Science.gov

Sample records for hydrogen-terminated silicon surfaces

  1. Reactions of Persistent Carbenes with Hydrogen-Terminated Silicon Surfaces.

    PubMed

    Zhukhovitskiy, Aleksandr V; Mavros, Michael G; Queeney, K T; Wu, Tony; Voorhis, Troy Van; Johnson, Jeremiah A

    2016-07-13

    Surface passivation has enabled the development of silicon-based solar cells and microelectronics. However, a number of emerging applications require a paradigm shift from passivation to functionalization, wherein surface functionality is installed proximal to the silicon surface. To address this need, we report here the use of persistent aminocarbenes to functionalize hydrogen-terminated silicon surfaces via Si-H insertion reactions. Through the use of model compounds (H-Si(TMS)3 and H-Si(OTMS)3), nanoparticles (H-SiNPs), and planar Si(111) wafers (H-Si(111)), we demonstrate that among different classes of persistent carbenes, the more electrophilic and nucleophilic ones, in particular, a cyclic (alkyl)(amino)carbene (CAAC) and an acyclic diaminocarbene (ADAC), are able to undergo insertion into Si-H bonds at the silicon surface, forming persistent C-Si linkages and simultaneously installing amine or aminal functionality in proximity to the surface. The CAAC (6) is particularly notable for its clean insertion reactivity under mild conditions that produces monolayers with 21 ± 3% coverage of Si(111) atop sites, commensurate with the expected maximum of ∼20%. Atomic force and transmission electron microscopy, nuclear magnetic resonance, X-ray photoelectron, and infrared spectroscopy, and time-of-flight secondary ion mass spectrometry provided evidence for the surface Si-H insertion process. Furthermore, computational studies shed light on the reaction energetics and indicated that CAAC 6 should be particularly effective at binding to silicon dihydride, trihydride, and coupled monohyride motifs, as well as oxidized surface sites. Our results pave the way for the further development of persistent carbenes as universal ligands for silicon and potentially other nonmetallic substrates. PMID:27366818

  2. Scanning tunneling microscopy characterization of the geometric and electronic structure of hydrogen-terminated silicon surfaces

    NASA Technical Reports Server (NTRS)

    Kaiser, W. J.; Bell, L. D.; Hecht, M. H.; Grunthaner, F. J.

    1988-01-01

    Scanning tunneling microscopy (STM) methods are used to characterize hydrogen-terminated Si surfaces prepared by a novel method. The surface preparation method is used to expose the Si-SiO2 interface. STM images directly reveal the topographic structure of the Si-SiO2 interface. The dependence of interface topography on oxide preparation conditions observed by STM is compared to the results of conventional surface characterization methods. Also, the electronic structure of the hydrogen-terminated surface is studied by STM spectroscopy. The near-ideal electronic structure of this surface enables direct tunnel spectroscopy measurements of Schottky barrier phenomena. In addition, this method enables probing of semiconductor subsurface properties by STM.

  3. Hydrogen-terminated silicon substrates for low-temperature molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    Grunthaner, P. J.; Grunthaner, F. J.; Fathauer, R. W.; Lin, T. L.; Hecht, M. H.; Bell, L. D.; Kaiser, W. J.

    1989-01-01

    The preparation of hydrogen-terminated silicon surfaces for use as starting substrates for low-temperature MBE growth is examined in detail. The procedure involves the ex situ removal under nitrogen of residual oxide from a silicon substrate using a spin-clean with HF in ethanol, followed by the in situ low-temperature desorption (150 C) of physisorbed etch residues. The critical steps and the chemical basis for these steps are examined using X-ray photoelectron spectroscopy. Impurity residues at the epilayer-substrate interface following subsequent homoepitaxial growth are studied using AES, SIMS and TEM. Finally, scanning tunneling microscopy is used to examine the effect of cleaning methods on substrate morphology.

  4. 1-octadecene monolayers on Si(111) hydrogen-terminated surfaces: Effect of substrate doping

    NASA Astrophysics Data System (ADS)

    Miramond, Corinne; Vuillaume, Dominique

    2004-08-01

    We have studied the electronic properties, in relation to structural properties, of monolayers of 1-octadecene attached on a hydrogen-terminated (111) silicon surface. The molecules are attached using the free-radical reaction between C C and Si H activated by an ultraviolet illumination. We have compared the structural and electrical properties of monolayers formed on silicon substrates of different types (n type and p type) and different doping concentrations, from low-doped (˜1014cm-3) to highly doped (˜1019cm-3). We show that the monolayers on n-, p-, and p+-silicon are densely packed and that they act as very good insulating films at a nanometer thickness with leakage currents as low as ˜10-7Acm-2 and high-quality capacitance-voltage characteristics. The monolayers formed on n+-type silicon are more disordered and therefore exhibit larger leakage current densities (>10-4Acm-2) when embedded in a silicon/monolayer/metal junction. The inferior structural and electronic properties obtained with n+-type silicon pinpoint the important role of surface potential and of the position of the surface Fermi level during the chemisorption of the organic monolayers.

  5. Hydrogen-terminated silicon nanowire photocatalysis: Benzene oxidation and methyl red decomposition

    SciTech Connect

    Lian, Suoyuan; Tsang, Chi Him A.; Kang, Zhenhui; Liu, Yang; Wong, Ningbew; Lee, Shuit-Tong

    2011-12-15

    Graphical abstract: H-SiNWs can catalyze hydroxylation of benzene and degradation of methyl red under visible light irradiation. Highlights: Black-Right-Pointing-Pointer Hydrogen-terminated silicon nanowires were active photocatalyst in the hydroxylation of benzene under light. Black-Right-Pointing-Pointer Hydrogen-terminated silicon nanowires were also effective in the decomposition of methyl red dye. Black-Right-Pointing-Pointer The Si/SiO{sub x} core-shell structure is the main reason of the obtained high selectivity during the hydroxylation. -- Abstract: Hydrogen-terminated silicon nanowires (H-SiNWs) were used as heterogeneous photocatalysts for the hydroxylation of benzene and for the decomposition of methyl red under visible light irradiation. The above reactions were monitored by GC-MS and UV-Vis spectrophotometry, respectively, which shows 100% selectivity for the transformation of benzene to phenol. A complete decomposition of a 2 Multiplication-Sign 10{sup -4} M methyl red solution was achieved within 30 min. The high selectivity for the hydroxylation of benzene and the photodecomposition demonstrate the catalytic activity of ultrafine H-SiNWs during nanocatalysis.

  6. Optical characterization of ultrasmall, hydrogen-terminated and carboxyl-functionalized silicon nanoparticles in aqueous environments

    NASA Astrophysics Data System (ADS)

    Eckhoff, Dean Alan

    The primary theme of this dissertation is to characterize the optical and chemical properties of ultrasmall (˜1 nm) silicon nanoparticles (Si-np) in aqueous environments, focusing on their potential for use as luminescent markers in biophysical and biological applications. Two systems are presented in detail: hydrogen-terminated Si-np prepared through electrochemical dispersion of a crystalline Si wafer and carboxyl-functionalized Si-np prepared via thermal hydrosilylation of surface Si-H bonds with an o-ester 1-alkene. Chemical and physical characterizations are done using nuclear magnetic resonance, size exclusion chromatography, and infrared spectroscopy. Optical characterization is done via absorption and steady-state photoluminescence (PL) and using capillary electrophoresis coupled with laser-induced fluorescence detection. The behavior of the hydrogen-terminated Si-np is studied over time as-prepared in isopropanol and during treatments with water, NaOH, HCl, and H2O 2. The PL spectra show three distinct, near-Gaussian states with a FWHM ˜0.45 eV and their respective emissions in the UV-B (˜305 nm), UV-A (˜340 nm), and 'hard-blue' (˜400 nm) regions of the spectrum. The 'hard-blue' emission is shown to have a simple pH dependence with a pKa ˜3, demonstrating the possibility of using Si-np as environmental probes. These results offer some promise for tailoring the PL properties of ultrasmall Si-np through control of their surface chemistry. In the second part, three central elements establish that the carboxyl-functionalized Si-np have excellent potential for use as a luminescent marker in aqueous systems. First, they are shown to be ultrasmall, with a diameter of ˜1 nm, comparable to that of common organic fluorophores. Second, they are shown to have narrow PL in the near-UV with a nearly-symmetric lineshape and a FWHM as small as 30 nm. Third, it is shown that standard chemical means can be used to functionalize the Si-np with carboxyl groups, giving

  7. A kinetic model of the formation of organic monolayers on hydrogen-terminated silicon by hydrosilation of alkenes.

    PubMed

    Woods, M; Carlsson, S; Hong, Q; Patole, S N; Lie, L H; Houlton, A; Horrocks, B R

    2005-12-22

    We have analyzed a kinetic model for the formation of organic monolayers based on a previously suggested free radical chain mechanism for the reaction of unsaturated molecules with hydrogen-terminated silicon surfaces (Linford, M. R.; Fenter, P. M.; Chidsey, C. E. D. J. Am. Chem. Soc 1995, 117, 3145). A direct consequence of this mechanism is the nonexponential growth of the monolayer, and this has been observed spectroscopically. In the model, the initiation of silyl radicals on the surface is pseudo first order with rate constant, ki, and the rate of propagation is determined by the concentration of radicals and unreacted Si-H nearest neighbor sites with a rate constant, kp. This propagation step determines the rate at which the monolayer forms by addition of alkene molecules to form a track of molecules that constitute a self-avoiding random walk on the surface. The initiation step describes how frequently new random walks commence. A termination step by which the radicals are destroyed is also included. The solution of the kinetic equations yields the fraction of alkylated surface sites and the mean length of the random walks as a function of time. In mean-field approximation we show that (1) the average length of the random walk is proportional to (kp/ki)1/2, (2) the monolayer surface coverage grows exponentially only after an induction period, (3) the effective first-order rate constant describing the growth of the monolayer and the induction period (kt) is k = (2ki kp)1/2, (4) at long times the effective first-order rate constant drops to ki, and (5) the overall activation energy for the growth kinetics is the mean of the activation energies for the initiation and propagation steps. Monte Carlo simulations of the mechanism produce qualitatively similar kinetic plots, but the mean random walk length (and effective rate constant) is overestimated by the mean field approximation and when kp > ki, we find k approximately ki0.7kp0.3 and Ea = (0.7Ei+ 0.3Ep

  8. Island growth in the atomic layer deposition of zirconium oxide and aluminum oxide on hydrogen-terminated silicon: Growth mode modeling and transmission electron microscopy

    SciTech Connect

    Puurunen, Riikka L.; Vandervorst, Wilfried; Besling, Wim F. A.; Richard, Olivier; Bender, Hugo; Conard, Thierry; Zhao Chao; Delabie, Annelies; Caymax, Matty; Gendt, Stefan de; Heyns, Marc; Viitanen, Minna M.; Ridder, Marco de; Brongersma, Hidde H.; Tamminga, Yde; Dao, Thuy; Win, Toon de; Verheijen, Marcel; Kaiser, Monja; Tuominen, Marko

    2004-11-01

    Atomic layer deposition (ALD) is used in applications where inorganic material layers with uniform thickness down to the nanometer range are required. For such thicknesses, the growth mode, defining how the material is arranged on the surface during the growth, is of critical importance. In this work, the growth mode of the zirconium tetrachloride/water and the trimethyl aluminum/water ALD process on hydrogen-terminated silicon was investigated by combining information on the total amount of material deposited with information on the surface fraction of the material. The total amount of material deposited was measured by Rutherford backscattering, x-ray fluorescence, and inductively coupled plasma-optical emission spectroscopy, and the surface fractions by low-energy ion scattering. Growth mode modeling was made assuming two-dimensional growth or random deposition (RD), with a 'shower model' of RD recently developed for ALD. Experimental surface fractions of the ALD-grown zirconium oxide and aluminum oxide films were lower than the surface fractions calculated assuming RD, suggesting the occurrence of island growth. Island growth was confirmed with transmission electron microscopy (TEM) measurements, from which the island size and number of islands per unit surface area could also be estimated. The conclusion of island growth for the aluminum oxide deposition on hydrogen-terminated silicon contradicts earlier observations. In this work, physical aluminum oxide islands were observed in TEM after 15 ALD reaction cycles. Earlier, thicker aluminum oxide layers have been analyzed, where islands have not been observed because they have already coalesced to form a continuous film. The unreactivity of hydrogen-terminated silicon surface towards the ALD reactants, except for reactive defect areas, is proposed as the origin of island growth. Consequently, island growth can be regarded as 'undesired surface-selective ALD'.

  9. Bonding Structure of Phenylacetylene on Hydrogen-Terminated Si(111) and Si(100): Surface Photoelectron Spectroscopy Analysis and Ab Initio Calculations

    SciTech Connect

    M Kondo; T Mates; D Fischer; F Wudl; E Kramer

    2011-12-31

    Interfaces between phenylacetylene (PA) monolayers and two silicon surfaces, Si(111) and Si(100), are probed by X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, and the results are analyzed using ab initio molecular orbital calculations. The monolayer systems are prepared via the surface hydrosilylation reaction between PA and hydrogen-terminated silicon surfaces. The following spectral features are obtained for both of the PA-Si(111) and PA-Si(100) systems: a broad {pi}-{pi}* shakeup peak at 292 eV (XPS), a broad first ionization peak at 3.8 eV (UPS), and a low-energy C 1s {yields} {pi}* resonance peak at 284.3 eV (NEXAFS). These findings are ascribed to a styrene-like {pi}-conjugated molecular structure at the PA-Si interface by comparing the experimental data with theoretical analysis results. A conclusion is drawn that the vinyl group can keep its {pi}-conjugation character on the hydrogen-terminated Si(100) [H:Si(100)] surface composed of the dihydride (SiH{sub 2}) groups as well as on hydrogen-terminated Si(111) having the monohydride (SiH) group. The formation mechanism of the PA-Si(100) interface is investigated within cluster ab initio calculations, and the possible structure of the H:Si(100) surface is discussed based on available data.

  10. Reactive coupling of 4-vinylaniline with hydrogen-terminated Si(100) surfaces for electroless metal and "synthetic metal" deposition.

    PubMed

    Xu, D; Kang, E T; Neoh, K G; Tay, A A O

    2004-04-13

    Pristine and resist-patterned Si(100) substrates were etched by aqueous HF to produce hydrogen-terminated silicon (H-Si(100)) surfaces. The H-Si(100) surface was then subjected to UV-induced reactive coupling of 4-vinylaniline (VAn) to produce the VAn monolayer-modified silicon (VAn-Si) surface. The VAn-Si surface was first functionalized with a "synthetic metal" by oxidative graft polymerization of aniline with the aniline moieties of the coupled VAn molecules. The composition and topography of the VAn-Si and polyaniline (PAn)-grafted VAn-Si (PAn-VAn-Si) surfaces were characterized by X-ray photoelectron spectroscopy and atomic force microscopy, respectively. The doping-undoping (protonation-deprotonation) and redox-coupling (metal reduction) behavior, as well as the electrical conductivity, of the surface-grafted PAn were found to be similar to those of the aniline homopolymer. The VAn-Si surface was also funtionalized by the electroless plating of copper. Not only did the VAn layer provide chemisorption sites for the palladium catalyst, in the absence of prior sensitization by SnCl2, during the electroless plating process, it also served as an adhesion promotion layer and a low-temperature diffusion barrier for the electrolessly deposited copper. Finally, micropatterning of the grafted PAn and of the electrolessly deposited copper were demonstrated on the resist-patterned VAn-Si surfaces. PMID:15875865

  11. Quantum Point Contacts and Valley Filters on a 6-fold Degenerate Hydrogen-terminated Si(111) Surface

    NASA Astrophysics Data System (ADS)

    Robertson, Luke D.; Hu, Binhui; Kane, B. E.

    Hydrogen-terminated Si(111) surfaces preserve the 6-fold valley degeneracy and anisotropic electron mass predicted in bulk Si, providing a unique environment for 2-D electron systems (2DESs). Our group has demonstrated high mobility as well as the fractional quantum Hall effect for electrons confined on the Si(111) surfaces, establishing evidence that they are ideal platforms for 2DESs and lower dimensional systems. Recently, we have succeeded in fabricating high mobility ambipolar devices and have found that heavily p-doped regions can be used as lateral depletion gates for confinement of 2DESs induced by a top gate. Here, we describe our efforts to extend this technology to the nanoscale and in particular towards the fabrication of quantum point contacts (QPCs). QPCs realized in materials with anisotropic electron mass may exhibit valley filter phenomena leading to extreme sensitivity to single donor occupancy, and thus are of interest to measurement schemes for donor-based quantum information processing. Preliminary measurements and fabrication techniques will be discussed

  12. High-reliability passivation of hydrogen-terminated diamond surface by atomic layer deposition of Al2O3

    NASA Astrophysics Data System (ADS)

    Daicho, Akira; Saito, Tatsuya; Kurihara, Shinichiro; Hiraiwa, Atsushi; Kawarada, Hiroshi

    2014-06-01

    Although the two-dimensional hole gas (2DHG) of a hydrogen-terminated diamond surface provides a unique p-type conducting layer for high-performance transistors, the conductivity is highly sensitive to its environment. Therefore, the surface must be passivated to preserve the 2DHG, especially at high temperature. We passivated the surface at high temperature (450 °C) without the loss of C-H surface bonds by atomic layer deposition (ALD) and investigated the thermal reliability of the Al2O3 film. As a result, C-H bonds were preserved, and the hole accumulation effect appeared after the Al2O3 deposition by ALD with H2O as an oxidant. The sheet resistivity and hole density were almost constant between room temperature and 500 °C by the passivation with thick Al2O3 film thicker than 38 nm deposited by ALD at 450 °C. After the annealing at 550 °C in air The sheet resistivity and hole density were preserved. These results indicate the possibility of high-temperature application of the C-H surface diamond device in air. In the case of lower deposition temperatures, the sheet resistivity increased after air annealing, suggesting an insufficient protection capability of these films. Given the result of sheet resistivity after annealing, the increase in the sheet resistivity of these samples was not greatly significant. However, bubble like patterns were observed in the Al2O3 films formed from 200 to 400 °C by air annealing at 550 °C for 1 h. On the other hand, the patterns were no longer observed at 450 °C deposition. Thus, this 450 °C deposition is the sole solution to enabling power device application, which requires high reliability at high temperatures.

  13. Comparative investigation of surface transfer doping of hydrogen terminated diamond by high electron affinity insulators

    NASA Astrophysics Data System (ADS)

    Verona, C.; Ciccognani, W.; Colangeli, S.; Limiti, E.; Marinelli, Marco; Verona-Rinati, G.

    2016-07-01

    We report on a comparative study of transfer doping of hydrogenated single crystal diamond surface by insulators featured by high electron affinity, such as Nb2O5, WO3, V2O5, and MoO3. The low electron affinity Al2O3 was also investigated for comparison. Hole transport properties were evaluated in the passivated hydrogenated diamond films by Hall effect measurements, and were compared to un-passivated diamond films (air-induced doping). A drastic improvement was observed in passivated samples in terms of conductivity, stability with time, and resistance to high temperatures. The efficiency of the investigated insulators, as electron accepting materials in hydrogenated diamond surface, is consistent with their electronic structure. These surface acceptor materials generate a higher hole sheet concentration, up to 6.5 × 1013 cm-2, and a lower sheet resistance, down to 2.6 kΩ/sq, in comparison to the atmosphere-induced values of about 1 × 1013 cm-2 and 10 kΩ/sq, respectively. On the other hand, hole mobilities were reduced by using high electron affinity insulator dopants. Hole mobility as a function of hole concentration in a hydrogenated diamond layer was also investigated, showing a well-defined monotonically decreasing trend.

  14. Polycrystalline domain structure of pentacene thin films epitaxially grown on a hydrogen-terminated Si(111) surface

    SciTech Connect

    Nishikata, S.; Sadowski, J. T.; Al-Mahboob, A.; Nishihara, T.; Fujikawa, Y.; Sakurai, T.; Nakajima, K.; Sazaki, G.; Suto, S.

    2007-10-15

    Single-monolayer high pentacene (Pn) dendrites grown on a hydrogen-terminated Si(111) surface [H-Si(111)] under ultrahigh vacuum were observed by low-energy electron microscopy and microbeam low-energy electron diffraction analyses. We determined the epitaxial structure (type I) inside a unique polycrystalline domain structure of such dendrites, each of which has six equivalent epitaxial orientations of Pn two-dimensional (2D) unit cells. There are three sets of these cells, which are rotated {+-}120 deg. relative to each other. Domain boundaries inside each dendrite were successfully observed by scanning tunneling microscopy. In addition, we found another epitaxial relation (type II): the polycrystalline domain structure and lattice parameters are similar to those of the type-I dendrite; however, the 2D unit cells of the type-II dendrite are rotated approximately 90 deg. relative to those of the type-I dendrite. These results suggest that the crystal structure of the dendrites on H-Si(111) is determined mainly by the interaction between Pn molecules. Each dendrite is composed of domains that are exclusively of type I or II. The so-called point-on-line coincidences are found between the Pn 2D lattices of types I and II, and H-Si(111). The higher commensurability of the type-I dendrites than the type-II dendrites results in a higher probability of type-I dendrite formation. Moreover, for both the type-I and type-II dendrites, we found supercell structures. We estimated the minimum interface energy between the dendrite and H-Si(111) from an island's free energy, which is necessary to reproduce the growth of a single-monolayer high dendrite.

  15. Anisotropic surface phonon dispersion of the hydrogen-terminated Si(110)-(1×1) surface: One-dimensional phonons propagating along the glide planes

    SciTech Connect

    Matsushita, Stephane Yu; Matsui, Kazuki; Kato, Hiroki; Suto, Shozo; Yamada, Taro

    2014-03-14

    We have measured the surface phonon dispersion curves on the hydrogen-terminated Si(110)-(1×1) surface with the two-dimensional space group of p2mg along the two highly symmetric and rectangular directions of ΓX{sup ¯} and ΓX{sup ′¯} using high-resolution electron-energy-loss spectroscopy. All the essential energy-loss peaks on H:Si(110) were assigned to the vibrational phonon modes by using the selection rules of inelastic electron scattering including the glide-plane symmetry. Actually, the surface phonon modes of even-symmetry to the glide plane (along ΓX{sup ¯}) were observed in the first Brillouin zone, and those of odd-symmetry to the glide plane were in the second Brillouin zone. The detailed assignment was made by referring to theoretical phonon dispersion curves of Gräschus et al. [Phys. Rev. B 56, 6482 (1997)]. We found that the H–Si stretching and bending modes, which exhibit highly anisotropic dispersion, propagate along ΓX{sup ¯} direction as a one-dimensional phonon. Judging from the surface structure as well as our classical and quantum mechanical estimations, the H–Si stretching phonon propagates by a direct repulsive interaction between the nearest neighbor H atoms facing each other along ΓX{sup ¯}, whereas the H–Si bending phonon propagates by indirect interaction through the substrate Si atomic linkage.

  16. Morphology, structure, and magnetism of FeCo thin films electrodeposited on hydrogen-terminated Si(111) surfaces.

    PubMed

    Zarpellon, J; Jurca, H F; Mattoso, N; Klein, J J; Schreiner, W H; Ardisson, J D; Macedo, W A A; Mosca, D H

    2007-12-15

    In this work we describe the fabrication of FeCo alloy (less than 10 at% Co) thin films from aqueous ammonium sulfate solutions onto n-type Si(111) substrates using potentiostatic electrodeposition at room temperature. The incorporation of Co into the deposits tends to inhibit Fe silicide formation and to protect deposits against oxidation under air exposure. As the incorporation of Co was progressively increased, the sizes of nuclei consisting of FeCo alloy increased, leading to films with a highly oriented body-centered cubic structure with crystalline texture, where (110) planes remain preferentially oriented parallel to the film surface. PMID:17900605

  17. High-reliability passivation of hydrogen-terminated diamond surface by atomic layer deposition of Al{sub 2}O{sub 3}

    SciTech Connect

    Daicho, Akira Saito, Tatsuya; Kurihara, Shinichiro; Kawarada, Hiroshi; Hiraiwa, Atsushi

    2014-06-14

    Although the two-dimensional hole gas (2DHG) of a hydrogen-terminated diamond surface provides a unique p-type conducting layer for high-performance transistors, the conductivity is highly sensitive to its environment. Therefore, the surface must be passivated to preserve the 2DHG, especially at high temperature. We passivated the surface at high temperature (450 °C) without the loss of C-H surface bonds by atomic layer deposition (ALD) and investigated the thermal reliability of the Al{sub 2}O{sub 3} film. As a result, C-H bonds were preserved, and the hole accumulation effect appeared after the Al{sub 2}O{sub 3} deposition by ALD with H{sub 2}O as an oxidant. The sheet resistivity and hole density were almost constant between room temperature and 500 °C by the passivation with thick Al{sub 2}O{sub 3} film thicker than 38 nm deposited by ALD at 450 °C. After the annealing at 550 °C in air The sheet resistivity and hole density were preserved. These results indicate the possibility of high-temperature application of the C-H surface diamond device in air. In the case of lower deposition temperatures, the sheet resistivity increased after air annealing, suggesting an insufficient protection capability of these films. Given the result of sheet resistivity after annealing, the increase in the sheet resistivity of these samples was not greatly significant. However, bubble like patterns were observed in the Al{sub 2}O{sub 3} films formed from 200 to 400 °C by air annealing at 550 °C for 1 h. On the other hand, the patterns were no longer observed at 450 °C deposition. Thus, this 450 °C deposition is the sole solution to enabling power device application, which requires high reliability at high temperatures.

  18. Silicon surface passivation by silicon nitride deposition

    NASA Technical Reports Server (NTRS)

    Olsen, L. C.

    1984-01-01

    Silicon nitride deposition was studied as a method of passivation for silicon solar cell surfaces. The following three objectives were the thrust of the research: (1) the use of pecvd silicon nitride for passivation of silicon surfaces; (2) measurement techniques for surface recombination velocity; and (3) the importance of surface passivation to high efficiency solar cells.

  19. Hydrogen passivation and ozone oxidation of silicon surface

    SciTech Connect

    Kurokawa, Akira; Nakamura, Ken; Ichimura, Shingo

    1998-12-31

    The oxidation of H/Si(100) and H/Si(111) with high concentration ozone gas was investigated with X-ray photoelectron spectroscopy (XPS). The ozone oxidation of partially hydride-covered surface was observed. The hydrogen termination reduced the rate of oxygen insertion into silicon backbond. The reduction of oxygen insertion rate by the H-termination for H/Si(100) was larger than that for H/Si(111). The dissociation rate of ozone molecule on H/Si was estimated to be {approx_equal}0.2 with a directional mass analyzer.

  20. High performance hydrogen-terminated diamond field effect transistors

    NASA Astrophysics Data System (ADS)

    Russell, Stephen A. O.

    Diamond provides extreme properties which make it suitable as a new substrate material for high performance electronics. It has the potential to provide both high frequency and high power performance while operating in extreme environments such as elevated temperature or exposed to corrosive chemicals or radiation. Research to date has shown the potential of diamond for this purpose with hydrogen-terminated diamond surface channel transistors already showing promise in terms of high frequency operation. The inherent instability of using atmospheric molecules to induce a p-type doping at this hydrogen-terminated diamond surface has so far limited power performance and robustness of operation. This work reports upon the scaling of surface channel hydrogen-terminated transistors with FET gate lengths of 250 nm and 120 nm showing performance comparable to other devices published to date. The gate length was then scaled for the first time to sub-100 nm dimensions with a 50 nm gate length FET fabricated giving record high-frequency performance with a fT of 53 GHz. An adapted fabrication procedure was developed for this project with special attention paid to the volatility of the particles upon the diamond surface. Equivalent RF circuit models were extracted for each gate length and analysed in detail. Work was then undertaken to investigate a more stable alternative to the atmospheric induced doping effect with alternative electron accepting materials being deposited upon the hydrogen-terminated diamond surface. The as yet untested organic material F16CuPc was deposited on to hydrogen-terminated diamond and demonstrated its ability to encapsulate and preserve the atmospheric induced sub-surface conductivity at room temperature. For the first time an inorganic material was also investigated as a potential encapsulation for the hydrogen-terminated diamond surface, MoO3 was chosen due to its high electron affinity and like F16CuPc also showed the ability to preserve and

  1. Silicon sheet surface studies

    NASA Astrophysics Data System (ADS)

    Danyluk, S.

    1985-06-01

    Results of the program are presented on developing an understanding of the basic mechanisms of abrasion and wear of silicon and on the nondestructive measurement of residual stresses in sheet silicon. Experiments were conducted at various temperatures and in the presence of various fluids. In abrasive wear, it was shown that dislocations, microtwins, and cracks are generated beneath the contact surface. Residual stresses in ribbon by the edge defined film growth process were measured by use of a shadow moire interferometry technique.

  2. In situ infrared spectroscopy of hafnium oxide growth on hydrogen-terminated silicon surfaces by atomic layer deposition

    SciTech Connect

    Ho, M.-T.; Wang, Y.; Brewer, R.T.; Wielunski, L.S.; Chabal, Y.J.; Moumen, N.; Boleslawski, M.

    2005-09-26

    The interface formation between HfO{sub 2} and H-terminated Si(111) and Si(100) is studied by in situ infrared absorption spectroscopy during atomic layer deposition using alternating tetrakis-ethylmethylamino hafnium (TEMAH) and deuterium oxide (D{sub 2}O) pulses. The HfO{sub 2} growth is initiated by the reaction of TEMAH with Si-H rather than D{sub 2}O, and there is no evidence for SiO{sub 2} formation at moderate growth temperatures ({approx}100 deg. C). Although Rutherford backscattering shows a linear increase of Hf coverage, direct observations of Si-H, Si-O-Hf, and HfO{sub 2} phonons indicate that five cycles are needed to reach the steady state interface composition of {approx}50% reacted sites. The formation of interfacial SiO{sub 2} ({approx}0.7 nm) is observed after postdeposition annealing at 700 deg. C in ultrapure nitrogen.

  3. Luminescent, water-soluble silicon quantum dots via micro-plasma surface treatment

    NASA Astrophysics Data System (ADS)

    Wu, Jeslin J.; Kondeti, Vighneswara Siva Santosh Kumar; Bruggeman, Peter J.; Kortshagen, Uwe R.

    2016-03-01

    Silicon quantum dots (SiQDs), with their broad absorption, narrow and size-tunable emission, and potential biocompatibility are highly attractive materials in biological imaging applications. The inherent hydrophobicity and instability of hydrogen-terminated SiQDs are obstacles to their widespread implementation. In this work, we successfully produced highly luminescent, hydrophilic SiQDs with long-term stability in water using non-thermal plasma techniques. Hydrogen-terminated SiQDs were produced in a low-pressure plasma and subsequently treated in water using an atmospheric-pressure plasma jet for surface modification. Preliminary assessments of the chemical mechanism(s) involved in the creation of water-soluble SiQDs were performed using Fenton’s reaction and various plasma chemistries, suggesting both OH and O species play a key role in the oxidation of the SiQDs.

  4. Direct observation of silicon surface etching by water with scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Pietsch, G. J.; Köhler, U.; Henzler, M.

    1992-09-01

    One of the key processes in wet chemical preparation of silicon surfaces for device fabrication is a final rinsing step with water after oxide removal and hydrogen-termination with hydrofluoric acid. On rinsing at elevated temperature (boiling water) the slow statistical oxidation of the surface known from conventional treatment with water at room temperature is replaced by a rapid anisotropic etching attack. On Si(111) scanning tunneling microscopy shows characteristic triangular etch defects and flat (111) terraces separated by monatomic steps along <0 overline11>. The resulting surface is chemically homogeneous without any oxide. Structure and removal mechanism are compared to NH 4F-etched samples.

  5. High resolution core level spectroscopy of hydrogen-terminated (1 0 0) diamond.

    PubMed

    Schenk, A K; Rietwyk, K J; Tadich, A; Stacey, A; Ley, L; Pakes, C I

    2016-08-01

    Synchrotron-based photoelectron spectroscopy experiments are presented that address a long standing inconsistency in the treatment of the C1s core level of hydrogen terminated (1 0 0) diamond. Through a comparison of surface and bulk sensitive measurements we show that there is a surface related core level component to lower binding energy of the bulk diamond component; this component has a chemical shift of [Formula: see text] eV which has been attributed to carbon atoms which are part of the hydrogen termination. Additionally, our results indicate that the asymmetry of the hydrogen terminated (1 0 0) diamond C1s core level is an intrinsic aspect of the bulk diamond peak which we have attributed to sub-surface carbon layers. PMID:27299369

  6. High resolution core level spectroscopy of hydrogen-terminated (1 0 0) diamond

    NASA Astrophysics Data System (ADS)

    Schenk, A. K.; Rietwyk, K. J.; Tadich, A.; Stacey, A.; Ley, L.; Pakes, C. I.

    2016-08-01

    Synchrotron-based photoelectron spectroscopy experiments are presented that address a long standing inconsistency in the treatment of the C1s core level of hydrogen terminated (1 0 0) diamond. Through a comparison of surface and bulk sensitive measurements we show that there is a surface related core level component to lower binding energy of the bulk diamond component; this component has a chemical shift of -0.16+/- 0.05 eV which has been attributed to carbon atoms which are part of the hydrogen termination. Additionally, our results indicate that the asymmetry of the hydrogen terminated (1 0 0) diamond C1s core level is an intrinsic aspect of the bulk diamond peak which we have attributed to sub-surface carbon layers.

  7. Electrochemical hydrogen termination of boron-doped diamond

    SciTech Connect

    Hoffmann, Rene; Kriele, Armin; Obloh, Harald; Hees, Jakob; Wolfer, Marco; Smirnov, Waldemar; Yang Nianjun; Nebel, Christoph E.

    2010-08-02

    Boron-doped diamond is a promising transducer material for numerous devices which are designed for contact with electrolytes. For optimized electron transfer the surface of diamond needs to be hydrogen terminated. Up to now H-termination of diamond is done by plasma chemical vapor deposition techniques. In this paper, we show that boron-doped diamond can be H-terminated electrochemically by applying negative voltages in acidic solutions. Electrochemical H-termination generates a clean surface with virtually no carbon-oxygen bonds (x-ray photoelectron spectroscopy), a reduced electron affinity (scanning electron microscopy), a highly hydrophobic surface (water contact angle), and a fast electron exchange with Fe(CN){sub 6}{sup -3/-4} (cyclic voltammetry).

  8. Bulk-like pentacene epitaxial films on hydrogen-terminated Si(111)

    SciTech Connect

    Shimada, Toshihiro; Nogawa, Hiroyuki; Hasegawa, Tetsuya; Okada, Ryusuke; Ichikawa, Hisashi; Ueno, Keiji; Saiki, Koichiro

    2005-08-08

    The epitaxial growth of pentacene on hydrogen-terminated Si(111) is reported. Reflection high energy electron diffraction (RHEED) revealed that the crystal packing resembles that in the bulk crystal even at a monolayer thickness, which was maintained in multilayers. A ripening effect was clearly observed by atomic force microscopy (AFM). These results are important to obtain oriented crystalline films of pentacene combined with silicon microdevices with reduced defect densities.

  9. Properties of Hydrogen Terminated Diamond as a Photocathode

    SciTech Connect

    J Rameau; J Smedley; E Muller; T Kidd; P Johnson

    2011-12-31

    Electron emission from the negative electron affinity (NEA) surface of hydrogen terminated, boron doped diamond in the [100] orientation is investigated using angle resolved photoemission spectroscopy (ARPES). ARPES measurements using 16 eV synchrotron and 6 eV laser light are compared and found to show a catastrophic failure of the sudden approximation. While the high energy photoemission is found to yield little information regarding the NEA, low energy laser ARPES reveals for the first time that the NEA results from a novel Franck-Condon mechanism coupling electrons in the conduction band to the vacuum. The result opens the door to the development of a new class of NEA electron emitter based on this effect.

  10. Delta-Doping at Wafer Level for High Throughput, High Yield Fabrication of Silicon Imaging Arrays

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E. (Inventor); Nikzad, Shoulch (Inventor); Jones, Todd J. (Inventor); Greer, Frank (Inventor); Carver, Alexander G. (Inventor)

    2014-01-01

    Systems and methods for producing high quantum efficiency silicon devices. A silicon MBE has a preparation chamber that provides for cleaning silicon surfaces using an oxygen plasma to remove impurities and a gaseous (dry) NH3 + NF3 room temperature oxide removal process that leaves the silicon surface hydrogen terminated. Silicon wafers up to 8 inches in diameter have devices that can be fabricated using the cleaning procedures and MBE processing, including delta doping.

  11. Functionalization of Oxide-Free Silicon Surfaces with Redox-Active Assemblies.

    PubMed

    Fabre, Bruno

    2016-04-27

    This review provides a comprehensive survey of the derivatization of hydrogen-terminated, oxide-free silicon surfaces with electroactive assemblies (from molecules to polymers) attached through strong interactions (covalent, electrostatic, and chimisorption). Provided that surface modification procedures are thoroughly optimized, such an approach has appeared as a promising strategy toward high-quality functional interfaces exhibiting excellent chemical and electrochemical stabilities. The attachment of electroactive molecules exhibiting either two stable redox states (e.g., ferrocene and quinones) or more than two stable redox states (e.g., metalloporphyrins, polyoxometalates, and C60) is more particularly discussed. Attention is also paid to the immobilization of electrochemically polymerizable centers. Globally, these functional interfaces have been demonstrated to show great promise for the molecular charge storage and information processing or the elaboration of the electrochemically switchable devices. Besides, there are also some relevant examples dealing with their activity for other fields of interest, such as sensing and electrochemical catalysis. PMID:27064580

  12. Surface property modification of silicon

    NASA Technical Reports Server (NTRS)

    Danyluk, S.

    1984-01-01

    The main emphasis of this work has been to determine the wear rate of silicon in fluid environments and the parameters that influence wear. Three tests were carried out on single crystal Czochralski silicon wafers: circular and linear multiple-scratch tests in fluids by a pyramidal diamond simulated fixed-particle abrasion; microhardness and three-point bend tests were used to determine the hardness and fracture toughness of abraded silicon and the extent of damage induced by abrasion. The wear rate of (100) and (111) n and p-type single crystal Cz silicon abraded by a pyramidal diamond in ethanol, methanol, acetone and de-ionized water was determined by measuring the cross-sectional areas of grooves of the circular and linear multiple-scratch tests. The wear rate depends on the loads on the diamond and is highest for ethanol and lowest for de-ionized water. The surface morphology of the grooves showed lateral and median cracks as well as a plastically deformed region. The hardness and fracture toughness are critical parameters that influence the wear rate. Microhardness tests were conducted to determine the hardness as influenced by fluids. Median cracks and the damage zone surrounding the indentations were also related to the fluid properties.

  13. Surface alloying of silicon into aluminum substrate.

    SciTech Connect

    Xu, Z.

    1998-10-28

    Aluminum alloys that are easily castable tend to have lower silicon content and hence lower wear resistance. The use of laser surface alloying to improve the surface wear resistance of 319 and 320 aluminum alloys was examined. A silicon layer was painted onto the surface to be treated. A high power pulsed Nd:YAG laser with fiberoptic beam delivery was used to carry out the laser surface treatment to enhance the silicon content. Process parameters were varied to minimize the surface roughness from overlap of the laser beam treatment. The surface-alloyed layer was characterized and the silicon content was determined.

  14. Modification of crystalline silicon and diamond surfaces for the attachment of DNA

    NASA Astrophysics Data System (ADS)

    Strother, Todd Cory

    2001-07-01

    Hydrogen-terminated Si(111) surfaces are first modified by attachment of oligodeoxynucleotides, and characterized with respect to DNA surface density, chemical stability, and DNA hybridization binding specificity. Surface functionalization employs the reaction of o-unsaturated alkyl esters with the Si(111) surface using UV irradiation. Cleavage of the ester using potassium tert-butoxide yields a carboxyl-modified surface, which serves as a substrate for the attachment of DNA by means of an electrostatically adsorbed layer of polylysine and attachment of thiol modified DNA using a heterobifunctional cross-linker. The resultant DNA-modified surfaces are shown to exhibit excellent specificity and chemical stability under the conditions of DNA hybridization. The second approach is a more direct method of attaching oligonucleotides to silicon. UV light mediates the reaction of t-butyloxycarbonyl (t-BOC) protected o-unsaturated aminoalkane (10-aminodec-1-ene) with hydrogenterminated silicon (001). Removal of the t-BOC protecting group yields an aminodecane-modified silicon surface. The resultant amino groups can be coupled to thiol-modified oligodeoxyribonucleotides using a heterobifunctional crosslinker, permitting the preparation of DNA arrays. Two methods for controlling the surface density of oligodeoxyribonucleotides were explored: in the first, binary mixtures of 10-aminodec-1 ene and dodecene were utilized in the initial UV-mediated coupling reaction; a linear relationship was found between the mole fraction of aminodecene and the density of DNA hybridization sites. In the second, only a portion of the t-BOC protecting groups was removed from the surface by limiting the time allowed for the deprotection reaction. The final surface explored uses a UV-mediated reaction of alkenes to hydrogenterminated diamond. Polycrystalline diamond thin films are hydrogen terminated using a hydrogen plasma and are subjected to UV light in the presence of 1-alkenes. A

  15. Hydrogen-terminated detonation nanodiamond: Impedance spectroscopy and thermal stability studies

    NASA Astrophysics Data System (ADS)

    Su, Shi; Li, Jiangling; Kundrát, Vojtěch; Abbot, Andrew M.; Ye, Haitao

    2013-01-01

    In this paper, we investigated the effect of hydrogen termination on the electrical properties and impedance spectra of detonation nanodiamond. The impedance spectra revealed that the hydrogen-termination process increases the electrical conductivity by four orders of magnitude at room temperature. An equivalent circuit has been proposed to correlate with the conduction mechanism. Arrhenius plot showed that there were two different activation energy levels located at 0.089 eV and 0.63 eV between 50 °C and 400 °C. The possible physical mechanism corresponding to these activation energy levels has been discussed. Hydrogen-terminated detonation nanodiamond has been further annealed at different temperatures prior to FTIR and XPS measurements in order to understand their thermal stability. The results demonstrated that the surface oxidization occurred between 100 °C and 150 °C. However, the C-H bonds could partially survive when the temperature reaches 400 °C in air.

  16. Mechanisms and energetics of hydride dissociation reactions on surfaces of plasma-deposited silicon thin films

    NASA Astrophysics Data System (ADS)

    Singh, Tejinder; Valipa, Mayur S.; Mountziaris, T. J.; Maroudas, Dimitrios

    2007-11-01

    We report results from a detailed analysis of the fundamental silicon hydride dissociation processes on silicon surfaces and discuss their implications for the surface chemical composition of plasma-deposited hydrogenated amorphous silicon (a-Si:H) thin films. The analysis is based on a synergistic combination of first-principles density functional theory (DFT) calculations of hydride dissociation on the hydrogen-terminated Si(001)-(2×1) surface and molecular-dynamics (MD) simulations of adsorbed SiH3 radical precursor dissociation on surfaces of MD-grown a-Si :H films. Our DFT calculations reveal that, in the presence of fivefold coordinated surface Si atoms, surface trihydride species dissociate sequentially to form surface dihydrides and surface monohydrides via thermally activated pathways with reaction barriers of 0.40-0.55eV. The presence of dangling bonds (DBs) results in lowering the activation barrier for hydride dissociation to 0.15-0.20eV, but such DB-mediated reactions are infrequent. Our MD simulations on a-Si :H film growth surfaces indicate that surface hydride dissociation reactions are predominantly mediated by fivefold coordinated surface Si atoms, with resulting activation barriers of 0.35-0.50eV. The results are consistent with experimental measurements of a-Si :H film surface composition using in situ attenuated total reflection Fourier transform infrared spectroscopy, which indicate that the a-Si :H surface is predominantly covered with the higher hydrides at low temperatures, while the surface monohydride, SiH(s ), becomes increasingly more dominant as the temperature is increased.

  17. In situ transmission infrared spectroscopy of high-kappa oxide atomic layer deposition onto silicon surfaces

    NASA Astrophysics Data System (ADS)

    Ho, Ming-Tsung

    Ultra-thin aluminum oxide (Al2O3) and hafnium oxide (HfO2) layers have been grown by atomic layer deposition (ALD) using tri-methyl-aluminum (TMA) and tetrakis-ethyl-methyl-amino-hafnium (TEMAH) respectively with heavy water (D2O) as the oxidizing agent. Several different silicon surfaces were used as substrates such as hydrogen terminated silicon (H/Si), SC2 (or RCA 2) cleaned native silicon oxide (SiO 2/Si), and silicon (oxy)nitride. In-situ transmission Fourier transform infrared spectroscopy (FTIR) has been adopted for the study of the growth mechanisms during ALD of these films. The vibrational spectra of gas phase TEMAH and its reaction byproducts with oxidants have also been investigated. Density functional theory (DFT) normal mode calculations show a good agreement with the experimental data when it is combined with linear wave-number scaling method and Fermi resonance mechanism. Ether (-C-O-C-) and tertiary alkylamine (N(R1R 2R3)) compounds are the two most dominant products of TEMAH reacting with oxygen gas and water. When ozone is used as the oxidant, gas phase CH2O, CH3NO2, CH3-N=C=O and other compounds containing -(C=O)- and --C-O-C- (or --O-C-) segments are observed. With substrate temperatures less than 400°C and 300°C for TMA and TEMAH respectively, Al oxide and Hf oxide ALD can be appropriately performed on silicon surfaces. Thin silicon (oxy)nitride thermally grown in ammonia on silicon substrate can significantly reduce silicon oxide interlayer formation during ALD and post-deposition annealing. The crystallization temperature of amorphous ALD grown HfO2 on nitridized silicon is 600°C, which is 100°C higher than on the other silicon surfaces. When HfO2 is grown on H/Si(111) at 100°C deposition temperature, minimum 5--10 ALD cycles are required for the full surface coverage. The steric effect can be seen by the evolution of the H-Si stretching mode at 2083 cm-1. The observed red shift of H-Si stretching to ˜ 2060 cm-1 can be caused by Si

  18. Interactions between radical growth precursors on plasma-deposited silicon thin-film surfaces

    SciTech Connect

    Bakos, Tamas; Valipa, Mayur S.; Maroudas, Dimitrios

    2007-03-21

    We present a detailed analysis of the interactions between growth precursors, SiH{sub 3} radicals, on surfaces of silicon thin films. The analysis is based on a synergistic combination of density functional theory calculations on the hydrogen-terminated Si(001)-(2x1) surface and molecular-dynamics (MD) simulations of film growth on surfaces of MD-generated hydrogenated amorphous silicon (a-Si:H) thin films. In particular, the authors find that two interacting growth precursors may either form disilane (Si{sub 2}H{sub 6}) and desorb from the surface, or disproportionate, resulting in the formation of a surface dihydride (adsorbed SiH{sub 2} species) and gas-phase silane (SiH{sub 4}). The reaction barrier for disilane formation is found to be strongly dependent on the local chemical environment on the silicon surface and reduces (or vanishes) if one/both of the interacting precursors is/are in a ''fast diffusing state,'' i.e., attached to fivefold coordinated surface Si atoms. Finally, activation energy barriers in excess of 1 eV are obtained for two chemisorbed (i.e., bonded to a fourfold coordinated surface Si atom) SiH{sub 3} radicals. Activation energy barriers for disproportionation follow the same tendency, though, in most cases, higher barriers are obtained compared to disilane formation reactions starting from the same initial configuration. MD simulations confirm that disilane formation and disproportionation reactions also occur on a-Si:H growth surfaces, preferentially in configurations where at least one of the SiH{sub 3} radicals is in a ''diffusive state.'' Our results are in agreement with experimental observations and results of plasma process simulators showing that the primary source for disilane in low-power plasmas may be the substrate surface.

  19. Interactions between radical growth precursors on plasma-deposited silicon thin-film surfaces

    NASA Astrophysics Data System (ADS)

    Bakos, Tamas; Valipa, Mayur S.; Maroudas, Dimitrios

    2007-03-01

    We present a detailed analysis of the interactions between growth precursors, SiH3 radicals, on surfaces of silicon thin films. The analysis is based on a synergistic combination of density functional theory calculations on the hydrogen-terminated Si(001)-(2×1) surface and molecular-dynamics (MD) simulations of film growth on surfaces of MD-generated hydrogenated amorphous silicon (a-Si :H) thin films. In particular, the authors find that two interacting growth precursors may either form disilane (Si2H6) and desorb from the surface, or disproportionate, resulting in the formation of a surface dihydride (adsorbed SiH2 species) and gas-phase silane (SiH4). The reaction barrier for disilane formation is found to be strongly dependent on the local chemical environment on the silicon surface and reduces (or vanishes) if one/both of the interacting precursors is/are in a "fast diffusing state," i.e., attached to fivefold coordinated surface Si atoms. Finally, activation energy barriers in excess of 1eV are obtained for two chemisorbed (i.e., bonded to a fourfold coordinated surface Si atom) SiH3 radicals. Activation energy barriers for disproportionation follow the same tendency, though, in most cases, higher barriers are obtained compared to disilane formation reactions starting from the same initial configuration. MD simulations confirm that disilane formation and disproportionation reactions also occur on a-Si :H growth surfaces, preferentially in configurations where at least one of the SiH3 radicals is in a "diffusive state." Our results are in agreement with experimental observations and results of plasma process simulators showing that the primary source for disilane in low-power plasmas may be the substrate surface.

  20. Interactions between radical growth precursors on plasma-deposited silicon thin-film surfaces.

    PubMed

    Bakos, Tamas; Valipa, Mayur S; Maroudas, Dimitrios

    2007-03-21

    We present a detailed analysis of the interactions between growth precursors, SiH3 radicals, on surfaces of silicon thin films. The analysis is based on a synergistic combination of density functional theory calculations on the hydrogen-terminated Si(001)-(2x1) surface and molecular-dynamics (MD) simulations of film growth on surfaces of MD-generated hydrogenated amorphous silicon (a-Si:H) thin films. In particular, the authors find that two interacting growth precursors may either form disilane (Si2H6) and desorb from the surface, or disproportionate, resulting in the formation of a surface dihydride (adsorbed SiH2 species) and gas-phase silane (SiH4). The reaction barrier for disilane formation is found to be strongly dependent on the local chemical environment on the silicon surface and reduces (or vanishes) if one/both of the interacting precursors is/are in a "fast diffusing state," i.e., attached to fivefold coordinated surface Si atoms. Finally, activation energy barriers in excess of 1 eV are obtained for two chemisorbed (i.e., bonded to a fourfold coordinated surface Si atom) SiH3 radicals. Activation energy barriers for disproportionation follow the same tendency, though, in most cases, higher barriers are obtained compared to disilane formation reactions starting from the same initial configuration. MD simulations confirm that disilane formation and disproportionation reactions also occur on a-Si:H growth surfaces, preferentially in configurations where at least one of the SiH3 radicals is in a "diffusive state." Our results are in agreement with experimental observations and results of plasma process simulators showing that the primary source for disilane in low-power plasmas may be the substrate surface. PMID:17381225

  1. Hydrogen termination of CVD diamond films by high-temperature annealing at atmospheric pressure.

    PubMed

    Seshan, V; Ullien, D; Castellanos-Gomez, A; Sachdeva, S; Murthy, D H K; Savenije, T J; Ahmad, H A; Nunney, T S; Janssens, S D; Haenen, K; Nesládek, M; van der Zant, H S J; Sudhölter, E J R; de Smet, L C P M

    2013-06-21

    A high-temperature procedure to hydrogenate diamond films using molecular hydrogen at atmospheric pressure was explored. Undoped and doped chemical vapour deposited (CVD) polycrystalline diamond films were treated according to our annealing method using a H2 gas flow down to ~50 ml∕min (STP) at ~850 °C. The films were extensively evaluated by surface wettability, electron affinity, elemental composition, photoconductivity, and redox studies. In addition, electrografting experiments were performed. The surface characteristics as well as the optoelectronic and redox properties of the annealed films were found to be very similar to hydrogen plasma-treated films. Moreover, the presented method is compatible with atmospheric pressure and provides a low-cost solution to hydrogenate CVD diamond, which makes it interesting for industrial applications. The plausible mechanism for the hydrogen termination of CVD diamond films is based on the formation of surface carbon dangling bonds and carbon-carbon unsaturated bonds at the applied tempera-ture, which react with molecular hydrogen to produce a hydrogen-terminated surface. PMID:23802976

  2. Hydrogen termination of CVD diamond films by high-temperature annealing at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Seshan, V.; Ullien, D.; Castellanos-Gomez, A.; Sachdeva, S.; Murthy, D. H. K.; Savenije, T. J.; Ahmad, H. A.; Nunney, T. S.; Janssens, S. D.; Haenen, K.; Nesládek, M.; van der Zant, H. S. J.; Sudhölter, E. J. R.; de Smet, L. C. P. M.

    2013-06-01

    A high-temperature procedure to hydrogenate diamond films using molecular hydrogen at atmospheric pressure was explored. Undoped and doped chemical vapour deposited (CVD) polycrystalline diamond films were treated according to our annealing method using a H2 gas flow down to ˜50 ml/min (STP) at ˜850 °C. The films were extensively evaluated by surface wettability, electron affinity, elemental composition, photoconductivity, and redox studies. In addition, electrografting experiments were performed. The surface characteristics as well as the optoelectronic and redox properties of the annealed films were found to be very similar to hydrogen plasma-treated films. Moreover, the presented method is compatible with atmospheric pressure and provides a low-cost solution to hydrogenate CVD diamond, which makes it interesting for industrial applications. The plausible mechanism for the hydrogen termination of CVD diamond films is based on the formation of surface carbon dangling bonds and carbon-carbon unsaturated bonds at the applied tempera-ture, which react with molecular hydrogen to produce a hydrogen-terminated surface.

  3. Investigation of silicon surface passivation by silicon nitride film deposition

    NASA Technical Reports Server (NTRS)

    Olsen, L. C.

    1984-01-01

    The use of Sin sub x grown by plasma enhanced chemical vapor deposition (PECVO) for passivating silicon surfaces was studied. The application of PECVO SiN sub x films for passivations of silicon N+/P or P+/N solar cells is of particular interest. This program has involved the following areas of investigation: (1) Establishment of PECVO system and development of procedures for growth of SiN sub x; (2) Optical characterization of SiN sub x films; (3) Characterization of the SiN sub x/Si interface; (4) Surface recombination velocity deduced from photoresponse; (5) Current-Voltage analyses of silicon N+/P cells; and (6) Gated diode device studies.

  4. Tuned NV emission by in-plane Al-Schottky junctions on hydrogen terminated diamond

    PubMed Central

    Schreyvogel, Christoph; Wolfer, Marco; Kato, Hiromitsu; Schreck, Matthias; Nebel, Christoph E.

    2014-01-01

    The negatively charged nitrogen-vacancy (NV) centre exhibits outstanding optical and spin properties and thus is very attractive for applications in quantum optics. Up to now an active control of the charge state of near-surface NV centres is difficult and the centres switch in an uncontrolled way between different charge states. In this work, we demonstrate an active control of the charge state of NV centres (implanted 7 nm below the surface) by using an in-plane Schottky diode geometry from aluminium on hydrogen terminated diamond in combination with confocal micro-photoluminescence measurements. The partial quenching of NV-photoluminescence caused by the hole accumulation layer of the hydrogen terminated surface can be recovered by applying reverse bias potentials on this diode, i.e. the NV0 charge state is depleted while the NV− charge state is populated. This charge state conversion is caused by the bias voltage affected modulation of the band bending in the depletion region which shifts the Fermi level across the NV charge transition levels. PMID:24407227

  5. Systematic spatial and stoichiometric screening towards understanding the surface of ultrasmall oxygenated silicon nanocrystal

    NASA Astrophysics Data System (ADS)

    Niaz, Shanawer; Zdetsis, Aristides D.; Koukaras, Emmanuel N.; Gülseren, Oǧuz; Sadiq, Imran

    2016-11-01

    In most of the realistic ab initio and model calculations which have appeared on the emission of light from silicon nanocrystals, the role of surface oxygen has been usually ignored, underestimated or completely ruled out. We investigate theoretically, by density functional theory (DFT/B3LYP) possible modes of oxygen bonding in hydrogen terminated silicon quantum dots using as a representative case of the Si29 nanocrystal. We have considered Bridge-bonded oxygen (BBO), Doubly-bonded oxygen (DBO), hydroxyl (OH) and Mix of these oxidizing agents. Due to stoichiometry, all comparisons performed are unbiased with respect to composition whereas spatial distribution of oxygen species pointed out drastic change in electronic and cohesive characteristics of nanocrytals. From an overall perspective of this study, it is shown that bridge bonded oxygenated Si nanocrystals accompanied by Mix have higher binding energies and large electronic gap compared to nanocrystals with doubly bonded oxygen atoms. In addition, it is observed that the presence of OH along with BBO, DBO and mixed configurations further lowers electronic gaps and binding energies but trends in same fashion. It is also demonstrated that within same composition, oxidizing constituent, along with their spatial distribution substantially alters binding energy, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) gap (up to 1.48 eV) and localization of frontier orbitals.

  6. Microtextured Silicon Surfaces for Detectors, Sensors & Photovoltaics

    SciTech Connect

    Carey, JE; Mazur, E

    2005-05-19

    With support from this award we studied a novel silicon microtexturing process and its application in silicon-based infrared photodetectors. By irradiating the surface of a silicon wafer with intense femtosecond laser pulses in the presence of certain gases or liquids, the originally shiny, flat surface is transformed into a dark array of microstructures. The resulting microtextured surface has near-unity absorption from near-ultraviolet to infrared wavelengths well below the band gap. The high, broad absorption of microtextured silicon could enable the production of silicon-based photodiodes for use as inexpensive, room-temperature multi-spectral photodetectors. Such detectors would find use in numerous applications including environmental sensors, solar energy, and infrared imaging. The goals of this study were to learn about microtextured surfaces and then develop and test prototype silicon detectors for the visible and infrared. We were extremely successful in achieving our goals. During the first two years of this award, we learned a great deal about how microtextured surfaces form and what leads to their remarkable optical properties. We used this knowledge to build prototype detectors with high sensitivity in both the visible and in the near-infrared. We obtained room-temperature responsivities as high as 100 A/W at 1064 nm, two orders of magnitude higher than standard silicon photodiodes. For wavelengths below the band gap, we obtained responsivities as high as 50 mA/W at 1330 nm and 35 mA/W at 1550 nm, close to the responsivity of InGaAs photodiodes and five orders of magnitude higher than silicon devices in this wavelength region.

  7. Silicon nanopillars for field enhanced surface spectroscopy

    SciTech Connect

    Wells, Sabrina M; Merkulov, Igor A; Kravchenko, Ivan I; Lavrik, Nickolay V; Sepaniak, Michael J

    2012-01-01

    Silicon nanowire and nanopillar structures have continued to draw increased attention in recent years due in part to their unique optical properties. Herein, electron beam lithography combined with reactive-ion etching is used to reproducibly create individual silicon nanopillars of various sizes, shapes, and heights. Finite difference time domain numerical analysis predicts enhancements in localized fields in the vicinity of appropriately-sized and coaxially-illuminated silicon nanopillars of approximately two orders of magnitude. By analyzing experimentally measured strength of the silicon Raman phonon line (500 cm-1), it was determined that nanopillars produced field enhancement that are consistent with these predictions. Additionally, we demonstrate that a thin layer of Zn phthalocyanine deposited on the nanopillar surface produced prominent Raman spectra yielding enhancement factors (EFs) better than 300. Finally, silicon nanopillars of cylindrical and elliptical shapes were labeled with different fluorophors and evaluated for their surface enhanced fluorescence (SEF) capability. The EF derived from analysis of the acquired fluorescence microscopy images indicate that silicon nanopillar structures can provide enhancement comparable or even stronger than those typically achieved using plasmonic SEF structures without the drawbacks of the metal-based substrates. It is anticipated that scaled up arrays of silicon nanopillars will enable SEF assays with extremely high sensitivity, while a broader impact of the reported phenomena are anticipated in photovoltaics, subwavelength light focusing, and fundamental nanophotonics.

  8. Controlled Adhesion of Silicone Elastomer Surfaces

    NASA Astrophysics Data System (ADS)

    Owen, Michael

    2000-03-01

    Opportunities exist for controllably enhancing the adhesion of silicone surfaces, ranging from modest enhancement of release force levels of pressure-sensitive adhesive (PSA) release liners by incorporation of adhesion promoters known as high release additives (HRA), to permanent bonding of silicone elastomers using surface modification techniques such as plasma or corona treatment. Although only a part of the complex interaction of factors contributing to adhesion, surface properties such as wettability are a critical component in the understanding and control of release and adhesion phenomena. Surface characterization studies of low-surface-energy silicones before and after various adhesion modification strategies are reviewed. The silicones include polydimethylsiloxane (PDMS) and fluorosiloxane elastomers and coatings. Techniques used include contact angle, the Johnson, Kendall and Roberts (JKR) contact mechanics approach, scanning electron microscopy (SEM), atomic force microscopy (AFM), and x-ray photoelectron spectroscopy (XPS). Topics addressed are: use of HRA in PDMS release liners, the interaction of PDMS PSAs with polytetrafluoroethylene (PTFE), and the effect of plasma treatment on PDMS and fluorosiloxane surfaces.

  9. Nanoparticle-based etching of silicon surfaces

    SciTech Connect

    Branz, Howard; Duda, Anna; Ginley, David S.; Yost, Vernon; Meier, Daniel; Ward, James S.

    2011-12-13

    A method (300) of texturing silicon surfaces (116) such to reduce reflectivity of a silicon wafer (110) for use in solar cells. The method (300) includes filling (330, 340) a vessel (122) with a volume of an etching solution (124) so as to cover the silicon surface 116) of a wafer or substrate (112). The etching solution (124) is made up of a catalytic nanomaterial (140) and an oxidant-etchant solution (146). The catalytic nanomaterial (140) may include gold or silver nanoparticles or noble metal nanoparticles, each of which may be a colloidal solution. The oxidant-etchant solution (146) includes an etching agent (142), such as hydrofluoric acid, and an oxidizing agent (144), such as hydrogen peroxide. Etching (350) is performed for a period of time including agitating or stirring the etching solution (124). The etch time may be selected such that the etched silicon surface (116) has a reflectivity of less than about 15 percent such as 1 to 10 percent in a 350 to 1000 nanometer wavelength range.

  10. Oxide driven strength evolution of silicon surfaces

    SciTech Connect

    Grutzik, Scott J.; Zehnder, Alan T.; Milosevic, Erik; Boyce, Brad L.

    2015-11-21

    Previous experiments have shown a link between oxidation and strength changes in single crystal silicon nanostructures but provided no clues as to the mechanisms leading to this relationship. Using atomic force microscope-based fracture strength experiments, molecular dynamics modeling, and measurement of oxide development with angle resolved x-ray spectroscopy we study the evolution of strength of silicon (111) surfaces as they oxidize and with fully developed oxide layers. We find that strength drops with partial oxidation but recovers when a fully developed oxide is formed and that surfaces intentionally oxidized from the start maintain their high initial strengths. MD simulations show that strength decreases with the height of atomic layer steps on the surface. These results are corroborated by a completely separate line of testing using micro-scale, polysilicon devices, and the slack chain method in which strength recovers over a long period of exposure to the atmosphere. Combining our results with insights from prior experiments we conclude that previously described strength decrease is a result of oxidation induced roughening of an initially flat silicon (1 1 1) surface and that this effect is transient, a result consistent with the observation that surfaces flatten upon full oxidation.

  11. Oxide driven strength evolution of silicon surfaces

    NASA Astrophysics Data System (ADS)

    Grutzik, Scott J.; Milosevic, Erik; Boyce, Brad L.; Zehnder, Alan T.

    2015-11-01

    Previous experiments have shown a link between oxidation and strength changes in single crystal silicon nanostructures but provided no clues as to the mechanisms leading to this relationship. Using atomic force microscope-based fracture strength experiments, molecular dynamics modeling, and measurement of oxide development with angle resolved x-ray spectroscopy we study the evolution of strength of silicon (111) surfaces as they oxidize and with fully developed oxide layers. We find that strength drops with partial oxidation but recovers when a fully developed oxide is formed and that surfaces intentionally oxidized from the start maintain their high initial strengths. MD simulations show that strength decreases with the height of atomic layer steps on the surface. These results are corroborated by a completely separate line of testing using micro-scale, polysilicon devices, and the slack chain method in which strength recovers over a long period of exposure to the atmosphere. Combining our results with insights from prior experiments we conclude that previously described strength decrease is a result of oxidation induced roughening of an initially flat silicon (1 1 1) surface and that this effect is transient, a result consistent with the observation that surfaces flatten upon full oxidation.

  12. Nickel deposition on silicon surfaces

    NASA Astrophysics Data System (ADS)

    Beleznai, Cs.; Nanai, Laszlo; Leppaevuori, Seppo; Remes, Janne; Moilanen, Hannu; George, Thomas F.

    1998-08-01

    Experimental results of laser assisted chemical vapor deposition of nickel from Ni(CO)4 and theoretical treatment of deposition process are presented. The nickel deposition has ben realized by scanning of Ar+ laser beam (100 - 400 mW, (lambda) equals 515 nm and 488 nm) on Si surfaces in atmosphere of Ni(CO)4 with 0.2 - 2.0 mbars with scanning speeds of 20 - 700 micrometers /s. As a result homogeneous Ni lines on Si have been deposited with a typical volumetric growth rate of 250 micrometers 3/s and widths of 10 - 20 micrometers and thickness of 0.2 - 0.5 micrometers . The electrical resistivity of lines deposited was cca 7 (mu) (Omega) cm. The theoretical treatment includes computations of the temperature distribution in both gas- phase and solid substrate. The reaction rate is computed on base of local concentration and local temperatures, within the frame of finite element methods using triangles as a base of computing.

  13. A surface code quantum computer in silicon.

    PubMed

    Hill, Charles D; Peretz, Eldad; Hile, Samuel J; House, Matthew G; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y; Hollenberg, Lloyd C L

    2015-10-01

    The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in parallel-posing formidable fabrication and control challenges. We present an architecture that addresses these problems through a novel shared-control paradigm that is particularly suited to the natural uniformity of the phosphorus donor nuclear spin qubit states and electronic confinement. The architecture comprises a two-dimensional lattice of donor qubits sandwiched between two vertically separated control layers forming a mutually perpendicular crisscross gate array. Shared-control lines facilitate loading/unloading of single electrons to specific donors, thereby activating multiple qubits in parallel across the array on which the required operations for surface code quantum error correction are carried out by global spin control. The complexities of independent qubit control, wave function engineering, and ad hoc quantum interconnects are explicitly avoided. With many of the basic elements of fabrication and control based on demonstrated techniques and with simulated quantum operation below the surface code error threshold, the architecture represents a new pathway for large-scale quantum information processing in silicon and potentially in other qubit systems where uniformity can be exploited. PMID:26601310

  14. A surface code quantum computer in silicon

    PubMed Central

    Hill, Charles D.; Peretz, Eldad; Hile, Samuel J.; House, Matthew G.; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y.; Hollenberg, Lloyd C. L.

    2015-01-01

    The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in parallel—posing formidable fabrication and control challenges. We present an architecture that addresses these problems through a novel shared-control paradigm that is particularly suited to the natural uniformity of the phosphorus donor nuclear spin qubit states and electronic confinement. The architecture comprises a two-dimensional lattice of donor qubits sandwiched between two vertically separated control layers forming a mutually perpendicular crisscross gate array. Shared-control lines facilitate loading/unloading of single electrons to specific donors, thereby activating multiple qubits in parallel across the array on which the required operations for surface code quantum error correction are carried out by global spin control. The complexities of independent qubit control, wave function engineering, and ad hoc quantum interconnects are explicitly avoided. With many of the basic elements of fabrication and control based on demonstrated techniques and with simulated quantum operation below the surface code error threshold, the architecture represents a new pathway for large-scale quantum information processing in silicon and potentially in other qubit systems where uniformity can be exploited. PMID:26601310

  15. Porosity-dependent fractal nature of the porous silicon surface

    SciTech Connect

    Rahmani, N.; Dariani, R. S.

    2015-07-15

    Porous silicon films with porosity ranging from 42% to 77% were fabricated by electrochemical anodization under different current density. We used atomic force microscopy and dynamic scaling theory for deriving the surface roughness profile and processing the topography of the porous silicon layers, respectively. We first compared the topography of bare silicon surface with porous silicon and then studied the effect of the porosity of porous silicon films on their scaling behavior by using their self-affinity nature. Our work demonstrated that silicon compared to the porous silicon films has the highest Hurst parameter, indicating that the formation of porous layer due to the anodization etching of silicon surface leads to an increase of its roughness. Fractal analysis revealed that the evolution of the nanocrystallites’ fractal dimension along with porosity. Also, we found that both interface width and Hurst parameter are affected by the increase of porosity.

  16. Copper-assisted, anti-reflection etching of silicon surfaces

    DOEpatents

    Toor, Fatima; Branz, Howard

    2014-08-26

    A method (300) for etching a silicon surface (116) to reduce reflectivity. The method (300) includes electroless deposition of copper nanoparticles about 20 nanometers in size on the silicon surface (116), with a particle-to-particle spacing of 3 to 8 nanometers. The method (300) includes positioning (310) the substrate (112) with a silicon surface (116) into a vessel (122). The vessel (122) is filled (340) with a volume of an etching solution (124) so as to cover the silicon surface (116). The etching solution (124) includes an oxidant-etchant solution (146), e.g., an aqueous solution of hydrofluoric acid and hydrogen peroxide. The silicon surface (116) is etched (350) by agitating the etching solution (124) with, for example, ultrasonic agitation, and the etching may include heating (360) the etching solution (124) and directing light (365) onto the silicon surface (116). During the etching, copper nanoparticles enhance or drive the etching process.

  17. Excimer laser induced nanostructuring of silicon surfaces.

    PubMed

    Kumar, Prashant; Krishna, Mamidipudi Ghanashyam; Bhattacharya, Ashok

    2009-05-01

    The effect of KrF excimer laser energy density (below and above the ablation threshold), number of shots and angle of laser incidence on the morphological reconstruction, structure and specular reflectance of Si[311] surfaces is reported. At low energy densities (0.1 to 0.3 J/cm2) laser irradiation results in a variety of nanostructures, depending on laser energy density and number of shots, such as nanopores (40-60 nm dia) and nanoparticles (40-80 nm dia). At energies greater than the laser ablation threshold (2 to 5 J/cm2) the formation of nanowires (200 nm dia, 6-8 microm length), and closely spaced silicon nanograins (100-150 nm dia) is observed. Experiments to study the effect of laser irradiation in the proximity of a fixed shape such as a linear step edge in the form of a stainless steel blade and a cylindrical cross-section Cu wire were also carried out. In both cases, linearly organized nanoparticles (150-200 nm diameter) and nanowires (60-80 nm diameter) formed close to the edge. There is a systematic degradation of long-range order with the number of shots and laser energy density as evidenced from X-ray diffraction studies. At an energy density of 2 J/cm2, and 100 shots the [311] oriented silicon surface made a transition to a randomly oriented nanocrystalline state. PMID:19452995

  18. Atomic Scale Flatness of Chemically Cleaned Silicon Surfaces Studied by Infrared Attenuated-Total-Reflection Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sawara, Kenichi; Yasaka, Tatsuhiro; Miyazaki, Seiichi; Hirose, Masataka

    1992-07-01

    Hydrogen-terminated Si(111) and Si(100) surfaces obtained by aqueous HF or pH-modified (pH{=}5.3) buffered-HF (BHF) treatments have been characterized by a Fourier transform infrared (FT-IR) attenuated-total-reflection (ATR) technique. The BHF treatment provides better surface flatness than the HF treatment. Pure water rinse is effective for improving the Si(111) surface flatness, while this is not the case for Si(100) because the pure water acts as an alkaline etchant and promotes the formation of (111) microfacets or microdefects on the (100) surface.

  19. Comparison of the surface charge behavior of commercial silicon nitride and silicon carbide powders

    NASA Technical Reports Server (NTRS)

    Whitman, Pamela K.; Feke, Donald L.

    1988-01-01

    The adsorption and desorption of protons from aqueous solution onto the surfaces of a variety of commercial silicon carbide and silicon nitride powders has been examined using a surface titration methodology. This method provides information on some colloidal characteristics, such as the point of zero charge (pzc) and the variation of proton adsorption with dispersion pH, useful for the prediction of optimal ceramic-processing conditions. Qualitatively, the magnitude of the proton adsorption from solution reveals small differences among all of the materials studied. However, the results show that the pzc for the various silicon nitride powders is affected by the powder synthesis route. Complementary investigations have shown that milling can also act to shift the pzc exhibited by silicon nitride powder. Also, studies of the role of the electrolyte in the development of surface charge have indicated no evidence of specific adsorption of ammonium ion on either silicon nitride or silicon carbide powders.

  20. Strong explosive interaction of hydrogenated porous silicon with oxygen at cryogenic temperatures.

    PubMed

    Kovalev, D; Timoshenko, V Y; Künzner, N; Gross, E; Koch, F

    2001-08-01

    We report new types of heterogeneous hydrogen-oxygen and silicon-oxygen branched chain reactions which have been found to proceed explosively after the filling of pores of hydrogen-terminated porous silicon (Si) by condensed or liquid oxygen in the temperature range of 4.2-90 K. Infrared vibrational absorption spectroscopy shows that, while initially Si nanocrystals assembling the layers have hydrogen-terminated surfaces, the final products of the reaction are SiO2 and H2O. Time-resolved optical experiments show that the explosive reaction develops in a time scale of 10(-6) s. We emphasize the remarkable structural properties of porous Si layers which are crucial for the strong explosive interaction. PMID:11497868

  1. Surface passivation of heavily boron or phosphorus doped crystalline silicon utilizing amorphous silicon

    NASA Astrophysics Data System (ADS)

    Carstens, K.; Dahlinger, M.

    2016-05-01

    Excellent surface passivation of heavily boron or phosphorus doped crystalline silicon is presented utilizing undoped hydrogenated amorphous silicon (a-Si:H). For passivating boron doped crystalline silicon surfaces, amorphous silicon needs to be deposited at low temperatures 150°C ≤Tdep≤200°C , leading to a high bandgap. In contrast, low bandgap amorphous silicon causes an inferior surface passivation of highly boron doped crystalline silicon. Boron doping in crystalline silicon leads to a shift of the Fermi energy towards the valence band maximum in the undoped a-Si:H. A simulation, implementing dangling bond defects according to the defect pool model, shows this shift in the undoped a-Si:H passivation to be more pronounced if the a-Si:H has a lower bandgap. Hence, the inferior passivation of boron doped surfaces with low bandgap amorphous silicon stems from a lower silicon-hydrogen bond energy due to this shift of the Fermi energy. Hydrogen effusion and ellipsometry measurements support our interpretation.

  2. Review of literature surface tension data for molten silicon

    NASA Technical Reports Server (NTRS)

    Hardy, S.

    1981-01-01

    Measurements of the surface tension of molten silicon are reported. For marangoni flow, the important parameter is the variation of surface tension with temperature, not the absolute value of the surface tension. It is not possible to calculate temperature coefficients using surface tension measurements from different experiments because the systematic errors are usually larger than the changes in surface tension because of temperature variations. The lack of good surface tension data for liquid silicon is probably due to its extreme chemical reactivity. A material which resists attack by molten silicon is not found. It is suggested that all of the sessile drip surface tension measurements are probably for silicon which is contaminated by the substrate materials.

  3. Casimir forces from conductive silicon carbide surfaces

    NASA Astrophysics Data System (ADS)

    Sedighi, M.; Svetovoy, V. B.; Broer, W. H.; Palasantzas, G.

    2014-05-01

    Samples of conductive silicon carbide (SiC), which is a promising material due to its excellent properties for devices operating in severe environments, were characterized with the atomic force microscope for roughness, and the optical properties were measured with ellipsometry in a wide range of frequencies. The samples show significant far-infrared absorption due to concentration of charge carriers and a sharp surface phonon-polariton peak. The Casimir interaction of SiC with different materials is calculated and discussed. As a result of the infrared structure and beyond to low frequencies, the Casimir force for SiC-SiC and SiC-Au approaches very slowly the limit of ideal metals, while it saturates significantly below this limit if interaction with insulators takes place (SiC-SiO2). At short separations (<10 nm) analysis of the van der Waals force yielded Hamaker constants for SiC-SiC interactions lower but comparable to those of metals, which is of significance to adhesion and surface assembly processes. Finally, bifurcation analysis of microelectromechanical system actuation indicated that SiC can enhance the regime of stable equilibria against stiction.

  4. Casimir force measurements from silicon carbide surfaces

    NASA Astrophysics Data System (ADS)

    Sedighi, M.; Svetovoy, V. B.; Palasantzas, G.

    2016-02-01

    Using an atomic force microscope we performed measurements of the Casimir force between a gold- coated (Au) microsphere and doped silicon carbide (SiC) samples. The last of these is a promising material for devices operating under severe environments. The roughness of the interacting surfaces was measured to obtain information for the minimum separation distance upon contact. Ellipsometry data for both systems were used to extract optical properties needed for the calculation of the Casimir force via the Lifshitz theory and for comparison to the experiment. Special attention is devoted to the separation of the electrostatic contribution to the measured total force. Our measurements demonstrate large contact potential V0(≈0.67 V ) , and a relatively small density of charges trapped in SiC. Knowledge of both Casimir and electrostatic forces between interacting materials is not only important from the fundamental point of view, but also for device applications involving actuating components at separations of less than 200 nm where surface forces play dominant role.

  5. Broadband Infrared Antireflection Structured Silicon Surfaces

    NASA Technical Reports Server (NTRS)

    Stewart, Kenneth; Fettig, Rainer; Allen, Christine; Larocque, Jennifer

    1999-01-01

    Silicon and germanium are materials often used for infrared (IR) windows and optical elements. However they have a very high index of refraction, in the order of three to four, which causes large reflection losses on each surface. These losses are especially high under large angles of incidence which are often desirable if signals are faint and fast optics are to be used. Solid antireflection coatings are either not available because materials with appropriate index of refraction do not exist, or their use is limited to a small wavelength range and small angles of incidence. We will present the status of our work to calculate, create, and test the performance of graded structures in Si to reduce its surface reflection. The structures are expected to work over the very broad wavelength range of 10 micron to 1000 micron and a wide range of angle of incidence. We.have identified several high aspect ratio MEMS process techniques to create the structures and have done 3D electromagnetic modeling, which predicts significant effects. Measurements on different samples have validated our modeling.

  6. Broadband Infrared Antireflection Structured Silicon Surfaces

    NASA Technical Reports Server (NTRS)

    Stewart, Kenneth; Fettig, Rainer; Allen, Christine; Larocque, Jennifer

    1999-01-01

    Silicon and germanium are materials often used for IR windows and optical elements. However they have a very high index of refraction, in the order of three to four, which causes large reflection losses on each surface. These losses are especially high under large angles of incidence which are often desirable if signals are faint and fast optics are to be used. Solid antireflection coatings are either not available because materials with appropriate index of refraction do not exist, or their use is limited to a small wavelength range and small angles of incidence. We will present the status of our work to calculate, create, and test the performance of graded structures in Si to reduce its surface reflection. The structures are expected to work over the very broad wavelength range of 10 to 1000 micrometers and a wide range of angle of incidence. We have identified several high aspect ratio MEMS process techniques to Create the structures and have done 3D electromagnetic modeling, which predicts significant effects. Measurements on different samples have validated our modeling.

  7. Broadband Infrared Antireflection Structured Silicon Surfaces

    NASA Technical Reports Server (NTRS)

    Stewart, Kenneth; Fettig, Rainer; Allen, Christine; Fettig, Rainer; Larocque, Jennifer

    1998-01-01

    Silicon and germanium are materials often used for IR windows and optical elements. However they have a very high index of refraction, in the order of three to four, which causes large reflection losses on each surface. These losses are especially high under large angles of incidence which are often desirable if signals are faint and fast optics are to be used. Solid antireflection coatings are either not available because materials with appropriate index of refraction do not exist, or their use is limited to a small wavelength range and small angles of incidence. We will present the status of our work to calculate, create, and test the performance of graded structures in Si to reduce its surface reflection. The structures are expected to work over the very broad wavelength range of 10 microns to 1000 microns and a wide range of angle of incidence. We have identified several high aspect ratio MEMS process techniques to create the structures and have done 3D electromagnetic modeling, which predicts significant effects. Measurements on different samples have validated our modeling.

  8. Design of highly oleophobic cellulose surfaces from structured silicon templates.

    PubMed

    Aulin, Christian; Yun, Sang Ho; Wågberg, Lars; Lindström, Tom

    2009-11-01

    Structured silicon surfaces, possessing hierarchical porous characteristics consisting of micrometer-sized cavities superimposed upon a network of nanometer-sized pillars or wires, have been fabricated by a plasma-etching process. These surfaces have superoleophobic properties, after being coated with fluorinated organic trichlorosilanes, on intrinsically oleophilic surfaces. By comparison with flat silicon surfaces, which are oleophilic, it has been demonstrated that a combination of low surface energy and the structured features of the plasma-etched surface is essential to prevent oil from penetrating the surface cavities and thus induce the observed macroscopic superoleophobic phenomena with very low contact-angle hysteresis and low roll-off angles. The structured silicon surfaces were coated with cellulose nanocrystals using the polyelectrolyte multilayer technique. The cellulose surfaces prepared in this way were then coated with a monolayer of fluorinated trichlorosilanes. These porous cellulose films displayed highly nonwetting properties against a number of liquids with low surface tension, including alkanes such as hexadecane and decane. The wettability and chemical composition of the cellulose/silicon surfaces were characterized with contact-angle goniometry and X-ray photoelectron spectroscopy, respectively. The nano/microtexture features of the cellulose/silicon surfaces were also studied with field-emission scanning electron microscopy. The highly oleophobic structured cellulose surfaces are very interesting model surfaces for the development of biomimetic self-cleaning surfaces in a vast array of products, including green constructions, packaging materials, protection against environmental fouling, sports, and outdoor clothing, and microfluidic systems. PMID:20356113

  9. Consequences of Atomic Oxygen Interaction With Silicone and Silicone Contamination on Surfaces in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Rutledge, Sharon K.; Haytas, Christy A.

    1999-01-01

    The exposure of silicones to atomic oxygen in low Earth orbit causes oxidation of the surface, resulting in conversion of silicone to silica. This chemical conversion increases the elastic modulus of the surface and initiates the development of a tensile strain. Ultimately, with sufficient exposure, tensile strain leads to cracking of the surface enabling the underlying unexposed silicone to be converted to silica resulting in additional depth and extent of cracking. The use of silicone coatings for the protection of materials from atomic oxygen attack is limited because of the eventual exposure of underlying unprotected polymeric material due to deep tensile stress cracking of the oxidized silicone. The use of moderate to high volatility silicones in low Earth orbit has resulted in a silicone contamination arrival at surfaces which are simultaneously being bombarded with atomic oxygen, thus leading to conversion of the silicone contaminant to silica. As a result of these processes, a gradual accumulation of contamination occurs leading to deposits which at times have been up to several microns thick (as in the case of a Mir solar array after 10 years in space). The contamination species typically consist of silicon, oxygen and carbon. which in the synergistic environment of atomic oxygen and UV radiation leads to increased solar absorptance and reduced solar transmittance. A comparison of the results of atomic oxygen interaction with silicones and silicone contamination will be presented based on the LDEF, EOIM-111, Offeq-3 spacecraft and Mir solar array in-space results. The design of a contamination pin-hole camera space experiment which uses atomic oxygen to produce an image of the sources of silicone contamination will also be presented.

  10. Hydrogen-terminated diamond vertical-type metal oxide semiconductor field-effect transistors with a trench gate

    NASA Astrophysics Data System (ADS)

    Inaba, Masafumi; Muta, Tsubasa; Kobayashi, Mikinori; Saito, Toshiki; Shibata, Masanobu; Matsumura, Daisuke; Kudo, Takuya; Hiraiwa, Atsushi; Kawarada, Hiroshi

    2016-07-01

    The hydrogen-terminated diamond surface (C-H diamond) has a two-dimensional hole gas (2DHG) layer independent of the crystal orientation. A 2DHG layer is ubiquitously formed on the C-H diamond surface covered by atomic-layer-deposited-Al2O3. Using Al2O3 as a gate oxide, C-H diamond metal oxide semiconductor field-effect transistors (MOSFETs) operate in a trench gate structure where the diamond side-wall acts as a channel. MOSFETs with a side-wall channel exhibit equivalent performance to the lateral C-H diamond MOSFET without a side-wall channel. Here, a vertical-type MOSFET with a drain on the bottom is demonstrated in diamond with channel current modulation by the gate and pinch off.

  11. Critically coupled surface phonon-polariton excitation in silicon carbide.

    PubMed

    Neuner, Burton; Korobkin, Dmitriy; Fietz, Chris; Carole, Davy; Ferro, Gabriel; Shvets, Gennady

    2009-09-01

    We observe critical coupling to surface phonon-polaritons in silicon carbide by attenuated total reflection of mid-IR radiation. Reflectance measurements demonstrate critical coupling by a double scan of wavelength and incidence angle. Critical coupling occurs when prism coupling loss is equal to losses in silicon carbide and the substrate, resulting in maximal electric field enhancement. PMID:19724526

  12. Surface Behavior of Boronic Acid-Terminated Silicones.

    PubMed

    Mansuri, Erum; Zepeda-Velazquez, Laura; Schmidt, Rolf; Brook, Michael A; DeWolf, Christine E

    2015-09-01

    Silicone polymers, with their high flexibility, lie in a monolayer at the air-water interface as they are compressed until a critical pressure is reached, at which point multilayers are formed. Surface pressure measurements demonstrate that, in contrast, silicones that are end-modified with polar groups take up lower surface areas under compression because the polar groups submerge into the water phase. Boronic acids have the ability to undergo coordination with Lewis bases. As part of a program to examine the surface properties of boronic acids, we have prepared boronic acid-modified silicones (SiBAs) and examined them at the air-water interface to better understand if they behave like other end-functional silicones. Monolayers of silicones, aminopropylsilicones, and SiBAs were characterized at the air-water interface as a function of end functionalization and silicone chain length. Brewster angle and atomic force microscopies confirm domain formation and similar film morphologies for both functionalized and non-functionalized silicone chains. There is a critical surface pressure (10 mN m(-1)) independent of chain length that corresponds to a first-order phase transition. Below this transition, the film appears to be a homogeneous monolayer, whose thickness is independent of the chain length. Ellipsometry at the air-water interface indicates that the boronic acid functionality leads to a significant increase of film thickness at low molecular areas that is not seen for non-functionalized silicone chains. What differentiates the boronic acids from simple silicones or other end-functionalized silicones, in particular, is the larger area occupied by the headgroup when under compression compared to other or non-end-functionalized silicones, which suggests an in-plane rather than submerged orientation that may be driven by boronic acid self-complexation. PMID:26263385

  13. Nanoscale Etching and Indentation of Silicon Surfaces with Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Dzegilenko, Fedor N.; Srivastava, Deepak; Saini, Subhash

    1998-01-01

    The possibility of nanolithography of silicon and germanium surfaces with bare carbon nanotube tips of scanning probe microscopy devices is considered with large scale classical molecular dynamics (MD) simulations employing Tersoff's reactive many-body potential for heteroatomic C/Si/Ge system. Lithography plays a key role in semiconductor manufacturing, and it is expected that future molecular and quantum electronic devices will be fabricated with nanolithographic and nanodeposition techniques. Carbon nanotubes, rolled up sheets of graphene made of carbon, are excellent candidates for use in nanolithography because they are extremely strong along axial direction and yet extremely elastic along radial direction. In the simulations, the interaction of a carbon nanotube tip with silicon surfaces is explored in two regimes. In the first scenario, the nanotubes barely touch the surface, while in the second they are pushed into the surface to make "nano holes". The first - gentle scenario mimics the nanotube-surface chemical reaction induced by the vertical mechanical manipulation of the nanotube. The second -digging - scenario intends to study the indentation profiles. The following results are reported in the two cases. In the first regime, depending on the surface impact site, two major outcomes outcomes are the selective removal of either a single surface atom or a surface dimer off the silicon surface. In the second regime, the indentation of a silicon substrate by the nanotube is observed. Upon the nanotube withdrawal, several surface silicon atoms are adsorbed at the tip of the nanotube causing significant rearrangements of atoms comprising the surface layer of the silicon substrate. The results are explained in terms of relative strength of C-C, C-Si, and Si-Si bonds. The proposed method is very robust and does not require applied voltage between the nanotube tips and the surface. The implications of the reported controllable etching and hole-creating for

  14. Dielectric properties of hydrogen-terminated Si(111) ultrathin films

    NASA Astrophysics Data System (ADS)

    Nakamura, Jun; Ishihara, Shunsuke; Natori, Akiko; Shimizu, Tomo; Natori, Kenji

    2006-03-01

    Dielectric properties of Si(111) ultrathin films have been investigated using first-principles ground-states calculations in external electrostatic fields. With increasing thickness of Si(111) ultrathin films, the optical dielectric constant evaluated at the center of the slab converges to the experimental bulk dielectric constant at a thickness of only eight bilayers, while the energy gap of the slab is still larger than that of bulk Si. The converged theoretical dielectric constant for bulk Si is only 6.2% higher than the experimental one. Furthermore, spatial variations of the dielectric constant have also been evaluated using the position-dependent macroscopic field given by a clear-cut definition. The results show that the dielectric constant is reduced distinctly at the first few bilayers from the surface, which stems from the penetration of depolarized charges induced at the surface. Such an effective reduction of the depolarization field near the surface is one of the reasons for the decrease in optical dielectric constant for the ultrathin films.

  15. Diffusion of silver over atomically clean silicon surfaces

    SciTech Connect

    Dolbak, A. E. Ol'shanetskii, B. Z.

    2013-06-15

    The diffusion of silver the (111), (100), and (110) silicon surfaces is studied by Auger electron spectroscopy and low-energy electron diffraction. The mechanisms of diffusion over the (111) and (110) surfaces are revealed, and the temperature dependences of diffusion coefficients are measured. An anisotropy of silver diffusion over the (110) surface is detected.

  16. The surface electronic structure of silicon terminated (100) diamond

    NASA Astrophysics Data System (ADS)

    Schenk, A. K.; Tadich, A.; Sear, M. J.; Qi, D.; Wee, A. T. S.; Stacey, A.; Pakes, C. I.

    2016-07-01

    A combination of synchrotron-based x-ray spectroscopy and contact potential difference measurements have been used to examine the electronic structure of the (3 × 1) silicon terminated (100) diamond surface under ultra high vacuum conditions. An occupied surface state which sits 1.75 eV below the valence band maximum has been identified, and indications of mid-gap unoccupied surface states have been found. Additionally, the pristine silicon terminated surface is shown to possess a negative electron affinity of ‑0.86 ± 0.1 eV.

  17. The surface electronic structure of silicon terminated (100) diamond.

    PubMed

    Schenk, A K; Tadich, A; Sear, M J; Qi, D; Wee, A T S; Stacey, A; Pakes, C I

    2016-07-01

    A combination of synchrotron-based x-ray spectroscopy and contact potential difference measurements have been used to examine the electronic structure of the (3 × 1) silicon terminated (100) diamond surface under ultra high vacuum conditions. An occupied surface state which sits 1.75 eV below the valence band maximum has been identified, and indications of mid-gap unoccupied surface states have been found. Additionally, the pristine silicon terminated surface is shown to possess a negative electron affinity of -0.86 ± 0.1 eV. PMID:27211214

  18. Secondary-electron emission from hydrogen-terminated diamond

    SciTech Connect

    Wang E.; Ben-Zvi, I.; Rao, T.; Wu, Q.; Dimitrov, D.A.; T. Xin, T.

    2012-05-20

    Diamond amplifiers demonstrably are an electron source with the potential to support high-brightness, high-average-current emission into a vacuum. We recently developed a reliable hydrogenation procedure for the diamond amplifier. The systematic study of hydrogenation resulted in the reproducible fabrication of high gain diamond amplifier. Furthermore, we measured the emission probability of diamond amplifier as a function of the external field and modelled the process with resulting changes in the vacuum level due to the Schottky effect. We demonstrated that the decrease in the secondary electrons average emission gain was a function of the pulse width and related this to the trapping of electrons by the effective NEA surface. The findings from the model agree well with our experimental measurements. As an application of the model, the energy spread of secondary electrons inside the diamond was estimated from the measured emission.

  19. Atomic scale memory at a silicon surface

    NASA Astrophysics Data System (ADS)

    Bennewitz, R.; Crain, J. N.; Kirakosian, A.; Lin, J.-L.; McChesney, J. L.; Petrovykh, D. Y.; Himpsel, F. J.

    2002-08-01

    The limits of pushing storage density to the atomic scale are explored with a memory that stores a bit by the presence or absence of one silicon atom. These atoms are positioned at lattice sites along self-assembled tracks with a pitch of five atom rows. The memory can be initialized and reformatted by controlled deposition of silicon. The writing process involves the transfer of Si atoms to the tip of a scanning tunnelling microscope. The constraints on speed and reliability are compared with data storage in magnetic hard disks and DNA.

  20. Porous silicon nanocrystals in a silica aerogel matrix

    PubMed Central

    2012-01-01

    Silicon nanoparticles of three types (oxide-terminated silicon nanospheres, micron-sized hydrogen-terminated porous silicon grains and micron-size oxide-terminated porous silicon grains) were incorporated into silica aerogels at the gel preparation stage. Samples with a wide range of concentrations were prepared, resulting in aerogels that were translucent (but weakly coloured) through to completely opaque for visible light over sample thicknesses of several millimetres. The photoluminescence of these composite materials and of silica aerogel without silicon inclusions was studied in vacuum and in the presence of molecular oxygen in order to determine whether there is any evidence for non-radiative energy transfer from the silicon triplet exciton state to molecular oxygen adsorbed at the silicon surface. No sensitivity to oxygen was observed from the nanoparticles which had partially H-terminated surfaces before incorporation, and so we conclude that the silicon surface has become substantially oxidised. Finally, the FTIR and Raman scattering spectra of the composites were studied in order to establish the presence of crystalline silicon; by taking the ratio of intensities of the silicon and aerogel Raman bands, we were able to obtain a quantitative measure of the silicon nanoparticle concentration independent of the degree of optical attenuation. PMID:22805684

  1. Porous silicon nanocrystals in a silica aerogel matrix.

    PubMed

    Amonkosolpan, Jamaree; Wolverson, Daniel; Goller, Bernhard; Polisski, Sergej; Kovalev, Dmitry; Rollings, Matthew; Grogan, Michael D W; Birks, Timothy A

    2012-01-01

    Silicon nanoparticles of three types (oxide-terminated silicon nanospheres, micron-sized hydrogen-terminated porous silicon grains and micron-size oxide-terminated porous silicon grains) were incorporated into silica aerogels at the gel preparation stage. Samples with a wide range of concentrations were prepared, resulting in aerogels that were translucent (but weakly coloured) through to completely opaque for visible light over sample thicknesses of several millimetres. The photoluminescence of these composite materials and of silica aerogel without silicon inclusions was studied in vacuum and in the presence of molecular oxygen in order to determine whether there is any evidence for non-radiative energy transfer from the silicon triplet exciton state to molecular oxygen adsorbed at the silicon surface. No sensitivity to oxygen was observed from the nanoparticles which had partially H-terminated surfaces before incorporation, and so we conclude that the silicon surface has become substantially oxidised. Finally, the FTIR and Raman scattering spectra of the composites were studied in order to establish the presence of crystalline silicon; by taking the ratio of intensities of the silicon and aerogel Raman bands, we were able to obtain a quantitative measure of the silicon nanoparticle concentration independent of the degree of optical attenuation. PMID:22805684

  2. Improving efficiency of silicon heterojunction solar cells by surface texturing of silicon wafers using tetramethylammonium hydroxide

    NASA Astrophysics Data System (ADS)

    Wang, Liguo; Wang, Fengyou; Zhang, Xiaodan; Wang, Ning; Jiang, Yuanjian; Hao, Qiuyan; Zhao, Ying

    2014-12-01

    Texturing of silicon surfaces is an effective method for improving the efficiency of silicon solar cells. Etching by using tetramethylammonium hydroxide (TMAH) is more attractive than other texturing processes because TMAH is non-toxic, and high-quality anisotropic features can be realized without any metal ion contaminants. In this study, TMAH texturing conditions are varied to optimize the surface morphology of silicon wafers. Excellent optical properties are obtained. This is because of the formation of pyramidal structures with different random sizes but uniform shapes; in fact, when the optimal etching conditions (2% TMAH, 10% isopropyl alcohol (IPA) at 80 °C) are used, the reflectance is only 10.7%. In comparison with NaOH texturing, the TMAH process described here yields smaller pyramids with smoother (111) facets, leading to improved performance in silicon heterojunction solar cells, with a conversion efficiency of 17.8%.

  3. Solution-processed amorphous silicon surface passivation layers

    SciTech Connect

    Mews, Mathias Sontheimer, Tobias; Korte, Lars; Rech, Bernd; Mader, Christoph; Traut, Stephan; Wunnicke, Odo

    2014-09-22

    Amorphous silicon thin films, fabricated by thermal conversion of neopentasilane, were used to passivate crystalline silicon surfaces. The conversion is investigated using X-ray and constant-final-state-yield photoelectron spectroscopy, and minority charge carrier lifetime spectroscopy. Liquid processed amorphous silicon exhibits high Urbach energies from 90 to 120 meV and 200 meV lower optical band gaps than material prepared by plasma enhanced chemical vapor deposition. Applying a hydrogen plasma treatment, a minority charge carrier lifetime of 1.37 ms at an injection level of 10{sup 15}/cm{sup 3} enabling an implied open circuit voltage of 724 mV was achieved, demonstrating excellent silicon surface passivation.

  4. Surface Figure Measurement of Silicon Carbide Mirrors at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Blake, Peter; Mink, Ronald G.; Chambers, John; Robinson, F. David; Content, David; Davila, Pamela

    2005-01-01

    The surface figure of a developmental silicon carbide mirror, cooled to 87 K and then 20 K within a cryostat, was measured with unusually high precision at the Goddard Space Flight Center (GSFC). The concave spherical mirror, with a radius of 600 mm and a clear aperture of 150 mm, was fabricated of sintered silicon carbide. The mirror was mounted to an interface plate representative of an optical bench, made of the material Cesic@, a composite of silicon, carbon, and silicon carbide. The change in optical surface figure as the mirror and interface plate cooled from room temperature to 20 K was 3.7 nm rms, with a standard uncertainty of 0.23 nm in the rms statistic. Both the cryo-change figure and the uncertainty are among the lowest such figures yet published. This report describes the facilities, experimental methods, and uncertainty analysis of the measurements.

  5. Determination of surface recombination velocity in heavily doped silicon

    NASA Technical Reports Server (NTRS)

    Watanabe, M.; Gatos, H. C.; Actor, G.

    1976-01-01

    A method was developed and successfully tested for the determination of the effective surface recombination velocity of silicon layers doped by diffusion of phosphorus to a level of 10 to the 19th to 10 to the 21st per cu cm. The effective recombination velocity was obtained from the dependence of the electron-beam-induced current on the penetration of the electron beam of a scanning electron microscope. A special silicon diode was constructed which permitted the collection at the p-n junction of the carriers excited by the electron beam. This diode also permitted the study of the effects of surface preparation on the effective surface recombination velocity.

  6. Non-contact monitoring of electrical characteristics of silicon surface and near-surface region

    NASA Astrophysics Data System (ADS)

    Roman, P.; Brubaker, M.; Staffa, J.; Kamieniecki, E.; Ruzyllo, J.

    1998-11-01

    The SPV-based method of Surface Charge Profiling (SCP) is discussed, and its applications in silicon surface monitoring in IC manufacturing are reviewed. The SCP method shows high sensitivity to changes in the condition of the Si surface (e.g. surface cleaning operations) and a very thin near-surface region (e.g. variations of active dopant concentration near the surface).

  7. Optical second-harmonic spectroscopy of chemically-modified silicon and silicon-dioxide surfaces

    NASA Astrophysics Data System (ADS)

    Downer, M. C.; Jiang, Y. Y.; Lim, D.

    2002-03-01

    The optical second-harmonic generation (SHG) response of solid interfaces depends sensitively on chemical termination. We present a spectroscopic SHG study of chemically-modified Si and SiO2 surfaces that elucidates at the atomic level how adsorbates alter the electronic structure, and thereby the SHG response, of the surface. SHG spectra were measured on reconstructed Si(001) surfaces in UHV that were exposed to atomic H or to gas-phase precursors of Ge and B, and on the surfaces of 30 angstrom-thick silicon dioxide films on silicon substrates that were chemically functionalized to nucleate silicon nanocrystal formation. Microscopic models show that adsorbate-induced alterations of the surface SHG spectra are correlated with changes in near-surface charge polarization caused by surface dimer buckling, transfer of electrons to boron acceptors in second layer substitutional sites, or transfer of electrons from the silicon substrate, through the tunneling oxide, to the surface nanocrystals [1]. 1. M. C. Downer, B. S. Mendoza and V. I. Gavrilenko, Surf. Interface Anal. 31, 966 (2001).

  8. Formation of a silicon terminated (100) diamond surface

    SciTech Connect

    Schenk, Alex Sear, Michael; Pakes, Chris; Tadich, Anton; O'Donnell, Kane M.; Ley, Lothar; Stacey, Alastair

    2015-05-11

    We report the preparation of an ordered silicon terminated diamond (100) surface with a two domain 3 × 1 reconstruction as determined by low energy electron diffraction. Based on the dimensions of the surface unit cell and on chemical information provided by core level photoemission spectra, a model for the structure is proposed. The termination should provide a homogeneous, nuclear, and electron spin-free surface for the development of future near-surface diamond quantum device architectures.

  9. Etching of silicon surfaces using atmospheric plasma jets

    NASA Astrophysics Data System (ADS)

    Paetzelt, H.; Böhm, G.; Arnold, Th

    2015-04-01

    Local plasma-assisted etching of crystalline silicon by fine focused plasma jets provides a method for high accuracy computer controlled surface waviness and figure error correction as well as free form processing and manufacturing. We investigate a radio-frequency powered atmospheric pressure He/N2/CF4 plasma jet for the local chemical etching of silicon using fluorine as reactive plasma gas component. This plasma jet tool has a typical tool function width of about 0.5 to 1.8 mm and a material removal rate up to 0.068 mm3 min-1. The relationship between etching rate and plasma jet parameters is discussed in detail regarding gas composition, working distance, scan velocity and RF power. Surface roughness after etching was characterized using atomic force microscopy and white light interferometry. A strong smoothing effect was observed for etching rough silicon surfaces like wet chemically-etched silicon wafer backsides. Using the dwell-time algorithm for a deterministic surface machining by superposition of the local removal function of the plasma tool we show a fast and efficient way for manufacturing complex silicon structures. In this article we present two examples of surface processing using small local plasma jets.

  10. Chemical method for producing smooth surfaces on silicon wafers

    SciTech Connect

    Yu, Conrad

    2003-01-01

    An improved method for producing optically smooth surfaces in silicon wafers during wet chemical etching involves a pre-treatment rinse of the wafers before etching and a post-etching rinse. The pre-treatment with an organic solvent provides a well-wetted surface that ensures uniform mass transfer during etching, which results in optically smooth surfaces. The post-etching treatment with an acetic acid solution stops the etching instantly, preventing any uneven etching that leads to surface roughness. This method can be used to etch silicon surfaces to a depth of 200 .mu.m or more, while the finished surfaces have a surface roughness of only 15-50 .ANG. (RMS).

  11. Silicon nanohybrid-based surface-enhanced Raman scattering sensors.

    PubMed

    Wang, Houyu; Jiang, Xiangxu; Lee, Shuit-Tong; He, Yao

    2014-11-01

    Nanomaterial-based surface-enhanced Raman scattering (SERS) sensors are highly promising analytical tools, capable of ultrasensitive, multiplex, and nondestructive detection of chemical and biological species. Extensive efforts have been made to design various silicon nanohybrid-based SERS substrates such as gold/silver nanoparticle (NP)-decorated silicon nanowires, Au/Ag NP-decorated silicon wafers (AuNP@Si), and so forth. In comparison to free AuNP- and AgNP-based SERS sensors, the silicon nanohybrid-based SERS sensors feature higher enhancement factors (EFs) and excellent reproducibility, since SERS hot spots are efficiently coupled and stabilized through interconnection to the semiconducting silicon substrates. Consequently, in the past decade, giant advancements in the development of silicon nanohybrid-based SERS sensors have been witnessed for myriad sensing applications. In this review, the representative achievements related to the design of high-performance silicon nanohybrid-based SERS sensors and their use for chemical and biological analysis are reviewed in a detailed way. Furthermore, the major opportunities and challenges in this field are discussed from a broad perspective and possible future directions. PMID:25243935

  12. Epitaxy of silicon carbide on silicon: Micromorphological analysis of growth surface evolution

    NASA Astrophysics Data System (ADS)

    Shikhgasan, Ramazanov; Ştefan, Ţălu; Dinara, Sobola; Sebastian, Stach; Guseyn, Ramazanov

    2015-10-01

    The main purpose of our research was the study of evolution of silicon carbide films on silicon by micromorphological analysis. Surface micromorphologies of Silicon Carbide epilayers with two different thicknesses were compared by means of fractal geometry. Silicon Carbide films were prepared on Si substrates by magnetron sputtering of polycrystalline target SiC in Ar atmosphere (99.999% purity). Synthesis of qualitative SiC/Si templates solves the questions of large diameter SiC single-crystal wafers formation. This technology decreases financial expenditure and provides integration of SiC into silicon technology. These hybrid substrates with buffer layer of high oriented SiC are useful for growth of both wide band gap materials (SiC, AlN, GaN) and graphene. The main problem of SiC heteroepitaxy on Si (1 1 1) is the large difference (∼20%) of the lattice parameters. Fractal analysis of surface morphology of heteroepitaxial films could help to understand the films growth mechanisms. The 3D (three-dimensional) surfaces revealed a fractal structure at the nanometer scale. The fractal dimension (D) provided global quantitative values that characterize the scale properties of surface geometry.

  13. On the wettability transparency of graphene-coated silicon surfaces

    NASA Astrophysics Data System (ADS)

    Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.

    2016-01-01

    In order to better understand the behavior and governing characteristics of the wetting transparency phenomenon observed in graphene-coated surfaces, molecular dynamics simulations were coupled with a theoretical model. Graphene-coated silicon was selected for this analysis, due to potential applications of hybrid silicon-graphene materials as detectors in aqueous environments. The results indicate good agreement between the theory and simulations at the macroscopic conditions required to observe wetting transparency. A microscopic analysis was also conducted in order to identify the parameters, such as the interaction potential energy landscape and the interfacial liquid structure that govern the wetting behavior of graphene-coated surfaces. The interfacial liquid structure was found to be different between uncoated Si(100) and the graphene-coated version and very similar between uncoated Si(111) and the graphene-coated version. However, the concentration of liquid particles for both silicon surfaces was found to be very similar under transparent wetting conditions.

  14. Tribological interaction between polytetrafluoroethylene and silicon oxide surfaces

    SciTech Connect

    Uçar, A.; Çopuroğlu, M.; Suzer, S.; Baykara, M. Z.; Arıkan, O.

    2014-10-28

    We investigated the tribological interaction between polytetrafluoroethylene (PTFE) and silicon oxide surfaces. A simple rig was designed to bring about a friction between the surfaces via sliding a piece of PTFE on a thermally oxidized silicon wafer specimen. A very mild inclination (∼0.5°) along the sliding motion was also employed in order to monitor the tribological interaction in a gradual manner as a function of increasing contact force. Additionally, some patterns were sketched on the silicon oxide surface using the PTFE tip to investigate changes produced in the hydrophobicity of the surface, where the approximate water contact angle was 45° before the transfer. The nature of the transferred materials was characterized by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). XPS results revealed that PTFE was faithfully transferred onto the silicon oxide surface upon even at the slightest contact and SEM images demonstrated that stable morphological changes could be imparted onto the surface. The minimum apparent contact pressure to realize the PTFE transfer is estimated as 5 kPa, much lower than reported previously. Stability of the patterns imparted towards many chemical washing processes lead us to postulate that the interaction is most likely to be chemical. Contact angle measurements, which were carried out to characterize and monitor the hydrophobicity of the silicon oxide surface, showed that upon PTFE transfer the hydrophobicity of the SiO{sub 2} surface could be significantly enhanced, which might also depend upon the pattern sketched onto the surface. Contact angle values above 100° were obtained.

  15. Formation of nanostructured silicon surfaces by stain etching

    PubMed Central

    2014-01-01

    In this work, we report the fabrication of ordered silicon structures by chemical etching of silicon in vanadium oxide (V2O5)/hydrofluoric acid (HF) solution. The effects of the different etching parameters including the solution concentration, temperature, and the presence of metal catalyst film deposition (Pd) on the morphologies and reflective properties of the etched Si surfaces were studied. Scanning electron microscopy (SEM) was carried out to explore the morphologies of the etched surfaces with and without the presence of catalyst. In this case, the attack on the surfaces with a palladium deposit begins by creating uniform circular pores on silicon in which we distinguish the formation of pyramidal structures of silicon. Fourier transform infrared spectroscopy (FTIR) demonstrates that the surfaces are H-terminated. A UV-Vis-NIR spectrophotometer was used to study the reflectance of the structures obtained. A reflectance of 2.21% from the etched Si surfaces in the wavelength range of 400 to 1,000 nm was obtained after 120 min of etching while it is of 4.33% from the Pd/Si surfaces etched for 15 min. PMID:25435830

  16. Formation of nanostructured silicon surfaces by stain etching.

    PubMed

    Ayat, Maha; Belhousse, Samia; Boarino, Luca; Gabouze, Noureddine; Boukherroub, Rabah; Kechouane, Mohamed

    2014-01-01

    In this work, we report the fabrication of ordered silicon structures by chemical etching of silicon in vanadium oxide (V2O5)/hydrofluoric acid (HF) solution. The effects of the different etching parameters including the solution concentration, temperature, and the presence of metal catalyst film deposition (Pd) on the morphologies and reflective properties of the etched Si surfaces were studied. Scanning electron microscopy (SEM) was carried out to explore the morphologies of the etched surfaces with and without the presence of catalyst. In this case, the attack on the surfaces with a palladium deposit begins by creating uniform circular pores on silicon in which we distinguish the formation of pyramidal structures of silicon. Fourier transform infrared spectroscopy (FTIR) demonstrates that the surfaces are H-terminated. A UV-Vis-NIR spectrophotometer was used to study the reflectance of the structures obtained. A reflectance of 2.21% from the etched Si surfaces in the wavelength range of 400 to 1,000 nm was obtained after 120 min of etching while it is of 4.33% from the Pd/Si surfaces etched for 15 min. PMID:25435830

  17. Temperature-dependent photoluminescence of surface-engineered silicon nanocrystals

    PubMed Central

    Mitra, Somak; Švrček, Vladimir; Macias-Montero, Manual; Velusamy, Tamilselvan; Mariotti, Davide

    2016-01-01

    In this work we report on temperature-dependent photoluminescence measurements (15–300 K), which have allowed probing radiative transitions and understanding of the appearance of various transitions. We further demonstrate that transitions associated with oxide in SiNCs show characteristic vibronic peaks that vary with surface characteristics. In particular we study differences and similarities between silicon nanocrystals (SiNCs) derived from porous silicon and SiNCs that were surface-treated using a radio-frequency (RF) microplasma system. PMID:27296771

  18. Temperature-dependent photoluminescence of surface-engineered silicon nanocrystals.

    PubMed

    Mitra, Somak; Švrček, Vladimir; Macias-Montero, Manual; Velusamy, Tamilselvan; Mariotti, Davide

    2016-01-01

    In this work we report on temperature-dependent photoluminescence measurements (15-300 K), which have allowed probing radiative transitions and understanding of the appearance of various transitions. We further demonstrate that transitions associated with oxide in SiNCs show characteristic vibronic peaks that vary with surface characteristics. In particular we study differences and similarities between silicon nanocrystals (SiNCs) derived from porous silicon and SiNCs that were surface-treated using a radio-frequency (RF) microplasma system. PMID:27296771

  19. Surface acoustic wave/silicon monolithic sensor/processor

    NASA Technical Reports Server (NTRS)

    Kowel, S. T.; Kornreich, P. G.; Nouhi, A.; Kilmer, R.; Fathimulla, M. A.; Mehter, E.

    1983-01-01

    A new technique for sputter deposition of piezoelectric zinc oxide (ZnO) is described. An argon-ion milling system was converted to sputter zinc oxide films in an oxygen atmosphere using a pure zinc oxide target. Piezoelectric films were grown on silicon dioxide and silicon dioxide overlayed with gold. The sputtered films were evaluated using surface acoustic wave measurements, X-ray diffraction, scanning electron microscopy, Auger electron spectroscopy, and resistivity measurements. The effect of the sputtering conditions on the film quality and the result of post-deposition annealing are discussed. The application of these films to the generation of surface acoustic waves is also discussed.

  20. Temperature-dependent photoluminescence of surface-engineered silicon nanocrystals

    NASA Astrophysics Data System (ADS)

    Mitra, Somak; Švrček, Vladimir; Macias-Montero, Manual; Velusamy, Tamilselvan; Mariotti, Davide

    2016-06-01

    In this work we report on temperature-dependent photoluminescence measurements (15–300 K), which have allowed probing radiative transitions and understanding of the appearance of various transitions. We further demonstrate that transitions associated with oxide in SiNCs show characteristic vibronic peaks that vary with surface characteristics. In particular we study differences and similarities between silicon nanocrystals (SiNCs) derived from porous silicon and SiNCs that were surface-treated using a radio-frequency (RF) microplasma system.

  1. Surface modification of silicon dioxide, silicon nitride and titanium oxynitride for lactate dehydrogenase immobilization.

    PubMed

    Saengdee, Pawasuth; Chaisriratanakul, Woraphan; Bunjongpru, Win; Sripumkhai, Witsaroot; Srisuwan, Awirut; Jeamsaksiri, Wutthinan; Hruanun, Charndet; Poyai, Amporn; Promptmas, Chamras

    2015-05-15

    Three different types of surface, silicon dioxide (SiO2), silicon nitride (Si3N4), and titanium oxynitride (TiON) were modified for lactate dehydrogenase (LDH) immobilization using (3-aminopropyl)triethoxysilane (APTES) to obtain an amino layer on each surface. The APTES modified surfaces can directly react with LDH via physical attachment. LDH can be chemically immobilized on those surfaces after incorporation with glutaraldehyde (GA) to obtain aldehyde layers of APTES-GA modified surfaces. The wetting properties, chemical bonding composition, and morphology of the modified surface were determined by contact angle (CA) measurement, Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM), respectively. In this experiment, the immobilized protein content and LDH activity on each modified surface was used as an indicator of surface modification achievement. The results revealed that both the APTES and APTES-GA treatments successfully link the LDH molecule to those surfaces while retaining its activity. All types of tested surfaces modified with APTES-GA gave better LDH immobilizing efficiency than APTES, especially the SiO2 surface. In addition, the SiO2 surface offered the highest LDH immobilization among tested surfaces, with both APTES and APTES-GA modification. However, TiON and Si3N4 surfaces could be used as alternative candidate materials in the preparation of ion-sensitive field-effect transistor (ISFET) based biosensors, including lactate sensors using immobilized LDH on the ISFET surface. PMID:25108848

  2. Rapid Formation of Soft Hydrophilic Silicone Elastomer Surfaces

    SciTech Connect

    Efimenko,K.; Crowe, J.; Manias, E.; Schwark, D.; Fischer, D.; Genzer, J.

    2005-01-01

    We report on the rapid formation of hydrophilic silicone elastomer surfaces by ultraviolet/ozone (UVO) irradiation of poly(vinylmethylsiloxane) (PVMS) network films. Our results reveal that the PVMS network surfaces render hydrophilic upon only a short UVO exposure time (seconds to a few minutes). We also provide evidence that the brief UVO irradiation treatment does not cause dramatic changes in the surface modulus of the PVMS network. We compare the rate of formation of hydrophilic silicone elastomer surfaces made of PVMS to those of model poly(dimethyl siloxane) (PDMS) and commercial-grade PDMS (Sylgard-184). We find that relative to PVMS, 20 times longer UVO treatment times are needed to oxidize the PDMS network surfaces in order to achieve a comparable density of surface-bound hydrophilic moieties. The longer UVO treatment times for PDMS are in turn responsible for the dramatic increase in surface modulus of UVO treated PDMS, relative to PVMS. We also study the formation of self-assembled monolayers (SAMs) made of semifluorinated organosilane precursors on the PVMSUVO and PDMS-UVO network surfaces. By tuning the UVO treatment times and by utilizing mono- and tri-functional organosilanes we find that while mono-functionalized organosilanes attach directly to the substrate, SAMs of tri-functionalized organosilanes form in-plane networks on the underlying UVO-modified silicone elastomer surface, even with only short UVO exposure times.

  3. Passivation of c-Si surfaces by sub-nm amorphous silicon capped with silicon nitride

    NASA Astrophysics Data System (ADS)

    Wan, Yimao; Yan, Di; Bullock, James; Zhang, Xinyu; Cuevas, Andres

    2015-12-01

    A sub-nm hydrogenated amorphous silicon (a-Si:H) film capped with silicon nitride (SiNx) is shown to provide a high level passivation to crystalline silicon (c-Si) surfaces. When passivated by a 0.8 nm a-Si:H/75 nm SiNx stack, recombination current density J0 values of 9, 11, 47, and 87 fA/cm2 are obtained on 10 Ω.cm n-type, 0.8 Ω.cm p-type, 160 Ω/sq phosphorus-diffused, and 120 Ω/sq boron-diffused silicon surfaces, respectively. The J0 on n-type 10 Ω.cm wafers is further reduced to 2.5 ± 0.5 fA/cm2 when the a-Si:H film thickness exceeds 2.5 nm. The passivation by the sub-nm a-Si:H/SiNx stack is thermally stable at 400 °C in N2 for 60 min on all four c-Si surfaces. Capacitance-voltage measurements reveal a reduction in interface defect density and film charge density with an increase in a-Si:H thickness. The nearly transparent sub-nm a-Si:H/SiNx stack is thus demonstrated to be a promising surface passivation and antireflection coating suitable for all types of surfaces encountered in high efficiency c-Si solar cells.

  4. Spin chains and electron transfer at stepped silicon surfaces

    NASA Astrophysics Data System (ADS)

    Erwin, Steven; Aulbach, Julian; Claessen, Ralph; Schaefer, Joerg

    Stepped silicon surfaces oriented between Si(111) and Si(001) show unusual behavior when submonolayer amounts of gold are adsorbed: they self-assemble to form arrays of steps with virtually perfect structural order. Known examples include Si(553), Si(557), and Si(775). For the first two of these there is, in addition, strong theoretical and experimental evidence that the silicon step edges are spin polarized, raising the possibility of a magnetically ordered ground state at a silicon surface. The situation is different, however, for Si(775): theory and experiment both show that spin polarization does not occur. Here we use density-functional theory and scanning tunneling microscopy to develop a physically transparent picture explaining the formation of these 'spin chains' on the family of Si(hhk)-Au surfaces. Specifically, we explain why spin chains form on particular silicon (hhk) orientations but not on others. Finally, we use this understanding to propose strategies for using surface chemistry to control the formation or suppression of spin chains on Si(hhk)-Au surfaces.

  5. Surface quality of silicon wafer improved by hydrodynamic effect polishing

    NASA Astrophysics Data System (ADS)

    Peng, Wenqiang; Guan, Chaoliang; Li, Shengyi

    2014-08-01

    Differing from the traditional pad polishing, hydrodynamic effect polishing (HEP) is non-contact polishing with the wheel floated on the workpiece. A hydrodynamic lubricated film is established between the wheel and the workpiece when the wheel rotates at a certain speed in HEP. Nanoparticles mixed with deionized water are employed as the polishing slurry, and with action of the dynamic pressure, nanoparticles with high chemisorption due to the high specific surface area can easily reacted with the surface atoms forming a linkage with workpiece surface. The surface atoms are dragged away when nanoparticles are transported to separate by the flow shear stress. The development of grand scale integration put extremely high requirements on the surface quality on the silicon wafer with surface roughness at subnanometer and extremely low surface damage. In our experiment a silicon sample was processed by HEP, and the surface topography before and after polishing was observed by the atomic force microscopy. Experiment results show that plastic pits and bumpy structures on the initial surface have been removed away clearly with the removal depth of 140nm by HEP process. The processed surface roughness has been improved from 0.737nm RMS to 0.175nm RMS(10μm×10μm) and the section profile shows peaks of the process surface are almost at the same height. However, the machining ripples on the wheel surface will duplicate on the silicon surface under the action of the hydrodynamic effect. Fluid dynamic simulation demonstrated that the coarse surface on the wheel has greatly influence on the distribution of shear stress and dynamic pressure on the workpiece surface.

  6. Silicon surface barrier detectors used for liquid hydrogen density measurement

    NASA Technical Reports Server (NTRS)

    James, D. T.; Milam, J. K.; Winslett, H. B.

    1968-01-01

    Multichannel system employing a radioisotope radiation source, strontium-90, radiation detector, and a silicon surface barrier detector, measures the local density of liquid hydrogen at various levels in a storage tank. The instrument contains electronic equipment for collecting the density information, and a data handling system for processing this information.

  7. Self assembly of magnetic nanoparticles at silicon surfaces.

    PubMed

    Theis-Bröhl, Katharina; Gutfreund, Philipp; Vorobiev, Alexei; Wolff, Max; Toperverg, Boris P; Dura, Joseph A; Borchers, Julie A

    2015-06-21

    Neutron reflectometry was used to study the assembly of magnetite nanoparticles in a water-based ferrofluid close to a silicon surface. Under three conditions, static, under shear and with a magnetic field, the depth profile is extracted. The particles have an average diameter of 11 nm and a volume density of 5% in a D2O-H2O mixture. They are surrounded by a 4 nm thick bilayer of carboxylic acid for steric repulsion. The reflectivity data were fitted to a model using a least square routine based on the Parratt formalism. From the scattering length density depth profiles the following behavior is concluded: the fits indicate that excess carboxylic acid covers the silicon surface and almost eliminates the water in the densely packed wetting layer that forms close to the silicon surface. Under constant shear the wetting layer persists but a depletion layer forms between the wetting layer and the moving ferrofluid. Once the flow is stopped, the wetting layer becomes more pronounced with dense packing and is accompanied by a looser packed second layer. In the case of an applied magnetic field the prolate particles experience a torque and align with their long axes along the silicon surface which leads to a higher particle density. PMID:25971712

  8. Surface charge transport in Silicon (111) nanomembranes

    NASA Astrophysics Data System (ADS)

    Hu, Weiwei; Scott, Shelley; Jacobson, Rb; Savage, Donald; Lagally, Max; The Lagally Group Team

    Using thin sheets (``nanomembranes'') of atomically flat crystalline semiconductors, we are able to investigate surface electronic properties, using back-gated van der Pauw measurement in UHV. The thinness of the sheet diminishes the bulk contribution, and the back gate tunes the conductivity until the surface dominates, enabling experimental determination of surface conductance. We have previously shown that Si(001) surface states interact with the body of the membrane altering the conductivity of the system. Here, we extended our prior measurements to Si(111) in order to probe the electronic transport properties of the Si(111) 7 ×7 reconstruction. Sharp (7 ×7) LEED images attest to the cleanliness of the Si(111) surface. Preliminary results reveal a highly conductive Si(111) 7 ×7 surface with a sheet conductance Rs of order of μS/ □, for 110nm thick membrane, and Rs is a very slowly varying function of the back gate voltage. This is in strong contrast to Si(001) nanomembranes which have a minimum conductance several orders of magnitude lower, and hints to the metallic nature of the Si(111) surface. Research supported by DOE.

  9. The Nucleation and Growth of Cu Nanoclusters on Silicon Surfaces

    SciTech Connect

    Singh, Andy; Luening, Katharina; Brennan, Sean; Pianetta, Piero; Homma, Takayuki; Kubo, Nobuhiro

    2004-05-12

    Due to the recent adoption of copper interconnect technology by the semiconductor industry, there has been great interest in understanding the kinetics and mechanisms of copper metal deposition on silicon wafer surfaces in ultra pure water (UPW) solutions. To study the kinetics of the copper deposition mechanism on silicon surfaces, silicon [100] samples were immersed in non-deoxygenated and deoxygenated UPW solutions contaminated with a copper concentration of 100 ppb with dipping times ranging from 5 to 300 seconds and then measured using total reflection x-ray fluorescence (TXRF) at the Stanford Synchrotron Radiation Laboratory (SSRL). By measuring the Cu fluorescence signal as function of angle of incidence of the incoming x-rays, it was possible to ascertain whether the deposited copper was atomically dispersed or particle-like in nature. It was established that in non-deoxygenated UPW, the copper is incorporated atomically into the silicon surface oxide as a copper oxide, while in deoxygenated UPW, copper is deposited on the silicon surface in the form of nanoparticles. The heights of these particles were determined by performing quantitative fits to the angle scans using a spherical cap model to describe the Cu clusters. The results were consistent with measurements conducted with atomic force microscopy (AFM). Finally, the surface density of the metallic copper nanoparticles deposited in deoxygenated UPW was determined for the whole range of dipping times from the AFM measurements, indicating that Ostwald Ripening mechanisms, where large particles grow at the expense of smaller, less thermodynamically stable particles, describe the growth of Cu nanoclusters in deoxygenated UPW solutions.

  10. Surface effects in high voltage silicon solar cells

    NASA Technical Reports Server (NTRS)

    Meulenberg, A.; Arndt, R. A.

    1982-01-01

    The surface of low-resistivity silicon solar cells appears to be a major source of dark diffusion current. This region, consisting of the interface and the adjacent heavily doped layer, therefore, prevents attainment of the high open-circuit voltages expected from these cells. This paper describes the experimental effort carried out to reduce the various contributions of dark current from the surface. Analysis of results from this effort points to means of improving cell voltages by changing processing and structures.

  11. Silver diffusion over silicon surfaces with adsorbed tin atoms

    SciTech Connect

    Dolbak, A. E. Olshanetskii, B. Z.

    2015-02-15

    Silver diffusion over the (111), (100), and (110) surfaces of silicon with preliminarily adsorbed tin atoms is studied by Auger electron spectroscopy and low-energy electron diffraction. Diffusion is observed only on the surface of Si(111)-2√3 × 2√3-Sn. The diffusion mechanism is established. It is found that the diffusion coefficient depends on the concentration of diffusing atoms. The diffusion coefficient decreases with increasing silver concentration, while the activation energy and the preexponential factor increase.

  12. Defect distribution near the surface of electron-irradiated silicon

    NASA Technical Reports Server (NTRS)

    Wang, K. L.; Lee, Y. H.; Corbett, J. W.

    1978-01-01

    The surface-defect distributions of electron-irradiated n-type silicon have been investigated using a transient capacitance technique. Schottky, p-n junction, and MOS structures were used in profiling the defect distributions. Surface depletions of defects observed were attributed to the vacancy distribution, but not that of oxygen, and other capture centers' distributions. The vacancy diffusion length at 300 K was estimated to be about 3-6 microns.

  13. Surface self-diffusion of silicon during high temperature annealing

    SciTech Connect

    Acosta-Alba, Pablo E.; Kononchuk, Oleg; Gourdel, Christophe; Claverie, Alain

    2014-04-07

    The atomic-scale mechanisms driving thermally activated self-diffusion on silicon surfaces are investigated by atomic force microscopy. The evolution of surface topography is quantified over a large spatial bandwidth by means of the Power Spectral Density functions. We propose a parametric model, based on the Mullins-Herring (M-H) diffusion equation, to describe the evolution of the surface topography of silicon during thermal annealing. Usually, a stochastic term is introduced into the M-H model in order to describe intrinsic random fluctuations of the system. In this work, we add two stochastic terms describing the surface thermal fluctuations and the oxidation-evaporation phenomenon. Using this extended model, surface evolution during thermal annealing in reducing atmosphere can be predicted for temperatures above the roughening transition. A very good agreement between experimental and theoretical data describing roughness evolution and self-diffusion phenomenon is obtained. The physical origin and time-evolution of these stochastic terms are discussed. Finally, using this model, we explore the limitations of the smoothening of the silicon surfaces by rapid thermal annealing.

  14. Surface self-diffusion of silicon during high temperature annealing

    NASA Astrophysics Data System (ADS)

    Acosta-Alba, Pablo E.; Kononchuk, Oleg; Gourdel, Christophe; Claverie, Alain

    2014-04-01

    The atomic-scale mechanisms driving thermally activated self-diffusion on silicon surfaces are investigated by atomic force microscopy. The evolution of surface topography is quantified over a large spatial bandwidth by means of the Power Spectral Density functions. We propose a parametric model, based on the Mullins-Herring (M-H) diffusion equation, to describe the evolution of the surface topography of silicon during thermal annealing. Usually, a stochastic term is introduced into the M-H model in order to describe intrinsic random fluctuations of the system. In this work, we add two stochastic terms describing the surface thermal fluctuations and the oxidation-evaporation phenomenon. Using this extended model, surface evolution during thermal annealing in reducing atmosphere can be predicted for temperatures above the roughening transition. A very good agreement between experimental and theoretical data describing roughness evolution and self-diffusion phenomenon is obtained. The physical origin and time-evolution of these stochastic terms are discussed. Finally, using this model, we explore the limitations of the smoothening of the silicon surfaces by rapid thermal annealing.

  15. Atmospheric oxygen plasma activation of silicon (100) surfaces

    SciTech Connect

    Habib, Sara B.; Gonzalez, Eleazar II; Hicks, Robert F.

    2010-05-15

    Silicon (100) surfaces were converted to a hydrophilic state with a water contact angle of <5 deg. by treatment with a radio frequency, atmospheric pressure helium, and oxygen plasma. A 2 in. wide plasma beam, operating at 250 W, 1.0 l/min O{sub 2}, 30 l/min He, and a source-to-sample distance of 3{+-}0.1 mm, was scanned over the sample at 100{+-}2 mm/s. Plasma oxidation of HF-etched silicon caused the dispersive component of the surface energy to decrease from 55.1 to 25.8 dyn/cm, whereas the polar component of the surface energy increased from 0.3 to 42.1 dyn/cm. X-ray photoelectron spectroscopy revealed that the treatment generated a monolayer of covalently bonded oxygen on the Si(100) surface 0.15{+-}0.10 nm thick. The surface oxidation kinetics have been measured by monitoring the change in water contact angle with treatment time, and are consistent with a process that is limited by the mass transfer of ground-state oxygen atoms to the silicon surface.

  16. Spin Chains and Electron Transfer at Stepped Silicon Surfaces.

    PubMed

    Aulbach, J; Erwin, S C; Claessen, R; Schäfer, J

    2016-04-13

    High-index surfaces of silicon with adsorbed gold can reconstruct to form highly ordered linear step arrays. These steps take the form of a narrow strip of graphitic silicon. In some cases--specifically, for Si(553)-Au and Si(557)-Au--a large fraction of the silicon atoms at the exposed edge of this strip are known to be spin-polarized and charge-ordered along the edge. The periodicity of this charge ordering is always commensurate with the structural periodicity along the step edge and hence leads to highly ordered arrays of local magnetic moments that can be regarded as "spin chains." Here, we demonstrate theoretically as well as experimentally that the closely related Si(775)-Au surface has--despite its very similar overall structure--zero spin polarization at its step edge. Using a combination of density-functional theory and scanning tunneling microscopy, we propose an electron-counting model that accounts for these differences. The model also predicts that unintentional defects and intentional dopants can create local spin moments at Si(hhk)-Au step edges. We analyze in detail one of these predictions and verify it experimentally. This finding opens the door to using techniques of surface chemistry and atom manipulation to create and control silicon spin chains. PMID:26974012

  17. Surface engineered porous silicon for stable, high performance electrochemical supercapacitors

    PubMed Central

    Oakes, Landon; Westover, Andrew; Mares, Jeremy W.; Chatterjee, Shahana; Erwin, William R.; Bardhan, Rizia; Weiss, Sharon M.; Pint, Cary L.

    2013-01-01

    Silicon materials remain unused for supercapacitors due to extreme reactivity of silicon with electrolytes. However, doped silicon materials boast a low mass density, excellent conductivity, a controllably etched nanoporous structure, and combined earth abundance and technological presence appealing to diverse energy storage frameworks. Here, we demonstrate a universal route to transform porous silicon (P-Si) into stable electrodes for electrochemical devices through growth of an ultra-thin, conformal graphene coating on the P-Si surface. This graphene coating simultaneously passivates surface charge traps and provides an ideal electrode-electrolyte electrochemical interface. This leads to 10–40X improvement in energy density, and a 2X wider electrochemical window compared to identically-structured unpassivated P-Si. This work demonstrates a technique generalizable to mesoporous and nanoporous materials that decouples the engineering of electrode structure and electrochemical surface stability to engineer performance in electrochemical environments. Specifically, we demonstrate P-Si as a promising new platform for grid-scale and integrated electrochemical energy storage. PMID:24145684

  18. Surface engineered porous silicon for stable, high performance electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Oakes, Landon; Westover, Andrew; Mares, Jeremy W.; Chatterjee, Shahana; Erwin, William R.; Bardhan, Rizia; Weiss, Sharon M.; Pint, Cary L.

    2013-10-01

    Silicon materials remain unused for supercapacitors due to extreme reactivity of silicon with electrolytes. However, doped silicon materials boast a low mass density, excellent conductivity, a controllably etched nanoporous structure, and combined earth abundance and technological presence appealing to diverse energy storage frameworks. Here, we demonstrate a universal route to transform porous silicon (P-Si) into stable electrodes for electrochemical devices through growth of an ultra-thin, conformal graphene coating on the P-Si surface. This graphene coating simultaneously passivates surface charge traps and provides an ideal electrode-electrolyte electrochemical interface. This leads to 10-40X improvement in energy density, and a 2X wider electrochemical window compared to identically-structured unpassivated P-Si. This work demonstrates a technique generalizable to mesoporous and nanoporous materials that decouples the engineering of electrode structure and electrochemical surface stability to engineer performance in electrochemical environments. Specifically, we demonstrate P-Si as a promising new platform for grid-scale and integrated electrochemical energy storage.

  19. Surface engineered porous silicon for stable, high performance electrochemical supercapacitors.

    PubMed

    Oakes, Landon; Westover, Andrew; Mares, Jeremy W; Chatterjee, Shahana; Erwin, William R; Bardhan, Rizia; Weiss, Sharon M; Pint, Cary L

    2013-01-01

    Silicon materials remain unused for supercapacitors due to extreme reactivity of silicon with electrolytes. However, doped silicon materials boast a low mass density, excellent conductivity, a controllably etched nanoporous structure, and combined earth abundance and technological presence appealing to diverse energy storage frameworks. Here, we demonstrate a universal route to transform porous silicon (P-Si) into stable electrodes for electrochemical devices through growth of an ultra-thin, conformal graphene coating on the P-Si surface. This graphene coating simultaneously passivates surface charge traps and provides an ideal electrode-electrolyte electrochemical interface. This leads to 10-40X improvement in energy density, and a 2X wider electrochemical window compared to identically-structured unpassivated P-Si. This work demonstrates a technique generalizable to mesoporous and nanoporous materials that decouples the engineering of electrode structure and electrochemical surface stability to engineer performance in electrochemical environments. Specifically, we demonstrate P-Si as a promising new platform for grid-scale and integrated electrochemical energy storage. PMID:24145684

  20. Initial stages of silicon growth on the (100) surface of silicon by localized laser CVD

    NASA Astrophysics Data System (ADS)

    Kotecki, D. E.; Herman, I. P.

    1987-12-01

    This paper reports initial results of an experimental study of the early stages of silicon thin film growth on well prepared (100) c-Si surfaces by pyrolytic deposition from silane (SiH4) during localized laser chemical vapor deposition (LLCVD). The rate of silicon thin film growth during low pressure (less than 10 Torr) deposition using tightly focussed laser beams (514.5 nm, approximately 2.5 micron FWHM) is characterized and is shown to be much slower than expected based on the previously measured silane decomposition rate. Hybrid-heating experiments, in which laser heating induces a slight temperature increase on a uniformly heated substrate in the presence of silane gas, shows that growth is inhibited within the laser irradiation region. This result suggests that a nonpyrolytic mechanism contributes to silicon growth in laser CVD. Possible explanations for this nonpyrolytic growth mechanism are discussed.

  1. 22. 7% efficient silicon photovoltaic modules with textured front surface

    SciTech Connect

    Zhao, J.; Wang, A.; Campbell, P.; Green, M.A. . Photovoltaics Special Research Centre)

    1999-07-01

    This paper reports the highest ever independently confirmed efficiency for a photovoltaic module as demonstrated by two 778-cm[sup 2] silicon solar cell modules of 22.7% efficiency. A key feature of these modules was the use of a pyramidally textured top module surface to reduce reflection from this surface as well as from the underlying cell surface, by trapping light within the top cover sheet. Higher current density and higher energy conversion efficiency for such a textured module are theoretically predicted and experimentally measured compared to a standard module with a planar front surface. This advantage becomes more significant for obliquely incident light.

  2. The Surface Photovoltage Mechanism of a Silicon Nanoporous Pillar Array

    NASA Astrophysics Data System (ADS)

    Hu, Zhen-Gang; Tian, Yong-Tao; Li, Xin-Jian

    2013-08-01

    The surface photovoltage (SPV) mechanism of a silicon nanoporous pillar array (Si-NPA) is investigated by using SPV spectroscopy in different external electric fields. Through comparisons with the SPV spectrum of single crystal silicon (sc-Si), the silicon nano-crystallite (nc-Si)/SiOx nanostructure of Si-NPA is proved to be capable of producing obvious SPV in the wavelength range 300-580 nm. The SPV for the sc-Si layer and the nc-Si/SiOx nanostructure has shown certain contrary characters in different external electric fields. Through analysis, the localized states in the amorphous SiOx matrix are believed to dominate the SPV for the nc-Si/SiOx nanostructure.

  3. Dynamics of photosensitized formation of singlet oxygen by porous silicon in aqueous solution

    SciTech Connect

    Fujii, Minoru; Nishimura, Naoki; Fumon, Hirokazu; Hayashi, Shinji; Kovalev, Dmitry; Goller, Bernhard; Diener, Joachim

    2006-12-15

    Generation of singlet oxygen due to energy transfer from photoexcited silicon nanocrystals in D{sub 2}O is demonstrated. It is shown that the singlet oxygen generation efficiency, i.e., the intensity of near-infrared emission from singlet oxygen gradually decreases when Si nanocrystals are continuously irradiated in O{sub 2}-saturated D{sub 2}O. The mechanism of the photodegradation of the photosensitizing efficiency is studied using photoluminescence and infrared absorption techniques. Experimental results suggest that the interaction of photogenerated singlet oxygen with the hydrogen-terminated surface of silicon nanocrystals results in photo-oxidation of silicon nanocrystals, and the surface oxides reduce the photosensitizing efficiency. It is also demonstrated that photo-oxidation of porous silicon in O{sub 2}-saturated water results in a strong enhancement of the photoluminescence quantum yield of porous Si.

  4. Electron stimulated oxidation of silicon surfaces

    SciTech Connect

    Munoz, M.C.; Sacedon, J.L.

    1981-04-15

    Experimental evidence of electron stimulated oxidation (ESO) has been given for Si(111) 7 x 7 surface. In a first stage, the oxide thickness as a function of time shows a linear relationship; in a second stage, the growth rate quickly decreases and a pressure dependent saturation oxide thickness is reached. During the oxidation process an electrical potential does exist across the oxide, as is required in the Cabrera--Mott theory. The linear kinetics and the electrical potential are shown to be explicable in terms of a modified coupled-current approach based on the Cabrera--Mott theory, provided a semiphenomenological pressure dependent parameter is included. This represents a contribution of the surface reaction to the transport equation. The saturation has been explained as due to the decrease of the negative surface charge (donor levels) which produces a decrease of the electron current.

  5. Changes in surface chemistry of silicon carbide (0001) surface with temperature and their effect on friction

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1980-01-01

    Friction studies were conducted with a silicon carbide (0001) surface contacting polycrystalline iron. The surface of silicon carbide was pretreated: (1) by bombarding it with argon ions for 30 minutes at a pressure of 1.3 pascals; (2) by heating it at 800 C for 3 hours in vacuum at a pressure of 10 to the minus eighth power pascal; or (3) by heating it at 1500 C for 3 hours in a vacuum of 10 to the minus eighth power pascal. Auger emission spectroscopy was used to determine the presence of silicon and carbon and the form of the carbon. The surfaces of silicon carbide bombarded with argon ions or preheated to 800 C revealed the main Si peak and a carbide type of C peak in the Auger spectra. The surfaces preheated to 1500 C revealed only a graphite type of C peak in the Auger spectra, and the Si peak had diminished to a barely perceptible amount. The surfaces of silicon carbide preheated to 800 C gave a 1.5 to 3 times higher coefficient of friction than did the surfaces of silicon carbide preheated to 1500 C. The coefficient of friction was lower in the 11(-2)0 direction than in the 10(-1)0 direction; that is, it was lower in the preferred crystallographic slip direction.

  6. Mixed role of surface on intrinsic losses in silicon nanostructures

    NASA Astrophysics Data System (ADS)

    De, Subhadeep; Kunal, K.; Aluru, N. R.

    2016-03-01

    We utilize molecular dynamics simulations and show opposing roles of surface on dissipation in nanostructures. While the surface defects always aid in the entropy generation process, the scattering of phonons from rough surfaces can suppress Akhiezer damping. For the case of a silicon (2 × 1) reconstructed surface, the former dominates and Q-1 (Q is the quality factor) is found to increase with the decrease in size. However, different scaling trends are observed in the case of a hydrogen (H) terminated silicon surface with no defects and dimers. Particularly, in the case of a H-terminated silicon, if the resonator is operated with a frequency Ω such that Ωτph<1 , where τph is the phonon relaxation time and Q-1 is found to decrease with the decrease in size. The opposite scaling is observed for Ωτph>1 . A simplified model, based on two phonon groups (with positive and negative Grüneisen parameters), is considered to explain the observed trend. We show that the equilibration time between the two mode groups decreases with the decrease in size for the H-terminated structure. We also study the scaling of Q-1 factor with frequency for these cases.

  7. Method For Silicon Surface Texturing Using Ion Implantation

    SciTech Connect

    Kadakia, Nirag; Naczas, Sebastian; Bakhru, Hassaram; Huang Mengbing

    2011-06-01

    As the semiconductor industry continues to show more interest in the photovoltaic market, cheaper and readily integrable methods of silicon solar cell production are desired. One of these methods - ion implantation - is well-developed and optimized in all commercial semiconductor fabrication facilities. Here we have developed a silicon surface texturing technique predicated upon the phenomenon of surface blistering of H-implanted silicon, using only ion implantation and thermal annealing. We find that following the H implant with a second, heavier implant markedly enhances the surface blistering, causing large trenches that act as a surface texturing of c-Si. We have found that this method reduces total broadband Si reflectance from 35% to below 5percent;. In addition, we have used Rutherford backscattering/channeling measurements investigate the effect of ion implantation on the crystallinity of the sample. The data suggests that implantation-induced lattice damage is recovered upon annealing, reproducing the original monocrystalline structure in the previously amorphized region, while at the same time retaining the textured surface.

  8. Method For Silicon Surface Texturing Using Ion Implantation

    NASA Astrophysics Data System (ADS)

    Kadakia, Nirag; Naczas, Sebastian; Bakhru, Hassaram; Huang, Mengbing

    2011-06-01

    As the semiconductor industry continues to show more interest in the photovoltaic market, cheaper and readily integrable methods of silicon solar cell production are desired. One of these methods—ion implantation—is well-developed and optimized in all commercial semiconductor fabrication facilities. Here we have developed a silicon surface texturing technique predicated upon the phenomenon of surface blistering of H-implanted silicon, using only ion implantation and thermal annealing. We find that following the H implant with a second, heavier implant markedly enhances the surface blistering, causing large trenches that act as a surface texturing of c-Si. We have found that this method reduces total broadband Si reflectance from 35% to below 5percent;. In addition, we have used Rutherford backscattering/channeling measurements investigate the effect of ion implantation on the crystallinity of the sample. The data suggests that implantation-induced lattice damage is recovered upon annealing, reproducing the original monocrystalline structure in the previously amorphized region, while at the same time retaining the textured surface.

  9. Effect of Surface Treated Silicon Dioxide Nanoparticles on Some Mechanical Properties of Maxillofacial Silicone Elastomer

    PubMed Central

    Zayed, Sara M.; Alshimy, Ahmad M.; Fahmy, Amal E.

    2014-01-01

    Current materials used for maxillofacial prostheses are far from ideal and there is a need for novel improved materials which mimic as close as possible the natural behavior of facial soft tissues. This study aimed to evaluate the effect of adding different concentrations of surface treated silicon dioxide nanoparticles (SiO2) on clinically important mechanical properties of a maxillofacial silicone elastomer. 147 specimens of the silicone elastomer were prepared and divided into seven groups (n = 21). One control group was prepared without nanoparticles and six study groups with different concentrations of nanoparticles, from 0.5% to 3% by weight. Specimens were tested for tear strength (ASTM D624), tensile strength (ASTM D412), percent elongation, and shore A hardness. SEM was used to assess the dispersion of nano-SiO2 within the elastomer matrix. Data were analyzed by one-way ANOVA and Scheffe test (α = 0.05). Results revealed significant improvement in all mechanical properties tested, as the concentration of the nanoparticles increased. This was supported by the results of the SEM. Hence, it can be concluded that the incorporation of surface treated SiO2 nanoparticles at concentration of 3% enhanced the overall mechanical properties of A-2186 silicone elastomer. PMID:25574170

  10. Forming high efficiency silicon solar cells using density-graded anti-reflection surfaces

    DOEpatents

    Yuan, Hao-Chih; Branz, Howard M.; Page, Matthew R.

    2014-09-09

    A method (50) is provided for processing a graded-density AR silicon surface (14) to provide effective surface passivation. The method (50) includes positioning a substrate or wafer (12) with a silicon surface (14) in a reaction or processing chamber (42). The silicon surface (14) has been processed (52) to be an AR surface with a density gradient or region of black silicon. The method (50) continues with heating (54) the chamber (42) to a high temperature for both doping and surface passivation. The method (50) includes forming (58), with a dopant-containing precursor in contact with the silicon surface (14) of the substrate (12), an emitter junction (16) proximate to the silicon surface (14) by doping the substrate (12). The method (50) further includes, while the chamber is maintained at the high or raised temperature, forming (62) a passivation layer (19) on the graded-density silicon anti-reflection surface (14).

  11. Forming high-efficiency silicon solar cells using density-graded anti-reflection surfaces

    DOEpatents

    Yuan, Hao-Chih; Branz, Howard M.; Page, Matthew R.

    2015-07-07

    A method (50) is provided for processing a graded-density AR silicon surface (14) to provide effective surface passivation. The method (50) includes positioning a substrate or wafer (12) with a silicon surface (14) in a reaction or processing chamber (42). The silicon surface (14) has been processed (52) to be an AR surface with a density gradient or region of black silicon. The method (50) continues with heating (54) the chamber (42) to a high temperature for both doping and surface passivation. The method (50) includes forming (58), with a dopant-containing precursor in contact with the silicon surface (14) of the substrate (12), an emitter junction (16) proximate to the silicon surface (14) by doping the substrate (12). The method (50) further includes, while the chamber is maintained at the high or raised temperature, forming (62) a passivation layer (19) on the graded-density silicon anti-reflection surface (14).

  12. A reclaiming process for solar cell silicon wafer surfaces.

    PubMed

    Pa, P S

    2011-01-01

    The low yield of epoxy film and Si3N4 thin-film deposition is an important factor in semiconductor production. A new design system using a set of three lamination-shaped electrodes as a machining tool and micro electro-removal as a precision reclaiming process of the Si3N4 layer and epoxy film removal from silicon wafers of solar cells surface is presented. In the current experiment, the combination of the small thickness of the anode and cathodes corresponds to a higher removal rate for the thin films. The combination of the short length of the anode and cathodes combined with enough electric power produces fast electroremoval. A combination of the small edge radius of the anode and cathodes corresponds to a higher removal rate. A higher feed rate of silicon wafers of solar cells combined with enough electric power produces fast removal. A precise engineering technology constructed a clean production approach for the removal of surface microstructure layers from silicon wafers is to develop a mass production system for recycling defective or discarded silicon wafers from solar cells that can reduce pollution and lower cost. PMID:21446525

  13. Passivation of c-Si surfaces by sub-nm amorphous silicon capped with silicon nitride

    SciTech Connect

    Wan, Yimao Yan, Di; Bullock, James; Zhang, Xinyu; Cuevas, Andres

    2015-12-07

    A sub-nm hydrogenated amorphous silicon (a-Si:H) film capped with silicon nitride (SiN{sub x}) is shown to provide a high level passivation to crystalline silicon (c-Si) surfaces. When passivated by a 0.8 nm a-Si:H/75 nm SiN{sub x} stack, recombination current density J{sub 0} values of 9, 11, 47, and 87 fA/cm{sup 2} are obtained on 10 Ω·cm n-type, 0.8 Ω·cm p-type, 160 Ω/sq phosphorus-diffused, and 120 Ω/sq boron-diffused silicon surfaces, respectively. The J{sub 0} on n-type 10 Ω·cm wafers is further reduced to 2.5 ± 0.5 fA/cm{sup 2} when the a-Si:H film thickness exceeds 2.5 nm. The passivation by the sub-nm a-Si:H/SiN{sub x} stack is thermally stable at 400 °C in N{sub 2} for 60 min on all four c-Si surfaces. Capacitance–voltage measurements reveal a reduction in interface defect density and film charge density with an increase in a-Si:H thickness. The nearly transparent sub-nm a-Si:H/SiN{sub x} stack is thus demonstrated to be a promising surface passivation and antireflection coating suitable for all types of surfaces encountered in high efficiency c-Si solar cells.

  14. Direct modification of silicon surface by nanosecond laser interference lithography

    NASA Astrophysics Data System (ADS)

    Wang, Dapeng; Wang, Zuobin; Zhang, Ziang; Yue, Yong; Li, Dayou; Maple, Carsten

    2013-10-01

    Periodic and quasi-periodic structures on silicon surface have numerous significant applications in photoelectronics and surface engineering. A number of technologies have been developed to fabricate the structures in various research fields. In this work, we take the strategy of direct nanosecond laser interference lithography technology, and focus on the silicon material to create different well-defined surface structures based on theoretical analysis of the formation of laser interference patterns. Two, three and four-beam laser interference systems were set up to fabricate the grating, regular triangle and square structures on silicon surfaces, respectively. From the AFM micrographs, the critical features of structures have a dependence on laser fluences. For a relative low laser fluence, grating and dot structures formed with bumps due to the Marangoni Effect. With the increase of laser fluences, melt and evaporation behaviors can be responsible for the laser modification. By properly selecting the process parameters, well-defined grating and dot structures can been achieved. It can be demonstrated that direct laser interference lithography is a facile and efficient technology with the advantage of a single process procedure over macroscale areas for the fabrication of micro and nano structures.

  15. Sputtering of dimers off a silicon surface

    NASA Astrophysics Data System (ADS)

    Nietiadi, Maureen L.; Rosandi, Yudi; Kopnarski, Michael; Urbassek, Herbert M.

    2012-10-01

    We present experimental and molecular-dynamics simulation results of the sputtering of a Si surface by 2 keV Ar ions. Results on both the monomer and dimer distributions are presented. In simulation, these distributions follow a generalized Thompson law with power exponent n=2 and n=3, respectively. The experimental data, obtained via plasma post-ionization in an SNMS (secondary neutral mass spectrometry) apparatus, show good agreement with respect to the dimer fraction, and the relative energy distributions of dimers and monomers. The consequences for the dimer sputtering mechanism are discussed.

  16. Ion Beam Analysis Of Silicon-Based Surfaces And Correlation With Surface Energy Measurements

    NASA Astrophysics Data System (ADS)

    Xing, Qian; Herbots, N.; Hart, M.; Bradley, J. D.; Wilkens, B. J.; Sell, D. A.; Sell, Clive H.; Kwong, Henry Mark; Culbertson, R. J.; Whaley, S. D.

    2011-06-01

    The water affinity of Si-based surfaces is quantified by contact angle measurement and surface free energy to explain hydrophobic or hydrophilic behavior of silicone, silicates, and silicon surfaces. Surface defects such as dangling bonds, surface free energy including Lewis acid-base and Lifshitz-van der Waals components are discussed. Water nucleation and condensation is further explained by surface topography. Tapping mode atomic force microscopy (TMAFM) provides statistical analysis of the topography of these Si-based surfaces. The correlation of the above two characteristics describes the behavior of water condensation at Si-based surfaces. Surface root mean square roughness increasing from several Å to several nm is found to provide nucleation sites that expedite water condensation visibly for silica and silicone. Hydrophilic surfaces have a condensation pattern that forms puddles of water while hydrophobic surfaces form water beads. Polymer adsorption on these surfaces alters the water affinity as well as the surface topography, and therefore controls condensation on Si-based surfaces including silicone intraocular lens (IOL). The polymer film is characterized by Rutherford backscattering spectrometry (RBS) in conjunction with 4.265 MeV 12C(α, α)12C, 3.045 MeV 16O(α,α)16O nuclear resonance scattering (NRS), and 2.8 MeV elastic recoil detection (ERD) of hydrogen for high resolution composition and areal density measurements. The areal density of hydroxypropyl methylcellulose (HPMC) film ranges from 1018 atom/cm2 to 1019 atom/cm2 gives the silica or silicone surface a roughness of several Å and a wavelength of 0.16±0.02 μm, and prevents fogging by forming a complete wetting layer during water condensation.

  17. Ion Beam Analysis Of Silicon-Based Surfaces And Correlation With Surface Energy Measurements

    SciTech Connect

    Xing Qian; Herbots, N.; Hart, M.; Bradley, J. D.; Wilkens, B. J.; Sell, D. A.; Culbertson, R. J.; Whaley, S. D.; Sell, Clive H.; Kwong, Henry Mark Jr.

    2011-06-01

    The water affinity of Si-based surfaces is quantified by contact angle measurement and surface free energy to explain hydrophobic or hydrophilic behavior of silicone, silicates, and silicon surfaces. Surface defects such as dangling bonds, surface free energy including Lewis acid-base and Lifshitz-van der Waals components are discussed. Water nucleation and condensation is further explained by surface topography. Tapping mode atomic force microscopy (TMAFM) provides statistical analysis of the topography of these Si-based surfaces. The correlation of the above two characteristics describes the behavior of water condensation at Si-based surfaces. Surface root mean square roughness increasing from several A ring to several nm is found to provide nucleation sites that expedite water condensation visibly for silica and silicone. Hydrophilic surfaces have a condensation pattern that forms puddles of water while hydrophobic surfaces form water beads. Polymer adsorption on these surfaces alters the water affinity as well as the surface topography, and therefore controls condensation on Si-based surfaces including silicone intraocular lens (IOL). The polymer film is characterized by Rutherford backscattering spectrometry (RBS) in conjunction with 4.265 MeV {sup 12}C({alpha}, {alpha}){sup 12}C, 3.045 MeV {sup 16}O({alpha},{alpha}){sup 16}O nuclear resonance scattering (NRS), and 2.8 MeV elastic recoil detection (ERD) of hydrogen for high resolution composition and areal density measurements. The areal density of hydroxypropyl methylcellulose (HPMC) film ranges from 10{sup 18} atom/cm{sup 2} to 10{sup 19} atom/cm{sup 2} gives the silica or silicone surface a roughness of several A ring and a wavelength of 0.16{+-}0.02 {mu}m, and prevents fogging by forming a complete wetting layer during water condensation.

  18. Quantum engineering at the silicon surface using dangling bonds

    PubMed Central

    Schofield, S. R.; Studer, P.; Hirjibehedin, C. F.; Curson, N. J.; Aeppli, G.; Bowler, D. R.

    2013-01-01

    Individual atoms and ions are now routinely manipulated using scanning tunnelling microscopes or electromagnetic traps for the creation and control of artificial quantum states. For applications such as quantum information processing, the ability to introduce multiple atomic-scale defects deterministically in a semiconductor is highly desirable. Here we use a scanning tunnelling microscope to fabricate interacting chains of dangling bond defects on the hydrogen-passivated silicon (001) surface. We image both the ground-state and the excited-state probability distributions of the resulting artificial molecular orbitals, using the scanning tunnelling microscope tip bias and tip-sample separation as gates to control which states contribute to the image. Our results demonstrate that atomically precise quantum states can be fabricated on silicon, and suggest a general model of quantum-state fabrication using other chemically passivated semiconductor surfaces where single-atom depassivation can be achieved using scanning tunnelling microscopy. PMID:23552064

  19. Silicon Nanotips Antireflection Surface for Micro Sun Sensor

    NASA Technical Reports Server (NTRS)

    Bae, Sam Y.; Lee, Choonsup; Mobasser, Sohrab; Manohara, Harish

    2006-01-01

    We have developed a new technique to fabricate antireflection surface using silicon nano-tips for use on a micro sun sensor for Mars rovers. We have achieved randomly distributed nano-tips of radius spanning from 20 nm to 100 nm and aspect ratio of 200 using a two-step dry etching process. The 30(deg) specular reflectance at the target wavelength of 1 (mu)m is only about 0.09 %, nearly three orders of magnitude lower than that of bare silicon, and the hemispherical reflectance is 8%. By changing the density and aspect ratio of these nanotips, the change in reflectance is demonstrated. Using surfaces covered with these nano-tips, the critical problem of ghost images that are caused by multiple internal reflections in a micro sun sensor was solved.

  20. Surface Breakdown Characteristics of Silicone Oil for Electric Power Apparatus

    NASA Astrophysics Data System (ADS)

    Wada, Junichi; Nakajima, Akitoshi; Miyahara, Hideyuki; Takuma, Tadasu; Okabe, Shigemitu; Kohtoh, Masanori; Yanabu, Satoru

    This paper describes the surface breakdown characteristics of the silicone oil which has the possibility of the application to innovative switchgear as an insulating medium. At the first step, we have experimentally studied on the impulse breakdown characteristics of the configuration with a triple-junction where a solid insulator is in contact with the electrode. The test configurations consist of solid material (Nomex and pressboard) and liquid insulation oil (silicone and mineral oil). We have discussed the experimental results based on the maximal electric field at a triple-junction. As the second step, we have studied the configuration which may improve the surface breakdown characteristics by lowering the electric field near the triple-junction.

  1. Methods of Attaching or Grafting Carbon Nanotubes to Silicon Surfaces and Composite Structures Derived Therefrom

    NASA Technical Reports Server (NTRS)

    Tour, James M. (Inventor); Chen, Bo (Inventor); Flatt, Austen K. (Inventor); Stewart, Michael P. (Inventor); Dyke, Christopher A. (Inventor); Maya, Francisco (Inventor)

    2012-01-01

    The present invention is directed toward methods of attaching or grafting carbon nanotubes (CNTs) to silicon surfaces. In some embodiments, such attaching or grafting occurs via functional groups on either or both of the CNTs and silicon surface. In some embodiments, the methods of the present invention include: (1) reacting a silicon surface with a functionalizing agent (such as oligo(phenylene ethynylene)) to form a functionalized silicon surface; (2) dispersing a quantity of CNTs in a solvent to form dispersed CNTs; and (3) reacting the functionalized silicon surface with the dispersed CNTs. The present invention is also directed to the novel compositions produced by such methods.

  2. Integrated silicon photonic interconnect with surface-normal optical interface

    NASA Astrophysics Data System (ADS)

    Zhang, Zanyun; Huang, Beiju; Zhang, Zan; Cheng, Chuantong; Liu, Hongwei; Li, Hongqiang; Chen, Hongda

    2016-05-01

    An integrated silicon photonic interconnect with surface-normal optical interface is demonstrated by connecting a bidirectional grating based E-O modulator and a germanium waveguide photodetector. To investigate this photonic interconnect, both static and dynamic performance of the discrete devices are characterized respectively. Based on the characterization work, data transmission experiment is carried out for the photonic interconnect. Eye diagram results indicate the photonic interconnect can operate up to 7 Gb/s.

  3. Controlled thinning and surface smoothening of silicon nanopillars.

    PubMed

    Kalem, S; Werner, P; Nilsson, B; Talalaev, V G; Hagberg, M; Arthursson, O; Södervall, U

    2009-11-01

    A convenient method has been developed to thin electron beam fabricated silicon nanopillars under controlled surface manipulation by transforming the surface of the pillars to an oxide shell layer followed by the growth of sacrificial ammonium silicon fluoride coating. The results show the formation of an oxide shell and a silicon core without significantly changing the original length and shape of the pillars. The oxide shell layer thickness can be controlled from a few nanometers up to a few hundred nanometers. While downsizing in diameter, smooth Si pillar surfaces of less than 10 nm roughness within 2 microm were produced after exposure to vapors of HF and HNO3 mixture as evidenced by transmission electron microscopy (TEM) analysis. The attempt to expose for long durations leads to the growth of a thick oxide whose strain effect on pillars can be assessed by coupled LO-TO vibrational modes of Si-O bonds. Photoluminescence (PL) of the pillar structures which have been downsized exhibits visible and infrared emissions, which are attributable to microscopic pillars and to the confinement of excited carriers in the Si core, respectively. The formation of smooth core-shell structures while reducing the diameter of the Si pillars has a potential in fabricating nanoscale electronic devices and functional components. PMID:19801781

  4. Peptide immobilisation on porous silicon surface for metal ions detection

    NASA Astrophysics Data System (ADS)

    Sam, Sabrina S.; Chazalviel, Jean-Noël Jn; Gouget-Laemmel, Anne Chantal Ac; Ozanam, François F.; Etcheberry, Arnaud A.; Gabouze, Nour-Eddine N.

    2011-06-01

    In this work, a Glycyl-Histidyl-Glycyl-Histidine (GlyHisGlyHis) peptide is covalently anchored to the porous silicon PSi surface using a multi-step reaction scheme compatible with the mild conditions required for preserving the probe activity. In a first step, alkene precursors are grafted onto the hydrogenated PSi surface using the hydrosilylation route, allowing for the formation of a carboxyl-terminated monolayer which is activated by reaction with N-hydroxysuccinimide in the presence of a peptide-coupling carbodiimide N-ethyl- N'-(3-dimethylaminopropyl)-carbodiimide and subsequently reacted with the amino linker of the peptide to form a covalent amide bond. Infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy are used to investigate the different steps of functionalization. The property of peptides to form stable complexes with metal ions is exploited to achieve metal-ion recognition by the peptide-modified PSi-based biosensor. An electrochemical study of the GlyHisGlyHis-modified PSi electrode is achieved in the presence of copper ions. The recorded cyclic voltammograms show a quasi-irreversible process corresponding to the Cu(II)/Cu(I) couple. The kinetic factors (the heterogeneous rate constant and the transfer coefficient) and the stability constant of the complex formed on the porous silicon surface are determined. These results demonstrate the potential role of peptides grafted on porous silicon in developing strategies for simple and fast detection of metal ions in solution.

  5. Influence of black silicon surfaces on the performance of back-contacted back silicon heterojunction solar cells.

    PubMed

    Ziegler, Johannes; Haschke, Jan; Käsebier, Thomas; Korte, Lars; Sprafke, Alexander N; Wehrspohn, Ralf B

    2014-10-20

    The influence of different black silicon (b-Si) front side textures prepared by inductively coupled reactive ion etching (ICP-RIE) on the performance of back-contacted back silicon heterojunction (BCB-SHJ) solar cells is investigated in detail regarding their optical performance, black silicon surface passivation and internal quantum efficiency. Under optimized conditions the effective minority carrier lifetime measured on black silicon surfaces passivated with Al(2)O(3) can be higher than lifetimes measured for the SiO(2)/SiN(x) passivation stack used in the reference cells with standard KOH textures. However, to outperform the electrical current of silicon back-contact cells, the black silicon back-contact cell process needs to be optimized with aspect to chemical and thermal stability of the used dielectric layer combination on the cell. PMID:25607304

  6. Controlling the dopant dose in silicon by mixed-monolayer doping.

    PubMed

    Ye, Liang; Pujari, Sidharam P; Zuilhof, Han; Kudernac, Tibor; de Jong, Michel P; van der Wiel, Wilfred G; Huskens, Jurriaan

    2015-02-11

    Molecular monolayer doping (MLD) presents an alternative to achieve doping of silicon in a nondestructive way and holds potential for realizing ultrashallow junctions and doping of nonplanar surfaces. Here, we report the mixing of dopant-containing alkenes with alkenes that lack this functionality at various ratios to control the dopant concentration in the resulting monolayer and concomitantly the dopant dose in the silicon substrate. The mixed monolayers were grafted onto hydrogen-terminated silicon using well-established hydrosilylation chemistry. Contact angle measurements, X-ray photon spectroscopy (XPS) on the boron-containing monolayers, and Auger electron spectroscopy on the phosphorus-containing monolayers show clear trends as a function of the dopant-containing alkene concentration. Dynamic secondary-ion mass spectroscopy (D-SIMS) and Van der Pauw resistance measurements on the in-diffused samples show an effective tuning of the doping concentration in silicon. PMID:25607722

  7. Surface plasmon polariton scattering by subwavelength silicon wires.

    PubMed

    Aporvari, Mehdi Shafiei; Aporvari, Ahmad Shafiei; Kheirandish, Fardin

    2016-03-20

    Surface plasmon polariton scattering from 2D subwavelength silicon wires is investigated using the finite-difference time-domain method. It is shown that coupling an incident surface plasmon polariton to intercavity modes of the particle can dramatically change transmitted fields and plasmon-induced forces. In particular, both transmission and optical forces are highly sensitive to the particle size that is related to the excitation of whispering gallery modes or standing wave modes depending on the particle shape and size. These features might have potential sensing applications. PMID:27140576

  8. LiBr treated porous silicon used for efficient surface passivation of crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Zarroug, Ahmed; Haddadi, Ikbel; Derbali, Lotfi; Ezzaouia, Hatem

    2015-04-01

    A simple but effective passivation method of both front and rear surfaces using porous silicon (PS) has been developed. This paper investigates the effect of LiBr on the passivation of PS. The immersion of as-etched PS in dilute LiBr solution followed by an annealing in an infrared furnace, under a controlled atmosphere at different temperatures, led to the passivation of the PS layer and the improvement of the electronic properties of the crystalline silicon substrates. The influence of substrate temperature was investigated, since the processed wafers were found to be sensitive to heat, which in turn was optimized to have a gettering effect. The bromide of lithium can effectively saturate dangling bonds and hence contributed to the formation of a stable passivation film, at both front and back surfaces. Such a reaction was found to have a beneficial effect on the passivation process of the PS layer grown on both sides. The obtained results exhibited a significant improvement of the minority carrier lifetime, which is an important parameter that defines the quality of crystalline silicon substrates, and an apparent enhancement of its photoluminescence (PL). The internal quantum efficiency was investigated and found to be significantly improved. The qualitative effect of the above-mentioned procedure proved a significant enhancement of the electronic quality of the treated substrates.

  9. Silicon nanocrystal inks, films, and methods

    DOEpatents

    Wheeler, Lance Michael; Kortshagen, Uwe Richard

    2015-09-01

    Silicon nanocrystal inks and films, and methods of making and using silicon nanocrystal inks and films, are disclosed herein. In certain embodiments the nanocrystal inks and films include halide-terminated (e.g., chloride-terminated) and/or halide and hydrogen-terminated nanocrystals of silicon or alloys thereof. Silicon nanocrystal inks and films can be used, for example, to prepare semiconductor devices.

  10. Beam Simulation Studies of Plasma-Surface Interactions in Fluorocarbon Etching of Silicon and Silicon Dioxide

    NASA Astrophysics Data System (ADS)

    Gray, David C.

    1992-01-01

    A molecular beam apparatus has been constructed which allows the synthesis of dominant species fluxes to a wafer surface during fluorocarbon plasma etching. These species include atomic F as the primary etchant, CF _2 as a potential polymer forming precursor, and Ar^{+} or CF _{rm x}^{+} type ions. Ionic and neutral fluxes employed are within an order of magnitude of those typical of fluorocarbon plasmas and are well characterized through the use of in -situ probes. Etching yields and product distributions have been measured through the use of in-situ laser interferometry and line-of-sight mass spectrometry. XPS studies of etched surfaces were performed to assess surface chemical bonding states and average surface stoichiometry. A useful design guide was developed which allows optimal design of straight -tube molecular beam dosers in the collisionally-opaque regime. Ion-enhanced surface reaction kinetics have been studied as a function of the independently variable fluxes of free radicals and ions, as well as ion energy and substrate temperature. We have investigated the role of Ar ^{+} ions in enhancing the chemistries of F and CF_2 separately, and in combination on undoped silicon and silicon dioxide surfaces. We have employed both reactive and inert ions in the energy range most relevant to plasma etching processes, 20-500 eV, through the use of Kaufman and ECR type ion sources. The effect of increasing ion energy on the etching of fluorine saturated silicon and silicon dioxide surfaces was quantified through extensions of available low energy physical sputtering theory. Simple "site"-occupation models were developed for the quantification of the ion-enhanced fluorine etching kinetics in these systems. These models are suitable for use in topography evolution simulators (e.g. SAMPLE) for the predictive modeling of profile evolution in non-depositing fluorine-based plasmas such as NF_3 and SF_6. (Copies available exclusively from MIT Libraries, Rm. 14

  11. Photovoltage and work function measurement of silicon surfaces

    NASA Astrophysics Data System (ADS)

    Novikov, Alexander

    2005-12-01

    Photovoltage measurements on prepared silicon surfaces yielding information on surface state morphology and dynamics are reported. Surface photovoltage changes resulting from excitation using both tunable and fixed wavelength sources were monitored using a Kelvin Probe apparatus. Both sub-bandgap and super-bandgap excitation wavelengths were used on an array of doped and undoped Si surfaces. The majority of the measurements were conducted with the samples at atmospheric pressure. A simple theoretical model of finite crystal solid surfaces helped elaborate the essential difference between work function and the local work function determinations. Formulae for surface potential, surface state population and charge carrier relaxation resulting from selective excitation were derived using Shockley and Reed theory. The presence of atmospheric constituents chemisorbed on the surfaces was also investigated. Large photovoltage signals induced by laser excitation revealed optical saturation effects that could be related to surface potential information and work function evaluation. Narrow surface photovoltage and photoconductance spectral signatures of cleaved Si(111) samples observed at reduced temperature and pressure provided additional insight into the contribution of sub-bandgap excitation processes involving surface states.

  12. Ionic Liquids Can Permanently Modify Porous Silicon Surface Chemistry.

    PubMed

    Trivedi, Shruti; Coombs, Sidney G; Wagle, Durgesh V; Bhawawet, Nakara; Baker, Gary A; Bright, Frank V

    2016-08-01

    To develop ionic liquid/porous silicon (IL/pSi) microarrays we have contact pin-printed 20 hydrophobic and hydrophilic ionic liquids onto as-prepared, hydrogen-passivated porous silicon (ap-pSi) and then determined the individual IL spot size, shape and associated pSi surface chemistry. The results reveal that the hydrophobic ionic liquids oxidize the ap-pSi slightly. In contrast, the hydrophilic ionic liquids lead to heavily oxidized pSi (i.e., ox-pSi). The strong oxidation arises from residual water within the hydrophilic ILs that is delivered from these ILs into the ap-pSi matrix causing oxidation. This phenomenon is less of an issue in the hydrophobic ILs because their water solubility is substantially lower. PMID:27405109

  13. Surface and allied studies in silicon solar cells

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.

    1984-01-01

    Significant improvements were made in the short-circuit current-decay method of measuring the recombination lifetime tau and the back surface recombination velocity S of the quasineutral base of silicon solar cells. The improvements include a circuit implementation that increases the speed of switching from the forward-voltage to the short-circuit conditions. They also include a supplementation of this method by some newly developed techniques employing small-signal admittance as a function of frequency omega. This supplementation is highly effective for determining tau for cases in which the diffusion length L greatly exceeds the base thickness W. Representative results on different solar cells are reported. Some advances made in the understanding of passivation provided by the polysilicon/silicon heterojunction are outlined. Recent measurements demonstrate that S 10,000 cm/s derive from this method of passivation.

  14. Silicon-wafer-surface damage revealed by surface photovoltage measurements

    NASA Astrophysics Data System (ADS)

    Goodman, Alvin M.

    1982-11-01

    Anomalous results of surface photovoltage (SPV) measurements on Si wafers are shown to be associated with a damaged region beneath the illuminated surface of the wafer being measured. The anomaly is a concave-upward curvature of the I0(α-1) plot with an r2 value, derived from linear regression analysis, less than the normally observed minimum value (˜0.98). Removal of the damaged region by an appropriate etching procedure allows subsequent SPV measurements whose results are substantially free of the previously observed anomaly. The qualitative character of the anomaly can be reproduced by a simple theoretical model in which only one effect of the damage is considered; this effect is a diminished quantum efficiency for hole-electron pair generation by photon absorption in the damaged region. The results suggest the use of SPV measurements as a test procedure for revealing the presence of surface damage in Si wafers.

  15. Instrumental studies on silicone oil adsorption to the surface of intraocular lenses

    NASA Astrophysics Data System (ADS)

    Kim, Chun Ho; Joo, Choun-Ki; Chun, Heung Jae; Yoo, Bok Ryul; Noh, Dong Il; Shim, Young Bock

    2012-12-01

    The purpose of this study was to examine the degree of adherence of silicone oil to various intraocular lenses (IOLs) through comparison of the physico-chemical properties of the oil and IOLs. Four kinds of IOLs comprising various biomaterials were examined: PMMA (720A™), PHEMA (IOGEL 1103™), Acrysof (MA60BM™), and silicone (SI30NB™). Each lens was immersed in silicone oil or carboxylated silicone (CS-PDMS) oil for 72 h. For determination of the changes in chemical and elemental compositions on the surfaces of IOLs caused by the contact with silicone oil, IOLs were washed and rinsed with n-pentane to remove as much of the adsorbed silicone oil as possible, then subjected to Fourier transform infrared spectroscopic (FTIR) and X-ray photoelectron spectroscopic (XPS) analyses. The results of FTIR studies strongly indicate that washing with n-pentane completely removed the adhered silicone oil on the surfaces of PHEMA and Acrysof IOLs, whereas the residual silicone oil was detected on the surfaces of PMMA and silicone IOLs. XPS studies showed that silicone oil coverage of PMMA lenses was 12%, even after washing with n-pentane. In the case of silicone IOLs, the relative O1s peak area of carboxyl group in the residual CS-PDMS oil was found to be ˜2.7%. Considering that 2.8% carboxyl group-substituted silicone oil was used in the present study, CS-PDMS oil covered the entire surface of the silicone IOLs.

  16. Tantalum oxide/silicon nitride: A negatively charged surface passivation stack for silicon solar cells

    SciTech Connect

    Wan, Yimao Bullock, James; Cuevas, Andres

    2015-05-18

    This letter reports effective passivation of crystalline silicon (c-Si) surfaces by thermal atomic layer deposited tantalum oxide (Ta{sub 2}O{sub 5}) underneath plasma enhanced chemical vapour deposited silicon nitride (SiN{sub x}). Cross-sectional transmission electron microscopy imaging shows an approximately 2 nm thick interfacial layer between Ta{sub 2}O{sub 5} and c-Si. Surface recombination velocities as low as 5.0 cm/s and 3.2 cm/s are attained on p-type 0.8 Ω·cm and n-type 1.0 Ω·cm c-Si wafers, respectively. Recombination current densities of 25 fA/cm{sup 2} and 68 fA/cm{sup 2} are measured on 150 Ω/sq boron-diffused p{sup +} and 120 Ω/sq phosphorus-diffused n{sup +} c-Si, respectively. Capacitance–voltage measurements reveal a negative fixed insulator charge density of −1.8 × 10{sup 12 }cm{sup −2} for the Ta{sub 2}O{sub 5} film and −1.0 × 10{sup 12 }cm{sup −2} for the Ta{sub 2}O{sub 5}/SiN{sub x} stack. The Ta{sub 2}O{sub 5}/SiN{sub x} stack is demonstrated to be an excellent candidate for surface passivation of high efficiency silicon solar cells.

  17. Surface Micromachined Silicon Carbide Accelerometers for Gas Turbine Applications

    NASA Technical Reports Server (NTRS)

    DeAnna, Russell G.

    1998-01-01

    A finite-element analysis of possible silicon carbide (SIC) folded-beam, lateral-resonating accelerometers is presented. Results include stiffness coefficients, acceleration sensitivities, resonant frequency versus temperature, and proof-mass displacements due to centripetal acceleration of a blade-mounted sensor. The surface micromachined devices, which are similar to the Analog Devices Inc., (Norwood, MA) air-bag crash detector, are etched from 2-pm thick, 3C-SiC films grown at 1600 K using atmospheric pressure chemical vapor deposition (APCVD). The substrate is a 500 gm-thick, (100) silicon wafer. Polysilicon or silicon dioxide is used as a sacrificial layer. The finite element analysis includes temperature-dependent properties, shape change due to volume expansion, and thermal stress caused by differential thermal expansion of the materials. The finite-element results are compared to experimental results for a SiC device of similar, but not identical, geometry. Along with changes in mechanical design, blade-mounted sensors would require on-chip circuitry to cancel displacements due to centripetal acceleration and improve sensitivity and bandwidth. These findings may result in better accelerometer designs for this application.

  18. Surface treatment and surface coating of silicon field emitter array

    NASA Astrophysics Data System (ADS)

    Hajra, Mahua Sudhakrishna

    The objectives of this research were to fabricate ungated Si field emitter arrays (FEA's), and then to identify ways to improve the performance of the emitters. In the first and second chapters, the basis of the research, including background, theory, and the goals of the research is presented. The third chapter discusses the fabrication methods used to form the ungated Si FEA's. The fourth chapter gives the details about surface treatment procedures used to improve initial operation. The fifth and the sixth chapter discuss the different surface coating materials used to study the emission properties of the Si field emitters. The seventh chapter summarizes the work and suggests possible follow up research. The four surface treatments discussed in chapter four employ, respectively, residual gas ions, low-energy electron-stimulated desorption, a hydrogen-enhanced residual gas atmosphere, and a plasma of a Ar (96%) and H2 (4%) gas mixture. The method, using the hydrogen-enriched residual gas atmosphere is very unique in that it uses getters to produce the hydrogen rich atmosphere. The method, using a plasma of Ar (96%) and H2 (4%) gas mixture, is an effective in-situ cleaning procedure, which can be performed prior to packaging the devices. In chapters five and six is a comparison of the field-emission properties of the Si FEA coated with various materials, including (1) nanoparticle clusters of diamond and gallium nitride (GaN), (2) a thin film of ultrananocrystalline diamond (UNCD), (3) a lead zirconate titanate (PZT) coating, and (4) carbon nanotubes. Among the above coatings, the conformal coating of UNCD produced electron emission at an extremely low threshold field of between 2 to 5 V/mum. A further study of the behavior of electron emission from UNCD-coated Si FEA during in-situ exposure to H2, N2, and Ar respectively showed that when the emitting surface is exposed to H 2, at 10-5 Torr and 10-4 Torr, the initial emission current (2 muA) increases by a factor

  19. Containment of a silicone fluid free surface in reduced gravity

    NASA Technical Reports Server (NTRS)

    Pline, A.; Jacobson, T.

    1988-01-01

    In support of the surface tension driven convection experiment planned for flight aboard the Space Shuttle, tests were conducted under reduced gravity in the 2.2-sec drop tower and the 5.0-sec Zero-G facility at the Lewis Research Center. The dynamics of controlling the test fluid, a 10-centistoke viscosity silicone fluid, in a low-gravity environment were investigated using different container designs and barrier coatings. Three container edge designs were tested without a barrier coating: a square edge, a sharp edge with a 45-deg slope, and a saw-tooth edge. All three edge designs were successful in containing the fluid below the edge.

  20. Front surface passivation of silicon solar cells with antireflection coating

    NASA Technical Reports Server (NTRS)

    Crotty, G.; Daud, T.; Kachare, R.

    1987-01-01

    It is demonstrated that the deposition and postdeposition sintering of an antireflection (AR) coating in hydrogen acts to passivate silicon solar cells. Cells with and without an SiO2 passivating layer, coated with a TiO(x)/Al2O3 AR coating, showed comparable enhancements in short-wavelength spectral response and in open-circuit voltage Voc after sintering at 400 C for 5 min in a hydrogen ambient. The improvement in Voc of cells without SiO2 is attributed to front-surface passivation by the AR coating during processing.

  1. Improved Silicon Carbide Crystals Grown From Atomically Flat Surfaces

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.

    2003-01-01

    The NASA Glenn Research Center is demonstrating that atomically flat (i.e., step-free) silicon carbide (SiC) surfaces are ideal for realizing greatly improved wide bandgap semiconductor films with lower crystal defect densities. Further development of these improved films could eventually enable harsh-environment electronics beneficial to jet engine and other aerospace and automotive applications, as well as much more efficient and compact power distribution and control. The technique demonstrated could also improve blue-light lasers and light-emitting-diode displays.

  2. Surface photovoltage method extended to silicon solar cell junction

    NASA Technical Reports Server (NTRS)

    Wang, E. Y.; Baraona, C. R.; Brandhorst, H. W., Jr.

    1974-01-01

    The conventional surface photovoltage (SPV) method is extended to the measurement of the minority carrier diffusion length in diffused semiconductor junctions of the type used in a silicon solar cell. The minority carrier diffusion values obtained by the SPV method agree well with those obtained by the X-ray method. Agreement within experimental error is also obtained between the minority carrier diffusion lengths in solar cell diffusion junctions and in the same materials with n-regions removed by etching, when the SPV method was used in the measurements.

  3. A new texturing technique of monocrystalline silicon surface with sodium hypochlorite

    NASA Astrophysics Data System (ADS)

    Sun, Linfeng; Tang, Jiuyao

    2009-08-01

    This work proposes a new texturing technique of monocrystalline silicon surface for solar cells with sodium hypochlorite. A mixed solution consisting of 5 wt% sodium hypochlorite and 10 vl% ethanol has been found that results in a homogeneous pyramidal structure, and an optimal size of pyramids on the silicon surface. The textured silicon surface exhibits a lower average reflectivity (about 10.8%) in the main range of solar spectrum (400-1000 nm).

  4. Elliptic cylindrical silicon nanowire hybrid surface plasmon polariton waveguide.

    PubMed

    Zhang, Li; Xiong, Qiulin; Li, Xiaopeng; Ma, Junxian

    2015-08-10

    We researched an elliptic cylindrical silicon nanowire hybrid surface plasmon polariton waveguide and evaluated its mode characteristics using the finite element method software COMSOL. The waveguide consists of three parts: an elliptic cylindrical silicon nanowire, a silver film layer, and a silica covering layer between them. All of the components are surrounded by air. After optimizing the geometrical parameters of the waveguide, we can achieve the waveguide's strong field confinement (ranging from λ2/270 to λ2/27) and long propagation distances (119-485 μm). In order to further understand the impact of the waveguide's architecture on its performance, we also studied the ridge hybrid waveguide. The results show that the ridge waveguide has moderate local field confinement ranging from λ2/190 to λ2/20 and its maximum propagation distance is about 340 μm. We compared the elliptic cylindrical and ridge nanowire hybrid waveguides with the cylindrical hybrid waveguide that we studied before. The elliptic cylindrical waveguide achieves a better trade-off between reasonable mode confinement and maximum propagation length in the three waveguides. The researched hybrid surface plasmon polaritons waveguides are useful to construct devices such as a directional coupler and may find potential applications in photonic integrated circuits or other novel SPP devices. PMID:26368373

  5. Silicon surface periodic structures produced by plasma flow induced capillary waves

    SciTech Connect

    Dojcinovic, I. P.; Kuraica, M. M.; Obradovic, B. M.; Puric, J.

    2006-08-14

    Silicon single crystal surface modification by the action of nitrogen quasistationary compression plasma flow generated by a magnetoplasma compressor is studied. It has been found that highly oriented silicon periodic cylindrical shape structures are produced during a single pulse surface treatment. The periodical structure formation can be related to the driven capillary waves quenched during fast cooling and resolidification phase of the plasma flow interaction with silicon surface. These waves are induced on the liquid silicon surface due to the compression plasma flow intrinsic oscillations.

  6. Impact of Surface Chemistry on Copper Deposition in Mesoporous Silicon.

    PubMed

    Darwich, Walid; Garron, Anthony; Bockowski, Piotr; Santini, Catherine; Gaillard, Frédéric; Haumesser, Paul-Henri

    2016-08-01

    An easy, efficient, and safe process is developed to metallize mesoporous silicon (PSi) with Cu from the decomposition of a solution of mesitylcopper (CuMes) in an imidazolium-based ionic liquid (IL), [C1C4Im][NTf2]. The impregnation of a solution of CuMes in IL affords the deposition of metallic islands not only on the surface but also deep within the pores of a mesoporous Si layer with small pores below 10 nm. Therefore, this process is well suited to efficiently and completely metallize PSi layers. An in-depth mechanistic study shows that metal deposition is due to the reduction of CuMes by surface silane groups rather than by Si oxidation as observed in aqueous or water-containing media. This could open a new route to the chemical metallization of PSi by less-noble metals difficult to attain by a conventional displacement reaction. PMID:27368422

  7. Surface and allied studies in silicon solar cells

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.

    1984-01-01

    Measuring small-signal admittance versus frequency and forward bias voltage together with a new transient measurement apparently provides the most reliable and flexible method available for determining back surface recombination velocity and low-injection lifetime of the quasineutral base region of silicon solar cells. The new transient measurement reported here is called short-circuit-current decay (SCCD). In this method, forward voltage equal to about the open-circuit or the maximum power voltage establishes excess holes and electrons in the junction transition region and in the quasineutral regions. The sudden application of a short circuit causes an exiting of the excess holes and electrons in the transition region within about ten picoseconds. From observing the slope and intercept of the subsequent current decay, the base lifetime and surface recombination velocity can be determined. The admittance measurement previously mentioned then enters to increase accuracy particularly for devices for which the diffusion length exceeds the base thickness.

  8. Electron-stimulated desorption of hydrogen from the Si(111) surface by scanning tunneling microscopy

    SciTech Connect

    Schwartzkopff, M.; Radojkovic, P.; Enachescu, M.; Hartmann, E.; Koch, F.

    1996-03-01

    Preparation of suitable silicon (111) wafers in weakly alkaline HF solutions results in the formation of atomically flat, hydrogen-terminated surfaces. Under high-vacuum conditions, the scanning tunneling microscope has been employed to selectively desorb the passivating hydrogen from nanometer-sized surface regions. The hydrogen depassivation process is studied as a function of current and applied bias voltage, voltage polarity, and exposure time to incident electrons either on individual surface locations or by varying the speed of tip motion to control the electron dose. The experimental findings are interpreted in terms of two distinct desorption mechanisms and the respective desorption yields are specified. {copyright} {ital 1996 American Vacuum Society}

  9. Reconstruction of silicon surfaces: A stochastic optimization problem

    NASA Astrophysics Data System (ADS)

    Ciobanu, Cristian V.; Predescu, Cristian

    2004-08-01

    Over the last two decades, scanning tunneling microscopy (STM) has become one of the most important ways to investigate the structure of crystal surfaces. STM has helped achieve remarkable successes in surface science such as finding the atomic structure of Si(111) and Si(001). For high-index Si surfaces the information about the local density of states obtained by scanning does not translate directly into knowledge about the positions of atoms at the surface. A commonly accepted strategy for identifying the atomic structure is to propose several possible models and analyze their corresponding simulated STM images for a match with the experimental ones. However, the number of good candidates for the lowest-energy structure is very large for high-index surfaces, and heuristic approaches are not likely to cover all the relevant structural models. In this paper, we take the view that finding the atomic structure of a surface is a problem of stochastic optimization, and we address it as such. We design a general technique for predicting the reconstruction of silicon surfaces with arbitrary orientation, which is based on parallel-tempering Monte Carlo simulations combined with an exponential cooling. The advantages of the method are illustrated using the Si(105) surface as an example, with two main results: (a) the correct single-step rebonded structure [e.g., Fujikawa, Akiyama, Nagao, Sakurai, Lagally, Hashimoto, Morikawa, and Terakura, Phys. Rev. Lett. 88, 176101 (2002)] is obtained even when starting from the paired-dimer model [Mo, Savage, Swartzentruber, and Lagally, Phys. Rev. Lett. 65, 1020 (1990)] that was assumed to be correct for many years, and (b) we have found several double-step reconstructions that have lower surface energies than any previously proposed double-step models.

  10. Surface chemistry and friction behavior of the silicon carbide (0001) surface at temperatures to 1500 deg C

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1981-01-01

    X-ray photoelectron and Auger electron spectroscopy analyses and friction studies were conducted with a silicon carbide (0001) surface in contact with iron at various temperatures to 1200 or 1500 C in a vacuum of 10 to the minus 8th power Pa. The results indicate that there is a significant temperature influence on both the surface chemistry and friction properties of silicon carbide. The principal contaminant of adsorbed amorphous carbon on the silicon carbide surface in the as received state is removed by simply heating to 400 C. Above 400 C, graphite and carbide type carbine are the primary species on the silicon carbide surface, in addition to silicon. The coefficients of friction of polycrystalline iron sliding against a single crystal silicon carbide (0001) surface were high at temperatures to 800 C. Similar coefficients of friction were obtained at room temperature after the silicon carbide was preheated at various temperatures up 800 C. When the friction experiments were conducted above 800 C or when the specimens were preheated to above 800 C, the coefficients of friction were dramatically lower. At 800 C the silicon and carbide type carbon are at a maximum intensity in the XPS spectra. With increasing temperature above 800 C, the concentration of the graphite increases rapidly on the surface, whereas those of the carbide type carbon and silicon decrease rapidly.

  11. Photocurrent spectroscopy of Ge nanoclusters grown on oxidized silicon surface

    NASA Astrophysics Data System (ADS)

    Mykytiuk, A. A.; Kondratenko, S. V.; Lysenko, V. S.; Kozyrev, Yu. N.

    2014-05-01

    Germanium (Ge) nanoclusters are grown by a molecular-beam epitaxy technique on chemically oxidized Si(100) surface at 700ºC. Evidence for long-term photoinduced changes of surface conductivity in structures with Ge nanoclusters (NCs) grown on silicon oxide is presented. Photoexcitation NCs or Si by quanta with different energy allows observing two non-equilibrium steady-states with excess and shortage of conductivity values as compare to equilibrium one. The persistent photoconductivity (PPC) behaviour was observed after interband excitation of electron-hole pairs in Si(001) substrate. This effect may be attributed to spatial carrier separation of photoexcited electron-hole pairs by macroscopic fields in the depletion layer of near-surface Si. Photoquenching of surface conductivity, driven by optical recharging of Ge NC's and Si/SiO2 interface states, is observed. Conductivity decay is discussed in the terms of hole`s accumulation by Ge-NC states enhancing the local-potential variations and, therefore, decreasing the surface conductivity of p-Si.

  12. A silicon-based electrical source of surface plasmon polaritons

    NASA Astrophysics Data System (ADS)

    Walters, R. J.; van Loon, R. V. A.; Brunets, I.; Schmitz, J.; Polman, A.

    2010-01-01

    After decades of process scaling driven by Moore's law, the silicon microelectronics world is now defined by length scales that are many times smaller than the dimensions of typical micro-optical components. This size mismatch poses an important challenge for those working to integrate photonics with complementary metal oxide semiconductor (CMOS) electronics technology. One promising solution is to fabricate optical systems at metal/dielectric interfaces, where electromagnetic modes called surface plasmon polaritons (SPPs) offer unique opportunities to confine and control light at length scales below 100nm (refs 1, 2). Research groups working in the rapidly developing field of plasmonics have now demonstrated many passive components that suggest the potential of SPPs for applications in sensing and optical communication. Recently, active plasmonic devices based on III-V materials and organic materials have been reported. An electrical source of SPPs was recently demonstrated using organic semiconductors by Koller and colleagues. Here we show that a silicon-based electrical source for SPPs can be fabricated using established low-temperature microtechnology processes that are compatible with back-end CMOS technology.

  13. Novel antifouling surface with improved hemocompatibility by immobilization of polyzwitterions onto silicon via click chemistry

    NASA Astrophysics Data System (ADS)

    Zheng, Sunxiang; Yang, Qian; Mi, Baoxia

    2016-02-01

    A novel procedure is presented to develop an antifouling silicon surface with improved hemocompatibility by using a zwitterionic polymer, poly(sulfobetaine methacrylate) (polySBMA). Functionalization of the silicon surface with polySBMA involved the following three steps: (1) an alkyne terminated polySBMA was synthesized by RAFT polymerization; (2) a self-assembled monolayer with bromine end groups was constructed on the silicon surface, and then the bromine end groups were replaced by azide groups; and (3) the polySBMA was attached to the silicon surface by azide-alkyne cycloaddition click reaction. Membrane characterization confirmed a successful silicon surface modification with almost 100% coverage by polySBMA and an extremely hydrophilic surface after such modification. The polySBMA-modified silicon surface was found to have excellent anti-nonspecific adsorption properties for both bovine serum albumin (BSA) protein and model bacterial cells. Whole blood adsorption experiments showed that the polySBMA-modified silicon surface exhibited excellent hemocompatibility and effective anti-adhesion to blood cells. Silicon membranes with such antifouling and hemocompatible surfaces can be advantageously used to drastically extend the service life of implantable medical devices such as artificial kidney devices.

  14. Highly sensitive and reproducible silicon-based surface-enhanced Raman scattering sensors for real applications.

    PubMed

    Wang, Houyu; Jiang, Xiangxu; He, Yao

    2016-08-15

    During the past few decades, thanks to silicon nanomaterials' outstanding electronic/optical/mechanical properties, large surface-to-volume ratio, abundant surface chemistry, facile tailorability and good compatibility with modern semiconductor industry, different dimensional silicon nanostructures have been widely employed for rationally designing and fabricating high-performance surface-enhanced Raman scattering (SERS) sensors for the detection of various chemical and biological species. Among these, two-dimensional silicon nanostructures made of metal nanoparticle-modified silicon wafers and three-dimensional silicon nanostructures made of metal nanoparticle-decorated SiNW arrays are of particular interest, and have been extensively exploited as promising silicon-based SERS-active substrates for the construction of high-performance SERS sensors. With an aim to retrospect these important and exciting achievements, we herein focus on reviewing recent representative studies on silicon-based SERS sensors for sensing applications from a broad perspective and possible future direction, promoting readers' awareness of these novel powerful silicon-based SERS sensing technologies. Firstly, we summarize the two unique merits of silicon-based SERS sensors, and those are high sensitivity and good reproducibility. Next, we present recent advances of two- and three-dimensional silicon-based SERS sensors, especially for real applications. Finally, we discuss the major challenges and prospects for the development of silicon-based SERS sensors. PMID:27414500

  15. X-ray assisted chemical modification of silicon surfaces

    NASA Astrophysics Data System (ADS)

    Pinhero, Patrick Joseph

    Interest in surface photochemistry induced by x-irradiation has received a renaissance with the construction of new synchrotron radiation facilities worldwide. There are three general pathways that a x-ray excited gas-surface system can follow that will lead to reaction. These are: (1) direct excitation, (2) excitation by emitted secondary electrons, and (3) reactions induced by hot electrons at the surface. Two chemical systems are studied in a modified x-ray photoelectron spectrometer (XPS) that allows for reactions to be studied in situ. The systems studied were (1) Nsb2/Si(100) and (2) the SFsb6/Si system. The motivation for studying these two compounds is: they are both relatively inert, i.e. no spontaneous reactions; they both are technologically interesting, possible silicon nitride formation in the case of Nsb2, and SFsb6 is a popular etchant gas in the semiconductor industry; and these two compounds have the potential to exhibit contrasting behavior. Besides its etching qualities, SFsb6 possesses a large x-ray absorption cross section and it has a large electron capture cross section. Both systems are primarily studied by XPS. XPS has the quality of providing quantifiable information about the composition of the surface and details about the chemical environment of each constituent element present. Atomic force microscopy (AFM) is used with the SFsb6 system to observe any structural changes that may occur after reaction. In the Nsb2/Si(100) system, a silicon nitride is formed at very long exposures. This is first observed after 24 hours of simultaneous exposure to Nsb2 and x-irradiation. In the SFsb6 experiments, several subsystems are examined: (1) simultaneous exposure of a Si(100) surface to SFsb6 and x-irradiation at 298K; (2) x-irradiation of a SFsb6 film adsorbed on Si(100) at 100K; (3) simultaneous exposure of a natively oxidized Si surface to SFsb6 and x-rays at 298K; and (4) x-irradiation of a SFsb6 film adsorbed on natively oxidized Si at 100K

  16. Fabrication and application of porous silicon multilayered microparticles in sustained drug delivery

    NASA Astrophysics Data System (ADS)

    Maniya, Nalin H.; Patel, Sanjaykumar R.; Murthy, Z. V. P.

    2015-09-01

    In the present study, the ability of porous silicon (PSi) based distributed Bragg reflector (DBR) microparticles for sustained and observable delivery of the antiviral agent acyclovir (ACV) is demonstrated. DBR was fabricated by electrochemical etching of single crystal silicon wafers and ultrasonic fractured to prepare microparticles. The hydrogen-terminated native surface of DBR microparticles was modified by thermal oxidation and thermal hydrosilylation. Particles were loaded with ACV and drug release experiments were conducted in phosphate buffered saline. Drug loading and surface chemistry of particles were characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. Drug release profiles from PSi DBR particles show sustained release behavior from all three studied surface chemistries. Drug release from particles was also monitored from change in color of particles.

  17. Oscillations of light absorption in 2D macroporous silicon structures with surface nanocoatings

    NASA Astrophysics Data System (ADS)

    Karachevtseva, L.; Kuchmii, S.; Lytvynenko, O.; Sizov, F.; Stronska, O.; Stroyuk, A.

    2011-02-01

    We investigated the near-IR light absorption oscillations in 2D macroporous silicon structures with microporous silicon layers and CdTe, ZnO surface nanocrystals. The electro-optical effect was taken into account within the strong electric field approximation. Well-separated oscillations were observed in the spectral ranges of the surface bonds of macroporous silicon structures with surface nanocrystals. The model of the resonant electron scattering on impurity states in electric field of heterojunction “silicon-nanocoating” on macropore surface as well as realization of Wannier-Stark effect on the randomly distributed surface bonds were considered. The Wannier-Stark ladders are not broken by impurities because of the longer scattering lifetime as compared with the period of electron oscillations in an external electric field, in all spectral regions considered for macroporous silicon structures with CdTe and ZnO surface nanocrystals.

  18. Electronic interface properties of silicon substrates after ozone based wet-chemical oxidation studied by SPV measurements

    NASA Astrophysics Data System (ADS)

    Angermann, Heike; Wolke, Klaus; Gottschalk, Christiane; Moldovan, Ana; Roczen, Maurizio; Fittkau, Jens; Zimmer, Martin; Rentsch, Jochen

    2012-08-01

    The preparation of ultra-thin oxide layers on mono-crystalline silicon substrate surfaces with ozone dissolved in ultra pure water at ambient temperature was investigated as a low cost alternative to current wet-chemical cleaning and passivation processes in solar cell manufacturing. Surface photovoltage technique was applied as fast, nondestructive, and surface sensitive method, to provide detailed information about the influence of oxidation rate and substrate surface morphology on electronic properties of the oxidised silicon interfaces and subsequently prepared hydrogen terminated surfaces. Sequences of wet-chemical oxidation in ozone containing ultra pure water and subsequent oxide removal in diluted hydrofluoric acid solution could be utilised to prepare hydrophobic substrates, which are predominantly required as starting point for layer deposition and contact formation. On so prepared hydrogen-terminated substrates values of interface state densities Dit,min ≈ 5 × 1011 eV-1 cm-2 could be achieved, comparable to values obtained on the same substrates by the standard RCA process followed by HF dip.

  19. Fabricating micro-instruments in surface-micromachined polycrystalline silicon

    SciTech Connect

    Comtois, J.H.; Michalicek, M.A.; Barron, C.C.

    1997-04-01

    Smaller, lighter instruments can be fabricated as Micro-Electro-Mechanical Systems (MEMS), having micron scale moving parts packaged together with associated control and measurement electronics. Batch fabrication of these devices will make economical applications such as condition-based machine maintenance and remote sensing. The choice of instrumentation is limited only by the designer`s imagination. This paper presents one genre of MEMS fabrication, surface-micromachined polycrystalline silicon (polysilicon). Two currently available but slightly different polysilicon processes are presented. One is the ARPA-sponsored ``Multi-User MEMS ProcesS`` (MUMPS), available commercially through MCNC; the other is the Sandia National Laboratories ``Sandia Ultra-planar Multilevel MEMS Technology`` (SUMMiT). Example components created in both processes will be presented, with an emphasis on actuators, actuator force testing instruments, and incorporating actuators into larger instruments.

  20. Barrier-Type AC Surface Photovoltage in Silicon with a Copper-Contaminated Surface

    NASA Astrophysics Data System (ADS)

    Shimizu, Hirofumi

    2002-10-01

    An AC surface photovoltage (SPV) was induced in n-type silicon (Si) wafers after the deposition of undesirable copper (Cu) atoms on the surface. Chemical analysis reveals that Cu ions (Cu2+) are deposited on Si surfaces, through electron capture because the oxidation reduction potential of Cu2+ is higher than that of Si and, as a result, a Cu-Si contact is formed. This Cu-Si contact may create a Schottky barrier between the Cu and n-type Si, resulting in the appearance of an AC SPV in n-type Si. In this note, a barrier-type SPV is proposed.

  1. The Relationship between the Hydrophilicity and Surface Chemical Composition Microphase Separation Structure of Multicomponent Silicone Hydrogels.

    PubMed

    Zhao, Zheng-Bai; An, Shuang-Shuang; Xie, Hai-Jiao; Han, Xue-Lian; Wang, Fu-He; Jiang, Yong

    2015-07-30

    Three series of multicomponent silicone hydrogels were prepared by the copolymerization of two hydrophobic silicon monomers bis(trimethylsilyloxy) methylsilylpropyl glycerol methacrylate (SiMA) and tris(trimethylsiloxy) 3-methacryloxypropylsilane (TRIS) with three hydrophilic monomers. The surface hydrophilicity of the silicone hydrogels was characterized by contact angle measurements, and an interesting phenomenon was found that the silicone hydrogels made from less hydrophobic monomer SiMA possess more hydrophobic surfaces than those made from TRIS. The surface properties such as morphology and elemental composition of the silicone hydrogels were explored by scanning electron microscopy (SEM) imaging and energy dispersive spectrometry (EDS) analysis, and their relationships with the surface hydrophilicity were investigated in details. The results show neither the surface morphology nor the elemental composition has obvious impact on the surface hydrophilicity. Atomic force microscopy (AFM) imaging revealed that SiMA hydrogel had a more significant phase separation structure, which also made its surface uneven: a lot of tiny holes were observed on the surface. This surface phase separation structure made SiMA hydrogel more difficult to be wetted by water or PBS buffer, i.e., more hydrophobic than TRIS hydrogel. On the basis of these results, we propose that the phase separation structure as well as the nature of silicon monomers might be the fundamental reasons of surface hydrophilicity. These results could help to design a silicone hydrogel with better surface properties and wider application. PMID:26125331

  2. New perspectives on thermal and hyperthermal oxidation of silicon surfaces

    NASA Astrophysics Data System (ADS)

    Khalilov, Umedjon

    The growth of (ultra)thin silica (SiO2) layers on crystalline silicon (c-Si) and controlling the thickness of SiO2 is an important issue in the fabrication of microelectronics and photovoltaic devices (e.g., MOSFETs, solar cells, optical fibers etc.). Such ultrathin oxide can be grown and tuned even at low temperature (including room temperature), by hyperthermal oxidation or when performed on non-planar Si surfaces (e.g., Si nanowires or spheres). However, hyperthermal silica growth as well as small Si-NW oxidation in general and the initial stages in particular have not yet been investigated in full detail. This work is therefore devoted to controlling ultrathin silica thickness on planar and non-planar Si surfaces, which can open new perspectives in nanodevice fabrication. The simulation of hyperthermal (1-100 eV) Si oxidation demonstrate that at low impact energy (<10 eV), oxygen does not damage the Si surface and this energy region could thus beneficially be used for Si oxidation. In contrast to thermal oxidation, 10 eV species can directly oxidize Si subsurface layers. A transition temperature of about 700 K was found: below this temperature, the oxide thickness only depends on the impact energy of the impinging species. Above this temperature, the oxide thickness depends on the impact energy, type of oxidant and the surface temperature. The results show that control over the ultrathin oxide (a-SiO2) thickness is possible by hyperthermal oxidation of silicon surfaces at temperatures below the transition temperature. In small Si-NWs, oxidation is a self-limiting process that occurs at low temperature, resulting in small Si core - SiO2 shell (semiconductor + dielectric) or c-Si|SiOx| a-SiO2 nanowire, which has also being envisaged to be used as nanowire field-effect transistors and photovoltaic devices in near-future nanotechnology. Above the transition temperature such core-shell nanowires are completely converted to a-SiO2 nanowires. It can be concluded that

  3. Modification of the surface morphology of silicon(111) with growth temperature

    NASA Astrophysics Data System (ADS)

    Charles, M.; Hartmann, J. M.

    2013-02-01

    Silicon epitaxy has been performed on nominally on-axis silicon(111) substrates by reduced pressure chemical vapour deposition at a variety of temperatures, keeping a constant deposited thickness. Atomic force microscopy of the resulting growth surfaces shows well defined step edges, and a clear modification of the surface morphology from smooth terraces to triangular island structures as the growth temperature is reduced. The radius of curvature of these growth forms links the diffusion distance to an Arrhenius plot, with a value of EA > 400 kJ/mol, which is nearly double the energy of a silicon-silicon bond (226 kJ/mol). This implies that the silicon atoms are held on the two dimensional surface by more than just a single Sisbnd Si bond. In addition, small residual islands on the smooth terraces have a similar density to that seen in similar growth studies on silicon(100).

  4. Bovine serum albumin adsorption on functionalized porous silicon surfaces

    NASA Astrophysics Data System (ADS)

    Tay, Li-Lin; Rowell, Nelson L.; Lockwood, David J.; Boukherroub, Rabah

    2004-10-01

    The large surface area within porous Si (pSi) and its strong room temperature photoluminescence (PL) make it an ideal host for biological sensors. In particular, the development of pSi-based optical sensors for DNA, enzyme and other biochemical molecules have become of great interest. Here, we demonstrate that the in-situ monitoring of the pSi PL behaviour can be used as a positive identification of bovine serum albumin (BSA) protein adsorption inside the porous matrix. Electrochemically prepared pSi films were first functionalized with undecylenic acid to produce an organic monolayer covalently attached to the porous silicon surfaces. The acid terminal group also provided favourable BSA binding sites on the pSi matrix sidewalls. In-situ PL spectra showed a gradual red shift (up to 12 meV) in the PL peak energy due to the protein incorporation into the porous matrix. The PL then exhibited a continuous blue shift after saturation of the protein molecules in the pores. This blue shift of the PL peak frequency and a steady increase in the PL intensity is evidence of surface oxidation. Comparing the specular reflectance obtained by Fourier transform infrared spectroscopy (FTIR) before and after BSA incubation confirmed the adsorption of protein in the pSi matrix.

  5. Porous silicon: electrochemical microstructuring, photoluminescence, and covalent modificaiton

    NASA Astrophysics Data System (ADS)

    Prigozhin, Maxim B.; Shiwsankar, Pauline; Algar, W. Russ; Krull, Ulrich J.

    2008-06-01

    Interest in porous silicon (PS) has increased dramatically over the past two decades due to aspects such as photoluminescence due to quantum confinement, large surface area, and micro/nanoscale architecture. In this work, <111> p-type silicon wafers have been electrochemically etched with ethanolic solutions of hydrofluoric acid. Discrete surface domains showing luminescence were observed. The domains were typically many tens of micrometers in size and had a height of about 6-8 μm. Interestingly, central round wells of 10-30 μm diameter were observed to form within domains. Investigation of luminescence in depth profile of the wells was done using confocal fluorescence microscopy, and the results indicated that the domains were fully porous and luminescent throughout the entire depth. Spectrally, the peak fluorescence emission was in the range of 550-750 nm and the spectra had an average FWHM equal to about 150 nm. Covalent attachment of organic monolayers to the porous silicon surfaces was done to try and passivate against oxidation, and also to explore the possibilities of bioconjugation and tuning of the photoluminescence wavelength. A reaction of hydrogen terminated silicon with ω-undecylenyl alcohol was done using irradiation by a UV source, and successful derivatization was confirmed with IR spectroscopy. Bulk electrochemical etching of silicon provided a method to generate distributed luminescent structures suitable for compartmentalization of reactions within wells of micrometer dimensions without the use of spatially resolved fabrication methodologies such as epitaxial deposition, lithography, or ion beam technologies.

  6. Modeling the surface photovoltage of silicon slabs with varying thickness.

    PubMed

    Vazhappilly, Tijo; Kilin, Dmitri S; Micha, David A

    2015-04-10

    The variation with thickness of the energy band gap and photovoltage at the surface of a thin semiconductor film are of great interest in connection with their surface electronic structure and optical properties. In this work, the change of a surface photovoltage (SPV) with the number of layers of a crystalline silicon slab is extracted from models based on their atomic structure. Electronic properties of photoexcited slabs are investigated using generalized gradient and hybrid density functionals, and plane wave basis sets. Si(1 1 1) surfaces have been terminated by hydrogen atoms to compensate for dangling bonds and have been described by large supercells with periodic boundary conditions. Calculations of the SPV of the Si slabs have been done in terms of the reduced density matrix of the photoactive electrons including dissipative effects due to their interaction with medium phonons and excitons. Surface photovoltages have been calculated for model Si slabs with 4-12, and 16 layers, to determine convergence trends versus slab thickness. Band gaps and the inverse of the SPVs have been found to scale nearly linearly with the inverse thickness of the slab, while the electronic density of states increases quadratically with thickness. Our calculations show the same trends as experimental values indicating band gap reduction and absorption enhancement for Si films of increasing thickness. Simple arguments on confined electronic structures have been used to explain the main effects of changes with slab thickness. A procedure involving shifted electron excitation energies is described to improve results from generalized gradient functionals so they can be in better agreement with the more accurate but also more computer intensive values from screened exchange hybrid functionals. PMID:25767101

  7. Modeling the surface photovoltage of silicon slabs with varying thickness

    NASA Astrophysics Data System (ADS)

    Vazhappilly, Tijo; Kilin, Dmitri S.; Micha, David A.

    2015-04-01

    The variation with thickness of the energy band gap and photovoltage at the surface of a thin semiconductor film are of great interest in connection with their surface electronic structure and optical properties. In this work, the change of a surface photovoltage (SPV) with the number of layers of a crystalline silicon slab is extracted from models based on their atomic structure. Electronic properties of photoexcited slabs are investigated using generalized gradient and hybrid density functionals, and plane wave basis sets. Si(1 1 1) surfaces have been terminated by hydrogen atoms to compensate for dangling bonds and have been described by large supercells with periodic boundary conditions. Calculations of the SPV of the Si slabs have been done in terms of the reduced density matrix of the photoactive electrons including dissipative effects due to their interaction with medium phonons and excitons. Surface photovoltages have been calculated for model Si slabs with 4-12, and 16 layers, to determine convergence trends versus slab thickness. Band gaps and the inverse of the SPVs have been found to scale nearly linearly with the inverse thickness of the slab, while the electronic density of states increases quadratically with thickness. Our calculations show the same trends as experimental values indicating band gap reduction and absorption enhancement for Si films of increasing thickness. Simple arguments on confined electronic structures have been used to explain the main effects of changes with slab thickness. A procedure involving shifted electron excitation energies is described to improve results from generalized gradient functionals so they can be in better agreement with the more accurate but also more computer intensive values from screened exchange hybrid functionals.

  8. Surface Structure and Surface Electronic States Related to Plasma Cleaning of Silicon and Germanium

    NASA Astrophysics Data System (ADS)

    Cho, Jaewon

    This thesis discusses the surface structure and the surface electronic states of Si and Ge(100) surfaces as well as the effects of oxidation process on the silicon oxide/Si(100) interface structure. The H-plasma exposure was performed in situ at low temperatures. The active species, produced in the H-plasma by the rf-excitation of H_2 gas, not only remove microcontaminants such as oxygen and carbon from the surface, but also passivate the surface with atomic hydrogen by satisfying the dangling bonds of the surface atoms. The surfaces were characterized by Angle Resolved UV-Photoemission Spectroscopy (ARUPS) and Low Energy Electron Diffraction (LEED). In the case of Si(100), H-plasma exposure produced ordered H-terminated crystallographic structures with either a 2 x 1 or 1 x 1 LEED pattern. The hydride phases, found on the surfaces of the cleaned Si(100), were shown to depend on the temperature of the surface during H-plasma cleaning. The electronic states for the monohydride and dihydride phases were identified by ARUPS. When the plasma cleaned surface was annealed, the phase transition from the dihydride to monohydride was observed. The monohydride Si-H surface bond was stable up to 460^circC, and the dangling bond surface states were identified after annealing at 500^circC which was accompanied by the spectral shift. The H-terminated surface were characterized to have a flat band structure. For the Ge(100) surface, an ordered 2 x 1 monohydride phase was obtained from the surface cleaned at 180 ^circC. After plasma exposure at <=170^circC a 1 x 1 surface was observed, but the ARUPS indicated that the surface was predominantly composed of disordered monohydride structures. After annealing above the H-dissociation temperatures, the shift in the spectrum was shown to occur with the dangling bond surface states. The H-terminated surfaces were identified to be unpinned. The interface structure of silicon oxide/Si(100) was studied using ARUPS. Spectral shifts were

  9. Role of silicon hydride bonding environment in alpha-silicon:hydrogen films for c-silicon surface passivation

    NASA Astrophysics Data System (ADS)

    Burrows, Michael Z.

    High efficiency silicon solar cells achieve greater than 700 mV open circuit voltage through excellent surface passivation of the monocyrstalline absorber. This work studies the bifacial plasma enhanced chemical vapor deposited (PECVD) intrinsic amorphous silicon ((i) alpha-Si:H) passivation structure. To enable the correct interpretation of FTIR detected vibrational modes a model of the layered substructure of ultra-thin (i) alpha-Si:H is constructed. A high fraction of di-hydride bonding is associated with defective, low density amorphous film, and control of this parameter is established by varying hydrogen dilution ratio. The hypothesis that a high fraction of di-hydride bonding over mono-hydride within the film would lead to a poor passivation layer is tested and shown to be false. This is due to the bulk layer within the model defining the di-hydride fraction and indicates that the interface layer plays the more dominant role. A comparison between rf plasma PECVD deposited films and dc plasma shows that upon 30 min, 285°C annealing, large improvements in passivation occur when dc plasma was used with gains in minority carrier effective lifetimes over 1 msec possible. The passivation quality of rf generated films is less effected by annealing. rf plasma films show detectable mono-, di-, and tri-hydride high-potential modes in the as-deposited condition that are removed upon annealing. The finite loss of bulk mono-hydride and these interfacial hydrides do not have a strong impact on film passivation quality. It is concluded that the film has reached an equilibrium level of interfacial defect density which is unaffected by the limited loss of hydride bonding observed. dc plasma films undergo large improvements in passivation quality upon annealing. An increase in mono-hydride bonding at the internal surfaces of nanometer sized voids is detected. It is proposed that this mono-hydride bonding is reducing the density of unsaturated bonds, lowering the interfacial

  10. Wave optical simulation of the light trapping properties of black silicon surface textures.

    PubMed

    Bett, Alexander Jürgen; Eisenlohr, Johannes; Höhn, Oliver; Repo, Päivikki; Savin, Hele; Bläsi, Benedikt; Goldschmidt, Jan Christoph

    2016-03-21

    Due to their low reflectivity and effective light trapping properties black silicon nanostructured surfaces are promising front side structures for thin crystalline silicon solar cells. For further optimization of the light trapping effect, particularly in combination with rear side structures, it is necessary to simulate the optical properties of black silicon. Especially, the angular distribution of light in the silicon bulk after passage through the front side structure is relevant. In this paper, a rigorous coupled wave analysis of black silicon is presented, where the black silicon needle shaped structure is approximated by a randomized cone structure. The simulated absorptance agrees well with measurement data. Furthermore, the simulated angular light distribution within the silicon bulk shows that about 70% of the light can be subjected to internal reflection, highlighting the good light trapping properties. PMID:27136865

  11. Origin of complex impact craters on native oxide coated silicon surfaces

    SciTech Connect

    Samela, Juha; Nordlund, Kai; Popok, Vladimir N.; Campbell, Eleanor E. B.

    2008-02-15

    Crater structures induced by impact of keV-energy Ar{sub n}{sup +} cluster ions on silicon surfaces are measured with atomic force microscopy. Complex crater structures consisting of a central hillock and outer rim are observed more often on targets covered with a native silicon oxide layer than on targets without the oxide layer. To explain the formation of these complex crater structures, classical molecular dynamics simulations of Ar cluster impacts on oxide coated silicon surfaces, as well as on bulk amorphous silica, amorphous Si, and crystalline Si substrates, are carried out. The diameter of the simulated hillock structures in the silicon oxide layer is in agreement with the experimental results, but the simulations cannot directly explain the height of hillocks and the outer rim structures when the oxide coated silicon substrate is free of defects. However, in simulations of 5 keV/atom Ar{sub 12} cluster impacts, transient displacements of the amorphous silicon or silicon oxide substrate surfaces are induced in an approximately 50 nm wide area surrounding the impact point. In silicon oxide, the transient displacements induce small topographical changes on the surface in the vicinity of the central hillock. The comparison of cluster stopping mechanisms in the various silicon oxide and silicon structures shows that the largest lateral momentum is induced in the silicon oxide layer during the impact; thus, the transient displacements on the surface are stronger than in the other substrates. This can be a reason for the higher frequency of occurrence of the complex craters on oxide coated silicon.

  12. Surface and Internal Structure of Pristine Presolar Silicon Carbide

    NASA Technical Reports Server (NTRS)

    Stroud, Rhonda, M.; Bernatowicz, Thomas J.

    2005-01-01

    Silicon carbide is the most well-studied type of presolar grain. Isotope measurements of thousands [1,2] and structural data from over 500 individual grains have been reported [3]. The isotope data indicate that approximately 98% originated in asymptotic giant branch stars and 2% in supernovae. Although tens of different polytypes of SiC are known to form synthetically, only two polytypes have been reported for presolar grains. Daulton et al. [3] found that for SiC grains isolated from Murchison by acid treatments, 79.4% are 3C cubic beta-SiC, 2.7% are 2H hexagonal alpha-SiC, 17.1% are intergrowths of and , and 0.9% are heavily disordered. They report that the occurrence of only the and polytypes is consistent with the observed range of condensation temperatures of circumstellar dust for carbon stars. Further constraint on the formation and subsequent alteration of the grains can be obtained from studies of the surfaces and interior structure of grains in pristine form, i.e., prepared without acid treatments [4,5]. The acid treatments remove surface coatings, produce etch pits around defect sites and could remove some subgrains. Surface oxides have been predicted by theoretical modeling as a survival mechanism for SiC grains exposed to the hot oxidizing solar nebula [6]. Scanning electron microscopy studies of pristine SiC shows some evidence for the existence of oxide and organic coatings [4]. We report herein on transmission electron microscopy studies of the surface and internal structure of two pristine SiC grains, including definitive evidence of an oxide rim on one grain, and the presence of internal TiC and AlN grains.

  13. Surface Micromachined Flexural Plate Wave Device Integrable on Silicon

    SciTech Connect

    Clem, P.G.; Dimos, D.; Garino, T.J.; Martin, S.J.; Mitchell, M.A.; Olson, W.R.; Ruffner, J.A.; Schubert, W.K.; Tuttle, B.A.

    1999-01-01

    Small, reliable chemical sensors are needed for a wide range of applications, such as weapon state-of-health monitoring, nonproliferation activities, and manufacturing emission monitoring. Significant improvements in present surface acoustic wave sensors could be achieved by developing a flexural plate-wave (FPW) architecture, in which acoustic waves are excited in a thin sensor membrane. Further enhancement of device performance could be realized by integrating a piezoelectric thin film on top of the membrane. These new FPW-piezoelectric thin film devices would improve sensitivity, reduce size, enhance ruggedness and reduce the operating frequency so that the FPW devices would be compatible with standard digital microelectronics. Development of these piezoelectric thin film // FPW devices requires integration of (1) acoustic sensor technology, (2) silicon rnicromachining techniques to fabricate thin membranes, and (3) piezoelectric thin films. Two piezoelectric thin film technologies were emphasized in this study: Pb(Zr,Ti)O{sub 3} (PZT) and AlN. PZT thin films were of sufficient quality such that the first high frequency SAW measurements on PZT thin films were measured during the course of this study. Further, reasonable ferroelectric properties were obtained from PZT films deposited on Si surface micromachined FPW device membranes. Fundamental understanding of the effect of nanodimension interfacial layers on AlN thin film domain configurations and piezoelectric response was developed. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy under contract DE-AC04-94AL85000.

  14. Patterned biofunctional poly(acrylic acid) brushes on silicon surfaces.

    PubMed

    Dong, Rong; Krishnan, Sitaraman; Baird, Barbara A; Lindau, Manfred; Ober, Christopher K

    2007-10-01

    Protein patterning was carried out using a simple procedure based on photolithography wherein the protein was not subjected to UV irradiation and high temperatures or contacted with denaturing solvents or strongly acidic or basic solutions. Self-assembled monolayers of poly(ethylene glycol) (PEG) on silicon surfaces were exposed to oxygen plasma through a patterned photoresist. The etched regions were back-filled with an initiator for surface-initiated atom transfer radical polymerization (ATRP). ATRP of sodium acrylate was readily achieved at room temperature in an aqueous medium. Protonation of the polymer resulted in patterned poly(acrylic acid) (PAA) brushes. A variety of biomolecules containing amino groups could be covalently tethered to the dense carboxyl groups of the brush, under relatively mild conditions. The PEG regions surrounding the PAA brush greatly reduced nonspecific adsorption. Avidin was covalently attached to PAA brushes, and biotin-tagged proteins could be immobilized through avidin-biotin interaction. Such an immobilization method, which is based on specific interactions, is expected to better retain protein functionality than direct covalent binding. Using biotin-tagged bovine serum albumin (BSA) as a model, a simple strategy was developed for immobilization of small biological molecules using BSA as linkages, while BSA can simultaneously block nonspecific interactions. PMID:17880179

  15. Enhanced surface hardness in nitrogen-implanted silicon carbide

    SciTech Connect

    Uslu, C.; Lee, D.H.; Berta, Y.

    1995-06-01

    Preliminary studies have been performed on the feasibility of carbon-silicon nitride formation ({beta}-Si{sub 1.5}C{sub 1.5}N{sub 4}, the homologue of equilibrium {beta}-Si{sub 3}N{sub 4} or hypothetical {beta}-C{sub 3}N{sub 4}) by high dose N{sup +}-implantation into polycrystalline {beta}-SiC (cubic). Thin films were formed using 100 keV implantations with varying ion doses in the range from 1.1 x 10{sup 17} to 27.1 x 10{sup 17} N/cm{sup 2}, and target temperatures between -196{degrees}C and 980{degrees}C. X-ray diffraction with a position-sensitive detector and cross-sectional transmission electron microscopy revealed that the as-implanted surfaces (up to 860{degrees}C) contained {approximately}0.1 {mu}m thick buried amorphous layers. Rutherford backscattering spectroscopy showed that the peak concentration of nitrogen saturated up to approximately 54 at. % with increasing doses, suggesting formation of a new phase. Implantation to doses of 1.1 x 10{sup 17} and 2.3 x 10{sup 17} N/cm{sup 2} at 980{degrees}C caused enhanced surface hardness compared to SiC.

  16. Preparation and Surface Layer Modification of Silicon Nanoparticles Dispersed in 2-Propanol

    NASA Astrophysics Data System (ADS)

    Zhu, Yong; S, Iwasaki; K, Kimura; Zhang, Li-de

    1998-12-01

    Silicon nanoparticles dispersed in 2-propanol were prepared by using an arc plasma with gas flow method in a new designed home-made apparatus. The particles are composed of silicon crystal core covered by oxidized amorphous silicon shell. The composition of the particle surface layer can be modified by preparing the sample in different atmosphere. The particles can be also obtained with different core composition and different size which we need.

  17. Radical surface interactions in industrial silicon plasma etch reactors

    NASA Astrophysics Data System (ADS)

    Cunge, G.; Vempaire, D.; Ramos, R.; Touzeau, M.; Joubert, O.; Bodard, P.; Sadeghi, N.

    2010-06-01

    Silicon etching in Cl2-based plasmas is an important step for the fabrication of IC circuits but the plasma surface interactions involved in this process remain poorly understood. Based on the developments in plasma and reactor wall diagnostics, this paper reviews the recent progress in the understanding of radicals' interactions with surfaces during silicon etching processes. X-ray photoelectron spectroscopy analysis of the reactor walls shows that during Si etching in Cl2/O2 plasmas, the initial Al2O3 chamber walls are coated with a thin SiOCl layer. Broadband absorption spectroscopy with UV light emitting diodes is used to measure the densities of SiClX radicals (X = 0-2) and Cl2 molecules in steady state plasmas running with the chamber walls coated with different materials. To estimate the surface sticking/recombination probability of these radicals on different surfaces, we have performed time-resolved absorption measurements in the afterglow of pulsed discharges. Our work, in agreement with previous results, shows that the Cl2/Cl density ratio in the discharge is driven mainly by the chemical nature of the chamber walls explaining why process drifts are often observed in Cl2/O2 plasmas. The recombination coefficient of Cl atoms on SiOCl surfaces is about 0.007, while it is about 0.1 on clean walls (AlF3). Based on these results, we discuss the best strategy leading to reproducible process control, the present strategy being a systematic reactor cleaning/conditioning between wafers. The SiOCl layer deposition mechanism is then discussed in detail. The sticking coefficient of SiCl on this surface is near unity, while SiCl2 appears to be weakly reactive toward it. Therefore, SiCl (and SiCl+ ions) are the main vectors of Si deposition on the reactor walls, where their subsequent oxidization by O atoms leads to the formation of a SiOCl deposit. Furthermore, we show that SiCl reaction in the plasma volume with Cl2, through the exchange reaction SiCl + Cl2 → Si

  18. Cellular interactions of surface modified nanoporous silicon particles

    NASA Astrophysics Data System (ADS)

    Bimbo, Luis M.; Sarparanta, Mirkka; Mäkilä, Ermei; Laaksonen, Timo; Laaksonen, Päivi; Salonen, Jarno; Linder, Markus B.; Hirvonen, Jouni; Airaksinen, Anu J.; Santos, Hélder A.

    2012-05-01

    In this study, the self-assembly of hydrophobin class II (HFBII) on the surface of thermally hydrocarbonized porous silicon (THCPSi) nanoparticles was investigated. The HFBII-coating converted the hydrophobic particles into more hydrophilic ones, improved the particles' cell viability in both HT-29 and Caco-2 cell lines compared to uncoated particles, and enhanced the particles' cellular association. The amount of HFBII adsorbed onto the particles was also successfully quantified by both the BCA assay and a HPLC method. Importantly, the permeation of a poorly water-soluble drug, indomethacin, loaded into THCPSi particles across Caco-2 monolayers was not affected by the protein coating. In addition, 125I-radiolabelled HFBII did not extensively permeate the Caco-2 monolayer and was found to be stably adsorbed onto the THCPSi nanoparticles incubated in pH 7.4, which renders the particles the possibility for further track-imaging applications. The results highlight the potential of HFBII coating for improving wettability, increasing biocompatibility and possible intestinal association of PSi nanoparticulates for drug delivery applications.In this study, the self-assembly of hydrophobin class II (HFBII) on the surface of thermally hydrocarbonized porous silicon (THCPSi) nanoparticles was investigated. The HFBII-coating converted the hydrophobic particles into more hydrophilic ones, improved the particles' cell viability in both HT-29 and Caco-2 cell lines compared to uncoated particles, and enhanced the particles' cellular association. The amount of HFBII adsorbed onto the particles was also successfully quantified by both the BCA assay and a HPLC method. Importantly, the permeation of a poorly water-soluble drug, indomethacin, loaded into THCPSi particles across Caco-2 monolayers was not affected by the protein coating. In addition, 125I-radiolabelled HFBII did not extensively permeate the Caco-2 monolayer and was found to be stably adsorbed onto the THCPSi

  19. Surface chemistry dependent immunostimulative potential of porous silicon nanoplatforms.

    PubMed

    Shahbazi, Mohammad-Ali; Fernández, Tahia D; Mäkilä, Ermei M; Le Guével, Xavier; Mayorga, Cristobalina; Kaasalainen, Martti H; Salonen, Jarno J; Hirvonen, Jouni T; Santos, Hélder A

    2014-11-01

    Nanoparticles (NPs) have been suggested for immunotherapy applications in order to optimize the delivery of immuno-stimulative or -suppressive molecules. However, low attention towards the impact of the NPs' physicochemical properties has presented a major hurdle for developing efficient immunotherapeutic agents. Here, the effects of porous silicon (PSi) NPs with different surface chemistries were evaluated on human monocyte-derived dendritic cells (MDDCs) and lymphocytes in order to highlight the importance of the NPs selection in immuno-stimulative or -suppressive treatment. Although all the PSi NPs showed high biocompatibility, only thermally oxidized PSi (TOPSi) and thermally hydrocarbonized PSi (THCPSi) NPs were able to induce very high rate of immunoactivation by enhancing the expression of surface co-stimulatory markers of the MDDCs (CD80, CD83, CD86, and HLA-DR), inducing T-cell proliferation, and also the secretion of interleukins (IL-1β, IL-4, IL-6, IL-10, IL-12, IFN-γ, and TNF-α). These results indicated a balanced increase in the secretion of Th1, Th2, and Treg cytokines. Moreover, undecylenic acid functionalized THCPSi, as well as poly(methyl vinyl ether-alt-maleic acid) conjugated to (3-aminopropyl)triethoxysilane functionalized thermally carbonized PSi and polyethyleneimine conjugated undecylenic acid functionalized THCPSi NPs showed moderate immunoactivation due to the mild increase in the above-mentioned markers. By contrast, thermally carbonized PSi (TCPSi) and (3-aminopropyl)triethoxysilane functionalized TCPSi NPs did not induce any immunological responses, suggesting that their application could be in the delivery of immunosuppressive molecules. Overall, our findings suggest all the NPs containing more nitrogen or oxygen on the outermost backbone layer have lower immunostimulatory effect than NPs with higher C-H structures on the surface. PMID:25123922

  20. Influence of acetylcholinesterase immobilization on the photoluminescence properties of mesoporous silicon surface

    NASA Astrophysics Data System (ADS)

    Saleem, Muhammad; Rafiq, Muhammad; Seo, Sung-Yum; Lee, Ki Hwan

    2014-07-01

    Acetylcholinesterase immobilized p-type porous silicon surface was prepared by covalent attachment. The immobilization procedure was based on support surface chemical oxidation, silanization, surface activation with cyanuric chloride and finally covalent attachment of free enzyme on the cyanuric chloride activated porous silicon surface. Different pore diameter of porous silicon samples were prepared by electrochemical etching in HF based electrolyte solution and appropriate sample was selected suitable for enzyme immobilization with maximum trapping ability. The surface modification was studied through field emission scanning electron microscope, EDS, FT-IR analysis, and photoluminescence measurement by utilizing the fluctuation in the photoluminescence of virgin and enzyme immobilized porous silicon surface. Porous silicon showed strong photoluminescence with maximum emission at 643 nm and immobilization of acetylcholinesterase on porous silicon surface cause considerable increment on the photoluminescence of porous silicon material while acetylcholinesterase free counterpart did not exhibit any fluorescence in the range of 635-670 nm. The activities of the free and immobilized enzymes were evaluated by spectrophotometric method by using neostigmine methylsulfate as standard enzyme inhibitor. The immobilized enzyme exhibited considerable response toward neostigmine methylsulfate in a dose dependent manner comparable with that of its free counterpart alongside enhanced stability, easy separation from the reaction media and significant saving of enzyme. It was believed that immobilized enzyme can be exploited in organic and biomolecule synthesis possessing technical and economical prestige over free enzyme and prominence of easy separation from the reaction mixture.

  1. Effect of surface roughness on EPES and AREPES measurements: Flat and crenels silicon surfaces

    NASA Astrophysics Data System (ADS)

    Chelda, S.; Robert-Goumet, C.; Gruzza, B.; Bideux, L.; Monier, G.

    2008-06-01

    EPES (elastic peak electron spectroscopy) and AREPES (angle resolved elastic peak electron spectroscopy) are non destructive methods and very sensitive to the surface region. These techniques allow to measure the percentage ηe of elastically backscattered electrons from the surface excited by an electron beam. Both methods are combined with Monte-Carlo (MC) simulations to interpret experimental results. In this work, we underline the importance of a micrometric scale roughness at the surface. The use of an original Monte-Carlo method was fruitful for the simulation, moreover 3D representations have been developed for visualization and qualitative interpretation of the results. For a more precise quantitative study, a 2D representation was necessary. The calculated results have been compared with published experimental ones got for different incidence angles and primary energies, on a silicon surface having triangular saw-tooth aspect (crenels) obtained by photolithography. We have observed that the effect due to the roughness increases with the incidence angle.

  2. Residual Silicone Detection. [external tank and solid rocket booster surfaces

    NASA Technical Reports Server (NTRS)

    Smith, T.

    1980-01-01

    Both photoelectron emission and ellipsometry proved successful in detecting silicone contamination on unpainted and epoxy painted metal surfaces such as those of the external tank and the solid rocket booster. Great success was achieved using photoelectron emission (PEE). Panels were deliberately contaminated to controlled levels and then mapped with PEE to reveal the areas and levels that were contaminated. The panels were then tested with regard to adhesive properties. Tapes were bonded over the contaminated and uncontaminated regions and the peel force was measured, or the contaminated panels were bonded (with CPR 483 foam) to uncontaminated panels and made into lap shear specimens. Other panels were bonded and made into wedge specimens for hydrothermal stress endurance tests. Strong adhesion resulted if the PEE signal fell within an acceptance window, but was poor outside the acceptance window. A prototype instrument is being prepared which can automatically be scanned over the external liquid hydrogen tank and identify those regions that are contaminated and will cause bond degradation.

  3. Surface and allied studies in silicon solar cells

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.

    1983-01-01

    Two main results are presented. The first deals with a simple method that determines the minority-carrier lifetime and the effective surface recombination velocity of the quasi-neutral base of silicon solar cells. The method requires the observation of only a single transient, and is amenable to automation for in-process monitoring in manufacturing. This method, which is called short-circuit current decay, avoids distortion in the observed transient and consequent inacccuracies that arise from the presence of mobile holes and electrons stored in the p/n junction spacecharge region at the initial instant of the transient. The second main result consists in a formulation of the relevant boundary-value problems that resembles that used in linear two-port network theory. This formulation enables comparisons to be made among various contending methods for measuring material parameters of p/n junction devices, and enables the option of putting the description in the time domain of the transient studies in the form of an infinite series, although closed-form solutions are also possible.

  4. Porous silicon structures with high surface area/specific pore size

    DOEpatents

    Northrup, M. Allen; Yu, Conrad M.; Raley, Norman F.

    1999-01-01

    Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gasses in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters.

  5. Porous silicon structures with high surface area/specific pore size

    DOEpatents

    Northrup, M.A.; Yu, C.M.; Raley, N.F.

    1999-03-16

    Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gases in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters. 9 figs.

  6. Investigation of the surface of implanted silicon crystal by the contact angle

    SciTech Connect

    Lebedeva, N.N.; Bakovets, V.V.; Sedymova, E.A.; Pridachin, N.B.

    1987-03-01

    The authors study the dependence of the critical contact angle of silicon upon the dose of its irradiation by argon and boron ions. It is established that the system of immiscible liquids ether-water can be successfully used to study the influence of ion implantation of silicon on its wettability by water. The change in the wettability of implanted silicon is related to the increase in the level of the defect state of the layer surface. Wetting of implanted silicon by melts at high temperatures can be used for studying the kinetics and the annealing mechanism of defects.

  7. Microscopic Image of Martian Surface Material on a Silicone Substrate

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for larger version of Figure 1

    This image taken by the Optical Microscope on NASA's Phoenix Mars Lander shows soil sprinkled from the lander's Robot Arm scoop onto a silicone substrate. The substrate was then rotated in front of the microscope. This is the first sample collected and delivered for instrumental analysis onboard a planetary lander since NASA's Viking Mars missions of the 1970s. It is also the highest resolution image yet seen of Martian soil.

    The image is dominated by fine particles close to the resolution of the microscope. These particles have formed clumps, which may be a smaller scale version of what has been observed by Phoenix during digging of the surface material.

    The microscope took this image during Phoenix's Sol 17 (June 11), or the 17th Martian day after landing. The scale bar is 1 millimeter (0.04 inch).

    Zooming in on the Martian Soil

    In figure 1, three zoomed-in portions are shown with an image of Martian soil particles taken by the Optical Microscope on NASA's Phoenix Mars Lander.

    The left zoom box shows a composite particle. The top of the particle has a green tinge, possibly indicating olivine. The bottom of the particle has been reimaged at a different focus position in black and white (middle zoom box), showing that this is a clump of finer particles.

    The right zoom box shows a rounded, glassy particle, similar to those which have also been seen in an earlier sample of airfall dust collected on a surface exposed during landing.

    The shadows at the bottom of image are of the beams of the Atomic Force Microscope.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  8. Surface trap mediated electronic transport in biofunctionalized silicon nanowires

    NASA Astrophysics Data System (ADS)

    Puppo, F.; Traversa, F. L.; Di Ventra, M.; De Micheli, G.; Carrara, S.

    2016-08-01

    Silicon nanowires (SiNWs), fabricated via a top-down approach and then functionalized with biological probes, are used for electrically-based sensing of breast tumor markers. The SiNWs, featuring memristive-like behavior in bare conditions, show, in the presence of biomarkers, modified hysteresis and, more importantly, a voltage memory component, namely a voltage gap. The voltage gap is demonstrated to be a novel and powerful parameter of detection thanks to its high-resolution dependence on charges in proximity of the wire. This unique approach of sensing has never been studied and adopted before. Here, we propose a physical model of the surface electronic transport in Schottky barrier SiNW biosensors, aiming at reproducing and understanding the voltage gap based behavior. The implemented model describes well the experimental I–V characteristics of the device. It also links the modification of the voltage gap to the changing concentration of antigens by showing the decrease of this parameter in response to increasing concentrations of the molecules that are detected with femtomolar resolution in real human samples. Both experiments and simulations highlight the predominant role of the dynamic recombination of the nanowire surface states, with the incoming external charges from bio-species, in the appearance and modification of the voltage gap. Finally, thanks to its compactness, and strict correlation with the physics of the nanodevice, this model can be used to describe and predict the I–V characteristics in other nanostructured devices, for different than antibody-based sensing as well as electronic applications.

  9. Surface trap mediated electronic transport in biofunctionalized silicon nanowires.

    PubMed

    Puppo, F; Traversa, F L; Ventra, M Di; Micheli, G De; Carrara, S

    2016-08-26

    Silicon nanowires (SiNWs), fabricated via a top-down approach and then functionalized with biological probes, are used for electrically-based sensing of breast tumor markers. The SiNWs, featuring memristive-like behavior in bare conditions, show, in the presence of biomarkers, modified hysteresis and, more importantly, a voltage memory component, namely a voltage gap. The voltage gap is demonstrated to be a novel and powerful parameter of detection thanks to its high-resolution dependence on charges in proximity of the wire. This unique approach of sensing has never been studied and adopted before. Here, we propose a physical model of the surface electronic transport in Schottky barrier SiNW biosensors, aiming at reproducing and understanding the voltage gap based behavior. The implemented model describes well the experimental I-V characteristics of the device. It also links the modification of the voltage gap to the changing concentration of antigens by showing the decrease of this parameter in response to increasing concentrations of the molecules that are detected with femtomolar resolution in real human samples. Both experiments and simulations highlight the predominant role of the dynamic recombination of the nanowire surface states, with the incoming external charges from bio-species, in the appearance and modification of the voltage gap. Finally, thanks to its compactness, and strict correlation with the physics of the nanodevice, this model can be used to describe and predict the I-V characteristics in other nanostructured devices, for different than antibody-based sensing as well as electronic applications. PMID:27418560

  10. Surface Area, and Oxidation Effects on Nitridation Kinetics of Silicon Powder Compacts

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.; Palczer, A. R.

    1998-01-01

    Commercially available silicon powders were wet-attrition-milled from 2 to 48 hr to achieve surface areas (SA's) ranging from 1.3 to 70 sq m/g. The surface area effects on the nitridation kinetics of silicon powder compacts were determined at 1250 or 1350 C for 4 hr. In addition, the influence of nitridation environment, and preoxidation on nitridation kinetics of a silicon powder of high surface area (approximately equals 63 sq m/g) was investigated. As the surface area increased, so did the percentage nitridation after 4 hr in N2 at 1250 or 1350 C. Silicon powders of high surface area (greater than 40 sq m/g) can be nitrided to greater than 70% at 1250 C in 4 hr. The nitridation kinetics of the high-surface-area powder compacts were significantly delayed by preoxidation treatment. Conversely, the nitridation environment had no significant influence on the nitridation kinetics of the same powder. Impurities present in the starting powder, and those accumulated during attrition milling, appeared to react with the silica layer on the surface of silicon particles to form a molten silicate layer, which provided a path for rapid diffusion of nitrogen and enhanced the nitridation kinetics of high surface area silicon powder.

  11. Highly efficient industrial large-area black silicon solar cells achieved by surface nanostructured modification

    NASA Astrophysics Data System (ADS)

    Li, Ping; Wei, Yi; Zhao, Zengchao; Tan, Xin; Bian, Jiming; Wang, Yuxuan; Lu, Chunxi; Liu, Aimin

    2015-12-01

    Traditional black silicon solar cells show relatively low efficiencies due to the high surface recombination occurring at the front surfaces. In this paper, we present a surface modification process to suppress surface recombination and fabricate highly efficient industrial black silicon solar cells. The Ag-nanoparticle-assisted etching is applied to realize front surface nanostructures on silicon wafers in order to reduce the surface reflectance. Through a further tetramethylammonium hydroxide (TMAH) treatment, the carrier recombination at and near the surface is greatly suppressed, due to a lower surface dopant concentration after the surface modification. This modified surface presents a low reflectivity in a range of 350-1100 nm. Large-area solar cells with an average conversion efficiency of 19.03% are achieved by using the TMAH treatment of 30 s. This efficiency is 0.18% higher than that of standard silicon solar cells with pyramidal surfaces, and also a remarkable improvement compared with black silicon solar cells without TMAH modifications.

  12. Method of fabricating silicon carbide coatings on graphite surfaces

    DOEpatents

    Varacalle, Jr., Dominic J.; Herman, Herbert; Burchell, Timothy D.

    1994-01-01

    The vacuum plasma spray process produces well-bonded, dense, stress-free coatings for a variety of materials on a wide range of substrates. The process is used in many industries to provide for the excellent wear, corrosion resistance, and high temperature behavior of the fabricated coatings. In this application, silicon metal is deposited on graphite. This invention discloses the optimum processing parameters for as-sprayed coating qualities. The method also discloses the effect of thermal cycling on silicon samples in an inert helium atmosphere at about 1600.degree.C. which transforms the coating to silicon carbide.

  13. Method of fabricating silicon carbide coatings on graphite surfaces

    DOEpatents

    Varacalle, D.J. Jr.; Herman, H.; Burchell, T.D.

    1994-07-26

    The vacuum plasma spray process produces well-bonded, dense, stress-free coatings for a variety of materials on a wide range of substrates. The process is used in many industries to provide for the excellent wear, corrosion resistance, and high temperature behavior of the fabricated coatings. In this application, silicon metal is deposited on graphite. This invention discloses the optimum processing parameters for as-sprayed coating qualities. The method also discloses the effect of thermal cycling on silicon samples in an inert helium atmosphere at about 1,600 C which transforms the coating to silicon carbide. 3 figs.

  14. Dynamics of laser-induced surface phase explosion in silicon

    NASA Astrophysics Data System (ADS)

    Kudryashov, Sergey I.; Paul, Stanley; Lyon, Kevin; Allen, Susan D.

    2011-06-01

    Time-resolved ultrasonic studies revealed a second, delayed ablative pressure pulse after the first primary plasma pressure pulse in a silicon wafer irradiated by a UV nanosecond laser. The intensity-dependent delay time for the second pulse indicates the existence of a corresponding intensity-dependent homogeneous vapor bubble nucleation time in the superheated molten silicon prior to its phase explosion and ablative removal, since the integral pressure correlates with the ablation rate. A transient hot ablative plasma with calculated peak temperature ˜30-90 eV and pressure ˜20-110 GPa is suggested to superheat the bulk silicon via short-wavelength recombination and Bremsstrahlung emission.

  15. Surface morphological instability of silicon (100) crystals under microwave ion physical etching

    NASA Astrophysics Data System (ADS)

    Yafarov, R. K.; Shanygin, V. Ya.

    2016-02-01

    This paper presents the results of studies of the dynamics of relaxation modification of the morphological characteristics of atomically clean surfaces of silicon (100) crystals with different types of conductivity after microwave ion physical etching in an argon atmosphere. For the first time, the effect of the electronic properties on the morphological characteristics and the surface free energy of silicon crystals is experimentally shown and proven by physicochemical methods.

  16. Automated Array Assembly Task In-depth Study of Silicon Wafer Surface Texturizing

    NASA Technical Reports Server (NTRS)

    Jones, G. T.; Chitre, S.; Rhee, S. S.; Allison, K. L.

    1979-01-01

    A low cost wafer surface texturizing process was studied. An investigation of low cost cleaning operations to clean residual wax and organics from the surface of silicon wafers was made. The feasibility of replacing dry nitrogen with clean dry air for drying silicon wafers was examined. The two stage texturizing process was studied for the purpose of characterizing relevant parameters in large volume applications. The effect of gettering solar cells on photovoltaic energy conversion efficiency is described.

  17. An investigation of RF sputter etched silicon surfaces using helium ion backscatter

    NASA Technical Reports Server (NTRS)

    Sachse, G. W.; Miller, W. E.; Gross, C.

    1975-01-01

    The effect of RF sputter etching on the (111) surface of silicon was studied by observing backscatter spectra from a 2 MeV, He-4(+) beam oriented along the silicon 111 orientation channel. Silicon samples were RF sputter etched in an argon discharge at electrode bias potentials ranging from 0.5 to 2.5 kV. The samples were sputter etched for a time sufficient for the lattice damage to reach saturation. Analysis of these samples revealed that the thickness of this damage layer and the concentration of trapped argon increased with electrode bias potential. An annealing study of these damaged surfaces was carried out to 900 C.

  18. Enhanced cell adhesion to silicone implant material through plasma surface modification.

    PubMed

    Hauser, J; Zietlow, J; Köller, M; Esenwein, S A; Halfmann, H; Awakowicz, P; Steinau, H U

    2009-12-01

    Silicone implant material is widely used in the field of plastic surgery. Despite its benefits the lack of biocompatibility this material still represents a major problem. Due to the surface characteristics of silicone, protein adsorption and cell adhesion on this polymeric material is rather low. The aim of this study was to create a stable collagen I surface coating on silicone implants via glow-discharge plasma treatment in order to enhance cell affinity and biocompatibility of the material. Non-plasma treated, collagen coated and conventional silicone samples (non-plasma treated, non-coated) served as controls. After plasma treatment the change of surface free energy was evaluated by drop-shape analysis. The quality of the collagen coating was analysed by electron microscopy and Time-Of-Flight Secondary Ion Mass Spectrometry. For biocompatibility tests mouse fibroblasts 3T3 were cultivated on the different silicone surfaces and stained with calcein-AM and propidium iodine to evaluate cell viability and adherence. Analysis of the different surfaces revealed a significant increase in surface free energy after plasma pre-treatment. As a consequence, collagen coating could only be achieved on the plasma activated silicone samples. The in vitro tests showed that the collagen coating led to a significant increase in cell adhesion and cell viability. PMID:19641852

  19. Effective surface passivation of p-type crystalline silicon with silicon oxides formed by light-induced anodisation

    NASA Astrophysics Data System (ADS)

    Cui, Jie; Grant, Nicholas; Lennon, Alison

    2014-12-01

    Electronic surface passivation of p-type crystalline silicon by anodic silicon dioxide (SiO2) was investigated. The anodic SiO2 was grown by light-induced anodisation (LIA) in diluted sulphuric acid at room temperature, a process that is significantly less-expensive than thermal oxidation which is widely-used in silicon solar cell fabrication. After annealing in oxygen and then forming gas at 400 °C for 30 min, the effective minority carrier lifetime of 3-5 Ω cm, boron-doped Czochralski silicon wafers with a phosphorus-doped 80 Ω/□ emitter and a LIA anodic SiO2 formed on the p-type surface was increased by two orders of magnitude to 150 μs. Capacitance-voltage measurements demonstrated a very low positive charge density of 3.4 × 1011 cm-2 and a moderate density of interface states of 6 × 1011 eV-1 cm-2. This corresponded to a silicon surface recombination velocity of 62 cm s-1, which is comparable with values reported for other anodic SiO2 films, which required higher temperatures and longer growth times, and significantly lower than oxides grown by chemical vapour deposition techniques. Additionally, a very low leakage current density of 3.5 × 10-10 and 1.6 × 10-9 A cm-2 at 1 and -1 V, respectively, was measured for LIA SiO2 suggesting its potential application as insulation layer in IBC solar cells and a barrier for potential induced degradation.

  20. Surface States and Effective Surface Area on Photoluminescent P-Type Porous Silicon

    NASA Technical Reports Server (NTRS)

    Weisz, S. Z.; Porras, A. Ramirez; Resto, O.; Goldstein, Y.; Many, A.; Savir, E.

    1997-01-01

    The present study is motivated by the possibility of utilizing porous silicon for spectral sensors. Pulse measurements on the porous-Si/electrolyte system are employed to determine the surface effective area and the surface-state density at various stages of the anodization process used to produce the porous material. Such measurements were combined with studies of the photoluminescence spectra. These spectra were found to shift progressively to the blue as a function of anodization time. The luminescence intensity increases initially with anodization time, reaches a maximum and then decreases with further anodization. The surface state density, on the other hand, increases with anodization time from an initial value of about 2 x 10(exp 12)/sq cm surface to about 1013 sq cm for the anodized surface. This value is attained already after -2 min anodization and upon further anodization remains fairly constant. In parallel, the effective surface area increases by a factor of 10-30. This behavior is markedly different from the one observed previously for n-type porous Si.

  1. In situ observation of reaction between metal and Si surface by low energy RBS/channeling

    NASA Astrophysics Data System (ADS)

    Hasegawa, Masataka; Kobayashi, Naoto

    1997-02-01

    We have developed a low energy Rutherford backscattering spectrometry (RBS)/ion channeling measurement system for the analysis of thin films and solid surfaces with the use of several tens keV hydrogen ions, and of a time-of-flight spectrometer which was originally developed by Mendenhall and Weller. The depth resolution of our system is better than that of conventional RBS system with MeV helium ions and silicon surface barrier detectors. This RBS/ion channeling system is small in size compared to the conventional RBS/ion channeling measurement system with the use of MeV He ions, because of the small ion accelerator for several tens keV ions. The analysis of crystalline thin films which utilizes ion channeling effect can be performed with this low energy RBS/ion channeling measurement system. The in situ observation of the thermal reaction between iron and silicon substrate with the use of this measurement system is demonstrated. The deposited Fe (3.3 ML) on Si(001) clean surface diffused into the substrate by 380 °C annealing, while on the hydrogen-terminated (dihydride) Si(001) the 480 °C annealing did not lead to the diffusion. Present results indicates that the hydrogen termination of Si(001) surface prevents the deposited Fe from diffusing into the substrate up to relatively high temperature compared to the clean surface.

  2. Biomimetic surface-conducting silicone rubber obtained by physical deposition of MWCNT

    NASA Astrophysics Data System (ADS)

    Zylka, Pawel

    2015-06-01

    The paper presents a minimal approach to produce superhydrophobic, surface-conducting silicone rubber with a strongly developed surface modified with multiwall carbon nanotubes partially embedded in the silicone elastic matrix. The modification was achieved by physical deposition of carbon nanotube powder on a semi-liquid silicone rubber surface prior to its cross-linking. The resulting biomimetic material displayed superhydrophobic properties (static wetting angle >160°, sliding angle ∼10°), as well as elevated electric surface resistance (surface resistivity approx 18 kΩ). A piezoresistive hysteretic response with nonmonotonic change of the surface resistance accompanying substantial linear stretching was also demonstrated in the developed specimens displaying negative resistance change in a broad range of extension ratios, making them applicable as highly compliant, large-specific-area electrodes.

  3. Nanoetching process on silicon solar cell wafers during mass production for surface texture improvement.

    PubMed

    Ahn, Chisung; Kulkarni, Atul; Ha, Soohyun; Cho, Yujin; Kim, Jeongin; Park, Heejin; Kim, Taesung

    2014-12-01

    Major challenge in nanotechnology is to improve the solar cells efficiency. This can be achieved by controlling the silicon solar cell wafer surface structure. Herein, we report a KOH wet etching process along with an ultrasonic cleaning process to improve the surface texture of silicon solar cell wafers. We evaluated the KOH temperature, concentration, and ultra-sonication time. It was observed that the surface texture of the silicon solar wafer changed from a pyramid shape to a rectangular shape under edge cutting as the concentration of the KOH solution was increased. We controlled the etching time to avoid pattern damage and any further increase of the reflectance. The present study will be helpful for the mass processing of silicon solar cell wafers with improved reflectance. PMID:25971104

  4. Pyramidal texturing of silicon surface via inorganic-organic hybrid alkaline liquor for heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Fengyou; Zhang, Xiaodan; Wang, Liguo; Jiang, Yuanjian; Wei, Changchun; Zhao, Ying

    2015-10-01

    We demonstrate a new class of silicon texturing approach based on inorganic (sodium hydroxide, NaOH) and organic (tetramethylammonium hydroxide, TMAH) alkaline liquor etching processes for photovoltaic applications. The first stage of inorganic alkaline etching textures the silicon surface rapidly with large pyramids and reduces the cost. The subsequent organic alkaline second-etching improves the coverage of small pyramids on the silicon surface and strip off the metallic contaminants produced by the first etching step. In addition, it could smoothen the surface of the pyramids to yield good morphology. In this study, the texturing duration of both etching steps was controlled to optimize the optical and electrical properties as well as the surface morphology and passivation characteristics of the silicon substrates. Compared with traditional inorganic NaOH texturing, this hybrid process yields smoother (111) facets of the pyramids, fewer residual Na+ ions on the silicon surface, and a shorter processing period. It also offers the advantage of lower cost compared with the organic texturing method based on the use of only TMAH. We applied this hybrid texturing process to fabricate silicon heterojunction solar cells, which showed a remarkable improvement compared with the cells based on traditional alkaline texturing processes.

  5. A high volume cost efficient production macrostructuring process. [for silicon solar cell surface treatment

    NASA Technical Reports Server (NTRS)

    Chitre, S. R.

    1978-01-01

    The paper presents an experimentally developed surface macro-structuring process suitable for high volume production of silicon solar cells. The process lends itself easily to automation for high throughput to meet low-cost solar array goals. The tetrahedron structure observed is 0.5 - 12 micron high. The surface has minimal pitting with virtually no or very few undeveloped areas across the surface. This process has been developed for (100) oriented as cut silicon. Chemi-etched, hydrophobic and lapped surfaces were successfully texturized. A cost analysis as per Samics is presented.

  6. Application of PECVD for bulk and surface passivation of high efficiency silicon solar cells

    SciTech Connect

    Krygowski, T.; Doshi, P.; Cai, L.; Doolittle, A.; Rohatgi, A.

    1995-08-01

    Plasma enhanced chemical vapor deposition (PECVD) passivation of bulk and surface defects has been shown to be an important technique to improve the performance of multicrystalline silicon (mc-Si) and single crystalline silicon solar cells. In this paper, we report the status of our on-going investigation into the bulk and surface passivation properties of PECVD insulators for photovoltaic applications. The objective of this paper is to demonstrate the ability of PECVD films to passivate the front (emitter) surface, bulk, and back surface by proper tailoring of deposition and post-PECVD annealing conditions.

  7. Dwell Time and Surface Parameter Effects on Removal of Silicone Oil From D6ac Steel Using TCA

    NASA Technical Reports Server (NTRS)

    Boothe, R. E.

    2003-01-01

    This study was conducted to evaluate the impact of dwell time, surface roughness, and the surface activation state on 1,1,1-trichloroethane's (TCA's) effectiveness for removing silicone oil from D6ac steel. Silicone-contaminated test articles were washed with TCA solvent, and then the surfaces were analyzed for residue, using Fourier transform infrared spectroscopy. The predominant factor affecting the ability to remove the silicone oil was surface roughness.

  8. Initiation time of near-infrared laser-induced slip on the surface of silicon wafers

    SciTech Connect

    Choi, Sungho; Jhang, Kyung-Young

    2014-06-23

    We have determined the initiation time of laser-induced slip on a silicon wafer surface subjected to a near-infrared continuous-wave laser by numerical simulations and experiments. First, numerical analysis was performed based on the heat transfer and thermoelasticity model to calculate the resolved shear stress and the temperature-dependent yield stress. Slip initiation time was predicted by finding the time at which the resolved shear stress reached the yield stress. Experimentally, the slip initiation time was measured by using a laser scattering technique that collects scattered light from the silicon wafer surface and detects strong scattering when the surface slip is initiated. The surface morphology of the silicon wafer surface after laser irradiation was also observed using an optical microscope to confirm the occurrence of slip. The measured slip initiation times agreed well with the numerical predictions.

  9. Initiation time of near-infrared laser-induced slip on the surface of silicon wafers

    NASA Astrophysics Data System (ADS)

    Choi, Sungho; Jhang, Kyung-Young

    2014-06-01

    We have determined the initiation time of laser-induced slip on a silicon wafer surface subjected to a near-infrared continuous-wave laser by numerical simulations and experiments. First, numerical analysis was performed based on the heat transfer and thermoelasticity model to calculate the resolved shear stress and the temperature-dependent yield stress. Slip initiation time was predicted by finding the time at which the resolved shear stress reached the yield stress. Experimentally, the slip initiation time was measured by using a laser scattering technique that collects scattered light from the silicon wafer surface and detects strong scattering when the surface slip is initiated. The surface morphology of the silicon wafer surface after laser irradiation was also observed using an optical microscope to confirm the occurrence of slip. The measured slip initiation times agreed well with the numerical predictions.

  10. Porous silicon reorganization: Influence on the structure, surface roughness and strain

    NASA Astrophysics Data System (ADS)

    Milenkovic, N.; Drießen, M.; Weiss, C.; Janz, S.

    2015-12-01

    Porous silicon and epitaxial thickening is a lift-off approach for silicon foil fabrication to avoid kerf losses and produce foils with thicknesses less than 50 μm. The crystal quality of the epitaxial silicon film strongly depends on the porous silicon template, which can be adapted through a reorganization process prior to epitaxy. In this work, we investigated the influence of reorganization on the structure of etched porous silicon layers. The reorganization processes were carried out in a quasi-inline Atmospheric Pressure Chemical Vapor Deposition reactor. Variations on the temperatures and process durations for the reorganization step were examined. The cross-sections showed that porous silicon requires temperatures of approximately 1150 °C to produce an excellent template for epitaxy. Atomic Force Microscopy measurements on the samples annealed at different temperatures showed the evolution of the pores from as-etched to a closed surface. These measurements confirm that the surface is not yet closed after 30 min of reorganization at 1000 °C. Different durations of the reorganization step at a fixed temperature of 1150 °C all lead to a closed surface with a comparable roughness of less than 0.5 nm. X-ray diffraction measurements show a change in the strain in the porous layer from tensile to compressive when the reorganization temperature is increased from 800 °C to 1150 °C. A longer reorganization at a fixed temperature of 1150 °C leads to a reduction in the strain without reducing the quality of the surface roughness. Defect density measurements on silicon layers deposited on those templates confirm an improvement of the template for longer reorganization times. This study shows that our porous silicon templates achieve lower surface roughness and strain values than those reported in other publications.

  11. FTIR studies of H 2O and D 2O decomposition on porous silicon surfaces

    NASA Astrophysics Data System (ADS)

    Gupta, P.; Dillon, A. C.; Bracker, A. S.; George, S. M.

    1991-04-01

    The decomposition of H 2O and D 2O on silicon surfaces was studied using transmission Fourier-transform infrared (FTIR) spectroscopy. These FTIR studies were performed in situ in an ultrahigh vacuum chamber using high surface area porous silicon samples. The FTIR spectra revealed that H 2O (D 2O) initially dissociates upon adsorption at 300 K to form SiH (SiD) and SiOH (SiOD) surface species, i.e., H 2O → SiH + SiOH. The decomposition of these surface species was then monitored using the SiH (SiD) stretch at 2090 cm -1 (1513 cm -1), SiOH (SiOD) stretch at 3680 cm -1 (2707 cm -1) and the SiOSi stretch at 900-1100 cm -1. As the silicon surface was annealed to 650 K, the FTIR spectra revealed that the SiOH surface species progressively decomposed to SiOSi species and additional SiH species, i.e., SiOH → SiH + SiOSi. Above 650 K, the SiH surface species decreased concurrently with the desorption of H -1 from the porous silicon surface. New blue-shifted infrared features in the SiH stretching region were observed at 2119, 2176 and 2268 cm -1 after annealing above 600 K. Additional infrared studies of partially hydrogen-covered porous silicon surfaces exposed to O 2 suggested that these blue-shifted SiH stretching vibrations were associated with silicon surface atoms backbonded to one, two or three oxygen atoms, respectively.

  12. Pyramidal surface textures for light trapping and antireflection in perovskite-on-silicon tandem solar cells.

    PubMed

    Schneider, Bennett W; Lal, Niraj N; Baker-Finch, Simeon; White, Thomas P

    2014-10-20

    Perovskite-on-silicon tandem solar cells show potential to reach > 30% conversion efficiency, but require careful optical control. We introduce here an effective light-management scheme based on the established pyramidal texturing of crystalline silicon cells. Calculations show that conformal deposition of a thin film perovskite solar cell directly onto the textured front surface of a high efficiency silicon cell can yield front surface reflection losses as low as 0.52mA/cm(2). Combining this with a wavelength-selective intermediate reflector between the cells additionally provides effective light-trapping in the high-bandgap top cell, resulting in calculated absolute efficiency gains of 2 - 4%. This approach provides a practical and effective method to adapt existing high efficiency silicon cell designs for use in tandem cells, with conversion efficiencies approaching 35%. PMID:25607299

  13. Surface-Assisted Laser Desorption Ionization of Low Molecular Organic Substances on Oxidized Porous Silicon

    NASA Astrophysics Data System (ADS)

    Shmigol, I. V.; Alekseev, S. A.; Lavrynenko, O. Yu.; Zaitsev, V. N.; Barbier, D.; Pokrovskiy, V. A.

    Desorption/ionization on silicon (DIOS) mass spectra of methylene blue (MB+Cl-) were studied using p+-type oxidized monofunctional porous silicon (PS-OX mono ) free layers. Reduction/protonation processes of methylene blue (MB) dye were investigated. It was shown that SiH x terminal sites on oxidized surface of porous silicon (PS-OX) are not the rate-determining factor for the reduction/protonation in DIOS. Tunneling of electron through the dielectric layer of nanostructures on silicon surface under effect of local electrostatic and electromagnetic fields is considered to be the most significant factor of adsorbate-adsorbent electron exchange and further laser-induced ion formation.

  14. Flux stabilization of silicon nitride microsieves by backpulsing and surface modification with PEG moieties.

    PubMed

    Gironès, M; Bolhuis-Versteeg, L A M; Lammertink, R G H; Wessling, M

    2006-07-15

    The influence of the surface properties of chemically modified silicon nitride microsieves on the filtration of protein solutions and defatted milk is described in this research. Prior to membrane filtrations, an antifouling polymer based on poly(ethylene glycol), poly(TMSMA-r-PEGMA) was synthesized and applied on silicon-based surfaces like silicon, silicon nitride, and glass. The ability of such coating to repel proteins like bovine serum albumin (BSA) was confirmed by ellipsometry and confocal fluorescence microscopy. In BSA and skimmed milk filtrations no differences could be seen between unmodified and PEG-coated membranes (decreasing permeability in time). On the other hand, reduced fouling was observed with PEG-modified microsieves in combination with backpulsing and air sparging. PMID:16603173

  15. Sol-gel preparation of low oxygen content, high surface area silicon nitride and imidonitride materials.

    PubMed

    Sardar, Kripasindhu; Bounds, Richard; Carravetta, Marina; Cutts, Geoffrey; Hargreaves, Justin S J; Hector, Andrew L; Hriljac, Joseph A; Levason, William; Wilson, Felix

    2016-04-01

    Reactions of Si(NHMe)4 with ammonia are effectively catalysed by small ammonium triflate concentrations, and can be used to produce free-standing silicon imide gels. Firing at various temperatures produces amorphous or partially crystallised silicon imidonitride/nitride samples with high surface areas and low oxygen contents. The crystalline phase is entirely α-Si3N4 and structural similarities are observed between the amorphous and crystallised materials. PMID:26931152

  16. Computational Studies of the Interaction of H/H2 with Diamond and Silicon Surfaces

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.; Goddard, William A., III; Cagin, Tahir; Arnold, James (Technical Monitor)

    1998-01-01

    The interaction of hydrogen atoms and molecules with diamond and silicon surfaces is important in several important applications. Two areas that we are interested are: 1) tribology (molecular level friction) and 2) the role of H atoms in silicon chemical vapor deposition (CVD). In the tribology area, H atoms can be used to tie off dangling bonds, which otherwise form bonds between adjacent surfaces, and lead to resistance to sliding the surfaces by each other. Processes which are important in understanding molecular level friction include barriers to addition of H/H2 to the surface and barriers to migration of H atoms on the surface. In the silicon CVD area, we have studied the process of H2 elimination from the 100 surface of silicon. Cluster models for the dime surfaces of diamond are presented. The unrelaxed 100 surface has carbene like surface carbon atoms; however, for the relaxed surface these dimerize to give rows of surface dimers and there is a significant amount of p bonding between the radical orbitals of the dimer. The 110 surface has zig-zag rows of carbon atoms with a dangling bond on each carbon atom. These dangling bonds are hybridized away from each other and thus interact less strongly than for the 100 surface. Finally, the 111 surface has surface C atoms arranged in a triangular pattern and the surface dangling bonds are well separated from each other (second nearest neighbor distance) leading to almost no interaction between adjacent dangling bonds. These qualitative features may be quantified by computing the overlap of adjacent dangling bonds in a GVB(pp) calculation. The overlaps are 0.462, 0.292, and 0.016 for the diamond 100, 110, and 111 surfaces, respectively.

  17. Atmospheric vapor phase deposition of nanometer-thick anti-stiction fluoropolymer coatings for silicon surfaces

    NASA Astrophysics Data System (ADS)

    Itoh, Shintaro; Takahashi, Kazuhiro; Morita, Hiroyuki; Fukuzawa, Kenji; Zhang, Hedong

    2016-06-01

    Anti-stiction coatings for silicon surfaces are a key technology to prevent the failure of nanoelectromechanical systems (NEMS) during operation and improve the forming accuracy in nanoimprint technology. In this study, we propose an atmospheric vapor phase deposition method to coat a silicon surface with fluoropolymers such as the perfluoropolyethers Fomblin Zdol 2000 and Zdol 4000. Thickness distributions, surface energies, coverages, and stiction forces for the deposited films were evaluated experimentally. The proposed method resulted in over 90% coverage with a film thickness of about 1 nm. The film thickness uniformity was around 0.1 nm over an area of 5 × 5 mm2. This coating effectively reduced the stiction forces by half compared with a bare silicon surface.

  18. Surface roughening of silicon, thermal silicon dioxide, and low-k dielectric coral films in argon plasma

    SciTech Connect

    Yin Yunpeng; Sawin, Herbert H.

    2008-01-15

    The surface roughness evolutions of single crystal silicon, thermal silicon dioxide (SiO{sub 2}), and low dielectric constant film coral in argon plasma have been measured by atomic force microscopy as a function of ion bombardment energy, ion impingement angle, and etching time in an inductively coupled plasma beam chamber, in which the plasma chemistry, ion energy, ion flux, and ion incident angle can be adjusted independently. The sputtering yield (or etching rate) scales linearly with the square root of ion energy at normal impingement angle; additionally, the angular dependence of the etching yield of all films in argon plasma followed the typical sputtering yield curve, with a maximum around 60 deg. -70 deg. off-normal angle. All films stayed smooth after etching at normal angle but typically became rougher at grazing angles. In particular, at grazing angles the rms roughness level of all films increased if more material was removed; additionally, the striation structure formed at grazing angles can be either parallel or transverse to the beam impingement direction, which depends on the off-normal angle. More interestingly, the sputtering caused roughness evolution at different off-normal angles can be qualitatively explained by the corresponding angular dependent etching yield curve. In addition, the roughening at grazing angles is a strong function of the type of surface; specifically, coral suffers greater roughening compared to thermal silicon dioxide.

  19. Porous silicon photonic crystals for detection of infections

    NASA Astrophysics Data System (ADS)

    Gupta, B.; Guan, B.; Reece, P. J.; Gooding, J. J.

    2012-10-01

    In this paper we demonstrate the possibility of modifying porous silicon (PSi) particles with surface chemistry and immobilizing a biopolymer, gelatin for the detection of protease enzymes in solution. A rugate filter, a one-dimensional photonic crystal, is fabricated that exhibits a high-reflectivity optical resonance that is sensitive to small changes in the refractive index. To immobilize gelatin in the pores of the particles, the hydrogen-terminated silicon surface was first modified with an alkyne, 1,8-nonadiyne via hydrosilylation to protect the silicon surfaces from oxidation. This modification allows for further functionality to be added such as the coupling of gelatin. Exposure of the gelatin modified particles to the protease subtilisin in solution causes a change in the refractive index, resulting in a shift of the resonance to shorter wavelengths, indicating cleavage of organic material within the pores. The ability to monitor the spectroscopic properties of microparticles, and shifts in the optical signature due to changes in the refractive index of the material within the pore space, is demonstrated.

  20. Role of hydrogen plasma pretreatment in improving passivation of the silicon surface for solar cells applications.

    PubMed

    Wang, Fengyou; Zhang, Xiaodan; Wang, Liguo; Jiang, Yanjian; Wei, Changchun; Sun, Jian; Zhao, Ying

    2014-09-10

    We have investigated the role of hydrogen plasma pretreatment in promoting silicon surface passivation, in particular examining its effects on modifying the microstructure of the subsequently deposited thin hydrogenated amorphous silicon (a-Si:H) passivation film. We demonstrate that pretreating the silicon surface with hydrogen plasma for 40 s improves the homogeneity and compactness of the a-Si:H film by enhancing precursor diffusion and thus increasing the minority carrier lifetime (τ(eff)). However, excessive pretreatment also increases the density of dangling bond defects on the surface due to etching effects of the hydrogen plasma. By varying the duration of hydrogen plasma pretreatment in fabricating silicon heterojunction solar cells based on textured substrates, we also demonstrate that, although the performance of the solar cells shows a similar tendency to that of the τ(eff) on polished wafers, the optimal duration is prolonged owing to the differences in the surface morphology of the substrates. These results suggest that the hydrogen plasma condition must be carefully regulated to achieve the optimal level of surface atomic hydrogen coverage and avoid the generation of defects on the silicon wafer. PMID:25141300

  1. Rapid Covalent Modification of Silicon Oxide Surfaces through Microwave-Assisted Reactions with Alcohols.

    PubMed

    Lee, Austin W H; Gates, Byron D

    2016-07-26

    We demonstrate the method of a rapid covalent modification of silicon oxide surfaces with alcohol-containing compounds with assistance by microwave reactions. Alcohol-containing compounds are prevalent reagents in the laboratory, which are also relatively easy to handle because of their stability against exposure to atmospheric moisture. The condensation of these alcohols with the surfaces of silicon oxides is often hindered by slow reaction kinetics. Microwave radiation effectively accelerates this condensation reaction by heating the substrates and/or solvents. A variety of substrates were modified in this demonstration, such as silicon oxide films of various thicknesses, glass substrates such as microscope slides (soda lime), and quartz. The monolayers prepared through this strategy demonstrated the successful formation of covalent surface modifications of silicon oxides with water contact angles of up to 110° and typical hysteresis values of 2° or less. An evaluation of the hydrolytic stability of these monolayers demonstrated their excellent stability under acidic conditions. The techniques introduced in this article were successfully applied to tune the surface chemistry of silicon oxides to achieve hydrophobic, oleophobic, and/or charged surfaces. PMID:27396288

  2. Hydrogen passivation of silicon surfaces: A classical molecular-dynamics study

    NASA Astrophysics Data System (ADS)

    Hansen, U.; Vogl, P.

    1998-05-01

    We present a computationally efficient classical many-body potential that is capable of predicting the energetics of bulk silicon, silicon surfaces, and the interaction of hydrogen with silicon. The potential includes well established models for one-component Si and H systems and incorporates a newly developed Si-H interaction. It is shown that the present model yields hydrogen diffusion barriers, hydrogen abstraction, and H2 desorption reactions on silicon surfaces in excellent agreement with experiment and/or previous ab initio results. Detailed molecular-dynamics simulations are performed that elucidate the complex balance between adsorption and abstraction reactions during hydrogen passivation on Si(100) surfaces. We find a very high sticking coefficient of 0.6 for atomic hydrogen on clean Si(100)2×1 surfaces and provide a detailed qualitative and quantitative explanation for this prediction. Furthermore, we find that there are two efficient competing surface reactions of atomic hydrogen with monohydride Si surfaces. One is the Eley-Rideal abstraction of H2 molecules, and the other one is adsorption. Additionally, adsorbed hydrogen on hydrogenated Si surfaces acts as a reservoir that can lead to complete passivation of Si surfaces despite the efficient creation of voids in the hydrogen layer by the abstraction.

  3. Interfacial chemical bonding state and band alignment of CaF{sub 2}/hydrogen-terminated diamond heterojunction

    SciTech Connect

    Liu, J. W.; Liao, M. Y.; Cheng, S. H.; Imura, M.; Koide, Y.

    2013-03-28

    CaF{sub 2} films are deposited on hydrogen-terminated diamond (H-diamond) by a radio-frequency sputter-deposition technique at room temperature. Interfacial chemical bonding state and band alignment of CaF{sub 2}/H-diamond heterojunction are investigated by X-ray photoelectron spectroscopy. It is confirmed that there are only C-Ca bonds at the CaF{sub 2}/H-diamond heterointerface. Valence and conductance band offsets of the CaF{sub 2}/H-diamond heterojunciton are determined to be 3.7 {+-} 0.2 and 0.3 {+-} 0.2 eV, respectively. It shows a type I straddling band configuration. The large valence band offset suggests advantage of the CaF{sub 2}/H-diamond heterojunciton for the development of high power and high frequency field effect transistors.

  4. Surface wave accelerator based on silicon carbide: theoretical study

    SciTech Connect

    Kalmykov, S.; Korobkin, D.; Neuner, B.; Shvets, G.

    2009-01-22

    Compact near-field solid-state accelerating structure powered by a carbon dioxide (CO{sub 2}) laser is considered. The accelerating luminous transverse magnetic mode is excited in a few-micron wide evacuated planar channel between two silicon carbide (SiC) films grown on silicon (Si) wafers. Laser coupling to this mode is accomplished through the properly designed Si gratings. Operating wavelength is dictated by the frequency-dependent dielectric permittivity of SiC and the channel width. The geometric loss factor {kappa} of the accelerating mode is computed. It is found that the unwanted excitation of the guided modes in Si wafers reduces the laser coupling efficiency and increases the fields inside the Si wafer.

  5. Surface acoustic waves/silicon monolithic sensor processor

    NASA Technical Reports Server (NTRS)

    Kowel, S. T.; Kornreich, P. G.; Fathimulla, M. A.; Mehter, E. A.

    1981-01-01

    Progress is reported in the creation of a two dimensional Fourier transformer for optical images based on the zinc oxide on silicon technology. The sputtering of zinc oxide films using a micro etch system and the possibility of a spray-on technique based on zinc chloride dissolved in alcohol solution are discussed. Refinements to techniques for making platinum silicide Schottky barrier junctions essential for constructing the ultimate convolver structure are described.

  6. Towards the characterization of silicon surfaces: Solid state nuclear magnetic resonance studies

    NASA Astrophysics Data System (ADS)

    Caylor, Rebecca Anne

    One of the developing areas in silicon chemistry is in small silicon particles, primarily the nanoparticles regime. When on the 'nano' scale, silicon possesses very different properties and characteristics from bulk silicon. These properties include novel optical and electronic properties that are size dependent. Semiconductor nanoparticles possess a unique bright photoluminescence when in the nanoparticle regime. The photoluminescence in the nanoparticle regime answers the problem of inefficient emissions, which have previously been a problem in bulk silicon, for use in solar cells. Nanoparticle silicon (np-Si) is also biocompatible, allowing for the use in various biological applications including biological tracers, biosensors, delivery of medicine, as well as many others. Although np-Si is widely used, its surface structure still remains largely debated. The surface structure of np-Si is of critical importance as it affects the reactivity of the sample as well as the properties the samples possess. Relative to other silicon samples, np-Si lends itself to be studied by solid state NMR due to its higher surface area, although other types of silicon samples have been studied to some degree in this dissertation project. The surface structure and adjacent interior of np-Si, obtained as commercially available silicon nanopowder, were studied in this project using multinuclear, solid-state NMR spectroscopy. The results are consistent with an overall picture in which the bulk of the np-Si interior consists of highly ordered ('crystalline') silicon atoms, each bound tetrahedrally to four other silicon atoms. From a combination of 1H and 29Si magic-angle-spinning (MAS) NMR results and quantum mechanical 29Si chemical shift calculations, silicon atoms on the surface of 'as-received' np-Si were found to exist in a variety of chemical structures, including primarily structures of the types (Si-O-)n(Si-) 3-nSi-H (with n = 1--3) and (Si-O-)2Si(H)OH, where Si stands for a

  7. Surface/subsurface observation and removal mechanisms of ground reaction bonded silicon carbide

    NASA Astrophysics Data System (ADS)

    Yao, Wang; Zhang, Yu-Min; Han, Jie-cai; Zhang, Yun-long; Zhang, Jian-han; Zhou, Yu-feng; Han, Yuan-yuan

    2006-01-01

    Reaction Bonded Silicon Carbide (RBSiC) has long been recognized as a promising material for optical applications because of its unique combination of favorable properties and low-cost fabrication. Grinding of silicon carbide is difficult because of its high hardness and brittleness. Grinding often induces surface and subsurface damage, residual stress and other types of damage, which have great influence on the ceramic components for optical application. In this paper, surface integrity, subsurface damage and material removal mechanisms of RBSiC ground using diamond grinding wheel on creep-feed surface grinding machine are investigated. The surface and subsurface are studied with scanning electron microscopy (SEM) and optical microscopy. The effects of grinding conditions on surface and subsurface damage are discussed. This research links the surface roughness, surface and subsurface cracks to grinding parameters and provides valuable insights into the material removal mechanism and the dependence of grind induced damage on grinding conditions.

  8. Light-induced metal-like surface of silicon photonic waveguides

    PubMed Central

    Grillanda, Stefano; Morichetti, Francesco

    2015-01-01

    The surface of a material may exhibit physical phenomena that do not occur in the bulk of the material itself. For this reason, the behaviour of nanoscale devices is expected to be conditioned, or even dominated, by the nature of their surface. Here, we show that in silicon photonic nanowaveguides, massive surface carrier generation is induced by light travelling in the waveguide, because of natural surface-state absorption at the core/cladding interface. At the typical light intensity used in linear applications, this effect makes the surface of the waveguide behave as a metal-like frame. A twofold impact is observed on the waveguide performance: the surface electric conductivity dominates over that of bulk silicon and an additional optical absorption mechanism arises, that we named surface free-carrier absorption. These results, applying to generic semiconductor photonic technologies, unveil the real picture of optical nanowaveguides that needs to be considered in the design of any integrated optoelectronic device. PMID:26359202

  9. Protein-repellent silicon nitride surfaces: UV-induced formation of oligoethylene oxide monolayers.

    PubMed

    Rosso, Michel; Nguyen, Ai T; de Jong, Ed; Baggerman, Jacob; Paulusse, Jos M J; Giesbers, Marcel; Fokkink, Remko G; Norde, Willem; Schroën, Karin; van Rijn, Cees J M; Zuilhof, Han

    2011-03-01

    The grafting of polymers and oligomers of ethylene oxide onto surfaces is widely used to prevent nonspecific adsorption of biological material on sensors and membrane surfaces. In this report, we show for the first time the robust covalent attachment of short oligoethylene oxide-terminated alkenes (CH(3)O(CH(2)CH(2)O)(3)(CH(2))(11)-(CH═CH(2)) [EO(3)] and CH(3)O(CH(2)CH(2)O)(6)(CH(2))(11)-(CH═CH(2)) [EO(6)]) from the reaction of alkenes onto silicon-rich silicon nitride surfaces at room temperature using UV light. Reflectometry is used to monitor in situ the nonspecific adsorption of bovine serum albumin (BSA) and fibrinogen (FIB) onto oligoethylene oxide coated silicon-rich silicon nitride surfaces (EO(n)-Si(x)N(4), x > 3) in comparison with plasma-oxidized silicon-rich silicon nitride surfaces (SiO(y)-Si(x)N(4)) and hexadecane-coated Si(x)N(4) surfaces (C(16)-Si(x)N(4)). A significant reduction in protein adsorption on EO(n)-Si(x)N(4) surfaces was achieved, adsorption onto EO(3)-Si(x)N(4) and EO(6)-Si(x)N(4) were 0.22 mg m(-2) and 0.08 mg m(-2), respectively. The performance of the obtained EO(3) and EO(6) layers is comparable to those of similar, highly protein-repellent monolayers formed on gold and silver surfaces. EO(6)-Si(x)N(4) surfaces prevented significantly the adsorption of BSA (0.08 mg m(-2)). Atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), X-ray reflectivity and static water contact angle measurements were employed to characterize the modified surfaces. In addition, the stability of EO(6)-Si(x)N(4) surfaces in phosphate-buffered saline solution (PBS) and alkaline condition (pH 10) was studied. Prolonged exposure of the surfaces to PBS solution for 1 week or alkaline condition for 2 h resulted in only minor degradation of the ethylene oxide moieties and no oxidation of the Si(x)N(4) substrates was observed. Highly stable antifouling coatings on Si(x)N(4) surfaces significantly broaden the application potential of silicon

  10. Surface transport kinetics in low-temperature silicon deposition determined from topography evolution

    NASA Astrophysics Data System (ADS)

    Bray, K. R.; Parsons, G. N.

    2002-01-01

    In this article, surface transport kinetics during low-temperature silicon thin film deposition are characterized using time dependent surface topography and dynamic scaling models. Analysis of surface morphology indicates that diffusion of adsorbed species dominates surface transport, with a characteristic diffusion length that increases with surface temperature. A diffusion activation barrier of ~0.2 eV is obtained, consistent with hydrogen-mediated adspecies diffusion on the growth silicon surface. Samples are compared over a range of deposition temperatures (25 to 350 °C) and film thickness (20 to 5000 Å) deposited using silane with helium or argon dilution, on glass and silicon substrates. Self-similar surface structure is found to depend on detailed film growth conditions, but is independent of film thickness after nuclei coalescence. For films deposited using helium dilution, static and dynamic scaling parameters are consistent with self-similar fractal geometry scaling, and the lateral correlation length increases from 45 to 150 nm as temperature increases from 25 to 150 °C. These results are discussed in relation to current silicon deposition models and with topography evolution observed during low temperature growth of other amorphous material systems.

  11. Transient surface photovoltage studies of bare and Ni-filled porous silicon performed in different ambients

    NASA Astrophysics Data System (ADS)

    Granitzer, Petra; Rumpf, Klemens; Strzhemechny, Yuri; Chapagain, Puskar

    2014-08-01

    Mesoporous silicon and porous silicon/Ni nanocomposites have been investigated in this work employing light-dark surface photovoltage (SPV) transients to monitor the response of surface charge dynamics to illumination changes. The samples were prepared by anodization of a highly n-doped silicon wafer and a subsequent electrodepositing of Ni into the pores. The resulting pores were oriented towards the surface with an average pore diameter of 60 nm and the thickness of the porous layer of approximately 40 μm. SPV was performed on a bare porous silicon as well as on a Ni-filled porous silicon in vacuum and in different gaseous environments (O2, N2, Ar). A significant difference was observed between the `light-on' and `light-off' SPV transients obtained in vacuum and those observed in gaseous ambiences. Such behavior could be explained by the contribution to the charge exchange in gas environments from chemisorbed and physisorbed species at the semiconductor surface.

  12. Optical properties of silicon clusters deposited on the basal plane of graphite

    NASA Astrophysics Data System (ADS)

    Dinh, L. N.; Chase, L. L.; Balooch, M.; Terminello, L. J.; Tench, R. J.; Wooten, F.

    1994-04-01

    Laser ablation was used to deposit of silicon on highly oriented pyrolytic graphite surfaces in an ultra high-vacuum environment equipped with Auger electron spectroscopy (AES), scanning tunneling microscopy (STM) and luminescence spectroscopy. For deposition of up to several monolayers, post annealing produced silicon clusters, whose size distribution was determined vs annealing time and temperature using STM. Pure silicon clusters ranging from 1 to 10 nm showed no detectable photoluminescence in visible range. Exposure to oxygen at 10(exp -6) Torr and for up to 8 hours showed adsorption on the surface of the clusters without silicon oxide formation and no detectable luminescence. Hydrogen termination of these clusters was accomplished by exposing them to atomic hydrogen beam but did not result in any photoluminescence. Prolonged exposure of these clusters to ambient air, however, resulted in strong photoluminescence spectra with color ranging from red to greenish-blue depending on average cluster size. Auger electron spectra revealed the existence of partially oxidized silicon clusters. This luminescence could be due to either an oxide phase or to changes in electronic structure of the clusters as a result of quantum confinement effect.

  13. In situ investigation of silicon surface cleaning and damage by argon electron cyclotron resonance plasmas

    NASA Astrophysics Data System (ADS)

    Hu, Y. Z.; Buaud, P. P.; Wang, Y.; Spanos, L.; Irene, E. A.

    1994-03-01

    An argon electron cyclotron resonance (ECR) plasma process has been optimized to successfully remove oxide films from a silicon surface at elevated temperatures leaving smooth Si surfaces devoid of an amorphized silicon damage layer. Etch rates of over 10 nm/min have been achieved at ion energies below 100 eV. The low ion energy (-50 V dc bias) and high ion fluxes (1×1016 ions/cm2 s) represent a significant improvement from conventional Ar ion sputter cleaning processes. In situ spectroscopic ellipsometry and ex situ atomic force microscopy were used to characterize the surface condition during and after cleaning to establish a 700 °C argon plasma cleaning process for silicon. Real-time single wavelength ellipsometry was used to study the cleaning kinetics, determine the optimal end point, and elucidate a controversy about the level of damage in the argon ECR plasma cleaning process.

  14. Bioactive modification of silicon surface using self-assembled hydrophobins from Pleurotus ostreatus

    NASA Astrophysics Data System (ADS)

    de Stefano, L.; Rea, I.; de Tommasi, E.; Rendina, I.; Rotiroti, L.; Giocondo, M.; Longobardi, S.; Armenante, A.; Giardina, P.

    2009-10-01

    A crystalline silicon surface can be made biocompatible and chemically stable by a self-assembled biofilm of proteins, the hydrophobins (HFBs) purified from the fungus Pleurotus ostreatus. The protein-modified silicon surface shows an improvement in wettability and is suitable for immobilization of other proteins. Two different proteins were successfully immobilized on the HFBs-coated chips: the bovine serum albumin and an enzyme, a laccase, which retains its catalytic activity even when bound on the chip. Variable-angle spectroscopic ellipsometry (VASE), water contact angle (WCA), and fluorescence measurements demonstrated that the proposed approach in silicon surface bioactivation is a feasible strategy for the fabrication of a new class of hybrid devices.

  15. Attachment of functionalized single-walled carbon nanotubes (SWNTs) to silicon surfaces.

    PubMed

    Zeng, Liling; Pattyn, Nancy; Barron, Andrew R

    2008-03-01

    Single-walled carbon nanotubes (SWNTs) were functionalized by direct fluorination and subsequent reaction with 6-aminohexanoic acid for water-soluble carboxylic acid functionalized SWNTs (AHA-SWNTs). Both of the compounds were used as precursors to attach SWNTs to APTES coated silicon surfaces. AHA-SWNTs in aqueous solution were reacted with APTES self-assembled monolayers (SAMs) with coupling reagents N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide (EDC) and N-hydroxysuccinimide (NHS). The surface coverage is a function of concentration of AHA-SWNTs, solvent and coupling method. While for the fluorinated SWNTs (F-SWNTs), direct addition of F-SWNTs to preformed APTES SAMs at 90 degrees C shows essentially no reaction, in contrast to the one-pot reaction of F-SWNTs with APTES molecules in the presence of SWNTs on a silicon substrate. This reaction route provides a convenient method to attach SWNTs to silicon surfaces. PMID:18468188

  16. Black silicon with self-cleaning surface prepared by wetting processes

    PubMed Central

    2013-01-01

    This paper reports on a simple method to prepare a hydrophobic surface on black silicon, which is fabricated by metal-assisted wet etching. To increase the reaction rate, the reaction device was placed in a heat collection-constant temperature type magnetic stirrer and set at room temperature. It was demonstrated that the micro- and nanoscale spikes on the black silicon made the surface become hydrophobic. As the reaction rate increases, the surface hydrophobicity becomes more outstanding and presents self-cleaning until the very end. The reflectance of the black silicon is drastically suppressed over a broad spectral range due to the unique geometry, which is effective for the enhancement of absorption. PMID:23941184

  17. Nanoporous Silicon Combustion: Observation of Shock Wave and Flame Synthesis of Nanoparticle Silica.

    PubMed

    Becker, Collin R; Gillen, Greg J; Staymates, Matthew E; Stoldt, Conrad R

    2015-11-18

    The persistent hydrogen termination present in nanoporous silicon (nPS) is unique compared to other forms of nanoscale silicon (Si) which typically readily form a silicon dioxide passivation layer. The hydrogen terminated surface combined with the extremely high surface area of nPS yields a material capable of powerful exothermic reactions when combined with strong oxidizers. Here, a galvanic etching mechanism is used to produce nPS both in bulk Si wafers as well as in patterned regions of Si wafers with microfabricated ignition wires. An explosive composite is generated by filling the pores with sodium perchlorate (NaClO4). Using high-speed video including Schlieren photography, a shock wave is observed to propagate through air at 1127 ± 116 m/s. Additionally, a fireball is observed above the region of nPS combustion which persists for nearly 3× as long when reacted in air compared to N2, indicating that highly reactive species are generated that can further combust with excess oxygen. Finally, reaction products from either nPS-NaClO4 composites or nPS alone combusted with only high pressure O2 (400 psig) gas as an oxidizer are captured in a calorimeter bomb. The products in both cases are similar and verified by transmission electron microscopy (TEM) to include nano- to micrometer scale SiOx particles. This work highlights the complex oxidation mechanism of nPS composites and demonstrates the ability to use a solid state reaction to create a secondary gas phase combustion. PMID:26501940

  18. Construction of Scanning Tunneling Microscope and Analysis of Vicinal SILICON(111) Surfaces with STM (SILICON(111), Vicinal Silicon(iii))

    NASA Astrophysics Data System (ADS)

    Wang, Xue-Sen

    1990-01-01

    Scanning Tunneling Microscopy (STM) has become a powerful technique in surface study. In this dissertation, basic theoretical and instrumentational aspects of STM are reviewed; the construction and testing of a UHV STM are described in detail. The structure of vicinal Si(111) surfaces were statistically investigated with this STM system. The surface morphology is strongly affected by the interaction between terrace and step structures. The (7 x 7) reconstruction domains are correlated across steps on thermally equilibrated surfaces. Energetic step repulsive interaction has been observed in addition to the entropic "repulsion" between wandering steps. This energetic repulsion is an important factor causing the ratio of the triple - to single-layer steps to increase with the misorientation angle. The height correlation measurement indicate that the surfaces can be categorized as "rough" surfaces. The Surface structure is also strongly affected by the annealing processes.

  19. Laser Treatment of Sintered Silicon Carbide Surface for Enhanced Hydrophobicity

    NASA Astrophysics Data System (ADS)

    Yilbas, Bekir Sami; Bhushan, Bharat

    2014-01-01

    In this study, laser treatment of sintered SiC surfaces is carried out to enhance the surface hydrophobicity. Morphological and metallurgical changes of the treated surfaces are evaluated using optical and scanning electron microscopy, energy dispersive spectroscopy, and x-ray diffraction (XRD). Microhardness and fracture toughness are measured using indentation tests. The residual stresses present are determined using the XRD technique. The wetting characteristics of the treated surfaces are assessed through contact angle measurements. It is found that the laser-treated surfaces consist of fine grooves and pillars and that the resulting surface roughness enhances the surface hydrophobicity. The fracture toughness of the treated surface is reduced possibly because of the microhardness increase at the surface. The residual stress formed in the surface region is on the order of 1.8 GPa, and it is compressive.

  20. Characterization of wet-chemically treated silicon interfaces by surface photovoltage measurements.

    PubMed

    Angermann, H

    2002-10-01

    A non-destructive and surface-sensitive surface photovoltage (SPV) technique was employed to investigate the influence of important wet-chemical treatments on the electronic surface properties. The preparation-induced surface roughness as well as the hydrogen and oxide coverage were additionally determined by spectroscopic ellipsometry (SE). High values of interface charge and a high density of rechargeable interface states were observed on atomically rough surfaces and interfaces after HF-treatment and conventional wet-chemical oxidation. Both interface charge and density of rechargeable interface states could be reduced significantly by preparing an atomically flat Si surface and a well-ordered silicon/silicon oxide interface by applying special H-termination and hot-water oxidation procedures. PMID:12397491

  1. GlyHisGlyHis immobilization on silicon surface for copper detection

    NASA Astrophysics Data System (ADS)

    Sam, Sabrina; Gouget-Laemmel, Anne Chantal; Chazalviel, Jean-Noël; Ozanam, François; Gabouze, Noureddine

    2013-03-01

    Hybrid nanomaterials based on organic layer covalently grafted on semi-conductor surfaces appear as promising systems for innovative applications, especially in sensor field. In this work, we focused on the functionalization of silicon surface by the peptide GlyHisGlyHis, which forms stable complexes with metal ions. This property is exploited to achieve heavy metals recognition in solution. The immobilization was achieved using multi-step reactions: GlyHisGlyHis was anchored on a previously prepared carboxyl-terminated silicon surface using N-ethyl-N'-(3-dimethylaminopropyl)-carbodiimide (EDC)/N-hydroxysuccinimide (NHS) coupling agents. This scheme is compatible with the mild conditions required for preserving the probe activity of the peptide. At each step of the functionalization, the surface was monitored by infrared spectroscopy Fourier transform (FTIR) in ATR (attenuated total reflexions) geometry and by atomic force microscopy (AFM). Electrochemical behaviour of such prepared electrodes was carried out in the presence of copper ions by means of cyclic voltammetry. The recorded cyclic voltammograms showed a surface reversible process corresponding to the Cu2+/Cu+ couple in the complex Cu-GlyHisGlyHis immobilized on the silicon surface. Copper ions concentrations down than μM where detected. These results demonstrate the potential role of peptide-modified silicon electrodes in developing strategies for simple and fast detection of toxic metals in solution.

  2. Control carrier recombination of multi-scale textured black silicon surface for high performance solar cells

    NASA Astrophysics Data System (ADS)

    Hong, M.; Yuan, G. D.; Peng, Y.; Chen, H. Y.; Zhang, Y.; Liu, Z. Q.; Wang, J. X.; Cai, B.; Zhu, Y. M.; Chen, Y.; Liu, J. H.; Li, J. M.

    2014-06-01

    We report an enhanced performance of multi-scale textured black silicon solar cell with power conversion efficiency of 15.5% by using anisotropic tetramethylammonium hydroxide etching to control the recombination. The multi-scale texture can effectively reduce the surface reflectance in a wide wavelength range, and both the surface and Auger recombination can be effectively suppressed by etching the samples after the n++ emitter formed. Our result shows that the reformed solar cell has higher conversion efficiency than that of conventional pyramid textured cell (15.3%). This work presents an effective method for improving the performance of nanostructured silicon solar cells.

  3. Electron microscopy analysis of crystalline silicon islands formed on screen-printed aluminum-doped p-type silicon surfaces

    SciTech Connect

    Bock, Robert; Schmidt, Jan; Brendel, Rolf

    2008-08-15

    The origin of a not yet understood concentration peak, which is generally measured at the surface of aluminum-doped p{sup +} regions produced in a conventional screen-printing process is investigated. Our findings provide clear experimental evidence that the concentration peak is due to the microscopic structures formed at the silicon surface during the firing process. To characterize the microscopic nature of the islands (lateral dimensions of 1-3 {mu}m) and line networks of self-assembled nanostructures (lateral dimension of {<=}50 nm), transmission electron microscopy, scanning electron microscopy, scanning transmission electron microscopy, and energy dispersive x-ray analysis are combined. Aluminum inclusions are detected 50 nm below the surface of the islands and crystalline aluminum precipitates of {<=}7 nm in diameter are found within the bulk of the islands. In addition, aluminum inclusions (lateral dimension of {approx}30 nm) are found within the bulk of the self-assembled line networks.

  4. Surface-initiated hyperbranched polyglycerol as an ultralow-fouling coating on glass, silicon, and porous silicon substrates.

    PubMed

    Moore, Eli; Delalat, Bahman; Vasani, Roshan; McPhee, Gordon; Thissen, Helmut; Voelcker, Nicolas H

    2014-09-10

    Anionic ring-opening polymerization of glycidol was initiated from activated glass, silicon, and porous silicon substrates to yield thin, ultralow-fouling hyperbranched polyglycerol (HPG) graft polymer coatings. Substrates were activated by deprotonation of surface-bound silanol functionalities. HPG polymerization was initiated upon the addition of freshly distilled glycidol to yield films in the nanometer thickness range. X-ray photoelectron spectroscopy, contact angle measurements, and ellipsometry were used to characterize the resulting coatings. The antifouling properties of HPG-coated surfaces were evaluated in terms of protein adsorption and the attachment of mammalian cells. The adsorption of bovine serum albumin and collagen type I was found to be reduced by as much as 97 and 91%, respectively, in comparison to untreated surfaces. Human glioblastoma and mouse fibroblast attachment was reduced by 99 and 98%, respectively. HPG-grafted substrates outperformed polyethylene glycol (PEG) grafted substrates of comparable thickness under the same incubation conditions. Our results demonstrate the effectiveness of antifouling HPG graft polymer coatings on a selected range of substrate materials and open the door for their use in biomedical applications. PMID:25137525

  5. Incorporation of silicone oil into elastomers enhances barnacle detachment by active surface strain.

    PubMed

    Shivapooja, Phanindhar; Cao, Changyong; Orihuela, Beatriz; Levering, Vrad; Zhao, Xuanhe; Rittschof, Daniel; López, Gabriel P

    2016-10-01

    Silicone-oil additives are often used in fouling-release silicone coatings to reduce the adhesion strength of barnacles and other biofouling organisms. This study follows on from a recently reported active approach to detach barnacles, which was based on the surface strain of elastomeric materials, by investigating a new, dual-action approach to barnacle detachment using Ecoflex®-based elastomers incorporated with poly(dimethylsiloxane)-based oil additives. The experimental results support the hypothesis that silicone-oil additives reduce the amount of substratum strain required to detach barnacles. The study also de-coupled the two effects of silicone oils (ie surface-activity and alteration of the bulk modulus) and examined their contributions in reducing barnacle adhesion strength. Further, a finite element model based on fracture mechanics was employed to qualitatively understand the effects of surface strain and substratum modulus on barnacle adhesion strength. The study demonstrates that dynamic substratum deformation of elastomers with silicone-oil additives provides a bifunctional approach towards management of biofouling by barnacles. PMID:27560712

  6. Biofilm formation by Candida species on silicone surfaces and latex pacifier nipples: an in vitro study.

    PubMed

    da Silveira, Luiz Cezar; Charone, Senda; Maia, Lucianne Cople; Soares, Rosangela Maria de Araújo; Portela, Maristela Barbosa

    2009-01-01

    The present study assessed the growth and development of biofilm formation by isolates of C. albicans, C. glabrata and C. parapsilosis on silicone and latex pacifier nipples. The silicone and latex surfaces were evaluated by scanning electronic microscopy (SEM). The plastic component of the nipple also seems to be an important factor regarding the biofilm formation by Candida spp. The biofilm growth was measured using the MTT reduction reaction. C. albicans was found to have a slightly greater capacity of forming biofilm compared to the other Candida species. Analysis of the pattern of biofilm development by C. albicans, C. glabrata and C. parapsilosis on latex and silicon pacifier shields showed an increased biofilm formation regarding the latter substrate. Silicone was shown to be more resistant to fungal colonization, particularly in the case of C. parapsilosis, despite the lack of any statistically significant differences (P > 0.05). In addition, silicone has a smoother surface compared to latex, whose surface was found to be rugose and irregular. PMID:19476097

  7. Low temperature Silicon epitaxy on bare Si (100) and H terminated Si (100) surfaces

    NASA Astrophysics Data System (ADS)

    Deng, Xiao; Namboodiri, Pradeep; Li, Kai; Wang, Xiqiao; Li, Tongbao; Silver, Richard

    Silicon on Silicon growth morphology is studied using an ultrahigh vacuum scanning tunneling microscopy (UHV-STM) and transmission electron microscopy (TEM). Sub-monolayer to 18 nm of silicon was evaporated using an all-silicon sublimation source (SUSI) onto a UHV prepared Si (100) sample at 250°C. The results are compared with the growth characteristics on hydrogen passivated surfaces (H: Si) under identical experimental conditions. STM images indicate that growth morphology of both Si on Si and Si on H: Si is of epitaxial nature at temperatures as low as 250°C. For Si on bare Si growth at 250°C, there exists a stable thickness regime where Si epitaxial growth front keeps the same morphology. Although the mobility of silicon is modestly affected on the H: Si surface because of the H atoms during the initial sub-monolayer regime, the growth proceeds epitaxially with the 3D island growth mode and noticeable surface roughening.

  8. Changes in efficiency of a solar cell according to various surface-etching shapes of silicon substrate

    NASA Astrophysics Data System (ADS)

    Kang, Min Gu; Tark, S.; Lee, Jeong Chul; Son, Chang-Sik; Kim, Donghwan

    2011-07-01

    When amorphous silicon thin film is deposited on n-type c-Si substrate, partial epi-layer of silicon grows mainly on the valley of the pyramid where two (1 1 1) planes meet. The epi-layer degrades a-Si/c-Si interface properties. This is the main cause which leads to a decrease in the efficiency of silicon heterojunction solar cells. In this study, we made various texture shapes of silicon substrate for heterojunction solar cells with n-type silicon wafers. Four different types of textures on silicon heterojunction were prepared: large textured, smoothened large textured, small textured, and smoothened small textured. Surface texturing is well known as one of the major paths to improving the efficiency of silicon solar cells by increasing the short-circuit current through effective photon trapping. The results were successful for silicon random texturing using potassium hydroxide (KOH) and tetramethylammonium hydroxide (TMAH) solutions. Silicon heterojunction solar cells were fabricated on textured substrates, indicating the feasibility of KOH and TMAH texturing for solar cell fabrication. We obtained images of the surface morphology using a scanning electron microscope. The interface cross-section was taken using a transmission electron microscope. We gained the optimized surface morphology of silicon substrate for a-Si/c-Si interface in silicon heterojunction solar cells.

  9. Kinetics of disilane molecule decomposition on the growth surface of silicon in vacuum gas-phase epitaxy reactors

    NASA Astrophysics Data System (ADS)

    Orlov, L. K.; Smyslova, T. N.

    2012-11-01

    The range of the characteristic decomposition rates of dihydride molecule radicals adsorbed by the silicon surface in the temperature interval 450-700°C is experimentally found for a number of kinetic models. A relationship between the rate of silicon atom incorporation into a growing crystal and the characteristic rate of disilane molecule pyrolysis on the silicon surface is found. The temperature dependence of the rate of disilane fragment decomposition on the silicon surface is nonmonotonic, and its run depends on temperature conditions. It is shown that the temperature dependence of the molecular decomposition rate on the growth surface is described by a superposition of two activation curves with various activation energies. The activation energies depend on the peculiarity of interaction between the molecular beam and the silicon surface when the filling of surface states with hydrogen is low and high.

  10. Robust superhydrophobic silicon without a low surface-energy hydrophobic coating.

    PubMed

    Hoshian, Sasha; Jokinen, Ville; Somerkivi, Villeseveri; Lokanathan, Arcot R; Franssila, Sami

    2015-01-14

    Superhydrophobic surfaces without low surface-energy (hydrophobic) modification such as silanization or (fluoro)polymer coatings are crucial for water-repellent applications that need to survive under harsh UV or IR exposures and mechanical abrasion. In this work, robust low-hysteresis superhydrophobic surfaces are demonstrated using a novel hierarchical silicon structure without a low surface-energy coating. The proposed geometry produces superhydrophobicity out of silicon that is naturally hydrophilic. The structure is composed of collapsed silicon nanowires on top and bottom of T-shaped micropillars. Collapsed silicon nanowires cause superhydrophobicity due to nanoscale air pockets trapped below them. T-shaped micropillars significantly decrease the water contact angle hysteresis because microscale air pockets are trapped between them and can not easily escape. Robustness is studied under mechanical polishing, high-energy photoexposure, high temperature, high-pressure water shower, and different acidic and solvent environments. Mechanical abrasion damages the nanowires on top of micropillars, but those at the bottom survive. Small increase of hysteresis is seen, but the surface is still superhydrophobic after abrasion. PMID:25522296

  11. Improvement of surface roughness in silicon-on-insulator wafer fabrication using a neutral beam etching

    NASA Astrophysics Data System (ADS)

    Min, T. H.; Park, B. J.; Kang, S. K.; Gweon, G. H.; Kim, Y. Y.; Yeom, G. Y.

    2009-08-01

    Silicon-on-insulator (SOI) wafers were etched by an energetic chlorine neutral beam obtained by the low-angle forward reflection of an ion beam, and the surface roughness of the etched wafers was compared with that of the SOI wafers etched by an energetic chlorine ion beam. When the ion beam was used to etch the silicon layer of the SOI wafers, the surface roughness was not significantly changed even though the use of higher ion bombardment energy slightly decreased the surface roughness of the SOI wafer. However, when the chlorine neutral beam was used instead of the chlorine ion beam having a similar beam energy, the surface roughness of the SOI wafer was significantly improved compared with that etched by the chlorine ion beam. By etching about 150 nm silicon from the SOI wafer having a 300 nm-thick top silicon layer with the chlorine neutral beam at the energy of 500 eV, the rms surface roughness of 1.5 Å could be obtained with the etch rate of about 750 Å min-1.

  12. Fabrication of superhydrophobic and highly oleophobic silicon-based surfaces via electroless etching method

    NASA Astrophysics Data System (ADS)

    Nguyen, Thi Phuong Nhung; Dufour, Renaud; Thomy, Vincent; Senez, Vincent; Boukherroub, Rabah; Coffinier, Yannick

    2014-03-01

    This study reports on a simple method for the preparation of superhydrophobic and highly oleophobic nanostructured silicon surfaces. The technique relies on metal-assisted electroless etching of silicon in sodium tetrafluoroborate (NaBF4) aqueous solution. Then, silver particles were deposited on the obtained surfaces, changing their overall physical morphology. Finally, the surfaces were coated by either C4F8, a fluoropolymer deposited by plasma, or by SiOx overlayers chemically modified with 1H,1H,2H,2H-perfluorodecyltrichlorosilane (PFTS) through silanization reaction. All these surfaces exhibit a superhydrophobic character (large apparent contact angle and low hysteresis with respect to water). In addition, they present high oleophobic properties, i.e. a high repellency to low surface energy liquids with various contact angle hysteresis, both depending on the morphology and type of coating.

  13. Automated Array Assembly Task In-depth Study of Silicon Wafer Surface Texturizing

    NASA Technical Reports Server (NTRS)

    Jones, G. T.; Rhee, S. S.

    1979-01-01

    Several aspects of silicon wafer surface texturizing were studied. A low cost cleaning method that utilizes recycled Freon in an ultrasonic vapor degreaser to remove organic and inorganic contaminants from the surface of silicon wafers as received from silicon suppliers was investigated. The use of clean dry air and high throughout wafer batch drying techniques was shown to lower the cost of wafer drying. A two stage texturizing process was examined for suitability in large scale production. Also, an in-depth gettering study with the two stage texturizing process was performed for the enhancement of solar cell efficiency, minimization of current versus voltage curve dispersion, and improvement in process reproducibility. The 10% efficiency improvement goal was exceeded for the near term implementation of flat plate photovoltaic cost reduction.

  14. Enhancement in photovoltaic properties of silicon solar cells by surface plasmon effect of palladium nanoparticles

    NASA Astrophysics Data System (ADS)

    Atyaoui, Malek; Atyaoui, Atef; Khalifa, Marwen; Elyagoubi, Jalel; Dimassi, Wissem; Ezzaouia, Hatem

    2016-04-01

    This work presents the surface Plasmon effect of Palladium nanoparticles (Pd NPs) on the photovoltaic properties of silicon solar cells. Pd NPs were deposited on the p-type silicon base of the n+/p junction using a chemical deposition method in an aqueous solution containing Palladium (II) Nitrate (PdNO3)2 and Ammonium Hydroxide (NH4OH) followed by a thermal treatment at 500 °C under nitrogen atmosphere. Chemical composition and surface morphology of the treated silicon base were examined by energy dispersive X-ray (EDX) spectroscopy, scanning electronic microscopy (SEM) and Atomic Force Microscopy (AFM). The effect of the deposited Pd NPs on the electrical properties was evaluated by the internal quantum efficiency (IQE) and current-voltage (I-V) measurements. The results indicate that the formation of the Pd NPs is accompanied by an enhanced light absorption and improved photovoltaic parameters.

  15. Multifunctional porous silicon nanopillar arrays: antireflection, superhydrophobicity, photoluminescence, and surface-enhanced Raman scattering (SERS)

    PubMed Central

    Kiraly, Brian; Yang, Shikuan

    2014-01-01

    We have fabricated porous silicon nanopillar arrays over large areas with a rapid, simple, and low-cost technique. The porous silicon nanopillars show unique longitudinal features along their entire length and have porosity with dimensions on the single-nanometer scale. Both Raman spectroscopy and photoluminescence data were used to determine the nanocrystallite size to be < 3 nm. The porous silicon nanopillar arrays also maintained excellent ensemble properties, reducing reflection nearly fivefold from planar silicon in the visible range without any optimization and approaching superhydrophobic behavior with increasing aspect ratio, demonstrating contact angles up to 138°. Finally, the porous silicon nanopillar arrays were made into sensitive surface enhanced Raman scattering (SERS) substrates by depositing metal onto the pillars. The SERS performance of the substrates was demonstrated using a chemical dye Rhodamine 6G. With their multitude of properties (i.e., antireflection, superhydrophobicity, photoluminescence, and sensitive SERS), the porous silicon nanopillar arrays described here can be valuable in applications such as solar harvesting, electrochemical cells, self-cleaning devices, and dynamic biological monitoring. PMID:23703091

  16. High surface area silicon carbide-coated carbon aerogel

    DOEpatents

    Worsley, Marcus A; Kuntz, Joshua D; Baumann, Theodore F; Satcher, Jr, Joe H

    2014-01-14

    A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust. Carbon aerogels can be coated with sol-gel silica and the silica can be converted to silicone carbide, improved the thermal stability of the carbon aerogel.

  17. Role of Surface Termination in Atomic Layer Deposition of Silicon Nitride.

    PubMed

    Ande, Chaitanya Krishna; Knoops, Harm C M; de Peuter, Koen; van Drunen, Maarten; Elliott, Simon D; Kessels, Wilhelmus M M

    2015-09-17

    There is an urgent need to deposit uniform, high-quality, conformal SiN(x) thin films at a low-temperature. Conforming to these constraints, we recently developed a plasma enhanced atomic layer deposition (ALD) process with bis(tertiary-butyl-amino)silane (BTBAS) as the silicon precursor. However, deposition of high quality SiNx thin films at reasonable growth rates occurs only when N2 plasma is used as the coreactant; strongly reduced growth rates are observed when other coreactants like NH3 plasma, or N2-H2 plasma are used. Experiments reported in this Letter reveal that NH(x)- or H- containing plasmas suppress film deposition by terminating reactive surface sites with H and NH(x) groups and inhibiting precursor adsorption. To understand the role of these surface groups on precursor adsorption, we carried out first-principles calculations of precursor adsorption on the β-Si3N4(0001) surface with different surface terminations. They show that adsorption of the precursor is strong on surfaces with undercoordinated surface sites. In contrast, on surfaces with H, NH2 groups, or both, steric hindrance leads to weak precursor adsorption. Experimental and first-principles results together show that using an N2 plasma to generate reactive undercoordinated surface sites allows strong adsorption of the silicon precursor and, hence, is key to successful deposition of silicon nitride by ALD. PMID:26722730

  18. Effects of surface grinding conditions on the reciprocating friction and wear behavior of silicon nitride

    SciTech Connect

    Blau, P.J.; Martin, R.L.; Zanoria, E.S.

    1997-12-31

    The relationship between two significantly different surface grinding conditions and the reciprocating ball-on-flat friction and wear behavior of a high-quality, structural silicon nitride material (GS-44) was investigated. The slider materials were silicon nitride NBD 200 and 440C stainless steel. Two machining conditions were selected based on extensive machining and flexural strength test data obtained under the auspices of an international, interlaboratory grinding study. The condition categorized as {open_quotes}low strength{close_quote} grinding used a coarse 80 grit wheel and produced low flexure strength due to machining-induced flaws in the surface. The other condition, regarded as {open_quotes}high strength grinding,{close_quotes} utilized a 320 grit wheel and produced a flexural strength nearly 70% greater. Grinding wheel surface speeds were 35 and 47 m/s. Reciprocating sliding tests were conducted following the procedure described in a newly-published ASTM standard (G- 133) for linearly-reciprocating wear. Tests were performed in directions both parallel and perpendicular to the grinding marks (lay) using a 25 N load, 5 Hz reciprocating frequency, 10 mm stroke length, and 100 m of sliding at room temperature. The effects of sliding direction relative to the lay were more pronounced for stainless steel than for silicon nitride sliders. The wear of stainless steel was less than the wear of the silicon nitride slider materials because of the formation of transfer particles which covered the sharp edges of the silicon nitride grinding grooves and reduced abrasive contact. The wear of the GS-44 material was much greater for the silicon nitride sliders than for the stainless steel sliders. The causes for the effects of surface-grinding severity and sliding direction on friction and wear of GS-44 and its counterface materials are explained.

  19. Cytotoxicity of surface-functionalized silicon and germanium nanoparticles: the dominant role of surface charges

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Sourav; Rietjens, Ivonne M. C. M.; Singh, Mani P.; Atkins, Tonya M.; Purkait, Tapas K.; Xu, Zejing; Regli, Sarah; Shukaliak, Amber; Clark, Rhett J.; Mitchell, Brian S.; Alink, Gerrit M.; Marcelis, Antonius T. M.; Fink, Mark J.; Veinot, Jonathan G. C.; Kauzlarich, Susan M.; Zuilhof, Han

    2013-05-01

    Although it is frequently hypothesized that surface (like surface charge) and physical characteristics (like particle size) play important roles in cellular interactions of nanoparticles (NPs), a systematic study probing this issue is missing. Hence, a comparative cytotoxicity study, quantifying nine different cellular endpoints, was performed with a broad series of monodisperse, well characterized silicon (Si) and germanium (Ge) NPs with various surface functionalizations. Human colonic adenocarcinoma Caco-2 and rat alveolar macrophage NR8383 cells were used to clarify the toxicity of this series of NPs. The surface coatings on the NPs appeared to dominate the cytotoxicity: the cationic NPs exhibited cytotoxicity, whereas the carboxylic acid-terminated and hydrophilic PEG- or dextran-terminated NPs did not. Within the cationic Si NPs, smaller Si NPs were more toxic than bigger ones. Manganese-doped (1% Mn) Si NPs did not show any added toxicity, which favors their further development for bioimaging. Iron-doped (1% Fe) Si NPs showed some added toxicity, which may be due to the leaching of Fe3+ ions from the core. A silica coating seemed to impart toxicity, in line with the reported toxicity of silica. Intracellular mitochondria seem to be the target for the toxic NPs since a dose-, surface charge- and size-dependent imbalance of the mitochondrial membrane potential was observed. Such an imbalance led to a series of other cellular events for cationic NPs, like decreased mitochondrial membrane potential (ΔΨm) and ATP production, induction of ROS generation, increased cytoplasmic Ca2+ content, production of TNF-α and enhanced caspase-3 activity. Taken together, the results explain the toxicity of Si NPs/Ge NPs largely by their surface characteristics, provide insight into the mode of action underlying the observed cytotoxicity, and give directions on synthesizing biocompatible Si and Ge NPs, as this is crucial for bioimaging and other applications in for example

  20. Impact of Silicon Surface Roughness upon MOS after TMAH and KOH Silicon Etching

    NASA Astrophysics Data System (ADS)

    Rashid, M.; Ibrahim, K.; Aziz, A. Abdul; Ooi, P. K.

    2010-07-01

    Wet Si etching was explored via different concentrations of tetramethylammonium hydroxide (TMAH) and potassium hydroxide (KOH). It was verified that lower concentrations give rise to higher etching rates thus higher surface roughness for both TMAH and KOH. Impact on MOS capacitor includes C-V curve distortion and flatband voltage (VFB) reduction with increasing surface roughness. Using KOH solution resulted in hysteresis of C-V curve which was not observed in TMAH. TMAH at concentration >18 wt.% has been identified as promising Si wet etchant for smoother surface. In producing VMOSFET, lower concentrations of TMAH and using KOH are to be avoided to evade surface roughness and C-V hysteresis.

  1. Bactericidal effects of plasma-modified surface chemistry of silicon nanograss

    NASA Astrophysics Data System (ADS)

    Ostrikov, Kola; Macgregor-Ramiasa, Melanie; Cavallaro, Alex; (Ken Ostrikov, Kostya; Vasilev, Krasimir

    2016-08-01

    The surface chemistry and topography of biomaterials regulate the adhesion and growth of microorganisms in ways that are still poorly understood. Silicon nanograss structures prepared via inductively coupled plasma etching were coated with plasma deposited nanometer-thin polymeric films to produce substrates with controlled topography and defined surface chemistry. The influence of surface properties on Staphylococcus aureus proliferation is demonstrated and explained in terms of nanograss substrate wetting behaviour. With the combination of the nanograss topography; hydrophilic plasma polymer coatings enhanced antimicrobial activity while hydrophobic coatings reduced it. This study advances the understanding of the effects of surface wettability on the bactericidal properties of reactive nano-engineered surfaces.

  2. On the role of defects and surface chemistry for surface-assisted laser desorption ionization from silicon

    NASA Astrophysics Data System (ADS)

    Alimpiev, S.; Grechnikov, A.; Sunner, J.; Karavanskii, V.; Simanovsky, Ya.; Zhabin, S.; Nikiforov, S.

    2008-01-01

    The generation of ions from silicon substrates in surface-assisted laser desorption ionization (SALDI) has been studied using silicon substrates prepared and etched by a variety of different methods. The different substrates were compared with respect to their ability to generate peptide mass spectra using standard liquid sample deposition. The desorption/ionization processes were studied using gas-phase analyte deposition. Mass spectra were obtained from compounds with gas-phase basicities above 850kJ/mol and with molecular weights up to 370Da. UV, VIS, and IR lasers were used for desorption. Ionization efficiencies were measured as a function of laser fluence and accumulated laser irradiance dose. Solvent vapors were added to the ion source and shown to result in fundamental laser-induced chemical and physical changes to the substrate surfaces. It is demonstrated that both the chemical properties of the substrate surface and the presence of a highly disordered structure with a high concentration of "dangling bonds" or deep gap states are required for efficient ion generation. In particular, amorphous silicon is shown to be an excellent SALDI substrate with ionization efficiencies as high as 1%, while hydrogen-passivated amorphous silicon is SALDI inactive. Based on the results, a novel model for SALDI ion generation is proposed with the following reaction steps: (1) the adsorption of neutral analyte molecules on the SALDI surface with formation of a hydrogen bond to surface Si-OH groups, (2) the electronic excitation of the substrate to form free electron/hole pairs (their relaxation results in trapped positive charges in near-surface deep gap states, causing an increase in the acidity of the Si-OH groups and proton transfer to the analyte molecules), and (3) the thermally activated dissociation of the analyte ions from the surface via a "loose" transition state.

  3. Sensitivity Enhancement of Transition Metal Dichalcogenides/Silicon Nanostructure-based Surface Plasmon Resonance Biosensor

    NASA Astrophysics Data System (ADS)

    Ouyang, Qingling; Zeng, Shuwen; Jiang, Li; Hong, Liying; Xu, Gaixia; Dinh, Xuan-Quyen; Qian, Jun; He, Sailing; Qu, Junle; Coquet, Philippe; Yong, Ken-Tye

    2016-06-01

    In this work, we designed a sensitivity-enhanced surface plasmon resonance biosensor structure based on silicon nanosheet and two-dimensional transition metal dichalcogenides. This configuration contains six components: SF10 triangular prism, gold thin film, silicon nanosheet, two-dimensional MoS2/MoSe2/WS2/WSe2 (defined as MX2) layers, biomolecular analyte layer and sensing medium. The minimum reflectivity, sensitivity as well as the Full Width at Half Maximum of SPR curve are systematically examined by using Fresnel equations and the transfer matrix method in the visible and near infrared wavelength range (600 nm to 1024 nm). The variation of the minimum reflectivity and the change in resonance angle as the function of the number of MX2 layers are presented respectively. The results show that silicon nanosheet and MX2 layers can be served as effective light absorption medium. Under resonance conditions, the electrons in these additional dielectric layers can be transferred to the surface of gold thin film. All silicon-MX2 enhanced sensing models show much better performance than that of the conventional sensing scheme where pure Au thin film is used, the highest sensitivity can be achieved by employing 600 nm excitation light wavelength with 35 nm gold thin film and 7 nm thickness silicon nanosheet coated with monolayer WS2.

  4. Sensitivity Enhancement of Transition Metal Dichalcogenides/Silicon Nanostructure-based Surface Plasmon Resonance Biosensor

    PubMed Central

    Ouyang, Qingling; Zeng, Shuwen; Jiang, Li; Hong, Liying; Xu, Gaixia; Dinh, Xuan-Quyen; Qian, Jun; He, Sailing; Qu, Junle; Coquet, Philippe; Yong, Ken-Tye

    2016-01-01

    In this work, we designed a sensitivity-enhanced surface plasmon resonance biosensor structure based on silicon nanosheet and two-dimensional transition metal dichalcogenides. This configuration contains six components: SF10 triangular prism, gold thin film, silicon nanosheet, two-dimensional MoS2/MoSe2/WS2/WSe2 (defined as MX2) layers, biomolecular analyte layer and sensing medium. The minimum reflectivity, sensitivity as well as the Full Width at Half Maximum of SPR curve are systematically examined by using Fresnel equations and the transfer matrix method in the visible and near infrared wavelength range (600 nm to 1024 nm). The variation of the minimum reflectivity and the change in resonance angle as the function of the number of MX2 layers are presented respectively. The results show that silicon nanosheet and MX2 layers can be served as effective light absorption medium. Under resonance conditions, the electrons in these additional dielectric layers can be transferred to the surface of gold thin film. All silicon-MX2 enhanced sensing models show much better performance than that of the conventional sensing scheme where pure Au thin film is used, the highest sensitivity can be achieved by employing 600 nm excitation light wavelength with 35 nm gold thin film and 7 nm thickness silicon nanosheet coated with monolayer WS2. PMID:27305974

  5. Interactions at the Peptide/Silicon Surfaces: Evidence of Peptide Multilayer Assembly.

    PubMed

    Pápa, Zsuzsanna; Ramakrishnan, Sathish Kumar; Martin, Marta; Cloitre, Thierry; Zimányi, László; Márquez, Jessica; Budai, Judit; Tóth, Zsolt; Gergely, Csilla

    2016-07-19

    Selective deposition of peptides from liquid solutions to n- and p-doped silicon has been demonstrated. The selectivity is governed by peptide/silicon adhesion differences. A noninvasive, fast characterization of the obtained peptide layers is required to promote their application for interfacing silicon-based devices with biological material. In this study we show that spectroscopic ellipsometry-a method increasingly used for the investigation of biointerfaces-can provide essential information about the amount of adsorbed peptide material and the degree of coverage on silicon surfaces. We observed the formation of peptide multilayers for a strongly binding adhesion peptide on p-doped silicon. Application of the patterned layer ellipsometric evaluation method combined with Sellmeier dispersion led to physically consistent results, which describe well the optical properties of peptide layers in the visible spectral range. This evaluation allowed the estimation of surface coverage, which is an important indicator of adsorption quality. The ellipsometric findings were well supported by atomic force microscopy results. PMID:27315212

  6. Sensitivity Enhancement of Transition Metal Dichalcogenides/Silicon Nanostructure-based Surface Plasmon Resonance Biosensor.

    PubMed

    Ouyang, Qingling; Zeng, Shuwen; Jiang, Li; Hong, Liying; Xu, Gaixia; Dinh, Xuan-Quyen; Qian, Jun; He, Sailing; Qu, Junle; Coquet, Philippe; Yong, Ken-Tye

    2016-01-01

    In this work, we designed a sensitivity-enhanced surface plasmon resonance biosensor structure based on silicon nanosheet and two-dimensional transition metal dichalcogenides. This configuration contains six components: SF10 triangular prism, gold thin film, silicon nanosheet, two-dimensional MoS2/MoSe2/WS2/WSe2 (defined as MX2) layers, biomolecular analyte layer and sensing medium. The minimum reflectivity, sensitivity as well as the Full Width at Half Maximum of SPR curve are systematically examined by using Fresnel equations and the transfer matrix method in the visible and near infrared wavelength range (600 nm to 1024 nm). The variation of the minimum reflectivity and the change in resonance angle as the function of the number of MX2 layers are presented respectively. The results show that silicon nanosheet and MX2 layers can be served as effective light absorption medium. Under resonance conditions, the electrons in these additional dielectric layers can be transferred to the surface of gold thin film. All silicon-MX2 enhanced sensing models show much better performance than that of the conventional sensing scheme where pure Au thin film is used, the highest sensitivity can be achieved by employing 600 nm excitation light wavelength with 35 nm gold thin film and 7 nm thickness silicon nanosheet coated with monolayer WS2. PMID:27305974

  7. Dopant gas effect on silicon chemical vapor depositions: A surface potential model

    NASA Technical Reports Server (NTRS)

    Chang, C. A.

    1975-01-01

    A surface potential model is proposed to consistently explain the known dopant gas effects on silicon chemical vapor deposition. This model predicts that the effects of the same dopant gases on the diamond deposition rate using methane and carbon tetrachloride should be opposite and similar to those of silane, respectively. Available data are in agreement with this prediction.

  8. Field funneling and range straggling in partially depleted silicon surface-barrier detectors

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J. A.; Malone, C. J.

    1984-01-01

    The effects of field funneling and range straggling have been quantitatively observed in the measurement of charge collected from alpha-particle tracks in silicon surface-barrier charged-particle detectors. The method described may be used for the straight-forward measurement of charge collection from heavy ions in these and other semiconductor devices.

  9. Effect of silicon carbide on devitrification of a glass coating for reusable surface insulation

    NASA Technical Reports Server (NTRS)

    Ransone, P. O.

    1978-01-01

    Devitrification (nucleation and growth of cristobalite) were investigated in the LI-0042 coating used for the space shuttle surface insulation. Excessive devitrification was found to be associated with the silicon carbide (SiC) constituent in the coating. Test results show that significant devitrification occurred only when SiC was present in the coating and when the thermal-exposure atmosphere was oxidizing.

  10. Thermal damages on the surface of a silicon wafer induced by a near-infrared laser

    NASA Astrophysics Data System (ADS)

    Choi, Sungho; Jhang, Kyung-Young

    2014-01-01

    Laser-induced thermal damages of a silicon wafer surface subjected to continuous near-infrared laser irradiation were investigated. Silicon wafer specimens were illuminated by a continuous-wave fiber laser beam (1070-nm wavelength) with irradiances from 93 to 186 W/cm2, and the surface morphology of each specimen was analyzed using optical microscopy. With increasing irradiance, straight cracks in the <110> direction appeared first, and partial melting and complete melting were subsequently observed. The mechanism of these laser-induced thermal damages in the silicon wafer surface was discussed with numerical analysis based on the heat transfer and thermoelasticity model. The irradiances initiating the cracking and melting were predicted by determining the irradiances in which the calculated thermal stress and temperature exceeded the corresponding limits of the fracture strength and melting point, respectively. These predictions agreed well with the experimental findings. Laser-induced thermal damages of the silicon wafer surface subjected to a continuous near-infrared laser irradiation were identified based on these investigations.

  11. High efficiency silicon nanowire/organic hybrid solar cells with two-step surface treatment.

    PubMed

    Wang, Jianxiong; Wang, Hao; Prakoso, Ari Bimo; Togonal, Alienor Svietlana; Hong, Lei; Jiang, Changyun; Rusli

    2015-03-14

    A simple two-step surface treatment process is proposed to boost the efficiency of silicon nanowire/PEDOT:PSS hybrid solar cells. The Si nanowires (SiNWs) are first subjected to a low temperature ozone treatment to form a surface sacrificial oxide, followed by a HF etching process to partially remove the oxide. TEM investigation demonstrates that a clean SiNW surface is achieved after the treatment, in contrast to untreated SiNWs that have Ag nanoparticles left on the surface from the metal-catalyzed etching process that is used to form the SiNWs. The cleaner SiNW surface achieved and the thin layer of residual SiO2 on the SiNWs have been found to improve the performance of the hybrid solar cells. Overall, the surface recombination of the hybrid SiNW solar cells is greatly suppressed, resulting in a remarkably improved open circuit voltage of 0.58 V. The power conversion efficiency has also increased from about 10% to 12.4%. The two-step surface treatment method is promising in enhancing the photovoltaic performance of the hybrid silicon solar cells, and can also be applied to other silicon nanostructure based solar cells. PMID:25686737

  12. Biopolymers Confined in Surface-Modified Silicon Microfluidic Channels

    NASA Astrophysics Data System (ADS)

    Li, Y.; Pfohl, T.; Yasa, M.; Safinya, C. R.; Kim, J. H.; Kim, M. W.; Wen, Z.

    2001-03-01

    We have developed surface modification techniques for control of wettability and surface charge in lithographically fabricated Si microfluidic channels. Surface microstructures (patterns) with contrasting wetting properties were created using a combination of microcontact printing and polyelectrolyte adsorption. The selective control of the surface property enabled us to devise various techniques for loading and processing biomaterials in the channels. Using fluorescence and laser scanning confocal microscopy, we studied the structure of biopolymers including DNA, F-Actin and microtubules confined in the surface-modified microchannels. The polymers were observed to align linearly along the channels, which suggests that the channel arrays can be used as effective substrates for aligning filamentous proteins for structural characterization by x-ray diffraction. (Work supported by NSF-DMR-9972246, NSF-DMR-0076357, ONR-N00014-00-1-0214, UC-Biotech 99-14, and CULAR 99-216)

  13. Surface passivation of high efficiency silicon solar cells

    NASA Astrophysics Data System (ADS)

    Aberle, A.; Warta, W.; Knobloch, J.; Voss, B.

    Theoretically and experimentally determined design guides for significantly reducing recombination at the emitter and rear surfaces of full-area Al-BSF (back-surface region) and oxide-passivated bifacial cells are given. The impact of emitter thickness and surface dopant concentration on emitter saturation current and solar cell efficiency is outlined. A modified emitter structure (locally deep diffused below the metal contacts) is predicted to have superior performance. Measured Voc values reveal the potential of deep emitter cells to achieve efficiencies above 20 percent in spite of high metallization factors. Experimentally, a strong dependence of passivation quality on oxide thickness and base doping concentration is found. The BSF quality of a diffused aluminum layer decreases strongly with increasing drive-in time. For SiO2-passivated rear surfaces of bifacial cells, measurements of the dependence of the surface recombination velocity on the excess carrier concentration are presented.

  14. Exclusively Gas-Phase Passivation of Native Oxide-Free Silicon(100) and Silicon(111) Surfaces.

    PubMed

    Tao, Ye; Hauert, Roland; Degen, Christian L

    2016-05-25

    Reactions in the gas phase are of primary technological importance for applications in nano- and microfabrication technology and in the semiconductor industry. We present exclusively gas-phase protocols to chemically passivate oxide-free Si(111) and Si(100) surfaces with short-chain alkynes. The resulting surfaces showed equal or better oxidation resistance than most existing liquid-phase-derived surfaces and rivaled the outstanding stability of a full-coverage Si(111)-propenyl surface.1,2 The most stable surface (Si(111)-ethenyl) grew one-fifth of a monolayer of oxide (0.04 nm) after 1 month of air exposure. We monitored the regrowth of oxides on passivated Si(111) and Si(100) surfaces by X-ray photoelectron spectroscopy (XPS) and observed a significant crystal-orientation dependence of initial rates when total oxide thickness was below approximately one monolayer (0.2 nm). This difference was correlated with the desorption kinetics of residual surface Si-F bonds formed during HF treatment. We discuss applications of the technology and suggest future directions for process optimization. PMID:27153212

  15. Method using laser irradiation for the production of atomically clean crystalline silicon and germanium surfaces

    DOEpatents

    Ownby, Gary W.; White, Clark W.; Zehner, David M.

    1981-01-01

    This invention relates to a new method for removing surface impurities from crystalline silicon or germanium articles, such as off-the-shelf p- or n-type wafers to be doped for use as junction devices. The principal contaminants on such wafers are oxygen and carbon. The new method comprises laser-irradiating the contaminated surface in a non-reactive atmosphere, using one or more of Q-switched laser pulses whose parameters are selected to effect melting of the surface without substantial vaporization thereof. In a typical application, a plurality of pulses is used to convert a surface region of an off-the-shelf silicon wafer to an automatically clean region. This can be accomplished in a system at a pressure below 10.sup.-8 Torr, using Q-switched ruby-laser pulses having an energy density in the range of from about 60 to 190 MW/cm.sup.2.

  16. Surface modification via wet chemical etching of single-crystalline silicon for photovoltaic application.

    PubMed

    Reshak, A H; Shahimin, M M; Shaari, S; Johan, N

    2013-11-01

    The potential of solar cells have not been fully tapped due to the lack of energy conversion efficiency. There are three important mechanisms in producing high efficiency cells to harvest solar energy; reduction of light reflectance, enhancement of light trapping in the cell and increment of light absorption. The current work represent studies conducted in surface modification of single-crystalline silicon solar cells using wet chemical etching techniques. Two etching types are applied; alkaline etching (KOH:IPA:DI) and acidic etching (HF:HNO3:DI). The alkaline solution resulted in anisotropic profile that leads to the formation of inverted pyramids. While acidic solution formed circular craters along the front surface of silicon wafer. This surface modification will leads to the reduction of light reflectance via texturizing the surface and thereby increases the short circuit current and conversion rate of the solar cells. PMID:24139943

  17. Surface toughness of silicon nitride bioceramics: I, Raman spectroscopy-assisted micromechanics.

    PubMed

    Pezzotti, Giuseppe; Enomoto, Yuto; Zhu, Wenliang; Boffelli, Marco; Marin, Elia; McEntire, Bryan J

    2016-02-01

    Indentation micro-fracture is revisited as a tool for evaluating the surface toughness of silicon nitride (Si3N4) bioceramics for artificial joint applications. Despite being unique and practical from an experimental perspective, a quantitative assessment of surface fracture toughness using this method is challenging. An improved method has been developed, consisting of coupling indentation with confocal (spatially resolved) Raman piezo-spectroscopy. Empowered by the Raman microprobe, the indentation micro-fracture method was found to be capable of providing reliable surface toughness measurements in silicon nitride biomaterials. In designing the microstructures of bioceramic bearing couples for improved tribological performance, surface toughness must be considered as a fundamentally different and distinct parameter from bulk toughness. The coupling of indention crack opening displacements (COD) with local stress field assessments by spectroscopy paves the way to reliably compare the structural properties of bioceramics and to quantitatively monitor their evolution during environmental exposure. PMID:26522613

  18. Method using laser irradiation for the production of atomically clean crystalline silicon and germanium surfaces

    DOEpatents

    Ownby, G.W.; White, C.W.; Zehner, D.M.

    1979-12-28

    This invention relates to a new method for removing surface impurities from crystalline silicon or germanium articles, such as off-the-shelf p- or n-type wafers to be doped for use as junction devices. The principal contaminants on such wafers are oxygen and carbon. The new method comprises laser-irradiating the contaminated surface in a non-reactive atmosphere, using one or more of Q-switched laser pulses whose parameters are selected to effect melting of the surface without substantial vaporization thereof. In a typical application, a plurality of pulses is used to convert a surface region of an off-the-shelf silicon wafer to an atomically clean region. This can be accomplished in a system at a pressure below 10-/sup 8/ Torr, using Q-switched ruber-laser pulses having an energy density in the range of from about 60 to 190 MW/cm/sup 2/.

  19. Surface studies relevant to silicon carbide chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Stinespring, C. D.; Wormhoudt, J. C.

    1989-01-01

    Reactions of C2H4, C3H8, and CH4 on the Si(111) surface and C2H4 on the Si(100) surface were investigated for surface temperatures in the range of 1062-1495 K. Results led to the identification of the reaction products, a characterization of the solid-state transport process, a determination of the nucleation mechanism and growth kinetics, and an assessment of orientation effects. Based on these results and on the modeling studies of Stinespring and Wormhoudt (1988) on the associated gas phase chemistry, a physical model for the two-step beta-SiC CVD process is proposed.

  20. Unusual Dramatic Surface Restructuring of Silicon Substrate during Epitaxy

    NASA Astrophysics Data System (ADS)

    Gupta, Tanya; Steingart, Daniel; Hannon, James; Princeton University Collaboration; IBM Collaboration

    2015-03-01

    Interfacial strain is unavoidable in heteroepitaxial growth and can have a profound impact on the morphology and properties of thin films. In fact, ``engineering'' thin-film strain is a critical component in many advanced technologies. For example, straining the silicon in advanced CMOS devices can increase the device speed by as much as 90 percent.order to control interfacial strain, its effects on growth must be understood. The common picture is that the growth substrate is essentially passive: its role is to provide the lattice mismatch that the growing film must respond to. As the film grows thicker, the stress in the film evolves, which can lead to morphological changes in the film, e.g. dislocations, or a change in growth mode from 2D, planar growth to 3D, quantum dot growth., in both of these examples, the action is in the growing film. In this work we describe a growth system that behaves in a completely unexpected manner that does not fit into this conventional picture. Interfacial strain that accompanies the growth of SiC nanoparticles is relieved by a dramatic restructuring of the *substrate* rather than the nanoparticles. The growth of nanoparticles induces a massive change in the substrate. In situ measurements of the Si mound formation was done with the use of LEEM. Using a simple, illustrative model with parameters taken from the literature, we show that the shapes and heights of the mounds are consistent with a strain-driven formation mechanism.

  1. Silver- and Gold-Ordered Structures on Single-Crystal Silicon Surface After Thermal Deposition

    NASA Astrophysics Data System (ADS)

    Karbivskyy, Vladimir; Karbivska, Love; Artemyuk, Viktor

    2016-02-01

    The formation mechanisms of Ag- and Au-ordered structures on single-crystal silicon (Si) (111) and Si (110) surfaces were researched using high-resolution scanning tunneling microscopy method. It was shown that different patterns of self-assembled nanostructures with very precise and regular geometric shapes can be produced by controlling process parameters of thermal metal spraying on the substrate. The surfaces of nanorelieves at each stage of deposition were researched, and the main stages of morphological transformation were fixed.

  2. Adsorption of silicon on Au(110): An ordered two dimensional surface alloy

    SciTech Connect

    Enriquez, Hanna; Mayne, Andrew; Dujardin, Gerald; Kara, Abdelkader; Vizzini, Sebastien; Roth, Silvan; Greber, Thomas; Lalmi, Boubekeur; Belkhou, Rachid; Seitsonen, Ari P; Aufray, Bernard; Oughaddou, Hamid

    2012-07-09

    We report on experimental evidence for the formation of a two dimensional Si/Au(110) surface alloy. In this study, we have used a combination of scanning tunneling microscopy, low energy electron diffraction, Auger electron spectroscopy, and ab initio calculations based on density functional theory. A highly ordered and stable Si-Au surface alloy is observed subsequent to growth of a sub-monolayer of silicon on an Au(110) substrate kept above the eutectic temperature.

  3. Diffraction-assisted micropatterning of silicon surfaces by ns-laser irradiation

    SciTech Connect

    Haro-Poniatowski, E. Acosta-Zepeda, C.; Mecalco, G.; Hernández-Pozos, J. L.; Batina, N.; Morales-Reyes, I.; Bonse, J.

    2014-06-14

    Single-pulse (532 nm, 8 ns) micropatterning of silicon with nanometric surface modulation is demonstrated by irradiating through a diffracting pinhole. The irradiation results obtained at fluences above the melting threshold are characterized by scanning electron and scanning force microscopy and reveal a good agreement with Fresnel diffraction theory. The physical mechanism is identified and discussed on basis of both thermocapillary and chemicapillary induced material transport during the molten state of the surface.

  4. Complete supramolecular self-assembled adlayer on a silicon surface at room temperature.

    PubMed

    Makoudi, Younes; Palmino, Frank; Arab, Madjid; Duverger, Eric; Chérioux, Frédéric

    2008-05-28

    The engineering of a complete adlayer of organic nanolines by supramolecular self-assembly has been achieved for the first time on a silicon-based surface at room temperature and has been studied by scanning tunneling microscopy. This complete adlayer has been successfully obtained thanks to the combination of a specific Si(111)-B square root 3x square root 3R30 degrees semiconductive surface and of strong hydrogen bonds between a pair of dipolar molecules. PMID:18459775

  5. Charge injection from a surface depletion region—The Al 2O 3-silicon system

    NASA Astrophysics Data System (ADS)

    Kolk, J.; Heasell, E. L.

    1980-03-01

    Electron injection from a surface depletion region, over the surface barrier at an Al 2O 3-silicon interface is studied. The current passing over the barrier is measured by observing the rate of flat-band voltage shift as charge is trapped in the oxide. The data obtained is compared with the predictions of present models for charge injection. It is found that the so-called 'lucky-electron' model gives the most generally satisfactory agreement with the observations.

  6. Surface fingerprints of individual silicon nanocrystals in laser-annealed Si/SiO2 superlattice: Evidence of nanoeruptions of laser-pressurized silicon

    NASA Astrophysics Data System (ADS)

    Nikitin, Timur; Kemell, Marianna; Puukilainen, Esa; Boninelli, Simona; Iacona, Fabio; Räsänen, Markku; Ritala, Mikko; Novikov, Sergei; Khriachtchev, Leonid

    2012-06-01

    Silicon nanocrystals prepared by continuous-wave laser annealing of a free-standing Si/SiO2 superlattice are studied for the first time by using methods of surface analysis (scanning electron microscopy and atomic force microscopy). The surface topology and composition are compared with transmission electron microscopy images that show a projection through the whole film, allowing us to discriminate silicon nanocrystals located near the film surface. These nanocrystals have an unusual pear-like shape with the thinner part sticking out of the laser-illuminated surface. The non-spherical shape of these nanocrystals is explained by eruption of silicon pressurized at the stage of crystallization from the melt phase. This hypothesis is supported by the micro-Raman spectra which show low stress near the surface features, in contrast to the neighbouring regions having high compressive stress.

  7. Preparation and Surface Analysis of a Fluorinated Amorphous Silicon for Photo-voltaic Device Application

    NASA Technical Reports Server (NTRS)

    McWhinney, Hylton G.; Burton, Dawn; Fogarty, Thomas N.

    1998-01-01

    Amorphous silicon films (a-Si:H) have been routinely deposited on a variety of substrates. Surface and interfacial studies were carried out with a PHI 5600 X-ray photo electron spectrometer. Co-deposition with fluorine yielded films having oxygen present as bulk oxide. The higher the fluorine content, the greater the amount of bulk oxygen observed. The presence of oxygen may be a contributing factor to inconsistent film properties of fluorine doped silicon materials, reported else where. A definite chemical interface between a layer containing fluorine and a layer made from pure silane has been delineated.

  8. Surface Modification of Nanometre Silicon Carbide Powder with Polystyrene by Inductively Coupled Plasma

    NASA Astrophysics Data System (ADS)

    Wei, Gang; Meng, Yuedong; Zhong, Shaofeng; Liu, Feng; Jiang, Zhongqing; Shu, Xingsheng; Ren, Zhaoxing; Wang, Xiangke

    2008-02-01

    An investigation was made into polystyrene (PS) grafted onto nanometre silicon carbide (SiC) particles. In our experiment, the grafting polymerization reaction was induced by a radio frequency (RF) inductively coupled plasma (ICP) treatment of the nanometre powder. FTIR (Fourier transform infrared spectrum) and XPS (X-ray photoelectron spectroscopy) results reveal that PS is grafted onto the surface of silicon carbide powder. An analysis is presented on the effectiveness of this approach as a function of plasma operating variables including the plasma treating power, treating time, and grafting reaction temperature and time.

  9. Hydrogen desorption kinetics for aqueous hydrogen fluoride and remote hydrogen plasma processed silicon (001) surfaces

    SciTech Connect

    King, Sean W. Davis, Robert F.; Carter, Richard J.; Schneider, Thomas P.; Nemanich, Robert J.

    2015-09-15

    The desorption kinetics of molecular hydrogen (H{sub 2}) from silicon (001) surfaces exposed to aqueous hydrogen fluoride and remote hydrogen plasmas were examined using temperature programmed desorption. Multiple H{sub 2} desorption states were observed and attributed to surface monohydride (SiH), di/trihydride (SiH{sub 2/3}), and hydroxide (SiOH) species, subsurface hydrogen trapped at defects, and hydrogen evolved during the desorption of surface oxides. The observed surface hydride species were dependent on the surface temperature during hydrogen plasma exposure with mono, di, and trihydride species being observed after low temperature exposure (150 °C), while predominantly monohydride species were observed after higher temperature exposure (450 °C). The ratio of surface versus subsurface H{sub 2} desorption was also found to be dependent on the substrate temperature with 150 °C remote hydrogen plasma exposure generally leading to more H{sub 2} evolved from subsurface states and 450 °C exposure leading to more H{sub 2} desorption from surface SiH{sub x} species. Additional surface desorption states were observed, which were attributed to H{sub 2} desorption from Si (111) facets formed as a result of surface etching by the remote hydrogen plasma or aqueous hydrogen fluoride treatment. The kinetics of surface H{sub 2} desorption were found to be in excellent agreement with prior investigations of silicon surfaces exposed to thermally generated atomic hydrogen.

  10. Correlation between surface morphology and lattice orientation of microcrystalline silicon

    SciTech Connect

    Kondo, M.; Nishimiya, T.; Saitoh, K.; Ohe, T.; Matsuda, A.

    1997-07-01

    The surface morphology and preferential orientation of {micro}c-Si:H has been studied on c-Si substrate in relation to the Si-H bonding mode. Epitaxy-like growth is observed on Si (001) substrate at a moderate temperature and under low ion bombardment, while the surface is significantly roughened. With increasing or decreasing the temperature or increasing the ion bombardment, the lattice orientation is randomized and an amorphous component is increased, resulting in the reduction of the surface roughness. The growth mode is intimately related to the Si-H bonding configuration. The epitaxy-like growth is collapsed accompanying the disappearance of the surface Si-H{sub 2,3} mode. The resemblance of these phenomena to the low temperature MBE is discussed.

  11. Silicone Brushes: Omniphobic Surfaces with Low Sliding Angles.

    PubMed

    Wooh, Sanghyuk; Vollmer, Doris

    2016-06-01

    Losing contact: Omniphobic surfaces can be readily produced by acid-catalyzed graft polycondensation of dimethyldimethoxysilane (PDMS). Droplets show a very small contact angle hysteresis as well as a low sliding angle of only a few degrees. The nm-thick PDMS layer is neither easily washed away nor depleted. This method offers a novel approach towards the preparation of super-liquid-repelling surfaces. PMID:27159802

  12. Cavitand-functionalized porous silicon as an active surface for organophosphorus vapor detection.

    PubMed

    Tudisco, Cristina; Betti, Paolo; Motta, Alessandro; Pinalli, Roberta; Bombaci, Luigi; Dalcanale, Enrico; Condorelli, Guglielmo G

    2012-01-24

    This paper reports on the preparation of a porous silicon-based material covalently functionalized with cavitand receptors suited for the detection of organophosphorus vapors. Two different isomeric cavitands, both containing one acid group at the upper rim, specifically designed for covalent anchoring on silicon, were grafted on H-terminated porous silicon (PSi) by thermal hydrosilylation. The covalently functionalized surfaces and their complexation properties were characterized by combining different analytical techniques, namely X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and mass spectroscopy analysis coupled with thermal desorption experiments. Complexation experiments were performed by exposing both active surfaces and a control surface consisting of PSi functionalized with a structurally similar but inactive methylene-bridged cavitand (MeCav) to dimethyl methylphosphonate (DMMP) vapors. Comparison between active and inactive surfaces demonstrated the recognition properties of the new surfaces. Finally, the nature of the involved interactions, the energetic differences between active and inactive surfaces toward DMMP complexation, and the comparison with a true nerve gas agent (sarin) were studied by DFT modeling. The results revealed the successful grafting reaction, the specific host-guest interactions of the PSi-bonded receptors, and the reversibility of the guest complexation. PMID:22185658

  13. Thermal analysis of the exothermic reaction between galvanic porous silicon and sodium perchlorate.

    PubMed

    Becker, Collin R; Currano, Luke J; Churaman, Wayne A; Stoldt, Conrad R

    2010-11-01

    Porous silicon (PS) films up to ∼150 μm thick with specific surface area similar to 700 m(2)/g and pore diameters similar to 3 nm are fabricated using a galvanic corrosion etching mechanism that does not require a power supply. After fabrication, the pores are impregnated with the strong oxidizer sodium perchlorate (NaClO(4)) to create a composite that constitutes a highly energetic system capable of explosion. Using bomb calorimetry, the heat of reaction is determined to be 9.9 ± 1.8 and 27.3 ± 3.2 kJ/g of PS when ignited under N(2) and O(2), respectively. Differential scanning calorimetry (DSC) reveals that the energy output is dependent on the hydrogen termination of the PS. PMID:21058647

  14. Tribological properties and surface chemistry of silicon carbide at temperatures to 1500 C

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1981-01-01

    Silicon carbide surfaces were heated to 1500 C in a vacuum and analyzed at room temperature with X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). The basic unit of the surfaces was considered as a plane of a tetrahedron of either SiC4 and CSi4 composition. AES spectra were obtained from 250-1500 C, with an analysis depth of 1 nm revealed the presence of little Si and mostly graphite. XPS analysis depth was 2 nm or less, and Si was found in the second 1 nm. Sliding friction tests with single-crystal silicon carbide in contact with iron in a vacuum were characterized by a stock-slip value. The coefficient of friction increased with increasing temperature up to 400 C, then decreased with increasing temperature from 400-600 C. Reheating surfaces to 800 C after preheating them to that temperature produced no changes in AES readings. It is concluded that the maximum density of silicon and silicon-carbide is at 800 C, and the higher the sliding temperature, the more metal that is transferred.

  15. Study of silicon crystal surface formation based on molecular dynamics simulation results

    NASA Astrophysics Data System (ADS)

    Barinovs, G.; Sabanskis, A.; Muiznieks, A.

    2014-04-01

    The equilibrium shape of <110>-oriented single crystal silicon nanowire, 8 nm in cross-section, was found from molecular dynamics simulations using LAMMPS molecular dynamics package. The calculated shape agrees well to the shape predicted from experimental observations of nanocavities in silicon crystals. By parametrization of the shape and scaling to a known value of {111} surface energy, Wulff form for solid-vapor interface was obtained. The Wulff form for solid-liquid interface was constructed using the same model of the shape as for the solid-vapor interface. The parameters describing solid-liquid interface shape were found using values of surface energies in low-index directions known from published molecular dynamics simulations. Using an experimental value of the liquid-vapor interface energy for silicon and graphical solution of Herring's equation, we constructed angular diagram showing relative equilibrium orientation of solid-liquid, liquid-vapor and solid-vapor interfaces at the triple phase line. The diagram gives quantitative predictions about growth angles for different growth directions and formation of facets on the solid-liquid and solid-vapor interfaces. The diagram can be used to describe growth ridges appearing on the crystal surface grown from a melt. Qualitative comparison to the ridges of a Float zone silicon crystal cone is given.

  16. A simple facile approach to large scale synthesis of high specific surface area silicon nanoparticles

    SciTech Connect

    Epur, Rigved; Minardi, Luke; Datta, Moni K.; Chung, Sung Jae; Kumta, Prashant N.

    2013-12-15

    An inexpensive, facile, and high throughput synthesis of silicon nanoparticles was achieved by the mechano-chemical reduction reaction of magnesium silicide (Mg{sub 2}Si) and silicon monoxide (SiO) using a high energy mechanical milling (HEMM) technique followed by acid leaching. Characterization of the resultant product using X-Ray diffraction, Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and surface area analyses was performed at various stages of the synthesis process. XRD patterns show that the final product formed is single phase silicon and the nanocrystalline nature was confirmed by the shifted transverse optical (TO) band, characteristic of nc-Si determined by Raman analysis. SEM and TEM shows the presence of particles of different sizes in the range of few nanometers to agglomerates of few microns which is consistent with products obtained from mechanical milling. BET measurements show a very high specific surface area (SSA) of ∼190 m{sup 2}/g obtained due to acid leaching which is also validated by the porous nature of the particles confirmed by the SEM images. - Graphical abstract: Schematic showing the large scale production of nanosized silicon and BET surface area of the product formed at various stages.

  17. Impurity concentrations and surface charge densities on the heavily doped face of a silicon solar cell

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Hsu, L. C.

    1977-01-01

    Increased solar cell efficiencies are attained by reduction of surface recombination and variation of impurity concentration profiles at the n(+) surface of silicon solar cells. Diagnostic techniques are employed to evaluate the effects of specific materials preparation methodologies on surface and near surface concentrations. It is demonstrated that the MOS C-V method, when combined with a bulk measurement technique, yields more complete concentration data than are obtainable by either method alone. Specifically, new solar cell MOS C-V measurements are combined with bulk concentrations obtained by a successive layer removal technique utilizing measurements of sheet resistivity and Hall coefficient.

  18. Designing superhydrophobic surfaces using fluorosilsesquioxane-urethane hybrid and porous silicon gradients

    NASA Astrophysics Data System (ADS)

    Kannan, Aravindaraj G.; McInnes, Steven J. P.; Choudhury, Namita R.; Dutta, Naba K.; Voelcker, Nicolas H.

    2008-12-01

    Here we describe a new class of near superhydrophobic surfaces formed using fluorinated polyhedral oligosilsesquioxane (FluoroPOSS) urethane hybrids and porous silicon gradients (pSi). We demonstrate that the surface segregation behavior of the hydrophobic fluoro component can be controlled by the type and nature of chain extender of the urethane and resultant hydrophobic association via intra or intermolecular aggregation. The surface film formed exhibits near superhydrophobicity. This work has significant potential for applications in antifouling and self-cleaning coatings, biomedical devices, microfluidic systems and tribological surfaces.

  19. Contact Angles and Surface Tension of Germanium-Silicon Melts

    NASA Technical Reports Server (NTRS)

    Croell, A.; Kaiser, N.; Cobb, S.; Szofran, F. R.; Volz, M.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Precise knowledge of material parameters is more and more important for improving crystal growth processes. Two important parameters are the contact (wetting) angle and the surface tension, determining meniscus shapes and surface-tension driven flows in a variety of methods (Czochralski, EFG, floating-zone, detached Bridgman growth). The sessile drop technique allows the measurement of both parameters simultaneously and has been used to measure the contact angles and the surface tension of Ge(1-x)Si(x) (0 less than or equal to x less than or equal to 1.3) alloys on various substrate materials. Fused quartz, Sapphire, glassy carbon, graphite, SiC, carbon-based aerogel, pyrolytic boron nitride (pBN), AIN, Si3N4, and polycrystalline CVD diamond were used as substrate materials. In addition, the effect of different cleaning procedures and surface treatments on the wetting behavior were investigated. Measurements were performed both under dynamic vacuum and gas atmospheres (argon or forming gas), with temperatures up to 1100 C. In some experiments, the sample was processed for longer times, up to a week, to investigate any changes of the contact angle and/or surface tension due to slow reactions with the substrate. For pure Ge, stable contact angles were found for carbon-based substrates and for pBN, for Ge(1-x)Si(x) only for pBN. The highest wetting angles were found for pBN substrates with angles around 170deg. For the surface tension of Ge, the most reliable values resulted in gamma(T) = (591- 0.077 (T-T(sub m)) 10(exp -3)N/m. The temperature dependence of the surface tension showed similar values for Ge(1-x)Si(x), around -0.08 x 10(exp -3)N/m K, and a compositional dependence of 2.2 x 10(exp -3)N/m at%Si.

  20. Nanoscale silicon surface-assisted laser desorption/ionization mass spectrometry: environment stability and activation by simple vacuum oven desiccation.

    PubMed

    Tsao, Chia-Wen; Lin, Yuan-Jing; Chen, Pi-Yu; Yang, Yu-Liang; Tan, Say Hwa

    2016-08-01

    Nanoscale silicon surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) is an emerging matrix-free, highly sensitive MS analysis method. An important challenge in using nanoscale silicon SALDI-MS analysis is the aging and stability of silicon after storage in various environments. No proper nanoscale silicon SALDI-MS activation procedure has been reported to solve this issue. This study investigated the sensitivity, wettability, and surface oxidation behavior of nanoscale silicon surface SALDI-MS in a room, an inert gas atmosphere, and a vacuum environment. A simple vacuum oven desiccation was proposed to activate the SALDI-MS surface, and the limit of detection was further enhanced 1000 times to a 500 attomole level using this approach. The long-term stability and desorption/ionization mechanism were also investigated. PMID:27315049

  1. Bifacial MIS inversion layer solar cells based on low temperature silicon surface passivation

    NASA Astrophysics Data System (ADS)

    Jaeger, K.; Hezel, R.

    A novel bifacial silicon solar cell fabricated by a simple low-temperature process is introduced. The front side is characterized by an MIS contact grid and a charged plasma silicon nitride layer. The rear side is made up of ohmic grid lines in combination with silicon nitride for surface passivation. This appears to be the first bifacial solar cell without any highly doped region and completely processed at temperatures below 500 C. An AM1 efficiency of 15 and 13.2 percent was achieved for front and back illumination, respectively. The dependence of the solar cell data on cell thickness was experimentally investigated in the range from 80 microns to 330 microns. This thickness dependence was confirmed by theoretical one-dimensional calculations.

  2. Diffusion and Phase Transformations of Transition Metals on Silicon Surfaces

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Yi.

    The role of surface diffusion and surface phase reaction kinetics of nickel (Ni) and cobalt (Co) on Si(111) and Si(100) are investigated under Ultra High Vacuum (UHV) conditions using Auger Spectroscopy (AES), Reflection High Electron Energy Diffraction (RHEED) and surface X-ray diffraction. The surface segregation phenomenon and the formation conditions for Si(111)-sqrt{19 } x sqrt{19}- rm R+/-23.4^circ phase (hereafter called sqrt{19}) for Ni/Si(111) are studied by RHEED and AES. Quench cooling induces surface segregation which restores the total accumulated dose of Ni to two surfaces of the wafer. The coverage dependence of phases thus produced follows: 7 x 7 to 1 x 1-RC(0.05Ml) to sqrt{19} (0.16Ml) then to B-type NiSi_2. It is found that there are 3 Ni atoms in the sqrt{19 } unit cell. A "race" of bulk diffusion versus surface diffusion for Ni in/on Si(111) is studied by depositing a laterally confined dot of metal on one side of the double side polished and UHV cleaned Si wafer and then measuring the lateral Auger profile on the reverse side following annealing and quenching. Ni reaches the far side of the wafer at temperatures as low as 500C via bulk diffusion with no measurable contribution from the surface paths, which are short-circuited by numerous, fast bulk paths. Similar results are found for Ni and Co on Si(111) and Si(100). The diffusivity and solid solubility calculated from the experiments are close to the bulk values known from the literature. In addition, the thermal stability, phase transformation and different dissolution mechanisms of sqrt {19} and 1 x 1-RC surface phases of Ni/Si(111) are carefully examined. The activation energies of these processes are compared on an Arrhenius plot. These are discussed in terms of the migration and formation mechanisms involved in these phase transformations. An energy level diagram is used to summarize the atomistic kinetics.

  3. Anti-reflective device having an anti-reflective surface formed of silicon spikes with nano-tips

    NASA Technical Reports Server (NTRS)

    Bae, Youngsam (Inventor); Manohara, Harish (Inventor); Mobasser, Sohrab (Inventor); Lee, Choonsup (Inventor)

    2011-01-01

    Described is a device having an anti-reflection surface. The device comprises a silicon substrate with a plurality of silicon spikes formed on the substrate. A first metallic layer is formed on the silicon spikes to form the anti-reflection surface. The device further includes an aperture that extends through the substrate. A second metallic layer is formed on the substrate. The second metallic layer includes a hole that is aligned with the aperture. A spacer is attached with the silicon substrate to provide a gap between an attached sensor apparatus. Therefore, operating as a Micro-sun sensor, light entering the hole passes through the aperture to be sensed by the sensor apparatus. Additionally, light reflected by the sensor apparatus toward the first side of the silicon substrate is absorbed by the first metallic layer and silicon spikes and is thereby prevented from being reflected back toward the sensor apparatus.

  4. Anti- reflective device having an anti-reflection surface formed of silicon spikes with nano-tips

    NASA Technical Reports Server (NTRS)

    Bae, Youngsman (Inventor); Mooasser, Sohrab (Inventor); Manohara, Harish (Inventor); Lee, Choonsup (Inventor); Bae, Kungsam (Inventor)

    2009-01-01

    Described is a device having an anti-reflection surface. The device comprises a silicon substrate with a plurality of silicon spikes formed on the substrate. A first metallic layer is formed on the silicon spikes to form the anti-reflection surface. The device further includes an aperture that extends through the substrate. A second metallic layer is formed on the substrate. The second metallic layer includes a hole that is aligned with the aperture. A spacer is attached with the silicon substrate to provide a gap between an attached sensor apparatus. Therefore, operating as a Micro-sun sensor, light entering the hole passes through the aperture to be sensed by the sensor apparatus. Additionally, light reflected by the sensor apparatus toward the first side of the silicon substrate is absorbed by the first metallic layer and silicon spikes and is thereby prevented from being reflected back toward the sensor apparatus.

  5. Surface treatment of nanoporous silicon with noble metal ions and characterizations

    NASA Astrophysics Data System (ADS)

    Kanungo, J.; Maji, S.; Mandal, A. K.; Sen, S.; Bontempi, E.; Balamurugan, A. K.; Tyagi, A. K.; Uvdal, K.; Sinha, S.; Saha, H.; Basu, S.

    2010-04-01

    A very large surface to volume ratio of nanoporous silicon (PS) produces a high density of surface states, which are responsible for uncontrolled oxidation of the PS surface. Hence it disturbs the stability of the material and also creates difficulties in the formation of a reliable electrical contact. To passivate the surface states of the nanoporous silicon, noble metals (Pd, Ru, and Pt) were dispersed on the PS surface by an electroless chemical method. GIXRD (glancing incidence X-ray diffraction) proved the crystallinity of PS and the presence of noble metals on its surface. While FESEM (field emission scanning electron microscopy) showed the morphology, the EDX (energy dispersive X-ray) line scans and digital X-ray image mapping indicated the formation of the noble metal islands on the PS surface. Dynamic SIMS (secondary ion mass spectroscopy) further confirmed the presence of noble metals and other impurities near the surface of the modified PS. The variation of the surface roughness after the noble metal modification was exhibited by AFM (atomic force microscopy). The formation of a thin oxide layer on the modified PS surface was verified by XPS (X-ray photoelectron spectroscopy).

  6. Method for measuring surface activity of silicon nitride powder

    NASA Technical Reports Server (NTRS)

    Kanno, Y.; Imai, H.

    1985-01-01

    Amorphous, alpha-, and beta-Si3N4 powders were activated by vibration ball milling in purified MeOH, and the surface activity of ground powders was determined by the temperature programmed desorption (TPD) method using NH3 gas. The concentration of active sites with a potential energy equivalent to the peak temperature in the spectrum increased was markedly by ball milling the amorphous Si3N4. The alpha- and beta-Si3N4 also had active sites produced by ball milling. The concentration of active site increased with increased ball milling time. A method for measuring surface activity of ceramic raw materials by TPD is proposed.

  7. Wettability behaviour of RTV silicone rubber coated on nanostructured aluminium surface

    NASA Astrophysics Data System (ADS)

    Momen, Gelareh; Farzaneh, Masoud; Jafari, Reza

    2011-05-01

    A nanostructutered superhydrophobic surface was elaborated by applying an RTV silicone rubber coating on electrochemically processed aluminium substrates. Study of anodisation voltage on surface morphology showed that higher anodising voltage led to larger pore sizes. Scanning electron microscopy image analysis showed bird's nest and beehive structures formed on anodised surfaces at 50 V and 80 V. Water static contact angle on the treated surfaces reached up to 160° at room temperature. Study of superhydrophobic surfaces at super cooled temperature showed important delayed freezing time for RTV hydrophobic surfaces when compared to non-treated aluminium. However, lower wettability was observed when surface temperature went down from 20 °C to -10 °C. Also, it was found that the capacitance of superhydrophobic surfaces decreased with increasing anodising voltage.

  8. Chemical modification of a porous silicon surface induced by nitrogen dioxide adsorption.

    PubMed

    Sharov, Constantine S; Konstantinova, Elizaveta A; Osminkina, Lyubov A; Timoshenko, Victor Yu; Kashkarov, Pavel K

    2005-03-17

    The effect of gaseous and liquid nitrogen dioxide on the composition and electronic properties of porous silicon (PS) is investigated by means of optical spectroscopy and electron paramagnetic resonance. It is detected that the interaction process is weak and strong forms of chemisorption on the PS surface, and the process may be regarded as an actual chemical reaction between PS and NO(2). It is found that NO(2) adsorption consists in forming different surface nitrogen-containing molecular groups and dangling bonds of Si atoms (P(b)-centers) as well as in oxidizing and hydrating the PS surface. Also observed are the formation of ionic complexes of P(b)-centers with NO(2) molecules and the generation of free charge carriers (holes) in the volume of silicon nanocrystals forming PS. PMID:16851549

  9. Magnetic Dirac fermions and Chern insulator supported on pristine silicon surface

    NASA Astrophysics Data System (ADS)

    Fu, Huixia; Liu, Zheng; Lian, Chao; Zhang, Jin; Li, Hui; Sun, Jia-Tao; Meng, Sheng

    2016-07-01

    Emergence of ferromagnetism in nonmagnetic semiconductors is strongly desirable, especially in topological materials because of the possibility of achieving the quantum anomalous Hall effect. Based on first-principles calculations, we propose that for Si thin film grown on metal substrate, the pristine Si(111)-√{3 }×√{3 } surface with a spontaneous weak reconstruction has a strong tendency toward ferromagnetism and nontrivial topological properties, characterized by spin-polarized Dirac-fermion surface states. In contrast to conventional routes relying on introduction of alien charge carriers or specially patterned substrates, the spontaneous magnetic order and spin-orbit coupling on the pristine silicon surface together give rise to the quantized anomalous Hall effect with a finite Chern number C =-1 . This work suggests opportunities in silicon-based spintronics and quantum computing free from alien dopants or proximity effects.

  10. Towards 1D nanolines on a monolayered supramolecular network adsorbed on a silicon surface.

    PubMed

    Makoudi, Younes; Beyer, Matthieu; Lamare, Simon; Jeannoutot, Judicael; Palmino, Frank; Chérioux, Frédéric

    2016-06-16

    The growth of 3D extended periodic networks made up of π-conjugated molecules on semi-conductor surfaces is of interest for the integration of nano-components in the future generations of smart devices. In the work presented in this article, we successfully achieved the formation of bilayered networks on a silicon surface including 1D-isolated nanolines in the second layer. Firstly, we observed the formation of a 2D large-scale supramolecular network in the plane of a silicon surface through the deposition of tailored molecules. Then using the same molecules, a second-layer, based on 1D nanolines, grew above the first layer, thanks to a template effect. Mono- or bi-layered networks were found to be stable from 100 K up to room temperature. These networks were investigated by scanning tunnel microscopy imaging under an ultra-high vacuum (UHV-STM). PMID:27273449

  11. Interspecific variation in patterns of adhesion of marine fouling to silicone surfaces.

    PubMed

    Holm, Eric R; Kavanagh, Christopher J; Meyer, Anne E; Wiebe, Deborah; Nedved, Brian T; Wendt, Dean; Smith, Celia M; Hadfield, Michael G; Swain, Geoff; Wood, Christina Darkangelo; Truby, Kathryn; Stein, Judith; Montemarano, Jean

    2006-01-01

    The adhesion of six fouling organisms: the barnacle Balanus eburneus, the gastropod mollusc Crepidulafornicata, the bivalve molluscs Crassostrea virginica and Ostrea/Dendrostrea spp., and the serpulid tubeworms Hydroides dianthus and H. elegans, to 12 silicone fouling-release surfaces was examined. Removal stress (adhesion strength) varied among the fouling species and among the surfaces. Principal component analysis of the removal stress data revealed that the fouling species fell into two distinct groups, one comprising the bivalve molluscs and tubeworms, and the other the barnacle and the gastropod mollusc. None of the silicone materials generated a minimum in removal stress for all the organisms tested, although several surfaces produced low adhesion strengths for both groups of species. These results suggest that fouling-release materials do not rank (in terms of adhesion strength) identically for all fouling organisms, and thus development of a globally-effective hull coating will continue to require testing against a diversity of encrusting species. PMID:17290867

  12. Surface structural changes of naturally aged silicone and EPDM composite insulators

    SciTech Connect

    Vlastos, A.E. ); Gubanski, S.M. )

    1991-04-01

    In a long-term outdoor test with high direct and alternating voltages, silicone and EPDM rubber composite insulators have, at the beginning, shown a superior performance to that of glass and porcelain insulators. In the long-term test, however, the silicone rubber composite insulator has, in spite of the ageing of both insulator types, kept its good performance, while the performance of the EPDM rubber composite insulator was drastically deteriorated. In order to get a better insight into results obtained, the wettability and the surface structural changes of the insulators were studied by the drop deposition method (using a goniometer) and by advanced techniques such as SEM, ESCA, FTIR and SIMS respectively. The results show that the differences in performance have to be found in the differences in the surface structural changes and in the dynamic ability of the surface to compensate the ageing.

  13. Surface treatment for the atomic layer deposition of HfO{sub 2} on silicon

    SciTech Connect

    Damlencourt, J-F.; Renault, O.; Martin, F.; Semeria, M-N.; Billon, T; Bedu, F.

    2005-04-04

    The atomic layer deposition (ALD) of HfO{sub 2} on silicon with a Cl{sub 2} surface treatment is investigated by physicochemical and electrical techniques. The specificity of this treatment is to create, on a HF-dipped silicon surface, the nucleation sites necessary for the ALD growth. The growth rates obtained by spectroscopic ellipsometry and total x-ray fluorescence spectroscopy indicate that the nucleation sites (i.e., the -OH groups), which are necessary to perform some bidimensional ALD growth, are generated during this surface treatment. After deposition of thin HfO{sub 2} layers (from a few monolayers up to 8.7 nm), a very thin parasitic SiO{sub x} layer, underneath 1 monolayer of Hf silicate, is observed by x-ray photoelectron spectroscopy. Nevertheless, an equivalent oxide thickness of 1.1 nm is obtained with an as-deposited 3.7 nm thick HfO{sub 2} layer.

  14. Manufacture of silicon-based devices having disordered sulfur-doped surface layers

    DOEpatents

    Carey, III; James Edward; Mazur, Eric

    2008-04-08

    The present invention provides methods of fabricating a radiation-absorbing semiconductor wafer by irradiating at least one surface location of a silicon substrate, e.g., an n-doped crystalline silicon, by a plurality of temporally short laser pulses, e.g., femtosecond pulses, while exposing that location to a substance, e.g., SF.sub.6, having an electron-donating constituent so as to generate a substantially disordered surface layer (i.e., a microstructured layer) that incorporates a concentration of that electron-donating constituent, e.g., sulfur. The substrate is also annealed at an elevated temperature and for a duration selected to enhance the charge carrier density in the surface layer. For example, the substrate can be annealed at a temperature in a range of about 700 K to about 900 K.

  15. Vacuum hydride epitaxy of silicon: kinetics of monosilane pyrolysis on the growth surface

    SciTech Connect

    Orlov, L. K.; Ivin, S. V.

    2011-04-15

    Analytical expressions relating the rate of silicon atom incorporation into a growing crystal to the typical frequency of silane molecule pyrolysis on the silicon surface in the growth temperature range are derived. Based on currently available experimental data, the range of typical decomposition frequencies of hydride molecule radicals adsorbed at the silicon wafer surface in the temperature range of 450-700 Degree-Sign C is determined for the most widely used physicochemical models. It is shown that the most probable molecular decomposition model can be chosen based on the experimental study of the temperature dependence of the decomposition rate of adsorbed hydride molecules. A change in the silane molecule pyrolysis rate or the hydrogen desorption rate from the surface in principle makes it possible to increase the Si layer growth rate without additional substrate heating under conditions of low-temperature epitaxy (450-550 Degree-Sign C), but no larger than by a factor of 2-3 in the former case and up to 100 times in the latter case. The analysis performed shows that physicochemical pyrolysis models in which hydrogen is trapped by the surface, mostly at the stage of decomposition of silane radicals adsorbed by the surface, are more realistic.

  16. Hydrogen desorption from hydrogen fluoride and remote hydrogen plasma cleaned silicon carbide (0001) surfaces

    SciTech Connect

    King, Sean W. Tanaka, Satoru; Davis, Robert F.; Nemanich, Robert J.

    2015-09-15

    Due to the extreme chemical inertness of silicon carbide (SiC), in-situ thermal desorption is commonly utilized as a means to remove surface contamination prior to initiating critical semiconductor processing steps such as epitaxy, gate dielectric formation, and contact metallization. In-situ thermal desorption and silicon sublimation has also recently become a popular method for epitaxial growth of mono and few layer graphene. Accordingly, numerous thermal desorption experiments of various processed silicon carbide surfaces have been performed, but have ignored the presence of hydrogen, which is ubiquitous throughout semiconductor processing. In this regard, the authors have performed a combined temperature programmed desorption (TPD) and x-ray photoelectron spectroscopy (XPS) investigation of the desorption of molecular hydrogen (H{sub 2}) and various other oxygen, carbon, and fluorine related species from ex-situ aqueous hydrogen fluoride (HF) and in-situ remote hydrogen plasma cleaned 6H-SiC (0001) surfaces. Using XPS, the authors observed that temperatures on the order of 700–1000 °C are needed to fully desorb C-H, C-O and Si-O species from these surfaces. However, using TPD, the authors observed H{sub 2} desorption at both lower temperatures (200–550 °C) as well as higher temperatures (>700 °C). The low temperature H{sub 2} desorption was deconvoluted into multiple desorption states that, based on similarities to H{sub 2} desorption from Si (111), were attributed to silicon mono, di, and trihydride surface species as well as hydrogen trapped by subsurface defects, steps, or dopants. The higher temperature H{sub 2} desorption was similarly attributed to H{sub 2} evolved from surface O-H groups at ∼750 °C as well as the liberation of H{sub 2} during Si-O desorption at temperatures >800 °C. These results indicate that while ex-situ aqueous HF processed 6H-SiC (0001) surfaces annealed at <700 °C remain terminated by some surface C–O and

  17. Surface etching, chemical modification and characterization of silicon nitride and silicon oxide--selective functionalization of Si3N4 and SiO2.

    PubMed

    Liu, Li-Hong; Michalak, David J; Chopra, Tatiana P; Pujari, Sidharam P; Cabrera, Wilfredo; Dick, Don; Veyan, Jean-François; Hourani, Rami; Halls, Mathew D; Zuilhof, Han; Chabal, Yves J

    2016-03-01

    The ability to selectively chemically functionalize silicon nitride (Si3N4) or silicon dioxide (SiO2) surfaces after cleaning would open interesting technological applications. In order to achieve this goal, the chemical composition of surfaces needs to be carefully characterized so that target chemical reactions can proceed on only one surface at a time. While wet-chemically cleaned silicon dioxide surfaces have been shown to be terminated with surficial Si-OH sites, chemical composition of the HF-etched silicon nitride surfaces is more controversial. In this work, we removed the native oxide under various aqueous HF-etching conditions and studied the chemical nature of the resulting Si3N4 surfaces using infrared absorption spectroscopy (IRAS), x-ray photoelectron spectroscopy (XPS), low energy ion scattering (LEIS), and contact angle measurements. We find that HF-etched silicon nitride surfaces are terminated by surficial Si-F and Si-OH bonds, with slightly subsurface Si-OH, Si-O-Si, and Si-NH2 groups. The concentration of surficial Si-F sites is not dependent on HF concentration, but the distribution of oxygen and Si-NH2 displays a weak dependence. The Si-OH groups of the etched nitride surface are shown to react in a similar manner to the Si-OH sites on SiO2, and therefore no selectivity was found. Chemical selectivity was, however, demonstrated by first reacting the -NH2 groups on the etched nitride surface with aldehyde molecules, which do not react with the Si-OH sites on a SiO2 surface, and then using trichloro-organosilanes for selective reaction only on the SiO2 surface (no reactivity on the aldehyde-terminated Si3N4 surface). PMID:26870908

  18. Surface etching, chemical modification and characterization of silicon nitride and silicon oxide—selective functionalization of Si3N4 and SiO2

    NASA Astrophysics Data System (ADS)

    Liu, Li-Hong; Michalak, David J.; Chopra, Tatiana P.; Pujari, Sidharam P.; Cabrera, Wilfredo; Dick, Don; Veyan, Jean-François; Hourani, Rami; Halls, Mathew D.; Zuilhof, Han; Chabal, Yves J.

    2016-03-01

    The ability to selectively chemically functionalize silicon nitride (Si3N4) or silicon dioxide (SiO2) surfaces after cleaning would open interesting technological applications. In order to achieve this goal, the chemical composition of surfaces needs to be carefully characterized so that target chemical reactions can proceed on only one surface at a time. While wet-chemically cleaned silicon dioxide surfaces have been shown to be terminated with surficial Si-OH sites, chemical composition of the HF-etched silicon nitride surfaces is more controversial. In this work, we removed the native oxide under various aqueous HF-etching conditions and studied the chemical nature of the resulting Si3N4 surfaces using infrared absorption spectroscopy (IRAS), x-ray photoelectron spectroscopy (XPS), low energy ion scattering (LEIS), and contact angle measurements. We find that HF-etched silicon nitride surfaces are terminated by surficial Si-F and Si-OH bonds, with slightly subsurface Si-OH, Si-O-Si, and Si-NH2 groups. The concentration of surficial Si-F sites is not dependent on HF concentration, but the distribution of oxygen and Si-NH2 displays a weak dependence. The Si-OH groups of the etched nitride surface are shown to react in a similar manner to the Si-OH sites on SiO2, and therefore no selectivity was found. Chemical selectivity was, however, demonstrated by first reacting the -NH2 groups on the etched nitride surface with aldehyde molecules, which do not react with the Si-OH sites on a SiO2 surface, and then using trichloro-organosilanes for selective reaction only on the SiO2 surface (no reactivity on the aldehyde-terminated Si3N4 surface).

  19. Plasma-enhanced deposition of antifouling layers on silicone rubber surfaces

    NASA Astrophysics Data System (ADS)

    Jiang, Hongquan

    In food processing and medical environments, biofilms serve as potential sources of contamination, and lead to food spoilage, transmission of diseases or infections. Because of its ubiquitous and recalcitrant nature, Listeria monocytogenes biofilm is especially hard to control. Generating antimicrobial surfaces provide a method to control the bacterial attachment. The difficulty of silver deposition on polymeric surfaces has been overcome by using a unique two-step plasma-mediated method. First silicone rubber surfaces were plasma-functionalized to generate aldehyde groups. Then thin silver layers were deposited onto the functionalized surfaces according to Tollen's reaction. X-ray photoelectron spectroscopy (XPS), atomic force spectroscopy (AFM) and scanning electron microscopy (SEM) showed that silver particles were deposited. By exposing the silver coated surfaces to L. monocytogenes, it was demonstrated that they were bactericidal to L. monocytogenes. No viable bacteria were detected after 12 to 18 h on silver-coated silicone rubber surfaces. Another antifouling approach is to generate polyethylene glycol (PEG) thin layer instead of silver on polymer surfaces. Covalent bond of PEG structures of various molecular weights to cold-plasma-functionalized polymer surfaces, such as silicone rubber, opens up a novel way for the generation of PEG brush-like or PEG branch-like anti-fouling layers. In this study, plasma-generated surface free radicals can react efficiently with dichlorosilane right after plasma treatment. With the generation of halo-silane groups, this enables PEG molecules to be grafted onto the modified surfaces. XPS data clearly demonstrated the presence of PEG molecules on plasma-functionalized silicone rubber surfaces. AFM images showed the changed surface morphologies as a result of covalent attachment to the surface of PEG molecules. Biofilm experiment results suggest that the PEG brush-like films have the potential ability to be the next

  20. Facile routes of manufacturing silicon quantum dots on a silicon wafer and their surface activation by esters of N-hydroxysuccinimide.

    PubMed

    Liu, Xiang; Cheng, Heming; Zhao, Tiantian; Zhang, Changchang

    2014-07-15

    Fluorescent silicon quantum dots (SiQDs) could be prepared by reduction of hydrogen silsesquioxane, etching of silicon powers with wetting chemistry techniques or electrolysis of a wafer catalyzed by polyoxometalates. Chemical modifications are indispensable for the stability of the SiQDs photoluminescence and wider applications of SiQDs. Facile routes of manufacturing SiQDs derived from a silicon wafer and its surface functionalization by N-hydroxysuccinimide (NHS) esters were described in this work in detail. Firstly, the porous silicon chip was prepared by nanosilver-assisted electroless chemical etching. Then the chip was etched successively with hydrofluoric acid/nitric acid solutions until it emitted dazzling red fluorescence which claimed the achieved SiQDs on silicon substrates (SiQDs/Si). Finally, surface NHS esters were fabricated on such an SiQDs/Si chipthrough stepwise modifications, which were tested by the amidation between the NHS esters and n-octylamine. The fluorescence emission of the SiQDs/Si chip almost remained unchanged during the successively chemical modifications, which indicated the SiQDs had capabilities of enduring the sustained high temperature and organic media. Meanwhile, the SiQDs did not leave from the silicon substrate during the surface tuning. The SiQDs obtained by ultrasonication of an SiQDs/Si chip in water were investigated by transmission electron and atomic force microscopies. PMID:24863773

  1. Hydrogenated amorphous silicon nitride photonic crystals for improved-performance surface electromagnetic wave biosensors

    PubMed Central

    Sinibaldi, Alberto; Descrovi, Emiliano; Giorgis, Fabrizio; Dominici, Lorenzo; Ballarini, Mirko; Mandracci, Pietro; Danz, Norbert; Michelotti, Francesco

    2012-01-01

    We exploit the properties of surface electromagnetic waves propagating at the surface of finite one dimensional photonic crystals to improve the performance of optical biosensors with respect to the standard surface plasmon resonance approach. We demonstrate that the hydrogenated amorphous silicon nitride technology is a versatile platform for fabricating one dimensional photonic crystals with any desirable design and operating in a wide wavelength range, from the visible to the near infrared. We prepared sensors based on photonic crystals sustaining either guided modes or surface electromagnetic waves, also known as Bloch surface waves. We carried out for the first time a direct experimental comparison of their sensitivity and figure of merit with surface plasmon polaritons on metal layers, by making use of a commercial surface plasmon resonance instrument that was slightly adapted for the experiments. Our measurements demonstrate that the Bloch surface waves on silicon nitride photonic crystals outperform surface plasmon polaritons by a factor 1.3 in terms of figure of merit. PMID:23082282

  2. Optical second harmonic spectroscopy of silicon-adsorbate surfaces and silicon nanocrystals

    NASA Astrophysics Data System (ADS)

    Downer, Michael

    2002-03-01

    Second harmonic generation (SHG) provides a surface-specific, noninvasive probe of adsorbates. However, microscopic first-principles theory of adsorbate-specific spectroscopic SHG responses has proven elusive. Here we present experimental SHG spectra for six well-characterized, technologically important Si(001) surfaces in ultrahigh vacuum (UHV): clean Si(001)-2x1 and Si(001) terminated with hydrogen (H), [1] germanium (Ge), Ge and H, [2] boron (B) and B and H. [3] Each adsorbate (combination) alters SHG uniquely. Our microscopic theories based on ab initio pseudopotential or semi-empirical tight-binding (SETB) methods then explain observed trends, and predict new features in unexplored spectral regions. [3,4] Charge transfer among surface bonds is found to govern SHG spectroscopy of surface-adsorbate systems strongly. New results on SHG from Si nanocrystals embedded in SiO2 will also be presented. [5] SHG is sensitive to Si/SiO2 interface states, electrostatic charge on the nanocrystals, and macroscopic particle density gradients. Finally, a new frequency-domain interferometric second-harmonic (FDISH) spectroscopic technique to measure simultaneously the intensity and phase of SH radiation over a broad spectral range without laser tuning will be described. [6] 1. J. Dadap et al., Phys. Rev. B 56, 13367 (1997). 2. P. Parkinson et al., Appl. Phys. B 68, 641 (1999). 3. D. Lim et al., Phys. Rev. Lett. 84, 3406 (2000); Appl. Phys. Lett. 77, 181 (2000). 4. V. Gavrilenko et al., Phys. Rev. B 63, 1653 (2001); M. C. Downer et al., Surf. Interface Anal. 31, 966 (2001); M. C. Downer et al., phys. stat. sol. (a), in press (2001). 5. Y. Jiang et al., Appl. Phys. Lett. 78, 766 (2001). 6. P. T. Wilson et al., Opt. Lett. 24, 496 (1999).

  3. Silicon distribution on the lunar surface obtained by Kaguya GRS

    NASA Astrophysics Data System (ADS)

    Kim, Kyeong Ja; Kobayashi, Masanori; Elphic, Richard; Karouji, Yuzuru; Hamara, Dave; Kobayashi, Shingo; Nagaoka, Hiroshi; Rodriguez, Alexis; Yamashita, Naoyuki; Reedy, Robert; Hasebe, Nobuyuki

    Gamma ray spectrometry (GRS) provides a powerful tool to map and characterize the elemental composition of the upper tens centimeters of solid planetary surfaces. Elemental maps generated by the Kaguya GRS (KGRS) include natural radioactive as well as major elements maps (e.g., Fe, Ca, and Ti). Analysis of the Si gamma ray has been investigated using the 4934 keV Si peak produced by the thermal neutron interaction (28) Si(n,gammag) (29) Si, generated during the interaction of galactic cosmic rays and surface material containing Si. The emission rate of gamma rays is directly proportional to the abundance of Si from the lunar surface; however, it is also affected by the thermal neutron density in the lunar surface. Thus, we corrected the Si GRS data by a low energy neutron data (< 0.1 eV) obtained by Lunar Prospector because the Kaguya orbiter did not carry a neutron detector. We used the relative change in thermal neutron flux as a function of topography measured by Lunar Prospector. Normalization of Si elemental abundance using the Kaguya data was accomplished using Apollo 11, 12, 16, and 17 archive data. The normalized Si elemental abundance of the Kaguya GRS data ranged from about 15 to 27% Si. The lowest and highest SiO _{2} abundance correspond to mineral groups like pyroxene group (PKT region) and feldspar group (Northern highlands), respectively. The Si abundance permits the quantification of the relative abundance and distribution of mafic or non-mafic lunar surfaces materials. Our KGRS data analysis shows that highland terrains are Si-enriched relative to lower basins and plains regions, which appear to consist of primarily of mafic rocks. Our elemental map of Si using Kaguya GRS data shows that the highland areas of both near side and far side of the Moon have higher abundance of Si, and the mare regions of the near side of the Moon have the lowest Si abundance on the Moon. Our study clearly shows that there are a number of Si enriched areas compared to

  4. Silanone groups on the surface of mechanically activated silicon dioxide

    SciTech Connect

    Bobyshev, A.A.; Radtsig, V.A.

    1988-12-01

    A new type of natural defects, namely, silanone groups, was identified on the surface of mechanically activated SiO/sub 2/. A study was carried out on their thermal stability, optical properties (a characteristic absorption band was found with maximum at 5.3 eV), and reactivity relative to simple molecules such as CO/sub 2/ and N/sub 2/O and radicals such as H, D, and CH/sub 3/.

  5. Role of an Oxidant Mixture as Surface Modifier of Porous Silicon Microstructures Evaluated by Spectroscopic Ellipsometry

    NASA Astrophysics Data System (ADS)

    Montiel-González, Zeuz; Escobar, Salvador; Nava, Rocío; Del Río, J. Antonio; Tagüeña-Martínez, Julia

    2016-04-01

    Current research on porous silicon includes the construction of complex structures with luminescent and/or photonic properties. However, their preparation with both characteristics is still challenging. Recently, our group reported a possible method to achieve that by adding an oxidant mixture to the electrolyte used to produce porous silicon. This mixture can chemically modify their microstructure by changing the thickness and surface passivation of the pore walls. In this work, we prepared a series of samples (with and without oxidant mixture) and we evaluated the structural differences through their scanning electron micrographs and their optical properties determined by spectroscopic ellipsometry. The results showed that ellipsometry is sensitive to slight variations in the porous silicon structure, caused by changes in their preparation. The fitting process, based on models constructed from the features observed in the micrographs, allowed us to see that the mayor effect of the oxidant mixture is on samples of high porosity, where the surface oxidation strongly contributes to the skeleton thinning during the electrochemical etching. This suggests the existence of a porosity threshold for the action of the oxidant mixture. These results could have a significant impact on the design of complex porous silicon structures for different optoelectronic applications.

  6. Surface finish in ultra-precision diamond turning of single-crystal silicon

    NASA Astrophysics Data System (ADS)

    Ayomoh, M.; Abou-El-Hossein, K.

    2015-10-01

    Silicon is an optical material widely used in the production of infrared optics. However, silicon as a brittle material exhibits some difficulties when ultra-precision machined by mono-crystalline single point diamond. Finish turning of silicon with mono- crystalline diamond inserts results in accelerated tool wear rates if the right combination of the machining parameters is not properly selected. In this study, we conducted a series of machining tests on an ultra-high precision machine tool using finish turning conditions when using mono-crystalline diamond inserts with negative rake angle and relatively big nose radius. The study yields some recommendations on the best combination of machining parameters that will result in maximum material removal rates with smallest possible surface finish. In this work, standard non-controlled waviness diamond inserts having nose radius of about 1.5 mm, rake angle of negative 25°, and clearance angle of 5° were used to produce flat surfaces on silicon disk. From the results, it has been established that feed rate has the most influential effect followed by the depth of cut and cutting speed.

  7. Role of an Oxidant Mixture as Surface Modifier of Porous Silicon Microstructures Evaluated by Spectroscopic Ellipsometry

    PubMed Central

    Montiel-González, Zeuz; Escobar, Salvador; Nava, Rocío; del Río, J. Antonio; Tagüeña-Martínez, Julia

    2016-01-01

    Current research on porous silicon includes the construction of complex structures with luminescent and/or photonic properties. However, their preparation with both characteristics is still challenging. Recently, our group reported a possible method to achieve that by adding an oxidant mixture to the electrolyte used to produce porous silicon. This mixture can chemically modify their microstructure by changing the thickness and surface passivation of the pore walls. In this work, we prepared a series of samples (with and without oxidant mixture) and we evaluated the structural differences through their scanning electron micrographs and their optical properties determined by spectroscopic ellipsometry. The results showed that ellipsometry is sensitive to slight variations in the porous silicon structure, caused by changes in their preparation. The fitting process, based on models constructed from the features observed in the micrographs, allowed us to see that the mayor effect of the oxidant mixture is on samples of high porosity, where the surface oxidation strongly contributes to the skeleton thinning during the electrochemical etching. This suggests the existence of a porosity threshold for the action of the oxidant mixture. These results could have a significant impact on the design of complex porous silicon structures for different optoelectronic applications. PMID:27097767

  8. Surface coating mediated swelling and fracture of silicon nanowires during lithiation.

    PubMed

    Sandu, Georgiana; Brassart, Laurence; Gohy, Jean-François; Pardoen, Thomas; Melinte, Sorin; Vlad, Alexandru

    2014-09-23

    Surface passivation of silicon anodes is an appealing design strategy for the development of reliable, high-capacity lithium-ion batteries. However, the structural stability of the coating layer and its influence on the lithiation process remain largely unclear. Herein, we show that surface coating mediates the swelling dynamics and the fracture pattern during initial lithiation of crystalline silicon nanopillars. We choose conformally nickel coated silicon architectures as a model system. Experimental findings are interpreted based on a chemomechanical model. Markedly different swelling and fracture regimes have been identified, depending on the coating thickness and silicon nanopillar diameter. Nanopillars with relatively thin coating display anisotropic swelling similar to pristine nanopillars, but with different preferred fracture sites. As the coating thickness increases, the mechanisms become isotropic, with one randomly oriented longitudinal crack that unzips the core-shell structure. The morphology of cracked pillars resembles that of a thin-film electrode on a substrate, which is more amenable to cyclic lithiation without fracture. The knowledge provided here helps clarify the cycling results of coated nanosilicon electrodes and further suggests design rules for better performance electrodes through proper control of the lithiation and fracture. PMID:25133525

  9. Role of an Oxidant Mixture as Surface Modifier of Porous Silicon Microstructures Evaluated by Spectroscopic Ellipsometry.

    PubMed

    Montiel-González, Zeuz; Escobar, Salvador; Nava, Rocío; Del Río, J Antonio; Tagüeña-Martínez, Julia

    2016-01-01

    Current research on porous silicon includes the construction of complex structures with luminescent and/or photonic properties. However, their preparation with both characteristics is still challenging. Recently, our group reported a possible method to achieve that by adding an oxidant mixture to the electrolyte used to produce porous silicon. This mixture can chemically modify their microstructure by changing the thickness and surface passivation of the pore walls. In this work, we prepared a series of samples (with and without oxidant mixture) and we evaluated the structural differences through their scanning electron micrographs and their optical properties determined by spectroscopic ellipsometry. The results showed that ellipsometry is sensitive to slight variations in the porous silicon structure, caused by changes in their preparation. The fitting process, based on models constructed from the features observed in the micrographs, allowed us to see that the mayor effect of the oxidant mixture is on samples of high porosity, where the surface oxidation strongly contributes to the skeleton thinning during the electrochemical etching. This suggests the existence of a porosity threshold for the action of the oxidant mixture. These results could have a significant impact on the design of complex porous silicon structures for different optoelectronic applications. PMID:27097767

  10. Syntactomer Peptide Assembly on Deformable Silicone Elastomer Surfaces

    NASA Astrophysics Data System (ADS)

    Albert, Julie N. L.; Genzer, Jan

    2013-03-01

    Surfaces of biocompatible poly(vinylmethylsiloxane) (PVMS) networks can be functionalized readily through modification of pendent vinyl groups. In this work, we also took advantage of network elasticity to examine how the conformation of surface-grafted peptides depended on their grafting density (i.e., the areal density of peptides). PVMS networks were cross-linked via reactive end groups, leaving the pendent vinyl groups available for peptide attachment via a carboxylic acid terminated thiol linker. To control grafting density, the networks were stretched uniaxially up to ~30% strain during the attachment of the thiol linker (via thiol-ene click chemistry) and the peptide (via sulfo-NHS/EDC coupling chemistry). After deposition, the strain was released. The resultant peptide-modified PVMS networks were imaged using scanning probe microscopy. The specific peptides of interest are called ``syntactomers'' because they are made up of repeating amino acid sequences much like a polymer is made up of repeating monomer units. In solution, these peptides display interesting pH-sensitive LCST and UCST phase behaviors that may impart surfaces with pH- and temperature-responsiveness in addition to biocompatibility.

  11. Functionalization of oxidized silicon surfaces with methyl groups and their characterization

    NASA Astrophysics Data System (ADS)

    Schmohl, A.; Khan, A.; Hess, P.

    2004-07-01

    Oxidized silicon surfaces were functionalized with chemically bonded methyl end groups and characterized by means of Fourier transform infrared (FTIR) spectroscopy with the attenuated total reflection (ATR) method, contact angle measurements, scanning force microscopy (SFM), and thermal desorption spectroscopy (TDS). Detailed results are presented for trimethylsilyl (TMS) and pentamethyldisilyl (PMDS) terminated surfaces, which were prepared by silanization with suitable chloro compounds. The IR spectra of the TMS-terminated surface exhibit two CH stretching peaks at 2904 and 2963 cm -1. In the thermal desorption experiments desorption of trimethylsilanol and methane was observed at 550 ∘C. The IR spectra of the PMDS-terminated surface show two CH stretching peaks at 2898 and 2955 cm -1. The thermal desorption spectra indicate cleavage of Si-Si bonds and desorption of trimethylsilane at 530 ∘C. The wetting behavior, adhesion, and mechanical properties were studied by contact angle measurements and SFM. The results are compared with the well-defined Si(111)-(1×1):H surface and a self-assembled monolayer (SAM) on a silicon surface with long hydrocarbon chains, prepared with octadecyltrichlorosilane (OTS, H 3C(CH 2) 17SiCl 3). The water contact angle was 82 ∘ for TMS and 85 ∘ for PMDS end groups. The friction forces measured for the TMS- and PMDS-terminated surfaces were comparable and about 3 times higher than that of the H-terminated silicon and the OTS-SAM surface. The corresponding friction coefficients were 0.17, 0.18, 0.34, and 0.45 for Si(111)-(1×1):H, OTS SAM, TMS, and PMDS surfaces, respectively.

  12. Evaporation of carbon atoms from the open surface of silicon carbide and through graphene cells: Semiempirical quantum-chemical modeling

    NASA Astrophysics Data System (ADS)

    Alekseev, N. I.; Luchinin, V. V.; Charykov, N. A.

    2013-11-01

    The evaporation of silicon atoms during the epitaxial growth of graphene on the singular carbon and silicon faces of silicon carbide SiC was modeled by the semiempirical AM1 and PM3 methods. The analysis was performed for evaporation of atoms both from the open surface of SiC and through the surface of the formed graphene monolayers. The total activation barrier of the evaporation of the silicon atoms, their passage from the graphene cell, and further evaporation from graphene was shown to be lower than the barrier to evaporation of the silicon atom on a free surface of SiC. Passage through graphene is thus not the limiting stage of the process, but contributes significantly to the effective evaporation time.

  13. In situ metalation of free base phthalocyanine covalently bonded to silicon surfaces

    PubMed Central

    Lupo, Fabio; Tudisco, Cristina; Bertani, Federico; Dalcanale, Enrico

    2014-01-01

    Summary Free 4-undecenoxyphthalocyanine molecules were covalently bonded to Si(100) and porous silicon through thermic hydrosilylation of the terminal double bonds of the undecenyl chains. The success of the anchoring strategy on both surfaces was demonstrated by the combination of X-ray photoelectron spectroscopy with control experiments performed adopting the commercially available 2,3,9,10,16,17,23,24-octakis(octyloxy)-29H,31H-phthalocyanine, which is not suited for silicon anchoring. Moreover, the study of the shape of the XPS N 1s band gave relevant information on the interactions occurring between the anchored molecules and the substrates. The spectra suggest that the phthalocyanine ring interacts significantly with the flat Si surface, whilst ring–surface interactions are less relevant on porous Si. The surface-bonded molecules were then metalated in situ with Co by using wet chemistry. The efficiency of the metalation process was evaluated by XPS measurements and, in particular, on porous silicon, the complexation of cobalt was confirmed by the disappearance in the FTIR spectra of the band at 3290 cm−1 due to –NH stretches. Finally, XPS results revealed that the different surface–phthalocyanine interactions observed for flat and porous substrates affect the efficiency of the in situ metalation process. PMID:25551050

  14. Low temperature front surface passivation of interdigitated back contact silicon heterojunction solar cell

    SciTech Connect

    Shu, Brent; Das, Ujjwal; Jani, Omkar; Hegedus, Steve; Birkmire, Robert

    2009-06-08

    The interdigitated back contact silicon heterojunction (IBC-SHJ) solar cell requires a low temperature front surface passivation/anti-reflection structure. Conventional silicon surface passivation using SiO2 or a-SiNx is performed at temperature higher than 400°C, which is not suitable for the IBC-SHJ cell. In this paper, we propose a PECVD a-Si:H/a-SiNx:H/a-SiC:H stack structure to passivate the front surface of crystalline silicon at low temperature. The optical properties and passivation quality of this structure are characterized and solar cells using this structure are fabricated. With 2 nm a-Si:H layer, the stack structure exhibits stable passivation with effective minority carrier lifetime higher than 2 ms, and compatible with IBC-SHJ solar cell processing. A critical advantage of this structure is that the SiC allows it to be HF resistant, thus it can be deposited as the first step in the process. This protects the a-Si/c-Si interface and maintains a low surface recombination velocity.

  15. Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon

    SciTech Connect

    Derrien, Thibault J.-Y.; Laboratoire Lasers, Plasmas et Procédés Photoniques , UMR CNRS 7341 - Aix-Marseille Université, Parc Technologique et Scientifique de Luminy, Case 917, 163 avenue de Luminy, F-13288 Marseille Cedex 09 ; Itina, Tatiana E.; Torres, Rémi; Sarnet, Thierry; Sentis, Marc

    2013-08-28

    The mechanisms of ripple formation on silicon surface by femtosecond laser pulses are investigated. We demonstrate the transient evolution of the density of the excited free-carriers. As a result, the experimental conditions required for the excitation of surface plasmon polaritons are revealed. The periods of the resulting structures are then investigated as a function of laser parameters, such as the angle of incidence, laser fluence, and polarization. The obtained dependencies provide a way of better control over the properties of the periodic structures induced by femtosecond laser on the surface of a semiconductor material.

  16. Immobilization of [60]fullerene on silicon surfaces through a calix[8]arene layer

    SciTech Connect

    Busolo, Filippo; Silvestrini, Simone; Maggini, Michele; Armelao, Lidia

    2013-10-28

    In this work, we report the functionalization of flat Si(100) surfaces with a calix[8]arene derivative through a thermal hydrosilylation process, followed by docking with [60]fullerene. Chemical grafting of calix[8]arene on silicon substrates was evaluated by X-ray photoelectron spectroscopy, whereas host-guest immobilization of fullerene was demonstrated by atomic force microscopy and sessile drop water contact angle measurements. Surface topographical variations, modelled on the basis of calix[8]arene and [60]fullerene geometrical parameters, are consistent with the observed morphological features relative to surface functionalization and to non-covalent immobilization of [60]fullerene.

  17. Silicon solar cells with polysilicon emitters and back surface fields

    NASA Astrophysics Data System (ADS)

    Du, Jiang; Berndt, Lyall P.; Tarr, N. Garry

    2010-06-01

    The first solar cells using in-situ doped polysilicon contacts to form both emitter and back surface field (BSF) regions are reported. The use of polysilicon contacts permits extremely low thermal budget processing (maximum 850°C 5 sec for dopant activation), preserving substrate properties. The effectiveness of the BSF is best seen with backside illumination, where the photocurrent under natural sunlight is found to be over 30% of that obtained with frontside illumination, even though the substrate thickness is comparable to the minority carrier diffusion length. The applicability of the structure to bifacial operation is considered.

  18. Silicon carbide nanowires: Elastic properties, defects, and surface formations

    NASA Astrophysics Data System (ADS)

    Rich, Ryan Michael

    A highly reproducible method of producing SiC nanowires on a large scale is presented, and the average size of SiC nanowires was 30 nm. XRD revealed that the molar yield increased linearly with time. TEM showed a distribution of nanowire sizes that shifted towards larger diameters as sintering time increased. It is known that vapor-liquid-solid reactions involving a metal catalyst play a role in their formation, and there is further evidence that a vapor-solid mechanism contributes as well. The elastic properties of the following SiC morphologies were explored with pressure applied via a diamond anvil cell: 20 nm grains, 50 nm grains, 130 nm grains, and 30 nm nanowires The bulk modulus of nanowires increased by 8%, while that of 20 nm grains increased 30% in comparison to bulk material. The increased bulk modulus is explained by the core-shell model, where nanoparticles possess one or more distinct regions near the surface with identical crystal symmetry but different interatomic distances. Defects may also affect the bulk modulus, especially in the heavily faulted nanowires. As seen by TEM, planar faults were abundant, and their quantity decreased with decreasing diameter. The extended Convolutional Multiple Whole Profile (eCMWP) analysis was employed to quantitate the defects by XRD. This analysis concluded that twins are the most frequently occurring planar fault with a 2.20% probability of formation, which corresponds to a defect spacing of 38 nm. SiC nanowires are formed with an amorphous outer layer a few nanometers deep. It was concluded that the layer consisted mainly of amorphous SiC, but EDS confirmed that this structure was rich in oxygen. FTIR confirmed the presence of Si-O bands which increased in population with thermal treatment. The surface of SiC nanowires was modified by etching in HF and HNO3 acids. Silica bands were reduced and functional groups appeared after treatment. XRD found that grain size increased by 186% and dislocations decreased by

  19. Surface modification of silicon nitride powder with aluminum

    SciTech Connect

    Han, K.R.; Lim, C.S.; Hong, M.J.; Choi, S.K.; Kwon, S.H.

    1996-02-01

    Surface modification of Si{sub 3}N{sub 4} with alumina was tried. It was achieved by simply mixing Si{sub 3}N{sub 4} powder with an alumina sol up to {approximately}2 wt% as alumina in an aqueous medium, dried, and followed by calcination at 400 C for 1 h. A TEM micrograph showed a coating layer of {approximately} 15 nm thickness. The isoelectric point of the modified Si{sub 3}N{sub 4} powder with porous alumina was at 0H 7.8, which is different from 5.8 and 8.6 for Si{sub 3}N{sub 4} and amorphous alumina, respectively.

  20. Silicon carbide wafer bonding by modified surface activated bonding method

    NASA Astrophysics Data System (ADS)

    Suga, Tadatomo; Mu, Fengwen; Fujino, Masahisa; Takahashi, Yoshikazu; Nakazawa, Haruo; Iguchi, Kenichi

    2015-03-01

    4H-SiC wafer bonding has been achieved by the modified surface activated bonding (SAB) method without any chemical-clean treatment and high temperature annealing. Strong bonding between the SiC wafers with tensile strength greater than 32 MPa was demonstrated at room temperature under 5 kN force for 300 s. Almost the entire wafer has been bonded very well except a small peripheral region and few voids. The interface structure was analyzed to verify the bonding mechanism. It was found an amorphous layer existed as an intermediate layer at the interface. After annealing at 1273 K in vacuum for 1 h, the bonding tensile strength was still higher than 32 MPa. The interface changes after annealing were also studied. The results show that the thickness of the amorphous layer was reduced to half after annealing.

  1. Surface plasmon polaritons in a composite system of porous silicon and gold

    SciTech Connect

    Vainshtein, J. S.; Goryachev, D. N.; Ken, O. S. Sreseli, O. M.

    2015-04-15

    A composite system of silicon quantum dots and gold particles with properties periodically changing along the surface (i.e., a system exhibiting the properties of a diffraction grating) is obtained by a one-step metal-assisted chemical etching. The spectral and angular dependences of the photoresponse for the composite system on single-crystal silicon are studied. The photoresponse peaks were observed, which behavior (the dependence on the parameters of the diffraction grating, wavelength and incidence angles of light) is attributed to the excitation of plasmon-polariton modes at the surface of the composite system with the diffraction grating. At the same time, the obtained values of the wave vectors for these modes are smaller than those calculated for plasmon polaritons excited at the interface between air and metal (gold) diffraction grating.

  2. Study of the amorphization of surface silicon layers implanted by low-energy helium ions

    NASA Astrophysics Data System (ADS)

    Lomov, A. A.; Myakon'kikh, A. V.; Oreshko, A. P.; Shemukhin, A. A.

    2016-03-01

    The structural changes in surface layers of Si(001) substrates subjected to plasma-immersion implantation by (2-5)-keV helium ions to a dose of D = 6 × 1015-5 × 1017 cm-2 have been studied by highresolution X-ray diffraction, Rutherford backscattering, and spectral ellipsometry. It is found that the joint application of these methods makes it possible to determine the density depth distribution ρ( z) in an implanted layer, its phase state, and elemental composition. Treatment of silicon substrates in helium plasma to doses of 6 × 1016 cm-2 leads to the formation of a 20- to 30-nm-thick amorphized surface layer with a density close to the silicon density. An increase in the helium dose causes the formation of an internal porous layer.

  3. Laser-induced dry-fabrication of bibenzyl molecular layers on the silicon surface

    NASA Astrophysics Data System (ADS)

    Zhang, Yong Ping; Chen, Zhi Qian; Dong, Dong; Xu, Guo Qin

    2014-08-01

    The covalently attached organic monolayer has great effects on the structures of the organic semiconductor thin films and their electronic transport properties in the fabrication of molecular electronic devices. A laser-induced dry-fabrication method has been developed to form bibenzyl-like molecular layers by photoinduced reaction of 4-bromostyrene molecules on silicon surface in the vacuum environment. The radical site produced via the C-Br bond cleavage concurrently reacts with the Cdbnd C vinyl group of the physisorbed 4-bromostyrene molecule above to form the -CH2-CHBr- covalent linkage. X-ray photoelectron spectroscopy (XPS) and high-resolution electron energy loss spectroscopy (HREELS) experimental results and density functional theory (DFT) calculations confirm the formation of covalently bonded bibenzyl-like (Phi-CH2-CHBr-Phi) molecular layers on the silicon surface.

  4. A silicon-on-insulator surface plasmon interferometer for hydrogen detection

    NASA Astrophysics Data System (ADS)

    Le, Khai Q.; Ngo, Quang Minh

    2016-07-01

    A compact and integrated optical gas sensor on a silicon-on-insulator platform based on surface plasmon interference for hydrogen detection is theoretically introduced in this paper. The basic sensor element consists of a thin layer of palladium (Pd) embedded in a silicon waveguide. Two decoupled surface plasmon polariton waves propagate simultaneously on either side of the Pd layer, which combine and interfere at the end of the Pd layer. The interference mode can be either constructive or destructive, which is highly sensitive to volumetric hydrogen concentration. The proposed sensor is of great potential as a basic building block for lab-on-chip-scale devices owing to its high integration and compactness.

  5. Magnetic behaviour of TbPc2 single-molecule magnets chemically grafted on silicon surface

    PubMed Central

    Mannini, Matteo; Bertani, Federico; Tudisco, Cristina; Malavolti, Luigi; Poggini, Lorenzo; Misztal, Kasjan; Menozzi, Daniela; Motta, Alessandro; Otero, Edwige; Ohresser, Philippe; Sainctavit, Philippe; Condorelli, Guglielmo G.; Dalcanale, Enrico; Sessoli, Roberta

    2014-01-01

    Single-molecule magnets (SMMs) are among the most promising molecular systems for the development of novel molecular electronics based on the spin transport. Going beyond the investigations focused on physisorbed SMMs, in this work the robust grafting of Terbium(III) bis(phthalocyaninato) complexes to silicon surface from a diluted solution is achieved by rational chemical design yielding the formation of a partially oriented monolayer on the conducting substrate. Here, by exploiting the surface sensitivity of X-ray circular magnetic dichroism we evidence an enhancement of the magnetic bistability of this single-molecule magnet, in contrast to the dramatic reduction of the magnetic hysteresis that characterises monolayer deposits evaporated on noble and ferromagnetic metals. Photoelectron spectroscopy investigations and density functional theory analysis suggest a non-innocent role played by the silicon substrate, evidencing the potentiality of this approach for robust integration of bistable magnetic molecules in electronic devices. PMID:25109254

  6. Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition

    SciTech Connect

    Otto, Martin; Kroll, Matthias; Kaesebier, Thomas; Tuennermann, Andreas; Salzer, Roland; Wehrspohn, Ralf B.

    2012-05-07

    We investigate the optical and opto-electronic properties of black silicon (b-Si) nanostructures passivated with Al{sub 2}O{sub 3}. The b-Si nanostructures significantly improve the absorption of silicon due to superior anti-reflection and light trapping properties. By coating the b-Si nanostructures with a conformal layer of Al{sub 2}O{sub 3} by atomic layer deposition, the surface recombination velocity can be effectively reduced. We show that control of plasma-induced subsurface damage is equally important to achieve low interface recombination. Surface recombination velocities of S{sub eff}<13 cm/s have been measured for an optimized structure which, like the polished reference, exhibits lifetimes in the millisecond range.

  7. Molecular chemisorption on passivated and defective boron doped silicon surfaces: a "forced" dative bond.

    PubMed

    Boukari, Khaoula; Duverger, Eric; Sonnet, Philippe

    2014-12-01

    We investigate the adsorption mechanism of a single trans 4-pyridylazobenzene molecule (denoted by PAB) on a doped boron Si(111)√3×√3R30° surface (denoted by SiB) with or without boron-defects, by means of density functional theory calculations. The semiempirical approach proposed by Grimme allows us to take the dispersion correction into account. The role of the van der Waals correction in the adsorption geometries and energies is presented. In particular, two adsorption configurations are electronically studied. In the first one, the molecule is parallel to the surface and interacts with the SiB surface via the -N=N- bond. In the presence of a boron-defect, a Si-N chemical bond between the molecule and the surface is then formed, while electrostatic or/and van der Waals interactions are observed in the defectless surface. In the second adsorption configuration, the molecule presents different orientations with respect to the surface and interacts via the nitrogen atom of the pyridyl part of the PAB molecule. If the molecule is perpendicular to the perfect SiB surface, the lone-pair electrons associated with the heterocyclic nitrogen atom fill the empty dangling bond of a silicon adatom via a dative bond. Finally, in the presence of one boron-defect, the possibility of a "forced" dative bond, corresponding to a chemical bond formation between the PAB molecule and the silicon electron occupied dangling bond, is emphasized. PMID:25318974

  8. Analysis of surface and interface charge interactions in silicon on insulator (SOI) substrates

    NASA Astrophysics Data System (ADS)

    Lukasiak, L.; Roman, P.; Jakubowski, A.; Ruzyllo, J.

    2001-01-01

    Surface photovoltage (SPV) measurements may provide an effective method for determining electrical properties of silicon on insulator (SOI) surfaces. In the experimental part of this work the use of the non-contact SPV-based method of surface charge profiling (SCP) in the monitoring of surface charges is explored. It was demonstrated that application of this method is constrained by the interactions between charges on the Si surface and at the interface between the Si active layer and buried oxide (box). These interactions are subsequently modeled and related to the SCP measurements. It is demonstrated that at a given doping level, the thickness of the active layer and density of charge associated with the box are factors predetermining the effectiveness of this method in SOI surface characterization. Through modeling, the SOI substrate parameter space for which the SCP method can yield useful information is defined.

  9. Large spin splitting of metallic surface-state bands at adsorbate-modified gold/silicon surfaces

    PubMed Central

    Bondarenko, L. V.; Gruznev, D. V.; Yakovlev, A. A.; Tupchaya, A. Y.; Usachov, D.; Vilkov, O.; Fedorov, A.; Vyalikh, D. V.; Eremeev, S. V.; Chulkov, E. V.; Zotov, A. V.; Saranin, A. A.

    2013-01-01

    Finding appropriate systems with a large spin splitting of metallic surface-state band which can be fabricated on silicon using routine technique is an essential step in combining Rashba-effect based spintronics with silicon technology. We have found that originally poor structural and electronic properties of the surface can be substantially improved by adsorbing small amounts of suitable species (e.g., Tl, In, Na, Cs). The resultant surfaces exhibit a highly-ordered atomic structure and spin-split metallic surface-state band with a momentum splitting of up to 0.052 Å−1 and an energy splitting of up to 190 meV at the Fermi level. The family of adsorbate-modified surfaces, on the one hand, is thought to be a fascinating playground for exploring spin-splitting effects in the metal monolayers on a semiconductor and, on the other hand, expands greatly the list of material systems prospective for spintronics applications. PMID:23661151

  10. Design and fabrication of non silicon substrate based MEMS energy harvester for arbitrary surface applications

    NASA Astrophysics Data System (ADS)

    Balpande, Suresh S.; Pande, Rajesh S.

    2016-04-01

    Internet of Things (IoT) uses MEMS sensor nodes and actuators to sense and control objects through Internet. IOT deploys millions of chemical battery driven sensors at different locations which are not reliable many times because of frequent requirement of charging & battery replacement in case of underground laying, placement at harsh environmental conditions, huge count and difference between demand (24 % per year) and availability (energy density growing rate 8% per year). Energy harvester fabricated on silicon wafers have been widely used in manufacturing MEMS structures. These devices require complex fabrication processes, costly chemicals & clean room. In addition to this silicon wafer based devices are not suitable for curved surfaces like pipes, human bodies, organisms, or other arbitrary surface like clothes, structure surfaces which does not have flat and smooth surface always. Therefore, devices based on rigid silicon wafers are not suitable for these applications. Flexible structures are the key solution for this problems. Energy transduction mechanism generates power from free surrounding vibrations or impact. Sensor nodes application has been purposefully selected due to discrete power requirement at low duty cycle. Such nodes require an average power budget in the range of about 0.1 microwatt to 1 mW over a period of 3-5 seconds. Energy harvester is the best alternate source in contrast with battery for sensor node application. Novel design of Energy Harvester based on cheapest flexible non silicon substrate i.e. cellulose acetate substrate have been modeled, simulated and analyzed on COMSOL multiphysics and fabricated using sol-gel spin coating setup. Single cantilever based harvester generates 60-75 mV peak electric potential at 22Hz frequency and approximately 22 µW power at 1K-Ohm load. Cantilever array can be employed for generating higher voltage by replicating this structure. This work covers design, optimization, fabrication of harvester and

  11. Temperature Dependence of Lateral Charge Transport in Silicon Nanomembranes

    NASA Astrophysics Data System (ADS)

    Hu, Weiwei; Scott, Shelley; Jacobson, Rb; Sookchoo, Pornsatit; Savage, Donald; Eriksson, Mark; Lagally, Max

    2014-03-01

    Thin sheets of single-crystal silicon (nanomembranes), electrically isolated from a bulk substrate by a dielectric layer, are an exceptional tool for studying the electronic transport properties of surfaces in the absence of an extended bulk. Under UHV, we measure the conductivity, and a back gate allows us to look into the depletion region, where we can determine the minimum conductance. For hydrogen-terminated Si(001) NMs, for which the surface has no conductivity, the minimum conductance decreases with decreasing NM thickness (220-42nm), demonstrating the reduction in carriers for thinner NMs. For the clean Si(2 ×1)surface, mobile charge exists in the π* surface band. For thicknesses below 200nm surface conduction dominates, rendering the thickness independence of the minimum. We determine a surface charge mobility of ~50cm2V-1s-1. We have measured the temperature dependence of the conductance of a 42nm thick HF treated SiNM. The results show that the Fermi level is pinned 0.21 +/- 0 . 01 eV below the conduction band minimum, in agreement with XPS results. Supported by DOE.

  12. Computational Study of Field Initiated Surface Reactions for Synthesis of Diamond and Silicon

    NASA Technical Reports Server (NTRS)

    Musgrave, Charles Bruce

    1999-01-01

    This project involves using quantum chemistry to simulate surface chemical reactions in the presence of an electric field for nanofabrication of diamond and silicon. A field delivered by a scanning tunneling microscope (STM) to a nanometer scale region of a surface affects chemical reaction potential energy surfaces (PES) to direct atomic scale surface modification to fabricate sub-nanometer structures. Our original hypothesis is that the applied voltage polarizes the charge distribution of the valence electrons and that these distorted molecular orbitals can be manipulated with the STM so as to change the relative stabilities of the electronic configurations over the reaction coordinates and thus the topology of the PES and reaction kinetics. Our objective is to investigate the effect of applied bias on surface reactions and the extent to which STM delivered fields can be used to direct surface chemical reactions on an atomic scale on diamond and silicon. To analyze the fundamentals of field induced chemistry and to investigate the application of this technique for the fabrication of nanostructures, we have employed methods capable of accurately describing molecular electronic structure. The methods we employ are density functional theory (DFT) quantum chemical (QC) methods. To determine the effect of applied bias on surface reactions we have calculated the QC PESs in various applied external fields for various reaction steps for depositing or etching diamond and silicon. We have chosen reactions which are thought to play a role in etching and the chemical vapor deposition growth of Si and diamond. The PESs of the elementary reaction steps involved are then calculated under the applied fields, which we vary in magnitude and configuration. We pay special attention to the change in the reaction barriers, and transition state locations, and search for low energy reaction channels which were inaccessible without the applied bias.

  13. Cell adhesion response on femtosecond laser initiated liquid assisted silicon surface.

    PubMed

    Ulmeanu, M; Sima, L E; Ursescu, D; Enculescu, M; Bazan, X; Quintana, I

    2014-03-01

    Silicon substrates were irradiated at normal incidence with a femtosecond Ti:sapphire laser (Quatronix, 90 fs pulse duration, 1 kHz repetition rate, M(2) ~ 1.2, maximum energy peak 350 mJ ) operating at a wavelength of 400 nm and focused via a microscope objective (Newport; UV Objective Model, 37x 0.11 N.A.). The laser scanning was assisted by liquids precursors media such as methanol and 1,1,2-trichlorotrifluoroethane. By altering the processing parameters, such as incident laser energy, scanning speed, and different irradiation media, various surface structures were produced on areas with 1 mm(2) dimensions. We analyzed the dependence of the surface morphology on laser pulse energy, scanning speed and irradiation media. Well ordered areas are developed without imposing any boundary conditions for the capillary waves that coarsens the ripple pattern. To assess biomaterial-driven cell adhesion response we investigated actin filaments organization and cell morphological changes following growth onto processed silicon substrates. Our study of bone cell progenitor interaction with laser nanoprocessed silicon lines has shown that cells anchor mainly to contact points along the nanostructured surface. Consequently, actin filaments are stretched towards the 15 µm wide parallel lines increasing lateral cell spreading and changing the bipolar shape of mesenchymal stem cells. PMID:24444164

  14. Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon.

    PubMed

    Derrien, Thibault J-Y; Krüger, Jörg; Itina, Tatiana E; Höhm, Sandra; Rosenfeld, Arkadi; Bonse, Jörn

    2013-12-01

    The formation of near-wavelength laser-induced periodic surface structures (LIPSS) on silicon upon irradiation with sequences of Ti:sapphire femtosecond laser pulse pairs (pulse duration 150 fs, central wavelength 800 nm) is studied theoretically. For this purpose, the nonlinear generation of conduction band electrons in silicon and their relaxation is numerically calculated using a two-temperature model approach including intrapulse changes of optical properties, transport, diffusion and recombination effects. Following the idea that surface plasmon polaritons (SPP) can be excited when the material turns from semiconducting to metallic state, the "SPP active area" is calculated as function of fluence and double-pulse delay up to several picoseconds and compared to the experimentally observed rippled surface areas. Evidence is presented that multi-photon absorption explains the large increase of the rippled area for temporally overlapping pulses. For longer double-pulse delays, relevant relaxation processes are identified. The results demonstrate that femtosecond LIPSS on silicon are caused by the excitation of SPP and can be controlled by temporal pulse shaping. PMID:24514516

  15. Selective Growth and SERS Property of Gold Nanoparticles on Amorphized Silicon Surface

    NASA Astrophysics Data System (ADS)

    Matsuoka, T.; Nishi, M.; Sakakura, M.; Shimotsuma, Y.; Miura, K.; Hirao, K.

    2011-02-01

    We have fabricated gold patterns on a silicon substrate by a simple three-step method using a focused ion beam (FIB). The obtained gold patterns consisted of a large number of gold nanoparticles which grew selectively on the preprocessed silicon surface from an Au ion-containing solution dropped on the substrate. The solution was prepared by reacting HAuCl4 aqueous solution with (3-mercaptopropyl)trimethoxysilane (MPTMS). It was found that the size and shape of the precipitating gold nanoparticles is controllable by changing the mixing ratio between HAuCl4 aqueous solution and MPTMS. Additionally, we confirmed that the fabricated gold structures were surface enhanced Raman scattering (SERS)-active; the enhanced Raman peaks of rhodamin 6G (R6G) were detected on the fabricated gold structures, whereas no peak was detected on the alternative silicon surface. We also demonstrated the gold patterning using a femtosecond laser instead of an FIB. We believe that our method is a favorable candidate for fabricating SERS-active substrates, since the substrates can be prepared very simply and flexibly.

  16. Surface Engineering of Silicon and Carbon by Pulsed-Laser Ablation

    SciTech Connect

    Fowlkes, J.D.; Geohegan, D.B.; Jellison, G.E., Jr.; Lowndes, D.H.; Merkulov, V.I.; Pedraza, A.J.; Puretzky, A.A.

    1999-02-28

    Experiments are described in which a focused pulsed-excimer laser beam is used either to ablate a graphite target and deposit hydrogen-free amorphous carbon films, or to directly texture a silicon surface and produce arrays of high-aspect-ratio silicon microcolumns. In the first case, diamond-like carbon (or tetrahedral amorphous carbon, ta-C) films were deposited with the experimental conditions selected so that the masses and kinetic energies of incident carbon species were reasonably well controlled. Striking systematic changes in ta-C film properties were found. The sp{sup 3}-bonded carbon fraction, the valence electron density, and the optical (Tauc) energy gap ail reach their maximum values in films deposited at a carbon ion kinetic energy of {approximately}90 eV. Tapping-mode atomic force microscope measurements also reveal that films deposited at 90 eV are extremely smooth (rms roughness {approximately}1 {angstrom} over several hundred nm) and relatively free of particulate, while the surface roughness increases in films deposited at significantly lower energies. In the second set of experiments, dense arrays of high-aspect-ratio silicon microcolumns {approximately}20-40 {micro}m tall and {approximately}2 {micro}m in diameter were formed by cumulative nanosecond pulsed excimer laser irradiation of silicon wafers in air and other oxygen-containing atmospheres. It is proposed that microcolumn growth occurs through a combination of pulsed-laser melting of the tips of the columns and preferential redeposition of silicon on the molten tips from the ablated flux of silicon-rich vapor. The common theme in this research is that a focused pulsed-laser beam can be used quite generally to create an energetic flux, either the energetic carbon ions needed to form sp{sup 3} (diamond-like) bonds or the overpressure of silicon-rich species needed for microcolumn growth. Thus, new materials synthesis opportunities result from the access to nonequilibrium growth conditions

  17. Surface Strength of Silicon Nitride in Relation to Rolling Contact Performance

    SciTech Connect

    Wang, Wei; Hadfield, M.; Wereszczak, Andrew A

    2009-01-01

    Silicon nitride material has been traditionally used as bearing material due to its superior performance against bearing steel. Its successful application as a bearing element has led to the development of rolling contact applications in turbomachinery and automotive industries. In the case of latter, this is especially true for the engine manufacturing industry where its excellent rolling contact performance can make significant savings on warranty cost for engine manufactures. In spite of these advantages, the remaining limitation for their broader application is the high component machining cost. Further understanding of rolling contact performance of silicon nitride in relation to its surface integrity will enable engine manufacturers to produce components that meet the design requirements while at the same time reduce the machining cost. In the present study, the relationship between the C-sphere strength of a silicon nitride and its rolling contact fatigue life is investigated. The C-sphere test is used here to compare the strengths of three batches of sintered reaction-bonded silicon nitride (SRBSN) specimens with different subsurface quality induced by variation of machining parameters. In parallel, the rolling contact fatigue (RCF) performance of those machining conditions is studied on a modified four-ball tester. The results show that the most aggressively machined specimens have the weakest C-sphere strength and the shortest RCF life. This positive relationship can give component manufacturers a valuable reference when they make selections of candidate material and finishing standards.

  18. Structure and surface correlations to the optical properties of nonthermal plasma-produced silicon nanoparticles

    NASA Astrophysics Data System (ADS)

    Anthony, Rebecca Joy

    Nanomaterials have diverse capabilities to enable new technology and to deepen our understanding of our world, providing exciting prospects for scientists and the public alike in a vast span of uses. In the past decade, however, the potential held by nanotechnology has been reframed in the context of helping to slow global climate change and to alter the ways in which we use our energy to reflect more efficient technology and renewable energy sources. Silicon is a standout material in this new framework: as a nanomaterial, silicon can emit light when exposed to an applied voltage or ultraviolet optical excitation source. Silicon nanocrystals also exhibit size-dependent light emission, due to quantum confinement. This thesis is an exploration of the synthesis and processing parameters that affect the optical performance of silicon nanocrystals produced in a nonthermal plasma reactor. The efficiency of this light emission is sensitive to both synthesis environment and post-synthesis treatment. The work presented here is an attempt to deepen our understanding of the effects of different reactor and treatment parameters on the light emission efficiency from silicon nanoparticles, such that the luminescence behavior of the nanoparticles can be specifically engineered. Being able to fine-tune the structure, surface, and optical characteristics of the silicon nanocrystals is key in maximizing their use in luminescence applications. For all of the experiments described here, a nonthermal plasma flow-through reactor has been used to create the silicon nanoparticles. Silane gas is dissociated in the plasma and fragments come together to form silicon clusters, then grow to create nanoparticles. The nanoparticles were collected from the reactor for further processing, characterization, and experiments. The first discovery in this project was that by adjusting the power to the plasma reactor, the crystallinity of the silicon particles can be tuned: low power results in

  19. Preablation electron and lattice dynamics on the silicon surface excited by a femtosecond laser pulse

    SciTech Connect

    Ionin, A. A.; Kudryashov, S. I. Seleznev, L. V.; Sinitsyn, D. V.; Lednev, V. N.; Pershin, S. M.

    2015-11-15

    The study of the time-resolved optical reflection from the silicon surface excited by single femtosecond laser pulses below and near the melting threshold reveals fast (less than 10 ps) Auger recombination of a photogenerated electron–hole plasma with simultaneous energy transfer to the lattice. The acoustic relaxation of the excited surface layer indicates (according to reported data) a characteristic depth of 150 nm of the introduction of the laser radiation energy, which is related to direct linear laser radiation absorption in the photoexcited material due to a decrease in the energy bandgap. The surface temperature, which is probed at a time delay of about 100 ps from the reflection thermomodulation of probe radiation and the integrated continuous thermal emission from the surface, increases with the laser fluence and, thus, favors a nonlinear increase in the fluorescence of sublimated silicon atoms. The surface temperature estimated near the picosecond melting threshold demonstrates a substantial (20%) overheating of the material with respect to the equilibrium melting temperature. Above the melting threshold, the delay of formation of the material melt decreases rapidly (from several tens of picoseconds to several fractions of a picosecond) when the laser fluence and, correspondingly, the surface temperature increase. In the times of acoustic relaxation of the absorbing layer and even later, the time modulation of the optical reflectivity of the material demonstrates acoustic reverberations with an increasing period, which are related to the formation of melt nuclei in the material.

  20. Uniform and selective CVD growth of carbon nanotubes and nanofibres on arbitrarily microstructured silicon surfaces

    NASA Astrophysics Data System (ADS)

    Hart, A. J.; Boskovic, B. O.; Chuang, A. T. H.; Golovko, V. B.; Robertson, J.; Johnson, B. F. G.; Slocum, A. H.

    2006-03-01

    Carbon nanotubes (CNTs) and nanofibres (CNFs) are grown on bulk-micromachined silicon surfaces by thermal and plasma-enhanced chemical vapour deposition (PECVD), with catalyst deposition by electron beam evaporation or from a colloidal solution of cobalt nanoparticles. Growth on the peaked topography of plasma-etched silicon 'micrograss' supports, as well as on sidewalls of vertical structures fabricated by deep-reactive ion etching demonstrates the performance of thermal CVD and PECVD in limiting cases of surface topography. In thermal CVD, uniform films of tangled single-walled CNTs (SWNTs) coat the structures despite oblique-angle effects on the thickness of the catalyst layers deposited by e-beam evaporation. In PECVD, forests of aligned CNFs protrude from areas which are favourably wet by the colloidal catalyst, demonstrating selective growth based on surface texture. These surface preparation principles can be used to grow a wide variety of nanostructures on microstructured surfaces having arbitrary topography, giving substrates with hierarchical microscale and nanoscale surface textures. Such substrates could be used to study cell and neuronal growth, influence liquid-solid wetting behaviour, and as functional elements in microelectronic and micromechanical devices.

  1. Influence of intermediate layers on the surface condition of laser crystallized silicon thin films and solar cell performance

    NASA Astrophysics Data System (ADS)

    Höger, Ingmar; Himmerlich, Marcel; Gawlik, Annett; Brückner, Uwe; Krischok, Stefan; Andrä, Gudrun

    2016-01-01

    The intermediate layer (IL) between glass substrate and silicon plays a significant role in the optimization of multicrystalline liquid phase crystallized silicon thin film solar cells on glass. This study deals with the influence of the IL on the surface condition and the required chemical surface treatment of the crystallized silicon (mc-Si), which is of particular interest for a-Si:H heterojunction thin film solar cells. Two types of IL were investigated: sputtered silicon nitride (SiN) and a layer stack consisting of silicon nitride and silicon oxide (SiN/SiO). X-ray photoelectron spectroscopy measurements revealed the formation of silicon oxynitride (SiOxNy) or silicon oxide (SiO2) layers at the surface of the mc-Si after liquid phase crystallization on SiN or SiN/SiO, respectively. We propose that SiOxNy formation is governed by dissolving nitrogen from the SiN layer in the silicon melt, which segregates at the crystallization front during crystallization. This process is successfully hindered, when additional SiO layers are introduced into the IL. In order to achieve solar cell open circuit voltages above 500 mV, a removal of the formed SiOxNy top layer is required using sophisticated cleaning of the crystallized silicon prior to a-Si:H deposition. However, solar cells crystallized on SiN/SiO yield high open circuit voltage even when a simple wet chemical surface treatment is applied. The implementation of SiN/SiO intermediate layers facilitates the production of mesa type solar cells with open circuit voltages above 600 mV and a power conversion efficiency of 10%.

  2. Fabrication of wear-resistant silicon microprobe tips for high-speed surface roughness scanning devices

    NASA Astrophysics Data System (ADS)

    Wasisto, Hutomo Suryo; Yu, Feng; Doering, Lutz; Völlmeke, Stefan; Brand, Uwe; Bakin, Andrey; Waag, Andreas; Peiner, Erwin

    2015-05-01

    Silicon microprobe tips are fabricated and integrated with piezoresistive cantilever sensors for high-speed surface roughness scanning systems. The fabrication steps of the high-aspect-ratio silicon microprobe tips were started with photolithography and wet etching of potassium hydroxide (KOH) resulting in crystal-dependent micropyramids. Subsequently, thin conformal wear-resistant layer coating of aluminum oxide (Al2O3) was demonstrated on the backside of the piezoresistive cantilever free end using atomic layer deposition (ALD) method in a binary reaction sequence with a low thermal process and precursors of trimethyl aluminum and water. The deposited Al2O3 layer had a thickness of 14 nm. The captured atomic force microscopy (AFM) image exhibits a root mean square deviation of 0.65 nm confirming the deposited Al2O3 surface quality. Furthermore, vacuum-evaporated 30-nm/200-nm-thick Au/Cr layers were patterned by lift-off and served as an etch mask for Al2O3 wet etching and in ICP cryogenic dry etching. By using SF6/O2 plasma during inductively coupled plasma (ICP) cryogenic dry etching, micropillar tips were obtained. From the preliminary friction and wear data, the developed silicon cantilever sensor has been successfully used in 100 fast measurements of 5- mm-long standard artifact surface with a speed of 15 mm/s and forces of 60-100 μN. Moreover, the results yielded by the fabricated silicon cantilever sensor are in very good agreement with those of calibrated profilometer. These tactile sensors are targeted for use in high-aspect-ratio microform metrology.

  3. Investigation of human cell response to covalently attached RADA16-I peptide on silicon surfaces.

    PubMed

    Shamsi, Fahimeh

    2016-09-01

    We described a modification of the ionic (RADARADARADARADA)(1) peptide or RADA16-I with 4-azidophenyl isothiocyanate via a specific and gentle reaction. The azidated peptide was covalently immobilized on an alkyne-terminated monolayer on Si(111) via the Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition reaction. Detailed characterization using Impedance spectroscopy (IS), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy demonstrated high coverage of the RADA 16-I peptide on silicon surfaces. Scanning electron microscopy (SEM) and methyl tetrazole sulfate (MTS) assay were used to characterize the morphology and proliferation ability of human fibroblast cells on surfaces. Cell adhesion assay was performed to examine cell-substrate interactions. Significant differences in fibroblast cell morphology, adhesion, and viability were observed on the RADA16-I peptide modified surfaces compared to the control surfaces. These results may suggest a potential application of RADA16-I peptide modified surfaces in biomedical applications. PMID:27236098

  4. Silicon Surface Modification Using C4F8+O2 Plasma for Nano-Imprint Lithography.

    PubMed

    Lee, Junmyung; Efremov, Alexander; Lee, Jaemin; Yeom, Geun Young; Kwon, Kwang-Ho

    2015-11-01

    The investigation of C4F8+O2 feed gas composition on both plasma parameters and plasma treated silicon surface characteristics was carried out. The combination of plasma diagnostics by Langmuir probes and plasma modeling indicated that an increase in O2 mixing ratio results in monotonically decreasing densities of CF(x) (x = 1-3) radicals as well as in non-monotonic behavior of F atom density. The surface characterization by X-ray photoelectron spectroscopy and contact angle measurements showed that the C4F8+O2 mixtures with less than 60% 02 result in modification of Si surfaces due to the deposition of the FC polymer films while the change of O2 mixing ratio in the range of 30%-60% provides an effective adjustment of the surface characteristics such as surface energy, contact angle, etc. PMID:26726589

  5. Direct visualization of photoinduced glassy dynamics on the amorphous silicon carbide surface by STM movies

    NASA Astrophysics Data System (ADS)

    Nguyen, Duc; Nienhaus, Lea; Haasch, Richard T.; Lyding, Joseph; Gruebele, Martin

    2015-03-01

    Glassy dynamics can be controlled by light irradiation. Sub- and above-bandgap irradiation cause numerous phenomena in glasses including photorelaxation, photoexpansion, photodarkening and pohtoinduced fluidity. We used scanning tunneling microscopy to study surface glassy dynamics of amorphous silicon carbide irradiated with above- bandgap 532 nm light. Surface clusters of ~ 4-5 glass forming unit in diameter hop mostly in a two-state fashion, both without and with irradiation. Upon irradiation, the average surface hopping activity increases by a factor of 3. A very long (~1 day) movie of individual clusters with varying laser power density provides direct evidence for photoinduced enhanced hopping on the glass surfaces. We propose two mechanisms: heating and electronic for the photoenhanced surface dynamics.

  6. Organic molecules on silicon surface: A way to tune metal dependent Schottky barrier

    NASA Astrophysics Data System (ADS)

    Rabinal, M. K.

    2016-09-01

    Effect of covalently bonded organic molecules on p-type Si surfaces, in controlling the performance of metal-silicon Schottky junctions, is studied. Monolayers of 1-dodecyne were formed on hydrated surfaces of p-type Si ((100) orientation) using weak Lewis acid. The chemical modification results in highly homogeneous surfaces. Gold-Si and Aluminum-Si junctions were prepared, both, on modified and unmodified Si surfaces, and I-V characteristics were studied. The results have been interpreted in terms of energy band diagrams. It is demonstrated that the molecular monolayer of 1-dodecyne is effective in controlling the surface states leading to unpinning of the Fermi level and junction responding to the work function of the metal, as expected from theoretical considerations. The simple method presented provides a unique technique to tune the electrical properties of devices with metal-semiconductor interfaces.

  7. Temporal evolution of a silicon surface subject to low energy ion irradiation and concurrent sample rotation

    NASA Astrophysics Data System (ADS)

    Basu, Tanmoy; Pearson, Daniel A.; Bradley, R. Mark; Som, Tapobrata

    2016-08-01

    We study the temporal evolution of silicon surfaces subject to low energy Ar+-ion bombardment and concurrent sample rotation. Systematic experiments are carried out in both the linear and nonlinear regimes. It is observed that an experiment which produces an anisotropic surface without sample rotation produces a statistically isotropic surface with a smaller surface roughness if the sample is rotated at a sufficiently high angular speed. Interrupted coarsening of the nanoscale mounds on the surface at long times t is observed without concurrent deposition of metal impurities for the first time. We find that the characteristic lateral size and height of the mounds increase as t 1 / 2 and t, respectively. Both our experiments and simulations show that azimuthally rotating ripples form at a sufficiently small rotational speeds, as predicted two decades ago. Finally, predictions from theories on rotating samples subject to ion bombardment are tested.

  8. Enhanced photothermal effect of surface oxidized silicon nanocrystals anchored to reduced graphene oxide nanosheets

    NASA Astrophysics Data System (ADS)

    Afshani, Parichehr; Moussa, Sherif; Atkinson, Garrett; Kisurin, Vitaly Y.; Samy El-Shall, M.

    2016-04-01

    We demonstrate the coupling of the photothermal effects of silicon nanocrystals and graphene oxide (GO) dispersed in water. Using laser irradiation (532 nm or 355 nm) of suspended Si nanocrystals in an aqueous solution of GO, the synthesis of surface oxidized Si-reduced GO nanocomposites (SiOx/Si-RGO) is reported. The laser reduction of GO is accompanied by surface oxidation of the Si nanocrystals resulting in the formation of the SiOx/Si-RGO nanocomposites. The SiOx/Si-RGO nanocomposites are proposed as promising materials for photothermal therapy and for the efficient conversion of solar energy into usable heat for a variety of thermal and thermomechanical applications.

  9. Surface phonon-polariton enhanced optical forces in silicon carbide nanostructures.

    PubMed

    Li, Dongfang; Lawandy, Nabil M; Zia, Rashid

    2013-09-01

    The enhanced optical forces induced by surface phonon-polariton (SPhP) modes are investigated in different silicon carbide (SiC) nanostructures. Specifically, we calculate optical forces using the Maxwell stress tensor for three different geometries: spherical particles, slab waveguides, and rectangular waveguides. We show that SPhP modes in SiC can produce very large forces, more than one order of magnitude larger than the surface plasmon-polariton (SPP) forces in analogous metal nanostructures. The material and geometric basis for these large optical forces are examined in terms of dispersive permittivity, separation distance, and operating wavelength. PMID:24103963

  10. Ultrasmooth growth of amorphous silicon films through ion-induced long-range surface correlations

    SciTech Connect

    Redondo-Cubero, A.; Gago, R.; Vazquez, L.

    2011-01-03

    Ultrasmooth amorphous silicon films with a constant roughness below 0.2 nm were produced for film thickness up to {approx}1 {mu}m by magnetron sputtering under negative voltage substrate biasing (100-400 V). In contrast, under unbiased conditions the roughness of the resulting mounded films increased linearly with growth time due to shadowing effects. A detailed analysis of the amorphous film growth dynamics proves that the bias-induced ultrasmoothness is produced by a downhill mass transport process that leads to an extreme surface leveling inducing surface height correlations up to lateral distances close to 0.5 {mu}m.

  11. Determination of surface recombination velocity and bulk lifetime in detector grade silicon and germanium crystals

    SciTech Connect

    Derhacobian, N.; Fine, P.; Walton, J.T.; Wong, Y.K.; Rossington, C.S.; Luke, P.N.

    1993-10-01

    Utility of a noncontact photoconductive decay (PCD) technique is demonstrated in measuring bulk lifetime, {tau}{sub B}, and surface recombination velocity, S, in detector grade silicon and germanium crystals. We show that the simple analytical equations which relate the observed effective lifetimes in PCD transients to {tau}{sub B} and S have a limited range of applicability. The noncontact PCD technique is used to determine the effect of several surface treatments on the observed effective lifetimes in Si and Ge. A degradation of the effective lifetime in Si is reported as result of the growth of a thin layer of native oxide at room temperature under atmospheric conditions.

  12. Theoretical effects of surface diffused region lifetime models on silicon solar cells

    NASA Technical Reports Server (NTRS)

    Dunbar, P. M.; Hauser, J. R.

    1977-01-01

    A computer simulation of silicon solar cells has indicated that the combination of band gap reduction due to heavy doping and certain spatial forms of lifetime dependence can combine to form severe limitations on the open-circuit voltage of such cells. The interaction of these effects tends to shift the active region of the diffused surface layer away from the injecting junction, resulting in an increase in the current density injected into the surface region. Reductions in open circuit voltage as great as 10% over models which do not include these effects can be seen.

  13. Model for oxygen recombination on silicon-dioxide surfaces. II - Implications toward reentry heating

    NASA Technical Reports Server (NTRS)

    Jumper, E. J.; Seward, W. A.

    1992-01-01

    This paper briefly reviews the model for recombination of oxygen on a silicon-dioxide surface presented in detail in a previous paper. New data supporting the model is also presented. The ramifications of the model toward the production of excited molecular oxygen is examined as it pertains to surface heating. A reentry simulation is given and compared to STS-2 reentry data, and conclusions are drawn as to the implications of the recombination model toward reentry heating. A possible buffering of the heating above a critical temperature associated with the physics of the model is also discussed.

  14. Spectral response and efficiency of a silicon solar cell below water surface

    SciTech Connect

    Muaddi, J.A.; Jamal, M.A. )

    1992-07-01

    Solar radiation below water surface is modified in that the total solar energy is decreased and the spectral width is reduced. The extent of this modification depends upon the depth in water. This change in the solar radiation reflects its effects on the performance of the light measuring devices such as solar cells, where the efficiency of these cells depends upon the spectral distribution of the incident light. For a silicon solar cell, a computational work has been performed to reconstruct the spectral response curves of the cell at various depths in water, and to calculate the efficiency at these depths relative to the cell efficiency at the water surface.

  15. Surface modification of silicone medical materials by plasma-based ion implantation

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tomohiro; Yokota, Toshihiko; Kato, Rui; Suzuki, Yoshiaki; Iwaki, Masaya; Terai, Takayuki; Takahashi, Noriyoshi; Miyasato, Tomonori; Ujiie, Hiroshi

    2007-04-01

    Silicone (polydimethylsiloxane) sheets and tubes for medical use were irradiated with inert gas ions using plasma-based ion implantation (PBII). The affinity of the surface with tissue examined by an animal test was improved by the irradiation at optimal conditions. The cell attachment percentage increased at an applied voltage of less than -7.5 kV; however, it decreased at higher voltage. The specimens irradiated at higher voltages were more hydrophobic than unirradiated specimens. The surface became rough with increasing voltage and textures, and small domains appeared. This effect was caused by different etching speeds in the amorphous and crystalline areas.

  16. Uniform-sized silicone oil microemulsions: preparation, investigation of stability and deposition on hair surface.

    PubMed

    Nazir, Habiba; Lv, Piping; Wang, Lianyan; Lian, Guoping; Zhu, Shiping; Ma, Guanghui

    2011-12-01

    Emulsions are commonly used in foods, pharmaceuticals and home-personal-care products. For emulsion based products, it is highly desirable to control the droplet size distribution to improve storage stability, appearance and in-use property. We report preparation of uniform-sized silicone oil microemulsions with different droplets diameters (1.4-40.0 μm) using SPG membrane emulsification technique. These microemulsions were then added into model shampoos and conditioners to investigate the effects of size, uniformity, and storage stability on silicone oil deposition on hair surface. We observed much improved storage stability of uniform-sized microemulsions when the droplets diameter was ≤22.7 μm. The uniform-sized microemulsion of 40.0 μm was less stable but still more stable than non-uniform sized microemulsions prepared by conventional homogenizer. The results clearly indicated that uniform-sized droplets enhanced the deposition of silicone oil on hair and deposition increased with decreasing droplet size. Hair switches washed with small uniform-sized droplets had lower values of coefficient of friction compared with those washed with larger uniform and non-uniform droplets. Moreover the addition of alginate thickener in the shampoos and conditioners further enhanced the deposition of silicone oil on hair. The good correlation between silicone oil droplets stability, deposition on hair and resultant friction of hair support that droplet size and uniformity are important factors for controlling the stability and deposition property of emulsion based products such as shampoo and conditioner. PMID:21920528

  17. High-Accuracy Surface Figure Measurement of Silicon Mirrors at 80 K

    NASA Technical Reports Server (NTRS)

    Blake, Peter; Mink, Ronald G.; Chambers, John; Davila, Pamela; Robinson, F. David

    2004-01-01

    This report describes the equipment, experimental methods, and first results at a new facility for interferometric measurement of cryogenically-cooled spherical mirrors at the Goddard Space Flight Center Optics Branch. The procedure, using standard phase-shifting interferometry, has an standard combined uncertainty of 3.6 nm rms in its representation of the two-dimensional surface figure error at 80, and an uncertainty of plus or minus 1 nm in the rms statistic itself. The first mirror tested was a concave spherical silicon foam-core mirror, with a clear aperture of 120 mm. The optic surface was measured at room temperature using standard absolute techniques; and then the change in surface figure error from room temperature to 80 K was measured. The mirror was cooled within a cryostat. and its surface figure error measured through a fused-silica window. The facility and techniques will be used to measure the surface figure error at 20K of prototype lightweight silicon carbide and Cesic mirrors developed by Galileo Avionica (Italy) for the European Space Agency (ESA).

  18. Optical and electrical properties of porous silicon layer formed on the textured surface by electrochemical etching

    NASA Astrophysics Data System (ADS)

    Weiying, Ou; Lei, Zhao; Hongwei, Diao; Jun, Zhang; Wenjing, Wang

    2011-05-01

    Porous silicon (PS) layers were formed on textured crystalline silicon by electrochemical etching in HF-based electrolyte. Optical and electrical properties of the TMAH textured surfaces with PS formation are studied. Moreover, the influences of the initial structures and the anodizing time on the optical and electrical properties of the surfaces after PS formation are investigated. The results show that the TMAH textured surfaces with PS formation present a dramatic decrease in reflectance. The longer the anodizing time is, the lower the reflectance. Moreover, an initial surface with bigger pyramids achieved lower reflectance in a short wavelength range. A minimum reflectance of 3.86% at 460 nm is achieved for a short anodizing time of 2 min. Furthermore, the reflectance spectrum of the sample, which was etched in 3 vol.% TMAH for 25 min and then anodized for 20 min, is extremely flat and lies between 3.67% and 6.15% in the wavelength range from 400 to 1040 nm. In addition, for a short anodizing time, a slight increase in the effective carrier lifetime is observed. Our results indicate that PS layers formed on a TMAH textured surface for a short anodization treatment can be used as both broadband antireflection coatings and passivation layers for the application in solar cells.

  19. Modeling of Transmittance Degradation Caused by Optical Surface Contamination by Atomic Oxygen Reaction with Adsorbed Silicones

    NASA Technical Reports Server (NTRS)

    Snyder, Aaron; Banks, Bruce; Miller, Sharon; Stueber, Thomas; Sechkar, Edward

    2001-01-01

    A numerical procedure is presented to calculate transmittance degradation caused by contaminant films on spacecraft surfaces produced through the interaction of orbital atomic oxygen (AO) with volatile silicones and hydrocarbons from spacecraft components. In the model, contaminant accretion is dependent on the adsorption of species, depletion reactions due to gas-surface collisions, desorption, and surface reactions between AO and silicone producing SiO(x), (where x is near 2). A detailed description of the procedure used to calculate the constituents of the contaminant layer is presented, including the equations that govern the evolution of fractional coverage by specie type. As an illustrative example of film growth, calculation results using a prototype code that calculates the evolution of surface coverage by specie type is presented and discussed. An example of the transmittance degradation caused by surface interaction of AO with deposited contaminant is presented for the case of exponentially decaying contaminant flux. These examples are performed using hypothetical values for the process parameters.

  20. Guided cell patterning on gold-silicon dioxide substrates by surface molecular engineering.

    PubMed

    Veiseh, Mandana; Wickes, Bronwyn T; Castner, David G; Zhang, Miqin

    2004-07-01

    We report an effective approach to patterning cells on gold-silicon dioxide substrates with high precision, selectivity, stability, and reproducibility. This technique is based on photolithography and surface molecular engineering and requires no cell positioning or delivery devices, thus significantly reducing the potential damage to cells. The cell patterning was achieved by activating the gold regions of the substrate with functionalized thiols that covalently bind proteins onto the gold regions to guide subsequent cell adhesion while passivating the silicon dioxide background with polyethylene glycol to resist cell adhesion. Fourier transform infrared reflectance spectroscopy verified the successful immobilization of proteins on gold surfaces. Protein patterns were visualized by tagging proteins with Rhodamine fluorescent probes. Time-of-flight secondary ion mass spectrometry was used to characterize the chemistry of both the cell-adhesive and cell-resistant regions of surfaces after each key chemical reaction occurring during the molecular surface engineering. The ability of the engineered surfaces to guide cell adhesion was illustrated by differential interference contrast (DIC) reflectance microscopy. The cell patterning technique introduced in this study is compatible with micro- and photo-electronics, and may have many medical, environmental, and defense applications. PMID:14980426

  1. Surface-Enhanced Raman Scattering of Silicon Nanocrystals in a Silica Film

    NASA Astrophysics Data System (ADS)

    Novikov, Sergei; Khriachtchev, Leonid

    2016-06-01

    Surface-enhanced Raman scattering (SERS) is an intriguing effect, efficiency of which depends on many factors and whose applicability to a given system is not obvious before the experiment. The motivation of the present work is to demonstrate the SERS effect on silicon nanocrystals (Si-nc) embedded in silica, the material of high technological importance. Using the Ag overlayer method, we have found the SERS effect for this material. The best result is obtained for Ag layers of a weight thickness of 12 nm, whose surface plasmons are in a resonance with the laser wavelength (488 nm). The enhancement obtained for the Raman signal from 3–4-nm Si-nc in a 40-nm SiOx film is above 100. The SERS effect is about twice stronger for ultra-small Si-nc (~1 nm) and/or disordered silicon compared to Si-nc with sizes of 3–4 nm. The SERS measurements with an Ag overlayer allow detecting silicon crystallization for ultra-thin SiOx films and/or for very low Si excess and suppress the Raman signal from the substrate and the photoluminescence of the film.

  2. Control of single-electron charging of metallic nanoparticles onto amorphous silicon surface.

    PubMed

    Weis, Martin; Gmucová, Katarína; Nádazdy, Vojtech; Capek, Ignác; Satka, Alexander; Kopáni, Martin; Cirák, Július; Majková, Eva

    2008-11-01

    Sequential single-electron charging of iron oxide nanoparticles encapsulated in oleic acid/oleyl amine envelope and deposited by the Langmuir-Blodgett technique onto Pt electrode covered with undoped hydrogenated amorphous silicon film is reported. Single-electron charging (so-called quantized double-layer charging) of nanoparticles is detected by cyclic voltammetry as current peaks and the charging effect can be switched on/off by the electric field in the surface region induced by the excess of negative/positive charged defect states in the amorphous silicon layer. The particular charge states in amorphous silicon are created by the simultaneous application of a suitable bias voltage and illumination before the measurement. The influence of charged states on the electric field in the surface region is evaluated by the finite element method. The single-electron charging is analyzed by the standard quantized double layer model as well as two weak-link junctions model. Both approaches are in accordance with experiment and confirm single-electron charging by tunnelling process at room temperature. This experiment illustrates the possibility of the creation of a voltage-controlled capacitor for nanotechnology. PMID:19198289

  3. Surface-Enhanced Raman Scattering of Silicon Nanocrystals in a Silica Film.

    PubMed

    Novikov, Sergei; Khriachtchev, Leonid

    2016-01-01

    Surface-enhanced Raman scattering (SERS) is an intriguing effect, efficiency of which depends on many factors and whose applicability to a given system is not obvious before the experiment. The motivation of the present work is to demonstrate the SERS effect on silicon nanocrystals (Si-nc) embedded in silica, the material of high technological importance. Using the Ag overlayer method, we have found the SERS effect for this material. The best result is obtained for Ag layers of a weight thickness of 12 nm, whose surface plasmons are in a resonance with the laser wavelength (488 nm). The enhancement obtained for the Raman signal from 3-4-nm Si-nc in a 40-nm SiOx film is above 100. The SERS effect is about twice stronger for ultra-small Si-nc (~1 nm) and/or disordered silicon compared to Si-nc with sizes of 3-4 nm. The SERS measurements with an Ag overlayer allow detecting silicon crystallization for ultra-thin SiOx films and/or for very low Si excess and suppress the Raman signal from the substrate and the photoluminescence of the film. PMID:27256615

  4. Surface-Enhanced Raman Scattering of Silicon Nanocrystals in a Silica Film

    PubMed Central

    Novikov, Sergei; Khriachtchev, Leonid

    2016-01-01

    Surface-enhanced Raman scattering (SERS) is an intriguing effect, efficiency of which depends on many factors and whose applicability to a given system is not obvious before the experiment. The motivation of the present work is to demonstrate the SERS effect on silicon nanocrystals (Si-nc) embedded in silica, the material of high technological importance. Using the Ag overlayer method, we have found the SERS effect for this material. The best result is obtained for Ag layers of a weight thickness of 12 nm, whose surface plasmons are in a resonance with the laser wavelength (488 nm). The enhancement obtained for the Raman signal from 3–4-nm Si-nc in a 40-nm SiOx film is above 100. The SERS effect is about twice stronger for ultra-small Si-nc (~1 nm) and/or disordered silicon compared to Si-nc with sizes of 3–4 nm. The SERS measurements with an Ag overlayer allow detecting silicon crystallization for ultra-thin SiOx films and/or for very low Si excess and suppress the Raman signal from the substrate and the photoluminescence of the film. PMID:27256615

  5. Silicon quantum wires on Ag(1 1 0): Fermi surface and quantum well states

    NASA Astrophysics Data System (ADS)

    Valbuena, M. A.; Avila, J.; Dávila, M. E.; Leandri, C.; Aufray, B.; Le Lay, G.; Asensio, M. C.

    2007-10-01

    One-dimensional Si quantum wires have been grown on silver single crystals upon deposition of ˜0.25 monolayer of Si on Ag(1 1 0) surfaces. Scanning tunneling microscopy (STM) clearly shows parallel 1D Si chains along the [-1 1 0] Ag crystallographic direction. Low Energy Electron Diffraction (LEED) confirms the massively parallel assembly of these selforganized Nanowires (NWs). We have characterized these nano-objects by measuring the dispersion of the NWs valence band at room temperature using Angle-Resolved PhotoEmission Spectroscopy (ARPES). Also, the Fermi Surface (FS) of the Ag(1 1 0) substrate has been mapped before and after the silicon deposition, trying to put in evidence the metallic or semiconductor character of the NWs silicon's states close to the Fermi level. Our results show the existence of well-defined quantum states associated to the silicon super-structure. Both LEED and ARUPS results confirm that the NWs have typical 1D features, however their metallic or semiconductor character could not be confirmed.

  6. Surface composition analysis of HF vapour cleaned silicon by X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Ermolieff, A.; Martin, F.; Amouroux, A.; Marthon, S.; Westendorp, J. F. M.

    1991-06-01

    X-ray photoelectron spectroscopy (XPS) measurements on silicon surfaces treated by HF gaseous cleaning are described. Various cleaning recipes, which essentially differ by the amount of water present during the reaction were studied; the composition of the silicon surface was measured in terms of monolayer coverage of oxygen, fluorine and carbon. These gaseous cleaned surfaces are compared with those of commonly deglazed silicon samples by using an aqueous HF bath. The F(1s), O(1s), Si(2p), C(1s) photoelectron lines were monitored, and concentrations determined as usual by integration of the lines after removal of the non-linear backgroune. The F(1s), C(1s) and Si(2p) lines were decomposed into several components corresponding to different chemical bonds. The results show that the amount of fluorine is directly correlated with the amount of oxygen: the higher the oxygen level on the sample, the more important is the fluorine content till 0.7 ML, essentially in a O sbnd Si sbnd F bonding state. For more aggresive etching leaving less than one monolayer of oxygen, the Si sbnd F bond becomes predominant. The ratio of the SiF to OSiF concentrations is a significant signature of the deoxidation state of the surface. Hydrophobicity of the water appears in the range of 25% Si sbnd F bonds. With very aggresive etching processes, 67% Si sbnd F bonds and 33% O sbnd Si sbnd F bonds are reached and the total amount of fluoride drops below 0.3 ML. For comparison, only Si sbnd F bonds are observed after a wet etching in a dilute HF bath without a rinse with a much lower fluorine concentration. The balance between Si sbnd F and O sbnd Si sbnd F remains stable and seems to be representative of the surface states provided by the etching process.

  7. Towards 1D nanolines on a monolayered supramolecular network adsorbed on a silicon surface

    NASA Astrophysics Data System (ADS)

    Makoudi, Younes; Beyer, Matthieu; Lamare, Simon; Jeannoutot, Judicael; Palmino, Frank; Chérioux, Frédéric

    2016-06-01

    The growth of 3D extended periodic networks made up of π-conjugated molecules on semi-conductor surfaces is of interest for the integration of nano-components in the future generations of smart devices. In the work presented in this article, we successfully achieved the formation of bilayered networks on a silicon surface including 1D-isolated nanolines in the second layer. Firstly, we observed the formation of a 2D large-scale supramolecular network in the plane of a silicon surface through the deposition of tailored molecules. Then using the same molecules, a second-layer, based on 1D nanolines, grew above the first layer, thanks to a template effect. Mono- or bi-layered networks were found to be stable from 100 K up to room temperature. These networks were investigated by scanning tunnel microscopy imaging under an ultra-high vacuum (UHV-STM).The growth of 3D extended periodic networks made up of π-conjugated molecules on semi-conductor surfaces is of interest for the integration of nano-components in the future generations of smart devices. In the work presented in this article, we successfully achieved the formation of bilayered networks on a silicon surface including 1D-isolated nanolines in the second layer. Firstly, we observed the formation of a 2D large-scale supramolecular network in the plane of a silicon surface through the deposition of tailored molecules. Then using the same molecules, a second-layer, based on 1D nanolines, grew above the first layer, thanks to a template effect. Mono- or bi-layered networks were found to be stable from 100 K up to room temperature. These networks were investigated by scanning tunnel microscopy imaging under an ultra-high vacuum (UHV-STM). Electronic supplementary information (ESI) available: Additional STM images showing submolecular details of the adsorption of molecules on the surface. See DOI: 10.1039/c6nr01826b

  8. Electro-optic modulation in bulk silicon using surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Debnath, Kapil; Damas, Pedro; O'Faolain, Liam

    2016-01-01

    We propose and present simulated results for a new design of an optical modulator based on Surface Plasmon Polariton (SPP) resonance. The modulator is realized on a bulk silicon substrate, thus offering an opportunity for front-end integration with electronic circuits. The device consists of a dielectric waveguide evanescently coupled to a SPP mode at the interface between bulk silicon and metal. By using SPP resonance we achieved an ultra-high spectral sensitivity (∼5000 nm/refractive index unit) with large modulation bandwidth (90 nm). For a refractive index change of 0.02, we achieved 100 nm shift in resonance wavelength and a modulation depth of ∼10 dB.

  9. Surface photovoltage method for the quality control of silicon epitaxial layers on sapphire

    SciTech Connect

    Yaremchuk, A. F.; Starkov, A. V.; Zaikin, A. V.; Alekseev, A. V.; Sokolov, E. M.

    2014-12-15

    The surface photovoltage method is used to study “silicon-on-sapphire” epitaxial layers with a thickness of 0.3–0.6 μm, which are used to fabricate p-channel MOS (metal—oxide-semiconductor) transistors with improved radiation hardness. It is shown that the manner in which the photoconductivity of the epitaxial layer decays after the end of a light pulse generated by a light-emitting diode (wavelength ∼400 nm) strongly depends on the density of structural defects in the bulk of the structure. This enables control over how a “silicon-on-sapphire” structure is formed to provide the manufacturing of MOS structures with optimal operating characteristics.

  10. Surface code architecture for donors and dots in silicon with imprecise and nonuniform qubit couplings

    NASA Astrophysics Data System (ADS)

    Pica, G.; Lovett, B. W.; Bhatt, R. N.; Schenkel, T.; Lyon, S. A.

    2016-01-01

    A scaled quantum computer with donor spins in silicon would benefit from a viable semiconductor framework and a strong inherent decoupling of the qubits from the noisy environment. Coupling neighboring spins via the natural exchange interaction according to current designs requires gate control structures with extremely small length scales. We present a silicon architecture where bismuth donors with long coherence times are coupled to electrons that can shuttle between adjacent quantum dots, thus relaxing the pitch requirements and allowing space between donors for classical control devices. An adiabatic SWAP operation within each donor/dot pair solves the scalability issues intrinsic to exchange-based two-qubit gates, as it does not rely on subnanometer precision in donor placement and is robust against noise in the control fields. We use this SWAP together with well established global microwave Rabi pulses and parallel electron shuttling to construct a surface code that needs minimal, feasible local control.

  11. Rear surface spallation on single-crystal silicon in nanosecond laser micromachining

    NASA Astrophysics Data System (ADS)

    Ren, Jun; Orlov, Sergei S.; Hesselink, Lambertus

    2005-05-01

    Rear surface spallation of single-crystal silicon under 5-ns laser pulse ablation at intensities of 0.6-60GW/cm2 is studied through postablation examination of the ablated samples. The spallation threshold energy and the spallation depth's dependences on the energy and target thickness are measured. From the linear relation between the spallation threshold energy and the target thickness, an estimation of the material spall strength around 1.4GPa is obtained, in reasonable agreement with the spall strength estimation of 0.8-1.2GPa at a strain rate of 107s-1 using Grady's model for brittle materials. The experiment reveals the internal fracturing process over an extended zone in silicon, which is controlled by the competition between the shock pressure load and the laser ablation rate. The qualities of the laser microstructuring and micromachining results are greatly improved by using an acoustic impedance matching approach.

  12. Extraction of the surface recombination velocity of passivated phosphorus-doped silicon emitters

    SciTech Connect

    Cuevas, A.; Giroult-Matlakowski, G.; DuBols, C.; Basore, P.A.; King, R.R.

    1995-01-01

    An analytical procedure to extract the surface recombination velocity of the SiO{sub 2}/n type silicon interface, S{sub p}, from PCD measurements of emitter recombination currents is described. The analysis shows that the extracted values of S{sub p} are significantly affected by the assumed material parameters for highly doped silicon, t{sub p}, {mu}{sub p} and {Delta}E{sub g}{sup app}. Updated values for these parameters are used to obtain the dependence of S{sub p} on the phosphorus concentration, N{sub D}, using both previous and new experimental data. The new evidence supports the finding that S{sub p} increases strongly with N{sub D}.

  13. An experimental investigation on the influence of machining parameters on surface finish in diamond turning of silicon optics

    NASA Astrophysics Data System (ADS)

    Khatri, Neha; Sharma, Rohit; Mishra, Vinod; Kumar, Mukesh; Karar, Vinod; Sarepaka, RamaGopal V.

    2015-06-01

    Silicon is widely used in IR optics, X-Ray optics and electronics applications. These applications require Silicon of optical quality surface as well as good form accuracy. To get the desired finish and dimensional accuracy, diamond turning is preferable. Taylor-Hobson Nanoform-250 diamond turning equipment is used to machine flat Silicon mirror. Negative rake diamond tool is used with a tool nose radius of 1.5 mm. A series of SPDT machining operations are performed in the sequential combinations of tool feed rate, Spindle Speed and depth of cut. In order to find out the effect of machining parameters on the Surface Roughness during turning, Response Surface Methodology (RSM) is used and a prediction model is developed related to average Surface Roughness (Ra) using experimental data. The surface quality is analyzed in terms of arithmetic roughness (Ra) and Power Spectral Density for uniform evaluation. In addition, a good agreement between the predicted and measured Surface Roughness is observed.

  14. Thermoplastic deformation of silicon surfaces induced by ultrashort pulsed lasers in submelting conditions

    SciTech Connect

    Tsibidis, G. D.; Stratakis, E.; Aifantis, K. E.

    2012-03-01

    A hybrid theoretical model is presented to describe thermoplastic deformation effects on silicon surfaces induced by single and multiple ultrashort pulsed laser irradiation in submelting conditions. An approximation of the Boltzmann transport equation is adopted to describe the laser irradiation process. The evolution of the induced deformation field is described initially by adopting the differential equations of dynamic thermoelasticity while the onset of plastic yielding is described by the von Mises stress. Details of the resulting picometre sized crater, produced by irradiation with a single pulse, are discussed as a function of the imposed conditions and thresholds for the onset of plasticity are computed. Irradiation with multiple pulses leads to ripple formation of nanometre size that originates from the interference of the incident and a surface scattered wave. It is suggested that ultrafast laser induced surface modification in semiconductors is feasible in submelting conditions, and it may act as a precursor of the incubation effects observed at multiple pulse irradiation of materials surfaces.

  15. Nanoporous silicon-based surface patterns fabricated by UV laser interference techniques for biological applications

    NASA Astrophysics Data System (ADS)

    Recio-Sánchez, G.; Peláez, R. J.; Vega, F.; Martín-Palma, R. J.

    2016-06-01

    The fabrication of selectively functionalized micropatterns based on nanostructured porous silicon (nanoPS) by phase mask ultraviolet laser interference is presented here. This single-step process constitutes a flexible method for the fabrication of surface patterns with tailored properties. These surface patterns consist of alternate regions of almost untransformed nanoPS and areas where nanoPS is transformed into Si nanoparticles (Si NPs) as a result of the laser irradiation process. The size of the transformed areas as well as the diameter of the Si NPs can be straightforwardly tailored by controlling the main fabrications parameters including the porosity of the nanoPS layers, the laser interference period areas, and laser fluence. The surface patterns have been found to be appropriate candidates for the development of selectively-functionalized surfaces for biological applications mainly due to the biocompatibility of the untransformed nanoPS regions.

  16. Surface Passivation of Germanium Nanowires

    SciTech Connect

    Adhikari, Hemant; Sun, Shiyu; Pianetta, Piero; Chidsey, Chirstopher E.D.; McIntyre, Paul C.; /SLAC, SSRL

    2005-05-13

    The surface of single crystal, cold-wall CVD-grown germanium nanowires was studied by synchrotron radiation photoemission spectroscopy (SR-PES) and also by conventional XPS. The as-grown germanium nanowires seem to be hydrogen terminated. Exposure to laboratory atmosphere leads to germanium oxide growth with oxidation states of Ge{sup 1+}, Ge{sup 2+}, Ge{sup 3+}, while exposure to UV light leads to a predominance of the Ge{sup 4+} oxidation state. Most of the surface oxide could be removed readily by aqueous HF treatment which putatively leaves the nanowire surface hydrogen terminated with limited stability in air. Alternatively, chlorine termination could be achieved by aq. HCl treatment of the native oxide-coated nanowires. Chlorine termination was found to be relatively more stable than the HF-last hydrogen termination.

  17. Elastic Softening of Surface Acoustic Wave Caused by Vacancy Orbital in Silicon Wafer

    NASA Astrophysics Data System (ADS)

    Mitsumoto, Keisuke; Akatsu, Mitsuhiro; Baba, Shotaro; Takasu, Rie; Nemoto, Yuichi; Goto, Terutaka; Yamada-Kaneta, Hiroshi; Furumura, Yuji; Saito, Hiroyuki; Kashima, Kazuhiko; Saito, Yoshihiko

    2014-03-01

    We have performed surface acoustic wave (SAW) measurements to examine vacancies in a surface layer of a boron-doped silicon wafer currently used in semiconductor industry. A SAW with a frequency of fs = 517 MHz was optimally generated by an interdigital transducer with a comb gap of w=2.5 µm on a piezoelectric ZnO film deposited on the (001) silicon surface. The SAW propagating along the [100] axis with a velocity of vtext{s}=4.967 km/s is in agreement with the Rayleigh wave, which shows an ellipsoidal trajectory motion in the displacement components ux and uz within a penetration depth of λp = 3.5 µm. The elastic constant Cs of the SAW revealed the softening of ΔCs/Cs = 1.9 × 10-4 below 2 K down to 23 mK. Applied magnetic fields of up to 2 T completely suppress the softening. The quadrupole susceptibilities based on the coupling between the electric quadrupoles Ou, Ov, and Ozx of the vacancy orbital consisting of Γ8-Γ7 states and the symmetry strains ɛu, ɛv, and ɛzx associated with the SAW account for the softening and its field dependence on Cs. We deduced a low vacancy concentration N = 3.1 × 1012/cm3 in the surface layer within λp = 3.5 µm of the silicon wafer. This result promises an innovative technology for vacancy evaluation in the fabrication of high-density semiconductor devices in industry.

  18. Functional atomic force microscopy investigation of osteopontin affinity for silicon stabilized tricalcium phosphate bioceramic surfaces.

    PubMed

    Pietak, Alexis M; Sayer, Michael

    2006-01-01

    Resorbable silicon stabilized tricalcium phosphate (Si-TCP)-based bioceramics are characterized from a biological perspective by measuring the intermolecular interaction force between osteopontin (OPN) protein and the material surface using atomic force microscopy (AFM). OPN protein was covalently bound to silicon nitride AFM tips and adsorption and adhesion forces were measured in an electrolyte with a composition similar to that of physiological fluids. A strong relationship exists between the adhesion force of OPN on the material surface, the number of adherent osteoclasts (OC) and the resorption of the material. OPN adhesion is strongest on hydroxyapatite (HA) surfaces, or in samples that induce a HA-like surface through a precipitation reaction in electrolytic media. It is proposed that the increased biological response of the Si-TCP phase can be attributed in part to its reactivity in a physiological electrolyte, which involves a rapid conversion to a calcium deficient HA phase with a corresponding increase in the adhesion strength of OPN to the material, with a consequentially higher OC resorption response. PMID:16011845

  19. Dopant profiling and surface analysis of silicon nanowires using capacitance-voltage measurements.

    PubMed

    Garnett, Erik C; Tseng, Yu-Chih; Khanal, Devesh R; Wu, Junqiao; Bokor, Jeffrey; Yang, Peidong

    2009-05-01

    Silicon nanowires are expected to have applications in transistors, sensors, resonators, solar cells and thermoelectric systems. Understanding the surface properties and dopant distribution will be critical for the fabrication of high-performance devices based on nanowires. At present, determination of the dopant concentration depends on a combination of experimental measurements of the mobility and threshold voltage in a nanowire field-effect transistor, a calculated value for the capacitance, and two assumptions--that the dopant distribution is uniform and that the surface (interface) charge density is known. These assumptions can be tested in planar devices with the capacitance-voltage technique. This technique has also been used to determine the mobility of nanowires, but it has not been used to measure surface properties and dopant distributions, despite their influence on the electronic properties of nanowires. Here, we measure the surface (interface) state density and the radial dopant profile of individual silicon nanowire field-effect transistors with the capacitance-voltage technique. PMID:19421217

  20. In-situ infrared study of silicon in KOH electrolyte: Surface hydrogenation and hydrogen penetration

    NASA Astrophysics Data System (ADS)

    Philipsen, H. G. G.; Ozanam, F.; Allongue, P.; Kelly, J. J.; Chazalviel, J.-N.

    2016-02-01

    The n-Si(111)/6 M KOH electrolyte interface has been investigated by in-situ multiple-internal reflection infrared spectroscopy, at room temperature and at 40 °C. The potential of the Si electrode was stepped successively to positive and negative values with respect to open-circuit potential, leading to surface oxidation and oxide dissolution, respectively. Infrared spectra were recorded together with the interfacial current. Analysis of the infrared spectra indicates that, following the positive potential step, the electronic state of the surface changes from accumulation to inversion and the surface termination changes from a hydrogenated state to an oxidised state. The hydrogenated state is recovered after an induction time following the negative potential step. However, hydrogen penetration into the silicon lattice is then found to take place, as indicated by the appearance of a new SiH band and a strong background absorption of electronic origin. This sub-surface hydrogenation is associated with a slow increase of the interfacial current. This process is found to be especially important at higher temperature and is attributed to the formation of microcracks partially decorated with hydrogen. These results indicate that the chemistry and morphology of a silicon electrode are not stable even in the presence of an applied negative potential.

  1. Cleaning by Brush-Scrubbing of Chemical Mechanical Polished Silicon Surfaces Using Ozonized Water and Diluted HF

    NASA Astrophysics Data System (ADS)

    Kurokawa, Yoshiaki; Hirose, Harumichi; Moriya, Takahiko; Kimura, Chouichi

    1999-09-01

    A new process for scrubbing chemical-mechanical-polished silicon wafer surfaces with a brush (brush-scrubbing process) was developed. The scrubbing is performed in two stages; the first stage involves a wet treatment using ozonized water and dilute HF. The second stage involves scrubbing with a Poly(vinyl alcohol)(PVA) brush. After scrubbing, the number of residual particles, metal and carbonaceous contamination, and surface roughness of the silicon wafer surface were evaluated. It was determined that this new brush-scrubbing process efficiently removed particles from chemical mechanical polishedsilicon surfaces. Finally, a model explaining the new brush-scrubbingprocess is constructed.

  2. Near-infrared optical absorption enhanced in black silicon via Ag nanoparticle-induced localized surface plasmon

    PubMed Central

    2014-01-01

    Due to the localized surface plasmon (LSP) effect induced by Ag nanoparticles inside black silicon, the optical absorption of black silicon is enhanced dramatically in near-infrared range (1,100 to 2,500 nm). The black silicon with Ag nanoparticles shows much higher absorption than black silicon fabricated by chemical etching or reactive ion etching over ultraviolet to near-infrared (UV-VIS-NIR, 250 to 2,500 nm). The maximum absorption even increased up to 93.6% in the NIR range (820 to 2,500 nm). The high absorption in NIR range makes LSP-enhanced black silicon a potential material used for NIR-sensitive optoelectronic device. PACS 78.67.Bf; 78.30.Fs; 78.40.-q; 42.70.Gi PMID:25285058

  3. Experimental investigation of nucleate boiling and thin-film evaporation on enhanced silicon surfaces

    NASA Astrophysics Data System (ADS)

    Malla, Shailesh

    The present work consists of two major studies. The first study investigates the effects of surface energy or wettability on nucleate pool boiling and the second study investigates the thin-film evaporative cooling for near junction thermal management. For the first study, effects of surface energy or wettability on critical heat flux (CHF) and boiling heat transfer (BHT) of smooth heated surfaces was studied in saturated pool boiling of water at 1 atm. For this purpose hydrophilic and hydrophobic surfaces were created on one side of 1cm x 1cm double-side polished silicon substrates. A resistive heating layer was applied on the opposite side of each substrate. The surface energies of the created surfaces were characterized by measuring the static contact angles of water sessile drops. To provide a wide range of surface energies, surfaces were made of Teflon (hydrophobic), bare silicon (hydrophilic) and aluminum oxide (most hydrophilic). The measured contact angles on these surfaces were ˜108, ˜57 and ˜13 degrees respectively. The results of pool boiling tests on these surfaces clearly illustrate the connection between surface energy and CHF. CHF was shown to linearly decrease with contact angle increase, from ˜125 W/cm2 on aluminum oxide (most hydrophilic) to nearly one tenth of this value on Teflon (hydrophobic). The most hydrophilic surface also produced increasingly better BHT than plain silicon and Teflon as heat flux increased. However, below ˜5 W/cm2 the hydrophobic surface demonstrated better heat transfer due to earlier onset of nucleate boiling, reducing surface superheats by up to ˜5 degrees relative to the other two surfaces. Above ˜5 W/cm2 the BHT of the hydrophobic surface rapidly deteriorated as superheat increased towards the value at CHF. To further understand the effect of surface energy on pool boiling performance, the growth and departure of bubbles from single nucleating sites on each surface were analyzed from high-speed video recordings

  4. Surface states and annihilation characteristics of positrons trapped at the (100) and (111) surfaces of silicon

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Fry, J. L.; Weiss, A. H.

    2004-10-01

    Recent studies of Si(100) and Si(111) using positron annihilation induced Auger-electron spectroscopy (PAES) reveal that experimental annihilation probabilities of surface trapped positrons with relevant Si core-level electrons differ significantly for two faces of clean Si, an elemental semiconductor. These experimental results are investigated theoretically by performing calculations of the “image-potential” positron surface states and annihilation characteristics of the surface trapped positrons with relevant Si core-level electrons for the ideally terminated, nonreconstructed and reconstructed Si(100)-(2×1) and Si(111)-(7×7) surfaces. Computed positron surface binding energies demonstrate their sensitivity to the specific atomic structure of the topmost layers of surfaces, and, when compared to positron work functions, the stability of positron surface states on all studied Si(100) and Si(111) surfaces. The positron surface state wave function was found to be localized in a potential well on the vacuum side at both nonreconstructed semiconductor surfaces. The (2×1) reconstruction of the Si(100) surface causes the positron surface state wave function to extend into the lattice in the regions where atoms are displaced away from their ideal terminated positions. A comparison of theoretical and experimental positron surface binding energies for Si(100) shows that the best agreement is achieved when the reconstructed Si(100)-(2×1) surface is described within the asymmetric dimer model. Calculations indicate that the positron surface state wave function is localized in all three dimensions in the corner hole regions of the reconstructed Si(111)-(7×7) surface. This localization provides an explanation for previous experiments that failed to show the anisotropy in the electron-positron pair momentum density distribution expected for a positron surface state delocalized in the plane of the surface. Positron annihilation characteristics are calculated for each

  5. Passivation of InGaAs(001)-(2 × 4) by Self-Limiting Chemical Vapor Deposition of a Silicon Hydride Control Layer.

    PubMed

    Edmonds, Mary; Kent, Tyler; Chagarov, Evgueni; Sardashti, Kasra; Droopad, Ravi; Chang, Mei; Kachian, Jessica; Park, Jun Hong; Kummel, Andrew

    2015-07-01

    A saturated Si-Hx seed layer for gate oxide or contact conductor ALD has been deposited via two separate self-limiting and saturating CVD processes on InGaAs(001)-(2 × 4) at substrate temperatures of 250 and 350 °C. For the first self-limiting process, a single silicon precursor, Si3H8, was dosed at a substrate temperature of 250 °C, and XPS results show the deposited silicon hydride layer saturated at about 4 monolayers of silicon coverage with hydrogen termination. STS results show the surface Fermi level remains unpinned following the deposition of the saturated silicon hydride layer, indicating the InGaAs surface dangling bonds are electrically passivated by Si-Hx. For the second self-limiting process, Si2Cl6 was dosed at a substrate temperature of 350 °C, and XPS results show the deposited silicon chloride layer saturated at about 2.5 monolayers of silicon coverage with chlorine termination. Atomic hydrogen produced by a thermal gas cracker was subsequently dosed at 350 °C to remove the Si-Cl termination by replacing with Si-H termination as confirmed by XPS, and STS results confirm the saturated Si-Hx bilayer leaves the InGaAs(001)-(2 × 4) surface Fermi level unpinned. Density function theory modeling of silicon hydride surface passivation shows an Si-Hx monolayer can remove all the dangling bonds and leave a charge balanced surface on InGaAs. PMID:26070022

  6. Probing the phonon confinement in ultrasmall silicon nanocrystals reveals a size-dependent surface energy

    NASA Astrophysics Data System (ADS)

    Crowe, Iain F.; Halsall, Matthew P.; Hulko, Oksana; Knights, Andrew P.; Gwilliam, Russell M.; Wojdak, Maciej; Kenyon, Anthony J.

    2011-04-01

    We validate for the first time the phenomenological phonon confinement model (PCM) of H. Richter, Z. P. Wang, and L. Ley [Solid State Commun. 39, 625 (1981)] for silicon nanostructures on the sub-3 nm length scale. By invoking a PCM that incorporates the measured size distribution, as determined from cross-sectional transmission electron microscopy (X-TEM) images, we are able to accurately replicate the measured Raman line shape, which gives physical meaning to its evolution with high temperature annealing and removes the uncertainty in determining the confining length scale. The ability of our model to explain the presence of a background scattering spectrum implies the existence of a secondary population of extremely small (sub-nm), amorphous silicon nanoclusters which are not visible in the X-TEM images. Furthermore, the inclusion of an additional fitting parameter, which takes into account the observed peak shift, can be explained by a size-dependent interfacial stress that is minimized by the nanocluster/crystal growth. From this we obtain incidental, yet accurate estimates for the silicon surface energy and a Tolman length, δ ≈ 0.15 ± 0.1 nm using the Laplace-Young relation.

  7. Numerical Study of TCO/Silicon Solar Cells with Novel Back Surface Field

    NASA Astrophysics Data System (ADS)

    Boumaour, M.; Sali, S.; Bahfir, A.; Kermadi, S.; Zougar, L.; Ouarab, N.; Larabi, A.

    2016-03-01

    ZnS/Si/CuO heterostructure is investigated by a theoretical approach as a possible low-cost design for photovoltaic conversion in the track of the heterojunction with intrinsic thin layer solar cells. Our results indicate that, owing to perfect electron affinity and lattice matching properties, zinc sulfide with adequate Al doping can efficiently replace zinc oxide window layer as an emitter region for silicon-based solar cells. Lattice mismatch, energy band alignment at the interfaces and material resistivity are the framework parameters of the study. By focusing on the open circuit voltage parameter, the back metal/Si and silicon base doping were optimized so that the conversion efficiency was increased from 3.37% to 15.19%. The introduction of a cupric oxide (CuO) layer acting as a p + back surface field with a bandgap of 1.35 eV and appropriate doping as high as 7 × 1018 cm-3 can enhance the conversion efficiency to 17.30%, provided that the silicon material remains free from contamination by copper atoms and also by performing a suitable treatment of CuO to lower its resistivity.

  8. Numerical Study of TCO/Silicon Solar Cells with Novel Back Surface Field

    NASA Astrophysics Data System (ADS)

    Boumaour, M.; Sali, S.; Bahfir, A.; Kermadi, S.; Zougar, L.; Ouarab, N.; Larabi, A.

    2016-08-01

    ZnS/Si/CuO heterostructure is investigated by a theoretical approach as a possible low-cost design for photovoltaic conversion in the track of the heterojunction with intrinsic thin layer solar cells. Our results indicate that, owing to perfect electron affinity and lattice matching properties, zinc sulfide with adequate Al doping can efficiently replace zinc oxide window layer as an emitter region for silicon-based solar cells. Lattice mismatch, energy band alignment at the interfaces and material resistivity are the framework parameters of the study. By focusing on the open circuit voltage parameter, the back metal/Si and silicon base doping were optimized so that the conversion efficiency was increased from 3.37% to 15.19%. The introduction of a cupric oxide (CuO) layer acting as a p + back surface field with a bandgap of 1.35 eV and appropriate doping as high as 7 × 1018 cm-3 can enhance the conversion efficiency to 17.30%, provided that the silicon material remains free from contamination by copper atoms and also by performing a suitable treatment of CuO to lower its resistivity.

  9. The origins of pressure-induced phase transformations during the surface texturing of silicon using femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Smith, Matthew J.; Sher, Meng-Ju; Franta, Benjamin; Lin, Yu-Ting; Mazur, Eric; Gradečak, Silvija

    2012-10-01

    Surface texturing of silicon using femtosecond (fs) laser irradiation is an attractive method for enhancing light trapping, but the laser-induced damage that occurs in parallel with surface texturing can inhibit device performance. In this work, we investigate the light-material interaction during the texturing of silicon by directly correlating the formation of pressure-induced silicon polymorphs, fs-laser irradiation conditions, and the resulting morphology and microstructure using scanning electron microscopy, micro-Raman spectroscopy, and transmission electron microscopy. We show that raster scanning a pulsed laser beam with a Gaussian profile enhances the formation of crystalline pressure-induced silicon polymorphs by an order of magnitude compared with stationary pulsed fs-laser irradiation. Based on these observations, we identify resolidification-induced stresses as the mechanism responsible for driving sub-surface phase transformations during the surface texturing of silicon, the understanding of which is an important first step towards reducing laser-induced damage during the texturing of silicon with fs-laser irradiation.

  10. Measurement of surface recombination velocity for silicon solar cells using a scanning electron microscope with pulsed beam

    NASA Technical Reports Server (NTRS)

    Daud, T.; Cheng, L. J.

    1981-01-01

    The role of surface recombination velocity in the design and fabrication of silicon solar cells is discussed. A scanning electron microscope with pulsed electron beam was used to measure this parameter of silicon surfaces. It is shown that the surface recombination velocity, s, increases by an order of magnitude when an etched surface degrades, probably as a result of environmental reaction. A textured front-surface-field cell with a high-low junction near the surface shows the effect of minority carrier reflection and an apparent reduction of s, whereas a tandem-junction cell shows an increasing s value. Electric fields at junction interfaces in front-surface-field and tandem-junction cells acting as minority carrier reflectors or sinks tend to alter the value of effective surface recombination velocity for different beam penetration depths. A range of values of s was calculated for different surfaces.

  11. Characterisation of porous silicon/poly(L-lactide) composites prepared using surface initiated ring opening polymerisation

    NASA Astrophysics Data System (ADS)

    McInnes, Steven; Thissen, Helmut; Choudhury, Namita R.; Voelcker, Nicolas H.

    2006-01-01

    Inorganic/organic hybrid or composite materials have in the past shown novel and interesting properties, which are not observed for the individual components. In this context, the preparation of inorganic/polymeric composites from biodegradable and biocompatible constituents is a new concept, which may be of interest particularly for tissue engineering and drug delivery applications. We describe here the synthesis of nanostructured porous silicon (pSi) and poly(L-lactide) (PLLA) composites. The composites were produced using tin(II) 2-ethylhexanoate catalysed surface initiated ring opening polymerisation of L-lactide onto silanised porous silicon films and microparticles. The subsequent chemical, physiochemical and morphological characterisation was performed using Diffuse Reflectance Infrared Spectroscopy (DRIFTS), X-ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM), Differential Scanning Calorimetery (DSC), Thermogravimetric Analysis (TGA) and Contact Angle measurements. DRIFT spectra of the composites showed the presence of bands corresponding to ester carbonyl stretching vibrations as well as hydrocarbon stretching vibrations. XPS analysis confirmed that a layer of PLLA had been grafted onto pSi judging by the low Si content (ca. 3%) and O/C ratio close to that found for PLLA homopolymers. Comparison of the sessile drop contact angle produced by silanised pSi and PLLA grafted onto pSi showed an increase of ca. 40°. This is comparable to the increase in contact angle seen between blank silicon and spin-coated PLLA of ca. 44°. The AFM surface roughness after surface initiated polymerisation increased significantly and AFM images showed the formation of PLLA nanobrushes.

  12. Platelet adhesion and cellular interaction with poly(ethylene oxide) immobilized onto silicone rubber membrane surfaces.

    PubMed

    Hsiue, G H; Lee, S D; Chang, P C

    1996-01-01

    Cellular interaction and platelet adsorption were investigated on poly(ethylene oxide) (PEO) immobilized silicone rubber membrane (SR) which has polyacrylic acid grafts on the surfaces. Polyacrylic acid (PAA) had been introduced to the SR surface after Ar plasma treatment of SR surfaces to introduce peroxide groups. Surface characterizations were made using ATR-FTIR, ESCA, SEM, and contact angle measurements. Experimental results obtained by ESCA high resolution curve fitting spectra indicated that the amount of bisamino PEO of different molecular weights immobilized onto SR surfaces were similar, which showed that the influence of the length of molecular chains (-C-C-O-) on the reactivity of terminal amino group is negligible. The wettability of modified SR surfaces increased with an increase in PEO molecular weight. Biological studies such as corneal epithelial cell culture and blood platelet adhesion were performed to understand the biocompatibility of modified SR surfaces. Biological studies using corneal epithelial cells showed that cell migration, attachment and proliferation onto PEO-20000 immobilized SR surface were suppressed, whereas these biological activities on PEO-600 were enhanced. Another study on platelet adhesion revealed that many platelets attached to PEO-600 immobilized SR, while platelet deposition was rarely observed on SR grafted with PEO-3350. The effects of different PEO molecular chains on biological response were discussed. PMID:8836831

  13. Modification of silicon nitride surfaces with GOPES and APTES for antibody immobilization: computational and experimental studies

    NASA Astrophysics Data System (ADS)

    Dien To, Thien; Nguyen, Anh Tuan; Nhat Thanh Phan, Khoa; Thu Thi Truong, An; Doan, Tin Chanh Duc; Mau Dang, Chien

    2015-12-01

    Chemical modification of silicon nitride (SiN) surfaces by silanization has been widely studied especially with 3-(aminopropyl)triethoxysilane (APTES) and 3-(glycidyloxypropyl) dimethylethoxysilane (GOPES). However few reports performed the experimental and computational studies together. In this study, surface modification of SiN surfaces with GOPES and APTES covalently bound with glutaraldehyde (GTA) was investigated for antibody immobilization. The monoclonal anti-cytokeratin-FITC (MACF) antibody was immobilized on the modified SiN surfaces. The modified surfaces were characterized by water contact angle measurements, atomic force microscopy and fluorescence microscopy. The FITC-fluorescent label indicated the existence of MACF antibody on the SiN surfaces and the efficiency of the silanization reaction. Absorption of APTES and GOPES on the oxidized SiN surfaces was computationally modeled and calculated by Materials Studio software. The computational and experimental results showed that modification of the SiN surfaces with APTES and GTA was more effective than the modification with GOPES.

  14. Electroless chemical grafting of nitrophenyl groups on n-doped hydrogenated amorphous silicon surfaces.

    PubMed

    Kim, Chulki; Oh, Kiwon; Han, Seunghee; Kim, Kyungkon; Kim, Il Won; Kim, Heesuk

    2014-08-01

    The direct spontaneous grafting of 4-nitrophenyl molecules onto n-doped hydrogenated amorphous silicon (a-Si:H) surfaces without external ultraviolet, thermal, or electrochemical energy was invegtigated. Clean n-doped a-Si:H thin films were dipped in a solution of 4-nitrobenzenediazonium salts (PNBD) in acetonitrile. After the modified surfaces were rinsed, they were analyzed qualitatively and quantitatively by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). XPS and AFM results show that the reaction of an n-doped a-Si:H thin film with PNBD self-terminates without polymerization, after 5 h, and the surface number density of 4-nitrophenyl molecules is 4.2 x 10(15)/cm2. These results demonstrate that the spontaneous grafting of nitrophenyl layers onto n-doped a-Si:H thin films is an attractive pathway toward forming interfaces between a-Si:H and organic layers under ambient conditions. PMID:25936109

  15. Simplified fabrication of back surface electric field silicon cells and novel characteristics of such cells

    NASA Technical Reports Server (NTRS)

    Mandelkorn, J.; Lamneck, J. H., Jr.

    1972-01-01

    An investigation of the characteristics and behavior of 10 ohm-cm silicon cells having abnormally high open-circuit voltages was made. The cells studied were made by a new, highly simplified, contact fabrication process which creates both a contact and a thin electric field region at the cell back surface without the need for phosphorus layer removal. These cells had open-circuit voltages of about 0.58 V and their performance as a function of thickness, temperature, and 1 MeV electron irradiation is detailed. The study showed that 10 ohm-cm back-surface-field cells can have the high initial efficiencies and desirable temperature behavior of low resistivity cells. Thin back-surface-field cells were made and showed, in addition, much greater radiation damage resistance. A mechanism is proposed to explain the results.

  16. Simplified fabrication of back surface electric field silicon cells and novel characteristics of such cells.

    NASA Technical Reports Server (NTRS)

    Mandelkorn, J.; Lamneck, J. H., Jr.

    1972-01-01

    An investigation of the characteristics and behavior of 10 ohm-cm silicon cells having abnormally high open-circuit voltages was made. The cells studied were made by a new, highly simplified, contact fabrication process which creates both a contact and a thin electric field region at the cell back surface without the need for phosphorus layer removal. These cells had open-circuit voltages of about 0.58 V and their performance as a function of thickness, temperature, and 1 MeV electron irradiation is detailed. The study showed that 10 ohm-cm back-surface-field cells can have the high initial efficiencies and desirable temperature behavior of low resistivity cells. Thin back-surface-field cells were made and showed, in addition, much greater radiation damage resistance. A mechanism is proposed to explain the results.

  17. Bandgap Tuning of Silicon Quantum Dots by Surface Functionalization with Conjugated Organic Groups.

    PubMed

    Zhou, Tianlei; Anderson, Ryan T; Li, Huashan; Bell, Jacob; Yang, Yongan; Gorman, Brian P; Pylypenko, Svitlana; Lusk, Mark T; Sellinger, Alan

    2015-06-10

    The quantum confinement and enhanced optical properties of silicon quantum dots (SiQDs) make them attractive as an inexpensive and nontoxic material for a variety of applications such as light emitting technologies (lighting, displays, sensors) and photovoltaics. However, experimental demonstration of these properties and practical application into optoelectronic devices have been limited as SiQDs are generally passivated with covalently bound insulating alkyl chains that limit charge transport. In this work, we show that strategically designed triphenylamine-based surface ligands covalently bonded to the SiQD surface using conjugated vinyl connectivity results in a 70 nm red-shifted photoluminescence relative to their decyl-capped control counterparts. This suggests that electron density from the SiQD is delocalized into the surface ligands to effectively create a larger hybrid QD with possible macroscopic charge transport properties. PMID:25971956

  18. Enhanced electron-hole droplet emission from surface-oxidized silicon photonic crystal nanocavities.

    PubMed

    Sumikura, Hisashi; Kuramochi, Eiichi; Taniyama, Hideaki; Notomi, Masaya

    2016-01-25

    We have observed electron-hole droplet (EHD) emission enhanced by silicon photonic crystal (Si PhC) nanocavities with a surface oxide. The EHD is employed as a massive emitter that remains inside the nanocavity to achieve efficient cavity-emitter coupling. Time-resolved emission measurements demonstrate that the surface oxide greatly reduces the nonradiative annihilation of the EHDs and maintains them in the PhC nanocavities. It is found that the surface-oxidized Si PhC nanocavity enhances EHD emission in addition to the Purcell enhancement of the resonant cavity, which will contribute to works on Si light emission and the cavity quantum electrodynamics of electron-hole condensates. PMID:26832491

  19. Adsorption Studies with AFM of Human Plasma Fibrinogen on Silicon Surfaces

    NASA Astrophysics Data System (ADS)

    Gause, Sheena; Kong, Wendy; Rowe

    2007-11-01

    Fibrinogen (FGN) plays an important role in the clotting of blood. Human plasma fibrinogen (HPF) is a protein that readily adsorbs on biomaterial surfaces. The purpose of this experiment was to use the Atomic Force Microscope to study the adsorption of HPF molecules or FGN onto several silicon surfaces with different orientations and resistivities. The size of the FGN molecules found to be somewhat different of Si(111), (100) and (110) were compared to the size of the FGN molecules in solution (45 nm in length, the end dynodes measures to be 6.5 nm in diameter, and the middle dynode measures to be 5 nm in diameter. For this study, the CPR (Thermo-microscope) Atomic Force Microscope (AFM) was used to observe the amount of fibrinogen molecules adsorbed by Si (111) with a resistance of .0281-.0261 φ cm, Si (111) with a resistance of 1 φ cm, Si (100), and Si (110) surfaces. In finding any single fibrinogen molecules, the appropriate image scans and measurements were taken. After collection and analysis of the data, it was found from AFM that the fibrinogen molecules found on Si (110) mostly resembled fibrinogen molecules found in solution. The other images showed that the fibrinogen molecules adsorbed on Silicon substrates is significantly greater (˜10-20 %) than those in solution.

  20. Fabrication of nanostructures on silicon carbide surface and microgroove sidewall using 800-nm femtosecond laser

    NASA Astrophysics Data System (ADS)

    Khuat, Vanthanh; Chen, Tao; Dao, Vanluu

    2015-07-01

    Nanoripples and nanoparticles have been fabricated on the surface of a silicon carbide sample with the irradiation of an 800-nm femtosecond laser in an underwater environment. When a linearly polarized laser was used, the nanoripples were perpendicular to the polarization direction of the incident laser, and the period of the nanoripples was dependent on the number of pulses. When a circularly polarized laser was used, nanoparticles with a diameter of approximately 80 nm were formed. In addition, we observed two kinds of nanoripples on the sidewall of the silicon carbide microgroove fabricated by femtosecond laser irradiation followed by chemical wet etching. When the polarization direction was aligned perpendicular to the writing direction, ripples parallel to the surface of the sample were formed. We attribute the formation of this kind of ripple to interference of the incident laser and the reflected wave. When the polarization direction was aligned parallel to the writing direction, the ripples are perpendicular to the surface of the sample. We attribute the formation of this kind of ripple to interference of incident laser and bulk electron plasma wave. A scanning electron microscope equipped with an energy dispersive X-ray spectroscope was employed to characterize the morphology of the structures.

  1. Inkjet printing as a tool for the patterned deposition of octadecylsiloxane monolayers on silicon oxide surfaces.

    PubMed

    Belgardt, Christian; Sowade, Enrico; Blaudeck, Thomas; Baumgärtel, Thomas; Graaf, Harald; von Borczyskowski, Christian; Baumann, Reinhard R

    2013-05-28

    We present a case study about inkjet printing as a tool for molecular patterning of silicon oxide surfaces with hydrophobic functionality, mediated by n-octadecyltrichlorosilane (OTS) molecules. In contrast to state-of-the-art techniques such as micro contact printing or chemical immersion with subsequent lithography processes, piezo drop-on-demand inkjet printing does not depend on physical masters, which allows an effective direct-write patterning of rigid or flexible substrates and enables short run-lengths of the individual pattern. In this paper, we used mesithylene-based OTS inks, jetted them in droplets of 10 pL on a silicon oxide surface, evaluated the water contact angle of the patterned areas and fitted the results with Cassie's law. For inks of 2.0 mM OTS concentration, we found that effective area coverages of 38% can be obtained. Our results hence show that contact times of the order of hundred milliseconds are sufficient to form a pattern of regions with OTS molecules adsorbed to the surface, representing at least a fragmented, inhomogeneous self-assembled OTS monolayer (OTS-SAM). PMID:23417102

  2. Plasma surface kinetics studies of silicon dioxide etch process in inductively coupled fluorocarbon plasmas

    NASA Astrophysics Data System (ADS)

    Chang, Won-Seok; Yu, Dong-Hun; Cho, Deog-Gyun; Yook, Yeong-Geun; Chun, Poo-Reum; Lee, Se-Ah; Kwon, Deuk-Chul; Im, Yeon-Ho

    2013-09-01

    With continuous decrease of nanoscale design rule, plasma etching processes to form high aspect ratio contact hole still remains a challenge to overcome their inherent drawbacks such as bowing and twisted feature. Due to their complexities there still exist big gaps between current research status and predictable modeling of this process. To address this issue, we proposed a surface kinetic model of silicon nitride etch process under inductively coupled fluorocarbon plasmas. For this work, the cut-off probe and quadrapole mass spectroscopy were used for measuring electrical plasma properties, the ion and neutral radical species. Furthermore, the systematic surface analysis was performed to investigate the thickness and chemical bonding of polymer passivation layer during the etch process. The proposed semi-global surface kinetic model can consider deposition of polymer passivation layer and silicon nitride etching self-consistently. The predicted modeling results showed good agreement with experimental data. We believe that our research will provide valuable information to avoid the empirical development of plasma etching process.

  3. Coherence of Coupled Dangling-Bond Pairs on the Silicon Surface

    NASA Astrophysics Data System (ADS)

    Shaterzadeh-Yazdi, Zahra

    We characterize coherent dynamics of closely-spaced dangling bond (DB) pairs positioned on a silicon surface and sharing an excess electron. We investigate whether a coupled-DB pair is a potential candidate for a charge qubit. A dangling bond is an atomic-scale entity that acts like a quantum dot. By shrinking the scale of the quantum dots and the spacing between them, we expect that the excess-electron tunneling rate increases dramatically with decreasing inter-dot separation, while decoherence scales weakly. Our analysis of the coherent dynamics of coupled-DB pairs shows promise in this respect. The extremely high tunneling rate of the DB excess charge greatly exceeds the expected decoherence rates for a silicon-based system, thereby overcoming the critical obstacle of charge qubits for quantum computing purposes. However, this scaling advantage comes at the price of requiring rapid control and readout. We devise a scheme for measuring the DB-pair dynamics, but investigating the fast control is beyond the scope of this thesis. Furthermore, we investigate the effect of the silicon-surface structure on the coherence of a coupled-DB pair. The silicon surface of interest is well patterned, but it has an anisotropic structure. Therefore, the coupling strength of a DB pair depends on the arrangement of the DBs on the silicon surface. We employ ab initio techniques and calculate the energy splitting for a wide variety of coupled DB-pair configurations on this surface. The results show that the energy splitting (and consequently the tunneling rate of the DB-pair excess charge) is a function of the DBs' location on the surface and also it strongly depends on the structural orientation of the DBs' orbital. Based on the results, DB-pair configurations are categorized into four groups, such that the changing rate of energy splitting versus DB-pair separation is different among the groups. Knowing about the effect of the surface structure on the DB-pair energy splitting is

  4. Ultrathin coating of plasma polymer of methane applied on the surface of silicone contact lenses.

    PubMed

    Ho, C P; Yasuda, H

    1988-10-01

    Silicone rubber has great advantages as a contact lens material because of its very high oxygen permeability, softness, and excellent mechanical strength and durability. Practical application is hampered by inherent characteristics of elastomers, i.e., high tackiness and highly hydrophobic surface properties. By applying a thin layer, e.g., 5 nm, of plasma polymer of methane, it was found that all these disadvantages can be eliminated without sacrificing high oxygen permeation rate, e.g., less than 15% reduction. Optimization of operational parameters to achieve this task has been investigated. It was also found that under optimum conditions the coating withstood severe and repeated flexing of the contact lens. PMID:3220842

  5. Influence of irradiation dose on laser-induced surface nanostructures on silicon

    NASA Astrophysics Data System (ADS)

    Varlamova, Olga; Bounhalli, Mourad; Reif, Juergen

    2013-08-01

    We report on the dependence of femtosecond laser-induced periodic surface structures on an increase of incident pulse number. On silicon, the patterns evolve from linear, parallel sub-wavelength ripples, grossly perpendicular to the laser polarization, via coalesced wider features parallel to the polarization, to a crater with periodically structured, pillar-like walls. Closer inspection of the patterns indicates that the different features always continue to exhibit reminiscence to the preceding lower-dose patterns, suggesting that, indeed, all patterns can be created by ONE single GENERAL formation process, as in self-organized structure formation, and the different structures/feature sizes are NOT due to DIFFERENT mechanisms.

  6. Reducing intrinsic loss in superconducting resonators by surface treatment and deep etching of silicon substrates

    SciTech Connect

    Bruno, A.; Lange, G. de; Asaad, S.; Enden, K. L. van der; Langford, N. K.; DiCarlo, L.

    2015-05-04

    We present microwave-frequency NbTiN resonators on silicon, systematically achieving internal quality factors above 1 M in the quantum regime. We use two techniques to reduce losses associated with two-level systems: an additional substrate surface treatment prior to NbTiN deposition to optimize the metal-substrate interface and deep reactive-ion etching of the substrate to displace the substrate-vacuum interfaces away from high electric fields. The temperature and power dependence of resonator behavior indicate that two-level systems still contribute significantly to energy dissipation, suggesting that more interface optimization could further improve performance.

  7. Surface photovoltage analysis of iron contamination in silicon processing and the relation to gate oxide integrity

    NASA Astrophysics Data System (ADS)

    Henley, Worth B.

    1995-09-01

    Surface photovoltage (SPV), a contactless optical technique for measuring minority carrier lifetime, is used to quantify the relationship between silicon iron contamination level and thin gate oxide integrity. Iron concentration levels in the range of 1 X 1010 cm-3 to 5 X 1013 cm-3 are evaluated for oxide thicknesses of 8 to 20 nm. Ramp voltage electrical breakdown and time dependant dielectric breakdown measurement on the iron contaminated gate oxide capacitors are reported. Distinct iron contamination threshold limits based on defect density and gate oxide integrity evaluate cleaning efficiencies and metallic cross contamination effects during thermal processing contamination. Iron-silicide precipitation kinetics are investigated by the lifetime analysis procedure.

  8. Dependence of cryogenic strength of hydroxide catalysis bonded silicon on type of surface oxide

    NASA Astrophysics Data System (ADS)

    Beveridge, N. L.; van Veggel, A. A.; Cunningham, L.; Hough, J.; Martin, I. W.; Nawrodt, R.; Reid, S.; Rowan, S.

    2013-01-01

    Hydroxide catalysis bonding is a joining technique used in the construction of highly stable opto-mechanical systems including quasi-monolithic silica suspensions for first and second generation gravitational wave detectors. Future generations of detector are likely to operate at cryogenic temperatures necessitating a change in testmass/suspension material. A promising candidate material is silicon, which requires an oxide surface layer for hydroxide catalysis bonding to be reliable. Here, we present first results showing the influence of the type of oxide layer applied on bond strength, measured at room temperature and 77 K, and identify preferred oxide deposition methods.

  9. Hybrid organic-inorganic heterojunction solar cells with 12% efficiency by utilizing flexible film-silicon with a hierarchical surface.

    PubMed

    Thiyagu, Subramani; Hsueh, Chen-Chih; Liu, Chien-Ting; Syu, Hong-Jhang; Lin, Tzu-Ching; Lin, Ching-Fuh

    2014-03-21

    This paper reports an organic-inorganic hybrid solar cell with a hierarchical surface composed of high density silicon nanoholes and micro-desert textures. High-efficiency organic-inorganic hybrid solar cell Si/PEDOT-PSS with a hierarchical surface, showing a power conversion efficiency of 12%. The structure provides excellent light absorption over 97% for the spectral range of 300 to 1100 nm with a thickness of 60 μm due to internal multiple reflections caused by subwavelength features of high density silicon nanoholes and micro-desert textures. In addition, from the angle of incidence (AOI) observed, even at the large angle of 75°, the reflectance value still exhibits less than 1%. With the advantage of very thin silicon material and inexpensive processing, hybrid silicon/polymer solar cells are promising for various applications and thus could be an economically feasible alternative energy solution in the future. PMID:24522339

  10. Modulated surface nanostructures for enhanced light trapping and reduced surface reflection of crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Tayagaki, Takeshi; Hoshi, Yusuke; Hirai, Yuji; Matsuo, Yasutaka; Usami, Noritaka

    2016-05-01

    We demonstrated the fabrication of modulated surface nanostructures as a new surface texture design for thin wafer solar cells. Using a combination of conventional alkali etching and colloidal lithography, we fabricated surface textures with micrometer and nanometre scales on a Si substrate. These modulated surface nanostructures exhibit reduced surface reflection in a broad spectral range, compared with conventional micrometer textures. We investigated optical absorption using a rigorous coupled wave analysis simulation, which revealed a significant reduction in surface reflection over a broad spectral range and efficient light trapping (comparable to that of conventional micrometer-scale textures) for the modulated nanostructures. We found that the modulated surface nanostructures have a high potential of improving the performance of thin wafer crystalline Si solar cells.

  11. Standard operating procedure (SOP) for the quantitative determination of organic silicon compounds at the surface of elastomeric sealants

    NASA Astrophysics Data System (ADS)

    Gross, Th; Treu, D.; Unger, W.

    2001-07-01

    Elastomeric sealants may contain organic silicon compounds. The use of these sealants for housings for electronic components is harmful for the reliability of electric contacts inside. In order to prevent electronic components from malfunction, quality control of elastomeric sealants is required. An analytical procedure developed to fulfil this requirement was developed. It is based on electron spectroscopy for chemical analysis (ESCA). Information on the silicon compounds existing at the surface of elastomeric sealants is provided by this method. Silicon in organic and inorganic compounds can be differentiated with the help of Si 2p photoelectron spectra. Quantitative results can be obtained too. The uncertainty budget of the quantitative procedure is estimated.

  12. Factors controlling the silicon isotope distribution in waters and surface sediments of the Peruvian coastal upwelling

    NASA Astrophysics Data System (ADS)

    Ehlert, Claudia; Grasse, Patricia; Mollier-Vogel, Elfi; Böschen, Tebke; Franz, Jasmin; de Souza, Gregory F.; Reynolds, Ben C.; Stramma, Lothar; Frank, Martin

    2012-12-01

    We present the first systematic study of the silicon isotope composition in the water column (δ30Si) and in diatoms (δ30Sidiatom) from the underlying surface sediments in a coastal upwelling region. The surface waters upwelling on the shelf off Peru are mainly fed by southward flowing subsurface waters along the coast, which show a mean δ30Si of +1.5‰. The concentration of dissolved silicic acid (Si(OH)4) increases towards the south in these waters and with increasing water depth, suggesting lateral mixing with water masses from the south and intense remineralisation of particulate biogenic silica (bSiO2) in the water column and in the surface sediments. Surface waters in the realm of the most intense upwelling between 5°S and 15°S have only marginally elevated δ30Si values (δ30Si = +1.7‰) with respect to the source Si isotope composition, whereas further north and south, where upwelling is less pronounced, surface waters are more strongly fractionated (δ30Si up to +2.8‰) due to the stronger utilisation of the smaller amounts of available Si(OH)4. The degree of Si(OH)4 utilisation in the surface waters along the shelf estimated from the Si(OH)4 concentration data ranges from 51% to 93%. The δ30Sidiatom values of hand-picked diatoms in the underlying surface sediments vary from +0.6‰ to +2.0‰, which is within the range of the expected fractionation between surface waters and diatoms. The fractionation signal in the surface waters produced during formation of the diatoms is reflected by the δ30Sidiatom values in the underlying sediments, with the lowest δ30Sidiatom values in the main upwelling region. The silicon isotope compositions of bSiO2 (δ30Si) from the same surface sediment samples are generally much lower than the δ30Sidiatom signatures indicating a significant contamination of the bSiO2 with biogenic siliceous material other than diatoms, such as sponge spicules. This shift towards lighter δ30Si values by up to -1.3‰ compared to

  13. From Molecules to Surfaces: Radical-Based Mechanisms of Si-S and Si-Se Bond Formation on Silicon.

    PubMed

    Buriak, Jillian M; Sikder, Md Delwar H

    2015-08-01

    The derivatization of silicon surfaces can have profound effects on the underlying electronic properties of the semiconductor. In this work, we investigate the radical surface chemistry of silicon with a range of organochalcogenide reagents (comprising S and Se) on a hydride-terminated silicon surface, to cleanly and efficiently produce surface Si-S and Si-Se bonds, at ambient temperature. Using a diazonium-based radical initiator, which induces formation of surface silicon radicals, a group of organochalcogenides were screened for reactivity at room temperature, including di-n-butyl disulfide, diphenyl disulfide, diphenyl diselenide, di-n-butyl sulfide, diphenyl selenide, diphenyl sulfide, 1-octadecanethiol, t-butyl disulfide, and t-butylthiol, which comprises the disulfide, diselenide, thiol, and thioether functionalities. The surface reactions were monitored by transmission mode Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy, and time-of-flight secondary ionization mass spectrometry. Calculation of Si-Hx consumption, a semiquantitative measure of yield of production of surface-bound Si-E bonds (E = S, Se), was carried out via FTIR spectroscopy. Control experiments, sans the BBD diazonium radical initiator, were all negative for any evident incorporation, as determined by FTIR spectroscopy. The functional groups that did react with surface silicon radicals included the dialkyl/diphenyl disulfides, diphenyl diselenide, and 1-octadecanethiol, but not t-butylthiol, diphenyl sulfide/selenide, and di-n-butyl sulfide. Through a comparison with the rich body of literature regarding molecular radicals, and in particular, silyl radicals, reaction mechanisms were proposed for each. Armed with an understanding of the reaction mechanisms, much of the known chemistry within the extensive body of radical-based reactivity has the potential to be harnessed on silicon and could be extended to a range of technologically relevant semiconductor

  14. Paraboloid Structured Silicon Surface for Enhanced Light Absorption: Experimental and Simulative Investigations

    NASA Astrophysics Data System (ADS)

    Khan, Firoz; Baek, Seong-Ho; Kaur, Jasmeet; Fareed, Imran; Mobin, Abdul; Kim, Jae Hyun

    2015-09-01

    In this paper, we present an optical model that simulates the light trapping and scattering effects of a paraboloid texture surface first time. This model was experimentally verified by measuring the reflectance values of the periodically textured silicon (Si) surface with the shape of a paraboloid under different conditions. A paraboloid texture surface was obtained by electrochemical etching Si in the solution of hydrofluoric acid, dimethylsulfoxide (DMSO), and deionized (DI) water. The paraboloid texture surface has the advantage of giving a lower reflectance value than the hemispherical, random pyramidal, and regular pyramidal texture surfaces. In the case of parabola, the light can be concentrated in the direction of the Si surface compared to the hemispherical, random pyramidal, and regular pyramidal textured surfaces. Furthermore, in a paraboloid textured surface, there can be a maximum value of 4 or even more by anisotropic etching duration compared to the hemispherical or pyramidal textured surfaces which have a maximum h/ D (depth and diameter of the texture) value of 0.5. The reflectance values were found to be strongly dependent on the h/ D ratio of the texture surface. The measured reflectance values were well matched with the simulated ones. The minimum reflectance value of ~4 % was obtained at a wavelength of 600 nm for an h/ D ratio of 3.75. The simulation results showed that the reflectance value for the h/ D ratio can be reduced to ~0.5 % by reducing the separations among the textures. This periodic paraboloidal structure can be applied to the surface texturing technique by substituting with a conventional pyramid textured surface or moth-eye antireflection coating.

  15. Paraboloid Structured Silicon Surface for Enhanced Light Absorption: Experimental and Simulative Investigations.

    PubMed

    Khan, Firoz; Baek, Seong-Ho; Kaur, Jasmeet; Fareed, Imran; Mobin, Abdul; Kim, Jae Hyun

    2015-12-01

    In this paper, we present an optical model that simulates the light trapping and scattering effects of a paraboloid texture surface first time. This model was experimentally verified by measuring the reflectance values of the periodically textured silicon (Si) surface with the shape of a paraboloid under different conditions. A paraboloid texture surface was obtained by electrochemical etching Si in the solution of hydrofluoric acid, dimethylsulfoxide (DMSO), and deionized (DI) water. The paraboloid texture surface has the advantage of giving a lower reflectance value than the hemispherical, random pyramidal, and regular pyramidal texture surfaces. In the case of parabola, the light can be concentrated in the direction of the Si surface compared to the hemispherical, random pyramidal, and regular pyramidal textured surfaces. Furthermore, in a paraboloid textured surface, there can be a maximum value of 4 or even more by anisotropic etching duration compared to the hemispherical or pyramidal textured surfaces which have a maximum h/D (depth and diameter of the texture) value of 0.5. The reflectance values were found to be strongly dependent on the h/D ratio of the texture surface. The measured reflectance values were well matched with the simulated ones. The minimum reflectance value of ~4 % was obtained at a wavelength of 600 nm for an h/D ratio of 3.75. The simulation results showed that the reflectance value for the h/D ratio can be reduced to ~0.5 % by reducing the separations among the textures. This periodic paraboloidal structure can be applied to the surface texturing technique by substituting with a conventional pyramid textured surface or moth-eye antireflection coating. PMID:26415541

  16. Quantitative Real-Time Measurements of DNA Hybridization with Alkylated Non-Oxidized Silicon Nanowires in Electrolyte Solution

    PubMed Central

    Bunimovich, Yuri L.; Shin, Young Shik; Yeo, Woon-Seok; Amori, Michael; Kwong, Gabriel

    2013-01-01

    The quantitative, real time detection of single stranded oligonucleotides with silicon nanowires (SiNWs) in physiologically relevant electrolyte solution is demonstrated. Debye screening of the hybridization event is minimized by utilizing electrostatically adsorbed primary DNA on an amine-terminated NW surface. Two surface functionalization chemistries are compared: an amine terminated siloxane monolayer on the native SiO2 surface of the SiNW, and an amine terminated alkyl monolayer grown directly on a hydrogen-terminated SiNW surface. The SiNWs without the native oxide exhibit improved solution-gated field-effect transistor characteristics and a significantly enhanced sensitivity to single stranded DNA detection, with an accompanying two orders of magnitude improvement in the dynamic range of sensing. A model for the detection of analyte by SiNW sensors is developed and utilized to extract DNA binding kinetic parameters. Those values are directly compared with values obtained by the standard method of surface plasmon resonance (SPR), and demonstrated to be similar. The nanowires, however, are characterized by higher detection sensitivity. The implication is that Si NWs can be utilized to quantitate the solution phase concentration of biomolecules at low concentrations. This work also demonstrates the importance of surface chemistry for optimizing biomolecular sensing with silicon nanowires. PMID:17165787

  17. An experimental investigation of silicon wafer surface roughness and its effect on the full strength of plated metals

    NASA Technical Reports Server (NTRS)

    Spiers, G. D.

    1981-01-01

    Plated silicon wafers with surface roughness ranging from 0.4 to 130 microinches were subjected to tensile pull strength tests. Electroless Ni/electroless Cu/electroplated Cu and electroless Ni/electroplated Cu were the two types of plate contacts tested. It was found that smoother surfaces had higher pull strength than rougher, chemically etched surfaces. The presence of the electroless Cu layer was found to be important to adhesion. The mode of fracture of the contact as it left the silicon was studied, and it was found that in almost all cases separation was due to fracture of the bulk silicon phase. The correlation between surface roughness and mode of contact failure is presented and interpreted.

  18. Facile surface modification of silicone rubber with zwitterionic polymers for improving blood compatibility.

    PubMed

    Liu, Pingsheng; Chen, Qiang; Yuan, Bo; Chen, Mengzhou; Wu, Shishan; Lin, Sicong; Shen, Jian

    2013-10-01

    A facile approach to modify silicone rubber (SR) membrane for improving the blood compatibility was investigated. The hydrophobic SR surface was firstly activated by air plasma, after which an initiator was immobilized on the activated surface for atom transfer radical polymerization (ATRP). Three zwitterionic polymers were then grafted from SR membrane via surface-initiated atom transfer radical polymerization (SI-ATRP). The surface composition, wettability, and morphology of the membranes before and after modification were characterized by X-ray photoelectron spectroscopy (XPS), static water contact angle (WCA) measurement, and atomic force microscopy (AFM). Results showed that zwitterionic polymers were successfully grafted from SR surfaces, which remarkably improved the wettability of the SR surface. The blood compatibility of the membranes was evaluated by protein adsorption and platelet adhesion tests in vitro. As observed, all the zwitterionic polymer modified surfaces have improved resistance to nonspecific protein adsorption and have excellent resistance to platelet adhesion, showing significantly improved blood compatibility. This work should inspire many creative uses of SR based materials for biomedical applications such as vessel, catheter, and microfluidics. PMID:23910289

  19. Suppressing light reflection from polycrystalline silicon thin films through surface texturing and silver nanostructures

    SciTech Connect

    Akhter, Perveen; Huang, Mengbing Kadakia, Nirag; Spratt, William; Malladi, Girish; Bakhru, Hassarum

    2014-09-21

    This work demonstrates a novel method combining ion implantation and silver nanostructures for suppressing light reflection from polycrystalline silicon thin films. Samples were implanted with 20-keV hydrogen ions to a dose of 10¹⁷/cm², and some of them received an additional argon ion implant to a dose of 5×10¹⁵ /cm² at an energy between 30 and 300 keV. Compared to the case with a single H implant, the processing involved both H and Ar implants and post-implantation annealing has created a much higher degree of surface texturing, leading to a more dramatic reduction of light reflection from polycrystalline Si films over a broadband range between 300 and 1200 nm, e.g., optical reflection from the air/Si interface in the AM1.5 sunlight condition decreasing from ~30% with an untextured surface to below 5% for a highly textured surface after post-implantation annealing at 1000°C. Formation of Ag nanostructures on these ion beam processed surfaces further reduces light reflection, and surface texturing is expected to have the benefit of diminishing light absorption losses within large-size (>100 nm) Ag nanoparticles, yielding an increased light trapping efficiency within Si as opposed to the case with Ag nanostructures on a smooth surface. A discussion of the effects of surface textures and Ag nanoparticles on light trapping within Si thin films is also presented with the aid of computer simulations.

  20. Ion-Step Method for Surface Potential Sensing of Silicon Nanowires.

    PubMed

    Chen, Songyue; van Nieuwkasteele, Jan W; van den Berg, Albert; Eijkel, Jan C T

    2016-08-16

    This paper presents a novel stimulus-response method for surface potential sensing of silicon nanowire (Si-NW) field-effect transistors. When an "ion-step" from low to high ionic strength is given as a stimulus to the gate oxide surface, an increase of double layer capacitance is therefore expected. Thus, a change of conductance through the Si-NWs is measured. The surface potential on the Si-NW gate is changed from negative for a bare SiO2 surface to neutral/positive when there is poly-l-lysine adsorption at certain pH, which also indicates a shift of point-of-zero charge pH after surface modification. This change is measured by a drop of current variation at the ion-step. The ion-step is performed to the Si-NW through a polydimethylsiloxane microfluidic chip with automatic sample switching. A reduction of the ion-step response from 2 nA to almost zero at pH 5.0 is observed by increasing the potassium ion concentration from 10 mM to 50 mM, which corresponds to a surface potential change of ∼12 mV. We show that this method can be used as an alternative method for surface potential sensing, making it less sensitive to drift. PMID:27457611

  1. Ionic Behavior in Highly Concentrated Aqueous Solutions Nanoconfined between Discretely Charged Silicon Surfaces.

    PubMed

    Qiu, Yinghua; Ma, Jian; Chen, Yunfei

    2016-05-17

    Through molecular dynamics simulations considering thermal vibration of surface atoms, ionic behaviors in concentrated NaCl solutions confined between discretely charged silicon surfaces have been investigated. The electric double layer structure was found to be sensitive to the density and distribution of surface charges. Due to the discreteness of the surface charge, a slight charge inversion appeared which depended on the surface charge density, bulk concentration, and confinement. In the nanoconfined NaCl solutions concentrated from 0.2 to 4.0 M, the locations of accumulation layers for Na(+) and Cl(-) ions remained stable, but their peak values increased. The higher the concentration was, the more obvious the charge inversion appeared. In 4.0 M NaCl solution, Na(+) and Cl(-) ions show obvious alternating layered distributions which may correspond to the solidification found in experiments. By changing surface separation, the confinement had a large effect on the ionic distribution. As both surfaces approached each other, many ions and water molecules were squeezed out of the confined space. Two adjacent layers in ion or water distribution profiles can be forced closer to each other and merge together. From ionic hydration analysis, the coordination number of Na(+) ions in highly confined space was much lower than that in the bulk. PMID:27137990

  2. Porous silicon Bloch surface and sub-surface wave structure for simultaneous detection of small and large molecules

    NASA Astrophysics Data System (ADS)

    Rodriguez, Gilberto A.; Lonai, John D.; Mernaugh, Raymond L.; Weiss, Sharon M.

    2014-08-01

    A porous silicon (PSi) Bloch surface wave (BSW) and Bloch sub-surface wave (BSSW) composite biosensor is designed and used for the size-selective detection of both small and large molecules. The BSW/BSSW structure consists of a periodic stack of high and low refractive index PSi layers and a reduced optical thickness surface layer that gives rise to a BSW with an evanescent tail that extends above the surface to enable the detection of large surface-bound molecules. Small molecules were detected in the sensor by the BSSW, which is a large electric field intensity spatially localized to a desired region of the Bragg mirror and is generated by the implementation of a step or gradient refractive index profile within the Bragg mirror. The step and gradient BSW/BSSW sensors are designed to maximize both resonance reflectance intensity and sensitivity to large molecules. Size-selective detection of large molecules including latex nanospheres and the M13KO7 bacteriophage as well as small chemical linker molecules is reported.

  3. A theoretical guide for fabricating a conductive molecular wire on a silicon surface via an in situ surface polymerization reaction

    NASA Astrophysics Data System (ADS)

    Yao, Xiaojing; Wang, Jinlan; Yuan, Shijun; Zhang, Xiuyun; Wu, Gang; Wang, Xiaobai; Yang, Shuo-Wang

    2015-09-01

    It has been a long-standing goal to make conductive molecular wires or linear polymer chains on traditional semiconductors or insulator substrates to satisfy the ongoing miniaturization in electronic devices. Here, we have proposed a surface in situ polymerization reaction for a pre-absorbed molecule, 4-hydrazinyl-3-(pyridin-4-ylmethyl)-benzaldehyde (HPyMB), to produce a conductive molecular wire on a silicon surface. Our first-principles calculations show that HPyMB molecules can absorb alternatively on the exposed Si atoms created via ultrahigh vacuum scanning tunneling microscopy on a hydrogen passivated H-Si(001)2 × 1 surface along the [110] direction. The adsorption is exothermic and its generated energy is sufficient for the following intermolecular dehydration polymerization reaction to overcome the activation energy barriers and thereafter form a molecular wire on the surface. This polymerized molecular wire is mechanically stable since it is chemically bonded onto the surface. After polymerization, the system becomes conductive due to the charge transfer from the molecule-surface bonds to their pyridine rings. More importantly, by removing 1.1 electrons from the system, the surface polymer chain is the sole conductive channel. Furthermore, its conducting nature remains robust even under a large external electric field. Our findings open a new window for the fabrication of conductive molecular wires or polymer chains on semiconductor surfaces, and provide insights into the mechanism behind the molecular wire conductivity.It has been a long-standing goal to make conductive molecular wires or linear polymer chains on traditional semiconductors or insulator substrates to satisfy the ongoing miniaturization in electronic devices. Here, we have proposed a surface in situ polymerization reaction for a pre-absorbed molecule, 4-hydrazinyl-3-(pyridin-4-ylmethyl)-benzaldehyde (HPyMB), to produce a conductive molecular wire on a silicon surface. Our first

  4. Spatial resolution in thin film deposition on silicon surfaces by combining silylation and UV/ozonolysis

    NASA Astrophysics Data System (ADS)

    Guo, Lei; Zaera, Francisco

    2014-12-01

    A simple procedure has been developed for the processing of silicon wafers in order to facilitate the spatially resolved growth of thin solid films on their surfaces. Specifically, a combination of silylation and UV/ozonolysis was tested as a way to control the concentration of the surface hydroxo groups required for subsequent atomic layer deposition (ALD) of metals or oxides. Water contact angle measurements were used to evaluate the hydrophilicity/hydrophobicity of the surface, a proxy for OH surface coverage, and to optimize the UV/ozonolysis treatment. Silylation with hexamethyldisilazane, trichloro(octadecyl)silane, or trimethylchlorosilane was found to be an efficient way to block the hydroxo sites and to passivate the underlying surface, and UV/O3 treatments were shown to effectively remove the silylation layer and to regain the surface reactivity. Both O3 and 185 nm UV radiation were determined necessary for the removal of the silylation layer, and additional 254 nm radiation was found to enhance the process. Attenuated total reflection-infrared absorption spectroscopy was employed to assess the success of the silylation and UV/O3 removal steps, and atomic force microscopy data provided evidence for the retention of the original smoothness of the surface. Selective growth of HfO2 films via TDMAHf + H2O ALD was seen only on the UV/O3 treated surfaces; total inhibition of the deposition was observed on the untreated silylated surfaces (as determined by x-ray photoelectron spectroscopy and ellipsometry). Residual film growth was still detected on the latter if the ALD was carried out at high temperatures (250 °C), because the silylation layer deteriorates under such harsh conditions and forms surface defects that act as nucleation sites for the growth of oxide grains (as identified by electron microscopy and scanning electron microscopy). We believe that the silylation-UV/O3 procedure advanced here could be easily implemented for the patterning of surfaces

  5. Surface chemistry, reactivity, and pore structure of porous silicon oxidized by various methods.

    PubMed

    Riikonen, Joakim; Salomäki, Mikko; van Wonderen, Jessica; Kemell, Marianna; Xu, Wujun; Korhonen, Ossi; Ritala, Mikko; MacMillan, Fraser; Salonen, Jarno; Lehto, Vesa-Pekka

    2012-07-17

    Oxidation is the most commonly used method of passivating porous silicon (PSi) surfaces against unwanted reactions with guest molecules and temporal changes during storage or use. In the present study, several oxidation methods were compared in order to find optimal methods able to generate inert surfaces free of reactive hydrides but would cause minimal changes in the pore structure of PSi. The studied methods included thermal oxidations, liquid-phase oxidations, annealings, and their combinations. The surface-oxidized samples were studied by Fourier transform infrared spectroscopy, isothermal titration microcalorimetry, nitrogen sorption, ellipsometry, X-ray diffraction, electron paramagnetic resonance spectroscopy, and scanning electron microscopy imaging. Treatment at high temperature was found to have two advantages. First, it enables the generation of surfaces free of hydrides, which is not possible at low temperatures in a liquid or a gas phase. Second, it allows the silicon framework to partially accommodate a volume expansion because of oxidation, whereas at low temperature the volume expansion significantly consumes the free pore volume. The most promising methods were further optimized to minimize the negative effects on the pore structure. Simple thermal oxidation at 700 °C was found to be an effective oxidation method although it causes a large decrease in the pore volume. A novel combination of thermal oxidation, annealing, and liquid-phase oxidation was also effective and caused a smaller decrease in the pore volume with no significant change in the pore diameter but was more complicated to perform. Both methods produced surfaces that were not found to react with a model drug cinnarizine in isothermal titration microcalorimetry experiments. The study enables a reasonable choice of oxidation method for PSi applications. PMID:22671967

  6. Patterned porous silicon photonic crystals with modular surface chemistry for spatial control of neural stem cell differentiation.

    PubMed

    Huang, Tiffany H; Pei, Yi; Zhang, Douglas; Li, Yanfen; Kilian, Kristopher A

    2016-06-01

    We present a strategy to spatially define regions of gold and nanostructured silicon photonics, each with materials-specific surface chemistry, for azide-alkyne cycloaddition of different bioactive peptides. Neural stem cells are spatially directed to undergo neurogenesis and astrogenesis as a function of both surface properties and peptide identity. PMID:27173986

  7. Assessment of techniques for characterizing the surface quality of ground silicon nitride

    SciTech Connect

    Zanoria, E.S.; Watkins, T.R.; Breder, K.; Riester, L.; Bashkansky, M.; Reintjes, J.; Blau, P.J.; Sun, J.G.; Ellingson, W.A.

    1998-08-01

    This study evaluates techniques used to detect and quantify the extent of surface and subsurface damage in ground silicon nitride. Specimens of two differently ground surfaces of a hot isostatically pressed (HIP) silicon nitride, commercially designated as GS-44, were subjected to six types of analyses, namely mechanical stylus profiling, atomic force microscopy, point-counting analysis of fragmentation pits, laser-light scattering, optical gating, and grazing incidence x-ray diffraction (GIXD). The results of these investigations are compared and discussed. The techniques providing the clearest correlations with grinding conditions were mechanical stylus roughness, fragmentation analysis, and GIXD (residual stress conditions). Those that exhibited some correlation but appear to require more work to develop a reliable evaluation method were laser scattering and optical gating. Atomic force microscopy was useful, but not as a routine investigative tool for quality control in ceramic machining. The techniques that appear to have the most near-term potential for routine use are fragmentation analysis and optical gating. Laser-based optical scattering exhibits potential for routine application, but, more development is needed for its commercialization.

  8. Static and dynamic electronic characterization of organic monolayers grafted on a silicon surface.

    PubMed

    Pluchery, O; Zhang, Y; Benbalagh, R; Caillard, L; Gallet, J J; Bournel, F; Lamic-Humblot, A-F; Salmeron, M; Chabal, Y J; Rochet, F

    2016-02-01

    Organic layers chemically grafted on silicon offer excellent interfaces that may open up the way for new organic-inorganic hybrid nanoelectronic devices. However, technological achievements rely on the precise electronic characterization of such organic layers. We have prepared ordered grafted organic monolayers (GOMs) on Si(111), sometimes termed self-assembled monolayers (SAMs), by a hydrosilylation reaction with either a 7-carbon or an 11-carbon alkyl chain, with further modification to obtain amine-terminated surfaces. X-ray photoelectron spectroscopy (XPS) is used to determine the band bending (∼ 0.3 eV), and ultraviolet photoelectron spectroscopy (UPS) to measure the work function (∼ 3.4 eV) and the HOMO edge. Scanning tunneling microscopy (STM) confirms that the GOM surface is clean and smooth. Finally, conductive AFM is used to measure electron transport through the monolayer and to identify transition between the tunneling and the field emission regimes. These organic monolayers offer a promising alternative to silicon dioxide thin films for fabricating metal-insulator-semiconductor (MIS) junctions. We show that gold nanoparticles can be covalently attached to mimic metallic nano-electrodes and that the electrical quality of the GOMs is completely preserved in the process. PMID:26757829

  9. Electronic passivation of silicon surfaces by thin films of atomic layer deposited gallium oxide

    SciTech Connect

    Allen, T. G. Cuevas, A.

    2014-07-21

    This paper proposes the application of gallium oxide (Ga{sub 2}O{sub 3}) thin films to crystalline silicon solar cells. Effective passivation of n- and p-type crystalline silicon surfaces has been achieved by the application of very thin Ga{sub 2}O{sub 3} films prepared by atomic layer deposition using trimethylgallium (TMGa) and ozone (O{sub 3}) as the reactants. Surface recombination velocities as low as 6.1 cm/s have been recorded with films less than 4.5 nm thick. A range of deposition parameters has been explored, with growth rates of approximately 0.2 Å/cycle providing optimum passivation. The thermal activation energy for passivation of the Si-Ga{sub 2}O{sub 3} interface has been found to be approximately 0.5 eV. Depassivation of the interface was observed for prolonged annealing at increased temperatures. The activation energy for depassivation was measured to be 1.9 eV.

  10. Efficient Black Silicon Solar Cells with Multi-Scale Surface Texture

    NASA Astrophysics Data System (ADS)

    Toor, Fatima; Nemeth, William; Page, Matthew; Wang, Qi; Branz, Howard; Yuan, Hao-Chih

    2011-03-01

    A nanostructured, density-graded surface layer can replace conventional quarter-wavelength coatings as the anti-reflection layer in photovoltaics. If the layer is comprised of structures smaller than the wavelength of the incident light and the density is graded across more than about half the wavelength of the light, reflection is strongly suppressed (H. M. Branz et al., APL {94} 2009). We developed an inexpensive liquid etch technique for silicon to produce ``black Si'' based upon this physics. However, the problem of high carrier recombination within this nanostructured layer must be overcome to improve beyond the present best solar cell with its confirmed 16.8% black silicon sunlight-to-electricity conversion efficiency (H-C. Yuan et al., APL {95} 2009). In this work, we combine the black Si layer with conventional KOH-etched pyramidal surface texture (Y. Xiu et al., Langmuir {24 }2008) at micron-scale. Pyramids contribute anti-reflection based on geometric optics. Combining the pyramids with nanostructures only 100 nm deep provides reflectivity below 2% across a wavelength range from 350 - 1000 nm. To-date, we have obtained a solar cell efficiency of 17% with a Voc of 613 mV, Jsc of 35 mA/cm2 and fill-factor of 78%. These cells have improved blue response compared to the best planar black Si cells.

  11. Selectively deposited silver coatings on gold-capped silicon nanowires for surface-enhanced Raman spectroscopy.

    PubMed

    Becker, M; Stelzner, Th; Steinbrück, A; Berger, A; Liu, J; Lerose, D; Gösele, U; Christiansen, S

    2009-06-01

    Gold caps on silicon nanowires are selectively coated with silver by autometallography (electroless deposition). Changing the conditions of silver deposition, a variety of different coating morphologies can be produced [figure: see text]. The different silver coating morphologies are investigated in terms of their capabilities for surface enhanced Raman scattering (SERS) experiments.Gold caps on silicon nanowires are hemispherical and only a few tens of nanometers in diameter when grown from metal catalysts by the vapor-liquid-solid growth mechanism using chemical vapor deposition. These gold caps are capable of enhancing Raman signals based on the surface-enhanced Raman scattering effect. The Raman signal can be enhanced even further (by at least one order of magnitude) when silver is selectively deposited onto these gold caps by autometallography (electroless deposition). By changing the silver deposition conditions, different coating morphologies can be realized on the gold caps that range from very thin, smooth layers to uneven and extremely rough coatings. The SERS signal enhancement and the spatial homogeneity of the achievable enhancement are compared for the different silver coatings using a model dye molecule. PMID:19399821

  12. Full DFT-D description of a nanoporous supramolecular network on a silicon surface.

    PubMed

    Boukari, Khaoula; Duverger, Eric; Sonnet, Philippe

    2013-02-28

    We present a full density-functional-theory study taking into account the van der Waals interactions of a 2D supramolecular network adsorbed on the Si(111)√3x√3R30°-boron surface denoted SiB. We show that, contrarily to the previous calculations [B. Baris, V. Luzet, E. Duverger, Ph. Sonnet, F. Palmino, and F. Chérioux, Angew. Chem., Int. Ed. 50, 4094 (2011)] molecule-molecule interactions are attractive, thanks to van der Waals corrections which are essential to describe such systems. We confirm the importance of the substrate effect to achieve the molecular network on the boron doped silicon surface without covalent bond. Our simulated STM images, calculated in the framework of the bSKAN code, give better agreement with the experimental STM images than those obtained by the integrated LDOS calculations within the Tersoff-Hamann approximation. The tungsten tip presence is essential to retrieve three paired lobes as observed experimentally. The observed protrusions arise from the phenyl arms located above silicon adatoms. PMID:23464169

  13. Full DFT-D description of a nanoporous supramolecular network on a silicon surface

    NASA Astrophysics Data System (ADS)

    Boukari, Khaoula; Duverger, Eric; Sonnet, Philippe

    2013-02-01

    We present a full density-functional-theory study taking into account the van der Waals interactions of a 2D supramolecular network adsorbed on the Si(111)√3x√3R30°-boron surface denoted SiB. We show that, contrarily to the previous calculations [B. Baris, V. Luzet, E. Duverger, Ph. Sonnet, F. Palmino, and F. Chérioux, Angew. Chem., Int. Ed. 50, 4094 (2011)], 10.1002/anie.201100332 molecule-molecule interactions are attractive, thanks to van der Waals corrections which are essential to describe such systems. We confirm the importance of the substrate effect to achieve the molecular network on the boron doped silicon surface without covalent bond. Our simulated STM images, calculated in the framework of the bSKAN code, give better agreement with the experimental STM images than those obtained by the integrated LDOS calculations within the Tersoff-Hamann approximation. The tungsten tip presence is essential to retrieve three paired lobes as observed experimentally. The observed protrusions arise from the phenyl arms located above silicon adatoms.

  14. Surface analytical studies of ion-implanted uni-directionally aligned silicon nitride for tribological applications

    NASA Astrophysics Data System (ADS)

    Nakamura, Naoki; Hirao, Kiyoshi; Yamauchi, Yukihiko

    2004-03-01

    Uni-directionally aligned silicon nitride, which exhibits both high strength and high toughness, was implanted with B +, N +, Si + and Ti + ions at a fluence of 2 × 10 17 ions/cm 2 and an energy of 200 keV. The effect of ion implantation on the surface structure of the uni-directionally aligned silicon nitride has been studied, in terms of surface analyses such as atomic force microscopy (AFM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), secondary ion mass spectroscopy (SIMS) and X-ray absorption near edge structure (XANES). It was clarified that the ion-implanted layer was amorphized and the implantation profile showed good agreement with that estimated from a TRIM simulation. It was found that BN and TiN were formed in B +- and Ti +-implanted Si 3N 4, respectively. There was a slight difference in ion implantation depth among different structures of Si 3N 4, considered to be due to differences in ion channeling.

  15. A spin-Seebeck diode with a negative differential spin-Seebeck effect in a hydrogen-terminated zigzag silicene nanoribbon heterojunction.

    PubMed

    Fu, Hua-Hua; Gu, Lei; Wu, Dan-Dan

    2016-05-14

    The spin-Seebeck effect (SSE), the central topic of spin caloritronics, provides a new direction for future low power consumption technology. To realize device applications of SSE, a spin-Seebeck diode (SSD) with a negative differential SSE is very desirable. To this end, we constructed a spin caloritronics device that was composed of a ferromagnetic double-single-hydrogen-terminated zigzag silicene nanoribbon (ZSiNR-H2-H) and an antiferromagnetic double-double-hydrogen-terminated zigzag silicene nanoribbon (ZSiNR-H2-H2). By using ab initio calculations combined with nonequilibrium Green's function technique, we found that thermally driven spin current through the heterojunction featured the SSD effect and negative differential SSE. The former originates from the asymmetrical thermal-driven conducting electrons and holes, and the latter ascribes to the thermal spin compensation effect. Their physical mechanisms are much different from the previous ones mainly relying on the spin-wave excitations in the interface between metals and magnetic insulators, supporting our study that puts forward a new route to realize the SSD with a negative differential SSE. PMID:27098900

  16. Resonance ionization of sputtered atoms: Quantitative analysis in the near-surface region of silicon wafers

    NASA Astrophysics Data System (ADS)

    Calaway, W. F.; Spiegel, D. R.; Marshall, A. H.; Downey, S. W.; Pellin, M. J.

    1997-02-01

    The unambiguous identification and quantification of low levels of metallic impurities on Si wafers are difficult problems due to the rapidly changing chemical activity near the surface. Air-exposed Si surfaces typically possess a native oxide layer several atoms thick plus a top monolayer of various silicon-containing molecules. Resonance ionization spectroscopy (RIS) used for postionization in secondary neutral mass spectrometry (SNMS) is uniquely suited to this task. The high sensitivity of this technique allows detection of metals at parts per billion levels with monolayer sensitivity. The high selectivity of RIS allows unambiguous identification of elements, while the reduced matrix effects of SNMS allow quantification of the photoionized element. Characterization of Si surfaces using RIS/SNMS has been explored by measuring the concentration profiles of Ca in the near-surface region of Si wafers of varying degrees of cleanliness. Calcium detection can be problematic due to the isobaric interference with SiC, particularly in the near-surface region during fabrication of devices due to the use of organic photoresist. Three different resonance ionization schemes for Ca have been examined and compared for effectiveness by calculating detection limits for Ca in Si in the chemically active near-surface region.

  17. Silver- and Gold-Ordered Structures on Single-Crystal Silicon Surface After Thermal Deposition.

    PubMed

    Karbivskyy, Vladimir; Karbivska, Love; Artemyuk, Viktor

    2016-12-01

    The formation mechanisms of Ag- and Au-ordered structures on single-crystal silicon (Si) (111) and Si (110) surfaces were researched using high-resolution scanning tunneling microscopy method. It was shown that different patterns of self-assembled nanostructures with very precise and regular geometric shapes can be produced by controlling process parameters of thermal metal spraying on the substrate. The surfaces of nanorelieves at each stage of deposition were researched, and the main stages of morphological transformation were fixed.Self-ordered hexagonal pyramid-shaped nanostructures were formed at thermal deposition of gold on the Si (111), whereas only monolayer hexagonal formation could be observed on the plane Si (110). Gold monolayer flake nanostructures were obtained under certain technological parameters.Atomically smooth Ag film cannot be obtained on the Si (111) surface by means of thermal spraying at room temperature. The formation of two-dimensional (2D) clusters takes place; heating of these clusters at several hundred degrees Celsius leads to their transformation into atomically smooth covering.The weak interaction between Ag multilayer coatings and substrate was established that allows to clear crystal surface from metal with reproduction of the reconstructed Si (111) 7 × 7 surface by slight warming. The offered method can be used for single-crystal surface protection from destruction. PMID:26847695

  18. Surface modification of silicon-containing fluorocarbon films prepared by plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Jin, Yoonyoung; Desta, Yohannes; Goettert, Jost; Lee, G. S.; Ajmera, P. K.

    2005-07-01

    Surface modification of silicon-containing fluorocarbon (SiCF) films achieved by wet chemical treatments and through x-ray irradiation is examined. The SiCF films were prepared by plasma-enhanced chemical vapor deposition, using gas precursors of tetrafluoromethane and disilane. As-deposited SiCF film composition was analyzed by x-ray photoelectron spectroscopy. Surface modification of SiCF films utilizing n-lithiodiaminoethane wet chemical treatment is discussed. Sessile water-drop contact angle changed from 95°+/-2° before treatment to 32°+/-2° after treatment, indicating a change in the film surface characteristics from hydrophobic to hydrophilic. For x-ray irradiation on the SiCF film with a dose of 27.4 kJ/cm3, the contact angle of the sessile water drop changed from 95°+/-2° before radiation to 39°+/-3° after x-ray exposure. The effect of x-ray exposure on chemical bond structure of SiCF films is studied using Fourier transform infrared measurements. Electroless Cu deposition was performed to test the applicability of the surface modified films. The x-ray irradiation method offers a unique advantage in making possible surface modification in a localized area of high-aspect-ratio microstructures. Fabrication of a Ti-membrane x-ray mask is introduced here for selective surface modification using x-ray irradiation.

  19. Hemocompatibility of surface-modified, silicon-incorporated, diamond-like carbon films.

    PubMed

    Roy, R K; Choi, H W; Yi, J W; Moon, M-W; Lee, K-R; Han, D K; Shin, J H; Kamijo, A; Hasebe, T

    2009-01-01

    The hemocompatibility of plasma-treated, silicon-incorporated, diamond-like carbon (Si-DLC) films was investigated. Si-DLC films with a Si concentration of 2at.% were prepared on Si (100) or Nitinol substrates using a capacitively coupled radiofrequency plasma-assisted chemical vapor deposition method using a mixed gas of benzene (C(6)H(6)) and diluted silane (SiH(4):H(2)=10:90). The Si-DLC films were then treated with O(2), CF(4) or N(2) glow discharge for surface modification. The plasma treatment revealed an intimate relationship between the polar component of the surface energy and its hemocompatibility. All in vitro characterizations, i.e. protein absorption behavior, activated partial thromboplastin time measurement and platelet adhesion behavior, showed improved hemocompatibility of the N(2-)- or O(2)-plasma-treated surfaces where the polar component of the surface energy was significantly increased. Si-O or Si-N surface bonds played an important role in improving hemocompatibility, as observed in a model experiment. These results support the importance of a negatively charged polar component of the surface in inhibiting fibrinogen adsorption and platelet adhesion. PMID:18753025

  20. Surface space-charge dynamics and surface recombination on silicon (111) surfaces measured with combined laser and synchrotron radiation

    SciTech Connect

    Long, J.P.; Sadeghi, H.R.; Rife, J.C.; Kabler, M.N. )

    1990-03-05

    The results of a new experiment, which records transient, pulsed-laser-induced surface photovoltages by following photoemission shifts measured with synchrotron radiation, are reported. Comparison of the surface photovoltage decays with numerical simulations reveals large surface recombination rates for a variety of Si(111) surface preparations. The space-charge layer near the surface is found to govern the surface and bulk carrier concentrations to a remarkable extent, particularly when band bending is large.

  1. Enhancement of antireflection property of silicon using nanostructured surface combined with a polymer deposition.

    PubMed

    Ha, Jun Mok; Yoo, Sung Ho; Cho, Jong Hoi; Cho, Yong Hoon; Cho, Sung Oh

    2014-01-01

    Silicon (Si) nanostructures that exhibit a significantly low reflectance in ultraviolet (UV) and visible light wavelength regions are fabricated using a hydrogen etching process. The fabricated Si nanostructures have aperiodic subwavelength structures with pyramid-like morphologies. The detailed morphologies of the nanostructures can be controlled by changing the etching condition. The nanostructured Si exhibited much more reduced reflectance than a flat Si surface: an average reflectance of the nanostructured Si was approximately 6.8% in visible light region and a slight high reflectance of approximately 17% in UV region. The reflectance was further reduced in both UV and visible light region through the deposition of a poly(dimethylsiloxane) layer with a rough surface on the Si nanostructure: the reflectance can be decreased down to 2.5%. The enhancement of the antireflection properties was analyzed with a finite difference time domain simulation method. PMID:24397945

  2. The behaviour of water droplets on the silicone rubber surface in an electric field

    NASA Astrophysics Data System (ADS)

    Bretuj, W.; Pelesz, A.

    2016-02-01

    This paper describes the influence of a water droplet placed on flat samples of silicone rubber for enhancement the local electric field and generate electrical discharges. Studies have shown a significant influence of the droplet geometry on the electric strength of the samples. For non-symmetrical arrangement of the three droplets in the inter-electrode space electrohydrodynamic phenomena was observed: a stable change in the droplets shape placed near the electrodes and stretching and tearing down of the water droplets placed far from the electrodes. Captured photos and films of the water droplets behavior placed on the surface of the samples provided data to perform the simulation of the distribution of electric field and an estimate the value of the electric field, which was followed by the development of electric surface discharges.

  3. Ag-modified silicon nanowires substrate for ultrasensitive surface-enhanced raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Shao, Ming-Wang; Zhang, Ming-Liang; Wong, Ning-Bew; Ma, Dorothy Duo-duo; Wang, Hui; Chen, Weiwei; Lee, Shuit-Tong

    2008-12-01

    We report a unique substrate for surface-enhanced raman spectroscopy (SERS) based on silver nanoparticles-embedded silicon nanowires (SiNWs). The SiNWs were prepared by thermal evaporation of SiO powder via oxide-assisted growth, oxide removed with HF, and then used to reduce silver ions to form a highly decorated Ag-embedded surface. Such modified SiNWs substrates yielded ultrahigh SERS sensitivity, which could detect 25μl of 1×10-16M Rhodamine 6G, 1×10-16M crystal violet, and 1×10-14M nicotine in methanol solutions. An Ag-modified SiNW strand could also enable SERS detection of 25μl of 1×10-8mg/ml calf thymus DNA. The possible mechanisms for the ultrahigh SERS sensitivity were discussed.

  4. Stability and evolution of low-surface-tension metal catalyzed growth of silicon nanowires

    NASA Astrophysics Data System (ADS)

    Yu, Linwei; Fortuna, Franck; O'Donnell, Benedict; Patriache, Gilles; Roca i Cabarrocas, Pere

    2011-03-01

    Low-surface-tension metals were predicted to be insufficient to catalyze the growth of silicon nanowires (SiNWs) in vapor-liquid-solid (VLS) mode while counter examples do exist, for example, in the tin- or indium-catalyzed SiNWs. This puzzle remains largely unresolved. We first examine the local tension-force-balance in a tin-catalyzed SiNW by using a cross-section analysis. We found that the existence of an ultrathin sidewall-spreading catalyst layer helps to stabilize the catalyst drop during growth. The predicted contact-angle evolution, by an energetic balance model, is also supported by the experimental data. These results bring critical understanding on the low-surface-tension catalyzed VLS process.

  5. Automated fabrication of back surface field silicon solar cells with screen printed wraparound contacts

    NASA Technical Reports Server (NTRS)

    Thornhill, J. W.

    1977-01-01

    The development of a process for fabricating 2 x 4 cm back surface field silicon solar cells having screen printed wraparound contacts is described. This process was specifically designed to be amenable for incorporation into the automated nonvacuum production line. Techniques were developed to permit the use of screen printing for producing improved back surface field structures, wraparound dielectric layers, and wraparound contacts. The optimized process sequence was then used to produce 1852 finished cells. Tests indicated an average conversion efficiency of 11% at AMO and 28 C, with an average degradation of maximum power output of 1.5% after boiling water immersion or thermal shock cycling. Contact adherence was satisfactory after these tests, as well as long term storage at high temperature and high humidity.

  6. Long range nanostructuring of silicon surfaces by photonic nanojets from microsphere Langmuir films

    NASA Astrophysics Data System (ADS)

    Kallepalli, L. N. Deepak; Grojo, D.; Charmasson, L.; Delaporte, P.; Utéza, O.; Merlen, A.; Sangar, A.; Torchio, P.

    2013-04-01

    Large arrays of sub-micrometre blind holes and with a filling ratio up to 60% on areas of millimetre square are realized on silicon. The structuration ensues from combining both Langmuir-Blodgett deposition technique and ultraviolet nanosecond laser-assisted photonic nanojet ablation through C18 functionalized silica microspheres. Different laser fluence ranges and numbers of laser shots are studied to understand the tradeoff between size, quality of the craters and surface morphology after laser irradiation. In particular, tuning the irradiation fluence yields selectivity of the characteristic lateral dimension of the imprinted craters on the substrate and laser operation in multishot mode allows obtaining high quality and regularity of the surface morphology of the resulting millimetre square arrays of holes. This simple, fast, long-range and low-cost near-field nanolithography technique is of interest for fabricating devices with new functionalities and finds applications in many fields in nanoscience and nanoengineering.

  7. Revisiting the vibrational spectra of silicon hydrides on Si(100)-(2x1) surface: What is on the surface when disilane dissociates?

    PubMed

    Ong, S W; Tok, E S; Kang, H Chuan

    2010-08-21

    Even though the decomposition of disilane on silicon surfaces has been extensively studied, the molecular mechanism for its decomposition has not been fully resolved. The general view motivated partly by spectroscopic data is that decomposition occurs through silicon-silicon bond dissociation although there is evidence from kinetics that silicon-hydrogen bond dissociation is important, and perhaps even dominant. Thus, we reexamine the assignment of the experimental vibrational peaks observed in disilane and silane adsorption in order to assess the evidence for the silicon hydride species that are formed during decomposition. We calculate the vibrational density of states for a number of silicon hydride species on the Si(100)-(2x1) surface using Car-Parrinello molecular dynamics. We obtain the calculated vibrational frequency in the adiabatic limit by extrapolating to zero orbital mass, calibrating our method using the well-established monohydride peak. The calculated vibrational frequencies of the monohydride are in good agreement experimental data. Our results show that the spectroscopic data for silicon hydrides does not preclude the occurrence of Si(2)H(5) on the surface thus providing evidence for silicon-hydrogen bond dissociation during disilane adsorption. Specifically, we find that an experimentally observed vibrational peak at 2150 cm(-1) that has generally been attributed to the trihydride SiH(3) is more likely to be due to Si(2)H(5). Our results also clear up the assignment of two peaks for monohydride species adsorbed at the edge of a growing terrace, and a peak for the dihydride species adsorbed in the interdimer configuration. PMID:20726664

  8. Revisiting the vibrational spectra of silicon hydrides on Si(100)-(2×1) surface: What is on the surface when disilane dissociates?

    NASA Astrophysics Data System (ADS)

    Ong, S. W.; Tok, E. S.; Kang, H. Chuan

    2010-08-01

    Even though the decomposition of disilane on silicon surfaces has been extensively studied, the molecular mechanism for its decomposition has not been fully resolved. The general view motivated partly by spectroscopic data is that decomposition occurs through silicon-silicon bond dissociation although there is evidence from kinetics that silicon-hydrogen bond dissociation is important, and perhaps even dominant. Thus, we reexamine the assignment of the experimental vibrational peaks observed in disilane and silane adsorption in order to assess the evidence for the silicon hydride species that are formed during decomposition. We calculate the vibrational density of states for a number of silicon hydride species on the Si(100)-(2×1) surface using Car-Parrinello molecular dynamics. We obtain the calculated vibrational frequency in the adiabatic limit by extrapolating to zero orbital mass, calibrating our method using the well-established monohydride peak. The calculated vibrational frequencies of the monohydride are in good agreement experimental data. Our results show that the spectroscopic data for silicon hydrides does not preclude the occurrence of Si2H5 on the surface thus providing evidence for silicon-hydrogen bond dissociation during disilane adsorption. Specifically, we find that an experimentally observed vibrational peak at 2150 cm-1 that has generally been attributed to the trihydride SiH3 is more likely to be due to Si2H5. Our results also clear up the assignment of two peaks for monohydride species adsorbed at the edge of a growing terrace, and a peak for the dihydride species adsorbed in the interdimer configuration.

  9. Silicone hydrogel contact lens surface analysis by atomic force microscopy: shape parameters

    NASA Astrophysics Data System (ADS)

    Giraldez, M. J.; Garcia-Resua, C.; Lira, M.; Sánchez-Sellero, C.; Yebra-Pimentel, E.

    2011-05-01

    Purpose: Average roughness (Ra) is generally used to quantify roughness; however it makes no distinction between spikes and troughs. Shape parameters as kurtosis (Rku) and skewness (Rsk) serve to distinguish between two profiles with the same Ra. They have been reported in many biomedical fields, but they were no applied to contact lenses before. The aim of this study is to analyze surface properties of four silicone hydrogel contact lenses (CL) by Atomic Force Microscopy (AFM) evaluating Ra, Rku and Rsk. Methods: CL used in this study were disposable silicone hydrogel senofilcon A, comfilcon A, balafilcon A and lotrafilcon B. Unworn CL surfaces roughness and topography were measured by AFM (Veeco, multimode-nanoscope V) in tapping modeTM. Ra, Rku and Rsk for 25 and 196 μm2 areas were determined. Results: Surface topography and parameters showed different characteristics depending on the own nature of the contact lens (Ra/Rku/Rsk for 25 and 196 μm2 areas were: senofilcon A 3,33/3,74/0,74 and 3,76/18,16/1,75; comfilcon A: 1,56/31,09/2,93 and 2,76/45,82/3,60; balafilcon A: 2,01/33,62/-2,14 and 2,54/23,36/-1,96; lotrafilcon B: 26,97/4,11/-0,34 and 29,25/2,82/-0,23). In lotrafilcon B, with the highest Ra, Rku showed a lower degree of peakedness of its distribution. Negative Rsk value obtained for balafilcon A showed a clear predominance of valleys in this lens. Conclusions: Kku and Rsk are two statistical parameters useful to analyse CL surfaces, which complete information from Ra. Differences in values distribution and symmetry were observed between CL.

  10. Theoretical studies of adsorption on surfaces: Silane on the silicon (100)-(2 x 1) surface and hypochlorous acid on the ice Ih surface

    NASA Astrophysics Data System (ADS)

    Robinson Brown, Anita Arnel

    1998-06-01

    Density functional theory of electronic structure has been applied to predict interactions of adsorbates on two solid surfaces, the Si (100)-(2 x 1) surface and the ice Ih surface. Although some features of the mechanism for the decomposition of silane on Si (100)-(2 x 1) are known from experiment, the microscopic picture of this decomposition is unclear. In this work, the relative energetics of fragments of silane adsorbed onto the Si (100)-(2 x 1) surface are investigated. The lowest energy structure for silyl and hydrogen fragments adsorbed onto the surface is found to have the fragments added to opposite sides of a silicon surface dimer. This structure is metastable with respect to a silicon dihydride bridging the surface dimer. A microscopic picture of surface decomposition is discussed. Silane has a small probability of sticking to the Si (100)-(2 x 1) surface (10-5) but the activation barrier due to surface heating is small (0-5 kcal/mol). In this work, two mechanisms for dissociative adsorption of silane onto Si (100)-(2 x 1) are found. Both mechanisms require excitation of silane degrees of freedom to reach the transition state, and both mechanisms have energy barriers consistent with a small sticking probability. Tilting of the surface dimer plays an important role in these mechanisms. Heterogeneous reactions involving HOCl on ice may play a significant role in ozone destruction in the stratosphere. The adsorption energy for HOCl on ice is stronger than that of a typical hydrogen bond. In this work, the strength of binding of HOCl on ice is shown to be due the hydrogen bond formed with the binding site water, as well as electrostatic and polarization interactions with other water molecules of the ice surface. It is determined that HOCl will preferentially bind by donating a proton to a surface water molecule. The influence of proton order, cluster size, surface relaxation, and surface structure on modeling the interaction of HOCl on ice are investigated

  11. The importance of surface recombination and energy-bandgap narrowing in p-n-junction silicon solar cells

    NASA Technical Reports Server (NTRS)

    Fossum, J. G.; Lindholm, F. A.; Shibib, M. A.

    1979-01-01

    Experimental data demonstrating the sensitivity of open-circuit voltage to front-surface conditions are presented for a variety of p-n-junction silicon solar cells. Analytical models accounting for the data are defined and supported by additional experiments. The models and the data imply that a) surface recombination significantly limits the open-circuit voltage (and the short-circuit current) of typical silicon cells, and b) energy-bandgap narrowing is important in the manifestation of these limitations. The models suggest modifications in both the structural design and the fabrication processing of the cells that would result in substantial improvements in cell performance. The benefits of one such modification - the addition of a thin thermal silicon-dioxide layer on the front surface - are indicated experimentally.

  12. Surface wet-ability modification of thin PECVD silicon nitride layers by 40 keV argon ion treatments

    NASA Astrophysics Data System (ADS)

    Caridi, F.; Picciotto, A.; Vanzetti, L.; Iacob, E.; Scolaro, C.

    2015-10-01

    Measurements of wet-ability of liquid drops have been performed on a 30 nm silicon nitride (Si3N4) film deposited by a PECVD reactor on a silicon wafer and implanted by 40 keV argon ions at different doses. Surface treatments by using Ar ion beams have been employed to modify the wet-ability. The chemical composition of the first Si3N4 monolayer was investigated by means of X-ray Photoelectron Spectroscopy (XPS). The surface morphology was tested by Atomic Force Microscopy (AFM). Results put in evidence the best implantation conditions for silicon nitride to increase or to reduce the wet-ability of the biological liquid. This permits to improve the biocompatibility and functionality of Si3N4. In particular experimental results show that argon ion bombardment increases the contact angle, enhances the oxygen content and increases the surface roughness.

  13. Aggregation and Particle Formation of Therapeutic Proteins in Contact With a Novel Fluoropolymer Surface Versus Siliconized Surfaces: Effects of Agitation in Vials and in Prefilled Syringes.

    PubMed

    Teska, Brandon M; Brake, Jeffrey M; Tronto, Gregory S; Carpenter, John F

    2016-07-01

    We examined the effects of an accelerated agitation protocol on 2 protein therapeutics, intravenous immunoglobulin (IVIG) and Avastin (bevacizumab), in contact with a novel fluoropolymer surface and more typical siliconized surfaces. The fluoropolymer surface provides "solid-phase" lubrication for the syringe plunger-obviating the need for silicone oil lubrication in prefilled syringes. We tested the 2 surfaces in a vial system and in prefilled glass syringes. We also examined the effects of 2 buffers, phosphate-buffered saline (PBS) and 0.2-M glycine, with and without the addition of polysorbate 20, on agitation-induced aggregation of IVIG. Aggregation was monitored by measuring subvisible particle formation and soluble protein loss. In both vials and syringes, protein particle formation was much lower during agitation with the fluoropolymer surface than with the siliconized surface. Also, particle formation was greater in PBS than in glycine buffer, an effect attributed to lower colloidal stability of IVIG in PBS. Polysorbate 20 in the formulation greatly inhibited protein particle formation. Overall, the fluoropolymer plunger surface in an unsiliconized glass barrel was demonstrated to be a viable solution for eliminating silicone oil droplets from prefilled syringe formulations and providing a consistent system for rationale formulation development and simplified particle analysis. PMID:27233685

  14. Silane modification of glass and silica surfaces to obtain equally oil-wet surfaces in glass-covered silicon micromodel applications

    NASA Astrophysics Data System (ADS)

    Grate, Jay W.; Warner, Marvin G.; Pittman, Jonathan W.; Dehoff, Karl J.; Wietsma, Thomas W.; Zhang, Changyong; Oostrom, Mart

    2013-08-01

    Wettability is a key parameter influencing capillary pressures, permeabilities, fingering mechanisms, and saturations in multiphase flow processes within porous media. Glass-covered silicon micromodels provide precise structures in which pore-scale displacement processes can be visualized. The wettability of silicon and glass surfaces can be modified by silanization. However, similar treatments of glass and silica surfaces using the same silane do not necessarily yield the same wettability as determined by the oil-water contact angle. In this study, surface cleaning pretreatments were investigated to determine conditions that yield oil-wet surfaces on glass with similar wettability to silica surfaces treated with the same silane, and both air-water and oil-water contact angles were determined. Borosilicate glass surfaces cleaned with standard cleaning solution 1 (SC1) yield intermediate-wet surfaces when silanized with hexamethyldisilazane (HMDS), while the same cleaning and silanization yields oil-wet surfaces on silica. However, cleaning glass in boiling concentrated nitric acid creates a surface that can be silanized to obtain oil-wet surfaces using HMDS. Moreover, this method is effective on glass with prior thermal treatment at an elevated temperature of 400°C. In this way, silica and glass can be silanized to obtain equally oil-wet surfaces using HMDS. It is demonstrated that pretreatment and silanization is feasible in silicon-silica/glass micromodels previously assembled by anodic bonding, and that the change in wettability has a significant observable effect on immiscible fluid displacements in the pore network.

  15. A surface science investigation of silicon carbide: Oxidation, crystal growth and surface structural analysis

    SciTech Connect

    Powers, J.M.

    1991-11-01

    For the semiconductor SiC to fulfill its potential as an electronic material, methods must be developed to produce insulating surface oxide layers in a reproducible fashion. Auger electron spectroscopy (AES), low energy electron diffraction (LEED) and x-ray photoelectron spectroscopy (XPS) were used to investigate the oxidation of single crystal {alpha}-SiC over a wide temperature and O{sub 2} pressure range. The {alpha}-SiC surface becomes graphitic at high temperatures and low O{sub 2} pressures due to Si and SiO sublimation from the surface. Amorphous SiO{sub 2} surface layers from on {alpha}-SiC at elevated O{sub 2} pressures and temperatures. Both the graphitization and oxidation of {alpha}-SiC appears to be enhanced by surface roughness. Chemical vapor deposition (CVD) is currently the preferred method of producing single crystal SiC, although the method is slow and prone to contamination. We have attempted to produce SiC films at lower temperatures and higher deposition rates using plasma enhanced CVD with CH{sub 3}SiH{sub 3}. Scanning AES, XPS and scanning electron microscopy (SEM) were utilized to study the composition and morphology of the deposited Si{sub x}C{sub y}H{sub z} films as a function of substrate temperature, plasma power and ion flux bombardment of the film during deposition. High energy ion bombardment during deposition was found to increase film density and substrate adhesion while simultaneously reducing hydrogen and oxygen incorporation in the film. Under all deposition conditions the Si{sub x}C{sub y}H{sub z} films were found to be amorphous, with the ion bombarded films showing promise as hard protective coatings. Studies with LEED and AES have shown that {beta}-SiC (100) exhibits multiple surface reconstructions, depending on the surface composition. These surface reconstructions possess substantially different surface reactivities at elevated temperatures, which can complicate the fabrication of metal on SiC junctions.

  16. Dissociation of Trinitrotoluene on the Surface of Porous Silicon Under Laser Irradiation

    NASA Astrophysics Data System (ADS)

    Kuzishchin, Yury; Dovzhenko, Dmitriy; Martynov, Igor; Kotkovskii, Genadii; Chistyakov, Alexander

    Dissociation of trinitrotoluene (TNT) sorbed on porous silicon (pSi) surface under UV laser irradiation has been studied. A method based on ion mobility spectrometry (IMS) has been used in this study. Excitation and ionization of TNT molecules has been occurred at atmospheric pressure. A dependence of TNT ion spectrum on standing time of TNT molecules on pSi surface has been demonstrated. The ion type has changed from (TNT-H) - to (TNT-NO2) - which indicates a slow chemical reaction between pSi surface and TNT molecules. The first step of (TNT-NO2) - formation has been found to be a result of laser stimulated surface dissociation and subsequent desorption of a neutral TNT-NO2 fragment. The second step of (TNT-NO2) - formation is a capture of an electron emitted from the pSi surface under laser irradiation. The result of this study could be used in the area of explosive detection.

  17. Hybrid silicon honeycomb/organic solar cells with enhanced efficiency using surface etching.

    PubMed

    Liu, Ruiyuan; Sun, Teng; Liu, Jiawei; Wu, Shan; Sun, Baoquan

    2016-06-24

    Silicon (Si) nanostructure-based photovoltaic devices are attractive for their excellent optical and electrical performance, but show lower efficiency than their planar counterparts due to the increased surface recombination associated with the high surface area and roughness. Here, we demonstrate an efficiency enhancement for hybrid nanostructured Si/polymer solar cells based on a novel Si honeycomb (SiHC) structure using a simple etching method. SiHC structures are fabricated using a combination of nanosphere lithography and plasma treatment followed by a wet chemical post-etching. SiHC has shown superior light-trapping ability in comparison with the other Si nanostructures, along with a robust structure. Anisotropic tetramethylammonium hydroxide etching not only tunes the final surface morphologies of the nanostructures, but also reduces the surface roughness leading to a lower recombination rate in the hybrid solar cells. The suppressed recombination loss, benefiting from the reduced surface-to-volume ratio and roughness, has resulted in a high open-circuit voltage of 600 mV, a short-circuit current of 31.46 mA cm(-2) due to the light-trapping ability of the SiHCs, and yields a power conversion efficiency of 12.79% without any other device structure optimization. PMID:27181455

  18. Hybrid silicon honeycomb/organic solar cells with enhanced efficiency using surface etching

    NASA Astrophysics Data System (ADS)

    Liu, Ruiyuan; Sun, Teng; Liu, Jiawei; Wu, Shan; Sun, Baoquan

    2016-06-01

    Silicon (Si) nanostructure-based photovoltaic devices are attractive for their excellent optical and electrical performance, but show lower efficiency than their planar counterparts due to the increased surface recombination associated with the high surface area and roughness. Here, we demonstrate an efficiency enhancement for hybrid nanostructured Si/polymer solar cells based on a novel Si honeycomb (SiHC) structure using a simple etching method. SiHC structures are fabricated using a combination of nanosphere lithography and plasma treatment followed by a wet chemical post-etching. SiHC has shown superior light-trapping ability in comparison with the other Si nanostructures, along with a robust structure. Anisotropic tetramethylammonium hydroxide etching not only tunes the final surface morphologies of the nanostructures, but also reduces the surface roughness leading to a lower recombination rate in the hybrid solar cells. The suppressed recombination loss, benefiting from the reduced surface-to-volume ratio and roughness, has resulted in a high open-circuit voltage of 600 mV, a short-circuit current of 31.46 mA cm‑2 due to the light-trapping ability of the SiHCs, and yields a power conversion efficiency of 12.79% without any other device structure optimization.

  19. Surface toughness of silicon nitride bioceramics: II, Comparison with commercial oxide materials.

    PubMed

    McEntire, Bryan J; Enomoto, Yuto; Zhu, Wenliang; Boffelli, Marco; Marin, Elia; Pezzotti, Giuseppe

    2016-02-01

    Raman microprobe-assisted indentation, a micromechanics method validated in a companion paper, was used to compare the surface toughening behaviors of silicon nitride (Si3N4) and alumina-based bioceramics employed in joint arthroplasty (i.e., monolithic alumina, Al2O3, and yttria-stabilized zirconia (ZrO2)-toughened alumina, ZTA). Quantitative assessments of microscopic stress fields both ahead and behind the tip of Vickers indentation cracks propagated under increasing indentation loads were systematically made using a Raman microprobe with spatial resolution on the order of a single micrometer. Concurrently, crack opening displacement (COD) profiles were monitored on the same microcracks screened by Raman spectroscopy. The Raman eye clearly visualized different mechanisms operative in toughening Si3N4 and ZTA bioceramics (i.e., crack-face bridging and ZrO2 polymorphic transformation, respectively) as compared to the brittle behavior of monolithic Al2O3. Moreover, emphasis was placed on assessing not only the effectiveness but also the durability of such toughening effects when the biomaterials were aged in a hydrothermal environment. A significant degree of embrittlement at the biomaterial surface was recorded in the transformation-toughened ZTA, with the surface toughness reduced by exposure to the hydrothermal environment. Conversely, the Si3N4 biomaterial experienced a surface toughness value independent of hydrothermal attack. Crack-face bridging thus appears to be a durable surface toughening mechanism for biomaterials in joint arthroplasty. PMID:26437609

  20. Low-temperature micro-photoluminescence spectroscopy on laser-doped silicon with different surface conditions

    NASA Astrophysics Data System (ADS)

    Han, Young-Joon; Franklin, Evan; Fell, Andreas; Ernst, Marco; Nguyen, Hieu T.; Macdonald, Daniel

    2016-04-01

    Low-temperature micro-photoluminescence spectroscopy (μ-PLS) is applied to investigate shallow layers of laser-processed silicon for solar cell applications. Micron-scale measurement (with spatial resolution down to 1 μm) enables investigation of the fundamental impact of laser processing on the electronic properties of silicon as a function of position within the laser-processed region, and in particular at specific positions such as at the boundary/edge of processed and unprocessed regions. Low-temperature μ-PLS enables qualitative analysis of laser-processed regions by identifying PLS signals corresponding to both laser-induced doping and laser-induced damage. We show that the position of particular luminescence peaks can be attributed to band-gap narrowing corresponding to different levels of subsurface laser doping, which is achieved via multiple 248 nm nanosecond excimer laser pulses with fluences in the range 1.5-4 J/cm2 and using commercially available boron-rich spin-on-dopant precursor films. We demonstrate that characteristic defect PL spectra can be observed subsequent to laser doping, providing evidence of laser-induced crystal damage. The impact of laser parameters such as fluence and number of repeat pulses on laser-induced damage is also analyzed by observing the relative level of defect PL spectra and absolute luminescence intensity. Luminescence owing to laser-induced damage is observed to be considerably larger at the boundaries of laser-doped regions than at the centers, highlighting the significant role of the edges of laser-doped region on laser doping quality. Furthermore, by comparing the damage signal observed after laser processing of two different substrate surface conditions (chemically-mechanically polished and tetramethylammonium hydroxide etched), we show that wafer preparation can be an important factor impacting the quality of laser-processed silicon and solar cells.