1mmol/L hydrogen peroxide, respectively. The sensitizing effect was abolished by GSH-MEE. Inhibition of catalase or GPx significantly increased hydrogen peroxide-induced apoptosis, which was not reversed by GSH-MEE. Activated HSCs have increased ROS-detoxifying capacity compared to quiescent HSCs. Glutathione levels increase during HSC activation and protect against ROS-induced necrosis, whereas hydrogen peroxide-detoxifying enzymes protect against apoptotic cell death. © 2013.

  17. Neuregulin-1 is neuroprotective in a rat model of organophosphate-induced delayed neuronal injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yonggang; Lein, Pamela J.; Liu, Cuimei

    2012-07-15

    Current medical countermeasures against organophosphate (OP) nerve agents are effective in reducing mortality, but do not sufficiently protect the CNS from delayed brain damage and persistent neurological symptoms. In this study, we examined the efficacy of neuregulin-1 (NRG-1) in protecting against delayed neuronal cell death following acute intoxication with the OP diisopropylflurophosphate (DFP). Adult male Sprague–Dawley rats were pretreated with pyridostigmine (0.1 mg/kg BW, i.m.) and atropine methylnitrate (20 mg/kg BW, i.m.) prior to DFP (9 mg/kg BW, i.p.) intoxication to increase survival and reduce peripheral signs of cholinergic toxicity but not prevent DFP-induced seizures or delayed neuronal injury. Pretreatmentmore » with NRG-1 did not protect against seizures in rats exposed to DFP. However, neuronal injury was significantly reduced in most brain regions by pretreatment with NRG-1 isoforms NRG-EGF (3.2 μg/kg BW, i.a) or NRG-GGF2 (48 μg/kg BW, i.a.) as determined by FluroJade-B labeling in multiple brain regions at 24 h post-DFP injection. NRG-1 also blocked apoptosis and oxidative stress-mediated protein damage in the brains of DFP-intoxicated rats. Administration of NRG-1 at 1 h after DFP injection similarly provided significant neuroprotection against delayed neuronal injury. These findings identify NRG-1 as a promising adjuvant therapy to current medical countermeasures for enhancing neuroprotection against acute OP intoxication. -- Highlights: ► NRG-1 blocked DFP induced neuronal injury. ► NRG-1 did not protect against seizures in rats exposed to DFP. ► NRG-1 blocked apoptosis and oxidative stress in the brains of DFP-intoxicated rats. ► Administration of NRG-1 at 1 h after DFP injection prevented delayed neuronal injury.« less

  18. Hydrogen-rich saline inhibits tobacco smoke-induced chronic obstructive pulmonary disease by alleviating airway inflammation and mucus hypersecretion in rats.

    PubMed

    Liu, Zibing; Geng, Wenye; Jiang, Chuanwei; Zhao, Shujun; Liu, Yong; Zhang, Ying; Qin, Shucun; Li, Chenxu; Zhang, Xinfang; Si, Yanhong

    2017-09-01

    Chronic obstructive pulmonary disease induced by tobacco smoke has been regarded as a great health problem worldwide. The purpose of this study is to evaluate the protective effect of hydrogen-rich saline, a novel antioxidant, on chronic obstructive pulmonary disease and explore the underlying mechanism. Sprague-Dawley rats were made chronic obstructive pulmonary disease models via tobacco smoke exposure for 12 weeks and the rats were treated with 10 ml/kg hydrogen-rich saline intraperitoneally during the last 4 weeks. Lung function testing indicated hydrogen-rich saline decreased lung airway resistance and increased lung compliance and the ratio of forced expiratory volume in 0.1 s/forced vital capacity in chronic obstructive pulmonary disease rats. Histological analysis revealed that hydrogen-rich saline alleviated morphological impairments of lung in tobacco smoke-induced chronic obstructive pulmonary disease rats. ELISA assay showed hydrogen-rich saline lowered the levels of pro-inflammatory cytokines (IL-8 and IL-6) and anti-inflammatory cytokine IL-10 in bronchoalveolar lavage fluid and serum of chronic obstructive pulmonary disease rats. The content of malondialdehyde in lung tissue and serum was also determined and the data indicated hydrogen-rich saline suppressed oxidative stress reaction. The protein expressions of mucin MUC5C and aquaporin 5 involved in mucus hypersecretion were analyzed by Western blot and ELISA and the data revealed that hydrogen-rich saline down-regulated MUC5AC level in bronchoalveolar lavage fluid and lung tissue and up-regulated aquaporin 5 level in lung tissue of chronic obstructive pulmonary disease rats. In conclusion, these results suggest that administration of hydrogen-rich saline exhibits significant protective effect on chronic obstructive pulmonary disease through alleviating inflammation, reducing oxidative stress and lessening mucus hypersecretion in tobacco smoke-induced chronic obstructive pulmonary disease rats

  19. The Effect of Cathodic Protection on Stress Corrosion Cracking of High-Strength Pipeline Steels, #350

    DOT National Transportation Integrated Search

    2009-12-02

    The objective of this study was to establish the effect of cathodic protection (CP) to produce hydrogen that can cause cracking and in-service failures of high-strength pipeline steels, from X-70 to X-120, and to establish the effectiveness of cathod...

  20. Using delay differential equations to induce alternans in a model of cardiac electrophysiology.

    PubMed

    Eastman, Justin; Sass, Julian; Gomes, Johnny M; Dos Santos, Rodrigo Weber; Cherry, Elizabeth M

    2016-09-07

    Cardiac electrical alternans is a period-2 dynamical behavior with alternating long and short action potential durations (APD) that often precedes dangerous arrhythmias associated with cardiac arrest. Despite the importance of alternans, many current ordinary differential equations models of cardiac electrophysiology do not produce alternans, thereby limiting the use of these models for studying the mechanisms that underlie this condition. Because delay differential equations (DDEs) commonly induce complex dynamics in other biological systems, we investigate whether incorporating DDEs can lead to alternans development in cardiac models by studying the Fox et al. canine ventricular action potential model. After suppressing the alternans in the original model, we show that alternans can be obtained by introducing DDEs in the model gating variables, and we quantitatively compare the DDE-induced alternans with the alternans present in the original model. We analyze the behavior of the voltage, currents, and gating variables of the model to study the effects of the delays and to determine how alternans develops in that setting, and we discuss the mathematical and physiological implications of our findings. In future work, we aim to apply our approach to induce alternans in models that do not naturally exhibit such dynamics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Automatic crack detection method for loaded coal in vibration failure process

    PubMed Central

    Li, Chengwu

    2017-01-01

    In the coal mining process, the destabilization of loaded coal mass is a prerequisite for coal and rock dynamic disaster, and surface cracks of the coal and rock mass are important indicators, reflecting the current state of the coal body. The detection of surface cracks in the coal body plays an important role in coal mine safety monitoring. In this paper, a method for detecting the surface cracks of loaded coal by a vibration failure process is proposed based on the characteristics of the surface cracks of coal and support vector machine (SVM). A large number of cracked images are obtained by establishing a vibration-induced failure test system and industrial camera. Histogram equalization and a hysteresis threshold algorithm were used to reduce the noise and emphasize the crack; then, 600 images and regions, including cracks and non-cracks, were manually labelled. In the crack feature extraction stage, eight features of the cracks are extracted to distinguish cracks from other objects. Finally, a crack identification model with an accuracy over 95% was trained by inputting the labelled sample images into the SVM classifier. The experimental results show that the proposed algorithm has a higher accuracy than the conventional algorithm and can effectively identify cracks on the surface of the coal and rock mass automatically. PMID:28973032

  2. A nanoparticle catalyst for heterogeneous phase para-hydrogen-induced polarization in water.

    PubMed

    Glöggler, Stefan; Grunfeld, Alexander M; Ertas, Yavuz N; McCormick, Jeffrey; Wagner, Shawn; Schleker, P Philipp M; Bouchard, Louis-S

    2015-02-16

    Para-hydrogen-induced polarization (PHIP) is a technique capable of producing spin polarization at a magnitude far greater than state-of-the-art magnets. A significant application of PHIP is to generate contrast agents for biomedical imaging. Clinically viable and effective contrast agents not only require high levels of polarization but heterogeneous catalysts that can be used in water to eliminate the toxicity impact. Herein, we demonstrate the use of Pt nanoparticles capped with glutathione to induce heterogeneous PHIP in water. The ligand-inhibited surface diffusion on the nanoparticles resulted in a (1) H polarization of P=0.25% for hydroxyethyl propionate, a known contrast agent for magnetic resonance angiography. Transferring the (1) H polarization to a (13) C nucleus using a para-hydrogen polarizer yielded a polarization of 0.013%. The nuclear-spin polarizations achieved in these experiments are the first reported to date involving heterogeneous reactions in water. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Dipolar induced para-hydrogen-induced polarization.

    PubMed

    Buntkowsky, Gerd; Gutmann, Torsten; Petrova, Marina V; Ivanov, Konstantin L; Bommerich, Ute; Plaumann, Markus; Bernarding, Johannes

    2014-01-01

    Analytical expressions for the signal enhancement in solid-state PHIP NMR spectroscopy mediated by homonuclear dipolar interactions and single pulse or spin-echo excitation are developed and simulated numerically. It is shown that an efficient enhancement of the proton NMR signal in solid-state NMR studies of chemisorbed hydrogen on surfaces is possible. Employing typical reaction efficacy, enhancement-factors of ca. 30-40 can be expected both under ALTADENA and under PASADENA conditions. This result has important consequences for the practical application of the method, since it potentially allows the design of an in-situ flow setup, where the para-hydrogen is adsorbed and desorbed from catalyst surfaces inside the NMR magnet. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Insensitive dependence of delay-induced oscillation death on complex networks

    NASA Astrophysics Data System (ADS)

    Zou, Wei; Zheng, Xing; Zhan, Meng

    2011-06-01

    Oscillation death (also called amplitude death), a phenomenon of coupling induced stabilization of an unstable equilibrium, is studied for an arbitrary symmetric complex network with delay-coupled oscillators, and the critical conditions for its linear stability are explicitly obtained. All cases including one oscillator, a pair of oscillators, regular oscillator networks, and complex oscillator networks with delay feedback coupling, can be treated in a unified form. For an arbitrary symmetric network, we find that the corresponding smallest eigenvalue of the Laplacian λN (0 >λN ≥ -1) completely determines the death island, and as λN is located within the insensitive parameter region for nearly all complex networks, the death island keeps nearly the largest and does not sensitively depend on the complex network structures. This insensitivity effect has been tested for many typical complex networks including Watts-Strogatz (WS) and Newman-Watts (NW) small world networks, general scale-free (SF) networks, Erdos-Renyi (ER) random networks, geographical networks, and networks with community structures and is expected to be helpful for our understanding of dynamics on complex networks.

  5. Fatigue induced cracking in aluminum LN-2 shroud of 39 foot vacuum chamber

    NASA Technical Reports Server (NTRS)

    Edwards, A. A.

    1984-01-01

    Fourteen years after completion of Ford's 39-foot space simulation chamber, leaks began to appear in its LN2 shroud. Although the shroud had been tight since its acceptance, cracks appeared in 1983 in some of the field welds of the one inch tubes which interconnect the LN2 panels. The resulting leaks were large enough to prevent pump down to high vacuum and could be heard easily when the chamber was at ambient conditions. New cracks appeared during each thermal cycle making it impossible to utilize the chamber for thermal vacuum testing. The analysis presented here implies that many, if not all, of the aluminum LN2 shrouds now in use may be in various stages of fatigue failure. The probability is high that fatigue cracks are working through the aluminum tubing in heat-affected zones of some field welds. The cracks may not be apparent yet, but after the shroud has experienced a certain number of thermal cycles these cracks will work through the material and become serious leaks. Fortunately, appropriate planning, analysis, and checking can, with a relatively small expenditure of money, help to avoid large and unexpected shroud failures and keep the chamber operational as long as it is needed.

  6. Bifurcation analysis of delay-induced resonances of the El-Niño Southern Oscillation

    PubMed Central

    Krauskopf, Bernd; Sieber, Jan

    2014-01-01

    Models of global climate phenomena of low to intermediate complexity are very useful for providing an understanding at a conceptual level. An important aspect of such models is the presence of a number of feedback loops that feature considerable delay times, usually due to the time it takes to transport energy (for example, in the form of hot/cold air or water) around the globe. In this paper, we demonstrate how one can perform a bifurcation analysis of the behaviour of a periodically forced system with delay in dependence on key parameters. As an example, we consider the El-Niño Southern Oscillation (ENSO), which is a sea-surface temperature (SST) oscillation on a multi-year scale in the basin of the Pacific Ocean. One can think of ENSO as being generated by an interplay between two feedback effects, one positive and one negative, which act only after some delay that is determined by the speed of transport of SST anomalies across the Pacific. We perform here a case study of a simple delayed-feedback oscillator model for ENSO, which is parametrically forced by annual variation. More specifically, we use numerical bifurcation analysis tools to explore directly regions of delay-induced resonances and other stability boundaries in this delay-differential equation model for ENSO. PMID:25197254

  7. Effect of standardized fruit extract of Luffa cylindrica on oxidative stress markers in hydrogen peroxide induced cataract.

    PubMed

    Dubey, Suchita; Saha, Sudipta; Kaithwas, Gaurav; Saraf, Shubhini A

    2015-01-01

    The ability of Luffa cylindrica Roem fruit extract (LCE) to modulate biochemical parameters was investigated by in vitro studies for its role in hydrogen peroxide induced cataract on isolated goat lenses which were incubated for 72 h at 37°C. Test groups contained 5, 10, 15, 20, 25, and 30 µg/ml of LCE along with 1 ml of H2O2 (0.5 mM) as cataract inducer. Lenses were examined for morphological variation and transparency periodically during the incubation. Biochemical parameters such as superoxide dismutase (SOD), reduced glutathione (GSH), total protein content (TPC), and malondialdehyde (MDA) were estimated. SOD, GSH, and TPC levels were found to increase proportionally with the concentration of LCE. However, MDA levels were found to be inversely proportional to the concentration of LCE. Opacity was graded as per "lens opacities classification system III." Morphological examination suggested that LCE (25 µg/ml) maintained a vision for 44 h. No lens in LCE dose groups developed dense nuclear opacity after 24 h as opposed to 80% in negative control. The results suggest that LCE can delay the onset and/or prevent the progression of cataract which can be attributed to the presence of adequate phenolics, flavonoids, and Vitamin A and its high nutritional value. This preliminary study can be further synergized by testing LCE against other in vivo and in vitro models of cataract.

  8. Vibration and stability of cracked hollow-sectional beams

    NASA Astrophysics Data System (ADS)

    Zheng, D. Y.; Fan, S. C.

    2003-10-01

    This paper presents simple tools for the vibration and stability analysis of cracked hollow-sectional beams. It comprises two parts. In the first, the influences of sectional cracks are expressed in terms of flexibility induced. Each crack is assigned with a local flexibility coefficient, which is derived by virtue of theories of fracture mechanics. The flexibility coefficient is a function of the depth of a crack. The general formulae are derived and expressed in integral form. It is then transformed to explicit form through 128-point Gauss quadrature. According to the depth of the crack, the formulae are derived under two scenarios. The first is for shallow cracks, of which the penetration depth is contained within the top solid-sectional region. The second is for deeper penetration, in which the crack goes into the middle hollow-sectional region. The explicit formulae are best-fitted equations generated by the least-squares method. The best-fitted curves are presented. From the curves, the flexibility coefficients can be read out easily, while the explicit expressions facilitate easy implementation in computer analysis. In the second part, the flexibility coefficients are employed in the vibration and stability analysis of hollow-sectional beams. The cracked beam is treated as an assembly of sub-segments linked up by rotational springs. Division of segments are made coincident with the location of cracks or any abrupt change of sectional property. The crack's flexibility coefficient then serves as that of the rotational spring. Application of the Hamilton's principle leads to the governing equations, which are subsequently solved through employment of a simple technique. It is a kind of modified Fourier series, which is able to represent any order of continuity of the vibration/buckling modes. Illustrative numerical examples are included.

  9. Effects of Hydrogen-Rich Saline on Hepatectomy-Induced Postoperative Cognitive Dysfunction in Old Mice.

    PubMed

    Tian, Yue; Guo, Shanbin; Zhang, Yan; Xu, Ying; Zhao, Ping; Zhao, Xiaochun

    2017-05-01

    This study aims to investigate the protective effects and underlying mechanisms of hydrogen-rich saline on the cognitive functions of elder mice with partial hepatectomy-induced postoperative cognitive dysfunction (POCD). Ninety-six old male Kunming mice were randomly divided into 4 groups (n = 24 each): control group (group C), hydrogen-rich saline group (group H), POCD group (group P), and POCD + hydrogen-rich saline group (group PH). Cognitive function was subsequently assessed using Morris water-maze (MWM) test. TNF-α and IL-1β levels were measured by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry, along with NF-κB activity determined by ELISA. The morphology of hippocampal tissues were further observed by HE staining. Learning and memory abilities of mice were significantly impaired at day 10 and day 14 post-surgery, as partial hepatectomy significantly prolonged the escape latency, decreased time at the original platform quadrant and frequency of crossing in group P when compared to group C (p < 0.05). The surgery also increased the contents of TNF-α, IL-1β, and NF-κB activity at all time points after surgery (p < 0.05). The introduction of hydrogen-rich saline (group PH) partially rescued spatial memory and learning as it shortened escape latency and increased time and crossing frequency of original platform compared to group P (p < 0.05). Moreover, such treatment also decreased TNF-α and IL-1β levels and NF-κB activity (p < 0.05). In addition, cell necrosis in the hippocampus induced by hepatectomy was also rescued by hydrogen-rich saline. Hydrogen-rich saline can alleviate POCD via inhibiting NF-κB activity in the hippocampus and reducing inflammatory response.

  10. Delayed-onset heparin-induced skin necrosis: a rare complication of perioperative heparin therapy.

    PubMed

    Gan, Weh Kiat

    2017-11-03

    An uncommon case of delayed-onset dalteparin-induced skin necrosis in an 83-year-old Caucasian female patient associated with heparin-induced thrombocytopaenia (HIT) presenting on day 30 following dalteparin therapy is reported. Investigations revealed mild thrombocytopaenia with normal protein C, protein S, coagulation screen and positive test for heparin-platelet factor-4 antibody. Clinical diagnosis of heparin-induced skin necrosis with HIT was made. Dalteparin injection was discontinued promptly and substituted with fondaparinux therapy. The patient achieved good recovery following cessation of dalteparin therapy and was subsequently discharged. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. Sub-10-micrometer toughening and crack tip toughness of dental enamel.

    PubMed

    Ang, Siang Fung; Schulz, Anja; Pacher Fernandes, Rodrigo; Schneider, Gerold A

    2011-04-01

    In previous studies, enamel showed indications to occlude small cracks in-vivo and exhibited R-curve behaviors for bigger cracks ex-vivo. This study quantifies the crack tip's toughness (K(I0),K(III0)), the crack's closure stress and the cohesive zone size at the crack tip of enamel and investigates the toughening mechanisms near the crack tip down to the length scale of a single enamel crystallite. The crack-opening-displacement (COD) profile of cracks induced by Vickers indents on mature bovine enamel was studied using atomic force microscopy (AFM). The mode I crack tip toughness K(I0) of cracks along enamel rod boundaries and across enamel rods exhibit a similar range of values: K(I0,Ir)=0.5-1.6MPa m(0.5) (based on Irwin's 'near-field' solution) and K(I0,cz)=0.8-1.5MPa m(0.5) (based on the cohesive zone solution of the Dugdale-Muskhelishvili (DM) crack model). The mode III crack tip toughness K(III0,Ir) was computed as 0.02-0.15MPa m(0.5). The crack-closure stress at the crack tip was computed as 163-770 MPa with a cohesive zone length and width 1.6-10.1μm and 24-44 nm utilizing the cohesive zone solution. Toughening elements were observed under AFM and SEM: crack bridging due to protein ligament and hydroxyapatite fibres (micro- and nanometer scale) as well as microcracks were identified. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  12. Moisture-Induced Delamination Video of an Oxidized Thermal Barrier Coating

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Zhu, Dongming; Cuy, Michael D.

    2008-01-01

    PVD TBC coatings were thermally cycled to near-failure at 1150 C. Normal failure occurred after 200 to 300 1-hr cycles with only moderate weight gains (0.5 mg/sq cm). Delamination and buckling was often delayed until well after cooldown (desktop spallation), but could be instantly induced by the application of water drops, as shown in a video clip which can be viewed by clicking on figure 2 of this report. Moisture therefore plays a primary role in delayed desktop TBC failure. Hydrogen embrittlement is proposed as the underlying mechanism.

  13. Nonlinear ultrasonic fatigue crack detection using a single piezoelectric transducer

    NASA Astrophysics Data System (ADS)

    An, Yun-Kyu; Lee, Dong Jun

    2016-04-01

    This paper proposes a new nonlinear ultrasonic technique for fatigue crack detection using a single piezoelectric transducer (PZT). The proposed technique identifies a fatigue crack using linear (α) and nonlinear (β) parameters obtained from only a single PZT mounted on a target structure. Based on the different physical characteristics of α and β, a fatigue crack-induced feature is able to be effectively isolated from the inherent nonlinearity of a target structure and data acquisition system. The proposed technique requires much simpler test setup and less processing costs than the existing nonlinear ultrasonic techniques, but fast and powerful. To validate the proposed technique, a real fatigue crack is created in an aluminum plate, and then false positive and negative tests are carried out under varying temperature conditions. The experimental results reveal that the fatigue crack is successfully detected, and no positive false alarm is indicated.

  14. Spectral Structure Of Phase-Induced Intensity Noise In Recirculating Delay Lines

    NASA Astrophysics Data System (ADS)

    Tur, M.; Moslehi, B.; Bowers, J. E.; Newton, S. A.; Jackson, K. P.; Goodman, J. W.; Cutler, C. C.; Shaw, H. J.

    1983-09-01

    The dynamic range of fiber optic signal processors driven by relatively incoherent multimode semiconductor lasers is shown to be severely limited by laser phase-induced noise. It is experimentally demonstrated that while the noise power spectrum of differential length fiber filters is approximately flat, processors with recirculating loops exhibit noise with a periodically structured power spectrum with notches at zero frequency as well as at all other multiples of 1/(loop delay). The experimental results are aug-mented by a theoretical analysis.

  15. Two-photon laser-induced fluorescence of atomic hydrogen in a diamond-depositing dc arcjet.

    PubMed

    Juchmann, Wolfgang; Luque, Jorge; Jeffries, Jay B

    2005-11-01

    Atomic hydrogen in the plume of a dc-arcjet plasma is monitored by use of two-photon excited laser-induced fluorescence (LIF) during the deposition of diamond film. The effluent of a dc-arc discharge in hydrogen and argon forms a luminous plume as it flows through a converging-diverging nozzle into a reactor. When a trace of methane (< 2%) is added to the flow in the diverging part of the nozzle, diamond thin film grows on a water-cooled molybdenum substrate from the reactive mixture. LIF of atomic hydrogen in the arcjet plume is excited to the 3S and 3D levels with two photons near 205 nm, and the subsequent fluorescence is observed at Balmer-alpha near 656 nm. Spatially resolved LIF measurements of atomic hydrogen are made as a function of the ratio of hydrogen to argon feedstock gas, methane addition, and reactor pressure. At lower reactor pressures, time-resolved LIF measurements are used to verify our collisional quenching correction algorithm. The quenching rate coefficients for collisions with the major species in the arcjet (Ar, H, and H2) do not change with gas temperature variations in the plume (T < 2300 K). Corrections of the LIF intensity measurements for the spatial variation of collisional quenching are important to determine relative distributions of the atomic hydrogen concentration. The relative atomic hydrogen concentrations measured here are calibrated with an earlier calorimetric determination of the feedstock hydrogen dissociation to provide quantitative hydrogen-atom concentration distributions.

  16. Fatigue crack monitoring with coupled piezoelectric film acoustic emission sensors

    NASA Astrophysics Data System (ADS)

    Zhou, Changjiang

    Fatigue-induced cracking is a commonly seen problem in civil infrastructures reaching their original design life. A number of high-profile accidents have been reported in the past that involved fatigue damage in structures. Such incidences often happen without prior warnings due to lack of proper crack monitoring technique. In order to detect and monitor the fatigue crack, acoustic emission (AE) technique, has been receiving growing interests recently. AE can provide continuous and real-time monitoring data on damage progression in structures. Piezoelectric film AE sensor measures stress-wave induced strain in ultrasonic frequency range and its feasibility for AE signal monitoring has been demonstrated recently. However, extensive work in AE monitoring system development based on piezoelectric film AE sensor and sensor characterization on full-scale structures with fatigue cracks, have not been done. A lack of theoretical formulations for understanding the AE signals also hinders the use of piezoelectric film AE sensors. Additionally, crack detection and source localization with AE signals is a very important area yet to be explored for this new type of AE sensor. This dissertation presents the results of both analytical and experimental study on the signal characteristics of surface stress-wave induced AE strain signals measured by piezoelectric film AE sensors in near-field and an AE source localization method based on sensor couple theory. Based on moment tensor theory, generalized expression for AE strain signal is formulated. A special case involving the response of piezoelectric film AE sensor to surface load is also studied, which could potentially be used for sensor calibration of this type of sensor. A new concept of sensor couple theory based AE source localization technique is proposed and validated with both simulated and experimental data from fatigue test and field monitoring. Two series of fatigue tests were conducted to perform fatigue crack

  17. DETECTION OF A CRITICAL PERIOD NECESSARY FOR ATRAZINE-INDUCED MAMMARY GLAND DELAYS IN RATS

    EPA Science Inventory

    Detection of a Critical Period Necessary for Atrazine-Induced Mammary Gland Delays in Rats.

    Jennifer L. Rayner1 and Suzanne E. Fenton2

    1 University of North Carolina at Chapel Hill, DESE, Chapel Hill, NC, and 2 Reproductive Toxicology Division, USEPA, NHEERL/ORD, R...

  18. Materials and Morphology Study for Templated Hydrogen Solidification

    DOE PAGES

    Shin, Swanee J.; Kozioziemski, Bernard J.

    2017-11-29

    In this work, we performed a series of experiments to elucidate the characteristics of a good template for solid hydrogen nucleation. Zinc stands out among several materials with comparable size and shape. Nucleation could be observed to occur on top of sharp features, such as grain boundaries and cracks, but our attempts proved unsuccessful to fabricate or replicate such features. The variations of the supercooling (ΔT) values measured for comparable samples and the dependence of ΔT on the cell temperature cycling revealed that templated nucleation of solid hydrogen is a very delicate process.

  19. Stress Corrosion Cracking Behavior of X80 Pipeline Steel in Acid Soil Environment with SRB

    NASA Astrophysics Data System (ADS)

    Wang, Dan; Xie, Fei; Wu, Ming; Liu, Guangxin; Zong, Yue; Li, Xue

    2017-06-01

    Self-designed experimental device was adopted to ensure the normal growth of sulphate-reducing bacteria (SRB) in sterile simulated Yingtan soil solution. Stress corrosion cracking (SCC) behavior of X80 pipeline steel in simulated acid soil environment was investigated by electrochemical impedance spectroscopy, slow strain rate test, and scanning electron microscope. Results show that the presence of SRB could promote stress corrosion cracking susceptibility. In a growth cycle, polarization resistance first presents a decrease and subsequently an increase, which is inversely proportional to the quantities of SRB. At 8 days of growth, SRB reach their largest quantity of 1.42 × 103 cells/g. The corrosion behavior is most serious at this time point, and the SCC mechanism is hydrogen embrittlement. In other SRB growth stages, the SCC mechanism of X80 steel is anodic dissolution. With the increasing SRB quantities, X80 steel is largely prone to SCC behavior, and the effect of hydrogen is considerably obvious.

  20. Causes and Prevention of Structural Materials Failures in Naval Environments.

    DTIC Science & Technology

    1984-01-01

    atomic hydrogen as the first step; (iii) creation of elastic-plastic zones near the crack tip region due to movement of dislocations under applied...sodium tellurate is added to the charging solution. There is a dramatic drop in hydrogen permeation current due to the reduction of the tellurate ...effect of tellurium which has been deposited. Thus it has been shown that the tellurate ion, an electron acceptor, can delay the production of hydrogen

  1. Staphylococcus aureus-Induced G2/M Phase Transition Delay in Host Epithelial Cells Increases Bacterial Infective Efficiency

    PubMed Central

    Almeida, Sintia; Legembre, Patrick; Edmond, Valérie; Azevedo, Vasco; Miyoshi, Anderson; Even, Sergine; Taieb, Frédéric; Arlot-Bonnemains, Yannick; Le Loir, Yves; Berkova, Nadia

    2013-01-01

    Staphylococcus aureus is a highly versatile, opportunistic pathogen and the etiological agent of a wide range of infections in humans and warm-blooded animals. The epithelial surface is its principal site of colonization and infection. In this work, we investigated the cytopathic effect of S. aureus strains from human and animal origins and their ability to affect the host cell cycle in human HeLa and bovine MAC-T epithelial cell lines. S. aureus invasion slowed down cell proliferation and induced a cytopathic effect, resulting in the enlargement of host cells. A dramatic decrease in the number of mitotic cells was observed in the infected cultures. Flow cytometry analysis revealed an S. aureus-induced delay in the G2/M phase transition in synchronous HeLa cells. This delay required the presence of live S. aureus since the addition of the heat-killed bacteria did not alter the cell cycle. The results of Western blot experiments showed that the G2/M transition delay was associated with the accumulation of inactive cyclin-dependent kinase Cdk1, a key inducer of mitosis entry, and with the accumulation of unphosphorylated histone H3, which was correlated with a reduction of the mitotic cell number. Analysis of S. aureus proliferation in asynchronous, G1- and G2-phase-enriched HeLa cells showed that the G2 phase was preferential for bacterial infective efficiency, suggesting that the G2 phase delay may be used by S. aureus for propagation within the host. Taken together, our results divulge the potential of S. aureus in the subversion of key cellular processes such as cell cycle progression, and shed light on the biological significance of S. aureus-induced host cell cycle alteration. PMID:23717407

  2. Microbial network of the carbonate precipitation process induced by microbial consortia and the potential application to crack healing in concrete.

    PubMed

    Zhang, Jiaguang; Zhou, Aijuan; Liu, Yuanzhen; Zhao, Bowei; Luan, Yunbo; Wang, Sufang; Yue, Xiuping; Li, Zhu

    2017-11-06

    Current studies have employed various pure-cultures for improving concrete durability based on microbially induced carbonate precipitation (MICP). However, there have been very few reports concerned with microbial consortia, which could perform more complex tasks and be more robust in their resistance to environmental fluctuations. In this study, we constructed three microbial consortia that are capable of MICP under aerobic (AE), anaerobic (AN) and facultative anaerobic (FA) conditions. The results showed that AE consortia showed more positive effects on inorganic carbon conversion than AN and FA consortia. Pyrosequencing analysis showed that clear distinctions appeared in the community structure between different microbial consortia systems. Further investigation on microbial community networks revealed that the species in the three microbial consortia built thorough energetic and metabolic interaction networks regarding MICP, nitrate-reduction, bacterial endospores and fermentation communities. Crack-healing experiments showed that the selected cracks of the three consortia-based concrete specimens were almost completely healed in 28 days, which was consistent with the studies using pure cultures. Although the economic advantage might not be clear yet, this study highlights the potential implementation of microbial consortia on crack healing in concrete.

  3. Desiccation of a Sessile Drop of Blood: Cracks Formation and Delamination

    NASA Astrophysics Data System (ADS)

    Sobac, Benjamin; Brutin, David

    2011-11-01

    The evaporation of drops of biological fluids has been studied since few years du to several applications in medical fields such as medical tests, drug screening, biostabilization... The evaporation of a drop of whole blood leads to the formation of final typical pattern of cracks. Flow motion, adhesion, gelation and fracturation all occur during the evaporation of this complex matter. During the drying, a sol-gel transition develops. The drying kinetics is explained by a simple model of evaporation taking account of the evolution of the gelation front. The system solidifies and when stresses are too important, cracks nucleate. The cracks formation and the structure of the crack pattern are investigated. The initial crack spacing is found in good agreement with the implementation in open geometry of the model of cracks formation induced by evaporation proposed by Allain and Limat. Finally, the drop is still drying after the end of the formation of cracks which leads, like in the situation of colloid suspensions, to the observation of a delamination phenomenon.

  4. Reaction Control System Thruster Cracking Consultation: NASA Engineering and Safety Center (NESC) Materials Super Problem Resolution Team (SPRT) Findings

    NASA Technical Reports Server (NTRS)

    MacKay, Rebecca A.; Smith, Stephen W.; Shah, Sandeep R.; Piascik, Robert S.

    2005-01-01

    The shuttle orbiter s reaction control system (RCS) primary thruster serial number 120 was found to contain cracks in the counter bores and relief radius after a chamber repair and rejuvenation was performed in April 2004. Relief radius cracking had been observed in the 1970s and 1980s in seven thrusters prior to flight; however, counter bore cracking had never been seen previously in RCS thrusters. Members of the Materials Super Problem Resolution Team (SPRT) of the NASA Engineering and Safety Center (NESC) conducted a detailed review of the relevant literature and of the documentation from the previous RCS thruster failure analyses. It was concluded that the previous failure analyses lacked sufficient documentation to support the conclusions that stress corrosion cracking or hot-salt cracking was the root cause of the thruster cracking and lacked reliable inspection controls to prevent cracked thrusters from entering the fleet. The NESC team identified and performed new materials characterization and mechanical tests. It was determined that the thruster intergranular cracking was due to hydrogen embrittlement and that the cracking was produced during manufacturing as a result of processing the thrusters with fluoride-containing acids. Testing and characterization demonstrated that appreciable environmental crack propagation does not occur after manufacturing.

  5. The slant path atmospheric refraction calibrator - An instrument to measure the microwave propagation delays induced by atmospheric water vapor

    NASA Technical Reports Server (NTRS)

    Walter, Steven J.; Bender, Peter L.

    1992-01-01

    The water vapor-induced propagation delay experienced by a radio signal traversing the atmosphere is characterized by the Slant Path Atmospheric Refraction Calibrator (SPARC), which measures the difference in the travel times between an optical and a microwave signal propagating along the same atmospheric path with an accuracy of 15 picosec or better. Attention is given to the theoretical and experimental issues involved in measuring the delay induced by water vapor; SPARC measurements conducted along a 13.35-km ground-based path are presented, illustrating the instrument's stability, precision, and accuracy.

  6. Nonlinear ultrasonic wave modulation for online fatigue crack detection

    NASA Astrophysics Data System (ADS)

    Sohn, Hoon; Lim, Hyung Jin; DeSimio, Martin P.; Brown, Kevin; Derriso, Mark

    2014-02-01

    This study presents a fatigue crack detection technique using nonlinear ultrasonic wave modulation. Ultrasonic waves at two distinctive driving frequencies are generated and corresponding ultrasonic responses are measured using permanently installed lead zirconate titanate (PZT) transducers with a potential for continuous monitoring. Here, the input signal at the lower driving frequency is often referred to as a 'pumping' signal, and the higher frequency input is referred to as a 'probing' signal. The presence of a system nonlinearity, such as a crack formation, can provide a mechanism for nonlinear wave modulation, and create spectral sidebands around the frequency of the probing signal. A signal processing technique combining linear response subtraction (LRS) and synchronous demodulation (SD) is developed specifically to extract the crack-induced spectral sidebands. The proposed crack detection method is successfully applied to identify actual fatigue cracks grown in metallic plate and complex fitting-lug specimens. Finally, the effect of pumping and probing frequencies on the amplitude of the first spectral sideband is investigated using the first sideband spectrogram (FSS) obtained by sweeping both pumping and probing signals over specified frequency ranges.

  7. Observation of the Hydrogen Migration in the Cation-Induced Fragmentation of the Pyridine Molecules.

    PubMed

    Wasowicz, Tomasz J; Pranszke, Bogusław

    2016-02-25

    The ability to selectively control chemical reactions related to biology, combustion, and catalysis has recently attracted much attention. In particular, the hydrogen atom relocation may be used to manipulate bond-breaking and new bond-forming processes and may hold promise for far-reaching applications. Thus, the hydrogen atom migration preceding fragmentation of the gas-phase pyridine molecules by the H(+), H2(+), He(+), He(2+), and O(+) impact has been studied experimentally in the energy range of 5-2000 eV using collision-induced luminescence spectroscopy. Formation of the excited NH(A(3)Π) radicals was observed among the atomic and diatomic fragments. The structure of the pyridine molecule is lacking of the NH group, therefore observation of its A(3)Π → X(3)Σ(-) emission bands is an evidence of the hydrogen atom relocation prior to the cation-induced fragmentation. The NH(A(3)Π) emission yields indicate that formation of the NH radicals depends on the type of selected projectile and can be controlled by tuning its velocity. The plausible collisional mechanisms as well as fragmentation channels for NH formation in pyridine are discussed.

  8. Rolling contact fatigue strengths of shot-peened and crack-healed ceramics

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Oki, T.

    2018-06-01

    The effects of shot-peening (SP) and crack-healing on the rolling contact fatigue (RCF) strengths of Al2O3/SiC composite ceramics were investigated. Non-shot-peened, shot- peened, and shot-peened + crack-healed specimens were prepared. SP was performed using ZrO2 beads. The shot-peened + crack-healed specimen was crack-healed after SP. X-ray diffraction clearly showed that SP induced a compressive residual stress up to 300 MPa at the specimen surfaces. Furthermore, the shot-peened + crack-healed specimen retained a compressive residual stress of 200 MPa. The apparent surface fracture toughness of the shot- peened specimens increased owing to the positive effects of the compressive residual stress. RCF tests were performed using a thrust load-bearing test device. The RCF lives of the shot- peened specimens did not improve compared to that of the non-shot-peened specimen, because the numerous SP-introduced surface cracks could act as crack initiation sites during the RCF tests. However, the RCF life of the shot-peened + crack-healed specimen did improve compared to those of non-shot-peened and shot-peened specimens, implying that combining SP and crack-healing was an effective strategy for improving the RCF lives of Al2O3/SiC composite ceramics.

  9. Novel hydrogen sulfide-releasing compound, S-propargyl-cysteine, prevents STZ-induced diabetic nephropathy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Xin; Li, Xinghui; Ma, Fenfen

    2016-05-13

    In this work, we demonstrated for the first time that S-propargyl-cysteine (SPRC, also named as ZYZ-802), a novel hydrogen sulfide (H{sub 2}S)-releasing compound, had renoprotective effects on streptozotocin (STZ)-induced diabetic kidney injury. SPRC treatment significantly reduced the level of creatinine, kidney to body weight ratio and in particular, markedly decreased 24-h urine microalbuminuria excretion. SPRC suppressed the mRNA expression of fibronectin and type IV collagen. In vitro, SPRC inhibited mesangial cells over-proliferation and hypertrophy induced by high glucose. Additionally, SPRC attenuated inflammation in diabetic kidneys. SPRC also reduced transforming growth factor β1 (TGF-β1) signaling and expression of phosphorylated Smad3 (p-Smad3) pathway. Moreover,more » SPRC inhibited phosphorylation of ERK, p38 protein. Taken together, SPRC was demonstrated to be a potential therapeutic candidate to suppress diabetic nephropathy. - Highlights: • We synthesized a novel hydrogen sulfide-releasing compound, S-propargyl-cysteine (SPRC). • SPRC was preliminarily demonstrated to prevent STZ-induced diabetic nephropathy (DN). • SPRC may exert potential therapeutic candidate to suppress DN.« less

  10. Modeling of slow crack propagation in heterogeneous rocks

    NASA Astrophysics Data System (ADS)

    Lengliné, Olivier; Stormo, Arne; Hansen, Alex; Schmittbuhl, Jean

    2015-04-01

    Crack propagation in heterogeneous media is a rich problem which involves the interplay of various physical processes. The problem has been intensively investigated theoretically, numerically, and experimentally, but a unifying model capturing all the experimental features has not been entirely achieved despite its broad range of implications in Earth sciences problems. The slow propagation of a crack front where long range elastic interactions are dominant, is of crucial importance to fill the gap between experiments and models. Several theoretical and numerical works have been devoted to quasi-static models. Such models give rise to an intermittent local activity characterized by a depinning transition and can be viewed as a critical phenomenon. However these models fail to reproduce all experimental conditions, notably the front morphology does not display any cross-over length with two different roughness exponents above and below the cross-over as observed experimentally. Here, we compare experimental observations of a slow interfacial crack propagation along an heterogeneous interface to numerical simulations from a cantilever fiber bundle model. The model consists of a planar set of brittle fibers between an elastic half-space and a rigid square root shaped plate which loads the system in a cantilever configuration. The latter is shown to provide an improved opening and stress field in the process zone around the crack tip. The model shares a similar scale invariant roughening of the crack front both at small and large scales and a similar power law distribution of the local velocity of the crack front to experiments. Implications for induced seismicity at the brittle-creep transition are discussed. We show that a creep route for induced seismicity is possible when heterogeneities exist along the fault. Indeed, seismic event occurrences in time and space are in strong relation with the development of the aseismic motion recorded during the experiment and the

  11. Confocal examination of subsurface cracking in ceramic materials.

    PubMed

    Etman, Maged K

    2009-10-01

    The original ceramic surface finish and its microstructure may have an effect on crack propagation. The purpose of this study was to investigate the relation between crack propagation and ceramic microstructure following cyclic fatigue loading, and to qualitatively evaluate and quantitatively measure the surface and subsurface crack depths of three types of ceramic restorations with different microstructures using a Confocal Laser Scanning Microscope (CLSM) and Scanning Electron Microscope (SEM). Twenty (8 x 4 x 2 mm(3)) blocks of AllCeram (AC), experimental ceramic (EC, IPS e.max Press), and Sensation SL (SSL) were prepared, ten glazed and ten polished of each material. Sixty antagonist enamel specimens were made from the labial surfaces of permanent incisors. The ceramic abraders were attached to a wear machine, so that each enamel specimen presented at 45 degrees to the vertical movement of the abraders, and immersed in artificial saliva. Wear was induced for 80K cycles at 60 cycles/min with a load of 40 N and 2-mm horizontal deflection. The specimens were examined for cracks at baseline, 5K, 10K, 20K, 40K, and 80K cycles. Twenty- to 30-microm deep subsurface cracking appeared in SSL, with 8 to 10 microm in AC, and 7 microm close to the margin of the wear facets in glazed EC after 5K cycles. The EC showed no cracks with increasing wear cycles. Seventy-microm deep subsurface cracks were detected in SSL and 45 microm in AC after 80K cycles. Statistically, there was significant difference among the three materials (p < 0.05). Bonferroni multiple comparison of means test confirmed the ANOVA test and showed that there was no statistical difference (p > 0.05) in crack depth within the same ceramic material with different surface finishes. The ceramic materials with different microstructures showed different patterns of subsurface cracking.

  12. Experimental investigation on centrifugal compressor blade crack classification using the squared envelope spectrum.

    PubMed

    Li, Hongkun; Zhang, Xuefeng; Xu, Fujian

    2013-09-18

    Centrifugal compressors are a key piece of equipment for modern production. Among the components of the centrifugal compressor, the impeller is a pivotal part as it is used to transform kinetic energy into pressure energy. Blade crack condition monitoring and classification has been broadly investigated in the industrial and academic area. In this research, a pressure pulsation (PP) sensor arranged in close vicinity to the crack area and the corresponding casing vibration signals are used to monitor blade crack information. As these signals cannot directly demonstrate the blade crack, the method employed in this research is based on the extraction of weak signal characteristics that are induced by blade cracking. A method for blade crack classification based on the signals monitored by using a squared envelope spectrum (SES) is presented. Experimental investigations on blade crack classification are carried out to verify the effectiveness of this method. The results show that it is an effective tool for blade crack classification in centrifugal compressors.

  13. Experimental Investigation on Centrifugal Compressor Blade Crack Classification Using the Squared Envelope Spectrum

    PubMed Central

    Li, Hongkun; Zhang, Xuefeng; Xu, Fujian

    2013-01-01

    Centrifugal compressors are a key piece of equipment for modern production. Among the components of the centrifugal compressor, the impeller is a pivotal part as it is used to transform kinetic energy into pressure energy. Blade crack condition monitoring and classification has been broadly investigated in the industrial and academic area. In this research, a pressure pulsation (PP) sensor arranged in close vicinity to the crack area and the corresponding casing vibration signals are used to monitor blade crack information. As these signals cannot directly demonstrate the blade crack, the method employed in this research is based on the extraction of weak signal characteristics that are induced by blade cracking. A method for blade crack classification based on the signals monitored by using a squared envelope spectrum (SES) is presented. Experimental investigations on blade crack classification are carried out to verify the effectiveness of this method. The results show that it is an effective tool for blade crack classification in centrifugal compressors. PMID:24051521

  14. Edge-Cracking Behavior of CoCrFeMnNi High-Entropy Alloy During Hot Rolling

    NASA Astrophysics Data System (ADS)

    Won, Jong Woo; Kang, Minju; Kwon, Heoun-Jun; Lim, Ka Ram; Seo, Seong Moon; Na, Young Sang

    2018-05-01

    This work investigated edge-cracking behavior of equiatomic CoCrFeMnNi high-entropy alloy during hot rolling at rolling temperatures 500 ≤ T R ≤ 1000 °C. Edge cracks did not form in the material rolled at 500 °C, but widened and deepened into the inside of plate as T R increased from 500 °C. Edge cracks were most severe in the material rolled at 1000 °C. Mn-Cr-O type non-metallic inclusion and oxidation were identified as major factors that caused edge cracking. The inclusions near edge region acted as preferential sites for crack formation. Connection between inclusion cracks and surface cracks induced edge cracking. Rolling at T R ≥ 600 °C generated distinct inclusion cracks whereas they were not serious at T R = 500 °C, so noticeable edge cracks formed at T R ≥ 600 °C. At T R = 1000 °C, significant oxidation occurred at the crack surface. This accelerated edge crack penetration by embrittling the crack tip, so severe edge cracking occurred at T R = 1000 °C.

  15. Lithium delays the radiation-induced apoptotic process in external granule cells of mouse cerebellum.

    PubMed

    Inouye, M; Yamamura, H; Nakano, A

    1995-09-01

    Proliferating cells of the external granular layer (EGL) in the developing cerebellum are highly sensitive to ionizing radiation. We examined the effect of lithium, an inhibitor of intracellular signaling, on the manifestation of radiation-induced apoptosis. Newborn mice were exposed to 0.5 Gy gamma-irradiation alone, or first were treated with lithium (10 mumol/g, SC) then given 0.5 Gy irradiation 2 hr later. The EGL was examined histologically for apoptosis at various times after treatment. Apoptotic cells increased rapidly, peaked (about 14%) 6 hr after irradiation, then decreased gradually to the control level by 24 hr. Prior treatment with lithium delayed the manifestation of apoptosis, the peak appearing at 12 hr. The disappearance of dead cells was delayed for about one day. The lithium concentration in the whole brain increased rapidly, being 30 micrograms/g at the time of irradiation and remaining at more than 40 micrograms/g for 40 hr. Lithium is reported to inhibit guanine-nucleotide binding to G proteins as well as phosphoinositide turnover. Of the variety of lesions induced by radiation, DNA double strand breaks are the most important source of cell lethality. The present findings, however, suggest that cyclic AMP-mediated and/or phosphoinositidemediated signaling systems regulate radiation-induced apoptosis.

  16. Gear crack propagation investigations

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Ballarini, Roberto

    1996-01-01

    Analytical and experimental studies were performed to investigate the effect of gear rim thickness on crack propagation life. The FRANC (FRacture ANalysis Code) computer program was used to simulate crack propagation. The FRANC program used principles of linear elastic fracture mechanics, finite element modeling, and a unique re-meshing scheme to determine crack tip stress distributions, estimate stress intensity factors, and model crack propagation. Various fatigue crack growth models were used to estimate crack propagation life based on the calculated stress intensity factors. Experimental tests were performed in a gear fatigue rig to validate predicted crack propagation results. Test gears were installed with special crack propagation gages in the tooth fillet region to measure bending fatigue crack growth. Good correlation between predicted and measured crack growth was achieved when the fatigue crack closure concept was introduced into the analysis. As the gear rim thickness decreased, the compressive cyclic stress in the gear tooth fillet region increased. This retarded crack growth and increased the number of crack propagation cycles to failure.

  17. Nonlinear damage identification of breathing cracks in Truss system

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; DeSmidt, Hans

    2014-03-01

    The breathing cracks in truss system are detected by Frequency Response Function (FRF) based damage identification method. This method utilizes damage-induced changes of frequency response functions to estimate the severity and location of structural damage. This approach enables the possibility of arbitrary interrogation frequency and multiple inputs/outputs which greatly enrich the dataset for damage identification. The dynamical model of truss system is built using the finite element method and the crack model is based on fracture mechanics. Since the crack is driven by tensional and compressive forces of truss member, only one damage parameter is needed to represent the stiffness reduction of each truss member. Assuming that the crack constantly breathes with the exciting frequency, the linear damage detection algorithm is developed in frequency/time domain using Least Square and Newton Raphson methods. Then, the dynamic response of the truss system with breathing cracks is simulated in the time domain and meanwhile the crack breathing status for each member is determined by the feedback from real-time displacements of member's nodes. Harmonic Fourier Coefficients (HFCs) of dynamical response are computed by processing the data through convolution and moving average filters. Finally, the results show the effectiveness of linear damage detection algorithm in identifying the nonlinear breathing cracks using different combinations of HFCs and sensors.

  18. Environment-Assisted Cracking in Custom 465 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Lee, E. U.; Goswami, R.; Jones, M.; Vasudevan, A. K.

    2011-02-01

    The influence of cold work and aging on the environment-assisted cracking (EAC) behavior and mechanical properties of Custom 465 stainless steel (SS) was studied. Four sets of specimens were made and tested. All specimens were initially solution annealed, rapidly cooled, and refrigerated (SAR condition). The first specimen set was steel in the SAR condition. The second specimen set was aged to the H1000 condition. The third specimen set was 60 pct cold worked, and the fourth specimen set was 60 pct cold worked and aged at temperatures ranging from 755 K to 825 K (482 °C to 552 °C) for 4 hours in air. The specimens were subsequently subjected to EAC and mechanical testing. The EAC testing was conducted, using the rising step load (RSL) technique, in aqueous solutions of NaCl of pH 7.3 with concentrations ranging from 0.0035 to 3.5 pct at room temperature. The microstructure, dislocation substructure, and crack paths, resulting from the cold work, aging, or subsequent EAC testing, were examined by optical microscopy, transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The aging of the cold-worked specimens induced carbide precipitation within the martensite lath, but not at the lath or packet boundaries. In the aged specimens, as aging temperature rose, the threshold stress intensity for EAC (KIEAC), elongation, and fracture toughness increased, but the strength and hardness decreased. The KIEAC also decreased with increasing yield strength and NaCl concentration. In the SAR and H1000 specimens, the EAC propagated along the prior austenite grain boundary, while in the cold-worked and cold-worked and aged specimens, the EAC propagated along the martensite lath, and its packet and prior austenite grain boundaries. The controlling mechanism for the observed EAC was identified to be hydrogen embrittlement.

  19. Study on Flake Formation Behavior and Its Influence Factors in Cr5 Steel

    PubMed Central

    Chen, Huitao; Zhao, Wu; Yan, Liang

    2018-01-01

    A flake is a crack that is induced by trapped hydrogen within steel. To study its formation mechanism, previous studies mostly focused on the formation process and magnitude of hydrogen pressure in hydrogen traps such as cavities and cracks. However, according to recent studies, the hydrogen leads to the decline of the mechanical properties of steel, which is known as hydrogen embrittlement, is another reason for flake formation. In addition, the phenomenon of stress induced hydrogen uphill diffusion should not be neglected. All of the three behaviors are at work simultaneously. In order to further explore the formation mechanism of flakes in steel, the process of flake initiation and growth were studied with the following three coupling factors: trap hydrogen pressure, hydrogen embrittlement, and stress induced hydrogen re-distribution. The analysis model was established using the finite element method, and a crack whose radius is 0.5 mm was set in its center. The cohesive method and Bilinear Traction Separate Law (BTSL) were used to address the coupling effect. The results show that trap hydrogen pressure is the main driving force for flake formation. After the high hydrogen pressure was generated around the trap, a stress field formed. In addition, the trap is the center of stress concentration. Then, hydrogen is concentrated in a distribution around this trap, and most of the steel mechanical properties are reduced. The trap size is a key factor for defining the critical hydrogen content for flake formation and propagation. However, when the trap size exceeds the specified value, the critical hydrogen content does not change any more. As for the crack whose radius is 0.5 mm, the critical hydrogen content of Cr5VMo steel is 2.2 ppm, which is much closer to the maximum safe hydrogen concentration of 2.0 ppm used in China. The work presented in this article increases our understanding of flake formation and propagation mechanisms in steel. PMID:29702610

  20. Hydrogen-water ameliorates radiation-induced gastrointestinal toxicity via MyD88’s effects on the gut microbiota

    PubMed Central

    Xiao, Hui-wen; Li, Yuan; Luo, Dan; Dong, Jia-li; Zhou, Li-xin; Zhao, Shu-yi; Zheng, Qi-sheng; Wang, Hai-chao; Cui, Ming; Fan, Sai-jun

    2018-01-01

    Although radiation therapy is a cornerstone of modern management of malignancies, various side effects are inevitably linked to abdominal and pelvic cancer after radiotherapy. Radiation-mediated gastrointestinal (GI) toxicity impairs the life quality of cancer survivors and even shortens their lifespan. Hydrogen has been shown to protect against tissue injuries caused by oxidative stress and excessive inflammation, but its effect on radiation-induced intestinal injury was previously unknown. In the present study, we found that oral gavage with hydrogen-water increased the survival rate and body weight of mice exposed to total abdominal irradiation (TAI); oral gavage with hydrogen-water was also associated with an improvement in GI tract function and the epithelial integrity of the small intestine. Mechanistically, microarray analysis revealed that hydrogen-water administration upregulated miR-1968-5p levels, thus resulting in parallel downregulation of MyD88 expression in the small intestine after TAI exposure. Additionally, high-throughput sequencing showed that hydrogen-water oral gavage resulted in retention of the TAI-shifted intestinal bacterial composition in mice. Collectively, our findings suggested that hydrogen-water might be used as a potential therapeutic to alleviate intestinal injury induced by radiotherapy for abdominal and pelvic cancer in preclinical settings. PMID:29371696

  1. Fatigue Analyses Under Constant- and Variable-Amplitude Loading Using Small-Crack Theory

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Phillips, E. P.; Everett, R. A., Jr.

    1999-01-01

    Studies on the growth of small cracks have led to the observation that fatigue life of many engineering materials is primarily "crack growth" from micro-structural features, such as inclusion particles, voids, slip-bands or from manufacturing defects. This paper reviews the capabilities of a plasticity-induced crack-closure model to predict fatigue lives of metallic materials using "small-crack theory" under various loading conditions. Constraint factors, to account for three-dimensional effects, were selected to correlate large-crack growth rate data as a function of the effective stress-intensity factor range (delta-Keff) under constant-amplitude loading. Modifications to the delta-Keff-rate relations in the near-threshold regime were needed to fit measured small-crack growth rate behavior. The model was then used to calculate small-and large-crack growth rates, and to predict total fatigue lives, for notched and un-notched specimens under constant-amplitude and spectrum loading. Fatigue lives were predicted using crack-growth relations and micro-structural features like those that initiated cracks in the fatigue specimens for most of the materials analyzed. Results from the tests and analyses agreed well.

  2. Stress Corrosion Cracking of Ni-Fe-Cr Alloys Relevant to Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Persaud, Suraj

    Stress corrosion cracking (SCC) of Ni-Fe-Cr alloys and weld metals was investigated in simulated environments representative of high temperature water used in the primary and secondary circuits of nuclear power plants. The mechanism of primary water SCC (PWSCC) was studied in Alloys 600, 690, 800 and Alloy 82 dissimilar metal welds using the internal oxidation model as a guide. Initial experiments were carried out in a 480°C hydrogenated steam environment considered to simulate high temperature reducing primary water. Ni alloys underwent classical internal oxidation intragranularly resulting in the expulsion of the solvent metal, Ni, to the surface. Selective intergranular oxidation of Cr in Alloy 600 resulted in embrittlement, while other alloys were resistant owing to their increased Cr contents. Atom probe tomography was used to determine the short-circuit diffusion path used for Ni expulsion at a sub-nanometer scale, which was concluded to be oxide-metal interfaces. Further exposures of Alloys 600 and 800 were done in 315°C simulated primary water and intergranular oxidation tendency was comparable to 480°C hydrogenated steam. Secondary side work involved SCC experiments and electrochemical measurements, which were done at 315°C in acid sulfate solutions. Alloy 800 C-rings were found to undergo acid sulfate SCC (AcSCC) to a depth of up to 300 microm in 0.55 M sulfate solution at pH 4.3. A focused-ion beam was used to extract a crack tip from a C-ring and high resolution analytical electron microscopy revealed a duplex oxide structure and the presence of sulfur. Electrochemical measurements were taken on Ni alloys to complement crack tip analysis; sulfate was concluded to be the aggressive anion in mixed sulfate and chloride systems. Results from electrochemical measurements and crack tip analysis suggested a slip dissolution-type mechanism to explain AcSCC in Ni alloys.

  3. Effects of Changing Stress Amplitude on the Rate of Fatigue-Crack Propagation in Two Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Hudson, C. Michael; Hardrath, Herbert F.

    1961-01-01

    A series of fatigue tests with specimens subjected to constant amplitude and two-step axial loads were conducted on 12-inch-wide sheet specimens of 2024-T3 and 7075-T6 aluminum alloy to study the effects of a change in stress level on fatigue-crack propagation. Comparison of the results of the tests in which the specimens were tested at first a high and then a low stress level with those of the constant-stress- amplitude tests indicated that crack propagation was generally delayed after the transition to the lower stress level. In the tests in which the specimens were tested at first a low and then a high stress level, crack propagation continued at the expected rate after the change in stress levels.

  4. Cationic mononuclear ruthenium carboxylates as catalyst prototypes for self-induced hydrogenation of carboxylic acids.

    PubMed

    Naruto, Masayuki; Saito, Susumu

    2015-08-28

    Carboxylic acids are ubiquitous in bio-renewable and petrochemical sources of carbon. Hydrogenation of carboxylic acids to yield alcohols produces water as the only byproduct, and thus represents a possible next generation, sustainable method for the production of these alternative energy carriers/platform chemicals on a large scale. Reported herein are molecular insights into cationic mononuclear ruthenium carboxylates ([Ru(OCOR)](+)) as prototypical catalysts for the hydrogenation of carboxylic acids. The substrate-derived coordinated carboxylate was found to function initially as a proton acceptor for the heterolytic cleavage of dihydrogen, and subsequently also as an acceptor for the hydride from [Ru-H](+), which was generated in the first step (self-induced catalysis). The hydrogenation proceeded selectively and at high levels of functional group tolerance, a feature that is challenging to achieve with existing heterogeneous/homogeneous catalyst systems. These fundamental insights are expected to significantly benefit the future development of metal carboxylate-catalysed hydrogenation processes of bio-renewable resources.

  5. Cationic mononuclear ruthenium carboxylates as catalyst prototypes for self-induced hydrogenation of carboxylic acids

    PubMed Central

    Naruto, Masayuki; Saito, Susumu

    2015-01-01

    Carboxylic acids are ubiquitous in bio-renewable and petrochemical sources of carbon. Hydrogenation of carboxylic acids to yield alcohols produces water as the only byproduct, and thus represents a possible next generation, sustainable method for the production of these alternative energy carriers/platform chemicals on a large scale. Reported herein are molecular insights into cationic mononuclear ruthenium carboxylates ([Ru(OCOR)]+) as prototypical catalysts for the hydrogenation of carboxylic acids. The substrate-derived coordinated carboxylate was found to function initially as a proton acceptor for the heterolytic cleavage of dihydrogen, and subsequently also as an acceptor for the hydride from [Ru–H]+, which was generated in the first step (self-induced catalysis). The hydrogenation proceeded selectively and at high levels of functional group tolerance, a feature that is challenging to achieve with existing heterogeneous/homogeneous catalyst systems. These fundamental insights are expected to significantly benefit the future development of metal carboxylate-catalysed hydrogenation processes of bio-renewable resources. PMID:26314266

  6. Delay, doubt, and decision: how delaying a choice reduces the appeal of (descriptively) normative options.

    PubMed

    van de Ven, Niels; Gilovich, Thomas; Zeelenberg, Marcel

    2010-04-01

    To help explain a regularity in democratic elections, we examined whether choosing to delay making a choice between a focal option and an alternative tends to make people subsequently less likely to choose what they would otherwise have chosen. The results of two experiments demonstrated that participants who were induced to delay making a decision were indeed less likely to choose the descriptively normative option. An additional experiment that primed a sense of doubt in participants provided support for a self-perception account of this result. Electing to delay making a choice is interpreted as an indication of doubt--doubt that tends to be attributed to the most prominent option. Delay-induced doubt about the normative option makes it less likely to be selected.

  7. Detection of special nuclear material from delayed neutron emission induced by a dual-particle monoenergetic source

    DOE PAGES

    Mayer, Michael F.; Nattress, J.; Jovanovic, I.

    2016-06-27

    Detection of unique signatures of special nuclear materials is critical for their interdiction in a variety of nuclear security and nonproliferation scenarios. We report on the observation of delayed neutrons from fission of uranium induced in dual-particle active interrogation based on the 11B(d,n γ) 12C nuclear reaction. Majority of the fissions are attributed to fast fission induced by the incident quasi-monoenergetic neutrons. A Li-doped glass–polymer composite scintillation neutron detector, which displays excellent neutron/γ discrimination at low energies, was used in the measurements, along with a recoil-based liquid scintillation detector. Time- dependent buildup and decay of delayed neutron emission from 238Umore » were measured between the interrogating beam pulses and after the interrogating beam was turned off, respectively. Characteristic buildup and decay time profiles were compared to the common parametrization into six delayed neutron groups, finding a good agreement between the measurement and nuclear data. Furthermore, this method is promising for detecting fissile and fissionable materials in cargo scanning applications and can be readily integrated with transmission radiography using low-energy nuclear reaction sources.« less

  8. The tensile effect on crack formation in single crystal silicon irradiated by intense pulsed ion beam

    NASA Astrophysics Data System (ADS)

    Liang, Guoying; Shen, Jie; Zhang, Jie; Zhong, Haowen; Cui, Xiaojun; Yan, Sha; Zhang, Xiaofu; Yu, Xiao; Le, Xiaoyun

    2017-10-01

    Improving antifatigue performance of silicon substrate is very important for the development of semiconductor industry. The cracking behavior of silicon under intense pulsed ion beam irradiation was studied by numerical simulation in order to understand the mechanism of induced surface peeling observed by experimental means. Using molecular dynamics simulation based on Stillinger Weber potential, tensile effect on crack growth and propagation in single crystal silicon was investigated. Simulation results reveal that stress-strain curves of single crystal silicon at a constant strain rate can be divided into three stages, which are not similar to metal stress-strain curves; different tensile load velocities induce difference of single silicon crack formation speed; the layered stress results in crack formation in single crystal silicon. It is concluded that the crack growth and propagation is more sensitive to strain rate, tensile load velocity, stress distribution in single crystal silicon.

  9. Ethanol induces impulsive-like responding in a delay-of-reward operant choice procedure: impulsivity predicts autoshaping.

    PubMed

    Tomie, A; Aguado, A S; Pohorecky, L A; Benjamin, D

    1998-10-01

    Autoshaping conditioned responses (CRs) are reflexive and targeted motor responses expressed as a result of experience with reward. To evaluate the hypothesis that autoshaping may be a form of impulsive responding, within-subjects correlations between performance on autoshaping and impulsivity tasks were assessed in 15 Long-Evans hooded rats. Autoshaping procedures [insertion of retractable lever conditioned stimulus (CS) followed by the response-independent delivery of food (US)] were followed by testing for impulsive-like responding in a two-choice lever-press operant delay-of-reward procedure (immediate small food reward versus delayed large food reward). Delay-of-reward functions revealed two distinct subject populations. Subjects in the Sensitive group (n=7) were more impulsive-like, increasing immediate reward choices at longer delays for large reward, while those in the Insensitive group (n=8) responded predominantly on only one lever. During the prior autoshaping phase, the Sensitive group had performed more autoshaping CRs, and correlations revealed that impulsive subjects acquired the autoshaping CR in fewer trials. In the Sensitive group, acute injections of ethanol (0, 0.25, 0.50, 1.00, 1.50 g/kg) given immediately before delay-of-reward sessions yielded an inverted U-shaped dose-response curve with increased impulsivity induced by the 0.25, 0.50, and 1.00 g/kg doses of ethanol, while choice strategy of the Insensitive group was not influenced by ethanol dose. Ethanol induced impulsive-like responding only in rats that were flexible in their response strategy (Sensitive group), and this group also performed more autoshaping CRs. Data support the hypothesis that autoshaping and impulsivity are linked.

  10. The interaction of fatigue cracks with a residual stress field using thermoelastic stress analysis and synchrotron X-ray diffraction experiments

    PubMed Central

    Amjad, Khurram; Asquith, David; Sebastian, Christopher M.; Wang, Wei-Chung

    2017-01-01

    This article presents an experimental study on the fatigue behaviour of cracks emanating from cold-expanded holes utilizing thermoelastic stress analysis (TSA) and synchrotron X-ray diffraction (SXRD) techniques with the aim of resolving the long-standing ambiguity in the literature regarding potential relaxation, or modification, of beneficial compressive residual stresses as a result of fatigue crack propagation. The crack growth rates are found to be substantially lower as the crack tip moved through the residual stress zone induced by cold expansion. The TSA results demonstrated that the crack tip plastic zones were reduced in size by the presence of the residual compressive stresses induced by cold expansion. The crack tip plastic zones were found to be insignificant in size in comparison to the residual stress zone resulting from cold expansion, which implied that they were unlikely to have had a notable impact on the surrounding residual stresses induced by cold expansion. The residual stress distributions measured along the direction of crack growth, using SXRD, showed no signs of any significant stress relaxation or redistribution, which validates the conclusions drawn from the TSA data. Fractographic analysis qualitatively confirmed the influence on crack initiation of the residual stresses induced by the cold expansion. It was found that the application of single compressive overload caused a relaxation, or reduction in the residual stresses, which has wider implications for improving the fatigue life. PMID:29291095

  11. Evaluation of thiosulfate as a substitute for hydrogen sulfide in sour corrosion fatigue studies

    NASA Astrophysics Data System (ADS)

    Kappes, Mariano Alberto

    This work evaluates the possibility of replacing hydrogen sulfide (H 2S) with thiosulfate anion (S2O32- ) in sour corrosion fatigue studies. H2S increases the corrosion fatigue crack growth rate (FCGR) and can be present in carbon steel risers and flowlines used in off-shore oil production. Corrosion tests with gaseous H2S require special facilities with safety features, because H2S is a toxic and flammable gas. The possibility of replacing H2S with S2O32-, a non-toxic anion, for studying stress corrosion cracking of stainless and carbon steels in H2S solutions was first proposed by Tsujikawa et al. ( Tsujikawa et al., Corrosion, 1993. 49(5): p. 409-419). In this dissertation, Tsujikawa work will be extended to sour corrosion fatigue of carbon steels. H2S testing is often conducted in deareated condition to avoid oxygen reaction with sulfide that yields sulfur and to mimic oil production conditions. Nitrogen deareation was also adopted in S2O3 2- testing, and gas exiting the cell was forced through a sodium hydroxide trap. Measurements of the sulfide content of this trap were used to estimate the partial pressure of H2S in nitrogen, and Henry's law was used to estimate the content of H2S in the solution in the cell. H2S was produced by a redox reaction of S2O 32-, which required electrons from carbon steel corrosion. This reaction is spontaneous at the open circuit potential of steel. Therefore, H2S concentration was expected to be maximum at the steel surface, and this concentration was estimated by a mass balance analysis. Carbon steel specimens exposed to S2O32- containing solutions developed a film on their surface, composed by iron sulfide and cementite. The film was not passivating and a good conductor of electrons. Hydrogen permeation experiments proved that this film controls the rate of hydrogen absorption of steels exposed to thiosulfate containing solutions. The absorption of hydrogen in S2O3 2- solutions was compared with the absorption of hydrogen in

  12. Hyperoxygenated hydrogen-rich solution suppresses shock- and resuscitation-induced liver injury.

    PubMed

    Dang, Yangjie; Liu, Ting; Mei, Xiaopeng; Meng, Xiangzhong; Gou, Xingchun; Deng, Bin; Xu, Hao; Xu, Lixian

    2017-12-01

    It is not known whether simultaneous delivery of hydrogen and oxygen can reduce injury caused by hemorrhagic shock and resuscitation (HSR). This study investigated the therapeutic potential of hyperoxygenated hydrogen-rich solution (HHOS), a combined hydrogen/oxygen carrier, in a rat model of HSR-induced liver injury. Rats (n = 60) were randomly divided into 5 groups (n = 6 per group at each time point). One group underwent sham operation, and the others were subjected to severe hemorrhagic shock and then treated with lactated Ringer's solution (LRS), hydrogen-rich solution, hyperoxygenated solution, or HHOS. At 2 and 6 h after resuscitation, blood samples (n = 6) were collected from the femoral artery and serum concentrations of alanine aminotransferase and aspartate aminotransferase (AST) were measured. Rats were then sacrificed, and histopathological changes in the liver were evaluated by quantifying the percentage of apoptotic cells by caspase-3 immunohistochemistry and terminal deoxynucleotidyl transferase dUTP nick-end labeling. Inflammation was assessed by assessing malondialdehyde content and tumor necrosis factor-α, and interleukin (IL)-6 expression. Compared to lactated Ringer's solution, hydrogen-rich solution, or hyperoxygenated solution groups, serum AST and alanine aminotransferase levels and IL-6, tumor necrosis factor-α, and malondialdehyde expression in liver tissue were decreased by HHOS treatment. The number of caspase-3- and terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells was decreased (P < 0.05) by HHOS treatment, 2 and 6 h after resuscitation. HHOS has protective effects against liver injury in a rat model of HSR. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Computerized evaluation of holographic interferograms for fatigue crack detection in riveted lap joints

    NASA Astrophysics Data System (ADS)

    Zhou, Xiang

    Using an innovative portable holographic inspection and testing system (PHITS) developed at the Australian Defence Force Academy, fatigue cracks in riveted lap joints can be detected by visually inspecting the abnormal fringe changes recorded on holographic interferograms. In this thesis, for automatic crack detection, some modern digital image processing techniques are investigated and applied to holographic interferogram evaluation. Fringe analysis algorithms are developed for identification of the crack-induced fringe changes. Theoretical analysis of PHITS and riveted lap joints and two typical experiments demonstrate that the fatigue cracks in lightly-clamped joints induce two characteristic fringe changes: local fringe discontinuities at the cracking sites; and the global crescent fringe distribution near to the edge of the rivet hole. Both of the fringe features are used for crack detection in this thesis. As a basis of the fringe feature extraction, an algorithm for local fringe orientation calculation is proposed. For high orientation accuracy and computational efficiency, Gaussian gradient filtering and neighboring direction averaging are used to minimize the effects of image background variations and random noise. The neighboring direction averaging is also used to approximate the fringe directions in centerlines of bright and dark fringes. Experimental results indicate that for high orientation accuracy the scales of the Gaussian filter and neighboring direction averaging should be chosen according to the local fringe spacings. The orientation histogram technique is applied to detect the local fringe discontinuity due to the fatigue cracks. The Fourier descriptor technique is used to characterize the global fringe distribution change from a circular to a crescent distribution with the fatigue crack growth. Experiments and computer simulations are conducted to analyze the detectability and reliability of crack detection using the two techniques. Results

  14. Shield gas induced cracks during nanosecond-pulsed laser irradiation of Zr-based metallic glass

    NASA Astrophysics Data System (ADS)

    Huang, Hu; Noguchi, Jun; Yan, Jiwang

    2016-10-01

    Laser processing techniques have been given increasing attentions in the field of metallic glasses (MGs). In this work, effects of two kinds of shield gases, nitrogen and argon, on nanosecond-pulsed laser irradiation of Zr-based MG were comparatively investigated. Results showed that compared to argon gas, nitrogen gas remarkably promoted the formation of cracks during laser irradiation. Furthermore, crack formation in nitrogen gas was enhanced by increasing the peak laser power intensity or decreasing the laser scanning speed. X-ray diffraction and micro-Raman spectroscopy indicated that the reason for enhanced cracks in nitrogen gas was the formation of ZrN.

  15. Delay-bandwidth product of electromagnetically induced transparency media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tidstroem, Jonas; Jaenes, Peter; Andersson, L. Mauritz

    2007-05-15

    The limitations on the delay-bandwidth product (DBP) in an electromagnetically induced transparency medium are investigated analytically by studying the susceptibility of the system, derived through Lindblad's master equation, including dephasing. The effect of inhomogeneous broadening is treated. It is shown that the DBP for a given material is fundamentally limited by the frequency-dependent absorption, while the residual absorption limits the penetration length of a pulse. Simple expression for the optimal choice of parameters to maximize the DBP are derived. Also, the length of a device is presented as a function of DBP and control-field Rabi frequency. Supporting these results, numericalmore » calculations are carried out through the Maxwell-Bloch equations in the slowly varying envelope approximation. The results are scalable, hence they apply to the case of atoms or molecules in a gas as well as quantum dots and wells.« less

  16. On the Crack Bifurcation and Fanning of Crack Growth Data

    NASA Technical Reports Server (NTRS)

    Forman, Royce G.; Zanganeh, Mohammad

    2015-01-01

    Crack growth data obtained from ASTM load shedding method for different R values show some fanning especially for aluminum alloys. It is believed by the authors and it has been shown before that the observed fanning is due to the crack bifurcation occurs in the near threshold region which is a function of intrinsic properties of the alloy. Therefore, validity of the ASTM load shedding test procedure and results is confirmed. However, this position has been argued by some experimentalists who believe the fanning is an artifact of the test procedure and thus the obtained results are invalid. It has been shown that using a special test procedure such as using compressively pre-cracked specimens will eliminate the fanning effect. Since not using the fanned data fit can result in a significantly lower calculated cyclic life, design of a component, particularly for rotorcraft and propeller systems will considerably be impacted and therefore this study is of paramount importance. In this effort both test procedures i.e. ASTM load shedding and the proposed compressive pre-cracking have been used to study the fatigue crack growth behavior of compact tension specimens made of aluminum alloy 2524-T3. Fatigue crack growth paths have been closely observed using SEM machines to investigate the effects of compression pre-cracking on the crack bifurcation behavior. The results of this study will shed a light on resolving the existing argument by better understanding of near threshold fatigue crack growth behavior.

  17. Effectiveness and adverse effects of the use of apomorphine and 3% hydrogen peroxide solution to induce emesis in dogs.

    PubMed

    Khan, Safdar A; McLean, Mary Kay; Slater, Margaret; Hansen, Steven; Zawistowski, Stephen

    2012-11-01

    To determine the effectiveness and adverse effects of apomorphine and 3% hydrogen peroxide solution used for emesis in dogs. Prospective observational study. 147 dogs that received apomorphine (IV or placed in the conjunctival sac) or 3% hydrogen peroxide solution (PO) to induce emesis after exposure to toxic agents. Data regarding signalment; agent information; type, dose, route, and number of emetic administrations; whether emesis was successful; number of times emesis occurred; percentage of ingested agent recovered; and adverse effects were collected via telephone during American Society for the Prevention of Cruelty to Animals Animal Poison Control Center operations and stored in a database for analysis. Mann-Whitney and Fisher exact tests were used to evaluate emetic success rates. Apomorphine and 3% hydrogen peroxide solution successfully induced emesis in 59 of 63 (94%) and 76 of 84 (90%) of dogs, respectively. Mean time to onset of emesis after the first dose of emetic was 14.5 and 18.6 minutes when hydrogen peroxide (n = 37) and apomorphine (31) were used, respectively, with mean durations of 42 and 27 minutes, respectively. Mean estimates for recovery of ingested agents were 48% for hydrogen peroxide and 52% for apomorphine. Adverse effects were reported in 16 of 112 (14%) dogs for which information was available. 3% hydrogen peroxide solution and apomorphine effectively induced emesis in dogs when used as directed. Emesis occurred within minutes after administration and helped recover substantial amounts of ingested agents. Adverse effects of both emetics were considered mild and self-limiting.

  18. Action of (R)-sila-venlafaxine and reboxetine to antagonize cisplatin-induced acute and delayed emesis in the ferret

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warneck, Julie B.; Cheng, Frankie H.M.; Barnes, Matthew J.

    2008-11-01

    The chemotherapeutic drug cisplatin is associated with severe gastrointestinal toxicity that can last for several days. A recent strategy to treat the nausea and emesis includes the combination of a 5-HT{sub 3} receptor antagonist, a glucocorticoid, and an NK{sub 1} receptor antagonist. The present studies explore the use of the selective noradrenaline reuptake inhibitors, (R)-sila-venlafaxine, (R,R)-reboxetine and (S,S)-reboxetine to prevent cisplatin (5 mg/kg, i.p.)-induced acute (0-24 h) and delayed (24-72 h) emesis in ferrets. The positive control regimen of ondansetron and dexamethasone, both at 1 mg/kg/8 h, reduced acute and delayed emesis by 100 (P < 0.001) and 61% (Pmore » < 0.05). (R)-sila-venlafaxine at 5 and 15 mg/kg/4 h reduced acute emesis by 86 (P < 0.01) and 66% (P < 0.05), respectively and both enantiomers of reboxetine at 1 mg/kg/12 h also reduced the response by {approx} 70-90% (P < 0.05). Out of the reuptake inhibitors, only (R)-sila-venlafaxine at 15 mg/kg/4 h was active to reduce delayed emesis (a 57% reduction was observed (P < 0.05)); its terminal plasma levels were positively correlated with an inhibition of emesis during the delayed phase (P < 0.05). (R)-sila-venlafaxine was also examined against a higher dose of cisplatin 10 mg/kg, i.p. (3 h test) and it dose-dependently antagonized the response (maximum reduction was 94% at 10 mg/kg, p.o.; P < 0.01) but it was ineffective against apomorphine (0.125 mg/kg, s.c.) and ipecacuanha (2 mg/kg, p.o.)-induced emesis (P > 0.05). In conclusion, the studies provide the first evidence for an anti-emetic potential of noradrenaline reuptake inhibitors to reduce chemotherapy-induced acute and delayed emesis.« less

  19. Delayed brain ischemia tolerance induced by electroacupuncture pretreatment is mediated via MCP-induced protein 1

    PubMed Central

    2013-01-01

    involved in EA pretreatment-induced delayed brain ischemia tolerance. PMID:23663236

  20. Delayed Cell Cycle Progression and Apoptosis Induced by Hemicellulase-Treated Agaricus blazei

    PubMed Central

    Kasai, Hirotake

    2007-01-01

    We examined the effects of hemicellulase-treated Agaricus blazei (AB fraction H, ABH) on growth of several tumor cell lines. ABH inhibited the proliferation of some cell lines without cytotoxic effects. It markedly prolonged the S phase of the cell cycle. ABH also induced mitochondria-mediated apoptosis in different cell lines. However, it had no impact on the growth of other cell lines. ABH induced strong activation of p38 mitogen-activated protein kinase (MAPK) in the cells in which it evoked apoptosis. On the other hand, ABH showed only a weak p38 activation effect in those cell lines in which it delayed cell cycle progression with little induction of apoptosis. However, p38 MAPK-specific inhibitor inhibited both ABH-induced effects, and ABH also caused apoptosis in the latter cells under conditions of high p38 MAPK activity induced by combined treatment with TNF-α. These results indicate that the responsiveness of p38 MAPK to ABH, which differs between cell lines, determines subsequent cellular responses on cell growth. PMID:17342245

  1. Quantum study of Eley-Rideal reaction and collision induced desorption of hydrogen atoms on a graphite surface. II. H-physisorbed case.

    PubMed

    Martinazzo, Rocco; Tantardini, Gian Franco

    2006-03-28

    Following previous investigation of collision induced (CI) processes involving hydrogen atoms chemisorbed on graphite [R. Martinazzo and G. F. Tantardini, J. Chem. Phys. 124, 124702 (2006)], the case in which the target hydrogen atom is initially physisorbed on the surface is considered here. Several adsorbate-substrate initial states of the target H atom in the physisorption well are considered, and CI processes are studied for projectile energies up to 1 eV. Results show that (i) Eley-Rideal cross sections at low collision energies may be larger than those found in the H-chemisorbed case but they rapidly decrease as the collision energy increases; (ii) product hydrogen molecules are vibrationally very excited; (iii) collision induced desorption cross sections rapidly increase, reaching saturation values greater than 10 A2; (iv) trapping of the incident atoms is found to be as efficient as the Eley-Rideal reaction at low energies and remains sizable (3-4 A2) at high energies. The latter adsorbate-induced trapping results mainly in formation of metastable hot hydrogen atoms, i.e., atoms with an excess energy channeled in the motion parallel to the surface. These atoms might contribute in explaining hydrogen formation on graphite.

  2. Laser-induced periodic surface structures on 6H-SiC single crystals using temporally delayed femtosecond laser double-pulse trains

    NASA Astrophysics Data System (ADS)

    Song, Juan; Tao, Wenjun; Song, Hui; Gong, Min; Ma, Guohong; Dai, Ye; Zhao, Quanzhong; Qiu, Jianrong

    2016-04-01

    In this paper, a time-delay-adjustable double-pulse train with 800-nm wavelength, 200-fs pulse duration and a repetition rate of 1 kHz, produced by a collinear two-beam optical system like a Mach-Zehnder interferometer, was employed for irradiation of 6H-SiC crystal. The dependence of the induced structures on time delay of double-pulse train for parallel-polarization configuration was studied. The results show that as the time delay of collinear parallel-polarization dual-pulse train increased, the induced near-subwavelength ripples (NSWRs) turn from irregular rippled pattern to regularly periodic pattern and have their grooves much deepened. The characteristics timescale for this transition is about 6.24 ps. Besides, the areas of NSWR were found to decay exponentially for time delay from 0 to 1.24 ps and then slowly increase for time delay from 1.24 to 14.24 ps. Analysis shows that multiphoton ionization effect, grating-assisted surface plasmon coupling effect, and timely intervene of second pulse in a certain physical stage experienced by 6H-SiC excited upon first pulse irradiation may contribute to the transition of morphology details.

  3. Quantification of fatigue cracking in CT specimens with passive and active piezoelectric sensing

    NASA Astrophysics Data System (ADS)

    Yu, Jianguo; Ziehl, Paul; Zarate, Boris; Caicedo, Juan; Yu, Lingyu; Giurgiutiu, Victor; Metrovich, Brian; Matta, Fabio

    2010-04-01

    Monitoring of fatigue cracks in steel bridges is of interest to bridge owners and agencies. Monitoring of fatigue cracks has been attempted with acoustic emission using either resonant or broadband sensors. One drawback of passive sensing is that the data is limited to that caused by growing cracks. In this work, passive emission was complemented with active sensing (piezoelectric wafer active sensors) for enhanced detection capabilities. Passive and active sensing methods were described for fatigue crack monitoring on specialized compact tension specimens. The characteristics of acoustic emission were obtained to understand the correlation of acoustic emission behavior and crack growth. Crack and noise induced signals were interpreted through Swansong II Filter and waveform-based approaches, which are appropriate for data interpretation of field tests. Upon detection of crack extension, active sensing was activated to measure the crack size. Model updating techniques were employed to minimize the difference between the numerical results and experimental data. The long term objective of this research is to develop an in-service prognostic system to monitor structural health and to assess the remaining fatigue life.

  4. Indentation cracking of composite matrix materials.

    PubMed

    Baran, G; Shin, W; Abbas, A; Wunder, S

    1994-08-01

    Composite restorative materials wear by a fatigue mechanism in the occlusal contact area. Here, tooth cusps and food debris cyclically indent the restoration. Modeling this phenomenon requires an understanding of material response to indentation. The question in this study was whether material response depends on indenter size and geometry, and also, whether polymers used in restorative materials should be considered elastic and brittle, or plastic and ductile for modeling purposes. Three resins used as matrices in proprietary restorative composites were the experimental materials. To ascertain the influence of glass transition temperature, liquid sorption, and small amounts of filler on indentation response, we prepared materials with various degrees of cure; some samples were soaked in a 50/50 water/ethanol solution, and 3 vol% silica was added in some cases. Indentation experiments revealed that no cracking occurred in any material after indentation by Vickers pyramid or spherical indenters with diameters equal to or smaller than 0.254 mm. Larger spherical indenters induced subsurface median and surface radial and/or ring cracks. Critical loads causing subsurface cracks were measured. Indentation with suitably large spherical indenters provoked an elastoplastic response in polymers, and degree of cure and Tg had less influence on critical load than soaking in solution. Crack morphology was correlated with yield strain. Commonly held assumptions regarding the brittle elastic behavior of composite matrix materials may be incorrect.

  5. Proceedings of the Joint Seminar; Hydrogen Management in Steel Weldments, Melbourne, Australia, 23rd October 1996.

    DTIC Science & Technology

    1997-01-01

    Cr-Mo quenched and tempered (Q&T) steel . Both A723 Grade 1 and Grade 2 compositions were evaluated to determine the effects of strength, composition ...15] Craig, B., "Limitations of Alloying to Improve the Threshold for Hydrogen Stress Cracking of Steels ", Hydrogen Effects on Material Behavior ...considered are as follows: 1. Hydrogen mass transfer in steels and welded joints: analytical equipment; effect of element composition of weld metal and

  6. Impact-induced devolatilization and hydrogen isotopic fractionation of serpentine: Implications for planetary accretion

    NASA Technical Reports Server (NTRS)

    Tyburczy, James A.; Krishnamurthy, R. V.; Epstein, Samuel; Ahrens, Thomas J.

    1988-01-01

    Impact-induced devolatilization of porous serpentine was investigated using two independent experimental methods, the gas recovery and the solid recovery method, each yielding nearly identical results. For shock pressures near incipient devolatilization, the hydrogen isotopic composition of the evolved H2O is very close to that of the starting material. For shock pressures at which up to 12 percent impact-induced devolatilization occurs, the bulk evolved gas is significantly lower in deuterium than the starting material. There is also significant reduction of H2O to H2 in gases recovered at these higher shock pressures, probably caused by reaction of evolved H2O with the metal gas recovery fixture. Gaseous H2O-H2 isotopic fractionation suggests high temperature isotopic equilibrium between the gaseous species, indicating initiation of devolatilization at sites of greater than average energy deposition. Bulk gas-residual solid isotopic fractionations indicate nonequilibrium, kinetic control of gas-solid isotopic ratios. Impact-induced hydrogen isotopic fractionation of hydrous silicates during accretion can strongly affect the long-term planetary isotopic ratios of planetary bodies, leaving the interiors enriched in deuterium. Depending on the model used for extrapolation of the isotopic fractionation to devolatilization fractions greater than those investigated experimentally can result from this process.

  7. Investigation of Helicopter Longeron Cracks

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Baughman, James; Wallace, Terryl A.

    2009-01-01

    Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurgical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.

  8. Ultrasound-targeted microbubble destruction enhances delayed BMC delivery and attenuates post-infarction cardiac remodelling by inducing engraftment signals.

    PubMed

    Chen, Yanmei; Zhang, Chuanxi; Shen, Shuxin; Guo, Shengcun; Zhong, Lintao; Li, Xinzhong; Chen, Guojun; Chen, Gangbin; He, Xiang; Huang, Chixiong; He, Nvqin; Liao, Wangjun; Liao, Yulin; Bin, Jianping

    2016-12-01

    Delayed administration of bone marrow cells (BMCs) at 2-4 weeks after successful reperfusion in patients with acute myocardial infarction (MI) does not improve cardiac function. The reduction in engraftment signals observed following this time interval might impair the effects of delayed BMC treatment. In the present study, we aimed to determine whether ultrasound-targeted microbubble destruction (UTMD) treatment could increase engraftment signals, enhance the delivery of delayed BMCs and subsequently attenuate post-infarction cardiac remodelling. A myocardial ischaemia/reperfusion (I/R) model was induced in Wistar rats via left coronary ligation for 45 min followed by reperfusion. Western blotting revealed that engraftment signals peaked at 7 days post-I/R and were dramatically lower at 14 days post-I/R. The lower engraftment signals at 14 days post-I/R could be triggered by UTMD treatment at a mechanical index of 1.0-1.9. The troponin I levels in the 1.9 mechanical index group were higher than in the other groups. Simultaneous haematoxylin and eosin staining and fluorescence revealed that the number of engrafted BMCs in the ischaemic zone was greater in the group treated with both UTMD and delayed BMC transplantation than in the control groups (P<0.05). Both UTMD and delayed BMC transplantation improved cardiac function and decreased cardiac fibrosis at 4 weeks after treatment, as compared with control groups (both P<0.05). Histopathology demonstrated that UTMD combined with delayed BMC transplantation increased capillary density, myocardial cell proliferation and c-kit + cell proliferation. These findings indicated that UTMD treatment could induce engraftment signals and enhance homing of delayed BMCs to ischaemic myocardium, attenuating post-infarction cardiac remodelling by promoting neovascularization, cardiomyogenesis and expansion of cardiac c-kit + cells. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  9. NASA/FLAGRO - FATIGUE CRACK GROWTH COMPUTER PROGRAM

    NASA Technical Reports Server (NTRS)

    Forman, R. G.

    1994-01-01

    Structural flaws and cracks may grow under fatigue inducing loads and, upon reaching a critical size, cause structural failure to occur. The growth of these flaws and cracks may occur at load levels well below the ultimate load bearing capability of the structure. The Fatigue Crack Growth Computer Program, NASA/FLAGRO, was developed as an aid in predicting the growth of pre-existing flaws and cracks in structural components of space systems. The earlier version of the program, FLAGRO4, was the primary analysis tool used by Rockwell International and the Shuttle subcontractors for fracture control analysis on the Space Shuttle. NASA/FLAGRO is an enhanced version of the program and incorporates state-of-the-art improvements in both fracture mechanics and computer technology. NASA/FLAGRO provides the fracture mechanics analyst with a computerized method of evaluating the "safe crack growth life" capabilities of structural components. NASA/FLAGRO could also be used to evaluate the damage tolerance aspects of a given structural design. The propagation of an existing crack is governed by the stress field in the vicinity of the crack tip. The stress intensity factor is defined in terms of the relationship between the stress field magnitude and the crack size. The propagation of the crack becomes catastrophic when the local stress intensity factor reaches the fracture toughness of the material. NASA/FLAGRO predicts crack growth using a two-dimensional model which predicts growth independently in two directions based on the calculation of stress intensity factors. The analyst can choose to use either a crack growth rate equation or a nonlinear interpolation routine based on tabular data. The growth rate equation is a modified Forman equation which can be converted to a Paris or Walker equation by substituting different values into the exponent. This equation provides accuracy and versatility and can be fit to data using standard least squares methods. Stress

  10. Summary of available data for estimating chloride-induced SCC crack growth rates for 304/316 stainless steel.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, Charles R.; Enos, David

    The majority of existing dry storage systems used for spent nuclear fuel (SNF) consist of a welded 304 stainless steel container placed within a passively-ventilated concrete or steel overpack. More recently fielded systems are constructed with dual certified 304/304L and in some cases, 316 or 316L. In service, atmospheric salts, a portion of which will be chloride bearing, will be deposited on the surface of these containers. Initially, the stainless steel canister surface temperatures will be high (exceeding the boiling point of water in many cases) due to decay heat from the SNF. As the SNF cools over time, themore » container surface will also cool, and deposited salts will deliquesce to form potentially corrosive chloride-rich brines. Because austenitic stainless steels are prone to chloride-induced stress corrosion cracking (CISCC), the concern has been raised that SCC may significantly impact long-term canister performance. While the susceptibility of austenitic stainless steels to CISCC in the general sense is well known, the behavior of SCC cracks (i.e., initiation and propagation behavior) under the aforementioned atmospheric conditions is poorly understood.« less

  11. Diffraction-based study of fatigue crack initiation and propagation in aerospace aluminum alloys

    NASA Astrophysics Data System (ADS)

    Gupta, Vipul K.

    crystallographic {111} slip-plane cracking typical of the Stage I crack growth mode observed in single crystals and high purity polycrystals of face centered cubic metals, and which has presently been assumed for the present materials within fatigue crack initiation models. Rather, the facets tend to have near-Mode I spatial orientation, which is another indicator of the importance of environmentally affected fatigue damage. The results provide a physical basis to develop microstructurally-based next generation multi-stage fatigue (MSF) models that should include a new crack decohesion criteria based upon environmental fatigue cracking mechanisms. EBSD study of small-cracks in alloy 7050-T7451, stressed in warm-humid environment, showed that crack-path orientation changes and crack-branching occurred at both low/high-angle grain and subgrain boundaries. Single surface trace analysis suggests that the crack-path differs substantially from crystallographic slip-planes. EBSD-based observations of small-crack propagation through subgrain structure, either formed by cyclic plastic strain accumulation or pre-existing (typical of unrecrystallized grain structure in the present materials), suggest that subgrain structure plays a crucial role in small fatigue crack propagation. As mentioned earlier, local fluctuations in small-crack growth rates appear to be caused by frequent interaction with subgrain boundaries, and multiple occurrences of crack-branching and crack-path orientation changes at low/high-angle grain and subgrain boundaries. The aforementioned deviation from low-index {001}/{101}-planes and the occurrence of high-index cracking planes observed by EBSD/Stereology, in this study and others, are interpreted as trans-subgranular decohesion or inter-subgranular cracking, due to trapped hydrogen. In summary, the results provide a firmer experimental foundation for, and clearer understanding of, the mechanisms of environmental fatigue cracking of aluminum alloys, especially the

  12. Fracture mechanics and surface chemistry studies of fatigue crack growth in an aluminum alloy

    NASA Astrophysics Data System (ADS)

    Wei, R. P.; Pao, P. S.; Hart, R. G.; Weir, T. W.; Simmons, G. W.

    1980-12-01

    Fracture mechanics and surface chemistry studies were carried out to develop further understanding of the influence of water vapor on fatigue crack growth in aluminum alloys. The room temperature fatigue crack growth response was determined for 2219-T851 aluminum alloy exposed to water vapor at pressures from 1 to 30 Pa over a range of stress intensity factors ( K). Data were also obtained in vacuum (at < 0.50 μPa), and dehumidified argon. The test results showed that, at a frequency of 5 Hz, the rate of crack growth is essentially unaffected by water vapor until a threshold pressure is reached. Above this threshold, the rates increased, reaching a maximum within one order of magnitude increase in vapor pressure. This maximum crack growth rate is equal to that obtained in air (40 to 60 pct relative humidity), distilled water and 3.5 pct NaCl solution on the same material. Parallel studies of the reactions of water vapor with fresh alloy surfaces (produced either by in situ impact fracture or by ion etching) were made by Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). The extent of surface reaction was monitored by changes in the oxygen AES and XPS signals. Correlation between the fatigue crack growth response and the surface reaction kinetics has been made, and is consistent with a transport-limited model for crack growth. The results also suggest that enhancement of fatigue crack growth by water vapor in the aluminum alloys occurs through a “hydrogen embrittle ment” mechanism.

  13. Analyses of Fatigue and Fatigue-Crack Growth under Constant- and Variable-Amplitude Loading

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1999-01-01

    Studies on the growth of small cracks have led to the observation that fatigue life of many engineering materials is primarily crack growth from micro-structural features, such as inclusion particles, voids, slip-bands or from manufacturing defects. This paper reviews the capabilities of a plasticity-induced crack-closure model to predict fatigue lives of metallic materials using small-crack theory under various loading conditions. Constraint factors, to account for three-dimensional effects, were selected to correlate large-crack growth rate data as a function of the effective stress-intensity factor range (delta K(sub eff)) under constant-amplitude loading. Modifications to the delta K(sub eff)-rate relations in the near-threshold regime were needed to fit measured small-crack growth rate behavior. The model was then used to calculate small- and large-crack growth rates, and to predict total fatigue lives, for notched and un-notched specimens under constant-amplitude and spectrum loading. Fatigue lives were predicted using crack-growth relations and micro-structural features like those that initiated cracks in the fatigue specimens for most of the materials analyzed. Results from the tests and analyses agreed well.

  14. Fracture toughness of alloy 690 and EN52 welds in air and water

    NASA Astrophysics Data System (ADS)

    Brown, C. M.; Mills, W. J.

    2002-06-01

    The effect of low- and high-temperature water with high hydrogen on the fracture toughness of alloy 690 and its weld, EN52, was characterized using elastic-plastic J IC methodology. While both materials display excellent fracture resistance in air and elevated-temperature (>93 °C) water, a dramatic degradation in toughness is observed in 54 °C water. The loss of toughness is associated with a hydrogen-induced intergranular cracking mechanism, where hydrogen is picked up from the water. Comparison of the cracking behavior in low-temperature water with that for hydrogen-precharged specimens tested in air indicates that the critical local hydrogen content required to cause low-temperature embrittlement is on the order of 120 to 160 ppm. Loading-rate studies show that cracking resistance is improved at rates above ˜ 1000 MPa √m/h, because there is insufficient time to produce grain-boundary embrittlement. Electron fractographic examinations were performed to correlate cracking behavior with microstructural features and operative fracture mechanisms.

  15. Hydrogen-rich saline alleviates experimental noise-induced hearing loss in guinea pigs.

    PubMed

    Zhou, Y; Zheng, H; Ruan, F; Chen, X; Zheng, G; Kang, M; Zhang, Q; Sun, X

    2012-05-03

    To examine the efficiency of hydrogen-rich saline in the treatment of intensive noise-induced cochlear injury. Forty guinea pigs were assigned to one of four groups: HS+NOISE (i.p. injection hydrogen-rich saline), NS+NOISE (i.p. injection normal saline), NOISE ALONE (noise control), and NO TREATMENT (normal control) groups. The HS+NOISE, NS+NOISE, and NOISE ALONE groups were exposed to intensive noise (4 h at 115 dB SPL noise of 4000±100 Hz). The auditory brainstem response (ABR) was used to examine the hearing threshold in each group. Distortion product otoacoustic emission (DPOAE) was used to examine outer hair cell function. We also examined cochlear morphology to evaluate inner and outer hair cell trauma induced by noise exposure. Hydrogen-rich saline was administered twice daily for 6 days (2.5 ml/kg, i.p.) 24 h after noise exposure. Baseline ABR thresholds and DPOAE values were normal in all groups at the measured frequencies (2, 4, 8, and 16 kHz) before noise exposure. The ABR threshold shift was 50-55 dB across the frequencies tested, and average DPOAE declined in the NOISE ALONE, NS+NOISE, and HS+NOISE groups 24 h after noise exposure. However, the changes in cochlear parameters were different between groups. The HS+NOISE group showed a significantly decreased ABR threshold value as compared with the NS+NOISE or NOISE ALONE group (P<0.01) on day 7. The mean DPOAE recovered to some extent in the three noise exposure groups, but at most frequencies the HS+NOISE group showed significantly increased DPOAE on day 7 as compared with the NS+NOISE group or NOISE ALONE group (P<0.01). Surface Corti organ preparations stained with succinate dehydrogenase (SDH) showed that most outer hair cells (OHCs) were still dropsical and a few were missing 7 days after noise exposure in the NS+NOISE group. Only a few OHCs were slightly dropsical in the HS+NOISE group. The numbers of missing hair cells 7 days after noise exposure were significantly greater in the NOISE ONLY and

  16. Micromechanisms of Crack Growth in Ceramics and Glasses in Corrosive Environments.

    DTIC Science & Technology

    1980-05-01

    Resistance Mecanique du Verre et les Moyens de l’Amelioree, Union Scientifique Continentale du Verre , Charleroix, Belgium, (1962). 8. B. A. Proctor, I...exhibit similar types of delayed failure curves. Failure occurs most rapidly at high loads. Below a critical value of the load known as the stress...fracture for the three types of materials differ greatly. Polymers and metals have plastic zones at their crack tips, so that stress corrosion

  17. Hydrogen sulfide: A novel nephroprotectant against cisplatin-induced renal toxicity.

    PubMed

    Dugbartey, George J; Bouma, Hjalmar R; Lobb, Ian; Sener, Alp

    2016-07-01

    Cisplatin is a potent chemotherapeutic agent for the treatment of various solid-organ cancers. However, a plethora of evidence indicates that nephrotoxicity is a major side effect of cisplatin therapy. While the antineoplastic action of cisplatin is due to formation of cisplatin-DNA cross-links, which damage rapidly dividing cancer cells upon binding to DNA, its nephrotoxic effect results from metabolic conversion of cisplatin into a nephrotoxin and production of reactive oxygen species, causing oxidative stress leading to renal tissue injury and potentially, kidney failure. Despite therapeutic targets in several pre-clinical and clinical studies, there is still incomplete protection against cisplatin-induced nephrotoxicity. Hydrogen sulfide (H2S), the third discovered gasotransmitter next to nitric oxide and carbon monoxide, has recently been identified in several in vitro and in vivo studies to possess specific antioxidant, anti-inflammatory and anti-apoptotic properties that modulate several pathogenic pathways involved in cisplatin-induced nephrotoxicity. The current article reviews the molecular mechanisms underlying cisplatin-induced nephrotoxicity and displays recent findings in the H2S field that could disrupt such mechanisms to ameliorate cisplatin-induced renal injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Oxidative stress-induced necrotic cell death via mitochondira-dependent burst of reactive oxygen species.

    PubMed

    Choi, Kyungsun; Kim, Jinho; Kim, Gyung W; Choi, Chulhee

    2009-11-01

    Oxidative stress is deeply involved in various brain diseases, including neurodegenerative diseases, stroke, and ischemia/reperfusion injury. Mitochondria are thought to be the target and source of oxidative stress. We investigated the role of mitochondria in oxidative stress-induced necrotic neuronal cell death in a neuroblastoma cell line and a mouse model of middle cerebral artery occlusion. The exogenous administration of hydrogen peroxide was used to study the role of oxidative stress on neuronal cell survival and mitochondrial function in vitro. Hydrogen peroxide induced non-apoptotic neuronal cell death in a c-Jun N-terminal kinase- and poly(ADP-ribosyl) polymerase-dependent manner. Unexpectedly, hydrogen peroxide treatment induced transient hyperpolarization of the mitochondrial membrane potential and a subsequent delayed burst of endogenous reactive oxygen species (ROS). The inhibition of mitochondrial hyperpolarization by diphenylene iodonium or rotenone, potent inhibitors of mitochondrial respiratory chain complex I, resulted in reduced ROS production and subsequent neuronal cell death in vitro and in vivo. The inhibition of mitochondrial hyperpolarization can protect neuronal cells from oxidative stress-induced necrotic cell death, suggesting a novel method of therapeutic intervention in oxidative stress-induced neurological disease.

  19. Stress Corrosion Cracking Study of Aluminum Alloys Using Electrochemical Noise Analysis

    NASA Astrophysics Data System (ADS)

    Rathod, R. C.; Sapate, S. G.; Raman, R.; Rathod, W. S.

    2013-12-01

    Stress corrosion cracking studies of aluminum alloys AA2219, AA8090, and AA5456 in heat-treated and non heat-treated condition were carried out using electrochemical noise technique with various applied stresses. Electrochemical noise time series data (corrosion potential vs. time) was obtained for the stressed tensile specimens in 3.5% NaCl aqueous solution at room temperature (27 °C). The values of drop in corrosion potential, total corrosion potential, mean corrosion potential, and hydrogen overpotential were evaluated from corrosion potential versus time series data. The electrochemical noise time series data was further analyzed with rescaled range ( R/ S) analysis proposed by Hurst to obtain the Hurst exponent. According to the results, higher values of the Hurst exponents with increased applied stresses showed more susceptibility to stress corrosion cracking as confirmed in case of alloy AA 2219 and AA8090.

  20. Effects of Different R ratios on Fatigue Crack Growth in Laser Peened Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Hatamleh, Omar; Hackel, Lloyd; Forth, Scott

    2007-01-01

    The influence of laser peening on the fatigue crack growth behavior of friction stir welded (FSW) Aluminum Alloy (AA) 7075-T7351 sheets was investigated. The surface modification resulting from the peening process on the fatigue crack growth of FSW was assessed for two different R ratios. The investigation indicated a significant decrease in fatigue crack growth rates resulting from using laser shock peening compared with unpeened, welded and unwelded specimens. The slower fatigue crack growth rate was attributed to the compressive residual stresses induced by the peening.