Science.gov

Sample records for hydrogenated vegetable oils

  1. 21 CFR 172.736 - Glycerides and polyglycides of hydrogenated vegetable oils.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... vegetable oils. 172.736 Section 172.736 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... oils. The food additive glycerides and polyglycides of hydrogenated vegetable oils may be safely used... hydrogenated vegetable oils and meets the following specifications: (1) Total ester content, greater than...

  2. Quantitative Microscale Hydrogenation of Vegetable Oils

    NASA Astrophysics Data System (ADS)

    Blanchard, Daniel E.

    2003-05-01

    A new hydrogenation experiment for the introductory organic chemistry laboratory is described. It is a classic synthetic reaction applied to a consumer product. It provides an opportunity to discuss fats and fatty acids, their physical behavior, and their nutritional value. The experiment is relatively easy to set up and requires no special equipment. Calculations utilizing the ideal gas law allow the determination of the efficiency of the hydrogenation. With this experiment a link is made between the organic chemistry laboratory and the everyday life of the student in an attempt to show the relevance between organic chemistry and modern life.

  3. 21 CFR 172.736 - Glycerides and polyglycides of hydrogenated vegetable oils.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... vegetable oils. 172.736 Section 172.736 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... polyglycides of hydrogenated vegetable oils. The food additive glycerides and polyglycides of hydrogenated vegetable oils may be safely used in food in accordance with the following prescribed conditions: (a)...

  4. 21 CFR 172.736 - Glycerides and polyglycides of hydrogenated vegetable oils.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... vegetable oils. 172.736 Section 172.736 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... polyglycides of hydrogenated vegetable oils. The food additive glycerides and polyglycides of hydrogenated vegetable oils may be safely used in food in accordance with the following prescribed conditions: (a)...

  5. Multigeneration studies on red palm oil, and on hydrogenated vegetable oil containing mahua oil.

    PubMed

    Manorama, R; Chinnasamy, N; Rukmini, C

    1993-05-01

    Edible grade red palm oil (RPO; Elaeis guineensis) is being considered for use an an edible oil in India since it is one of the richest natural sources of carotenoids. Earlier chemical and nutritional evaluations in rats indicated no adverse effects. Multigeneration breeding studies in rats have now been carried out. Mahua oil (MO; Madhuca latifolia) is used in hydrogenated vegetable oil (HVO) for human consumption. Earlier studies on MO indicated adverse effects on the male reproductive system. Hence, a study was undertaken to evaluate the safety of HVO containing 30% MO (MO-HVO) in terms of reproductive performance. A three-generation study was conducted with groups of 12 male and 12 female Wistar/NIN/inbred albino rats fed, at 10% in the diet (20% protein), groundnut oil (controls), RPO, refined, bleached and deodorized palmolein (RBDPO), or MO-HVO. Reproductive parameters including percentage conception, birth weight, litter size, weanling weight, sex ratio at birth and weaning, preweaning mortality and number of days from introduction to mating, were recorded. Behavioural and reflexological tests were conducted on preweaning animals. Adult animals were subjected to weekly observation. No significant differences were found between the RPO and MO-HVO groups in comparison with groups fed GNO or RBDPO in any of the above parameters. However, certain indications of reduced fertility were observed in the MO-HVO group in the first and third generations. The results indicate that RPO did not produce any adverse effect on reproductive performance or other toxicological parameters studied, and therefore it can be considered as safe for consumption. On the other hand, HVO containing 30% MO needs further testing with a larger number of animals. PMID:8505022

  6. 21 CFR 172.736 - Glycerides and polyglycides of hydrogenated vegetable oils.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Glycerides and polyglycides of hydrogenated vegetable oils. 172.736 Section 172.736 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION...

  7. 21 CFR 172.736 - Glycerides and polyglycides of hydrogenated vegetable oils.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Glycerides and polyglycides of hydrogenated vegetable oils. 172.736 Section 172.736 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION...

  8. Hydrogenated soy ethyl ester (HySEE) from ethanol and waste vegetable oil

    SciTech Connect

    Peterson, C.; Reece, D.; Thompson, J.

    1995-11-01

    Biodiesel is gaining recognition in the United States as a renewable fuel which may be used as an alternative to diesel fuel without any modifications to the engine. Currently the cost of this fuel is the factor that limits its use. One way to reduce the cost of biodiesel is to use a less expensive form of vegetable oil such as waste oil from a processing plant. These operations use mainly hydrogenated soybean oil, some tallow and some Canola as their frying oils. It is estimated that there are several million pounds of waste vegetable oil from these operations. Additional waste frying oil is available from smaller processors, off-grade oil seeds and restaurants. This paper reports on developing a process to produce the first 945 liters (250 gallons) of HySEE using recipes developed at the University of Idaho; fuel characterization tests on the HySEE according to the ASAE proposed Engineering Practice for Testing of Fuels from Biological Materials, X552; short term injector coking tests and performance tests in a turbocharged, DI, CI engine; and a 300 hour screening test in a single cylinder, IDI, CI engine.

  9. Vegetable oil fuel standards

    SciTech Connect

    Pryde, E.H.

    1982-01-01

    Suggested standards for vegetable oils and ester fuels, as well as ASTM specifications for No. 2 diesel oil are given. The following physical properties were discussed: cetane number, cloud point, distillation temperatures, flash point, pour point, turbidity, viscosity, free fatty acids, iodine value, phosphorus, and wax. It was apparent that vegetable oils and their esters cannot meet ASTM specifications D975 for No. 2 diesel oil for use in the diesel engine. Vegetable oil modification or engine design modification may make it possible eventually for vegetable oils to become suitable alternative fuels. Vegetable oils must be recognized as experimental fuels until modifications have been tested thoroughly and generally accepted. 1 table. (DP)

  10. Vegetable oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is a technically competitive alternative to petroleum-derived diesel fuel. It can be obtained from commodity oils and fats such as soybean, sunflower, canola or tallow. However, the available amounts of these biodiesel feedstocks do not suffice to satisfy the long-term need for biodiesel...

  11. Vegetable oil fuels

    SciTech Connect

    Not Available

    1982-01-01

    Fifty contributions (presentations) involving more than one hundred people worldwide were given at the International Conference on Plant and Vegetable Oils as Fuels. The proceedings were in Fargo, North Dakota, from August 2-4, 1982. The conference helped to promote renewable fuels, bio-oils, from plant and vegetable oils. Separate abstracts were prepared for 44 items for inclusion in the Energy Data Base.

  12. Treatment of vegetable oils

    SciTech Connect

    Bessler, T.R.

    1986-05-13

    A process is described for preparing an injectable vegetable oil selected from the group consisting of soybean oil and sunflower oil and mixtures thereof which comprise: (a) first treating the vegetable oil at a temperature of 80/sup 0/C to about 130/sup 0/C with an acid clay; (b) deodorizing the vegetable oil with steam at a temperature of 220/sup 0/C to about 280/sup 0/C and applying a vacuum to remove volatilized components; (c) treating the deodorized vegetable oil, at a temperature of from about 10/sup 0/C to about 60/sup 0/C, with an acid clay to reduce the content of a member selected from the group consisting of diglycerides, tocopherol components, and trilinolenin and mixtures thereof, wherein the acid clay is added in a weight ratio to the deoderized vegetable oil of from about 1:99 to about 1:1; and (d) thereafter conducting a particulate filtration to remove a substantial portion of the acid clay from the vegetable oil, wherein the filtration is accomplished with filters having a pore size of from about 0.1 to 0.45 microns, thereby obtaining the injectable oil.

  13. Products from vegetable oils

    SciTech Connect

    Bagby, M.O.

    1995-12-01

    Vegetable oils serve various industrial applications such as plasticizers, emulsifiers, surfactants, plastics and resins. Research and development approaches may take advantage of natural properties of the oils. More often it is advantageous to modify those properties for specific applications. One example is the preparation of ink vehicles using vegetable oils in the absence of petroleum. They are cost competitive with petroleum-based inks with similar quality factors. Vegetable oils have potential as renewable sources of fuels for the diesel engine. However, several characteristics can restrict their use. These include poor cold-engine startup, misfire and for selected fuels, high pour point and cloud point temperatures. Other characteristics include incomplete combustion causing carbon buildup, lube oil dilution and degradation, and elevated NO{sub x} emissions. Precombustion and fuel quality data are presented as a tool for understanding and solving these operational and durability problems.

  14. Vegetable oil as fuel

    SciTech Connect

    Not Available

    1980-11-01

    A review is presented of various experiments undertaken over the past few years in the U.S. to test the performance of vegetable oils in diesel engines, mainly with a view to on-farm energy self-sufficiency. The USDA Northern Regional Research Center in Peoria, Illinois, is screening native U.S. plant species as potential fuel oil sources.

  15. Vegetable oil based grease formulations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Environmental concerns have brought forward vegetable oils as alternatives to more expensive synthetic lubricant base oils and less environmental friendly petroleum base stocks, in moderate operating conditions. Vegetable oils are becoming an obvious choice for potential replacement of petroleum ba...

  16. Green diesel production via catalytic hydrogenation/decarboxylation of triglycerides and fatty acids of vegetable oil and brown grease

    NASA Astrophysics Data System (ADS)

    Sari, Elvan

    Increase in the petroleum prices, projected increases in the world's energy demand and environmental awareness have shifted the research interest to the alternative fuel technologies. In particular, green diesel, vegetable oil/animal fat/waste oil and grease derived hydrocarbons in diesel boiling range, has become an attractive alternative to biodiesel---a mixture of fatty acid methyl esters, particularly due to its superior fuel properties that are similar to petroleum diesel. Hence, green diesel can be used as a drop-in fuel in the current diesel engines. The current technology for production of green diesel-hydrodeoxygenation of triglycerides and fatty acids over conventional hydrotreating catalysts suffers from fast catalyst deactivation in the absence of hydrogen combined with high temperatures and high fatty acid content in the feedstock. Additionally, excess hydrogen requirement for hydrodeoxygenation technique leads to high production costs. This thesis proposes a new technology-selective decarboxylation of brown grease, which is a mixture of fats and oils collected from waste water trap and rich in fatty acids, over a supported noble metal catalyst that overcomes the green diesel production challenges. In contrast to other feedstocks used for liquid biofuel production, brown grease is inexpensive and non-food competing feedstock, therefore the process finds solution to waste management issues, reduces the renewable fuel production cost and does not add to the global food shortage problems. Special catalyst formulations were developed to have a high activity and stability in the absence of hydrogen in the fatty acid decarboxylation process. The study shows how catalyst innovations can lead to a new technology that overcomes the process challenges. First, the effect of reaction parameters on the activity and the selectivity of brown grease decarboxylation with minimum hydrogen consumption over an activated carbon supported palladium catalyst were

  17. Production of biodiesel from mixed waste vegetable oil using an aluminium hydrogen sulphate as a heterogeneous acid catalyst.

    PubMed

    Ramachandran, Kasirajan; Sivakumar, Pandian; Suganya, Tamilarasan; Renganathan, Sahadevan

    2011-08-01

    Al(HSO(4))(3) heterogeneous acid catalyst was prepared by the sulfonation of anhydrous AlCl(3). This catalyst was employed to catalyze transesterification reaction to synthesis methyl ester when a mixed waste vegetable oil was used as feedstock. The physical and chemical properties of aluminum hydrogen sulphate catalyst were characterized by scanning electron microscopy (SEM) measurements, energy dispersive X-ray (EDAX) analysis and titration method. The maximum conversion of triglyceride was achieved as 81 wt.% with 50 min reaction time at 220°C, 16:1 molar ratio of methanol to oil and 0.5 wt.% of catalyst. The high catalytic activity and stability of this catalyst was related to its high acid site density (-OH, Brönsted acid sites), hydrophobicity that prevented the hydration of -OH group, hydrophilic functional groups (-SO(3)H) that gave improved accessibility of methanol to the triglyceride. The fuel properties of methyl ester were analyzed. The fuel properties were found to be observed within the limits of ASTM D6751. PMID:21621409

  18. Vegetable oil fuels: A review

    SciTech Connect

    Karaosmanoglu, F.

    1999-04-01

    Using vegetable oils as fuel alternatives has economic, environmental, and energy benefits for Turkey. The present work provides insight to the status of vegetable oil fuels in Turkey. A brief historical background of the issue, as well as an up to date review of the research carried out on vegetable oil fuels, is given and the future of their production and application is discussed.

  19. Green diesel production via catalytic hydrogenation/decarboxylation of triglycerides and fatty acids of vegetable oil and brown grease

    NASA Astrophysics Data System (ADS)

    Sari, Elvan

    Increase in the petroleum prices, projected increases in the world's energy demand and environmental awareness have shifted the research interest to the alternative fuel technologies. In particular, green diesel, vegetable oil/animal fat/waste oil and grease derived hydrocarbons in diesel boiling range, has become an attractive alternative to biodiesel---a mixture of fatty acid methyl esters, particularly due to its superior fuel properties that are similar to petroleum diesel. Hence, green diesel can be used as a drop-in fuel in the current diesel engines. The current technology for production of green diesel-hydrodeoxygenation of triglycerides and fatty acids over conventional hydrotreating catalysts suffers from fast catalyst deactivation in the absence of hydrogen combined with high temperatures and high fatty acid content in the feedstock. Additionally, excess hydrogen requirement for hydrodeoxygenation technique leads to high production costs. This thesis proposes a new technology-selective decarboxylation of brown grease, which is a mixture of fats and oils collected from waste water trap and rich in fatty acids, over a supported noble metal catalyst that overcomes the green diesel production challenges. In contrast to other feedstocks used for liquid biofuel production, brown grease is inexpensive and non-food competing feedstock, therefore the process finds solution to waste management issues, reduces the renewable fuel production cost and does not add to the global food shortage problems. Special catalyst formulations were developed to have a high activity and stability in the absence of hydrogen in the fatty acid decarboxylation process. The study shows how catalyst innovations can lead to a new technology that overcomes the process challenges. First, the effect of reaction parameters on the activity and the selectivity of brown grease decarboxylation with minimum hydrogen consumption over an activated carbon supported palladium catalyst were

  20. Effect Of Iron On The Sensitivity Of Hydrogen, Acetate, And Butyrate Metabolism To Inhibition By Long-Chain Fatty Acids In Vegetable-Oil-Enriched Freshwater Sediments

    EPA Science Inventory

    Freshwater sediment microbial communities enriched by growth on vegetable oil in the presence of a substoichiometric amount of ferric hydroxide (sufficient to accept about 12% of the vegetable-oil-derived electrons) degrade vegetable oil to methane faster than similar microbial c...

  1. Vegetable oils for tractors

    SciTech Connect

    Moroney, M.

    1981-11-14

    Preliminary tests by the Agricultural Institute, show that tractors can be run on a 50:50 rape oil-diesel mixture or on pure rape oil. In fact, engine power actually increased slightly with the 50:50 blend but decreased fractionally with pure rape oil. Research at the North Dakota State University on using sunflower oil as an alternative to diesel fuel is also noted.

  2. Evaluation of poly(90% biscyanopropyl/10% cyanopropylphenyl siloxane) capillary columns for the gas chromatographic quantification of trans fatty acids in non-hydrogenated vegetable oils.

    PubMed

    Delmonte, Pierluigi

    2016-08-19

    Current gas chromatographic (GC) methods for the analysis of fatty acids (FA) were optimized primarily for the quantification of the trans 18:1 FAs (18:1 tFAs) produced during the partial hydrogenation of fats and oils. Recent regulatory action regarding the application of partial hydrogenation in the processing of edible fats and oils may reshape the FA composition of these products. The higher content in 18:3 tFAs compared to 18:1 tFAs of most refined non-hydrogenated vegetable oils (RNHVO), and the challenge in their quantification applying current methods, suggest the need for new methodologies. This manuscript describes a simple GC method for the analysis of FAs in RNHVOs utilizing a 100m (0.25mm I.D.) capillary column coated with poly(90% biscyanopropyl/10% cyanopropylphenyl siloxane) (90% BCS). The optimization of the chromatographic conditions and the detection of co-eluting compounds were carried out by applying comprehensive two dimensional gas chromatography with online reduction (GC-OR×GC). Results showed that 90% BCS capillary columns operated at the elution temperature of 162°C provide the separation of the 18:1, 18:2 and 18:3 tFAs, contained in RNHVOs, from other components. A minor constituent of Canola oil, 16:3n-3, partially co-eluted with trans-18:1 FAMEs. This simple GC method showed the ability to measure trans-fat in RNHVOs at the level of 0.5g/100g, providing comparable quantitative results to the more complex GC×GC methodology. PMID:27470095

  3. Regiospecific Distribution of trans-Octadecenoic Acid Positional Isomers in Triacylglycerols of Partially Hydrogenated Vegetable Oil and Ruminant Fat.

    PubMed

    Yoshinaga, Kazuaki; Kawamura, Yoshinori; Kitayama, Takashi; Nagai, Toshiharu; Mizobe, Hoyo; Kojima, Koichi; Watanabe, Yomi; Sato, Shinichi; Beppu, Fumiaki; Gotoh, Naohiro

    2015-01-01

    It is revealed that binding position of fatty acid in triacylglycerol (TAG) deeply relates to the expression of its function. Therefore, we investigated the binding positions of individual trans-octadecenoic acid (trans-C18:1) positional isomers, known as unhealthy fatty acids, on TAG in partially hydrogenated canola oil (PHCO), milk fat (MF), and beef tallow (BT). The analysis was carried out by the sn-1(3)-selective transesterification of Candida antarctica Lipase B and by using a highly polar ionic liquid capillary column for gas chromatography-flame ionization detection. Trans-9-C18:1, the major trans-C18:1 positional isomer, was selectively located at the sn-2 position of TAG in PHCO, although considerable amounts of trans-9-C18:1 were also esterified at the sn-1(3) position. Meanwhile, trans-11-C18:1, the major isomer in MF and BT, was preferentially located at the sn-1(3) position. These results revealed that the binding position of trans-C18:1 positional isomer varies between various fats and oils. PMID:26028327

  4. New Sulfide Derivatives of Vegetable Oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable oils containing sulfide group were synthesized using a UV initiated thiol-ene reaction. The reaction involved addition of butyl thiol to the double bonds of the vegetable oil without the presence of a solvent. The effects of temperature, reaction time, type of vegetable oil, thiol to veg...

  5. Diesel fuels from vegetable oils

    SciTech Connect

    Schwab, A.W.; Bagby, M.O.; Freedman, B.

    1986-03-01

    Vegetable oils have heat contents approximately 90% that of diesel fuel and are potential alternate fuel candidates. A major obstacle deterring their use in the direct-injection diesel engine is their inherent high viscosities which are nearly 10 times that of diesel fuel. Solution to the viscosity problem has been approached in three ways: 1) microemulsification, 2) pyrolysis, and 3) transesterification. Microemulsification with short chain alcohols such as methanol and ethanol yields fuels that are clear, thermodynamically stable liquid systems with viscosities near the ASTM specified range for number2 diesel fuel. These micellar systems may be formulated ionically or nonionically. The alcohols are attractive from an economic as well as a renewable resource viewpoint. Methanol has an economic advantage over ethanol, and it can be derived from a large variety of base stocks. These include biomass, municipal waste, natural gas being flared at refineries and from coal. Pyrolysis of vegetable oils is another approach to lowering their viscosity. Soybean and safflower oils were thermally decomposed in both air and nitrogen to obtain fuels for the diesel engine. Using standard ASTM distillation conditions, yields of pyrolysis products were about 75%. GS-MS analysis of the distillates showed the presence of alkanes, alkenes, aromatics, and carboxylic acids with carbon numbers ranging from 4 to more than 20. Fuel properties of the thermal decomposition products were substantially improved as evaluated by lower viscosities and higher cetane numbers compared to the unpyrrolyzed vegetable oils. Simple esters from transesterification of vegetable oils perform well in engine tests, and thus show good promise as an alternative or emergency fuel for diesel engines.

  6. Fuel properties of eleven vegetable oils

    SciTech Connect

    Goering, C.E.; Schwab, A.W.; Daugherty, M.J.; Pryde, E.H.; Keakin, A.J.

    1981-01-01

    Eleven vegetable oils that can be grown as domestic field crops were identified for inclusion in a comparative study. Sample lots of each oil were subjected to ASTM tests appropriate for diesel fuels. The tests identified some problem areas with vegetable oil fuels. The oil samples were also characterized chemically and certain fuel properties were correlated to chemical composition. 10 refs.

  7. Performance of vegetable oils as a heat treat quenchant

    SciTech Connect

    Honary, L.A.T.

    1996-12-31

    The purpose of this study was to establish as a reference the base line performance of several vegetable oils as a quench medium. Furthermore, the project was funded by the Iowa Soybean Promotion Board to investigate the potential use of soybean oil as a quench medium. Several commodity and genetically modified seed oils (high oleic) were first tested in a {open_quotes}quenchalizer{close_quotes}. Also, 300 pieces of SAE 1524 steel bars were heat treated and quenched in a chemically modified (partially hydrogenated) soybean oil and in a control (paraffin) oil. Results included changes in the oil in terms of viscosity and cooling rate and in the steel in terms of hardness. Vegetable oils can perform as quench media, but they would require treatment to improve oxidative stability among others. Advantages of vegetable-based quenchants include: renewability, environmental-friendliness and potential benefits in terms of human safety and higher flash point.

  8. Short communication: Chemical composition, fatty acid composition, and sensory characteristics of Chanco cheese from dairy cows supplemented with soybean and hydrogenated vegetable oils.

    PubMed

    Vargas-Bello-Pérez, E; Fehrmann-Cartes, K; Íñiguez-González, G; Toro-Mujica, P; Garnsworthy, P C

    2015-01-01

    Lipid supplements can be used to alter fatty acid (FA) profiles of dairy products. For Chanco cheese, however, little information is available concerning effects of lipid supplements on sensorial properties. The objective of this study was to examine effects of supplementation of dairy cow diets with soybean (SO) and hydrogenated vegetable (HVO) oils on chemical and FA composition of milk and cheese and sensory characteristics of cheese. Nine multiparous Holstein cows averaging 169±24d in milk at the beginning of the study were used in a replicated (n=3) 3×3 Latin square design that included 3 periods of 21d. All cows received a basal diet formulated with a 56:44 forage:concentrate ratio. Dietary treatments consisted of the basal diet (control; no fat supplement), and the basal diet supplemented with SO (unrefined oil; 500g/d per cow) and HVO (manufactured from palm oil; 500g/d per cow). Milk fat yield was lower with HVO compared with control and SO. Cheese chemical composition and sensory profile were not affected by dietary treatment. Vaccenic (C18:1 trans-11) and oleic (C18:1 cis-9) acids were higher for SO than for control and HVO. Compared with control and HVO, SO decreased saturated FA and increased monounsaturated FA. The thrombogenic index of milk and cheese produced when cows were fed SO was lower than when cows were fed on control and HVO. The outcome of this study showed that, compared with control and HVO, supplementing dairy cow diets with SO improves milk and cheese FA profile without detrimental effects on the chemical composition of milk and cheese and the sensory characteristics of cheese. PMID:25465558

  9. Effect of the support and the reduction temperature on the formation of metallic nickel phase in Ni/silica gel precursors of vegetable oil hydrogenation catalysts

    NASA Astrophysics Data System (ADS)

    Gabrovska, M.; Krstić, J.; Tzvetkov, P.; Tenchev, K.; Shopska, M.; Vukelić, N.; Jovanović, D.

    2011-12-01

    Ni/SiO2 materials with identical composition (SiO2/Ni = 1.0) have been synthesized by precipitation of Ni(NO3)2 · 6H2O solution with Na2CO3 solution on the silica gel, obtained at three different pH values. The present investigation was undertaken in an endeavor to study the effects of the silica gel support type and the reduction temperature on the formation and dispersion of the metallic nickel phase in the reduced Ni/SiO2 precursors of the vegetable oil hydrogenation catalyst. The physicochemical characterization of the unreduced and reduced precursors has been accomplished appropriately by powder X-ray diffraction, infrared spectroscopy, temperature programmed reduction and H2-chemisorption techniques. It can be stated that the texture peculiarities of the silica gels used as supports influence on the crystalline state and distribution of the deposited Ni-containing phases during the preparation of the precursors, on the reduction temperature of the investigated solids as well as on the bulk size and surface dispersion of the arising metallic nickel particles. It was shown that two types of Ni2+-species are formed during the synthesis procedure, namely basic nickel carbonate-like and Ni-phyllosilicate with different extent of presence, location and strength of interaction. The different location of these species is supposed to result in various strength of Ni-O and Ni-O-Si interaction, thus determining the overall reducibility of the precursors. It was specified that the Ni2+-species are strongly bonded to the surface of the silica gel obtained at neutral pH value and weakly bonded to the surface of those prepared in acidic and alkaline conditions. It was established that the precursor, derivates from the silica gel obtained at alkaline conditions, demonstrates both significant reduction of the Ni2+ ions at 430°C and finely dispersed metallic nickel particles on its surface. High dispersion of the metallic nickel might be the crucial reason for achieving of

  10. Substitution of vegetable oil for a partially-hydrogenated fat favorably alters cardiovascular disease risk factors in moderately hypercholesterolemic postmenopausal women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Partially-hydrogenated fat is associated with increased cardiovascular disease risk. Acceptable alternatives must be adjudicated. The objective was to assess the effect of replacing partially-hydrogenated soybean oil with an alternative currently in use. Using a double-blind cross-over design, 30...

  11. MODIFICATION OF VEGETABLE OILS FOR LUBRICANTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable oils are recognized as rapidly biodegradable and are thus promising candidates as base fluids in environmental-friendly lubricants. Vegetable oils have excellent lubricity, but poor oxidation and low-temperature stability. This paper presents a series of structural modifications of veget...

  12. Surface properties of the Ni-silica gel catalyst precursors for the vegetable oil hydrogenation process: N2 sorption and XPS studies

    NASA Astrophysics Data System (ADS)

    Nikolova, D.; Krstić, J.; Spasov, L.; Simeonov, D.; Lončarević, D.; Stefanov, Pl.; Jovanović, D.

    2011-12-01

    The effect of the type of the silica gel pore structure on the surface properties of the Ni-silica gel catalyst precursors for the vegetable oil hydrogenation process has been examined applying N2 sorption and X-ray photoelectron spectroscopy techniques. The nickel catalyst precursors with identical composition (SiO2/Ni = 1.0) has been synthesized by precipitation of Ni(NO3)2 · 6H2O solution with Na2CO3 solution on the three types of silica gel with different pore structures. It is shown that the usage of the silica gel supports with different texture as source of SiO2 causes different location of Ni-species into the support pores and on the external surface area. The XPS data confirm the formation of surface species with different strength of interaction and different dispersion. These surface characteristics of the precursors will predetermine the formation of the active nickel metallic phase as well as the mass transfer of the reactants and products to and from the catalytic sites.

  13. Molecular Mechanisms for the Modulation of Selected Inflammatory Markers by Dietary Rice Bran Oil in Rats Fed Partially Hydrogenated Vegetable Fat.

    PubMed

    Rao, Y Poorna Chandra; Kumar, P Pavan; Lokesh, B R

    2016-04-01

    Industrially produced partially hydrogenated vegetable fat (PHVF) contains trans fatty acids (TFA) mostly comprising elaidic acid (EA, 18:1∆9t). Though, the harmful effects of TFA on health have been repeatedly publicized, the fat containing TFA have been continued to be used as a cooking medium in many regions of the world. The adverse effects of PHVF on oxidative stress and inflammatory markers and the possible ameliorative action of rice bran oil (RBO) on these markers were evaluated. Weaning rats were fed a AIN-93 purified diet supplemented with the following lipids: groundnut oil (GNO, 10 wt%), PHVF (10 wt%), RBO (10 wt%), PHVF blended with RBO at 2.5, 5.0 and 7.5 wt% levels. The final concentration of the lipids in the diet was maintained at 10 wt%. Rats were fed these diets for 60 days. They were sacrificed and analyzed for oxidative stress and inflammatory markers. The rats fed PHVF showed lower levels of lipid peroxidation and hepatic antioxidant enzymes. The rats fed PHVF-containing diets showed enhanced levels of interleukin-1β, C-reactive proteins and also showed enhanced levels of paw inflammation when injected with carrageenan as compared to rats given GNO, RBO or PHVF blended with incremental amounts of RBO. The macrophages from rats fed diet containing PHVF showed up-regulation in the expressions of cytosolic phospholipase A2 (cPLA2), nuclear factor-κB p65, toll like receptor (TLR)-2, TLR-4 and down-regulation in the expressions of peroxisome proliferator activated receptor gamma (PPAR)γ, adiponectin receptor (AdipoR)-1 and AdipoR-2 when compared to rats fed diet containing GNO, RBO and PHVF blended with RBO. It was concluded that dietary PHVF enhance pro-inflammatory markers which can be reduced by judiciously blending PHVF with RBO. PMID:26939679

  14. Fuel properties of eleven vegetable oils

    SciTech Connect

    Goering, C.E.; Schwab, A.W.; Daugherty, M.J.; Pryde, E.H.; Heakin, A.J.

    1982-01-01

    Eleven vegetable oils that can be grown as domestic field crops were identified for inclusion in a comparative study of chemical and fuel properties. Sample lots of each oil were subjected to ASTM tests appropriate for diesel fuels. The tests identified some problem areas with vegetable oil fuels. The oil samples were also characterized chemically and certain fuel properties were correlated to chemical compositions. (Refs. 11).

  15. Energy accounting for eleven vegetable oil fuels

    SciTech Connect

    Goering, C.E.; Daugherty, M.J.

    1982-09-01

    Energy inputs and outputs were comparatively analyzed for 11 vegetable oil fuels. Three-year average prices and production quantities were also compared. All nonirrigated oil crops had favorable energy ratios. Soybean, peanut and sunflower oils were the most promising as domestic fuel sources. Rapeseed oil would also be promising if significant domestic production can be established.

  16. Pressure viscosity coefficient of vegetable oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The elastohydrodynamic (EHD) pressure viscosity coefficient (PVC) of ten vegetable oils from commodity and new crops, and two petroleum-based oils, polyalphaolefin (PAO) and hexadecane, were investigated. PVC was measured using three different methods: the So and Klaus (S-K) procedure from oil visco...

  17. Controlling the frying stability of vegetable oils with tocopherols and phytosterols

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyunsaturated vegetable oils are usually oxidatively stable for salad oils; however, in high stability applications such as frying, these oils are not resistant to the deteriorative processes of oxidation, hydrolysis and polymerization. To solve this problem in the past, oils were hydrogenated an...

  18. Straight Vegetable Oil as a Diesel Fuel?

    SciTech Connect

    2014-01-01

    Biodiesel, a renewable fuel produced from animal fats or vegetable oils, is popular among many vehicle owners and fleet managers seeking to reduce emissions and support U.S. energy security. Questions sometimes arise about the viability of fueling vehicles with straight vegetable oil (SVO), or waste oils from cooking and other processes, without intermediate processing. But SVO and waste oils differ from biodiesel (and conventional diesel) in some important ways and are generally not considered acceptable vehicle fuels for large-scale or long-term use.

  19. Modified vegetable oils-based lubricant emulsions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lubricants made from vegetable oils represent only a small section of the market today. Recent legislation, however, in both the United States and Europe, could begin to brighten their prospects due to their eco-friendly and biodegradable character, unlike petroleum oil-based products. In order to u...

  20. Lubricant Properties of Modified Vegetable Oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lubricants made from vegetable oils represent a small section of the market today, but recent legislation in both the United States and Europe could begin to brighten their prospects due to their eco-friendly and biodegradable character unlike petroleum oil based products. In order to understand th...

  1. Comparison of soybean and cottonseed oils upon hydrogenation with nickel, palladium and platinum catalysts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is current interest in reducing the trans fatty acids (TFA) in hydrogenated vegetable oils because consumption of foods high in TFA has been linked to increased serum cholesterol content. In this work, hydrogenation was carried out on soybean oil and cottonseed oil at two pressures (2 and 5 b...

  2. 19 CFR 10.56 - Vegetable oils, denaturing; release.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Vegetable oils, denaturing; release. 10.56 Section... Vegetable Oils § 10.56 Vegetable oils, denaturing; release. (a) Olive, palm-kernel, rapeseed, sunflower, and sesame oil shall be classifiable under subheadings 1509.10.20, 1509.10.40, 1509.90.20, 1509.90.40,...

  3. 19 CFR 10.56 - Vegetable oils, denaturing; release.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Vegetable oils, denaturing; release. 10.56 Section... Vegetable Oils § 10.56 Vegetable oils, denaturing; release. (a) Olive, palm-kernel, rapeseed, sunflower, and sesame oil shall be classifiable under subheadings 1509.10.20, 1509.10.40, 1509.90.20, 1509.90.40,...

  4. 19 CFR 10.56 - Vegetable oils, denaturing; release.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Vegetable oils, denaturing; release. 10.56 Section... Vegetable Oils § 10.56 Vegetable oils, denaturing; release. (a) Olive, palm-kernel, rapeseed, sunflower, and sesame oil shall be classifiable under subheadings 1509.10.20, 1509.10.40, 1509.90.20, 1509.90.40,...

  5. Screening emissions of high oleic vegetable oils

    SciTech Connect

    1996-12-31

    This article describes tests of a high oleic safflower oil for use as a fuel in diesel engines. Test included looking at the following: costs with reformulated diesel fuels or other benefits; reduction of particulate emissions by at least 14 percent; reduction of nitrogen oxide emissions; use without causing engine deposits and other problems. Results are given on emissions of high oleic vegetable oils, and commercial opportunities are discussed briefly.

  6. Improving vegetable oil properties for lubrication methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The inherent problems of vegetable oils, such as poor oxidation and low-temperature properties, can be improved by attaching functional groups at the sites of unsaturation through chemical modifications. In this article, you will see how functionalization helps overcome these disadvantages....

  7. Chain Transfer of Vegetable Oil Macromonomers in Acrylic Solution Copolymerization

    SciTech Connect

    Black, Micah; Messman, Jamie M; Rawlins, James

    2011-01-01

    Use of vegetable oil macromonomers (VOMMs) as comonomers in emulsion polymerization enables good film coalescence without the addition of solvents that constitute volatile organic compounds (VOCs). VOMMs are derived from renewable resources and offer the potential of post-application crosslinking via auto-oxidation. However, chain transfer reactions of VOMMs with initiator and/or polymer radicals during emulsion polymerization reduce the amount of allylic hydrogen atoms available for primary auto-oxidation during drying. Vegetable oils and derivatives were reacted in combination with butyl acrylate and methyl methacrylate via solution polymerization. The copolymerization was monitored using in situ infrared spectroscopy to determine the extent of chain transfer. 1H NMR spectroscopy was used to determine the loci of chain transfer and the molecular weight characteristics of the polymers were characterized by SEC. Solution polymerization was utilized to minimize temperature fluctuations and maintain polymer solubility during the initial characterization.

  8. 19 CFR 10.56 - Vegetable oils, denaturing; release.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Vegetable oils, denaturing; release. 10.56 Section 10.56 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. General Provisions Vegetable Oils § 10.56 Vegetable oils,...

  9. 21 CFR 180.30 - Brominated vegetable oil.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Brominated vegetable oil. 180.30 Section 180.30 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Brominated vegetable oil. The food additive brominated vegetable oil may be safely used in accordance...

  10. 21 CFR 180.30 - Brominated vegetable oil.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Brominated vegetable oil. 180.30 Section 180.30 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Brominated vegetable oil. The food additive brominated vegetable oil may be safely used in accordance...

  11. 19 CFR 10.56 - Vegetable oils, denaturing; release.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Vegetable oils, denaturing; release. 10.56 Section 10.56 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. General Provisions Vegetable Oils § 10.56 Vegetable oils,...

  12. 21 CFR 180.30 - Brominated vegetable oil.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Brominated vegetable oil. 180.30 Section 180.30... Requirements for Certain Food Additives § 180.30 Brominated vegetable oil. The food additive brominated vegetable oil may be safely used in accordance with the following prescribed conditions: (a) The...

  13. 21 CFR 180.30 - Brominated vegetable oil.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Brominated vegetable oil. 180.30 Section 180.30 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Brominated vegetable oil. The food additive brominated vegetable oil may be safely used in accordance...

  14. Vegetable Oil: Nutritional and Industrial Perspective.

    PubMed

    Kumar, Aruna; Sharma, Aarti; Upadhyaya, Kailash C

    2016-06-01

    Oils of plant origin have been predominantly used for food-based applications. Plant oils not only represent a non-polluting renewable resource but also provide a wide diversity in fatty acids (FAs) composition with diverse applications. Besides being edible, they are now increasingly being used in industrial applications such as paints, lubricants, soaps, biofuels etc. In addition, plants can be engineered to produce fatty acids which are nutritionally beneficial to human health. Thus these oils have potential to 1) substitute ever increasing demand of non -renewable petroleum sources for industrial application and 2) also spare the marine life by providing an alternative source to nutritionally and medically important long chain polyunsaturated fatty acids or 'Fish oil'. The biochemical pathways producing storage oils in plants have been extensively characterized, but the factors regulating fatty acid synthesis and controlling total oil content in oilseed crops are still poorly understood. Thus understanding of plant lipid metabolism is fundamental to its manipulation and increased production. This review on oils discusses fatty acids of nutritional and industrial importance, and approaches for achieving future designer vegetable oil for both edible and non-edible uses. The review will discuss the success and bottlenecks in efficient production of novel FAs in non-native plants using genetic engineering as a tool. PMID:27252590

  15. Vegetable oils as fuel alternatives - symposium overview

    SciTech Connect

    Pryde, E.H.

    1984-10-01

    Several encouraging statements can be made about the use of vegetable oil products as fuel as a result of the information presented in these symposium papers. Vegetable oil ester fuels have the greatest promise, but further engine endurance tests will be required. These can be carried out best by the engine manufacturers. Microemulsions appear to have promise, but more research and engine testing will be necessary before performance equivalent to the ester fuels can be developed. Such research effort can be justified because microemulsification is a rather uncomplicated physical process and might be adaptable to on-farm operations, which would be doubtful for the more involved transesterfication process. Although some answers have been provided by this symposium, others are still not available; engine testing is continuing throughout the world particularly in those countries that do not have access to petroleum. 9 references.

  16. Vegetable Oil from Leaves and Stems: Vegetative Production of Oil in a C4 Crop

    SciTech Connect

    2012-01-01

    PETRO Project: Arcadia Biosciences, in collaboration with the University of California-Davis, is developing plants that produce vegetable oil in their leaves and stems. Ordinarily, these oils are produced in seeds, but Arcadia Biosciences is turning parts of the plant that are not usually harvested into a source of concentrated energy. Vegetable oil is a concentrated source of energy that plants naturally produce and is easily separated after harvest. Arcadia Biosciences will isolate traits that control oil production in seeds and transfer them into leaves and stems so that all parts of the plants are oil-rich at harvest time. After demonstrating these traits in a fast-growing model plant, Arcadia Biosciences will incorporate them into a variety of dedicated biofuel crops that can be grown on land not typically suited for food production

  17. Base catalytic transesterification of vegetable oil.

    PubMed

    Mainali, Kalidas

    2012-01-01

    Sustainable economic and industrial growth requires safe, sustainable resources of energy. Biofuel is becoming increasingly important as an alternative fuel for the diesel engine. The use of non-edible vegetable oils for biofuel production is significant because of the increasing demand for edible oils as food. With the recent debate of food versus fuel, some non-edible oils like soapnut and Jatropha (Jatropha curcus. L) are being investigated as possible sources of biofuel. Recent research has focused on the application of heterogeneous catalysis. This review considers catalytic transesterification and the possibility of heterogeneous base catalysts. The process of transesterification, and the effect of parameters, mechanism and kinetics are reviewed. Although chromatography (GC and HPLC) are the analytical methods most often used for biofuel characterization, other techniques and some improvements to analytical methods are discussed. PMID:22574385

  18. Transesterification of vegetable oils for fuels

    SciTech Connect

    Kusy, P.F.

    1982-01-01

    A continuous procedure was developed and tested, in a stepwise manner, for the transesterification of soybean and sunflower oils using ethanol. Good yields of ethyl soyate and sunflowerate were achieved, and the products made agreed very closely with those made by a direct esterification of the acids of vegetable oils and ethanol. The viscosity of the esters was considerably less than that of the oils and more nearly like that of diesel fuel. Because the ethyl soyate and sunflowerate have many components which solidify at relatively high temperatures, cloud points of the fuels are about 8 to 12/sup 0/C, which indicates they would not be readily usable at or below that temperature without dilution with No. 1 or No. 2 diesel fuel and/or the addition of additives. 3 figures, 7 tables.

  19. Thioether-functionalized vegetable oils: Metal-absorbing biobased ligands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable oils containing thioether groups have been synthesized and used to effectively remove a heavy metal ion from an aqueous solution. The use of thioether-functionalized corn oil (TF-corn oil) and thioether-functionalized canola oil (TF-canola oil) were both effective in the extraction of Ag+ ...

  20. One-pot synthesis of chemically modified vegetable oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable oils are promising candidates as substitutes for petroleum-base oils in lubricants applications, such as total loss lubrication, military applications and outdoor activities. Although vegetable oils have some advantages, they also have poor oxidation and low temperature stability. One of...

  1. Thermal stabilized vegetable oil extended diesel fuels

    SciTech Connect

    Sweeney, W.M.; Lachowicz, D.R.

    1986-03-11

    A middle distillate fuel composition is described comprising: (a) a major portion of a middle distillate containing a hydrocarbon boiling in the middle distillate boiling range; (b) an extending portion of a vegetable oil; and (c) an effective thermal-stabilizing amount of a nitrogen-containing polymer prepared by reacting an ethylene/propylene copolymer with maleic anhydride, thereby forming a succinic anhydride, reacting the succinic anhydride, with an alcohol, thereby forming a succinate ester while leaving a portion of the succinic anhydride unreacted, and, reacting the succinate ester and the unreacted succinic anhydride with dimethylaminopropylamine, thereby forming a nitrogen-containing polymer.

  2. Novel Bioplastics and biocomposites from Vegetable Oils

    SciTech Connect

    Henna, Phillip H.

    2008-01-01

    there are three degrees of unsaturation. In addition, the double bonds are not in conjugation. Table 1 gives the fatty acid make-up of linseed oil. It can be seen that linseed oil has an average of 6.0 double bonds per triglyceride. Its fatty acid content consists of 5.4% palmitic acid (C16:0), 3.5% stearic acid (C18:0), 19% oleic acid (C18:1), 24 % linoleic acid (C18:2) and 47% linolenic (C18:3). Table 1 also gives the fatty acid composition and varying degrees of unsaturation for various other naturally-occurring natural vegetable oils. The regions of unsaturation in natural oils allow for interesting polymer chemistry to take place. Some of this interesting polymer science, however, involves chemical modification of the regions of unsaturation. Acrylated epoxidized soybean oil (AESO) is prepared by epoxidation of the double bonds, followed by ring opening with acrylic acid. The resulting oil has both acrylate groups and hydroxyl groups. Wool and colleagues have further reacted the hydroxyl groups within the oil with maleic anhydride to produce maleated acrylated epoxidized soybean oil (MAESO). The MAESO has been copolymerized with styrene free radically to produce promising thermosetting sheet molding resins. Petrovi? and co-workers have directly ring opened the epoxidized oil to produce polyols that produce promising polyurethanes through condensation polymerization with diisocyanates. Our group's work initially focused on direct cationic copolymerization of the double bonds or conjugated double bonds of natural oils with monomers, such as styrene and divinylbenzene, to produce promising thermosetting resins. The only modification of the oils that was carried out in these studies was conjugation of the double bonds to enhance the reactivity of the oil. This work has been expanded recently with the incorporation of glass fiber to produce promising composites. We have also explored thermal polymerization techniques to make novel thermosets. This dissertation is

  3. Viscosity of Common Seed and Vegetable Oils

    NASA Astrophysics Data System (ADS)

    Wes Fountain, C.; Jennings, Jeanne; McKie, Cheryl K.; Oakman, Patrice; Fetterolf, Monty L.

    1997-02-01

    Viscosity experiments using Ostwald-type gravity flow viscometers are not new to the physical chemistry laboratory. Several physical chemistry laboratory texts (1 - 3) contain at least one experiment studying polymer solutions or other well-defined systems. Several recently published articles (4 - 8) indicated the continued interest in using viscosity measurements in the teaching lab to illustrate molecular interpretation of bulk phenomena. Most of these discussions and teaching experiments are designed around an extensive theory of viscous flow and models of molecular shape that allow a full data interpretation to be attempted. This approach to viscosity experiments may not be appropriate for all teaching situations (e.g., high schools, general chemistry labs, and nonmajor physical chemistry labs). A viscosity experiment is presented here that is designed around common seed and vegetable oils. With the importance of viscosity to foodstuffs (9) and the importance of fatty acids to nutrition (10), an experiment using these common, recognizable oils has broad appeal.

  4. Thiol-ene Reaction of Vegetable Oils with Butanethiol: Sulfide Derivatized Vegetable Oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable oils and their FA, renewable raw materials, are firmly established components in many industrial products, and their use continues to be of interest to many researchers. The development of new approaches to functionalize fatty ester compounds and to derive novel oleochemicals with unique ...

  5. Vegetable oil or diesel fuel-a flexible option

    SciTech Connect

    Suda, K.J.

    1984-01-01

    Vegetable oils provide diesel engine performance similar to that obtained with diesel fuel, and this has been documented in many prior publications. Because they are potentially interchangeable with diesel fuel, interest has focused on vegetable oils as short-range alternate fuels. However, engine durability when burning vegetable oils may be adversely affected depending on the type of combustion system employed. Laboratory and field experimental tests have identified the prechamber engine as having the greatest short-range potential for using vegetable oil fuels.

  6. Photolysis of polychlorinated dibenzo-p-dioxins and dibenzofurans dissolved in vegetable oils: influence of oil quality.

    PubMed

    Isosaari, Pirjo; Laine, Olli; Tuhkanen, Tuula; Vartiainen, Terttu

    2005-03-20

    Sunlight or ultraviolet light irradiation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the presence of vegetable oil offers a potential method for the cleanup of contaminated soil. In this study, the effects of different types of vegetable oils on the photochemical degradation of 1,2,3,4,6,7,8-heptachlorodibenzofuran and heptachlorodibenzo-p-dioxin (1,2,3,4,6,7,8-HpCDF/HpCDD) were investigated in the laboratory. Using a blacklight lamp as a source of ultraviolet light, 93-100% of 1,2,3,4,6,7,8-HpCDF degraded in 60 min in rapeseed oil, extra virgin olive oil and olive oil. Less degradation occurred in palm oil (59%), toluene (39%) and hexane (20%). The better degradation in vegetable oils in comparison with organic solvents was attributed to the photooxidation of lipids producing hydrogen for PCDD/F dechlorination. In addition to the hydrogen donor capacity, permeability of ultraviolet light was involved in the differences between vegetable oils. alpha-Tocopherol and chlorophyll did not influence the performance of oil at concentrations normally present in vegetable oils, whereas beta-carotene had an inhibitory effect on the degradation of 1,2,3,4,6,7,8-HpCDF. Up to 28% of the degradation products of 1,2,3,4,6,7,8-HpCDF were formed via the dechlorination pathway. Products included both toxic (2,3,7,8-chlorinated) and non-toxic PCDD/Fs, the toxic PCDD/Fs being more stable. Irradiation of 1,2,3,4,6,7,8-HpCDD yielded only non-toxic dechlorination products. Polychlorinated hydroxybiphenyls (OH-PCBs), polychlorinated dihydroxybiphenyls (DOH-PCBs) and polychlorinated hydroxydiphenylethers (OH-PCDEs) containing one to seven chlorine atoms were not detected in irradiated HpCDF/HpCDD samples. PMID:15752488

  7. Green processing for commercial production of feruloylated vegetable oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Covalent incorporation of ferulic acid into vegetable oils produces a desirable product for cosmetic applications. Current practice involves the biocatalytic transesterification of ethyl ferulate with soybean oil, followed by a molecular distillation step to remove unconsumed ethyl ferulate and the...

  8. Sedimentation Of Oil-MIneral Aggregates For Remediation Of Vegetable Oil Spills

    EPA Science Inventory

    A response alternative for floating vegetable oil spills based on sedimentation of negatively buoyant oil-mineral aggregrates followed by anaerobic biodegradation in the sediments is under investigation. Sedimentation of floating canola oil by interaction with montmorillonite wa...

  9. Friction and wear behavior of thioether hydroxy vegetable oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This work describes the tribochemical evaluation of vegetable oil based antiwear additive obtained through chemical modification. The sulfur was incorporated using a chemical reaction of epoxidized vegetable oil and common thiols, resulting in formation of a hydroxy thioether derivative of vegetabl...

  10. Vegetable-oil-based polymers as future polymeric biomaterials.

    PubMed

    Miao, Shida; Wang, Ping; Su, Zhiguo; Zhang, Songping

    2014-04-01

    Vegetable oils are one of the most important classes of bio-resources for producing polymeric materials. The main components of vegetable oils are triglycerides - esters of glycerol with three fatty acids. Several highly reactive sites including double bonds, allylic positions and the ester groups are present in triglycerides from which a great variety of polymers with different structures and functionalities can be prepared. Vegetable-oil-based polyurethane, polyester, polyether and polyolefin are the four most important classes of polymers, many of which have excellent biocompatibilities and unique properties including shape memory. In view of these characteristics, vegetable-oil-based polymers play an important role in biomaterials and have attracted increasing attention from the polymer community. Here we comprehensively review recent developments in the preparation of vegetable-oil-based polyurethane, polyester, polyether and polyolefin, all of which have potential applications as biomaterials. PMID:24012607

  11. Production of Lipase and Oxygenated Fatty Acids from Vegetable Oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable oils such as soybean oil and corn oil are cheap raw materials. Various value-added oxygenated fatty acids have been produced from unsaturated fatty acids such as oleic and linoleic acid by biotransformation. Lipase from the non-pathogenic yeast Candida cylindracea is another important va...

  12. Elastohydrodynamic study of vegetable oil-polyalphaolefin blends

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two polyalphaolefins (PAOs), of higher and lower viscosity than vegetable oils, were used to make binary blends of varying compositions with soybean and canola oils. The pure oils and the blends were used in viscosity and film thickness investigations. The effect of composition and temperature on ...

  13. Newcastle disease oil emulsion vaccines prepared with animal, vegetable, and synthetic oils.

    PubMed

    Stone, H D

    1997-01-01

    Animal, vegetable, and synthetic oils were tested as potential replacements for mineral oil in Newcastle disease oil emulsion vaccines. Emulsifying surfactants of seed oil origin comprised 10% of the the oil phase that was used to prepare water-in-oil emulsion vaccines that contained a final concentration of 20% aqueous antigen. The hemagglutination inhibition responses of chickens inoculated with 46 of the newly formulated oil vaccines were, in most cases, not significantly different from those of control chickens inoculated with mineral oil vaccine. Tissue reactions associated with animal, vegetable, and synthetic oil vaccines were less severe than those associated with mineral oil vaccines. Viscosity of the mineral oil formulations ranged from 1/2 to 3 1/2 times that of the mineral oil control vaccines. These findings indicate that any of several oils may be more suitable than mineral oil for preparation of immune adjuvants for poultry vaccines. PMID:9356704

  14. One-pot synthesis of chemically modified vegetable oils.

    PubMed

    Sharma, Brajendra K; Liu, Zengshe; Adhvaryu, Atanu; Erhan, Sevim Z

    2008-05-14

    Vegetable oils are promising candidates as substitutes for petroleum base oils in lubricant applications, such as total loss lubrication, military applications, and outdoor activities. Although vegetable oils have some advantages, they also have poor oxidation and low temperature stability. One of the ways to address these issues is chemical modification of fatty acid chain of triglyceride. We report a one-pot synthesis of a novel class of chemically modified vegetable oils from epoxidized triacylglycerols and various anhydrides. In an anhydrous solvent, boron trifluoride etherate is used as catalyst to simultaneously open the oxirane ring and activate the anhydride. The reaction was monitored and products confirmed by NMR, FTIR, GPC, and TGA analysis. Experimental conditions were optimized for research quantity and laboratory scale-up (up to 4 lbs). The resultant acyl derivatives of vegetable oil, having diester substitution at the sites of unsaturation, have potential in formulation of industrial fluids such as hydraulic fluids, lubricants, and metal working fluids. PMID:18399638

  15. 21 CFR 173.275 - Hydrogenated sperm oil.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Hydrogenated sperm oil. 173.275 Section 173.275... and Related Substances § 173.275 Hydrogenated sperm oil. The food additive hydrogenated sperm oil may be safely used in accordance with the following prescribed conditions: (a) The sperm oil is...

  16. [FREQUENTLY USED VEGETABLE OILS IN SOUTH AMERICA: FEATURES AND PROPERTIES].

    PubMed

    Durán Agüero, Samuel; Torres García, Jairo; Sanhueza Catalán, Julio

    2015-01-01

    In recent decades, the consumption of vegetable oils has increased in our society, being an important part of the diet worldwide. South America is a major producer of an important variety of vegetable oils. The composition of vegetable oils is not standard as it varies greatly in the amount of saturated, monounsaturated and polyunsaturated fatty acids, and particularly in the amounts of omega-6 and omega-3, which are associated with the source either plant species, seed, plant or fruit, providing different nutritional benefits. The purpose of this article is to review and update the data and evidence about the consumption of oils produced and commercialized in South America, such as soybean oil, corn, palm, sunflower, canola and olive oils, and also to determine health effects from studies related with the topic. PMID:26262691

  17. Physicochemical properties and potential food applications of Moringa oleifera seed oil blended with other vegetable oils.

    PubMed

    Dollah, Sarafhana; Abdulkarim, Sabo Muhammad; Ahmad, Siti Hajar; Khoramnia, Anahita; Ghazali, Hasanah Mohd

    2014-01-01

    Blends (30:70, 50:50 and 70:30 w/w) of Moringa oleifera seed oil (MoO) with palm olein (PO), palm stearin (PS), palm kernel oil (PKO) and virgin coconut oil (VCO) were prepared. To determine the physicochemical properties of the blends, the iodine value (IV), saponication value (SV), fatty acid (FA) composition, triacylglycerol (TAG) composition, thermal behaviour (DSC) and solid fat content (SFC) tests were analysed. The incorporation of high oleic acid (81.73%) MoO into the blends resulted in the reduction of palmitic acid content of PO and PS from 36.38% to 17.17% and 54.66% to 14.39% and lauric acid content of PKO and VCO from 50.63% to 17.70% and 51.26% to 26.05% respectively while oleic acid and degree of unsaturation were increased in all blends. Changes in the FA composition and TAG profile have significantly affected the thermal behavior and solid fat content of the oil blends. In MoO/PO blends the melting temperature of MoO decreased while, in MoO/PS, MoO/PKO and MoO/VCO blends, it increased indicating produce of zero-trans harder oil blends without use of partial hydrogenation. The spreadability of PS, PKO and VCO in low temperatures was also increased due to incorporation of MoO. The melting point of PS significantly decreased in MoO/PS blends which proved to be suitable for high oleic bakery shortening and confectionary shortening formulation. The finding appears that blending of MoO with other vegetable oils would enable the initial properties of the oils to be modified or altered and provide functional and nutritional attributes for usage in various food applications, increasing the possibilities for the commercial use of these oils. PMID:25007749

  18. Vegetable oils: liquid coolants for solar heating and cooling applications

    SciTech Connect

    Ingley, H A

    1980-02-01

    It has been proposed that vegetable oils, renewable byproducts of agriculture processes, be investigated for possible use as liquid coolants. The major thrust of the project was to investigate several thermophysical properties of the four vegetable oils selected. Vapor pressures, specific heat, viscosity, density, and thermal conductivity were determined over a range of temperatures for corn, soybean, peanut, and cottonseed oil. ASTM standard methods were used for these determinations. In addition, chemical analyses were performed on samples of each oil. The samples were collected before and after each experiment so that any changes in composition could be noted. The tests included iodine number, fatty acid, and moisture content determination. (MHR)

  19. Thermal Effusivity of Vegetable Oils Obtained by a Photothermal Technique

    NASA Astrophysics Data System (ADS)

    Cervantes-Espinosa, L. M.; de L. Castillo-Alvarado, F.; Lara-Hernández, G.; Cruz-Orea, A.; Hernández-Aguilar, C.; Domínguez-Pacheco, A.

    2014-10-01

    Thermal properties of several vegetable oils such as soy, corn, and avocado commercial oils were obtained by using a photopyroelectric technique. The inverse photopyroelectric configuration was used in order to obtain the thermal effusivity of the oil samples. The theoretical equation for the photopyroelectric signal in this configuration, as a function of the incident light modulation frequency, was fitted to the experimental data in order to obtain the thermal effusivity of these samples. The obtained results are in good agreement with the thermal effusivity reported for other vegetable oils. All measurements were done at room temperature.

  20. Photochemical behavior of sethoxydim in the presence of vegetable oils.

    PubMed

    Hammami, Hossein; Rashed Mohassel, Mohammad Hassan; Parsa, Mehdi; Bannayan-Aval, Mohammad; Zand, Eskandar; Hassanzadeh-Khayyat, Mohammad; Nassirli, Horiyeh

    2014-07-01

    The photodecomposition of herbicides may be affected by adding vegetable oils to the spray tank. In this study nine vegetable oils were compared to assess the photodecomposition of sethoxydim under natural light conditions. The experiment was conducted as completely randomized factorial design with three replicates at the College of Agriculture, Ferdowsi University of Mashhad, Iran, in 2013. Each herbicidal solution (with and without vegetable oil) was exposed to sunshine with time intervals of 0, 5, 10, 20, 30, 60, 120, and 240 min. The results revealed that the half-life value was increased by adding castor bean and cottonseed oils to 1.39- and 1.18-fold, respectively, compared to nonvegetable oil. These values for turnip, olive, corn, soybean, sunflower, canola, and sesame oils were decreased down to 4.74-, 2.38-, 1.81-, 1.75-, 1.52-, 1.28-, and 1.11-fold, respectively. A positive relationship existed between the half-life of sethoxydim in the presence of vegetable oils and their viscosity. However, a negative relationship was monitored between unsaturated/saturated fatty acids ratio and the monounsaturated value with half-life. A positive relationship also existed between saturated fatty acids, polyunsaturated fatty acids, palmitic acid, and linoleic acid with half-life. This study revealed that the amount of fatty acids in vegetable oils is a determining factor in preventing or facilitating the photodecomposition of sethoxydim. PMID:24932839

  1. Improved biobased lubricants from chemically modified vegetable oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable oils possess a number of desirable properties for lubricant application such as excellent boundary properties, high viscosity index, low volatility, low traction coefficient, renewability, and biodegradability. Unfortunately, they also have a number of weaknesses that make them less desira...

  2. Analysis of the Triglycerides of Some Vegetable Oils.

    ERIC Educational Resources Information Center

    Farines, Marie; And Others

    1988-01-01

    Explains that triglycerides consist of a mixture of different compounds, depending on the total number of fatty acid constituents. Details the method and instrumentation necessary for students to analyze a vegetable oil for its triglyceride content. Describes sample results. (CW)

  3. Mechanism of formation of 3-chloropropan-1,2-diol (3-MCPD) esters under conditions of the vegetable oil refining.

    PubMed

    Šmidrkal, Jan; Tesařová, Markéta; Hrádková, Iveta; Berčíková, Markéta; Adamčíková, Aneta; Filip, Vladimír

    2016-11-15

    3-MCPD esters are contaminants that can form during refining of vegetable oils in the deodorization step. It was experimentally shown that their content in the vegetable oil depends on the acid value of the vegetable oil and the chloride content. 3-MCPD esters form approximately 2-5 times faster from diacylglycerols than from monoacylglycerols. It has been proved that the higher fatty acids content in the oil caused higher 3-MCPD esters content in the deodorization step. Neutralization of free fatty acids in the vegetable oil before the deodorization step by alkaline carbonates or hydrogen carbonates can completely suppress the formation of 3-MCPD esters. Potassium salts are more effective than sodium salts. PMID:27283615

  4. Epoxy thermoset networks derived from vegetable oils and their blends

    NASA Astrophysics Data System (ADS)

    Ryu, Chang; Ravalli, Matthew

    2015-03-01

    Epoxidized vegetable oils (EVOs), such as epoxidized soybean oil and linseed oils were prepared by the partial oxidation of the unsaturated double bonds in vegetable oils and used as monomers for preparing epoxy thermoset materials based on the cationic polymerization. These EVOs have been used to prepare epoxy thermosets of different network densities by cationic polymerization using onium salt catalyst. The crosslinked epoxy thermosets provide an ideal platform to study the structure-property-relationships of networked polymers. In particular, rheological studies on the epoxidized vegetable oil thermosets have been performed to measure the molecular weights between crosslinks (Mx) in the epoxy thermosets and to ultimately elucidate the role of functionality of epoxy groups in EVO on the mechanical and thermophysical properties of the epoxy thermoset materials. NSF DMR POLYMERS 1308617.

  5. Quality and statistical classification of Brazilian vegetable oils using mid-infrared and Raman spectroscopy.

    PubMed

    Samyn, Pieter; Van Nieuwkerke, Dieter; Schoukens, Gustaaf; Vonck, Leo; Stanssens, Dirk; Van den Aabbeele, Henk

    2012-05-01

    Palm oil, soy oil, sunflower oil, corn oil, castor oil, and rapeseed oil were analyzed with Fourier transform infrared (FT-IR) and FT-Raman spectroscopy. The quality of different oils was evaluated and statistically classified by principal component analysis (PCA) and a partial least squares (PLS) regression model. First, a calibration set of spectra was selected from one sampling batch. The qualitative variations in spectra are discussed with a prediction of oil composition (saturated, mono- and polyunsaturated fatty acids) from mid-infrared analysis and iodine value from FT-Raman analysis, based on ratioing the intensity of bands at given wavenumbers. A more robust and convincing oil classification is obtained from two-parameter statistical models. The statistical analysis of FT-Raman spectra favorably distinguishes according to the iodine value, while the mid-infrared spectra are most sensitive to hydroxyl moieties. Second, the models are validated with a set of spectra from another sampling batch, including the same oil types as-received and after different aging times together with a hydrogenated castor oil and high-oleic sunflower oil. There is very good agreement between the model predictions and the Raman measurements, but the statistical significance is lower for mid-infrared spectra. In the future, this calibration model will be used to check vegetable oil qualities before using them in polymerization processes. PMID:22524961

  6. [Fast discrimination of edible vegetable oil based on Raman spectroscopy].

    PubMed

    Zhou, Xiu-Jun; Dai, Lian-Kui; Li, Sheng

    2012-07-01

    A novel method to fast discriminate edible vegetable oils by Raman spectroscopy is presented. The training set is composed of different edible vegetable oils with known classes. Based on their original Raman spectra, baseline correction and normalization were applied to obtain standard spectra. Two characteristic peaks describing the unsaturated degree of vegetable oil were selected as feature vectors; then the centers of all classes were calculated. For an edible vegetable oil with unknown class, the same pretreatment and feature extraction methods were used. The Euclidian distances between the feature vector of the unknown sample and the center of each class were calculated, and the class of the unknown sample was finally determined by the minimum distance. For 43 edible vegetable oil samples from seven different classes, experimental results show that the clustering effect of each class was more obvious and the class distance was much larger with the new feature extraction method compared with PCA. The above classification model can be applied to discriminate unknown edible vegetable oils rapidly and accurately. PMID:23016334

  7. All About Oils

    MedlinePlus

    ... that are liquid at room temperature, like the vegetable oils used in cooking. Oils come from many different ... many animal foods and can be made from vegetable oils through a process called hydrogenation. Some common fats ...

  8. Potential of vegetable oils as a domestic heating fuel

    SciTech Connect

    Hayden, A.C.S.; Begin, E.; Palmer, C.E.

    1982-06-01

    The dependence on imported oil for domestic heating has led to the examination of other potential fuel substitutes. One potential fuel is some form of vegetable oil, which could be a yearly-renewable fuel. In Western Canada, canola has become a major oilseed crop; in Eastern Canada, sunflowers increasingly are becoming a source for a similar oil; for this reason, the Canadian Combustion Research Laboratory (CCRL) has chosen these oils for experimentation. Trials have been conducted in a conventional warm air oil furnace, fitted with a flame retention head burner. Performance has been measured with pure vegetable oils as well as a series of blends with conventional No. 2 oil. The effects of increased fuel pressure and fuel preheating are established. Emissions of carbon monoxide, nitrogen oxides, unburned hydrocarbons and particulates are given for both steady state and cyclic operation. Canola oil cannot be fired in cyclic operation above 50:50 blends with No. 2 oil. At any level above a 10% blend, canola is difficult to burn, even with significant increased pressure and temperature. Sunflower oil is much easier to burn and can be fired as a pure fuel, but with high emissions of incomplete combustion products. An optimum blend of 50:50 sunflower in No. 2 oil yields emissions and performance similar to No. 2 oil. This blend offers potential as a means of reducing demand of imported crude oil for domestic heating systems.

  9. Palladium catalyzed hydrogenation of bio-oils and organic compounds

    DOEpatents

    Elliott, Douglas C.; Hu, Jianli; Hart, Todd R.; Neuenschwander, Gary G.

    2008-09-16

    The invention provides palladium-catalyzed hydrogenations of bio-oils and certain organic compounds. Experimental results have shown unexpected and superior results for palladium-catalyzed hydrogenations of organic compounds typically found in bio-oils.

  10. Palladium catalyzed hydrogenation of bio-oils and organic compounds

    DOEpatents

    Elliott, Douglas C [Kennewick, WA; Hu, Jianli [Richland, WA; Hart,; Todd, R [Kennewick, WA; Neuenschwander, Gary G [Burbank, WA

    2011-06-07

    The invention provides palladium-catalyzed hydrogenations of bio-oils and certain organic compounds. Experimental results have shown unexpected and superior results for palladium-catalyzed hydrogenations of organic compounds typically found in bio-oils.

  11. Perlite as a potential support for nickel catalyst in the process of sunflower oil hydrogenation

    NASA Astrophysics Data System (ADS)

    Radonjić, V.; Krstić, J.; Lončarević, D.; Jovanović, D.; Vukelić, N.; Stanković, M.; Nikolova, D.; Gabrovska, M.

    2015-12-01

    Investigation was conducted in order to elucidate the possibility of using perlite as support for preparation of nickel based precursor catalyst, potentially applicable in vegetable oil hydrogenation process. On three differently prepared expanded perlite, nickel catalyst precursors with identical Ni/SiO2 = 1.1 and Ni/Mg = 10/1 ratios were synthesized by precipitation-deposition method. Different techniques, SEM micrography, He-pycnometry, calcimetry, Hg-porosimetry, N2-physisorption, H2-chemisorption and temperature programmed reduction, were used for characterization of obtained samples. Determining the precursor texture, morphology and reducibility shows a successfully deposited nickel phase on perlite support with promising properties for vegetable oil hydrogenation. Chosen precursor was reduced and passivated in paraffin oil and the obtained catalyst showed significant catalytic activity in the test of sunflower oil hydrogenation.

  12. A New Approach to Prepare Vegetable Oil-Based Polymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polymers from vegetable oils, such as soybean oil, were prepared by cationic polymerization in supercritical carbon dioxide (scCO2) medium. Boron trifluoride diethyl etherate (BF3.OEt2) was selected as catalyst. The resulting polymers have molecular weight ranging from 21,842 to 118,300 g/mol. Nu...

  13. TREATMENT OF EFFLUENT WATERS FROM VEGETABLE OIL REFINING

    EPA Science Inventory

    A detailed investigation was done to characterize the wastewater from a vegetable oil refinery. A calcium chloride chemical treatment was installed which resulted in a net decrease in waste load of 71 percent from .0135 lb BOD5 per pound oil processed to .0039 lb BOD5 per pound o...

  14. Synthesis and characterization of sulfide modified vegetable oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Butanethiol was used in ultraviolet-initiated thiol-ene reaction with canola and corn oils to produce sulfide-modified vegetable oils (SMVO). The crude SMVO product was successfully purified by solvent extraction, vacuum evaporation, and silica gel chromatography. The SMVO products were characterize...

  15. MODIFICATION OF VEGETABLE OILS FOR USE AS INDUSTRIAL LUBRICANTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There has been a lot of interest in using vegetable oils (particularly soybean oil) as renewable raw materials for new industrial products including lubricants. This emphasis on environmentally friendly lubricants is largely due to the rapid depletion of world fossil fuel reserves and increasing co...

  16. ENHANCEMENT OF BEAUVERIA BASSIANA AGAINST GRASSHOPPERS WITH VEGETABLE OIL CARRIERS.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beauveria bassiana is registered in the U.S. for control of grasshoppers, but efficacious use rates and product costs have been serious deterrents of adoption. Canola and certain other vegetable oils contain the fatty acids that stimulate necrophily and necrophagy in grasshoppers. Using these oils ...

  17. Free Radical Addition of Butanethiol to Vegetable Oil Double Bonds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Butanethiol was used in ultraviolet-initiated thiol-ene reaction with canola and corn oils to produce sulfide modified vegetable oils (SMVO). The crude SMVO product was successfully purified by solvent extraction, vacuum evaporation and silica gel chromatography. The SMVO products were characteriz...

  18. Systems study of vegetable oils and animal fats for use as substitute and emergency diesel fuels

    SciTech Connect

    Lipinsky, E.S.; McClure, T.A.; Kresovich, S.; Otis, J.L.; Wagner, C.K.; Trayser, D.A.; Applebaum, H.R.

    1981-10-01

    The principal findings are described as follows: leading issues, economic considerations, production potential for oilseed crops, oilseed processing, energy balance, diesel fuel and engine considerations, vegetable oil emissions, and research and development needs. The following appendices are included: profiles of selected vegetable oils and animal fats, economic information on vegetable oils and animal fats, the production potential for selected oilseed crops, the economics of vegetable oil recovery, and diesel fuel specifications and vegetable oil properties.

  19. 21 CFR 173.275 - Hydrogenated sperm oil.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Hydrogenated sperm oil. 173.275 Section 173.275... CONSUMPTION Solvents, Lubricants, Release Agents and Related Substances § 173.275 Hydrogenated sperm oil. The food additive hydrogenated sperm oil may be safely used in accordance with the following...

  20. 21 CFR 173.275 - Hydrogenated sperm oil.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Hydrogenated sperm oil. 173.275 Section 173.275... CONSUMPTION Solvents, Lubricants, Release Agents and Related Substances § 173.275 Hydrogenated sperm oil. The food additive hydrogenated sperm oil may be safely used in accordance with the following...

  1. 21 CFR 173.275 - Hydrogenated sperm oil.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Hydrogenated sperm oil. 173.275 Section 173.275... CONSUMPTION Solvents, Lubricants, Release Agents and Related Substances § 173.275 Hydrogenated sperm oil. The food additive hydrogenated sperm oil may be safely used in accordance with the following...

  2. 21 CFR 173.275 - Hydrogenated sperm oil.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Hydrogenated sperm oil. 173.275 Section 173.275... CONSUMPTION Solvents, Lubricants, Release Agents and Related Substances § 173.275 Hydrogenated sperm oil. The food additive hydrogenated sperm oil may be safely used in accordance with the following...

  3. Thermoplastic Starch Films with Vegetable Oils of Brazilian Cerrado

    NASA Astrophysics Data System (ADS)

    Schlemmer, D.; Sales, M. J. A.

    2008-08-01

    Biodegradable polymers are one of the most promising ways to replace non-degradable polymers. TPS films were prepared by casting from cassava starch and three different vegetable oils of Brazilian Cerrado as plasticizer: buriti, macaúba and pequi. In this preliminary work it was investigated materials thermal characteristics by TG and TMA. Thermal properties of oils depends on their chemical structures. Starch and vegetable oils are natural resources that can be used how alternative to producing materials that cause minor environmental impact.

  4. Effect of vegetable oil (Brazil nut oil) and mineral oil (liquid petrolatum) on dental biofilm control.

    PubMed

    Filogônio, Cíntia de Fátima Buldrini; Soares, Rodrigo Villamarim; Horta, Martinho Campolina Rebello; Penido, Cláudia Valéria de Sousa Resende; Cruz, Roberval de Almeida

    2011-01-01

    Dental biofilm control represents a basic procedure to prevent caries and the occurrence of periodontal diseases. Currently, toothbrushes and dentifrices are used almost universally, and the employment of good oral hygiene allows for appropriate biofilm removal by both mechanical and chemical control. The aim of this study was to evaluate the effectiveness of adding vegetable or mineral oil to a commercially available dentifrice in dental biofilm control. A comparison using the Oral Hygiene Index Simplified (OHI-S) was performed in 30 individuals who were randomly divided into three groups. Group 1 (G1) received a commercially available dentifrice; the composition of this dentifrice was modified by addition of mineral oil (Nujol®) for group 2 (G2) or a vegetable oil (Alpha Care®) for group 3 (G3) at 10% of the total volume, respectively. The two-way repeated-measures analysis of variance (two-way ANOVA) was used to test the effect of group (G1, G2 and G3) or time (baseline, 45 days and 90 days) on the OHI-S index scores. Statistical analysis revealed a significant reduction in the OHI-S at day 90 in G2 (p < 0.05) and G3 (p < 0.0001) in comparison to G1. Therefore, the addition of a vegetable or a mineral oil to a commercially available dentifrice improved dental biofilm control, suggesting that these oils may aid in the prevention and/or control of caries and periodontal disease. PMID:22147238

  5. Vegetable oil or diesel fuel-a flexible option

    SciTech Connect

    Suda, K.J.

    1984-02-01

    Vegetable oils provide diesel engine performance similar to that obtained with diesel fuel, and this has been documented in many prior publications. Because they are potentially interchangeable with diesel fuel, interest has focused on vegetable oils as short-range alternate fuels. However, engine durability when burning vegetable oils may be adversely affected depending on the type of combustion system employed. Laboratory and field experimental tests have identified the prechamber engine as having the greatest short-range potential for using vegetable oil fuels. Performance and durability at low engine ratings are essentially the same as expected for operation on diesel fuel. However, at high engine ratings piston ring and cylinder linear wear are greater than expected for operation on diesel fuel. A laboratory program was successfully completed which resulted in a combustion system that would allow the higher rated prechamber engines to achieve normal life when burning 100% soybean oil. Fluid model tests utilizing high speed photography, single-cylinder engine tests utilizing fuel tracers, and a 200-hour multicylinder durability test were included. Extended endurance tests and experience with other vegetable oils are still required.

  6. Modelling consumer intakes of vegetable oils and fats

    PubMed Central

    Tennant, David; Gosling, John Paul

    2015-01-01

    Vegetable oils and fats make up a significant part of the energy intake in typical European diets. However, their use as ingredients in a diverse range of different foods means that their consumption is often hidden, especially when oils and fats are used for cooking. As a result, there are no reliable estimates of the consumption of different vegetable oils and fats in the diet of European consumers for use in, for example, nutritional assessments or chemical risk assessments. We have developed an innovative model to estimate the consumption of vegetable oils and fats by European Union consumers using the European Union consumption databases and elements of probabilistic modelling. A key feature of the approach is the assessment of uncertainty in the modelling assumptions that can be used to build user confidence and to guide future development. PMID:26160467

  7. Lubricant base stock potential of chemically modified vegetable oils.

    PubMed

    Erhan, Sevim Z; Sharma, Brajendra K; Liu, Zengshe; Adhvaryu, Atanu

    2008-10-01

    The environment must be protected against pollution caused by lubricants based on petroleum oils. The pollution problem is so severe that approximately 50% of all lubricants sold worldwide end up in the environment via volatility, spills, or total loss applications. This threat to the environment can be avoided by either preventing undesirable losses, reclaiming and recycling mineral oil lubricants, or using environmentally friendly lubricants. Vegetable oils are recognized as rapidly biodegradable and are thus promising candidates as base fluids in environment friendly lubricants. Lubricants based on vegetable oils display excellent tribological properties, high viscosity indices, and flash points. To compete with mineral-oil-based lubricants, some of their inherent disadvantages, such as poor oxidation and low-temperature stability, must be corrected. One way to address these problems is chemical modification of vegetable oils at the sites of unsaturation. After a one-step chemical modification, the chemically modified soybean oil derivatives were studied for thermo-oxidative stability using pressurized differential scanning calorimetry and a thin-film micro-oxidation test, low-temperature fluid properties using pour-point measurements, and friction-wear properties using four-ball and ball-on-disk configurations. The lubricants formulated with chemically modified soybean oil derivatives exhibit superior low-temperature flow properties, improved thermo-oxidative stability, and better friction and wear properties. The chemically modified soybean oil derivatives having diester substitution at the sites of unsaturation have potential in the formulation of industrial lubricants. PMID:18783238

  8. Floral and vegetative cues in oil-secreting and non-oil-secreting Lysimachia species

    PubMed Central

    Schäffler, I.; Balao, F.; Dötterl, S.

    2012-01-01

    Background and Aims Unrelated plants pollinated by the same group or guild of animals typically evolve similar floral cues due to pollinator-mediated selection. Related plant species, however, may possess similar cues either as a result of pollinator-mediated selection or as a result of sharing a common ancestor that possessed the same cues or traits. In this study, visual and olfactory floral cues in Lysimachia species exhibiting different pollination strategies were analysed and compared, and the importance of pollinators and phylogeny on the evolution of these floral cues was determined. For comparison, cues of vegetative material were examined where pollinator selection would not be expected. Methods Floral and vegetative scents and colours in floral oil- and non-floral oil-secreting Lysimachia species were studied by chemical and spectrophotometric analyses, respectively, compared between oil- and non-oil-secreting species, and analysed by phylogenetically controlled methods. Key Results Vegetative and floral scent was species specific, and variability in floral but not vegetative scent was lower in oil compared with non-oil species. Overall, oil species did not differ in their floral or vegetative scent from non-oil species. However, a correlation was found between oil secretion and six floral scent constituents specific to oil species, whereas the presence of four other floral compounds can be explained by phylogeny. Four of the five analysed oil species had bee-green flowers and the pattern of occurrence of this colour correlated with oil secretion. Non-oil species had different floral colours. The colour of leaves was similar among all species studied. Conclusions Evidence was found for correlated evolution between secretion of floral oils and floral but not vegetative visual and olfactory cues. The cues correlating with oil secretion were probably selected by Macropis bees, the specialized pollinators of oil-secreting Lysimachia species, and may have

  9. Low trans spread and shortening oils via hydrogenation of soybean oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean oil and cottonseed oil were hydrogenated under selective conditions to yield oils with low iodine values, lowered trans fatty acids and increased stearic acid contents. Oils hydrogenated at 175 deg C, 15 psi hydrogen in the presence of nickel catalyst showed a maximum content of trans fatty...

  10. Low Trans Spread and Shortening Oils via Hydrogenation of Soybean Oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean oil and cottonseed oil were hydrogenated under selective conditions to yield oils with low iodine values, lowered trans fatty acids and increased stearic acid contents. Oils hydrogenated at 175 deg C, 15 psi hydrogen in the presence of nickel catalyst showed a maximum content of trans fatty...

  11. Vegetable oils: Precombustion characteristics and performance as diesel fuels

    SciTech Connect

    Bagby, M.O.

    1986-03-01

    Vegetable oils show technical promise as alternative fuels for diesel engines and have good potential as emergency fuels. Realistically, vegetable oils cause a number of problems when used in direct-injection diesel engines, generally attributable to inefficient combustion. At least partially responsible for poor combustion of neat vegetable oils are their high viscosity and non-volatility. To improve combustion several somewhat empirical approaches involving both chemical and physical modifications have been investigated by endurance tests in a variety of engines. Using the EMA 200 h engine screening test, several fuels show technical promise. These include methyl, ethyl, and butyl esters; high-oleic oils:diesel blend (1:3); diesel:soybean oil:butanol:cetane improver (33:33:33:1); and microemulsion fuels (diesel:soybean oil:190 proff ethanol:butanol, 50:25:5:20) and (soybean oil:methanol:2-octanol:cetane improver, 53:13:33:1). Using a pressure vessel, fuel injection system, and high speed motion picture camera, fuel injection characteristics of vegetable oils, e.g., soybean, sunflower, cottonseed, and peanut, have been observed in a quiescent nitrogen atmosphere at 480/sup 0/C and 4.1MPa. Their injection and atomization characteristics are markedly different from those of petroleum derived diesel fuels. Heating the vegetable oils to lower their viscosities increased spray penetration rate, reduced spray cone angles, and resulted in spray characteristics resembling those of diesel fuel. Significant chemical changes occurred following injection. Samples collected at about 400 microseconds after the injection event consisted of appreciable quantities of C/sub 4/-C/sub 16/ hydrocarbons, and free carboxyl groups were present.

  12. Analysis of vegetable oil production in central Iowa

    SciTech Connect

    Claar, P.W. II.; Colvin, T.S.; Marley, S.J.

    1982-01-01

    Vegetable oil can be used as an emergency substitute for diesel fuel for farming applications. This paper is an economic and energy analysis for vegetable oil production on a 180-ha (450-acre) central Iowa farm. The following data are presented as the basis for the economic analysis: (1) the yields of four varieties of sunflowers at three planting dates; (2) the measured sunflower harvesting losses-preharvest, header, threshing, and separating and cleaning for each variety and date of planting; and (3) the quantities of sunflower oil yielded from the pressing operation. Based on the data presented, it was concluded that even though a farmer could satisfatorily produce sunflowers, the on-farm processed sunflower oil does not compete with current diesel fuel prices. On-farm processed soybean oil has more potential as a substitute fuel from an economic standpoint in central Iowa. 8 tables.

  13. Identification of vegetable oil botanical speciation in refined vegetable oil blends using an innovative combination of chromatographic and spectroscopic techniques.

    PubMed

    Osorio, Maria Teresa; Haughey, Simon A; Elliott, Christopher T; Koidis, Anastasios

    2015-12-15

    European Regulation 1169/2011 requires producers of foods that contain refined vegetable oils to label the oil types. A novel rapid and staged methodology has been developed for the first time to identify common oil species in oil blends. The qualitative method consists of a combination of a Fourier Transform Infrared (FTIR) spectroscopy to profile the oils and fatty acid chromatographic analysis to confirm the composition of the oils when required. Calibration models and specific classification criteria were developed and all data were fused into a simple decision-making system. The single lab validation of the method demonstrated the very good performance (96% correct classification, 100% specificity, 4% false positive rate). Only a small fraction of the samples needed to be confirmed with the majority of oils identified rapidly using only the spectroscopic procedure. The results demonstrate the huge potential of the methodology for a wide range of oil authenticity work. PMID:26190602

  14. Rapid screening of biologically modified vegetable oils for fuel performance

    SciTech Connect

    Geller, D.P.; Goodrum, J.W.; Campbell, C.C.

    1999-08-01

    A process for the rapid screening of alternative diesel fuel performance was applied to analogues of genetically modified vegetable oils and a mixture with no. 2 diesel fuel. The oils examined contained 60 to 70% of low molecular weight, short-chain, saturated triglycerides compared to the 1 to 2% found in traditional vegetable oils. These oils have relatively low viscosity that is predicted to enhance their performance as alternative diesel fuels. The screening process utilizes an engine torque test sequence that accelerates the tendency of diesel fuels to coke fuel injectors, a key indicator of fuel performance. The results of the tests were evaluated using a computer vision system for the rapid quantification of injector coking. The results of the screen were compared to those using no. 2 diesel fuel as a baseline. Coke deposition from the modified vegetable oil analogues was not found to be significantly different than deposition from diesel fuel. Suggestions are made to guide further modification of vegetable oil biosynthesis for the production of alternative diesel fuel.

  15. Wet scrubbing of biomass producer gas tars using vegetable oil

    NASA Astrophysics Data System (ADS)

    Bhoi, Prakashbhai Ramabhai

    The overall aims of this research study were to generate novel design data and to develop an equilibrium stage-based thermodynamic model of a vegetable oil based wet scrubbing system for the removal of model tar compounds (benzene, toluene and ethylbenzene) found in biomass producer gas. The specific objectives were to design, fabricate and evaluate a vegetable oil based wet scrubbing system and to optimize the design and operating variables; i.e., packed bed height, vegetable oil type, solvent temperature, and solvent flow rate. The experimental wet packed bed scrubbing system includes a liquid distributor specifically designed to distribute a high viscous vegetable oil uniformly and a mixing section, which was designed to generate a desired concentration of tar compounds in a simulated air stream. A method and calibration protocol of gas chromatography/mass spectroscopy was developed to quantify tar compounds. Experimental data were analyzed statistically using analysis of variance (ANOVA) procedure. Statistical analysis showed that both soybean and canola oils are potential solvents, providing comparable removal efficiency of tar compounds. The experimental height equivalent to a theoretical plate (HETP) was determined as 0.11 m for vegetable oil based scrubbing system. Packed bed height and solvent temperature had highly significant effect (p0.05) effect on the removal of model tar compounds. The packing specific constants, Ch and CP,0, for the Billet and Schultes pressure drop correlation were determined as 2.52 and 2.93, respectively. The equilibrium stage based thermodynamic model predicted the removal efficiency of model tar compounds in the range of 1-6%, 1-4% and 1-2% of experimental data for benzene, toluene and ethylbenzene, respectively, for the solvent temperature of 30° C. The NRTL-PR property model and UNIFAC for estimating binary interaction parameters are recommended for modeling absorption of tar compounds in vegetable oils. Bench scale

  16. Vegetable oil as an agricultural fuel for the Pacific Northwest

    SciTech Connect

    Peterson, C.L.; Auld, D.L.; Thomas, V.M.; Withers, R.V.; Smith, S.M.; Bettis, B.L.

    1981-02-01

    Five million barrels of liquid fuel are needed annually for the continued production of agricultural commoditiese on the 12.7 million cultivated acres in the Pacific Northwest Region. Because most energy intensive operations in the agricultural industry are done by diesel engines, the technology to produce a substitute for diesel must be developed and vegetable oil appears to hold great promise as an alternative fuel. The vegetable oils potential as an alternative liquid fuel in the region is described. Rapidly rising fuel costs could make this new fuel not only economically feasible but necessary to ensure the region's continued agriculture production.

  17. Reactivity of vegetable oil macromonomers in thiol-ene, cationic, and emulsion polymerizations

    NASA Astrophysics Data System (ADS)

    Black, Micah Stephen

    molecular weight and the auto-oxidation potential of the film. Retardation in polymerization rate correlated directly with increase in amount of unsaturation and conjugated unsaturation. Vegetable oils containing significant amounts of fatty acids with bisallylic hydrogen atoms were found to be more reactive towards chain transfer than fatty acids containing monoallylic hydrogen atoms. Model polymers were produced by functionalizing methacrylic copolymers through a mild reaction pathway in the absence of radicals. Copolymers with large quantities of bisallylic hydrogen atoms showed increased auto-oxidation reactivity as evidenced by greater consumption of cis-unsaturation and higher gel fractions.

  18. The efficacy of essential oils as natural preservatives in vegetable oil.

    PubMed

    Mahboubi, Mohaddese; Kazempour, Nastaran; Mahboubi, Atefeh

    2014-12-01

    The efforts for finding the natural preservatives with nontoxicity and nonirritancy have encouraged the scientists to research among the medicinal plants. The preservative efficacy of Daucus carota, Ferula gummosa, Eugenium caryophyllata, Oliveria decumbens, Pelargonium graveolens, Ziziphora tenuir, Acorus calamus, and Trachyspermum ammi essential oils on challenge test's pathogens and on pathogen's inoculated vegetable oil was evaluated by antimicrobial effectiveness test. Carotol (46%), β-pinene (62.7%), eugenol (78.4%), thymol (50.6%), cis-asarone (27.5%), thymol (50.1%), and α-terpineol (19.5%) were the primary main components of D. carota, F. gummosa, E. caryophyllata, T. ammi, A. calamus, O. decumbens, and Z. tenuir essential oils, respectively. A. niger was more sensitive microorganism to oils. The antimicrobial activity of O. decumbens oil was the highest. Different concentrations of essential oils were added to the vegetable oil. The results of test on the vegetable oil showed that the combination of O. decumbens and P. graveolens oils (0.5:0.5%) had enough efficacies as natural preservative in vegetable oil. PMID:24552253

  19. 21 CFR 178.3280 - Castor oil, hydrogenated.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Castor oil, hydrogenated. 178.3280 Section 178.3280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... SANITIZERS Certain Adjuvants and Production Aids § 178.3280 Castor oil, hydrogenated. Hydrogenated castor...

  20. Hydrogenated cottonseed oil as raw material for biobased materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There has been a lot of recent interest in using vegetable oils as biodegradable and renewable raw materials for the syntheses of various biobased materials. Although most of the attention has been paid to soybean oil thus far, cottonseed oil is a viable alternative. An advantage of cottonseed oil...

  1. Margarine from organogel of healthy vegetable oils and plant wax

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organogelator that can turn vegetable oil into a gel with a small quantity has drawn a lot of interests as a potential alternative for saturated fats and trans fat-containing solid fats in margarine and spread products. However, it is not practically used in those products yet. This research shows...

  2. Research on Biodiesel and Vegetable Oil Fuels - Then and Now

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A vegetable oil was used as diesel fuel for the first time in 1900 and the first biodiesel dates from the 1930's. Significant insights into fuel properties were already gained in those times. This article briefly discusses such results and relates the author's own recent work on biodiesel fuel pro...

  3. Production and applications of ferulate-modified vegetable oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Concerns have been raised about the potential adverse health and ecological effects of the commonly used sunscreen active ingredients. A sunscreen active ingredient can be derived from two natural plant components, ferulic acid and vegetable oil triglycerides. Transesterification of ferulic acid e...

  4. 21 CFR 180.30 - Brominated vegetable oil.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Brominated vegetable oil. 180.30 Section 180.30 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED IN FOOD OR IN CONTACT WITH FOOD ON AN INTERIM BASIS PENDING ADDITIONAL STUDY...

  5. Other Alternative Diesel Fuels from Vegetable Oils and Animal Fats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The energy crises of the 1970’s and early 1980’s provided impetus for developing alternative diesel fuels from vegetable oils and animal fats. Other driving forces may be derived from the Clean Air Act and its amendments and farmers desire to develop new uses for surplus agricultural commodities. ...

  6. Lipids for Health and Beauty: Enzymatic Modification of Vegetable Oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ferulic acid has been extensively investigated for its potential as a cosmetic and pharmaceutical agent. We have prepared lipophilic derivatives of ferulic acid by a simple, enzyme-catalyzed transesterification reaction of ethyl ferulate with vegetable oils. Immobilized Candida antarctica lipase B...

  7. Cationic Polymerization of Vegetable Oils in Supercritical Carbon Dioxide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polymers derived from vegetable oils have been prepared in supercritical carbon dioxide (scCO2) medium by cationic polymerization. Boron trifluoride diethyl etherate BF3.O(C2H2)2 are used as initiator. Influences of polymerization temperature, initiator amount, and carbon dioxide pressure on the m...

  8. Reprint of "heated vegetable oils and cardiovascular disease risk factors".

    PubMed

    Ng, Chun-Yi; Leong, Xin-Fang; Masbah, Norliana; Adam, Siti Khadijah; Kamisah, Yusof; Jaarin, Kamsiah

    2014-07-01

    Cardiovascular disease (CVD) is one of the leading major causes of morbidity and mortality worldwide. It may result from the interactions between multiple genetic and environmental factors including sedentary lifestyle and dietary habits. The quality of dietary oils and fats has been widely recognised to be inextricably linked to the pathogenesis of CVD. Vegetable oil is one of the essential dietary components in daily food consumption. However, the benefits of vegetable oil can be deteriorated by repeated heating that leads to lipid oxidation. The practice of using repeatedly heated cooking oil is not uncommon as it will reduce the cost of food preparation. Thermal oxidation yields new functional groups which may be potentially hazardous to cardiovascular health. Prolonged consumption of the repeatedly heated oil has been shown to increase blood pressure and total cholesterol, cause vascular inflammation as well as vascular changes which predispose to atherosclerosis. The harmful effect of heated oils is attributed to products generated from lipid oxidation during heating process. In view of the potential hazard of oxidation products, therefore this review article will provide an insight and awareness to the general public on the consumption of repeatedly heated oils which is detrimental to health. PMID:24846858

  9. Heated vegetable oils and cardiovascular disease risk factors.

    PubMed

    Ng, Chun-Yi; Leong, Xin-Fang; Masbah, Norliana; Adam, Siti Khadijah; Kamisah, Yusof; Jaarin, Kamsiah

    2014-04-01

    Cardiovascular disease (CVD) is one of the leading major causes of morbidity and mortality worldwide. It may result from the interactions between multiple genetic and environmental factors including sedentary lifestyle and dietary habits. The quality of dietary oils and fats has been widely recognised to be inextricably linked to the pathogenesis of CVD. Vegetable oil is one of the essential dietary components in daily food consumption. However, the benefits of vegetable oil can be deteriorated by repeated heating that leads to lipid oxidation. The practice of using repeatedly heated cooking oil is not uncommon as it will reduce the cost of food preparation. Thermal oxidation yields new functional groups which may be potentially hazardous to cardiovascular health. Prolonged consumption of the repeatedly heated oil has been shown to increase blood pressure and total cholesterol, cause vascular inflammation as well as vascular changes which predispose to atherosclerosis. The harmful effect of heated oils is attributed to products generated from lipid oxidation during heating process. In view of the potential hazard of oxidation products, therefore this review article will provide an insight and awareness to the general public on the consumption of repeatedly heated oils which is detrimental to health. PMID:24632108

  10. Authentication of vegetable oils by chromatographic techniques.

    PubMed

    Aparicio, R; Aparicio-Ruíz, R

    2000-06-01

    Food authentication has been evolving continually to situations that were basically governed by a global market trend. Analytical techniques have been developed or modified to give plausible solutions to the devious adulterations at each moment. Classical tests have largely been replaced with newer technical procedures, most of which are based on gas chromatography, with some being based on high-performance liquid chromatography. Determination of trans-fatty acid and sterolic composition, together with sterol-dehydration products, have been used most frequently used to detect contamination and adulteration. Sophisticated new adulterations, e.g., olive oil with hazelnut oil, represent a new challenge for the next millennium, although suggestive proposals for detecting these kinds of adulterations are emerging with the contribution of databases and mathematical algorithms. PMID:10905696

  11. Single-cylinder diesel engine study of four vegetable oils

    SciTech Connect

    Jacobus, M.J.; Geyer, S.M.; Lestz, S.S.; Risby, T.M.; Taylor, W.D.

    1983-10-01

    A single-cylinder, 0.36l, D.I. Diesel engine was operated on Diesel fuel, sunflowerseed oil, cottonseed oil, soybean oil, and peanut oil. The purpose of this study was to provide a detailed comparison of performance and emissions data and to characterize the biological activity of the particulate soluble organic fraction for each fuel using the Ames Salmonella typhimurium test. In addition, exhaust gas aldehyde samples were collected using the DNPH method. These samples were analyzed gravimetrically and separated into components from formaldehyde to heptaldehyde with a gas chromatograph. Results comparing the vegetable oils to Diesel fuel generally show slight improvements in thermal efficiency and indicated specific energy consumption; equal or higher gas-phase emissions; lower indicated specific revertant emissions; and significantly higher aldehyde emissions, including an increased percentage of formaldehyde.

  12. Catalytic applications in the production of biodiesel from vegetable oils.

    PubMed

    Sivasamy, Arumugam; Cheah, Kien Yoo; Fornasiero, Paolo; Kemausuor, Francis; Zinoviev, Sergey; Miertus, Stanislav

    2009-01-01

    The predicted shortage of fossil fuels and related environmental concerns have recently attracted significant attention to scientific and technological issues concerning the conversion of biomass into fuels. First-generation biodiesel, obtained from vegetable oils and animal fats by transesterification, relies on commercial technology and rich scientific background, though continuous progress in this field offers opportunities for improvement. This review focuses on new catalytic systems for the transesterification of oils to the corresponding ethyl/methyl esters of fatty acids. It also addresses some innovative/emerging technologies for the production of biodiesel, such as the catalytic hydrocracking of vegetable oils to hydrocarbons. The special role of the catalyst as a key to efficient technology is outlined, together with the other important factors that affect the yield and quality of the product, including feedstock-related properties and various system conditions. PMID:19360707

  13. ANAEROBIC BIODEGRADATION OF VEGETABLE OIL AND ITS METABOLIC INTERMEDIATES IN OIL-ENRICHED FRESHWATER SEDIMENTS

    EPA Science Inventory

    Anaerobic biodegradation of vegetable oil in freshwater sediments is strongly inhibited by high concentrations of oil, but the presence of ferric hydroxide relieves the inhibition. The effect of ferric hydroxide is not due to physical or chemical interactions with long-chain fatt...

  14. Pyrolysis bio-oils as additives for vegetable oil based lubricants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Softwood and hardwood lignins, along with hardwood as such, were pyrolyzed to afford bio-oil distillates in which phenols were major products. Extraction with alkali gave a range of lignin-related phenols having molecular weights (MWs) from 110 to 344. Because vegetable oil based lubricants have dra...

  15. Comparison of diesel engine performance and emissions from neat and transesterified vegetable oils

    SciTech Connect

    Geyer, S.M.; Jacobus, M.J.; Lestz, S.S.

    1984-01-01

    A single-cylinder, 0.36 L, D1 diesel engine was operated on a certified No. 2 diesel fuel, cottonseed oil, sunflowerseed oil, methyl ester of cottonseed oil, and methyl ester of sunflowerseed oil. The purpose of this study was to provide a comparison of performance and emission data when operating on net vegetable oils, transesterified vegetable oils, and diesel fuel. Results comparing the various vegetable oil fuels with No. 2 diesel fuel generally show slight improvements in thermal efficiency and higher exhaust gas temperatures when operating on vegetable oils; equal or higher gas-phase emissions with vegetable oils; lower indicated specific revertant emissions with vegetable oils; and significantly higher aldehyde emissions, including an increased percentage of formaldehyde. (Refs. 14).

  16. Optimization of biodiesel production process using recycled vegetable oil

    NASA Astrophysics Data System (ADS)

    Lugo, Yarely

    Petro diesel toxic emissions and its limited resources have created an interest for the development of new energy resources, such as biodiesel. Biodiesel is traditionally produced by a transesterification reaction between vegetable oil and an alcohol in the presence of a catalyst. However, this process is slow and expensive due to the high cost of raw materials. Low costs feedstock oils such as recycled and animal fats are available but they cannot be transesterified with alkaline catalysts due to high content of free fatty acids, which can lead to undesirable reactions such as saponification. In this study, we reduce free fatty acids content by using an acid pre-treatment. We compare sulfuric acid, hydrochloric acid and ptoluenesulfonic acid (PTSA) to pre-treat recycled vegetable oil. PTSA removes water after 60 minutes of treatment at room temperature or within 15 minutes at 50°C. The pretreatment was followed by a transesterification reaction using alkaline catalyst. To minimize costs and accelerate reaction, the pretreatment and transesterification reaction of recycle vegetable oil was conducted at atmospheric pressure in a microwave oven. Biodiesel was characterized using a GC-MS method.

  17. [Benzo(a)pyrene contamination of vegetable oils].

    PubMed

    Jedra, Małgorzata; Starski, Andrzej; Gawarska, Halina; Sawilska-Rautenstrauch, Dorota

    2008-01-01

    Benzo(a)pyrene (B(a)P) analysis was carried out with glass chromatographic column with alumina followed by reverse phase high-performance liquid chromatography (HPLC) and spectrofluorometric detection. B(a)P level in 40 vegetable oils were as follow: from 0.11 to 0.38 microg/kg in olive; from 0.92 to 3.74 microg/kg in rape seed oils; from 0.11 to 2.25 microg/kg in sunflower oils and from 0.33 to 1.26 microg/kg in soya oils. In another investigated oils: arachide (peanut) corn, safflower, linen, hempen, sesame, pumpkin seeds, grape seeds---values from 0.10 to 1.44 microg/kg and 3.83 microg/kg in sea buckthorn oil were detected. B(a)P concentration in 4 from 40 investigated oils exceed the 2 ppb limit proposed by the European Commission. Heating of sample of oils: olive, rape, soya, linen, corn, sesame, peanut, in temp. 240 degrees C for 30 min. has not influence on decreased of B(a)P level. PMID:18807910

  18. Conversion of vegetable oils and animal fats into paraffinic cetane enhancers for diesel fuels

    SciTech Connect

    Wong, A.; Feng, Y.; Hogan, E.

    1995-11-01

    The two principal methods of producing biodiesel fuels are (a) transesterification of vegetable oils and animal fats with a monohydric alcohol, and (b) direct hydrotreating of tree oils, vegetable oils and animal fats. The patented hydrotreating technology is based on the catalytic processing of biomass oils and fats with hydrogen, under elevated temperature and pressure conditions. The typical mix of hydrotreated products is as follows: 5-15% light distillate (naphta), 40-60% middle distillate (cetane), 5-15% heavy distillate and 5-10% burner gas. The naptha fraction may be used as a gasoline supplement. The middle distillate is designed for use as a cetane booster for diesel fuels. Both heavy distillate and light hydrocarbon gases are usable as power boiler fuels. Typically, the cetane enhancer would be admixed with diesel fuel in the range of 5 to 30% by volume. This new diesel blend meets the essential quality characteristics of the basic diesel fuel, for direct use in diesel engines without any modifications. The basic hydrotreatment technology has been evaluated further in the laboratory on degummed soya oil, yellow grease and animal tallow. The preliminary findings suggest that the technology can provide efficient conversion of these materials into cetane enhancers for diesel fuels.

  19. Technological Aspects of Chemoenzymatic Epoxidation of Fatty Acids, Fatty Acid Esters and Vegetable Oils: A Review.

    PubMed

    Milchert, Eugeniusz; Malarczyk, Kornelia; Kłos, Marlena

    2015-01-01

    The general subject of the review is analysis of the effect of technological parameters on the chemoenzymatic epoxidation processes of vegetable oils, fatty acids and alkyl esters of fatty acids. The technological parameters considered include temperature, concentration, amount of hydrogen peroxide relative to the number of unsaturated bonds, the amounts of enzyme catalysts, presence of solvent and amount of free fatty acids. Also chemical reactions accompanying the technological processes are discussed together with different technological options and significance of the products obtained. PMID:26633342

  20. Vegetable oil thermosets reinforced by tannin-lipid formulations.

    PubMed

    Luo, Chunhua; Grigsby, Warren J; Edmonds, Neil R; Al-Hakkak, Jafar

    2013-02-01

    Totally bio-based thermosetting polymers which are comparable to synthetic polyester thermosets have been prepared from copolymerization of condensed tannin-fatty acid esters with vegetable oils. Oxidative copolymerization of tannin linoleate/acetate mixed esters with linseed oil and tung oil produced polymer films ranging from soft rubbers to rigid thermosets. Tannin incorporation into the formulations was essential for the final product to achieve necessary mechanical strength. Films had ambient modulus values between 0.12 and 1.6 GPa, with glass transition temperatures ranging from 32 to 72 °C and calculated crosslink densities of 1020-57,700 mol m⁻³. Film stiffness, T(g) and crosslink density increase with greater tannin linoeate/acetate content due mainly to this tannin component providing rigidity through polyphenolic aromatic rings and unsaturated chains as crosslinking sites. PMID:22975626

  1. Authentication of vegetable oils by bulk and molecular carbon isotope analyses with emphasis on olive oil and pumpkin seed oil.

    PubMed

    Spangenberg, J E; Ogrinc, N

    2001-03-01

    The authenticity of vegetable oils consumed in Slovenia and Croatia was investigated by carbon isotope analysis of the individual fatty acids by the use of gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS), and through carbon isotope analysis of the bulk oil. The fatty acids from samples of olive, pumpkin, sunflower, maize, rape, soybean, and sesame oils were separated by alkaline hydrolysis and derivatized to methyl esters for chemical characterization by capillary gas chromatography/mass spectrometry (GC/MS) prior to isotopic analysis. Enrichment in heavy carbon isotope ((13)C) of the bulk oil and of the individual fatty acids are related to (1) a thermally induced degradation during processing (deodorization, steam washing, or bleaching), (2) hydrolytic rancidity (lipolysis) and oxidative rancidity of the vegetable oils during storage, and (3) the potential blend with refined oil or other vegetable oils. The impurity or admixture of different oils may be assessed from the delta(13)C(16:0) vs. delta(13)C(18:1) covariations. The fatty acid compositions of Slovenian and Croatian olive oils are compared with those from the most important Mediterranean producer countries (Spain, Italy, Greece, and France). PMID:11312892

  2. Efficacy of experimental animal and vegetable oil-emulsion vaccines for Newcastle disease and avian influenza.

    PubMed

    Stone, H D

    1993-01-01

    Acceptable oil-emulsion vaccines were sought to replace mineral oil-emulsion vaccines that, by regulations, require a 42-day minimum holding period for poultry between injection and slaughter for consumption. Water-in-oil emulsions were prepared using animal or vegetable oils in a ratio of 4 parts oil to 1 part Newcastle disease or avian influenza aqueous antigen. Beeswax particles suspended in the oil at the 5% or 10% level (wt:vol) served as the oil-phase surfactant. Hemagglutination-inhibition titers induced by mineral-oil vaccines were not significantly different from those induced by the most efficacious formulations prepared from animal and vegetable oils. Tissue reaction from injection of animal- and vegetable-oil vaccines was less than that induced by mineral-oil vaccines. An inactivated avian influenza vaccine formulated from peanut oil induced protection against morbidity and death when vaccinated chickens were challenged with a virulent isolate of avian influenza virus. PMID:8363505

  3. A detection method of vegetable oils in edible blended oil based on three-dimensional fluorescence spectroscopy technique.

    PubMed

    Xu, Jing; Liu, Xiao-Fei; Wang, Yu-Tian

    2016-12-01

    Edible blended vegetable oils are made from two or more refined oils. Blended oils can provide a wider range of essential fatty acids than single vegetable oils, which helps support good nutrition. Nutritional components in blended oils are related to the type and content of vegetable oils used, and a new, more accurate, method is proposed to identify and quantify the vegetable oils present using cluster analysis and a Quasi-Monte Carlo integral. Three-dimensional fluorescence spectra were obtained at 250-400nm (excitation) and 260-750nm (emission). Mixtures of sunflower, soybean and peanut oils were used as typical examples to validate the effectiveness of the method. PMID:27374508

  4. Benzo(a)pyrene in Brazilian vegetable oils.

    PubMed

    Pupin, A M; Toledo, M C

    1996-01-01

    Samples of vegetable oils on the Brazilian market including rape seed, corn, soybean, sunflower, rice, palm and garlic were analysed for benzo(a)pyrene (B(a)P). The analytical method involved liquid-liquid extraction, clean-up on silica gel column and determination by high performance liquid chromatography using fluorescence detection. The limit of detection was 0.5 microgram/kg. Benzo(a)pyrene was detected in almost all samples, at levels up to 58.9 micrograms/kg. The mean levels of B(a)P in rice, sunflower, soybean, corn and palm oils were 1.8, 0.2, 2.2, 10.8 and 2.1 micrograms/kg respectively. No B(a)P was detected in garlic and rape seed oils. The data indicate that the levels of B(a)P found in Brazilian corn oils are relatively higher than those published in the literature for European corn oils. PMID:8871121

  5. Vegetable Oil-Based Hyperbranched Thermosetting Polyurethane/Clay Nanocomposites

    PubMed Central

    2009-01-01

    The highly branched polyurethanes and vegetable oil-based polymer nanocomposites have been showing fruitful advantages across a spectrum of potential field of applications.Mesua ferreaL. seed oil-based hyperbranched polyurethane (HBPU)/clay nanocomposites were prepared at different dose levels by in situ polymerization technique. The performances of epoxy-cured thermosetting nanocomposites are reported for the first time. The partially exfoliated structure of clay layers was confirmed by XRD and TEM. FTIR spectra indicate the presence of H bonding between nanoclay and the polymer matrix. The present investigation outlines the significant improvement of tensile strength, scratch hardness, thermostability, water vapor permeability, and adhesive strength without much influencing impact resistance, bending, and elongation at break of the nanocomposites compared to pristine HBPU thermoset. An increment of two times the tensile strength, 6 °C of melting point, and 111 °C of thermo-stability were achieved by the formation of nanocomposites. An excellent shape recovery of about 96–99% was observed for the nanocomposites. Thus, the formation of partially exfoliated clay/vegetable oil-based hyperbranched polyurethane nanocomposites significantly improved the performance. PMID:20596546

  6. Natural (Mineral, Vegetable, Coconut, Essential) Oils and Contact Dermatitis.

    PubMed

    Verallo-Rowell, Vermén M; Katalbas, Stephanie S; Pangasinan, Julia P

    2016-07-01

    Natural oils include mineral oil with emollient, occlusive, and humectant properties and the plant-derived essential, coconut, and other vegetable oils, composed of triglycerides that microbiota lipases hydrolyze into glycerin, a potent humectant, and fatty acids (FAs) with varying physico-chemical properties. Unsaturated FAs have high linoleic acid used for synthesis of ceramide-I linoleate, a barrier lipid, but more pro-inflammatory omega-6:-3 ratios above 10:1, and their double bonds form less occlusive palisades. VCO FAs have a low linoleic acid content but shorter and saturated FAs that form a more compact palisade, more anti-inflammatory omega-6:-3 ratio of 2:1, close to 7:1 of olive oil, which disrupts the skin barrier, otherwise useful as a penetration enhancer. Updates on the stratum corneum illustrate how this review on the contrasting actions of NOs provide information on which to avoid and which to select for barrier repair and to lower inflammation in contact dermatitis genesis. PMID:27373890

  7. [Effect of five kinds of vegetable seed oil on serum lipid and lipid peroxidation in rats].

    PubMed

    Guo, Y; Cai, X; Zhao, X; Shi, R

    2001-01-01

    The effects of vegetable seed oil on hyperlipidemia induced by high lipid diet in rats. Male adult Wistar rats were fed on the test diet containing 94% high lipid diet and 6% lard pinon seed oil, perilla seed oil, blackcurrent seed oil, borage seed oil and evening primrose seed oil respectively for 3 weeks. The results showed that the vale of trilyceride(TG), total cholesterol(TC), low density lipoprotein cholesterol (LDL-C), LDL-C/HDL-C(high density lipoprotein cholesterol) ratio increased and the vale of HDL-C/TC ratio and lecithin-cholesterol acyltransferase(LCAT) activity decreased in the groups with vegetable seed oil were less than that of the control group. The results suggested that all the five kinds of vegetable seed oil had the effect of regulating lipid metabolism of hyperlipidemia rats to some extent. Pinon seed oil and borage seed oil may be well suited for the prevention of atherosclerosis. PMID:11255765

  8. Oil Secretory System in Vegetative Organs of Three Arnica Taxa: Essential Oil Synthesis, Distribution and Accumulation.

    PubMed

    Kromer, Krystyna; Kreitschitz, Agnieszka; Kleinteich, Thomas; Gorb, Stanislav N; Szumny, Antoni

    2016-05-01

    Arnica, a genus including the medicinal species A. montana, in its Arbo variety, and A. chamissonis, is among the plants richest in essential oils used as pharmaceutical materials. Despite its extensive use, the role of anatomy and histochemistry in the internal secretory system producing the essential oil is poorly understood. Anatomical sections allowed differentiation between two forms of secretory structures which differ according to their distribution in plants. The first axial type is connected to the vascular system of all vegetative organs and forms canals lined with epithelial cells. The second cortical type is represented by elongated intercellular spaces filled with oil formed only between the cortex cells of roots and rhizomes at maturity, with canals lacking an epithelial layer.Only in A. montana rhizomes do secretory structures form huge characteristic reservoirs. Computed tomography illustrates their spatial distribution and fusiform shape. The axial type of root secretory canals is formed at the interface between the endodermis and cortex parenchyma, while, in the stem, they are located in direct contact with veinal parenchyma. The peripheral phloem parenchyma cells are arranged in strands around sieve tube elements which possess a unique ability to accumulate large amounts of oil bodies. The cells of phloem parenchyma give rise to the aforementioned secretory structures while the lipid components (triacylglycerols) stored there support the biosynthesis of essential oils by later becoming a medium in which these oils are dissolved. The results indicate the integrity of axial secretory structures forming a continuous system in vegetative plant organs. PMID:26936790

  9. Process for producing cracked distillate and hydrogen from heavy oil

    SciTech Connect

    Aizawa, S.; Fujimori, K.; Satomi, Y.; Suzuka, T.

    1980-09-23

    A process is disclosed for producing a cracked distillate and hydrogen from a heavy oil which comprises cracking the heavy oil in the presence of laterite or a laterite-containing catalyst while simultaneously depositing coke on said laterite or laterite-containing catalysts, reducing the laterite or laterote-containing catalyst on which the coke is deposited, and forming a hydrogen-rich gas by contacting the reduced laterite or laterite-containing catalyst with steam.

  10. Delivery of Vegetable Oil Suspensions in a Shear Thinning Fluid for Enhanced Bioremediation

    SciTech Connect

    Zhong, Lirong; Truex, Michael J.; Kananizadeh, Negin; Li, Yusong; Lea, Alan S.; Yan, Xiulan

    2015-04-01

    In situ anaerobic biological processes are widely applied for dechlorination of chlorinated solvents in groundwater. A wide range of organic substrates have been tested and applied to support the dechlorination processes. Vegetable oils are a promising substrate and have been shown to induce effective dechlorination, have limited geochemical impacts, and good longevity. Distribution of vegetable oil in the subsurface, because it is a non-aqueous phase material, has typically been addressed by creating emulsified oil solutions. In this study, inexpensive waste vegetable oils were suspended in a xanthan gum solution, a shear-thinning fluid, as an alternative oil delivery mechanism. The stability, oil droplet size and distribution, and rheological behavior of the oil suspensions that are created in the xanthan solutions were studied in batch experiments. The injectability of the suspensions and oil distribution in porous medium were evaluated in column tests. Numerical modeling of the oil droplet transport and distribution in porous media was conducted to help interpret the column-test data. Batch studies showed that simple mixing of vegetable oil and xanthan solution produced stable suspensions of the oil as micron-size droplets. The mixture rheology retains shear-thinning properties that facilitate improved uniformity of substrate distribution in heterogeneous aquifers. Column tests demonstrated successful injection of the vegetable oil suspension into porous medium. This study provided evidence that vegetable oil suspensions in xanthan are a potential substrate to support in situ anaerobic bioremediation with favorable injection properties.

  11. On the Mineral and Vegetal Oils Used as Electroinsulation in Transformers

    NASA Astrophysics Data System (ADS)

    Şerban, Mariana; Sângeorzan, Livia; Helerea, Elena

    Due to the relatively large availability and reduced price, the mineral transformer oils are widely used as electrical insulating liquids. However, mineral oil drastically degrades over time in service. New efforts were made to improve mineral oils characteristics, and other types of liquids like vegetal oils are proposed. This paper deals with new comparative tests on mineral and vegetal oils using as indicator the electric strength. The samples of non-additive mineral oil type TR 30 and vegetal oils of rape, sunflower and corn have been tested with increasing voltage of 60 Hz using different electrodes. The obtained data have been statistical processed. The analyze shows different average values of electrical strength for the different type of sample. New method of testing through electrical breakdown is proposed. Experimental data confirms that it is possible to use as electroinsulation organic vegetal oils in power transformers.

  12. Detection and quantification of adulteration of sesame oils with vegetable oils using gas chromatography and multivariate data analysis.

    PubMed

    Peng, Dan; Bi, Yanlan; Ren, Xiaona; Yang, Guolong; Sun, Shangde; Wang, Xuede

    2015-12-01

    This study was performed to develop a hierarchical approach for detection and quantification of adulteration of sesame oil with vegetable oils using gas chromatography (GC). At first, a model was constructed to discriminate the difference between authentic sesame oils and adulterated sesame oils using support vector machine (SVM) algorithm. Then, another SVM-based model is developed to identify the type of adulterant in the mixed oil. At last, prediction models for sesame oil were built for each kind of oil using partial least square method. To validate this approach, 746 samples were prepared by mixing authentic sesame oils with five types of vegetable oil. The prediction results show that the detection limit for authentication is as low as 5% in mixing ratio and the root-mean-square errors for prediction range from 1.19% to 4.29%, meaning that this approach is a valuable tool to detect and quantify the adulteration of sesame oil. PMID:26041212

  13. Complex role of monoacylglycerols in the oxidation of vegetable oils: different behaviors of soybean monoacylglycerols in different oils.

    PubMed

    Paradiso, Vito Michele; Caponio, Francesco; Bruno, Giuseppina; Pasqualone, Antonella; Summo, Carmine; Gomes, Tommaso

    2014-11-01

    The relationship between fatty acid composition of oils and their oxidative stability in the presence of monoacylglycerols was investigated. Purified vegetable oils were added at increasing amounts (0.5, 1, 2, and 3%) of monoacylglycerols obtained from purified soybean oil and submitted to an oven test (60 °C for 18 days). The obtained results showed a generally antioxidant effect of monoacylglycerols, with remarkable differences among oils. The antioxidant effect was significantly higher in less unsaturated oils, such as palm and olive oils. Among the more unsaturated vegetable oils, peanut and sunflower oils showed an almost linear slowdown of oxidation, slightly less pronounced in sunflower oil, which was the most susceptible to oxidation due to its high content of linoleic acid. A peculiar trend was highlighted for soybean oil, where the antioxidant effect of high amounts of monoacylglycerols was opposed to a pro-oxidant effect observed up to 1%. PMID:25310182

  14. 21 CFR 178.3280 - Castor oil, hydrogenated.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Castor oil, hydrogenated. 178.3280 Section 178.3280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) INDIRECT FOOD ADDITIVES: ADJUVANTS, PRODUCTION AIDS, AND SANITIZERS Certain Adjuvants and Production Aids § 178.3280 Castor oil,...

  15. Fuel and lubricant additives from acid treated mixtures of vegetable oil derived amides and esters

    SciTech Connect

    Bonazza, B.R.; Devault, A.N.

    1981-05-26

    Vegetable oils such as corn oil, peanut oil, and soy oil are reacted with polyamines to form a mixture containing amides, imides, half esters, and glycerol with subsequent treatment with a strong acid such as sulfonic acid to produce a product mix that has good detergent properties in fuels and lubricants.

  16. Preventive effect of cinnamon essential oil on lipid oxidation of vegetable oil

    PubMed Central

    Keshvari, Mahtab; Asgary, Sedigheh; Jafarian-dehkordi, Abbas; Najafi, Somayeh; Ghoreyshi-Yazdi, Seyed Mojtaba

    2013-01-01

    BACKGROUND Lipid oxidation is the main deterioration process that occurs in vegetable oils. This process was effectively prevented by natural antioxidants. Cinnamomum zeylanicum (Cinnamon) is rich with antioxidants. The present study was conducted to evaluate the effect of cinnamon on malondialdehyde (MDA) rate production in two high consumption oils in Iranian market. METHODS Chemical composition of cinnamon essential oil was analyzed by gas chromatography-mass spectroscopy (GC-MS). 200 µl each oil, 50 µl tween 20, and 2 ml of 40 Mm AAPH solutions were mixed and the prepared solution was divided into four glass vials. Respectively, 50 µl of 500, 1000 and 2000 ppm of cinnamon essential oil were added to three glass vials separately and one of the glass vials was used as the control. All of the glass vials were incubated at 37° C water bath. Rate of MDA production was measured by thiobarbituric acid (TBA) test at the baseline and after the 0.5, 1, 2, 3 and 5 hours. RESULTS Compounds of cinnamon essential oil by GC-MS analysis such as cinnamaldehyde (96.8%), alpha-capaene (0.2%), alpha-murolene (0.11%), para-methoxycinnamaldehyde (0.6%) and delta-cadinen (0.4%) were found to be the major compounds. For both oils, maximum rate of MDA production was achieved in 5th hours of heating. Every three concentrations of cinnamon essential oil significantly decreased MDA production (P < 0.05) in comparison with the control. CONCLUSION Essential oil of cinnamon considerably inhibited MDA production in studied oils and can be used with fresh and heated oils for reduction of lipid peroxidation and adverse free radicals effects on body. PMID:24302936

  17. Biodegradation and toxicity of vegetable oils in contaminated aquatic environments: Effect of antioxidants and oil composition.

    PubMed

    Salam, Darine A; Suidan, Makram T; Venosa, Albert D

    2016-03-15

    Antioxidants may affect the oxidative rate of vegetable oils determining their fate and impact in contaminated aquatic media. In previous studies, we demonstrated the effectiveness of butylated hydroxytoluene (BHT), one of the most used antioxidants in edible oils, in enhancing the biodegradation of glyceryl trilinoleate, a pure triacylglycerol of cis,cis-9,12-octadecadienoic acid (C18:2 delta), through retarding its oxidative polymerization relatively to the oil with no added antioxidant. In this study, the effect of BHT on the biodegradation and toxicity of purified canola oil, a mixed-acid triacylglycerol with high C18:1 content, was investigated in respirometric microcosms and by use of the Microtox® assay. Investigations were carried out in the absence and presence (200 mg kg(-1)) of the antioxidant, and at an oil loading of 0.31 L m(-2) (333 gal acre(-1)). Substantial oil mineralization was achieved after 16 weeks of incubation (>77%) and was not significantly different (p>0.05) between the two BHT treatments, demonstrating an important role of the oil fatty acid composition in determining the potency of antioxidants and, consequently, the fate of spilled vegetable oils. Furthermore, for both treatments, toxicity was measured at early stages of the experiments and disappeared at a later stage of incubation. The observed transient toxicity was associated with the combined effect of toxic biodegradation intermediates and autoxidation products. These results were supported by the gradual disappearance of BHT in the microcosms initially supplemented with the antioxidant, reaching negligible amounts after only 2 weeks of incubation. PMID:26780134

  18. Gas chromatographic characterization of vegetable oil deodorization distillate.

    PubMed

    Verleyen, T; Verhe, R; Garcia, L; Dewettinck, K; Huyghebaert, A; De Greyt, W

    2001-07-01

    Because of its complex nature, the analysis of deodorizer distillate is a challenging problem. Deodorizer distillate obtained from the deodorization process of vegetable oils consists of many components including free fatty acids, tocopherols, sterols, squalene and neutral oil. A gas chromatographic method for the analysis of deodorizer distillate without saponification of the sample is described. After a concise sample preparation including derivatization and silylation, distillate samples were injected on column at 60 degrees C followed by a gradual increase of the oven temperature towards 340 degrees C. The temperature profile of the oven was optimized in order to obtain a baseline separation of the different distillate components including free fatty acids, tocopherols, sterols, squalene and neutral oil. Good recoveries for delta-tocopherol, alpha-tocopherol, stigmasterol and cholesteryl palmitate of 97, 94.4, 95.6 and 92%, respectively were obtained. Repeatability of the described gas chromatographic method was evaluated by analyzing five replicates of a soybean distillate. Tocopherols and sterols had low relative standard deviations ranging between 1.67 and 2.25%. Squalene, mono- and diacylglycerides had higher relative standard deviations ranging between 3.33 and 4.12%. Several industrial deodorizer distillates obtained from chemical and physical refining of corn, canola, sunflower and soybean have been analyzed for their composition. PMID:11471811

  19. Sea transport of animal and vegetable oils and its environmental consequences.

    PubMed

    Bucas, Gwenaelle; Saliot, Alain

    2002-12-01

    The increasing production-and therefore sea traffic--of vegetable oils has regularly led to spillages during the past 40 years. The accident of Allegra, on October,lst, 1997, in the English Channel gave rise to a spillage of 900 tonnes of palm nut oil. The drift of this solid vegetable oil was followed by aerial observations. Samples of oil were collected in order to analyse its chemical evolution. This study, associated with several bibliographic cases of pollution by non-petroleum oils, shows that drifting oils can mix with floating material to sink or form a crust. They can also be oxidized or disperse and/or be degraded by bacteria. They may also polymerise. The coating properties of vegetable oils act as crude oils to affect sea life, tourism and yachting. As a result, it is necessary to quickly collect the oil after a spillage, using usual equipment (booms and pumps). PMID:12523544

  20. [Application of fluorescence spectra and parallel factor analysis in the classification of edible vegetable oils].

    PubMed

    Wu, Xi-jun; Pan, Zhao; Zhao, Yan-peng; Liu, Hai-long; Zheng, Long-jiang

    2014-08-01

    The fluorescence spectra of 22 samples of 8 kinds of edible vegetable oils (soybean oil, maize oil, olive oil, rice oil, peanut oil, walnut oil, sunflower oil and sesame oil) were measured with FS920 fluorescence spectrometer and the fluorescence matrixs (EEMs) were analyzed with parallel factor (PARAFAC) analysis model. To synthesize the capabilities of material characterization and component identification, fluorescence spectra combined with PARAFAC fulfill the classification of vegetable oils. The map feature (peak position, peak value and peak number) was obtained by analyzing three dimensional spectra and con tour maps in the range of emission wavelength from 260 to 750 nm, and excitation wavelengths from 250 to 550 nm. The fluorescent substances (unsaturated fatty acids, vitamin E and its derivatives, chlorophyll and carotenoid) corresponding to spectrum peaks were determined. The factor-number was selected and the components (vitamin E and its derivatives, linoleic acid and linolenic acid, fatty acid oxidation products, vegetable oil oxidation products) corresponding to each factor were ascertained. The four-factor excitation and emission profiles and projection score plots of PARAFAC model were plotted. Different vegetable oils can be characterized and distinguished with the map features of fluorescence spectra and sample projection plots of PARAFAC model. The results demonstrate the capability of the combination of fluorescence spectra technology and four-factor PARAFAC model for differentiating and characterizing vegetable oils. PMID:25474950

  1. Heat Transfer Properties of a Series of Oxidized and Unoxidized Vegetable Oils in Comparison with Petroleum Oil-Based Quenchants

    NASA Astrophysics Data System (ADS)

    de Souza, Ester Carvalho; Canale, Lauralice C. F.; Sarmiento, G. Sánchez; Agaliotis, Eliana; Carrara, Juan C.; Schicchi, Diego S.; Totten, George E.

    2013-07-01

    Vegetable oils, especially soybean oil, exhibit substantially poorer thermal-oxidative stability than commercially available petroleum oil quenchant formulations. Therefore, to achieve any commercially interesting performance, vegetable oils must be stabilized by the addition of antioxidant inhibitors. This work describes the ability of two commercially available antioxidants, Irganox L 57 and Irganox L 109, to stabilize soybean oil against thermal-oxidative degradation. In addition, the effect of antioxidant stabilization on quenching performance was evaluated by determining the profile of heat transfer coefficient variation throughout the quenching process at different times after being subjected to an accelerated thermal-oxidation aging test. The results of this work are discussed here.

  2. Effects of vegetable oils on biochemical and biophysical properties of membrane retinal pigment epithelium cells.

    PubMed

    Said, Toihiri; Tremblay-Mercier, Jennifer; Berrougui, Hicham; Rat, Patrice; Khalil, Abdelouahed

    2013-10-01

    The aim of this study was to investigate the effect of vegetable oil enrichment of retinal pigment epithelial (RPE) cells on their biochemical and biophysical properties. For this, RPE cells were incubated with 4 different vegetables oils (olive oil, corn oil, argan oil, and camelina oil). The cytotoxicity of these vegetable oils was assessed in vivo on 8-week-old mice and in vitro by using the neutral red and YO-PRO-1 tests. Membrane fluidity was evaluated by fluorescence anisotropy using the fluorescent probe diphenylhexatriene, and membrane fatty acid composition was assessed by gas chromatography. None of the oils tested displayed cytotoxic effects. In vitro, omega-3 rich oils improved membrane fluidity by 47% compared with the control cells. The omega-3 PUFA content within membranes decreased by 38% to 55% when cells were incubated separately with olive oil, corn oil, or argan oil, and increased when cells were incubated with a mixture of those oils, or with camelina oil alone (50% and 103% increase, respectively). Our results show that the fatty acids in vegetable oil incorporate into retinal cells and increase the plasma membrane fluidity. PMID:24144052

  3. A novel quantitative analysis method of three-dimensional fluorescence spectra for vegetable oils contents in edible blend oil

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Wang, Yu-Tian; Liu, Xiao-Fei

    2015-04-01

    Edible blend oil is a mixture of vegetable oils. Eligible blend oil can meet the daily need of two essential fatty acids for human to achieve the balanced nutrition. Each vegetable oil has its different composition, so vegetable oils contents in edible blend oil determine nutritional components in blend oil. A high-precision quantitative analysis method to detect the vegetable oils contents in blend oil is necessary to ensure balanced nutrition for human being. Three-dimensional fluorescence technique is high selectivity, high sensitivity, and high-efficiency. Efficiency extraction and full use of information in tree-dimensional fluorescence spectra will improve the accuracy of the measurement. A novel quantitative analysis is proposed based on Quasi-Monte-Carlo integral to improve the measurement sensitivity and reduce the random error. Partial least squares method is used to solve nonlinear equations to avoid the effect of multicollinearity. The recovery rates of blend oil mixed by peanut oil, soybean oil and sunflower are calculated to verify the accuracy of the method, which are increased, compared the linear method used commonly for component concentration measurement.

  4. New Bio-Based Materials From Vegetable Oil: Amination and Click Reactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For some time we have been interested in utilizing vegetable oils as cheap and bio-renewable raw materials. We have found derivatization reactions with nitrogen-containing reagents to be good pathways to achieve a range of new vegetable oil-based products. One of our approaches is to derivatize ep...

  5. Current Uses of Vegetable Oil in the Surfactant, Fuel, and Lubrication Industries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New developments in the surfactant, bio-diesel, and lubricant industries are discussed in a review with 46 references on the recent use of vegetable oil for non-food applications. Highlighted in the surfactant section, is the development of a glycerol and vegetable oil based surfactant which disp...

  6. Properties of cookies made with natural wax-vegetable oil organogels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organogels prepared with a natural wax and a vegetable oil were examined as alternatives to a commercial margarine in cookie. To investigate effects of wax and vegetable oil on properties of cookie dough and cookies, organogels prepared from four different waxes including sunflower wax, rice bran wa...

  7. Vegetable oils as an on the farm diesel fuel substitute: the North Carolina situation. Final report

    SciTech Connect

    Harwood, H.J.

    1981-06-01

    The state-of-the-art of using vegetable oil as a diesel fuel alternative is reviewed. Particular emphasis has been placed on using vegetable oil in farm vehicles as an emergency fuel which may be produced on-farm. The following are reviewed: the mechanical feasibility, on-farm fuel production, and economic analysis.

  8. Electrocoagulation of vegetable oil refinery wastewater using aluminum electrodes.

    PubMed

    Tezcan Un, Umran; Koparal, A Savas; Bakir Ogutveren, Ulker

    2009-01-01

    Electrocoagulation with aluminum electrodes was used to treat the vegetable oil refinery wastewater (VORW) in a batch reactor. The effects of operating parameters such as pH, current density, PAC (poly aluminum chloride) dosage and Na(2)SO(4) dosage on the removal of organics and COD removal efficiency have been investigated. It has been shown that the removal efficiency of COD increased with the increasing applied current density and increasing PAC and Na(2)SO(4) dosage and the most effective removal capacity was achieved at the pH 7. The results indicate that electrocoagulation is very efficient and able to achieve 98.9% COD removal in 90 min at 35 mAcm(-2) with a specific electrical energy consumption of 42 kWh(kgCOD(removed))(-1). The effluent was very clear and its quality exceeded the direct discharge standard. PMID:18222028

  9. Animal performance and meat characteristics in steers reared in intensive conditions fed with different vegetable oils.

    PubMed

    Castro, T; Cabezas, A; De la Fuente, J; Isabel, B; Manso, T; Jimeno, V

    2016-03-01

    Enhancing the quality of beef meat is an important goal in terms of improving both the nutritional value for the consumer and the commercial value for producers. The aim of this work was to study the effects of different vegetable oil supplements on growth performance, carcass quality and meat quality in beef steers reared under intensive conditions. A total of 240 Blonde D' Aquitaine steers (average BW=293.7±38.88 kg) were grouped into 24 batches (10 steers/batch) and were randomly assigned to one of the three dietary treatments (eight batches per treatment), each supplemented with either 4% hydrogenated palm oil (PALM) or fatty acids (FAs) from olive oil (OLI) or soybean oil (SOY). No differences in growth performance or carcass quality were observed. For the meat quality analysis, a steer was randomly selected from each batch and the 6th rib on the left half of the carcass was dissected. PALM meat had the highest percentage of 16:0 (P<0.05) and the lowest n-6/n-3 polyunsaturated fatty acids (PUFA) ratio (P<0.05), OLI had the highest content of t11-18:1 (P<0.01) and c9,t11-18:2 (P<0.05) and SOY showed the lowest value of monounsaturated fatty acids (MUFA) (P<0.001), the highest percentage of PUFA (P<0.01) and a lower index of atherogenicity (P=0.07) than PALM. No significant differences in the sensory characteristics of the meat were noted. However, the results of the principal component analysis of meat characteristics enabled meat from those steers that consumed fatty acids from olive oil to be differentiated from that of steers that consumed soybean oil. PMID:26585286

  10. Evaluation of Palm Oil as a Suitable Vegetable Oil for Vitamin A Fortification Programs.

    PubMed

    Pignitter, Marc; Hernler, Natalie; Zaunschirm, Mathias; Kienesberger, Julia; Somoza, Mark Manuel; Kraemer, Klaus; Somoza, Veronika

    2016-01-01

    Fortification programs are considered to be an effective strategy to mitigate vitamin A deficiency in populations at risk. Fortified vegetable oils rich in polyunsaturated fatty acids were shown to be prone to oxidation, leading to limited vitamin A stability. Thus, it was hypothesized that fortified oils consisting of mainly saturated fatty acids might enhance the stability of vitamin A. Mildly (peroxide value: 1.0 meq O₂/kg) and highly (peroxide value: 7.5 meq O₂/kg) oxidized palm oil was stored, after fortification with 60 International Units/g retinyl palmitate, in 0.5 L transparent polyethylene terephthalate bottles under cold fluorescent lighting (12 h/day) at 32 °C for 57 days. An increase of the peroxide value by 15 meq O₂/kg, which was also reflected by a decrease of α-tocopherol congener by 15%-18%, was determined independent of the initial rancidity. The oxidative deterioration of the highly oxidized palm oil during storage was correlated with a significant 46% decline of the vitamin A content. However, household storage of mildly oxidized palm oil for two months did not induce any losses of vitamin A. Thus, mildly oxidized palm oil may be recommended for vitamin A fortification programs, when other sources of essential fatty acids are available. PMID:27338464

  11. Evaluation of Palm Oil as a Suitable Vegetable Oil for Vitamin A Fortification Programs

    PubMed Central

    Pignitter, Marc; Hernler, Natalie; Zaunschirm, Mathias; Kienesberger, Julia; Somoza, Mark Manuel; Kraemer, Klaus; Somoza, Veronika

    2016-01-01

    Fortification programs are considered to be an effective strategy to mitigate vitamin A deficiency in populations at risk. Fortified vegetable oils rich in polyunsaturated fatty acids were shown to be prone to oxidation, leading to limited vitamin A stability. Thus, it was hypothesized that fortified oils consisting of mainly saturated fatty acids might enhance the stability of vitamin A. Mildly (peroxide value: 1.0 meq O2/kg) and highly (peroxide value: 7.5 meq O2/kg) oxidized palm oil was stored, after fortification with 60 International Units/g retinyl palmitate, in 0.5 L transparent polyethylene terephthalate bottles under cold fluorescent lighting (12 h/day) at 32 °C for 57 days. An increase of the peroxide value by 15 meq O2/kg, which was also reflected by a decrease of α-tocopherol congener by 15%–18%, was determined independent of the initial rancidity. The oxidative deterioration of the highly oxidized palm oil during storage was correlated with a significant 46% decline of the vitamin A content. However, household storage of mildly oxidized palm oil for two months did not induce any losses of vitamin A. Thus, mildly oxidized palm oil may be recommended for vitamin A fortification programs, when other sources of essential fatty acids are available. PMID:27338464

  12. Determination of lipid oxidation products in vegetable oils and marine omega-3 supplements

    PubMed Central

    Halvorsen, Bente Lise; Blomhoff, Rune

    2011-01-01

    Background There is convincing evidence that replacing dietary saturated fats with polyunsaturated fats (PUFA) decreases risk of cardiovascular diseases. Therefore, PUFA rich foods such as vegetable oils, fatty fish, and marine omega-3 supplements are recommended. However, PUFA are easily oxidizable and there is concern about possible negative health effects from intake of oxidized lipids. Little is known about the degree of lipid oxidation in such products. Objective To assess the content of lipid oxidation products in a large selection of vegetable oils and marine omega-3 supplements available in Norway. Both fresh and heated vegetable oils were studied. Design A large selection of commercially available vegetable oils and marine omega-3 supplements was purchased from grocery stores, pharmacies, and health food stores in Norway. The content of lipid oxidation products were measured as peroxide value and alkenal concentration. Twelve different vegetable oils were heated for a temperature (225°C) and time (25 minutes) resembling conditions typically used during cooking. Results The peroxide values were in the range 1.04–10.38 meq/kg for omega-3 supplements and in the range 0.60–5.33 meq/kg for fresh vegetable oils. The concentration range of alkenals was 158.23–932.19 nmol/mL for omega-3 supplements and 33.24–119.04 nmol/mL for vegetable oils. After heating, a 2.9–11.2 fold increase in alkenal concentration was observed for vegetable oils. Conclusions The contents of hydroperoxides and alkenals in omega-3 supplements are higher than in vegetable oils. After heating vegetable oils, a large increase in alkenal concentration was observed. PMID:21691461

  13. Vegetable oils and animal fats for diesel fuels: a systems study

    SciTech Connect

    Lipinsky, E.S.; Kresovich, S.; Wagner, C.K.; Appelbaum, H.R.; McClure, T.A.; Otis, J.L.; Trayser, D.A.

    1982-01-01

    This paper provided some information on the possible use of vegetable oils and animal fats as substitute fuels and as emergency diesel fuels in the United States. This paper is confined to using triglyceride fuels in agricultural, automotive, and highway transportation applications. Satisfactory substitution of petroleum-based diesel fuels with triglyceride-based fuels requires the development of an integrated system for the production, processing, and end use of the new fuels on a basis that is both technically attractive and economically rewarding to all of the elements of the system. The three subsystems, the farms that produce oilseed crops, the production of triglycerides and protein, and the manufacturers of the diesel engines and the owners of the present stock of auto-ignition engines, are discussed. It was concluded that vegetable oils and animal fats have substantial prospects as long-term substitutes for diesel fuels. If special auto-ignition engines were developed to handle vegetable oils, on-farm production and use might succeed. In the absence of such engine development, it is likely that large, centralized facilities to manufacture vegetable oils and their methylesters will be the successful processing route. Vegetable oils are likely to succeed first in geographical areas with benign climates. Vegetable oils and animal fats have limited prospects as diesel fuels for acute emergencies. The high viscosity of vegetable oils and the necessity to make substantial capital investments to obtain oils from oilseeds render the system relatively inflexible. 4 tables. (DP)

  14. Economic implications for the potential development of a vegetable oil fuel industry

    SciTech Connect

    Dunn, J.R.; Schneeberger, K.C.

    1982-01-01

    The purposes in this paper were to (1) summarize the domestic and international oilseed situation with emphasis on trends which will affect the long-run supply and demand for oilseeds; (2) describe the existing oilseeds processing sector so as to focus on the existing linkage between food and potential fuel markets for vegetable oils; and (3) present a basic framework for analyzing the supply, demand, and price effects of significant use of vegetable oil as a fuel. The major determinants of demand worldwide for vegetable oils are price, incomes, and population. Government programs of taxes, quotas, or subsidies could affect vegetable oil supply and/or demand. International trade practices could change; altering the flow of oils between markets. The likely impact of a developing vegetable oils fuel market would be to increase vegetable oil prices. The size of the increase will depend on how large the fuel market demand ultimately becomes, and thus on the price of diesel fuel. It will also depend on how well oilseed production can be adapted, technologically, and in acreage, to meet the needs of a large fuels market while maintaining its critical role in the foods sector. There are many uncertainties in assessing the economic picture for vegetable oil use as a diesel fuel substitute. 1 figure, 3 tables. (DP)

  15. Delivery of vegetable oil suspensions in a shear thinning fluid for enhanced bioremediation

    NASA Astrophysics Data System (ADS)

    Zhong, L.; Truex, M. J.; Kananizadeh, N.; Li, Y.; Lea, A. S.; Yan, X.

    2015-04-01

    In situ anaerobic biological processes are widely applied for dechlorination of chlorinated solvents in groundwater. A wide range of organic substrates have been tested and applied to support the dechlorination processes. Vegetable oils are a promising type of substrate and have been shown to induce effective dechlorination, have limited geochemical impacts, and maintain good longevity. Because they are non-aqueous phase liquids, distribution of vegetable oils in the subsurface has typically been approached by creating emulsified oil solutions for injection into the aquifer. In this study, inexpensive waste vegetable oils were suspended in a shear-thinning xanthan gum solution as an alternative approach for delivery of vegetable oil to the subsurface. The stability, oil droplet size distribution, and rheological behavior of the oil suspensions that are created in the xanthan solutions were studied in batch experiments. The injectability of the suspensions and the oil distribution in a porous medium were evaluated in column tests. Numerical modeling of oil droplet transport and distribution in porous media was conducted to help interpret the column-test data. Batch studies showed that simple mixing of vegetable oil with xanthan solution produced stable suspensions of the oil as micron-size droplets. The mixture rheology retains shear-thinning properties that facilitate improved uniformity of substrate distribution in heterogeneous aquifers. Column tests demonstrated successful injection of the vegetable oil suspension into a porous medium. This study provides evidence that vegetable oil suspensions in xanthan gum solutions have favorable injection properties and are a potential substrate for in situ anaerobic bioremediation.

  16. Variables affecting the yields of fatty esters from transesterified vegetable oils

    SciTech Connect

    Freedman, B.; Pryde, E.H.; Mounts, T.L.

    1984-10-01

    Transesterification reaction variables that affect yield and purity of the product esters from cottonseed, peanut, soybean and sunflower oils include molar ratio of alcohol to vegetable oil, type of catalyst (alkaline vs acidic), temperature and degree of refinement of the vegetable oil. With alkaline catalysts (either sodium hydroxide or methoxide), temperatures of 60 degrees C or higher, molar ratios of at least 6 to 1 and with fully refined oils, conversion to methyl, ethyl and butyl esters was essentially complete in 1 hr. At moderate temperatures (32 degrees C), vegetable oils were 99% transesterified in ca. 4 hr with an alkaline catalyst. Transesterification by acid catalysis was much slower than by alkali catalysis. Although the crude oils could be transesterified, ester yields were reduced because of gums and extraneous material present in the crude oils. 30 references.

  17. 33 CFR 154.1240 - Specific requirements for animal fats and vegetable oils facilities that could reasonably be...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... fats and vegetable oils facilities that could reasonably be expected to cause substantial harm to the... Animal Fats and Vegetable Oils Facilities § 154.1240 Specific requirements for animal fats and vegetable oils facilities that could reasonably be expected to cause substantial harm to the environment. (a)...

  18. 33 CFR 154.1240 - Specific requirements for animal fats and vegetable oils facilities that could reasonably be...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... fats and vegetable oils facilities that could reasonably be expected to cause substantial harm to the... Animal Fats and Vegetable Oils Facilities § 154.1240 Specific requirements for animal fats and vegetable oils facilities that could reasonably be expected to cause substantial harm to the environment. (a)...

  19. 33 CFR 154.1240 - Specific requirements for animal fats and vegetable oils facilities that could reasonably be...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... fats and vegetable oils facilities that could reasonably be expected to cause substantial harm to the... Animal Fats and Vegetable Oils Facilities § 154.1240 Specific requirements for animal fats and vegetable oils facilities that could reasonably be expected to cause substantial harm to the environment. (a)...

  20. 33 CFR 154.1240 - Specific requirements for animal fats and vegetable oils facilities that could reasonably be...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... fats and vegetable oils facilities that could reasonably be expected to cause substantial harm to the... Animal Fats and Vegetable Oils Facilities § 154.1240 Specific requirements for animal fats and vegetable oils facilities that could reasonably be expected to cause substantial harm to the environment. (a)...

  1. 33 CFR 154.1240 - Specific requirements for animal fats and vegetable oils facilities that could reasonably be...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... fats and vegetable oils facilities that could reasonably be expected to cause substantial harm to the... Animal Fats and Vegetable Oils Facilities § 154.1240 Specific requirements for animal fats and vegetable oils facilities that could reasonably be expected to cause substantial harm to the environment. (a)...

  2. Production of Oxygenated Fatty Acids from Vegetable Oils by Flavobacterium sp. Strain DS5

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flavobacterium sp. strain DS5 (NRRL B-14859) was used to convert two vegetable oils, olive oil and soybean oil, directly to oxygenated fatty acids such as 10-ketostearic acid (10-KSA) and 10-hydroxystearic acid (10-HSA). Lipase addition to the culture was required because strain DS5 did not induce ...

  3. Evaluation of catmint oil and hydrogenated catmint oil as repellents for Tribolium castaneum and Tribolium confusum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Catmint oil and hydrogenated catmint oil were evaluated as repellents for adult Tribolium casteneum (Herbst), the red flour beetle, and T. confusum (Jacqueline DuVal), the confused flour beetle, using both a traditional method of visual assessment of distribution and a video recording method to dete...

  4. Synthesis and applications of vegetable oil-based fluorocarbon water repellent agents on cotton fabrics.

    PubMed

    Zhao, Tao; Zheng, Junzhi; Sun, Gang

    2012-06-01

    Vegetable oil-based fluorocarbon water repellent agents were prepared by chemical modifications of different vegetable oils - soybean and linseed oils through several reactions, including saponification, acidification, acylation of vegetable oil and trans-esterification with 2,2,2-trifluoroethanol and 2,2,3,3-tetrafluoropropanol. The resulted fluorocarbon agents were then copolymerized with styrene. The structures of the vegetable oil based agents were characterized by FT-IR and NMR. By evaluating water contact angle and time of water disappearance on cotton fabrics, as well as whiteness and breaking strength of cotton fabrics that were treated by these agents, optimum fabric finishing conditions were explored. The cotton fabrics finished with the vegetable oil-based fluorocarbon agents showed excellent water repellency, while other properties of the cotton fabrics declined to certain level. The linseed oil-based tetrafluoropropanol water repellent agent displayed the highest water repellency among all modified oils. All the treated fabrics exhibited good durability of water repellency. The linseed oil-based tetrafluoropropanol water repellent agent demonstrated the best durability among all repellent agents. PMID:24750623

  5. Experimental study on the performance characteristics and emission analysis of a diesel engine using vegetable oils

    NASA Astrophysics Data System (ADS)

    Saha, Anup; Ehite, Ekramul Haque; Alam, M. M.

    2016-07-01

    In this research, Vegetable oils derived from Sesame Seed and Rice Bran were used and experimented upon. Using Kerosene as the solvent in varying proportions (30%, 50%, 70% by volume) with the vegetables oils, different blends of Sesame and Rice Bran Oils were produced. The important characteristic properties were found by experimentation and compared with those of Straight Run Diesel. Subsequently, Straight Run Diesel, vegetable oils and their blends were used to run a diesel engine one-by-one and the performance analysis was conducted, followed by an investigation of the exhaust emissions. From the comparative performance analysis, it was found that Rice Bran oil showed better performance as a fuel than Sesame with regards to power production and specific fuel consumption and also resulted in less Carbon Monoxide (CO) emission than Sesame oil blends.

  6. Production of hydrogen, liquid fuels, and chemicals from catalytic processing of bio-oils

    DOEpatents

    Huber, George W; Vispute, Tushar P; Routray, Kamalakanta

    2014-06-03

    Disclosed herein is a method of generating hydrogen from a bio-oil, comprising hydrogenating a water-soluble fraction of the bio-oil with hydrogen in the presence of a hydrogenation catalyst, and reforming the water-soluble fraction by aqueous-phase reforming in the presence of a reforming catalyst, wherein hydrogen is generated by the reforming, and the amount of hydrogen generated is greater than that consumed by the hydrogenating. The method can further comprise hydrocracking or hydrotreating a lignin fraction of the bio-oil with hydrogen in the presence of a hydrocracking catalyst wherein the lignin fraction of bio-oil is obtained as a water-insoluble fraction from aqueous extraction of bio-oil. The hydrogen used in the hydrogenating and in the hydrocracking or hydrotreating can be generated by reforming the water-soluble fraction of bio-oil.

  7. 21 CFR 186.1551 - Hydrogenated fish oil.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Hydrogenated fish oil. 186.1551 Section 186.1551 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS...

  8. 21 CFR 186.1551 - Hydrogenated fish oil.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Hydrogenated fish oil. 186.1551 Section 186.1551 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS...

  9. 21 CFR 186.1551 - Hydrogenated fish oil.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Hydrogenated fish oil. 186.1551 Section 186.1551 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) INDIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances...

  10. 21 CFR 186.1551 - Hydrogenated fish oil.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Hydrogenated fish oil. 186.1551 Section 186.1551 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS...

  11. 21 CFR 186.1551 - Hydrogenated fish oil.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Hydrogenated fish oil. 186.1551 Section 186.1551 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS...

  12. 21 CFR 178.3280 - Castor oil, hydrogenated.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Castor oil, hydrogenated. 178.3280 Section 178.3280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADJUVANTS, PRODUCTION AIDS, AND SANITIZERS Certain Adjuvants and Production Aids...

  13. 21 CFR 178.3280 - Castor oil, hydrogenated.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Castor oil, hydrogenated. 178.3280 Section 178.3280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADJUVANTS, PRODUCTION AIDS, AND SANITIZERS Certain Adjuvants and Production Aids...

  14. 21 CFR 178.3280 - Castor oil, hydrogenated.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Castor oil, hydrogenated. 178.3280 Section 178.3280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADJUVANTS, PRODUCTION AIDS, AND SANITIZERS Certain Adjuvants and Production Aids...

  15. Hydrogenation of cottonseed oil with nickel, palladium and platinum catalysts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A number of commercial catalysts have been used to study hydrogenation of cottonseed oil, with the goal of minimizing trans fatty acid (TFA) content. Despite the different temperatures used, catalyst levels, and reaction times, the data from each catalyst type fall on the same curve when the TFA le...

  16. Species-specific identification of seven vegetable oils based on suspension bead array.

    PubMed

    Li, Yuanyuan; Wu, Yajun; Han, Jianxun; Wang, Bin; Ge, Yiqiang; Chen, Ying

    2012-03-01

    Species adulteration of vegetable oils has become a main form of adulteration in vegetable oils, severely violating consumer rights and causing disorder in the market. A reliable method of species authentication of vegetable oils is desirable. This paper reports a novel method for identification of seven species of vegetable oils based on suspension bead array. One pair of universal primers and seven species-specific probes were designed targeting rbcl gene of the chloroplast. Each probe was coupled to a unique color-coded microsphere. Biotinylated PCR amplicons of seven oils were hybridized to the complementary probes on microsphere sets. Bound amplicons were detected fluorometrically using a reporter dye, streptavidin-R-phycoeryt hrin (SA-PE). A sample could be analyzed less than 1 h after PCR amplification. With the exception of olive probe, all probes showed no cross-reactivity with other species. Absolute detection limit of the seven probes ranged from 0.01 ng/μL to 0.0001 ng/μL. Detection limit in DNA mixture was from 10% to 5%. Detection of vegetable oils validated the effectiveness of the method. The suspension bead array as a rapid, sensitive, and high-throughput technology has potential to identify more species of vegetable oils with increased species of probes. PMID:22324365

  17. Wetland Vegetation Monitoring within Barataria Basin, Louisiana Following Exposure to Oil

    NASA Astrophysics Data System (ADS)

    Steyer, G.; Piazza, S.; Kokaly, R. F.; Patton, B.; Heckman, D.

    2011-12-01

    Following the Deepwater Horizon explosion and subsequent oil spill in April 2010 coastal wetlands in Louisiana were directly oiled, exposing vegetation and marsh soils to petroleum hydrocarbons. Oiling was observed at the marsh/water interface as well as within coastal marshes. The physical and chemical effects of oil spills can have both short and long term effects on wetland vegetation. These effects can include reductions in primary productivity and direct plant mortality. Even in the absence of this oiling event, the coastal landscape of Louisiana experiences high rates of land loss resulting from natural and anthropogenic causes. This additional stress has the potential to further reduce the extent and health of coastal marshes in this fragile ecosystem. We conducted a field study to document the impact of oiling on above and belowground vegetation biomass, plant species composition, and vegetation cover at sites within Barataria Basin, Louisiana. Six sampling sites were established, three within obviously oiled marshes and three where oiling was not readily apparent. Four sampling events occurred between October 2010 and October 2011. The preliminary results of the field study will be presented along with how these data helped validate remotely sensed data observations (AVIRIS) and calibrate ground reflectance in oiled and non-oiled marshes.

  18. Magnetic Mesoporous Palladium Catalyzed Selective Hydrogenation of Sunflower Oil.

    PubMed

    Liu, Wei; Tian, Fei; Yu, Jingjing; Bi, Yanlan

    2016-05-01

    In this paper, a novel magnetic mesoporous Pd catalyst is used to catalyse selective hydrogenation of sunflower oil at a mild temperature of 50°C. Effects of reaction temperature, stirring speed, time, catalyst loading and hydrogen pressure on the reaction activity, trans fatty acid (TFA) and stearic acid formation were studied. Under the condition of 3.2 mg Pd/100 g oil, 50°C, 1300 rpm stirring speed and 19.0 atm of H2, the lowest amount of TFA generated during the reaction (IV = 80) was 14.9 ± 0.4% while 11.4 ± 0.4% of stearic acid was produced. And this magnetic Pd-catalyst can be reused easily for at least six times without significant catalyst deactivation, the amount of TFA almost remained unchanged. Moreover, this Pd-catalyst shows a good magnetic separation, which provides a potential method for the facile oil modification. PMID:27086993

  19. Mixtures of Vegetable Oil and Xanthan as a Substrate for Biological Dechlorination

    NASA Astrophysics Data System (ADS)

    Zhong, L.; Macbeth, T.; Truex, M. J.; Yan, X.

    2012-12-01

    In situ anaerobic biological processes are widely applied for dechlorination of chlorinated solvents in groundwater. A wide range of organic substrates have been tested and applied to support the dechlorination processes. Key factors considered in substrate selection are the induced dechlorination kinetics, geochemical impacts such as pH decreases, longevity of the substrate, and ability to distribute the substrate in the subsurface. Vegetable oils are a promising substrate and have been shown to induce effective dechlorination, have limited geochemical impacts, and good longevity. Distribution of vegetable oil in the subsurface, because it is a non-aqueous phase material, has typically been addressed by creating emulsified oil solutions. In this study, inexpensive waste vegetable oils were tested in laboratory microcosm experiments and induced dechlorination reactions with minor geochemical impacts and good longevity. Additional testing showed that mixtures of waste vegetable oil and Xanthan, a biopolymer with shear-thinning properties, produced stable suspensions of the oil as micron-scale droplets. The mixture rheology retains shear-thinning properties that would facilitate improved uniformity of substrate distribution in heterogeneous aquifers. Soil column tests were conducted as a first step in quantifying the transport of the oil droplets in the mixture through porous media. Results show that the mixture of vegetable oil and Xanthan is a potential substrate for supporting in situ anaerobic bioremediation for some subsurface settings.

  20. Manufacturing vegetable oil based biodiesel: An engineering management perspective

    Technology Transfer Automated Retrieval System (TEKTRAN)

    According to the USDA, 6.45 million tons of cottonseed was produced in 2007. Each ton will yield approximately 44 to 46 gallons unrefined oil. Cottonseed oil bio-diesel could have the potential to create a more competitive oil market for oil mills. The proposed cost model is based on an existing cot...

  1. PALM AND PARTIALLY HYDROGENATED SOYBEAN OILS ADVERSELY ALTER LIPOPROTEIN PROFILES COMPARED WITH SOYBEAN AND CANOLA OILS IN MODERATELY HYPERLIPIDEMIC SUBJECTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Partially-hydrogenated fat has an unfavorable effect on cardiovascular disease risk. Palm oil has reemerged as a potential substitute due to favorable physical characteristics. Objective: To assess the effect of palm oil relative to both partially-hydrogenated fat and oils high in mon...

  2. One-step hydrotreatment of vegetable oil to produce high quality diesel-range alkanes.

    PubMed

    Wang, Congxin; Tian, Zhijian; Wang, Lei; Xu, Renshun; Liu, Qianhe; Qu, Wei; Ma, Huaijun; Wang, Bingchun

    2012-10-01

    A one-step hydrotreatment of vegetable oil combining deoxygenation and isomerization to directly produce low cloud point, high quality diesel is devised. The Pt/zeolite bifunctional catalysts prepared by using SAPO-11 and ZSM-22 zeolites as supports are used in this process. Catalytic reactions are conducted in a fixed-bed reactor under a hydrogen atmosphere. Over the bifunctional catalyst, 100 % conversion of soybean oil is obtained at 357 °C, 4 MPa, and 1 h(-1), and 80 % organic liquid yield is achieved, which is close to the maximum theoretical liquid yield. In the organic products, the alkanes selectivity is 100 % with an i-alkanes selectivity above 63 %. NH(3)-temperature programmed desorption (TPD), pyridine IR spectroscopy, and other characterization techniques are used to study the effect of the support acidity on the reaction pathway. Over the Pt/zeolite bifunctional catalyst with less strong Lewis acid sites, the reaction proceeds via the decarboxylation plus decarbonylation pathway. This one-step method provides a new strategy to produce low cloud point, high quality diesel from biomass feedstock in a more economic and attractive way. PMID:22764086

  3. Oil-free centrifugal hydrogen compression technology demonstration

    SciTech Connect

    Heshmat, Hooshang

    2014-05-31

    One of the key elements in realizing a mature market for hydrogen vehicles is the deployment of a safe and efficient hydrogen production and delivery infrastructure on a scale that can compete economically with current fuels. The challenge, however, is that hydrogen, being the lightest and smallest of gases with a lower viscosity and density than natural gas, readily migrates through small spaces and is difficult to compresses efficiently. While efficient and cost effective compression technology is crucial to effective pipeline delivery of hydrogen, the compression methods used currently rely on oil lubricated positive displacement (PD) machines. PD compression technology is very costly, has poor reliability and durability, especially for components subjected to wear (e.g., valves, rider bands and piston rings) and contaminates hydrogen with lubricating fluid. Even so called “oil-free” machines use oil lubricants that migrate into and contaminate the gas path. Due to the poor reliability of PD compressors, current hydrogen producers often install duplicate units in order to maintain on-line times of 98-99%. Such machine redundancy adds substantially to system capital costs. As such, DOE deemed that low capital cost, reliable, efficient and oil-free advanced compressor technologies are needed. MiTi’s solution is a completely oil-free, multi-stage, high-speed, centrifugal compressor designed for flow capacity of 500,000 kg/day with a discharge pressure of 1200 psig. The design employs oil-free compliant foil bearings and seals to allow for very high operating speeds, totally contamination free operation, long life and reliability. This design meets the DOE’s performance targets and achieves an extremely aggressive, specific power metric of 0.48 kW-hr/kg and provides significant improvements in reliability/durability, energy efficiency, sealing and freedom from contamination. The multi-stage compressor system concept has been validated through full scale

  4. First results with Mercedes-Benz DI diesel engines running on monoesters of vegetable oils

    SciTech Connect

    Ventura, L.M.; Nascimento, A.C.; Bandel, W.

    1982-01-01

    In their pure form the vegetable oils are not suitable for the use in modern DI diesel engines, due to the excessive carbon deposit on the injection nozzles and in the combustion chamber. Nevertheless, these oils are promising candidates as raw materials for alternative diesel fuels. Processes are being developed to transform the long vegetable oil molecules into smaller molecules in order to fulfill the fuel requirements of DI diesel engines. Methyl and ethyl esters of fatty acids e.g. obtained by transesterification of vegetable oils through their catalytic reaction with methanol and ethanol, have shown a typical diesel fuel behaviour in conventional DI engines without excessive deposit formation. Problems concerning lubricating oil contamiation, and possibile remedial measures to avoid it, are being examined. There are also problems to be solved in relation to white smoke formation and the odor of exhaust gases. 10 figures.

  5. Preparation of margarines from organogels of sunflower wax and vegetable oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It was previously reported that sunflower wax (SW) had high potential as an organogelator for soybean oil-based margarine and spread products. In this study twelve other vegetable oils were evaluated in a margarine formulation to test feasibility of utilization of SW as an alternative to solid fats ...

  6. Biodegradable Photo-Crosslinked Thin Polymer Networks Based on Vegetable Oil Hydroxyfatty Acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Novel crosslinked thin polymer networks based on vegetable oil hydroxyfatty acids (HFAs) were prepared by UV photopolymerization and their mechanical properties were evaluated. Two raw materials, castor oil and 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) were used as sources of mono- and di-HFAs, r...

  7. Organogels of vegetable oil with plant wax – trans/saturated fat replacements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This featured article reviews recent advances on the development of trans fat-free, low saturated fat food products from organogels formed by a plant wax in a vegetable oil. Plant waxes are of great interest in this research area because they are obtained as by-products during the oil refining proce...

  8. Feruloylated vegetable oils: synthesis and applications of UV-absorbing/antioxidative lipids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In an effort to produce higher value uses for vegetable oils, we have developed an environmentally “green” process to transesterify soybean oil with the phenylpropanoid, ferulic acid. Ferulic acid is a natural plant component that absorbs light within the UVB and UVA regions (290 to 370 nm) and pos...

  9. Glycerol Tri-Ester Derivatives as Diluents to Improve Low Temperature Properties of Vegetable Oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Large-scale production of biodiesel has led to a surplus of glycerol, so new commercial uses of this co-product are being sought. Twenty four vegetable oils were screened using glycerol tris (2-ethylhexanoate) [GTEH] as a diluent to improve the low temperature properties. Epoxidized soybean oil (E...

  10. A technical evaluation of biodiesel from vegetable oils vs. algae. Will algae-derived biodiesel perform?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel, one of the most prominent renewable alternative fuels, can be derived from a variety of sources including vegetable oils, animal fats and used cooking oils as well as alternative sources such as algae. While issues such as land-use change, food vs. fuel, feedstock availability, and produc...

  11. Vegetable Oil-based Diesel Fuels From 1900 to the Present

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The diesel engine, invented and developed by Rudolf Diesel in the 1890's, was displayed at the Paris World Exposition in 1900. At that occasion, one of the displayed diesel engines ran on peanut oil. This event marks the beginning of the use of vegetable oils and, later, derivatives thereof as die...

  12. Vegetable oil extraction using liquid CO/sub 2/

    SciTech Connect

    Goodrum, J.W.

    1986-01-01

    SC-CO/sub 2/ extraction of oil from peanuts is an alternative to hexane extraction or the mechanical oil press. Oil was successfully extracted using SC-CO/sub 2/ at temperatures of 25-120/sup 0/C and pressures of 140 -690 Bar. Pressure, temperature and particle size affected the extraction of oil. In the range studied, the highest values of temperature and pressure gave highest solubilities.

  13. Modified vegetable oils for environmentally friendly lubricant applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synthetic lubricant base oils offer improved stability and performance characteristics over refined petroleum oils, but at a price. Most of the biodegradable synthetic oils are chemical esters that offer superior thermal and oxidative stability [8.9]. Prices for these niche products are higher tha...

  14. Alternative diesel fuel study on four different types of vegetable oils of Turkish origin

    SciTech Connect

    Oezaktas, T.; Cigizoglu, K.B.; Karaosmanoglu, F.

    1997-02-01

    Four different types of vegetable oils of Turkish origin (sunflower, corn, soybean, and olive oil) were blended with grade 2-D diesel fuel at a ratio of 20/80 (v/v). Blends were investigated in a diesel engine with a precombustion chamber at speeds between 1,200 and 2,100 rpm. Vegetable oils, diesel fuel, and fuel blends were characterized according to standard test methods. It was found that for short-term use, the fuel blends have engine characteristics similar to the baseline diesel fuel. Fuel blends also display less smoke emissions than diesel fuel.

  15. Direct oxidation of waste vegetable oil in solid-oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhou, Z. F.; Kumar, R.; Thakur, S. T.; Rudnick, L. R.; Schobert, H.; Lvov, S. N.

    Solid-oxide fuel cells with ceria, ceria-Cu, and ceria-Rh anode were demonstrated to generate stable electric power with waste vegetable oil through direct oxidation of the fuel. The only pre-treatment to the fuel was a filtration to remove particulates. The performance of the fuel cell was stable over 100 h for the waste vegetable oil without dilution. The generated power was up to 0.25 W cm -2 for ceria-Rh fuel cell. This compares favorably with previously studied hydrocarbon fuels including jet fuels and Pennsylvania crude oil.

  16. Low carbon flower buildup, low smoke, and efficient diesel operation with vegetable oils by conversion to mono-esters and blending with diesel oil or alcohols

    SciTech Connect

    Nobukazu, T.; Itow, K.

    1984-01-01

    The purpose of this investigation is to evaluate the feasibility of rapeseed oil and palm oil for diesel fuel substitution in a naturally aspirated DI Diesel engine is evaluated. Means to reduce the carbon deposit buildup in vegetable oil combustion is found. In the experiments, the engine performance, exhaust gas emissions, and carbon deposits are measured for a number of fuels: rapeseed oil, palm oil, methylester of rapeseed oil, and these fuels blended with ethanol or diesel fuel with different fuel temperatures. Both of the vegetable oil fuels generate an acceptable engine performance and exhaust gas emission levels for short term operation, but they cause carbon deposit buildups and sticking of piston rings after extended operation. Practical solutions to overcome the problems are: increasing the fuel temperature to over 200/sup 0/C, blending 25 vol % diesel fuel in the vegetable oil, blending 20 vol % ethanol in the fuel, or converting the vegetable oils into methylesters.

  17. A rapid method to authenticate vegetable oils through surface-enhanced Raman scattering.

    PubMed

    Lv, Ming Yang; Zhang, Xin; Ren, Hai Rui; Liu, Luo; Zhao, Yong Mei; Wang, Zheng; Wu, Zheng Long; Liu, Li Min; Xu, Hai Jun

    2016-01-01

    Vegetable oils are essential in our daily diet. Among various vegetable oils, the major difference lies in the composition of fatty acids, including unsaturated fatty acids (USFA) and saturated fatty acids (SFA). USFA include oleic acid (OA), linoleic acid (LA), and α-linolenic acid (ALA), while SFA are mainly palmitic acid (PA). In this study, the most typical and abundant USFA present with PA in vegetable oils were quantified. More importantly, certain proportional relationships between the integrated intensities of peaks centered at 1656 cm(-1) (S1656) in the surface-enhanced Raman scattering spectra of different USFA were confirmed. Therefore, the LA or ALA content could be converted into an equivalent virtual OA content enabling the characterization of the USFA content in vegetable oils using the equivalent total OA content. In combination with the S1656 of pure OA and using peanut, sesame, and soybean oils as examples, the ranges of S1656 corresponding to the National Standards of China were established to allow the rapid authentication of vegetable oils. Gas chromatograph-mass spectrometer analyses verified the accuracy of the method, with relative errors of less than 5%. Moreover, this method can be extended to other detection fields, such as diseases. PMID:26987802

  18. A rapid method to authenticate vegetable oils through surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Lv, Ming Yang; Zhang, Xin; Ren, Hai Rui; Liu, Luo; Zhao, Yong Mei; Wang, Zheng; Wu, Zheng Long; Liu, Li Min; Xu, Hai Jun

    2016-03-01

    Vegetable oils are essential in our daily diet. Among various vegetable oils, the major difference lies in the composition of fatty acids, including unsaturated fatty acids (USFA) and saturated fatty acids (SFA). USFA include oleic acid (OA), linoleic acid (LA), and α-linolenic acid (ALA), while SFA are mainly palmitic acid (PA). In this study, the most typical and abundant USFA present with PA in vegetable oils were quantified. More importantly, certain proportional relationships between the integrated intensities of peaks centered at 1656 cm‑1 (S1656) in the surface-enhanced Raman scattering spectra of different USFA were confirmed. Therefore, the LA or ALA content could be converted into an equivalent virtual OA content enabling the characterization of the USFA content in vegetable oils using the equivalent total OA content. In combination with the S1656 of pure OA and using peanut, sesame, and soybean oils as examples, the ranges of S1656 corresponding to the National Standards of China were established to allow the rapid authentication of vegetable oils. Gas chromatograph-mass spectrometer analyses verified the accuracy of the method, with relative errors of less than 5%. Moreover, this method can be extended to other detection fields, such as diseases.

  19. A rapid method to authenticate vegetable oils through surface-enhanced Raman scattering

    PubMed Central

    Lv, Ming Yang; Zhang, Xin; Ren, Hai Rui; Liu, Luo; Zhao, Yong Mei; Wang, Zheng; Wu, Zheng Long; Liu, Li Min; Xu, Hai Jun

    2016-01-01

    Vegetable oils are essential in our daily diet. Among various vegetable oils, the major difference lies in the composition of fatty acids, including unsaturated fatty acids (USFA) and saturated fatty acids (SFA). USFA include oleic acid (OA), linoleic acid (LA), and α-linolenic acid (ALA), while SFA are mainly palmitic acid (PA). In this study, the most typical and abundant USFA present with PA in vegetable oils were quantified. More importantly, certain proportional relationships between the integrated intensities of peaks centered at 1656 cm−1 (S1656) in the surface-enhanced Raman scattering spectra of different USFA were confirmed. Therefore, the LA or ALA content could be converted into an equivalent virtual OA content enabling the characterization of the USFA content in vegetable oils using the equivalent total OA content. In combination with the S1656 of pure OA and using peanut, sesame, and soybean oils as examples, the ranges of S1656 corresponding to the National Standards of China were established to allow the rapid authentication of vegetable oils. Gas chromatograph-mass spectrometer analyses verified the accuracy of the method, with relative errors of less than 5%. Moreover, this method can be extended to other detection fields, such as diseases. PMID:26987802

  20. Characterization of ozonated vegetable oils by spectroscopic and chromatographic methods.

    PubMed

    Sadowska, Justyna; Johansson, Bjarne; Johannessen, Espen; Friman, Rauno; Broniarz-Press, Lubomira; Rosenholm, Jarl B

    2008-02-01

    In this work the effect of ozonation on olive oil, soybean oil, oleic-, linoleic- and linolenic acid was studied. The effects of ozonation time on the oils and acids were analyzed by 1H, 13C NMR. Further, the peroxide- and acid values, the viscosity and the molar mass were determined for pure and ozonated oils. The fatty chains in both ozonated oils showed a gradual decrease of unsaturation with the gradual increase of ozonation time. Reaction products were identified according to Criegee mechanism. The major product in the early stage of the reaction was ozonide. The disappearance of unsaturation and formation of ozonide was almost equal. Ozonation increased the peroxide and acid values for both oils, the increase being higher for soybean oil. After long ozonation times higher molar mass species, as well as low molar mass species were observed. These are interpreted as oligomeric ozonides and cross-ozonides, respectively. PMID:18023273

  1. Polyhydroxyalkanoate (PHA) production using waste vegetable oil by Pseudomonas sp. strain DR2.

    PubMed

    Song, Jin Hwan; Jeon, Che Ok; Choi, Mun Hwan; Yoon, Sung Chul; Park, Woojun

    2008-08-01

    To produce polyhydroxyalkanoate (PHA) from inexpensive substrates by bacteria, vegetable-oil-degrading bacteria were isolated from a rice field using enrichment cultivation. The isolated Pseudomonas sp. strain DR2 showed clear orange or red spots of accumulated PHA granules when grown on phosphate and nitrogen limited medium containing vegetable oil as the sole carbon source and stained with Nile blue A. Up to 37.34% (w/w) of intracellular PHA was produced from corn oil, which consisted of three major 3-hydroxyalkanoates; octanoic (C8:0, 37.75% of the total 3-hydroxyalkanoate content of PHA), decanoic (C10:0, 36.74%), and dodecanoic (C12:0, 11.36%). Pseudomonas sp. strain DR2 accumulated up to 23.52% (w/w) of PHAMCL from waste vegetable oil. The proportion of 3- hydroxyalkanoate of the waste vegetable-oil-derived PHA [hexanoic (5.86%), octanoic (45.67%), decanoic (34.88%), tetradecanoic (8.35%), and hexadecanoic (5.24%)] showed a composition ratio different from that of the corn-oil-derived PHA. Strain DR2 used three major fatty acids in the same ratio, and linoleic acid was the major source of PHA production. Interestingly, the production of PHA in Pseudomonas sp. strain DR2 could not occur in either acetate- or butyrate-amended media. Pseudomonas sp. strain DR2 accumulated a greater amount of PHA than other well-studied strains (Chromobacterium violaceum and Ralstonia eutropha H16) when grown on vegetable oil. The data showed that Pseudomonas sp. strain DR2 was capable of producing PHA from waste vegetable oil. PMID:18756101

  2. Determination of vegetable oils and fats adulterants in diesel oil by high performance liquid chromatography and multivariate methods.

    PubMed

    Brandão, Luiz Filipe Paiva; Braga, Jez Willian Batista; Suarez, Paulo Anselmo Ziani

    2012-02-17

    The current legislation requires the mandatory addition of biodiesel to all Brazilian road diesel oil A (pure diesel) marketed in the country and bans the addition of vegetable oils for this type of diesel. However, cases of irregular addition of vegetable oils directly to the diesel oil may occur, mainly due to the lower cost of these raw materials compared to the final product, biodiesel. In Brazil, the situation is even more critical once the country is one of the largest producers of oleaginous products in the world, especially soybean, and also it has an extensive road network dependent on diesel. Therefore, alternatives to control the quality of diesel have become increasingly necessary. This study proposes an analytical methodology for quality control of diesel with intention to identify and determine adulterations of oils and even fats of vegetable origin. This methodology is based on detection, identification and quantification of triacylglycerols on diesel (main constituents of vegetable oils and fats) by high performance liquid chromatography in reversed phase with UV detection at 205nm associated with multivariate methods. Six different types of oils and fats were studied (soybean, frying oil, corn, cotton, palm oil and babassu) and two methods were developed for data analysis. The first one, based on principal component analysis (PCA), nearest neighbor classification (KNN) and univariate regression, was used for samples adulterated with a single type of oil or fat. In the second method, partial least square regression (PLS) was used for the cases where the adulterants were mixtures of up to three types of oils or fats. In the first method, the techniques of PCA and KNN were correctly classified as 17 out of 18 validation samples on the type of oil or fat present. The concentrations estimated for adulterants showed good agreement with the reference values, with mean errors of prediction (RMSEP) ranging between 0.10 and 0.22% (v/v). The PLS method was

  3. Effects of Oil-Contaminated Sediments on Submerged Vegetation: An Experimental Assessment of Ruppia maritima.

    PubMed

    Martin, Charles W; Hollis, Lauris O; Turner, R Eugene

    2015-01-01

    Oil spills threaten the productivity of ecosystems through the degradation of coastal flora and the ecosystem services these plants provide. While lab and field investigations have quantified the response of numerous species of emergent vegetation to oil, the effects on submerged vegetation remain uncertain. Here, we discuss the implications of oil exposure for Ruppia maritima, one of the most common species of submerged vegetation found in the region affected by the recent Deepwater Horizon oil spill. We grew R. maritima in a range of manipulated sediment oil concentrations: 0, 0.26, 0.53, and 1.05 mL oil /L tank volume, and tracked changes in growth (wet weight and shoot density/length), reproductive activity (inflorescence and seed production), root characteristics (mass, length, diameter, and area), and uprooting force of plants. While no statistical differences were detected in growth, plants exhibited significant changes to reproductive output, root morphology, and uprooting force. We found significant reductions in inflorescences and fruiting bodies at higher oil concentrations. In addition, the roots growing in the high oil were shorter and wider. Plants in medium and high oil required less force to uproot. A second experiment was performed to separate the effects of root morphology and oiled sediment properties and indicated that there were also changes to sediment cohesion that contributed to a reduction in uprooting forces in medium and high oil. Given the importance of sexual reproduction for these plants, oil contamination may have substantial population-level effects. Moreover, areas containing buried oil may be more susceptible to high energy storm events due to the reduction in uprooting force of foundation species such as R. maritima. PMID:26430971

  4. Effects of Oil-Contaminated Sediments on Submerged Vegetation: An Experimental Assessment of Ruppia maritima

    PubMed Central

    Martin, Charles W.; Hollis, Lauris O.; Turner, R. Eugene

    2015-01-01

    Oil spills threaten the productivity of ecosystems through the degradation of coastal flora and the ecosystem services these plants provide. While lab and field investigations have quantified the response of numerous species of emergent vegetation to oil, the effects on submerged vegetation remain uncertain. Here, we discuss the implications of oil exposure for Ruppia maritima, one of the most common species of submerged vegetation found in the region affected by the recent Deepwater Horizon oil spill. We grew R. maritima in a range of manipulated sediment oil concentrations: 0, 0.26, 0.53, and 1.05 mL oil /L tank volume, and tracked changes in growth (wet weight and shoot density/length), reproductive activity (inflorescence and seed production), root characteristics (mass, length, diameter, and area), and uprooting force of plants. While no statistical differences were detected in growth, plants exhibited significant changes to reproductive output, root morphology, and uprooting force. We found significant reductions in inflorescences and fruiting bodies at higher oil concentrations. In addition, the roots growing in the high oil were shorter and wider. Plants in medium and high oil required less force to uproot. A second experiment was performed to separate the effects of root morphology and oiled sediment properties and indicated that there were also changes to sediment cohesion that contributed to a reduction in uprooting forces in medium and high oil. Given the importance of sexual reproduction for these plants, oil contamination may have substantial population-level effects. Moreover, areas containing buried oil may be more susceptible to high energy storm events due to the reduction in uprooting force of foundation species such as R. maritima. PMID:26430971

  5. Detection of argan oil adulteration with vegetable oils by high-performance liquid chromatography-evaporative light scattering detection.

    PubMed

    Salghi, Rachid; Armbruster, Wolfgang; Schwack, Wolfgang

    2014-06-15

    Triacylglycerol profiles were selected as indicator of adulteration of argan oils to carry out a rapid screening of samples for the evaluation of authenticity. Triacylglycerols were separated by high-performance liquid chromatography-evaporative light scattering detection. Different peak area ratios were defined to sensitively detect adulteration of argan oil with vegetable oils such as sunflower, soy bean, and olive oil up to the level of 5%. Based on four reference argan oils, mean limits of detection and quantitation were calculated to approximately 0.4% and 1.3%, respectively. Additionally, 19 more argan oil reference samples were analysed by high-performance liquid chromatography-refractive index detection, resulting in highly comparative results. The overall strategy demonstrated a good applicability in practise, and hence a high potential to be transferred to routine laboratories. PMID:24491744

  6. Effects of mixing energy on the sedimentation of vegetable oil spills by clay.

    PubMed

    Wrenn, B A; Downer, R J; Venosa, A D

    2010-11-01

    The effects of clay dose and mixing energy on the efficiency of vegetable oil sedimentation by clay are investigated. The sedimentation efficiency increased with increasing clay dose to a maximum of about 80% of added oil. The maximum sedimentation efficiency was achieved at a lower clay dose, and the sedimentation efficiency was greater for a given clay dose when the oil was present as a thick oil film rather than as a thinner film. Sedimentation efficiency was relatively constant for mixing energies less than about 0.01 m2 s(-3) (0.01 W kg(-1)) but decreased dramatically at higher energy dissipation rates. Mixing energy may not be an important factor in determining the effectiveness of this response alternative because energy dissipation rates in natural surface water bodies under most typical conditions are less than 0.01 m2 s(-3). The effects of oil film thickness and mixing energy on the efficiency of vegetable oil sedimentation suggests that vegetable oil-mineral aggregates (VOMA) form through a different mechanism to that of petroleum oil-mineral aggregates (OMA). One consequence of the different formation mechanisms is that VOMA are much larger than petroleum OMA. PMID:21121454

  7. Short communication: rapid detection of milk fat adulteration with vegetable oil by fluorescence spectroscopy.

    PubMed

    Ntakatsane, M P; Liu, X M; Zhou, P

    2013-04-01

    This study assessed the potential application of fluorescence spectroscopy in detecting adulteration of milk fat with vegetable oil and characterizing the samples according to the source of the fat. Pure butterfat was adulterated with different vegetable oils at various concentrations (0, 5, 10, 15, 20, 30, and 40%). Nonfat and reduced-fat milk were also adulterated with vegetable oils to simulate full-fat milk (3.2%). The 2- and 3-dimensional front-face fluorescence spectroscopy and gas chromatography were used to obtain the fluorescence spectra and fatty acid profile, respectively. Principal component analysis and 3-way partial least squares regression analysis were applied to analyze the data. The pure and adulterated samples were discriminated based on the total concentration of saturated fatty acids and unsaturated fatty acids, and also on the 3 major fluorophores: tryptophan, tocopherols, and riboflavin. Fluorescence spectroscopy was able to detect up to 5% of adulteration of vegetable oil into the butterfat. The saturated fatty acids showed higher predictability than the unsaturated fatty acids (R(2) = 0.73-0.92 vs. 0.20-0.65, respectively). The study demonstrated the high potential of fluorescence spectroscopy to rapidly detect adulteration of milk fat with vegetable oil, and discriminate commercial butter and milk according to the source of the fat. PMID:23415535

  8. The use of saponified vegetable oil distillates/ethanol microcellular solution as a diesel fuel

    SciTech Connect

    Savage, L.D.; Birell, S.; Goering, C.E.

    1988-01-01

    Vegetable oils are considered possible replacement fuels for diesel engines; however, past research has shown that long term engine durability is adversely affected by the use of these fuels. Most researchers have attempted to reduce the problems associated with vegetable oil fuels either by the formation of vegetable oil/diesel blends or the esterfication of the vegetable oils. In this investigation of an alternative approach, the performance of saponified soybean oil/aqueous ethanol microcellular solutions were tested in a single-cylinder, direct injection, air-cooled diesel engine. The products of the pyrolytic distillation of crude soybean oil were mixed with 150 proof ethanol in the ratio of 4:1 by volume and saponified with anhydrous ammonia gas. This ''parent fuel'' was then diluted with 150 proof ethanol to obtain two test fuels, one with 30 percent ethanol concentration and the other with 40 percent ethanol concentration. The fuels were used in the engine under various loads at two speeds, and the performance was compared to the performance using No. 2-D commercial diesel fuel.

  9. [Quality of the various vegetable oils available on the Polish market].

    PubMed

    Rutkowska, Jarosława; Zbikowska, Anna

    2007-01-01

    The aim of this work was the examination of the quality of 17 different vegetable oils (13 refined and 4 extra virgin olive oils) available on the domestic market. The quality of oils was expressed by the following factors: conformity of fatty acid composition that as declared by manufacturer, content of oxidation products (PV, AnV, Totox), content of free fatty acids (LK) and oxidative stability. It was found that 40% of oils did not comply with the requirements concerning oxidative stability. The fatty acid composition of only 1 oil out of 17 investigated did not comply with the declaration by manufacturer. The oxidative stabilities of extra vergin olive oils: 6.44-8.24 hrs., were considerably higher that of other refined oils 2.34 to 8.24 hrs. PMID:18246656

  10. Vegetable Oil Derived Solvent, and Catalyst Free “Click Chemistry” Thermoplastic Polytriazoles

    PubMed Central

    Floros, Michael C.; Leão, Alcides Lopes; Narine, Suresh S.

    2014-01-01

    Azide-alkyne Huisgen “click” chemistry provides new synthetic routes for making thermoplastic polytriazole polymers—without solvent or catalyst. This method was used to polymerize three diester dialkyne monomers with a lipid derived 18 carbon diazide to produce a series of polymers (labelled C18C18, C18C9, and C18C4 based on monomer chain lengths) free of residual solvent and catalyst. Three diester dialkyne monomers were synthesized with ester chain lengths of 4, 9, and 18 carbons from renewable sources. Significant differences in thermal and mechanical properties were observed between C18C9 and the two other polymers. C18C9 presented a lower melting temperature, higher elongation at break, and reduced Young's modulus compared to C18C4 and C18C18. This was due to the “odd-even” effect induced by the number of carbon atoms in the monomers which resulted in orientation of the ester linkages of C18C9 in the same direction, thereby reducing hydrogen bonding. The thermoplastic polytriazoles presented are novel polymers derived from vegetable oil with favourable mechanical and thermal properties suitable for a large range of applications where no residual solvent or catalyst can be tolerated. Their added potential biocompatibility and biodegradability make them ideal for applications in the medical and pharmaceutical industries. PMID:25032224

  11. Functionalized Vegetable Oils for Utilization as Polymer Building Blocks: Office of Industrial Technologies (OIT) Agriculture Project Fact Sheet

    SciTech Connect

    Carde, T.

    2001-09-12

    Vegetable oils such as soybean oil will be converted to novel polymers using hydroformylation and other catalytic processes. These polymers can be used in the construction, automotive, packaging, and electronic sectors.

  12. Soil TPH Concentration Estimation Using Vegetation Indices in an Oil Polluted Area of Eastern China

    PubMed Central

    Zhu, Linhai; Zhao, Xuechun; Lai, Liming; Wang, Jianjian; Jiang, Lianhe; Ding, Jinzhi; Liu, Nanxi; Yu, Yunjiang; Li, Junsheng; Xiao, Nengwen; Zheng, Yuanrun; Rimmington, Glyn M.

    2013-01-01

    Assessing oil pollution using traditional field-based methods over large areas is difficult and expensive. Remote sensing technologies with good spatial and temporal coverage might provide an alternative for monitoring oil pollution by recording the spectral signals of plants growing in polluted soils. Total petroleum hydrocarbon concentrations of soils and the hyperspectral canopy reflectance were measured in wetlands dominated by reeds (Phragmites australis) around oil wells that have been producing oil for approximately 10 years in the Yellow River Delta, eastern China to evaluate the potential of vegetation indices and red edge parameters to estimate soil oil pollution. The detrimental effect of oil pollution on reed communities was confirmed by the evidence that the aboveground biomass decreased from 1076.5 g m−2 to 5.3 g m−2 with increasing total petroleum hydrocarbon concentrations ranging from 9.45 mg kg−1 to 652 mg kg−1. The modified chlorophyll absorption ratio index (MCARI) best estimated soil TPH concentration among 20 vegetation indices. The linear model involving MCARI had the highest coefficient of determination (R2 = 0.73) and accuracy of prediction (RMSE = 104.2 mg kg−1). For other vegetation indices and red edge parameters, the R2 and RMSE values ranged from 0.64 to 0.71 and from 120.2 mg kg−1 to 106.8 mg kg−1 respectively. The traditional broadband normalized difference vegetation index (NDVI), one of the broadband multispectral vegetation indices (BMVIs), produced a prediction (R2 = 0.70 and RMSE = 110.1 mg kg−1) similar to that of MCARI. These results corroborated the potential of remote sensing for assessing soil oil pollution in large areas. Traditional BMVIs are still of great value in monitoring soil oil pollution when hyperspectral data are unavailable. PMID:23342066

  13. Pilot scale production, characterization, and optimization of epoxidized vegetable oil-based resins

    NASA Astrophysics Data System (ADS)

    Monono, Ewumbua Menyoli

    Novel epoxidized sucrose soyate (ESS) resins perform much better than other vegetable oil-based resins; thus, they are of current interest for commercial scale production and for a wide range of applications in coatings and polymeric materials. However, no work has been published that successfully scaled-up the reaction above a 1 kg batch size. To achieve this goal, canola oil was first epoxidized at a 300 g scale to study the epoxidation rate and thermal profile at different hydrogen peroxide (H2O2) addition rates, bath temperatures, and reaction times. At least 83% conversion of double bonds to oxirane was achieved by 2.5 h, and the reaction temperature was 8-15 °C higher than the water bath temperature within the first 30-40 min of epoxidation. A 38 L stainless steel kettle was modified as a reactor to produce 10 kg of ESS. Twenty 7-10 kg batches of ESS were produced with an overall 87.5% resin yield and > 98% conversion after batch three. The conversion and resin quality were consistent across the batches due to the modifications on the reaction that improved mixing and reaction temperature control within 55-65 oC. The total production time was reduced from 8 to 4 days due to the fabrication of a 40 L separatory funnel for both washing and filtration. A math model was developed to optimize the epoxidation process. This was done by using the Box-Behnken design to model the conversion at various acetic acid, H2O2, and Amberlite ratios and at various reaction temperatures and times. The model had an adjusted R2 of 97.6% and predicted R2 of 96.8%. The model showed that reagent amounts and time can be reduced by 18% without compromising the desired conversion value and quality.

  14. Mechanical properties of photo-polymerized sustainable epoxy materials from vegetable oils

    NASA Astrophysics Data System (ADS)

    Ryu, Chang; Ravalli, Matthew; Yang, Zheqin; Crivello, James

    2014-03-01

    Our research program aimed at advancing our ability to tailor the photocationic polymerization and physical properties of sustainable epoxy materials derived from crosslinked epoxidized vegetable oils using onium salt photoinitiators. Specifically, we developed solventless, photopolymerizable epoxy monomer and oligomer systems derived from sustainable biorenewable sources as alternatives to existing highly polluting and energy-intensive thermal curing of epoxy resin chemistry. Two sustainable epoxy network polymer systems will be presented to investigate how the network formation can be controlled. The first system is a series of epoxidized vegetable oils that offer various degrees of crosslinking densities, and the second system represents the blends of epoxidized vegetable oils with epoxidized terpenes to tailor their photocuring and mechanical properties for the potential usage in ``green'' coating, adhesive, 3D printing, and composite applications. NSF DMR POLYMERS 1308617.

  15. Experimental investigation of electro-rheological properties of modeled vegetable oils.

    PubMed

    Valantina, S Rubalya; Susan, D; Bavasri, S; Priyadarshini, V; Saraswathi, R Ramya; Suriya, M

    2016-02-01

    Vegetable oil becomes polarized on oxidation and polymerization resulting in the formation of peroxide, triglycerides, etc. The quality and reusable state were investigated for sunflower, sesame, rice bran oil and model oil with the addition of oleic acid (2, 4 and 6 %) and antioxidants (citric and tert-Butyl hydroquinone-TBHQ). Excessive reclaims of cooking oil produce toxic by-products due to chemical breakdown that induce the production of polar compounds in oil. To determine the consumable fitness, variations of dielectric constant are observed at different temperatures (29 to 70 °C) and frequencies (1 to 10(7)Hz) for the cooking oil. Physical parameters, such as viscosity and density associated with the saturated and unsaturated fatty acid, are also measured at different temperatures to determine the quality of oil. Dielectric constant and viscosity are correlated and analyzed using a newly developed equation with high correlation constant (R (2)  = 0.998) for oil added with citric acid. Oil added with 2-4 % of oleic acid is observed to have high determination coefficient (R (2)  > 0.92). A lowest correlation (R (2)  = 0.6-0.7) was observed for the oil added with TBHQ. The present study also states that addition of TBHQ to oil does not impede oxidation reaction. Besides, even the shelf life of the oil could not be enhanced and may produce adverse effects in human health. PMID:27162414

  16. Final report on the safety assessment of Hydrogenated Cottonseed Oil, Cottonseed (Gossypium) Oil, Cottonseed Acid, Cottonseed Glyceride, and Hydrogenated Cottonseed Glyceride.

    PubMed

    2001-01-01

    Hydrogenated Cottonseed Oil, Cottonseed (Gossypium) Oil, Cottonseed Acid, Cottonseed Glyceride, and Hydrogenated Cottonseed Glyceride are cosmetic ingredients derived from Cottonseed Oil and used as skin-conditioning agents and surfactants. Nonoils known to be toxic that may be found in cottonseed oils include gossypol, aflatoxin, and cyclopropenoid fatty acids (CPFA). Toxic heavy metal and/or polychlorinated biphenyl (PCB) or other pesticide contamination is also possible. Cottonseed Oil was nontoxic in acute oral toxicity studies in rats. In a short-term study, rabbits that had been fed 2% Cottonseed Oil for 7 weeks had significantly lower blood chemistry parameters (compared to wheat bran controls) and significantly more stored hepatic vitamin A (compared to rabbits fed other fats). Cottonseed Oil controls used as vehicles in two parenteral studies produced negative results. Hydrogenated Cottonseed Oil tested in formulation did not produce dermal or ocular irritation in rabbits. An oral-dose reproductive study tested up to 30% Cottonseed Oil (with 1% CPFAs) and reported no adverse effects on sexual maturity and reproductive performance of the F0 generation; changes were noted in the F1 generation but reproductive capacity was not altered. Parenteral-dose reproductive studies reported no adverse effects. Cottonseed Oil was not mutagenic. Cottonseed Oil did not induce aberrant crypt foci when given orally to mice, but in other studies, it increased the incidence of spontaneous mammary tumors in rats and mice. Mice fed 20% Hydrogenated Cottonseed Oil during induction and promotion of photocarcinogenesis had significantly lower tumor incidence compared to mice fed 20% sunflower oil. Hydrogenated Cottonseed Oil in formulation (up to approximately 21%) was neither an irritant nor sensitizer in clinical studies. Limited clinical data indicated that Cottonseed Oil does not contain allergic protein. Based on the available data, it was concluded that these ingredients may

  17. Fuels Coming from Locals Vegetables Oils for Operating of Thermals Engines

    NASA Astrophysics Data System (ADS)

    Agboue, Akichi; Yobou, Bokra

    The energy crisis born from the oil problem determined a renewal of attention on the possible possibilities of production of substitute fuels for the operation of the machines and the thermal engines. The fuel`s production based on vegetable oils require a renewal attention about the research of replacement fuel for the opeating of machines and thermal engines. Actually, the scientific world takes an interest in the research of others liquids fuel obtained with renewables energy sources whose vegetables have a good place. So, for helping to solve the fuel problem and particularly in third world countries without petroleum resources but producing fruits and oils seed, this research was about search of fuel from vegetables oils. Extraction and physico-chemical analysis performed on various vegetables plants show an interesting energy aspect. Evaluation of actually energy parameters will permit to do a comparison with classics fuel like gas-oil and petrol. Finally, analysis of thermal engines show that fuels coming from biomass like jatropha, ricinodendron and pistacia can to use for operating of those thermal engines.

  18. The effect of nanoparticle surfactant polarization on trapping depth of vegetable insulating oil-based nanofluids

    NASA Astrophysics Data System (ADS)

    Li, Jian; Du, Bin; Wang, Feipeng; Yao, Wei; Yao, Shuhan

    2016-02-01

    Nanoparticles can generate charge carrier trapping and reduce the velocity of streamer development in insulating oils ultimately leading to an enhancement of the breakdown voltage of insulating oils. Vegetable insulating oil-based nanofluids with three sizes of monodispersed Fe3O4 nanoparticles were prepared and their trapping depths were measured by thermally stimulated method (TSC). It is found that the nanoparticle surfactant polarization can significantly influence the trapping depth of vegetable insulating oil-based nanofluids. A nanoparticle polarization model considering surfactant polarization was proposed to calculate the trapping depth of the nanofluids at different nanoparticle sizes and surfactant thicknesses. The results show the calculated values of the model are in a fairly good agreement with the experimental values.

  19. Economics of on-farm production and use of vegetable oils for fuel

    SciTech Connect

    McIntosh, C.S.; Withers, R.V.; Smith, S.M.

    1982-01-01

    The technology of oilseed processing, on a small scale, is much simpler than that for ethanol production. This, coupled with the fact that most energy intensive farm operations use diesel powered equipment, has created substantial interest in vegetable oils as an alternative source of liquid fuel for agriculture. The purpose of this study was to estimate the impact on gross margins resulting from vegetable oil production and utilization in two case study areas, Latah and Power Counties, in Iadho. The results indicate that winter rape oil became a feasible alternative to diesel when the price of diesel reached $0.84 per liter in the Latah County model. A diesel price of $0.85 per liter was required in the Power County model before it became feasible to produce sunflower oil for fuel. 5 tables.

  20. Characterisation of minor components in vegetable oil by comprehensive gas chromatography with dual detection.

    PubMed

    Purcaro, Giorgia; Barp, Laura; Beccaria, Marco; Conte, Lanfranco S

    2016-12-01

    The profile of minor compounds, such as alcohols, sterols, free and alkyl fatty acids, waxes, etc., was investigated in different vegetable oils by a comprehensive gas chromatographic system, coupled with a simultaneous dual detection (flame ionisation detector and mass spectrometer) for quantitative and qualitative purposes. Such a system generated a unique two-dimensional chromatogram to be used as a chemical fingerprint. Multi-level information, due not only to a more "comprehensive" preparation technique, but also thanks to the exploitation of a more powerful and sensitive analytical determination allowed the extrapolation of diagnostic information from the minor components profile of different vegetable oils, along with their characteristic profile. Furthermore, an admixture of an extra virgin olive oil with a low amount of sunflower and palm oils was evaluated, attesting to the powerful diagnostic information provided by the proposed approach. PMID:27374590

  1. Properties and performance testing with blends of biomass alcohols, vegetable oils and diesel fuel

    SciTech Connect

    Vinyard, S.; Hawkins, L.; Renoll, E.S.; Bunt, R.C.; Goodling, J.S.

    1982-01-01

    This paper is a presentation of results from three related efforts to determine the technical feasibility of using alcohols and vegetable oils blended with Diesel oil as fuel for unmodified compression ignition engines. Several different vegetable oils were successfully tested in a single cylinder engine. Sunflower oil was blended from 50% to 80% by volume with Diesel fuel and used in a multicylinder engine. Thermophysical property data were gathered on pure and blended fuels and are reported. A spray parameter, epsilon, was found which would predict the necessary change in valve opening pressure to render the atomization of the new fuel similar to that for which the injection system was designed. Engine testing showed that fuel consumption was substantially reduced upon setting the injectors at the new VOP. 2 figures, 1 table.

  2. Detection of Adulterated Vegetable Oils Containing Waste Cooking Oils Based on the Contents and Ratios of Cholesterol, β-Sitosterol, and Campesterol by Gas Chromatography/Mass Spectrometry.

    PubMed

    Zhao, Haixiang; Wang, Yongli; Xu, Xiuli; Ren, Heling; Li, Li; Xiang, Li; Zhong, Weike

    2015-01-01

    A simple and accurate authentication method for the detection of adulterated vegetable oils that contain waste cooking oil (WCO) was developed. This method is based on the determination of cholesterol, β-sitosterol, and campesterol in vegetable oils and WCO by GC/MS without any derivatization. A total of 148 samples involving 12 types of vegetable oil and WCO were analyzed. According to the results, the contents and ratios of cholesterol, β-sitosterol, and campesterol were found to be criteria for detecting vegetable oils adulterated with WCO. This method could accurately detect adulterated vegetable oils containing 5% refined WCO. The developed method has been successfully applied to multilaboratory analysis of 81 oil samples. Seventy-five samples were analyzed correctly, and only six adulterated samples could not be detected. This method could not yet be used for detection of vegetable oils adulterated with WCO that are used for frying non-animal foods. It provides a quick method for detecting adulterated edible vegetable oils containing WCO. PMID:26651578

  3. Influence of fatty acid methyl esters from hydroxylated vegetable oils on diesel fuel lubricity.

    PubMed

    Goodrum, John W; Geller, Daniel P

    2005-05-01

    Current and future regulations on the sulfur content of diesel fuel have led to a decrease in lubricity of these fuels. This decreased lubricity poses a significant problem as it may lead to wear and damage of diesel engines, primarily fuel injection systems. Vegetable oil based diesel fuel substitutes (biodiesel) have been shown to be clean and effective and may increase overall lubricity when added to diesel fuel at nominally low levels. Previous studies on castor oil suggest that its uniquely high level of the hydroxy fatty acid ricinoleic acid may impart increased lubricity to the oil and its derivatives as compared to other vegetable oils. Likewise, the developing oilseed Lesquerella may also increase diesel lubricity through its unique hydroxy fatty acid composition. This study examines the effect of castor and Lesquerella oil esters on the lubricity of diesel fuel using the High-Frequency Reciprocating Rig (HFRR) test and compares these results to those for the commercial vegetable oil derivatives soybean and rapeseed methyl esters. PMID:15607199

  4. Novel biobased photo-crosslinked polymer networks prepared from vegetable oil and 2,5-furan diacrylate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Novel biobased crosslinked polymer networks were prepared from vegetable oil with 2,5-furan diacrylate as a difunctional stiffener through UV photopolymerization, and the mechanical properties of the resulting films were evaluated. The vegetable oil raw materials used were acrylated epoxidized soybe...

  5. Effect of Replacing Pork Fat with Vegetable Oils on Quality Properties of Emulsion-type Pork Sausages

    PubMed Central

    Lee, Hyun-Jin; Jung, Eun-Hee; Lee, Sang-Hwa; Kim, Jong-Hee; Lee, Jae-Joon; Choi, Yang-II

    2015-01-01

    This study was conducted to evaluate the quality properties of emulsion-type pork sausages when pork fat is replaced with vegetable oil mixtures during processing. Pork sausages were processed under six treatment conditions: T1 (20% pork fat), T2 (10% pork fat + 2% grape seed oil + 4% olive oil + 4% canola oil), T3 (4% grape seed oil + 16% canola oil), T4 (4% grape seed oil + 4% olive oil + 12% canola oil), T5 (4% grape seed oil + 8% olive oil + 8% canola oil), and T6 (4% grape seed oil + 12% olive oil + 4% canola oil). Proximate analysis showed significant (p<0.05) differences in the moisture, protein, and fat content among the emulsion-type pork sausages. Furthermore, replacement with vegetable oil mixtures significantly decreased the ash content (p<0.05), increased water-holding capacity in emulsion-type pork sausages. Also, cholesterol content in T6 was significantly lower than T2 (p<0.05). In the texture profile analysis, hardness and chewiness of emulsion-type pork sausages were significantly (p<0.05) decreased by vegetable oil mixtures replacement. On the contrary, cohesiveness and springiness in the T4 group were similar to those of group T1. The unsaturated fatty acid content in emulsion-type pork sausages was increased by vegetable oil mixtures replacement. Replacement of pork fat with mixed vegetable oils had no negative effects on the quality properties of emulsion-type pork sausages, and due to its reduced saturated fatty acid composition, the product had the quality characteristics of the healthy meat products desired by consumers. PMID:26761810

  6. Replacement of dietary fish oil with vegetable oils improves the growth and flesh quality of large yellow croaker ( Larmichthys crocea)

    NASA Astrophysics Data System (ADS)

    Duan, Qingyuan; Mai, Kangsen; Shentu, Jikang; Ai, Qinghui; Zhong, Huiying; Jiang, Yujian; Zhang, Lu; Zhang, Chunxiao; Guo, Sitong

    2014-06-01

    We investigated the effect of the replacement of dietary fish oil with vegetable oils on the growth and flesh quality of large yellow croaker ( Larmichthys crocea). The basal diet (FO) was formulated to contain 66.5% fish meal and 6.4% menhaden fish oil; whereas the other 3 experimental diets were formulated by replacing the fish oil with 50% soybean oil (SO50), 100% soybean oil (SO100) and 100% palm oil (PO100), respectively. The 4 diets were randomly assigned to 4 floating sea cages (3.0 m × 3.0 m × 3.0 m), and each was stocked with 250 fish individuals with an initial average weight of 245.29 g ± 7.45 g. The fish were fed to apparent satiation twice a day at 5:00 and 17:00, respectively, for 12 weeks. Experimental analysis showed that the specific growth rate of fish fed SO50 or PO100 were significantly higher than that of fish fed FO or SO100 ( P<0.05), and crude lipid contents of ventral muscle and viscera were significantly lower in fish fed FO than in those fed the other 3 diets ( P<0.05). No significant differences in condition factor, viscerosomatic index, hepatosomatic index, gutted yield and colorimetric values of fish among the dietary treatments were observed ( P>0.05). Compared to FO diet, SO50, SO100 and PO100 diets led to substantial decreases in the liquid loss and water loss from fresh fillets (1 d, 4°C) ( P<0.05). Similarly, thiobarbituric acid reactive substance (TBARS) values of fillets under different storage conditions (1 d, 4°C; 7 d, 4°C; 4 weeks, -20°C; 8 weeks, -20°C) decreased significantly after partial or complete replacement of fish oil with vegetable oils. These findings indicated that the growth performance and selected flesh quality properties (liquid holding capacity and TBARS value) of large yellow croaker were substantially improved by replacing dietary fish oil with vegetable oils.

  7. SYNTHESIS OF HYDROXY THIO-ETHER DERIVATIVES OF VEGETABLE OIL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biobased additives are desirable commodities due to their eco-friendly nature. These additives can demonstrate physical and chemical properties comparable to those of conventional mineral oil based products. Sulfur incorporated triacylglycerol can function as an antiwear/antifriction additive for ...

  8. Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil

    NASA Astrophysics Data System (ADS)

    Kumar, Ashavani; Vemula, Praveen Kumar; Ajayan, Pulickel M.; John, George

    2008-03-01

    Developing bactericidal coatings using simple green chemical methods could be a promising route to potential environmentally friendly applications. Here, we describe an environmentally friendly chemistry approach to synthesize metal-nanoparticle (MNP)-embedded paint, in a single step, from common household paint. The naturally occurring oxidative drying process in oils, involving free-radical exchange, was used as the fundamental mechanism for reducing metal salts and dispersing MNPs in the oil media, without the use of any external reducing or stabilizing agents. These well-dispersed MNP-in-oil dispersions can be used directly, akin to commercially available paints, on nearly all kinds of surface such as wood, glass, steel and different polymers. The surfaces coated with silver-nanoparticle paint showed excellent antimicrobial properties by killing both Gram-positive human pathogens (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli). The process we have developed here is quite general and can be applied in the synthesis of a variety of MNP-in-oil systems.

  9. Lubricant Basestock Potential of Chemically Modified Vegetable Oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The environment must be protected against pollution caused by lubricants based on petroleum oils. The pollution problem is so severe that approximately 50% of all lubricants sold worldwide end up in the environment via volatility, spills, and total loss applications. This threat to the environment...

  10. Tribological properties of vegetable oils modified by reaction with Butanethiol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn, canola and castor-lauric estolide oils were chemically modified by direct reaction of butanethiol with the double bonds on the hydrocarbon chains. The effect of chemical modifications on viscosity, viscosity index (VI), pour point (PP), cloud point (CP), oxidation stability (OS), rotating pres...